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Preface to the second edition 
 
 

The good reception to the first edition in academia as well as among 
practising engineers and the positive echo throughout the professional 
community have been understood as an obligation to continue caring 
about the contents of the book. Using Elements of Plasticity in the class 
as a companion textbook to the related course taught by the author at 
Stuttgart University revealed, over the years, space for improvements, 
now implemented in the second edition. It is anticipated that the 
readership will benefit even more from the revised text, which has been 
supplemented where advisable.  
     Apart from the impulses that came while teaching the subject, helpful 
suggestions have been contributed by readers of the book. As in the first 
edition, the author has pleasure in acknowledging the indispensable 
assistance of Grethe Knapp Christiansen in processing the text. Thanks 
are due to the Publishers for encouraging the project and for its efficient 
realization. 
 

Ioannis Doltsinis 
Stuttgart, Germany 

January 2010 
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Preface to the first edition

Plasticity, the ability to undergo permanent deformations, is a property of
metallic materials that has great significance for the load carrying behaviour
of engineering structures, and for the manufacturing of structural compo-
nents by forming processes. This book deals with the load carrying aspect
of plasticity. In particular, deformations are considered infinitesimal and
emphasis is placed on the distribution and intensity of stress and permanent
strain. Unlike elasticity, under plastic conditions solutions are not scalable.
Instead they evolve during the course of loading, as a result of the interac-
tion between the structural system and the changing material characteris-
tics. The storage of stress that may accompany plastic strain determines the
behaviour upon unloading and subsequent loading cycles. At the same time,
the stress limiting properties of plastic materials allow for the estimation of
the load carrying capability of structures, and of failure limits under time
varying conditions. This situation is of vital importance to the structural
analyst and to the design engineer, who are forced to establish the strength
of the structure for safety under the constraints of minimum material and
weight, and thus have to account for plasticity.

For the purpose of an overview to this volume, two phases will be distin-
guished in the evolution of the research topic of plasticity. In the first phase,
researchers explored plastic and elastoplastic material behaviour and set up
mathematical formalisms for its description, investigated the behaviour of
elastoplastic structures, developed analytical solutions and postulated gen-
eral theorems, thus establishing the theoretical foundations of plasticity.
However, one fact ought not to be overlooked when considering this phase
of research: the difficulty in obtaining solutions, because of the complexity
of the rigorous material description, which lead to various compromising
but nonetheless interesting alternative approaches. A representative stage
of that era is documented in the literature (Proceedings of the Second Sym-
posium on Naval Structural Mechanics, Brown University, Rhode Island,
April 5–7, 1960, E.H. Lee and P.S. Symonds (Eds), Pergamon Press, Oxford,
1960).

The second phase of research, in which the author was involved, is char-
acterized by the development of computational methods of elastoplastic
analysis. The use of computational methods in structural analysis began in
the 1950s and evolved into the finite element method, the boundary element
method, and the other numerical methods that are widely used today. These



are not only utilized for standard investigations of stress and deformation,
but also as research tools in various branches of science and engineering.
Initial steps in computer-based elastoplastic analysis were explorative in
nature. They combined physical and numerical constituents mostly depen-
dent on intuition. The author, then at the Institute for Statics and Dynamics
of Aerospace Structures, University of Stuttgart, has actively experienced
the initiating impulses, and from the late 1960s had the opportunity to
shape the development of rigorous numerical techniques of elastoplastic
analysis. The prime objective was to produce stable and accurate computa-
tion schemes for application in engineering practice. Their implementation
in the general-purpose, finite element software ASKA (Automatic System
for Kinematic Analysis) with Dipl.-Ing. (ETH) Hans Balmer from the early
1970s was exclusively guided by industrial demands. The algorithms, con-
tinuously extended with regard to the structural elements, on one hand,
and the inelastic material options (thermoplasticity, creep, viscoplasticity,
soil materials), on the other hand, have also become standard procedures
in the other commercial software PERMAS. The latter was developed from
ASKA and has since progressed independently.

The community of practising engineers has shown, from the beginning,
an interest in the advantages offered by the computational techniques of
elastoplastic analysis, but at the same time scientists also showed a hes-
itancy in adopting the novel approach, despite its firm grounding in the
basics of plasticity. Numerous seminars and workshops held at the interna-
tional level served audiences from both industry and academia, and have
given rise to considerable published material on the subject. On the other
hand, working with graduating students has revealed a tendency among
them to simply apply computer software with little regard to the circum-
stance. This motivated the author to establish a university course, which
stressed the most important elements of plasticity to improve the physical
understanding, to correctly posing problems of elastoplastic analysis, solving
problems with the aid of the computer and providing a sound interpretation
of the numerical results. This course is being taught by the author at the
Faculty of Aerospace Engineering, University of Stuttgart, for almost two
decades now. Working with students over a long period has revealed a need
for written background material. Although some excellent monographs on
plasticity are available and are referred to in this volume, the conventional
treatment of the subject does not appear well suited for the purpose of a
computer-oriented approach.

As a result, the present volume has been produced by bridging conven-
tional theory and the numerical analysis of elastoplastic systems. The text
focuses on the most important elements of theory and computation using
matrix notation. It avoids the development of analytical solutions except
for the purpose of illustration and verification. The scope of the book goes
much further than the time limitations of the original, one-semester univer-
sity course. In particular, it answers a more general demand for the subject,



and includes results of research and development work by the author and 
his team in computational plasticity, compiled from unpublished notes 
and from papers in professional journals. Complementary to plasticity, 
some considerations on creep and viscoplasticity have been added in the 
book, and a number of selected applications from engineering practice 
demonstrate the usage of computational techniques. The book is aimed 
equally at graduate students, practising engineers and consultants, and 
can serve either to elucidate computational concepts and tools for the 
analysis of elastoplastic structures and solids, or to further advance the 
essential knowledge of the subject.  
     The author would like to express his appreciation to WIT Press for 
their cooperation in publishing the book and for the care taken with its 
production. 
 

Ioannis Doltsinis 
Stuttgart, Germany 

November 1999 
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Preliminaries

Introduction

This text is concerned with the mechanical response of elastoplastic solids
and their characteristic properties in the consideration of structural anal-
ysis. Whenever appropriate, plasticity will be established by pointing out
differences from elasticity. The latter subject is assumed to be sufficiently
familiar to the reader to serve as a background for the present purpose. In
this connection we refer to the classical textbook on the theory of elasticity
by Timoshenko and Goodier [1].

In common language the term elasticity is sometimes used as a synonym
for the deformability of a solid. It implies, however, that deformations dis-
appear completely after the removal of the applied forces. Elastic materials
are therefore not formable; changes in shape can be maintained only under
the continuous action of forces. Beyond elasticity certain materials exhibit
the property of plasticity (i.e. formability).

In substance this work refers primarily to metals. As illustrated by the
schematic force–deformation diagram for a metallic specimen in Fig. 1,
the resistance of the specimen to deformation – its stiffness – diminishes
once the elasticity limit is exceeded, and removal of the force then recov-
ers deformation only partially. The development of permanent deformation
under moderate additional forces beyond the elasticity limit is character-
istic of plasticity. This property is the basis for a number of important
manufacturing processes in metal forming (e.g. forging, rolling, upsetting
and extruding), which shape the desired part by significantly changing the
original geometry of the workpiece material. Plasticity is beneficial for the
production of structural parts by materials processing. The mathemati-
cal modelling and the numerical analysis of material deformation processes
make up the contents of a different volume [2].

This account rather deals with the response of structures and structural
components to applied loads. The appearance of plastic deformation under
service conditions will affect the stress and strain response to the loading
programme and the load-carrying capacity in a manner not predictable by
the elastic analysis of the structure. In order that stress and strain are
reproducible under the loading conditions, the structure is, as a rule, not
permitted to exceed the elasticity limit of the material during standard
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Figure 1: Elastoplastic vs elastic response.

operation. Structural design (specifying dimensions of load-carrying com-
ponents) is not restricted, however, to service conditions, but also accounts
for the safety of the system in critical situations. Keeping stress levels below
the elasticity limit for both service and safety does not utilize the reserve
capacity of the structure when deforming plastically. For an appropriate
employment of the material, overloading at extreme situations is accommo-
dated within the plastic range, thus helping to save weight. The safety of
the structure then has to be proved on the basis of an elastoplastic analy-
sis. If plastic deformation has to be tolerated even under service conditions,
elastoplastic analysis is also necessary in this connection. Such situations
can arise from stress concentrations at isolated locations in the structure,
or from the diminution of the yield stress, the elasticity limit of the material,
in parts operated at high temperature levels. In the present context, notice-
able changes of the geometry of the structure may be considered as failure,
and therefore the theoretical treatment refers to negligible effects of the
deformation upon the geometrical shape and dimensions of the structure.

For an illustration of the design aspect of plasticity we consider the sim-
ple case of a beam with a rectangular cross-section under pure bending as
described in Fig. 2. Let the elasticity limit of the material be defined by
the stress σs, which is not altered by plastic deformation. The beam, sub-
jected in its plane to the bending moment M under service conditions, must
ultimately sustain a bending moment nM , where n > 1 denotes the safety
factor. For an elastic design the ultimate bending moment is determined by
the linear stress profile in the upper part of Fig. 2, defined by the stress
magnitude |σ| = σs in the outmost fibres. It reads

nM =
2
3
beh

2σs (1)

and specifies the thickness be pertaining to the elastic design for an otherwise
prescribed height 2h of the beam.
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Figure 2: Elastic vs plastic design of beam.

Plasticity theoretically allows the magnitude of the stress to increase up
to the elasticity limit σs across the entire beam, as shown in the lower part
of Fig. 2. This tendency to smooth out the stress distribution on the penalty
of plastic deformation is a consequence of the limitation of the stress level
in the plastic range of the material, and may be considered characteristic
of plasticity. The above remark on homogenization does not apply to the
distribution of the strain, where the effect is reversed. From the ultimate
stress profile in the cross-section of the plastic beam, we deduce for the
bending moment the expression

nM = bph2σs, (2)

which determines the beam thickness bp pertaining to the plastic argument.
Comparison of eqns (1) and (2) reveals that

bp =
2
3
be (3)

and indicates the superiority of the plastic design with respect to saving
material resources and structure weight. Apart from the critical loading,
operation under service conditions must be within the elastic range, i.e.

M =
2
3

bp h2 |σ| , (|σ| ≤ σs). (4)

Comparison with eqn (2) gives the safety factor in plasticity

n =
3
2

σs

|σ| ≥ 3
2
. (5)
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The minimum value n = 3/2 corresponds to the case that the stress magni-
tude |σ| in the outmost fibres attains the elasticity limit σs during service
operation.

It is worth noting that, in the above considerations, the load-carrying
capacity reserve in the plastic range is not provided by the material since it
was not able to build up stresses beyond the elasticity limit. It is rather the
beam (the structure component) which allows – by plastic deformation –
the stress distribution to be adapted to an increasing loading. Conversely,
if structures are not able to redistribute stresses, an increase of the load-
ing above elasticity is only possible in conjunction with suitable material
properties.

The text of this volume consists of three main parts: the description of
elastoplastic material behaviour, the elastoplastic response of solids and
structures, and the development and application of computational finite
element techniques. The subject of the behaviour of elastoplastic solids and
structures will be exposed in the present context from the point of view of
the mechanics of structures and continua as applied to infinitesimal defor-
mations. Throughout the main text, we assume isothermal conditions and
a constant velocity of deformation or alternatively rate insensitivity of the
material (i.e. absence of viscosity). Chapter 1 deals with the mathematical
description of the constitutive response of elastoplastic materials. A discus-
sion of the uniaxial stress–strain characteristic of the material reveals the
particular type of the elastoplastic material law that is then established
for uniaxial and multiaxial conditions. Chapter 2 performs the transition
from the local considerations to the most essential issues regarding the
response of elastoplastically deforming structures and to the description
of field problems in elastoplasticity. In this connection, the equations gov-
erning quasistatic equilibrium are discussed along with appropriate solution
methods. Chapter 3 addresses the load-carrying capacity of elastoplastic
structures under monotonic loading conditions, whereas Chapter 4 consid-
ers limit behaviour under alternating loads. Each chapter comprises case
studies introducing the subject or illustrating the presented material.

Chapter 5 summarizes finite element techniques for the numerical solution
of elastoplastic problems with a digital computer. On the background of the
enhanced solution capabilities offered by numerical techniques, extensions
of inelastic material behaviour are considered in Chapter 6. They comprise
temperature dependence, time and rate effects, the significance of inertia
and pressure sensitive materials. Chapter 7 demonstrates the application of
finite element techniques to the numerical solution of problems related to
engineering practice.

This volume intends to provide the reader with a concise presentation of
the most essential issues both of the theory of plasticity and of the computa-
tional analysis techniques as based on finite elements. It is worth mentioning
that the main steps of the algorithmic procedure are applicable, however, to
different discretization methods as well. The theoretical development should
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be useful in understanding elastoplastic behaviour and suitably applying
and interpreting numerical elastoplastic analysis. For additional physical
insight and theoretical information, the reader is referred to the classical
books by Nadai [3], Hill [4], Kachanov [5] and Kaliszky [6]. Concerning
finite elements in plasticity, reference is made to the early book by Owen
and Hinton [7]. A wide presentation of the finite element method is given
by Zienkiewicz et al. in [8].

Matrix notation

This section introduces the matrix notation used in the text. It also explains
the symbolic presentation of matrix operations encountered in the other
chapters. Matrix algebra is assumed to be familiar to the reader, and there-
fore explanations are largely restricted to what might be considered of spe-
cific interest to our subject. More details can be found in specialized texts
like the concise presentation by Marcus in [9] and the mathematical treatise
by Serre in [10].

Definitions

A matrix is the arrangement of numbers or variables in a rectangular (or
square) array structured in rows and columns. For example, the matrix

A =
[

a11 a12 a13
a21 a22 a23

]
(6)

is a rectangular 2 × 3 matrix with elements aij (i = 1, 2; j = 1, 2, 3). The first
index specifies the row, the second refers to the columns of the scheme, thus
positioning the element in the array. A short-term presentation of eqn (6)
reads

A = [aij ] (m × n), (7)

and (m × n) is the size of a matrix with m rows and n columns as dimen-
sions. The transpose of the matrix is defined as

At =

⎡⎣ a11 a21
a12 a22
a13 a23

⎤⎦ or At = [aji]. (8)

It is obtained by interchanging columns and rows in the original scheme. A
square (n × n) matrix is symmetric if

At = A. (9)
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A diagonal matrix is a square matrix possessing non-zero elements only
on the diagonal. Display of zero elements is usually omitted:

D =

⎡⎢⎣ d1
. . .

dm

⎤⎥⎦ or D = �di�. (10)

The unity matrix (or identity matrix) is defined as

I =

⎡⎢⎣ 1
. . .

1

⎤⎥⎦ or I = �1�, (11)

and a zero matrix is a rectangular array occupied by zeros throughout. We
shall use the symbol 0 for a zero array whether it is a matrix or a vector.

A vector is a matrix array with a single column:

a =

⎡⎢⎣ a1
...
am

⎤⎥⎦ or a = {a1 · · · ai · · · am}. (12)

The alternative presentation of the vector in eqn (12) will be employed for
typographical brevity. The braces are used in order to distinguish it from
the row vector:

at = [a1 · · · ai · · · am] or b = [b1 · · · bj · · · bn]. (13)

Vectors consisting of zero and unity elements are useful in summing up
and/or distributing quantities. In connection with the state of stress or
strain we shall encounter the vector

e = {1 1 1 0 0 0}, (14)

but different patterns are also suitable for other situations.
A single real number is a scalar quantity in distinction to a vector or

a matrix, which assemble scalar elements. Hypermatrices and hypervectors
(also known as block matrices and block vectors, respectively) are assem-
bled from matrices or vectors as their elements. The elements of such hyper-
schemes are called submatrices or subvectors.

In contrast to scalar quantities, matrices and vectors are denoted by bold
face characters: matrices are preferably upper case, vectors lower case.

Matrix algebra

Elementary operations
Equality of two matrices (or vectors) implies that the dimensions are the
same and elements in corresponding positions are equal:

A = B ; aij = bij (i = 1, . . . , m; j = 1, . . . , n). (15)
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Sum and difference
The matrices (or vectors) must have the same dimensions, and their sum is
found by adding elements in corresponding positions:

A ± B = [aij ± bij ]. (16)

Multiplication
The scalar product of two vectors of equal dimension (n) is defined as

atb = a1b1 + a2b2 + · · · + anbn = bta. (17)

The symbolic notation for the sum in eqn (17) refers to column vectors. It
has to be modified if a and/or b are row vectors.

The two vectors are considered orthogonal if their scalar product vanishes:

atb = 0, e.g. [1 1 1]

⎡⎣ 1
1

−2

⎤⎦ = 0. (18)

The scalar product of a vector with itself supplies the squared length
(magnitude) of the vector:

ata = a2
1 + a2

2 + · · · + a2
n. (19)

The product of two rectangular matrices B and A with dimensions m × k
and k × n, respectively, is obtained as:

BA =

⎡⎢⎢⎢⎣
b1
b2
...

bm

⎤⎥⎥⎥⎦ [a1 a2 · · ·an] =

⎡⎢⎢⎢⎣
b1a1 b1a2 · · · b1an

b2a1 b2a2 · · · b2an

...
bma1 bma2 · · · bman

⎤⎥⎥⎥⎦ . (20)

The row vectors b1 b2 · · ·bm represent the rows of the matrix B, the vectors
a1 a2 · · ·an the columns of the matrix A. Accordingly, the elements biaj of
the product matrix are obtained as the scalar products of the respective
vectors. The vector dimension must be unique (k), and the dimension of
the matrix product (m × k)(k × n) is m × n. Obviously, BA �= AB.

With reference to eqn (20), the matrix product of two (column) vectors
b and a with dimension m and n, respectively, is a matrix of dimensions
m × n obtained as

bat =

⎡⎢⎢⎢⎣
b1
b2
...

bm

⎤⎥⎥⎥⎦ [a1 a2 · · · an] =

⎡⎢⎢⎢⎣
b1a1 b1a2 · · · b1an

b2a1 b2a2 · · · b2an

...
bma1 bma2 · · · bman

⎤⎥⎥⎥⎦ . (21)
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The matrix product of a vector with itself is seen to yield a symmetric
matrix

bbt =

⎡⎢⎢⎢⎣
b2
1 b1b2 · · · b1bm

b2b1 b2
2 · · · b2bm

...
bmb1 bmb2 · · · b2

m

⎤⎥⎥⎥⎦ . (22)

It is noticed that the transpose of a product of matrices is related as
follows to the transpose of the individual matrices:

(ABC)t = CtBtAt (23)

and thus (bbt)t = bbt in eqn (22).
For completeness, multiplication of a matrix by a scalar implies that every

element of the matrix is multiplied by this scalar:

cA = [caij ]. (24)

Functions of quadratic matrices
The square of a quadratic matrix or more generally the nth power (integer
n) is defined as the product

A2 = AA and An = AA · · ·A (n times). (25)

The following property of the powers of the matrix product of two vectors
of the same dimension can easily be confirmed:

(abt)2 = (bta)abt and (abt)n = (bta)n−1abt. (26)

Accordingly, the nth power of the matrix abt is obtained by multiplying
the matrix by the scalar quantity (bta)n−1. If the vectors are orthogonal
(bta = atb = 0), all higher powers of the product matrix abt vanish. In the
particular case b = a we have:

(aat)2 = (ata)aat, (aat)n = (ata)n−1aat. (27)

The scalar factor is here the squared magnitude (or length) of the vector.
Polynomials of a square matrix can be defined as

P (A) = c0I + c1A + c2A2 + · · · + cnAn, (28)

and analogously power series. In particular, we note the exponential form

exp(tA) = I + tA +
t2

2!
A2 +

t3

3!
A3 + · · ·

=
∞∑

n=0

tn

n!
An. (29)
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Inverse of a matrix
The inverse of a square matrix A is denoted by A−1 and is defined by the
property that

AA−1 = A−1A = I. (30)

For the inverse of a product of two square matrices we have

AB(AB)−1 = I and (AB)−1 = B−1A−1. (31)

The reversed order in the second equation is obtained by multiplying from
the left the first equation consecutively by A−1 and B−1. The inverse of a
matrix of the particular form I + abt can be given explicitly:

[I + abt]−1 =
[
I − 1

1 + bta
abt

]
. (32)

Matrix inversion is encountered in the solution of linear systems

Ax = b and x = A−1b. (33)

A solution of the system can be obtained if the determinant of the coefficient
matrix does not vanish; |A| �= 0. If |A| = 0, the solution of eqn (33) is not
possible. At the same time, the matrix A is said to be singular. Conversely, if
a square matrix is singular, its determinant is zero. The inverse of a singular
matrix does not exist.

Eigenvalues and eigenvectors
For every square matrix A, a scalar λ and a non-zero vector y can be found
such that

Ay = λy. (34)

The scalar λ is called an eigenvalue and y an eigenvector. From eqn (34),
we obtain the equations stating the eigenvalue problem

[A − λI]y = 0 and |A − λI| = 0. (35)

The condition of a zero determinant in eqn (35) ensures non-trivial solutions
of the matrix equation for y. This condition establishes the characteristic
equation |A − λI| = 0. If the dimension of A is m × m, the characteris-
tic equation will have m roots (i.e. the matrix will have m eigenvalues
λ1, λ2, . . . , λm). The eigenvalues will not necessarily all be distinct or non-
zero. With the eigenvalues λi known, the associated eigenvectors yi can be
determined from the matrix equation in eqn (35). It is easy to confirm that
αyi are also eigenvectors, which means that the direction of eigenvectors is
unique but not their magnitude (or length). Usually, eigenvectors are scaled
so that yty = 1.

The eigenvalues of a symmetric matrix are real numbers and the eigen-
vectors are mutually orthogonal. If A and B are square and have the same
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dimensions, the eigenvalues of AB and BA are the same but not necessarily
the eigenvectors.

The determinant of any square matrix A possessing the eigenvalues
λ1, λ2, . . . , λm, is given by the product

|A| = λ1λ2 · · ·λm =
m∏

i=1

λi. (36)

The matrix is singular if one of the eigenvalues is zero.
For completeness, the trace of the matrix (the sum of its diagonal ele-

ments) is obtained as

tr(A) = a11 + · · · + amm = λ1 + · · · + λm =
m∑

i=1

λi. (37)

Spectral decomposition
The spectral decomposition of a quadratic m × m matrix A is given by the
relationship

A = CΛC−1. (38)

In eqn (38), Λ denotes the diagonal matrix of the eigenvalues λi (the spec-
trum) of A,

Λ =

⎡⎢⎣ λ1
. . .

λm

⎤⎥⎦ = �λi�,

and the matrix C is composed of the respective eigenvectors yi as its
columns:

C = [y1 y2 · · ·ym] = [yi] .

We arrive at eqn (38) by considering the identity,

A = ACC−1 (CC−1 = I).

In detail,

A = A [y1 y2 · · ·ym]C−1

= [Ay1 Ay2 · · ·Aym]C−1

= [λ1y1 λ2y2 · · ·λmym]C−1 = CΛC−1.

The inverse transformation to eqn (38) is seen to diagonalize the matrix:

C−1AC = Λ. (39)
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The spectral decomposition presumes that the eigenvalues and the eigen-
vectors of the matrix are known, and that the matrix C of the eigenvectors
has an inverse. For a symmetric matrix A, the eigenvectors yi are mutually
orthogonal (yt

iyj = 0 , i �= j). Using normalized eigenvectors (yt
iyi = 1), the

matrix C is seen to be orthogonal (CtC = CCt = I, and Ct = C−1). Thus,
for a symmetric matrix,

A = CΛCt and CtAC = Λ. (40)

Differential forms

If f(x) is a scalar function of the variables x1, x2, . . . , xn collected in the
vector x, then the differential of the function f is given as:

df =
[

∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

]⎡⎢⎢⎢⎣
dx1
dx2
...

dxn

⎤⎥⎥⎥⎦ =
df

dx
dx. (41)

The row vector
df

dx
=

[
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

]
(42)

comprises the partial derivatives of the function f with respect to the vari-
ables xi. In case that two (or more) groups of variables are involved consti-
tuting the vectors x and y respectively, we have f(x,y) and

df =
∂f

∂x
dx +

∂f

∂y
dy =

[
∂f

∂x
∂f

∂y

] [
dx
dy

]
. (43)

In the collective hypervector notation the quantities ∂f/∂x, ∂f/∂y repre-
sent subvectors, as do the quantities dx and dy.

Next, we consider the vector

g(x) =

⎡⎢⎣ g1(x1, · · · , xn)
...
gm(x1, · · · , xn)

⎤⎥⎦ . (44)

Its differential is defined as

dg =

⎡⎢⎣ dg1
...

dgm

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎣
∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xn
...

∂gm

∂x1

∂gm

∂x2
· · · ∂gm

∂xn

⎤⎥⎥⎥⎥⎦
⎡⎢⎣ dx1

...
dxn

⎤⎥⎦ =
dg
dx

dx. (45)
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The m × n matrix

dg
dx

=

⎡⎢⎢⎢⎢⎣
∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xn
...

∂gm

∂x1

∂gm

∂x2
· · · ∂gm

∂xn

⎤⎥⎥⎥⎥⎦ (46)

comprises the partial derivatives ∂gi/∂xj as its elements.
For two (or more) groups of variables x and y, the functional dependence

can be written as g(x,y). The differential reads

dg =
∂g
∂x

dx +
∂g
∂y

dy =
[
∂g
∂x

∂g
∂y

] [
dx
dy

]
, (47)

and ∂g/∂x, ∂g/∂y enter the hypermatrix operation as submatrices.
Below, we list the derivatives of some special functional forms:

f = atx,
df

dx
= at ;

f = xtAx,
df

dx
= xt[A + At] = 2xtA ( forAt = A) ; (48)

g = Ax,
dg
dx

= A.

We also notice the chain rule in the case where f(y) and y(x):

df =
df

dx
dx =

df

dy
dy
dx

dx ,
df

dx
=

df

dy
dy
dx

.

Analogously,

dg =
dg
dx

dx =
dg
dy

dy
dx

dx ,
dg
dx

=
dg
dy

dy
dx

. (49)

The second differential of a scalar function f(x) of the vector x is
obtained as:

d2f =
d
dx

(
df

dx
dx

)
dx =

d
dx

(
dxt df

dxt

)
dx

= dxt d2f

dxdxt dx. (50)

The transpose of the row vector df/dx has been denoted by[
df

dx

]t

=
df

dxt
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and is called the gradient of the scalar function f . The second-order differ-
ential quotient in eqn (50) can be detailed as

d2f

dxdxt =

⎡⎢⎢⎢⎢⎢⎣
∂2f

∂x2
1

∂2f

∂x2∂x1
· · · ∂2f

∂xn∂x1
...

∂2f

∂x1∂xn

∂2f

∂x2∂xn
· · · ∂2f

∂x2
n

⎤⎥⎥⎥⎥⎥⎦ . (51)

The matrix assembles the second-order partial derivatives of the function f
with respect to the variables x1, x2, . . . , xn as indicated. It is symmetric if
the function depends continuously on the variables.

The matrix representation of the Taylor series expansion of the function
f(x) up to the second order reads

f(x + dx) = f(x) +
df

dx
dx +

1
2
dxt d2f

dxdxt dx, (52)

which utilizes the differential forms developed above.
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CHAPTER 1

Elastoplastic material behaviour

1.1 The uniaxial case

1.1.1 Description of material response

We begin our considerations in the elastoplastic regime with the case of
a rod specimen of metallic material under uniaxial tension. This simple
case encompasses all the essential features of elastoplastic material response
which are deduced directly from macroscopic experimental observations.
Beyond the importance of the conventional tension test for obtaining mate-
rial properties, the mathematical methodology of elastoplastic material
description can be introduced herewith as a basis for the subsequent exten-
sion to multiaxial stress and strain states. For the tensile specimen with
length l and cross-section A in Fig. 1.1, we define the uniaxial stress

σ =
P

A
, (1.1)

where P denotes the axially applied force, and the longitudinal strain

γ =
δ

l
, (1.2)

where δ denotes the elongation of the specimen.

Stress–strain diagram
The specimen is considered originally undeformed. An increase of the tensile
force from zero produces values of stress and strain lying along the solid
line in the diagram of Fig. 1.2 (left). Inspection of the plot of the recorded
stress and strain values indicates the deviation from the initial linear part –
inherent to elastic response – at point L, the linearity limit. Beyond this
point the stress–strain diagram is curvilinear with decreasing slope.

The above refers to monotonic loading conditions. If, in a different test
programme, the specimen is first stressed to a state well beyond point L
and is then unloaded, the strain follows the dashed line in the diagram.
It is thereby observed that the removal of the stress restores the strain only
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Figure 1.1: Rod specimen under uniaxial tension (schematic).

partially, while part of it adheres permanently to the specimen. Careful
examination of the test data reveals that permanent, plastic deformation
appears beyond point E, the elasticity limit. Reloading takes place along
a slightly different path until the monotonic tensile characteristic is again
reached. The latter is observed when the loading is increased further. The
described behaviour is typical of any unloading and reloading operation in
the elastoplastic regime of the test programme independently of the stress
level. The path difference between unloading and reloading is known as the
hysteresis loop.

The actual elastoplastic behaviour illustrated in Fig. 1.2 appears to be
complex. Despite an increasing tendency to pay particular attention to sec-
ondary effects, reasonable simplifications are helpful for a suitable descrip-
tion of metal plasticity. The idealized behaviour in the elastoplastic regime
depicted in the stress–strain diagram of Fig. 1.2 (right) is attributed to
Ludwig Prandtl [1]. Accordingly, the elasticity limit is assumed to coincide
with the linearity limit at A, the yield point of the material under uniaxial
tension. We denote the associated stress by σs. The material response to
stresses below the yield limit is elastic, and in this region unloading com-
pletely restores the deformation of the specimen.

Continuous loading beyond A follows the same curvilinear path as in
Fig. 1.2 (left), but unloading from point B, for instance, is assumed here
along a straight line parallel to the initial elastic one. Thereby, the elastic
part ε of the strain is restored, while the plastic part η remains after the

Figure 1.2: Elastoplastic stress–strain diagram and idealization (right).
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removal of the stress. Reloading from point C takes place along the same
elastic path as unloading, and the increase of the strain is purely elastic
up to B, the state before unloading. Thus, the plastic strain at B and C
is the same. For an increase of the stress beyond σf , the stress at state B,
the material follows the monotonic loading diagram as if unloading had not
occurred. Stress removal from a further advanced state D on the diagram
indicates that this transition from B has been accompanied by additional
plastic strain.

The appearance of a permanent plastic strain η in addition to the
reversible elastic strain ε is characteristic of the elastoplastic regime. The
total strain γ may be presented as

γ = ε + η. (1.3)

The additive decomposition refers to the strain γ defined by eqn (1.2).
Partition of the total elongation of the specimen δ into elastic and plastic
terms specifies the respective strains ε and η for l = const.

The development of plastic strain along the tensile stress–strain diagram
initially requires loading beyond the yield stress σs. The maximum stress
once imposed under plastic deformation, however, is recorded by the mate-
rial and becomes the actual yield limit σf for additional plastic straining.
Thus σf takes the place of the original σs when the specimen is unloaded
and later reloaded. A functional dependence

σf = σf(η) with σf(0) = σs (1.4)

can be deduced from the tension test after subtraction of the elastic strain
ε from the measured strain γ. Since the yield stress σf is increasing with
plastic strain η, the material is said to (strain-)harden, and the function
σf(η) describes the hardening characteristic.

Nature of the stress–strain relations
The additive composition of the strain as given by eqn (1.3) suggests the
description of elastoplastic material behaviour by means of an elastic and
a plastic constituent. This is demonstrated in Fig. 1.3 where the uniaxial
stress–strain characteristic is split into two distinct diagrams pertaining to
the parts ε and η of the strain γ. At a given stress level σ the elastic strain
can be determined by Hooke’s law as

ε =
σ

E
, (1.5)

where E denotes the modulus of elasticity of the material. Equation (1.5)
between stress and elastic strain may be considered an equation of state,
relating ε uniquely to σ regardless of the particular loading sequence pro-
ducing the actual stress. Any variation of the stress is accompanied by
variations of the elastic strain along the straight path described by the law
of elasticity.
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Figure 1.3: Elastic and plastic constituents.

Conversely, the stress may be considered to be a result of the elastic
strain. Using eqn (1.3), we obtain from eqn (1.5)

σ = Eε = E(γ − η). (1.6)

Determination of σ requires knowledge of the permanent strain η in addition
to the measured strain γ. The stress–plastic strain diagram in Fig. 1.3 (right)
represents the hardening characteristic σf(η) of the material. It is obtained
from the original tensile stress–strain curve after reduction of the strain γ
by the elastic strain ε from eqn (1.5). Simple knowledge of the momentary
stress proves to be insufficient for a unique determination of the plastic
strain. While the hardening characteristic provides us with a value for η at
the given stress level, the same stress can be reached by unloading from any
higher point of the hardening curve, and may therefore be associated with
different values of the plastic strain unless the preceding loading history is
specified.

For the above reason, we shall pay attention instead to the relations
between incremental variations of stress and plastic strain along a prescribed
stress path. For changes in plastic strain (plastic flow), the applied tensile
stress σ must be raised to the state σf(η) ultimately attained in the past by
the material. Then, an incremental increase of the stress by dσ > 0 produces
an increment dη in the plastic strain. Reduction of the stress by dσ < 0
corresponds to elastic unloading and leaves the plastic strain unaffected,
dη = 0. In contrast to elasticity, an essential difference between loading and
unloading becomes obvious in plasticity and introduces a nonlinear response
even for incremental variations of the stress state.

1.1.2 Plastic flow and stress–strain relations

From the foregoing discussion of experimental observations, a mathematical
description of uniaxial plastic flow will be based on the following three
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postulates:

(a) Yield condition φ = σ̄ − σf ≤ 0 (σ̄ = |σ|);

(b) Hardening law σf = σf(η̄) (η̄ = |η|);

(c) Flow rule dη = sdη̄

(
s =

σ

|σ| =
σ

σ̄

)
.

(1.7)

The yield condition in terms of the yield function φ(σ, σf) states that
the momentary yield stress of the material, σf , cannot be exceeded by the
applied stress σ. The absolute value of σ as an argument in the yield function
aims at its use for compressive loading as well. This presumes that the
magnitude σf of the yield stress is the same under tension or compression.

Hardening defines a material characteristic specifying the yield stress
(σf > 0) as a function of the plastic strain independently of the sign (η̄ ≥ 0).
Experimental evidence supports the hypothesis that the magnitude of the
yield stress attains the same value under tension or compression. Strictly,
this statement applies to separate tests under tensile or compressive action,
not to combined loading sequences. Then, σ(−η) = −σ(η) (see Fig. 1.4), and
the material yield stress can be stated as a positive quantity σf(η̄) depend-
ing on the absolute value of the plastic strain, for tensile or compressive
action. A more general definition of the quantity η̄ is given by

η̄ =
∫

dη̄, dη̄ = |dη| (1.8)

which offers a measure for the accumulated plastic strain in alternating
loading. Hardening in such a case will be discussed later in Section 1.3.

At this stage the formalism involves merely absolute values of the mechan-
ical variables of the system. The direction of plastic flow is specified by the

Figure 1.4: Yield stress under monotonic tension or compression.
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Figure 1.5: Yield condition and plastic loading.

flow rule. Thereby, the stress state at the occurrence of plastic flow defines
the sign of changes in plastic strain. This can be stated as

dη

|dη| =
σ

|σ| = s (1.9)

and is reflected under (c) in eqn (1.7).
In the σ̄, η̄ - diagram of Fig. 1.5, the hardening characteristic σf(η̄) is seen

to separate two regions, one below the curve where φ < 0, the other beyond
it where φ > 0, while φ = 0 along the hardening curve. We consider a spec-
imen which is unstressed, but may have been deformed plastically in a
previous loading programme so that the actual yield stress σf is above the
original σs. Increasing the stress σ̄ from zero will not cause any additional
plastic strain until the value σf is reached. Therefore, φ < 0 defines the
region where the material responds elastically to the applied stress. When
σ̄ = σf , the material is said to be at a plastic state. This is a necessary condi-
tion for the occurrence of plastic flow, but the change in stress at this state
is decisive. In particular, dσ̄ < 0 points into the elastic regime φ < 0 and
is associated with dη̄ = 0, while dσ̄ > 0 is accompanied by an increment of
plastic strain dη̄ > 0, thus advancing the material state along the hardening
characteristic φ = 0. By this mechanism, the region φ > 0 is not accessible
to the material despite an increasing magnitude of stress.

Plastic flow requires that the yield function in eqn (1.7) is zero:

φ = σ̄ − σf = 0. (1.10)

Differentiation leads to the consistency condition during plastic flow

dφ = dσ̄ − dσf = 0. (1.11)
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The increment of the yield stress can be related to the increment of plastic
strain via the hardening law:

dσf = hdη̄ with h =
dσf

dη̄
≥ 0. (1.12)

The parameter h is the local slope of the hardening curve. From eqns (1.11)
and (1.12),

dη̄ =
1
h

dσ̄ ≥ 0. (1.13)

The requirement dη̄ ≥ 0 ensures that the quantity η̄ can only increase and
is satisfied by the loading condition for plastic flow,

dσ̄ = sdσ > 0. (1.14)

The expression for dσ̄ in eqn (1.14) is deduced by differentiation of the
equality σ̄2 = σ2 and use of the definition of s in eqn (1.7). Substituting
in eqn (1.13) and applying the flow rule, we obtain for the plastic strain
increment:

dη =
1
h

ssdσ =
1
h

dσ if φ = 0 and dσ̄ = sdσ > 0;
(1.15)

dη = 0 otherwise.

Incremental stress–strain relations
Whenever plastic flow occurs according to the conditions listed in eqn (1.15),
dη supplements the incremental elastic strain dε as from eqn (1.5) to give
the strain increment:

dγ = dε + dη =
E + h

Eh
dσ. (1.16)

Equation (1.16) determines the change in strain dγ for a given incremen-
tal change in stress dσ. For h = 0 (non-hardening material) this relation
becomes meaningless, since eqn (1.15) is not applicable for the plastic strain.
The non-hardening material is said to possess a perfectly plastic constituent.
In this case of great theoretical significance the stress can be increased elas-
tically from zero to the yield limit σs, but subsequent deformation takes
place at constant stress (Fig. 1.6). As a consequence, we have

dσ = Edε = 0 (1.17)

and thus
dγ = dε + dη = dη. (1.18)

In the perfectly plastic case, once the yield limit is reached, the elastic part
of the incremental strain vanishes and the latter is entirely of a plastic
nature.
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Figure 1.6: Elastic–perfectly plastic behaviour.

For an alternative description of the plastic strain increment, dσ in
eqn (1.15) is expressed via the elastic relation, eqn (1.6), in terms of the
difference (dγ − dη). Solution for dη then gives the expression

dη =
E

E + h
dγ (1.19)

for the incremental plastic strain, and the loading condition

sdγ > 0 (1.20)

in terms of the strain increment dγ. In the case of a perfectly plastic material
(h = 0) the above formulation implies eqn (1.18).

Subtraction of the plastic strain increment by eqn (1.19) from dγ gives
the elastic part of the strain increment, and the stress change

dσ = Edε =
Eh

E + h
dγ (1.21)

is as for hardening: dσ = hdη. Equation (1.21) determines in the elastoplas-
tic material range the change in stress dσ for a given strain increment dγ.
It can be identified as the inverse relation to eqn (1.16).

1.2 Plastic yielding under multiaxial conditions

1.2.1 State of stress and strain

For a definition of stress and strain, we refer to the cubic element of the
material in Fig. 1.7 which is oriented along the Cartesian axes. Stresses are
defined by the Cartesian components of the force per unit area (traction)
acting on each of the faces of the cubic element. Considering the face nor-
mal to the x-axis, for instance, we have the direct (or normal) stress σxx
normal to the surface, and the shear (or tangential) stresses σxy and σxz tan-
gential to it. The first stress index refers to the surface normal, the second
specifies the direction of the component.
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Figure 1.7: Definition of stress components.

Stresses are taken to be positive as indicated in Fig. 1.7. The nine com-
ponents visible in the figure define the stress state at a point. They can
be reduced to six by taking into account that shear stresses with reversed
indices must be equal in order to ensure moment equilibrium. For a collec-
tive representation of the stress state we introduce the 6 × 1 matrix array
(stress vector)

σ =
{

σxx σyy σzz
√

2σxy
√

2σyz
√

2σxz

}
. (1.22)

The state of strain is characterized by the direct strains γxx, γyy, γzz, which
are obtained as the extensions of a unit cube along the coordinate axes, and
the shear strains γxy, γyz, γxz representing the changes of the angles of the
cube in the respective planes (Fig. 1.8). For a collective representation of

Figure 1.8: Definition of direct and shear strains.
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the strain state, the 6 × 1 strain vector

γ =
{

γxx γyy γzz
1√
2
γxy

1√
2
γyz

1√
2
γxz

}
(1.23)

is introduced in analogy to eqn (1.22) for the stress. The prefactors of the
shear components in eqns (1.22) and (1.23) will help to simplify matrix
operations [2].

Isotropic materials exhibit a markedly different response to normal
stresses acting equally in all directions than to shear stresses. The so-called
hydrostatic stress σH is defined as the mean value of the normal stress
components,

σH =
1
3
(σxx + σyy + σzz) =

1
3
etσ, (1.24)

where the indicated matrix operation makes use of the summation vector

e = {1 1 1 0 0 0}. (1.25)

The single value of the hydrostatic stress is expanded to a hydrostatic stress
state represented by the 6 × 1 stress vector

σH = {σH σH σH 0 0 0}. (1.26)

It consists of three direct components identical to σH and zero shear compo-
nents, thus specifying the hydrostatic part of the stress state σ. The matrix
notation for the formation of σH reads

σH = σHe =
1
3
eetσ (1.27)

and defines the hydrostatic operator applied to the stress σ.
The difference of the actual stress state σ to σH defines the deviatoric

stress:

σD = σ − σH =
[
I − 1

3
eet

]
σ, (1.28)

where I denotes the identity matrix. The deviatoric stress components σDxx,
σDyy, . . . are defined as in the array:

σD =
{

(σxx − σH) (σyy − σH) (σzz − σH)
√

2σxy
√

2σyz
√

2σxz

}
. (1.29)

The deviatoric matrix operator applied to σ in eqn (1.28) modifies the direct
stress components, while the shear stresses remain unaffected.

By definition, the deviatoric stress does not possess any hydrostatic com-
ponent. Therefore, the condition

etσD = σDxx + σDyy + σDzz = 0 (1.30)
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constrains the direct components of the deviatoric stress that cannot be
varied independently. Hydrostatic and deviatoric constituents of the stress
state are said to be orthogonal to each other in the sense that

σt
DσH = σt

HσD = 0, (1.31)

which can be easily confirmed.
The strain state is partitioned in analogy to the stress. The volumetric

strain γV is defined as

γV =
1
3
(γxx + γyy + γzz) =

1
3
etγ. (1.32)

A volumetric state of strain,

γV = γVe =
1
3
eetγ, (1.33)

is obtained from the actual strain state by an application of the hydrostatic
matrix operator of eqn (1.27). Analogously, the deviatoric strain

γD = γ − γV =
[
I − 1

3
eet

]
γ (1.34)

follows as a result of the matrix operation defined in eqn (1.28). Deviatoric
deformation conserves volume since

etγD = γDxx + γDyy + γDzz = 0. (1.35)

In the elastoplastic regime each of the strain components in eqn (1.23) is
considered to consist of two additive parts, the elastic strain and the plastic
strain. The elastic part of the strain defines the 6 × 1 vector

ε =
{

εxx εyy εzz
1√
2
εxy

1√
2
εyz

1√
2
εxz

}
, (1.36)

and the plastic part of the strain defines the 6 × 1 vector

η =
{

ηxx ηyy ηzz
1√
2
ηxy

1√
2
ηyz

1√
2
ηxz

}
. (1.37)

The measured strain γ is then composed as

γ = ε + η. (1.38)

Volumetric and deviatoric states of ε and η are defined as for γ. For
instance, from eqn (1.33),

γV =
1
3
eet[ε + η] = εV + ηV, (1.39)
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where εV and ηV result from the application of the hydrostatic operator to
each of the constituents. Also, from eqn (1.34),

γD =
[
I − 1

3
eet

]
[ε + η] = εD + ηD, (1.40)

where εD and ηD denote the result of the deviator operation as applied to
ε and η, respectively. The condition of eqn (1.35) concerns each constituent
separately:

etεD = 0, etηD = 0. (1.41)

Elasticity
The partition of stress/strain into hydrostatic/volumetric and deviatoric
constituents is utilized in forming the elasticity matrix for an isotropic mate-
rial. In this case, hydrostatic stresses are proportional to volumetric strains:

σH = 3KεV. (1.42)

The modulus of volume expansion K can be expressed in terms of the modu-
lus of elasticity in tension (Young’s modulus E) and the coefficient of lateral
contraction (Poisson’s ratio ν):

3K =
E

1 − 2ν
. (1.43)

Deviatoric stresses are set proportional to the deviatoric strains by the mod-
ulus of elasticity in shear G. The relationship between the respective vector
arrays reads:

σD = 2GεD, (1.44)

where
2G =

E

1 + ν
. (1.45)

Superposition of eqns (1.42) and (1.44) gives the actual stress state, and
expressing the parts εD and εV in terms of the entire ε in analogy to
eqns (1.34) and (1.33) leads to the elastic stress–strain relationship:

σ = 2GεD + 3KεV = 2G

[
I +

ν

1 − 2ν
eet

]
ε. (1.46)

In compact form, eqn (1.46) is written as

σ = κ ε, (1.47)

with the symmetric elasticity matrix (elastic material stiffness),

κ = 2G

[
I +

ν

1 − 2ν
eet

]
. (1.48)
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The matrix relation in eqn (1.46) is easily inverted to determine the elastic
strain for a given stress. Alternatively, the inverse form can be obtained
directly using eqns (1.42) and (1.44). Superposition of the deviatoric and
the volumetric part of strain from the above equations gives the elastic
strain

ε =
1

2G
σD +

1
3K

σH =
1

2G

[
I − ν

1 + ν
eet

]
σ. (1.49)

Here, σD and σH have been expressed in terms of the stress σ by eqns (1.28)
and (1.27), respectively. The inverse relation to eqn (1.47) becomes

ε = κ−1σ (1.50)

with

κ−1 =
1

2G

[
I − ν

1 + ν
eet

]
. (1.51)

1.2.2 Variation of the reference system: principal stresses

Prior to an analysis of the stress and strain components under transforma-
tions of the reference system, we consider a quantity which remains invari-
ant: the work of the stresses on the strains. For this purpose, we refer to
the volume element in Fig. 1.7 and assume the strain γ to be imposed on
the material independently of an existing stress σ. Since the stress com-
ponents represent forces per unit area and strains may be interpreted as
displacements per unit length, the expression

w = σxxγxx + σyyγyy + σzzγzz + σxyγxy + σyzγyz + σxzγxz = σtγ (1.52)

supplies the work of the stresses on the strains per unit volume of the
material; it is invariant to transformations of the reference system.

Rotated reference system
Let the new reference system 0–x′y′z′ be rotated with respect to the original
system 0–xyz. The coordinates of a point in the new system are obtained
by the transformation

x′ = cx′xx + cx′yy + cx′zz

y′ = cy′xx + cy′yy + cy′zz (1.53)

z′ = cz′xx + cz′yy + cz′zz.

The coefficients in eqn (1.53) are the direction cosines of the rotated axes
with respect to the original axes. For instance cx′y = cos(x′, y) denotes the
cosine of the new x′-direction to the original y-direction. Introducing the
vectors

x′ = {x′ y′ z′}, x = {x y z} (1.54)
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and the transformation matrix,

C =

⎡⎣ cx′x cx′y cx′z
cy′x cy′y cy′z
cz′x cz′y cz′z

⎤⎦ , (1.55)

one obtains a compact form of eqn (1.53) as

x′ = Cx. (1.56)

The inverse transformation reads

x = cx′xx
′ + cy′xy

′ + cz′xz
′

y = cx′yx
′ + cy′yy

′ + cz′yz
′ (1.57)

z = cx′zx
′ + cy′zy

′ + cz′zz
′,

and in matrix form
x = Ctx′. (1.58)

From eqns (1.56) and (1.58), it follows that

CtC = CCt = I. (1.59)

Therefore, scalar multiplication of each column of C by itself gives unity,
while multiplication by a different column yields zero; the same applies
to the rows. The matrix C is orthogonal and its inverse is obtained by
transposition.

For a transformation of the stress components, the infinitesimal tetrahe-
dral element in Fig. 1.9 is considered to have the oblique face with area
A normal to the new x′-direction. The areas of the three other faces are
obtained as the projections of A onto the coordinate planes. These are

Ax = Acx′x, Ay = Acx′y, Az = Acx′z. (1.60)

Figure 1.9: Transformation of stress components.
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The force transferred by the oblique face to the tetrahedron is equilibrated
by the stress resultants on the other three faces. Let t = {tx ty tz} denote the
force transferred per unit area of the oblique face (traction). The component
of the force along the x-direction is determined by

txA = σxxAx + σyxAy + σzxAz. (1.61)

Analogously, two other equations are deduced for the y- and the z-
directions. Substituting the areas Ax, Ay, Az from eqn (1.60) in these three
equations we obtain the component quantities tx, ty, tz on the oblique face as

tx = σxx cx′x + σyx cx′y + σzx cx′z

ty = σxy cx′x + σyy cx′y + σzy cx′z (1.62)

tz = σxz cx′x + σyz cx′y + σzz cx′z.

Projection onto the new directions gives the direct and the shear stresses in
the system 0–x′y′z′ for a plane normal to x′ as

σ′
xx = cx′x tx + cx′y ty + cx′z tz

σ′
xy = cy′x tx + cy′y ty + cy′z tz (1.63)

σ′
xz = cz′x tx + cz′y ty + cz′z tz.

Both eqns (1.63) and(1.62) are interpreted as matrix multiplications and
combined in the expression⎡⎣ σ′

xx
σ′

xy
σ′

xz

⎤⎦ =

⎡⎣ cx′x cx′y cx′z
cy′x cy′y cy′z
cz′x cz′y cz′z

⎤⎦⎡⎣ σxx σyx σzx
σxy σyy σzy
σxz σyz σzz

⎤⎦⎡⎣ cx′x
cx′y
cx′z

⎤⎦ . (1.64)

The stress components on planes normal to the other two directions y′ and
z′ are obtained analogously by considering elemental tetrahedra with an
oblique face in the system 0–xyz normal to the new directions. Thereby,
the denomination of the stresses on the left-hand side of eqn (1.64) has to
be changed for the new normal direction considered. The latter is specified
on the right-hand side. Summarizing, eqn (1.64) is completed as follows:⎡⎣ σ′

xx σ′
yx σ′

zx
σ′

xy σ′
yy σ′

zy
σ′

xz σ′
yz σ′

zz

⎤⎦
=

⎡⎣cx′x cx′y cx′z
cy′x cy′y cy′z
cz′x cz′y cz′z

⎤⎦⎡⎣σxx σyx σzx
σxy σyy σzy
σxz σyz σzz

⎤⎦⎡⎣cx′x cy′x cz′x
cx′y cy′y cz′y
cx′z cy′z cz′z

⎤⎦ . (1.65)

The first coefficient matrix in eqn (1.65) is C, eqn (1.55), while the last is
the transpose matrix Ct. With reference to eqn (1.59), the inverse relation
to eqn (1.65) can be given explicitly.
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Transformation of vector arrays
Transferring eqn (1.65) to the 6 × 1 stress vector σ, eqn (1.22), we obtain
instead

σ′ = C̄σ (1.66)

between the stress components in the original and the rotated system. The
detailed form of the coefficient matrix in eqn (1.66) is

C̄ =

[
C̄nn

√
2C̄ns√

2C̄sn C̄ss

]
, (1.67)

with the submatrices

C̄nn =

⎡⎢⎣ c2
x′x c2

x′y c2
x′z

c2
y′x c2

y′y c2
y′z

c2
z′x c2

z′y c2
z′z

⎤⎥⎦ ,

C̄ss =

⎡⎢⎢⎢⎣
cx′x cy′y + cx′y cy′x cx′y cy′z + cx′z cy′y cx′x cy′z + cx′z cy′x

cy′x cz′y + cy′y cz′x cy′y cz′z + cy′z cz′y cy′x cz′z + cy′z cz′x

cx′x cz′y + cx′y cz′x cx′y cz′z + cx′z cz′y cx′x cz′z + cx′z cz′x

⎤⎥⎥⎥⎦ ,

(1.68)

C̄ns =

⎡⎢⎢⎣
cx′x cx′y cx′y cx′z cx′x cx′z

cy′x cy′y cy′y cy′z cy′x cy′z

cz′x cz′y cz′y cz′z cz′x cz′z

⎤⎥⎥⎦ ,

C̄sn =

⎡⎢⎢⎣
cx′x cy′x cx′y cy′y cx′z cy′z

cy′x cz′x cy′y cz′y cy′z cz′z

cx′x cz′x cx′y cz′y cx′z cz′z

⎤⎥⎥⎦ .

The transformation for the strain can be deduced from the invariance
of the elementary work expression, eqn (1.52):

w = σtγ = (σ′)tγ′ = σtC̄tγ′. (1.69)

Since the invariance of the elementary work to the reference system is inde-
pendent of a particular stress state, there follows from eqn (1.69) for the
strain

γ = C̄tγ′. (1.70)

The inverse transformation to eqn (1.66) is found to be

σ = C̄tσ′ (1.71)
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and implies the dual relation for the strain

γ′ = C̄γ. (1.72)

Comparison of eqns (1.71) and (1.72) with eqns (1.66) and (1.70), respec-
tively, gives

C̄tC̄ = C̄C̄t = I (1.73)

and therefore C̄ is an orthogonal matrix.
By virtue of eqn (1.73) it can be confirmed that the magnitude (length)

of stress and strain vectors is invariant to rotations of the reference system:

σtσ = (σ′)tC̄C̄tσ′ = (σ′)tσ′ (1.74)

and
(γ′)tγ′ = γtC̄tC̄γ = γtγ. (1.75)

Considering next the hydrostatic stress separately we obtain

σH =
1
3

etσ =
1
3
etC̄tσ′ =

1
3
etσ′, (1.76)

which conforms with the identity for e = {1 1 1 0 0 0}:

C̄e ≡ C̄te ≡ e. (1.77)

The expression for σH is invariant to rotations of the reference system, and
this is obviously reflected in the complete hydrostatic stress vector:

σ′
H = C̄σH = σH. (1.78)

The deviatoric stress in the transformed system is obtained by

σ′
D = σ′ − σ′

H = C̄σD. (1.79)

In analogy to the stress, the transformation by eqn (1.72) for the strain
applies to the deviatoric part, while the volumetric strain is insensitive to
it. The transformation is, of course, not affected by the physical nature of
the strain, be it elastic or plastic.

Principal axes
Principal stress directions are defined by the requirement that only normal com-
ponents exist on the plane element, while any tangential component is absent. Let
the normal vector n = {l m n} specify a principal stress plane. The components of
the traction t = {tx ty tz} on the associated plane element are obtained in analogy
to eqn (1.62). In matrix form:

t = Ttn. (1.80)
Here, the symbol Tt stands for the arrangement of the stress components in
the 6 × 6 matrix array as in eqn (1.64), and the normal vector n replaces the
previous specification of the x′-direction. Since the traction t is now requested to
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point along the principal axis, it can be represented as t = σn, σ being a scalar
multiplier to the normal n. Comparison with eqn (1.80) leads to the condition

[Tt − σI]n = 0 (1.81)

for the principal direction n, which defines an eigenvalue problem. Non-trivial
solutions of the homogeneous linear system for n require that the determinant of
the coefficient matrix vanishes. We write

|Tt − σI| =

∣∣∣∣∣∣
σxx − σ σxy σxz

σyx σyy − σ σyz

σzx σzy σzz − σ

∣∣∣∣∣∣ = 0. (1.82)

The solution of eqn (1.82) for σ and eqn (1.81) for n specifies three principal
directions for the considered stress state [3]. They are orthogonal to each other
and associated with three values of the scalar σ, the principal stresses σ1, σ2 and
σ3. The principal directions thus define the axes of a reference system 0–xIyIzI (or
simply 0–1 2 3) in which the considered state of stress does not exhibit tangential
components, but only the above normal components.

A principal stress vector is introduced as the 3 × 1 column array

σI = {σ1 σ2 σ3}. (1.83)

Given the principal directions, it can be obtained from the stress state by
the transformation of eqn (1.66) to

σI = C̄Iσ. (1.84)

The principal stress vector in eqn (1.83) allows the transformation to be
accomplished with the reduced matrix

C̄I = [C̄nn
√

2C̄ns]I, (1.85)

instead of the complete one in eqn (1.67). It can be easily verified that the
inverse relation to eqn (1.84) reads

σ = C̄t
IσI, (1.86)

and thus the three principal stresses completely define the stress state in
conjunction with the principal directions. The transformation by eqn (1.84)
also applies to the deviatoric part of the stress

σDI = C̄IσD and σD = C̄t
IσDI. (1.87)

The hydrostatic part is invariant to rotations of the reference axes.
In analogy to the principal stresses, principal strains

γI = {γ1 γ2 γ3} (1.88)

can be obtained for a given strain state independently of the stress. It is
of interest, however, to consider strains associated with the stresses by the
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constitutive law of the material. For the isotropic elastic material an impo-
sition of stresses results in strains determined by eqns (1.42) and (1.44).
In this case, principal deviatoric stresses σDI lead to principal deviatoric
strains:

εDI =
1

2G
σDI = C̄IεD. (1.89)

The transition to the last expression uses eqn (1.87) for the principal stress
transformation and observes the elasticity law. Since hydrostatic stresses
cause volumetric elastic strains independently of coordinate rotations, the
latter may be added unaltered to the deviatoric strain on both sides of
eqn (1.89). As a result, we obtain for the complete strain state

εI = C̄Iε and ε = C̄t
IεI, (1.90)

which demonstrates that in isotropic elasticity the principal strains are
co-axial to the associated principal stresses. The matrix C̄I from the stress
transformation also applies to the strain and vice versa.

