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Preface

Since I have been conducting research in education and psychology using multidi-
mensional scaling (MDS) models for many years, I read quite a few books as well 
as some classical articles on MDS. My experiences with these readings are that 
writings on this topic are often very technical and esoteric, which make it hard to 
relate to the current research needs in education or psychology. I gradually develop 
an urge to write a book on MDS that is more understandable and relevant to the cur-
rent research setting. This is my first effort.

In this round of writing, I focus on MDS concepts that I deem to be more relevant 
to current research in education or psychology. I try to convey MDS concepts in 
more understandable terms and focus on aspects of MDS that may be more poten-
tially useful to readers. Although I put some technical aspects of the MDS (such as 
equations) in a few chapters, they are simple for the purpose of making the discus-
sion more complete. Readers can skip these sections without losing the main ideas 
of the topic. I made each chapter as short as I can to only cover main points so that 
readers can focus on the fundamentals. Of course, this is done at the risk of omitting 
many potentially helpful materials.

MDS has not been often employed in education or psychology research in recent 
years. Although I did not cover everything that can be done with MDS analysis, I 
did indicate some potential research that can be done via MDS. I provided some 
examples of MDS analyses so that readers can get some ideas, with the hope that 
this could pique reader’s interest. MDS analysis has its limitations but it can cer-
tainly be useful. Thus, the book is intended for students or researchers who want to 
know more about MDS but not so technical. The book is not a textbook in a techni-
cal sense since it does not teach or show readers how to perform MDS analysis. 
However, the book provides a comprehensive view of fundamentals of MDS so that 
readers can understand what MDS is and can do.

This book is intended as a research reference book for graduate students and 
researchers to get fundamental ideas of multidimensional scaling (MDS) and how 
this particular analytic method can be used in applied settings. Some of the major 
problems with the content of existing MDS books are that the discussion on MDS 
(1) tends to be very technical, (2) covers many topics that are less relevant to current 
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practices in educational or psychological research, and (3) uses language or exam-
ples that are less common in today’s research setting. As such, graduate students or 
researchers are not likely to view MDS as a viable method for studying issues at 
hand.

Before 1985 or so, there were many publications on MDS. But then it somehow 
fell out of fashion. Today MDS is offered as part of materials on multivariate analy-
sis, usually as a chapter. However, one chapter is not nearly close to covering some 
unique aspects of MDS, particularly regarding the applications of this method to 
research in education and psychology. I do not expect dramatic changes in its popu-
larity, but I do believe MDS as a method can offer some interesting applications to 
research and this is not a popularity contest. This book is an effort to make MDS 
more accessible to a wider audience in terms of the language and examples that are 
more relevant to educational research and less technical so that the readers are not 
overwhelmed by equations and do not see any applications. In addition, it discusses 
some new applications that have not previously been discussed in MDS literature. 
My philosophy is that methods are just methods, not bad or good, and it all depends 
on how you use them and for what purpose. Using popularity to assess the value of 
academic books will limit the spread of knowledge. In addition, MDS is not one 
method, but rather it comprises a family of methods that can be used for different 
purposes.

This book can also be used as a supplemental book for advanced multivariate 
data analysis on the topic of MDS, which is typically one chapter in such a book of 
multivariate data analysis for graduate students. As mentioned previously, the main 
impetus for writing this proposed book is that I hope to have a book that is not so 
technical for graduate students and researchers who are not interested in the techni-
cality of MDS. I have read quite a few books on MDS and I am struggling with 
thoughts of why and what these materials in the books are useful for, although they 
are informative from a purely academic perspective. Therefore, the book is more of 
response to my own desire to have a book in which I can see the relevancy of MDS 
in actual research settings. The book does not have exercises or discussion questions 
since my goal is to have readers learn some fundamentals and start using MDS via 
available software programs. If they do want to know more technical aspects of 
MDS, they can always refer to books by Davison (1983) or Borg and Groenen 
(2005), for example. There is no need for me to replicate what they have already 
done.

St. Louis, MO, USA Cody S. Ding

Preface
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research applications.
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Chapter 1
Introduction

Abstract Discuss fundamental ideas of MDS, particularly MDS as a data 
 visualization tool in the context of big data is highlighted. Similarities and differ-
ences between MDS, factor analysis, and cluster analysis are discussed.

Keyword MDS · Visualization · Factor analysis · Cluster analysis

In this chapter, we mainly discuss the concept of multidimensional scaling in the 
current psychological or education research context. We also discuss some differ-
ences and similarities among multidimensional scaling, factor analysis, and cluster 
analysis. The goal of such a discussion is to have readers obtain a better sense of the 
concept of multidimensional scaling in relation to other conceptually similar meth-
ods, particularly in the language that is more relevant to current educational and 
psychological research.

1.1  What Is Multidimensional Scaling

In much of the quantitative and statistical literature, multidimensional scaling 
(MDS) is often referred to as a technique that represents the empirical relation-
ships of data as a set of points in a geometric space, typically in two or higher 
dimensional spaces. Specifically, multidimensional scaling represents a family of 
statistical methods or models that portray the structure of the data in a spatial fash-
ion so that we could easily see and understand what the data indicate. This may be 
the reason that MDS tends to be viewed as a data visual technique, and sometimes 
it is considered with respect to mapping technique. The unifying theme of different 
MDS models is the spatial representation of the data structure. In this regard, MDS 
can be considered as one analytic tool of data visualization in the context of big 
data.1 In the context of data visualization, MDS models can be used to investigate 
a wide range of issues in education and psychology such as perception of school 

1 Big data means that there are lots of data being collected. Visualization is one method for big data 
analysis.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78172-3_1&domain=pdf
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climate by various age groups of students, changes in achievement, sensitivity of 
psychological measures, or individual differences in mental health, to name a few. 
Moreover, it can also be employed for the purpose of hypothesis testing, like that 
in structural equation modeling. Although MDS is a powerful tool of studying vari-
ous behavioral phenomena, it appears to be underused in current educational and 
psychological research.

In the literature, MDS has been defined in slightly different ways. For example, 
Davison (1983) defined MDS as a method for studying the structure of stimuli (i.e., 
variables) or individuals. Borg and Groenen (2005) defined MDS as a technique of 
representing distances between objects (or variables) in a multidimensional space. 
In a nutshell, MDS can be defined as a family of analytical methods that use the 
geometric model (typically in the form of a distance equation) for analysis of inter- 
relationships among a set of variables, people, or combination of variable and peo-
ple (such as in preference analysis) so that the latent structure of data can be 
visualized for meaningful interpretation. A distance equation could be the Euclidean 
distance, the city-block distance, or the Minkowski distance. Thus, an MDS analy-
sis involves employment of a specific model of study, for instance, how people view 
things in different ways.

More specifically, multidimensional scaling is carried out on data relating 
objects, individuals, subjects, variables, or stimuli to one another. These five terms 
are sometimes used interchangeably, which may cause some confusion. Objects, 
variables, or stimuli usually refer to inanimate things, such as variables or test 
scores; individuals and subjects referto people. Given the distance measures between 
variables, MDS models produce a solution that consists of a configuration of pat-
terns of points representing the variables in a space of a small number of dimen-
sions, typically in two or three dimensions. For this reason, it is also called small 
space analysis (SSA). The following example illustrates this point. This example 
represents a group of students who take a given reading test five times over a two- 
month period. The distance matrix of these score is:

 

D =























0

1 0

2 1 0

3 2 1 0

4 3 2 1 0
 

This distance matrix can be thought of as giving information about how similar 
or dissimilar these test scores are to each other over time. MDS model takes this 
information and represents these test scores as a point in space, which is shown in 
Fig. 1.1 In this two-dimensional space, as shown in Fig. 1.1, the more similar the 
test scores are, the closer they lie to each other. The pattern of points that most accu-
rately represents the information in the data is the MDS solution or configuration. 
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In this example, these five reading test scores have a linear configuration, indicating 
the linear increase of reading achievement over time. As Tukey (1977) says: “A 
picture is worth a thousand words.”Thus, a picture of the data is produced that is 
much easier to assimilate (visually) than a matrix of numbers, particularly if such a 
matrix of number is large. It may also bring out features of the data that were 
obscured in the original matrix of coefficients (i.e., dissimilarity coefficients).

This example, although based on fictitious data, allows a number of points to be 
noted:

 1. MDS is primarily concerned with representation, in this case with the production 
of a simple and easily assimilated geometrical picture where distances are used 
to represent the data.

 2. MDS models differ in terms of the assumptions they make about how important 
the quantitative properties of the data are. In the example above, it is in fact only 
the rank order of the data percentages, which is matched perfectly by the dis-
tances of the configuration. This is an example of ordinal scaling or, as it is more 
commonly termed in MDS literature, non-metric scaling.

 3. A wide range of data and measures can be used as input, as will be discussed in 
Chap. 2. Any data that can be interpreted as measures of similarity or dissimilar-
ity are appropriate for MDS scaling analysis.

Traditionally, there are following issues that we must consider in using multidi-
mensional scaling:

-3 -2 -1 0 1 2

O1

O2

O3

O4

O5

O1

O2

O3

O4

O5

Fig. 1.1 A hypothetical 
example of a configuration 
of five reading test scores

1.1 What Is Multidimensional Scaling
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 1. The data, the information to be represented (discussed further in Chap. 2);
 2. The transformation how data should be related to the model, such as basic non-

metric MDS model or metric MDS model (discussed in Chap. 3).
 3. The model how the solution should be interpreted, such as individual differences 

model or basic scaling model (more on this in later chapters), as giving informa-
tion about the relationships between the variables.

 4. The sample size required for an MDS analysis does not need to be large: it can 
range from a few people to a few hundred. Since the MDS analysis is more of a 
descriptive (except for maximum likelihood MDS) and does not involve signifi-
cance testing, the interpretation and accuracy of the analysis results are not tied 
to the sample size. Thus, the MDS analysis can be used for studies based on the 
single-case design such as an investigation of the response of a small group of 
individuals to a treatment. However, if one wants to make a generalization based 
on the people in the study, a representative sample is required.

 5. MDS models (except for maximum likelihood MDS) do not have distributional 
requirements such as normality of the coordinates. But the maximum likelihood 
MDS assumes that the coordinates are normally and independently distributed 
and each object or variable can have the same variance or different variances 
(discussed in Chap. 7).

1.2  Differences and Similarities Between MDS, Factor 
Analysis, and Cluster Analysis

Before we start further discussion on MDS models, it is imperative to discuss differ-
ences and similarities between MDS, factor analysis, and cluster analysis. Without 
a clear conceptual understanding of what MDS models are all about, particularly in 
relation to these methods, practitioners may have difficulty in utilizing MDS for 
their work, thus impeding further developments of MDS models in psychological 
and educational research. In light of this and to remain consistent with the applied 
orientation of the book, this discussion is focused more on conceptual grounds 
rather than mathematical aspects.

1.2.1  MDS and Factor Analysis

Conceptually, factor analysis is a technique that discovers latent relationships 
among a set of variables. The objective is to explain a number of observed variables, 
(m), by a set of latent variables or factors (f), where (f) is much smaller in number 
than (m). The hypothesis is that only a few latent factors suffice to explain most of 
the variance of the data. In other words, the relationships among the observed vari-
ables exist because of the underlying latent variables. Likewise, the objective of 

1 Introduction
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MDS is to reveal geometrically the structure of data in fewer dimensions. Like 
MDS, factor analysis yields a quantitative dimensional representation of the data 
structure. Both have been used to study dimensionality among variables. It is often 
the case that the term factor and dimensionare used interchangeably in factor analy-
sis literature. Because of this similarity, it is not a surprise that factor analysis and 
MDS are viewed as very similar if not the same.

Studies have been done to compare the two techniques (e.g., Davison 1985). The 
differences between the two may be summarized as follows: (1) factor analysis 
yields more dimensions than does MDS; (2) factor analysis typically represents 
linear relationships among variables, whereas MDS can represent both linear and 
nonlinear relationships; (3) MDS is traditionally used more often as a data visual-
ization tool than factor analysis, which is typically a measurement technique of 
finding a set of latent variables that connect observed variables together; and (4) 
MDS can employ a variety of kinds of data such as preference ratio data, whose 
values are coded between 0.0 and 1.0, indicating the degree to which a variable in a 
variable pair is preferred. But factor analysis usually analyzes the correlation matrix, 
whose values indicate similarities between variables. Therefore, the applications of 
MDS can be more diverse than that of factor analysis. For example, MDS prefer-
ence analysis can be used to study individuals’ preferences to a set of coping behav-
iors (e.g., prefer shouting to talking with friends), whereas factor analysis usually is 
used in studying how a set of coping behaviors measures a particular coping con-
struct (e.g., withdrawal coping).

The take-home message of the differences between these two methods is that 
factor analysis is focusing on latent variables that represent some constructs such as 
anxiety or depression, while MDS analysis is more in line with Network Analysis 
(McNally et al. 2015), where behaviors (as assessed by variables) are best construed 
as a system embodied in networks of functionally interconnected fashion. Thus, the 
configuration of relation between variables is mereological – part to whole – rather 
than causal as in factor analysis (Borsboom and Cramer 2014; Guyon et al. 2017). 
For example, typical example used in illustrating MDS analysis is to show the rela-
tion between the 50 states as a map. Accordingly, the map is mereological: parts 
(i.e., 50 states) to whole (i.e., the United States). There is no underlying causal rela-
tion between states and the country called the United States; states are part of it. 
Moreover, MDS as a network analysis is more exploratory, that is, empirically dis-
covered rather than formed by theories. Thus, the difference is ontological as in 
factor analysis versus mereological as in MDS analysis.

1.2.2  MDS and Cluster Analysis

Another closely related method to MDS is cluster analysis (Kruskal 1977). 
Traditional cluster analysis, such as hierarchical cluster analysis, is employed to 
identify individuals who share similar attributes (e.g., high risk adolescents). 

1.2 Differences and Similarities Between MDS, Factor Analysis, and Cluster Analysis
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While MDS can be used in the same way, Davison (1983) pointed out three dif-
ferences between MDS and cluster analysis. First, relationships between the 
observed distance matrix and model derived distance matrix in cluster analysis 
cannot be expressed in linear or even monotone fashion as in MDS.  Second, 
dimensions in cluster analysis are typically represented in a tree diagram of many 
simple two- valued dimensions to represent data. As such, the number of dichoto-
mous dimensions needed to represent the data structure become large in practice. 
Third, MDS defines clusters of individuals in terms of continuous dimensions 
rather than in either-or fashion. Thus, we can describe a group of individuals who 
possess more of one attribute (e.g., depression) than the other (e.g., anxiety) rather 
than having that attribute (e.g., depression) or not. In addition to these three dif-
ferences, MDS is a model-based approach, while traditional cluster analysis is 
not. Recently, some researchers have developed model-based cluster analysis 
(Fraley and Raftery 2007). However, a key difference between model-based clus-
ter analysis and MDS remains in that MDS represents cluster in terms of dimen-
sion rather than ina dichotomous fashion.

1.3  Conclusion

In this chapter, we discuss what the MDS models are and their fundamental utili-
ties. We also summarize some fundamental differences between MDS, factor anal-
ysis, and cluster analysis. One take-home message is that MDS is not simply a 
data- reduction method. MDS can be used for many other purposes in education and 
psychological applications such as the longitudinal study of achievement, treatment 
preferences, or hypothesis testing of behavioral likings, as we will see in the later 
chapters.
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Chapter 2
Data Issues in MDS

Abstract Data is the first step in process of any statistical analysis. Since MDS has 
a bit different terms associated with data concepts and it can be confusing, I try to 
discuss the data used for MDS with terms that are more understandable or relevant 
to the common research setting.

Keyword Distance measures · Measurement conditionality · Number of ways · 
Number of mode

In this chapter, we discuss some essential features of data that are typically associ-
ated with MDS analysis. Some data are unique to MDS analysis such preference 
ratio or binary choice data. In addition, some terms used in describing MDS data are 
a bit confusing. Here we attempt to explain these terms as clearly as a layperson can 
understand. If we can better understand these features of data, we are more likely to 
use the MDS analysis in our research or data practices. We also discuss a MDS 
program that can perform various types of MDS analysis.

2.1  A Look at Data

MDS can be used for various analyses, and therefore different types of data can be 
involved. Young (1987) provided a thorough discussion of data for MDS models, as 
did some other authors (e.g., Borg and Groenen 2005; Davison 1983). In here, we 
will discuss those aspects of data that are most relevant to MDS in the current 
research context.

Several types of data lend themselves to analysis by multidimensional scaling. 
Behavioral scientists have adopted several terms relating to data, which often are 
not familiar to others. Typically, variables can be classified according to their “mea-
surement scale”. The four scales that are commonly mentioned in the literature are 
the nominal scale, the ordinal scale, the interval scale, and the ratio scale. For MDS 
models, any type of data can be converted into proximity measures as an input for 
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MDS analysis. Traditionally, the data used in MDS analysis are typically called 
proximity measures. The term, proximity, is vague, however, since it can indicate 
similarity data as well as dissimilarity data. For this reason, in this book we use a 
specific term for a particular kind of data. For instance, if distance matrix is to be 
used, we will refer to such data as distance data or measure (c.f., dissimilarity or 
proximities). The most common measure of the relationship of one variable (stimu-
lus, etc.) to another is a distance measure (i.e., distance coefficient). It measures the 
“dissimilarity” of one object to another, where the distance, δij, between the two 
objects is measured. If the data are given as similarities, sij, such as correlation coef-
ficients, some monotone decreasing transformation will convert them to dissimilari-
ties or distance coefficients.

 
dij ijs= -1

 

 
dij ijc s where c is for some constant= -

 

 
dij ijs= -( )2 1 .

 

MDS analyses assume that distance measures are given. How one collects these 
distance measures is a problem that is largely external to the MDS models. However, 
because distance measures are obviously needed and because the way these distance 
measures are generated has implications for the choice of an MDS model, we dis-
cuss some of these issues here.

2.2  Data Source

Traditionally, the data used in MDS analysis usually come from direct judgment of 
certain stimuli with respect to some attribute. For example, participants are asked to 
judge which car’s color is brighter or to judge which two schools are similar with 
respect to certain characteristics such as friendliness or orderliness. Such judgment 
data are generated via four types of judgment tasks: magnitude estimation, category 
rating, graphic rating, and category sorting. Currently, the judgment data in educa-
tion or psychology (except for some experimental studies) are not so common 
because of the practical problems (e.g., time constraints or willingness to partici-
pate) and the participant’s ability and willingness to perform the various tasks.

Typical data commonly used in today’s research is data generated by question-
naires or surveys using a Likert-type scale metric such as from 1 to 4, with 1 being 
not at all and 4 being always with respect to a certain event or trait (e.g., how often 
do you feel happy?). This type of data is typically not discussed in traditional MDS 
literature; however, data produced by a Likert-type scale can be easily converted 
into either a distance data matrix by averaging across all participants or individual 
distance matrices, one for each participant. Such data are called indirect proximity 
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measures in the MDS literature. A distance matrix based on indirect proximity data 
generated from surveys or questionnaires are often used in today’s research setting, 
which may be more common than direct judgment. Thus, the input data for MDS 
are more likely to be indirect data rather than direct judgment data.

There are various measures of proximity (similarity or distance), and Table 2.1 
shows a list of common distance or similarity measures that can be computed based 
on the different levels of measurement.

Moreover, the data based on rating data using a rating scale can also directly be 
used as input for MDS preference analysis since this kind of data can be considered 
to represent individual’s preference or inclination judgment toward a certain trait. 
For example, data from rating on item “I shared with other students” on a scale 
metric of 1–5, with 1 being most preferred and 5 being least preferred can be used 
as liking data to examine the preferred behaviors of students or individuals. MacKay 
and Zinnes (2014) provided discussion of this and the other kinds of preference data 
for MDS preference analysis. Here, we briefly discuss some of these data sources 
for MDS analyses.

A common preference data type is liking rating, as typically generated by Likert- 
type rating scale in a survey or questionnaire, where each respondent rates his/her 
preference or liking with respect to a particular attribute or statement. For example, 
in a coping survey with the scale of 1–5, with 1 being most likely to use and 5 being 
least likely to use, an individual responding to a statement “I always get angry when 
I have a problem” with 1 may indicate his/her preference to this type of coping style. 
You can think of a liking rating as a judgment about the distance of an object (e.g., 
item or statement) from your ideal point (i.e., preference or liking). As mentioned 
previously, liking ratings are the most commonly used indirect judgment data type.

Binary preferential choice data consist of 0’s and 1’s, with 0 being not-preferred 
and 1 being preferred, and are usually entered as a lower-half matrix without a 
diagonal. An example of binary choice matrix is:

0
0 0
1 00 
1 11 1 
0 01 0 1 
0 10 0 1 
1 01 0 1 1 0 

Since diagonal entries are missing, the first row corresponds to the second object 
or item. Thus, the 1 in the third row indicates the individual prefers to the fourth 
object or item over the first one. Each participant has a binary choice matrix.

0.97
0.74 0.34
1.19 2.02 5.34
1.99 1.13 1.99 1.07
1.38 1.16 3.17 0.74 0.87
0.89 1.51 3.11 0.80 0.81 0.625 

2.2  Data Source
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Table 2.1 List of measures of proximity (similarity or dissimilarity)

Symbol Definition or description

v The number of variables or the dimensionality
xj Data for observation x and the jth variable, where j = 1 to v
yj Data for observation y and the jth variable, where j = 1 to v
wj Weight for the jth variable
W The sum of total weights. No matter if the observation is missing or not, its 

weight is added to this metric

x Mean for observation x

x w x
j

v

j j=
=
å

1

/
j

v

jw
=
å

1

y Mean for observation y

y w y
j

v

j j=
=
å

1

/
j

v

jw
=
å

1

d(x,y) The distance or dissimilarity between observations x and y
s(x,y) The similarity between observations x and y
Methods accepting all measurement level:
GOWER Gower’s similarity

s x y w d
j

v

j x y
j

x y
j,( ) =

=
å

1

d , , /
j

v

j x y
jw

=
å

1

d ,

d x y
j
,  is computed as follows:

For nominal, ordinal, interval, or ratio variable,
d x y

j
,  = 1

For asymmetric nominal variable,
d x y

j
,  = 1 if either xj or yj is present

d x y
j
,  = 0 if both xj and yj are absent

For nominal or asymmetric nominal variable
dx y

j
,  = 1 if xj = yj

dx y
j
,  = 1 if xj ≠ yj

For ordinal, interval, or ratio variable
dx y

j
,  = 1 − | xj − yj|

DGOWER 1 minus Gower
d(x,y) = 1 – s(x, y)

Methods accepting ratio, interval, and ordinal variables
EUCLID Euclidean distance

d(x, y) = ( /
j

v

j j j
j

v

jw x y W w
= =
å å-( )( ) æ

è
çç

ö

ø
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SQEUCLID Squared Euclidean distance
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v
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è
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ö

ø
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2

1

(continued)
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Symbol Definition or description

COV Covariance similarity coefficient

s(x, y) = 
j

v

j j jw x x y y vardiv
=
å -( ) - -( )

1

/ , where

vardiv = v if VARDEF = D

= v − 1 if VARDEF = DF

= 
j

v

jw
=
å

1

 if VARDEF = WEIGHT

= 
j

v

jw
=
å -

1

1  if VARDEF = WDF

CORR Correlation similarity coefficient

s(x, y) = j

v

j j j

j

v

j j j

v

j j

w x x y y

w x x w y y

=

= =

å
å å

-( ) -( )
-( ) -( )

1

1

2

1

2

DCORR Correlation transformed to Euclidean distance as sqrt(1–CORR)

d(x, y) = 1- ( )s x,y

SQCORR Squared correlation

s(x, y) = 
j

v

j j j

j

v

j j j

v

j j

w x x y y

w x x w y y

=

= =

å
å å
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ë

ù
û

-( ) -( )
1

2

1

2

1

2

DSQCORR Squared 
correlation transformed to squared Euclidean distance as (1–SQCORR)
d(x,y) = 1 – s(x,y)

L(p) Minkowski (Lp) distance, where pis a positive numeric value

d(x,y) = 
j

v

j j j

p
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j
pw x y W w
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CITYBLOCK L1
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d(x,y) = max j
v

j j jw x y= -1 # #

POWER(p,r) Generalized Euclidean distance, where pis a nonnegative numeric value and ris 
a positive numeric value. The distance between two observations is the rth root 
of sum of the absolute differences to the Pth power between the values for the 
observations:
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Note. The symbols and formula described here are based on the document from SAS (SAS Institute 
Inc 2008)
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Preference ratio data are the comparison of two objects (i.e., a ratio) and are 
 usually entered as a lower-triangle matrix without diagonal entries. An example of 
the preference ratio data is:

Unlike binary choice data without the diagonal entries, the number in the first 
row corresponds to the preference ratio of the first to the second object. Thus, the 
1.99 in fourth row indicates the individual prefers the first object over the fifth object 
almost twice as much. Typically, preference ratio data are generated using graphic 
rating scales.

2.3  Data Design

One distinct feature of data used in MDS analysis comes from data theory stipulated 
by Coombs (1964) and Young (1987), which involves the shape of the data (i.e., 
number of ways and number of mode) and measurement conditionality. These fea-
tures are a bit unique to MDS analysis and we often encounter them in traditional 
MDS literature. Specifically, number of ways indicates the number of factors 
involved in collecting data (e.g., different or same people, how many variables, or 
different situations). This idea of number of ways is somewhat similar to that of 
number of factors in analysis of variance (ANOVA). In MDS, number of ways 
implies the factors that can produce variations in the data. For example, if one par-
ticipant is asked to rate differences among five coping behaviors, then this is a one-
way data design since one participant does not produce variation but five coping 
behaviors are a source of variation in rating. On the other hand, if three participants 
are asked to judge the differences among five coping behaviors, this is a 2-way data 
design since now different participants produce variations along with five coping 
behaviors. Thus, two-way data take the form of a matrix consisting of rows and 
columns. However, two-way data only indicates that it may be represented in a 
single matrix, and it does not say anything about whether the matrix is square or 
rectangular, symmetric or asymmetric.

The number of modes, on the other hand, indicates the layout of the data in 
terms of data being either square or rectangular. A typical data layout of two-
way one- mode is a square and symmetric data matrix such as correlation matrix 
or distance matrix, where the rows and columns may refer to the same set of 
objects. If rows and columns refer to two distinct objects, then the data have 
two modes, where layout is a person (row) by variable (column) rectangular data 
matrix. Thus, the data can be described together with respect to number of ways 
and modes. A correlation or distance matrix averaged over a group of individuals 
is a two-way one-mode data; but if we have several correlation or distance data 
matrices, one for each individual, the data will still be two-way one-mode data. 
The commonly seen data layout from questionnaires or survey instruments is 
two-way two-mode data layout, with two-way being participants and variables 
and two-mode being rectangular.

2 Data Issues in MDS
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2.4  Data Conditionality

Measurement or data conditionality refers to measurement characteristics of data 
(Young 1987). There are four types of measurement conditionality: unconditional, 
matrix-conditional, row-conditional, and general-conditional. MDS models explic-
itly take into consideration data having different measurement characteristics by 
fitting the data in a least square sense and maintaining the measurement character-
istics of the data via optimal scaling of the observed data. Thus, richness of the data 
can be captured and maintained by employing an appropriate MDS model based on 
measurement characteristics. Specifically, matrix-conditional data occurs when 
each participant has his/her own distance matrix when she responds to a set of items 
with a scale of, say, 1–10  in a questionnaire. It is likely that one participant’s 
response of ‘6’ may not be considered to be the same as another participant’s 
response of ‘6’. In fact, it is quite likely that they do not use the scale in the same 
way, as we may observe. Thus, the measurement characteristics are conditional on 
participants, with each participant having his/her own matrix and serving as a parti-
tion of the data, thus matrix-conditional when we have multiple matrices. One pos-
sibly interesting application is to use such data measurement characteristics to study 
different response styles like acquiescent response style. So far, however, MDS has 
not been used to study such an issue.

On the other hand, the row-conditional data refers to a data layout in which each 
row of data cannot be compared with one other. For example, a ‘4’ in a first row of 
data has no bearing on a ‘4’ in a second row (or any other rows). A response of a ‘4’ 
in the first row merely indicates that a participant provides a rating of ‘4’ on a par-
ticular item. Two ‘4’s in the different rows do not indicate the same degree of simi-
larity or dissimilarity. Thus, each row of each individual’s data serves as a partition 
of data, thus row-conditional.

Both matrix-conditional and row-conditional data are traditionally discussed in 
the context of similarity judgment by participants using a particular judgment tool, 
such as magnitude estimation or to rank the similarity among sets of stimuli or 
objects. Data obtained through such type of collection techniques are not commonly 
seen in most of current research settings. However, a new habit of thinking can be 
developed with respect to how we conceptualize our data. For example, the data we 
commonly encounter today are person by variable multivariate data matrix, called 
column-conditional data. In column-conditional multivariate data each column rep-
resents a variable and rows represent people. Thus, measurement characteristics are 
within columns of the data matrix, the first column representing gender, second 
column achievement status, third income, and so forth, with each variable having its 
own measurement level. But one can also view such multivariate data matrices as 
matrix- or row-conditional. Consider an example in which a group of five partici-
pants responds to ten anxiety items on a scale of 1–6. If we are willing to make an 
assumption that each participant has his/her own internal standard with respect to 
anxiety level, and one participant’s response of ‘3’ on a particular anxiety item may 
indicate a different level of anxiety from another participant’s response of ‘3’ on the 

2.4  Data Conditionality
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same item, then we can say that the meaning of measurements is conditional on each 
participant’s response matrix. Thus, we can analyze the data as matrix- conditional 
data when we convert the data into distance matrix, one for each participant and 
preserve the original characteristics of measurement. On the other hand, we can also 
think of this 5 by 10 data matrix as row-conditional data if we are willing to assume 
that the response of one participant has no relationship with any other participants, 
and we cannot compare between participants, then we could analyze the data as 
row-conditional data. Historically, few multivariate data have been thought of in 
such ways and analyzed accordingly using the appropriate MDS model.

The third measurement conditionality is called unconditional data. Unconditional 
data occur when we think the response to a particular item is comparable across 
participants, which leads to one partition of the data. Accordingly, we can analyze 
one data matrix averaged across all participants. For example, a correlation matrix or 
distance matrix obtained from a group of participants is a typical unconditional data.

The fourth measurement conditionality is general-conditional data. Perhaps a 
better term should be situation-conditional data. General-conditional data occur 
when the same data are collected under different situations. As an example, a psy-
chologist is interested in client’s perception of different treatments over a period of 
time. A different treatment will be used each day and data for each day are gener-
ated. Since the treatment that generates the data each day is different, she could 
view the data as being partitioned into subsets, with one partition for each day. Such 
data can be analyzed as general-conditional data. To the best of my knowledge, no 
studies have been conducted in such a fashion.