1.2.3 Perfectly plastic material

Yield criterion and yield condition
In order to define combinations of stresses critical to plastic flow, we consider
the elastic energy stored in a unit volume element of the material:

we =

ε∫
0

σtdε =
1
2
σtκ−1σ. (1.91)

The integral in eqn (1.91) is evaluated for the stress using the elasticity law,
eqn (1.50). With reference to deviatoric and hydrostatic or volumetric stress
and strain, the energy expression is resolved into two parts:∫

σtdε =
∫

σt
DdεD + 3

∫
σHdεV. (1.92)

As deviatoric stresses are orthogonal to volumetric strains (Section 1.2.1)
the respective mixed scalar products vanish.

The first integral on the right-hand side of eqn (1.92) supplies the devia-
toric strain energy, or energy of elastic distortion. Evaluation for the devi-
atoric stress σD by utilizing the elastic relation for εD, eqn (1.44), gives

εD∫
0

σt
DdεD =

1
2G

σD∫
0

σt
DdσD =

1
4G

σt
DσD. (1.93)

The second integral on the right-hand side of eqn (1.92) supplies the energy
of volume change. Utilizing the elastic relation between the volumetric strain
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εV and the hydrostatic stress σH, eqn (1.42), we obtain:

3

εV∫
0

σHdεV =
1
K

σH∫
0

σHdσH =
1

2K
σ2

H. (1.94)

Metallic materials are found to be insensitive to plastic yielding when
subjected to hydrostatic stress. The criterion for yielding is therefore based
on the assumption that metals yield when the energy of elastic distor-
tion attains a critical value independently of the particular combination
of the stresses. When a uniaxial tensile specimen reaches the elastic limit
stress σs, the deviatoric stress state is specified by the direct components
2σs/3,−σs/3,−σs/3. From eqn (1.93) the critical energy of distortion is then
determined as

ws =
σ2

s

6G
. (1.95)

For multiaxial stress states, the condition limiting the elastic range can be
deduced by equating the expression for the energy of distortion in eqn (1.93)
to its critical value from the uniaxial test, eqn (1.95). It reads

3
2
σt

DσD = σ2
s . (1.96)

Equation (1.96) motivates the introduction of the equivalent deviatoric
stress σ̄ defined by

σ̄2 =
3
2
σt

DσD =
3
2
σt

Dσ, (1.97)

as a yield criterion. This criterion was proposed by Huber [4] and later
independently by von Mises [5]. The transition to the second expression in
eqn (1.97) is possible because hydrostatic stresses in σ do not contribute to
the scalar product with the deviatoric stresses. Since the equivalent stress
is defined by a work expression, it is invariant to rotations of the reference
system in which the stress components are specified, cf. also eqn (1.74).

The component form of σ̄2 is obtained with the entities of σD, eqn (1.29), as

σ̄2 =
3
2
σt

DσD =
3
2
(σ2

xxD + σ2
yyD + σ2

zzD + 2σ2
xy + 2σ2

yz + 2σ2
xz) (1.98)

and interprets the equivalent stress as a measure of the magnitude of the devi-
atoric stress vector. The alternative expression for σ̄2 in eqn (1.97) appears to
be advantageous when some components in the stress vector σ are zero, while
present in the deviatoric σD. In the uniaxial case, for instance, the only non-zero
stress is σxx = σ and therefore evaluation of σ̄2 requires merely a single deviatoric
component: σDxx = 2σ/3. From eqn (1.97),

σ̄2 =
3
2
σt

Dσ =
3
2
σDxxσxx = σ2. (1.99)

For a two-dimensional stress state, the stress vector becomes

σ = {σxx σyy 0
√

2σxy 0 0} (1.100)
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and evaluation of the equivalent stress expression is reduced to the non-zero
stress components in the x, y - plane. The normal components of the deviatoric
stress in the plane are σDxx = (2σxx − σyy)/3 and σDyy = (2σyy − σxx)/3, while
the third, σDzz = −(σxx + σyy)/3, is not required for the present purpose. Then
from eqn (1.97),

σ̄2 =
3
2
σt

Dσ = σ2
xx + σ2

yy − σxxσyy + 3σ2
xy. (1.101)

In a three-dimensional stress state the normal deviatoric stress components are
obtained as σDxx = (2σxx − σyy − σzz)/3, σDyy = (2σyy − σzz − σxx)/3 and σDzz =
(2σzz − σxx − σyy)/3. Together with the shear stress components they define the
vector σD. Evaluation of eqn (1.97) gives

σ̄2 =
3
2
σt

Dσ

=
1
2
[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

xy + σ2
yz + σ2

xz)
]
,

(1.102)

in terms of the components of the complete stress vector.

Equation (1.96) in conjunction with the definition by eqn (1.97) suggests
the introduction of a yield function φ(σ) such that

φ(σ) = σ̄ − σs ≤ 0. (1.103)

The yield function φ compares the stress state σ with the uniaxial yield
stress σs of the material via the equivalent stress σ̄, and specifies the yield
condition as in eqn (1.103). Thereby the value of the yield function limits
elastic stress states to φ(σ) < 0 and defines plastic states at the yield limit
φ(σ) = 0.

Plastic flow
Non-hardening, perfectly plastic materials are characterized by a constant
yield stress and therefore the yield condition of eqn (1.103) remains the same
as for initial yield independently of the amount of plastic deformation. The
yield function φ for a certain material then depends solely on the stress, and
once σ constitutes a plastic state φ(σ) = 0, stress changes consistent with
the yield condition are restricted by the requirement

dφ =
dφ

dσ
dσ ≤ 0. (1.104)

The matrix notation of the differential operation implies the definitions

dφ

dσ
=

[
∂φ

∂σxx

∂φ

∂σyy

∂φ

∂σzz

1√
2

∂φ

∂σxy

1√
2

∂φ

∂σyz

1√
2

∂φ

∂σxz

]
(1.105)

and
dσ = {dσxx dσyy dσzz

√
2dσxy

√
2dσyz

√
2dσxz}.
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In eqn (1.104) the negative sign leads to elastic states φ + dφ < 0, while
transitions to another plastic state φ + dφ = 0 are governed by the equality
sign and may be accompanied by plastic flow.

From eqn (1.103), changes of the yield function are given by dφ = dσ̄.
With reference to eqn (1.97) for the equivalent deviatoric stress σ̄, by
differentiation,

2σ̄dσ̄ =
3
2
[
σt

DdσD + dσt
DσD

]
(1.106)

and since in scalar products factors can be interchanged, there follows

dσ̄ =
3
2

1
σ̄

σt
DdσD =

3
2

1
σ̄

σt
Ddσ. (1.107)

Thus the differential quotient in eqn (1.104) reads

dφ

dσ
=

dσ̄

dσ
=

3
2

1
σ̄

σt
D. (1.108)

The yield function is not allowed to increase, and therefore admissible stress
increments dσ emanating from a plastic state build non-positive products
with the deviatoric stress σD.

Plastic changes of the stress state at φ(σ) = 0 obey the consistency con-
dition dφ = dσ̄ = 0, which by eqn (1.107) implies

σt
DdσD = 2Gσt

DdεD = 2Gσt
Ddε = 0. (1.109)

The transition to the last expression documents that volumetric components
do not contribute to the scalar product with the deviatoric stress. From
eqn (1.109), the vanishing of dσ̄ is equivalent to a vanishing increment of
the work of elastic distortion.

Expressing the elastic dε in eqn (1.109) by the difference between the
total strain increment dγ and the plastic part dη, results in

σt
Ddη = σt

Ddγ ≥ 0. (1.110)

In perfectly plastic flow, the incremental work of distortion is entirely con-
verted into plastic work because the elastic part vanishes as a consequence
of dσ̄ = 0. Originally, the right-hand side of eqn (1.110) may be positive,
negative or zero. We notice, however, that negative values diminish σ̄ and
are associated with elastic unloading. Therefore, the left-hand side, involv-
ing plastic flow, can only attain positive values or vanish. The inequality
in eqn (1.110) states the condition for plastic loading in terms of the strain
increment dγ.

In addition to the yield condition and the assumption of a non-hardening
material discussed so far, we also need information on the direction of plastic
deformation. Such information is provided by the flow rule. For metals,
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from experimental evidence incremental plastic strains are set proportional
(co-axial) to the deviatoric stress at which the flow occurs:

dη = ΛσD. (1.111)

The flow rule stated by eqn (1.111) ensures that plastic deformation is
isochoric; the volumetric part of the plastic strain vanishes:

η ≡ ηD, ηV =
1
3
etη = 0. (1.112)

The scalar multiplier Λ in eqn (1.111) is determined by eqn (1.110) as a non-
negative quantity. In this manner, yield condition, non-hardening assump-
tion and flow rule establish an expression for the incremental plastic strain in
perfectly plastic materials once the stress state at yield and the incremental
change of strain are given.

For a rational interpretation of eqn (1.111) we introduce a positive scalar
quantity dη̄, equivalent to the incremental plastic strain by means of the
work equality:

σ̄dη̄ = σt
Ddη. (1.113)

Substitution of eqn (1.111) for dη gives the proportionality factor Λ as

Λ =
3
2

dη̄

σ̄
. (1.114)

With the deviatoric stress σD from eqn (1.111), eqn (1.113) defines the
equivalent plastic strain increment as a measure of the magnitude of the
incremental plastic strain:

dη̄2 =
2
3
dηtdη

=
2
3
(dη2

xx + dη2
yy + dη2

zz +
1
2
dη2

xy +
1
2
dη2

yz +
1
2
dη2

xz). (1.115)

Alternatively to eqn (1.111), the incremental plastic strain may be rep-
resented in terms of the magnitude dη̄ and the direction s of the plastic
flow:

dη = dη̄s. (1.116)

Introduction of eqn (1.116) for dη in the first eqn (1.115) gives

sts =
3
2

(1.117)

and confirms s as a direction vector of constant length. By comparison of
eqn (1.116) with eqn (1.111) under consideration of eqn (1.114) the vector
s becomes

s =
3
2

1
σ̄

σD =
[

dσ̄

dσ

]t

=
[

dφ

dσ

]t

. (1.118)
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The equality to the differential quotients refers to eqn (1.108). We note an
association of the flow rule with the yield condition in that the direction of
plastic flow can be derived from the yield function φ(σ) by differentiation
with respect to the stress.

With s from eqn (1.118) the increment of equivalent stress, eqn (1.107),
becomes

dσ̄ = stdσD = stdσ (1.119)

and must be non-positive for a perfectly plastic material. During plastic
flow, vanishing of dσ̄ implies that

stdη = stdγ ≥ 0, (1.120)

in equivalence to eqn (1.110). With eqn (1.116) for dη, we obtain from
eqn (1.120) the magnitude of the plastic strain increment as

dη̄ =
2
3
stdγ ≥ 0, (1.121)

the inequality reflecting the plastic loading condition.
In turn, the incremental plastic strain reads

dη =
2
3
sstdγ if stdγ > 0

(1.122)
dη = 0 otherwise.

Equation (1.122) describes flow in a perfectly plastic material when a yield
state φ(σ) = 0 has been reached.

A relation establishing co-axiality between strain rates and stresses in two-
dimensional plastic flow (plane strain) was suggested by Saint Vénant [7] follow-
ing the Tresca yield hypothesis [6] (see below at the end of Section 1.2.4). The
generalization to three-dimensional conditions was performed by Lévy [8]. The
association of the incremental plastic strain to a regular but otherwise general
yield function (associated flow rule) goes back to von Mises [9].

In the absence of (or neglecting) elasticity, the flow rule as given by eqn (1.111)
or eqn (1.116) (proportionality of the strain increment or rate to the deviatoric
stress) describes the behaviour of a rigid–plastic solid. It is known as the Lévy–von
Mises constitutive law.

The completion of the constitutive relation by the elastic constituent was given
for plane problems by Prandtl [10]. Its extension to the three-dimensional case is
due to Reuss [11]. The equations resulting for elastic–perfectly plastic solids are
known as the Prandtl–Reuss equations. Incremental stress–strain relationships
for elastoplastic solids will be presented subsequently in Section 1.3 discussing
hardening materials.
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1.2.4 Representation in principal space

Yield condition and plastic flow
Once the principal directions are known, the stress state can be represented
by a vector σI with components σ1, σ2 and σ3 along the principal axes
(Fig. 1.10). The hydrostatic stress σH defines an axis with equal angular
distances to each of the three principal directions, while the deviatoric stress
σDI lies in a plane perpendicular to the hydrostatic axis at distance |σH| =√

3σH from the origin. The equivalent deviatoric stress

σ̄2 =
3
2
σt

DIσDI =
3
2
(σ2

D1 + σ2
D2 + σ2

D3) (1.123)

is proportional to the magnitude |σDI| = (σt
DIσDI)1/2 of the deviatoric

stress vector.
The yield condition is based on the distinction between stress states that

can be attained elastically and those prone to plastic flow. In the princi-
pal stress space, the elasticity limit (yield locus) can be represented by a
three-dimensional surface containing the elastic region of the material. For
metals, with elasticity limit not depending on the hydrostatic stress, the
yield surface has the shape of a cylinder of infinite extent inclined parallel
to the hydrostatic axis.

By the yield condition of eqn (1.103) in conjunction with eqn (1.123),
the cross-section of the cylinder in the deviatoric plane is a circle with the
centre on the hydrostatic axis (Fig. 1.11). It is described by the equation
|σDI| = ro with radius ro =

√
2/3 σs. The space of elastic stress states is

limited by

|σDI| ≤
√

2/3 σs,

Figure 1.10: Vector representation of stress in principal space.
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Figure 1.11: The von Mises yield surface in the principal stress space.

while the hydrostatic stress is not restricted. A view in the deviatoric plane
perpendicular to the hydrostatic axis is depicted in Fig. 1.11 (right). Devi-
atoric stress vectors are directed along the radius. Those ending inside the
circle are ascribed to elastic states. For a plastic state, the stress vector
ends on the circle. Stress states outside the circle cannot be attained in the
elastic–perfectly plastic material.

The yield surface is isotropic with respect to the direction of the deviatoric
stress; it limits merely the magnitude |σDI| of the deviatoric stress vector.
The radius ro can thus be adjusted to the experimental data from a single
test, be it multiaxial or uniaxial. In the present context, ro is adjusted to
the uniaxial yield stress σs of the material in tension.

In perfect plasticity the stress vector ends on the yield surface, and
changes in stress are consistent with the condition of non-increasing
magnitude:

d|σDI| = nt
IdσDI ≤ 0. (1.124)

In the above expression for d|σDI|, the unit vector

nI =
1

|σDI|
σDI (1.125)

defines the external normal to the yield surface (Fig. 1.12). Stress increments
pointing inwards to the yield surface, nt

IdσDI < 0, lead to elastic unload-
ing, while for nt

IdσDI = 0 another plastic state is approached on the yield
surface. Changes with nt

IdσDI > 0 are not admitted because of the fixed
elasticity limit.

In the consistency condition, eqn (1.124), the incremental stress can be
expressed by the incremental elastic strain (dσDI = 2GdεDI) and gives

nt
IdεDI = nt

IdεI ≤ 0. (1.126)

The second expression is due to the deviatoric nature of nI, eqn (1.125). It
follows that changes of the elastic strain in perfect plasticity are at most
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Figure 1.12: Plastic flow in perfect plasticity.

tangential to the yield surface, as also are the stress changes. With the
elastic strain in the form dεI = dγI − dηI:

nt
IdηI = nt

IdγI ≥ 0. (1.127)

Thus, the projections of the plastic and the total strain increment normal
to the yield surface are equal.

In view of eqn (1.125) the co-axiality of the plastic strain increment and
deviatoric stress in principal space can be written as

dηI = |dηI|nI = (nt
IdηI)nI. (1.128)

Accordingly, plastic flow is directed along the exterior normal nI to the yield
surface and with eqn (1.127) there follows

dηI = nInt
IdγI for nt

IdγI ≥ 0
(1.129)

dηI = 0 otherwise.

Assuming strains are referred to the same axes as stresses, plastic flow occurs
if, at a stress state on the yield surface, the incremental strain vector dγI
points outwards from the surface. From eqns (1.127) and (1.126), its decom-
position normal and tangential to the yield surface then defines the incre-
mental plastic strain and elastic strain, respectively (Fig. 1.12).

Tresca yield criterion
Tresca considered the maximum tangential stress at a point as characteristic of
plastic yield [6]. A mathematical formulation of this hypothesis was given later by
Saint Vénant for the case of plane strain [7].

The tangential stresses assume extremum values in the planes bisecting the
angles between the principal planes (passing through the principal axes 1,2 and
3). They are called principal tangential stresses and are given by

τ1 =
1
2
(σ2 − σ3), τ2 =

1
2
(σ3 − σ1), τ3 =

1
2
(σ1 − σ2). (1.130)
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The normal stresses on the same planes are

1
2
(σ2 + σ3),

1
2
(σ3 + σ1),

1
2
(σ1 + σ2),

respectively. The above expressions for the principal tangential stresses and the
associated normal components can be easily verified by utilizing the transforma-
tion of eqn (1.86) for the bisecting planes.

The maximum value in eqn (1.130) specifies the maximum tangential stress
τmax at a point. If the (normal) principal stresses are ordered with respect to their
value, the yield criterion reads

τmax = −1
2
(σ3 − σ1) = −τ2 for σ1 ≥ σ2 ≥ σ3.

In the general case, where σ1 ≥ σ2 ≥ σ3 does not need to be fulfilled, each one of
the principal tangential stresses in eqn (1.89) is restricted by the yield condition:

|τ1| =
1
2
|σ2 − σ3| ≤ τs;

|τ2| =
1
2
|σ3 − σ1| ≤ τs; (1.131)

|τ3| =
1
2
|σ1 − σ2| ≤ τs.

Here, τs denotes the yield stress of the material under pure shear. The relation to
the yield stress under uniaxial tension, σs, can be established by recalling that in
the latter case σ1 = σ and σ2 = σ3 = 0. For the Tresca yield condition,

τs =
1
2
σs.

In eqn (1.131), the inequality sign ensures that the stress state is elastic, while
plastic states of stress satisfy the equality in one or two of the three conditions.
In the principal stress space the conditions,

σ2 − σ3 = ±σs, σ3 − σ1 = ±σs, σ1 − σ2 = ±σs

are represented by pairs of planes parallel to those defined by the principal axes
1, 2 and 3 and the hydrostatic axis σ1 = σ2 = σ3. Thus, the Tresca yield surface
is a prism with regular hexagonal cross-section in the deviatoric plane (Fig. 1.13).

Figure 1.13: The Tresca yield limit.
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The intersection of the planes with the axes of the principal stress is at a
distance σs from the origin, and the projection of their distance on the deviatoric
plane is

√
2/3σs. This defines the radius of the circle circumscribing the hexagon,

and at the same time the von Mises yield locus.
Since the Tresca yield condition is linear between segments, it simplifies the

solution of problems with stresses restricted within a single segment. Otherwise,
the observance of three inequalities is inconvenient, and some difficulties regarding
the direction of plastic flow arise at the corners of the hexagon. The subject of
plasticity associated with a singular yield surface has been addressed in [18]. Under
general conditions of stress and strain, plasticity as based on the smooth von Mises
yield surface is suitable for numerical treatment using a computer.

1.2.5 Biaxial stress: rectangular plate under tension

The following example illustrates the theory of perfectly plastic flow for the
case of plane stress. The rectangular plate shown in Fig. 1.14 has a constant
thickness and is subjected to the uniaxial stress σ1 while the strain in the
lateral direction is suppressed (γ2 = 0). Normal to its plane the plate is
unconstrained and free of stress. The material is assumed elastic–perfectly
plastic with Young’s modulus E, Poisson’s ratio ν and yield stress σs.

Without the lateral constraint, the homogeneous stress state in the plate
is uniaxial and identical to the applied σ1, which then can be increased
only up to the yield stress σs. The kinematic constraint induces a lateral
normal stress σ2; shear stresses are absent. In the elastic range, the lateral
constraint relates the stress components via Hooke’s law:

ε2 =
1
E

(σ2 − νσ1) = 0, and σ2 = νσ1. (1.132)

The strain ε1 in the direction of the loading thus reads

ε1 =
1
E

(σ1 − νσ2) =
1 − ν2

E
σ1. (1.133)

Figure 1.14: Rectangular plate under tension.
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For the two-dimensional principal stress state σ1, σ2, the equivalent stress
expression of eqn (1.101) reduces to

σ̄2 = σ2
1 + σ2

2 − σ1σ2, (1.134)

and the elasticity limit is attained when σ̄ = σs. A graphical representation
of the yield locus in the σ1, σ2-plane is given in Fig. 1.15. Equation (1.134),
taken at σ̄ = σs, describes an ellipse with the longest axis inclined by 45◦

with respect to the σ1-axis. The ellipse passes through the points σ1 =
±σs, σ2 = ±σs on the axes, and σ2 = σ1 = ±σs, σ2 = −σ1 = ±σs/

√
3.

The elastic paths defined by eqn (1.132) are straight lines of slope ν,
emanating from the origin. The lowest σ1 on the ellipse is associated with
ν = 0, and the highest with ν = 1/2. Substitution of σ2 from eqn (1.132) in
eqn (1.134) leads to

σ̄2 = (1 − ν + ν2)σ2
1 = σ2

s (1.135)

and determines the stress σ1 at the elasticity limit(
σ1

σs

)2

elastic
=

1
1 − ν + ν2 . (1.136)

Loading beyond elasticity induces plastic flow, while the perfectly plastic
material imposes the restriction σ̄ = σs. Therefore eqn (1.134) becomes an
equation for σ2 in terms of σ1. The quadratic equation has two roots

σ2 =
σ1

2
±

(
σ2

s − 3
4
σ2

1

)1/2

, (1.137)

Figure 1.15: Elasticity limit (left) and stress path in elastic–perfectly plastic
deformation of the plate (right).
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but the one with the plus sign does not represent here an admissible solution:
at the elasticity limit, eqn (1.136), the stresses σ2 and σ1 are still related by
eqn (1.132), which is reproduced only for the minus sign. The above equation
for σ2 in the plastic state is meaningful as long as the discriminant is not
negative. Vanishing of the discriminant determines the maximum applied
stress σ1 as (

σ1

σs

)2

max
=

4
3
. (1.138)

The maximum applied stress σ1 can alternatively be obtained as the out-
most point of the limiting ellipse along the σ1-direction. Differentiating
eqn (1.134) at σ̄ = σs and setting dσ1/dσ2 = 0, we get the extremum σ1
on the ellipse for σ2 = σ1/2, and the highest σ1 as given by eqn (1.138).
Equations (1.136) and (1.138) define the lower and the upper limit bound-
ing the elastoplastic interval of the loading:

1
1 − ν + ν2 ≤

(
σ1

σs

)2

≤ 4
3
. (1.139)

Considering the strains, we notice that due to the lateral constraint,

γ2 = ε2 + η2 = 0 , and η2 = −ε2. (1.140)

The elastic and plastic parts of this strain component compensate each
other. The elastic strain ε2 is related to the stresses σ1 and σ2 by means of
the elastic relation

ε2 =
1
E

(σ2 − νσ1) =
1
E

[
1 − 2ν

2
σ1 −

(
σ2

s − 3
4
σ2

1

)1/2
]

, (1.141)

where eqn (1.137) has been substituted for σ2. Analogously for the strain
ε1 in the direction of the applied stress σ1,

ε1 =
1
E

(σ1 − νσ2) =
1
E

[
2 − ν

2
σ1 + ν

(
σ2

s − 3
4
σ2

1

)1/2
]

. (1.142)

It still remains to determine the plastic strain component η1. From the
flow rule, eqn (1.111), all components of the incremental plastic strain
exhibit the same proportionality to the components of the deviatoric stress.
Therefore,

dη1

dη2
=

σD1

σD2
=

2σ1 − σ2

2σ2 − σ1
. (1.143)

The lateral plastic strain increment dη2 is determined by the elastic one
dε2, and from eqn (1.141) by differentiation

dη2 = −dε2 = − 1
E

[
1 − 2ν

2
+

3
4
σ1

(
σ2

s − 3
4
σ2

1

)−1/2
]

dσ1. (1.144)
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Figure 1.16: Axial stress–plastic strain diagram for the plate.

With eqn (1.137) for σ2 and eqn (1.144) for dη2 we obtain from eqn (1.143)
the relation

dη1 =
1
E

[
1 − 2ν

4
+ (1 − 4)B + B2

]
dσ1 (1.145)

between the differentials dη1 and dσ1. In eqn (1.145) we used the abbrevi-
ation

B =
3
4
σ1

(
σ2

s − 3
4
σ2

1

)−1/2

. (1.146)

Integration of eqn (1.145) from the elasticity limit, eqn (1.136), gives the
axial component of the plastic strain

η1 =
σs

E

⎡⎣−1 + ν

2
σ1

σs
− (1 − ν)

√
1 − 3

4

(
σ1

σs

)2

+
√

3
4

ln
1 +

√
3

2
σ1
σs

1 −
√

3
2

σ1
σs

⎤⎦
σ1
σs

(σ1
σs )el

(1.147)

as plotted in Fig. 1.16. The quantity σs/E is the strain εs at the yield stress
σs of the material.

The thickness strain in the plate is also given for completeness. The plastic
strain η3 maintains the volume, and reads

η3 = −(η1 + η2). (1.148)

From σ3 = 0, the elastic contraction as a consequence of ε1 and ε2 is

ε3 = − ν

1 − ν
(ε1 + ε2). (1.149)

In conclusion, we notice that application of a compressive stress σ1 instead
of the tensile one does not modify the results, but the sign. For the case of
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an oblique applied stress which in addition to the axial stress σ also exhibits
a shear component τ (see Chapter 2, Problem 4).

1.3 Hardening rules

Hardening describes the effect of plastic deformation on the yield condition.
The isotropic hardening rule [12] and the kinematic hardening model [13]
will be discussed in the following sections. Isotropic hardening is sufficient
for plastic deformation under monotonic loading conditions, while cyclic
plasticity is better described by the kinematic model. The combination of
the kinematic and the isotropic rule is also considered, as a generalization.
A recent discussion of the hardening issue is found in the monograph [19].

1.3.1 Isotropic hardening

In contrast to the perfectly plastic model, the yield criterion is affected
by plastic deformation in the case of hardening materials. The stress–strain
characteristic covers the description of monotonically applied uniaxial stress,
but leaves space for different interpretations under more general loading
conditions.

The isotropic hardening model assumes that plastic deformation modifies
the yield condition independently of the direction of the inducing stress.
In the principal stress space, the circular cylinder which represents the
yield surface φ = 0 is allowed to expand around the hydrostatic axis. In
the deviatoric plane, the circle is specified by the radius r =

√
2/3σf from

the origin. The radius r follows the increase of the flow stress σf with plastic
deformation (Fig. 1.17). Accordingly, isotropic hardening modifies the yield
condition, eqn (1.103), to

φ(σ, σf) = σ̄ − σf ≤ 0. (1.150)

The flow stress σf is defined as a function of the accumulated equivalent
plastic strain η̄ =

∫
dη̄, a scalar measure of the plastic deformation experi-

enced by the material in an arbitrary loading programme. The functional
dependence σf(η̄) is considered a material characteristic. It can be deduced
from any experiment on continuous plastic flow in the form σf(η̄) = σ̄(η̄).
For the tensile test σ̄ = σ and η̄ = η, so the relationship

σf(η̄) = σ(η) (1.151)

can be derived from uniaxial test data.
Plastic states are defined by φ = 0, and during plastic flow dφ = 0. In

conjunction with eqn (1.150), the consistency condition gives

dφ = 0: dσf = hdη̄ = dσ̄ and

dη̄ =
1
h

dσ̄ =
1
h
stdσ ≥ 0, (1.152)
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Figure 1.17: Isotropic hardening of the yield surface.

where eqn (1.119) has been used for dσ̄. The hardening parameter

h =
dσf

dη̄
=

dσ

dη
(1.153)

can be specified by the slope of the uniaxial flow characteristic σ(η).
The loading condition expressed by the inequality in eqn (1.152) asso-

ciates plastic flow with an expansion of the yield surface. With s defined
by eqn (1.118), the equivalent plastic strain increment is a consequence of
a stress increment dσ pointing outwards from the yield surface. Utilizing
eqn (1.152) for dη̄ in the flow rule, eqn (1.116), the incremental plastic strain
assumes the form

dη = dη̄s =
1
h
sstdσ for dσ̄ = stdσ > 0. (1.154)

In extension of eqn (1.118) the direction of plastic flow is associated here
with the yield surface pertaining to the actual state of hardening:

s =
3
2

1
σ̄

σD =
[

∂φ

∂σ

]t

σf=const.

Superposition of the incremental plastic strain on the elastic one, deter-
mines the strain increment for a given increment of stress:

dγ = dε + dη = κ−1
[
I +

2G

h
sst

]
dσ. (1.155)

If the incremental stress does not satisfy the condition for plastic loading,
eqn (1.155) must be reduced to the elastic stress–strain relation.
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The above formulation fails to describe perfectly plastic material with h =
0 because the stress cannot be varied arbitrarily in this case, but is restricted
by the condition dσ̄ = stdσ = 0. An alternative expression is obtained in
terms of strain. With dσ̄ = 2Gst[dγ − dη] from elasticity in eqn (1.152),

dη̄ =
2G

h + 3G
stdγ ≥ 0, (1.156)

and with the flow rule, eqn (1.116), the plastic strain increment becomes

dη = dη̄s =
2G

h + 3G
sstdγ for stdγ > 0. (1.157)

The incremental stress follows:

dσ = κ[dγ − dη] = κ

[
I − 2G

h + 3G
sst

]
dγ. (1.158)

This is the inverse relation to eqn (1.155), and must be reduced to the elastic
one if the strain increment dγ does not fulfil the plastic loading condition
stdγ > 0. The perfectly plastic case is reproduced for h = 0.

1.3.2 Kinematic hardening and mixed model

The isotropy of the hardening rule implies that in the uniaxial case the
yield stress σf induced under tension applies to subsequent compression as
well, and vice versa. Thus, the yield condition, eqn (1.150), confines elastic
variations of the uniaxial stress by −σf ≤ σ ≤ σf . The elastic region of the
specimen for alternating sequences in tension and compression is enlarged
from initially 2σs to actually 2σf by plastic deformation (Fig. 1.18).

Figure 1.18: Demonstration of the Bauschinger effect.
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Following experimental observations, load reversals are found to diminish
the yield stress such that σ−

f < σ+
f , which is known as the Bauschinger effect.

In order to account for this effect, the kinematic hardening rule proposed
by Prager [13] assumes that the original yield surface remains rigid, but is
displaced during the course of plastic deformation. In the principal stress
space, the yield locus in the deviatoric plane is defined by the equation

[σDI − αI]t[σDI − αI] = r2
o.

This equation describes a circle of radius ro =
√

2/3σs with the centre dis-
placed by αI from the hydrostatic axis (Fig. 1.19). The vector αI is by
definition deviatoric in nature.

In terms of ordinary stress, the yield limit reads

[σD − α]t[σD − α] =
2
3
σ2

s . (1.159)

Defining the equivalent quantity,

σ̄2
K =

3
2
σt

KDσKD (1.160)

with the ‘kinematic’ deviatoric stress given by the difference

σKD = σD − α,

the yield condition can be stated analogously to eqn (1.150) as

φK(σ,α) = σ̄K − σs ≤ 0. (1.161)

Equation (1.161) implies kinematic hardening of the yield surface by the
deviatoric stress-type vector

α = {αxx αyy αzz
√

2αxy
√

2αyz
√

2αxz}, (1.162)

Figure 1.19: Kinematic hardening model.
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which changes in proportion to the incremental plastic strain:

dα = Cdη =
2
3
hdη. (1.163)

The vector α accounts for the effect of residual microstresses in the material as
a consequence of plastic deformation. The difference σKD = σD − α is apparently
the active stress in the present plasticity model [15]. In the case of uniaxial stress
σ where

σD =
{

2
3
σ − σ

3
− σ

3
0 0 0

}
, α =

{
α − α

2
− α

2
0 0 0

}
, (i)

the equivalent stress quantity in eqn (1.161) becomes

σ̄K =
∣∣∣∣σ − 3

2
α

∣∣∣∣ . (ii)

The yield condition then bounds elastic stress states by

−σs ≤ σ − 3
2
α ≤ σs, (iii)

which fixes the span for elastic sequences in stress from tension to compression,
and vice versa, to 2σs (Fig. 1.19). If plastic deformation develops under tensile
action, the stress follows the uniaxial hardening characteristic:

σ = σs +
3
2
α = σf(η) and

3
2
α = σf(η) − σs. (iv)

In stress reversal, the elastic range is seen bounded by

σf − 2σs ≤ σ ≤ σf . (v)

From eqn (iv), for incremental changes in continuous loading,

3
2
dα = hdη =

3
2
Cdη and C =

2
3
h. (vi)

In eqn (vi), the proportionality dα = Cdη has been used between the axial com-
ponents and specifies the proportionality factor C as employed in eqn (1.163).

The incremental plastic strain is presented in the form

dη = dη̄sK. (1.164)

The direction of plastic flow sK is defined by

sK =
3
2

1
σ̄K

σKD =
[
∂σ̄K

∂σ

]t

=
[
∂φK

∂σ

]t

, (1.165)

and is thus associated with the yield condition in eqn (1.161).
The consistency condition during plastic flow is dφK = dσ̄K = 0. With

eqn (1.160) for σ̄K:
dσ̄K = st

K[dσ − dα] = 0. (1.166)
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With eqn (1.163) for dα and eqn (1.164) for dη,

st
Kdα =

2
3
hst

Kdη = hdη̄. (1.167)

Substituting in eqn (1.166),

dη̄ =
1
h
st
Kdσ ≥ 0. (1.168)

The incremental plastic strain of eqn (1.164) is then obtained as

dη =
1
h
sKst

Kdσ for st
Kdσ > 0, (1.169)

the formalism being completely analogous to the previous isotropic hard-
ening model. Similarly, the expression in terms of the strain increment dγ
instead of dσ and the complete incremental stress–strain relations are anal-
ogous to those for isotropic hardening.

Equation (1.167) suggests introduction of the quantity

dᾱ = st
Kdα = dσf and ᾱ =

∫
dᾱ = σf − σs,

as a scalar measure of kinematic hardening. For completeness, we also notice
the following relations:

dα =
2
3
dᾱsK, dᾱ2 =

3
2
dαtdα.

Mixed hardening model
A combination of kinematic and isotropic hardening can be obtained by
stating the yield condition in the form

φM = σ̄K − σis ≤ 0. (1.170)

In contrast to the fixed σs in eqn (1.161), the material parameter σis is
allowed to vary with plastic deformation:

σis = σis(η̄) and dσis = Cisdη̄. (1.171)

For uniaxial tension,

σ = σis(η) +
3
2
α = σf(η), (1.172)

as detailed in Fig. 1.20. By differentiation,

dσis

dη
+

3
2

dα

dη
= Cis +

3
2
CK = h, (1.173)

where CK pertains to the kinematic constituent, eqn (1.163). For CK =
0, eqn (1.170) describes isotropic hardening, for Cis = 0 it reduces to the
kinematic hardening model.
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Figure 1.20: Mixed hardening model.

1.3.3 Thin-walled cylinder under tension and torsion

Experimental tests on plasticity under multiaxial stress are conveniently
performed with thin-walled circular cylinders. In this case the state of stress
can be controlled directly by the applied loading: axial force, internal pres-
sure and torque. The particular experiment referred to here appears to be
important to the hardening model. The loading sequence comprises torsion,
torsion/tension and tension. It was observed that in the last step of the
sequence, the plastic twist obtained before by tension under constant tor-
sion decreases [14], which is contradictory to the isotropic hardening predic-
tion. This observation has been explained by the assumption of a kinematic
hardening model [15].

The thin-walled circular cylinder (Fig. 1.21) is subjected to a loading
programme of torsion and tension. The load system induces a homogeneous
stress state defined at each instant by the shear stress τ from torsion and
the axial stress σ from tension. At each point the stress state with reference
to a system 0–r ϕ z along the radial, circumferential and axial direction,
respectively, specifies the vector:

σ = {σrr σϕϕ σzz
√

2σrϕ
√

2σϕz
√

2σrz}

= { 0 0 σ 0
√

2τ 0 }. (1.174)

Figure 1.21: Thin-walled cylinder under tension and torsion.
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Deviatoric stress and plastic strain are detailed as

σD =
{

−σ

3
− σ

3
2σ

3
0

√
2τ 0

}
(1.175)

and

η =
{

−η

2
− η

2
η 0

1√
2
γ 0

}
, (1.176)

where η denotes the plastic strain in the axial direction, and γ the shear
strain.

The equivalent deviatoric stress (Section 1.2.3) is obtained as

σ̄2 =
3
2
σt

Dσ = σ2 + 3τ2 (1.177)

and, therefore, during the course of plastic flow under isotropic hardening
(Section 1.3.1),

σ2 + 3τ2 = σ2
f . (1.178)

Equation (1.178) can be represented by a circle centred in the σ,
√

3τ -plane
with radius σf , the actual yield stress (Fig. 1.22, left). Initially, σf = σs, the
elasticity limit of the material.

From the flow rule dη = dη̄s = (3dη̄/2σ̄)σD, we deduce the relationship

dγ

dη
=

3τ

σ
(1.179)

between the shear and axial components of the incremental plastic strain.
The loading programme can be followed in Fig. 1.22 (left). The torque is

applied first until the elasticity limit σs (path AB); no plastic flow occurs.
At constant torque, the axial force is superposed increasing from zero (path
BC). Thereby plastic flow occurs and contributes to both the elongation

Figure 1.22: Isotropic hardening (left) and kinematic hardening (right).
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and the twist. The strain components increase in proportion to the stress
components as given by eqn (1.179), which determines the slope of the
γ, η -diagram in Fig. 1.23. At point B (

√
3τ = σs, σ = 0) we have dγ/dη =

3τ/σ = ∞. As the axial stress σ increases, the slope diminishes. At point C
(
√

3τ = σ = σs) it is dγ/dη =
√

3. Removal of the torque at constant axial
force (path CD) leaves plastic deformation unchanged. Further increase of
the axial force beyond the expanded yield locus (point E) induces plastic
flow only in the axial direction since the stress state (τ = 0, σ) implies that
dγ/dη = 3τ/σ = 0 and therefore the shear strain γ remains constant. This
disagrees with the experimental observation, where the plastic twist is seen
to go back.

Next, considering kinematic hardening (Section 1.3.2) we introduce the
deviatoric translation vector

α =
{

−α

2
− α

2
α 0

√
2β 0

}
. (1.180)

The relative stress is

σKD = σD − α

=
{

−1
3

(
σ − 3

2
α

)
− 1

3

(
σ − 2

3
α

)
2
3

(
σ − 3

2
α

)
0

√
2(τ − β) 0

}
(1.181)

and determines the equivalent stress quantity,

σ̄2
K =

3
2
σt

KDσKD =
(

σ − 3
2
α

)2

+ 3 (τ − β)2 . (1.182)

The yield locus is thus given by(
σ − 3

2
α

)2

+ 3(τ − β)2 = σ2
s . (1.183)

Figure 1.23: Effect of plastic extension upon twist (schematic).
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It describes a circle in the σ,
√

3τ -plane, of radius σs, with the centre at
σ = 3α/2,

√
3τ =

√
3β. Initially, α = β = 0 (Fig. 1.22, right).

From the flow rule: dη = dη̄sK = (3dη̄/2σ̄K)σKD we obtain for the com-
ponents of incremental plastic strain

dγ

dη
=

3(τ − β)
σ − 3

2α
. (1.184)

The loading sequence is identical to the previous case of isotropic harden-
ing, but the yield locus is modified by the kinematic model (Fig. 1.22, right).
Since dα = Cdη, the translation of the centre of the circle is directed along

dβ

dα
=

1
2

dγ

dη
=

3
2

τ − β

σ − 3
2α

. (1.185)

Application of the torque (path AB) is an elastic process. Superposition of
the axial force (path BC) induces plastic flow contributing to both deforma-
tion modes: elongation and twist. The proportion of the two components is
given by eqn (1.184) in conjunction with eqn (1.185), and defines the slope
of the related γ, η - diagram in Fig. 1.23. At point B (

√
3τ = σs, σ = 0;β =

α = 0), we have dγ/dη =
√

3σs/0 = ∞ as for isotropic hardening. At point
C (

√
3τ = σs, σ = σs; β, α), the slope is less than in the isotropic model

since with γ the quantity β rises faster than α to this point. Removal of
the torque (path CD) is elastic; additional plastic flow occurs when the
axial force increases beyond point E. Here (τ = 0, σ; β, α), the quotient
dγ/dη = −3β/(σ − 3α/2) is seen to be negative. That means the plastic
twist is going back with continuing extension of the tube. Since β is also
diminishing with γ, the tendency decreases. Thus, the kinematic model cor-
rectly reproduces the effect of extension upon previous plastic twist. This
result is particularly due to the association of the flow rule to the kinematic
yield condition.

Figure 1.24: Cyclic loading programme.
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1.3.4 Cyclic loading

The performance of the hardening models is discussed next for the case of
cyclic loading. Figure 1.24 shows the loading programme for a uniaxial spec-
imen subjected to alternating stress −σm ≤ σ ≤ σm with amplitude beyond
the elasticity limit: σm > σs.

The material exhibits a bilinear stress–strain characteristic. Figure 1.25
demonstrates the development of plasticity for isotropic (left) and kinematic
hardening (right). In both cases the first loading induces an elastic strain up
to σs, plastic flow occurs from σs to σm. Isotropic hardening thereby modifies
the yield stress to σf = σm and extends the span of the elastic region to
2σf = 2σm so that subsequent response to the loading programme is elastic.
Kinematic hardening fixes the elastic region to 2σs < 2σm. Therefore, stress
reversal is accompanied by plastic flow after the elastic traversal of 2σs. The
same process is observed in all subsequent cycles, which produce alternating
plastic strain.

Figure 1.26 refers to the behaviour of the two hardening models under
cyclic strain −γm ≤ γ ≤ γm with amplitude exceeding the elasticity limit:
γm > σs/E. Isotropic hardening (left) enlarges the elastic region via the
increasing yield stress σf , and therefore plastic strain production diminishes
from cycle to cycle. Kinematic hardening (right) behaves as in the stress
programme, following the same cycle in each sequence after the first strain-
ing to γm.

It is reported in [16] that the hardening observed in the early sequences
of a cyclic strain programme is much less extensive than the prediction of
the isotropic model. Saturation of hardening ultimately leads to stabilized
stress–strain cycles in the material response as described by the kinematic
model.

Figure 1.25: Response to cyclic stress.
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Figure 1.26: Response to cyclic strain.

1.4 A general view on elastoplastic constitutive description

In the regime of infinitesimal deformations the strain γ is assumed to
be composed additively of an elastic part ε and an inelastic part η. For
incremental quantities:

dγ = dε + dη = κ−1dσ + dη.

The elastic strain increment dε is associated with the stress increment dσ
by the law of elasticity. The variation dη of the inelastic strain is the result
of plastic flow.

Plasticity theory is based on the yield condition,

φ(σ,q) ≤ 0,

where the stress state σ enters the yield function φ as the argument, and q
denotes a vector array of parameters describing the current plastic state of
the material. It is not difficult to specify the parameters in the array q for
the hardening models presented so far.

The equation φ(σ,q) = 0 limits the elastic domain for the stress σ at the
current state of hardening. It describes a convex surface in stress space with
the hardening variables q as parameter. For stresses within the yield surface
(φ(σ,q) < 0) the material is in an elastic state, those on the yield surface
are denoted as plastic. Plastic deformation does not occur, except from a
plastic state.

Plastic flow affects the yield surface of hardening materials. A relation of
the form

dq = Hdη

is assumed between the variation of the hardening parameters and the plas-
tic strain.
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The flow rule defines the direction of plastic flow by the state of stress at
φ(σ,q) = 0. The associated flow rule derives from the yield function as

dη = Λ
[

∂φ

∂σ

]t

= Λ
∂φ

∂σt (Λ ≥ 0).

It fulfils the normality condition with respect to the yield surface (see
Chapter 3).

Continuous plastic flow is governed by the requirement dφ = 0, the con-
sistency condition. Utilizing the hardening law and the flow rule,

dφ =
∂φ

∂σ
dσ +

∂φ

∂q
dq =

∂φ

∂σ
dσ + Λ

∂φ

∂q
H ∂φ

∂σt = 0

and

Λ = −
(

∂φ

∂q
H ∂φ

∂σt

)−1
∂φ

∂σ
dσ ≥ 0.

From the yield condition, the occurrence of plastic flow requires φ = 0 and
(∂φ/∂σ)dσ > 0, which is termed the plastic loading condition. The change
of state is otherwise elastic. It is noticed that the structure of the yield
condition must be such that the convention Λ > 0 is observed in plastic
loading. This requires that the scalar hardening factor is a positive quantity

−∂φ

∂q
H ∂φ

∂σt > 0.

The determination of the plastic strain increment dη in terms of the stress
increment dσ is now completed:

dη = Λ
∂φ

∂σt = −
(

∂φ

∂q
H ∂φ

∂σt

)−1
∂φ

∂σt

∂φ

∂σ
dσ.

If the strain increment is given instead of the stress increment, it can be
introduced in the equation of plastic flow by the law of elasticity. The con-
sistency condition then reads

dφ =
∂φ

∂σ
dσ +

∂φ

∂q
dq =

∂φ

∂σ
κdγ −

[
∂φ

∂σ
κ − ∂φ

∂q
H

]
dη = 0.

Employing the flow rule for dη and solving for the scalar multiplier we
obtain

Λ =
(

∂φ

∂σ
κ

∂φ

∂σt − ∂φ

∂q
H ∂φ

∂σt

)−1
∂φ

∂σ
κdγ ≥ 0,

which completes the determination of the incremental plastic strain in terms
of the strain increment. The condition for plastic loading is (∂φ/∂σ)κdγ > 0.
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In the above expression for Λ, the second term in the parentheses is a
negative scalar quantity; the first is a positive one since it can be interpreted
as an elastic energy. It is concluded that the plastic loading condition is
compatible with the convention Λ > 0.

An alternative presentation of the flow rule reads

dη = Λ
∂φ

∂σt = dη̄s.

The magnitude dη̄ of the incremental plastic strain is defined by

dη̄2 =
2
3
dηtdη

and therefore the vector s possesses the property of a constant length

sts =
3
2
.

With the associated flow rule for dη the definition of dη̄ furnishes the
relation

dη̄ = Λ
(

2
3

∂φ

∂σ

∂φ

∂σt

)1/2

≥ 0,

and substitution in the alternative presentation gives the flow direction

s =
(

2
3

∂φ

∂σ

∂φ

∂σt

)−1/2
∂φ

∂σt .

Obviously, we obtain the identities dη̄ ≡ Λ and s ≡ ∂φ/∂σt if the yield
function is defined such that (∂φ/∂σ)∂φ/∂σt = 3/2.

It is recalled now that we considered here the flow approach to plasticity
and in the form most frequently employed. For a more detailed presentation
the reader can consult the early review given in [17] and the précis in [18].

1.5 Problems

1. Given a nonlinear stress–strain diagram prove whether the material is
elastoplastic or nonlinear elastic (unloading!).

2. An elastoplastic rod carries at the considered instant a tensile stress σ1 >
σs. Mark on the stress–strain diagram (Fig. 1.27) at least three different
paths leading to this stress and indicate the respective strain γ associated
with σ1.

3. Confirm that in a cycle (0 → σ → 0) of uniaxial stress, the work
∮

σdγ
of the stress on the strain vanishes if the loading remains below the yield



Elastoplastic Material Behaviour 61

σ

σ

γ = ε + η

σ

1

s

E

Figure 1.27: Problem 2.

stress (σ < σs), while it is given by
∫

σdη if the stress exceeds the yield
stress (σ > σs).

4. For a material with yield stress σs in tension obeying the von Mises yield
criterion, determine the stress σ at the elasticity limit for the following states
of principal stress:

σ1 = σ2 = 0, σ3 = −σ,

σ1 = 0, σ2 = σ3 = −σ,

σ1 = σ2 = σ3 = σ.

5. Under plane stress conditions, the von Mises yield locus in the σ1, σ2-
plane is an ellipse. Determine the stress σ at the elasticity limit σs with
the von Mises (and alternatively with the Tresca) yield criterion for the
following states of plane stress:

σ1 = ±σ, σ2 = 0,

σ2 = ±σ, σ1 = 0,

σ1 = σ2 = ±σ,

σ1 = −σ2 = ±σ.

6. A spherical membrane (radius R, thickness t) is inflated by internal
pressure of intensity p (Fig. 1.28). The elasticity limit in the membrane is
attained at ps = 2tσs/R.

In order to obtain a permanent expansion of the sphere, the pressure is
increased to p = λps. What is the associated permanent increase in radius
and change in membrane thickness?
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Figure 1.28: Problem 6.

In the present case, the plastic strain ηm along meridians and ηt across
the thickness are related by ηt = −2ηm. Confirm that the equivalent plastic
strain is given by η̄ = 2ηm = |ηt|.
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CHAPTER 2

Elastoplastic response of structures and solids

2.1 Considerations on elastoplastic structures

2.1.1 Introductory remarks

General considerations
For simplicity of presentation, we consider a structure loaded by a single
force P and denote the corresponding displacement (same location and ori-
entation as the force) by u. The response of the structure to the applied
force will be followed up in the force–displacement diagram.

The behaviour of the structure (Fig. 2.1) is linear elastic as long as the
applied force P does not exceed the value Ps at which the stress somewhere
in the structure first reaches the elasticity limit of the material. An increase
of the applied force beyond Ps induces plastic flow in certain parts of the
structure and is accompanied by decreasing stiffness. Unloading from a plas-
tically deformed state takes place elastically, unless plastic flow sets in anew.
Since geometric changes are considered negligible, plastic deformation does
not modify the elastic properties of the structure. Therefore, elastic unload-
ing from a plastically deformed state is governed by the stiffness of the
original elastic structure.

Figure 2.1: Elastoplastic force–displacement response of structure.
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Figure 2.2: Example of statically determinate structure.

As long as the applied force induces stresses below the elasticity limit of
the material everywhere in the structure, changes in the mechanical state are
completely reversible and disappear upon removal of the loading. Loading
beyond elasticity leads to permanent strains, and changes of the initial state
are obtained after removal of the applied force. The plastic strains developed
in the loading sequence are maintained after elastic unloading. Depending
on the type, the integrity of the structure may necessitate the appearance of
complementary elastic strains that establish kinematic compatibility. The
resulting residual strains are compatible with the residual displacements.
The residual stresses associated with the elastic strains in the unloaded
structure constitute a self-equilibrated stress system.

Statically determinate systems
A characteristic of statically determinate systems is the possibility of obtain-
ing the stresses from the condition of static equilibrium without reference to
the material constitutive law and the kinematic compatibility. An example
of a statically determinate structure is given in Fig. 2.2 in the form of a
plane truss.

In such a system, the time history of the applied forces determines the
temporal variation of the stresses by statics. Elastic and plastic parts of the
strain are obtained by an evaluation of the respective material constitutive
law. Removal of the applied forces implies vanishing of the stress everywhere
in the system. Therefore, the residual state is characterized by the absence
of stress and elastic strain. The residual strains are identical to the plastic
strains developed during the loading sequence, which are compatible with
the residual displacements. The plastic strains in a statically determinate
system may be associated with admissible displacements, as may also the
elastic strains on their own.

Kinematically determinate systems
In kinematically determinate systems the displacements are prescribed such
that the strain can be completely determined. Figure 2.3 shows an example
for a kinematically determinate truss structure.

Given the time history of the displacements imposed on the system, the
strain variation is determined by kinematics. The associated stresses are
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Figure 2.3: Example of a kinematically determinate structure.

obtained by an evaluation of the stress–strain relations for the elastoplastic
material, and are continuously in equilibrium with the constraining forces.

In the present case, unloading stands for the removal of the imposed
displacements. Therefore, the residual state is characterized by the absence
of displacement and strain. The condition of vanishing residual strain implies
that plastic strains are compensated by elastic strains which determine the
residual stresses.

2.1.2 Simple elastic–perfectly plastic truss

The plane truss depicted in Fig. 2.4 consists of three bars of elastic–perfectly
plastic material. Their mechanical response is characterized by the elastic
modulus E and the yield stress σs. Since the dimensions (length l, cross-
sectional area A) are identical for all three bars, their behaviour as structural
members may be described uniquely by the force–elongation diagram in the
figure. The bar force is defined as the stress resultant S = σA, and the
elongation is δ = γl. The elastic response of the individual bars is specified
by the elastic stiffness k = EA/l, and is limited by Ss = σsA.

The truss is loaded by the force P applied at the junction point of the
three bars and acts along the direction of the middle bar 1, the line of
symmetry of the truss; the corresponding displacement is denoted by u. The
side bars experience identical conditions of stress and strain (S3 = S2, δ3 =
δ2). With reference to Fig. 2.5, we obtain, from the static equilibrium of the

Figure 2.4: Elastic–perfectly plastic truss.
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Figure 2.5: Statics and kinematics at the joint of the three bars.

forces at the application point of P , the relation

P = S1 +
√

2
2

S2 +
√

2
2

S3 = S1 +
√

2S2. (2.1)

Projection of the displacement u along the directions of the bars gives the
elongations

δ1 = u, δ2 = δ3 =
√

2
2

u, (2.2)

which ensure the kinematic compatibility of the truss.

Elastic response
The static condition, eqn (2.1), and the kinematic condition, eqn (2.2), do
not rely on any particular response of the material. Within the elastic range,
however, the force S in each bar is related to the elongation δ by the elastic
stiffness k. We then have

S1 = k δ1 = ku, S2 = k δ2 =
√

2
2

ku. (2.3)

Substitution in the equilibrium condition, eqn (2.1), gives the relation

P = 2ku, (2.4)

from which the elastic stiffness of the truss system is seen to be 2k. Equa-
tion (2.4) determines the displacement u for a given force P , and so the
elongations of the bars follow from eqn (2.2) and the stress resultants from
eqn (2.3):

S1 =
P

2
, S2 =

√
2

2
P

2
. (2.5)

Since the cross-sectional areas of all bars are the same, the stress magnitude
is highest in the middle bar 1. This bar is therefore the first to attain the
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yield stress σs when loading is increased starting from P = 0. We obtain the
elastic limit load of the system for S1 = Ss in eqn (2.5) and the associated
displacement by eqn (2.4) as

Ps = 2Ss, us =
Ps

2k
. (2.6)

Elastoplastic response
For loading in the elastoplastic regime (P > Ps) the force in bar 1 cannot
be further increased and remains at Ss. The force in bars 2 and 3 is thus
specified directly by the equilibrium condition, eqn (2.1), as a function of
the applied force P . We then have for the stress resultants S in the bars

S1 = Ss, S2 =
√

2
2

(P − Ss). (2.7)

The condition S1 = Ss imposed by the material on bar 1 during elastoplastic
deformation enables us to determine the stress state in the truss from the
static equilibrium alone. In this sense the originally simply redundant system
becomes statically determinate for P ≥ Ps.

Regarding next the deformations, as long as the side bars 2 and 3 are
still below the elasticity limit Ss, the elastic relation in eqn (2.3) determines
the elongation δ2 with the stress resultant S2 from eqn (2.7). This does not
apply to the middle bar 1, which is in a plastic state. However, δ1 can be
obtained in terms of δ2 by the kinematic compatibility, eqn (2.2). From the
above,

δ2 =
S2

k
=

√
2

2k
(P − Ss), δ1 =

√
2δ2 =

P − Ss

k
. (2.8)

While the elongations δ3 = δ2 are entirely elastic, that of bar 1 reads

δ1 = δ1e + δ1p (2.9)

and is composed of an elastic part δ1e related to the stress resultant S1 = Ss
by elasticity, and the plastic part δ1p. The two constituents are given by

δ1e =
Ss

k
,

(2.10)

δ1p = δ1 − δ1e =
P − 2Ss

k
.

In the elastoplastic range of the system we can relate the applied force
P to the corresponding displacement u if we observe in eqn (2.1) for the
equilibrium, the plasticity condition S1 = Ss = kus and the elastic relation
of eqn (2.3) for S2. We thus obtain

P = k(us + u) and P − Ps = k(u − us), (2.11)
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Figure 2.6: Load–displacement diagram for the truss.

where eqn (2.6) has been utilized in the second expression. It is noticed that
the stiffness of the system is reduced from 2k in the elastic range to k in
the elastoplastic range (Fig. 2.6).

Limit state
The force P can be increased further until the elasticity limit Ss is also
reached in the side bars 2 and 3. Then the maximum value of P is obtained
from eqn (2.1) as

PF = (1 +
√

2) Ss =
1 +

√
2

2
Ps. (2.12)

At this state the displacement u follows from eqn (2.11) to

uF =
√

2 us, (2.13)

and may be increased further while the applied force remains constant at
P = PF (Fig. 2.6). The associated elongations of the bars can be determined
by eqn (2.2) from the kinematics; their elastic parts are restricted to Ss/k
by the material.

2.1.3 Loading–unloading cycle: residual state

The three-bar truss in Fig. 2.7 is considered a simplification of the support-
ing system for the main landing gear of a civil aircraft. Given the elastic
design under regular loading conditions, it is of interest to assess the safety
afforded by the elastoplastic range, and the residual state in the truss after
unloading. For an estimation, the material of the bars is assumed elastic–
perfectly plastic with elastic modulus E and yield stress σs.

Statics and kinematics
With reference to Fig. 2.8, the condition of equilibrium between the stress
resultants in the three bars (the bar forces S1, S2, S3) and the loading
(vertical force P , horizontal force Q = 0) is derived as

S2 +
√

3S3 = 0 , 2S1 +
√

3S2 + S3 = −2P or S3 − S1 = P. (2.14)
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Figure 2.7: Landing gear support of aircraft (simplified).

From the kinematics, the displacement of the loading point by u and v in
the vertical and horizontal directions, respectively, implies changes δ1, δ2, δ3
in the length of the bars given by

δ1 = −u, δ2 = −
√

3
2

u − 1
2
v, δ3 = −1

2
u −

√
3

2
v. (2.15)

Elimination of u and v supplies the condition of kinematic compatibility in
the form

δ1 −
√

3δ2 + δ3 = 0. (2.16)

Figure 2.8: Statics and kinematics.
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Elastic response
In the elastic range the bar forces are related to the elongations:

S1 =
EA

l1
δ1 =

EA

h
δ1,

S2 =
EA

l2
δ2 =

√
3

2
EA

h
δ2, (2.17)

S3 =
EA

l3
δ3 =

1
2

EA

h
δ3.

The bar lengths are l1, l2, l3 and h = l1 =
√

3l2/2 = l3/2 is the height of the
truss. The cross-sections of all three bars have the same area A.

With the elastic relations of eqn (2.17), the kinematic compatibility con-
dition, eqn (2.16), can be expressed in static terms,

1
2
S1 − S2 + S3 = 0, (2.18)

and completes eqn (2.14) for the determination of the bar forces:

S1 = −2
1 +

√
3

3 + 2
√

3
P,

S2 = −
√

3
3 + 2

√
3
P, (2.19)

S3 =
1

3 + 2
√

3
P.

The elongations follow from eqn (2.17):

δ1 = −2
1 +

√
3

3 + 2
√

3
h

EA
P,

δ2 = − 2
3 + 2

√
3

h

EA
P, (2.20)

δ3 =
2

3 + 2
√

3
h

EA
P.

A more systematic procedure uses the kinematic relations of eqn (2.15)
in order to express the elongations δ1, δ2, δ3 in eqn (2.17) for the bar forces
in terms of the displacement components u and v. After substitution in the
equilibrium condition, eqn (2.14) is solved for the displacements which in
turn determine bar elongations and stresses, also cf. Section 2.2.2.



Elastoplastic Response of Structures and Solids 73

The magnitude of the force is largest in the vertical bar 1. The yield stress
σs is first reached in this element (this is not necessarily true for bars with
different cross-section areas). From eqn (2.19) with S1 = σsA = Ss, the load
at the elasticity limit is obtained as

Ps =
1
2

3 + 2
√

3
1 +

√
3

Ss =
3 +

√
3

4
Ss. (2.21)

Elastoplastic range
In the elastoplastic range (P > Ps), the constitution of the non-hardening
material maintains the bar force S1 = Ss. The other two bar forces are
obtained from the equilibrium condition, eqn (2.14). One has

S1 = −Ss,

S3 = P + S1 = P − Ss, (2.22)

S2 = −
√

3S3 = −
√

3(P − Ss).

Plastic limit
The load carrying capacity of the truss is exhausted when a second bar
attains the yield stress. From eqn (2.22), the next to yield is bar 2, the
intermediate oblique element. The bar forces at the plastic limit state are

S1 = S2 = −Ss , S3 = −
√

3
3

S2 =
√

3
3

Ss (2.23)

and eqn (2.14) determines the plastic limit (maximum) load

PF = S3 − S1 =
3 +

√
3

3
Ss. (2.24)

Comparison with the elasticity limit in eqn (2.21) yields the safety factor
PF/Ps = 4/3.

At the plastic limit, bars 3 and 2 are still elastic. Their elongations are
related to the stress resultants by eqn (2.17). This does not apply to bar 1,
which has experienced plastic deformation. It satisfies, however, the kine-
matic compatibility by eqn (2.16). The elongations of the bars are:

δ3 =
(

1
2

EA

h

)−1

S3 =
√

3
2
3

h

EA
Ss,

δ2 =

(√
3

2
EA

h

)−1

S2 = −
√

3
2
3

h

EA
Ss, (2.25)

δ1 =
√

3δ2 − δ3 = −(3 +
√

3)
2
3

h

EA
Ss.
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The elastic part of δ1 is given by eqn (2.17) with S1 = −Ss, and subtraction
from eqn (2.25) furnishes the plastic elongation:

δp1 = δ1 −
(

EA

h

)−1

S1 = −
(

1 +
√

3
2
3

)
h

EA
Ss. (2.26)

Residual state
Unloading from P = PF to P = 0 is associated with elastic changes in the
mechanical state of the system. The residual state can be obtained by
superposition of the solution for unloading to that for elastoplastic load-
ing. To this end, the result of an elastic application of P = −PF is obtained
from eqns (2.19) and (2.20). Alternatively, the state at the elasticity limit
(P = Ps) may be multiplied by the load factor −PF/Ps = −4/3.

For the residual force S1r in bar 1, it is observed that S1 = −Ss at both
the plastic limit P = PF and the elasticity limit P = Ps. The other two
forces, S2r and S3r, are preferably obtained from the condition of equilib-
rium, eqn (2.14), with P = 0:

S1r = −Ss +
4
3
Ss =

1
3
Ss,

S3r = S1r =
1
3
Ss, (2.27)

S2r = −
√

3S3r = −
√

3
3

Ss.

Regarding the residual deformations, the elongations of the elastic bars 3
and 2 are related to the residual stresses by eqn (2.17), as is also the elastic
part of the residual elongation of bar 1 in the truss. Superposing the plastic
part from eqn (2.26) we obtain

δ1r = −(1 +
√

3)
2
3

h

EA
Ss,

δ2r = −2
3

h

EA
Ss, (2.28)

δ3r =
2
3

h

EA
Ss.

Of course, the residual elongations satisfy the condition of kinematic com-
patibility. This condition could have been utilized for an alternative deter-
mination of δ1r using δ2r and δ3r.

2.1.4 Beam under bending moment

The beam in Fig. 2.9 has a cross-section which is constant over the entire
length l and symmetric with respect to the x- and the y-axis. The bending
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Figure 2.9: Beam under bending moment.

moment M applied at the end cross-sections acts in the y, z-plane, which
is the plane of symmetry of the problem. Longitudinal fibres of the beam
are bent parallel to this plane. The fibres in the x, z-plane are bent without
extension to a curve with radius R, and define the neutral plane in the
original configuration. Cross-sections of the beam remain plane and are
rigidly connected to the neutral plane, thus following the rotation around
the x-axis, the neutral axis of the cross-section.

The elongation δ of longitudinal fibres in the beam is then found to be
proportional by the factor l/R to the distance y from the neutral axis.
Accordingly, the axial strain γ reads

γ =
δ

l
=

y

R
. (2.29)

The above kinematics conforms to the elementary or engineer’s theory of
bending (ETB) which disregards in-plane deformation of the cross-section.
It will be employed in the elastic and the elastoplastic range.

Elasticity
Within the elastic range of the material, γ ≡ ε and the strain induces in
each cross-section axial stresses

σ = Eε =
E

R
y, (2.30)

linearly distributed along the y-axis. Stress and strain are zero on the neutral
axis and attain their maximum intensities at the outmost fibres of the beam.
The condition of a vanishing axial force∫

A

σdA =
E

R

∫
A

ydA = 0 (2.31)

requires that the neutral axis passes through the centre of gravity of the
cross-section with area A, and is here identically fulfilled for the x-axis of
symmetry. For the bending moment we obtain

M =
∫
A

σydA =
E

R

∫
A

y2dA =
E

R
I, (2.32)
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where

I =
∫
A

y2dA = 2

h∫
0

b(y)y2dy (2.33)

defines the moment of inertia of the cross-section with respect to the x-axis.
Evaluation of the second integral in eqn (2.33) requires the width b of the
cross-section as a function of y.

The yield stress σs of the material limits the elastic response of the beam
by the condition

max |σ| ≤ σs (2.34)

and is attained at the same time in the upper (y = h) and lower (y = −h)
outmost fibres (Fig. 2.10). Denoting the bending moment at the elastic-
ity limit by Ms, and combining eqn (2.32) with eqn (2.30) we deduce the
expressions

Ms =
σs

h
I,

1
Rs

=
Ms

EI
=

σs

Eh
. (2.35)

Elastoplastic range
For loading beyond Ms the strain is still given by eqn (2.29), while the stress
is restricted by the flow characteristic of the material. If the material does
not harden, the magnitude of the stress is limited by σs and the elastic
strain by σs/E. The cross-section of the beam then exhibits an elastic core
of extension 2ξ (Fig. 2.10), the remaining outer regions being in the plastic
state, |σ| = σs. The strain is entirely elastic within the core. In the outer
regions the elastic strain is ε = εs = σs/E, the difference to the total strain
γ from eqn (2.29) defines the plastic part η.

The antisymmetric stress distribution over the cross-section ensures that
no axial force arises, as required. The bending moment can be determined
as the sum of two parts. The bending moment pertaining to the elastic core

Figure 2.10: Stress and strain at and beyond the elasticity limit (lower).
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is obtained by application of eqn (2.32) to this part of the cross-section and
reads

Me =
E

R
Ie =

σs

ξ
Ie. (2.36)

Here,

Ie =
∫
Ae

y2dA = 2

ξ∫
0

b(y)y2dy (2.37)

and eqn (2.30) was used to express the quotient E/R. The bending moment
carried by the plastic regions of the cross-section (|σ| = σs) is obtained as

Mp =
∫

Ap

σydA = σs

h∫
ξ

ydA − σs

−h∫
−ξ

ydA = σsSp, (2.38)

where

Sp =

h∫
ξ

ydA −
−h∫

−ξ

ydA = 2

h∫
ξ

ydA = 2

h∫
ξ

b(y) ydy, (2.39)

is twice the area moment of the upper plastic region of the cross-section.
In the elastoplastic range, bending moment and curvature are

M = Me + Mp = σs

[
Ie(ξ)

ξ
+ Sp(ξ)

]
,

(2.40)
1
R

=
σs

Eξ
.

For a given bending moment M > Ms, eqn (2.40) determines the extension ξ
of the elastic core; this, in turn, specifies the radius R of the bent beam. The
extension of the elastic core, ξ, diminishes with increasing curvature of the
beam or equivalently with decreasing radius R. Thereby, the contribution
Me to the bending moment M decreases while Mp increases.

Plastic limit
Ultimately, when ξ = 0, the bending moment is equilibrated exclusively in
the plastic state characterized by |σ| = σs entirely in the cross-section:

MF = σs S, (2.41)

where

S = 2

h∫
0

ydA = 2

h∫
0

b (y) ydy. (2.42)
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Figure 2.11: Neutral axis of a T-shaped beam in the elastic and plastic
states.

Comparison of the above plastic limit with the elastic limit moment Ms,
eqn (2.35), yields

MF

Ms
=

hS

I
> 1. (2.43)

Although eqn (2.43) might be considered a satisfactory safety factor from
the static point of view, it is seen from eqn (2.40) that the state ξ = 0 is asso-
ciated with a vanishing curvature radius R, which implies an unacceptable
permanent change in the shape of the beam.

It is worth noting that in the fully plastic state the elastic condition for
a vanishing resultant of the axial stress, eqn (2.31), has to be replaced by
the requirement∫

A

σdA =
∫
A1

σsdA +
∫
A2

(−σs)dA = σs(A1 − A2) = 0. (2.44)

By the elastic condition the neutral axis passes through the centre of gravity
of the cross-section, while by the plastic condition it has to divide it into two
equal areas. Consequently, the neutral axis translates from one position to
the other during elastoplastic deformation, unless it is an axis of symmetry.
As an example, Fig. 2.11 demonstrates the neutral axis in the elastic and
plastic states of a T-shaped cross-section.

Rectangular cross-section
As a specific case, we consider a rectangular cross-section (height 2h, width
b) and obtain the characteristics

I =
2
3
b h3, S = b h2. (2.45)

For a varying elastic core:

Ie =
2
3

b ξ3, Sp = b(h2 − ξ2). (2.46)
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Figure 2.12: Bending moment vs radius of curvature for a beam of rectan-
gular cross-section.

The bending moment in the elastoplastic range, eqn (2.40), becomes here

M =
(

1 − 1
3

ξ2

h2

)
b h2 σs. (2.47)

The elasticity limit is obtained for ξ = h, and the plastic limit for ξ = 0 as

Ms =
2
3

b h2 σs and MF = b h2 σs, (2.48)

respectively. For the rectangular cross-section, the quotient in eqn (2.43)
assumes the value MF/Ms = 3/2.

Equation (2.47) normalized by the moment at the elasticity limit reads

M

Ms
=

3
2

(
1 − 1

3
ξ2

h2

)
. (2.49)

The ratio of the associated radii of curvature follows from eqns (2.35) and
(2.40) as

R

Rs
=

ξ

h
, (2.50)

and substitution in eqn (2.49) gives

M

Ms
=

3
2

(
1 − 1

3
R2

R2
s

)
,

Rs

R
=

√
3

3

(
1 − 2

3
M

Ms

)−1/2

. (2.51)

A graphical representation of the variation of curvature with bending
moment is shown in Fig. 2.12.

Unloading
For an illustration of the residual stress in the rectangular cross-section,
the bending moment is removed from M = MF to M = 0. The stress dis-
tribution in the cross-section after unloading can be obtained by superpo-
sition of the elastoplastic solution at M = MF and the elastic solution for
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Figure 2.13: Residual stress after unloading from M = MF.

M = −MF. For the latter, the linear stress distribution at the elasticity limit
M = Ms is multiplied by the load factor −MF/Ms = −3/2. The magnitude
of the unloading stress does not exceed the elastic range of the material
(3σs/2 < 2σs). The process of superposition is demonstrated in Fig. 2.13,
and results in a self-equilibrating system of residual stress at M = 0.

The kinematics of the bending model completely determines the strain
once the curvature radius of the neutral plane is given. This is an exam-
ple of a kinematically determinate system. Bending beyond the elasticity
limit to a curvature 1/R > 1/Rs induces plastic strain in the cross-section.
Upon removal of the imposed bending deformation the plastic strain is com-
pensated by an elastic part such that γr = εr + η = 0. This is illustrated in
Fig. 2.14. The residual stress σr = −Eη implies that a bending moment
is associated with the unloaded state 1/R = 0. Removal of deformation is
elastic only if the plastic strain to be compensated is |η| ≤ σs/E.

Figure 2.14: Kinematic unloading of an elastoplastic beam.

2.2 Elastoplastic analysis of solids

2.2.1 Static equilibrium and kinematics

With reference to Fig. 2.15 we consider the static equilibrium of a
deformable body of solid material subjected to body forces

f = {fx fy fz} (2.52)

acting in the interior per unit volume V , and to surface forces

t = {tx ty tz} (2.53)
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Figure 2.15: Body forces f and surface forces t acting on the solid.

acting per unit area on the surface S with local unit normal

n = {l m n}. (2.54)

The equilibrium condition for the stresses in the interior of the solid is
expressed by the equilibrium equations for the force components along the
coordinate axes:

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ fx = 0,

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ fy = 0, (2.55)

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ fz = 0.

On the boundary of the solid the stresses must satisfy the condition

lσxx + mσyx + nσzx = tx,

lσxy + mσyy + nσzy = ty, (2.56)

lσxz + mσyz + nσzz = tz.

The strains in the solid derive from the displacements

u = {u v w}, (2.57)

with components u, v and w along the coordinate axes as

γxx =
∂u

∂x
, γxy =

∂u

∂y
+

∂v

∂x
,

γyy =
∂v

∂y
, γyz =

∂v

∂z
+

∂w

∂y
, (2.58)

γzz =
∂w

∂z
, γxz =

∂u

∂z
+

∂w

∂x
.
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The displacement field satisfies the kinematic conditions imposed on the
boundary and maintains the continuity of the solid. From the latter require-
ment, kinematic compatibility conditions can be deduced for the strains.

The utility of the above relations for the strains and the stresses can be
summarized as follows. For a given displacement field the strains in the solid
are uniquely determined by eqn (2.58). In matrix notation,

γ = ∂u, (2.59)

where the array

∂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

1√
2

∂
∂y

1√
2

∂
∂x 0

0 1√
2

∂
∂z

1√
2

∂
∂y

1√
2

∂
∂z 0 1√

2
∂
∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.60)

defines the differential matrix operator applied to the displacement u(x) in
order to obtain the strain γ = {γxx γyy γzz γxy/

√
2 γyz/

√
2 γxz/

√
2}.

With the notation in eqn (2.60), the static condition, eqn (2.55), can be
alternatively presented in matrix form,

∂tσ + f = 0, (2.61)

which collectively expresses the equilibrium between body forces f in the
solid and stresses σ = {σxx σyy σzz

√
2 σxy

√
2 σyz

√
2 σxz}.

For an analogous presentation of the static boundary condition,
eqn (2.56), we introduce the 3 × 6 matrix,

Nt =

⎡⎢⎣ l 0 0 m/
√

2 0 n/
√

2

0 m 0 l/
√

2 n/
√

2 0

0 0 n 0 m/
√

2 l/
√

2

⎤⎥⎦ , (2.62)

arranging the components of the unit surface normal, and obtain instead

Ntσ = t. (2.63)

The matrix N has the same pattern as ∂, eqn (2.60), the direction cosines
l, m and n taking the place of the differential operators ∂/∂x, ∂/∂y and
∂/∂z.

In contrast to the kinematics, the stress state cannot be derived from
given forces f and t as the strains are derived from displacements. The
static conditions, eqns (2.61) and (2.63), may rather be interpreted as oper-
ations accumulating a given stress field to resultant forces equilibrating f
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and t. The inverse task, the determination of the stress state induced by the
given forces, requires solution of eqn (2.61), the system of three differential
equations with the associated boundary conditions in eqn (2.63), as will be
outlined below.

2.2.2 Methods of elastoplastic analysis

As long as the mechanical state everywhere in the solid is below the elasticity
limit, the stress σ in eqn (2.61) can be expressed in terms of the strain via
Hooke’s law. The elastic strain γ ≡ ε is derived from the displacements by
eqn (2.59) and therefore

σ = κε = κ∂u. (2.64)

The equilibrium condition, eqn (2.61), then becomes

∂t(κ∂u) + f = 0 (2.65)

and is thus converted into a system of three differential equations for
the three components of the displacement vector u in the solid. In this
connection, the static boundary condition, eqn (2.114), is also expressed
in terms of the unknown displacements by means of the elastic relation,
eqn (2.64), while any kinematic constraints can be imposed directly on the
displacements.

When regions in the solid undergo inelastic deformation, eqn (2.59) gives
the compound strain γ = ε + η consisting of elastic and plastic parts. The
elasticity relation is based on the elastic strain, and eqn (2.64) has to be
modified accordingly. The expression for the stress reads

σ = κ[γ − η] = κ[∂u − η]. (2.66)

This requires knowledge of the plastic strain η in addition to the displace-
ment field u. Since plastic flow is described by stress-dependent incremental
relations, an integration has to be carried out locally accounting for the time
history of the stress up to the instant under consideration

η =

t∫
0

η̇ dt. (2.67)

The above exposition suggests that beyond the elasticity limit the equi-
librium problem is preferably stated in the incremental or rate form

∂tσ̇ + ḟ = 0 (2.68)

instead of eqn (2.61). For typographical brevity we prefer to use here time
rates ˙( ) = d( )/dt in place of differential changes d( ), although plasticity
is not a time-dependent phenomenon.
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In eqn (2.68) the rate of stress can be expressed by the rate form of
eqn (2.66) which reads

σ̇ = κ [γ̇ − η̇] = κ [∂u̇ − η̇] . (2.69)

This gives the equilibrium equation in terms of the displacement velocity u̇
and the time rate of plastic strain η̇, as

∂t(κ∂u̇) + [ḟ − ∂t(κη̇)] = 0. (2.70)

A comparison of eqn (2.70) with eqn (2.65) for the elastic case reveals that
the elastoplastic problem may be interpreted as an elastic one for the dis-
placement velocity u̇, with the body forces ḟ modified by the effect of stress-
like terms originating from the plastic strain rate η̇. Analogous remarks
apply to the static boundary conditions.

The elastoplastic problem as stated by eqn (2.70) suggests an iterative
procedure, implying a sequence of elastic solutions along with the prediction
and correction of the plastic strain rate (termed the method of successive
elastic solutions in [1]). For isotropic hardening (Section 1.3.1) the algorithm
for a single iteration cycle i, i + 1 reads

Predictor η̇i

Determine u̇i as from ∂t(κ∂u̇i) + [ḟ − ∂t(κη̇i)] = 0
(2.71)

γ̇i = ∂u̇i, σ̇i = κ[γ̇i − η̇i]

Corrector η̇i+1 =
1
h
sstσ̇i or η̇i+1 =

2G

h + 3G
sstγ̇i.

The above recurrence scheme is activated anew with the corrected estimate
for η̇ until convergence is achieved. The rate of convergence may depend
on the expression determining η̇i+1 in eqn (2.71). In particular, problems
exhibiting a weak dependence of the stress on the plastic strain favour the
determination of η̇ with σ̇, by eqn (1.154). If, on the other hand, the strain
is the quantity less sensitive to variations of the plastic strain, γ̇ would be
chosen for the calculation of η̇ in accordance with eqn (1.157). Implemen-
tation of kinematic hardening (Section 1.3.2) is straightforward.

Instead of eqn (2.69) an alternative expression for the rate of stress is
based on the elastoplastic material stiffness from eqn (1.158):

σ̇ =
[
I − 2G

h + 3G
sst

]
κγ̇ = κ̄γ̇ = κ̄∂u̇. (2.72)

Substitution in eqn (2.68) for the rate equilibrium leads to

∂t(κ̄∂u̇) + ḟ = 0, (2.73)

which can be formally viewed as an elastic problem for the displacement
velocity u̇, with stress-dependent material coefficients. In addition, the rate



Elastoplastic Response of Structures and Solids 85

problem defined by eqn (2.73) is nonlinear since the actual entry of the
material stiffness (elastoplastic κ̄ or elastic κ) depends on the condition of
plastic loading or unloading, thus requiring knowledge of the solution.

The complete treatment of an elastoplastic problem can be subdivided
into two distinct parts. An elastic solution furnishes the mechanical state
until the elasticity limit is attained first somewhere in the solid. Beyond this
state incrementation requires a number of rate-type elastoplastic problems
to be solved and the solutions to be accumulated in a sequence following
the prescribed application of the external forces and/or displacements. In
general, elastoplastic solutions require the employment of numerical com-
puter techniques usually based on extensions of the elastic finite element or
other methods to the elastoplastic range. These techniques will be discussed
in Chapter 5. Independently, analytical solutions developed under certain
simplifying assumptions give valuable insights into elastoplastic behaviour.

2.2.3 The residual state

As long as the applied force system does not lead to stresses beyond the elas-
ticity limit of the material, all changes of the mechanical state in the solid
are reversible and disappear after removal of the imposed action. Loading
beyond the elasticity limit, on the other hand, leads to permanent strains
and therefore changes of the mechanical state remain even after an elastic
removal of the applied loads. Let u,γ and σ denote the actual displacement
field, the strains and the stresses, respectively, in the loaded solid, and η
the plastic strains. If elasticity were unlimited, ue, εe and σe = κεe would
denote the mechanical fields associated with the same loads, while by defini-
tion η ≡ 0. Since plastic flow does not modify the elastic properties, elastic
unloading from a plastic state induces changes −ue,−εe,−σe. The resid-
ual state may thus be obtained by simple superposition of the elastoplastic
solution for the loading path and the elastic solution pertaining to the same
ultimately applied loads as

ur = u − ue, γr = γ − εe
(2.74)

σr = σ − σe = σ − κεe.

Conversely, it follows from eqn (2.74) that if the residual state ur,γr,σr
were known, an elastic solution yielding ue, εe,σe is sufficient for the deter-
mination of the actual elastoplastic state. In detail,

u = ue + ur, γ = εe + γr, σ = σe + σr. (2.75)

Whenever the plastic strain η developed during the course of the loading
process remains unaffected by the unloading, the residual strain in eqn (2.74)
can be expressed alternatively as

γr = εr + η. (2.76)
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The plastic part of the strain will not necessarily be kinematically compat-
ible and therefore complementary elastic strains εr appear such that kine-
matic compatibility is restored by the compound residual strain γr. The
residual stress,

σr = κεr, (2.77)

constitutes a self-equilibrating stress system associated with vanishing
applied forces.

2.2.4 Static and kinematic determinateness

The statically determinate system
As outlined previously, static determinateness implies that the stresses can
be obtained from the conditions of static equilibrium without reference to
the material constitutive law and the kinematic relations.

From the above, the stress and the time history of stress can be considered
functions of the applied force system and its time history, independently of
the behaviour of the particular material. The elastic strain is obtained at
each instant t of the loading programme by Hooke’s law:

ε(t) = κ−1σ(t). (2.78)

Where yielding occurs, the rate of plastic strain (isotropic hardening) is

η̇ =
1
h

sstσ̇, (2.79)

and integration with respect to time furnishes the plastic strain

η(t) =

t∫
ts

1
h

sstσ̇dt. (2.80)

At instant ts the yield stress is first attained at the respective location. The
strain γ = ε + η follows by the additive composition of the elastic and the
permanent part. In the present case the strain γ obtained from the stress
via the constitutive material law satisfies kinematic compatibility.

Since the stress is a function of the applied force only, unloading to zero
force does not leave any stress, independently of previous plastic flow. For
this reason, there is also no residual elastic strain

σr = 0, εr = 0. (2.81)

Consequently, the residual strain after an elastic unloading is identical to
the plastic strain developed during the course of the loading process:

γr ≡ η. (2.82)
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It follows from eqn (2.82) that, in the statically determinate case, the
plastic strains satisfy the kinematic compatibility conditions and are asso-
ciated with a field of permanent displacements. The same can be concluded
for the elastic strains so that ultimately the displacement field may be sep-
arated here into an elastic and a plastic part.

The kinematically determinate case
Kinematically determinate problems are characterized by a prescribed dis-
placement field u(t) from which the strain can be obtained everywhere in
the system at any time instant t. One may thus start with the determination
of the strain:

γ(t) = ∂u(t), (2.83)

and obtain the stress up to the elasticity limit by

σ(t) = κ∂u(t). (2.84)

Beyond the elasticity limit,

σ = κ[γ − η]. (2.85)

For isotropic hardening, the rate of plastic strain during flow follows from
an evaluation of the expression

η̇ =
2G

h + 3G
sstγ̇. (2.86)

Integration with respect to time supplies the plastic strain

η =

t∫
ts

2G

h + 3G
sstγ̇dt. (2.87)

The direction s of plastic flow requires the stress from eqn (2.85). In the
kinematically determinate case the stresses obtained via the material con-
stitutive law from the prescribed strains satisfy static equilibrium.

Here unloading implies the removal of the imposed displacements. As a
consequence, no residual strains are left in the system

γr = εr + η = 0. (2.88)

The appearance in eqn (2.88) of the plastic strain η developed during the
course of loading presumes an elastic removal of the imposed displacements.
The requirement of vanishing residual strains implies that plastic strains are
compensated by elastic strains inducing residual stresses

σr = κεr = −κη. (2.89)
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Figure 2.16: Cylindrical bar under torsion.

2.3 Distinct cases

2.3.1 Torsion of cylindrical bars

The case under consideration is described in Fig. 2.16. A cylindrical or
prismatical bar of arbitrary cross-section is twisted by the application of a
torsional moment T at the end cross-sections. As shown in the figure, the
coordinate system of reference is defined such that the z-axis is directed
along the bar, while cross-sections perpendicular to it are referred to the
x, y-plane.

Kinematics
The kinematics of torsion is based on the Saint Vénant assumption that
cross-sections perpendicular to the longitudinal axis undergo rotation with-
out deformation in their plane (x, y-plane) and warping in the longitudinal
direction (z-axis); see [2] for an historical account. For convenience, the
z-axis is chosen to coincide with the axis of rotation.

The rigid rotation of cross-sections is specified by the angle of twist

θ′ =
dθ

dz
= constant, (2.90)

which is considered independent of the location along the longitudinal axis.
The angle of rotation for a cross-section at position z in the longitudinal
direction thus reads

θ = θ′z. (2.91)

As a consequence of the rotation, material points P with coordinates x, y
in the cross-section are displaced to a new position P ′ (Fig. 2.17).

For small angles, the displacements along the x- and the y-axes are

u = −θy = −θ′zy, v = θx = θ′zx. (2.92)
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Figure 2.17: Displacement of point P due to rotation θ.

The longitudinal displacement is assumed to be independent of the
position z:

w = w(x, y; θ′). (2.93)

It defines the warping w, which varies with location x, y in the cross-section.
The angle of twist θ′ affects the magnitude collectively.

From the displacement functions in eqns (2.92) and (2.93), it is seen that
all direct strains vanish, γxx = γyy = γzz = 0. The shear strain in the plane
of the cross-section also vanishes,

γxy =
∂u

∂y
+

∂v

∂x
= −θ′z + θ′z = 0 (2.94)

and the functions in eqn (2.92) indeed do not produce any in-plane defor-
mation. For the remaining two shear strain components, one derives

γyz =
∂v

∂z
+

∂w

∂y
= θ′x +

∂w

∂y
,

(2.95)

γxz =
∂u

∂z
+

∂w

∂x
= −θ′y +

∂w

∂x
.

Differentiation of the shear strain γyz = γzy with respect to x and of γxz =
γzx with respect to y gives

∂γzy

∂x
= θ′ +

∂2w

∂y ∂x
,

(2.96)
∂γzx

∂y
= −θ′ +

∂2w

∂x ∂y
.

Assuming a continuous variation of w with x and y, the mixed second-order
partial derivatives on the right-hand side of eqn (2.96) are independent
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of the differentiation sequence and are therefore equal. Subtraction of the
upper equation from the lower equation thus yields

∂γzx

∂y
− ∂γzy

∂x
= −2θ′. (2.97)

Equation (2.97), derived from the deformation kinematics of the torsion
problem, expresses a condition for kinematic compatibility in terms of the
strains γzx and γzy.

Statics
The absence of the strain components γxx, γyy, γzz and γxy implies, by virtue
of the material law, the absence of the corresponding stress components.
Therefore, σxx = σyy = σzz = 0 and σxy = 0 in the elastic as well as in the
elastoplastic range. The remaining two components σzx = σxz, σzy = σyz
represent shear stresses. Their mode of action in the plane of the cross-
section is indicated in Fig. 2.18. It is noticed that a resultant shear stress τ
is obtained from

τ2 = σ2
zx + σ2

zy. (2.98)

Taking into account the vanishing stress components in conjunction with
the fact that no body forces are present, the condition of static equilibrium
for the stresses, eqn (2.55), reduces to

∂σzx

∂z
=

∂σzy

∂z
= 0,

(2.99)
∂σzx

∂x
+

∂σzy

∂y
= 0.

From the upper set of equations, the non-vanishing stress components σzx
and σzy are independent of the location along the z-axis. The variation in
the x, y-plane is governed by the lower equation.

Figure 2.18: Components of the shear stress τ acting in the cross-section.
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Prandtl’s stress function [3]
If a function F (x, y) is defined such that the shear stresses are

σzx =
∂F

∂y
, σzy = −∂F

∂x
, (2.100)

then the equilibrium condition in the x, y-plane, eqn (2.99), assumes the
form

∂2F

∂y ∂x
− ∂2F

∂x ∂y
= 0 (2.101)

and is identically satisfied if F is a continuous function of x and y.
Substitution of the expressions for the shear stress components from

eqn (2.100) in eqn (2.98) gives the resultant τ in terms of the stress function

τ2 =
(

∂F

∂y

)2

+
(

∂F

∂x

)2

. (2.102)

The stress function F may be visualized as a surface spanned over the x, y-
plane. For isolines on the surface (F = constant, dF = 0), with eqn (2.100),

dF =
∂F

∂x
dx +

∂F

∂y
dy = −σzydx + σzxdy = 0. (2.103)

From the last equation it follows that,

σzy

σzx
=

dy

dx
(2.104)

and the resultant shear stress τ is thus tangential to the lines F = constant,
which are known as shear stress trajectories (Fig. 2.19). Since the shear
stress along the contour of the cross-section must be tangential to it, the
contour is an isoline. This expresses the static boundary condition.

Figure 2.19: Isolines F = constant and shear stresses.
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There are no resultant shear forces (Qx, Qy) in the cross-section. Because
of F = constant along the contour:

Qx =
∫ ∫

σzxdxdy =
∫ (∫

∂F

∂y
dy

)
dx = 0.

Similarly, Qy = 0 for the other component. Integration is over the cross-
section. It is noticed that

∫
∂F
∂y dy =

∫
∂yF = ΔFc; the difference between

contour values of the stress function, here at x = constant, vanishes: ΔFc = 0
(Fig. 2.20).

Calculation of the torsional moment (torque) from the shear stress leads
to the integral

T =
∫ ∫

(σzyx − σzxy)dxdy = −
∫ ∫ (

∂F

∂x
x +

∂F

∂y
y

)
dxdy, (2.105)

which extends over the cross-section of the bar. The second expression is
obtained by utilizing eqn (2.100) for the shear stress components. Applica-
tion of partial integration in conjunction with the definition F = 0 along
the contour gives the torque in terms of the stress function

T = 2
∫ ∫

Fdxdy. (2.106)

This is twice the volume of the space between the surface F (x, y) and the
x, y-plane.

For the transformation of the integral on the right-hand side of eqn (2.105) by
partial integration, we write the first term as∫ ∫

∂F

∂x
xdx dy =

∫ (∫
∂F

∂x
xdx

)
dy, (2.107)

and using the relation
∂

∂x
(Fx) = F +

∂F

∂x
x, (2.108)

Figure 2.20: On integration over the cross-section.
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we obtain ∫
∂F

∂x
xdx =

∫
∂

∂x
(Fx)dx −

∫
Fdx. (2.109)

Evaluation of the first integral on the right-hand side of eqn (2.109) for the
cross-section yields ∫

∂

∂x
(Fx)dx =

∫
∂x(Fx) = FcΔxc, (2.110)

where Δxc denotes the difference of the x-coordinate of the contour at y = con-
stant, and Fc is the contour value of the stress function (Fig. 2.20). The integral
vanishes for the choice Fc = 0 and therefore eqn (2.107) simplifies to∫ ∫

∂F

∂x
xdxdy = −

∫ ∫
Fdx dy. (2.111)

An analogous treatment for the second term in the last integral in eqn (2.105)
gives ∫ ∫

∂F

∂y
ydydx = −

∫ ∫
Fdydx, (2.112)

and eqn (2.106) for the torque follows by summation of eqns (2.111) and (2.112).

Specification of the stress function
Since the equations of static equilibrium are satisfied identically by the
stress function, its specification must be based on different conditions. For
a problem of elastic torsion, denote the stress function by Fe. Here, the
stresses σzx and σzy are related to the strains γzx = εzx and γzy = εzy by
the elastic shear modulus G. Using the expressions in eqn (2.100) for the
stresses,

γzx = εzx =
1
G

∂Fe

∂y
, γzy = εzy = − 1

G

∂Fe

∂x
. (2.113)

Substitution of eqn (2.113) in the condition of kinematic compatibility,
eqn (2.97), supplies a differential equation for the elastic stress function

∂2Fe

∂x2 +
∂2Fe

∂y2 = −2Gθ′ = constant. (2.114)

Equation (2.114) has the same form as the differential equation governing
the deflection of an elastic membrane subjected to pressure loading. On
this basis, Ludwig Prandtl introduced a solution for the problem of elastic
torsion of prismatical bars by analogy [3]. For experimental integration,
an elastic membrane spanned over the contour of the cross-section of the
bar is subjected to pressure loading. The deflection of the membrane can
be interpreted as the stress function Fe(x, y). Specification of the stress
function determines in turn the shear stress components σzx and σzy, the
resultant shear stress τ , and the torque T = Te according to the foregoing
results. The components of shear strain are given by eqn (2.113).
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Next, considering plastic torsion for materials obeying the von Mises yield
condition we notice that the equivalent stress here is given by

σ̄2 =
3
2
σt

D σD = 3(σ2
zx + σ2

zy) = 3τ2. (2.115)

In fact, the only non-zero entities of the deviatoric stress vector are
√

2 σzx
and

√
2 σzy, leading to the expression in eqn (2.115). In the cross-section

the elasticity limit is reached where σ̄ = σs, or on account of eqn (2.115),
where

τ =
σs√
3

= τs. (2.116)

This defines the yield stress τs of the material under shear and relates it to
the tensile yield stress σs for the von Mises criterion.

We denote the stress function in the plastic case by Fp. If the cross-section
is made of perfectly plastic material and has completely entered the plastic
range, the shear stress τ is constrained everywhere by the yield stress of the
material. With reference to eqn (2.100), we then obtain

τ2 =
(

∂Fp

∂x

)2

+
(

∂Fp

∂y

)2

=
σ2

s

3
= constant. (2.117)

It is observed that ∂Fp/∂x, ∂Fp/∂y are the components of the gradient of
the stress function and thus eqn (2.117) states that the gradient length is
constant. This defines the stress function Fp(x, y) as a surface of constant
maximum inclination, spanned over the cross-section.

Once the stress function is specified, the shear stress components can
be determined; their resultant is constant at τ = τs. The torque T = Tp
obtained as

Tp = 2
∫ ∫

Fpdxdy = TF, (2.118)

determines the carrying capacity TF of the plastic cross-section.
For an illustration, we consider the plastic torsion of a bar with circular

cross-section made of perfectly plastic material with tensile yield stress σs
(Fig. 2.21). The surface of constant maximum inclination spanned over the

Figure 2.21: Plastic torsion of a circular bar.
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circle is a cone and represents the stress function Fp(x, y) at full plastic
yield. The slope is defined by the quotient of the height h of the cone to the
radius a of the circle. With reference to eqn (2.117), it is specified by the
yield stress of the material and reads

h

a
=

σs√
3
. (2.119)

This determines Fp(x, y) and the plastic stress state completely. The plastic
yield moment is given by twice the volume of the cone

TF =
2
3
πa2h =

2
3
πa3 σs√

3
. (2.120)

Of course, σs/
√

3 = τs, the yield stress of the material in shear.
For more complicated cross-sections, Nadai [4] proposed that surfaces

of constant maximum slope can be obtained by forming a sand heap over
the cross-section. This simple method is known as the sand-heap analogy
to plastic torsion. Apart from the demonstration effect, the analogy might
be utilized for a determination of the plastic stress function by simulating
sand heap formation over the cross-section in question via analytical or
computational techniques (Fig. 2.22; [5]).

The two extreme cases considered up to now, the elastic case with the
stress function Fe governed by eqn (2.114) and the plastic case with the
stress function Fp governed by eqn (2.117), have to be supplemented by
the elastoplastic situation. Here, the cross-section is only partially at plas-
tic yield while the core is still elastic (Fig. 2.23). The stress state in the
elastic and the plastic regions is specified by the stress functions Fe and Fp,
respectively, which may be determined as before. At the common boundary
separating the two regions, the equality of the stress components requires

Figure 2.22: Computer generated sand heap over a quadratic cross-section.



96 Elements of Plasticity

Figure 2.23: Part of the cross-section at plastic yield, the other part being
elastic.

that the stress functions satisfy the continuity condition

∂Fe

∂x
=

∂Fp

∂x
,

∂Fp

∂y
=

∂Fp

∂y
, (2.121)

by the partial derivatives and determines the location of the interior bound-
ary as a function of the applied torque T = Te + Tp.

At the elasticity limit (T = Ts) the stress function Fe still spans the entire
cross-section. With increasing torque the elastic region shrinks and vanishes
at the plastic limit (T = TF). At the same time the plastic region grows from
the contour into the interior of the cross-section. Ultimately, the function
Fp alone governs the stress state.

2.3.2 Plane strain

Long cylindrical or prismatical bodies subjected to loads in the cross-section
not varying along the axis deform under plane strain conditions if the axial
displacement is suppressed at the ends. Choosing the z-axis in the lon-
gitudinal direction, cross-sections perpendicular to it lie in the x, y-plane
(Fig. 2.24). Under plane strain conditions, the kinematics of deformation of
the body is described by the displacements

u = u(x, y), v = v(x, y), w = 0. (2.122)

The longitudinal displacement w vanishes completely, while the displace-
ments u, v in the plane of the cross-section do not depend on the location
along the z-axis. From the displacement functions in eqn (2.122), the strains
γxx, γyy and γxy in the plane of the cross-section derive as functions of x
and y. The out-of-plane strains vanish: γzz = γxz = γyz = 0.

With the shear strains, the shear stress components σxz = σzx and
σyz = σzy are also zero, for an elastic as well as for an elastoplastic mate-
rial. An axial stress component σzz, however, exists: in-plane deformation
implies axial strain in elasticity and plasticity, and imposition of the plane
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Figure 2.24: Cylindrical body in plane strain (cross-section).

strain condition induces axial stress. For the static equilibrium of the non-
vanishing stress components eqn (2.55) reduces to

∂σxx

∂x
+

∂σyx

∂y
+ fx = 0,

(2.123)
∂σxy

∂x
+

∂σyy

∂y
+ fy = 0.

These differential equations concern the distribution of the three stress com-
ponents σxx, σyy and σxy in the cross-section, while the requirement

∂σzz

∂z
= 0

establishes the constancy of σzz along the z-axis. The associated boundary
conditions are

l σxx + m σyx = tx,

(2.124)
l σxy + m σyy = ty,

where the components tx and ty of the surface forces acting perpendicular
to the longitudinal axis are by definition independent of the z-coordinate.

Stationary elastic strain
In spite of the reduced dimensions, a solution of the elastoplastic problem
under the condition of plane strain requires activation of the procedures
described in Section 2.2.2. A particular situation arises when the elastic
strains become stationary. Then ε̇zz = 0 and the suppression of the axial
deformation implies that the plastic strain rate η̇zz also vanishes:

γ̇zz = η̇zz = 0. (2.125)
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For this, the flow rule requires the deviatoric stress σDzz to be zero,

σDzz = σzz − σH = 0, (2.126)

and relates the axial stress to the in-plane stress components

σzz = σH =
σxx + σyy

2
. (2.127)

The deviatoric stress components in the plane of the cross-section are

σDxx = σxx − σH =
σxx − σyy

2
,

(2.128)

σDyy = σyy − σH =
σyy − σxx

2
,

and since σDzz = 0, they satisfy the condition

σDxx + σDyy = 0. (2.129)

The equivalent deviatoric stress, eqn (1.98), becomes

σ̄2 =
3
2
(σ2

Dxx + σ2
Dyy + 2σ2

xy) = 3

[(
σxx − σyy

2

)2

+ σ2
xy

]
. (2.130)

For a perfectly plastic material which is completely in the plastic range,
σ̄ = σs everywhere in the cross-section. In this case, eqn (2.130) provides us
with an algebraic equation for the in-plane stress components:(

σxx − σyy

2

)2

+ σ2
xy =

σ2
s

3
= τ2

s . (2.131)

Either the tensile yield stress σs or the shear yield stress τs may be used
for a limitation of the stress state. It is noticed that elimination of σzz by
eqn (2.127) and the plastic condition for the three in-plane components of
the stress, eqn (2.131), convert the equilibrium condition, eqn (2.123), to a
system sufficient for determination of the stress state. The problem may then
be considered statically determinate in that the kinematic compatibility
condition is not required for the calculation of the stresses.

Regarding the plastic flow, we deduce from the flow rule – eqn (1.116)
with eqn (1.118) – using eqn (2.128) for the deviatoric stresses, the strain
rates

η̇xx =
3
4

˙̄η
σ̄

(σxx − σyy),

(2.132)

η̇yy =
3
4

˙̄η
σ̄

(σyy − σxx).
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Since η̇zz = 0, the in-plane components satisfy the isochoric condition

η̇xx + η̇yy = 0. (2.133)

The plastic shear strain rate follows as

η̇xy = 3
˙̄η
σ̄

σxy. (2.134)

From eqn (2.132), the difference of the normal strain rate components is
proportional to the difference of the normal stress components in the plane,

η̇xx − η̇yy =
3
2

˙̄η
σ̄

(σxx − σyy), (2.135)

and dividing by eqn (2.134) we obtain the quotient

η̇xx − η̇yy

η̇xy
=

σxx − σyy

2σxy
. (2.136)

In the absence of elastic constituents, the plastic strain rate obeys the
kinematic compatibility conditions.

2.3.3 Thick-walled cylinder under internal pressure

The thick-walled cylinder in Fig. 2.25 is subjected to internal pressure
p under the condition of plane strain. The material is assumed elastic–
perfectly plastic with yield stress in shear τs. In the present axisymmetric
case, the use of a cylindrical reference system 0–rϕz appears advantageous.

The stress state is defined in terms of the normal stress components σr, σϕ

in the plane and σz along the longitudinal axis. Because of the axial symme-
try the shear stress vanishes and the normal stresses are independent of the
angular location. The single equilibrium condition to be satisfied is along
the radial direction. It is deduced as

dσr

dr
+

σr − σϕ

r
= 0. (2.137)

Figure 2.25: Elastic–perfectly plastic thick-walled cylinder.
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The elastic solution of the problem given in [2] is

σr =
pa2

b2 − a2

(
1 − b2

r2

)
, σϕ =

pa2

b2 − a2

(
1 +

b2

r2

)
,

(2.138)

σz = 2ν
pa2

b2 − a2 ,

where a and b denote the inner and the outer cylinder radii, respectively.
With eqn (2.138) for the stress components in conjunction with ν = 1/2

for simplicity, the hydrostatic stress becomes

σH =
σr + σϕ + σz

3
=

pa2

b2 − a2 = σz, (2.139)

and the deviatoric stress components are

σDz = σz − σH = 0, σDϕ = −σDr =
pa2

b2 − a2

b2

r2 . (2.140)

The equivalent deviatoric stress, eqn (2.130), follows to

σ̄(r) =

√
3
2
(σ2

Dr + σ2
Dϕ) =

√
3

pa2

b2 − a2

b2

r2 . (2.141)

It is a function of the cylinder radius with the maximum at r = a, the
interior boundary. The elasticity limit of the material is attained for σ̄(a) =√

3τs, and the associated pressure from eqn (2.141) is

ps =
b2 − a2

b2 τs. (2.142)

Beyond this pressure the deformation is elastoplastic. The plastic limit
state is characterized by the stationarity of the stress, so the rate of elastic
strain vanishes (see Chapter 3). The condition of plane strain then implies
that η̇z = 0, and σDz = 0. In this case, the von Mises yield condition is
expressed by eqn (2.131). For the present axisymmetric stress state, pre-
suming σϕ > σr everywhere, there follows

σϕ − σr = 2τs = constant. (2.143)

With the above yield state for the stresses in the entire cross-section the
equilibrium condition, eqn (2.137), at the plastic limit reads

dσr

dr
− 2τs

r
= 0, (2.144)

which can be integrated for the radial stress

σr = 2τs ln r + C. (2.145)
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Figure 2.26: Radial distribution of stress components in the cylinder.

The integration constant C is obtained from the exterior boundary condi-
tion σr(b) = 0, and specifies σr completely. The circumferential stress σϕ

satisfies the yield condition, eqn (2.143), and the axial stress σz equals the
hydrostatic stress. The normal stress components are:

σr = 2τs ln
r

b
,

σϕ = 2τs + σr = 2τs

(
1 + ln

r

b

)
, (2.146)

σz =
σr + σϕ

2
= τs

(
1 + 2 ln

r

b

)
.

The interior boundary condition determines the plastic limit pressure

pF = −σr(a) = 2τs ln
b

a
. (2.147)

Unloading from the plastic limit leaves residual stresses which can be
obtained as the difference between the plastic solution, eqn (2.146), and
elastic stresses, eqn (2.138), calculated for p = pF from eqn (2.147). The
result is:

(σr)r = σr − (σr)e = 2τs

(
ln

r

b
− a2

r2

b2 − r2

b2 − a2 ln
a

b

)
,

(σϕ)r = σϕ − (σϕ)e = 2τs

(
1 + ln

r

b
+

a2

r2

b2 + r2

b2 − a2 ln
a

b

)
, (2.148)

(σz)r = σz − (σz)e = 2τs

(
1
2

+ ln
r

b
+

a2

b2 − a2 ln
a

b

)
.

The above applies if the residual stress does not exceed the elasticity limit,

|(σϕ − σr)r| = |(σϕ − σr)F − (pF/ps)(σϕ − σr)s| ≤ 2τs,

and implies pF/ps ≤ 2, or b/a ≤ 2.22. A graphical representation of the
radial distribution of the stresses at p = ps, = pF, = 0 is given in Fig. 2.26.
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2.3.4 Plane stress

The condition of plane stress is commonly ascribed to thin plates of con-
stant thickness loaded by forces acting uniformly over the thickness along
the periphery of the plate (Fig. 2.27). Since all out-of-plane stress com-
ponents vanish, σzz = σxz = σyz = 0, the equilibrium condition, eqn (2.55),
reduces to

∂σxx

∂x
+

∂σyx

∂y
+ fx = 0,

(2.149)
∂σxy

∂x
+

∂σyy

∂y
+ fy = 0.

It concerns the variation of the in-plane components σxx, σyy, σxy as func-
tions of x and y. The static boundary conditions are as in eqn (2.124).
The elastoplastic problem can be solved by an application of the algorithms
described in Section 2.2.2, accounting for the fact that stresses in the z-
direction are absent.

It is observed that for σzz = 0 the hydrostatic stress σH is given by

σH =
σxx + σyy

3
, (2.150)

and leads to the deviatoric normal stresses

σDxx = σxx − σH =
2σxx − σyy

3
,

σDyy = σyy − σH =
2σyy − σxx

3
, (2.151)

σDzz = −σH = −σxx + σyy

3
.

Figure 2.27: Plate under plane stress conditions.
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With reference to Section 1.2.3 one obtains from eqn (1.97) for the equivalent
deviatoric stress

σ̄2 =
3
2
σt

Dσ =
3
2
(
σDxxσxx + σDyyσyy + 2σ2

xy
)

= σ2
xx + σ2

yy − σxxσyy + 3σ2
xy, (2.152)

where advantage has been taken of the fact that σzz = 0 in evaluating the
scalar product of the two stress vectors.

In the particular case of a perfectly plastic material, the completely plas-
tic state is characterized by σ̄ = σs everywhere, and eqn (2.152) supplies
an algebraic equation constraining the stress components. It can be used in
conjunction with the differential equilibrium equations (2.149) in order to
determine the plane stress state without reference to the kinematic compat-
ibility. In this sense, the problem may be considered statically determinate.

The plastic strain rate exhibits three components in the plane η̇xx, η̇yy,
η̇xy and one out-of-plane component η̇zz, which determines the permanent
change in thickness of the plate. From the isochoric condition

η̇zz = −(η̇xx + η̇yy). (2.153)

This relation is used in order to express the equivalent plastic strain rate in
terms of the in-plane components. From eqn (1.115),

˙̄η2 =
2
3

(
η̇2
xx + η̇2

yy + η̇2
zz +

1
2
η̇2
xy

)

=
4
3

(
η̇2
xx + η̇2

yy + η̇xxη̇yy +
1
4
η̇2
xy

)
. (2.154)

Solutions to plane stress problems (as well as to plane strain problems)
can be found in the books by Kachanov [6] and Kaliszky [7], for example,
along with detailed discussions. In terms of principal stresses σ1 and σ2,
solutions of the form

σ1 = 2τs cos
(
ω − π

6

)
,

(2.155)

σ2 = 2τs cos
(
ω +

π

6

)
,

are seen to satisfy the yield condition σ̄ = σs =
√

3τs identically for the
perfectly plastic material in the state of plane stress. This is confirmed
by substitution in eqn (2.152) for the equivalent stress. The function ω =
ω(x, y) can be related to the hydrostatic stress σH. In fact, with eqn (2.155)
we obtain

3σH = σ1 + σ2 = 2
√

3τs cos ω = 2σs cos ω. (2.156)
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The ultimate solution utilizes the equilibrium equations (2.149) for finding
ω(x, y). If the problem does not exhibit natural principal directions, these
constitute an additional variable.

The silently assumed constancy of the mechanical state over the plate thick-
ness requires discussion. Solutions of plane stress problems that neglect variations
over the thickness are approximate in nature and refer to thin plates; for a treat-
ment of the elastic case see [2]. It is noted that eqn (2.149) for the equilibrium
defines a problem for the stress distribution in the x, y-plane. Variations perpen-
dicular to the plate along the z-direction must establish kinematic compatibility.
In order to elucidate the argument recall that the vanishing of the out-of-plane
stress components σzz, σxz and σyz implies γxz = γyz = 0 while γzz �= 0. Focusing
on the non-vanishing out-of-plane strain γzz we deduce from the strain kinematics,
eqn (2.58), the relations

∂2γzz

∂x2 = −∂2γxx

∂z2 ,

∂2γzz

∂y2 = −∂2γyy

∂z2 , (2.157)

2
∂2γzz

∂x∂y
= −∂2γxy

∂z2 .

The above equation is based on a continuous displacement field and consti-
tutes a part of the familiar conditions of kinematic compatibility, the remainder
involved in the solution of eqn (2.149). The right-hand sides in eqn (2.157) vanish
if variations over the plate thickness are not allowed. Then the left-hand sides
of the equation require that the distributions γzz(x, y) is not higher than linear.
Otherwise, kinematic compatibility implies a dependence of the in-plane quanti-
ties on the thickness dimension, but of higher order. This leads to the conclusion
that plane solutions are adequate for thin plates.

2.3.5 Reduced stress and strain space

The lower dimensionality of plane problems suggests representation of stress
and strain by reduced 3 × 1 vectors comprising only in-plane components.
Omitting particular indication, we write

σ = {σxx σyy
√

2σxy}, γ =
{

γxx γyy
1√
2
γxy

}
. (2.158)

The transition from the complete 6 × 1 vectors to the above 3 × 1 represen-
tation entails certain modifications in the elastic as well as the elastoplastic
relations between stress and strain.
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Plane stress
The reduced stress vector contains information on all non-vanishing com-
ponents. Partitioning into hydrostatic and deviatoric constituents,

σH =
1
3
et
2σ, σH = σHe2 (e2 = {1 1 0 }) (2.159)

and

σD = σ − σH.

The reduced deviatoric stress vector lacks the axial component and therefore
the sum of the in-plane components will in general not vanish:

et
2σD = et

2[σ − σHe2] = σH. (2.160)

For the same reason the reduced deviatoric and hydrostatic portions are not
orthogonal:

σt
HσD = σ2

H. (2.161)

The in-plane strain vector does not contain complete information on the
strain state because of the existence of an axial component. The condition
of plane stress σzz = 0, however, establishes by elasticity a relation between
the three normal components of the elastic strain, thus allowing elimination
of εzz. The two-dimensional elasticity law for plane stress assumes the form

σ = κ[γ − η]

with

κ = 2G

[
I3 +

ν

1 − ν
e2et

2

]
, κ−1 =

1
2G

[
I3 − ν

1 + ν
e2et

2

]
, (2.162)

where I3 denotes the 3 × 3 identity matrix. The inverse of the material
stiffness matrix could be simply deduced by reducing the three-dimensional
operator to the in-plane entities.

In plasticity the equivalent stress can be obtained from

σ̄2 =
3
2
σt

Dσ =
3
2
(
σt

DσD + σ2
H
)
, (2.163)

where the first expression takes advantage of the plane stress state. By
differentiation,

dσ̄ =
3
2

1
σ̄

σt
Ddσ = stdσ

(
s =

3
2

1
σ̄

σD

)
(2.164)

formally as before in the complete representation but with the reduced 3 × 1
vector s. The latter defines the direction of flow in the x, y-plane for perfect
plasticity as well as for isotropic hardening:

dη = dη̄s, dη̄ =
1
h

dσ̄ =
1
h
stdσ. (2.165)
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An alternative expression of the plastic strain increment in terms of the
incremental strain is arrived at using the elastic relation for the stress incre-
ment in eqn (2.165), right,

dσ̄ = stdσ = stκdγ − (stκs)dη̄ (2.166)

and solving for

dη̄ =
1

h + stκs
stκdγ. (2.167)

The simplifications of the complete representation (Chapter 1) are not appli-
cable. For the in-plane 3 × 1 vector s we notice the relations

et
2s =

3
2

σH

σ̄
, sts =

3
2

(
1 − 3

2
σ2

H

σ̄2

)
, stκs = 3G

(
1 − 3

2
1 − 2ν

1 − ν

σ2
H

σ̄2

)
,

(2.168)

which reduce to those for the 6 × 1 vectors (ets = 0, sts = 3/2, stκs = 3G)
only if σH = 0 (i.e. for σxx = −σyy).

In the case of kinematic hardening (Section 1.3.2), the consideration
of plastic flow can also be restricted to the in-plane components. The
description of the yield condition, however, requires in the quantity σ̄K
complete information on the translation of the yield surface. Since trans-
lation is by a deviatoric vector, in-plane representation by a 3 × 1 vec-
tor α = {αxx αyy

√
2αxy} does not contain complete information: the term

αzz = −(αxx + αyy) is missing. In order to retain the previous formulation
in the reduced space, we introduce a plane translation vector β such that,

β = [I3 + e2et
2]α (2.169)

and

βD = α, βH = et
2α = −αzz.

It is also seen that for the reduced vectors the equivalent stress σ̄K is

σ̄2
K =

3
2
[σ − β]tD[σ − β] =

3
2
σt

KDσK (σK = σ − β). (2.170)

Differentiating, we obtain the consistency condition in the form

dσ̄K = st
K[dσ − dβ] = 0

(
sK =

3
2

1
σ̄K

σKD

)
. (2.171)

Observing that
st
Kdβ = dᾱ = hdη̄, (2.172)

the magnitude dη̄ of the plastic strain increment follows as for the complete
representation.
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Plane strain
In plane strain the in-plane 3 × 1 strain vector contains complete informa-
tion, but the reduced stress vector does not because of the existence of an
axial component σzz �= 0. Even for the strain, the argument does not apply
to the elastic and plastic constituents separately, but to γzz = εzz + ηzz = 0.

In the elastic range the vanishing of the axial strain (εzz = 0) allows simple
reduction of the complete elastic material stiffness to the in-plane compo-
nents. It also establishes a relation between the normal stresses, used for
the elimination of σzz when considering the inverse. The two-dimensional
elasticity matrices for plane strain read

κ = 2G

[
I3 +

ν

1 − 2ν
e2et

2

]
, κ−1 =

1
2G

[
I3 − νe2et

2
]
. (2.173)

The transition from the plane stress expressions is obtained by substituting
ν/(1 − ν) for ν.

In plasticity the non-vanishing axial elastic component restores the condi-
tion of plane strain: εzz = −ηzz, for isochoric plasticity −ηzz = ηxx + ηyy =
et
2η. This leads in the reduced space to the elastic stress–strain relations

σ = κ[ε + νεzze2] = κ[γ − η∗] (2.174)

with

η∗ = [I − νe2et
2]η.

The axial stress σzz is related to in-plane quantities by elasticity as follows

Eεzz = σzz − ν(σxx + σyy) = σzz − νet
2σ,

which gives
σzz = et

2[Eη + νσ]. (2.175)

Despite the principal possibility of space reduction, in plane strain the
axial components of quantities involved in the description of plasticity are
seen to play an active role. Determination of the plastic flow is therefore
based conveniently on the three-dimensional formalism developed in Chap-
ter 1 (Sections 1.2 and 1.3).