2.5  Some Implications

Thinking about these different kinds of data structures opens up many possibilities 
for data analysis. A special strength of MDS is its ability to handle all these different 
kinds of data structures. In contrast, the commonly used analytic techniques such as 
hierarchical linear modeling or structural equation model typically use column- 
conditional data and do not take into consideration the other measurement character-
istics. Theoretically, the strength of considering the measurement characteristics in 
our analysis is that it will force us to think more carefully about the different aspects 
of the data, which will have implications for our interpretations of the findings. These 
aspects may include, for example, what data say and what assumptions about the 
data we are willing to make. Of course, we need to further investigate the potential 
utility of MDS analysis when we make different assumptions about the multivariate 
data. For example, we do not typically have data generated from direct judgment or 
rating tasks such as having students rate similarity among a group of teachers with 
respect to helpfulness. Instead, we could have data generated from a Likert-type 
scale in assessing student perception of their teacher’s helpfulness. Then it is possible 
that the data possess certain measurement characteristics so that appropriate MDS 
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model can be used to provide a better exploratory, predictive, or explanatory power 
for the study under inquiry. Certainly, more research is needed in this regard.

Conversely, another line of research could be conducted using MDS models with 
respect to measurement characteristics. For example, in column-conditional multi-
variate data, we take it for granted that one individual’s response of ‘3’, on a scale 
of 1–6 for an item is the same as another individual’s response of ‘3’ for the same 
item. MDS analysis could help to investigate whether such measurement character-
istic presents in the data. If not, it may not be appropriate to analyze data by aggre-
gating over individuals since such an indirect measurement does not keep individual 
data intact and may fail to detect systematic individual differences in the data. Thus, 
MDS models may be used as a measurement tool for identifying if we have different 
response styles represented in our sample.

2.6  MDS Computer Programs

Over the years, quite few computer programs have been developed to perform MDS 
analysis, but many of them are not so easily available. The most commonly used 
MDS analysis software programs can be found in either SPSS, SAS, or R. There are 
also many other stand-alone programs that can perform particular types of MDS 
analysis. For example, MULTISCAL or PROSCAL can be used for maximum likeli-
hood MDS analysis. Many other programs are quite scattered in various places. A 
piece of good news is Coxon and his associates (Coxon et al. 2005) developed a 
computer program called NewMDS(X), which put together various stand-alone MDS 
analysis programs into one place. The NewMDS(X) program, thus, greatly increases 
the accessibility of different MDS analysis programs and facilitates the applications 
of MDS models for educational and psychological research. In Table 2.2, I briefly 
describe some of the available programs in the NewMDS(X) to provide readers with 
a flavor of what can be done by these programs. The detailed description of all pro-
grams can be found in the New MDS(X) manual (Coxon et al. 2005).

2.7  Conclusion

In this chapter, we focus on main features of data that are associated with MDS 
analysis. It discusses the type of distance measures that can be used, data types, and 
some terminologies that may cause confusions when working with MDS models. It 
is hoped that such a discussion can help readers to more easily relate their research 
issues in hand to MDS analysis. Although common choice of statistical analysis is 
often based on popularity of some methods such as structural equation modeling or 
multilevel modeling, MDS can contribute or be complementary to our understand-
ing of human behaviors from a multi-methods perspective, particularly with respect 
to data visualization.

2.7  Conclusion
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Table 2.2 A brief description of some programs in the NewMDS(X)

Program 
name Brief description

MINIRSA It performs multidimensional unfolding analysis using internal mapping via the 
distance model. The analysis provides rectangle space analysis or internal analysis 
of two-way data in a row-conditional format of distance data.

MINISSA It performs the basic non-metric MDS analysis of two-way symmetric matrix of 
distances, with matrix conditional.

MRSCAL It stands for metric scaling, which performs internal analysis of two-way data of a 
lower triangle distance measure by a Minkowski distance function. It can perform 
an MDS analysis by group (e.g., by male and female) and the configuration for 
each group can be compared by PINDIS analysis (see below).

PARAMAP It stands for parametric mapping, which provides internal analysis of either a 
rectangle (row-conditional) or square symmetric two-way distance data by a 
distance model.

PREFMAP It stands for preference mapping. It performs external analysis of two-way, 
row-conditional data.

PROFIT It stands for property fitting, which performs external analysis of a configuration 
by mapping each participant into the configuration as a vector.

MDPREF It stands for multidimensional scaling preference scaling. It provides internal 
analysis of two-way preference for either row-conditional data or a set of paired 
comparisons matrices.

INDSCAL It provides individual differences analysis, as that can be done by PROXSCAL or 
ALSCAL in SPSS or proc MDS in SAS.

PINDIS It stands for procrustean individual differences scaling. It can be used to compare 
configurations from different groups or compare models with different numbers of 
dimensions. It can be used for hypothesis testing in a sense.

TRISOCAL It stands for triadic similarities ordinal scaling, which performs internal analysis of 
triadic distances by a Minkowski distance model. The basic idea is that the 
participants are asked to make judgments of similarities of objects or items by 
considering a group of three objects or items at a time.
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Chapter 3
The MDS Models: Basics

Abstract Fundamental concepts of MDS models are discussed. Since MDS 
includes a family of different models and various terms are used to describe these 
models as well as their corresponding elements, I explain these models and their 
associated terms using more understandable language.

Keyword MDS models · Vector representation · Metric model · Non-metric 
model · Preference model · Unfolding model · Individual differences model

As I mentioned in Chap. 1, multidimensional scaling is a family of analytical 
 techniques, consisting of many different models, each of which has its own unique-
ness but also overlaps to some degree with each other in terms of what each model 
can accomplish. In this chapter, we discuss fundamentals of these models. Specific 
applications of these models will be discussed in later chapters of the book. For 
now, it is important to know what these models are and their fundamental concepts, 
which provide a foundation for later discussion and applications. For any MDS 
analysis, there are three aspects that need attention. The first one is the data, which 
give empirical information on how the objects or variable and persons relate to each 
other. This refers to the number of ways, number of mode, and measurement condi-
tionality, as we discussed in Chap. 2. However, usual multivariate data format (i.e., 
row represents person and column represents variable or object) commonly encoun-
tered may need to be transposed so that the row represents variable or object and 
column represents person or object attributes. This is an important aspect to be 
noted when working with some of the MDS models using a particular software such 
as SAS (Statistical Analysis System). Typically, distance measure between vari-
ables is used as input data for MDS analysis, including preference data (also dis-
tance measure between preferred objects). The detailed aspects of the data were 
discussed in Chap. 2.

The second aspect is the model, which usually is the Euclidean distance model 
as basic MDS model. We may need to use other distance models such as Gower 
distance matrix when the level of measurement is nominal rather than ordinal or 
interval. The aim of the MDS analysis is to turn distance data into a set of  coordinates 
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or spatial configuration as the model estimated Euclidean distances. The solution 
(also called the final configuration) consists of an arrangement of points in a small 
number of dimensions (typically two or three) so that the estimated distance between 
the points matches the observed distances between the variables as closely as 
possible.

The third is the transformation, which is the rescaling that may legitimately be 
performed on the original data to bring them into closer conformity to the model. 
This is usually referred to as the ‘level of measurement’ of the data. Kuhfeld et al. 
(1987) discussed various transformations for some of the MDS models. The type of 
transformation determines what kind of MDS model used in the analysis.

In the following sections of the chapter, we discuss in detail some fundamental 
aspects of MDS analyses and MDS models.

3.1  Model: Coordinates and Distance

An MDS model is typically a geometric or spatial model that represents distances 
among a set of variables. Consider the following matrix with three variables:
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If we consider this matrix as a set of coordinates in a two-dimensional space, we 
can obtain the following plot as shown in Fig. 3.1. The distance between any pair of 
variables can be computed based on this matrix. For example, distance between 
variables 1 and 2 is Euclidean distance:
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Fig. 3.1 A spatial representation of distance based on the coordinates
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d1 2

2 2
6 4 4 3 4 1 2 236, .= -( ) + -( ) = + =

 

R codes for compute distance between these three variables based on this data 
matrix is

library(psych)
m = matrix(c(6,4,4,3,1,1), nrow = 3,ncol = 2, byrow = TRUE)
dist(m, method = “euclidean”, diag = FALSE, upper = FALSE, p = 2)

Distance between variables 1 and 3 is:

 
d1 2

2 2
6 1 4 1 25 9 5 83, .= -( ) + -( ) = + =

 

Thus, the matrix of distance among variables can be computed based on this 
coordinate matrix. In this case, the distance matrix is:

Variable 1 2 3

1 0
2 2.24 0
3 5.83 3.61 0

This set of distances indicates the relationships between these variables. For 
example, variables 1 and 3 are more dissimilar than variables 1 and 2 since the dis-
tance between variables 1 and 3 are larger.

In actual research situation, we usually do not have a set of coordinate matrix 
among variables available to us. What we often have is a raw data matrix with a 
dimension of n x v, where n is number people and v is number of variables. This is 
what we called column-conditioned data or multivariate data that are collected from 
survey instruments or some experiments. In order to geometrically represent the 
relationships among these variables, we need to first convert this multivariate raw 
data matrix into distance matrix. The job of MDS model is to represent the relation-
ships between variables based on the distance matrix as accurately as possible in a 
geometric space so that we can visualize the latent relationships among these vari-
ables. From this discussion, we can state the following:

 1. Distance matrix contains the information about variance and covariance among 
the variables. Such a distance matrix is applied to the data in an MDS analysis to 
turn the information into certain geometric representations in k dimensional 
space so we may understand the underlying structure of the data for a better 
description, prediction, or explanation.

 2. MDS models represent the latent variable analysis because the relationships 
among variables are indicated by a set of latent coordinates estimated from the 
observed distance matrix. Coordinates of each corresponding variable are latent 
variables, representing latent structure of the data.

3.1 Model: Coordinates and Distance
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 3. Given the coordinates, it is easy to compute the estimated distance among 
 variables, as we have seen in Fig. 3.1. However, estimating coordinates given 
distance among variables is quite challenging because a set of distance can give 
a rise to a different set of coordinates.

 4. The accuracy of the MDS model in representing the relationships between vari-
ables is assessed by comparing distance estimated from the MDS model to the 
observed distance. The smaller the discrepancy, the more accurate the represen-
tation is. We will further discuss this point in Chap. 4.

As we discussed in Chap. 2, there are different ways to compute distances among 
variables. A very general MDS model is represented by the Minkowski distance 
equation, which is:
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(3.1)

where dij
p  is distance between point i and j, m is number of dimensions, xik and xjk 

are the coordinate of points i and j on dimension k, and p is the Minkowski exponent, 
which may take any value not less than 1. In words, Eq. 3.1 indicates that the dis-
tance between a pair of points or variables in m-dimensional configuration X is equal 
to the sum of the difference between two coordinates raised to a specific power, p.

The most common distance coefficients used in education and psychology is 
Euclidean distance, a special case of Minkowski distance, which is defined as:
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(3.2)

This equation defines the distance dij as the square root of the sum of squared 
differences between coordinates in k dimensional space. In this book, the distance 
implies Euclidean distance unless specified otherwise since Euclidean distance is 
more commonly encountered in psychology or education.

In addition to the common properties of distance, as discussed by Davison 
(1983), four definitional characteristics of Euclidean distance are stated by Tversky 
and Krantz (1970), which further clarifies the assumptions implicit in the use of the 
distance model. We did not describe these characteristics since they are not funda-
mental to applied MDS analysis.

3.2  Vector Representation of the Distance in a Geometric 
Space

So far, we discussed the spatial representation of relationships among variables as 
indicated by the distance. However, we can also represent such relationships using 
vectors in a m space. The vector representation of the same coordinate data matrix 
above, which again is
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and it is shown in Fig. 3.2. The scalar products measure of distance between the 
variables are produced by forming the major product moment matrix, A = XX’, 
which in this case is:
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The entries in the product moment matrix can be considered as follows: the 
diagonal entry gives the squared length of the vector draw from the origin to the 
point i (call it li

2). It indicates the direction and weight the variable gives to each 
dimension. The longer the length, the more weight. In the current example, all three 
variables point toward the same direction, suggesting the saliency for each dimen-
sion is about the same. However, variable 1 has more weight ( l1 52 7 2= = . ) 
than variable 2 ( l2 25 5= = ) and 3 ( l3 2 1 4= = . ), suggesting that variable 1 
is more of indicator of dimensions 1 or 2, while variable 3 is less of relevancy to 
dimension 1 or 2.

On other hand, the symmetric off-diagonal elements give the scalar product (i.e., 
covariance) between vector i and j, which is related to the angular separation 
between the vectors. It indicates how different the variables are. In the current case, 
the angular separation between three variables is small, suggesting that they are not 
so different, although variable 1 has more weight or relevancy. For example, in this 
case, we can compute the angular separation by cosine as follows:
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Fig. 3.2 Vector representation of distances
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cos xij( ) = a

l l
ij
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For variables 1 and 2, the cosine is
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The application of vector model will be more evident in MDS preference analy-
sis, as discussed later in this chapter. For now, it suffices to know what vectors rep-
resents and what they mean.

3.3  Metric Model

As we mentioned previously, the essential task of MDS models is to find geometric 
representation of latent structure of data given the observed distance matrix. That is, 
MDS maps observed distance coefficients δij into corresponding MDS model esti-
mated distances dij in a representation function of

 
f d Xij ij:d ® #

 

where the particular choice of function specifies the different MDS model. The 
function defines how the original variables are transformed to maximize the fit to 
the model and it represents a set of transformations used in MDS analysis. Thus, an 
MDS model is a statement that observed distance matrix, after some transformation 
f, are equal to model estimated distances among points of a configuration X, which 
can be expressed as:

 
f d Xij ijd( ) = #

 

The earliest MDS models are metric models, which state that observed distance 
is linearly or proportionally related to model estimated distance:

 
f a b d Xij ij ijd d( ) ® + =* #

 

The parameters a and b are free and can be chosen such that the equation holds. 
The two main MDS methods are classical scaling and least squares scaling. The 
classical scaling is also known as Torgerson’s metric model or interval MDS 
model. The other names used for metric model include classical metric scaling, 
Torgerson scaling, or Torgerson-Gower scaling.
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3.3.1  Torgerson’s Metric Model

One of the first metric MDS models is Torgerson’s metric model (Torgerson 1952). 
Young and Householder (1941) showed how the configuration of points in a 
Euclidean space can be found from a matrix of distances between points such that 
original distances are preserved. Torgerson (1952) brought the subject to popularity 
using the technique for scaling. In Torgerson’s metric model, observed distance 
δij,which is computed directly from the data, is assumed equal to distances dijin 
Euclidean space, that is:

 
d ij ij
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(3.3)

Figure 3.3 illustrates the Euclidean distance in a two-dimensional configuration 
X.

Torgerson showed that when the observed distance δij is double-centered (i.e., 
distance with both row and column means removed, also called row-standardized 
and column-standardized), this double-centered distance matrix d ij

*  is the products 
of coordinates in k dimensional space as follows:

 
d ij ik jkx x* = å

 
(3.4)

This d ij
*  is called disparity or scalar product matrix since it is the sum of prod-

ucts between two coordinate values. The value of double-centered distance can be 
from 0 to ±∞, although the original value of distance ranges from 0 to ±∞. This is 
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Fig. 3.3 Euclidean distance (solid line) between two points in a two-dimensional configuration X
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the case even if the raw data are standardized. Torgerson’s model is called metric 
MDS model because it requires the observed distance data be proportional to or 
linearly related to model-derived or estimated distances in a Euclidean space.

To be of practical use, a configuration of points or latent coordinates, needs to be 
found based on a set of the observed distances. The idea is to produces a configura-
tion of points from the observed distance matrix via an algebraic reconstruction 
method so that the relationships among variables can be explained by latent coordi-
nates. Suppose a distance matrix D is doubly centered to produce matrix B, which 
is product moment matrix. That is, B is an inner product moment matrix, which can 
be defined as

 B = X Xd d
T
‘  

where Xd and Xd` are doubly centered matrix of observed distances among variables. 
Eigenvalue decomposition of B will produce the latent coordinates among vari-
ables. The procedures for classical scaling are:

 1. Compute the distance matrix D based on data.
 2. Double centering D by −1/2(δ2

jk − δ2
ik − δ2

ij) to form B.
 3. Eigenvalue decomposition of B to obtain eigenvalue, l, and eigenvector, v, asso-

ciated with B.
 4. Specify desired number of dimensions.
 5. The coordinates of the points between variable in an m dimensional space are 

given by

 
x l vij j ij

2 1 2= /

 

It is worth mentioning that centering the variables has the geometric effect of 
moving the origin of the space (0,0) to the centroid (center of gravity) of the points 
defined by the means of the variables, but it does not affect the distances in any way. 
In addition, in MDS analysis, regardless of types of MDS model used, the configu-
ration is typically centered and standardized, which means that the sum of coordi-
nates of each dimension is zero and the variance is one.

3.3.2  Metric Least Square Model

Given that observed distance is linearly or proportionally related to model estimated 
distance, metric least squares scaling finds a configuration mapping observed dis-
tance to model estimated distance by minimizing a loss function, S, with possibly a 
linear transformation of observed distances. It is an iterative numerical approach 
(method of steepest descent) taken to minimize Sammon’s loss function (Sammon 
1969), which is defined as:

3 The MDS Models: Basics
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(3.5)

In the numerator of S, the squared difference between the observed distance δij 
and the model estimated distance dij is weighted by δ−1

ij so that smaller distances 
have more weight in the loss function than larger ones. The denominator, ΣΣδij, is a 
normalizing term making S scale free.

A simplified view of the metric least square scaling algorithm is as follows:

 1. Assign points to arbitrary coordinates in m dimensional space.
 2. Compute Euclidean distances among all pairs of points, to form the δ matrix.
 3. Compare the δ matrix with the model estimated d matrix by evaluating the stress 

function. The smaller the value, the greater the correspondence between the two.
 4. Adjust coordinates of each point in the direction that best maximally stress.
 5. Repeat steps 2 through 4 until S (called stress) value will not get any lower.

3.4  Non-metric Model

The chief difference between metric and non-metric MDS models is how the 
observed distances are assumed to be related to the model-derived distances. In 
metric MDS models, the observed distances are assumed to be linearly or propor-
tionally related to model-derived distances, as we discussed previously. This 
assumption tends to be restrictive. Non-metric models, proposed by Shepard (1962), 
are assumed that the observed distances are monotonically related to the model- 
derived distances; that is, the model-derived distances only need to reflect the rank 
order of the observed distances. Coxon (1982) called this ordinal rescaling of the 
data since the data are rescaled or transformed to be close to the model. However, it 
should be noted that in practice, the differences between metric and non-metric 
MDS are not that important (Borg and Groenen 2005), and the results from both 
types of analyses tend to be similar rather than different, with non-metric MDS 
models providing a better fit to the data.

Non-metric models have the following form:
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where f is a monotone function, including linear, power, exponential, and logarith-
mic functions. δij is observed distance; dij is model estimated distance. Non-metric 
MDS algorithm computes estimated dij based on model coordinate estimates xik and 
xjk such that the rank order of estimated dij is as close as possible to the rank order of 
the observed distance, δij. Thus, in essence, this model is the same as the metric 
model, differing only in the assumption of how the observed data should be related 
to the model estimated distances.

3.4 Non-metric Model
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There are two monotone transformation functions discussed in the MDS 
 literature. One is strong monotonic (Guttman 1968) relationship between observed 
distance and model estimated distances. In this transformation, if distance between 
one pair of variable is less than another then the corresponding distances must be in 
the same order. That is, if δij < δkl then dij < dkl

A second one is a weak monotonic (Kruskal 1964) relationship between observed 
data and model estimated distances. That is, δij < δkl then dij ≤ dkl. Thus, weak mono-
tonicity only requires that no inversions in order should happen between the 
observed data and model estimated distance. That is, that if δij < δkl then it should 
never be the case that dij > dkl, but dij may be equal to dkl, even when δij < δkl. In this 
case, the transformation function moves upward (even vertically upward) but it may 
never move downward.

In an actual research data, some values will not be distinct; that is, at least some 
values will be the same. The question is: should equal distances be fit by equal 
disparities?

There are two approaches to address the question, referred to as the primary 
and the secondary approach to ties. Primary approach treats ties as indetermi-
nate and allows fitting values either to preserve the equality or replace it by an 
inequality, given that in doing so the goodness of fit is improved. On the other 
hand, in the secondary approach, ties in the data are required to be retained in 
the fitting values; that is, the secondary approach tied data are treated as being 
genuinely equivalent.

Which approach to use? As suggested by Coxon et al. (2005), in general, the 
primary approach to ties should be used, especially if there is a fairly large number 
of distinct values in the data. The secondary approach can badly misrepresent the 
structure. Moreover, when the data from a scale containing a very limited number 
of ordered categories, secondary approach may distort all information. For this rea-
son, some MDS programs use the primary approach to tied data in obtaining a solu-
tion, while others offer the choice of primary or secondary approach.

Given that there is transformation involved, three sets of parameters are esti-
mated by Eq. 3.6. The first is coordinate estimates xik and xjk, which represents 
the configuration of variables in the geometric space. The second is estimated 
distance dij, which is computed from coordinate estimates. The third set of param-
eters is called the rank images of data, also known as disparities, pseudo-dis-
tances, fitted distances, or transformed proximities. These five terms may be used 
 interchangeably and that may cause some confusion. In this chapter, we use the 
term disparities and designate it as d



ij. Why do we need this third set of param-
eters? It turns out that disparityd



ij is calculated in such a way that: (1) it is mono-
tonically related to the observed distance and (2) it is as closely fit to the estimated 
distance dij as possible. It acts like a middle man, bringing the data and the model 
estimates as close as possible. That is, disparities are based on the transformed 
variables. Thus, it is this d



ij that is used in measure of model fit, which will be 
discussed in Chap. 4.
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3.5  Individual Differences Models

In the sections above, we presented and discussed two kinds (metric or non-metric) 
of basic MDS models (may be also known as classical scaling), which form the 
foundation of the other kinds of MDS models. But as we mentioned above, the dif-
ference between metric and non-metric is not crucial and non-metric analysis pro-
duces a better fit. Therefore, we do not specifically differentiate these two.

Beyond the basic MDS model, one of the models is individual differences mod-
els (may be also known as weighted MDS), which take into account of individual 
differences in latent structure of variables. As indicated by Cox and Cox (2001), 
there were two basic approaches to address individual differences. The first was to 
average across over all individuals and the second to compare results individual by 
individual.

3.5.1  Weighted Euclidean Model or INDSCAL

In the literature of MDS analysis, one common individual differences model is 
called the weighted Euclidean model or INDSCAL (Carroll and Chang 1970), and 
the other one is called generalized weight Euclidean model or the three-mode 
model (Tucker 1972). INDSCAL is also the name of the computer program that 
performs weighted Euclidean model. Weighted Euclidean model can be considered 
as a special case of generalized weighted Euclidean model and it is used more in 
practice. Thus, we focus on weighted Euclidean model in this chapter.

In metric or non-metric MDS models, the configuration estimated from the 
observed distances represents average configuration across all individuals, this is 
called group configuration. However, we also want to know how individuals differ 
with respect to the group configuration; that is, we not only want to know about 
nomothetic information, we also want to know about idiographic information. Each 
participant has his or her own configuration, xiks, in relation to the group configura-
tion, xik. Such an idiosyncratic configuration xiks is related to the group configuration 
xik in the form:

 x x wiks ik ks=  (3.7)

where wks is the value that indicates the variation in the dimensional configuration 
across individuals. In other words, it is the weight for participant s along dimension 
k, indicating dimensional importance or salience given by an individual. The idio-
syncratic configuration for participants can be expressed as:

 
d ijs iks jks ks ik jkx x w x x= å -( ) = å -( )2 2 2

 
(3.8)
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As in metric or non-metric MDS models, in addition to parameter estimates of 
coordinate xik and xjk, estimated distance dij, and the disparities d



ik , two more sets 
of parameters are estimated: (1) weight wks, which quantifies the differences among 
participants’ rating along the k dimensions and (2) participants’ coordinate esti-
mates xiks and xjks.

Essentially, weighted Euclidean model comprises two spaces: a group stimulus 
space and individuals or subjects space, both of chosen dimension k. Configuration 
in the group stimulus space represents the objects or stimuli and forms an “underly-
ing” configuration. The individuals are represented as vectors in the subject space, 
and the coordinates of each individual are weighted to give the weighted Euclidean 
distances between the points in the stimulus space. The acronym INDSCAL indi-
cates INdividual Differences SCALing.

MacCallum (1977) concluded that INDSCAL was susceptible to the assumption 
that individuals perceive the dimensions of the group stimulus space to be orthogo-
nal. To overcome this problem, Carroll and Chang (1972, March) generalized their 
INDSCAL model to the IDIOSCAL model (Individual DIfferences in Orientation 
SCALing). The IDIOSCAL model thus allows the group stimulus space to be 
manipulated, with various rotations and dilations of axes being allowed. Carroll and 
Wish (1973) give a good account of models which arise from IDIOSCAL using a 
suitable choice of wks. Specifically, when wks is restricted to being a diagonal matrix, 
IDIOSCAL reduces to INDSCAL. Furthermore, there are Carroll-Chang decompo-
sition of wks, which uses the spectral decomposition of wks, and Tucker-Harshman 
decomposition of wks to aid interpretation. Tucker’s 3-mode model (Tucker 1972) is 
the IDIOSCAL model with the weight matrix, wks, decomposed by a set of p × p 
“core” matrices. If all the core matrices were diagonal, then analysis produces an 
INDSCAL type solution.

3.5.2  The Tucker-Messick Model

Tucker (1960) suggested that averaging over individuals loses much information 
regarding the individual responses. He suggested placing the distance into a matrix, 
D, with rows indicating all the ½n(n − 1) possible variable-pairs and columns indi-
cating the N individuals. Then, the singular valued decomposition (SVD) of D is 
found to approximate D such that D = UpΛpVp

T. The matrix Up gives the principal 
coordinates in a space for the pairs of variables, the matrix ΛpVp

T gives the principal 
coordinates in a space for the individuals.

We do not discuss this model in detail since it has not been easily accessible via 
any available software, which limits its applications. We simply indicate that there 
is such a model, which may be useful in some time.
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3.5.3  PINDIS

The PINDIS model (Procrustean INdividual Differences Scaling) was developed 
along the lines of the older methods of individual differences scaling where scaling 
for each individual is carried out separately and then an overall comparison is made 
(Borg 1977; Lingoes 1977; Lingoes and Borg 1978).The model was developed after 
INDSCAL. Cox and Cox (2001) provided a detailed discussion. Basically, PINDIS 
assumes that a scaling has been carried out for each individual matrix by some 
method (regardless types of MDS model), producing individual configuration 
matrix Xi. The configurations Xi are then compared using Procrustes analysis. The 
procedure includes (1) all the N configurations Xi are centered at the origin and then 
dilated to have mean squared distance to the origin equal to unity; (2) the X2 con-
figuration is rotated to the X1,configuration giving the first estimate of Z; (3) X3 is 
rotated to Z and then a weighted average of Z and X3 gives the next estimate of Z; 
(4) this process is repeated until all the Xi configurations have been used; (5) the N 
configurations are each rotated to Z and a goodness of fit index calculated; (6) the 
average of the newly rotated Xi configurations gives the next updated estimate of the 
centroid Z, and the goodness of fit index is recalculated; (7) this procedure is 
repeated until converges. The resulting Z is the centroid configuration.

This procedure of PINDIS produces the basic model, designated as P0 model. 
That is, the centroid configuration Z is the group stimulus space, and only the rigid 
rotations (admissible transformation) is performed to rotate the individual configu-
rations Xi to the centroid Z from the subject space. However, the other types of 
transformation can also be performed, which allows non-admissible transformation. 
The hierarchy of models is as follows, with the basic model always providing the 
poorest fit and the last model the best. Choice of model is made by assessing the 
improvement in fit made by going from one model to another in the hierarchy.

 1. Basic model, P0: Rigid rotations only.
 2. Dimension weighting, P1: The dimensions of the group stimulus space are 

weighted and then rotated.
 3. Idiosyncratic dimension weighting, P2: The weighting of dimensions of the 

group stimulus space can be different for each individual.
 4. Vector weighting, P3: Each variable in the group variable space is allowed to be 

moved along the line through the origin to the variable before rotation occurs.
 5. Vector weighting, individual origins, P4: This is the same as modelP3, except that 

the origin of Z for each individual can be moved to an advantageous position.
 6. Double weighting, P5: This allows both dimensional and vector weighting.

For now, it suffices to be familiar with these concepts. In Chap. 9, we will apply 
these concepts to applications in the context of assessing configural similarity and 
hypothesis testing.

3.5 Individual Differences Models



34

3.6  Preference or Unfolding Models

In MDS literature, MDS preference or unfolding models are treated separately. 
Specifically, MDS preference models typically involve vector modeling in which 
individuals’ preference is indicated by vector with respect to its length and direc-
tion. In contrast, MDS unfolding models involve ideal points in which individuals’ 
preference or ideal is indicated by points in the configuration. In a sense, the ideal 
point can be considered as preference. Thus, in this book, I use the term MDS pref-
erence or unfolding models interchangeable in our conceptual discussion; that is, 
either vector or ideal point model represents individuals’ preference. However, I 
will also discuss how to use vectors or ideal-points to indicate preference in order to 
be consistent with the MDS literature.

The idea of MDS preference models is very appealing for studying individual 
differences, particularly in the case of single or multiple subject(s) design in which 
we would like to see how individuals respond to a particular treatment or a learning 
method as measured by a set of measurement items. Coombs (1950) first introduced 
the J scale and I scale in the unidimensional non-metric unfolding model. The J 
scale shows a line upon which points are placed for the n individuals together with 
the v variables, while I scale simply indicates each individual’s preference ordering 
of variables. The basic concept of MDS preference models is that the distance 
model (i.e., ideal-point model or unfolding) can be used to represent both the vari-
ables (called real objects) and the participants as points (called ideal points or 
objects) in a geometric space. Thus, the MDS solution will consist of a configura-
tion of v variable points and a configuration of s participant points in the same space. 
The closer a participant’s point (i.e., ideal point or object) to the variables’ point 
(i.e., real object) in the space, the more ideal or preferred the variable is by the par-
ticipant. For this reason, it is called ideal-point model. The variables typically rep-
resent some behaviors (e.g., drinking) or constructs (e.g., anxiety). The large 
distance, therefore, indicates the less preference to a behavior. To put it another way, 
a large distance between a real object and an ideal point indicates that the real object 
has a high disutility.

In the basic metric model, the preferences are represented as

 
d is is ik skd x x= = å -( )2

 
(3.9)

where δis is estimated distance quantifying the degree of participant s preference for 
item i, that is, dislike for item i. xik is the location of item i along dimension k. xsk is 
the participant’s ideal or preference location along dimension k. The model implies 
that the participant’s preference is manifested by comparing item location to his or 
her ideal location in the same geometric space. The preference models differ from 
individual differences model (i.e., weighted Euclidean model) because in prefer-
ence models, participant space and item space are in the same space, whereas in 
weighted Euclidean model there are two separate dimensional configurations, one 
for participants and another for stimuli or variables.
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There are two types of preference models, internal and external (Carroll 1972), 
and both have metric and non-metric form. For internal preference models, the 
model provides parameter estimates of item coordinates, participant ideal points, 
and a fit measure. For external preference models, the item coordinates are assumed 
to be known from either theory or previous analysis. The model provides parameter 
estimates of participant ideal points and a fit measure for each participant. Because 
external preference models involve known item coordinates, it sometimes can be 
used to test a particular hypothesis about preference.

According to Davison (1983), external preference models includes four prefer-
ence models: the vector model, the simple Euclidean model, the weighted Euclidean 
model, and the general Euclidean model. The vector model is a linear model, while 
the other three models are distance models (therefore nonlinear models). These 
models can be estimated using standard multiple regression methods. The estimates 
of various participant ideal points are regression coefficients or variants of regres-
sion coefficients. The input data for external preference analysis are pre-specified 
item coordinates that are based on either theory or previous analyses and observed 
data (such as liking ratings) indicating participant preference.