2.3.6 A note on the torsion of thin-walled cylindrical shells

The thin-walled shell depicted in Fig. 2.28 has an arbitrary cross-section
with thickness possibly varying along the circumferential direction. The
cross-section of the shell (and the distribution of thickness) is constant along
the longitudinal axis. The shell is subjected to a torsional moment (torque)
T acting at the ends, which are not constrained and are free to deform. The
deformation is assumed to result from a rigid rotation of the cross-section



108 Elements of Plasticity

Figure 2.28: Torsion of a thin-walled cylindrical shell.

in its plane and warping along the longitudinal axis. Peripheral positions in
the cross-section are specified by the mid-thickness coordinate s (Fig. 2.29);
the shear stress τ is defined tangential to s. It is assumed that the shear
stress is constant over the thickness t(s). The shear flow

q = τt (2.176)

defines a shear force per unit length.
The condition of equilibrium for an element of the shell (Fig. 2.30) reduces

here to the requirements

∂q

∂s
= 0,

∂q

∂z
= 0, (2.177)

which state that the shear flow q is constant in the cross-section, and does
not depend on the axial position z. In view of eqn (2.176), the consequence
of eqn (2.177) for the stress is

∂τ

∂s
+

τ

t

∂t

∂s
= 0,

∂τ

∂z
= 0, (2.178)

Figure 2.29: Geometry of ring cross-section.
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Figure 2.30: Equilibrium of a shell element.

since t = t(s) and ∂t/∂z = 0. The shear stress does not vary along the longi-
tudinal direction; it is not constant within the cross-section if the thickness
is variable.

The torsional moment equilibrated by the shear stress (Fig. 2.31) is

dT = hqds = 2qdA,

and by integration we obtain Bredt’s formula [8]:

T = 2q

∮
dA = 2qA, (2.179)

where A is the enclosed area. For q = constant the components of the lateral
shear force vanish:

Qx =
∮

qdx = q

∮
dx = 0

and

Qy =
∮

qdy = q

∮
dy = 0.

Figure 2.31: Torsional moment.
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Regarding description in terms of the stress function F (Section 2.3.1),
the condition of pure torsion requests that F = constant along the outer
and inner contours of the cross-section. The assumption of a constant shear
stress over the thickness is equivalent to a linear variation of F between
the contours limiting the cross-section. For convenience, let an example be
constructed by considering the solution of the elastic problem for the solid
cross-section and defining the inner contour of a ring along the isoline (F =
constant) next to the outer contour. The elastic solution for the ring cross-
section is given by the surface F between the two contours and determines
the equilibrated torque T . The assumption of a linear stress function based
on the small thickness of the ring neglects variations in the tangent of the
surface over the thickness.

The above simplification in elasticity may be transferred to the case of
hardening plasticity [6]. In the fully plastic state, the assumption of a con-
stant shear flow is, however, not compatible with the requirement τ = τs =
constant everywhere along the periphery unless the thickness of the cylin-
drical shell is constant. In the case of constant thickness (t = constant)
the plastic limit moment determined for an arbitrary cross-section from
eqn (2.179) amounts to

TF = 2τstA = 2qsA. (2.180)

The quantity
qs = τst (2.181)

defines a critical value for the shear flow q.
Conversely, if the stress distribution in a rod of solid (or thick-walled)

cross-section allows representation by shear flow in an assembly of tubes
of constant thickness, the torque at the plastic limit can be obtained from
differential contributions by eqn (2.180). With reference to Fig. 2.32, the
cross-section area of tube elements is dA = tS, and therefore

dTF = 2τstA = 2τs
A

S
dA,

Figure 2.32: Representation of a solid cross-section.
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where S denotes the length of the perimeter enclosing the area A. Integrat-
ing over the solid cross-section,

TF = 2τs

∫
A

S
dA, (2.182)

which can be used as an alternative to eqn (2.106) under the specified
restrictions.

2.4 Problems

1. The truss structure investigated in Section 2.1.3 exhibits in the elastic
range the force–displacement relationship

P =
3 + 2

√
3

1 +
√

3
k

2
u, k =

EA

h
.

In the elastoplastic range this becomes

P − Ps =
1

1 +
√

3
k

2
(u − us),

where us is the vertical displacement of the loaded node at the elasticity
limit P = Ps. Arrive at the above result and compare the stiffness of the
system below and beyond the elasticity limit.

2. The truss depicted in Fig. 2.33 is a modification of the case study in
Section 2.1.3. In the present configuration the cross-sections of the bars

Figure 2.33: Problem 2.
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differ, and therefore determination of the sequence of plastic yielding can-
not be based on the bar forces but requires consideration of the stresses.
Furthermore, the ground reaction force exhibits a vertical component R and
a horizontal component μR = R/2 representing ground friction.

Obtain the elastic, elastoplastic and residual state in the bars after
unloading from the plastic limit. To check the solution, the elastic limit
and the plastic limit are given as

Rs = 4
3 + 2

√
3

10 +
√

3
Ss and RF = (1 +

√
3)Ss,

respectively (Ss = σsA).

3. The background developed in Section 2.1.4 for the beam under pure
bending will be utilized for the treatment of loading by a lateral force. If
the effect of shear is neglected, the problem reduces to that of a bending
moment varying along the longitudinal axis.

For the elastic–perfectly plastic beam shown in Fig. 2.34 (E, σs), the
critical cross-section at z = 0 determines the elastic limit and the plastic
limit as

Ps =
2
3

bh2

l
σs and PF =

bh2

l
σs,

respectively. At P = PF, confirm that the extent of the plastified zone along
the beam is (z/l)p = 1/3, and determine the elastic core ξ/h in the cross-
sections as a function of the position z/l. Obtain the distribution of the
residual stress in the end cross-section (z = 0) after unloading from PF.
Prepare a graphical representation of the above results.

Figure 2.34: Problem 3.

4. As an extension of the case study in Section 1.2.5 for the laterally con-
strained plate (γyy = 0) under tension, a shear stress is superposed here
(Fig. 2.35). The loading at the vertical sides of the plate consists of the ten-
sile stress σxx = σ cos ϕ and the shear stress σxy = σ sin ϕ (0 ≤ ϕ ≤ π/2).
The material is modelled as elastic–perfectly plastic (E, ν, τs).
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Figure 2.35: Problem 4.

Confirm that the von Mises yield criterion predicts the limits of the elasto-
plastic range as follows:

3
(1 − ν + ν2) cos2 ϕ + 3 sin2 ϕ

≤
(

σ

τs

)2

≤ 1
sin2 ϕ + 1

4 cos2 ϕ
.

For the choice ν = 0, depict the elastic and plastic limits given above as a
function of the parameter ϕ. Deduce an expression for the quotient (dηxx −
dηyy)/dηxy of the incremental plastic strain. Show that the stress state left
after unloading from the plastic limit is defined by

(σxx)r = (σxy)r = 0 , (σyy)r =

( 1
2 − ν

)
cos ϕ(

sin2 ϕ + 1
4 cos2 ϕ

)1/2 τs.

5. The thin-walled circular cylinder shown in Fig. 2.36 is subjected to inter-
nal pressure p and a torque T . The material is assumed to be elastic–
perfectly plastic (E, ν, σs) obeying the von Mises yield criterion. Only
membrane stresses (σϕϕ, σzz, σzϕ) are considered; the longitudinal strain is
suppressed (γzz = 0).

Determine the state of stress in the elastic range as

σϕϕ = p
a

t
, σzz = νσϕϕ , σzϕ =

T

2πa2t

and establish the relationship between the components σϕϕ and σzϕ at
the elasticity limit σs. In the elastoplastic regime, deduce the axial stress
σzz from the yield condition. Show that at the plastic limit (σzz = σϕϕ/2)
these components are related by

1
4
σ2

ϕϕ + σ2
zϕ =

σ2
s

3
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Figure 2.36: Problem 5.

and prepare a graphical representation of the σϕϕ, σzϕ relationship at the
elastic and plastic limits for ν = 0.

Alternatively, for the unconstrained cylinder (γzz �= 0) we have,

σzz =
p

2
a

t
=

1
2
σϕϕ

and the condition limiting the elastic range here coincides with the plastic
limit of the previous constrained case. Also, the elastic and plastic limits
are now unique since the system has become statically determinate.

Suppose in one loading programme, the elasticity limit is attained by
the pressure p acting alone, and plastic flow is then induced by applying a
torque at the rate Ṫ while p = constant. In a different loading programme,
the torque T is applied alone up to the elasticity limit, and plastic flow
is then induced by the application of the pressure at the rate ṗ while T =
constant. Study the momentary direction of the plastic flow in the two cases
respectively.

6. (a) A rod of constant cross-section is subjected to torsion (perfectly plas-
tic material, yield stress in shear τs). Discuss the Prandtl stress function
in the fully plastic range and confirm the associated limit torque for the
following cross-sections (Fig. 2.37):

Quadratic (side length a): TF =
1
3
a3τs,

Circular ring (radius a, b): TF =
2
3
π(b3 − a3)τs,

Circular shell (thickness t): TF = 2πa2tτs.

(b) In addition, consider a rectangular cross-section a × b, a compound
cross-section (hemicircle a/2, rectangle a × (b − a)), a regular triangle with
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Figure 2.37: Problem 6(a).

Figure 2.38: Problem 6(b).

side-length a (Fig. 2.38). Check the results by the alternative shear flow
approach given in Section 2.3.6:

TF =
1
6
(3b − a)a2τs, TF =

(
2b + π

a

3

)(a

2

)2
τs, TF =

2
3

(a

2

)3
τs.

7. Based on the geometrical interpretation of the stress function F (x, y) in
torsion as a surface, reflect on the transition from the elastic to the fully
plastic state and discuss the meaning of the continuity condition given in
eqn (2.121).
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CHAPTER 3

Load-carrying capacity of perfectly
plastic systems

3.1 Introductory remarks

Perfectly plastic materials are characterized completely by the yield stress
σs limiting the elastic range. In this case, the load-carrying capacity of a
uniaxial tensile specimen is exhausted once the elasticity limit is reached.
The specimen then exhibits a tendency to extend further by plastic flow at
constant stress. Truss structures assembled from bar members do not reach
the elastic limit of the material everywhere at the same time, and therefore
the externally applied loads can be increased beyond the limit of incipient
yield as long as the magnitude of the stress can still be increased in some
members. Multiaxial stress in perfectly plastic solids at the state of yield
can be subjected to variations under observance of the yield condition. The
ability of the system to sustain an increasing loading is exhausted when
stresses need not be changed for continuing plastic flow. Examples have
been given in Chapters 1 and 2.

From the above considerations, it can be concluded that structures of per-
fectly plastic material are characterized by a limited load-carrying capacity.
At limit load the structure may undergo plastic flow at constant applied
forces. At the incipient stage of plastic deformation under investigation, the
geometrical dimensions are assumed constant. An estimation of the load-
carrying capacity of perfectly plastic structures will be based on two con-
cepts, one concerning the system and the other the material. These are the
principle of virtual work and Drucker’s plasticity postulate, respectively.

3.1.1 The principle of virtual work

Consider a deformable body subjected to body forces f and to surface forces
t (Chapter 2). Let σ̃(x) denote a virtual stress field which satisfies the static
equilibrium in the interior

∂tσ̃ + f = 0, (3.1)
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and the boundary condition
Ntσ̃ = t. (3.2)

Since no further restrictions are imposed on the virtual stresses σ̃, there
will generally exist more than one statically admissible stress distribution,
satisfying the static equilibrium as stated by eqns (3.1) and (3.2). One of
them is the actual stress field in the loaded system.

Independently, let u̇˜(x) be a virtual velocity field compatible with the
requirement to maintain the integrity of the body and with the kinematic
boundary conditions. From the virtual velocity field, a strain rate can be
derived as

γ̇˜ = ∂u̇˜ (3.3)

and is kinematically admissible for the system under consideration. The
above requirements define in general a class of virtual velocities u̇˜ and asso-
ciated strain rates γ̇˜, including the actual velocity field and strain rate.

The principle of virtual work, presented in the rate form, reads∫
V

f tu̇˜dV +
∫
S

ttu̇˜dS =
∫
V

σ̃tγ̇˜dV. (3.4)

Accordingly, the rate of work (power) performed by the applied forces f , t
on the virtual velocity equals the power of the virtual stress on the virtual
strain rate in the body. It is pointed out that the virtual stress and virtual
strain rate may be completely independent. The former must only establish
the static equilibrium with the applied forces, while the latter is derived from
an assumed velocity field which is kinematically admissible. In eqn (3.4) the
rate of work of the distributed forces may have to be supplemented by the
contribution

∑K
j=1 Pt

ju̇˜ j of any loading represented by discrete forces Pj

at single locations j = 1, ..., K; u̇˜ j denotes the respective virtual velocity.

3.1.2 Drucker’s plasticity postulate

The postulate refers to the material properties in plasticity and was for-
mulated by Drucker [1], thus it bears his name. Figure 3.1 reproduces the
uniaxial stress–strain diagram for an elastoplastic hardening material. In
order to avoid any apparent assumption of particular conditions, let the
tensile specimen have previously been deformed plastically and now be sub-
jected to a certain stress level σo below the flow stress pertaining to the
experienced plastic strain.

An additional loading programme increases the stress level in the spec-
imen until the value σ where the actual yield limit is attained. Further
increase by the stress increment dσ is then associated with plastic flow,
producing the increment dη in plastic strain. Subsequently, the additional
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Figure 3.1: On the formulation of Drucker’s plasticity postulate.

stress is removed and the original level σo is restored. The mechanical work
dissipated in the cycle by the excess stress is given by the expression

dw = (σ − σo)dη +
1
2

dσdη > 0. (3.5)

The inequality sign in eqn (3.5) is a consequence of the dissipative nature
of plastic deformation. For the particular choice σo = σ it expresses the
hardening property of the material:

dσdη > 0 and
dσ

dη
> 0.

This property is associated with material stability in the sense that the
increase in magnitude of the strain requires an increase in magnitude of
the stress. In perfect plasticity deformation occurs at constant stress such
that dσdη = 0, which for σo �= σ modifies the requirement in eqn (3.5) to
dw = (σ − σo)dη > 0.

The counterpart of eqn (3.5) under multiaxial conditions is obtained anal-
ogously starting at a stress state σo in the elastic domain, φ(σo, ...) < 0, of
the material which might have already experienced plastic deformation (the
dots ‘...’ stand for the actual value of the hardening parameters). The mate-
rial is then stressed to a plastic state σ where φ(σ, ...) = 0, and an additional
increment in stress, dσ, produces the incremental plastic strain dη. There-
after the original stress state σo is restored. A pictorial representation is
given in Fig. 3.1 with reference to the deviatoric plane in principal space.
Drucker’s plasticity postulate requires the work of the additionally applied
stresses in the cycle to be positive:

dw = [σ − σo]tdη +
1
2

dσtdη > 0. (3.6)



120 Elements of Plasticity

The above refers to a hardening material. In perfect plasticity the second-
order term is set equal to zero and the work may vanish. The postulate will
be elucidated by a number of applications to follow.

Equation (3.6) contains fundamental statements of the mathematical the-
ory of plasticity, which will be deduced below assuming smoothness of the
yield function in stress space or of parts of it, and avoiding singular locations.
Furthermore, the postulate will be utilized when discussing load-carrying
capacity and shakedown.

Normality of plastic flow
The perfectly plastic case is defined by setting in eqn (3.6) the second-order
term equal to zero

dσtdη = 0, (3.7)

from which the increment of plastic strain is orthogonal to the increment
of stress. At the same time, the stress changes that induce plastic flow
are here tangential to the yield surface φ(σ) = 0 such that [dφ/dσ]dσ = 0.
Therefore, the strain increment in eqn (3.7) must be normal to the yield
surface along the gradient of the yield function,

dη = Λ
[

dφ

dσ

]t

. (3.8)

Interpretation of the first-order term in eqn (3.6) for σo = 0 along with
eqn (3.8) gives

dw = σtdη = Λ
dφ

dσ
σ > 0. (3.9)

This requires the plastic strain increment dη at stress state σ to point
outwards from the yield surface, and the scalar multiplier to be a positive
quantity, Λ > 0.

For the hardening material, taking σo = σ in eqn (3.6), the plasticity
postulate requires that

dσtdη > 0, (3.10)

which is satisfied by the normality statement for the incremental plastic
strain, eqn (3.8). Here, φ(σ, ...) = 0 and

dη = Λ
[

∂φ

∂σ

]t

. (3.11)

In fact, substituting eqn (3.11) in eqn (3.10), one confirms that

dσtdη = Λ
∂φ

∂σ
dσ > 0. (3.12)

The term [∂φ/∂σ]dσ must be positive for the occurrence of plastic flow in
the case of hardening, and Λ > 0 as stated previously.
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If the plastic flow were allowed to possess a component dηt tangential
to the yield surface in addition to the normal one dηn such that dη =
dηn + dηt, then the work expression

dσtdη = dσtdηn + dσtdηt (3.13)

is not necessarily positive. The first term on the right-hand side of the equa-
tion is positive by the normality condition. However, the second contribution
may be negative because the inducing stress increment dσ can assume an
arbitrary direction relative to dη, the direction of the latter being fixed by
the stress state σ.

A graphical interpretation of the normality condition is given in Fig. 3.2
for the deviatoric plane in principal stress space. Assuming a plastic state
σI defining a point on the yield surface φ = 0, plastic flow is induced by
stress increments dσI pointing out from the yield surface. According to
the notion of the flow rule, the direction of the plastic strain increment
depends on the stress state where the flow occurs but not on the stress
increment inducing the flow. For this reason, only increments of plastic
strain dηI that are directed along the exterior normal to the yield surface
at σI satisfy eqn (3.10). For any other assumed direction of dηI, inducing
stress increments dσI may be found for which eqn (3.10) is not satisfied.

Convexity of the yield surface
The satisfaction of eqn (3.10) by the normality condition for plastic flow
allows the first term in the work expression of eqn (3.6) to be

[σ − σo]tdη ≥ 0. (3.14)

The significance of eqn (3.14) for the yield surface is visualized by the vec-
torial representation of stress and plastic strains in principal space (Fig. 3.2
(right)). Let σI be a stress state on the yield surface, φ(σI) = 0, where plas-
tic flow occurs as specified by the incremental plastic strain dηI along the
external normal. Different stress states σIo on the yield surface, φ(σIo) = 0,
satisfy eqn (3.14) only if the vectors σIo are within the interior side of the
tangent plane at σI. As a consequence, the yield surface is locally convex.

Figure 3.2: Normality of plastic flow and convexity of yield surface.
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The same can be concluded for the vicinity of any other plastic state σI and
thus the yield surface is entirely convex.

3.1.3 Uniqueness of incremental elastoplastic solutions

The general principles presented so far will be utilized next to discuss the
uniqueness of incremental elastoplastic solutions. For this purpose, we con-
sider a certain instant in the course of the loading programme where the
mechanical state in the solid is assumed to be uniquely known as a result of
previous evolution. The momentary change of the applied loads at this state
is specified by the time rates ḟ and ṫ of the body and surface forces, respec-
tively. The solution of the elastoplastic problem furnishes the velocity u̇,
strain rate γ̇ and stress rate σ̇ depending on the position in the solid. Stress
rate and strain rate are linked by the constitutive law of the elastoplastic
material.

For an examination of the uniqueness of the solution of the rate elasto-
plastic problem, we assume that apart from the one solution u̇1, γ̇1, σ̇1, a
different solution u̇2, γ̇2, σ̇2 might exist. Since either stress rate, σ̇1 and σ̇2,
is in equilibrium with the same force system ḟ , ṫ, their difference does not
exhibit any resultant force. Therefore, considering the virtual work for the
difference [σ̇2 − σ̇1] the left-hand side of eqn (3.4) vanishes identically for
any admissible velocity field, and the stress integral on the right-hand side is∫

V

[σ̇2 − σ̇1]t[γ̇2 − γ̇1]dV = 0. (3.15)

Use of the difference [γ̇2 − γ̇1] as an admissible strain is justified since both
γ̇1 and γ̇2 are assumed to be solutions and thus kinematically compatible.
Utilization in expressing the virtual work statement for σ̇1, σ̇2 individually
and subtraction also leads to the result of eqn (3.15).

The integrand in eqn (3.15) can be detailed as

[σ̇2 − σ̇1]t[γ̇2 − γ̇1]

= [σ̇2 − σ̇1]t[ε̇2 − ε̇1] + [σ̇2 − σ̇1]t[η̇2 − η̇1]. (3.16)

The analysis of the strain rate in eqn (3.16) into elastic and plastic con-
tributions helps to discuss the impact of the respective material properties
separately. In isotropy, the term with the elastic part of the strain rate can
be transformed by the relationships for deviatoric and hydrostatic quanti-
ties, eqns (1.44) and (1.42), to

[σ̇2 − σ̇1]t[ε̇2 − ε̇1]

=
1

2G
[σ̇2 − σ̇1]tD[σ̇2 − σ̇1]D +

1
3K

[σ̇2 − σ̇1]tH[σ̇2 − σ̇1]H > 0. (3.17)

The right-hand side of eqn (3.17) consists of sums of quadratic terms mul-
tiplied by the elastic constants; it is positive unless σ̇2 = σ̇1, in which case
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it vanishes. Isotropy is not a necessary assumption; the properties of the
matrix κ ensure that the work of elastic deformation is positive such that
σtε = εtκε > 0 for any σ = κε �= 0.

Next, considering locations where a plastic strain rate also appears in
eqn (3.16), we write the respective term as

[σ̇2 − σ̇1]t[η̇2 − η̇1] = σ̇t
2η̇2 − σ̇t

2η̇1 − σ̇t
1η̇2 + σ̇t

1η̇1 ≥ 0. (3.18)

We restrict the verification of eqn (3.18) to perfect plasticity in which case
σ̇1, σ̇2 are tangential to the yield surface at the plastic state considered, and
η̇1, η̇2 are normal to it. Therefore, all scalar products in eqn (3.18) vanish.
If one of the stress rates does not induce plastic flow, its scalar product with
the other plastic strain rate is negative and makes the expression positive.

From the above discussion it follows that the integrand in eqn (3.15) is
always positive, and the volume integral vanishes only if the solution for the
stress rate is unique, σ̇2 = σ̇1 = σ̇.

Formally, perfect plasticity is characterized by the condition of a non-varying
yield surface φ(σ) = 0:

φ̇ =
dφ

dσ
σ̇1 =

dφ

dσ
σ̇2 = 0. (3.19)

By the normality of plastic flow,

η̇1 = Λ1

[
dφ

dσ

]t

, η̇2 = Λ2

[
dφ

dσ

]t

. (3.20)

In the two cases, the derivative dφ/dσ is unique since it refers to the same plastic
state. Use of eqn (3.20) in eqn (3.18) and observance of eqn (3.19) reveals that
either expression in eqn (3.18) vanishes and confirms the equality to zero. If at
certain locations one of the rate solutions, say σ̇1, induces plastic flow while the
other causes elastic unloading, the set of equations (3.19) and (3.20) assumes the
form

dφ

dσ
σ̇1 = 0,

dφ

dσ
σ̇2 < 0 (3.21)

and

η̇1 = Λ1

[
dφ

dσ

]t

, η̇2 = 0. (3.22)

This makes several terms in eqn (3.18) equal to zero except for a negative term
σ̇t

2η̇1 which causes the expression to be positive. The inequality sign in eqn (3.18)
is thus justified. The treatment for hardening material is left as an exercise to the
reader.

3.1.4 Plastic limit

We define the plastic limit as the mechanical state of an elastic–perfectly
plastic system at which deformation may be momentarily continued while
the applied forces are kept constant. In this sense the load-carrying capacity
of the system is then exhausted, the applied forces constitute a limit load
system (or collapse load). If the loading consists of body forces f and surface
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forces t, or is represented by discrete forces Pj (j = 1, . . . , K), their value
at the plastic limit is denoted by fF, tF and PFj , respectively. At this state,
a velocity field u̇F will be found that deforms the body at constant applied
forces: ṖFj = 0, ḟF = 0, ṫF = 0. The stress rate σ̇F = 0 can be associated
with the vanishing rate of the external loading and, following previous dis-
cussion, it represents a unique solution to the rate problem. In conformity
with the vanishing stress rate, the rate of elastic strain vanishes as well, and
the rate of strain deduced from u̇F is entirely plastic in nature:

η̇F ≡ γ̇F = ∂u̇F. (3.23)

The velocity field u̇F is called a yield or flow mechanism; it is inherent to
the plastic limit state.

Once the plastic strain rate η̇ is locally known, the gradient dφ/dσt of
the yield function (directed along η̇) specifies the stress state σ at φ(σ) = 0
where plastic flow occurs. It can be concluded that the power of dissipation
per unit volume (d) is a function of the plastic strain rate:

d = σtη̇ = d(η̇) > 0. (3.24)

The power of dissipation for a body of volume V is,

D =
∫
V

σtη̇dV (3.25)

For an assessment of a given level f , t,Pj (j = 1, . . . , K) of the applied
forces with respect to the plastic limit, a safety factor n is introduced such
that the set nf , nt, nPj constitutes a limit load system. Thus

fF = n f , tF = n t, PFj = nPj (j = 1, . . . , K). (3.26)

Accordingly, the system is loaded below the plastic limit if n > 1. For n < 1
the plastic limit is exceeded; n = 1 reproduces the limit load.

The limit load theorems to follow in Sections 3.2 and 3.3 provide us with
a means for estimating the safety of loaded perfectly plastic systems against
collapse, without the necessity of a complete solution to the elastoplastic
problem. An historical account on the subject is found in [2] along with a
concise theoretical exposition.

Independently of the small strain assumption, the tendency of the system to
deform may be of importance for the load carrying capacity. For an indication of
the significance of the deforming geometry, we consider the tensile test under the
force P = σA with both the stress σ and the cross-section area A varying during
extension. Differentiating, stationary loading is characterized by the requirement

dP

P
=

dσ

σ
+

dA

A
= 0. (i)
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For constant volume V = Al we simply have dA/A + dl/l = 0 where dl/l = dγ,
the strain increment. Then from eqn (i),

dσ

dγ
= σ. (ii)

The above stationarity condition accounts for only instantaneous deformation;
overall changes in geometry may be negligible. The tensile force attains a maxi-
mum at dP = 0 for dσ/dγ = σ > 0, before the slope of the stress–strain diagram
becomes zero. In perfect plasticity the condition of eqn (ii) is met at the yield
stress, where the transition from elasticity with dσ/dγ = E to plasticity with
dσ/dγ = 0 occurs immediately.

Plastic flow of hollow cylinder
The plastic yielding of the thick-walled cylinder under internal pressure
(inner radius a, outer radius b, Fig. 3.3) has been considered in Section
2.3.3; the solution of the plane strain problem was developed in terms of
stress. In the following we explore the kinematics of the plastic flow at the
limit state of the perfectly plastic solid, express the power of dissipation and
determine the associated magnitude of the applied pressure.

Plane deformation of the axisymmetric problem is completely defined
by the radial displacement u. Circumferential and axial components, along
the ϕ-direction and the z-direction, are absent: v = w = 0. Description
of the flow mechanism requires specification of the displacement velocity
u̇(r) ≡ u̇F(r) along the radius r. The strain deduced therefrom is entirely
plastic in nature: γ̇ ≡ η̇. The components of the strain rate in the radial
and circumferential directions derive from the velocity of plastic flow as

η̇r =
du̇

dr
, η̇ϕ =

u̇

r
; (3.27)

the axial strain vanishes by definition. Substitution in the isochoric condition
η̇r + η̇ϕ = 0 constrains the velocity field u̇(r) by the differential equation

du̇

dr
+

u̇

r
= 0. (3.28)

Figure 3.3: Yield mechanism for a hollow circular cylinder.
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The above result is also arrived at by suppressing changes of the material
volume element rdϕdrdz directly. With dr/dt = ṙ = u̇,

d
dt

(rdϕdrdz) = (u̇dr + rdu̇)dϕdz = 0. (3.29)

This is equivalent to eqn (3.28) which supplies the velocity field as

u̇

u̇a
=

a

r
. (3.30)

The solution has been adapted to the (unknown) displacement velocity u̇a
at inner radius r = a.

Use of eqn (3.30) in eqn (3.27) gives the strain components

η̇ϕ =
a

r

u̇a

r
, η̇r = −a

r

u̇a

r
= −η̇ϕ. (3.31)

The equivalent plastic strain rate becomes

˙̄η =
[
2
3
(η̇2

r + η̇2
ϕ)

] 1
2

=
2√
3

a

r

u̇a

r
. (3.32)

With the flow mechanism as an admissible velocity field, the statement
of virtual power for the cylinder of unit length subjected to the internal
pressure p assumes the form

2πapu̇a =

b∫
a

σtη̇(2πrdr), (3.33)

the stress σ being statically equivalent to the applied pressure. At limit
state p = pF, the stress taken as the actual σ = σF, the integral on the
right-hand side of eqn (3.33) supplies the power of dissipation. Then, since
σ and η̇ are associated by the flow rule, the specific power of dissipation
(per unit volume) for the von Mises material becomes

σtη̇ = σ̄ ˙̄η = 2τs
a

r

u̇a

r
. (3.34)

We expressed σ̄ = σs =
√

3τs by the yield stress in shear, and ˙̄η by eqn (3.32).
With eqn (3.34) the power of dissipation per unit cylinder length follows to

D = 2π

b∫
a

σtη̇rdr = 4πaτsu̇a ln
b

a
. (3.35)

Substituting for the integral in eqn (3.33) we obtain the pressure p ≡ pF at
the plastic limit as

pF = 2τs ln
b

a
,

which confirms the result given in Section 2.3.3.
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3.2 Static limit load theorem

The static theorem examines the safety of the loaded structure (generally a
deformable body) with respect to the plastic limit by means of virtual stress
systems which are in equilibrium with the applied forces. The theorem reads:
The structure is capable of sustaining the given loading as long as a virtual
stress system exists which is in equilibrium with the applied forces and is
everywhere in the structure within the elastic range as defined by the yield
condition. The structure will, on the other hand, not be able to sustain the
given loading if a statically admissible stress system cannot be found for
which the yield condition is not violated somewhere in the structure.

For an elucidation of the theorem, let the loading be specified by the
body forces f and the surface forces t; the limit load is given as fF = nf and
tF = nt, respectively. Virtual, statically admissible stress systems σ̃ must
satisfy the equilibrium conditions with f and t. The static theorem then
states that:

(i) if for a single system σ̃, φ(σ̃) < 0 everywhere, then n > 1;
(ii) if for all systems σ̃, φ(σ̃) > 0 somewhere, then n < 1.

For a proof of the second part of the theorem, we point out that (ii) also
comprises the actual stress system so that no solution can be found for the
applied forces which satisfies static equilibrium and the yield condition at
the same time; the structure is loaded beyond its plastic limit.

Regarding the first part of the theorem, we complete the characterization
of the plastic limit state by the definition of the flow mechanism u̇F, which
produces exclusively plastic strains γ̇F ≡ η̇F. Furthermore, the actual stress
system at the limit load is denoted by σF. Using the flow mechanism for
the virtual kinematics required in order to link the statically associated
quantities σ̃ and f , t by the principle of virtual work, eqn (3.4), one has∫

V

f tu̇FdV +
∫
S

ttu̇FdS =
∫
V

σ̃tη̇FdV (3.36)

and at the plastic limit state with σF and fF, tF,∫
V

f t
Fu̇FdV +

∫
S

tt
Fu̇FdS =

∫
V

σt
Fη̇FdV. (3.37)

Setting in eqn (3.37) fF = nf , tF = nt and dividing by eqn (3.36) we obtain
the safety factor n in the form

n =

∫
V

σt
Fη̇FdV∫

V

σ̃tη̇FdV
. (3.38)
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Figure 3.4: Drucker’s plasticity postulate in the context of the limit load
theorems (left: static theorem; right: kinematic theorem).

For an assessment of the safety factor, next we interpret the plasticity
postulate, eqn (3.6), for the perfectly plastic material. Here σF denotes the
stress state at which the plastic flow η̇F occurs, and takes the place of σ
(Fig. 3.4). According to the static theorem, σ̃ is regarded an elastic stress
state and plays the role of σo. Therefore, eqn (3.6) becomes

[σF − σ̃]t η̇F > 0, (3.39)

where the strain rate has been used instead of the increment. Detailing the
inequality and integrating over the volume,∫

V

σt
Fη̇FdV >

∫
V

σ̃tη̇FdV. (3.40)

Thus from eqn (3.38) for the safety factor,

n > 1, (3.41)

which means that the structure is loaded below the plastic limit. Since
eqn (3.41) was deduced for a virtual stress system in the elastic range and
in equilibrium with the applied forces, the first part of the static theorem
is seen to be true.

The static theorem may be utilized in order to obtain a lower limit to
the safety factor. For this purpose, let a virtual stress system σ̃F satisfy the
yield condition everywhere in the structure such that φ(σ̃F) ≤ 0, and be in
equilibrium with a multiple of the applied forces: ñf , ñt. Linking the above
static quantities by the principle of virtual work, as in eqn (3.36), we write

ñ

⎛⎝∫
V

f tu̇FdV +
∫
S

ttu̇FdS

⎞⎠ =
∫
V

σ̃t
Fη̇FdV (3.42)
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and division by eqn (3.37) gives the quotient

ñ

n
=

∫
V

σ̃t
Fη̇FdV∫

V

σt
Fη̇FdV

. (3.43)

In analogy to eqn (3.39), the plasticity postulate assumes in the present
case the form

[σF − σ̃F]t η̇F ≥ 0 (3.44)

from which ∫
V

σ̃t
Fη̇FdV∫

V

σt
Fη̇FdV

≤ 1 (3.45)

and, comparing with eqn (3.43),

ñ ≤ n. (3.46)

Accordingly, approximations ñ to the safety factor n by satisfaction of
the static equilibrium and the yield condition supply only values not higher
than the complete solution of the limit state problem.

3.3 Kinematic limit load theorem

The kinematic theorem examines the safety of the elastic–perfectly plastic
structure or deformable body using virtual yield mechanisms which are com-
patible with the kinematics of the system. The theorem reads: The structure
is not able to carry the applied forces if for a single virtual yield mechanism
the power of the applied forces is higher than the power of dissipation in
the structure. The structure is, on the other hand, in the position to carry
the loading if the power of the applied forces is lower than the power of
dissipation for all possible virtual yield mechanisms.

For an elucidation of the kinematic theorem, let the applied loading con-
sist of body forces f and surface forces t, the limit load being fF = nf , tF =
nf . A virtual yield mechanism u̇˜F is introduced as a kinematically compat-
ible velocity field producing exclusively plastic strain rates: γ̇˜F ≡ η̇˜F. The
stress locally associated with the virtual plastic flow η̇˜F via the yield func-
tion is denoted σ˜F. Extending the discussion of Section 3.1, the power of
dissipation based on the virtual yield mechanism is

D˜ =
∫
V

d(η̇˜F)dV =
∫
V

σ˜ t
Fη̇˜FdV > 0. (3.47)

The power of the applied forces in conjunction with the virtual yield mech-
anism u̇˜F reads

L˜ =
∫
V

f tu̇˜FdV +
∫
S

ttu̇˜FdS. (3.48)
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The kinematic theorem may then be stated as:

(i) if for a single system u̇˜F, L˜ > D˜ , then n < 1;
(ii) if for all yield mechanisms u̇˜F, L˜ < D˜ , then n > 1.

For a proof of the kinematic limit load theorem, we first express the
principle of virtual work for the limit load system fF, tF, which induces the
stresses σF in the structure. Using the virtual yield mechanism u̇˜F as input
for the kinematics in eqn (3.4), we write∫

V

f t
Fu̇˜FdV +

∫
S

tt
Fu̇˜FdS =

∫
V

σt
Fη̇˜FdV. (3.49)

Comparison of the left-hand side in eqn (3.49) with the right-hand expres-
sion in eqn (3.48) reveals that the former is n-times the latter since fF = nf
and tF = nt. Also, inspection of the right-hand side of eqn (3.49) and of
the analogous expression in eqn (3.47) shows that, despite the same strain
rate, the stress is different in each case. Therefore, the virtual power L˜ of
the applied forces, eqn (3.48), and the power of dissipation D˜ of the virtual
yield mechanism, eqn (3.47), may be linked by eqn (3.49) as follows:

nL˜ =
∫
V

σt
Fη̇˜FdV �=

∫
V

σ˜ t
Fη̇˜FdV = D˜ . (3.50)

The difference between the two quantities is

D˜ − nL˜ =
∫
V

[σ˜ F − σF]tη̇˜ FdV. (3.51)

The integrand may be examined by means of the plasticity postulate,
eqn (3.6). In the present case, σ˜F is defined as the local stress state at
φ(σ˜F) = 0 associated with the virtual plastic flow η˜ F, and has to be treated
like σ (Fig. 3.4). The stress σF at the same location satisfies the yield con-
dition φ(σF) ≤ 0 within the structure, but is not associated with the virtual
plastic flow and takes the place of σo. Therefore, here eqn (3.6) assumes the
form

[σ˜ F − σF]tη̇˜ F ≥ 0 (3.52)

and establishes by eqn (3.51) the inequality

nL˜ ≤ D˜ or n ≤ D

L̃˜ . (3.53)

For D˜ < L˜, it follows from eqn (3.53) that n < 1, which confirms the first
part of the kinematic theorem. Regarding the second part, the safety factor
n > 1 cannot be deduced immediately from the inequality in eqn (3.53) if
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D˜ > L˜. The theorem requires, however, that D˜ > L˜ for all admissible yield
mechanisms which also comprises the actual one at the plastic limit. Evalu-
ation of the expressions in eqns (3.47), (3.48) and (3.49) for the mechanical
power with the actual yield mechanism u̇F, the associated strain rate η̇F
and stress σF, converts eqn (3.50) to

nL =
∫
V

f t
Fu̇FdV +

∫
S

tt
Fu̇FdS =

∫
V

σt
Fη̇FdV = D. (3.54)

There follows:
n =

D

L
(3.55)

and thus n > 1 if D > L for the actual yield mechanism, which confirms the
second part of the kinematic theorem. At the same time, failure as given by
the first part is excluded for all other virtual yield mechanisms.

The kinematic limit load theorem may be utilized to determine an upper
limit to the safety factor n. For this purpose, the rate of dissipation D˜ is
obtained by eqn (3.47) using an admissible yield mechanism, and the virtual
power L˜ of the applied forces by eqn (3.48). An approximation to the safety
factor can then be defined by the quotient

n˜ =
D

L̃˜ ≥ n, (3.56)

the inequality having already been established in eqn (3.53). Accordingly,
approximations n˜ to the safety factor n based only on plastic flow kinematics
and the yield condition supply values that are not lower than the complete
solution of the limit state problem.

From eqns (3.56) and (3.46), it is concluded that, by the kinematic and
the static limit load theorems, the safety factor of the structure at a given
level of the loading is bounded as follows:

ñ ≤ n ≤ n˜. (3.57)

As a consequence, the actual safety factor n may be considered the maxi-
mum value of statically obtained trials ñ, or the minimum of trials n˜ based
on kinematics.

3.4 Simple applications of the limit load theorems

The purpose of the following simple examples is to illustrate the employ-
ment of the limit load theorems, and to demonstrate verification of their
features to some extent. To this end, cases known from complete elastoplas-
tic solutions in previous chapters will be the subject of direct load-carrying
capacity considerations. For applications of practical interest to engineering
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structures the reader is referred to Refs [3–5]; readers may also consult the
monograph [6] on plastic limit analysis.

3.4.1 Plastic limit of three-bar truss

The three-bar truss under consideration has been investigated in Section
2.1.3. Here, the ultimate load of the elastic–perfectly plastic structure will
be estimated by utilizing the limit load theorems.

An expression of the virtual work principle suitable for truss structures
reads

L =
K∑

j=1

Pt
ju̇˜ j =

N∑
k=1

S̃k δ̇˜ k. (3.58)

The left-hand side of the equation represents the rate of work that the forces
Pj , applied at the joints of the truss, perform on the respective virtual
velocities u̇˜ j . The right-hand side gives the work of statically admissible
stress resultants S̃k = σ̃kAk in the bar members (cross-section Ak, length
lk) with the rate of change in length δ̇˜ k = γ̇˜ klk induced by the virtual
velocities at the joints. The power of dissipation in the truss is

D =
N∑

k=1

Sk δ̇pk =
N∑

k=1

Sfk|δ̇pk|, (3.59)

where Sfk = σfkAk is based on the actual flow stress σfk in the kth bar
and δ̇pk = η̇klk is the plastic part of the rate of change in length. In perfect
plasticity, Sfk ⇐ Ssk = σsAk.

Evaluation of the expressions in eqns (3.58) and (3.59) for a virtual yield
mechanism supplies the quantities L˜ and D˜ , respectively, as defined for the
system in Section 3.3.

Static approach
The static limit load theorem relies on stress states satisfying the condition
of static equilibrium within the elastic range of the material (Fig. 3.5). From
eqn (2.14), for the equilibrium of a virtual stress system

S̃2 +
√

3S̃3 = 0, 2S̃1 +
√

3S̃2 + S̃3 = −2P, (3.60)

and for bar stresses whithin the elastic limit

|S̃1| ≤ Ss, |S̃2| ≤ Ss, |S̃3| ≤ Ss. (3.61)

From eqn (3.60) left, bar 3 is in the elastic range as long as |S̃2| ≤ Ss. For
this reason, S̃3 can be eliminated in eqn (3.60) right, such that estimates of
the limit load are obtained as

P̃F = −S̃1 −
√

3
3

S̃2. (3.62)
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Figure 3.5: Three-bar truss: statics of virtual stresses.

This expression will attain a maximum value for S̃1 = S̃2 = −Ss, and sup-
plies the limit load:

PF = max

(
−S̃1 −

√
3

3
S̃2

)
=

3 +
√

3
3

Ss. (3.63)

From Section 2.1.3, this is in fact the limit load. Therefore, the admissible
stress system maximizing the applied force is as for the complete solution.
There are, of course, a variety of stress systems complying with the contents
of the static theorem. They provide us, however, with values lower than the
one determined above for the limit load. For instance, the stress state at the
elasticity limit represents an admissible system which is associated with a
lower magnitude of the applied force and therefore P̃F = Ps < PF.

Kinematic approach
Fundamental to the kinematic limit load theorem are admissible yield mech-
anisms. These are characterized by the induction of exclusively plastic strain
rates such that the applied load remains unchanged. In the three-bar truss a
yield mechanism (u̇˜ ≡ u̇˜ F) implies that two of the bars undergo plastic flow,
the third remaining rigid (Fig. 3.6). Thereby, the displacement velocity of
the point joining the three bars is perpendicular to the non-deforming bar.
This member experiences momentarily a rotation about the fixed hinge. The
(plastically) deforming bars are at yield: |S˜ Fi| = Ss. There are three alter-
native yield mechanisms possible in the truss, and they will be examined in
the following with respect to the estimation of the limit load (P˜ ≡ P˜ F).

Assuming the vertical bar 1 to be rigid, a virtual yield mechanism is
defined by the horizontal velocity u̇˜ of the joint of the bars. The oblique
members deform plastically and contribute to a finite value of the power
of dissipation D˜ defined as in eqn (3.59). The virtual power of the applied
force, on the other hand, is L˜ = 0 · P˜ . Equating, we obtain an estimate of
the limit load from

L˜ = 0 · P˜ = D˜ and P˜ = ∞. (3.64)
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Figure 3.6: Three-bar truss: plastic yield mechanisms.

A second trial assumes bar 2 (middle) to be rigid, and the associated
virtual yield mechanism is defined by a displacement velocity u̇˜ of the joint,
which is perpendicular to bar 2. The velocity possesses a vertical component
u̇˜/2 and imposes variations in length of the two other bars:

δ̇˜ 1 = −1
2
u̇˜, δ̇˜ 3 =

1
2
u̇˜ (δ̇˜ 2 = 0).

The virtual power of dissipation and that of the applied force are obtained as

D˜ = −Ssδ̇˜ 1 + Ssδ̇˜ 3 = Ssu̇˜ (3.65)

and

L˜ =
1
2
P˜ u̇˜,

respectively. Equating, the limit load is estimated as

P˜ = 2Ss, (3.66)

which is lower than the first estimate.
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The third yield mechanism deforms bars 1 and 2, while bar 3 is kept
rigid. The displacement velocity u̇˜ of the joint is perpendicular to bar 3. Its
vertical projection is

√
3u̇˜/2, the variations in length of the other bars are:

δ̇˜ 1 = −
√

3
2

u̇˜, δ̇˜ 2 = −1
2
u̇˜ (δ̇˜ 3 = 0).

The power of dissipation and the power of the applied force read

D˜ = −Ssδ̇˜ 1 − Ssδ̇˜ 2 =
1 +

√
3

2
Ssu̇˜ (3.67)

and

L˜ =
√

3
2

P˜ u̇˜,

respectively. Equating, the limit load is estimated as

P˜ =
3 +

√
3

3
Ss. (3.68)

The last yield mechanism is seen to supply the lowest value for the limit
load, which equals the exact one from the complete solution: P˜F ≡ P˜ = PF.

3.4.2 Two plane examples

Ultimate bending of beam
The bending of a beam has been repeatedly referred to and is familiar to
the reader. The simplest case is offered by the symmetric situation discussed
in Section 2.1.4. Recalling the static theorem, it becomes obvious that the
stress distribution shown in Fig. 3.7 (left) is associated with the maximum
magnitude of the bending moment MF given by eqn (2.41) with eqn (2.42).
All other possible approximations complying with the requirement not to
exceed the yield limit supply lower bending moments.

The yield mechanism employed for the application of the kinematic theo-
rem is defined in Fig. 3.7 (right). The rate of the angle of rotation, ϕ̇˜ ≡ ϕ̇˜ F,
induces exclusively plastic flow in the cross-section

η̇˜ = γ̇˜ =
y

l
ϕ̇˜. (3.69)

The virtual power of the bending moment M˜ ≡ M˜ F and the dissipation rate

are

L˜ = M˜ ϕ̇˜
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Figure 3.7: Limit bending moment of the beam.

and

D˜ =
∫
V

σsη̇˜dV = 2σs

⎛⎝ h∫
0

yb(y)dy

⎞⎠ ϕ̇, (3.70)

respectively. The latter expression for the dissipation rate makes use of the
yield mechanism in eqn (3.69). Equating the expressions for L˜ and D˜ we
obtain the limit moment

M˜ = 2σs

h∫
0

yb(y)dy. (3.71)

The estimate in eqn (3.71) is seen to be identical to the ultimate moment
MF from the complete solution, eqn (2.41) with eqn (2.42). This is due to
the fact that the selected yield mechanism is the actual one.

Limit analysis of constrained plate
This is the example treated in Section 1.2.5, where the elastoplastic solution
of the plane problem has been developed. Here, the maximum load pertain-
ing to plastic collapse will be estimated directly by means of the limit load
theorems for perfectly plastic systems.

The static approach observes the equilibrium condition and the yield
limit. The former equates the longitudinal stress σ1 in the plate to the
applied stress, while the lateral stress σ2 is a free quantity. Also, we recall
the von Mises yield condition for the perfectly plastic material:

σ2
1 + σ2

2 − σ1σ2 = σ2
s . (3.72)

An admissible stress state σ̃ ≡ σ̃F estimating the limit can be obtained
by substituting the elastic solution σ̃2 = νσ̃1 for the lateral stress in the
yield condition and solving for σ̃1 = (1 − ν + ν2)1/2σs. This actually deter-
mines the stress state at incipient yield. In order to deduce the collapse load
utilizing the static limit load theorem we seek the maximum σ̃1 satisfying
the yield condition. To this end, differentiating eqn (3.72) we obtain the
extremum condition

dσ̃1

dσ̃2
= −2σ̃2 − σ̃1

2σ̃1 − σ̃2
= 0. (3.73)
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Figure 3.8: Limit analysis of a constrained plate.

The solution is σ̃2 = σ̃1/2, and from eqn (3.72)

σ̃2
1 =

4
3
σ2

s , (3.74)

which reproduces the result in Section 1.2.5.
For the kinematic approach we define a yield mechanism η̇˜ ≡ η̇˜F by the

virtual set

η̇˜ 1, η̇˜ 2 = 0, η̇˜ 3 = −η̇˜ 1. (3.75)

This satisfies the lateral constraint condition (Fig. 3.8) and the isochoric
property of plastic flow. With eqn (3.75) the equivalent plastic strain rate
is obtained as

˙̄η˜2 =
2
3

(
η̇˜ 2

1 + η̇˜ 2
2 + η̇˜ 2

3

)
=

4
3
η̇˜ 2

1. (3.76)

The virtual power of the applied action and the virtual rate of dissipation
for the plate with volume V are

L˜ = σ˜ 1η̇˜ 1V

and

D˜ = σs ˙̄η˜V =
2√
3
σsη̇˜ 1V, (3.77)

respectively. Equating, we obtain the same value for the limiting stress σ˜1
as from eqn (3.74). The kinematic estimate coincides with the result of the
complete solution because the yield mechanism employed is the actual one.
Summarizing, σ̃1 = σ˜ 1 = σ1F.
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3.5 Problems

1. The bars of the trusses in Fig. 3.9 have a unique cross-section A and
yield stress σs. Determine the limit load for a perfectly plastic material.

Figure 3.9: Problem 1.

2. As in 1. Indicate the bar determining the limit load (yielding first) in
Fig. 3.10, and the momentary motion of the joint at this state for the loading
cases (a), (b) and (c).

Figure 3.10: Problem 2.

3. Perform a rigorous transition from the continuum form of the virtual
work principle, eqn (3.4), and the power of dissipation, eqn (3.25), to
the discretized expressions presented for truss structures in Section 3.4.1
(eqns (3.58) and (3.59)).

4. Given that the elastic energy (1/2)σtε is a positive quantity for any
σ = κε �= 0, conclude that the statement [σ̇2 − σ̇1]t[ε̇2 − ε̇1] > 0 is a con-
sequence of the positive definite form εtκε > 0 as a property of the elasticity
matrix κ, not restricted to the case of isotropy detailed in eqn (3.17).

5. Examine the inelastic work term in eqn (3.18) for hardening material.
This is simple in case one of the stress rates does not induce plastic flow:
the expression is seen to be positive based on arguments analogous to per-
fect plasticity. Otherwise, consider a yield condition φ(σ,η) = 0. There-
from, deducing the consistency of incremental changes and introducing the
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normality rule for plastic flow, the multiplier Λ is determined such that the
plastic strain rate becomes

η̇ = −
(

∂φ

∂η

∂φ

∂σt

)−1
∂φ

∂σt

∂φ

∂σ
σ̇.

With this,

[σ̇2 − σ̇1]t[η̇2 − η̇1] = −
(

∂φ

∂η

∂φ

∂σt

)−1 {
[σ̇2 − σ̇1]t

∂φ

∂σt

∂φ

∂σ
[σ̇2 − σ̇1]

}
> 0

unless σ̇2 = σ̇1. Alternatively, utilize the general result for plastic flow
obtained in Section 1.4.

In the above, the preset inverse multiplier is negative, while the expression
in the braces assumes positive values as does the form

at(bbt)a = (atb)(bta) = (bta)2 ≥ 0,

as long as the vectors a,b are not orthogonal and a �= 0.
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CHAPTER 4

Theory of shakedown

4.1 Structures under time-variant loading

So far, the structure has been loaded by forces that are increasing mono-
tonically with time. Frequently the loading consists of a system of forces
that may vary independently with time, alternating between limits in a reg-
ular or irregular manner. This time variation is assumed to be slow, still
justifying a quasistatic description of the response of the structure.

As long as the stresses induced during the course of the loading pro-
gramme remain below the elasticity limit of the material, the lifetime of
the structure is determined by elastic fatigue, implying a high number of
load cycles. If the loading causes plastic flow within the structure, failure
can occur under various conditions. In conjunction with an elastic–perfectly
plastic material, the combination of the forces may constitute at a certain
instant a limit load system giving rise to plastic collapse. This case has
already been covered by the limit load theory in Chapter 3. However, even
if plastic limit states are not encountered during the course of the loading
programme, repeated occurrence of plastic flow in the loading sequences
may lead to deformations with magnitudes beyond specified tolerances by
the accumulation of plastic strains. In the case of alternating plastic flow,
deformations remain restricted, but the structure will fail by plastic fatigue
after a low number of loading cycles.

It can be concluded that the structure is prone to failure as long as plastic
flow continues to appear during the course of the load sequences. Therefore,
safety demands that plastic flow ceases to occur after an initial period in
the loading programme. This implies that plasticity must develop in the
structure such that subsequent load sequences are accommodated elastically.

In this connection, let the loading programme of a structure or a
deformable body, respectively, comprise time-variant body forces f(t) and
surface forces t(t), inducing displacements u(t), strains γ(t) and stresses
σ(t); analogously for discrete forces Pj(t) (j = 1, . . . , K). Where plastic flow
occurs, the strain is composed of elastic and plastic parts: γ(t) = ε(t) + η(t).
It is assumed that at each instant t unloading from the actual state
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would take place elastically, and can be associated with an elastic solu-
tion ue(t), εe(t),σe(t) for the loads at the considered instant. Superposition
of the actual elastoplastic solution and the elastic unloading solution will in
general leave residual displacements ur(t), strains γr(t) and stresses σr(t)
characteristic of this instant. Conversely, each actual elastoplastic state may
be interpreted as a result of the superposition of the residual state and the
elastic solution for the momentary loading system (cf. Section 2.2.3). For
example, the stress σ at instant t can be presented everywhere in the struc-
ture as

σ(t) = σr(t) + σe(t). (4.1)

The residual stress σr in eqn (4.1) is a consequence of the residual elastic
strain εr, which is part of the residual strain

γr(t) = εr(t) + η(t). (4.2)

Shakedown of the structure is defined by the disappearance of plastic
flow. Then η̇ vanishes and η does not vary anymore with time. Therefore,
differentiation of eqn (4.2) with respect to time gives

γ̇r = ε̇r, (4.3)

and thus ε̇r is a kinematically compatible strain (rate) field. It is utilized
in forming the virtual work expression for σ̇r, the time rate of the residual
stress field, and yields ∫

V

σ̇t
rε̇rdV = 0. (4.4)

The volume integral in eqn (4.4) vanishes because σ̇r is a self-equilibrating
stress system such that the resultant forces are zero. The integrand can be
transformed by means of the elastic material law to

σ̇t
rε̇r = ε̇t

rκε̇r = σ̇t
rκ

−1σ̇r > 0. (4.5)

It is a positive quantity, and therefore eqn (4.4) can be satisfied only if
the time rates σ̇r and ε̇r are zero. Apart from this formal conclusion, if
the plastic η̇ disappears there is no continuing kinematic incompatibility to
compensate by elastic residual strains ε̇r after unloading. It follows that,
when the structure has shaken down, all residual quantities are no longer
functions of time: the plastic strain η by definition, the elastic strain εr
as from the above discussion and the residual strain γr by virtue of its
constituents εr and η, eqn (4.2). Since with εr also the residual stress σr is
time independent, the actual stress σ(t) in eqn (4.1) follows the temporal
variation of the elastic solution σe(t). It becomes

σ(t) = σr + σe(t). (4.6)
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In conformity with the vanishing plastic flow, the stress must be within the
elastic range everywhere in the structure. By means of the yield condition:

φ (σ(t), . . . ) = φ (σr + σe(t), . . . ) < 0. (4.7)

The shakedown issue is not restricted to perfectly plastic solids, but may
concern hardening materials as well. The hardening property of the mate-
rial will facilitate shakedown if the sign of the stress is maintained in the
load sequences. The Baushinger effect appearing when stress reversals are
encountered may reduce the benefit of hardening. In the yield condition,
eqn (4.7), the hardening parameters (symbolized by the dots, . . . ) are taken
at the level last attained by the preceding plastic deformation. In systems
that do not build up residual stresses, the evolution of plastic deformation
will stop once the elastic solution σe(t) does not any more exceed locally
the material yield limit pertaining to the actual state of hardening.

An historical account on the theory of shakedown is found in [1] along
with a concise presentation of the theoretical background.

4.2 Static shakedown theorem (Melan)

Investigation of the capability of the structure to carry the given loading
programme might be based on an elastoplastic analysis, completely account-
ing for the variation of the loading with time. Melan’s static theorem [2, 3]
helps to examine possible shakedown of the structure by a simplified con-
sideration involving virtual self-equilibrating stress systems and the elastic
solution for the transient stress during the course of the loading programme.
The theorem can be stated as follows: The structure will shake down dur-
ing the course of the loading programme if a time-independent system of
residual stresses exists which, superposed to the (fictitious) elastic solution,
results to stress states below the yield limit everywhere in the structure for
the entire loading programme. Shakedown is, on the other hand, not possi-
ble if no time-independent system of residual stresses exists for which the
superposition of the elastic solution would not lead to a violation of the yield
condition at a certain instant somewhere in the structure.

For an elucidation of the static theorem, let σ̃r denote a time-independent
system of residual stresses, and σe(t) the transient stress field pertaining
to the elastic solution for the given loading programme. The stress σ̃r rep-
resents a virtual, self-equilibrating stress system for the structure with no
resultant forces. The virtual stress field

σ̃(t) = σ̃r + σe(t) (4.8)

obtained by the superposition of σ̃r and σe(t) satisfies the static equilibrium
conditions for the loading programme and follows the temporal variation of
the elastically determined stresses σe(t). The static shakedown theorem is
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presented in short form as follows:

(i) The structure will shake down if a single σ̃r exists such that
φ (σ̃r + σe(t)) < 0.

(ii) Shakedown is not possible if no σ̃r exists for which
φ (σ̃r + σe(t)) ≤ 0.

A proof of the first part of the theorem is given by considering the tempo-
ral variation of the elastic energy of the difference between the actual resid-
ual stress system σr(t) and the virtual one σ̃r entering the static theorem.
Defining for the structure the expression

E =
∫
V

1
2

[σr − σ̃r]
t
κ−1 [σr − σ̃r] dV > 0, (4.9)

we observe that the above energy is a positive quantity by virtue of the
elastic properties of the material.