In the following sections, we present these preference models in more technical 
details for the purpose of completeness. Readers who are not interested in these 
technical aspects of the models can skip these sections. These materials are mainly 
based on Davison (1983).

Vector model is a linear model. That is, participant’s ideal point is linearly or mono-
tonically related to item scale value along the dimension k. It can be expressed as:

 d is ks ik sb x c= å +  (3.10)

where bksis linear regression weight or coefficient (i.e., ideal point), indicating par-
ticipant’s preference; cs is a constant for each participant. In words, Eq. 3.10 indi-
cates an individual’s preference, as measured by distance between an item and 
individual, δis, is equal to individual’s ideal point, bks, times item’s location, xik, plus 
a constant.

The simple Euclidean model suggests that the more an item resembles a partici-
pant’s ideal point along each dimension, the more the participant likes it. All dimen-
sions are assumed to be equally salient to the participants. The model is:

 

d is s ik sk s

s ik ks ik s

w x x c

w x b x c

= å -( ) +
= å +å +

2 2

2 2

 

(3.11)

This model provides participant’s ideal point coordinate estimate, xsk, partici-
pant’s dimension weight,ws

2 , and a fit measure. This model indicates that partici-
pant’s ideal point is curvilinearly (i.e., single-peaked) related to item scale value. In 
words, Eq.  3.11 says that an individual’s preference, as measured by distance 
between an item and individual, δis, is measured by three quantities: (1) item’s loca-
tion, xik, times participant’s dimensional weight, ws, which is equal across all dimen-
sions, (2) individual’s ideal point, bks, times item’s location, xik, and (3) a constant, cs.
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The weighted Euclidean model differs from simple Euclidean model only in that 
the dimensional salience varies across participants rather than assumed to be the 
same across the participants. Thus the model is

 

d is ks ik sk s

ks ik ks ik s

w x x c

w x b x c

= å -( ) +
= å +å +

2 2

2 2

 

(3.12)

The model provides parameter estimates of participant’s ideal point, bks, partici-
pant’s dimension salience weights, wks

2 , and a fit measure. In words, Eq. 3.12 says 
that an individual’s preference, as measured by distance between an item and indi-
vidual, δis, is measured by three quantities: (1) item’s location, xik, times partici-
pant’s dimensional weight, wks, that is different across all dimensions, (2) individual’s 
ideal point, bks, times item’s location, xik, and (3) a constant.

The fourth external preference model is the general Euclidean model, also called 
three-mode model (Tucker 1972). This model is the most general model of all MDS 
preference models, as can be seen in Eq. 3.13:
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(3.13)

where rkk  ′ s indicates the correlation between dimensions. This model allows the 
interaction between dimensions and provides parameter estimates of participant’s 
ideal point location, xsk, participant’s dimension salience weight, wks, and participant 
dimensional interaction, rkk’s. If rkk ′ s = 0, then we have a weighted Euclidean model. 
That is, the difference between Eqs. 3.13 and 3.12 is Eq. 3.13 quantifies the interac-
tion between dimensions, as measured by correlation between dimensions in par-
ticipant’s weight, bkk ′ s, and items’ coordinates, xikxik′.

As mentioned above, I used term preference and unfolding interchangeably in 
our conceptual discussion. However, to be consistent with the MDS literature, I will 
discuss how to use vector or ideal-point models to represent individuals’ preference 
or ideal.

3.6.1  Vector Representation of Preference

The vector representation of preference consists of a configuration of v variable 
points in a particular number of dimensions (typically two dimensions) and n vec-
tors that represent the n individuals’ set of preference ranks or ratings of variables 
or objects. The original data of preference rating of objects by individuals is called 
“first-score matrix”. The matrix of preference scores estimated by the model is 
called the “second-score matrix”. The purpose of the vector model is to obtain a 
variable or object configuration X and individual preference vectors Y so that the 
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discrepancy between the original ‘first-score’ data and the estimated ‘second-score’ 
values is as small as possible. For a non-metric MDS analysis, the monotonically 
transformed data will be compared to the estimated values.

The purpose of the preference model is to represent both the variables and the 
individuals in a common or ‘joint space’. When we use vector model, we mainly 
focus on following aspects:

 1. How well the individual’s preferences can be accommodated by the model and 
represented in the common space. This can be assessed by the correlation 
between first-score matrix (or optimally transformed data) and second-score 
matrix to measure the goodness of fit. In addition, the absolute length of a vector 
is arbitrary, but the relative lengths of the vectors indicate fit, with the squared 
lengths being proportional to the communalities; that is, variance accounted for 
by the principal components.

 2. How well the variables are clustered or grouped. Look for regions in the configu-
ration that contain clusters of variable points and determine what attributes the 
variables have in common. Variable points that are tightly clustered in a region 
of the configuration represent variables that have the same preference patterns 
across the individuals.

 3. How the vectors relate to each other, since the main purpose may be to examine 
individual differences in a set of rankings/ratings. Individual differences between 
preferences are indicated in the vector model by angular separation (discussed in 
Sect. 3.2). On the one hand, the direction in which a vector points indicates the 
manner in which the individual mixes or trades off the characteristics of the 
objects in producing her preferences, and this is measured by the cosine of the 
angle that the vector makes with the dimensions of the space.

 4. If we are interested in how one individual vector relates to another, we inspect 
the angular separation between them; that is, the correlation or cosine of the 
angle between the two preference vectors. In inspecting a vector model solution, 
the first point of interest is how the individual preference vectors are distributed 
in the configuration. If the vector ends are located in a small sector or region, this 
indicates high consensus or agreement in individuals’ preferences, whereas the 
more unevenly they are distributed round the circle, the greater the disagreement. 
The differences in preferences, suggested by small sectors with a high density of 
vector ends and empty sectors between sectors, may suggest existing of distin-
guishably different ‘points of view’ or perspective. If these are different groups 
of individuals, we may also want to know whether the average direction differs 
significantly between the groups. Statistical tests and procedures for analyzing 
directional data have been developed and are available.

The external form of this analysis, i.e. where the stimulus configuration is 
obtained separately and remains fixed while the preference vectors are estimated. 
This form of analysis can be used for hypothesis testing.

The following hypothetical example illustrates results of the preference vector 
model and ideal-point model. In this example, we have 10 individuals rate their 
preferences on a set of five behaviors: reading, writing, tv watching, drinking, and 
playing sports. The rating data looks like the following:

3.6 Preference or Unfolding Models
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Obs read write tv drink sport

1 3 5 2 1 2
2 4 3 5 2 3
3 3 4 1 1 2
4 4 3 3 2 3
5 5 3 4 2 3
6 4 4 1 1 3
7 4 5 4 1 2
8 4 3 4 2 1
9 3 4 2 1 1
10 5 3 3 1 3

The higher score indicates a higher level of preference by individuals. The vector 
model analysis can be conducted using SAS MDPref procedure. However, the mul-
tivariate data format (i.e., individual by variable matrix) needs to be transposed so 
that the row represents variables and columns represent individuals (i.e., variable by 
individual matrix) using this procedure, as we mentioned previously. The input data 
look like the following:

NAME COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10

Read 3 4 3 4 5 4 4 4 3 5
Write 5 3 4 3 3 4 5 3 4 3
Tv 2 5 1 3 4 1 4 4 2 3
Drink 1 2 1 2 2 1 1 2 1 1
Sport 2 3 2 3 3 3 2 1 1 3

The analysis results using preference vector model is typically shown visually. 
Figure 3.4 shows the results.

The following assessments can be made based on the plot:

 1. The correlation between first-score matrix (i.e., original rating values) and the 
second-score matrix (i.e., rating values estimated from the model) is 0.88, indi-
cating that the individual’s preferences can be accommodated by the model rela-
tively well (we want this correlation to be above 0.95 for a very good model). 
This moderately good model may be due to the fact that in this hypothetical data, 
individuals’ preferences are not so well fit with the behaviors measured here.

 2. The variables are not well clustered or grouped since there are no particular 
regions in the configuration that contain clusters of variable points. Thus, it is 
hard to determine what attributes the variables have in common and accordingly 
variables do not have the same preference patterns across the individuals.

 3. It seems that there are three closely related vectors (i.e., three groups), as indi-
cated in the vector model by angular separation between vectors. Individual 
2, 5, and 8 show preference between TV watching and reading; individual 
4, 7, and 10 show preference for reading; and individual 1, 3, 6, and 9 show 
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preference between reading and writing. Their preference is assessed by the 
direction in which a vector points indicates the manner in which the individual 
mixes or trades off the characteristics of the behaviors in producing her or his 
preferences.

3.6.2  Distance (Point-Point) Representation of Preference

The basic idea of distance representation (unfolding model) is that the distance of 
points in a space is used to represent their empirical dissimilarity. Given a set of 
distances it is always possible to reconstruct the configuration of points that gener-
ated them, and this is exactly what MDS model tries to accomplish, as we discussed 
previously. However, such a recovered configuration is not unique because several 
aspects of configuration are arbitrary and may be changed with any transformation. 
In particular, the actual size or scale of the configuration and the origin of the space 
are arbitrary. Moreover, the orientation of the axes may be changed and reflected at 
will. The origin and axes simply provide a convenient framework to locate the 
points. Thus, it is only the relative distance between points that has significance in 
interpreting a distance model solution.
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Fig. 3.4 Individual preference in vector model, with points representing behaviors and vectors 
representing individual preference
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When we have ranking or rating data that represent individuals’ preference, the 
distance model can be used to represent both the variable or objects and the indi-
viduals as points in the same configuration. The solution consists of a configuration 
of v variables points and n individual points where each individual is represented as 
being at a ‘maximal’ or ‘ideal’ “point, located in such a way that the distances from 
this individual point to the variable points are in maximum agreement with the indi-
vidual’s ranking or rating of preference on a set of behaviors or ideas. The model 
estimates both sets of points simultaneously. The non-metric distance model is best 
known under the title of ‘unfolding analysis’, developed by Coombs (1964).

Substantively, the position of the ‘ideal point’ is interpreted as the one point in the 
configuration where the individual’s preferences decrease in every direction. This is 
often called a ‘single peaked preference function‘since it assumes that there is only 
one point of maximum preference for each individual. Typically, the variable points 
located at the center of the configuration correspond to the most popular or preferred 
behaviors, and the least preferred behaviors or ideas are located at the periphery or 
the outside of a configuration. For this reason, variable points in the central part of a 
configuration are normally the most stable, while those at the periphery can usually 
be moved around fairly freely without affecting the goodness of fit.

Thus, if a behavior is sufficiently not preferred, it can be located virtually any-
where on the periphery or at an extreme distance from the center, so long as it is at 
a maximum distance from the ideal points.

In contrast to vector model of preference, the properties of the point-point (dis-
tance) model of preference assumes single peakedness; that is, each individual has 
one single point of maximum preference and that preference decreases (symmetri-
cally) from this point. Moreover, if the distance model holds, then each behavior 
must be preferred most by at least one individual. This is why in SPSS PrefScal 
analysis module, there is an index that assesses the inter-mix of variable points and 
individual ideal points.

Distance model of preference can also be used in some confirmatory (hypothesis 
testing) fashion via external models. In such an analysis, variable or behavior 
 configuration is obtained separately or pre-specified and remains fixed while the 
‘individual ‘or property points are estimated. We can test whether certain behaviors 
are more preferred based on theory or previous knowledge. So far, no empirical 
studies have been done in this regard, but it is worthwhile to pursue.

Figure 3.5 shows the individual preference as ideal points based on the same data as 
used in Fig.  3.3. The results are the same: Individual 2, 5, and 8 show preference 
between TV watching and reading; individual 4, 7, and 10 show preference for reading; 
and individual 1, 3, 6, and 9 show preference between reading and writing. Here we 
only try to illustrate how distance model is used to represent individual preference.

3.6.3  Single-Ideal Point Model

In typical preference or unfolding MDS models, the analysis produces a configura-
tion of both variables (i.e., object space) and individuals (i.e., ideal points space). As 
Borg (2005) indicated, what is important is how ideal and variable points are 
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distributed throughout the space relative to each other. The best configuration is one 
that has a distribution of ideal points and object points that are thoroughly mixed. In 
other words, we want real object points and ideal points are evenly spread through-
out the space. Substantively, this implies that we have individuals with many differ-
ent preference patterns, so each object is someone’s first choice.

MacKay et  al. (1995) proposed a probabilistic MDS single-ideal point model 
(MDS-SIP), which requires a single-ideal solution to be estimated. The theoretical 
framework of the MDS-SIP model can be traced to Thurston (1928) and Coombs 
(1950). The model is initially used to represent a rectangular matrix of preferences 
by i individuals for v objects or variables as distances between i ideal point and v 
actual objects or variables. MDS-SIP model can be viewed as another way to model 
ipsative change. As an unfolding model, a single-ideal solution represents both indi-
viduals and behaviors as a point in the same Euclidean space. With the assumption 
of dependent sampling and that all individuals share the same latent MDS space, the 
model estimates one ideal point and n points that represent actual items or variables 
across all individuals at a given time, as discussed by MacKay (2007). Hence, it is 
called single-ideal point model. The distance relation between the single-ideal point 
and behaviors provides information about the preference structure of the individuals 
at that time point in such a way that individuals are closer to the behaviors they pre-
fer. The model estimates the coordinates of the single-ideal point and objects across 
all individuals in the same latent space. Thus, an MDS single-ideal point model is a 
spatial model that maps the observed preference or disutility (also called disliking) 
data into the latent MDS space. As such, the model estimates latent  coordinates to 

Fig. 3.5 Individual preference in distance model, with points representing both behaviors and 
individual preference (labeled as COL)
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represent both individuals’ ideal point and the points of actual  behaviors using the 
rating or ranking data that describe individual’s liking/preference or disliking with 
regard to a set of behaviors at a particular time. In other words, the preference rating 
or ranking data provide information about individuals’ latent ideal or typical behav-
ior choice with respect to a set of behaviors, and the estimated coordinates are latent 
spatial structure or configuration that includes both individuals’ ideal point and the 
points of actual behaviors.

Table 3.1 shows a hypothetical example of liking/preference rating data of 20 
individuals on four behaviors (e.g., singing, drinking, reading, and writing) at a 
given time, using a rating scale of 1 (most preferred) to 6 (least preferred).

Figure 3.6 shows the results of the model estimated coordinates (i.e., project 
preference rating data into MDS latentspace) of individuals’ ideal point and the 
points of these four behaviors based on the data.

As can be seen in Fig. 3.6, behavior 2 (e.g., drinking) is most preferred behavior 
since it is the closest to the ideal point, while other three behaviors are least pre-
ferred. Thus, the preference of individuals for an item or object at a time t is an 
inverse function of the distance between the point that represents the actual objects 
and the ideal point that represents the individuals at a particular time point. A large 
distance between an object and an ideal point indicate that the object has high disu-
tility (i.e., less liked or preferred). In other words, individual respond negatively to 
an actual object (a variable or item) when the attitude or behavior represented by the 
object or item does not closely reflect the attitude or behavior of the individual at 

Table 3.1 Hypothetical rating data of 20 individuals on four behaviors

Singing Drinking Reading Writing

4 2 3 4
3 2 3 6
3 1 6 4
6 2 3 6
3 2 4 5
3 1 4 4
3 2 3 4
4 1 5 4
3 2 3 4
4 1 5 4
6 2 3 4
6 2 3 4
3 1 5 4
3 1 3 4
3 2 3 4
5 2 5 6
6 1 3 4
6 2 4 4
3 1 5 4
3 1 4 4

3 The MDS Models: Basics
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that time. In the MDS single-ideal point model, such disagreement occurs when the 
individual is located too far away from the object. On the other hand, individuals 
respond positively to actual items or objects that have locations similar to their own. 
Across time, the distance between the ideal point and the points of actual behaviors 
may change, suggesting a developmental difference in preferred or typical behav-
iors. Such changes in distance between the ideal point and the actual objects are 
reflected in the configuration of these points at a given time.

Let us now consider some technical aspects of MDS-SIP model, and readers can 
skip this section.

In the probabilistic MDS single-ideal point model, the ideal point and actual 
items are represented not by points but by distribution (shown as a circle in 
Fig.  3.6), as proposed by Mackay and his associates (MacKay 2007; MacKay 
and Zinnes 1986; Zinnes and MacKay 1983). As shown in Fig. 3.6, the preferred 
behavior at time t is presented by the distances between unobserved coordinates of 
actual objects and ideal point in a latent k dimensional space. Such distances can 
be defined as
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where dij(t)is the distance random variable between ideal point i and actual items or 
variables j at time t with dij(t) ~ N(δijk(t), σ2

ijk(t)), and δijk(t)  =  μik(t) − μjk(t) and 
σ2

ijk(t) = σ2
ik(t) + σ2

jk(t). xik(t) or xjk(t) are coordinates that are assumed to be normally and 
independently distributed with mean (i.e., centroid) of μ(t) and variance of σ2

(t) at 
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Fig. 3.6 Hypothetical example of estimated ideal point and points of four behaviors based on the 
data in Table 3.1. 01-Singing, 02-Drinking, 03-Reading, 04-Writing, and I1-the ideal point
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time t, be it actual or ideal. The variance σ2
(t)can be assumed equal (i.e., isotropic, as 

in Fig. 3.6) or unequal (i.e., anisotropic) at a given time for ideal point or actual 
objects on each dimension k in a Euclidean space. The goal of the analysis is to 
estimate the mean location μ(t) and variance of σ2

(t) of coordinates for each time 
point. In order to obtain the parameter estimates μ(t) and σ2

(t), one needs to specify 
the probability function of the distance random variable dij, which depends on the 
variance structure and sampling properties. The detailed discussion of how a prob-
ability MDS single-ideal point model is derived and estimated may be found in 
MacKay and his associates (MacKay 1989, 2007; MacKay and Zinnes 1986; Zinnes 
and MacKay 1983; Zinnes and MacKay 1992).

The model fit with respect to kinds of variances assumed in the data can be tested 
using information criterion statistics, such as consistent Akaike information crite-
rion (CAIC) (Bozdogan 1987), Bayesian information criterion (BIC) (Schwarz 
1978), or log-likelihood ratio tests. Technically, for the ideal point i or actual item j, 
there is a corresponding k-dimensional random vector Xj that has an x variate normal 
distribution with mean vector uj and covariance matrix Σj. Individuals’ choices are 
assumed to be based on values sampled from the Xj distributions. If an individual 
has a consistently preferred behavior, then we expect the diagonal elements of the 
covariance matrix Σj to be small. However, if the individual does not have a consis-
tently preferred behavior or there are more measurement errors at a particular time, 
the diagonal elements of the Σj are expected to be large.

The practical significance of testing the structure of the variance is that it allows 
us to assess the degree of heterogeneity of individuals’ behaviors at each time of 
measurement. For example, individuals with a general anxiety disorder may per-
ceive a positive event in more different ways (i.e., not so consistent with a larger 
variance) than they do for a negative event (i.e., more consistent with a smaller vari-
ance). A psychologist might have an interest in knowing if such a pattern of vari-
ability may change as a result of interventions so that the effectiveness of the 
treatment program can be evaluated. Thus, when variability in preferred behavior 
exists, or when there are measurement errors inherent in single-items of an instru-
ment, it is desirable to take such variability or measurement errors into consider-
ation (MacKay et al. 1995).

3.7  The MDS Model Using Maximum Likelihood Estimation

The MDS models discussed so far are the least-squares MDS models except for 
MDS-SIP; that is, the model parameter estimation procedures are based on least- 
squares principle, with model-data fit measures being minimization between model 
estimated distances and observed (or transformed) distances. The least-squares 
MDS models are more commonly used in current practices in education or psychol-
ogy. Such a usage is encouraged by readily available analytical procedures such as 
PROXSCAL, PREFSCAL, and ALSCAL in SPSS (SPSS Inc. 2007) or Proc MDS in 
SAS (2010).

3 The MDS Models: Basics
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However, the MDS models can also be estimated using maximum  likelihood 
method. The primary research work was done by Ramsay (1977), Takane (1978) 
and his associates (Takane and Carroll 1981), and MacKay and Zinnes (1983). 
As of this writing, two software programs can provide maximum likelihood 
MDS analysis. One is Ramsay’s MULTISCAL (Ramsay 1977) and the other 
one is called PROSCAL(MacKay and Zinnes 2014). The maximum likelihood 
MDS models are basically metric and are concerned with statistical inference. 
It is assumed that the distance data are erroneous rather than error-free so that 
confidence region for items or participants (for weighted models) is provided in 
the estimation procedures. Thus, statistical tests between pairs of models can be 
conducted based on estimated standard errors. Such an approach changes multi-
dimensional scaling from a descriptive method into an inferential one so that we 
can specifically test the appropriate dimensionality, the proper MDS model, and 
the error model. That is, a chosen MDS model assumes a specific nature of error 
model that influences the data. If the nature of error model reflects the actual 
error processes in reality, the significance test of the MDS model is meaningful. 
Therefore, the choice of error models becomes crucial in conducting maximum 
likelihood MDS analysis. In Ramsay’s work, error in distance can be assumed to 
be normally distributed (additive model) or lognormally distributed (multiplica-
tive model). In MacKay and Zinnes’ work, error in stimuli or items rather than 
distances are normally distributed.

The loss function in Multiscale of Ramsay (Ramsay 1977)is based on the sum of 
the squared difference of the logarithm of the observed distances and the model 
estimated distances; that is,
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This loss function or error is used in a maximum likelihood (ML) framework. The 
likelihood is the probability that we find the data given X. This probability is maxi-
mized in MLMDS analysis. For ML estimation, we need to assume independence 
among the residuals and a lognormal distribution of the residuals.

Since both maximum likelihood MDS programs have extensive manuals, those 
who are interested in specific aspects of maximum likelihood MDS can consult the 
manual for how the different maximum likelihood MDS models with error terms 
are defined and specified. we do not provide detailed descriptions in this book 
since these topics are quite technical and not fundamental to understand MDS 
analysis in most applied settings. It suffices to know that maximum likelihood 
MDS can provide a useful way to conduct psychological analyses. For example, 
we could test hypothesis of instrument sensitivity with respect to different symp-
toms or different population. We could also test the dimensionality, single-ideal vs. 
multiple-ideal points model, or equal vs. unequal variance models. Few empirical 
studies so far have employed maximum likelihood MDS model to examine any 
substantive issues.

3.7 The MDS Model Using Maximum Likelihood Estimation
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3.8  Conclusion

In this chapter, we discussed fundamentals of basic MDS models most frequently 
encountered in actual research settings or literature. The discussion focused on the 
conceptual level without too much technical detail. It is important for us to have 
some basic understanding of these models so that we know what each MDS model 
is all about. In later chapters, we will present actual analyses using these models in 
the context of educational or psychological research.
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Chapter 4
Model Selection and Interpretation

Abstract Concepts of MDS model fit are discussed, along with various fit indices. 
Interpretation of MDS solutions is explained; particularly I highlight the point that 
MDS is a visual tool using a two-dimensional space and interpretation should focus 
on clustering patterns of the MDS solution.

Keyword MDS fit indices · Interpretation · Clustering pattern

In Chap. 3 we discussed various MDS models, with focus on the basic ideas of these 
models. In this chapter, we continue this discussion of MDS models but focus on 
how do we assess the fit of a MDS model to the data, the factors that may impact the 
model-data fit, and how we interpret the results from MDS analysis.

4.1  Assess Model Fit

Like many other model-based analytical techniques, MDS also adopts the habit of 
using fit measures, which is typically called badness-of-fit measures since the higher 
the badness-of-fit measures, the worse the fit. The fit measure is typically called 
Stress value, which minimizes the fit discrepancy between the model-derived dis-
tances and the observed distances. This discrepancy is called error, as in most statis-
tical models. In addition, there are other types of model fit measures that are used in 
preference MDS models and maximum likelihood MDS analysis.

Some common badness-of-fit measures used in MDS models include the 
following:

Kruskal’s STRESS formula one (S1) and STRESS formula two (S2):
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where δ


ij is disparities (distance based on optimally transformed data); dij is model 
estimated distance, and d  is mean of model estimated distances. The numerator of 
Eqs.  4.1 and 4.2 is squared error, indicating the sum of differences between the 
observed distance (after transformation) and model-derived distance. The denomi-
nator in Eqs. 4.1 and 4.2 is normalizing factor (NF). By normalizing raw stress in 
the numerator, it is possible to compare configurations by making stress indepen-
dent of the size or scale of the configuration, and standardizing its value between 0 
(perfect fit) and 1 (worst possible fit). Thus, S1 and S2 differ in the normalizing 
constant used in the denominator. It has been suggested that when the data are pref-
erences, S2 is a better choice for the fit measure (Takane et al. 1977).

It should also be noted that the numerator of Eqs. 4.1 and 4.2 is a measure of Raw 
Stress, which is the sum of squares of differences between the model distances and 
disparities (of optimally transformed data). Kruskal’s S1 is also called normalized 
stress value. When it is squared, S1

2  shows the proportion of the sum of squares of 
the δij that is not accounted for by the model estimated distances.

We should also repeat here again that minimizing Stress value always requires 
finding an optimal configuration in a given dimensionality m. In order to achieve 
such an optimal configuration, we transform observed distances into approximated 
distance (i.e., disparities, as discussed in Chap. 3) by using either linear or mono-
tone regression (other transformation can also be used if appropriate). There are two 

types of disparities. One is Kruskal’s disparities, δ


, (called d-hat), which is based 
on weak monotone transformation. As mentioned in Chap. 3, weak monotone trans-
formation allows tied points to be untied using primary approach to ties. A second 

one is Guttman’s rank-image disparities, δ


∗

, (called d-star), which is based on 
strong monotone transformation using secondary approach to ties. A strong mono-
tone transformation does not allow unequal data to be fitted by equal disparities. 
Regardless which type of disparities used, the fit measures are based on the “approx-
imated distances”, “pseudo-distances”, or disparities with respect to model esti-
mated distances.

The other fit measures mentioned in the MDS literature include:
Young’s S-STRESS formula one and two:
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Tucker’s congruence coefficient
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Coefficient of monotonicity:
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Coefficient of alienation:

 k u= −1 2
 (4.7)

Tuck’s congruence coefficient (c) between two variables X and Y is the correla-
tion of these variables about their origin or “zero”, not about their means, as in 
Pearson’s correlation coefficient. As correlation coefficient, the congruence coef-
ficient is always between −1 and 1. As can be seen in Eqs. 4.5 and 4.6, Tuck’s 
congruence coefficient is the same as coefficient of monotonicity, as sometimes 
called. On the other hand, coefficient of alienation is akin to stress, and in some 
cases, it is identical to it. Coefficient of alienation k is strictly monotonic with 
stress, which measures the extent of residual variance not explained from the fitted 
monotone regression.

The Stress value, which indicates loss function, can be visualized using Shepard 
diagram. It plots model-estimated distance or disparities on y-axis against observed 
distance on the x-axis. In essence, it is just a scatter plot between two variables. If 
the line is on the diagonal, it indicates the perfect fit. Otherwise, it indicates certain 
degree of loss or badness-of-fit. Figure 4.1 shows such an example.

In Fig. 4.1, we get an overall impression of the scatter around the representation 
function. There is quite a bit of scatter around the monotone regression curve. In 
addition, we see that there are no real outliers, although some points contribute rela-
tively much to Stress. In addition, some MDS analysis programs also provide scatter 
plots of observed distance vs. the disparities or disparities vs. the model estimated 
distance, as shown in Fig.  4.2. Using another method, we can also inspect the 
 residual or error matrix to find out which pair of variables makes greatest contribu-
tion to the mismatch between the model and the data.

4.1 Assess Model Fit
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Fig. 4.1 An example of Shepard diagram

Fig. 4.2 A residual plot from an MDS analysis
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There are a few noteworthy points about Stress value.

 1. Stress value goes down as number of dimensions goes up, given the number of 
variables used in the analysis.

 2. Stress value goes up as number of variables increases, given the number of 
dimensions.

 3. The Stress value can be used in the following way to determine the proper num-
ber of dimensions for interpretation.

 (a) Stress value does not decrease more than 5% as the number of dimensions 
increases. Typically, squared Stress value (such as Kruskal S1) can be inter-
preted as the percentage of variance in the disparities that cannot be explained 
by the model. For example, if squared Stress value is 0.10, then we can say 
that 90% of variance in the disparities that can be explained by the model.

 (b) Kruskal (1964) suggested that the following rule of thumb for Stress value:

0.20 = poor, 0.10 = fair, 0.05 = good,
0.025 = excellent, and 0.00 = perfect.

However, this suggestion may not be useful since in actual research setting the 
change in Stress value is very small between m vs. m + 1 number of dimensions, 
making it difficult to determine proper number of dimensions.

 4. Guttman (1968) suggested the use of the coefficient of alienation k, which is 
closely related to Stress. He indicated that the coefficient of alienation k should 
be less than 0.15 for an acceptably precise MDS solution in typical non-metric 
MDS analysis.

In addition to this set of basic fit measures used in MDS analysis, Busing et al. 
(2005b) suggested additional fit measures used for preference MDS distance 
model via PREFSCAL, a MDS unfolding analysis module within SPSS. We use 
an example to demonstrate these fit measures based on internal preference mod-
eling. In this example, a 12-item instrument of the Life Orientation Test (LOT) 
(Scheier et al. 1994) that was developed to assess generalized optimism versus pes-
simism was administered to a group of students. The responses were coded along 
a 5-point Likert-type scale, ranging from “strongly disagree” to “strongly agree.” 
The items were scored so that high values indicate optimism (i.e., a large distance 
from pessimism). Examples of items include “In uncertain times, I usually expect 
the best.” “If something can go wrong for me, it will.” or “I’m always optimistic 
about my future.” In a sense, these items assessed adolescents’ attitudinal prefer-
ences towards life.

A two-dimensional MDS preference distance model was specified in SPSS 
PREFSCAL module. The algorithm converges to a solution after 130 iterations, with 
a penalized stress (marked final function value) of 0.72. The PREFSCAL procedure 
yielded the following fit indices:

4.1 Assess Model Fit
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Iterations 130
Final Function Value 0.716

Badness of fit Normalized stress 0.088
Kruskal’s stress-I 0.296
Kruskal’s stress-II 0.817
Young’s S-stress-I 0.390
Young’s S-stress-II 0.643

Goodness of fit Dispersion accounted for 0.912
Variance accounted for 0.622
Recovered preference orders 0.927
Spearman’s rho 0.741
Kendall’s tau-b 0.618

Variation coefficients Variation proximities 0.453
Variation transformed proximities 0.568
Variation distances 0.467

Degeneracy indices Sum-of-squares of DeSarbo’s Intermixedness 
indices

0.058

Shepard’s rough nondegeneracy index 0.729

There are a few things to be noted about this output. First, please notice how 
some of these fit measures are related to each other.

 1. Normalized Stress is equal to squared Kruskal’s Stress-I, that is, 0.088 = .2962

 2. Dispersion Accounted For (DAF), also referred to as the sum-of-squares 
accounted for (SSAF), is equal to 1 - Normalized Stress, that is, 1 – S1

2, 0.1–
0.912  =  0.088. It is also equal to Tucker’s congruence coefficient: 

c i i i

i i i i

= ∑
∑ ∑

x y

x y2 2
.

As Busing et al. (2005a) indicated, the function values of normalized raw Stress, 
SSAF or DAF, and Kruskal’s Stress-I are insensitive to differences in scale and 
sample size, and these values are suitable for comparing models with different 
dimensional solutions.

Second, Variance accounted for (VAF) is equal to the square of correlation coef-
ficient and is calculated over all values regardless of the conditionality of the analy-
sis. Recovered preference orders (RFO) indicate proportion of preference ordering 
of variables that is accounted for by the model.

Third, the variation proximities, variation transformed proximities, and variation 
distances indicate variability in these data. They should be close to each other, indi-
cating the solution provides discrimination between variables.

Fourth, the sum-of-squares of DeSarbo’s intermixedness indices (DeSarbo 
et al. 1997) are a measure of how well the points of the different set (i.e., object 
points and person points) are intermixed. The closer to 0, the more intermixed the 
solution. In here the intermixedness is 0.059, indicating that the solution is well 
intermixed. Shepard’s rough nondegeneracy index (Shepard 1974), which assesses 
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the  percentage of distinct distances, is 0.729, indicating 73% of distinct distances. 
Taken together, the results indicate the solution was not degenerate; that is, the 
points along the dimensions were distinctly separated.

4.2  Interpretation

Interpretation of MDS solution is a bit tricky in that it does not have a clear consen-
sus regarding the ways in which the configuration should be interpreted. Traditionally, 
configuration from MDS solution is interpreted based on dimensions, that is, the 
meaning of dimensions according to how the variables are related to each dimen-
sion. Figure 4.3 shows a hypothetical example of MDS analysis of seven behaviors 
using the basic non-metric MDS model.

What we can tell from this configuration is that behavior Talk is away from 
the rest of behaviors, which are more about private behaviors. Thus, Dimension 
1 may represent private vs. open behaviors, while Dimension 2 does not have a 
clear interpretation. In fact, this hypothetical example illustrates an important 
point about MDS analysis. That is, MDS analysis usually provides a visualization 
of relationships among variables in a two-dimensional space. The interpretation 
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Fig. 4.3 Configuration of seven behaviors
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of this  configuration is mainly based on the cluster of variables rather than based 
on  dimensional interpretation, as we traditionally do. Although a higher dimen-
sion may be needed in some cases, we chiefly attempt to identify meaningful latent 
structure among variables and visualize it in a two-dimensional space.

There is one exception to this practice. In recent years, MDS models have been 
used in profile analysis (Davison et al. 1996; Ding 2006). In such an application, as 
discussed in Chap. 10, each dimension represents a typical profile, and there may be 
more than two profiles. Thus, the focus of the MDS analysis is not on visualization 
of latent structure but rather on typical behaviors manifested by individuals. In 
Chap. 10 we will provide application of MDS analysis for such a purpose and a 
further discussion on this topic.

4.3  Transformation of Configuration

Euclidean distances in MDS models between two points are invariant with respect 
to transformation of distance points so that dimensionality does not change. The 
transformation includes rotation, translation, reflection, or dilations. Specifically, a 
rotation can be thought as a rotation of the dimensions about their origin, and such 
a rotation may be needed to aid interpretation of the dimensions. On the other hand, 
translation involves re-location of origin or zero points of coordinate (i.e., adding a 
constant to all of the coordinates on each dimension); dilation involves multiplying 
the coordinates by a constant; reflection involves reversing the sign of each coordi-
nate of dimensions. The implication of these concepts is that seemingly different 
dimensional configurations may be identical to each other due to the possibility of 
rotation, translation, dilation, or reflection of dimensions. Thus, interpretation of 
dimensions can be aided by taking these transformations into consideration. In this 
regard, Procrustean analysis of MDS solution may provide a way to assess the 
degree to which the seemingly different configurations are essentially the same so 
that the interpretation of the findings is not affected. In Chap. 9, we will discuss how 
to assess configuration similarities in detail. For now, it suffices to realize that the 
potential transformation of a configuration may affect the interpretation, and we 
need to be careful about and acknowledge this issue.

4.4  Conclusion

In this chapter, we discussed various fit measures in deciding the proper number of 
dimensions to use for interpretation. Although the list is not exhaustive, it represents 
commonly used fit indices in MDS analysis and should be sufficient for common 
MDS analysis in educational and psychological research.

Interpretation of MDS solutions is quite subjective. Although MDS literature 
provides some extensive discussion with respect to interpretation, the fundamental 
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approach is to inspect salient patterns among variables in a two-dimensional space. 
This chapter offered a general picture of model fit measures and interpretation of 
MDS solutions. In later chapters, more specific issues of model fit and interpretation 
are further discussed in the context of actual analysis using a specific MDS model.
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Chapter 5
MDS Analysis Using Basic MDS Model

Abstract Use of basic MDS model is explained. Examples are provided. How the 
basic model is estimated is discussed, although readers can skip this part. 
Interpretation of results from basic MDS analysis is further explained, including 
decision on number of dimensionality.

Keyword Data structure · Estimation · Dimensionality · Interpretation

In previous chapters, we discussed the fundamental concept of applied MDS analy-
sis, the data input for MDS analysis, various MDS models, model fit assessment, 
and interpretation. Given this essential background information about MDS, we are 
ready to discuss in more detail the analysis performed using these models. Some of 
these concepts discussed in the previous chapters are expanded for better under-
standing. In this chapter, we discuss the analysis using basic MDS model; that is, 
the analysis using non-metric MDS model.

The materials in this chapter are organized as follows. We first present an exam-
ple in educational or psychological research. Then we discuss the data input, the 
model, the estimation, model fit, and interpretation.

5.1  An Illustrative Example: Study Item Structure

Experiential avoidance is the phenomenon that occurs when a person is unwilling to 
remain in contact with particular private experiences and takes steps to alter the 
form or frequency of these experiences or the contexts that occasion them, even 
when these forms of avoidance cause behavioral harm. Experiential avoidance has 
been implicated in a wide range of clinical problems and disorders, from substance 
abuse to suicide. Ruminative worry tends to occur because it functions to avoid 
greater arousal and distress (Borkovec et al. 1999; Wells and Papageorgiou 1995), 
even though it does not help worriers actually deal with the instrumental situation.

Given the importance of experiential avoidance to some of the new behavior 
therapies, a research instrument is needed to begin to explore this concept of expe-
riential avoidance. Specifically, it should be possible to develop a broad self-report 
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measure of experiential avoidance that clusters items focused on various aspects of 
the experiential avoidance concept. As such, Acceptance and Action Questionnaire 
(AAQ) was designed to assess a high need for emotional and cognitive control, 
avoidance of negative private events, inability to take needed action in the face of 
private events, and forms of cognitive entanglement (Bond and Bunce 2003; Hayes 
et al. 2004). Since its conception, it is the most frequently used measure of experi-
ential avoidance, with versions of nine or 16 items (Hayes et al. 2004).

Although the AAQ is widely used, it has shown problems with its factor structure 
and internal consistency in various settings (Chawla and Ostafin 2007). Due to the 
broad item content of the different related constructs, it is unclear whether the AAQ 
measures one overarching construct or a multidimensional construct (Chawla and 
Ostafin 2007). For example, the nine-item AAQ showed a one-factor solution 
(Hayes et al. 2004), while the 16-item AAQ showed a two-factor solution of EA, 
consisting of willingness and overt action (Bond and Bunce 2003). Furthermore, 
internal consistency of the scale is often low, which is probably a result of the com-
plex items (Bond et al. 2011).

Due to these problems, Bond et al. (2011) further revised AAQ into AAQ-II with 
10 items. However, the authors found a two-factor solution for a 10-item scale. 
Notably, the second factor consisted of only the three positively worded items on the 
scale, thus suggesting that the second factor resulted from a method effect and did 
not represent a second substantive dimension. Thus, the final AAQ-II consists of 7 
items. The confirmatory factor analysis suggests a good model fit of one factor 
structure, only after allowing error terms to be correlated for two items.

As Kline (2010) suggested, correlated error term may indicate extra factor in the 
data. Thus, it is possible that the AAQ-II assesses different dimensions of the experi-
ential avoidance rather than one dimension, although experiential avoidance is an 
overarching theme or factor. To further examine the item structure of the AAQ-II, we 
use the non-metric MDS analysis. One key difference between MDS and exploratory 
factor analysis is that the general factor bears no effect in MDS model; thus, the pos-
sible general factor due to highly correlated items may not interfere with the identi-
fication of various aspects of experiential avoidance, as assessed by the AAQ-II item.

Based on the data from 652 undergraduate students, we conducted basic non- 
metric MDS analysis using SPSS Proxscal module (Data Theory Scaling System 
Group n.d.). The MDS solution indicates a good fit to the data, as indicated by the 
fit indices in Table 5.1.

The results of the analysis are shown in Fig. 5.1. As can be seen in Fig. 5.1, there 
are clearly three distinct item clusters, suggesting a possible multifaceted construct 
of experiential avoidance. In the following section, we discuss how such an MDS 
solution arrives and the related issues with respect to estimation and interpretation.

Table 5.1 Fit measures for 
basic non-metric MDS 
solution

Normalized raw stress 0.0005
Stress-I 0.022
Stress-II 0.048
S-stress 0.001
Dispersion accounted for (D.A.F.) 0.999
Tucker’s coefficient of congruence 0.999
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5.2  Basic MDS Analysis

When we mention basic MDS analysis, we mean the non-metric MDS analysis for 
identifying or examining the latent structure of data in a two-dimensional space. The 
main results from such an analysis are the visualization of data structure and the model 
fit indices. The data input of the analysis is typically distance matrix such as Euclidean 
distance measure, δij, computed based on the rating data from the questionnaire. For the 
example of experiential avoidance, the Euclidean distance matrix is shown in Table 5.2.

As we mentioned in Chap. 2, there are different kinds of distance coefficients or 
measures. The use of different distance matrix as a data input needs to be justified. 
Typically, Euclidean distance is most used distance coefficient measure in educa-
tional and psychological research.
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Table 5.2 Euclidean 
distance matrix for the 
example of experiential 
avoidance

23.124
23.0368 20.3387
17.6852 23.0368 22.9930
25.4081 20.4834 19.7016 24.8841
24.0650 21.1652 22.0065 22.3703 
22.6004
23.6634 24.2113 23.7060 20.4623 
23.7164 20.1643
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The model used in basic MDS is the simple Euclidean distance model as 
described in Chap. 3. Sometimes the analysis using such a model is also called 
smallest space analysis (SSA). For example, in NewMDS(X) program package, 
there is a procedure (called MiniSSA-N) that performs this type of analysis. As 
mentioned in Chap. 3, this model uses the disparities or pseudo-distance rather than 
actual or observed distance; that is, the data δij will be interpreted by the model as 
being ‘distance-like’, not as actual distances but as approximate or estimate of 
actual distance based on the optimally transformed data. Thus, the distance is more 
like transformed distance based on transformation procedure. The aim of the basic 
MDS analysis is to turn such data into a set of genuine Euclidean distances. The 
solution (also called the ‘final configuration’) consists of points in a two- dimensional 
space located so that the model estimated distance between the points matches the 
observed distances between the items or variables as closely as possible. In basic 
MDS model, the ordinal or monotonic transformation is used since the model 
assumes that only the rank order of the items in the data matrix contains significant 
information. For this reason, non-metric MDS is sometimes referred to as ‘ordinal 
rescaling analysis’ (Sibson 1972) since the distances of the solution should, as far 
as possible, be in the same rank order as the original data after the transformation.

5.2.1  Data Transformation

How does the model perform the ordinal or monotonic transformation? There are 
two types of transformations (weak or strong monotonicity) and two approaches 
(primary or secondary approach to ties), as mentioned in Chap. 3. We repeat this 
information again for an easy access. These methods have something to do with 
how the tied (equal) data are dealt with. For weak monotonicity (Kruskal 1964), 
if one data point (e.g., 4) is smaller than another (e.g., 7), then the corresponding 
distance can be in the same rank order or be equal, but never in the reversed order. 
That is,

 
if then d dij kl ij kld d< £

 

Since the transformation of observed distance involves disparities, then this rela-
tionship becomes:

 
if thenij kl ij kld d d d< £

 

 

that is, weak monotonicity allows unequal data to be fitted by equal dispari-
ties in the monotone transformation function (i.e., monotonic regression). In 
addition, the disparity values, d



ij, have the useful property of being as close as 
possible to the corresponding model estimated distances. This means that, over 
all the points of the configuration, the sum of the squared differences between 
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the model estimated distances dij and the corresponding disparities d


ij is as 
small as possible. For this reason, the MDS solution is a least square solution.

For strong monotonicity (Guttman 1968), if one data point (e.g., 4) is smaller 
than another (e.g., 7), then the corresponding distance must be in the same rank 

order. That is, if δij < δkl then d


ij < d


kl. Because of this reason, d


ij is called rank 
image estimates. It should be noted that a MDS solution usually has poor fit index 
if strong monotonicity transformation is chosen. Thus, it is necessary to pay atten-
tion to which form of monotonic regression is being used.

In addition to the form of transformation, we also need to pay attention to the ties 
in the data (i.e., the same value), which is also common. There are two ways to solve 
this issue. One is to allow ties in the data to be either equal or not equal. This is 
called primary approach. Another is to retain ties in the data to be tied, which is 
called secondary approach. In this case, tied data are treated as being truly equiva-
lent. When there are small numbers of ties in the data, primary approach to tie 
should be used since secondary approach to ties can misrepresent the data structure. 
However, what values count as tie or the same is hard to judge, particularly in psy-
chological term. In our example data in Table 5.2, quite a few distance values only 
differ in decimal places, but it is easier to consider them to be different.

Taken together, the monotonicity criterion (weak vs. strong) and the approach to 
ties (primary vs. secondary) produce somewhat different effects on the ordinal infor-
mation (order inequalities or equalities) in the data, and the monotonic function has 
a slightly different form in each of these four cases. As we have mentioned in Chap. 
4, the differences between the model estimated distance and its corresponding 

‘pseudo-distance’ (dij - d


ij) serves as a fit index of how the model estimated distance 
departs from the disparities required to preserve an ordinal relation with the data. If 
the required ordering is preserved, then the difference will be zero. Alternatively, the 
difference can be looked on as the residual from monotone regression (i.e., the dif-
ference between the estimated distance and an ordinal rescaling of the data.

5.2.2  Finding the MDS Solution

How does the basic non-metric MDS analysis actually work? Given a set of data, 
how does one find a configuration of points in Euclidean space where the rank-order 
of the distances from the estimation best matches the rank order of the observed 
data? In a sense, this becomes a latent variable analysis in which the latent variables 
are coordinates in a geometric space for each variable, and we try to find such a set 
of latent coordinates (i.e., latent configuration) that best represents the data. In order 
to find the configuration, a typical analytic approach is by an iterative process, which 
is simple in theory but can be complex in implementation of the estimation proce-
dures. There are variations in the estimation process, and here we show the one that 
is discussed by Davison (1983). The basic iterative steps involve the following:

5.2  Basic MDS Analysis



66

 1. Create an initial configuration.

There are different ways to create an initial configuration. We describe some of 
them.

 1. Torgerson’s class metric MDS (metric initial configuration).

 (a) specify a specific number of dimensions, e.g., two dimensions.
 (b) first calculate distance matrix from the data.
 (c) convert it into scalar products, that is, double-centered distance matrix, δ*

ij.
 (d) perform principle component analysis on the double-centered distance 

matrix based on the Torgerson’s classic scaling equation δ*
ij = XX`. This will 

be the best estimate of an initial configuration in a least square sense.

Thus, this initial configuration is closely related to principal components analysis 
and Eckart-Yeung singular value decomposition. It generally produces a fairly good 
initial estimate of the solution, unless the configuration of points forms some highly 
non-linear shape.

 2. User-defined starting configuration.

We can provide an initial configuration, usually either based on a priori grounds or 
from a similar study, which is thought to be close to the final configuration.

 3. Random start.

As the name suggests, the initial configuration may be formed simply by allocating 
random numbers to the n × r coordinates, or by positioning the points regularly 
at unit intervals along the dimensions of the initial configuration.

 4. Simplex start.

We place the variables in the configuration all at the same distance of each other and 
taking one iteration to improve this high-dimensional configuration, followed by 
a dimension-reduction operation to obtain the user-provided maximum dimen-
sionality specified.

 5. Quasi non-metric initial configuration

 (a) the data are first reduced to rank order by jettisoning all non-ordinal 
information.

 (b) a ranks matrix from these data is formed, which is similar to scalar products 
and a  strict monotone function of data.

 (c) a principal components analysis is performed on the ranks matrix.

 2. Standardize distance and coordinate estimates

After the initial configuration, the first iteration starts by first standardizing the 
current distance estimates and coordinate estimates based on the initial con-
figuration or previous iteration. The distance and configuration estimates are 
standardized by multiplying them by the same constant so that the coordinate 
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estimates are on the same scale as the distance. The distance is standardized 
in such a way so that the sum of squares of the distance equals to 1.00. The 
standardization of distance serves to reduce the likelihood of a degenerative 
solution.

 3. Nonmetric estimation

Based on standardized distance, disparities are computed so that they constitute 
a monotone transformation of the original distance. In each iteration, each disparity 
is set to equal to the corresponding distance estimates from the previous iteration. 
There is a series of steps involved in this process, including ranking the data, dealing 
with ties in the data by creating blocks and re-arranging them. After all these steps, 
the disparities will satisfy the weak monotonicity function since the data points are 
regressed onto the distance estimates.

 4. Metric estimation

Using the disparities, the estimated distance, and the estimated coordinates from 
the previous iteration, a new set of coordinates is obtained, which is use to compute 
the new distance estimates. Disparities remain unchanged in this process. Fit mea-
sure such as Stress value is computed. This ends the first iteration, and after stan-
dardization of the new coordinates and distance estimates, the second iteration 
starts.

 5. Iteration

The Steps 2–4 iterate until a pre-specified criterion of improvement in fit is met. 
This process is called gradient methods in which iteration continues until a set of 
coordinate estimates and disparities have been found to satisfy the solution 
equations.

5.2.3  Assessing a MDS Solution

Numerical analytic technique of gradient methods can produce several sets of 
parameter estimates (i.e., coordinates and disparities) for several configurations (i.e., 
from one to three dimensions). We are looking for ones that have the lowest value of 
the fit measure such as Stress value, which should correspond to the global mini-
mum. Of course, it is hard to know whether the solution corresponds to the global 
minimum rather than local minimum. It has been suggested that using multiple ran-
dom start as an initial configuration can reduce the likelihood of local minimum.

Another issue to watch for in the solution is degenerative solution, in which the 
number of distinct coordinate points in the configuration is small compared to the 
number of variables used in the analysis, that is, some coordinate points collapse 
onto a single point. Thus, we need to ensure that coordinates points in the configura-
tion are unique.

5.2  Basic MDS Analysis
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The third issue in the analysis is issue of lack of convergence, which is relatively 
easy to deal with. We can increase the maximum number of iterations to reach con-
vergence. But this problem could be due to local minimum or a degenerative solu-
tion. Thus, we need to be careful about what this issue entails.

5.3  Dimensionality and Interpretation of a MDS Solution

5.3.1  Dimensionality

The issue of dimensionality in MDS analysis is always a challenging one. There are 
various discussions on this issue. A common suggestion is that we ran a set of solu-
tions, say, from one-dimensional to six-dimensional solutions, and then examine the 
various fit measures. A solution that corresponds to the best fit measure may be the 
solution of the choice. As we discussed in Chap. 2, there are suggestions regarding 
what would be the best fit values to guide the choice of the dimensionality.

However, experiences in working with MDS suggests that fit measures (e.g., 
Stress value) can only serve as a guideline rather than a decision rule. The origi-
nal intent of MDS analysis is to view complex data structure in a low dimen-
sional space. What constitutes a low dimensional space? Given the limited 
capacity of human mind to visualize objects in more than three dimensions on 
a piece of paper or a computer screen, it is reasonable to expect that we should 
be able to view the data structure in two- or three-dimensional space without 
too much difficulties, usually in a two-dimensional space. Thus, unless there 
is a special need calling for more than a three-dimensional solution, a two-
dimensionality is what we need to view the data structure, and in most cases, 
that should be sufficient.

One possible exception is that when we use MDS models for profile analysis and 
growth analysis, we can go to dimensionality that is more than three. We will dis-
cuss this particular application of MDS analysis in a later chapter.

5.3.2  Interpretation

There are two major approaches for interpreting the MDS solutions. One is what I 
called “cluster-pattern approach.” In this approach, the interpretation of the MDS 
solution is chiefly based on the patterns of points in the configuration; that is, we 
mainly look for patterns in the configuration that make sense for the study under 
inquiry. No statistical methods can substitute substantive knowledge on the sub-
ject. Usually, we do not interpret the whole configuration, but rather to identify 
patterns within parts of it (i.e., regional density). Therefore, we need to resort to 
our knowledge to determine what the MDS solution really indicates and interpret 
the findings accordingly.
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The second approach of interpretation can be called “dimensional interpretation 
approach.” In this approach, the interpretation is made according to what each 
dimension indicates. Traditionally this is the approach we use. For this approach, 
the common practice in the interpretation of MDS solution is to examine the point 
of variables along each dimension and then interpret the meaning of each dimension 
according to what variables cluster around it. This way of interpreting MDS solu-
tion follows that of factor analysis. This may be one of the reasons why MDS and 
factor analysis are viewed as the same method. Although such interpretation is pos-
sible, it should not be considered as the main focus or the only way of interpreting 
the solution. MDS is a visualization method in that we make inferences based on 
what we see rather than based on statistical values or tests, although such statistical 
tests exist. We will discuss some of these statistical tests in Chap. 6. Pattern identi-
fication is what matters, either patterns around dimensions or patterns that have 
regional density. In addition, we should not rely on small differences of point loca-
tions since small differences in location may be very likely to capitalize on chances 
and unstable characteristics of the solution.

Another issue regarding the interpretation of a MDS solution is that interpreta-
tion of configuration of MDS analysis is affected by similarity transformation of the 
configuration, which includes rotation, reflection, rescaling, and translation of ori-
gin. Specifically, rotation refers to rotation of the axes; reflection refers to changing 
sign of scale values so that positive becomes negative and versus; rescaling refers to 
the configuration can be stretched or shrunk by multiplying a constant without 
changing the information in the configuration; translation of origin refers to the zero 
point of configuration can be freely located within the configuration without chang-
ing the distance. This set of similarity transformations may alter the appearance of 
the configuration, leading to a different interpretation. Thus seemingly different but 
essentially the same configuration may be interpreted differently. For example, if 
we change the sign of the scale values along the dimensions, the configuration may 
appear different from the original one, which may lead to a different interpretation 
of the configuration. We need to be careful about this issue, particularly when we 
compare two configurations across groups or time. In this regard, we can conduct 
Procrustes analysis to make sure that two configurations do not differ substantially. 
Procrustes analysis will be discussed in Chap. 9.

5.4  Applications of Basic MDS Analysis in Educational 
and Psychological Research

In this section, we presented two empirical studies that employed the basic MDS 
analysis to investigate the factor structure of Beck’s Depression Inventory (BDI). 
The purpose is to let readers get more intuitive sense of how basic MDS analysis can 
be used in actual research setting. Certainly, these analyses could be extended to 
examine group (e.g., gender) differences in data structure or other types of configu-
ration differences.

5.4  Applications of Basic MDS Analysis in Educational and Psychological Research
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Cohen (2008) used basic MDS model to confirm Beck’s six symptom character-
ization of depression based on Beck Depression Inventory-II (BDI-II). BDI-II 
assessed the symptom of depression along the following categories: affective, moti-
vational, cognitive, behavioral, and physiological (or vegetative) symptoms, as well 
as cognitive distortions. Although there are a large number of factor analytic and 
principal component studies of the BDI-II, these studies only partially supported 
Beck’s categorization.

Although factor analysis is the most widely used multivariate analysis to study 
behavioral phenomena, Cohen (2008) indicated several limitations of factor ana-
lytic approach to studying factor structure of the BDI-II. First, the parameters of 
factor analytic models are rather stringent because of a metric requirement for the 
measurements, multivariate normality of the items, and a linear relationship between 
the items and the factors. These assumptions can make it difficult to provide a 
coherent description of the multifaceted aspects of psychological phenomena in 
general, particular for depression. Second, in factor analysis each factor should 
include at least five variables, as suggested by Gorsuch (1983). But in the BDI-II, 
only one factor (cognitive distortion) had five items and the rest factors did not meet 
the five-item requirement, which may be one reason why the factor analytic studies 
did not support the BDI-II factor structure.

Thus, Cohen used MDS approach to search for relations among symptom cate-
gories of the BDI-II items. Rather than a mathematical expression of the item’s 
loading or correlation on a factor, the MDS approach enabled us to achieve a geo-
metric representation of order relations, emphasizing visualization of data struc-
tures that may be obscured in factor analysis solutions. Although there are several 
MDS programs, Cohen used Smallest Space Analysis (SSA) program, which is 
characterized by the robustness and step-size of its algorithm. The fit measure of the 
SSA solution is the coefficient of alienation, with a value of 0.2 or less indicates a 
good fit.

The results of the MDS analysis from Cohen’s study is shown in Fig. 5.2.
From Fig. 5.2, one may easily identify Beck’s six symptom categories along the 

horizontal dimension, which was cognitive distortions, motivational, affective 
symptom, cognitive symptom, behavioral symptom, and vegetative symptom. 
Along the vertical dimension, Cohen (2008) suggested high arousal symptoms (top) 
vs. low arousal symptoms (bottom), with the items in the middle portion being not- 
so- clear arousal level.

Based these findings, Cohen (2008) suggested that to ensure the validity of the 
vertical dimension, some new items related to the arousal dimension should be 
developed, such as items focused on attention (e.g., distractibility and to jumping 
from one decision to another) and items focused on sluggish thinking, forgetfulness, 
inability to perform mentally, lack of interest, and other symptoms that indicate 
slow information-processing or attention deficit.

The second empirical study using basic MDS analysis was done by Bühler et al. 
(2014, April 28) with respect to the item structure of the BDI-II. Although the major-
ity of studies proposed a two-factor model of the BDI-II, with each item loading 
on one of two factors, Bühler, Keller, and Läge proposed the basic nonmetric MDS 
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approach to modeling the symptom structure of the BDI–II and suggested an inter-
pretation that included systematic variability among the items with respect to the acti-
vation factor. The results of their MDS analysis is shown in Fig. 5.3, which is adapted 
from “Activation as an Overlooked Factor in the BDI–II: A Factor Model Based on 
Core Symptoms and Qualitative Aspects of Depression.” by Bühler et al. (2014).

The figure clearly shows how the items from the BDI-II were patterned in a way 
that allow us to hypothesize the formal factor structure of the BDI-II. Based on 
MDS solution, Bühler et al. (2014, April 28) performed confirmatory factor analysis 
and indicated that the BDI–II was well represented by four factors: a G factor, a 
cognitive factor, a somatic factor, and an activation factor. What is interesting about 
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Fig. 5.3 was that how MDS displayed the item structure. At the top of Fig. 5.3, items 
were grouped along the horizontal dimension, indicating systematic variation, while 
the vertical dimension was considered as random variation. The bottom of Fig. 5.3 
showed a different way to interpret the item structure, that is, by how the items were 
grouped (i.e., regional density) in a two-dimensional space rather than by dimen-
sion. This interpretation was in direct contrast with Fig. 5.1, in which Cohen (2008) 
followed the dimensional interpretation approach. Thus, readers can see the differ-
ent approach to interpret the MDS solution. Essentially, rather than focus on what 
each dimension may represent, we can examine regions of high density of items, 
reflecting high similarity among items, and of low density of items (i.e., separated 
from other items by empty or sparsely-populated region), indicating differences.

Simple factor model (Beck et al., 1996)
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Fig. 5.3 The item structure of the BDI-II (Adapted from Bühler et al. (2014, April 28). Copyright 
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5.5  Conclusion

In this chapter we discussed the basic non-metric MDS analysis that focus on the 
latent configuration of variables. The take-home message is that the basic MDS 
analysis is a visualization method that can help us to visualize the relationships (pat-
terns) among a set of variables under inquiry. Inferences can be made based on the 
patterns we see. This type of MDS analysis lays a foundation for other kinds of 
MDS analyses such as MDS unfolding analysis (i.e., preference analysis), confir-
matory MDS analysis, or individual differences MDS analysis in that the interpreta-
tion of the results from those analyses is also mainly based on visualization of the 
patterns emerged from the data. The actual applications of MDS model make it 
clear that different ways of interpretation often provide invaluable information 
about local and global aspects of the configuration.

It should be pointed out now that the basic MDS analysis we discuss in this chap-
ter is usually called internal analysis (i.e., unconstrained solutions) since the analy-
sis only uses the observed data to generate the solution. This type of analysis is best 
suit for exploratory analysis. On the other hand, we can also bring prior information 
or knowledge into MDS analysis, which is usually called external analysis (i.e., 
constrained solution). In the external analysis we take the input data and relate that 
data to the external information (i.e., prior information). Traditionally, external 
MDS analysis tends to be used for the purpose of aiding interpretation. But it is 
quite feasible to use external MDS analysis as a method to conduct confirmatory 
MDS analysis. We will discuss this application in Chap. 12.
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Chapter 6
Visualization of Latent Factor Structure

Abstract Illustrate how complex data structure can be visualized in a 
 two- dimensional space using simulated data. Spatial point analysis is discussed 
in the context of MDS. Test of spatial randomness and clustering effect of data 
points is explained. Examples from real data are provided to demonstrate the 
points discussed.

Keywords Latent factor map · Spatial randomness · Clustering effect · The 
Silhouette Width index · The Dunn Index

In this chapter, we describe one particular application of basic MDS model for data 
visualization and discuss test of randomness of points in configuration. Although 
the original purpose of MDS is to visualize the data structure in a lower dimensional 
space (typically two or three dimensions), this aspect of MDS model has not been 
fully utilized in educational or psychological research as one salient aspect of the 
MDS analysis; that is, data visualization via MDS is not explicitly stated as an ana-
lytical tool. One question that people may be interested in knowing is whether a 
complex data structure can be visualized in a two-dimensional space. A complex 
data structure is defined in terms of number of factors underlying a set of variables 
or items. Traditionally, number of factors in factor analytical model is considered 
equivalent to number of dimensions in MDS; that is, a five-factor model in factor 
analysis should be represented by a five-dimension solution in MDS. Can we view 
such a complex factor structure in a two-dimensional space rather than a higher 
dimensional space? Therefore, in this chapter we focus on how MDS analysis can 
be used for examining latent factor structure of items in a test, questionnaire, or 
survey. The main goal is to show how complex factor structures of items can be 
legitimately visualized in a two-dimensional space. In addition, we introduce some 
spatial analysis methods that can be used in MDS to test spatial randomness and 
clustering effect of items.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78172-3_6&domain=pdf
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6.1  Visualization as a Formal Analytic Method

Seeing and understanding data is richer than creating a collection of equations or 
formula. Tukey (1980) states:

" Ideas come from previous exploration more often than from lightning strokes. Important 
questions can demand the most careful planning for confirmatory analysis. Broad general 
inquiries are also important. Finding the question is often more important than finding the 
answer. Exploratory data analysis is an attitude, a flexibility, and a reliance on display, NOT 
a bundle of techniques, ....." (p. 23)

"Neither exploratory nor confirmatory is sufficient alone. To try to replace either by the 
other is madness. We need them both." (p.23)

"Both inchoate insight and extensive exploration (of past data) can – and should – play a 
role in this process of formulating the question. Science – and engineering, which here 
includes agriculture and medicine – DOES NOT BEGIN WITH A TIDY QUESTION. Nor 
does it end with a tidy answer." (p.24)

These statements from Tukey highlight the importance of data exploration by 
visualization and the nature of scientific inquiries. In the field of educational and 
psychological measurement, however, we do not often employ any visual methods 
as a formal technique to observe and explore factor or item structure of an instru-
ment. Rather, we tend to use methods that employ numerical values as a way to 
determine the factor or item structure of a proposed instrument such as exploratory 
factor analysis. Sometimes, even a confirmatory approach is used to explore the fac-
tor structure via modification index in structural equation modeling to find the 
"best" factor model or to "test" different models without a clear stipulation of theory 
a prior. One reason for such a practice may be that we may not "trust" or feel com-
fortable with what we observe in the graph without some kind of formal "testing" 
with numerical values. To a lesser degree, researchers less familiar with visualiza-
tion and statistics may feel that an model needs to be established before graphically 
displaying it (Butner et al. 2014).