The time rate of E in eqn (4.9) is obtained as

Ė =
∫
V

[σr − σ̃r]
t
κ−1σ̇rdV =

∫
V

[σr − σ̃r]
t
ε̇rdV, (4.10)

which considers that σr is a function of time, while σ̃r is not. The second
expression for Ė in eqn (4.10) is detailed by means of eqn (4.2) for the
residual strain∫

V

[σr − σ̃r]
t
ε̇rdV =

∫
V

[σr − σ̃r]
t
γ̇rdV −

∫
V

[σr − σ̃r]
t
η̇dV. (4.11)

As neither σr nor σ̃r possess resultant forces and γ̇r is a kinematically
compatible strain field, the principle of virtual work shows that the first
integral on the right-hand side of eqn (4.11) is equal to zero. In the second
integral, the difference of the residual stresses σr and σ̃r can be substituted,
with reference to eqns (4.1) and (4.8), by the difference of the stresses σ
and σ̃. It follows for the integrand that

[σr − σ̃r]
t
η̇ = [σ − σ̃]t η̇ > 0, (4.12)

the inequality being a consequence of Drucker’s plasticity postulate (Section
3.1.2). Here, σ represents the stress state φ(σ) = 0 where the plastic strain
rate η̇ occurs, whereas φ(σ̃) < 0 as required by the static theorem (Fig. 4.1).
As a consequence of eqns (4.11) and (4.12), the time rate of E in eqn (4.10)
is negative:

Ė = −
∫
V

[σ − σ̃]t η̇dV < 0. (4.13)

Since E in eqn (4.9) must be positive (E > 0), the negative time rate
(Ė < 0) can exist only for a limited time, and therefore the plastic flow η̇



Theory of Shakedown 145

Figure 4.1: On the static shakedown theorem.

must cease to occur after a certain initial period in the loading programme.
This conclusion has been based on the assumption of a time-independent
residual stress system σ̃r which, added to the (fictitious) elastic solution,
results in stresses σ̃ representing elastic states of the material, φ(σ̃) < 0. It
thus verifies the first part of the static shakedown theorem.

The meaning of the second part of the theorem is that the establish-
ment of a stationary residual stress system will actually not be possible
because plastic flow does not cease to occur during the course of the loading
programme.

4.3 Kinematic shakedown theorem (Koiter)

Koiter’s kinematic theorem of shakedown [4] is associated with the notion
of the virtual cycle or increment of plastic strain. In this connection, let an
assumed distribution of plastic strain rate η̇(t) be imposed on the struc-
ture and be considered over a certain time interval T within the loading
programme. As long as the plastic strain rate η̇ is not kinematically admis-
sible, it induces complementary elastic strains ε̇ in order that the sum

γ̇˜ = ε̇ + η̇ = ∂u̇˜, (4.14)

constitutes a virtual strain associated with the virtual velocity field u̇˜.
The velocity field u̇˜(t) is not a plastic yield mechanism since the elastic

constituent ε̇ is present in eqn (4.14). The stress

σ̇ = κε̇ = κ[γ̇˜ − η̇], (4.15)

related to the complementary elastic strain by the elastic properties of the
material constitutes a self-equilibrating system.



146 Elements of Plasticity

The absence of stress resultants for σ̇ can be stated by the virtual work
principle in the form ∫

V

γ̇˜tσ̇dV = 0. (4.16)

Expressing in eqn (4.16) the stress rate by the elastic relation, eqn (4.15),
and deriving the strain rate γ̇˜ from the virtual velocity field u̇˜ one obtains∫

V

(∂u̇˜)tκ∂u̇˜dV =
∫
V

(∂u̇˜)tκη̇dV, (4.17)

which governs the virtual velocity u̇˜ as a consequence of the imposed plastic
strain rate η̇. A solution of eqn (4.17) furnishes u̇˜ from which γ̇˜ is deduced,
and ε̇, σ̇ are then obtained via eqns (4.14) and (4.15), respectively.

The virtual cycle or increment of plastic strain is defined as a kinemati-
cally compatible strain field given by the time integral

Δ˜η =

T∫
0

η̇dt =

T∫
0

γ̇˜ dt = Δ˜γ (4.18)

over the interval T . For an explanation of the definition of the virtual cycle
of plastic strain rate by eqn (4.18), it is pointed out that the momentary η̇
is incompatible, while its integral Δ˜η over the time interval T is required to
constitute a kinematically admissible strain field. It follows that the incre-
mental plastic strain

Δ˜η =

T∫
0

∂u̇˜dt = ∂

⎡⎣ T∫
0

u̇˜dt

⎤⎦ = ∂

[
Δ˜u

]
(4.19)

derives from the displacement field,

Δ˜u =

T∫
0

u̇˜dt, (4.20)

which may be considered an incremental yield mechanism.
The definition of the virtual increment of plastic strain as a compatible

strain by means of eqn (4.18) implies that for the interval T the elastic
strain from eqn (4.14) vanishes:

T∫
0

ε̇dt = 0, (4.21)
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as does the associated self-equilibrating stress

T∫
0

σ̇dt = 0. (4.22)

Further to the above definitions, we introduce the work of the applied
forces f(t), t(t) on the virtual velocity u̇˜(t) over the time interval T by the
integral

T∫
0

L˜dt =

T∫
0

⎡⎣∫
V

f tu̇˜dV +
∫
S

ttu̇˜dS

⎤⎦dt, (4.23)

and the mechanical dissipation over the same interval due to the imposed
plastic strain rate η̇(t) by the integral

T∫
0

Ddt =

T∫
0

⎡⎣∫
V

σtη̇dV

⎤⎦dt. (4.24)

In eqn (4.24), σ denotes the stress associated with the imposed plastic strain
rate η̇ via the flow rule. In eqn (4.23), a possible contribution

∑K
j=1 Pt

ju̇˜ j

on the right-hand side due to discrete forces Pj(t) is also subject to the
time integration.

The kinematic shakedown theorem may be stated as follows:

(i) The structure will not shake down by adaptation to the loading pro-
gramme if for an interval T a single virtual plastic strain increment

Δ˜η =

T∫
0

η̇dt =

T∫
0

∂u̇˜dt, (4.25)

can be found which satisfies the inequality

T∫
0

L˜dt >

T∫
0

Ddt. (4.26)

(ii) The structure will adapt itself to the loading programme if the above
inequality can be reversed for all combinations of imposed plastic strain
rates η̇(t) in the virtual cycle and loads f(t), t(t) in the programme.

For a proof of the kinematic theorem, we assume the structure to shake
down despite the inequality in eqn (4.26). According to the static theorem,
a virtual system of stationary residual stress σ̃r will then exist such that
superposition of the (fictitious) elastic solution σe(t) for the loading pro-
gramme does not cause plastic flow. The mathematical expression for the
above is

σ̃r + σe(t) = σ̃(t) and φ(σ̃) < 0. (4.27)
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The static equivalence of the virtual stress σ̃ and the externally applied
forces f , t can be manifested by the virtual work principle. Since u̇˜ is a
kinematically admissible velocity field and γ̇˜ the associated strain rate, we
can write for the interval T ,

T∫
0

⎡⎣∫
V

f tu̇˜dV +
∫
S

ttu̇˜dS

⎤⎦dt =

T∫
0

⎡⎣∫
V

σ̃tγ̇˜dV

⎤⎦dt, (4.28)

where the original expression for the virtual rate of work has been integrated
over the considered time interval.

The left-hand side of eqn (4.28) is identified as the work expression in
eqn (4.23), the left-hand side in eqn (4.26). The right-hand side of eqn (4.28)
is further investigated in the following. In this respect, the volume integral
is detailed by means of the strain composition of eqn (4.14) to read∫

V

σ̃tγ̇˜dV =
∫
V

σ̃tη̇dV +
∫
V

σ̃tε̇dV. (4.29)

Also, using the definition of σ̃ in eqn (4.27),∫
V

σ̃tε̇dV =
∫
V

σ̃t
rε̇dV +

∫
V

σt
eε̇dV. (4.30)

The integrand in the second expression on the right-hand side of eqn (4.30)
is transformed by the law of elasticity to

σt
eε̇ = σt

eκ
−1σ̇ = εt

eσ̇. (4.31)

As the elastic solution supplies kinematically compatible strains εe, and σ̇
is a self-equilibrating stress system, the principle of virtual work states that∫

V

σt
e ε̇dV =

∫
εt
e σ̇dV = 0. (4.32)

The result of eqn (4.32) simplifies eqn (4.30) for use in eqn (4.29). Accord-
ingly, the time integral in eqn (4.28) now reads

T∫
0

⎡⎣∫
V

σ̃tγ̇˜dV

⎤⎦dt =

T∫
0

⎡⎣∫
V

σ̃tη̇dV

⎤⎦dt +

T∫
0

⎡⎣∫
V

σ̃t
rε̇dV

⎤⎦dt. (4.33)

Since the virtual stress field σ̃r was assumed to be time independent, we
deduce for the second term on the right-hand side in eqn (4.33)

T∫
0

⎡⎣∫
V

σ̃t
rε̇dV

⎤⎦dt =
∫
V

σ̃t
r

⎡⎣ T∫
0

ε̇dt

⎤⎦dV = 0. (4.34)
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The vanishing of the integral for the elastic strain rate over the time interval
T is by definition a property of the virtual plastic strain cycle.

Considering eqn (4.33) with eqn (4.34) in eqn (4.28), we conclude that

T∫
0

L˜dt =

T∫
0

⎡⎣∫
V

σ̃tη̇dV

⎤⎦dt. (4.35)

Equation (4.35) which results from the assumption of shakedown will be
contrasted with the inequality in eqn (4.26) stated in the theorem. For this
purpose, we recall that the fictitious stress σ in eqn (4.24) is associated
with the imposed strain rate η̇ by means of the plastic flow rule, while σ̃ in
eqn (4.35) is not. In this case the plasticity postulate may be interpreted as

[σ − σ̃]tη̇ > 0 or σ̃tη̇ < σtη̇. (4.36)

Integration for the volume of the structure and over the time interval T
leads to the inequality

T∫
0

⎡⎣∫
V

σ̃tη̇ dV

⎤⎦dt <

T∫
0

⎡⎣∫
V

σtη̇ dV

⎤⎦dt =

T∫
0

D dt. (4.37)

The consequence for eqn (4.35) is

T∫
0

L˜dt <

T∫
0

Ddt. (4.38)

It follows that the assumption of shakedown is contradictory to the
inequality stated by the theorem in eqn (4.26). The structure will not adapt
to the prescribed loading programme. This confirms the first part of the
kinematic theorem. Regarding the second part of the theorem, it is con-
cluded by reasoning that if eqn (4.38) is unconditionally valid, the static
theorem is satisfied and therefore the structure will shake down. For a rig-
orous mathematical proof of the second part the reader is referred to [1].

4.4 Application of shakedown theory

4.4.1 Shakedown of rod under torsion and tension

Utilization of the static theorem will be illustrated by the cylindrical rod of
circular cross-section (Fig. 4.2) subjected to the axial tensile force P and
the torque T ; the material is elastic–perfectly plastic. The simple example
treated in [5] is well suited for the purpose of demonstration.
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Figure 4.2: Rod under torsion and tension.

We notice the elastic solution for the axial stress σ and the shear stress τ

σe =
P

πa2 ,

(4.39)

τe = τa
r

a
=

2T

πa3

r

a
,

where τa denotes the value of the shear stress at the periphery (r = a). In
eqn (4.39) the shear stress has been related to the torque

T = 2π

a∫
0

τ r2dr. (4.40)

In the elastic range the integral is evaluated for a linear variation of τ along
the radius. The elasticity limit is attained when τa = τs, the yield stress of
the material in shear. Then,

Ts =
πa3

2
τs. (4.41)

The plastic limit state is given for τ = τs in the entire cross-section. The
associated torque is

TF =
2πa3

3
τs =

4
3
Ts. (4.42)

The homologous quantities of axial force are

Ps = πa2σs = PF, (4.43)

where σs =
√

3τs is the yield stress of the material in tension.
An obvious system of stationary residual stresses is defined by the

quantities

σ̃r = 0,

τ̃r = λ

(
1 − 4

3
r

a

)
τs. (4.44)
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The residual stresses are taken as by elastic unloading from the fully plastic
state. The multiplier λ is a free parameter.

The virtual stresses entering Melan’s theorem are

σ̃ = σe + σ̃r =
P

πa2 ,

(4.45)

τ̃ = τe + τ̃r =
2T

πa3

r

a
+ λ

(
1 − 4

3
r

a

)
τs.

For shakedown the above stress state must be below the yield limit of the
material. With the von Mises yield criterion:

σ̃2 + 3τ̃2 < σ2
s ,

or normalizing by the yield stress,(
σ̃

σs

)2

+
(

τ̃

τs

)2

< 1. (4.46)

Loading factors for the axial force and the torque are defined with ref-
erence to the values at the elastic limit, a dimensionless radial distance is
introduced:

p =
P

Ps
=

1
σs

P

πa2 ,

q =
T

Ts
=

1
τs

2T

πa3 , (4.47)

ρ =
r

a
.

With the above quantities the elastic constituents σe and τe in eqn (4.45)
can be referred to the elasticity limit in tension and shear, respectively.
Then one obtains

σ̃

σs
= p,

τ̃

τs
= qρ + λ

(
1 − 4

3
ρ

)
. (4.48)

The yield locus from eqn (4.46) can now be expressed in the form

qρ + λ

(
1 − 4

3
ρ

)
= ±

√
1 − p2 (4.49)

and bounds the shakedown region.
For pure torsion (p = 0) eqn (4.49) suggests representation in the q, λ-

plane (Fig. 4.3). Since 0 ≤ ρ ≤ 1, eqn (4.49) bounds the shakedown region
by a parallelogram:

ρ = 0: λ = ±1, ρ = 1: q − λ/3 = ±1.
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Figure 4.3: Shakedown diagram for the rod.

The loading cycles associated with λ = 0 are symmetric: (−1 < q < 1), no
yield. For λ = 1 shakedown is ensured if −2/3 < q < 4/3; the maximum
torque coincides with the plastic limit moment for the twisted rod. Inde-
pendently of the value of the parameter λ the shakedown interval for q is
bounded by qmax − qmin = 2.

Combination with the axial force (p �= 0) is seen to reduce the shakedown
region while maintaining the shape of a parallelogram:

λ = ±
√

1 − p2, q − λ/3 = ±
√

1 − p2.

The maximum torque is now given by qmax = (4/3)
√

1 − p2, and the shake-
down interval is qmax − qmin = 2

√
1 − p2 independently of the value of the

parameter λ.

4.4.2 Further reading

A survey on the shakedown analysis of elastoplastic structures is given in
[6]. In this paper, shakedown analysis is positioned within a classification
of elastoplastic problems, the shakedown theory is extended to account for
thermal effects and some applications are presented. In addition, reference is
made to additional literature dealing with specific issues of shakedown anal-
ysis of structures and structural members. The literature on variable loads
in plasticity surveyed in [7] goes beyond basic assumptions of the present
classical theory. The continuing development of the subject is reflected by
the individual articles in [8].
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CHAPTER 5

Development of finite element
solution methods

5.1 The systematics of the finite element method

The finite element method is described here to the extent required for the
present purpose. For complete information on the subject, the reader is
referred to the standard textbook by Zienkiewicz et al. [1].

The development of finite element methods for the numerical analysis
of solids and structures relies on the virtual work principle presented in
Chapter 3. It is expressed as

K∑
l=1

u˜ t
lPl +

∫
S

u˜ttdS +
∫
V

u˜tfdV =
∫
V

γ˜tσdV. (5.1)

The quantities u˜ and γ˜ refer to the virtual displacement field and the asso-
ciated strain, respectively, Pl denotes a point force vector, t the surface
forces acting on the surface S, f the body forces in the volume V . The
above equivalence of the inner stresses and applied forces is an alternative
statement of the equilibrium conditions (Chapter 2).

Next, the domain of integration in eqn (5.1) is divided into a number
of finite elements (nel) defined by a mesh with N nodal points (Fig. 5.1).
The geometry of the finite element model is described by the coordinates
xi = {x y z}i of the N nodal points. They are collected in the 3N × 1 vector
array

X = {x1 x2 · · ·xi · · ·xN}. (5.2)

Each individual finite element is specified by n element nodal points. The
respective coordinates can be grouped from the vector in eqn (5.2)

Xq = {x1 · · ·xj · · ·xn}q = aqX. (5.3)

The 3n × 1 vector array Xq comprises the coordinates of the qth element;
the incidence matrix aq symbolizes the grouping operation. Between nodal
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Figure 5.1: Discretization by finite elements.

points the coordinates vary in accordance with the prescribed geometric
characteristics of the element.

The displacement vector of the system is defined in analogy to eqn (5.2)
as

U = {u1 u2 · · ·ui · · ·uN} (5.4)

and ui = {u v w}i denotes the displacement of the ith mesh nodal point.
Grouping for individual elements is as in eqn (5.3):

Uq = {u1 · · ·uj · · ·un}q = aqU. (5.5)

The variation of the displacement u = {u v w} within the element is pre-
sented in the form

u(x) = ω(x)Uq. (5.6)

The 3 × 3n matrix ω contains interpolation functions pertaining to the finite
element approximation of the deformation kinematics. From eqn (5.6), the
strain within the element can be obtained analogously to eqn (2.59) with
the differential operator of eqn (2.60),

γ(x) = ∂(ωUq) = a(x)Uq. (5.7)

The 6 × 3n matrix a(x) denotes the strain operator for the finite element
associated with the displacement distribution by the function ω(x).

The piecewise (i.e. within the domain of single elements) function defined
by eqn (5.6) is utilized for the virtual displacements on the left-hand side of
the work expression in eqn (5.1). The virtual work of the applied forces can
be obtained as the sum of contributions from the individual finite element



Finite Element Solution Methods 157

domains. For a single finite element

L∑
k=1

u˜ t
kPk +

∫
Sq

u˜ttdS +
∫
Vq

u˜tfdV

= U˜ t
q

⎡⎢⎣ L∑
k=1

ωt
kPk +

∫
Sq

ωttdS +
∫
Vq

ωtfdV

⎤⎥⎦ = U˜ t
qPq. (5.8)

This defines the 3n × 1 vector array

Pq = {P1 · · ·Pj · · ·Pn}q

=
L∑

k=1

ωt
kPk +

∫
Sq

ωttdS +
∫
Vq

ωtfdV (5.9)

of forces Pj = {Px Py Pz}j at the element nodal points, which are equivalent
to the actually applied ones, Pk (k = 1, . . . , L), t and f . The forces applied at
single points in the element are denoted by Pk, and ωk = ω(xk) is the value
of the interpolation function at the point of application with coordinates
xk = {x y z}k. Note that tractions transmitted between elements do not
appear in eqn (5.8). They cancel one another in the sum if the kinematic
approximation guarantees the continuity of the velocity across the element
boundaries.

The summation of eqn (5.8) over all finite element contributions furnishes
the virtual work of the forces in the entire discretized domain:

K∑
l=1

u˜ t
lPl +

∫
S

u˜ttdS +
∫
V

u˜tfdV =
nel∑
q=1

U˜ t
qPq. (5.10)

Introduction of the hypervectors

UE = {U1 U2 · · ·Uq · · ·Unel}

PE = {P1 P2 · · ·Pq · · ·Pnel}

allows symbolic representation of the sum in eqn (5.10) as a scalar product

nel∑
q=1

U˜ t
qPq = U˜ t

EPE.



158 Elements of Plasticity

With eqn (5.5) for the individual elements in the hypervector UE, one
obtains collectively between elemental and mesh nodal point displacements:

UE =

⎡⎢⎢⎣
...

Uq

...

⎤⎥⎥⎦ =

⎡⎢⎢⎣
...
aq

...

⎤⎥⎥⎦U = aU. (5.11)

This ordering operation applies equally to virtual displacements. The virtual
work expression in eqn (5.10) becomes

U˜ t
EPE = U˜ tatPE = U˜ tP. (5.12)

This formally defines the 3N × 1 vector,

P = {P1 P2 · · ·Pi · · ·PN} = atPE (5.13)

comprising the forces Pi = {Px Py Pz}i at the mesh nodal points, equivalent
to those actually applied to the system. The matrix operation in eqn (5.13)
stands for their formation effected by accumulating element contributions
from PE following the pattern of the incidence matrix a (see eqn (5.18)
below).

For an analogous hierarchical evaluation of the virtual work of the stresses
on the right-hand side of eqn (5.1), we consider a single element in conjunc-
tion with the approximation for the virtual strain in eqn (5.7)∫

Vq

γ˜tσdV = U˜ t
q

∫
Vq

atσdV = U˜ t
qSq. (5.14)

The 3n × 1 vector

Sq = {S1 · · ·Sj · · ·Sn}q =
∫
Vq

atσdV (5.15)

comprises the forces Sj = {Sx Sy Sz}j resulting at each element nodal point
from the stress σ in the element.

The virtual work of the stresses in the entire discretized domain is
obtained by summation of all element contributions from eqn (5.14):∫

V

γ˜tσdV =
nel∑
q=1

U˜ t
qSq

and
nel∑
q=1

U˜ t
qSq = U˜ t

ESE = U˜ tS. (5.16)
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Summation over elements has been substituted by the scalar product of the
hypervectors U˜ E and

SE =

⎡⎢⎢⎣
...

Sq

...

⎤⎥⎥⎦ = {Sq} (q = 1, . . . ,nel).

The association of elemental and mesh nodal point displacements by
eqn (5.11) is implied in the transition to the last expression in eqn (5.16).
Analogously to eqn (5.13), the vector

S = {S1 S2 · · ·Si · · ·SN} = atSE (5.17)

defines a 3N × 1 array comprising the stresses resulting at the nodal points
of the finite element assembly. These are effectively determined by accumu-
lation of element contributions:

S = atSE =
nel∑
q=1

at
qSq. (5.18)

Equation (5.18) for the assembled S along with eqn (5.15) for the elemental
Sq may be interpreted as the integral

S =
∫
V

atσdV =
nel∑
q=1

at
q

∫
Vq

atσdV

evaluated by means of the finite element systematics.
Analysis of the virtual work of the stress in the discretized system into

finite element contributions is summarized in the following compressed form∫
V

γ˜tσdV =
nel∑
q=1

U˜ t
q

∫
Vq

atσdV = U˜ t
nel∑
q=1

at
q

∫
Vq

atσdV.

The above utilizes finite element kinematics, and the sum in the last expres-
sion supplies the stress resultants S at the nodal points of the mesh.

With eqns (5.10) and (5.12) for the contribution of the applied forces and
eqn (5.16) for that of the stresses, the virtual work equality in eqn (5.1) is
expressed in the finite element representation of the problem as

U˜ tP = U˜ tS.

This establishes at the nodal points of the finite element mesh the equilib-
rium condition

P = S (5.19)

between the applied loads in the vector array P and the stress resultants in
the vector array S.
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5.2 Elastic computation procedure

Equation (5.19) expresses the condition of static equilibrium for the dis-
cretized finite element system utilizing kinematic compatibility of displace-
ments and strains. A complete description of the deformation problem
requires specification of the stress–strain relations, and their introduction
into the finite element equation. Within the elastic range, the stress–strain
relations are as in eqns (1.47) and (2.64). The strain ε ≡ γ derived from the
finite element approximation is given by eqn (5.7), and substitution in the
elasticity law supplies the stress within a finite element

σ = κε = κaUq. (5.20)

Use in eqn (5.15) relates stress resultants and displacements at the nodal
points of the element

Sq =

⎡⎢⎣∫
Vq

atκadV

⎤⎥⎦Uq = kqUq. (5.21)

The symmetric matrix

kq =
∫
Vq

atκadV (5.22)

is known as the stiffness matrix of the elastic element. It determines the
forces Sq resulting from displacements Uq imposed on the element nodal
points. Higher-order elements require a numerical evaluation of the volume
integral in eqn (5.22) based on values of the integrand at a number of
integration points. For all elements collectively eqn (5.21) becomes

SE = �kq�UE = kUE (5.23)

with the diagonal matrix

k =

⎡⎢⎢⎢⎣
. . .

kq

. . .

⎤⎥⎥⎥⎦ (q = 1, . . . , nel).

The relation between stress resultants and displacements for individual
elements enters the analogous relation for the assembled discretized system.
With eqn (5.11) for the element displacements in eqn (5.23) and substituting
in eqn (5.17), we obtain

S = atkaU = KU. (5.24)
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The symmetric matrix
K = atka (5.25)

is known as the stiffness matrix of the elastic finite element system formed by
accumulating element contributions (refer to eqns (5.18), (5.21) and (5.5)):

K =
nel∑
q=1

at
qkqaq =

∫
V

atκadV.

It may be formally considered an extension of the elemental stiffness,
eqn (5.22), and determines the forces S resulting from displacements U
imposed at the mesh nodal points.

With eqn (5.24) for the stress resultants eqn (5.19), the finite element
equation determines the displacements in the elastic system

S = KU = P and U = K−1P. (5.26)

The solution of eqn (5.26) is not unique unless the system is fixed against
arbitrary motion. Suppression of the degrees of freedom (displacements) at
the supports implies elimination of the respective positions in the matrix
equation. This leaves a reduced system of equations possessing a unique
solution. Analogously, displacement values may be prescribed at a number
of nodal points.

After the solution step, the displacements Uq of the individual elements
are grouped from the complete vector U, eqn (5.5). Evaluation of the strains
ε ≡ γ, eqn (5.7), and the stresses σ, eqn (5.20), at defined locations in the
finite element terminates the elastic computation.

5.3 Algorithms for plastic f low

5.3.1 Basic schemes

For an introductory discussion on solution algorithms accounting for plas-
tic flow, we first refer to momentary response described by the time rates
of the variables. Where necessary, specification will refer to isotropic hard-
ening (Chapter 1). The issue of incrementation will be treated separately
later. It is observed that the equation of virtual work and the finite element
formalism developed in Section 5.1 transfer equally to the time rates of
applied forces, inner stresses, displacements and strains. This can be proved
by incrementing the relationships in question (or forming the time rate) for
a fixed geometry of the system, as assumed here.

The tangential stiffness method
An immediate extension of the previous elastic algorithm to the present
elastoplastic case can be based on the stress–strain relation of eqn (2.72).
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The finite element form is derived by utilizing eqn (5.7) for the strain rate in

σ̇ = κ̄γ̇ = κ̄aU̇q, (5.27)

where κ̄ denotes the momentary elastoplastic stiffness of the material in
loading. Otherwise κ̄ = κ, the elastic material stiffness.

The stress resultants at the element nodal points are obtained by utilizing
eqn (5.27) in the rate form of eqn (5.15) as

Ṡq =

⎡⎢⎣∫
Vq

atκ̄adV

⎤⎥⎦ U̇q = k̄qU̇q, (5.28)

which defines the momentary elastoplastic stiffness matrix k̄q of the element.
Then, with reference to eqn (5.18) for the stress resultants at the mesh nodal
points

Ṡ = atk̄aU̇ = K̄U̇. (5.29)

This defines the symmetric stiffness matrix K̄ of the elastoplastic system
at the considered instant. It relates rate quantities and is formed in a man-
ner similar to that for the elastic case in eqn (5.25), but with the element
contribution k̄ instead of k.

From the finite element equation, eqn (5.19),

Ṡ = K̄U̇ = Ṗ and U̇ = K̄−1Ṗ. (5.30)

The uniqueness of the solution implies appropriate elimination of degrees of
freedom fixing the system. Subsequent computation of the strain rate γ̇ and
the stress rate σ̇, eqn (5.27), from the displacement velocity U̇ completes
the momentary elastoplastic solution. The procedure resembles the elastic
one and is considered a direct solution in contrast to the iterative algorithms
outlined subsequently, except for the check on the plastic loading condition
(Section 2.2.2). Since the procedure is based on the momentary elastoplastic
stiffness matrix of the system, it is known as the tangential stiffness method.
The sequence of instructions for this algorithm is summarized in Scheme 5.1.



Finite Element Solution Methods 163

Predictor U̇

Element loop, q = 1, nel

Integration points

γ̇ ⇐ aU̇ , κ̄ ⇐ κ(elastic)

Plastic flow (φ(σ) = 0 and stγ̇ > 0) : κ̄ ⇐ κ̄ (elastoplastic)

Element stiffness: k̄q ⇐
∫
Vq

atκ̄adV

End integration

Contribution to system matrix K̄ ⇐ K̄ + at
qk̄qaq

End elements

Corrector U̇ ⇐ K̄−1Ṗ

Scheme 5.1: Tangential stiffness algorithm.

The loop over the integration points calculates the volume integral for
the elastoplastic element stiffness using a numerical approximation except
for finite elements allowing analytical evaluation. The loop over the ele-
ments performs the accumulation into the stiffness matrix of the system.
Computer implementation, particularly with vector arithmetic, favours long
loops. This is achieved by reversing the order of the element and the inte-
gration loop. Thereby, each integration point is processed for a specified
number of elements adapted to the vector length of the hardware.

Initial load methods
Alternative solution schemes are inherently iterative. They are based on
eqn (2.69), the form of the constitutive relation that requires explicit deter-
mination of the plastic strain rate η̇. In the finite element approximation,

σ̇ = κ [γ̇ − η̇] = κ
[
aU̇q − η̇

]
(5.31)

where κ denotes the elastic stiffness matrix of the material. In regions
deforming elastically, η̇ = 0 and γ̇ ≡ ε̇.

With eqn (5.31), the rate of the stress resultants at the element nodal
points is obtained from eqn (5.15) as

Ṡq =

⎡⎢⎣∫
Vq

atκadV

⎤⎥⎦ U̇q −
∫
Vq

atκη̇ dV = kqU̇q + J̇q. (5.32)

Comparison with eqn (5.28) shows that employment of the elastic element
stiffness kq instead of the elastoplastic one implies compensation by the
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additional nodal loads
J̇q = −

∫
Vq

atκη̇dV, (5.33)

which account for the plastic strain rate η̇ where plastic flow occurs. With
the element contributions from eqn (5.32) in eqn (5.18), the stress resultants
at the mesh nodal points are obtained as

Ṡ = atkaU̇ + atJ̇E = KU̇ + J̇ (5.34)

and

J̇E = {· · · J̇q · · · } (q = 1, . . . , nel).

This defines the nodal loads

J̇ = atJ̇E =
nel∑
q=1

at
qJ̇q

required in conjunction with the elastic stiffness matrix K for the description
of the momentary response of the elastoplastic system.

The finite element equation (5.19) now becomes

Ṡ = KU̇ + J̇ = Ṗ and U̇ = K−1[Ṗ − J̇], (5.35)

the solution referring to the appropriately fixed system. Given the displace-
ment rate, computation of the strain rate γ̇, eqn (5.7), and stress rate σ̇,
eqn (5.31), completes the momentary solution, in principle. It has to be
recalled, however, that the solution relies on the plastic strain rate as an
input, which is not a datum. It must be estimated prior to the solution,
and can be obtained a posteriori using either the computed rate of strain or
stress (see eqn (2.71)). The two alternative expressions for the plastic strain
rate in terms of the finite element approximation are

η̇ =
1
h
sstσ̇ =

1
h
sstκ

[
aU̇q − η̇

]
, (5.36)

with

stσ̇ = stκ
[
aU̇q − η̇

]
≥ 0,

and
η̇ =

1
h + 3G

sst(κγ̇) =
1

h + 3G
sst(κaU̇q), (5.37)

with
st(κγ̇) = st(κaU̇q) ≥ 0.

The evaluation of either of the above expressions under observance of the
respective plastic loading condition furnishes new estimates for a subsequent
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iteration cycle. Instead of simplifying the product κs ⇐ 2Gs we retained
the original form for two reasons: not to exclude special cases like plane
stress/plane strain (see Section 2.3.5) and to leave (κγ̇) in eqn (5.37) in the
form of a stress in case strains are not computed explicitly by the particular
software. In such a case, the plastic strain rate in eqn (5.36) also enters
eqn (5.33) for the compensation loads as the combination (κη̇).

If the strains η were not the result of plastic flow but prescribed, the solu-
tion is associated with given initial strains and the vector J comprises the
initial loads. Accounting for initial strains (e.g. thermal strains) is a stan-
dard option in finite element analysis of elastic systems. It can be utilized
in plasticity in conjunction with the iterative determination of strains from
plastic flow [2]. The initial load method can be executed in either the initial
strain mode [3] based on plastic flow in terms of the stress rate, eqn (5.36),
or in the initial stress mode [4] based on the strain rate, eqn (5.37). The
computation steps of the initial load iteration are indicated in Scheme 5.2.

Predictor U̇

Element loop, q = 1, nel

Integration points

Predictor η̇ : σ̇∗ = κγ̇ ⇐ κaU̇q, σ̇ ⇐ σ̇∗ − (κη̇)

Corrector

{
η̇ ⇐ 1

h+3Gsstσ̇∗ (initial stress)

η̇ ⇐ 1
hsstσ̇ (initial strain)

Initial load (element): J̇q ⇐ −
∫
Vq

atκη̇dV

End integration

Initial load (system) J̇ ⇐ J̇ + at
qJ̇q

End elements

Corrector U̇ ⇐ K−1
[
Ṗ − J̇

]
Scheme 5.2: Initial load iteration with elastic stiffness K

(initial stress/initial strain version).

The general remarks on the function of the loops in Scheme 5.1 apply here
as well. In both cases, the sequence of operations has been selected such that
the element loop is activated only once. This will necessitate some caution
regarding the first iteration cycle. In Scheme 5.2 (initial load iteration) the
formation of the elastic stiffness matrix of the system is not shown explic-
itly. The elastic stiffness matrix is not affected by plastic deformation; it
is considered available once and for all. The argument also concerns the
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factorization of the matrix required in the solution step for the displace-
ments. This fact attains significance in a complete elastoplastic analysis
extending over a sequence of several incremental loading steps (Section 5.5).

The etymology of the historical denotations initial stress and initial strain
goes back to deviations from elasticity [5]. The elastoplastic stress–strain relation
σ̇ = κ̄γ̇ can be alternatively expressed as

σ̇ = κγ̇ + [κ̄ − κ] γ̇ = κγ̇ + τ̇ (5.38)

in terms of the elasticity matrix κ and an initial stress,

τ̇ = [κ̄ − κ] γ̇, (5.39)

accounting for the deviation from elastic response. The initial stress term τ̇ is a
function of the strain rate γ̇. Analogously, the inverse elastoplastic stress–strain
relation γ̇ = κ̄−1σ̇ can be brought into the form

γ̇ = κ−1σ̇ +
[
κ̄−1 − κ−1] σ̇ = κ−1σ̇ + η̇. (5.40)

Here, the initial strain
η̇ =

[
κ̄−1 − κ−1] σ̇ (5.41)

accounts for the deviation from elasticity as a function of the stress rate σ̇. Com-
paring eqns (5.38) and (5.40), we obtain between τ̇ and η̇ the relationship

τ̇ + κη̇ = 0. (5.42)

Accordingly, implementation of plasticity via initial stress or initial strain is a
matter of the functions available in the computer software. The most significant
issue is the dependence of each quantity on either the strain rate, eqn (5.39), or
the stress rate, eqn (5.41), which influences the numerical behaviour. Favourable
employment of each form has been investigated by Dieter Scharpf [6], and will be
discussed subsequently.

5.3.2 Convergence of the iterative solution technique

In the following, the convergence properties of the iterative initial load
method of solution are discussed for either the initial stress or the initial
strain mode of execution. For this purpose, referring first to the initial strain
formalism in Scheme 5.2, an iteration cycle for the plastic strain rate can
be defined by the recursive instruction

⎡⎢⎢⎣
...

η̇k
...

⎤⎥⎥⎦
i+1

=

⎡⎢⎢⎢⎢⎣
. . . (

1
h
sst

)
k

. . .

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

...
σ̇k

...

⎤⎥⎥⎦
i

or

(5.43)

{η̇k}i+1 =
⌈(

2G

h
sst

)
k

⌋
α {η̇k}i (k = 1, . . . , nip × nel).
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In eqn (5.43), the vector arrays extend over the locations where stresses
and strains are evaluated. Commonly, these locations are the integration
points (nip) in each element amounting to a total number of nip × nel in
the entire finite element system. The size of the vector arrays thus is (noc ×
nip × nel) × 1, where noc denotes the number of components in each η or
σ. In accordance with Scheme 5.2, η̇i+1 is the corrector, and σ̇i the result
of the predictor step. The transition to the second expression in eqn (5.43)
relies on the transformation

{σ̇l} =
∂{σl}
∂{ηk} {η̇k} = �κl�α {η̇k} (l, k = 1, . . . , nip × nel). (5.44)

The matrix

α = �κ−1
l � ∂ {σl}

∂ {ηk} =
∂ {εl}
∂ {ηk} (5.45)

globally describes the sensitivity of the stress (more precisely that of the
elastic strain ε) to the plastic strain. It is a quadratic matrix with dimensions
(noc × nip × nel)2.

In a statically determinate system where σ is fixed by the applied forces,
α = 0. The matrix α can be expressed alternatively in terms of the strain
γ as

α =
∂{εl}
∂{ηk} =

∂{γl}
∂{ηk} − I (l, k = 1, . . . , nip × nel), (5.46)

and in a kinematically determinate system where γ is fixed by the external
action, α = −I. Under more general conditions the matrix α is to be derived
from the computational steps determining the stress σ for a given strain γ.
At this place, it is worth noticing that in Scheme 5.2 the organization of
the instructions reflects the programmer’s point of view. The essential task
performed by the algorithm, however, is the determination of the plastic
strain rate η̇ by the recursive operation of eqn (5.43). This can be easily
revealed by just another interpretation of the iteration cycle.

A convergent solution of eqn (5.43) implies that η̇i+1 = η̇i = η̇ every-
where in the system. Iterates will deviate from the solution η̇ by a quantity
δ. Thus,

η̇i = η̇ + δi, η̇i+1 = η̇ + δi+1 (5.47)

and from eqn (5.43) the deviations during consecutive iterations are gov-
erned by

{δk}i+1 =
⌈(

2G

h
sst

)
k

⌋
α{δk}i (k = 1, . . . , nip × nel). (5.48)

For convergence of the iterative procedure, the deviation from the solution
must diminish. In the statically determinate case (α = 0) no deviations
arise; the solution can be obtained at once. In the other special case, the
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kinematically determinate system (α = −I), eqn (5.48) assumes at each
evaluation point k = 1, . . . , nip × nel the form

(δk)i+1 = −
(

2G

h
sst

)
k

(δk)i = −
(

3G

h

)
k

(δk)i. (5.49)

The transition to the last expression observes that the deviations are pro-
portional to the vector s: at each point δi = ( ˙̄ηi − ˙̄η)s. At the same time, this
fact reduces the essential task to the convergence of the equivalent plastic
strain rate ˙̄η.

From eqn (5.49), the sign of the deviation vector {δk} will alternate during
the course of the iteration. Its magnitude will diminish if all coefficients
3G/h are less than unity. Accordingly, a condition for convergence can be
stated as

max
k

(
3G

h

)
k

< 1. (5.50)

It is seen from eqn (5.50) that the initial strain procedure becomes divergent
for the kinematically determinate system when h < 3G. Moreover, the initial
strain formalism fails entirely in the case of perfect plasticity (h = 0) as
explained earlier.

Next, following in Scheme 5.2 the initial stress option, the iteration cycle
for the plastic strain rate is

{η̇k}i+1 =
⌈(

2G

h + 3G
sst

)
k

⌋
{γ̇k}i

=
⌈(

2G

h + 3G
sst

)
k

⌋
β {η̇k}i (k = 1, . . . , nip × nel). (5.51)

The matrix

β =
∂{γl}
∂{ηk} = α + I (5.52)

globally describes the sensitivity of the strain γ to the plastic strain η. It is
analogous to the matrix α, eqn (5.45), and is related to it by eqn (5.46). For
a kinematically determinate system, β = 0, whereas β = I in the statically
determinate case (α = 0).

An examination of convergence can be based on the behaviour of the devi-
ation δi of the ith iterate from the solution, cf. eqn (5.47). With reference
to eqn (5.51), the deviations of consecutive iterations are here governed by

{δk}i+1 =
⌈(

2G

h + 3G
sst

)
k

⌋
β{δk}i (k = 1, . . . , nip × nel). (5.53)

If the system is kinematically determinate (β = 0), the deviation vanishes
and the solution is obtained at once. In the statically determinate case
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(β = I) eqn (5.53) can be written for each evaluation point individually:

(δk)i+1 =
(

2G

h + 3G
sst

)
k

(δk)i =
(

3G

h + 3G

)
k

(δk)i. (5.54)

As in eqn (5.49), the transition to the second expression in eqn (5.54) relies
on the proportionality of δi = ( ˙̄ηi − ˙̄η)s to the direction vector s.

From eqn (5.54), the sign of the deviations δi remains the same during
the course of the iteration. Its magnitude will diminish if all coefficients
3G/(h + 3G) are less than unity. Therefore, the condition for convergence
can be stated as

max
k

(
3G

h + 3G

)
k

< 1. (5.55)

For a diminishing value of the hardening parameter h, the quotient in
eqn (5.55) increases and attains unity at h = 0. Consequently, the initial
stress formalism is always convergent also under statically determinate con-
ditions, but for the case of perfect plasticity. The failure of the iterative
algorithm then, is due to the fact that in a perfectly plastic material varia-
tions in stress cannot be imposed arbitrarily.

Summarizing, the initial strain formalism furnishes immediately the solu-
tion to the plastic flow problem under controlled stress conditions (statically
determinate case). Under controlled strain conditions (kinematically deter-
minate case) its range of convergence is quite limited, cf. eqn (5.50). The ini-
tial strain formalism fails completely for perfectly plastic material (h = 0).
The initial stress version furnishes immediately the solution to the plastic
flow problem under controlled strain conditions (kinematically determinate
case). Under controlled stress conditions (statically determinate case) its
range of convergence extends up to the case of perfect plasticity which at
the same time limits the existence of solutions.

Apart from the special cases considered, the deduction of explicit conver-
gence criteria is not that simple under more general conditions. For either
scheme the evolution of the deviations δi during iteration can be written as

{δk}i+1 = M{δk}i. (5.56)

The magnification matrix M of the deviations δi in eqn (5.56) is specified
as from eqn (5.48) for the initial strain mode of the iteration algorithm, and
from eqn (5.53) for the initial stress mode. Convergence is tested with the
Euclidean norm ‖{δk}‖ of the vector array {δk}. This norm is defined by
the sum of squares of the vector components

‖{δk}‖2 = {δk}t{δk}. (5.57)

For convergence, it is requested that ‖{δk}i+1‖ < ‖{δk}i‖, or with
eqn (5.56)

‖M{δk}i‖ ≤ ‖M‖ ‖{δ}i‖ < ‖{δk}i‖. (5.58)
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The scalar quantity ‖M‖ = σ(M) is known as the spectral norm of the
matrix M. It conforms with the Euclidean norm of the vector {δk} by
satisfying the first inequality in eqn (5.58). The convergence condition is
deduced from the second inequality, and reads

‖M‖ = σ(M) < 1. (5.59)

The spectral norm σ(M) of the real matrix M is defined as the positive
square root of the maximum eigenvalue λi of the product MtM. It reads

σ(M) =
√

maxλi(MtM). (5.60)

The above formulation can be specified for the previous cases and leads
to the same convergence conditions as before. This is left as an exercise
to the reader. Furthermore, since the direction s of the plastic strain rate
η̇ = ˙̄ηs remains fixed with the stress state during iteration, the proof for
convergence can be limited to the magnitude ˙̄η.

5.4 Integration of inelastic stress–strain relations

Inelastic analysis is actually carried out for a given loading programme and
is concerned with the determination of displacements, strains and stresses
rather than the momentary variation of these quantities. Since the con-
stitutive equations of plastic flow refer merely to the strain rate η̇ or the
infinitesimal increment dη, respectively, the inelastic strain η has to be
obtained by integration

η =

t∫
0

η̇dt. (5.61)

Evaluation of the integral in the above equation demands an approxi-
mate incremental procedure for which accuracy is an obvious requirement.
Besides, if the integrand itself depends on the inelastic strain, integration
effects the solution of a differential equation η̇ = f(η). Then, the stability
of the numerical scheme becomes important. This issue has been addressed
by the author in [7].

Various approximate schemes are feasible for the integration of the inelas-
tic strain. Given a finite increment in time (or another appropriate progress
parameter) leading from state tn to state tn+1, the integral in eqn (5.61) is
written as

ηn+1 = ηn +

n+1∫
n

η̇dt (5.62)

and the task to be performed is the approximation within the increment.
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5.4.1 Subincrementation

Given the stress increment σΔ such that σn+1 = σn + σΔ, ns equal subin-
crements are specified by

δσ =
1
ns

σΔ (5.63)

and define within the increment the stress states (Fig. 5.2)

σk = σn + kδσ (k = 1, . . . , ns). (5.64)

Subincrements of the plastic strain can be obtained by the initial strain
expression in Scheme 5.2 as

δηk =
(

1
h
sst

)
k−1

δσ. (5.65)

Here, the notation allocates the quantities h and s to the stress stage k − 1
at the beginning of the subincrement, but specification at k or any other
location in between is equally possible. The approximation of the plastic
strain within the actual increment then reads

ηΔ =

n+1∫
n

dη ⇐
ns∑

k=1

δηk. (5.66)

Alternatively, a strain increment γΔ given such that γn+1 = γn + γΔ, is
partitioned in ns subincrements

δγ =
1
ns

γΔ, (5.67)

which determine the intermediate states of a fictitious stress quantity

σ∗
k = σn + k(κδγ) (k = 1, . . . , ns). (5.68)

Figure 5.2: Subincrementation in stress space.
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Obviously, σn ≡ σ∗ at the beginning of the increment while specification of
the stress at the subincremental stations requires knowledge of the plastic
strain. From the initial stress expression in Scheme 5.2,

δηk =
(

1
h + 3G

sst
)

k−1
(κδγ), (5.69)

and the stress sequence within the increment is obtained as

σk = σ∗
k −

k∑
i=1

(κδη)i (k = 1, . . . , ns). (5.70)

The stress determined at station k is utilized in the calculation of the next
subincremental plastic strain δηk+1. This defines a sequential procedure
for the explicit evaluation of eqn (5.69). The use of any other stress state
within the subincrement requires in general an iterative procedure for δηk.
Accumulation to ηΔ as in eqn (5.66) supplies the approximation to the
actual plastic strain within the entire increment.

It can be seen, in retrospect, that in both cases the approximation to the
incremental plastic strain is performed in accordance with

n+1∫
n

dη =

n+1∫
n

sdη̄ ⇐
ns∑

k=1

sk−1δη̄k. (5.71)

The individual schemes – initial strain and initial stress – differ in the com-
putation of the scalar equivalent quantity δη̄k by

δη̄k =
(

1
h
st
)

k−1
δσ and δη̄k =

(
1

h + 3G
st
)

k−1
(κδγ), (5.72)

respectively.

5.4.2 Incremental approximation

For a discussion of approximations based exclusively on the end points of
the increment, we consider the following integration scheme:

ηΔ =

n+1∫
n

dη =

n+1∫
n

sdη̄ = sζ η̄Δ (5.73)

with η̄Δ = η̄n+1 − η̄n. Equation (5.73) reflects the mid-value theorem of
integral calculus, where sζ indicates specification of the flow direction s at
position ζ. The normalized quantity 0 ≤ ζ ≤ 1 is known as the collocation
parameter. In terms of the integration variable η̄,

ζ =
η̄ − η̄n

η̄n+1 − η̄n
,
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but formulation in other progress variables is also feasible. It defines loca-
tions within the increment such that ζ = 0 marks the beginning, ζ = 1 the
end of the incremental step.

In general, the flow direction will depend on both the stress and the hard-
ening state: s(σ,q), but only dependence on the stress σ will be exemplified
in what follows. Integration by eqn (5.73) can be effected in conjunction with
an assumed linear relationship of the stress within the increment n, n + 1,

σζ = (1 − ζ)σn + ζσn+1, (5.74)

which gives as an approximation to the incremental plastic strain

ηΔ = s(σζ)η̄Δ = sζ η̄Δ. (5.75)

The value of the collocation parameter ζ in eqns (5.75) and (5.73) can
be chosen so as to satisfy specific requirements related to simplicity of the
computation, accuracy of the approximation and stability of the integration.

Since the equivalent plastic strain η̄ constitutes the integration param-
eter in eqn (5.73), the magnitude η̄Δ of the incremental plastic strain is
considered a given quantity while the direction sζ is subject to selection. In
an explicit, forward Euler scheme it is taken at the beginning of the incre-
ment: sζ=0 = sn. In a fully implicit, backward Euler procedure the direction
sζ=1 = sn+1 is employed, pertaining to the end of the increment. A superior
accuracy is usually achieved for values within the interval. At the same time,
this requires storage of two stress states σn and σn+1 at each evaluation
point in the system.

Actually, incremental changes of plastic strain have to be considered for a
given increment in stress or strain, not for η̄Δ. This is pursued below for the
case of isotropic hardening. To this end, we extend the mid-value argument
to the integration of eqn (1.152) for dη̄ and obtain

η̄Δ =

n+1∫
n

1
h
stdσ =

1
hζ

st
ζσΔ (σΔ = σn+1 − σn). (5.76)

In terms of the incremental strain from eqn (1.156),

η̄Δ =

n+1∫
n

2G

h + 3G
stdγ =

2G

hζ + 3G
st
ζγΔ (γΔ = γn+1 − γn), (5.77)

or, alternatively,

η̄Δ =
1

hζ + 3G
st
ζσ

∗
Δ, (5.78)

where the quantity

σ∗
Δ = κγΔ
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may be interpreted as a fictitious stress increment. We notice that with
eqns (5.76) and (5.77) in conjunction with eqn (5.75), the relations between
the differentials in eqns (1.154) and (1.157) simply transfer to the present
case of finite incremental changes. The test on plastic loading is interpreted
analogously.

Elastic–plastic transition
The above considerations on incremental plastic strain assume both the
beginning and the end of the transition n, n + 1 located in the plastic regime.
If a plastic state n + 1 is reached from an elastic state n, then only part of
the increment is associated with plastic flow, the transition up to the yield
limit being elastic (Fig. 5.3). The state n′ where plastic flow initiates is
defined by the condition φ(σn′ ,qn) = 0, which determines the stress σn′ .
The quantity qn represents the value of the hardening parameters prior to
the incremental change. Assuming a linear variation of stress within the
increment as by eqn (5.74), we have σn′ = (1 − ζ ′)σn + ζ ′σn+1, and the
value of ζ ′ can be obtained from the yield condition. In the expressions
for incremental plastic flow, the stress σn′ takes the place of σn, and the
relevant increment in stress is σn+1 − σn′ = (1 − ζ ′)σΔ.

As an example of the linear variation, the equivalent stress σ̄n′ is given by

σ̄2
n′ =

3
2
[(1 − ζ ′)σDn + ζ ′σDn+1]t[(1 − ζ ′)σDn + ζ ′σDn+1]

= (1 − ζ ′)2σ̄2
n + (ζ ′)2σ̄2

n+1 + 3(1 − ζ ′)ζ ′σt
DnσDn+1. (5.79)

The von Mises yield condition with isotropic hardening, eqn (1.150), in
the form σ̄2

n′ = σ2
fn becomes a quadratic equation for the parameter ζ ′.

Analogously, in the case of kinematic hardening eqn (1.159) or eqn (1.161),
respectively, used in conjunction with the linear variation of σD within
the increment determines the value of ζ ′. The hardening variable here is
qn = αn, taken at the state prior to the incremental change.

Computational finite element procedures effectively deal with the incre-
ment of strain rather than with the increment of stress. A fictitious stress

Figure 5.3: Elastic–plastic transition.



Finite Element Solution Methods 175

defined in this connection within the increment as

σ∗ = σn + κ[γ − γn] (5.80)

assumes at the limit points the values

σ∗
n = σn and σ∗

n+1 = σn + κγΔ. (5.81)

If state σn at the beginning of the increment is within the elastic range, we
have σ∗

n′ ≡ σn′ at the yield limit. Then the condition φ(σ∗
n′ ,qn) = 0 for σ∗

n′

determines the initiation of plastic flow, as does the condition φ(σn′ ,qn) = 0
in terms of σn′ . With a linear approximation for σ∗ within the increment:

σ∗
n′ = (1 − ζ ′)σ∗

n + ζ ′σ∗
n+1. (5.82)

It turns out that the value of the parameter ζ ′ at incipient plastic flow in the
increment can be obtained from the yield condition as before (with σ∗

n+1 in
place of σn+1), but the result is different. In the present case ζ ′ is used to
define the part γn+1 − γn′ = (1 − ζ ′)γΔ or (1 − ζ ′)σ∗

Δ respectively, of the
incremental strain associated with plastic flow instead of the incremental
stress in the former case.

An accuracy study
We consider approximate computation of the plastic strains in the rectangular
plate under tension discussed analytically in Section 1.2.5. The plane problem can
be represented by the reduced stress and strain vectors,

σ =
[

σ1

σ2

]
, γ =

[
γ1

γ2

]
, η =

[
η1

η2

]
, (i)

with components along the sides of the rectangular plate. The elastic relationship
between stress and strains reads[

σ1

σ2

]
=

E

1 − ν2

[
1 ν

ν 1

] [
γ1 − η1

γ2 − η2

]
,

[
γ1 − η1

γ2 − η2

]
=

1
E

[
1 − ν

−ν 1

] [
σ1

σ2

]
. (ii)

The deviatoric stresses in the plane define the direction of plastic flow

σD =
[
2σ1 − σ2

2σ2 − σ1

]
and s =

3
2

1
σ̄

σD. (iii)

Starting at the elastic limit, the state of stress is advanced incrementally such
that

σn+1 = σn + σΔ and σΔ =
[

σ1Δ

νσ1Δ − Eη2Δ

]
. (iv)

In the incremental stress vector in eqn (iv), the component σ1Δ is imposed in
each step as a prescribed loading condition. The expression for σ2Δ arises from
the suppression of the lateral strain component, γ2Δ = 0 in the incremental form
of eqn (ii), and requires knowledge of the plastic strain increment.

The incremental plastic strain ηΔ is approximated by eqn (5.75), but eqn (5.77)
for η̄Δ relies on the complete three-dimensional definitions of stress and strain and
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cannot be used in conjunction with the present reduced vector arrays. For this
purpose, we state an incremental condition of perfect plasticity in the form

st
ζσΔ = st

ζκ[γΔ − ηΔ] = 0, (v)

with the elasticity matrix κ as from eqn (ii). Then with eqn (5.75),

η̄Δ =
1

st
ζκsζ

st
ζκγΔ and ηΔ = η̄Δsζ . (vi)

An iterative treatment of the incremental elastoplastic problem starts each itera-
tion cycle with an estimate ηΔi = η̄Δisζi of the plastic strain increment. Computa-
tion of the increment of stress σΔ, and of strain γΔ, determines the direction sζi+1

and the magnitude η̄Δi+1 of the incremental plastic strain ηΔi+1 = η̄Δi+1sζi+1,
which enters as a new estimate in the next iteration cycle.

The actual numerical investigation [5] refers to the case ν = 0 and covers loading
from the elastic limit within the range 1 ≤ σ1/σs ≤ 1.13. Results are alternatively
obtained with the explicit scheme (ζ = 0) and the mid-step approximation (ζ =
1/2). In terms of a Taylor series expansion, the above schemes correspond to a
first- and second-order approximation within the increment, respectively.

The accuracy of the two approximations is demonstrated in Fig. 5.4 by a com-
parison with the longitudinal stress–plastic strain plot of the analytical solution.
Numerical results are shown for two different incrementations: five steps lead-
ing to the ultimately applied stress, or single-step computation. As expected, the
accuracy of the second-order integration scheme is superior to the linearized one;
remarkably good results are obtained with the latter by applying the loading in a
single step.

Figure 5.5 indicates convergence of the numerical approximation to the ana-
lytical value for a diminishing size of the load increments. For this purpose, the
normalized deviation of the numerical result η1 from the analytical ‘exact’ value
η1e at ultimate load is depicted as a function of the number of load increments
employed. It is seen that the rate of convergence is higher for the second-order

Figure 5.4: Approximate vs analytical solution for a perfectly plastic plate.
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Figure 5.5: Error in plastic strain at final load depending on increment size.

approximation. In order to achieve a high-quality solution in the increments, the
convergence criterion allowed only a relative deviation of ≤ 10−14 in the iterated
variables. The number of iterations in the step appears to be insensitive to the
step size, and therefore the number of iterations for the entire computation follows
closely the variation in the number of loading increments.

5.4.3 Stability of integration

For the integration of the plastic strain

η =
∫

dη =
∫

sdη̄,

the integrand s(σ) requires the stress σ as a prescribed function of the
parameter η̄. If such a relationship is given, the incremental approximation
concerns the evaluation of the integral and raises merely the question of
accuracy. If, on the other hand, the strain γ is assumed to be known as
a function of η̄, then the direction of plastic flow has to be interpreted as
s(κ[γ − η]), and

dη = s (κ[γ − η]) dη̄ (5.83)
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represents a differential equation for the plastic strain η. The incremental
approximation to its solution raises the issue of numerical stability, which
concerns the propagation of perturbations.

The differential equation to be solved will be studied in a model form by the
analogy,

1
dη̄

dη − s(η) = 0 ⇒ ẋ + f(x) = 0, (5.84)

where ẋ = (1/dt)dx denotes the rate of change of the variable x with respect to
the progress parameter t. For integration analogous to eqns (5.73) and (5.75), we
obtain from eqn (5.84),

xn+1 = xn − τ f(xζ), (5.85)
with τ = tn+1 − tn defining the incremental step. In addition, we state a linear
variation of x within the increment,

xζ = (1 − ζ)xn + ζxn+1, (5.86)

where ζ = (t − tn)/τ .
The stability of the approximate integration concerns sensitivity of the solution

to numerical perturbations. A perturbation δx to the solution x implies a variation
of the integrand f(x). From eqn (5.85),

δxn+1 = δxn − τδf(xζ), δf =
df
dx

δx = Nδx. (5.87)

With eqn (5.86) we obtain δx, and

δf(xζ) = Nζ [(1 − ζ)δxn + ζδxn+1]

(
Nζ =

df
dx

∣∣∣∣
ζ

)
.