Wright’s (1921) innovation of path diagrams provided a method of using visual 
tools to generate models and equations that can be used in confirmatory analysis. 
Such a method helps to equip researchers with a visual tool to express their theory 
in graphic form and then test their model against data. However, beyond the path 
diagram, there have been no other visual methods that are frequently used in explor-
ing data structure to generate testable measurement models for descriptions of 
human behavior and psychological processes. In this chapter we propose the use of 
an additional graphical representation that is capable of capturing underlying data 
structure in studying educational and psychological measurement instruments and 
then translates them into testable measurement models. This additional graphical 
representation can be called "latent factor map" that is communicated as a map of 
items in a two-dimensional space using multidimensional scaling (MDS). We com-
pliment latent factor map with tests of spatial randomness and item clusters.

6 Visualization of Latent Factor Structure
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We argue that a latent factor map generated by MDS can aid in translating what 
we see or observe into a testable measurement model. First, complex and nonlinear 
factor structures can be represented in a two dimensional space rather than a higher 
one (e.g., four or more dimensions). Second, in the instrument development pro-
cess, removing items that may not be relevant or appropriate is needed to construct 
the final instrument. However, in factor analysis, removing items may cause dra-
matic changes in factor loading of the remaining items, which in turn may cause 
change in factor structure. Latent factor map from MDS analysis, in contrast, is not 
subject to these changes and removing any item does not change the overall pattern 
of item configuration. Thus, researchers may hypothesize latent factor structures 
based on a latent factor map and then derive the statistical equation to test the full 
extent of their hypothesis.

Previous researchers (e.g., Liebovitch et al. 2011; Molenaar and Campbell 2009) 
have made connections between factor map and statistical models such as dynamic 
factor analysis (DFA; Molenaar 1985). Some researchers have directly used MDS 
for detecting factor structure of items (e.g., Bühler et  al. 2014, April 28; Cohen 
2008; Schlessinger and Guttman 1969; Schwartz 2006). One issue that may warrant 
further examination is whether a more complex factor structure can be depicted in a 
two-dimensional space, as we mentioned previously. In order to clearly see how a 
complex factor structure of items can be represented in two-dimensional space, we 
will use simulation-based data examples with clear factor structures (i.e., simple 
structure) to highlight the possibility of representing multifactor structure in a lower 
dimension, which is the original purpose of MDS analysis (Davies and Coxon 
1982). Of course, the problem with using simulated simple structure data is that the 
data is not realistic. But I want to make a point that visualizing more than a two- 
factor structure in a two-dimensional space is possible. When data become messy, 
the latent factor map may not be as tidy as you wish. In that case, substantive knowl-
edge is critical.

In addition, we incorporate spatial point pattern analysis into MDS, which can 
help test questions of whether the item pattern observed in latent factor map is ran-
dom or clustered. In the following sections we discuss the idea of latent factor map 
generated from MDS and demonstrate how latent factor map can be used to test a 
specific measurement model.

6.2  Two-Dimensional Latent Factor Map Using MDS

MDS is not a new technique, and in much of the quantitative and statistical literature 
multidimensional scaling (MDS) is often referred to as a technique that represents 
the empirical relationships of data as a set of points in space, typically in two or 
higher dimensional space. In fact, the original purpose of MDS tends to be viewed 
as a data visual technique. The unifying theme of different MDS models is the spa-
tial representation of the data structure.

6.2  Two-Dimensional Latent Factor Map Using MDS
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However, one common myth about MDS is that is considered to be the same or 
similar analytical technique as factor analysis. The implications of this myth entail 
the following: (1) the term of the dimension and factor are used interchangeably to 
represent the latent constructs, (2) a dimension is assumed to have a meaning as 
factor does, and (3) the number of dimensions should be extracted in the same way 
as factors are. Thus, using MDS model as a visualization of factor structure has not 
been one of the main analytic tool in psychometric studies. But in this chapter, we 
want to highlight the point that MDS models has its own uniqueness that differenti-
ates it from factor analysis, although these models can be used in the same way as 
factor analysis. One such differential feature is that in the visualization application 
the dimension only provides a spatial reference framework for item structure and it 
does not represent any substantive construct as that in factor analysis. Of course, we 
may provide an interpretation to each of the dimensions if we wish, but more often 
it will be challenging to do so if a complex data structure is depicted in a two- 
dimensional solution. For example, in a scatter plot where y-axis represents a 
dependent variable and x-axis represents an independent variable, we can know 
what each dimension represents. But when a four-factor structure of a set of items 
is displayed or mapped in a two-dimensional space, it is hard to say what each 
dimension represents. This point will be illustrated later in the chapter.

As suggested by Cohen (2008), visual representation of data structure may cir-
cumvent some of the issues encountered in factor analysis (i.e., exploratory factor 
analysis), which is a sine qua non tool for the study of complex behavioral phenom-
ena with respect to factor structure among a set of assessment items. Some studies 
has been done to contrast the results from the MDS and factor analysis (e.g., Davison 
1985). In general, the parameters of factor models are rather stringent: (1) a metric 
requirement for the measurements, (2) multivariate normality of the items, and (3) 
a linear relationship between the items and the factors. As Maxwell (1972) indi-
cated, these assumptions may hinder a coherent description of the multifaceted 
aspects of behavioral symptomatology in general. On the other hand, MDS analysis 
is less demanding and a more parsimonious alternative when searching for order 
relations among variables, and it has been used with success to explore the factor 
structures of psychological inventories (e.g., Bühler et al. 2014, April 28; Cohen 
2008; Läge et al. 2012; Steinmeyer and Möller 1992). According to Cohen (2008), 
MDS approach differed from exploratory factor analyses in (1) the manner of the 
analysis – geometric representation of relations based on the rank order or distance 
among variables and (2) the results produced – visualization of item structure in a 
two-dimensional space. Thus, two highly similar symptoms or behaviors are located 
in close proximity to each other, whereas two dissimilar symptoms or behaviors are 
located farther apart. In addition, the presence of a general factor has no effect on 
MDS solutions because of the method’s relational, similarity-based approach, in 
which similarity is transformed to an ordered categorical scale (rank orders) 
(Davison 1985). Thus, high overall correlations among the items, which would con-
stitute a general factor, are neglected in MDS analyses. This may be a very useful 
feature in identifying different aspects of data structure.

6 Visualization of Latent Factor Structure
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Using MDS to visualize factor structure is not new but it is not often employed 
as a viable tool for instrument development (e.g., Bühler et  al. 2014, April 28; 
Cohen 2008). Specifically, in an MDS model variables are represented as points 
in Euclidian space, with interpoint distances as a measure of relationship among 
variables. The underlying concept of the MDS approach is that there is a strong 
isomorphism between distance measures among variables and a set of points in 
Euclidian space. The MDS approach enables us to achieve a visual representation 
of order relations in a two-dimensional space, rather than a mathematical expres-
sion of the item’s loading on a factor. MDS emphasizes direct observation of the 
distance matrix and may emphasize those data structures that may be obscured in 
exploratory factor analysis solutions. Hence, the graphical representation of two- 
dimensional MDS solutions allow insight into the adequacy of factor structure, 
which can further be used as an empirical basis for a hypothesis-testing purpose or 
upon which a new factor model is constructed. In some way, MDS can be consid-
ered as a method to study association network, in which no postulation is made with 
respect to an underlying, latent essence that may cause the emergence of behaviors.

6.2.1  Spatial Analysis of Randomness in Configuration

In addition to the traditional MDS analytic procedures, we can incorporate the spa-
tial analysis of point patterns to test possible clustered patterns occurring when there 
was attraction (i.e., association) between points in MDS configuration. Such a point-
pattern analysis is drawn from spatial data analysis that is concerned with stochastic 
dependence between the points in a point pattern (Bivand et al. 2013). While tradi-
tional MDS analysis is more descriptive and can lead to possible hypothesis of sub-
stantive issue, the point pattern analysis can further be done to test the complete 
spatial randomness (CSR) versus clustered pattern in MDS configuration. The null 
hypothesis of CSR is that the variable locations are distributed independently at 
random and uniformly in the space, which implies that there are no regions or loca-
tions where the variables are more or less likely to occur and that the presence of a 
given variable does not modify the probability of other variables appearing closely.

The basic CSR properties in MDS model include: (1) the number of locations 
falling in a space S has a Poisson distribution with mean λ(S), (2) given that there are 
n points (i.e., items) in the specific space S, the locations of these points are identi-
cally and independently distributed and uniformly distributed inside S, and (3) the 
locations of two disjoint points are independent. Usually, the uniform Poisson point 
process (i.e., CSR) is often the ‘null model’ in an MDS analysis and the focus of the 
point pattern analysis is to establish that the data structures do not conform to a uni-
form Poisson process. Testing for CSR can be conducted using several statistical 
functions. One of them is the K function (Diggle 2003), which assesses whether the 
location point of the variables follows Poisson point process (i.e., CSR) or whether 
the location points are dependent. The CSR of the point pattern can be assessed by 
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plotting the empirical or estimated function k


(r) against the theoretical expectation 

kpois (r). The plot is produced by taking the pairs (k(r), k


(r)) for a set of reasonable 
values of the distance r, so that in the x-axis we have the values of the theoretical 

value of k(r) under CSR and in the y-axis the empirical function k


(r). When there is 

a clustered pattern, estimated values of k


(r) will be greater than theoretical kpois (r) 

and the lines representing the estimated values of k


(r) will deviate from value line 
of the theoretical expectation of Poisson point process. There are several estimators 

of k


(r) such as G function, but they tend to reach the same conclusion.

6.2.2  Spatial Analysis of Clustering Effect in Configuration

While test of CSR is focused on the spatial point pattern as a whole and examines 
whether there are any possible clusters of item points in a particular space, it does 
not indicate number of the possible clusters in the space if the hypothesis of CSR is 
rejected. That is, we need to determine the number of point patterns that share simi-
lar characteristics (e.g., similar traits or constructs). It has been suggested that MDS 
and cluster analysis can be used in conjunction to detect point pattern in a space 
(DeSarbo et al. 1991). A plethora of clustering algorithms currently exist and decid-
ing which clustering method to use with MDS can be a daunting task. One way to 
deal with this problem is to employ cluster validation methods that aim at validating 
the results of a set of cluster analyses and determining which clustering algorithms 
performs the best for a particular data. There have been various measures proposed 
(see a good overview by Handl et al. 2005). One of the validation measures that is 
appropriate for use with MDS analysis based on internal validation measures. 
Internal validation measures take the dataset and the clustering partition as input 
and use intrinsic information in the data to determine an optimal number of cluster 
for the data in hand based on several multiple clustering algorithms (Brock et al. 
2008). Internal measures assess the compactness and separation of the cluster pat-
terns. Specifically, compactness assesses cluster homogeneity by looking at the 
intra-cluster variance, while separation quantifies the degree of separation between 
clusters by measuring the distance between cluster centroids. The Dunn Index 
(Dunn 1974) and Silhouette Width (Rousseeuw 1987) are two popular measures 
that combine compactness and separation into one index. The Dunn Index (DI) is 
the ratio of the smallest distance between points not in the same cluster to the largest 
distance between points within the same cluster. Given m clusters in the data, DI is 
computed as

 

DI
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(6.1)
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where min[δ(Ci, Cj)] is the smallest distance between points in cluster i and cluster j 
and max[δ(Cm)] is the largest distance between points within a cluster m. The value 
of DI ranges from 0 to ∞, with the largest value being associated with the best num-
ber of clusters in the data.

The Silhouette Width (SW) is the average of each data or variable point's 
Silhouette value. SW assesses the degree of how well each data point or variable lies 
within its cluster. For variable i, SW is defined as
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b a

b a
i i

i i

i
,

( ) = −

( )max
 

(6.2)

where ai is the average dissimilarity of variable i with all other variables in the same 
cluster (i.e., within-cluster dissimilarity) and can be interpreted as how well variable 
i is assigned to its cluster. bi is the smallest average dissimilarity of variable i to any 
other cluster where variable i is not a member. Since SW is a confidence width, it 
can also be written as:
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Thus, SWi measures how tightly grouped all the data in the cluster are and 
assesses how appropriately the variable has been clustered. From expression 3, it is 
clear that

 − ≤ ≤1 1SWi  

In a sense, SWi assesses confidence in the clustering assignment of a particular 
variable, with well-clustered variables having values near one and poorly clustered 
variables having values near negative one.

The clustering algorithms the cluster validation procedure is based on include 
hierarchical method, also known as unweighted pair group method with arithmetic 
mean (UPGMA) (Kaufman and Rousseeuw 1990), k-means (Hartigan and Wong 
1979), Diana, partitioning around medoids (PAM), Clara (Kaufman and Rousseeuw 
1990), Fanny (Kaufman and Rousseeuw 1990), self-organizing maps (SOM) 
(Kohonen 1997), model-based clustering (Fraley and Raftery 2007), self-organizing 
tree algorithm (SOTA) (Dopazo and Carazo 1997). The clustering validation mea-
sures provide the score for the most appropriate number of clusters resulting from 
these clustering procedures.
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6.3  Illustration Based on Stimulation Data

In the following sections, we use simulation-based data of two-factor to five-factor 
structure to illustrate the key features we have made for latent factor map using 
MDS analysis: (1) complex data structure can be depicted in a two-dimensional 
space, (2) point pattern analysis can be used to test complete spatial randomness 
hypothesis, and (3) assess and validate the number of point clusters in the space. 
Simulation-based examples are used because they provide a clear illustration of 
these key features. Of course, the actual data does not always have such a clear data 
structure, but by knowing what a clear data structure looks like can help us to estab-
lish a standard for which we can use to compare what we have in hand. We also 
draw on real-world data to demonstrate the visualization of the factor structure and 
to test its measurement model.

In this set of simulations, we created a random data of 500 cases but with 12 
items for two-factors, 18 items for three factors, 24 items for four factors, and 30 
items for five factors. These factors followed a simple factor structure (i.e., each 
item loads only one factor and zeros on all other factors).

6.3.1  Two- to Five-Factor Structures

Figure 6.1 shows the latent factor map of the 12 items (panel A) from a MDS two- 
dimensional solution, which clearly suggests a pattern of two clusters among items. 
The K function test suggests the clustered pattern in the space, as shown in panel B 
of Fig. 6.1 where the value of estimated K function is greater than the value of theo-
retical random Poisson process. As shown in panel A of Fig. 6.1, the items in each 
cluster correspond well with the items that define each factor. Cluster validation 
measures based on hierarchical, k-means, and PAM clustering algorithm indicated 
a two-cluster patterns with DI and SW value being maximized for the two-cluster 
solution. Table 6.1 shows DI and SW value based on three clustering algorithms for 
two- to five-factor structure. As can be seen at top of Table 6.1, two-factor structure 

Fig. 6.1 Panel A: Two factor structure of 12 items. Panel B: K function of CSR test, which indi-
cates that observed point pattern deviates significantly from the CSR
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pattern is identified as the optimal factor structure of these items, regardless of 
which clustering algorithm is used. The result suggests that two-factor structure can 
be correctly visualized or mapped in a two dimensional space of MDS analysis.

6.3.2  Three-Factor Structure

Figure 6.2 shows the latent factor map of these 18 items (panel A), which clearly 
suggests a pattern of three clusters among items. The K function test suggests the 
clustered pattern in the space, as shown in panel B of Fig. 6.2 where the value of 
estimated K function is greater than the value of theoretical Poisson process. As 
shown in panel A of Fig. 6.2, the items in each cluster correspond well with the 

Table 6.1 Cluster validation index of factor structure from MDS two-dimensional solution

Two cluster pattern (12 items) Number of clusters

Validation index Clustering algorithm 2 3 4 5 6
Dunn Hierarchical 6.57 0.47 0.49 0.73 0.74

K-means 6.56 0.47 0.50 0.73 0.54
PAM 6.56 0.47 0.50 0.50 0.73

Silhouette Hierarchical 0.93 0.65 0.66 0.33 0.27
K-means 0.93 0.64 0.66 0.33 0.26
PAM 0.93 0.64 0.66 0.26 0.27

Three cluster pattern (18 items) Number of clusters

Validation index Clustering algorithm 2 3 4 5 6
Dunn Hierarchical 0.92 17.63 0.55 0.55 0.56

K-means 0.91 17.63 0.45 0.47 0.61
PAM 0.91 17.63 0.39 0.39 0.57

Silhouette Hierarchical 0.62 0.97 0.73 0.55 0.30
K-means 0.62 0.97 0.74 0.57 0.32
PAM 0.62 0.97 0.73 0.55 0.30

Four cluster pattern (24 items) Number of clusters

Validation index Clustering algorithm 2 3 4 5 6
Dunn Hierarchical 0.74 0.74 3.26 0.51 0.58

K-means 0.74 0.75 3.26 0.51 0.58
PAM 0.03 0.09 3.26 0.39 0.26

Silhouette Hierarchical 0.51 0.65 0.88 0.78 0.67
K-means 0.51 0.65 0.88 0.78 0.67
PAM 0.27 0.57 0.88 0.78 0.64

Five cluster pattern (30 items) Number of clusters

Validation index Clustering algorithm 2 3 4 5 6
Dunn Hierarchical 0.24 0.37 0.43 0.61 0.44

K-means 0.24 0.37 0.43 0.61 0.44
PAM 0.14 0.34 0.16 0.62 0.57

Silhouette Hierarchical 0.39 0.50 0.55 0.62 0.56
K-means 0.39 0.50 0.55 0.62 0.56
PAM 0.37 0.48 0.48 0.62 0.57

6.3  Illustration Based on Stimulation Data
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items that define each factor. Cluster validation measures based on hierarchical, 
k-means, and PAM clustering algorithm indicated a three-cluster patterns with DI 
and SW value being maximized for the three-cluster solution (see Table 6.1). As in 
the case of the two-factor structure pattern, three-factor structure pattern is identi-
fied as the optimal factor structure of these items, regardless of which clustering 
algorithm is used. The result suggests that three-factor structure can be correctly 
visualized or mapped in a two dimensional space from MDS analysis.

6.3.3  Four-Factor Structure

Figure 6.3 shows the latent factor map of these 24 items (panel A), which clearly 
suggests a pattern of four clusters among items. The K function test suggests the 
clustered pattern in the space, as shown in panel B of Fig. 6.3 where the value of 
estimated K function is greater than the value of theoretical Poisson process. As 
shown in panel A of Fig. 6.3, the items in each cluster correspond well with the 
items that define each factor. Cluster validation measures based on hierarchical, 

Fig. 6.2 Panel A: Three factor structure of 18 items. Panel B: K function of CSR test, which indi-
cates that observed point pattern deviates significantly from the CSR

Fig.  6.3 Panel A: Four factor structure of 24 items. Panel B: K function of CSR test, which indi-
cates that observed point pattern deviates significantly from the CSR
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k-means, and PAM clustering algorithm indicated a four-cluster patterns with DI 
and SW value being maximized for the four-cluster solution (see Table 6.1). As in 
the previous cases, four-factor structure pattern is identified as the optimal factor 
structure of these items, regardless of which clustering algorithm is used. The result 
suggests that four-factor structure can be correctly visualized or mapped in a two 
dimensional space from MDS analysis.

6.3.4  Five-Factor Structure

Figure 6.4 shows the latent factor map of these 30 items (panel A), which clearly 
suggests a pattern of five clusters among items. The K function test suggests the 
clustered pattern in the space, as shown in panel B of Fig. 6.4 where the value of 
estimated K function is greater than the value of theoretical Poisson process. As 
shown in panel A of Fig. 6.4, the items in each cluster correspond well with the 
items that define each of the five factors. Cluster validation measures based on hier-
archical, k-means, and PAM clustering algorithm indicated a five-cluster patterns 
with DI and SW value being maximized for the five-cluster solution (see Table 6.1). 
As in the previous cases, five-factor structure pattern is identified as the optimal 
factor structure of these items, regardless of which clustering algorithm is used. 
Thus, a two dimensional space can correctly display multi-factor structure.

6.4  Case Study 1: Identify Latent Structure 
of the Behavioral Activation for Depression Scale (BADS)

In previous sections, we show that a two-dimensional configuration can depict 
the complex factor structure pattern if the items have a clear simple structure. 
However, this will not likely be the case in actual research setting. In this part, we 

Fig. 6.4 Panel A: Five factor structure of 30 items. Panel B: K function of CSR test, which indi-
cates that observed point pattern deviates significantly from the CSR
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show how an instrument can be examined based on the theoretical expectation of 
the factor structure (i.e., if the factor structure follows the simple structure pattern) 
discussed above.

Kanter et  al. (2006) developed a 25-item self-report instrument to measure 
the purported changes in client behavior guided by response-contingent positive 
reinforcement (RCPR), which may occur directly or through increases in avoid-
ance behavior controlled by aversive stimuli (Dimidjian et  al. 2011). The mea-
sure is called the Behavior Activation for Depression Scale (BADS, see Table 6.2). 
Results, based on both exploratory factor analysis (EFA) and confirmatory fac-
tor analysis (CFA) from western samples, suggested a four-factor structure of 
the BADS (Barraca et al. 2011; Kanter et al. 2009; Raes et al. 2010): Activation, 
Avoidance/Rumination, Work/School Impairment, and Social Impairment. One 
interesting question about the instrument may be cultural differences regarding 
depression activation in non-Western population (Lu et  al. 2010; Marsella et  al. 
1958; Zhang et al. 2011).

Table 6.2 Twenty one items of the BADS Instrument developed by Kanter et al. (2006)

1. I stayed in bed for too long even though I had things to do.
2. There were certain things I needed to do that I didn't do.
3. I am content with the amount and types of things I did.
4. I engaged in a wide and diverse array of activities.
5. I made good decisions about what type of activities and/or situations I put myself in.
6.  I was active, but did not accomplish any of goals for the day.
7. I was an active person and accomplished the goals I set out to do.
8. Most of what I did was to escape from or avoid something unpleasant.
9. I did things to avoid feeling sadness or other painful emotions.
10. I tried not to think about certain things.
11. I did things even though they were hard because they fit in with my long-term goals for 
myself.
12. I did something that was hard to do but it was worth it.
13. I spent a long time thinking over and over about my problems.
14. I kept trying to think of ways to solve a problem but never tried any of the solutions.
15. I frequently spent time thinking about my past, people who have hurt me, mistakes I've 
made, and other bad things in my history.
16. I did not see any of my friends.
17. I was withdrawn and quiet, even around people I know well.
18. I was not social, even though I had opportunities to be.
19. I pushed people away with my negativity.
20. I did things to cut myself off from other people.
21. I took time off work/school because I was too tired or didn't feel like going in.
22. My work/schoolwork/chores/responsibilities suffered because I was not as active as I needed 
to be.
23. I structured my day's activities.
24. I only engaged in activities that would distract me from feeling bad.
25. I began to feel badly when others around me expressed negative feelings or experiences.

6 Visualization of Latent Factor Structure
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In Western culture, individuals are viewed as independent, self-contained, and 
autonomous, with depressive symptoms being attributed to internal disturbances 
(Lewis-Fernandez and Kleinman 1994); In non-Western culture, such as in China, 
individuals are viewed as interdependent, connected with others, and defined by the 
social context. Thus, the same symptoms may be attributed to interpersonal distur-
bances (Markus and Kitayama 1991). In other words, the symptoms are defined by 
a particular cultural experience, and the meanings and implications of these same 
symptoms may vary considerably across cultures (Lu et  al. 2010; Tsai and 
Chentsova-Dutton 2010). For example, some avoidance behaviors in a Western cul-
tural context may be reviewed as mal-adaptive and social impairment, which may 
activate depression; but the same kinds of behaviors may be considered as normal 
or as coping strategies in a non-Western cultural context. Thus, the relationships 
among avoidance, rumination, or impairment behaviors may have a somewhat dif-
ferent pattern found in western culture.

With these cultural differences in mind, we performed a two-dimensional MDS 
analysis to obtain the latent factor map among these 25 items. Fig. 6.5 shows this 
latent factor map.

It can be seen that there are five possible clusters of items that lie more close to 
each other, as indicated by the drawn circles. Overall, the items in these five circles 
(i.e., clusters) match the original factor structure of activation, avoidance, work/
school impairment, and social impairment, particularly for activation items, with all 
seven items clustering tightly together. Social impairment cluster has four original 
items that lie close together, but items 18 and 25 depart from this cluster. This may 

Fig. 6.5 BADS latent factor structure map. Circle indicates items that form original activation 
factor; triangle indicates items that form original social impairment factor; square indicates items 
that form avoidance factor; c indicates items that form original school impairment factor
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indicate that the behaviors assessed by these two items somewhat differ from the 
rest of the items. The most problematic items are those that define the original 
avoidance and school impairment factor. Specifically, items in original avoidance 
factor seem to split into two clusters. One cluster includes four original avoidance 
item and one social impairment item (i.e., item 18, which is more like avoidance 
item), which seem to assess avoidance. The second cluster includes two original 
avoidance items and one school impairment item (item 6), which seem to assess 
negative attempts (i.e., try not to do something). Original avoidance items 13 and 15 
lie apart from each other and from the other items, which seems to assess dwelling 
on thoughts. The original four school impairment items scatter apart, with only two 
items laying close together (items 2 and 21). Items 1 and 6 lies far apart.

Based on the latent factor map, it seems that these five clusters capture the core 
patterns of BADS items in this Chinese sample. To further test whether the configu-
ration of these items is CSR, K function test is conducted and the results are shown 
in Fig. 6.6. Clearly, which suggest that the BADS items have a clustered pattern 
rather than a random pattern. In addition, cluster validation indexes DI and SW 
value are maximized for a five cluster solution.

The five factors for this Chinese sample are: activation, social impairment, school 
impairment, avoidance, and negative attempts. The main differences between these 
five core patterns of BADS items and the original four factor structure are that (1) 
avoidance factor splits into two somewhat distinct clusters (avoidance and negative 
attempts) and (2) four items (items 1, 13, 15, and 25) that lie apart from the rest of 
the items do not seem to form the core pattern of these factors. Therefore, these four 
items can be removed from the item pool for further analysis.

Fig. 6.6 K function plot with estimated function K


(r) against theoretical function Kpois(r) for 
BADS items
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Confirmatory factor analysis on the remaining 21 items with five factors is 
 conducted. Each factor is defined by the items in the same circle as shown in 
Fig. 6.5. To determine the goodness-of-fit of the model, following fit indices were 
used: the Comparative Fit Index (CFI; Bentler 1990) and the goodness of fit (GFI; 
Byrne 1994), with a value of .95 and .90 indicating a excellent and acceptable fit, 
respectively; the Root Mean Square Error of Approximation (RMSEA; Steiger and 
Lind 1980, June) and the Standardized Root Mean Squared Residual (SRMR; 
Hooper et al. 2008), with value of less than 0.05 indicating a good fit and less than 
.08 demonstrating an acceptable fit.

The results of the five-factor model indicate a good model fit, with RMSEA = 
0.059, 90% confidence interval  =  0.050–0.064, p  =  0.071; SRMR  =  0.062, 
CFI = 0.93; GFI = 0.91. In order to see whether the original factor structure devel-
oped by Kanter et al (2006) could also have a good fit in this Chinese sample, we 
test the original 25-item four-factor model. The fit of the model is not good, with 
RMSEA = 0.065, 90% confidence interval = 0.060 – 0.071, p = 0.001; SRMR = 0.078, 
CFI = 0.807; GFI = 0.80. Thus, it seems that these 21 items define the five factor 
model better than the original items in this sample. Readers who are interested in 
this instrument can consult Li et al. (2014), who have discussed the cultural differ-
ences with respect to the behavioral activation for depression.

6.5  Case Study 2: Identify Latent Structure of DIBLES

Achievement test data from a group of 1169 kindergarteners were used as another 
example of data structure visualization. During the kindergarten, these children 
were tested three times (beginning, middle, and end of the kindergarten) using sub-
scales of Dynamic Indicators of Basic Early Literacy Skills (DIBELS) (Good and 
Kaminski 2002). DIBELS was designed to assess three key early word literacy 
areas: phonological awareness, alphabetic principles, and fluency with connected 
text. The measures included for this example were (the more detailed description of 
these measures can be found at DIBELS official website1):

Initial sounds fluency (ISF) A measure of phonological awareness that assesses a 
child's ability to recognize and produce the initial sound in an orally presented word. 
For example, the examiner says, "This is sink, cat, gloves, and hat. Which picture 
begins with /s/?" and the child points to the correct picture.

Letter naming fluency (LNF) A standardized, individually administered test that 
provides a measure of risk of early literacy. Students are presented with a page of 
upper- and lower-case letters arranged in a random order and are asked to name as 
many letters as they can in 1 min.

1 The description of the measures in the present study is based on those from official website of 
DIBEL measures. DIBELS official website is: https://dibels.uoregon.edu/measures.php.
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Phoneme segmentation fluency (PSF) It is a measure that assesses a student's 
 ability to segment three- and four-phoneme words into their individual phonemes 
fluently. The examiner orally presents words of three to four phonemes. It requires 
the student to produce verbally the individual phonemes for each word. For exam-
ple, the examiner says "sat," and the student says "/s/ /a/ /t/" to receive three possible 
points for the word.

Nonsense word fluency (NWF) A measure of the alphabetic principle – including 
letter-sound correspondence in which letters represent their most common sounds 
and of the ability to blend letters into words in which letters represent their most 
common sounds. For example, if the stimulus word is "vaj", the student could say 
/v/ /a/ /j/ or say the word /vaj/ to obtain a total of three letter-sounds correct. The 
child is allowed 1 min to produce as many letter-sounds as he/she can.

Word use fluency (WUF) It is a test of vocabulary and oral language for assessment 
of at-risk for poor language and reading outcomes.

Depending on the time of assessment during the kindergarten, different subscales 
were used to assess word literacy progress. For example, at the beginning of the 
kindergarten, ISF, LNF, and WUF were assessed; at the middle of the kindergarten, 
ISF, LNF, PSF, NWF, and WUF were assessed; at the end of the kindergarten, LNF, 
PSF, NWF, and WUF were assessed. Although some of the same measures (e.g., 
LNF) were administered at a different time, the same measure seemed to assess dif-
ferent aspects or difficulty levels of the word literacy. Some interesting questions 
are: How are these subscales related to each other or have something in common? 
Could the same measure administered at a different time point be related closely 
together? These questions can help us to clarify how the subscales of DIBELS could 
be used in the analysis to study children's word development.