Substituting in eqn (5.87), we deduce for the propagation of perturbations the
relation

[I + ζτNζ ]δxn+1 = [I − (1 − ζ)τNζ ]δxn. (5.88)
Ultimately, eqn (5.88) can be written as

δxn+1 = Aδxn, (5.89)

where the matrix
A = [I + ζτNζ ]−1[I − (1 − ζ)τNζ ] (5.90)

is the amplification matrix for the perturbation.
In order to study the sensitivity of the integration scheme, the perturbation

δxn is represented as a linear combination of the m eigenvectors yi(A) of the
amplification matrix A,

δxn =
m∑

i=1

ciyi and δxn+1 =
m∑

i=1

ciλiyi. (5.91)

Repeated application of eqn (5.91) over k consecutive integration steps following
an initial perturbation δx0 gives

δxk = Akδx0 =
m∑

i=1

ciλ
k
i yi. (5.92)
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Since the exponent k increases during the course of the incremental integration,
the perturbation will diminish if all eigenvalues λi of the matrix A are absolutely
less than unity. Stability requires that perturbations are not amplified. A sufficient
condition therefore can be given in terms of the spectral radius ρ of the matrix
A as

ρ(A) = max|λi(A)| < 1. (5.93)
In eqn (5.90), the amplification matrix A is a rational function of the matrix

N. Then, the eigenvalues λi(A) exhibit the same functional dependence:

λi(A) =
1 − (1 − ζ)τλi(Nζ)

1 + ζτλi(Nζ)
= 1 − τλi(Nζ)

1 + ζτλi(Nζ)
. (5.94)

The stability requirement of eqn (5.93) restricts the eigenvalues to |λi(A)| < 1,
and hence

−1 < 1 − τλi(Nζ)
1 + ζτλi(Nζ)

< 1. (5.95)

From eqn (5.95), there follows

0 < τλi(Nζ) <
2

1 − 2ζ
. (5.96)

Accordingly, the stability of the integration requires the eigenvalues of the matrix
N to be positive, λi(N) > 0, and the incremental step τ to be limited by

τ <
2

(1 − 2ζ)ρ(Nζ)

(
0 ≤ ζ <

1
2

)
. (5.97)

Here, ρ(N) = max λi(N) denotes the spectral radius of the matrix N.
For ζ = 0 the integration is explicit, and for stability τ < 2/ρ(N). For 0 < ζ ≤ 1

the integration involves quantities at the end of the increment, and is termed
implicit. In the interval 0 ≤ ζ < 1/2, the integration is stable for finite values of
the increment τ complying with the condition of eqn (5.97). The transition from
conditional stability to unconditional stability is at ζ = 1/2, so that τ → ∞ for
1/2 ≤ ζ < 1. Within this interval, the integration is insensitive to perturbations
independently of the choice for the incremental step τ .

The stability requirement, eqn (5.93), ensures damping of the perturbation
which was represented by eqn (5.92). If the eigenvalues of the amplification matrix
A are positive, the damping is effected monotonously. For negative eigenvalues the
sign of contributions from individual eigenvectors changes consecutively. Thus, the
sign of the eigenvalues of A given by eqn (5.94) defines an oscillation limit in terms
of the incremental step τ .

Stability is associated with the nature of the expected solution. Assuming lin-
earity in eqn (5.84), we obtain for the evolution of the variable x the differential
equation

ẋ + Nx = 0. (5.98)
The solution of the above equation is

x = exp(−tN)x0

= x0 − tNx0 +
t2

2!
N2x0 − t3

3!
N3x0 + · · · , (5.99)

where the second expression results from the power series expansion of the expo-
nential. Representation of the initial vector x0 as a linear combination of the
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eigenvectors yi(N) of the matrix N,

x0 =
m∑

i=1

ciyi, (5.100)

transforms the power series in eqn (5.99) as follows:

x0 − tNx0 +
t2

2!
N2x0 − t3

3!
N3x0 + · · ·

=
m∑

i=1

(
ciyi − citλiyi + ci

t2λ2
i

2!
yi − ci

t3λ3
i

3!
yi + · · ·

)
. (5.101)

Here, λi(N) are the eigenvalues of the matrix N, and the solution of eqn (5.98)
can be expressed as

x =
m∑

i=1

e−tλiciyi. (5.102)

Since stability requires λi(N) > 0, cf. eqn (5.96), it is associated with a decaying
function x(t) as from eqn (5.102).

The incremental transition for tn+1 ⇐ tn + τ obtained from eqn (5.99) reads

xn+1 = xn − τNxn +
τ2

2!
N2xn − τ3

3!
N3xn + · · · . (5.103)

The linear part,
xn+1 = [I − τN]xn (5.104)

is identical to the explicit integration (ζ = 0) of eqn (5.98) by the incremental
scheme of eqn (5.85). Conversely, the explicit form of the integration scheme mod-
els exactly the linear part of the solution for the incremental step in eqn (5.103).

The above considerations on stability of the model equation can be immediately
transferred to the equation of plastic flow on the left-hand side of eqn (5.84) by
the substitution

x ⇐ η, f(x) ⇐ −s(η). (5.105)

Also implied is the assumption of a linear variation of the stress within the
increment, eqn (5.74), and determination of sζ = s(σζ) in eqn (5.75).

Perturbations in η are propagated by the incremental update ηn+1 ⇐
ηn + ηΔ in accordance with

δηn+1 = δηn + η̄Δδsζ . (5.106)

The direction of plastic flow

s =
3
2

1
σ̄

σD =
3
2

(
3
2
σt

DσD

)−1/2

σD, (5.107)

is a function of the deviatoric stress

σD = 2G[γD − η] and δσD = −2Gδη. (5.108)
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The strain γ is considered free of perturbations such that these are intro-
duced exclusively by the plastic strain η. Therefore,

δs =
ds

dσD
δσD = −2G

ds
dσD

δη = −Nδη. (5.109)

The matrix

N = − ∂s
∂η

= 2G
ds

dσD
=

3G

σ̄

[
I − 2

3
sst

]
(5.110)

is defined in analogy to eqn (5.87). From eqn (5.107) by differentiation,

ds
dσD

=
3
2

1
σ̄

[
I − 2

3
sst

]
, (5.111)

which leads to the last expression for N.
Noticing that

δσDζ = (1 − ζ)δσDn + ζδσDn+1

= −2G[(1 − ζ)δηn + ζδηn+1] = −2Gδηζ , (5.112)

we obtain with eqn (5.109)

δsζ = −Nζδηζ = −Nζ [(1 − ζ)δηn + ζδηn+1], (5.113)

the matrix N to be specified at position ζ.
Substitution of eqn (5.113) in eqn (5.106) and rearrangement of terms

gives
[I + ζη̄ΔNζ ]δηn+1 = [I − (1 − ζ)η̄ΔNζ ]δηn (5.114)

in place of eqn (5.88) pertaining to the model problem, with all related
arguments applicable. In particular, interpretation of the stability condition
of eqn (5.97) for the numerical integration of the equation of plastic flow
leads to

η̄Δ <
2

(1 − 2ζ)3G/σ̄
. (5.115)

Here, τ ⇐ η̄Δ and ρ(N) ⇐ 3G/σ̄ for the spectral radius as from eqn (5.110).

Interpretation of stability
Assuming plastic flow under monotonically increasing loading to be gov-
erned by isotropic hardening, the equivalent stress follows the uniaxial hard-
ening characteristic of the material: σ̄ = σf(η̄) and σ̄Δ = hη̄Δ where h can
be referred to as a mid-value or a secant adapted to the finite incremental
relationship. Then eqn (5.115) defines a stability condition in terms of the
increment of equivalent stress σ̄Δ. However, since the discussion concerns
rather a prescribed strain history, we notice that ˙̄σ = stσ̇ = 2Gst[γ̇ − η̇]
from which the quantity ˙̄σ∗ = 2Gstγ̇ = (h + 3G) ˙̄η is deduced as a ficti-
tious equivalent stress rate in terms of the strain rate. Taking finite incre-
ments σ̄∗

Δ = (h + 3G)η̄Δ with h as defined above, the stability condition in
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eqn (5.115) can be used to restrict the quantity σ̄∗
Δ = 2Gst

ζγΔ and thus
control the strain increment γΔ.

It is recalled that stability ensures damping of disturbances δη propagated
by the incremental integration, eqn (5.106). In the integration scheme, η̄Δ
is considered a fixed quantity and thus disturbances in η are constrained.
In fact, from eqn (5.75) with sts = 3/2 we observe that

ηt
ΔηΔ =

3
2
η̄2
Δ = constant and ηt

ΔδηΔ = 0. (5.116)

The second equality in eqn (5.116), obtained by differentiation, expresses the
orthogonality between ηΔ and δηΔ as a consequence of the fixed magnitude.
This implies that

ηt
Δ[δηn+1 − δηn] = 0 ⇒ st

ζδsζ = 0. (5.117)

The final result in the above equation makes use of eqns (5.106) and (5.75).
It concerns the direction of incremental plastic flow and shows that distur-
bances induce a rotation in the vector sζ , maintaining the constancy of its
length.

5.4.4 Radial return

The term was introduced in [8] in connection with incrementation of per-
fectly plastic flow. The following presentation uses the formalism of the
account in [9].

After application of an increment in strain γΔ the stress can be
obtained as

σn+1 = σn + κ[γΔ − ηΔ] = σ∗
n+1 − 2GηΔ. (5.118)

The fictitious stress
σ∗

n+1 = σn + κγΔ (5.119)

predicted under the assumption of elasticity must be corrected by the contri-
bution of the incremental plastic strain ηΔ such that the stress σn+1 meets
the yield surface (Fig. 5.6). In isochoric plasticity, this procedure affects only
the deviatoric state of stress since plastic strains do not exhibit volumetric
parts.

Perfect plasticity and isotropic hardening
The direction of the incremental plastic strain is specified here by the stress
σn+1 at the end of the increment

ηΔ = η̄Δsn+1 with sn+1 =
3
2

1
σ̄n+1

σDn+1. (5.120)

Then, from eqn (5.118) for the deviatoric part,

σ∗
Dn+1 = σDn+1 + 2GηΔ =

(
1 + 3G

η̄Δ

σ̄n+1

)
σDn+1, (5.121)
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Figure 5.6: Radial return to the yield surface.

and therefore the directions of σDn+1 and σ∗
Dn+1 are identical:

sn+1 =
3
2

1
σ̄n+1

σDn+1 =
3
2

1
σ̄∗

n+1
σ∗

Dn+1 = s∗
n+1. (5.122)

Thus, in eqn (5.118), the correction by 2GηΔ up to the yield surface is along
σ∗

Dn+1, which suggests the denotation radial return for this technique.
From eqn (5.120) right, the equivalent deviatoric stress σ̄n+1 can be

expressed as
σ̄n+1 = st

n+1σDn+1 = st
n+1σn+1. (5.123)

With eqn (5.118) for σn+1, eqn (5.120) for ηΔ and sn+1 = s∗
n+1 from

eqn (5.122),

σ̄n+1 = s∗t
n+1σ

∗
n+1 − 3Gη̄Δ = σ̄∗

n+1 − 3Gη̄Δ. (5.124)

In perfect plasticity the condition to be observed in inelastic deformation
is φn+1 = σ̄n+1 − σs = 0, and with eqn (5.124) the equivalent plastic strain
increment follows to

η̄Δ =
1

3G
(σ̄∗

n+1 − σs) ≥ 0. (5.125)

The quantity σ̄∗
n+1 is computed as an equivalent stress with the fictitious

stress σ∗
n+1, and σs denotes the uniaxial yield stress. Backsubstitution in

eqn (5.120) for ηΔ with sn+1 = s∗
n+1, and in eqn (5.118) completes the

determination of the stress state σn+1 at the end of the increment.
The above formalism follows as a special case of the technique devel-

oped in [9] independently for hardening plasticity. For isotropic hardening
(Section 1.3.1), plastic states at the end of the increment comply with

φn+1 = σ̄n+1 − σfn+1 = 0. (5.126)

From the uniaxial flow curve in Fig. 5.6, the yield stress of the material can
be expressed as

σfn+1 = σfn + hη̄Δ, (5.127)
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where h is an estimated incremental average or a secant slope computed
during the course of an iteration procedure.

With eqn (5.124) for σ̄n+1 and eqn (5.127) for σfn+1, the equivalent plastic
strain increment follows from eqn (5.126):

η̄Δ =
1

h + 3G
(σ̄∗

n+1 − σfn) ≥ 0. (5.128)

This expression for η̄Δ incorporates the incremental plastic loading con-
dition (σ̄∗

n+1 − σfn) > 0, and reduces to eqn (5.125) for a perfectly plastic
material (h = 0). In conjunction with sn+1 = s∗

n+1 as a consequence of the
radial return technique, eqn (5.128) determines the plastic strain increment
ηΔ in eqn (5.120) using the fictitious stress σ∗

n+1 as input, and completes
the computation of the stress σn+1 by eqn (5.118). The incremental quan-
tity at the origin of eqn (5.128) is the strain γΔ, as for the initial stress
version for the plastic strain increment.

If the stress increment σΔ is given instead of the incremental strain, the
input is the stress σn+1 = σn + σΔ. The task then reduces to the computa-
tion of the equivalent plastic strain increment in eqn (5.120). The condition
φn+1 = 0, eqn (5.126), along with eqn (5.127) for the yield stress gives

η̄Δ =
1
h

(σ̄n+1 − σfn) ≥ 0. (5.129)

The hardening parameter h can be specified such that the uniaxial flow dia-
gram is exactly reproduced, for which reason eqn (5.129) may be considered
superfluous. It conforms, however, with the overall formalism and pertains
to the initial strain version for ηΔ.

Kinematic hardening
Referring to Section 1.3.2, plastic states satisfy the condition

φKn+1 = σ̄Kn+1 − σs = 0, (5.130)

where analogously to eqn (5.123) for the equivalent stress

σ̄Kn+1 = st
Kn+1σKn+1 with sKn+1 =

3
2

1
σ̄Kn+1

σKDn+1. (5.131)

In the ‘kinematic’ stress vector,

σKn+1 = [σn + σΔ] − [αn + αΔ] = σ′
Kn+1 − αΔ, (5.132)

the part

σ′
Kn+1 = [σn + σΔ] − αn = σn+1 − αn

= σKn + σΔ (5.133)

can be determined once the stress increment σΔ is given.
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The incremental translation αΔ of the yield surface is assumed to point
along the direction sKn+1, and can be written as

αΔ =
2
3
ᾱΔsKn+1 =

ᾱΔ

σ̄Kn+1
σKDn+1. (5.134)

Therefore, from eqn (5.132) for deviatoric parts,

σ′
KDn+1 = σKDn+1 + αΔ =

(
1 +

ᾱΔ

σ̄Kn+1

)
σKDn+1, (5.135)

and the directions of σ′
KDn+1 and σKDn+1 are identical, i.e. sKn+1 = s′

Kn+1.
Thus, with eqn (5.132) for σKn+1 and eqn (5.134) for αΔ we obtain for

the equivalent stress in eqn (5.131),

σ̄Kn+1 = (s′
Kn+1)

tσ′
Kn+1 − (s′

Kn+1)
tαΔ = σ̄′

Kn+1 − ᾱΔ, (5.136)

where σ̄′
Kn+1 is determined by applying the equivalent stress operation to

the vector σ′
Kn+1, and

ᾱΔ = hη̄Δ.

The condition φKn+1 = 0, eqn (5.130), then furnishes for η̄Δ the initial strain
form,

η̄Δ =
1
h

(σ̄′
Kn+1 − σs) ≥ 0, (5.137)

and for the incremental plastic strain,

ηΔ = η̄ΔsKn+1 = η̄Δs′
Kn+1. (5.138)

If, alternatively, the strain increment γΔ is given (Fig. 5.7), use of the
elastic relation σΔ = κ[γΔ − ηΔ] in eqn (5.132) leads to the expression

σKn+1 = [σn + κγΔ] − [αn + αΔ] − 2GηΔ

= σ∗′
Kn+1 − [αΔ + 2GηΔ]. (5.139)

Here, the part

σ∗′
Kn+1 = [σn + κγΔ] − αn = σ∗

n+1 − αn

= σKn + κγΔ (5.140)

is available from the incremental finite element solution and the state at
the beginning of the increment. Since both αΔ and ηΔ are assumed to be
directed along sKn+1, an argument analogous to eqn (5.135) shows that
sKn+1 = s∗′

Kn+1.
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Figure 5.7: Radial return for kinematic hardening.

Then, with eqn (5.139) for σKn+1 the equivalent stress quantity from
eqn (5.131) becomes

σ̄Kn+1 = (s∗′
Kn+1)

tσ∗′
K+1 − (s∗′

Kn+1)
t[αΔ + 2GηΔ]

= σ̄∗′
Kn+1 − (ᾱΔ + 3Gη̄Δ), (5.141)

where ᾱΔ = hη̄Δ. Utilization in the condition φKn+1 = 0 of eqn (5.130) gives
for η̄Δ the initial stress form

η̄Δ =
1

h + 3G
(σ̄∗′

Kn+1 − σs) ≥ 0, (5.142)

instead of eqn (5.137). The quantity σ̄∗′
Kn+1 is computed as an equivalent

deviatoric stress with the vector σ∗′
Kn+1, eqn (5.140). The direction s∗′

Kn+1
of its deviatoric part completes the specification of the incremental plastic
strain ηΔ, eqn (5.138), and of the translation αΔ, eqn (5.134).

In retrospect we notice that fundamental to the radial return technique is
the employment of the flow direction at final state, for the entire incremental
step. This selection corresponds to the fully implicit, backward Euler scheme
of the incremental approximation with sζ=1 = sn+1.

5.4.5 A more general return technique

In case that the material behaviour is not isotropic and when the plastic
flow is not directed along the stress deviator, techniques different from radial
return are required to adapt the elastic excess stress in the increment to
the yield surface. The algorithm developed in [10] for this purpose may be
referred to the generalized formalism of Section 1.4 with the yield condition
φ(σ,q) ≤ 0, and will be outlined in the following.

Let the strain increment γΔ pertaining to the transition n → n + 1 be
given. If the stress σ∗

n+1 = σn + κγΔ from the elastic prediction violates
the yield condition such that φ(σ∗

n+1,qn) > 0, it is fictitious and must be
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corrected by accounting for the effect of plastic flow on the hardening param-
eters q until

φn+1 = φ(σn+1,qn+1) = 0. (5.143)

The correction is performed iteratively. Entering an iteration cycle with
estimates (σn+1)i, (qn+1)i for which (φn+1)i > 0, improved estimates

(σn+1)i+1 = (σn+1)i + δσi,

(5.144)
(qn+1)i+1 = (qn+1)i + δqi,

are required to satisfy the yield condition in the form

(φn+1)i+1 ∼= (φn+1)i +
∂φ

∂σ

∣∣∣∣
n+1,i

δσi +
∂φ

∂q

∣∣∣∣
n+1,i

δqi = 0, (5.145)

which is obtained by linearization at state (σn+1)i, (qn+1)i. Since the cor-
rection process takes place at constant strain γn + γΔ, elasticity gives for
the stress variation in eqn (5.145)

δσi = −κδηi. (5.146)

The variation of the hardening parameters is

δqi = (Hn+1)iδηi, (5.147)

while the variation in plastic strain is assumed given by the flow rule as

δηi = Λi

[
∂φ

∂σ

]t

n+1,i

. (5.148)

After substitution, eqn (5.145) is solved for

Λi =
(

∂φ

∂σ
κ

∂φ

∂σt − ∂φ

∂q
H ∂φ

∂σt

)−1

n+1,i

(φn+1)i. (5.149)

This determines δηi and δqi, δσi for the new estimates (σn+1)i+1, (qn+1)i+1
in eqn (5.144). In place of eqn (5.148) for the variation in plastic strain we
might use the alternative representation

δηi = δη̄i(sn+1)i,

but this introduces inhomogeneity in the formalism.
The iterative return is started with

(σn+1)1 = σn + κγΔ = σ∗
n+1

(qn+1)1 = qn.
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At the end of the iteration, when the yield condition is met after rit iteration
cycles, the increment of plastic strain is

ηΔ =
rit∑
i=1

δηi =
rit∑
i=1

δη̄i(sn+1)i.

When the conditions are met the procedure effects radial return since
(sn+1)i = s∗

n+1 = constant, and ηΔ = (
∑rit

i=1 δη̄i)s∗
n+1.

5.5 Elastoplastic computation

5.5.1 Incrementation

The numerical finite element analysis of elastoplastic systems for a specified
history of slowly applied loads is based on the consideration of the condition
of quasistatic equilibrium at a series of stages. It combines an elastic solution
until initial yield (Section 5.2) with a sequence of incremental solutions
in the plastic range. Beyond the elastic limit the algorithm is controlled
by a stepwise application of the loading. This is necessitated by the path-
dependent nature of the elastoplastic stress–strain relations, which imply
incremental approximation. Referring to the transition from stage n to stage
n + 1, the statement of static equilibrium between applied loads P at the
mesh nodal points and stress resultants S as expressed by eqn (5.19) taken
at n + 1, the end of the loading step, reads

Pn+1 = Pn + PΔ = Sn + SΔ = Sn+1. (5.150)

Since equilibrium has been established at stage n, we are left with an incre-
mental equation for the displacement UΔ:

PΔ = SΔ(UΔ). (5.151)

Non-equilibrated numerical residuals at stage n can be accounted for in the
subsequent incremental solution by modifying the increment of the applied
loads to

PΔ ⇐ [Pn+1 − Pn] + [Pn − Sn] = Pn+1 − Sn.

Under the assumption that displacements do not modify appreciably the
geometry of the system, SΔ is obtained with the incremental stresses σΔ
in exactly the same manner as S is obtained with the stress σ. The above
can be concluded from the finite element formalism in Section 5.1. The
functional dependence on the incremental displacement UΔ is a result of the
approximate integration of the elastoplastic stress–strain relations, which
provides us with a relationship between the increment of stress and the
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increment of strain. To be specific, the strain increment required there is
determined by the finite element kinematics as

γΔ = aUqΔ = aaqUΔ.

The principle of the incremental computer procedure can be summarized
as shown in Scheme 5.3.

Elastic limit state max φ(σe, σs) = 0 : Ps

P0 ⇐ Ps,U0 ⇐ Us,σ0 ⇐ σs

Loading loop: n = 0, ninc

Load increment PΔ : Pn+1 = Pn + PΔ

Elastoplastic solution UΔ : Un+1 = Un + UΔ

σΔ : σn+1 = σn + σΔ

End loading

Scheme 5.3: Incremental elastoplastic algorithm.

At the beginning of an elastoplastic computation stands the specification
of the elastic limit state. This is the state at which the elasticity limit of the
material is first attained locally in the system. Frequently, the loading P can
be assumed to be proportional, varying by a factor from a reference level
PR: P = λPR. Determination of the elastic limit state then requires a single
elastic solution and scaling by the factor λs obtained from the condition of
initial yield:

max φ(λsσR) = λs(max σ̄R) − σs = 0.

The maximum is searched for within the system. In the case of a different,
arbitrary loading history, either incrementation is started at the origin or
the elastic limit state is obtained iteratively.

The subsequent loading is applied in increments PΔ. The choice of the size
of the loading increment is guided merely by two aspects: the linearization
error and the convergence of a possible iterative solution. The expressions
for incremental plastic flow developed in Section 5.4.2 are homologous to
those for the time rates in the algorithms of Section 5.3. Therefore, the
basic solution schemes are equally applicable to finite increments, in prin-
ciple. Modifications arise from higher-order incremental approximation and
elastoplastic transition.

It is worth noticing that both issues, higher-order approximation in the
incremental step and transition, affect the direct nature of the tangential
stiffness method and necessitate iteration. On the contrary, accommodation
in the initial load technique is straightforward. A simple solution algorithm
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for the elastoplastic increment in Scheme 5.3 is obtained with the assump-
tion that the stress state at the end specifies the direction of plastic flow
(radial return, Section 5.4.4).

Incremental solution
Scheme 5.4 demonstrates employment of the initial load technique stated
previously in Scheme 5.2 for the rate problem. The algorithm refers to the
radial return approximation associated with the initial stress approach. The
scheme can be easily modified for the analogous initial strain procedure.
Since the scheme is then based on the stress at the end of the increment,
the computation of σn+1 must be placed prior to that of η̄Δ by eqn (5.129).
This necessitates a prediction for ηΔ = η̄Δs when entering each iteration
cycle. The reader will realize that implementation of kinematic hardening
as from Section 5.4.4 in the incremental Scheme 5.4 is straightforward. All
instructions can be used without modification by changing the input to the
appropriate quantities for kinematic hardening. This requires storage and
incremental update of the translation vector α of the yield surface. Incor-
poration of mixed isotropic–kinematic hardening is also simple.

In Scheme 5.4, the sequence of operations is listed from the programmer’s
point of view. The essential iteration concerns, however, the incremental
plastic strain ηΔ and its magnitude η̄Δ, and convergence is tested with this
quantity.

Input: PΔ,σn

Predictor UΔ

Element loop : q = nel

Integration points

σ∗
Δ = κγΔ ⇐ κaUΔq , σ∗

n+1 ⇐ σn + σ∗
Δ

η̄Δ ⇐ 1
h + 3G

(σ̄∗
n+1 − σfn) ≥ 0

ηΔ ⇐ η̄Δs∗
n+1 , σn+1 ⇐ σ∗

n+1 − κηΔ

Initial load (element) JΔq ⇐ −
∫
Vq

atκηΔdV

End integration

Initial load (system) JΔ ⇐ JΔ + at
qJΔq

End elements

Corrector UΔ ⇐ K−1[PΔ − JΔ]

Scheme 5.4: Initial load algorithm for radial return.
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5.5.2 Overview of algorithms

We arrive at a unified fashion of incremental algorithms by considering the
solution of the vector equation

RΔ(UΔ) = PΔ − SΔ(UΔ) = 0, (5.152)

which is the residual form of eqn (5.151).
An iteration cycle for UΔ in eqn (5.152) starts with an estimate UΔi for

which, in general, RΔ(UΔi) �= 0, and supplies the next estimate UΔi+1 by
solving the linearized equation:

RΔ(UΔi+1) ∼= RΔ(UΔi) +
[
dRΔ

dUΔ

]
i

[UΔi+1 − UΔi] = 0. (5.153)

From the above equation,

UΔi+1 = UΔi −
[
dRΔ

dUΔ

]−1

i

RΔ(UΔi), (5.154)

which is known as the Newton–Raphson iteration technique for the solution
of nonlinear equation systems. If the system is linear, the solution is obtained
in a single cycle.

For the residual vector in eqn (5.152) the recursive scheme of eqn (5.154)
assumes the form

UΔi+1 = UΔi +
[

dSΔ

dUΔ

]−1

i

[PΔ − SΔ(UΔi)]. (5.155)

With reference to the finite element formalism in Section 5.1, the stress
resultants in eqn (5.155) are obtained from element contributions in SΔE =
{SΔq} (q = 1, . . . , nel) by accumulation:

SΔ = atSΔE and SΔq =
∫
Vq

atσΔdV. (5.156)

The derivative with respect to the displacement increment reads

dSΔ

dUΔ
= at dSΔE

dUΔ
= at dSΔE

dUΔE
a, (5.157)

where

UΔE = aUΔ,
dUΔE

dUΔ
= a.

The entry of individual elements in the gradient matrix in eqn (5.157) is
given by

dSΔE

dUΔE
=

⌈
dSΔq

dUΔq

⌋
,
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and in the diagonal hypermatrix

dSΔq

dUΔq
=

∫
Vq

at dσΔ

dγΔ
adV. (5.158)

From finite element kinematics,

γΔ = aUΔq,
dγΔ

dUΔq
= a.

Application of the Newton–Raphson technique, eqn (5.155), ultimately
requires the stress increment as a function of the incremental strain in
eqn (5.156), which enters the residual and leads to the system gradient
in eqn (5.157) via the element contributions of eqn (5.158). The system gra-
dient exhibits the structure of the momentary elastoplastic stiffness matrix
as in eqn (5.29), but is different. It results as a derivative from the incre-
mental approximation of the elastoplastic problem (Section 5.4.2), and is
determined at the state pertaining to the ith iteration cycle.

The stress increment can be written as

σΔ = κ[γΔ − ηΔ] = κ̄ζγΔ, (5.159)

where, with eqns (5.75) and (5.77) for the plastic strain increment, the
coefficient matrix is

κ̄ζ = κ

[
I − 2G

hζ + 3G
sζst

ζ

]
. (5.160)

Substitution in eqn (5.156) and tracing back the finite element hierarchy
transfers the incremental constitutive description to the discretized system

SΔ = KUΔ + JΔ = K̄ζUΔ. (5.161)

The relation between incremental stress σΔ and incremental strain γΔ,
eqn (5.159) in conjunction with eqn (5.160), resembles the elastoplastic rela-
tion between infinitesimal quantities in eqn (1.158); it is nonlinear as long
as ζ > 0. The matrix κ̄ζ can be used as an approximation to dσΔ/dγΔ;
employment of the associated system matrix K̄ζ as an approximation to
the gradient dSΔ/dUΔ in eqn (5.155) gives

UΔi+1 = UΔi + K̄−1
ζi [PΔ − SΔ(UΔi)]. (5.162)

It can be seen, with the second expression for SΔ in eqn (5.161), that
eqn (5.162) is equivalent to an iterative secant solution for the increment

UΔi+1 = K̄−1
ζi PΔ, (5.163)

which is homologous to the tangential stiffness technique, eqn (5.30).
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Alternatively, if the recursive scheme of eqn (5.155) is operated with the
stiffness matrix K of the elastic system as another approximation to the
system gradient, we have

UΔi+1 = UΔi + K−1[PΔ − SΔ(UΔi)]. (5.164)

This is, by the first expression for SΔ in eqn (5.161), equivalent to the initial
load iteration

UΔi+1 = K−1[PΔ − JΔ(UΔi)]. (5.165)

The dependence of the initial load vector JΔ on the incremental displace-
ment UΔ is not explicit, but via the incremental plastic strain ηΔ, which
may be computed by either the initial strain or the initial stress version.

It is worth noticing that both solution techniques, the initial load itera-
tion, eqn (5.165), and the secant (or tangential) solution, eqn (5.163), can
be developed from the incremental equation of equilibrium, eqn (5.151),
in conjunction with the alternative expressions for the stress resultants in
eqn (5.161). For a linear (explicit) approximation of the incremental plas-
tic strain, the secant technique supplies the solution directly (with caution
regarding the condition of plastic loading), while the initial load method
requires iteration even in the linearized case.

5.5.3 Summary

Due to the nature of the elastoplastic stress–strain relations and the path
dependence of plastic deformation, elastoplastic analysis requires a stepwise
application of the loading when in the system the yield stress of the mate-
rial is exceeded and plastic flow sets in. The incrementation of the process
demands caution with regard to the stability of the numerical integration.
The incremental solutions in the loading sequence may be performed either
directly by the tangential stiffness approach or iteratively by the initial load
technique. The former is based on a system matrix that varies while plas-
ticity progresses; the latter solves repeatedly an elastic problem within each
step with corrective loads accounting for the effect of plasticity, and poses
the task of convergence. The initial strain and the initial stress mode of
evaluation of the incremental plastic strain entering the corrective loads,
one based on the stress and the second on the strain increment, exhibit
different convergence behaviour.

Methods of elastoplastic analysis have been exemplified so far on the back-
ground of the finite element methodology. Implementation may be effected,
in principle, as an extension of computer codes designed for the analysis
of elastic systems. At this place, we would like to mention discretization
methods other than finite elements. The reader may be interested in learn-
ing about the boundary element method [11] and its early application to
plasticity [12], a subject whose scope is still extending. In addition, numer-
ical approaches not making use of a mesh as required by the finite element
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method are making steady progress [13]; see also [14] for a comprehensive
survey. Each particular discretization technique necessitates an appropri-
ate implementation of plasticity. However, this affects neither the numerical
treatment at the material constitutive level nor the overall solution algo-
rithms presented in this chapter.
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CHAPTER 6

Extension of inelastic description

6.1 Influence of temperature

Thermoelasticity
Stress analysis under non-isothermal conditions (temporally or spatially)
necessitates a description of the mechanical response of the material to tem-
perature variations. In the elastic range, the appearance of thermal strains

ηT = α(T − To)e (6.1)

is a major effect. Here, α denotes the coefficient of linear thermal expan-
sion, T the actual absolute temperature, and To the reference temperature
from which the thermal strain is measured. In an isotropic material thermal
expansion (or contraction) is a volumetric effect, and therefore the vector
ηT is proportional to e = {1 1 1 0 0 0}, cf. Section 1.2.1.

Under the combined action of stress and change in temperature the mea-
sured strain γ is composed as

γ = ε + ηT = κ−1σ + α(T − To)e, (6.2)

where ε denotes the part associated with the stress σ. The stress then reads

σ = κ[γ − ηT] = κγ − 3Kα(T − To)e (6.3)

and is zero at γ = 0, T = To or if the thermal action is unconstrained. It
should be noticed that both the elastic constants in the matrix κ and the
coefficient α can be temperature-dependent quantities.

The significance of the thermoelastic stress–strain relations for the con-
tinuum is as follows. Using in eqn (6.3) the kinematic relation of eqn (2.59)
for the strain γ, and substituting in eqn (2.61) for the static equilibrium
(Chapter 2), we obtain instead

∂t(κ∂u) + [f − ∂t(κηT)] = 0 (6.4)

as a differential equation for the displacements u. Accordingly, thermal
strains can be taken into account by a modification of the body forces in
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the equilibrium condition, cf. eqn (2.65) for the isothermal case. Determi-
nation of the additional ‘pseudo’ body forces presumes knowledge of the
distribution of the thermal strain or the temperature respectively, within
the domain of the problem. The presence of the thermal strain in eqn (6.3)
also modifies the expression of the static boundary condition, eqn (2.63), in
terms of the displacements.

Regarding thermoelastic analysis by finite elements, we notice that the
stress in eqn (5.20) now reads

σ = κ[aUq − ηT] (6.5)

and therefore the stress resultants in the element, eqn (5.21), are

Sq = kqUq + Jq(ηT), Jq(ηT) = −
∫
Vq

aκηTdV. (6.6)

The origin of the initial loads Jq in the finite element is here the thermal
strain ηT.

Accordingly, on the level of the discretized system,

S = KU + J(ηT) = P and U = K−1[P − J(ηT)] (6.7)

in place of the isothermal eqn (5.26).

Non-isothermal elastoplasticity
Plastic flow adds to the non-elastic part of the strain such that the elastic
stress–strain relation becomes

σ = κ[γ − ηT − ηP]

and in differential form

dσ = κ[dγ − dηT − dηP] + dκ[γ − ηT − ηP]. (6.8)

The subscript ‘P’ denotes the plastic contribution.
In the differential expression for the stress in eqn (6.8), the second term

is a consequence of temperature dependent elastic parameters:

κ = κ(T ) and dκ = dTκ′.

Therefore, expressing the strain in terms of the stress

dκ[γ − ηT − ηP] = dTκ′κ−1σ. (6.9)

In the first part of eqn (6.8), the variation in thermal strain is obtained from
eqn (6.1) as

dηT = βdTe with β = α + α′(T − To) (6.10)
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Figure 6.1: Temperature dependence of the yield stress.

and is determined by the temperature variation dT with the differential
coefficient of thermal expansion β. Combining eqns (6.10) and (6.9) in the
differential stress–strain relation, eqn (6.8), we obtain instead

dσ = κ[dγ − dη∗
T − dηP], (6.11)

where the quantity

dη∗
T = [βe − κ−1κ′κ−1σ]dT = β∗dT (6.12)

summarizes the effect of temperature variations on the elastic response.
In plasticity, variations of temperature modify the yield stress of the mate-

rial such that σf diminishes if the temperature is elevated (Fig. 6.1). For-
mally, the yield stress depends on plastic strain and temperature

σf = σf(η̄P, T ), dσf = hdη̄P + gdT. (6.13)

The coefficients in the differential expression are

h = ∂σf/∂η̄P > 0 and g = ∂σf/∂T < 0.

For isotropic hardening refer to Section 1.3.1. Employing eqn (6.13) in
the consistency condition of plasticity (dφ = dσ̄ − dσf = 0), the equivalent
plastic strain increment follows as

dη̄P =
1
h

(dσ̄ − gdT ) =
1
h

(stdσ − gdT ) ≥ 0. (6.14)

Since the coefficient g is a negative quantity, elevation of the temperature,
dT > 0, enhances the magnitude of plastic flow. For the same reason, the
plastic loading condition dη̄P > 0 can be satisfied even if dσ̄ = stdσ < 0.

Using eqn (6.14) for the plastic strain increment dηP = dη̄Ps in eqn (6.11),
we obtain the strain increment in terms of the incremental stress and
temperature:

dγ = κ−1dσ + dη∗
T + dηP =

[
I +

2G

h
sst

]
κ−1dσ +

[
β∗ − g

h
s
]
dT. (6.15)
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The stress increment can be deduced from eqn (6.15) by inversion, but
instead we derive first an alternative expression for the magnitude of the
incremental plastic strain in terms of the strain increment, along the lines
of Section 1.3.1. To this end, substituting eqn (6.11) for dσ in eqn (6.14)
and solving for dη̄P we obtain

dη̄P =
2G

h + 3G
st[dγ − dη∗

T] − g

h + 3G
dT

=
2G

h + 3G

(
stdγ +

σ̄G′/G − g

2G
dT

)
≥ 0. (6.16)

For the transition to the second expression, note with eqn (6.12) that

stdη∗
T = st[βe − κ−1κ′κ−1σ]dT = − σ̄

2G

G′

G
dT. (6.17)

In fact, since s is deviatoric we have: ste = 0, stκ−1 = st/2G, stκ′ =
2G′st, and stσ = σ̄.

Building in the stress–strain relation the incremental plastic strain dηP =
dη̄Ps with eqn (6.16), and with eqn (6.12) for the thermoelastic contribution,
we arrive at the relation

dσ =
[
I − 2G

h + 3G
sst

]
κdγ − κ

[
β∗ +

σ̄G′/G − g

h + 3G
s
]

dT. (6.18)

This determines the variation in stress for a specified variation in strain
and temperature in the presence of plastic flow. Also, σ̄ = σf by the yield
condition.

For kinematic hardening (Section 1.3.2) the consistency condition during
plastic flow reads

dφK = st
K[dσ − dα] − dσs = 0. (6.19)

It is stated here that temperature variations should not affect the position α
of the yield surface, and therefore dα = (2/3)hdηP, st

Kdα = dᾱ = hdη̄ as in
the isothermal case. The effect of temperature on the extent of the yield sur-
face is accounted for by the quantity σs, which now follows the temperature
dependence of the yield stress σf : dσs = gdT . Then, from eqn (6.19),

dη̄P =
1
h

(st
Kdσ − gdT ) ≥ 0. (6.20)

The expression in eqn (6.20) is homologous to eqn (6.14) associated with
isotropic hardening except for the vector sK in place of s, which also specifies
the direction of plastic flow for kinematic hardening: dηP = dη̄PsK.

It is seen that the kinematic hardening model does not formally modify
the plastic and elastoplastic stress–strain relations developed for isotropic
hardening. Because of the appearance of sK in place of s, we also have
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to replace σ̄ = stσ by st
Kσ in eqns (6.16) and (6.18). Finally, the effect

of temperature on the position of the yield surface – excluded above –
can be introduced within the framework of the mixed kinematic–isotropic
hardening model, described by the yield condition of eqn (1.170). With the
mixed model the influence of temperature on σf(η̄, T ) can be partitioned
between the location α and the extent σis(η̄, T ) of the yield surface, similar
to the effect of the plastic strain in the isothermal case, cf. eqns (1.171) and
(1.172). Thereby, the essential formalism for the incremental stress–strain
relations is not affected.

The statement of the momentary elastoplastic problem for the solid under
non-isothermal conditions follows the lines of the isothermal case in Section
2.2.2. First, eqn (6.18) is presented as a relation between time rates,

σ̇ = κ̄γ̇ − β̄Ṫ = κ̄∂u̇ − β̄Ṫ , (6.21)

where the expressions symbolized by κ̄ and β̄ can be easily identified. We
notice the mechanical (deformation) and the thermal (temperature) part of
the relation. Second, substituting in the rate equilibrium condition for the
stress, eqn (2.68), we obtain the differential equation for the velocity field
u̇(x):

∂t(κ̄∂u̇) +
[
ḟ − ∂t(β̄Ṫ )

]
= 0. (6.22)

Comparison with the isothermal counterpart, eqn (2.73), based on the
elastoplastic material stiffness reveals that the action of a prescribed tem-
perature rate can be simply accounted for by a modification of the body
forces ḟ .

Alternatively, an implicit form analogous to eqn (2.70) based on the elas-
tic material stiffness is obtained with the stress–strain relation of eqn (6.11).
The plastic strain rate η̇P = ˙̄ηPs from either eqn (6.14) or eqn (6.16) exhibits
one part emanating from the mechanical action and another part induced
by the thermal action. The mechanical part is subjected to the iteration
procedure defined in eqn (2.71) while the thermal part contributes along
with the thermoelastic rate effects to the modification of the body force
ḟ . Summarizing, instead of eqn (6.21) we have for the stress rate the
relation

σ̇ = κ[γ̇ − η̇P|T] − β̄Ṫ ,

where η̇P|T denotes the part of the plastic strain rate associated with the
mechanical actions at constant temperature. This modifies the condition of
static equilibrium in eqn (6.22) to

∂t(κ∂u̇) + [ḟ − ∂t(β̄Ṫ ) − ∂t(κ η̇P|T)] = 0,

with the elastic material stiffness κ in place of the elastoplastic κ̄.
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Incremental computation
The isothermal case has been treated in Section 5.5. Equilibrium of the
finite element system at loading stage Pn+1 requires

Pn+1 = Sn+1 with Sn+1 =
∫
V

atσn+1dV. (6.23)

The resultants Sn+1 of the internal stresses σn+1 are actually formed by
accumulation of element contributions at the mesh nodal points (Section
5.1).

Under non-isothermal conditions the stress reads

σn+1 = κn+1[γn+1 − ηPn+1 − ηTn+1]

= κn+1[γn − ηPn − ηTn+1] + κn+1[γΔ − ηPΔ]. (6.24)

The local temperature Tn+1 determines the actual elastic material stiffness
and the thermal strain:

κn+1 = κ(Tn+1), ηTn+1 = α(Tn+1)(Tn+1 − To)e.

In eqn (6.24), the quantities γn and ηPn are known from past analysis, the
difference [γn − ηPn] can be stored. The quantities to compute are the strain
increment γΔ and the incremental plastic strain ηPΔ; the latter necessitates
in fact the incrementation. Note that a temperature dependence of the ther-
moelastic properties of the material does not favour representation of the
stress as σn+1 = σn + σΔ, since the expression for σΔ appears inconve-
nient, cf. eqn (6.8).

With eqn (6.24), the stress resultants in eqn (6.23) become

Sn+1 = J0 + Kn+1UΔ + JΔ(ηPΔ), (6.25)

where Kn+1 denotes the stiffness matrix of the elastic system for the thermal
state at the end of the increment and JΔ the initial loads accounting for the
incremental plastic strain. Past effects and thermal strain are considered by
the vector

J0 =
∫
V

atκn+1[γn − ηPn − ηTn+1]dV, (6.26)

assembled from element contributions. For its interpretation, it is worth
noticing the case of temperature-insensitive elastic properties, where

J0 =
∫
V

atκ[γn − ηPn − ηTn]dV +
∫
V

atκηTΔdV

= Sn + JΔ(ηTΔ). (6.27)
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Utilizing eqn (6.25) for the stress resultants in the equilibrium condition
of eqn (6.23), and solving for the incremental displacement:

UΔ = K−1
n+1[Pn+1 − J0 − JΔ(ηPΔ)] = K−1

n+1[P
∗
Δ − JΔ(ηPΔ)]. (6.28)

As the plastic strain increment ηPΔ depends on UΔ, eqn (6.28) suggests an
iterative algorithm for the solution of the incremental problem.

The load vector P∗
Δ introduced in eqn (6.28) is defined as

P∗
Δ = Pn+1 − J0 = [Pn+1 − Sn] − JΔ(ηTΔ) = PΔ − JΔ(ηTΔ).(6.29)

The second expression refers to temperature-insensitive elastic properties,
eqn (6.27), in the last expression PΔ = Pn+1 − Sn comprises numerical
residuals Pn − Sn not equilibrated at stage n. Then, eqn (6.28) reduces
to

UΔ = K−1[PΔ − JΔ(ηTΔ) − JΔ(ηPΔ)]. (6.30)

This is the incremental version of the thermoelastic finite element solution,
eqn (6.7); except for the plastic contribution, or – equally – the isother-
mal elastoplastic initial load form, eqn (5.165), except for the thermal
contribution.

Incrementation of the plastic strain considers satisfaction of the yield
condition. For isotropic hardening in the non-isothermal case

φn+1 = σ̄n+1 − σf(η̄n+1, Tn+1) ≤ 0. (6.31)

The temperature Tn+1 is a given quantity, and therefore we write

σf(η̄n+1, Tn+1) = σf(η̄n, Tn+1) + hη̄Δ, (6.32)

which means that transition from temperature Tn to Tn+1 is performed
beforehand (cf. Fig. 6.2). Then from eqn (6.31) we obtain for the equivalent
plastic strain increment the familiar initial strain form

η̄PΔ =
1
h

[σ̄n+1 − σf(η̄Pn, Tn+1)] ≤ 0 (6.33)

Figure 6.2: Scheme for non-isothermal transition.
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in terms of actual stress, which specifies the incremental plastic strain ηΔ =
η̄PΔsζ in conjunction with the selected flow direction sζ .

For an alternative expression of the incremental plastic strain in terms of
overall strain we separate the stress in eqn (6.24) as in Section 5.4.4

σn+1 = κn+1[γn+1 − ηTn+1 − ηPn] − κn+1ηPΔ

= σ∗
n+1 − 2Gn+1ηPΔ. (6.34)

This is similar to eqn (5.118), but the fictitious stress quantity is defined
here as

σ∗
n+1 = κn+1[γn+1 − ηTn+1 − ηPn], (6.35)

and for temperature-insensitive elastic properties:

σ∗
n+1 = σn + κ[γΔ − ηTΔ].

The deviatoric part of σ∗
n+1 reads

σ∗
Dn+1 = 2Gn+1[γDn+1 − ηPn] = σDn+1 + 2Gn+1ηPΔ (6.36)

as in eqn (5.121), and for the radial return technique where ηPΔ =
η̄PΔsn+1 = η̄PΔ(3/2σ̄)σDn+1, it is proportional to σDn+1; therefore, sn+1 =
s∗
n+1. The volumetric thermal strain does not contribute to the deviatoric

quantities.
With the above, the equivalent stress in the yield condition in eqn (6.31)

can be presented as in eqn (5.124) except for the definition of σ∗
n+1 by

eqn (6.35). Using also eqn (6.32) for the uniaxial yield stress, we obtain
from φn+1 = 0 the magnitude of the incremental plastic strain

η̄PΔ =
1

h + 3Gn+1
[σ̄∗

n+1 − σf(η̄Pn, Tn+1)] ≥ 0. (6.37)

This is formally the same as the isothermal initial stress form eqn (5.128),
but implies temperature update of the yield stress σf and of the elastic shear
modulus. The scalar quantity σ̄∗

n+1 is obtained as an equivalent stress with
the fictitious stress σ∗

n+1 from eqn (6.35). In this connection, volumetric
thermal strains can be discarded since they do not affect deviatoric quan-
tities; equally for the flow direction s∗

n+1 = (3/2σ̄∗
n+1)σ

∗
Dn+1 in the relation

ηPΔ = η̄PΔs∗
n+1 for the incremental plastic strain.

This completes the formalism for the initial load method and an itera-
tive solution by the successive approximation of eqn (6.28). A Newton-like
procedure as in Section 5.5.2 may be applied to the residual form of the
equilibrium condition in eqn (6.23)

Pn+1 − Sn+1(UΔ) = 0. (6.38)
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In analogy to eqn (5.155) the recursive scheme for UΔ is written as

UΔi+1 = UΔi +
[
dSn+1

dUΔ

]−1

i

[Pn+1 − Sn+1(UΔi)] . (6.39)

With reference to the definition of the stress resultants in eqn (6.23), the
system gradient matrix is symbolically given by

dSn+1

dUΔ
=

∫
V

at dσn+1

dγΔ
adV. (6.40)

The actual formation of the gradient matrix follows the operations in
eqn (5.157) with the elemental contributions of eqn (5.158), which here rely
on the differential quotient dσn+1/dγΔ in the element. From eqn (6.24) for
the stress σn+1, we deduce

dσn+1

dγΔ
= κn+1

[
I − dηPΔ

dγΔ

]
∼= κ̄n+1,ζ . (6.41)

Here, the matrix

κ̄n+1,ζ = κn+1

[
I − 2Gn+1

hζ + 3Gn+1
sζst

ζ

]
(6.42)

can be computed as an elastoplastic material stiffness, cf. eqn (6.18), at
temperature Tn+1 and position 0 ≤ ζ ≤ 1 within the step. The expression
in eqn (6.42) is obtained as an approximation of the differential quotient
in eqn (6.41) using eqn (6.16) in ηPΔ = η̄PΔsζ for the plastic strain incre-
ment. If, on the other hand, the variation of ηPΔ with γΔ is neglected in
eqn (6.41) the elastic material stiffness κn+1 can be used as an alternative
approximation to the differential quotient. In each case, the iteration scheme
of eqn (6.39) is operated with

dSn+1

dUΔ
⇐ K̄n+1,ζ or

dSn+1

dUΔ
⇐ Kn+1 (6.43)

in place of the system gradient. The matrices K̄n+1,ζ and Kn+1 are the
global counterparts of the local approximations: the elastoplastic κ̄n+1,ζ

and the elastic κn+1, respectively. Employment in eqn (6.39) of the elastic
stiffness matrix Kn+1 of the system is equivalent to the initial load tech-
nique, eqn (6.28).

Kinematic hardening
A description of incremental plastic flow in conjunction with the kinematic
hardening model has been developed in Section 5.4.4 for isothermal condi-
tions. The extension to the non-isothermal case assumes that variation of
temperature modifies the size of the yield surface but not its position. This is
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accounted for by an elastic limit σs(T ) reproducing the temperature depen-
dence of the uniaxial yield stress σf(η̄, T ) at constant plastic deformation
(Fig. 6.2). For the incremental transition n, n + 1,

σs(Tn+1) − σs(Tn) = σf(η̄n, Tn+1) − σf(η̄n, Tn). (6.44)

Variation of position α is exclusively due to plastic deformation,

ᾱΔ = hη̄Δ = σf(η̄n+1, Tn+1) − σf(η̄n, Tn+1). (6.45)

With the above definitions, the magnitude of the incremental plastic
strain, eqn (5.137), changes in the non-isothermal case to

η̄Δ =
1
h

[σ̄′
Kn+1 − σs(Tn+1)] ≥ 0. (6.46)

It relies on the stress σn+1 which determines the vector σ′
Kn+1 = σn+1 −

αn, eqn (5.133), and the direction of incremental flow taken as sKn+1 =
s′
Kn+1.
Similarly, for the radial return algorithm, the non-isothermal expression

of the initial stress form, eqn (5.142), can be written as

η̄Δ =
1

h + 3Gn+1
[σ̄∗′

Kn+1 − σs(Tn+1)] ≥ 0. (6.47)

It is based on the fictitious kinematic stress

σ∗′
Kn+1 = κn+1[γn+1 − ηTn+1 − ηPn] − αn = σ∗

n+1 − αn, (6.48)

defined as the isothermal one, eqn (5.140), but with σ∗
n+1 from eqn (6.35)

for non-isothermal conditions. The stress vector of eqn (6.48) specifies the
direction of the increment ηΔ = η̄Δs∗′

Kn+1 for the radial return to the yield
surface.

Introduction of the above quantities allows the treatment of kinematic
hardening by the initial load technique either as in the successive approx-
imation by eqn (6.28) or in the Newton-like fashion, eqn (6.39), with the
elastic stiffness Kn+1 of the discretized system as an iteration matrix. A
closer approximation to the gradient matrix of the system is obtained along
the lines indicated for the isotropic hardening material on the basis of elasto-
plastic relations referring to finite increments, cf. eqns (6.40)–(6.42).

6.2 Viscoelasticity and creep

Viscosity
Metals loaded at elevated temperature undergo, in addition to the instanta-
neous deformation caused by the thermal and mechanical loading, time-
dependent inelastic deformation due to activation of viscous processes.
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Viscosity is attributed to the amorphous constituents of the material,
whereas plastic flow is related to the microscopic structure [1]. A descrip-
tion of time-dependent material response is necessary in order to account
for creep (progressing deformation at constant stress) and relaxation pro-
cesses (stress release at constant strain), which may determine the useful
lifetime of systems operated at elevated temperature. The dependence of
the material behaviour on the rate of deformation or the rate of loading is,
on the other hand, of great significance when the transient response of a
structure or a component is to be investigated.

The uniaxial response of the viscous material is described by the relation

σ = 3μη̇V, (6.49)

where μ is the viscosity coefficient. It follows that the stress σ is induced by
a temporal variation η̇V of the viscous inelastic strain. The relation given in
eqn (6.49) pertains to a linear viscous solid. A nonlinear dependence of the
stress on the strain rate can still be represented in the form of eqn (6.49),
but with viscosity coefficient μ(η̇V). For instance, the frequently encountered
power law form

σ = kη̇m
V or

σ

σo
=

(
η̇V

η̇Vo

)m

(6.50)

(relating positive quantities or magnitudes) can be accommodated in
eqn (6.49) via the viscosity coefficient:

3μ = kη̇m−1
V =

σo

η̇m
Vo

η̇m−1
V . (6.51)

In eqn (6.50), the values σo, η̇Vo specify a reference state while σ, η̇V are
variable quantities.

In either case, the linear or the nonlinear, the stress is a consequence of
the rate of strain and vanishes if the strain is kept temporarily constant.
The exponent m in eqn (6.50) is known as the rate sensitivity of the stress.
It is defined by the differential quotient

m =
dlnσ

dlnη̇V
, (6.52)

referring to the logarithmic form of the equation. For metals 0 ≤ m ≤ 1, the
lower limit pertaining rather to a perfectly plastic solid (σ = k), the upper
limit to a linear viscous material.

Viscoelastic material
Viscoelastic response can be modelled by assembling viscous and elastic
material constituents (elements) in various ways. We restrict ourselves in
the following to two essential combinations of linear constituents.

The parallel assembly of an elastic element (spring) and a viscous ele-
ment (dashpot; Fig. 6.3), is known as the viscoelastic Kelvin–Voigt solid.
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Figure 6.3: Viscoelastic Kelvin–Voigt model (left) and Maxwell element
(right).

The stress required for straining the model is composed of two additive
contributions

σ = Eγ + 3μγ̇. (6.53)

The first term on the right-hand side of eqn (6.53) is from the elastic part,
the second from the viscous part. Both constituents undergo the same strain:
γ = ε enters the elastic relation, γ̇ = η̇V the viscous.

In the viscoelastic model, a constant strain (γ̇ = 0) is associated with a
constant stress as from elasticity, while the viscous contribution vanishes.
The stress increases when the strain rate is increased. If the solid is subject to
a constant stress σ0 applied at time t = 0, integration of eqn (6.53) furnishes
the strain

γ =
σ0

E

[
1 − exp

(
−Et

3μ

)]
, (6.54)

which is seen to evolve from initially γ0 = 0 towards the asymptotic limit
γ∞ = σ0/E.

An assembly of the elastic and the viscous element in series leads to the
Maxwell model (Fig. 6.3). In this case the stress conditions are uniform
in both constituents, but the strain of the compound element is additively
composed. Thus for the strain rate

γ̇ =
σ̇

E
+

σ

3μ
. (6.55)

A constant stress induces a constant strain rate associated with the viscous
constituent. Instantaneous application of the stress σ0 (high stress rate,
σ/3μ negligible) immediately produces a strain γ0 = σ0/E = ε0 in the elas-
tic constituent. If the strain is fixed at γ0 (γ̇ = 0), integration of eqn (6.55)
gives the stress

σ = σ0 exp
(

−Et

3μ

)
. (6.56)

At constant strain the stress is relaxing with time from initially σ0 towards
ultimately zero. The quotient 3μ/E in eqn (6.56) is called the relaxation
time.

It can be concluded that, independently of other properties, the Kelvin–
Voigt model is suitable in describing the temporal evolution of the strain at
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given stress, while the Maxwell model appears to be convenient for describ-
ing the stress relaxation at given strain.

Creep of metals
The creep strain rate η̇C is superposed to the elastic strain rate ε̇ = σ̇/E
such that

γ̇ =
σ̇

E
+ η̇C, (6.57)

which is a combination of the Maxwell type. A relationship between creep
strain rate and stress is frequently attempted in the power-law form

η̇C

η̇Co
=

(
σ

σo

)n

. (6.58)

This can be interpreted as an inverse relation to eqn (6.50) with n = 1/m.
Since the exponent n assumes values higher than unity, the effect of stress
variations on the creep strain rate is significant.

Further to eqn (6.58), functional fitting of uniaxial creep data obtained
experimentally at different levels of constant stress and temperature
(Fig. 6.4) can be employed for establishing the creep law in the form of
a functional dependence

η̇C = f(σ, T, t, ηC), (6.59)

where ηC is the accumulated creep strain. The question arises then regarding
the utilization of such a data set and the associated functional description,
under transient, i.e. time varying stress and temperature. The rules postu-
lated in this regard are referred to as hardening rules [2].

The time hardening rule assumes that the creep rate at any instant is
defined by a functional dependence of the form

η̇C = f(σ, T, t). (6.60)

Figure 6.4: Uniaxial creep curves.
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Figure 6.5: Hardening rules for creep: time hardening.

Following eqn (6.60), if the stress is changed from σ1 to σ2 at time t1, the
creep rate η̇C2 is determined for stress σ2, at fixed instant t1 (Fig. 6.5).

The strain hardening rule assumes the creep rate at any instant to be
given by the functional dependence

η̇C = f(σ, T, ηC). (6.61)

This implies that, by changing the stress from σ1 to σ2 at strain ηC1, the
updated creep rate η̇C2 is determined for stress σ2 keeping the strain ηC1
constant (Fig. 6.6). Regarding variations in temperature, they are treated
analogously to the change of stress for both hardening rules.

Under multiaxial conditions, the creep strain rate in metals can be writ-
ten as

η̇C = ˙̄ηCs with s =
3
2

1
σ̄

σD, (6.62)

Figure 6.6: Hardening rules for creep: strain hardening.
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in formal analogy to plastic flow. The magnitude of the creep strain rate is
defined by

˙̄η2
C =

2
3
η̇t

Cη̇C (6.63)

and is specified in eqn (6.62) using the function of eqn (6.59) from uniaxial
data with equivalent quantities as arguments: ˙̄ηC = f(σ̄, T, t, η̄C). The vector
s defines the direction of η̇C, which is assumed along the deviatoric stress
σD; the creep strain is isochoric.