Basic non-metric MDS model was applied to the data, with 12 measures used as 
input. Specifically, these 12 measures came from 3 measures at the beginning of the 
kindergarten, 5 at the middle of the kindergarten, and 4 measures at the end of the 
kindergarten. The analysis was performed using PROXSCAL procedure (Data 
Theory Scaling System Group n.d.) in SPSS version 24. In the analysis, I used ran-
dom start as initial MDS configuration, and the number of dimensions was specified 
to be 1–3. The results of fit measures from the analyses indicated that S1 = .09 and 
Dispersion Accounted For (DAF) was .99 for the two dimensional solution. The 
three dimensional solutions had smaller S1 value, but Dispersion Accounted For 
(DAF) was essentially the same. Thus, it seemed that the two dimensional solution 
could represent the structure underlying the data. Figure  6.7 shows the two- 
dimensional structure of the data. Inspection of the configuration indicated that the 
points along the dimension were distinct without any points collapsed together. 
Thus, the solution was not likely to be a degenerate solution.

The interesting information obtained from Fig. 6.7 was that the subscales were 
grouped based on the time dimension rather than content of subscales of 
DIBELS. That is, the subscales administered at each time formed a distinct cluster 
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on the basis of when the subscales were administered regardless of the content they 
assessed. Thus, it seemed reasonable that we could compute an average score of the 
subscales at each time point as an approximation of the word literacy progress at 
that time. For example, an average score at different time points can then be used for 
growth trajectory analysis of children's word literacy development. In addition, 
there are three subscales (nwf_moy, nwf_eoy, and inf_moy) did not seem to group 
closely together with the other corresponding subscales, indicating these three sub-
scales may have different meaning to students. This difference may warrant further 
analysis. For the purpose of illustration, we re-analyzed the data without these three 
subscales. Figure 6.8 shows the configuration of the remaining 9 subscales. As can 
be seen, these 9 subscales line up well based on the time of assessment rather than 
the content of the subscales.

The interpretation of the results from the MDS analysis can typically be based on 
patterns of configuration and the meaning attached to such patterns, such as what 
we know about the variables and what connotations they may have. Therefore, it is 
sometimes not possible to interpret the whole of a configuration but rather to focus 
on part of it. Moreover, the issues of similarity transformations such as rotation, 
reflection, re-scaling, and translation can directly affect the interpretations of the 
configuration. Coxon (1982) discusses in great detail about the interpretation of the 
configuration. Because of these issues, the interpretation of the results from MDS 
analysis is not as straightforward as that in other methods such as factor analysis or 
cluster analysis; but all of these methods need more knowledge about the content 
area rather than just based on analytic results.
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Fig. 6.7 Two dimension structure of 12 subscales of DIBELS during kindergarten. isf Initial 
sounds fluency, lnf Letter naming fluency, psf Phoneme segmentation fluency, nwf Nonsense word 
fluency, wuf Word use fluency. _E is end of year measurement; _M is middle of year measurement; 
_B is beginning of year measurement
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6.6  Conclusion

The key point addressed in this chapter is that complex factor structures can be 
 visualized and mapped in a two-dimensional space from MDS analysis. Traditionally, 
MDS model has been used in the similar way to factor analysis with respect to study-
ing factor structure (e.g., Davison and Skay 1991). In such an application, MDS 
dimensions are considered to have the same meaning as factors from factor analysis. 
That is, each dimension represents a latent construct as does a factor. Thus, if a three-
factor structure is assumed to underlie a set of items, then a three- dimensional solu-
tion is sought in MDS analysis to represent the three- construct structures.

However, what we are showing in this chapter is that MDS model can be used as 
a latent factor map that depicts the relationships among the items in contrast to the 
more common practices of MDS as a factor analytic tool. Thus, dimensions from 
MDS analysis do not have to represent latent constructs; that is, each dimension 
does not need to indicate the underlying construct of a set of items, and the dimen-
sions simply provide a frame of reference. A two-dimensional solution of MDS can 
adequately capture the multifactor structure among items rather than having more 
than two dimensions to represent these multiple factor structures, as we have shown 
here. Simulation-based data are used to show that the latent map can correctly dis-
play the pattern of clustered items that define a latent factor if these items form a 
clear simple structure pattern, as that stated by Thurstone (1947).

A latent factor map from MDS analysis can serve as a start talking point for 
studying the relationships among items with respect to the latent constructs embed-
ded in these items. One advantage of using latent factor map is that we can visually 
identify the core items that are lie close together for further analysis. To illustrate 
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Fig. 6.8 Two dimension structure of nine subscales of DIBELS during kindergarten (without 
nwf_moy, nwf_eoy, and inf_moy). isf Initial sounds fluency, lnf Letter naming fluency, psf 
Phoneme segmentation fluency, nwf Nonsense word fluency, wuf Word use fluency. _E is end of 
year measurement; _M is middle of year measurement; _B is beginning of year measurement
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this point, we used the real data to demonstrate how we further evaluated the BADS 
measure in a Chinese sample using latent factor map and further test the measure-
ment model via confirmatory factor analysis. As a tool for the behavioral sciences, 
the latent factor map from an MDS analysis can be a mid-step between complex 
theory and models by providing researchers with a way to generate plausible mod-
els that represent the cutting edge of how we statistically test our theories. As Aiken 
and West (1991) did with the scatterplot for graphical representation of regression 
interaction, latent factor map provides an analog, which is a graphical representa-
tion of multifactor structures among questionnaire items. It provides a way to 
directly translate latent factor map to testable measurement models and back again.

There are also some limitations to this approach. First, although we can identify 
the core items that may define a construct or a network, there is still an issue of 
whether the items lay apart should be part of the cluster. Second, it is somewhat 
subjective with respect to how a cluster is defined, particularly when the items do 
not lie close together. In the case of BADS items, we can see that items related to 
avoidance and school impairment may be clustered in a different way. These issues 
cannot be definitely solved based on latent factor map and only replication or theory 
can help to clarify the conceptual issues at hand. Despite these limitations, visual-
ization of item structure using a MDS two-dimensional map can be a useful method 
to conduct research.
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Chapter 7
Individual Differences MDS Model

Abstract Discuss the fundamental concepts of individual differences MDS analy-
sis. An example of real data is provided to illustrate interpretation of the results. 
Estimation of the model is presented but readers can skip this part. Potential use of 
the model is discussed.

Keyword Individual differences MDS model · INDISCAL · Group space · 
Individual dimensional weight

In this chapter, we discuss how individual differences can be modeled in MDS anal-
ysis. The technical aspects of individual differences MDS model (INDSCAL) was 
discussed in Chap. 3. As we discussed in Chap. 3, individual differences MDS 
model (Carroll and Chang 1970) is also known as weighted Euclidean model and it 
is more used in practice. Thus, in this chapter we mainly focus on the ideas of 
INDSCAL and how it can be used in educational and psychological research. In 
addition, we discuss the use of INDSCAL in longitudinal analysis, which is not 
traditionally discussed in MDS literature.

7.1  Ideas of INDSCAL

Individual differences MDS model is typically used when we have participants 
make ratings on a set of variables and want to examine how individuals differ among 
themselves in the way they perceive the characteristics of the construct as measured 
by this set of variables. This is why it is called individual differences MDS model. 
As indicated by Horan (1969) and Caroll and Chang (1970), we can presume that 
each individual or a group of individuals may use various attributes of the construct 
(e.g., effective teaching) when making ratings on the items with respect to the con-
struct; that is, we may view or define effective teaching in different ways. Then we 
have a latent or group space (i.e., latent common space) that consists of all the attri-
butes all the individuals happen to use. Each individual’s space can now be thought 
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as a special case or sub-case of the group space because the individual is using some 
or part of the total available information. Each individual’s space can be termed as 
his or her private space. For example, we may often have correlation or distance 
matrices computed from a set of items of self-efficacy on mathematic ability for 
different groups of students such as male vs. female or disability status. Then we 
want to know how these subgroups differ. As another example, we can test the stu-
dents’ self-efficacy on mathematic ability four times over a year. Then we have one 
correlation or distance matrix for each time, resulting in four correlation or distance 
matrices for each student or averaged across all students. We want to see whether 
the students differ in perceived self-efficacy on mathematic ability over time. That 
is, we want to see how each group’s private space differs from each other.

In these examples, we have two ways to handle the distance matrix. The first way 
is to compute distance matrix for each individual. The second way is to compute 
distance matrix for a subgroup across all individuals in that subgroup (e.g., female 
group) or for a particular time across all individuals. The first case is more suitable 
to analysis of single-subject design in which we can compare how each individual 
differ with respect to behavioral phenomenon under inquiry. The second case is 
more common in psychological and educational research setting.

To operationalize this idea of individual differences with respect to the group 
(i.e., latent space) into MDS analysis, we assume that each individual attaches a 
different weight or preference to each dimension which represents his or her degree 
of salience, attention, typicality, or importance of that dimension when he or she 
makes rating. Thus, each individual has his or her unique set of weights, and these 
weights represent the way in which the individuals differ with respect to the impor-
tance or salience attached to each of the dimensions. For example, an individual 
who attaches equal salience to each of the dimensions will have a set of weight of 
the equal or very similar value. It happens that the group or latent space represents 
such an individual. In contrast, individuals who attach different weight to each 
dimension systematically deviate from this group space into his or her own private 
space. Accordingly, INDSCAL is a method of modeling both group space and pri-
vate space, showing how individuals vary in terms of differing weights being associ-
ated with the same dimensions. Although INDSCAL has a dimensional interpretation 
in that we attach some meaning to each dimension (i.e., interpretation is made 
according to what each of the dimensions may indicate), we could also use clustered 
pattern in the configuration and their relationships to individual weights for 
interpretation.

In order to be more concrete on these ideas, Fig. 7.1 shows an example of group 
space and individual space.

The example in Fig. 7.1 was a self-assessment survey of professional develop-
ment outcomes completed by teachers who participated in a 5-day training work-
shop on common core state standards as well as teaching pedagogy. Table 7.1 shows 
the content of each survey question.

As can be seen in Fig. 7.1, there were clearly three clusters of items in a two- 
dimensional space. Items 3, 4, 5, 7, and 11 seemed to assess learning on teaching 
practices in general; items 6 and 8 on teaching related to ELL; items 2, 9, 10 on 
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learning new teaching skills related to IIMP. Item 1 seemed to assess the knowledge 
level of common core state standards in the mathematical content area. This item 
was alone by itself since it was not related to any teaching skills or practices.

The individual space at the bottom of Fig. 7.1 shows the individual’s weight vec-
tor. First, the length of these five vectors was equal, indicating they fit the data 
equally well. Second, the direction of vectors for days 1, 2, and 5 seemed to point 
more toward Dimension 1, while that vector 4 toward Dimension 2. This result 
indicated that at Days 1, 2, and 5 teachers reported to learn more on learning new 
teaching skills related to IIMP and common core state standards. At Day 4 teachers 
reported to learn more on new teaching skills or practices. At Day 3 they reported to 
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learn equally about everything since its dimensional weights were about the same 
along each of the two dimensions.

Thus, the individual differences MDS model provides us with a clear picture of 
how individual perceived a phenomenon or behave in different ways. In this exam-
ple, we examine intra-individual differences longitudinally. Of course, we can also 
study inter-individual differences if we had five different groups of teachers rather 
than one group of teachers who were assessed five times over time. This is the first 
time that INDSCAL is applied to education setting in this fashion.

Table 7.1 Survey items assessing outcomes of professional development on teaching pedagogy

Quest1. I have adequate knowledge of the common Core state standards (CCSS) in the 
mathematical content area.
Quest2. I have learned new strategies to help students solidify their understanding of 
mathematical concepts and practice new skills.
Quest3 . I have learned new pedagogical mathematic teaching activities that I can apply to 
my classroom instruction.
Quest4. I have learned critical thinking practices to provide differentiated instructional strategies 
to apply to my classroom instruction.
Quest5. I have learned how to develop effective cooperative teaching strategies to form a sense 
of community.
Quest6. I have learned effective and appropriate teaching strategies to address the needs of ELL 
learners I (will) have in my classes
Quest7. I have learned collaborative tools to develop and maintain a professional learning 
community to support student learning.
Quest8. I am more aware of the needs of ELL learners when I (will) prepare mathematic 
instruction.
Quest9. I have learned a variety of teaching tools from today’s IIMP.
Quest10. I can develop an IIMPed math lesson based on what I have learned from this IIMP 
session.
Quest11. I have learned how intentional and guided IIMPs can move me to an advanced level 
of preparing and implementing durable teaching practices.

Table 7.2 Simulated distance matrix among three items for two individuals

Individual 1 Individual 2
Item 1 Item 2 Item 3 Item 1 Item 2 Item 3

0 2 2 0 1 2
2 0 2 1 0 2
2 2 0 2 2 0

7 Individual Differences MDS Model
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7.2  Estimation of Group Configuration and Individual 
Dimensional Weights

To understand how the INDSCAL analysis works, it is useful to have some ideas of 
how the group configuration and individual weights are estimated. The estimation 
goes through the iterative process, which is outlined below based on the discussion 
by Davison (1983). In order to be concrete, we use simulated data to illustrate the 
process. The data consist of two distance matrices among three items or variables, 
one for each of the two individuals. The distance matrix for each individual is shown 
below (Table 7.2).

Step 1 Convert each individual’s distance into scalar product matrix (i.e., double- 
centered matrix), as shown in Table 7.3.

Step 2 Specify a starting or initial configuration. This can be done using different 
methods such as metric initial configuration or random start, as discussed in Chap. 
5. The initial configuration can be obtained by (1) computing average scalar product 
matrix and (2) do eigenvalue decomposition or principal component analysis. 
Table 7.4 shows the initial scale value by principal component analysis of the aver-
aged scalar product matrix.

Step 3 Start iterations.

Phase 1: Estimate Individual Weight First, the scalar product matrix for each 
individual is converted into matrix A, each row of which is for each individual and 
each column is for a pair of items. That is, rows of matrix A represent individuals 

Table 7.3 Scalar product matrix among three items for two individuals

Individual 1 Individual 2
Item 1 Item 2 Item 3 Item 1 Item 2 Item 3

Item 1 1.33 −0.67 −0.67 0.67 0.17 −0.83
Item 2 −0.67 1.33 −0.67 0.17 0.67 −0.83
Item 3 −0.67 −0.67 1.33 −0.83 −0.83 1.67

Table 7.4 Initial 
configuration

Dim 
1 Dim 2

−0.41 0.71
−0.41 −0.71
0.82 0.00

7.2 Estimation of Group Configuration and Individual Dimensional Weights
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and columns represent distance between each pair of items. Second, initial starting 
configuration is converted into matrix B, where each row represents dimension and 
each column indicates each pair of items computed by bk(i,j) = xikxjk. Table 7.5 shows 
the matrices A and B.

After constructing matrices A and B, the individual weights can be estimated as

 
W BB BAT T= ( )-1

 

Table 7.6 shows the estimated individual weight matrix.
This completes the phase 1 of the first iteration and starts Phase 2 of the first 

iteration.

Table 7.5 Matrices A and B

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

A= P1 1.33 −0.67 −0.67 −0.67 1.33 −0.67 −0.67 −0.67 1.33
P2 0.67 0.17 −0.83 0.17 0.67 −0.83 −0.83 −0.83 1.67

B= Dim 1 0.17 0.17 −0.33 0.17 0.17 −0.33 −0.33 −0.33 0.67
Dim 2 0.50 −0.50 0.00 −0.50 0.50 0.00 0.00 0.00 0.00

Note. (n, m) indicates position of the value in the scalar product matrix, with the first number indi-
cates column and the second number indicates row. For example, (1, 2) in row one indicates the 
value at the first column and the second row, which is −0.67.

Table 7.6 Estimated 
individual weights along with 
dimension

Dimension Individual 1 Individual 2

1 1.19 1.26
2 1.19 0.84

Table 7.7 New matrix A of augmented individual scalar product matrix

Individual 1 Individual 2
Item 1 Item 2 Item 3 Item 1 Item 2 Item 3

Item 1 1.33 −0.67 −0.67 0.67 0.17 −0.83
Item 2 −0.67 1.33 −0.67 0.17 0.67 −0.83
Item 3 −0.67 −0.67 1.33 −0.83 −0.83 1.67

Table 7.8 New matrix B

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

Dim 1 −0.58 −0.58 1.15 −0.65 −0.65 1.29
Dim 2 1.00 −1.00 0.00 0.50 −0.50 0.00

Note. For each pair of (w, v), w indicates individual weight and v indicates item or variable. For 
example, pair (2, 1) indicates the value for the second individual with the first variable.
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Phase 2: Estimate the Scale Value of the New Configuration To estimate the 
new configuration, new matrices A and B need to be reconstructed. The new matrix 
A consists of an augmented individual scalar product matrix, which is shown in 
Table 7.7.

Matrix B consists of k row, with each row representing a dimension, and wx col-
umns (i.e., item and individual or subject weight pair). The entries of matrix B is 
bk(sj) = w2

ksxjk, where w2
ks and xjk are the recent or previous estimates of individual 

weights and scale values (e.g., from the initial configuration and the first estimated 
individual weights). Table 7.8 shows this new matrix B.

After the new matrix A and B are constructed, the matrix of new coordinates of 
the configuration can be estimated as follows:

 
X AB BBT T= ( )-1  

This matrix X becomes the current coordinate or scale value estimates, which is 
shown in Table 7.9.

After the estimation of the current scale values, the first iteration is finished and 
the second iteration starts. The iteration process stops when the sum of squared dif-
ferences between predicted and observed scalar products are minimized:

 
F ijs ijs= -( )*S d d

 

where dijs is the actual scalar product matrix and d*
ijs is model estimated or predicted 

scalar product matrix. The iteration stops when value in F from one iteration to the 
next does not improve according to the pre-specified value such as 0.001.

After the completion of iterations, the scale values of each dimension is stan-
dardized so that the variance of the scale values along each dimension equals to 
1.00. The individual weights are estimated one last time.

7.3  Dimensionality and Interpretation

Determining dimensionality in INDSCAL analysis is somewhat different from the 
basic MDS analysis in that we usually rely on individual’s percentage of variance 
accounted for by the model rather than on the stress value of the model. Sometimes 
an additional dimension may be needed because some individuals have high weights 

Table 7.9 Current scale 
value estimates

Dim 1 Dim 2

Item 1 −0.61 0.90
Item 2 −0.61 −0.90
Item 3 1.23 0.00

7.3 Dimensionality and Interpretation
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on this dimension, although it does not improve the overall fit of the model. In this 
case, we can keep this additional dimension because these individuals use of it are 
quite similar to each other but different from the rest.

The interpretation of the results from the INDSCAL model (or weighted 
Euclidean model) follows the same principles as discussed previously with one 
exception: rotation. That is, the solution cannot be rotated since the group configu-
ration is tied into the participants’ configuration and the solution is unique to these 
individuals. The configuration is unique because the stretching and shrinking is 
 permitted only along the coordinate axes. Thus, rotation problem disappears in 
weighted Euclidean model.

However, it is first necessary to understand clearly the features of the group 
space, individual or subject space, and their interrelationships. The group space, X, 
is a latent configuration of a set of variables in a particular number of dimensions. 
In fact, the group space from the INDSCAL analysis is always similar to the solu-
tion or configuration from the basic MDS analysis as discussed in Chap. 5 except 
for a difference in orientation and stretching of axes. It acts as the reference configu-
ration from which the individuals’ space may be derived. This group configuration 
is unique in the sense that it cannot be rotated as in other MDS models because it is 
tied to the individual space. Strictly speaking, the group space represents an indi-
vidual case who equally weights the dimension, and if an individual’s subject weight 
departs markedly from equality (i.e., from the diagonal line), then we may tell 
where the individual differences lie. In the above example of teaching training data, 
we can see that day 3 was not greatly away from the diagonal line, while the rest of 
days were far away from the diagonal line. Thus, the MDS solution from the basic 
MDS analysis is based on the averaged data from all subjects or individuals, and this 
averaged space may misrepresent the perceptual structure of some individuals. The 
INDSCAL model provides a way to “disaggregate” the information by modeling 
each individual’s perceptual structure with respect to the group or averaged space.

On the other hand, individual space is indicated by a set of weights and it has the 
same dimensions as the group space. Individual weights in individual space are 
represented by a vector located by the value of the weights on each of the dimen-
sions, as shown in Fig. 7.1. The important information in the subject weight to con-
sider is (1) the direction in which a point is located from the origin, which indicates 
the individual’s perceptual tendency and (2) the distance from the origin, which 
indicates how well the individual’s data are explained by the model. In order to 
assess the degree of individual differences, it is better to focus on the angular sepa-
ration between subject vectors. The smaller the angle of separation, the more similar 
is the pattern of weights. In a lower dimensional space such as two or even three 
dimensional space, we can visualize the sheaves of vectors in the subject space.

Thus, the squared individual’s weight on a dimension is approximately equal to 
the proportion of variance in the individual’s data that can be accounted for by that 
dimension, and the squared distance from the origin of the subject space to the sub-
ject’s point in that space is approximately equal to the proportion of variance in the 
individual’s data that can be accounted for by the model. Moreover, if the subject 
weights are a very small negative value, it may be considered as approximation to a 
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zero weight. If the value of negative subject weights is large, it may indicate that the 
model does not hold well for the individuals.

When we find the individual differences with respect to the group space, we can 
perform subsequent analysis by relating individual’s weights to a set of covariates 
to examine the association between such individual differences and potential pre-
dictors. For example, if demographical, attitudinal, or personality information is 
available, we can examine whether individuals who have high weights on a 
 dimension differ from those with low weights on these variables by conducting 
regression or discriminant analysis.

7.4  Useful Applications of INDSCAL Analysis

There are several useful applications of MDS INDSCAL model in educational and 
psychological research. In the first application, we may have the latent configuration 
from prior investigations and are only interested in determining the individual dif-
ferences. In this case, the expected or hypothesized group space (i.e., latent configu-
ration) that is obtained from either theory or previous analysis with respect to how 
the variables under inquiry should be related to each other is used as a starting 
configuration. The analysis with zero iterations is performed, which keeps the 
expected configuration fixed while solving for the individual space weights. One of 
such an analysis focuses on studying individual differences (e.g., female vs. male 
group) with respect to the known theoretical configuration.

In the application of longitudinal analysis, data from different time period can be 
compared with respect to a common frame of reference, as we have done in the 
example of professional development. In such a case, we are interested in knowing 
how individual’s behavior changes over time. Also in trend analysis, we can also 
compare new data with the old data to see how individuals of the similar character-
istics such as gender, the same cohort, or the same income level with respect the 
configuration (for both group and individual spaces) changes over time.

In the third application, we can use the INDSCAL model to examine value or 
behavioral feature transmission across generations such as from parents to children 
with respect to view of the world. In this situation, we can compare weights of par-
ents and children with respect to a common frame of reference of world view. Or we 
can conduct regression analysis by using parental measures to predict children’s 
preference as assessed by the subject weights.

The fourth application of the INDSCAL model is the instrument development or 
test construction. In such an application, we can use the model to select items that 
have a particular set of characteristics with respect to a behavior under inquiry. For 
example, for a given item that assesses anxiety, INDSCAL model can be used to 
see to what degree this item assesses frequency, intensity, or harmfulness in com-
parison to other items in the instrument. In addition, we can also employ INDSCAL 
to study construct validity in which group differences can be examine based on 
hypothesized group difference with respect to the instrument. For instance, items 
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that assess anxiety should be weighted more by individuals with a high level of 
anxiety than those with a low level of the same trait. INDSCAL can provide a visu-
alization of such group differences with respect to a set of items.

7.5  INDSCAL Analysis of DIBELS

In this example, we use the same DIBELS data as in Chap. 6, where we visualized 
the data structure of DIBELS subscales within a grade level. The research question 
concerns with how the subscales of DIBELS is structured within a grade level. It is 
found that these measures are organized according to the time of measurement 
rather than the content they assess.

In this example of DIBEELS, the question is conceptualized differently, and we 
are interested in the question of how each child scored differently on a set of word 
literacy measures at a particular time point. That is, do children reach the same pro-
ficiency level on all the subscales at a given time?

For the purpose of illustration, we used the four subscales that were administered 
in the middle of the kindergarten: initial sound fluency (ISF), letter naming fluency 
(LNF), phonemic sound fluency (PSF), and nonsense word fluency (NWF). In order 
to simplify the analysis for didactic purposes, we randomly selected four children 
and examined their differences with respect to their standing on each of these four 
subscales. A high scale value between two subscales indicated that children scored 
them differently. Thus, a distance matrix for each child could be considered as a 
measure of discrepancy between subscales.

Weighted Euclidean model was conducted on the data from these four children. 
A two- dimensional solution was estimated, with fit measures indicating a good 

Group configuration: Individual Weight:

Fig. 7.2 Latent group configuration of subscales of DIBELS for the assessment at the middle of 
kindergarten and their weight space. (isf initial sound fluency, lnf letter naming fluency, psf pho-
neme segmentation fluency, nwf nonsense word fluency)

7 Individual Differences MDS Model



107

model fit. Figure  7.2 shows the group configuration and individual dimensional 
weight. Dimension 1 seemed to indicate that, on average, children scored NWF dif-
ferently from the other three subscales. Dimension 2 seemed to indicate that LNF 
and PSF scored differently from ISF and NWF.

Group configuration: Individual Weight:
Individual weight plot indicated how these children scored differently on the four 

subscales, and these individual configurations were shown in Fig. 7.3. As can be 
seen in Fig. 7.3, Child 1’s scores on these four subscales were more like that in 
Dimension 2, scoring similar on ISF and NWF but differently on LNF and PSF. On 
the other hand, Child 3 scored similar on LNF, ISF, and PSF but differently on 
NWF. Children 2 and 4 scored more like the group configuration.

These individual configurations may have implications for education intervention. 
For example, we could examine the cognitive functions that underlie the differences 
in how children learn the materials as assessed by the DIBELS. By looking into what 
these differences are, we could also examine children’s personal characteristics that 

Fig. 7.3 Each of four children’s configurations with respect to subscales of DIBELS administered 
at the middle of kindergarten. (isf initial sound fluency, lnf letter naming fluency, psf phoneme 
segmentation fluency, nwf nonsense word fluency)

7.5 INDSCAL Analysis of DIBELS
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may be related to word literacy progress. In addition, the weighted Euclidean model 
could serve as an analytical technique for single (or multiple) case(s) study in which 
the purpose is to analyze how people frame and solve problems. The results could 
produce empirical generalizations regarding intervention rationality, treatment, and 
normative reasoning.

7.6  Conclusion

In this chapter, we discussed the basic concepts of individual differences MDS 
model and illustrate how the configuration for both group and individual in 
INDSCAL model can be estimated and interpreted. A real-life example is used to 
provide a concrete demonstration. Many applications of INDSCAL model can be 
useful in educational and psychological research, which needs to be explored more 
in future research. As it stands now, little educational and psychological research 
utilizes the model due to its unfamiliarity to researchers. Using INDSCAL model 
for hypothesis testing and test construction are particularly interesting and it is 
uncharted territory.
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Chapter 8
MDS Preference Analysis

Abstract Discuss the fundamental concepts of MDS preference analysis. An 
example of real data is provided to illustrate interpretation of the results. Single- 
ideal point MDS analysis is also explained.

Keywords Preference model · Vector representation · Ideal-point · Single-ideal 
point

Using MDS model for analysis of individual preference is probably one of the most 
interesting aspects of MDS, but it is also a confusing part in that the concept of 
individual preference can be defined in various ways. For example, in individual 
differences MDS analysis discussed in Chap. 7, individual weight can be thought as 
preferences, although the dimension weight of individuals typically indicates the 
dimensional saliency. Sometimes even the mean score computed from a set of items 
can be thought of as an indicator of an individual’s preference, with a higher score 
indicating higher preference. However, the preference MDS analysis has its theo-
retical roots back in 1950s when Coombs (1950, 1964) first introduced the unfold-
ing MDS with J scale and I scale and proposed a distance model for preference data, 
often known as the unfolding model. It is the only method that has explicit method-
ologically theoretical foundation for assessment of individual preferences. In this 
chapter, we discuss the basic ideas of preference MDS analysis and its potential 
applications in educational and psychological research.

8.1  Basic Ideas of Preference MDS

The ideas of MDS preference analysis can be described in terms of vector model or 
distance model (i.e., ideal point model). A vector preference model is the one in 
which an individual’s preference is represented by a vector (i.e., a straight line) in a 
latent configuration of variables, where the angular separation of the vectors corre-
sponds to the data dissimilarities. On the other hand, in distance model both 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78172-3_8&domain=pdf
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individual preference and behaviors are represented as points in the configuration, 
where the distance between points in a space represents the data dissimilarities. 
Figure 8.1 shows a result of MDS preference analysis using both types of models 
based on a hypothetical data that are preference ratings by 30 individuals with 
regard to five behaviors (reading, writing, drinking, TV watching, and playing 
sport) on a scale of 1–5, with 5 being most preferred. As can be seen in Fig. 8.1, 
some individuals prefer playing sports (vectors that point toward 5 and 6 o’clock), 
one prefers reading (7 o’clock vectors), some prefer TV watching and drinking 
(vectors point toward 10 o’clock). Six people prefer anything but playing sports and 
reading (vectors toward between 11 and 1 o’clock), while seven people prefer any-
thing but writing and drinking (vectors toward 8 o’clock). The same preference is 
represented by distance model on the right of Fig. 8.1.

In vector model, the direction of the vectors indicates the individual’s preference; 
that is, the direction of the vector indicates the direction that is most preferred by the 
individuals, with preference increasing as the vector moves from the origin. On the 
other hand, the relative lengths of the vectors indicate fit of individuals, with the 
squared lengths being proportion of variance in preference that can be accounted for 
by the model. As can be seen in Fig. 8.1, some vectors (e.g., individuals 10, 17, and 
22) have a shorter length, indicating that the model does not account well for these 
individuals’ preferences. For example, only 18% of preference for individual 10 is 
accounted for by the model. Thus, to interpret the biplot (plot of row and column) 
of preference, look for directions through the plot that show a continuous change in 
some attribute of the behaviors, or look for regions in the plot that contain clusters 
of behavior points and determine what attributes the behaviors have in common. 
Behavior points that are tightly clustered in a region of the plot represent behaviors 
that have the same preference patterns across the individuals. Vectors that point in 
roughly the same direction represent individuals who have similar preference 
patterns.

In distance model, the solution consists of a configuration of n variables or items 
points that assess behaviors and i individual points where each individual is 

Fig. 8.1 Vector model and distance (ideal point) model of individual preferences with respect to 
reading, writing, drinking, TV watching, and playing sports

8 MDS Preference Analysis
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 represented as being at a ‘maximal’ or ‘ideal’ point, located in such a way that the 
distances from this point to the behavior points are in maximum agreement with the 
individual’s preference ratings or rankings. The position of the ‘ideal point’ is inter-
preted as the one point in the space where the individual’s preferences are at a maxi-
mum, and her preference decreases in every direction. This is often termed a ‘single 
peaked preference function’ since it assumes that there is only one point of maxi-
mum preference and that preference decreases from this point.

Normally the behavior points corresponding to the most popular or consensual 
rankings will lie at the center of the space, and the least popular ones at the periph-
ery. That is, highly popular behaviors will tend to be projected into the center of the 
individual points so that behaviors can be close to most individual’s ideal points and 
highly unpopular behaviors will be located at the outside of a configuration. Thus, 
if a behavior is sufficiently unpopular it can be located virtually anywhere on the 
periphery as long as it is at a maximum distance from the ideal points. But each 
behavior must be preferred by at least one individual.

An important distinction between the vector and distance models is that distance 
model can accommodate more I-scales, as long as the number of behavior points is 
large compared to the number of dimensions, the size of the isotonic regions is 
small, especially towards the center of the configuration, and they become increas-
ingly well-represented by a point. For this reason, behavior or item points in the 
central part of a configuration are normally the most stable, while those at the 
periphery can usually be moved around fairly freely without affecting the goodness 
of fit. As seen in Fig. 8.1, playing sport and writing are the most preferred behaviors 
since they located close to the center of the configuration.

In addition to vector and distance MDS preference models, the MDS preference 
analysis can also be discussed in terms of internal vs. external analysis. Internal 
preference analysis simultaneously provides estimates of the coordinates for behav-
iors or items, individual preference or ideal points, and a fit measure. In external 
preference analysis, coordinates of behaviors or item is assumed to be known, either 
from theory or previous analysis, and the analysis provides the estimates of indi-
vidual ideal points based on the known configuration of behaviors. This type of 
analysis can be used as confirmatory MDS preference analysis. In the current litera-
ture, there are very few studies using this kind of analysis.

8.2  Preference Analysis Using PREFSCAL

In the previous sections, we mainly focus on the discussion of basic ideas of MDS 
preference modeling, using SAS proc prinqual (vector model) and proc transreg 
(ideal point model) to analyze the hypothetical data for illustration. Another pro-
gram that can perform MDS preference analysis (traditional ideal point model) is 
PREFSCAL in SPSS (Busing et al. 2005b). Readers interested in technical aspects 
of the program can consult Busing et al. (2005a). In this chapter, we focus on an 
application of the PREFSCAL program in studying adolescents’ general outlook. 

8.2 Preference Analysis Using PREFSCAL
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The goal is to provide readers a sense of MDS preference analysis in real world 
situation.

The data used here (n = 15) were a sub-sample of 486 students in grade 7. A bat-
tery of various measures that assessed psychosocial adjustments was administered 
to the participants in the regular classroom setting. For the purpose of this example, 
we used a 12-item instrument of the Life Orientation Test (LOT) (Scheier et  al. 
1994) that was developed to assess generalized optimism versus pessimism. The 
responses were coded along a 5-point Likert-type scale, ranging from “strongly 
disagree” to “strongly agree.” The items were scored so that high values indicate 
optimism (i.e., a large distance from pessimism). Examples of items include "In 
uncertain times, I usually expect the best." "If something can go wrong for me, it 
will." or "I’m always optimistic about my future." In a sense, these items assessed 
adolescents’ attitudinal preferences towards life.

One of the questions can be asked is: What kinds of life orientation preferences 
do these 15 adolescents in grade 7 show as measured by these 12-items? Given this 
question, an MDS preference model is a better choice. In addition, it is reasonable 
to assume that a rating of ‘2’ on a 5-point Likert-type scale by one individual may 
not be compared with the same rating by another individual since they may have a 
different reference point. Thus, the ‘2’s as rated by different individuals only indi-
cate that a participant provides a rating of ‘2′ on a particular item, and the same ‘2’s 
do not indicate the same degree of similarity or dissimilarity. Based on these two 
considerations, the MDS preference model with row-conditional data type may be 
a better analytical technique.

A two-dimensional MDS model was specified and the PREFSCAL procedure 
using SPSS version 25 yielded the following fit indices:

Iterations final function value 130.716

Badness of fit Normalized stress 0.088
Kruskal’s stress-I 0.296
Kruskal’s stress-II 0.817
Young’s S-stress-I 0.390
Young’s S-stress-II 0.643

Goodness of fit Dispersion accounted for 0.912
Variance accounted for 0.622
Recovered preference orders 0.927
Spearman’s rho 0.741
Kendall’s tau-b 0.618

Variation coefficients Variation proximities 0.453
Variation transformed proximities 0.568
Variation distances 0.467

Degeneracy indices Sum-of-squares of DeSarbo’s 
Intermixedness indices

0.058

Shepard’s rough nondegeneracy index 0.729

8 MDS Preference Analysis



113

The results of the MDS preference analysis are shown in Fig. 8.2. First, the algo-
rithm converges to a solution after 130 iterations, with a penalized stress (marked 
final function value) of 0.72. The variation proximities are close to coefficient of 
variation for the transformed proximities, indicating the solution provides discrimi-
nation between 12 optimism items. The sum-of-squares of DeSarbo’s intermixed-
ness indices (DeSarbo et  al. 1997) are a measure of how well the points of the 
different set are intermixed. The closer to 0, the more intermixed the solution. In 
here the intermixedness is 0.059, indicating that the solution is well intermixed. 
Shepard’s rough nondegeneracy index (Shepard 1974), which assesses the percent-
age of distinct distances, is 0.729, indicating 73% of distinct distances. Taken 
together, the results indicate the solution was not degenerate; that is, the points 
along the dimensions were distinctly separated.

Second, for the Goodness-of-fit indices (how well the model-based distance fit 
the observed distances), it is advisable to consider several measures together. 
Kruskal’s Stress-II is scale independent; variance accounted for (VAF) is equal to 
the square of correlation coefficient (i.e., r2) and is calculated over all values regard-
less of the conditionality of the analysis. In this example, Kruskal’s Stress-II and 
VAF, and recovered preference orders (RFO) are acceptable.

Fig. 8.2 Fifteen participants’ ideal points (red circle) with respect to their optimism as assessed 
by Life Orientation Test. OPTIM = optimism item (triangle)

8.2 Preference Analysis Using PREFSCAL
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Third, some relationships among indices with different names should be noted. 
Dispersion Accounted For (DAF) is also referred to as the sum-of-squares accounted 
for (SSAF), which is equal to Tucker’s congruence coefficient. The square of 
Kruskal’s Stress-I is equal to normalized raw Stress. As Busing et al. (2005a) indi-
cated, the function values of normalized raw Stress, SSAF or DAF, and Kruskal’s 
Stress-I are insensitive to differences in scale and sample size, and these values are 
suitable for comparing models with different dimensional solutions.

Based on biplot in Fig. 8.2, the following conclusion could be drawn. First, these 
12 items form four somewhat distinct clusters, one in each quadrant, and in some 
way, these items are quite spread out. It should be noted that none of these items is 
located close to the center of the configuration, indicating these 15 adolescents do 
not have a particular set of preferences with respect to these attitudes. Six items (2, 
3, 5, 6, 7, and 9) seemed to be on the periphery of the biplot, indicating these atti-
tudes are less preferred. Second, nine participants’ attitudinal preferences did not 
seem to match those assessed by the items. Participants 5, 7, and 8 preferred items 
11 (every cloud has a silver lining) and 12 (count on good things happening to me); 
participants 2 and 10 preferred items 1 (usually expect the best) and 3 (something 
will not go wrong from me); participant 9 preferred item 6 (enjoy friends). Third, if 
we were to make inferences about the instrument based on these 15 people, the data 
might suggest that the instrument was not very sensitive to Chinese adolescents’ 
attitudinal preferences since 9 out of 15 (60%) adolescents were not responsive to 
the items. On the other hand, if we were to make inferences about what these ado-
lescents’ attitudinal preferences were, five of them (33%) seemed to have attitude of 
adolescent fable--invulnerability, and the rest of these 7th graders did not seem to 
show any optimistic attitude. Such result might be indicative of less cognitive devel-
opment with respect to outlook for this group of 15 Chinese students. Of course, we 
would not make such inferences for the adolescent population with a sample of 15 
students. It was done here for didactic purposes.

8.3  MDS Single-Ideal Point Model

In addition to the traditional vector and ideal point (i.e., distance) model, MacKay 
(2001) proposed a probabilistic MDS single-ideal point model. The idea of MDS 
single-ideal point model is the same as the other MDS preference models, which 
can be traced to Thurstone (Thurstone 1928) and Coombs (1950). Essentially, a 
probabilistic MDS single-ideal point model requires a single-ideal point solution 
across all individuals to be estimated rather than a number of ideal points, one for 
each person. A single-ideal solution represents both individuals and behaviors as a 
point in Euclidean space. The distance relation between individuals and behaviors 
as indicated by the behaviors or items provides information about the preference 
structure of the individuals in such a way that individuals are closer to the behaviors 
they prefer. The model is initially used to represent a rectangular matrix of prefer-
ences by i individuals for v objects or variables as distances between i ideal points 
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and v actual objects or variables by estimating the coordinates of individuals and 
behaviors in the same latent space. Thus, a MDS single-ideal point model is a spa-
tial model in which i individuals and v items or behaviors are represented as points 
in multidimensional space. The coordinates xi of an individual or a group of indi-
viduals is generally referred to as his or her (or that group’s) ideal point and, hence, 
it is called the single ideal-point model.

The preference of an individual or a group of individuals for a behavior or object 
is an inverse function of the distance between the point that represents the actual 
objects and the ideal point that represents the individuals. A large distance between 
an object and an ideal point indicate that the object has high disutility (i.e., less liked 
or preferred). In other words, an individual responds negatively to an actual object 
(a variable or item) when the attitude or behavior represented by the object or item 
does not closely reflect the attitude or behavior of the individual. In the MDS single- 
ideal point model, such disagreement occurs when the individual is located too far 
away from the object. On the other hand, individuals respond positively to actual 
items or objects that have locations similar to their own.

In the probabilistic MDS single-ideal point model, the ideal point and actual 
items are represented not by points but by distributions. Based on the probabilistic 
MDS single-ideal point model of Hefner (1958) as proposed by Mackay and his 
associates (MacKay 2007; MacKay and Zinnes 1986; Zinnes and MacKay 1983), 
the coordinates xik of a behavior or object have the Euclidean properties:
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where dij is the distance random variable between item i and j, and xik or xjk are coor-
dinates that are assumed to be normally and independently distributed with mean μik 
and variance σik

2.The variance σik
2can be assumed equal (i.e., isotropic) or unequal 

(i.e., anisotropic) for each item i on each dimension k in a Euclidean space. The goal 
of the analysis is to estimate the mean location μik of coordinates xik or xjk and vari-
ance σik

2, including location and variance of the ideal point. In order to obtain the 
parameter estimates μik and σik

2, one needs to specify the probability function of the 
distance random variable dij, which depends on the variance structure and sampling 
properties. The detailed discussion of how a probability MDS single-ideal point 
model is derived may be found in MacKay and his associates (MacKay 1989, 2007; 
MacKay and Zinnes 1986; Zinnes and MacKay 1983, 1992).

MacKay et al. (1995) indicated one primary reason why probabilistic MDS mod-
els are of particular interest in modeling preferences characterized by a single-ideal 
point. The probabilistic MDS is able to estimate mean (i.e., centroid) location and 
variance of preferred behaviors. When variability in preferred behavior exists, or 
when there are measurement errors inherited in single-items of an instrument, it is 
desirable to take such variability or measurement errors into consideration. 
Technically, for each ideal point or actual behavior or item, i, there is a correspond-
ing k-dimensional random vector Xj that has an x variate normal distribution with 
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mean vector uj and covariance matrix Σj. Individuals’ choices are assumed to be 
based on values sampled from the Xj distributions. If an individual has a consistently 
preferred behavior, be it actual or ideal, then we expect the diagonal elements of the 
covariance matrix Σj to be small. However, if the individual does not have a consis-
tently preferred behavior or there are more measurement errors, the diagonal ele-
ments of the Σj are expected to be large.

The model fit can be tested using information criterion statistics, such as CAIC 
(Bozdogan 1987), BIC (Schwarz 1978), or log-likelihood ratio tests. Thus, we can 
test various models with respect to kinds of variances assumed, latent groups in the 
data, or the number of ideal-points that may need to reflect individuals’ typical 
behavior. The ability to test hypotheses about the structure of the variance can also 
be just as interesting to researchers as the ability to test hypotheses about the loca-
tion of actual objects and ideal points. For example, a psychologist might have an 
interest in knowing if the variability in a client’s anxiety behaviors about a positive 
event and a negative event were the same as a result of interventions or a part of 
developmental processes.
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Fig. 8.3 MDS single-ideal 
point with respect to five 
behaviors

Table 8.1 Distance between 
ideal point and each of the 
five behaviors

Ideal point I scale

Reading 2.06 3.03
Writing 1.91 2.93
TV watching 2.00 2.97
Drinking 2.45 3.27
Sport 1.27 2.70
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The hypothetical data used in previous example is used again to illustrate what 
MDS single-ideal point model can inform us. Figure 8.3 shows the results of the 
analysis using PROSCAL (MacKay and Zinnes 2014). The circle indicates the vari-
ance around the points, which is 1.76, assuming equal variance across all behaviors. 
It seems that playing sport and writing are fairly close to the ideal point. Table 8.1 
shows the distance between the ideal point and each of the five behaviors. As shown 
in Table 8.1, the distance between ideal point and playing sport and writing is the 
smallest, which corresponds to the I scale. The result from MDS single-ideal point 
analysis is fairly consistent with that from traditional distance model as shown in 
Fig.  8.1 in which playing sport and writing are close to the center of the 
configuration.

If we assume that there will two groups of individuals (e.g., males vs. females), 
we can also use MDS single-ideal point model to conduct group-based single-ideal 
point analysis, with each group having its own single-ideal point. If no group infor-
mation is known a priori, mixture MDS single-ideal point analysis can be con-
ducted, where each individual is assigned to be a group based on the estimated 
probability of group membership. In type of analysis has not been performed in 
psychological and educational research, but it has potentially interesting 
applications.

To show how MDS single-ideal point model can be used to test multiple vs. 
single ideal points in the preference data, the data of the same 15 adolescents in the 
preference modeling via PREFSCAL shown in previous section are used for a such 
purpose. Based on Fig. 8.2, it seemed that there may be two groups of adolescents 
with different life orientation preferences. In other words, a model of two-ideal 
points seemed to underlie the data. However, it is also possible that a single-ideal 
point may be adequate to account for the differences in these adolescents’ prefer-
ence. Thus, we used maximum likelihood MDS single ideal-point analysis to test a 
single-ideal point vs. a two-ideal point preference model. Of course, there were 
other possible models such as a two-dimensional vs. a one-dimensional model or a 
different combination of dimensionality and ideal points can also be tested.
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Fig. 8.4 The left figure shows a two-ideal solution, as indicated by I1 and I2. The bottom figure 
shows a single-ideal solution, as indicated by I1. Circle with a number indicates optimism item
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The single-ideal vs. the two-ideal two-dimensional solutions estimated by 
PROSCAL are shown in Fig.  8.4. The hypotheses were tested using information 
criterion statistics, such as CAIC (Bozdogan 1987) or BIC (Schwarz 1978). The 
CAIC value for the single-ideal solution was 1882.67, whereas the two-ideal solu-
tion was 1880.66. The CAIC difference between the two models was less than 10, 
indicating that the single-ideal model was adequate to account for individual differ-
ences in life orientation preference (Burnham and Anderson 2002). This finding was 
consistent with what was found in traditional ideal point analysis conducted in 
PREFSCAL, in which a group of nine adolescents was not responsive to the items, 
and six adolescents indicated life orientation preference.

8.4  Conclusion

In this chapter, we discussed the fundamentals of MDS preference analysis using 
both simulated and real data. We used data that are more likely to be seen in educa-
tional and psychological setting rather than data that are less commonly seen such 
as car rating. Our discussion is more of practitioner-oriented; that is, only focused 
on the practical aspects of MDS preference analysis, omitting many technical com-
ponents of the models. Also, we do not discuss external preference analysis in this 
chapter because we want to discuss it in a later chapter where issues related to mea-
surement and hypothesis testing are presented. We want to make external preference 
analysis be more useful in today’s research situations by relating it to what we are 
commonly seen in current research.

MDS preference analysis can have many applications such as in longitudinal 
data analysis. In here we only attempt to pique researchers and practitioners inter-
ests to use this method. One research problem can be addressed from a different 
angle using various methods, which can either shed more lights or provide some 
unique information, at least possibly providing a validity triangulation on some 
research questions. MDS preference analysis will not replace more popular meth-
ods of preference analysis but it can be another method for addressing the same 
research issues from a different perspective.
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Chapter 9
Configuration Similarities

Abstract Comparing and testing similarities among a set of configurations are 
explained. Ideas of comparing configuration similarities can be extended for hypoth-
esis testing. An example of real data is provided to illustrate how to evaluate con-
figuration similarities using Procrustes analysis, including PINDIS model. 
Hypothesis testing using the PINDIS model is also presented.

Keywords Configuration similarity · Procrustes analysis · The PINDIS analysis

MDS models are spatial configuration in which the relationships among items or 
variables and among individuals are represented as a map so that the data structure 
can be visualized. As a spatial model, the MDS configuration is invariant to dis-
tance. Two seemingly different looking configurations may be the same in nature. 
For example, if a study is to replicate a previous MDS solution, then it is important 
to know the ways, and the extent, to which the current MDS solution resembles that 
of the original study. As another example, if we have employed more than one vari-
ant of MDS analysis on the same data, or more commonly, have scaled the data of 
different subgroups of individuals such as males and females or different age groups, 
the issue of configural similarity between the resulting configurations needs to be 
addressed.

Taking this idea of configural similarity one step further, we can also conduct 
hypothesis testing (i.e., confirmatory) MDS analysis in which hypothesized config-
ural pattern is treated as target or previously-known one. The goal of the analysis is 
to see the ways and the extent to which the data support or confirm the expected 
solution (i.e., model data fit). In this chapter, we discuss the ways in which the con-
figural or spatial similarities (sometimes called common space analysis), including 
hypothesis testing, can be examined and investigated.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78172-3_9&domain=pdf
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9.1  Basic Ideas of Configural Similarity

Before testing configuration or configural similarity, we should be sufficiently per-
suaded that the fit of the MDS solution to the data is good enough in terms of either 
fit indexes or interpretation to warrant any further analysis. The question ‘How simi-
lar are two configurations?’ depends on two things: (1) what aspects of the configu-
ration are considered relevant, and (2) what properties of the configuration are 
unique. For example, if one configuration were simply twice the size of the other but 
in every other way identical, it is unlikely that most of us would consider this are 
relevant difference, and we would normally compare relative rather than absolute 
distances. Other irrelevant aspects include: the orientation of the configuration in a 
Euclidean distance model since any rotation leaves distances unchanged; the origin 
of the space since it would normally be treated as arbitrary, unless the model were a 
vector model (since change of origin alters scalar products and hence alters the 
angles separating the vectors) or the point chosen as the origin was substantively 
meaningful. Thus, differences which are irrelevant can often make identical con-
figurations look to be very different. Appearances are not a reliable guide as to how 
two configurations are alike due to orientation, origin transformation, reflection 
(also known as flipping), or absolute distance (also known as stretch, shrink, or 
scale). How, then, does one go about comparing them?

The configural similarity can be considered from the following perspectives. We 
must consider what aspects of configuration count as important and what are irrel-
evant. Two configuration patterns are assumed to be identical if they only involve 
differences of orientation, origin, and absolute distance. Any index of similarity 
should remain unchanged when the origin of configurations are translated into any 
other point in the space and configurations are rescaled (stretched, shrunk), moved, 
or rotated through any angle. The differences due to these three operations are 
termed similarity transformation since they preserve Euclidean distances. When the 
similarity transformation does not change the relative distances (i.e., leave original 
relative distance intact), it is admissible or permissible transformation. One the 
other hand, when the similarity transformation changes the original relative dis-
tances in some way in order to get a better fit, it is inadmissible transformation.

Thus, an index of how similar two configurations are can be thought of as being 
a function of the distances between the points in the two configurations. Gower 
(1979, September) has provided an excellent review of such indices by examining 
the form of the function relating the distances in the two configurations. A common 
index is product moment correlation r, which involves the correlations between two 
distances. A related goodness of fit measure is the r2 between coordinates of the two 
configurations, which have been brought into maximum or optimal conformity by 
similarity transformation. This r2 index has the properties of its value depending 
neither upon the number of points, nor upon the number of dimensions, nor on the 
scale of the configuration. It can be used to answer the question, “Does configura-
tion X match Y better than X matches Z”, when we come to compare several 
configurations.

9 Configuration Similarities
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Several analytical procedures can be used to test configural similarity, including 
hypothesis testing. In the following sections, we discuss these methods by 
example.

9.2  Procrustes Analysis

Procrustes analysis involves rotating or moving two or more configuration matrices 
X and Y into closest conformity with each other, allowing rotation, reflection, res-
caling, and translation of origin. It is also termed generalized Procrustes analysis 
(Gower 1975). The basic idea of Procrustes analysis is simple. First, given a set of 
configurations, we begin by moving or rotating them into closest similarity and 
creating a new average or centroid configuration. Each point in this centroid con-
figuration is a least-square fit to the corresponding point of the original configura-
tion; that is, this centroid configuration, denoted as G, is the best fitting configuration 
via the iterative algorithm (Gower 1975).

In case of hypothesis testing, a theoretical or hypothesized configuration pattern 
will serve as the centroid configuration throughout the analysis. We test how closely 
the configuration(s) estimated from the data fit this centroid (i.e., hypothesized) 
configuration.

Second, we assess how closely each original configuration fits the centroid con-
figuration using r2 between the coordinates of each original configuration and those 
of the centroid configuration. The sum of squares of the residuals, that is, Σ(xi – gi), 
assesses the difference between each configuration and the centroid configuration.

Procrustes analysis provides the basic general similarity model in which only 
admissible transformation is carried out. This model can be denoted as P0 model 
(Coxon et  al. 2005) and it provides a reference point for other models in which 
inadmissible transformation is carried out.

9.2.1  Example

Age effects in adolescent coping behaviors have been repeatedly reported. Coping 
behaviors change throughout the course of adolescence due to altered cognitive, 
social, and behavioral abilities as well as a shift in the severity and importance of 
different stressors (Frydenberg and Lewis 1991). Age differences in coping include:

 1. An increase in active and internal coping was documented between early and late 
adolescence, both cross-sectionally and longitudinally (Seiffge-Krenke 1995; 
Seiffge-Krenke and Beyers 2005).

 2. A greater tendency in older adolescents to show emotion-oriented coping behav-
ior was found (Compas et al. 1988).

9.2 Procrustes Analysis
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 3. It has been shown that the total number of available coping strategies increases 
with age (Frydenberg et al. 2003), thus indicating a more differentiated coping 
pattern in dealing with specific stressors.

 4. Tension-reducing strategies (such as letting out aggressions, drinking alcohol, or 
taking drugs) increase with age as well as the ability to beneficially use self- 
reflective strategies.

 5. Older adolescents discuss problems less with their parents, but turn more towards 
peers or institutions (Frydenberg and Lewis 1993; Seiffge-Krenke 1995).

Similarly, in studying adolescent coping strategies among seven nations, Gelhaar 
et al. (2007) found that active coping was most prominent among early adolescents; 
internal coping was highest among late adolescents, while withdrawal peaked in 
mid adolescence. Specifically,

 1. Early adolescents compared with the other two age groups: discussing the prob-
lem with parents, talking straight about the problem without worrying much, did 
not worry, not to think about the problem, expecting the worst, withdrawing,

 2. Mid adolescents: trying to get help from institutions, made compromises.
 3. Late adolescence: accepting one’s limits, thought about problems when they 

appeared, consuming alcohol or drugs.

The purpose here is to examine structure aspect of differences in coping strate-
gies across three age groups (early, mid, and late adolescents). Specifically, the 
question is whether all age groups have an identical coping dimensional structure or 
more realistically there are some systematic changes in dimensional structure by 
age. This question is the first and fundamental step in studying subsequent issues 
regarding age differences in coping since only when we know that structural aspect 
of coping behaviors is the same across age group we can examine how age group 
differs in their preference of coping choices.

The data used in this example were 744 Chinese students in Grade 7 (n = 258), 
Grade 10 (n = 215), and in university (n = 271). The average age of the participants 
in Grade 7, 10, and in university was 13.6 (SD = 1.27), 17.1 (SD = 1.12), and 22.3 
(SD  =  1.08) years old, respectively. The average education level of the parents 
among these participants was high school.

The instrument used was an 18-item coping behavior survey adapted from a 
questionnaire developed by Seiffge-Krenke and Shulman (1990). Students were 
asked how likely they used each of the 18 coping behaviors when they had a prob-
lem, e.g., “I discuss the problem with my parents/other adults,” or “I behave as if 
everything is alright.” Each item was rated on a 5-point Likert-type scale from 1 
(most likely to use) to 5 (least likely to use).

The coping data were first scaled separately for each age group using SAS MDS 
procedure. The goal is to determine the number of dimensions that best approximate 
the data structure underlying each age group. The goodness of fit measures based on 
two dimensional solution revealed a good model-data fit for each age group (early, 
mid, and late), Stress = 0.09 (R2 = 0.96), Stress = 0.07 (R2 = 0.99), Stress = 0.12 
(R2 = 0.93), respectively. For three dimensional solution, the fit was: Stress = 0.06 

9 Configuration Similarities



125

discuss with parents

talk about it

get help from 
other

accept limit

talk with others

as if alright
let out 

could be worse

find solu	ons

compromise

shou	ng etc

from other views

get informa	on

not to think

with alcohol

comfort with other

solve with friend

withdraw

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-3 -2 -1 0 1 2 3

Grade 10

discuss with parents

talk about it

get help from 
other

accept limit

talk with others

as if alright
let out 

could be worse

find solu	ons

compromise

shou	ng etc

from other views

get informa	on

not to think

with alcohol

comfort with other

solve with friend

withdraw

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-3 -2 -1 0 1 2 3

Grade 7

(continued)

9.2 Procrustes Analysis



126

(R2 = 0.97), Stress = 0.07 (R2 = 0.99), Stress = 0.07 (R2 = 0.97), respectively. The 
difference in fit was small, with ΔR2 < 0.05, which suggests that increasing number 
of dimension does not improve model fit substantively. The two-dimensional solu-
tion for each age group is shown in Fig. 9.1. As can be seen in Fig. 9.1, there is a 
great similarity among three configurations of coping behaviors.

Using three estimated configurations of each grade as data input, we run MSD 
Procrustes analysis by NEW MDS(X) program (Coxon et al. 2005). The centroid 
configuration is Fig. 9.2. The fit of each configuration to centroid as assessed via P0 
model is 0.96, 0.96, and 0.92, respectively, indicating there is a nearly perfect match 
for each of the three comparisons.

9.3  The PINDIS Models

Procrustes analysis via P0 model provides a baseline or reference model for assess-
ing configuration similarity. Based on this basic Procrustes analysis, Lingoes (1977) 
developed a series of increasing complex models for assessing configuration 

Fig. 9.1 Latent configuration of coping behaviors for each grade/age level

discuss with parents

talk about it

get help from other

accept limit

talk with others

as if alright

let out 

could be worse

find solutions

compromise

shouting etc

from other views

get information

not to think

with alcohol

comfort with other

solve with friend

withdraw

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

College

9 Configuration Similarities



127

similarity. This set of models is known as PINDIS (Procrustes Individual Differences 
Scaling). The analysis by PINDIS involves a set of configurations obtained from 
any MDS analysis, with the purpose of examining similarity among them using 
series of transformation models of increasing complexity. The complexity entails 
two operations: (1) what is done to the centroid in order for each original configura-
tion to be moved into optimal fit to the centroid configuration and (2) what indi-
vidual differences parameters (i.e., dimensional weights or vector weights) are 
estimated or applied in the model to move the centroid into greater similarity to each 
original configuration. These increasing complex transformations bring better fit. 
Now we describe these models as discussed by Davies and Coxon (1982).

As mentioned previously, the basic general similarity model is P0, which only 
carries out admissible transformation. In this model, no operation is performed on 
centroid configuration G, nor are any individual differences parameters estimated. 
In a sense, this is the most conservative model for assessing configuration similarity. 
If P0 model suggests a great similarity between configurations, the other models 

Fig. 9.2 Centroid configuration of coping behaviors of three grades/age levels
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also will. Thus, P0 model provides a lower bound value of configuration similarity. 
The fit of the model is given by r(G, X).

Both P1 model and P2 are distance models, which carry out inadmissible similar-
ity transformation and is analogs to INDSCAL or IDIOSCAL, in which the centroid 
configuration is rotated in both P1 and P2. P1 rotates G to a single new orientation 
and P2 rotates G and W to different orientation for each individual configuration so 
the conformity will be increased. More specifically, in P1 model (Gr, Wi), the cen-
troid configuration is first rotated to be an optimal fit for dimensional weighting (Gr, 
one rotation) and then a set of individual dimension weights are estimated for each 
original configuration (Wi). This model is the same as INDSCAL (except that the 
negative weights indicate the reflection of the corresponding dimension) and is the 
simple dimensional model. The fit of model P1 is given by r(GrWi, X). In P2 model 
(Gr

i, Wr
i), however, the centroid configuration is rotated to each individual configu-

ration (Gr
i, i rotations) and then individual dimension weights are differentially esti-

mated for each configuration (Wr
i). The fit of model P2 is given by r(Gr

iWr
i, X). This 

is similar to IDIOSCAL model (Carroll and Wish 1973).
Both P3 and P4 model are vector models and carry out inadmissible similarity 

transformation. They are similar to P1 and P2 models in terms of model complexity. 
In P3 model (Gt,Vi), the origin of the centroid configuration is first translated to an 
optimal fit or position (Gt) and then individual vector weights are estimated from the 
origin to each of the item points (Vi). This is simple vector or perspective model. The 
negative vector weight indicates the flipping of the vector in the opposite direction. 
The fit of model P3 is given by r(GtVi, X).

In P3 model, within an individual set of weights, interest of inquiry can focus on 
which item vector weights are largest and/or which have negative sign. This is 
because these vector weights imply the greatest relocation or reposition compared 
to the centroid, indicating that the significant differences are concentrated in these 
item points, but that the remaining structure of the configuration closely resembles 
the centroid.

In addition, the vector weights are comparable across individual configurations 
(not true for P4 model). The item points where vector weights vary most from con-
figuration to configuration are the ones which are least stable in the configuration 
and could be removed from analysis (a nice feature for instrument development). If 
the variation in weights for a given item vector is higher in some individual configu-
ration than in others, it suggests that variation is concentrated in a particular area of 
substructure of the configuration.

On the other hand, in P4 model (Gt
i, V t

i), each individual configuration is first 
translated in its own origin (Gt

i) and vector weights are differentially estimated (V 
t
i).The fit of model P4 is given by r(Gt

iV ti, X). Thus, P4 model allows each individual 
configuration to have its own ‘point of view’ (origin), thus having a different origin 
and a different set of weights. For this reason, P4 model is often called ‘points of 
view’ model, as Coxon et al. (2005) indicated.

Finally, P5 model is the combination of both distance and vector model.
When we have a hypothesized configuration rather than calculating centroid, 

PINDIS model can be used for hypothesis testing where known structure underlie 
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the data. In this case, the target configuration is fixed or as input data without any 
rotations or translation of origin. Thus, PINDIS can be used in an exploratory or a 
confirmatory way or in combination of both.