The representation of the creep strain rate in eqn (6.62) is equivalent to
the description of the viscous material constituent by

σD = 2μη̇C, (6.64)

the multiaxial analogue to eqn (6.49). For scalar equivalent quantities the
relation of eqn (6.64) assumes the form

σ̄ = 3μ ˙̄ηC, (6.65)

which can be compared with uniaxial material characteristics. Utilizing
eqn (6.59) for ˙̄ηC in eqn (6.65) specifies the viscosity coefficient:

3μ =
σ̄

f(σ̄, T, t, η̄C)
. (6.66)

Incrementation
Inspection of eqns (6.49) and (6.50) describing viscous materials, suggests
that the stress dependence is of primary importance for the strain rate.
Therefore, we investigate incrementation of the functional form η̇C = f(σ)
within the time interval τ = tn+1 − tn:

ηCΔ = ηCn+1 − ηCn =

tn+1∫
tn

f(σ)dt. (6.67)

For a given temporal variation of the stress within the interval, the integral
in eqn (6.67) can be evaluated either analytically or, most likely, numerically.

By the mid-value theorem,

ηCΔ = τf(σζ) (0 ≤ ζ ≤ 1), (6.68)

where a linear variation of the stress σ within the increment as in eqn (5.74)
may be assumed in order to express σζ in terms of σn, σn+1 and of the
collocation parameter ζ = (t − tn+1)/τ . Then the incremental transition of
the creep strain is performed by

ηCn+1 = ηCn + τf(σζ), σζ = (1 − ζ)σn + ζσn+1. (6.69)
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If the history of the stress σ is considered prescribed in the process, numer-
ical perturbations δηC at stage n are transmitted to stage n + 1 without
any modification by the integration scheme. If, on the other hand, the his-
tory of the strain γ is prescribed, the stress σ = E(γ − ηC) is affected by
perturbations in the creep strain. As a consequence, the incremental approx-
imation by eqn (6.68) can alter numerical perturbations introducing either
amplification or damping, and raises the question of stability.

Incrementation of eqn (6.69) gives

δηCn+1 = δηCn + τ
df

dσ

∣∣∣∣
ζ

δσζ

= δηCn − τEf ′
ζ [(1 − ζ)δηCn + ζδηCn+1] , (6.70)

where f ′ = df/dσ, and since γ = constant, δσ = −EδηC. From eqn (6.70),
numerical perturbations in the creep strain propagate in accordance with

δηCn+1 =

(
1 −

τEf ′
ζ

1 + ζτEf ′
ζ

)
δηCn. (6.71)

For stability |δηCn+1| < |δηCn|, and from eqn (6.71)

0 < τEf ′
ζ <

2
1 − 2ζ

. (6.72)

This requires f ′ > 0 on the one hand, and restricts the time increment to

τ <
2

(1 − 2ζ)Ef ′
ζ

for 0 ≤ ζ ≤ 1
2

(6.73)

on the other hand. Unconditional stability is obtained for 1/2 < ζ ≤ 1. From
eqn (6.71), the sign of perturbations will not alternate as long as the time
step is below the oscillation limit

τ <
1

(1 − ζ)Ef ′
ζ

. (6.74)

The stability limit for τ , eqn (6.73), and the oscillation limit, eqn (6.74),
are plotted as a function of the collocation parameter ζ in Fig. 6.7.

For illustration, we consider the uniaxial case of a rod specimen having
experienced the creep strain ηC0. At time t = 0 let the specimen be con-
strained to γ = 0. This produces a stress σ = −EηC and induces a strain
rate η̇C = σ/3μ. The model problem is governed by the equation

η̇C +
E

3μ
ηC = 0. (6.75)
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Figure 6.7: Limitation of the time increment by numerical stability.

Integration of eqn (6.75) furnishes the solution

ηC

ηC0
= exp

(
−Et

3μ

)
. (6.76)

The creep strain is decaying asymptotically from initially ηC0 to ηC∞ = 0.
Approximate integration as by eqn (6.69) with

f =
σ

3μ
= − E

3μ
ηC (6.77)

leads to the incremental transformation

ηCn+1 =
(

1 − τE/3μ

1 + ζτE/3μ

)
ηCn, (6.78)

which can be compared with eqn (6.71). In the present linear case, approxi-
mate solutions and perturbations progress in the same manner. Both quan-
tities are seen to decay as long as the stability condition of eqn (6.72) is
observed:

0 < τ
E

3μ
<

2
1 − 2ζ

. (6.79)

Instability and oscillatory behaviour, eqn (6.73), can be confirmed. Figure
6.8 demonstrates the significance of the collocation parameter ζ for the
accuracy of the incremental approximation.

In the multiaxial case the creep rate is given by eqn (6.62). This relation-
ship can be written as

η̇C − f(σD) = 0. (6.80)
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Figure 6.8: Accuracy of numerical integration.

The function f(σD) presumes a dependence ˙̄ηC = f(σ̄) such that

f(σD) = ˙̄ηCs = f(σ̄)s(σD). (6.81)

Incremental integration is effected by

ηCn+1 = ηCn + ηCΔ with ηCΔ = τ f(σDζ), (6.82)

where σDζ is obtained at the selected instant ζ assuming a linear variation
of the stress within the increment, eqn (5.74). If stresses σ are prescribed,
the scheme in eqn (6.82) performs an approximate evaluation of the integral
for the creep strain. For prescribed strain γ, the stress varies with the creep
strain:

σD = 2G[γD − ηC],
dσD

dηC
= −2GI.

Then eqn (6.80) becomes a differential equation in ηC, and eqn (6.82) is
applied to its numerical solution.

An investigation of stability follows [3] and the lines of Section 5.4.3,
leading to the condition of eqn (5.97) for the time increment τ . The matrix N
defined in eqn (5.87) is specified in the case of eqn (6.80) by the relationship

δf =
df

dσD

dσD

dηC
δηC = −NδηC,

to

N = − df
dσD

dσD

dηC
= 2G

df
dσD

. (6.83)
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With reference to eqn (6.81),

df
dσD

= f
ds

dσD
+ f ′s

dσ̄

dσD

=
3
2

f

σ̄

[
I − 2

3

(
1 − f ′σ̄

f

)
sst

]
, (6.84)

where eqns (1.119) and (5.111) have been considered. It is noticed that the
second term in the parentheses in eqn (6.84) vanishes if f(σ̄) is linearly
proportional to σ̄.

The spectral radius of the matrix N, eqns (6.83) and (6.84), reads

ρ(N) = 3G
f

σ̄
ρ. (6.85)

Here, ρ denotes the spectral radius of the bracket expression in eqn (6.84).
The non-zero eigenvalues of this matrix are 1 and f ′σ̄/f . For the power-
law form, eqn (6.58), f ′σ̄/f = n > 1, which defines ρ in this case. Assuming
ρ = f ′σ̄/f , the stability condition for the time increment is deduced from
eqn (5.97) as

τ <
2

(1 − 2ζ)3Gf ′
ζ

, (6.86)

and is comparable to eqn (6.74) for the uniaxial case.
In Section 5.4.3, the stability of incremental plastic strain was investigated

for a prescribed magnitude η̄Δ. Since the physical origin of η̄Δ turns out to be
irrelevant in this respect, the stability limit of eqn (5.115) can be interpreted
for the present case of creep. With η̄CΔ = τf(σ̄ζ), the time increment is
restricted by eqn (5.115) to

τ <
2

(1 − 2ζ)3G(f/σ̄)ζ
for 0 ≤ ζ ≤ 1

2
. (6.87)

The above differs from eqn (6.86) because here the magnitude of the incre-
mental creep strain is not subject to perturbations. The two limits are seen
to coincide if f(σ̄) is linearly proportional to σ̄. The result is applicable to
a series model of the Maxwell type, immaterial of the nature of the viscous
constituent which specifies the relationship ˙̄η = f(σ̄).

Algorithmic implementation
In a straightforward approach to problems involving history- and rate-
dependent material behaviour, the inelastic strain is assumed to be com-
posed of an instantaneous and a time-dependent part which are described
separately. The instantaneous contribution is governed by the theory of plas-
ticity, while the time-dependent contribution is the result of creep. Bearing
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in mind that, in metals, creep is associated with elevated temperatures and
possibly non-isothermal conditions, the stress is given as

σ = κ[γ − ηT − ηP − ηC], (6.88)

which extends the stress–strain relation in eqn (6.8) by the creep strain.
For the incremental computation, the stress at state n + 1 is written in

the form

σn+1 = κn+1[γn − ηPn − ηTn+1 − ηCn+1] + κn+1[γΔ − ηPΔ], (6.89)

following eqn (6.24). The incremental creep strain ηCΔ is not directly pro-
portional to the increment of stress or strain as is the incremental plas-
tic strain ηPΔ. Therefore, it can be estimated with the currently available
thermomechanical state for a given time increment τ , and is accumulated
to the creep strain ηCn+1 = ηCn + ηCΔ. After that, the creep strain is for-
mally treated in the same manner as the thermal strain. The creep strain is,
however, deviatoric and completely different in nature from the volumetric
thermal expansion. Furthermore, if the incrementation scheme for ηCΔ is
not explicit and involves quantities at the end of the incremental step, the
creep strain ηCn+1 has to be updated following the course of the iterative
solution.

By eqn (6.89) for the stress σn+1, the algorithmic issues presented previ-
ously in Section 6.1 remain essentially unmodified, in particular the deter-
mination of the incremental plastic strain. The update of the creep strain
ηCn+1 = ηCn + ηCΔ and superposition to the thermal strain ηTn+1 are the
only alterations. Simplifications in the case of isothermal conditions are
obvious, and allow an exclusive consideration of incremental quantities, see
Section 5.5. Finally, in case creep is considered exclusively, the plasticity
branch of the algorithm is not active.

6.3 Viscoplasticity

An alternative approach to rate- and history-dependent material phenom-
ena does not distinguish between viscous and plastic contributions to the
inelastic flow. The simplest form of the viscoplastic model for a state of
uniaxial tensile stress is

σ = σs + 3μη̇V. (6.90)

The model apparently consists of the parallel assembly of a perfectly plastic
constituent with yield stress σs and a linear viscous one (Fig. 6.9, left).
It accounts for the fact that certain materials do not exhibit viscous flow
below a defined stress level (σ ≤ σs). Equation (6.90) is ascribed to a linear
Bingham medium [4]. The relationship was extended to multiaxial situations
by Hohenemser and Prager [5]; an additional discussion by Prager is found
in [6].
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Figure 6.9: Viscoplastic (left) and elastic–viscoplastic models (right).

An elastic–viscoplastic model is obtained by the superposition of an elastic
constituent. This element is joined in series (Fig. 6.9, right) such that the
rate of overall strain is given by

γ̇ =
σ̇

E
+

σ − σs

3μ
. (6.91)

In eqn (6.91), σ̇/E represents the elastic contribution, while the second term
is the viscoplastic part from eqn (6.90).

If the specimen is deformed at a constant strain rate (γ̇ = constant), the
solution of eqn (6.91) for the stress is

σ = σs +
[
1 − exp

(
−Et

3μ

)]
3μγ̇. (6.92)

Equation (6.92) describes the interaction of elastic and inelastic response in
the transient part of the deformation. With increasing time, the exponen-
tial in the parentheses diminishes and the expression for the stress tends to
eqn (6.90) of the viscoplastic constituent. The effect of elasticity loses signif-
icance with time, and the stress ultimately becomes stationary (Fig. 6.10).
The time scale of the phenomenon is defined by the relaxation constant

γ

E

3μ

γ
.

σ − σ

γ
s

3μ
.

50 10

1.0

0.5

0

Figure 6.10: Transition to stationary stress.
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3μ/E. Since γ̇ = constant, the time can be measured in terms of deforma-
tion as t = γ/γ̇.

An obvious generalization of the viscoplastic model defined by eqn (6.90)
reads

σ = σf(ηV) + kη̇m
V . (6.93)

The quantity σf(ηV) describes the yield stress as a function of the inelastic
(viscoplastic) strain specified by the hardening characteristic of the material
in the absence of viscous effects. The second term is the power-law form of
a nonlinear viscous constituent.

From eqn (6.93), the rate of viscoplastic strain is

η̇V =
(

σ − σf

k

)n

≥ 0
(

n =
1
m

)
. (6.94)

It follows that viscoplastic flow occurs as soon as an ‘overstress’ σ − σf
exists, or, alternatively, as long as the yield condition σ − σf ≤ 0 remains
unsatisfied. Thus, in contrast to inviscid plasticity, viscoplastic flow is not
governed by the satisfaction of the yield condition (consistency condition).

A constitutive framework for rate sensitive plastic materials has been
presented by Perzyna in [7]. In our notation, the viscoplastic strain rate
under multiaxial conditions is stated as

η̇V = ˙̄ηVs with s =
3
2

1
σ̄

σD, (6.95)

which is homologous to the presentation of plastic flow and creep. The
direction s of viscoplastic flow is still specified by the deviatoric stress. The
magnitude ˙̄ηV, defined as usual, is determined by the relationship

˙̄ηV =
1
μ̄

F (φ̄) ≥ 0. (6.96)

In this case the viscous characteristics of the material are represented by the
parameter μ̄. The function F depends on φ̄, the von Mises yield function,
as known from inviscid plastic flow standardized by the yield stress of the
material. Thus, including the temperature as a variable quantity

φ̄ =
σ̄ − σf(η̄V, T )

σf(η̄V, T )
. (6.97)

The discontinuity of the function F (φ̄) ensures that viscoplastic flow does
not occur for F (φ̄) ≤ 0.

The above description of the magnitude of viscoplastic flow can be asso-
ciated with the notion of a rate-dependent yield function. To this end, we
introduce for the function F (φ̄) in eqn (6.96) the specific form

F (φ̄) = φ̄n. (6.98)
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Figure 6.11: Range of elastic–viscoplastic response.

Then, rearranging we obtain

σ̄ −
[
1 + (μ̄ ˙̄ηV)m]

σf = 0
(

m =
1
n

)
. (6.99)

This relation may be interpreted as expressing the effect of viscous phe-
nomena on the static von Mises yield function with isotropic hardening.
In particular, the second term can be viewed as a dynamic yield stress.
It follows an increase or decrease of the viscosity μ̄ and rate of strain ˙̄ηV.
In the limiting case of infinite viscosity (μ̄ → ∞) or for sudden deformation
( ˙̄ηV → ∞) the value of the equivalent stress σ̄ is not restricted by eqn (6.99).
At the other end, in the absence of viscosity (μ̄ → 0) or for very slow defor-
mation ( ˙̄ηV → 0) eqn (6.99) reduces to the inviscid yield limit for which σ̄
is bounded by the static yield stress σf(η̄V) (Fig. 6.11).

Elasto-viscoplastic analysis requires the stress in terms of strain,

σ = κ[γ − ηT − ηV], (6.100)

where the viscoplastic strain ηV takes the place of the creep and plastic
strain in the previous model. For the computational treatment by incre-
mentation, refer to Section 6.1. At stage n + 1, the stress is

σn+1 = κn+1[γn+1 − ηVn+1 − ηTn+1]

= κn+1[γn − ηVn − ηTn+1] + κn+1[γΔ − ηVΔ] (6.101)

and the present task reduces to the specification of the incremental vis-
coplastic strain ηVΔ instead of the plastic ηPΔ in eqn (6.24).

Incrementation of the viscoplastic strain is performed according to

ηVΔ = η̄VΔsζ . (6.102)
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The flow direction sζ = s(σDζ) is determined at position ζ; in conformity
with the radial return in plasticity, it is taken as sζ=1 = sn+1. Regarding
the magnitude of the incremental inelastic strain we consider the specific
case F (φ̄) = φ̄ in eqn (6.96). For the time increment τ we obtain

η̄VΔ =
τ

μ̄σf(η̄Vn, Tn+1)
[σ̄n+1 − σf (η̄Vn, Tn+1)] ≥ 0, (6.103)

which can be compared with eqn (6.33) for conventional plasticity.
It is seen that a complete analogy between the plastic and viscoplastic

models is established by the substitution

1
h

⇐ τ

μ̄σf(η̄Vn, Tn+1)
. (6.104)

This analogy allows the treatment of viscoplastic flow by the standard
algorithms for plasticity except for the satisfaction of the yield condition.
Implementation of different functions F (φ̄) requires additional modifica-
tions. Conversely, the viscoplastic material model may be employed for the
solution of problems in plasticity [8]. For this purpose, fictitious viscoplastic
flow is activated in the loading increment as by eqn (6.103) with the
overstress from the elastic solution. The time increment τ and the viscosity
coefficient μ̄ are selected in compliance with the actual plastic hardening
parameter h as in eqn (6.104), such that the stress is not reduced below
the yield limit. At loading stage n + 1 the incremental viscoplastic process
is maintained until the relaxed stress fulfils everywhere the static yield
condition σ̄n+1 = σf(η̄n+1, Tn+1) to a satisfactory degree, and inelastic flow
ceases. The accumulated viscoplastic flow in the step [n, n + 1] is taken
as the plastic strain increment ηΔ. For a given strain increment γΔ =
constant, the technique performs stress relaxation to the yield surface along
the deviatoric stress σDn+1, thus effecting radial return. The procedure
may be employed in conjunction with a viscoplastic model referring to
more general, non-deviatoric flow conditions, in which case it is comparable
with the return technique described in Section 5.4.5 for plasticity.

Summarizing, an extended form of deviatoric viscoplasticity can be simply
referred to eqn (6.90). Covering multiaxial conditions by the equivalent scalar
quantities, we write

σ̄ = σf + 3μ ˙̄ηV.

The yield stress σf(η̄V, T ) provided by the hardening characteristic of the material
for vanishing viscosity describes the plastic constituent of the model. The viscous
constituent is specified by the coefficient μ( ˙̄ηV, η̄V, T ), which may accommodate
nonlinearity and strain dependence in addition to the temperature.

For a given stress, the above equation determines the equivalent strain rate ˙̄ηV;
the multiaxial strain rate η̇V is obtained by eqn (6.95). If the inelastic strain rate
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is a given quantity, the viscoplastic model defines a dynamic yield stress as

σfV =
(

1 +
3μ ˙̄ηV

σf

)
σf ,

which compares with eqn (6.99).

6.4 Effects of inertia

6.4.1 Continuum level

In a number of problems the loading is applied within a short interval of
time, or it is rapidly varied. Thereby, the property of inertia of the mass
introduces the effect of time in the diffusion of the action of the loading in the
solid. For a comprehensive presentation of dynamic plasticity problems the
reader is referred to [9]. The following elementary introduction is restricted
to the propagation of uniaxial waves; further mathematical details can be
found in [10].

Let us consider the uniaxial case of the rod in Fig. 6.12, which is assumed
to deform under negligible changes of geometry. The equation of motion
along the longitudinal axis of the rod is obtained by equating the resul-
tant of the stresses on a differential element to the inertia force due to the
acceleration. The result is

∂σ

∂x
= �

∂2u

∂t2
, (6.105)

where u(x, t) denotes the displacement along the longitudinal x-axis, σ(x, t)
is the normal stress in the same direction and � is the density of the material
(assumed constant).

Stating the stress σ(γ) as a function of the longitudinal strain γ(x, t), we
obtain

∂σ

∂x
=

dσ

dγ

∂γ

∂x
, γ =

∂u

∂x

Figure 6.12: Dynamics of uniaxial motion (left) and material behaviour
(right).
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and from eqn (6.105)

∂2u

∂t2
=

1
�

dσ

dγ

∂2u

∂x2 = c2 ∂2u

∂x2 . (6.106)

The quantity

c =
(

1
�

dσ

dγ

)1/2

, (6.107)

known as the local speed of sound, characterizes the local velocity of prop-
agation of perturbations. The propagation speed follows the variation of
the slope 0 ≤ dσ/dγ ≤ E of the stress–strain characteristic of the material.
It is high in the elastic range and diminishes as the slope decreases with
progressing plastic strain.

Linear second-order differential expressions of the form

A
∂2u

∂t2
+ 2B

∂2u

∂t∂x
+ C

∂2u

∂x2

are classified in accordance with the sign of the discriminant AC − B2. The dif-
ferential expression is:

hyperbolic for AC − B2 < 0,

parabolic for AC − B2 = 0,

elliptic for AC − B2 > 0.

In eqn (6.106): A = 1, B = 0, C = −c2, and

AC − B2 = −c2 = −1
�

dσ

dγ
.

Hence, the differential equation of motion is of the hyperbolic type as long as
dσ/dγ > 0 (hardening), becomes parabolic for dσ/dγ = 0 (perfect plasticity), and
would be elliptic for dσ/dγ < 0 (softening), Fig. 6.12.

Introducing the particle velocity v = ∂u/∂t and the strain γ = ∂u/∂x as
alternative variables, eqn (6.106), which is of the second order in u, can be
substituted by a system of two first-order differential equations for v(x, t)
and γ(x, t):

∂v

∂t
= c2 ∂γ

∂x
,

(6.108)
∂γ

∂t
=

∂v

∂x
.

The second equation reflects kinematic compatibility and relies on a con-
tinuous function u(x, t).

With the definitions

v =
[

v

γ

]
, A =

[
0 c2

1 0

]
,
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the equation system can be written in the matrix form

∂v
∂t

− A
∂v
∂x

= 0. (6.109)

Wave propagation
As long as the stress in the rod remains within the elastic range of the
material, the wave speed is constant, c = (E/�)1/2 = c0, and solutions of
eqn (6.106) for the displacement wave can be given in the form

u = f(x − c0t) + g(x + c0t). (6.110)

The wave solution satisfies eqn (6.106) for arbitrary functions f and g, which
must be adapted to the initial and boundary conditions of the problem.
From the arguments, function f pertains to a wave moving along the positive
direction of the x-axis (positive or right-hand side wave) and function g to
a wave along the negative x-axis (negative or left-hand side wave).

Considering a positive wave, we obtain the strain and velocity by differ-
entiation as

γ =
∂u

∂x
= f ′, v =

∂u

∂t
= −c0f

′,

and
σ = −E

c0
v = −�c0v (6.111)

for the stress (σ = Eε, ε ≡ γ). From eqn (6.111), particles move in a com-
pressive wave (σ < 0) in the same direction as the wave (v > 0). In an
expansion wave (σ > 0) the particle motion is opposed to the wave direc-
tion (v < 0). The same conclusion can be drawn for a negative wave.

If a semi-infinite rod (0 ≤ x ≤ ∞) is subject to an impact stress −σ0 at
x = 0, t = 0, the motion of the initiated positive wave is described by

u = f(x − c0t) = −σ0

E
(x − c0t). (6.112)

Strain and particle velocity derive from eqn (6.112) as

γ =
∂u

∂x
= −σ0

E
= ε, v =

∂u

∂t
=

σ0

E
c0 (6.113)

and it is seen that the strain complies with the stress boundary condition
via the elasticity law.

The solution in eqn (6.112) can be interpreted in the x, t plane (Fig. 6.13)
as follows. The line x = c0t separates the region (x > c0t) which is still at
rest from the already disturbed region (x < c0t). It defines the motion of
the wave front along the axis of the rod. In the undisturbed region, in front
of the wave, the displacement, velocity and strain are zero. In the region
x < c0t, behind the wave front, the displacement u is given by eqn (6.112).
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Figure 6.13: Propagation of stress pulse in an elastic rod.

At fixed instant t, it is linearly distributed along x. Its first derivatives with
respect to space and time, the strain γ < 0 and the particle velocity v > 0,
are constant, exhibiting a discontinuity at the wave front.

If the impact stress −σ0 is applied in the form of a constant pulse of
duration t0, loading waves propagate from x = 0 until an unloading wave
sets in at t = t0 (Fig. 6.13). Superposition establishes a state of rest behind
the second wave front which is defined by the line x = c0(t − t0). As a result,
the stress pulse propagates with velocity c0 along the elastic rod.

The end x = l of a rod of finite extension may be subject to various
boundary conditions. For a fixed end the boundary condition reads

u(l, t) = 0, v(l, t) =
∂u

∂t

∣∣∣∣
x=l,t

= 0

and is seen to be satisfied by the superposition of a negative wave such that
from the end

u = f(χ − c0t) + g(χ + c0t) (χ = x − l). (6.114)

The negative wave describes a reflection at the fixed end, and is defined by
the property

g(χ + c0t) = −f(−χ − c0t),

which merely reverses the sign of wave and particle velocity. The nature of
the wave (compressive, expansive) is not altered by the reflection.

At the fixed end (χ = x − l = 0):

u(0, t) = f(−c0t) − f(−c0t) = 0
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for the displacement, and

v(0, t) =
∂u

∂t

∣∣∣∣
χ=0,t

= −c0f
′(−c0t) + c0f

′(−c0t) = 0

for the velocity. The strain at reflection is

γ(0, t) =
∂u

∂x

∣∣∣∣
χ=0,t

= f ′(−c0t) + f ′(−c0t) = 2f ′(−c0t)

and amounts to twice the value of the arriving wave. The same effect is
experienced by the stress in the elastic solid.

A free end is characterized by the condition of a vanishing stress, and
strain. Thus,

γ(l, t) =
∂u

∂x

∣∣∣∣
x=l,t

= 0,

which can be effected by the superposition at x = l of a negative wave in
eqn (6.114) with the property

g(χ + c0t) = f(−χ − c0t).

This negative wave does not reverse the sign of the particle velocity. There-
fore, compressive waves are reflected at the free end as expansion waves and
vice versa.

The strain at the free end (χ = x − l = 0) is obtained by

γ(0, t) =
∂u

∂x

∣∣∣∣
χ=0,t

= f ′(−c0t) − f ′(−c0t) = 0.

Velocity and displacement at the free end are deduced as

v(0, t) =
∂

∂t
(f + g)χ=0,t = −2c0f

′(−c0t)

and

u(0, t) = f(−c0t) + g(c0t) = 2f(−c0t),

respectively. Reflection at the free end is seen to double the value of velocity
and displacement pertaining to the arriving wave u = f(x − c0t).

Propagation of elastic–plastic waves
Let the semi-infinite rod (0 ≤ x ≤ ∞) be made of elastoplastic material with
elastic limit σs and a linear hardening characteristic (Fig. 6.14) described
by the relations

σ = Eε for |σ| ≤ σs,

σ =
E

E + h
(σs + hγ) for |σ| ≥ σs.
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Figure 6.14: Linearly hardening elastoplastic material.

Application of an impact stress σ0 not exceeding the range −σs ≤ σ0 ≤ σs
induces an elastic wave which can be analysed as before. Suppose at time
t = 0 the rod possesses a prestress σ0 = −σs equal to the elastic limit of
the material. Application of an additional impact stress −σ0Δ at x = 0,
initiates a wave along the positive x-axis. Since the induced stress is beyond
the elastic limit, we have dσ/dγ = Eh/(E + h) = Ē.

In the linear hardening material the elastoplastic wave propagates with
constant velocity c̄ = (Ē/�)1/2 < c0, and can be described analogously to
the previous elastic case. If the stress increment −σ0Δ is a pulse of duration
t0, an unloading wave starts to propagate to the right at x = 0, t = t0. Since
unloading takes place elastically (dσ/dγ = E), the wave velocity is c0. The
faster elastic wave overtakes the elastoplastic one at

x =
c̄c0

c0 − c̄
t0, t =

c0

c0 − c̄
t0

and from then on the elastoplastic wave is eliminated.
An impact stress −σ0 beyond the elastic limit (|σ0| > σs) applied to the

stress-free rod at x = 0, t = 0 originates two distinct deformation waves

u = −σs

E
(x − c0t) − σ0 − σs

E
(x − c̄t),

one propagating with the elastic wave speed c0 and the other with the
elastoplastic speed c̄ < c0. With reference to the x, t-diagram (Fig. 6.15),
the material is at rest below the line x = c0t defining the position of the
elastic wave front, and σ = 0 in this region. Below the line x = c̄t defining
the position of the elastoplastic wave front, the elastic limit is not exceeded
and |σ| < σs here. Elastoplastic deformation occurs above the elastoplastic
line, x < c̄t. At the elastic and elastoplastic wave fronts the stress and the
strain are discontinuous.

The elastoplastic wave extends with time according to x̄ = c̄t, the elas-
tic according to x0 = c0t. The smaller the ratio x̄/x0 = c̄/c0, the flatter
the hardening characteristic of the material. In the perfectly plastic case
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Figure 6.15: Elastic and elastoplastic wave.

(dσ/dγ = 0), the speed of the elastoplastic wave vanishes as well as its
extent (c̄ = 0, x̄ = 0). As a consequence, only the strain associated with
the limit stress σs is propagated by an elastic wave, while any deformation
beyond the elastic limit cannot be transmitted along the rod but is local-
ized at the point of application. If the material characteristic is curvilinear,
several waves initiate as indicated in Fig. 6.15 by the fan from the origin.

In the case of a stress pulse of duration t0, an unloading wave sets in
at x = 0, t = t0 and propagates with the elastic wave speed c0. In front of
the unloading wave the material state is that induced by the elastoplastic
loading wave; behind the front the material is at rest. Since c0 > c̄, the
unloading wave overtakes the elastoplastic loading wave. From then on, the
pulse propagating along the rod is defined by the elastic loading and unload-
ing fronts.

Nonlinear material
For completeness, we pay attention to issues concerning nonlinear materi-
als for which the differential quotient dσ/dγ depends on the strain γ, and
therefore the wave speed is variable

c = c(γ)

The equation of motion, eqn (6.106), becomes nonlinear, and solutions
are attempted by a linearization of the equivalent system in eqn (6.108) or
its matrix form, eqn (6.109). To this end, the equations are decoupled by
a transformation of variables. The spectral decomposition of the coefficient
matrix A in eqn (6.109) gives

A = CΛC−1, Λ =
[

c 0
0 −c

]
, C =

[
c c
1 −1

]
,

where the diagonal matrix Λ comprises the eigenvalues of A as the diagonal
elements, and the matrix C is composed of the eigenvectors in its columns.
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Utilization in eqn (6.109) supplies instead

∂ξ

∂t
− Λ

∂ξ

∂x
= 0, (6.115)

which is a system of two differential equations for the transformed variables

ξ = 2cC−1v or
[

ξ
η

]
=

[
1 c
1 −c

] [
v
γ

]
.

Since the coefficient matrix Λ in eqn (6.115) is diagonal, the two differen-
tial equations are uncoupled. Because of c(γ), the system is nonlinear. It can
be linearized by an inversion (or interchange) of dependent and independent
variables. It then assumes the form

∂x

∂ξ
− c

∂t

∂ξ
= 0,

∂x

∂η
+ c

∂t

∂η
= 0, (6.116)

known as the canonical system. The canonical system is not equivalent to
the original one in eqn (6.108). The reason is that the inversion of the
variables requires a non-zero functional determinant,

Δ =

∣∣∣∣∣∣∣
∂ξ

∂x

∂ξ

∂t
∂η

∂x

∂η

∂t

∣∣∣∣∣∣∣ �= 0,

and thereby solutions pertaining to Δ = 0 are lost. These solutions are
known as simple waves; they can be constructed by a discussion of the
condition

Δ(ξ, η) = 2c
∂ξ

∂x

∂η

∂x
= −2

c

∂ξ

∂t

∂η

∂t
= 0. (6.117)

The expressions in eqn (6.117) are obtained with the aid of eqn (6.115), and
reveal that the following cases satisfy the equation:

(i) ξ = constant and η = constant;
(ii) ξ = constant or η = constant.

A further analysis is not within the scope of this text but it can be
found in [10]. In summary, it can be stated that in an elastoplastic material
the velocity of propagation of waves starts at the elastic c0 and decreases
as deformation increases beyond the elastic limit. Since higher strains are
transmitted with lower velocities by the material, a constant impact stress
|σ0| > σs (or strain) will not propagate as applied (Fig. 6.16). The elastic
wave produces a discontinuous front defined by |σ| = σs, while the overstress
|σ0 − σs| (or overstrain) attains a smooth distribution along the axis of
the rod. This is a consequence of the lower signal velocity pertaining to
each higher stress (or strain), which can be concluded from an extended
discussion of the linearly hardening material.
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Figure 6.16: Distortion of impact stress profile propagating in nonlinear
material

For the inversion of the variables to x = x(ξ, η), t = t(ξ, η) consider the func-
tional dependence

ξ = ξ(x) with x =
[

x
t

]
, ξ =

[
ξ
η

]
.

Differentiating, we verify the identity

dξ =
dξ

dx
dx =

dξ

dx
dx
dξ

dξ or
dξ

dx
dx
dξ

= I.

This provides us with an equation for the partial derivatives in the matrix dx/dξ:⎡⎢⎢⎣
∂ξ

∂x

∂ξ

∂t

∂η

∂x

∂η

∂t

⎤⎥⎥⎦
⎡⎢⎢⎣

∂x

∂ξ

∂x

∂η

∂t

∂ξ

∂t

∂η

⎤⎥⎥⎦ =

[
1 0

0 1

]
.

The solution is ⎡⎢⎢⎣
∂x

∂ξ

∂x

∂η

∂t

∂ξ

∂t

∂η

⎤⎥⎥⎦ =
1
Δ

⎡⎢⎢⎣
∂η

∂t
−∂ξ

∂t

−∂η

∂x

∂ξ

∂x

⎤⎥⎥⎦
and relies on a non-zero functional determinant (Δ �= 0). The components of the
vector quantities ∂ξ/∂t, ∂ξ/∂x in eqn (6.115) are⎡⎢⎢⎣

∂ξ

∂t

∂η

∂t

⎤⎥⎥⎦ = Δ

⎡⎢⎢⎣ −∂x

∂η

∂x

∂ξ

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
∂ξ

∂x

∂η

∂x

⎤⎥⎥⎦ = Δ

⎡⎢⎢⎣
∂t

∂η

− ∂t

∂ξ

⎤⎥⎥⎦ ,

and substitution leads to the linearized differential system of eqn (6.116).
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Unloading wave
From the above, even a constant impact on an elastoplastic rod induces
variations of stress and strain along the axis behind the discontinuous wave
front. A pulse will initiate unloading at x = 0, t = t0 which propagates as
an elastic wave through previously strained regions of the rod.

The changes in stress and strain by the unloading are elastic,

σ − σf = E(γ − γf).

Here σf and γf refer to the plastic state at the instant before unloading, and
are to be considered as functions of the location x along the rod. This is
significant for the stress term in eqn (6.105) for the motion:

∂σ

∂x
= E

∂γ

∂x
+

∂

∂x
(σf − Eγf),

and instead of the homogeneous eqn (6.106) one obtains

∂2u

∂t2
− c2

0
∂2u

∂x2 =
1
�

∂

∂x
(σf − Eγf). (6.118)

The unloading wave is thus governed by an inhomogeneous differential equa-
tion with the right-hand side known from the solution for the elastoplastic
loading wave.

Three-dimensional continuum
The equations of motion for the three-dimensional continuum can be
obtained from the equations of static equilibrium by simply considering
the inertia force −�ü in addition to any other applied body forces. The
matrix form of the equation of motion as from eqn (2.61) reads

∂tσ + [f − �ü] = 0. (6.119)

It is a collective representation of the component equations

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+

(
fx − �

∂2u

∂t2

)
= 0,

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+

(
fy − �

∂2v

∂t2

)
= 0,

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+

(
fz − �

∂2w

∂t2

)
= 0,

cf. eqn (2.55). The partial derivatives with respect to time are taken for
fixed particles, which are usually defined by their spatial coordinates in
the undeformed solid. Since deformations are assumed to be infinitesimally
small, they do not affect the particle position. Also, the density � is assumed
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to be independent of deformation, but it may vary within an inhomogeneous
solid, � = �(x).

The body forces and the surface forces are defined as functions of time,
f(t) and t(t), as are any kinematic boundary conditions. Here, not only the
displacement u, but also the velocity u̇ and acceleration ü can be subject
to restrictions during the course of the motion. In addition to the boundary
conditions, definition of the transient problem requires specification of the
state of motion at time t = 0 by initial conditions for the displacement or
the velocity in the solid.

6.4.2 Finite element solution

Instead of a discussion on possible analytical solutions for particular cases,
we describe the extension of the numerical finite element approach (Chap-
ter 5) to dynamic analysis. It is noticed that the inertia forces have to be
accounted for in the formulation of the virtual work principle. They modify
eqn (5.1) to:

K∑
l=1

u˜ t
lPl +

∫
S

u˜ttdS +
∫
V

u˜tfdV =
∫
V

γ˜tσdV +
∫
V

�u˜tüdV, (6.120)

which refers to instant t, all variables representing functions of time.
The displacement u is a function of spatial position and time. This can

be stated explicitly in the formalism of the finite element kinematics in
eqn (5.6) by writing

u(x, t) = ω(x)Uq(t). (6.121)

The separation of the spatial and temporal variables via the product form
in eqn (6.121) has been presumed implicitly in previous parts of the text. It
ensures that time derivatives (velocity u̇ and acceleration ü) are distributed
within the finite element by the same functions ω(x) as the displacements u.

The inertia term in eqn (6.120) modifies the quasistatic eqn (5.19) to

P(t) = S + MÜ, (6.122)

which is the equation of motion for the finite element system. The symmetric
matrix,

M =
nel∑
q=1

at
qmqaq = atma,

m =

⎡⎢⎢⎣
. . .

mq

. . .

⎤⎥⎥⎦ (q = 1, . . . , nel),
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is the mass matrix of the finite element system. It is composed of the element
contributions

mq =
∫
Vq

�ωtωdV. (6.123)

A numerical analysis of dynamic problems in elastoplasticity is based on
the incremental integration of the equations of motion with respect to time.
For transition from instant tn to tn+1 separated by the incremental step τ ,
an approximate integration can be performed by the scheme:

Acceleration Ün+1

Velocity U̇n+1 = U̇n + τ
[
a1Ün + a2Ün+1

]
(6.124)

Displacement Un+1 = Un + τU̇n + τ2
[
b1Ün + b2Ün+1

]
.

The four coefficients a1, a2, b1, b2 can be selected such that various time
integration schemes known in the literature ([11, 12]) are reproduced. Their
specification influences the numerical properties of the approximation.

The numerical analysis of the dynamic problem starts at state t = t0 with
given initial conditions. In an implicit integration scheme the equation of
motion, eqn (6.122), is stated at each subsequent instant tn+1, and the
residual form

R(Ün+1) = Pn+1 − Sn+1 − MÜn+1 = 0 (6.125)

is solved. An iterative solution technique can be based on the instruction

Ün+1,i+1 = Ün+1,i −
[
dR
dÜ

]−1

i

R
(
Ün+1,i

)
, (6.126)

for the transition from the ith iteration to iteration i + 1. Execution requires
computation of the residual vector R(Ün+1) and of the gradient matrix
dR/dÜ of the system, or an approximation to it.

The residual vector in eqn (6.125) comprises the inertia forces

MÜ =
[
· · · at

q · · ·
] ⎡⎢⎢⎣

...
mqÜq

...

⎤⎥⎥⎦ (q = 1, . . . , nel)

as an additional entry to the static case. They are computed by element
contributions with Üq,n+1 = aqÜn+1 from the ith iteration cycle. The
computation of the stress resultants Sn+1 utilizes quasistatic procedures
for elastoplasticity, creep or viscoplasticity. The incremental displacement
UΔ = Un+1 − Un, required as an input for Sn+1, is obtained by the approx-
imation of eqn (6.124) using the Ün+1 currently available.
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The gradient of the residual function R(Ün+1), eqn (6.125), is deduced as

dR
dÜn+1

= − dSn+1

dUn+1

dUn+1

dÜn+1
− M = −τ2b2

dSn+1

dUn+1
− M.

In obtaining the gradient, the applied forces Pn+1 at instant tn+1 are
assumed to be fixed, and use has been made of eqn (6.124) for the displace-
ment Un+1. Approximations to the differential quotient dSn+1/dUn+1 are
as in eqn (6.43) for the quasistatic analysis.

More sophisticated integration schemes employ higher order time derivatives.
Instead of the acceleration and higher order time derivatives of the motion it is
more convenient to work with the inertia forces and their time rates

F = MÜ = P − S, Ḟ = Ṗ − Ṡ.

With regard to the right-hand side of the equation for Ḟ, inclusion of higher
order derivatives of the inertia forces does not appear reasonable. An accurate
representation of both the applied loading and the internal stress term will present
a difficult task.

Under the above aspect, approximations for the velocity and displacement at
the end of the time increment will be accommodated in the scheme

U̇n+1 = U̇n + τM−1
[
a1Fn + a2Ḟn + a3Fn+1 + a4Ḟn+1

]
,

Un+1 = Un + τU̇n + τ2M−1
[
b1Fn + b2Ḟn + b3Fn+1 + b4Ḟn+1

]
.

The coefficients a1, . . . , a4 and b1, . . . , b4 may express independent approxima-
tions of velocity and displacement in terms of the accelerations at the beginning
and the end of the time increment, or can be consistently derived for an assumed
variation of the acceleration (or the inertia force) within the increment. For a sys-
tematic exposition we refer to [11]. Here, illustrative examples are given following
[13] with reference to Fig. 6.17.

A linear Taylor expansion of the inertia force

F(ζ) = Fn + ζτ Ḟn (0 ≤ ζ ≤ 1)

as a function of the normalized temporal variable ζ = (t − tn)/τ , gives by
integration

U̇n+1 = U̇n + τM−1
[
Fn +

τ

2
Ḟn

]
,

Un+1 = Un + τU̇n +
τ2

2
M−1

[
Fn +

τ

3
Ḟn

]
.

Taylor expansions are based on values at the beginning of the time increment
and lead to explicit forms of the integration scheme. Implicit variants can be
obtained by Hermitean approximations [14] which employ sets of values at both
the beginning and the end of the increment (Fig. 6.17). A linear Hermitean approx-
imation of the inertia force (or acceleration) in the increment

F(ζ) = (1 − ζ)Fn + ζFn+1,
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Figure 6.17: Taylor expansion of the inertia force (left) and Hermitean
approximation (right).

gives for velocity and displacement the expressions

U̇n+1 = U̇n +
τ

2
M−1 [Fn + Fn+1] ,

Un+1 = Un + τU̇n+1 +
τ2

6
M−1 [2Fn + Fn+1] .

This is also covered by the general integration scheme, the respective coefficients
a1–a4 and b1–b4 reproducing Newmark’s linear acceleration method [15].

The next higher Hermitean polynomial is of the third degree in time:

F(ζ) = (1 − 3ζ2 + 2ζ3)Fn + (ζ − 2ζ2 + ζ3)τ Ḟn

+(3ζ2 − 2ζ3)Fn+1 + (−ζ2 + ζ3)τ Ḟn+1.

It leads to velocity and displacement as follows

U̇n+1 = U̇n +
τ

12
M−1

[
6Fn + τ Ḟn + 6Fn+1 − τ Ḟn+1

]
,

Un+1 = Un + τU̇n +
τ2

60
M−1

[
21Fn + 3τ Ḟn + 9Fn+1 − 2τ Ḟn+1

]
,

and can be represented by the general integration scheme with an appropriate
specification of the coefficients a1–a4 and b1–b4.

The numerical applications presented subsequently in the text utilize the cubic
Hermitean approximation of the acceleration as above. Since the scheme is based
on both F = MÜ and Ḟ, it requires solution of the rate equation

Ṗn+1 − Ṡn+1 − Ḟn+1 = 0

at instant tn+1 in addition to eqn (6.125) for the motion. Here, the time rate of
the applied forces has to be derived from their functional dependence on time,
that of the stress resultants relies on the rate form of the stress–strain relations.

Cosine pulse in elastoplastic free rod
The following example demonstrates a simple application of the finite ele-
ment technique and illustrates propagation of uniaxial elastoplastic waves.
The description follows the original numerical study by the author included
in [16]. The example has been conceived such that the rod has a length
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Figure 6.18: Cosine pulse and elastoplastic properties.

of l = 0.4 units, unit cross-section and unit density. The elastic modulus
amounts to E = 2.25 · 1010, the initial yield stress is σs = 0.75. The plastic
behaviour of the material is specified by a monotonic stress–plastic strain
dependence in conjunction with kinematic hardening under stress reversal
(Fig. 6.18). The stress pulse applied at the left end of the rod is characterized
by a cosine shape of duration T0 = 1 μs and magnitude σ0 = 1 exceeding
the elastic limit of the material. Figure 6.19 demonstrates the stress distri-
bution in the elastoplastic rod at 2μs after initiation of the impact. The
agreement between the coarser and finer discretizations in space and time
is good.

Figure 6.20 illustrates the effect of plasticity by comparing with the elastic
wave. The elastic solution is easily confirmed. The elastoplastic solution
shows the interaction of several phenomena. At 2μs, hardening has allowed

Figure 6.19: Results after 2μs for two different discretizations in space and
time.



234 Elements of Plasticity

Figure 6.20: Elastoplastic vs elastic solution after 2 and 4μs.

the stress to increase beyond the initial yield stress of the material, but
this is limited by the unloading part of the stress pulse which sets in after
0.5 μs. In addition, the profile of the pulse is distorted due to the slower
wave motion in the elastoplastic range.

After reflection at the other free end of the rod, the yield stress is dimin-
ished below the initial value by the kinematic hardening rule. The state after
4 μs shows that the front of the reflected wave propagates as the elastic one.
The rising stress–plastic strain characteristic allows the stress to exceed the
new yield stress (σf < σs), while elastic unloading moderates this effect. The
distortion of the profile by the delaying elastoplastic motion is visible.

6.5 Pressure sensitive materials

6.5.1 Porous solids

Introductory remarks
The development of modern powder-metallurgy alloys aims at the achieve-
ment of properties superior to those found in alloys produced by ingot
metallurgy. The employment of products of this type in engineering neces-
sitates the description of their mechanical behaviour. The plastic behaviour
of ductile porous materials, such as sintered or hot-pressed metal powders,
is sensitive to the hydrostatic stress. This sensitivity requires a modification
of the yield condition, on the one hand, and implies permanent changes in
volume, on the other hand.
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We consider elastoplastic deformation of an isotropic solid which con-
tains microscopic pores distributed homogeneously within the basic matrix
material. The local pore volume fraction (porosity)

χ =
V − Vo

V
(0 ≤ χ ≤ 1)

relates the pore volume (V − Vo) to the volume V of the material element.
The solid matrix occupies the volume Vo with fraction (1 − χ). The con-
stitutive description of such a solid is attempted by suitable modification
of standard relations. The yield condition for the porous material may be
formally stated as

φ(σ̄, σH, σf , χ) ≤ 0.

Here, the yield function φ depends on the equivalent deviatoric stress σ̄
and the hydrostatic stress σH. The parameters σf and χ are the actual
yield stress of the solid matrix and the porosity, respectively. For vanishing
porosity (χ = 0) the yield function must reproduce that of the compact
material. From the consistency condition (dφ = 0) during plastic flow

∂φ

∂σ̄
dσ̄ +

∂φ

∂σH
dσH = − ∂φ

∂σf
dσf − ∂φ

∂χ
dχ.

Plastic flow is assumed to obey the normality rule

dη = Λ
[

∂φ

∂σ

]t

= Λ
[
∂φ

∂σ̄
s +

1
3

∂φ

∂σH
e
]

.

In [
∂φ

∂σ

]t

=
[
∂φ

∂σ̄

dσ̄

dσ
+

∂φ

∂σH

dσH

dσ

]t

,

the expressions dσ̄/dσt = (3/2σ̄)σD = s, dσH/dσt = (1/3)e have been sub-
stituted for the differential quotients. The vectors s and e are orthogonal.
The deviatoric and volumetric parts of the plastic strain increment can be
distinguished as follows:

dηD = Λ
∂φ

∂σ̄
s, dηV =

Λ
3

∂φ

∂σH
e.

The permanent change in volume is associated with a modified porosity:

dχ = (1 − χ)etdη = (1 − χ)Λ
∂φ

∂σH
.
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Hardening of the solid matrix material implies a dependence σf(η̄o) of the
flow stress on the equivalent plastic strain η̄o in the matrix. For incremental
variations

dσf = hodη̄o =
ho

(1 − χ)σf
σtdη,

where ho denotes the uniaxial hardening parameter. The matrix material
(index ‘o’) is assumed to undergo isochoric plastic flow governed by the con-
ventional von Mises yield condition. The transition to the second expression
makes use of the equivalence

σtdη = (1 − χ)σ̄odη̄o (σ̄o = σf) ,

which states that the plastic work referred to the porous solid is a result of
the plastic flow in the compact matrix with volume fraction (1 − χ).

Substituting the expressions for the hardening (dσf) and change in poros-
ity (dχ) along with the flow rule for dη in the consistency condition, we
deduce the proportionality factor Λ as

Λ =
1
h

(
∂φ

∂σ̄
dσ̄ +

∂φ

∂σH
dσH

)
=

1
h

∂φ

∂σ
dσ =

1
h∗

∂φ

∂σ
κdγ ≥ 0.

The last expression in terms of the strain increment implies the use of the
elasticity relation dσ = κ[dγ − dη]. In addition, we have introduced the
abbreviations,

h = − ho

(1 − χ)σf

(
∂φ

∂σ̄
σ̄ +

∂φ

∂σH
σH

)
∂φ

∂σf
− (1 − χ)

∂φ

∂σH

∂φ

∂χ

and

h∗ = h +
∂φ

∂σ
κ

[
∂φ

∂σ

]t

.

This completes the determination of the plastic strain increment

dη =
1
h

[
∂φ

∂σ

]t
∂φ

∂σ
dσ =

1
h∗

[
∂φ

∂σ

]t
∂φ

∂σ
κdγ.

In conjunction with the elastic stress–strain relation we obtain

dγ =

{
κ−1 +

1
h

[
∂φ

∂σ

]t
∂φ

∂σ

}
dσ

between incremental stress and incremental strain. The inverse reads

dσ =

{
κ − 1

h∗ κ

[
∂φ

∂σ

]t
∂φ

∂σ
κ

}
dγ.
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The formalism follows [17] and is suitable to ∂φ/∂σf = −1. In this case, the
hardening parameter h reduces to ho of the compact solid for χ = 0 and
∂φ/∂χ = 0. In the porous solid, the additional term accounts for the effect
of permanent changes in porosity.

Specification of the approach
Various yield conditions proposed for porous solids in the literature are sur-
veyed in [18] along with an assessment of appropriateness and performance.
The following description of a single approach serves as an example.

The simple extension of the von Mises yield condition to pressure sensitive
solids proposed by Green [19] can be stated as

φ =

[( σ̄

a

)2
+

(
3σH

2b

)2
]1/2

− σf ≤ 0. (6.127)

The above shows explicitly the dependence on the equivalent deviatoric
stress σ̄ and the hydrostatic stress σH (Fig. 6.21); σf denotes the uniaxial
yield stress of the material. The coefficients,

0 ≤ a(χ) ≤ 1, 0 ≤ b(χ) ≤ ∞

depend on the porosity χ and can be adjusted to experimental data. An
assumed relationship is

a = (1 − χ)2, b = − lnχ.

The pair a = 1 and b = ∞ pertains to the pressure insensitive yield con-
dition. The yield locus from eqn (6.127) defines a relationship between the
equivalent stress σ̄ and the hydrostatic stress σH. For plastic states we obtain(

σ̄

aσf

)2

+
(

3σH

2bσf

)2

= 1,

Figure 6.21: Yield model for porous solids.
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which describes ellipses in the σ̄, σH-plane (Fig. 6.21). The von Mises yield
locus is represented by the straight line σ̄/σf = 1.

For the yield function of eqn (6.127) we obtain the partial derivatives

∂φ

∂σ̄
=

1
a2

σ̄

σG
,

∂φ

∂σH
=

(
3
2b

)2
σH

σG
.

The quantity σG is an abbreviation defined by

σ2
G =

( σ̄

a

)2
+

(
3σH

2b

)2

. (6.128)

It represents a scalar equivalent stress pertaining to the Green yield condi-
tion for the porous solid.

The flow rule for the plastic strain specified by the normality condition
reads

dη = Λ
[

∂φ

∂σ

]t

= Λ
[

1
a2 σD +

1
2b2 σH

]
, (6.129)

the deviatoric and volumetric parts of the deformation being obvious. The
proportionality factor Λ deriving from the consistency condition as

Λ =
1
h

3
2

1
σG

[
1
a2 σD +

1
2b2 σH

]t

dσ,

can be alternatively expressed in terms of the strain increment dγ. If the
influence of permanent deformation on porosity can be neglected, the hard-
ening parameter h becomes

h =
ho

(1 − χ)
σG

σf
. (6.130)

6.5.2 Soil materials

Drucker–Prager linear Mohr–Coulomb generalization
Problems of material failure in soil mechanics are often modelled following
the theory of plasticity. The pertinent yield condition exhibits a depen-
dence on the hydrostatic pressure different from that for porous metals.
Material description in soil or rock mechanics is frequently based on the
Mohr–Coulomb hypothesis. Its generalization due to Drucker and Prager
[20] may be interpreted as a linear Mohr envelope for plane strain failure,
and expresses in principle a linear dependence of the deviatoric equivalent
stress σ̄ on the hydrostatic stress σH:

φY = σ̄ + αYσH − b ≤ 0. (6.131)

With Fig. 6.22 the parameters in the yield condition can be interpreted as

αY =
b

a
and b = σs, a = ps.
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Figure 6.22: Linear Mohr–Coulomb generalization.

The quantities σs and ps define limiting states of strength under purely
deviatoric and hydrostatic stresses, respectively. The parameter

αY =
b − σ̄

σH

defines the inclination of the yield line in the σ̄, σH-plane. The yield condi-
tion has to be understood here rather as a failure criterion, and hence the
introduction of a hardening ability does not appear meaningful. The mate-
rial is assumed to be perfectly plastic, such that the parameters αY and b
are not affected by plastic flow.

Permanent deformation of Mohr–Coulomb type materials cannot neces-
sarily be associated with the yield function by the normality rule. A non-
associated flow rule can be derived from the function

φF = σ̄ + αFσH, (6.132)

which reproduces the associated flow rule for αF = αY. Plastic flow is then
described by

dη = Λ
[
dφF

dσ

]t

. (6.133)

The proportionality factor Λ is determined by satisfying the consistency
condition

dφY =
dφY

dσ
dσ =

dφY

dσ
κ [dγ − dη] = 0.

Employing the flow rule, eqn (6.133), for dη, we obtain

Λ =
1
h∗

dφY

dσ
κdγ ≥ 0 (6.134)

with the abbreviation

h∗ =
dφY

dσ
κ

[
dφF

dσ

]t

.
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Ultimately,

dη =
1
h∗

[
dφF

dσ

]t dφY

dσ
κdγ. (6.135)

The elastoplastic relation between incremental stress and strain follows as

dσ = κ

{
I − 1

h∗

[
dφF

dσ

]t dφY

dσ
κ

}
dγ (6.136)

and is not symmetric because of the introduction of a non-associated flow
rule.

The gradients of the functions φF and φY are easily obtained:[
dφF

dσ

]t

= s +
αF

3
e,

[
dφY

dσ

]t

= s +
αY

3
e.

The first defines the direction of plastic flow and distinguishes the deviatoric
and the volumetric part of the incremental plastic strain in eqn (6.133).
Permanent volumetric changes are given by

3dηV = etdη = ΛαF,

independently of the stress state. An increase in volume is obtained as long
as αF is a positive quantity (αF > 0). The second gradient enters the deter-
mination of the proportionality factor Λ in eqn (6.134) either directly or via
the expression

dφY

dσ
κ = [2Gs + αYKe]t ,

with the elastic shear modulus G and the modulus of volume expansion K.
We also notice the expression

h∗ =
dφY

dσ
κ

dφF

dσ
= 3G + αYαFK.

The scalar quantity

σL = σ̄ + αYσH

may be viewed as an equivalent stress pertaining to the linearly pressure
sensitive yield condition, eqn (6.131).

The Coulomb rule considers the magnitude of the shear stress τ required for
slip in the soil to depend upon the cohesion c of the material and to be linearly
related to the normal pressure σ acting on the slip plane,

|τ | = c − σ tan ϕ,
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where tan ϕ is known as the coefficient of internal friction. This limiting condi-
tion is represented by two straight lines in the τ, σ-plane (Fig. 6.23). The Mohr–
Coulomb hypothesis of soil slip or yielding is illustrated in the figure for plane
conditions. All combinations of normal and shear stress encountered at a point on
planes of different orientations lie on the Mohr circle. The radius of the circle as
specified by the stress state at the point under investigation is

R =
[(σxx − σyy

2

)2
+ σ2

xy

]1/2

and is equal to the maximum shearing stress. It is assumed that the material
behaves elastically up to a certain state of stress at which yielding occurs. The
limiting lines from the Coulomb rule determine the radius of the Mohr’s circle at
slip as

R = c cos ϕ − σxx + σyy

2
sin ϕ.

This relates the maximum shearing stress to the cohesion c of the material, the
angle ϕ of the linear envelope of the Mohr’s circles and the mean normal stress
(σxx + σyy)/2 in the plane. For three-dimensional states the shear/normal stress
combinations at a point are characterized by three Mohr circles. The above lim-
iting condition then refers to the largest one.

Drucker and Prager [20] have shown that in the case of plane strain the gener-
alized yield condition in eqn (6.131) reduces to the Mohr–Coulomb rule. To this
end, it is assumed that the incremental plastic strains dηzz, dηxz, dηyz vanish. By
the (associated αF = αY = α) flow rule, eqn (6.133), the shear stresses σxz, σyz

are zero, and

σDzz = −2
9
ασ̄

Figure 6.23: Mohr–Coulomb hypothesis.
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for the deviatoric stress component. The hydrostatic stress then becomes

σH =
σxx + σyy

2
− α

9
σ̄

and the equivalent deviatoric stress is given by

σ̄2 =
3

1 − α2

9

[(σxx − σyy

2

)2
+ σ2

xy

]
.

Substitution in the yield condition, eqn (6.131), and comparison with the Mohr–
Coulomb hypothesis shows that an identity is established by setting

b =
3c cos ϕ

(3 + sin2 ϕ)1/2
, α =

3 sin ϕ

(3 + sin2 ϕ)1/2
.

Parabolic Mohr–Coulomb generalization
More elaborated forms of failure surfaces for soil and rock mechanics can
be found in [21]; the reader may consult also the articles in [22] and the
references therein. Materials of the Mohr–Coulomb type mostly exhibit a
curved Mohr envelope rather than a rectilinear one. It may therefore be
difficult to model the material behaviour appropriately with the above linear
approximation, if the hydrostatic pressure is subject to a strong variation.
A yield condition in terms of the equivalent deviatoric stress σ̄ and the
hydrostatic stress σH, which in the case of plane strain failure leads to a
parabolic Mohr envelope, is described by

φY =
(
σ̄2 + αYσH

)1/2 − b ≤ 0. (6.137)

The parameters are defined with reference to Fig. 6.24 as

αY = b2/a and b = σs, a = ps.

The physical interpretation of the constants a and b is identical to that for
the linear model. For a non-associated flow rule, the function in eqn (6.137)

Figure 6.24: Parabolic Mohr–Coulomb generalization.
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can be modified via the parameter α:

φF =
(
σ̄2 + αFσH

)1/2
. (6.138)

The formalism developed for the previous linear case is applicable here as
well, but for the different specific functions and their derivatives.

We notice that for the functional type in eqns (6.137) and (6.138),

∂φ

∂σ̄
=

σ̄

σP
,

∂φ

∂σH
=

α

2σP
(α = αF, αY).

The scalar quantity σP defined by

σ2
P = σ̄2 + ασH, (6.139)

may be regarded as an equivalent stress associated with the parabolic condi-
tion. The complete gradient of the yield function with respect to the stress
is obtained as[

dφ

dσ

]t

=
∂φ

∂σ̄
s +

1
3

∂φ

∂σH
e =

σ̄

σP
s +

α

σP
e (α = αF, αY)

and specifies the expressions for the incremental plastic strain and the
elastoplastic stress–strain relation. The permanent change in volume results
here in:

3dηV = etdη = Λ
αF

2σP
.

It is seen to depend on the stress state by the equivalent stress quantity σP.
The volume increases as long as the parameter αF is positive (αF > 0).

An analytical example
In order to demonstrate the significance of the hydrostatic stress on plastic
yielding, consider the rectangular plate of uniform thickness under biaxial
tension or compression treated in Section 1.2.5. The state of stress is spec-
ified by the principal stresses σ1 and σ2, whereby the longitudinal stress σ1
is directly exerted on the plate. The lateral strain γ2 is suppressed so that
the longitudinal strain γ1 alone defines the state of strain.

The elastic solution σ2 = νσ1 derives immediately from the prevention
of the lateral contraction. The elastoplastic solution developed before for
perfect plasticity with the von Mises yield condition shall be extended here
to the pressure-dependent yield models.

From the elastic solution, the loading path in the σ̄, σH-plane prior to
yielding is described by either of the straight lines

σ̄ = ±3
√

1 − ν + ν2

1 + ν
σH, (6.140)
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where the upper sign refers to loading in tension and the lower to loading in
compression – considered to be the standard case. This convention shall also
hold in subsequent relations. Beyond yielding, the elastic lines, eqn (6.140),
must be replaced by the respective yield condition, which then describes the
relationship between σ̄ and σH.

From the yield condition, eqn (6.131) – linear dependence of the equiva-
lent deviatoric stress on the hydrostatic stress (b = σs, αY = α) – we obtain

σ̄ = σs − ασH. (6.141)

The intersection of the two straight lines given by eqns (6.140) and (6.141)
determines the elastic limit of the plate (Fig. 6.25). If the applied stress
is compressive, plastic yielding occurs only as long as the elastic path,
eqn (6.140), is steeper than the yield locus, eqn (6.141). The steepest elastic
path is σ̄/σH = −3 (for ν = 0), and therefore the yield line defined by α = 3
represents a limit, at and above which no plastic yielding is possible for any
value of ν ≥ 0.

The explicit form of the yield condition, eqn (6.131), reads in the present
case

φ =
√

σ2
1 + σ2

2 − σ1σ2 +
α

3
(σ1 + σ2) − σs = 0.

In conjunction with the elastic solution (σ2 = νσ1) it determines the elastic
limit for σ1 as above. In the plastic range of loading, it establishes a relation
for the lateral stress:

σ2 =

(
1
2

+
α2

9

)
σ1 − α

3
σs ∓

√
σ2

s −
(

3
4

− α2

3

)
σ2

1 − ασsσ1

1 − α2

9

.

A zero discriminant indicates that an upper limit load has been attained.
Thus, the plastic range is found to be bounded as follows:

1∣∣∣(1 + ν)
α

3
±

√
1 − ν + ν2

∣∣∣ ≤ |σ1|
σs

≤ 1
2

∣∣∣∣∣∣∣∣
−α ±

√
3 − α2

3
3
4

− α2

3

∣∣∣∣∣∣∣∣ . (6.142)

In the case of compressive loading, the upper limit approaches infinity for
α = 3/2 and becomes meaningless for higher values.
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Figure 6.25: Elastic path and pressure-dependent yield limit.

Beyond the elastic limit, knowledge of the stresses σ1 and σ2 is utilized
in obtaining the elastic strains

(
1 − α2

9

)
Eε1

σs
=

[
1 − ν

2
− (1 + ν)

α2

9

]
σ1

σs

+ ν
α

3
± ν

√
1 −

(
3
4

− α2

3

)
σ2

1

σ2
s

− α
σ1

σs

and

(
1 − α2

9

)
Eε2

σs
=

[
1
2

− ν + (1 + ν)
α2

9

]
σ1

σs

− α

3
∓

√
1 −

(
3
4

− α2

3

)
σ2

1

σ2
s

− α
σ1

σs
.

The lateral constraint implies η2 = −ε2; for the longitudinal plastic strain
the associated flow rule (αF = αY = α) gives

dη1 =

(
1 − α2

9

)
σ1 −

(
1
2

+
α2

9

)
σ2 +

α

3
σs(

1 − α2

9

)
σ2 −

(
1
2

+
α2

9

)
σ1 +

α

3
σs

dη2.
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Expressing the right-hand side of the differential relation in terms of σ1,
and integrating:(

1 − α2

9

)2
Eη1

σs
=

{
−1 + ν

2
+

α2

9

[
4 − ν

2
+ (1 + ν)

α2

9

]}
σ1

σs

∓
[
1 − ν + (2 + ν)

α2

9

]√
1 −

(
3
4

− α2

3

)
σ2

1

σ2
s

− α
σ1

σs

+
1
4

√
3 − α2

3
ln

√
3 − α2

3
+ α + 2

(
3
4

− α2

3

)
σ1

σs√
3 − α2

3
− α − 2

(
3
4

− α2

3

)
σ1

σs

.

(6.143)

As long as σ1/σs is below the elasticity limit, eqn (6.142) left, η1 = η2 = 0.
Considering next a parabolic relation between the equivalent deviatoric

and hydrostatic stress, we start with the explicit form of the yield condition,
eqn (6.137),

φ =
√

σ2
1 + σ2

2 − σ1σ2 +
α

3
(σ1 + σ2) − σs = 0

and proceed analogously to the above linear hydrostatic dependence.
The lateral stress in the plastic range is

σ2 =
1
2

(
σ1 − α

3

)
∓

√
σ2

s − 3
4
σ2

1 − α

2
σ1 +

α2

36
,

and the plastic range is bounded by∣∣∣∣− (1 + ν) α ±
√

(1 + ν)2 α2 + 36 (1 − ν + ν2) σ2
s

∣∣∣∣
6 (1 − ν + ν2)

≤ |σ1| ≤ 1
3

∣∣∣∣∣−α ± 2

√
3σ2

s +
α2

3

∣∣∣∣∣ . (6.144)

The elastic part of the longitudinal strain, ε1, is obtained as

Eε1 =
(
1 − ν

2

)
σ1 + ν

α

6
± ν

√
σ2

s − 3
4
σ2

1 − α

2
σ1 +

α2

36
,

and that of the lateral strain, ε2, is
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Figure 6.26: Influence of hydrostatic stress dependence on axial stress–
plastic strain diagram.

Eε2 =
(

1
2

− ν

)
σ1 − α

6
∓

√
σ2

s − 3
4
σ2

1 − α

2
σ1 +

α2

36
.

For the plastic parts we have η2 = −ε2 from the lateral constraint γ2 = 0,
and with the associated flow rule:

dη1 =
2σ1 − σ2 +

α

3
2σ2 − σ1 +

α

3

dη2.

The plastic longitudinal strain η1 follows by integration in terms of σ1 as

Eη1 = −1 + ν

2
σ1 ∓ (1 − ν)

√
σ2

s − 3
4
σ2

1 − α

2
σ1 +

α2

36

+
1
4

√
3σ2

s +
α2

3
ln

√
3σ2

s +
α2

3
+

α

2
+

3
2
σ1√

3σ2
s +

α2

3
− α

2
− 3

2
σ1

. (6.145)

The relationships in eqns (6.143) and (6.145) pertaining to the linear
and parabolic generalization of the Mohr–Coulomb hypothesis, respectively,
are depicted in Fig. 6.26 along with the pressure independent von Mises
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case. The results refer to an evaluation for ν = 0. The Drucker–Prager yield
condition has been based on a 45◦ slope of the yield locus (straight line)
and σs �= 0. In the second yield condition, the parabola has been determined
such that the bounds of the plastic range coincide with those of the first. The
quantities in the figure have been normalized by the maximum attainable
compressive stress σ1u, and start at the state of first yielding which defines
the lower limit for the evaluation of η1 in eqns (6.143) and (6.145).
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CHAPTER 7

Application of finite element analysis

7.1 Remarks on numerical solutions

Computational techniques based on the finite element method prove to be
suitable in providing appropriate numerical solutions to elastoplastic prob-
lems relevant to engineering practice. Relevance to practice implies complex-
ity in geometry and boundary conditions, and in the material properties.
Reasonable simplifications may facilitate the treatment by increasing the
transparency and possibly reducing the effort of the computation. They
are, however, not necessary to the degree requested in the context of ana-
lytical approaches. Conversely, some issues simplifying theoretical analysis
may pose difficulties to the numerical model.

Numerical procedures favour the employment of analytical yield condi-
tions like the Huber/von Mises one, despite the nonlinear form. Singular
forms like Tresca’s are well suited in theoretical analysis, when advantage
can be taken of the piecewise linearity of the yield locus. The perfectly
plastic approximation, a frequent assumption in developing analytical solu-
tions, was a critical issue at the early stage of the evolution of numerical
techniques. Perfectly plastic behaviour of the inelastic material constituent
cannot, of course, be approached as the limiting case of plastic harden-
ing material relying on the increment of stress. It requires an appropriate
formalism in terms of the increment in strain, as detailed in Chapter 1.
Besides, for smooth numerical properties, it is important that the formalism
for the incremental plastic strain [1, 2] also encompasses the plastic loading
condition [3]. An elegant approach was developed in Chapter 5 within the
framework of the radial return technique.

The elastic constituent is essential to the algorithmic concept of elasto-
plastic computation, since it determines the stress. Analytical solutions
based on the approximation of vanishing elastic strain (rigid–plastic
approach) cannot, therefore, be treated by this numerical procedure. How-
ever, the case of small-strain plasticity and small-scale yielding considered
here is characterized by the dominance of elasticity. At the plastic limit
state of structures and structural parts made from elastic–perfectly plastic
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materials, the stresses become stationary and changes in elastic strain do
not occur; the variation in strain is entirely plastic. Although this does not
pose serious algorithmic difficulties, problems may arise from the finite ele-
ment representation. To be specific, the finite element kinematics are not
necessarily able to reproduce an isochoric displacement field as required by
the flow mechanism at the plastic limit.

For an elucidation, we recall that the deviatoric and hydrostatic parts of
the stress rate in the elastoplastic material read

σ̇D = 2G [γ̇D − η̇] , σ̇H = 3Kγ̇V (η̇V = 0).

In the case that finite element kinematics do not allow isochoric defor-
mation we may have γ̇D ⇒ η̇ but γ̇V �= 0 on the penalty of elastic strains
as the plastic limit state approaches. As a consequence, variations in stress
are still present and the applied load does not become stationary. This defi-
ciency of finite element approximations becomes apparent at the limit load,
although it can be inherent to finite element kinematics. The isochoric issue
of plasticity was first investigated in [4].

A simple way out is to weaken the significance of the volumetric response
of the finite element. For this purpose, the stress resultants at the element
nodal points (Section 5.1) are determined by two separate volume integrals:

Sq =
∫
Vq

atσdV =
∫
Vq

at
DσDdV +

∫
Vq

at
VσHdV.

The deviatoric part makes use of the original element kinematics aD ≡ a
while the hydrostatic part aV follows a lower-order approximation (see
[5]; for instance, linear variation of deviatoric quantities, constant hydro-
static/volumetric ones). Analogously, numerical evaluation of the two inte-
grals is based on full integration of the deviatoric part and a reduced integra-
tion rule for the hydrostatic part. This transfers equally to the formation of
all other element characteristics, like incremental stress resultants, element
stiffness, initial loads.

As an overall remark, finite element elastoplastic computations cannot
necessarily reproduce classical analytical solutions, but are capable of a more
realistic modelling. On the other hand, each numerical solution represents a
single event associated with a specific set of problem parameters. Analytical
solutions, even if simplified, allow a discussion regarding the significance of
the parameters of the problem.

The following applications of finite element inelastic analysis utilize, in
their majority, standardized software for large-scale engineering problems [3,
12]. Unless stated otherwise, plasticity is governed by the von Mises yield
condition with isotropic hardening. In the numerical model, incrementation
of the plastic strain relies on the radial return technique (Section 5.4.4).
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Figure 7.1: Pressure vessel with nozzle: geometry and finite element model.

7.2 Pressure vessel with nozzle

This example introduces the substructuring technique and demonstrates its
application in elastoplastic finite element analysis [3].

The spherical vessel with a radial nozzle depicted in Fig. 7.1 is subjected
to internal pressure increasing beyond the elastic range. For the finite ele-
ment analysis, the upper quarter of the meridional section of the structure
is represented by 230 triangular axisymmetric six-node elements. The prop-
erties of the vessel material are specified in Fig. 7.2. In the computation,
an initial elastic solution determines the pressure ps = 3.413 MPa at which
the stress in the structure first attains the elasticity limit of the material
σs = 255 MPa. Subsequently, the pressure is increased to twice this value
(p = 2ps) by the application of 10 equal increments of loading.

Plasticity develops at the junction between the spherical part of the vessel
and the nozzle, as depicted in Fig. 7.3 (left). The extent of the plastic zone
at the final pressure p = 2ps = 6.826 MPa is shown in Fig. 7.3 (right) along
with the distribution of the equivalent deviatoric stress σ̄ in the region of the
junction. It is observed that the domain of plastic deformation is confined.
It appears only at the junction, a fact that is predictable in the present
case. Since a large part of the structure remains elastic, the computational
effort of elastoplastic analysis can be reduced by defining an elastic and an
elastoplastic domain (Fig. 7.1), and applying the substructuring technique.
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Figure 7.2: Uniaxial characteristics of the elastoplastic material.

Substructuring [6] is a solution technique that has been used for many
years in large-scale finite element applications – even in elasticity – on
computers with restricted capacity. It has attained new importance in the
context of parallel computing, because it offers a systematic scheme for
the distributed treatment of the problem on several processing units [7].
In this connection, classical substructuring may be considered a domain

Figure 7.3: Development of the plastic zone in the elastoplastic
substructure.
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decomposition method [8]. In elastoplastic analysis, it can be utilized for a
separation of purely elastic and elastoplastic operations in the domain of
computation.

With reference to the finite element mesh in Fig. 7.1, we define three subdomains
or substructures covering in the sum the entire model. Nodal points lying on the
interior boundaries thus created, connect neighbouring substructures and define
a subset UC of the displacements. In the three substructures, the displacements
are grouped as

U1 = {UI UB}1 , U2 = {UI UB}2 , U3 = {UI UB}3 .

Each set UB comprises the displacements of the nodal points at the connecting
boundary, UI all other displacements in the substructure. The UBs can be related
to UC by the symbolic ordering operation

UB1 = a1 UC, UB2 = a2 UC, UB3 = a3 UC,

and the ais denote incidence matrices. Collectively,

UB = {UB1 UB2 UB3} = aUC.

The stress resultants in the individual substructures are grouped analogously

S1 = {SI SB}1 , S2 = {SI SB}2 , S3 = {SI SB}3 .

Accumulation at the connecting nodes supplies the quantities in

SC = at SB, SB = {SB1 SB2 SB3} ,

which are equilibrated by the external forces acting at the same positions: SC =
PC. If forces PB are defined at the connecting boundary in the substructures,
accumulation to PC is as for the stress resultants.

Each subdomain can be viewed as a structural unit. The incremental equation
of equilibrium for the elastoplastic substructure from eqn (5.34) reads[

SΔI

SΔB

]
=

[
KII KIB

KBI KBB

][
UΔI

UΔB

]
+

[
JΔI

JΔB

]
=

[
PΔI

PΔB

]
.

In the above detailed form K denotes the elastic stiffness and JΔ the initial loads
originating from the plastic strain increment. The external forces PΔ are here
equivalent to the applied increment of pressure. The connecting boundary can be
loaded at the assembled state, in which case we set PΔB = 0.

From the upper equation in the matrix

UΔI = K−1
II [PΔI − JΔI − KIBUΔB] (i)

and substituting in the second row

SΔB =
[
KBB − KBIK−1

II KIB
]︸ ︷︷ ︸

K∗

UΔB + JΔB + KBIK−1
II [PΔI − JΔI]︸ ︷︷ ︸
J∗

Δ

. (ii)

In the elastic substructures, plastic strains are absent, JΔB = 0,JΔI = 0:

SΔB = K∗UΔB + J∗
Δ with J∗

Δ = KBIK−1
II PΔI.
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Accumulation of the contributions from the substructures to the stress resultants
at the common nodal points yields

SΔC =
[
atKa

]
UΔC + atJΔ = PΔC (iii)

with

a =

⎡⎢⎣ a1

a2

a3

⎤⎥⎦ , K =

⎡⎢⎣ K∗
1

K∗
2

K∗
3

⎤⎥⎦ , JΔ =

⎡⎢⎣ J∗
Δ1

J∗
Δ2

J∗
Δ3

⎤⎥⎦ .

The solution of the reduced system (iii) for UΔC supplies the UΔBs in the sub-
structures. The UΔI for the elastoplastic substructure follows from eqn (i), in the
elastic substructures JΔI = 0. This completes the solution of the problem, in prin-
ciple. Iteration with JΔ requires determination of the incremental plastic strain in
the elastoplastic substructure, and evaluation of a new J∗

Δ, eqn (ii). Since all other
entries in eqn (iii) remain unchanged, the iteration process is restricted to oper-
ations within the elastoplastic substructure and repeated solution of the reduced
system (iii) with a modified right-hand side but constant coefficient matrix. The
computational effort is reduced by this technique.

7.3 Aluminium sheet with circular hole:
comparison of analysis with experiment

A comparison of the results of the numerical computation with experimen-
tal measurements is useful for several purposes. It permits a verification
of the algorithmic procedure and the software implementation, on the one

Figure 7.4: Sheet with circular hole: geometry and material properties.
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hand, and an examination of the appropriateness of the material description
on the other hand. Validation of the computational model, however, has to
account for the random nature of some of the parameters and involves sta-
tistical comparison techniques [9]. The purpose here is just to demonstrate
the performance of the elastoplastic finite element approach. Therefore, a
description of the numerical analysis and a comparison with measurements
follows [10] without entering details about the experimental technique used
in the large-scale test.

The material is a flat 2 mm aluminium sheet cut to form a rectangle
(900 mm × 450 mm) with a circular hole (225 mm �). The geometry of the
sheet is defined in Fig. 7.4 along with the material characteristics of the AL
2024-T3 aviation sheet employed. For the numerical simulation of the test
by elastoplastic computation, the hardening characteristic relating the yield
stress to the plastic strain is deduced from the experimental stress–strain
diagram. A fairly accurate approximation has been obtained by an expo-
nential function in the lower range of the curve and a fifth-order polynomial
in the upper range of the curve.

Figure 7.5 shows the finite element discretization for the elastoplastic
analysis. The discretization is performed by triangular plane stress elements
with six nodes, and is not particularly fine. The double symmetry of the
problem allows consideration of one quarter of the sheet.

In the numerical simulation the specimen is loaded by an axial tensile
force P distributed uniformly over the horizontal edge of the sheet. The
load at the elasticity limit of the material σs = 260 MPa is Ps = 53.22 kN.

Figure 7.5: Finite element representation and progress of plastification.
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Figure 7.6: Distribution of axial strain along the weakest cross-section.
Comparison of numerical results with measured data at two
levels of loading.

Figure 7.7: Deformation of the hole at final load P = 167 kN. Compar-
ison of numerical results with photogrammetric laboratory
measurements.
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Subsequently, the loading is increased up to P = 167 kN using 11 incremen-
tal steps gradually diminishing in size. In the elastoplastic computation,
plastic flow sets in at the weakest cross-section. The region where the mate-
rial has deformed plastically expands from the boundary of the hole to the
vertical edge of the sheet as the loading increases (Fig. 7.5).

In Fig. 7.6 a comparison is given between the computed and the measured
longitudinal strain at the weakest cross-section along the horizontal axis of
symmetry. The agreement is equally good in the elastic range (P = 49 kN)
and in the plastic range (P = 147 kN). Figure 7.7 compares at the end load
(P = 167 kN) the deformation of the periphery of the hole as a result of the
numerical simulation, with the displacements of distinct points obtained by
photogrammetrical measurements. In order to enhance visibility, the scale
of the displacements has been magnified considerably.

7.4 Heat shrink fitting of a wheel

As an application of thermal stress analysis involving plasticity we consider
the process of heat shrink fitting of a wheel for a rail road vehicle [10].
The computation can be carried out in two separate steps. First, a heat
conduction analysis determines the temperature distribution in the wheel
at consecutive instants. Then, the incremental elastoplastic stress analysis is
performed employing the obtained variation of the temperature distribution
as an input. The above treatment of the thermomechanical problem relies
on the assumption that the changes of the mechanical state do not induce
appreciable thermal phenomena.

The wheel is made up of two parts, the hub and the rim (Fig. 7.8), each
defining a substructure in the finite element representation (Fig. 7.9). Its

Figure 7.8: Rail road wheel: description of geometry.
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Figure 7.9: Finite element model and definition of two substructures.

meridional section is discretized by triangular axisymmetric six-node ele-
ments. Identical discretizations are used for both thermal and elastoplastic
analysis.

Initially, the temperature of the hub is uniformly 20◦C, the same as the
ambient air temperature. At that stage, the temperature of the rim is 140◦C.
The difference of 120◦C corresponds to the required original oversize of the
hub relative to the bore of the rim. The two parts, rim and hub, are in ideal
contact without exerting any pressure on each other. From this state the
structure cools down, the process involving heat exchange between the rim
and the hub by conduction and heat transfer to the surrounding air. The
computed temporal variation of temperature is depicted for a number of
locations in Fig. 7.10.

The elastoplastic analysis is based on the following material data:

E = 206 GPa, ν = 0.3, α = 1.7 · 10−5

[
1 − 0.412

(
1 − ϑ

720

)2
]

◦C−1

σf = σs

[
1 + 122.3

E

σs
ηP

]1/20

, σs = 255

[
1 −

(
ϑ

850

)2
]

MPa.

The elasticity limit σs of the material and the coefficient of thermal expan-
sion α are temperature dependent; ϑ denotes the temperature in ◦C.

The transient temperature loading necessitates an incremental computa-
tion to be carried out from the start. The elastoplastic procedure is activated
automatically as soon as plastic flow sets in. Since the stress level in the
hub is considerably lower than the elasticity limit of the material within the
temperature range in question, the elastoplastic computation can be con-
fined to the rim substructure. As a result of the numerical analysis, Fig. 7.11
shows the temporal variation of the radial stress σrr, the axial stress σzz and
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Figure 7.10: Temporal variation of temperature at different locations in the
wheel during cooling down.
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Figure 7.11: Temporal variation of stress along the bore of the rim.
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Figure 7.12: Evolution of plastic yielding along the bore of the rim.

the circumferential component σtt at different positions along the bore of
the rim during the course of cooling down. The axial stress at the edges
practically complies with the boundary condition σzz = 0 and therefore is
not plotted. The development of plastic yielding along the bore of the rim
is demonstrated in Fig. 7.12. The shaded areas specify the axial extent of
plastic flow along the bore at each time increment during cooling of the
wheel.

7.5 Thermal cycling of cylindrical container

The study refers to a nuclear reactor component: the fuel rod operating
under the combined action of internal gas pressure and intermittent heat
flux. The case can be treated as a long cylinder in a state of generalized
plane strain. This implies that the axial strain does not vanish, but it is
constant over the radius and does not vary along the axis.

The computational model reduces to a single layer of axisymmetric ele-
ments (triangular six node elements, Fig. 7.13). The condition of plane strain
requires that the axial displacement is unique over each cross-section. There-
fore, axial displacements are suppressed in the lower row of nodal points
while a single axial freedom is allowed in the upper row. The radial dis-
placements of the nodal points in the upper row are equal to those in the
lower row.

Initially in the loading programme (Fig. 7.13), the pressure p is raised
proportional to the temperature gradient TΔ up to pmax = 900 psi, TΔ max =
170 ◦F (1 in = 2.54 cm, 1 psi = 6.895 kPa, 1◦F = 1/1.8 K). Subsequently the
pressure is kept constant while cycling the temperature gradient between
zero and the maximum value. The temperature distribution over the wall
thickness is almost linear. The radial pressure on the interior surface is
accompanied by an axial force P = pR2

i π due to the end closure.
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Figure 7.13: Description of the fuel rod problem.

The thermoelastic properties of the rod material (SA 240/304 steel) and
the yield stress are taken at an average temperature of 400◦F (477.59 K) as

E = 25 · 106 psi, ν = 0.3, α = 9.4 · 10−6 1/◦F,

σs = 1.7 · 104 psi.

The uniaxial hardening characteristic of the material is described by the
functional dependence given in Fig. 7.2, Section 7.2. The cyclic loading
suggests employment of the kinematic hardening rule.

Figure 7.14 demonstrates the representative stress–strain response of the
rod in terms of the axial components. Following the numerical simulation of
the process, shakedown is not attained completely. In that case, the stress–
strain diagram in Fig. 7.14 would be limited by a straight line fixed on the
strain axis. It is seen in Fig. 7.15 that the value of TΔ at which plastic
yielding sets in does not reach the limit of 170◦F in loading or 0◦F in
unloading. It is worth noting that alternately the inner or outer region of
the rod yields plastically; the inner in the unloading phase of the thermal
cycle, the outer in the loading phase.
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Figure 7.14: Axial stress at the outer radius versus axial strain.

Figure 7.15: Gradient TΔ at which yielding sets in during thermal cycling.
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7.6 Vessel for liquid zinc

During the heating phase of vessels for liquid zinc, cracking may occur
induced by stress corrosion. In order to explore the origin of stress corro-
sion induced cracks and identify locations prone to failure, a detailed stress
analysis of the process is necessary [11].

The vessel under investigation has the dimensions 7.6 × 1.3 × 2.55 m3 and
a capacity of 140 tons of zinc (Fig. 7.16). It stands on a grid of concrete
beams and its side walls lean against three horizontal supports. The latter
should prevent bulging of the side walls during operation. The vessel is
heated by four burners at the upper third of the side walls, and the zinc
melts. During the heating time of 255 h, temperature and displacements
were measured at several points as indicated in Fig. 7.16.

The double symmetry of the vessel allows consideration of only one quar-
ter of the structure in the finite element analysis. The discretized repre-
sentation is shown in Fig. 7.17. The computation mesh comprises layered
triangular shell elements modelling the walls and layered beam elements
representing the rim stiffener. These bending elements presume the cus-
tomary linear variation of strain, but the layers allow to account for the
development of plasticity across the thickness [12].

The loading of the vessel is a result of the transient temperature distri-
bution during heating and of the interior pressure from the melting zinc.
In addition, forces are transmitted by the horizontal supports. In the com-
putation model, the action of the horizontal supports is accounted for by
displacements prescribed at the respective locations according to the mea-
surements. The temperature distribution in the walls of the vessel has been
modelled on the basis of the temperatures recorded hourly at the measure-
ment points. The assumption on the temporal variation of the internal pres-
sure from the melting zinc follows the development of the temperature field.

Figure 7.16: Vessel for liquid zinc: geometrical description.



266 Elements of Plasticity

Figure 7.17: Finite element representation of a symmetric quarter of the
vessel.

Figure 7.18: History of thermal and mechanical loading (schematic): heat-
ing up temperature ϑ, internal pressure p, displacement of hor-
izontal supports ws.

The vessel is initially filled with 100 tons of zinc, this amount is assumed to
be melted after 190 h; subsequently 40 tons are added gradually. The history
of the thermal and mechanical loading applied in the elastoplastic analysis
of the heating process is shown schematically in Fig. 7.18.

The thermal and elastic material properties (modulus of elasticity, Pois-
son’s ratio, coefficient of thermal expansion) are depicted in Fig. 7.19 as
functions of the temperature. The figure also shows the uniaxial stress–
strain characteristic of the material in the plastic range as derived from
laboratory data at different temperatures.
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Figure 7.19: Temperature-dependent thermoelastic properties (upper) and
plastic hardening characteristics (lower).

In the elastoplastic computation of the non-isothermal problem, the anal-
ysis of the heating phase has been executed in 15 intervals of time by apply-
ing the respective loading conditions. During the first 50 h of the heating
process the supporting conditions at the bottom of the vessel change due
to the induced deformations. In particular, at that time the vessel is seen
standing only at the front end regions (Fig. 7.20). The arising contact prob-
lem is solved by a suitable iteration technique.

As a result of the computer simulation of the heating process of the ves-
sel, Fig. 7.20 shows the deformation (40× magnified) of the finite element
model at four instants of interest. The development of the region where
the material undergoes plastic deformation is demonstrated in Fig. 7.21.
Marked differences are visible between the interior surface and the exterior
surface of the vessel walls. Figures 7.22 and 7.23 display the distribution of
the principal stresses σ1 and σ2, respectively. They refer to the inner surface
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Figure 7.20: Deformation of the finite element model at various stages dur-
ing heating up (magnified).

Figure 7.21: Plastic flow domain on the inside and outside of the vessel at
various instants.

of the vessel since this is the one prone to stress corrosion cracking. Maxi-
mum stresses appear after 150 h near the rim stiffener and at the transition
between the side walls and the bottom. The shear stress in the vessel walls
is negligible.
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Figure 7.22: Distribution of principal stress σ1 on the inside of the vessel.

Figure 7.23: Distribution of principal stress σ2 on the inside of the vessel.

7.7 Creep behaviour of pressure vessel

A thick-walled pressure vessel with spherical end closure (Fig. 7.24) is
exposed to internal pressure. The magnitude of the uniformly applied pres-
sure amounts to p = 445 psi, which deforms the material below the elasticity
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Figure 7.24: Geometry of pressure vessel and finite element model.

limit; plasticity does not arise. The vessel is operated at elevated uniform
temperature such that creep strains develop with the passage of time. The
study considers the effect of creep on the stress distribution in the material
at constant pressure [10].

For the computational analysis the vessel has been discretized by trian-
gular, axisymmetric, six-node finite elements. The finite element layout is
shown in Fig. 7.24, and takes advantage of the longitudinal symmetry of
the problem. In the present case, the task of inelastic analysis is restricted
to the consideration of creep strains as described in Section 6.2. The creep
law employed reads

˙̄ηC = 21 · 10−16 σ̄3.61t0.06 = f(σ̄, t)

and is of the time hardening type, cf. eqn (6.60). Plastic strains as well as
thermal strains do not enter the computation.

An elastic solution for the pressure p = 445 psi supplies the stress distri-
bution in the vessel as an initial condition to the subsequent incremental
computation of the evolving creep strain. In the inelastic investigation the
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Figure 7.25: Contours of equivalent deviatoric stress σ̄ for the elastic solu-
tion (left) and at stationary creep conditions (right).

Figure 7.26: Relaxation of stress at the junction of the cylinder and the end
closure.
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pressure is kept constant while the increments of creep strain are accounted
for by initial loads applied consecutively. The time stepping of the creep
strain follows the explicit forward scheme.

The results of the numerical analysis are presented in Figs 7.25 and 7.26.
Figure 7.25 gives the equivalent stress contours for the elastic solution (start
of creep, t = 0) and the contours after approximately 3 h of creep. The
plots demonstrate the redistribution of the stress as a consequence of creep,
resulting in an overall smoothing of the stress pattern. After about 3 h, the
stress has reached practically stationary conditions. This is seen in Fig. 7.26,
illustrating the variation with time of the equivalent stress at the junction
of the cylinder and the spherical end closure.

7.8 Viscoplastic analysis of a thermal shock problem

Emergency cooling in machine parts and nuclear reactor components intro-
duces temporarily high temperature gradients responsible for local stress
concentrations and irreversible deformations. The respective structural com-
ponents are designed so as to sustain several cooling events of this kind in
addition to the operational loading. The permanent straining accumulated
during repeated cooling shock enbrittles the material and induces extensive
cracking (Fig. 7.27).

The following study [13] deals with the thermomechanical processes asso-
ciated with the local cooling of a metal block at a temperature of 320◦C
(Fig. 7.28). This configuration was the subject of experimental laboratory
tests, where a water jet of 20◦C struck the surface of the metal block over
a contact area of 10 mm diameter. Evaporation of the water moderates the
shock effect. In modelling the thermomechanical problem, it is assumed that
the mechanical dissipation does not appreciably modify the development of
temperature in the solid and that in the mechanical part inertia effects are
negligible, justifying quasistatic analysis.

A description of the problem is given in Fig. 7.28, and the specification of
the finite element discretization in Fig. 7.29. The numerical model is reduced
to a two-dimensional mesh layout of the mid-plane of a part of the block,

Figure 7.27: Crack pattern after 22,000 thermal shock cycles.
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Figure 7.28: Description of the thermal shock problem.

while the effect of the remaining portions is substituted by appropriate
boundary conditions for the temperature, that is, the stress analysis. A first
computation performs the numerical simulation of the thermal process con-
sidering heat transfer to the surrounding air as well as to the water vapour.
Without going into details of the thermal analysis, we only mention that
the transient process has been traced incrementally up to a time of 1200 s
with time steps increasing gradually from 0.002 s at the beginning to 1 s,
10 s and ultimately 600 s. After 10 s, no appreciable variations in tempera-
ture occurred, which signifies that stationary conditions are achieved rather
quickly. The stationary temperature distribution is plotted in Fig. 7.30 for
the analysed mid-section below the area impinged by the water jet.

The second part of the computation performs the transient stress anal-
ysis with the obtained temperature history as an input. The assumption
of plane strain is taken here as an upper bound to the three-dimensional
state of stress. The thermoelastic properties of the material depend on the

Figure 7.29: Finite element model of the mid-cross-section.
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Figure 7.30: Contour plot of temperature in the cross-section at steady state
(t = 600 s).

temperature and are as specified in Section 7.5. The hardening character-
istic also depends on the temperature (Fig. 7.31). Although the functional
dependence is as for the material referred to in Section 7.5, the elasticity
limit is now higher by 74% and the ultimate stress by 41%.

Since the present material exhibits rate dependence, the inelastic response
is modelled by the viscoplastic approach described in Section 6.3. The time
rate of the equivalent viscoplastic strain is given by the relation

˙̄ηV =
1
μ̄

σ̄ − σf(η̄V, T )
σf(η̄V, T )

,

Figure 7.31: Plastic hardening characteristic of the material at different
temperatures.
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Figure 7.32: Temporal variation of temperature and stress at point A.

where the flow stress σf(η̄V, T ) follows the diagram in Fig. 7.31. Complete
specification of the material model requires knowledge of the coefficient μ̄.
This parameter is determined from the expression for ˙̄ηV by utilizing the
information that in the tensile test a 25% increase of the static yield stress
to σ = 1.25σf is observed at the strain rate η̇V = 1.08 · 10−2 s−1. Therefore,
μ̄ = (0.25/1.08)102 s = 23.148 s.

The stress distribution due to the transient temperature field is traced
numerically up to the appearance of stationary conditions. The incrementa-
tion of the viscoplastic strain is performed by the explicit forward scheme.
Since the overstress governing the evolution of viscoplastic strain dimin-
ishes to zero as stationary conditions approach, the incremental time step is
increased accordingly. As a result of the incremental computation, Fig. 7.32
indicates the development of the stresses at the central point of the impinge-
ment of the water jet. The viscoplastic solution is compared with the elastic
and the plastic ones. At the beginning of the sudden cooling process, the
viscoplastic stresses develop close to the elastic stress state. The two solu-
tions diverge as inelastic deformation progresses. At the end of the transient
process the plastic solution does not reproduce the stationary state of the
viscoplastic response except (approximately) for the equivalent deviatoric
stress σ̄. As a matter of fact, the equivalent deviatoric stress is bounded by
the flow stress of the material in both cases, but σf(η̄, T ) is not the same in
the two solutions because the evolution of the inelastic strain differs. This
is documented in Fig. 7.33. As a consequence of the difference in permanent
strain, the individual stress components deviate markedly for plastic and
viscoplastic response.
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Figure 7.33: Development of the equivalent inelastic strain at impingement
point A.

A contour plot of the equivalent deviatoric stress for the elastic–
viscoplastic model is given in Fig. 7.34 at the instant of maximum stress
(t = 0.2 s) and in Fig. 7.35 at steady state (t = 600 s). It is seen that the
steep stress gradient formed at the location of the impingement is smoothed
out with progressing viscoplastic deformation in the passage of time.

The study allows some conclusions to be drawn regarding the design of
mechanical components subject to thermal shock. The comparison with the
viscoplastic analysis shows that the elastic approach overestimates the stress

Figure 7.34: Elastic–viscoplastic approach: contour plot of the equivalent
deviatoric stress at t = 0.2 s (highest values attained).
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Figure 7.35: Elastic–viscoplastic approach: contour plot of the equivalent
deviatoric stress at t = 600 s (stationary conditions).

and is therefore conservative for design relying on a maximum stress crite-
rion. Plasticity, on the other hand, overestimates the inelastic deformation
and is conservative for design based on maximum strain.

7.9 Dynamic response of a beam under impact loading

The simply supported beam (4 × 0.32 × 0.32 m3) described in Fig. 7.36 is
subjected to impact loading by a vertical force P (t) applied at mid-length.
The short time pulse acts over a period of T0 = 0.1 s, the temporal variation
of the impact force simulating aircraft crash. The initial increase up to the
lower level of the loading is associated with the impact of the deformable
fuselage. The second, higher level is a consequence of the retarded impact
of less flexible parts, like the engines.

The beam is made of steel-reinforced concrete exhibiting a rather complex
inelastic behaviour, demonstrated by the bending moment–curvature dia-
gram in Fig. 7.37. Laboratory measurements indicate a slight dependence of
the response on the rate of loading, but a preliminary exploration relies on
the simplifying assumption of an elastic–perfectly plastic overall behaviour
of the beam in bending [14]. The elastic properties of the beam cross-section
and the material density are specified as

EI = 5863.6 kNm2 and � = 2.4 · 103 kgm−3.

Taking advantage of the symmetry, half of the problem is discretized
by two beam elements (Figs 7.38 and 7.41). The dynamic response of the
beam to the pulse loading is traced by an incremental time integration of
the equation of motion for the discretized system. The results of the com-
putation are plotted in Figs 7.39 and 7.40, comparing the elastic–perfectly
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Figure 7.36: Simply supported beam subjected to impact loading.

plastic response to the purely elastic behaviour. Figure 7.39 displays the
deflection at the mid-point of the beam where the impact force acts. After
the passage of the pulse, the elastic beam is seen to undergo free vibrations
following the natural frequency of the system. The plastic beam continues
to deform after the passage of the pulse, elastic vibrations setting in sub-
sequently. They occur with respect to the new position of rest attained by
the preceding permanent deflection of the beam. As seen in Fig. 7.40, the
bending moment opposed to the motion follows the bending deformation of
the elastic beam, whereas the perfectly plastic approach restricts the value
of the bending moment independently of the deformation. The study also
reveals that the initial assumption of small deflections is not justified.

Figure 7.37: Bending moment–curvature diagrams from laboratory data,
and elastic–perfectly plastic simplification.
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Figure 7.38: Discretized representation of half of the symmetric beam by
two elements.

Figure 7.39: Deflection at mid-length of the impacted beam.

Figure 7.40: Bending moment at mid-length of the impacted beam.
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Figure 7.41: Definition of beam element.

The beam element in Fig. 7.41 bends in the z, y-plane following the symmetry
of the cross-section. Ignoring the influence of shearing, its deformation is defined
by the deflection v(z), which determines the rotation angle ϕ and the curvature
1/R. For small rotations,

ϕ =
dv

dz
=

1
l

dv

dξ
,

1
R

=
d2v

dz2 =
1
l2

d2v

dξ2 ,

and ξ = z/l is a normalized distance along the axis.
Representation of the deformation of the beam by the deflections v1, v2 and the

rotations ϕ1, ϕ2 at the end points defines a third-degree Hermitean polynomial
for the variation of v along the beam axis

v(ξ) = ω1(ξ)v1 + ω2(ξ)lϕ1 + ω3(ξ)v2 + ω4(ξ)lϕ2.

The distribution functions are

ω1 = 1 − 3ξ2 + 2ξ3, ω2 = ξ − 2ξ2 + ξ3, ω3 = 3ξ2 − 2ξ3, ω4 = −ξ2 + ξ3.

The kinematics of the beam element can be summarized in matrix form as
follows: ⎡⎢⎣ v

ϕ

1/R

⎤⎥⎦ =

⎡⎢⎣ ω1 ω2l ω3 ω4l

ω′
1/l ω′

2 ω′
3/l ω′

4

ω′′
1 /l2 ω′′

2 /l ω′′
3 /l2 ω′′

4 /l

⎤⎥⎦
⎡⎢⎢⎢⎣

v1

ϕ1

v2

ϕ2

⎤⎥⎥⎥⎦ , (i)

where ω′
i = dωi/dξ, ω′′

i = d2ωi/dξ2 (i = 1, . . . , 4).
The static quantities corresponding to v1, v2 and ϕ1, ϕ2 are the lateral forces

Q1, Q2 and bending moments M1, M2 at the end points of the beam, respectively.
For moment equilibrium,

Q1 = −Q2 =
M1 + M2

l
,

while the bending moments in the elastic range are

M1 = −EI

R1
, M2 =

EI

R2
.
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The quantity EI represents the flexural stiffness of the beam in the plane of
bending, I denoting the moment of inertia of the cross-section.

The matrix relation between stress resultants at the end cross-sections of the
beam and the kinematic quantities reads⎡⎢⎢⎢⎣

Q1

M1

Q2

M2

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Sq

=
EI

l

⎡⎢⎢⎢⎣
−1 1

−l 0

1 −1

0 l

⎤⎥⎥⎥⎦
[
1/R1

1/R2

]
=

2EI

l3

⎡⎢⎢⎢⎣
6 3l −6 3l

3l 2l2 −3l l2

−6 −3l 6 −3l

3l l2 −3l 2l2

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

kq

⎡⎢⎢⎢⎣
v1

ϕ1

v2

ϕ2

⎤⎥⎥⎥⎦
︸ ︷︷ ︸
Uq

.

The last relationship takes account of the element kinematics,

[
1/R1

1/R2

]
=

2
l2

[
−3 −2l 3 −l

3 l −3 2l

]⎡⎢⎢⎢⎣
v1

ϕ1

v2

ϕ2

⎤⎥⎥⎥⎦ ,

and defines the elastic stiffness matrix kq of the beam element.
In the elastoplastic regime the bending moment–curvature diagram (Fig. 7.37)

suggests the relation

M = EI

(
1
R

− 1
Rp

)
,

where 1/Rp denotes the residual curvature due to permanent deformation. It gives
rise to the initial loads

Jq =

⎡⎢⎢⎢⎣
JQ1

JM1

JQ2

JM2

⎤⎥⎥⎥⎦ = −EI

l

⎡⎢⎢⎢⎣
−1 1

−l 0

1 −1

0 l

⎤⎥⎥⎥⎦
[

1/Rp1

1/Rp2

]
,

which have to be superposed to the previously defined stress resultants:

Sq = kqUq + Jq.

The evolution of permanent deformation is modelled as for plastic flow. The
yield condition reads

φ = M̄ − Mf ≤ 0.

Here M̄ = |M |, and the yield moment Mf of the cross-section is assumed to be a
function of the accumulated magnitude of permanent curvature R−1

p :

dMf = Hd(R−1
p ).

From the consistency condition φ = 0 during plastic flow, and with the flow rule
in the form

d(R−1
p ) =

M

M̄
d(R−1

p ),
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we obtain

d(R−1
p ) =

1
H

dM =
EI

EI + H
d(R−1).

The first expression reflects hardening cross-section with the parameter H > 0.
The second expression also encompasses the non-hardening case H = 0, as in the
present application. It defines an increment of fictitious bending moment dM∗ =
EId(R−1), associated with the change in curvature d(R−1) of the beam.

For finite transitions, n → n + 1, the incremental permanent deformation can
be derived from the yield condition φn+1 = 0 as

(R−1
p )Δ =

Mn+1

M̄n+1

M̄n+1 − Mfn

H
=

M∗
n+1

M̄∗
n+1

M̄∗
n+1 − Mfn

EI + H
. (ii)

The test quantities are from

M∗
n+1 = Mn + EI(R−1)Δ, Mn+1 = M∗

n+1 − EI(R−1
p )Δ,

in full correspondence with previous definitions for stresses (Section 5.4.4). The
differences in eqn (ii) must be greater than zero or vanish, in accordance with the
condition for plastic loading. The quantities Mn+1/M̄n+1 , M∗

n+1/M̄∗
n+1 define the

sign of the incremental permanent deformation.
Instead of the employed semi-direct technique, the stiffness matrix of the beam

element in the elastic range could have been obtained by a formal application of
the finite element method. This will be exemplified for the element mass matrix
in the following. Local motion of the beam is described collectively for the cross-
section by the generalized displacements v and ϕ. They are associated with the
translational mass �Adz and rotational mass �Idz, respectively, over the length
dz (cross-section area A, moment of inertia I). The inertia forces are locally

(
m′dz

)
ü = �

[
A

I

][
v̈

ϕ̈

]
dz, u =

[
v

ϕ

]
,

and from the virtual work equivalence for the element

U˜ t
qmqÜq =

∫
lq

u˜tm′üdz, Uq = {u1u2}q.

Employing the element kinematics, eqn (i), in the form u = ωUq the mass
matrix of the beam is obtained as

mq =
∫
lq

ωtm′ωdz = l

1∫
0

ωt(ξ)m′ω(ξ)dξ.

The matrix ω collects the interpolation functions for the displacements u = {v ϕ}
or equally for their time derivatives in terms of the normalized coordinate ξ.

In the present example some attention must be paid to the parts of the beam
extending over the supports (Fig. 7.36). These parts can be omitted in the static
solution, but they add to the inertia. They are accounted for by suitably modifying
the rotational mass at the supported points. This completes the description of the
discretized representation of the impacted beam. The incremental integration of
the resulting equations of motion follows the lines of Section 6.4.2.
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Figure 7.42: Cross-section of a traffic tunnel: definition of the problem,
finite element representation and material parameters.

7.10 Soil stresses connected with the construction
and operation of a traffic tunnel

This application refers to an actual case taken from geo-engineering prac-
tice [12]. It demonstrates the employment of elastoplastic analysis in soil
mechanics in conjunction with the Mohr–Coulomb hypothesis of failure. The
particular task to be investigated concerns the states of stress in the soil
surrounding the tunnel. A description of the problem is shown in Fig. 7.42.
The construction of the tunnel essentially consists of the following stages to
be simulated consecutively. After excavating the soil at the site, the tunnel
is constructed on the subsoil and the space remaining on both sides of the
tunnel is filled up with soil. Subsequently, the top of the tunnel and the
soil surface are subjected to pressure, and the traffic through the tunnel
is started. Although the actual load due to traffic can be neglected, the
ensuing vibrations effect a reduction of the soil friction, and thus induce a
redistribution of the stress. Once stationary conditions have been attained,
the surface pressure is removed.

The elastoplastic problem is considered two-dimensional under the condi-
tion of plane strain. Figure 7.42 shows the discretization mesh selected for
the investigated configuration; the finite element type employed is a triangle
with six nodes. The separation into substructures facilitates handling the
removal and addition of material. For the purpose of an elementary demon-
stration of the numerical solution technique, the problem has been kept



284 Elements of Plasticity

Figure 7.43: Stress state in the subsoil and yield region due to the weight
of the tunnel (σ in 104 Pa).

intentionally within limits. Aside from the coarseness and reduced extent
of the finite element mesh, the experienced engineer will also notice the
omission of certain transition zones between the concrete tunnel and the
surrounding soil.

The material constants for the different domains and stages of construc-
tion are specified in Fig. 7.42. The cohesion coefficient c and angle of
internal friction ϕ define the Mohr–Coulomb condition of failure, which
is approached by a plasticity model via the Drucker–Prager linear general-
ization (Section 6.5.2). For this purpose the constants of the model have to
be related to the parameters c and ϕ. In the present case of plane strain,
the relation is as given in Section 6.5.2.

Originally, the soil carries the stresses

σzz = −γz, σxx = σyy = λσzz

due to its own weight. Here, γ denotes the specific weight of the soil material;
the vertical z-coordinate, measured from the ground level, is positive when
pointing downwards. For lack of better information the lateral earth pressure
coefficient λ is taken as

λ =
ν

1 − ν
.

The above stress distribution gives rise to equivalent loads at the nodal
points of the finite element mesh simulating the dead weight. This is the only
load acting on the subsoil remaining just after the excavation (Substructure
I). The additional load applied subsequently due to the weight of the tunnel
(Substructure III) induces inelastic deformation (Fig. 7.43). In the third
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Figure 7.44: State of stress (in 104 Pa) and yield region after application of
surface pressure p = 3.7 · 104 Pa.

Figure 7.45: Distribution of stress (in 104 Pa) and yield region after reduc-
tion of the soil friction (ϕ0 → ϕ∞) under constant load.

stage of the numerical simulation, the empty space on both sides of the
tunnel (Substructure II) is refilled with soil.

The fourth, fifth and sixth stages are concerned with the application of
the surface pressure (Fig. 7.44), the reduction of the soil friction (angle ϕ) at
constant load (Fig. 7.45) and the removal of the surface pressure. Thereby,
material is neither added nor taken away. The results of the computational
analysis shown in Figs 7.43–7.45 comprise plots of the distribution of the
deviatoric equivalent stress σ̄ and of the hydrostatic stress σH. Also depicted
are the regions of permanent deformation in the soil. Figure 7.45 shows
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that handling the graphical representation of the stress individually within
substructures leads to discontinuities along the boundaries which are pro-
nounced because of the coarse finite element discretization.
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accumulation of plastic strain, 19,
141

accuracy study, 175, 211–213
admissible

strain, 118
stress, 118, 127, 132, 136

algorithm: see solution algorithm
alternating plastic flow, 19, 49, 141
amplification matrix, 178
analogy

Nadai’s sand heap, 95
Prandtl’s membrane, 93
plastic-viscoplastic, 218

Bauschinger effect, 50
beam

design, 2
limit analysis, 135
neutral axis, 78
plastic limit, 77
lateral force, 112
stiffener element, 265
finite element, 280

Bingham medium, 214
body force, 80
boundary conditions, 81–82, 91, 97,

102, 222
Bredt’s formula, 109

coefficient
lateral contraction (Poisson’s

ratio), 26
lateral earth pressure, 284
thermal expansion, 195, 197
viscosity, 205

cohesion, 240–241, 284
collapse load: see limit load
condition

consistency, 20, 36
loading, 21, 22, 38

yield, 19, 33, 42
convergence criterion, 168–169,

177
convexity of yield surface, 121
Coulomb hypothesis, 238
creep, 205, 207
cycling

strain, 57–58
stress, 57
thermal, 262

design (elastic, plastic), 2
determinateness

kinematic, 66, 87, 167–168
static, 66, 86, 167–168

deviatoric plane, 39, 40
diagram

moment–curvature, 278
stress–strain, 15

dissipation, 119, 124, 126, 129–131,
132, 136–137, 147

distortion energy, 33
Drucker–Prager generalization,

238
dynamic plasticity, 219

eigenvalue, 9, 170, 179, 180
problem, 9, 32

eigenvector, 9–10, 178
elasticity, 1, 17, 26

limit, 1, 16, 34, 65, 83, 189
matrix, 26, 105, 107
relation, 22, 33, 105, 107

elastic–plastic transition, 174
equations of motion, 228

finite element, 229
equilibrium, static, 80–83
equivalent

plastic strain, 37, 47
stress, 34, 240, 243
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fatigue
elastic, 141
plastic, 141

fictitious stress, 149, 171, 174, 182,
183, 202, 204

finite element
beam element, 280
equation, 160–161
gradient matrix: see gradient
initial load, 163, 196
kinematics, 156
mass matrix, 230
mixed approximation, 252
reduced integration, 252
solution, 161, 196
stiffness matrix, 161
substructure, 255

flow rule, 19, 36
associated, 38, 48, 51, 59–60
non-associated, 239, 242

flow theory of plasticity, 60
formability, 1

gradient, 13, 94
gradient matrix, 191

dynamics, 230
non-isothermal, 203

hardening
characteristic, 17
isotropic, 47, 53, 57, 105, 182

non-isothermal, 197
kinematic, 49, 53, 57, 106, 184

non-isothermal, 198, 203
mixed, 52
parameters, 21, 48, 51, 58

non-isothermal, 197
strain, 17, 208
time, 207

Hermitean approximation,
231–232, 280

Hooke’s law, 17
hydrostatic axis, 39
hysteresis, 16

impact
of beam, 279
of rod

elastic, 221

elastic–plastic, 223, 232
incremental yield mechanism, 146
incrementation

computation, 200
creep, 209
dynamics, 230–232
isothermal plastic flow, 172
non-isothermal plastic flow, 201

kinematic hardening, 203
viscoplasticity, 217

initial load method, 163
initial

strain, 165, 166
stress, 165, 166

integration by parts, 92
integration, numerical (see also

incrementation)
accuracy, 170, 173, 176, 212
stability, 170, 173, 178, 210

interpretation, 181
internal friction, 241, 284
invariance of work, 30
isochoric deformation, 252
isotropic material, 24, 26

Kelvin–Voigt solid, 205
kinematic compatibility, 66, 68, 69,

71, 82, 86, 90, 104, 220
Koiter’s kinematic shakedown

theorem, 145

Lévy–Mises equations, 38
limit

elasticity, 16
linearity, 15
yield, 16

limit load, 123
bounds, 131

loading programme/history, 1, 15,
53, 57, 141, 189, 263, 265

mass
matrix, 230

of beam, 282
rotational, 282
translational, 282

matrix, 5
algebraic operations, 6
eigenvalue, 9
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eigenvector, 9
functions, 8, 179

differential forms, 11
Taylor series, 13

spectral decomposition, 10, 225
matrix material, 235
maximum tangential stress, 41
Maxwell model, 206
Melan’s static shakedown theorem,

143
Mohr circle, 241
Mohr–Coulomb hypothesis, 238

linear generalization, 238
parabolic generalization, 242

modulus of elasticity
shear, 26
tension (Young’s), 17, 26
volume expansion, 26

normality of plastic flow, 120
numerical integration: see

integration, numerical
Newton–Raphson iteration, 191

overstress, 216

path dependence, 18, 60, 193
perfectly plastic material, 21
plane strain study, 99
plane stress study

biaxial tension, 43
tension and shear, 112
limit analysis of plate, 136–137
pressure sensitivity, 243

plasticity, 1
non-isothermal, 196
postulates, 19

plastic state, 20, 35
point/discrete force, 118
Poisson’s ratio, 26
porosity, 235
porous material, 235
Prandtl–Reuss equations, 38
pressure

creep of vessel, 270
cylindrical container, 262
spherical membrane, 61
thick-walled cylinder, 99,

125

thin-walled cylinder, 113
vessel with nozzle, 253

principal
axes, 31
strains, 32
stresses, 32
tangential stresses, 41

radial return technique
isotropic hardening, 182

non-isothermal, 202
kinematic hardening, 184

non-isothermal, 204
perfect plasticity, 182

rate sensitivity, 205
relaxation, 205–206, 271
relaxation time, 206
residual

displacement, 85
strain, 66, 67, 74, 80, 85–87, 142
stress, 66, 67, 74, 79, 80, 85–87,

101, 142–143, 150
residual load vector, 191, 230

iteration, 191, 203
numerical, 188

return technique, general, 186
rotation (coordinates), 27

safety factor, 2, 124
lower limit (static), 129
upper limit (kinematic), 131

Saint Vènant, 38, 41, 88
shear flow, 108
small deflections, 278

deformations, 2, 58, 65, 124
soil stresses, 283
solution algorithm

creep, 213
dynamic, 230
incremental, 189
initial load, 165
iterative, 84
Newton–Raphson, 191
non-isothermal, 196, 201
overview, 191
radial return, 190
tangential stiffness, 163
verification, 256
viscoplastic, 218
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spectral
decomposition, 10, 225
norm, 170
radius, 179

spectrum of a matrix, 10
speed of sound, 220
stability

loading, 119
material, 119
numerical, 178, 210

stationary stress, 215, 272, 275
stiffness, 1

elastic, 68, 161
elastoplastic, 69, 162
material, 26, 85
tangential, 162

strain, 15, 23, 81–82
deviatoric, 25
direct/normal, 23
elastic, 17, 25
permanent/plastic, 17, 25
shear, 23
thermal, 195
vector, 24

reduced, 104
volumetric, 25

stress, 15, 23
deviatoric, 24
direct/normal, 22
function, 91
hydrostatic, 24
shear/tangential, 22
vector, 23

reduced, 104
substructure/substructuring, 254,

255, 259, 283
surface force/traction, 29, 80

tangential stiffness method, 161
Taylor expansion, 13, 231
temperature dependent properties,

260, 267, 274
tensile specimen, 15
thermal stress analysis, 259, 265,

272
thermoelasticity, 195
time rate, 83
torsion

solid cross-section, 88, 110,
114–115

thin tubular cross-section, 107
torsion–pressure, 113
torsion–tension, 53, 149

hardening study, 53
shakedown study, 149

traction, 22, 29
truss, 66, 67, 70, 111

limit analysis, 132, 138

unloading, 15, 60, 65, 74, 80, 101
unrestricted plastic flow, 123–124

vector array, 6
virtual

displacement (velocity), 118, 132,
145, 155

strain (rate), 118
strain cycle, 146
stress, 118, 127, 132, 136, 143,

151
work/power, 118, 132, 146, 148,

155, 229
viscoplastic response, 217, 275
viscosity, 204

warping, 89, 108
wave propagation

elastic, 221
elastic–plastic, 223
nonlinear material, 225
unloading, 228

yield
condition, 19, 35
criterion, 34, 41

Huber/Mises, 34, 251
Tresca, 41, 251

function, 35
limit: see elasticity limit
mechanism, 124, 125, 129, 133

incremental, 146
stress

shear, 42, 94/95
temperature dependence, 197
tension, 17

surface, 39
Young’s modulus, 26
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