9.3.1  Example

Let’s continue our examination of grade/age difference in structural aspect of cop-
ing behaviors. In previous section, we saw that the fit of the P0 model for each 
configuration of coping behaviors was quite good. We conducted the PINDIS analy-
sis on the same data using NEW MDS(X) program. The results of the analysis are 
shown in Table 9.1.

Table 9.1 Fit value for each of the three grade/age comparison

<P0> 
Z,X[i]

<P1> 
ZW[i],X[i]

<P2> Z[i]
W[i],X[i]

<P3> V[i]
Z,X[i]

<P4> V[i]
Z[i],X[i]

<P5> V[i]
ZW[i],X[i]

Grade 7 0.96 0.99 0.99 0.83 0.00 1.00
Grade 
10

0.96 0.99 0.99 0.83 0.00 1.00

College 0.92 0.94 0.95 0.94 0.00 0.98
Mean 0.00 0.97 0.97 0.87 0.00 0.99

Note: 0.0 in the table means that particular PINDIS transformation is not reported

Table 9.2 Vector weights across three configurations of coping behaviors

Item name Grade 7 Grade 10 College

Discuss with parents 0.000 0.000 0.000
Talk about it 0.178 0.178 2.231
Get help from other −0.684 −0.684 1.331
Accept limit 0.973 0.973 −0.688
Talk with others 1.490 1.490 5.256
As if alright −0.738 −0.738 1.352
Let out −0.805 −0.805 1.175
Could be worse −0.136 −0.136 0.779
Find solutions −1.128 −1.128 0.094
Compromise −0.749 −0.749 1.059
Shouting etc. −0.646 −0.646 0.985
From other views −1.068 −1.068 −0.280
Get information −1.624 −1.624 0.085
Not to think −0.769 −0.769 0.732
With alcohol −0.827 −0.827 1.149
Comfort with other 0.842 0.842 0.359
Solve with friend −0.196 −0.196 −0.597
Withdraw −0.832 −0.832 1.001
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As can be seen from Table 9.1, all the fit values indicate the perfect match among 
three coping configurations, particularly with models with inadmissible transforma-
tion such P1 or P2.

It is interesting to see that the fit value of P3 model was not good for grades 7 and 
10. To learn more about what may go on with P3 model, we examined vector weights 
across three grade level since these vector weights indicate (1) which items are 
repositioned, as assessed by the largest or negative vector weight value, to optimal 
fit the centroid configuration and (2) which items are less stable when its corre-
sponding vector weight are compared across all the configurations. Table 9.2 shows 
the vector weight across three configurations. As can be seen in Table 9.2, there are 
quite a few items with negative vector weights for Grades 7 and 10, indicating that 
the point of these items had a significant difference with centroid configuration. 
This may be the reason of low fit value for Grades 7 and 10, but not for college level. 
In addition, the vector weights of these items varied across configurations, particu-
larly with respect to those of college level, indicating that these items were stable up 
to Grade 10. This finding may suggest that the coping preferences may change at 
college level, given the same coping structure. Further preference analysis using 
vector model can be used to examine how preference in coping shifts over time.

9.3.2  Example of Hypothesis Testing

In previous section, we discuss how to examine the spatial structure similarity using 
Procrustes and or PINDIS analysis. Using the same analytical procedure, we can 
easily perform hypothesis testing about pre-specified latent structure and see if this 
hypothesized configuration is consistent with the data. The way to perform the con-
firmatory MDS analysis is to enter hypothesized configuration(s) and enter configu-
ration estimated from the data as the individual configuration(s). That is, we have 
hypothesized configuration (i.e., target configuration) and we have configuration 
estimated from the current data. Then we can examine how similar they are. 
Intuitively, the more similar they are, the better the chances are that the hypothe-
sized configuration is supported by the data. We also can use vector weights from P3 
model to examine what the discrepancies may be. Another way of performing con-
firmatory MDS is to use Proscal program (MacKay and Zinnes 2014), which pro-
vides maximum likelihood estimation of the configuration. We can use hypothesized 
configuration as a target and see how closely this target is consistent with the data. 
The fit measure will be correlation coefficient. One advantage of using Proscal is 
that we can also test variance structure of the coordinates.

The following example uses data from a coping study that investigates coping 
structure of high school students. Based on findings from previous studies, coping 
behaviors can be conceptualized as three somewhat distinct aspects: withdrawal, 
emotion-focused, and problem-solving focused. A short coping survey of 10 items 
was administered to a group of 316 high school students. The interest of the inquiry 
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was whether the coping behaviors had hypothesized structure as suggested previ-
ously. Figure 9.3 shows the hypothesized configuration of coping.

This target or hypothesized configuration was compared with that estimated cop-
ing configuration from the data. Figure 9.4 shows this estimated configuration from 
the data.

It seemed that the hypothesized configuration was not supported by the data. 
Indeed, the value of P0 model indicates that two configurations was only 0.27. It 
seemed that for this group of students, there was no particularly distinct structure of 
coping, that is, they were likely to use these behaviors as one group or one factor.
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Fig. 9.3 Hypothesized structure of coping behaviors. Items 1–4 indicate problem-focused coping, 
Items 5–7 indicate withdrawal coping, and Items 8–10 indicate emotion-focused coping
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9.4  Conclusion

In this chapter, we discuss how different latent data structures can be compared 
using MDS Procrustes and PINDIS analysis procedure. The hypothesis testing anal-
ysis, that is, confirmatory MDS analysis, can be conducted with this analytic 
method. We used examples to illustrate the utilities of Procrustes and PINDIS anal-
ysis. It should be noted that the not many empirical studies have used this method 
for studying similarity of data structures or testing hypothesis about a particular 
structure. There are some potential applications of this method to examine group 
differences in data structure, such as factor structures between males and females in 
the context of measurement invariance. We can also use the procedure for studying 
change in behavior patterns over time in longitudinal studies. The method provides 
a different angle or perspective for examining behaviors.
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In this section, we discuss some new applications of MDS in educational and 
 psychological research.
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Chapter 10
Latent Profile Analysis

Abstract The MDS is discussed as a profile analysis approach of re- parameterizing 
the linear latent variable model in such a way that the latent variables can be inter-
preted in terms of profile patterns rather than factors. It is used to identify major 
patterns among psychological variables and can serve as the basis for further study 
of correlates and/or predictors of profiles and other background and external vari-
ables. I outline the procedure of MDS profile analysis and discuss the issues that are 
related to parameter estimation and interpretation of the results.

Keyword Profile analysis

In this chapter, we discuss a relatively new application of the multidimensional scal-
ing model for latent profile analysis, with latent variables being coordinates of MDS 
configuration. This approach requires thinking of the MDS dimensions as profiles 
rather than as factors so that the latent variables (i.e., coordinates of each observed 
variable) can be interpreted in terms of profile patterns. It is an exploratory profile 
analysis method to identify major patterns in behavioral variables and can serve as 
the basis for further study of correlates and/or predictors of profiles and other back-
ground/external variables.

10.1  Profile Analysis in Education and Psychology

A great many investigations, either in psychology or in education, deal with profiles 
of test scores or behaviors (e.g., Cronbach and Gleser 1953; Davison 1994; Pfeiffer 
et al. 2000). For example, approximately 74% of school psychology training pro-
grams put some focus on the use of profiles of subtest scores in their cognitive 
assessment courses (Affnso et  al. 2000). Pfeiffer et  al. (2000) indicated that the 
majority of school psychologists employ profile analysis in dealing with the WISC- 
III subtests. Moreover, with relatively more attention being devoted to the use of 
person-oriented analyses, the methodologies that focuses on profile analysis, such 
as latent profile analysis, latent class analysis, or latent mixture analysis (Bergman 
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and Magnusson 1997; Collins and Lanza 2010; Muthen and Muthen 2000), have 
been increasingly popular in psychological research. In education, students’ aca-
demic progress is typically reported in terms of profiles. For example, Speece and 
Cooper (1990) examined 1st grade students to identify profiles/groups associated 
with academic development and uncovered profile patterns that suggested normal 
development, learning disabilities, mild retardation, and language problems.

Given the importance of a profile or type in the education or social sciences, 
many methods have been designed to discover types from multivariate data. The 
search for the best methods to address types has been a persistent theme in psychol-
ogy and education, especially when population is heterogeneous (Magnusson 
1998). The development of new analytical techniques has changed how researchers 
study classification of individuals. One such new technique is latent finite mixture 
modeling that is appropriate for identifying latent profiles of behaviors associated 
with subgroups of population. In this chapter we discussed the use of the MDS 
model to investigate types or profiles of people. It should be noted that use of the 
MDS approach to latent profile analysis is not because of inadequacy of techniques 
for finite mixture modeling; instead, the MDS model provides another promising 
alternative for the assessment of latent profiles as well as typologies of people indi-
cated via these profiles. Thus, rather than comparing different methods (readers may 
consult Davison and Sireci (2000) for an excellent comparison of MDS and other 
methods), this chapter highlights the potential of the MDS model to assist in person- 
oriented study, that is, idiothetic investigations. Idiothetic investigations can be 
understood as a way of combining aspects of normative and idiographic methodolo-
gies in psychological research (Allport 1937; Lamiell 1981). MDS profile analysis 
is such a methodology. However, this method currently is underutilized in education 
and psychology because of its unfamiliarity within the research communities.

10.2  MDS Model in Studying Latent Profiles

Traditionally, common applications of MDS models were employed for two pur-
poses. The first was called dimensional application (Davison 1983), the focus of 
which was to understand the psychological stimulus dimensions to which people 
attend (e.g., Davison and Jones 1976). Examples include individual differences 
MDS in which individual differences with respect to dimension salience are studies. 
The second was data reduction, in which the researcher sought to reduce the com-
plex interrelationships between stimuli to a simpler and more understandable form. 
This later use is quite similar to that of factor analysis, and both techniques can be 
used to study similar issues. For this reason, MDS may be considered or employed 
as a form of factor analysis, which is an application most familiar to researchers.

Thus, multidimensional scaling is not a new technique. The profile analysis and 
interpretation of dimensions, however, is relatively new (Davison et al. 1996). Many 
studies have involved multidimensional scaling of psychological scales (e.g., 
Paddock and Nowicki 1986), but the data were not interpreted in terms of profiles.
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10.2.1  MDS Profile Model Specification

In classical vector MDS representations of structure, each data point in the profile is 
represented in a Euclidean space of continuous dimensions, that is:

 
m w x c esv k sk kv s sv= + +å  

(10.1)

where msv is an observed score of person s on variable v, wsk is profile match indices 
for person s on dimension k, that is, wsk is a participant by dimension matrix, with 
the order of s participants by k dimensions; xkv is a variable location parameter (i.e., 
scale value or coordinate) along dimension k, cs is a level parameter, and esv is an 
error term. For the model in Eq. 10.1, the following ad hoc constraints are imposed 
on the MDS profile analysis:

v kv for all kå =x 0
 

(10.2a)
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(10.2b)

 å =¢w wsk sk for all k0  
(10.2c)

Constraint 10.2a states that each profile is ipsative; that is, the mean of the scores 
in each profile is zero. Thus, profiles will produce profile patterns (scatter plus 
shape), but not the mean (i.e., level) of the profiles, which is reproduced by level 
parameter cs. Constraint 10.2b specifies that the mean squared profile match index 
along each profile equals one, and constraint 10.2c states that profile match indices 
are orthogonal for every pair of profiles. In addition, all the variables in the profiles 
need to be on a common metric.

In the MDS profile model represented in Eq. 10.1, dimensions are represented as 
profiles, and the fundamental variables xkv are scores for variables (called scale val-
ues in MDS). One of the major goals of MDS profile analysis is to explore and 
capture normative profiles expressed in scale value xkv along profile k. By normative 
profile we mean it is an average profile across all individuals in the sample. The 
scale values indicate a particular arrangement of variables in the profiles. It should 
be noted that multiple variables are used to identify profiles, but not necessarily 
considered manifestations of a single, homogeneous trait or ability. That is, the 
multiple variables do not need to be internally consistent: profiles represent types of 
people in a population.

The idiographic aspect of the model is associated with the individual profile 
match indices, wsk. Each individual has the number of profile match indices that are 
equal to the number of profiles identified in the data. If two profiles were identified, 
then each individual would have two profile match indices, one for each identified 
profile. The profile match indices quantify the sensitivity of the participant’s 
responses to a variable’s location along the profile. Thus, for a given participant who 
fits the model, a positive profile match index indicates that the individual’s observed 
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data tend to manifest the expected profile, while a negative profile match index 
indicates that the individual’s data tend to exhibit a pattern opposite to the profile. 
The magnitude of the profile match indices reflects the degree to which a partici-
pants’ observed data tend to match the identified normative profile, k. Although 
there are no criteria to evaluate what constitutes a large wsk index or a small wsk 
index, the key issue is the degree to which an individual in general shows the identi-
fied profile of data. In MDS profile analysis, thus, the emphasis is on nomothetic 
investigation as well as on idiographic study.

Although MDS profile analysis has not been used widely, the model discussed 
here is not new. Bechtel, Tucker, and Chang (1971), Davison (1994), Davison and 
Skay (1991), and Tucker (1960) call it the “vector” model. Benzecri (1969), Weller 
and Romney (1990), and Greenacre (1984) call it the “correspondence analysis” 
model. Cattell (1967) called it the “Q-factor” model, a special case of Eq. 10.1 in 
which the observed data are standardized by row and the level parameter cs drops 
from the equation.

10.2.2  Model Estimation

Readers who are not interested in technical aspects of MDS profile analysis can skip 
this section. In essence, the model estimation of scale value in MDS profile analysis 
is the same as that in basic MDS analysis. After obtaining the scale value, regression 
analysis is performed in which the scale values are treated as predictors and observed 
variables as dependent variable. The analysis will then produce regression weights 
and a constant for each individual, which corresponds to profile match index and the 
level parameter. This is the gist of the model estimation process. The detailed 
description is as follows.

In a MDS analysis based on the model of Eq. 10.1, the goal is to estimate (1) the 
profile parameters (scale values) xkv, which are the estimates of scores for variables 
in a profile, and (2) the individual fit statistics and the profile match indices wsk, 
which is indicative of each individual’s resemblance to the profile. MDS profile 
analysis starts with algorithms for estimating the profile parameters in the model. 
The best-known procedure is the classical nonmetric model. In this model, the prox-
imity data are assumed to have the form:

 
dvv vv¢ ¢= ( )f d

 
(10.3)

and

 
d x xvv k kv kv¢ ¢= -( )éë ùûå
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(10.4)
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where f is a monotone function of dvv′. xkv and xkv′ are the profile parameters which 
locate stimuli or variable v and v′ respectively along profile k. The squared Euclidean 
distances, δvv′

2, can be computed from observed responses to variable pairs:

 
dvv s sv sv¢ ¢= -( )å2 2

m m
 

(10.5)

The level parameter cs, which is the mean score of the variables in that profile 
(i.e., a row), is estimated by

 
c ms svv= ( )å1 /

 
(10.6)

After we obtain the latent profile estimates xkv in Eq.  10.1, we can get least 
squares estimates of the individual profile match indices wsk by

 
W MX X X= ¢( )-1  

(10.7)

where X is a matrix of xkv and M is a matrix of msv in Eq. 10.1. This leads to an s by 
k matrix W of wsk, with each participant having k number of profile match indices, 
one for each profile. These continuous profile match indices reflect (1) the extent of 
inter-individual variability along a profile and (2) intra-individual variability across 
profiles. As mentioned previously, the profile match indices wsk indicate how well a 
person manifests a normative profile. That is, the normative profiles do not always 
apply to all individuals. In addition, an individual fit statistic is also computed, 
which is equal to the squared multiple correlation R2 in the multiple regression, 
indicating the proportion of variance in the subject’s data that can be accounted for 
by the model-derived profiles.

10.2.3  Characteristics of MDS Profile Analysis

One of the strengths of using MDS for profile analysis is its simultaneous represen-
tation of what typical configurations or profiles of variables actually exist in the 
population (called latent, average, or expected profiles) and how each individual 
differs with respect to these latent profiles. That is, this approach provides a global 
model of membership in subgroups (i.e., distinct profiles) of the population inferred 
from the data, and of the degree to which each participant manifests each expected 
profile. In MDS profile analysis, parameters of dimension capture differences 
between variables. The individual differences in profiles are quantified by profile 
match indices and individual fit statistics. The fit statistic indicates the proportion of 
variance in the individual’s observed profile data that can be accounted for by the 
latent or expected profiles. If the variance in an individual’s data can be accounted 
for by an expected profile, the value of the fit statistic will be large (for example, fit 
≥0.8 on a 0–1 scale range). If, on the other hand, the variance in an individual’s data 
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cannot be accounted for by the expected profiles, the fit statistic will be small (for 
example, fit ≤0.3). Thus, this approach makes it possible to identify individuals who 
develop in an idiographic manner, indicating that the overall (i.e., nomothetic) 
model typical of most people does not apply to a particular person. If an individual, 
for example, responded randomly to the questions or along very different behavioral 
characteristics, this would result in poorer fit statistics for that individual.

In addition, MDS profile analysis gets at discrete classes but maintains a dimen-
sional framework; that is, it provides information on type of individuals based on 
the degree of more or less rather than either present or absent. In the profile model, 
we attempt to profile types of people (i.e., subgroups) by means of normative pro-
files, but each individual fits these profiles to different degrees. Thus, researchers 
can conduct separate analyses of individual subjects to see whether a very different 
profile of relationships between stimuli can be identified for the individual, or 
whether no clear profile of relationships can be found. It is precisely this type of 
idiographic profile of development that MDS profile analysis attempts to identify.

The MDS profile analysis described here is an exploratory technique. The profile 
model is most suitable for the situations in which normative profiles are to be 
derived from the data, rather than specified by theory, although we can also conduct 
MDS confirmatory profile analysis if we would like to test a theory or confirm find-
ings from previous studies. It provides estimates of normative profiles as well as 
estimates of idiographic parameters in the model (that is, profile estimates for each 
individual), not simply summary statistics such as means, variances, and covari-
ances. If one wishes to conduct idiographic studies, one may take the parameter 
estimates for individuals and study the association with other variables (e.g., demo-
graphic variables) in subsequent analysis.

Technically, the statistical assumptions of MDS profile analysis are minimal. The 
MDS profile model allows for simultaneous estimation of intra- and inter-individual 
profiles without the requirement of multivariate normality. Moreover, MDS profile 
analysis is based on a distance model (Borg and Groenen 2005; Davison 1983) 
rather than the standard linear model. Thus, it can be used to model nonlinear rela-
tionships among variables.

10.3  Example: Organization of Psychosocial Adjustment 
Among Adolescents

The data used for this example were from the study on adolescent psychosocial 
development project, which included 208 college students (90 males and 118 
females), with the average age of the participants being 21 years. The participants 
completed a battery of questionnaires. The instrument used here was six measures 
from the Self-image of Questionnaire for Young Adolescents (SIQYA)(Petersen, 
et al. 1984): Body Image (BI), Peer Relationships (PR), Family Relationships (FR), 
Mastering & Coping (MC), Vocational-Educational Goals (VE), and Superior 
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Adjustment (SA). All six variables were scaled on a common 6-point Likert scale 
and were positively coded so that a high score indicated positive adjustment. For 
example, a high score on the Family Relationships scale was indicative of a positive 
perception of family relationships by the participants, and a high score on the 
Superior Adjustment scale suggested perceived positive well-being by the partici-
pants. Readers may want to consult Petersen, et al. (1984) for detailed descriptions 
of these scales.

In addition, three mental health well-being measures were included as outcome 
covariates: (1) the Kandel Depression Scale (Kandel and Davies 1982), a scale for 
assessing depressive affect; (2) the UCLA Loneliness Scale (Russell et al. 1980), 
which assesses subjective feelings of loneliness or social isolation; and (3) the Life 
Satisfaction Scale (Pavot and Diener 1993), an index that assesses subjects’ global 
evaluation of the quality of his or her life.

According to Petersen, et al. (1984), these six scales measure self-image or self- 
concept: i.e., a phenomenological organization of individuals’ experiences and 
ideas about themselves in all aspects of their lives. Self-image is manifested through 
functioning in various social domains, such as school, family, and peer group, as 
well as through psychological functioning, such as impulse control and ease in new 
situations. Thus, self-image is multidimensional and should be measured and ana-
lyzed as such. In the framework of the person-oriented approach, theoretical expec-
tations about individuals are evaluated with respect to at least three aspects of 
psychosocial adjustment: (a) nomothetic investigation of psychosocial adjustment 
in a population; in other words, any latent profiles indicative of subgroups in the 
sample; (b) idiographic study of individual characteristics with respect to the adjust-
ment profiles; and (c) association between the profiles and other variables, such as 
mental health. We will illustrate the use of the MDS profile method to address 
research questions relevant to each of these three questions.

Using the data described above, an analysis using the MDS profile model in 
Eq. 10.1 was performed. Consider the sample data in Table 10.1 for 14 individuals 
out of 208 participants. These participants were selected only for illustrative 
purposes.

To address these three research questions, the focus of analysis becomes: what 
typical profiles of psychosocial adjustment of this kind actually exist in adoles-
cents? To what degree does an individual follow his/her own development with 
respect to these “normative” profiles, that is, the fit of the model to an individual’s 
data, and how are these profiles associated with adjustment outcomes? The MDS 
profile analysis was performed using the MDS analysis procedure found in com-
monly used statistical packages, such as that in SAS or SPSS.

In the current example, the squared Euclidean distances among these adjustment 
scales were computed based on Eq. 10.5. The distance matrix is shown in Table 10.2. 
Except for measurement and sampling error, the rank order of the model-based 
distance between pairs of points, dvv’, is the same as the rank order of the data δvv’. 
This implies that the distance will be related to the model parameters, xvk; hence the 
scale values from the MDS solution represent estimates of the profile parameters.
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Thus, under the constraints stipulated in Eqs. 10.2a, 10.2b, and 10.2c, the MDS 
profile analysis uses the proximity matrix in Table 10.2 as data input and estimates 
the scale values xkv through an iterative estimation algorithm, yielding one dimen-
sion for each profile. A nonmetric MDS analysis procedure was used because the 
distance data were assumed to be monotonically related to model-based distances in 
an underlying space. A profile is composed of the scale values xkv, with large scales 
being salient marker variables of the profile. Table 10.3 shows the scale values for 
the data in Table 10.2. These scale values were derived from a two-profile model 
and the resulting solution was retained based on (1) interpretability and (2) model 
fit index, STRESS formula 1 value (S1) (Kruskal 1964). The STRESS value was 
0.00, indicating a good fit between data and the model; that is, the rank order in the 
data could be well reproduced by the model.

Table 10.1 Scored data for MDS profile analysis

ID Gender BI PR FR MC VE SA
PMI- 

1
PMI- 

2 FIT Level LS Dep PL

1 Female 2.82 5.10 5.00 4.60 5.70 4.30 −0.73 0.29 0.94 4.59 25.00 1.67 1.67
2 Male 3.82 5.00 4.71 4.90 5.40 4.90 −0.38 0.23 0.99 4.79 42.00 2.00 2.00
3 Female 4.09 5.80 5.77 4.90 5.50 5.10 −0.39 0.18 0.65 5.19 23.00 2.17 1.33
4 Male 5.09 5.30 4.69 6.00 6.00 5.50 −0.16 0.24 0.32 5.43 38.00 2.33 2.00
5 Male 5.55 5.70 3.88 5.50 5.40 4.50 0.19 0.54 0.55 5.09 34.00 2.33 1.50
6 Female 5.55 5.80 5.12 6.00 6.00 5.90 −0.06 0.25 0.46 5.73 42.00 1.17 1.17
7 Female 3.91 4.50 5.77 4.90 5.70 4.90 −0.52 −0.29 0.98 4.95 28.00 3.00 1.17
8 Male 4.73 5.00 5.12 5.40 5.50 5.50 −0.20 0.02 0.64 5.21 39.00 1.83 1.67
9 Male 4.73 4.20 5.77 5.60 5.70 5.10 −0.32 −0.48 0.87 5.18 33.00 2.50 2.17
10 Male 4.27 4.70 3.94 5.00 5.50 4.80 −0.21 0.30 0.48 4.70 34.00 3.00 2.17
11 Female 4.64 4.80 5.41 5.30 5.60 5.20 −0.27 −0.14 0.96 5.16 30.00 1.83 2.00
12 Female 4.91 4.70 5.41 5.00 5.80 4.60 −0.21 −0.23 0.57 5.07 38.00 1.83 1.17
13 Female 3.82 5.90 4.77 5.60 5.90 5.50 −0.48 0.59 0.97 5.25 43.00 3.00 1.00
14 Male 4.82 3.50 5.47 6.00 5.50 6.00 −0.27 −0.63 0.48 5.21 41.00 1.33 2.83

Note. BI body image, PR peer relations, FR family relations, MC mastery & coping, VE vocational 
& educational goal, SA superior adjustment, PMI-1 profile match index for profile 1, PMI-2 profile 
match index for profile 2

Table 10.2 Proximity matrix of six psychosocial adjustment variables

BI PR FR MC VE SA

BI 0.00
PR 16.68 0.00
FR 18.43 14.94 0.00
MC 13.78 10.69 9.20 0.00
VE 26.63 11.66 9.91 3.81 0.00
SA 12.41 10.44 6.22 1.87 6.94 0.00

Note. BI body image, PR peer relations, FR family relations, MC mastery & coping, VE vocational 
& educational goal, SA superior adjustment
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Figure 10.1 shows the two psychosocial adjustment profiles. The scale values 
along the profile represent a particular arrangement of scores for that prototype, 
which will reproduce observed score profiles (i.e., scatter and shape) but not the 
level of observed data. In a way, one can think of each MDS profile as representing 
a prototypical individual (i.e., type). That is, xkv is the score of prototypical person s 
on variable v and the set of scale values xkv (v = 1,2,3…V) is the profile of prototypi-
cal person s on the v measures with the level component removed. Each MDS pro-
file represents a profile indicative of a subgroup. In our data, Profile 1 represents a 
prototypical individual with high scores on Body Image and low scores on the 
Vocational-Educational (Voc-Ed) Goal scale. Thus, for individuals who fit the 
model, those whose adjustment profile resembles the Body Image versus Voc-Ed 
Goals shape tend to report either a higher score on body image than on Voc-Ed goals 
or a higher score on Voc-Ed goals than on body image.

Profile 2 represents a prototypical individual with high scores on the Peer 
Relationships scale and low scores on the Family Relationships scale. Subjects 

Table 10.3 Scale values of 
two MDS profiles for 
psychosocial adjustment

Profile 1 Profile 2

Body image (BI) 2.28 −0.50
Peer relations (PR) 0.23 1.49
Family relations (FR) −0.70 −1.20
Mastery & Coping 
(MC)

−0.25 0.14

Voc-Ed goals (VE) −1.49 0.00
Superior adjust. (SA) −0.08 0.08
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Fig. 10.1 Normative profiles of psychosocial adjustments for young adults
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whose psychosocial adjustment profile resembles this shape tend to report either 
higher on peer relationships than on family relationships or higher on family rela-
tionships than on peer relationships.

Thus, in MDS profile analysis, a vector of scale values is a particular arrange-
ment of scores along the profile patterns. It represents each person’s responses, msv, 
as a linear combination of the k prototypes xvk, which indicates the profile patterns.

Columns 9–11 in Table 10.1 show the profile match indices for profiles 1 and 2 
and fit statistics for each of the 14 participants. The sign of the profile match indices 
indicates that the subject’s observed data exhibit either the profile or the opposite of 
the profile. For instance, the profile index on profile 1 for subject 1 was −0.73, sug-
gesting that this participant tended to manifest the profile pattern opposite to the 
profile, that is, she tended to report a higher score on vocational-educational goals 
than on body image. Furthermore, variance in her observed data was mainly 
accounted for by profile 1 (fit = 0.94) since the profile match index on profile 2 was 
quite small (PMI-2 = 0.29 in comparison to PMI-1 = −0.73).

A word of caution is warranted. In MDS profile analysis the actual appearance of 
a particular profile depends on the way variables are listed. Since it is arbitrary 
which variable is listed in which position, the physical appearance of the profile can 
be arbitrarily changed without impacting level, dispersion, or shape of the profile. 
Because of this, some researchers call high points in a profile a “profile” and low 
points in the profile a “mirror image of the profile” (Davison 1994). What is a “mir-
ror image profile?” Consider Profile 1 with high scores on the Body Image scale and 
low scores on the Voc-Ed Goal scale. Scale values along Profile 1 would reflect a 
prototype individual with high scores on Body Image measures and low scores on 
Voc-Ed measures. A large positive profile match index wsk on the Profile 1 would 
characterize people with a high score on Body Image profile. The mirror image of 
Profile 1 is the Voc-Ed goal profile, characterized by high scores on Voc-Ed Goal 
measures and low scores on Body Image measures. A large negative profile match 
index would characterize subjects’ mirror image. Although there are no available 
criteria to evaluate the effect size of profile match indices, the key point is the degree 
to which a subject in general tends to manifest the expected profiles of data.

The importance and utility of these profile match indices for individuals are that 
(1) by correlating these indices of individual differences in profile with other vari-
ables--such as age, education, gender, or psychological variables--one is in a posi-
tion to study, for example, whether there is a gender difference with respect to the 
profiles (e.g., males are more likely to resemble profile 2 and females) and (2) one 
can examine how individuals think about themselves. This can be considered as a 
within-person pattern in that a participant may be more likely to manifest one 
expected profile than the other; that is, one could evaluate how individuals perceive 
themselves with respect to these profiles. For example, in the case of subject 1, she 
tended to be more education-achievement oriented than focused on her body 
appearance.

A fundamental premise of psychology is that psychosocial adjustment organiza-
tion influences the operation of other psychological variables. Thus, adjustment 
profiles alone do not explain behavior, but rather, constitute only the first step. One 
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of the primary goals of psychologists has been the development of behavioral pat-
terns that affect psychological well-being. In our current example, we investigated 
how model-derived profiles were associated with three mental health well-being 
measures: (1) the Kandel Depression Scale; (2) the UCLA Loneliness; and (3) the 
Life Satisfaction Scale. For such an analysis, we fit the regression model with pro-
file match indices and level estimate as independent variables and three well-being 
measures as outcome variables. The analysis was performed just to provide a com-
plete illustration of the MDS profile analysis.

The results are shown in Table 10.4. As can be seen in the table, level parameter 
estimates, which represented average scores of individuals’ psychosocial adjust-
ment, had significant standardized regression weights for all three measures. It 
would seem that participants who had overall positive psychosocial adjustment 
scores reported less depression or psychological loneliness and reported a higher 
degree of life satisfaction.

In addition to the association between the level and well-being measures, Profile 
1 also had a significant standardized regression coefficient for the depression mea-
sure and the life satisfaction measure. It would seem that participants who had high 
scores on body image reported a higher degree of life satisfaction but those who 
reported high scores on vocational-educational goal reported a higher degree of 
depression. Profile 2 also was found to have significant standardized regression 
coefficients for psychological loneliness. Specifically, participants who had higher 
scores on the family relationships profile reported a higher degree of psychological 
loneliness.

Of course, we need to further discuss the meaning or implication of these find-
ings with respect to some theories. The findings of these analyses were just used to 
illustrate that MDS profile analysis can be used for studying: (1) psychosocial 
adjustment patterns existing in a population, (2) the normative profiles that do not 
apply to all participants, who could follow entirely different profile patterns, and (3) 
the model-derived profiles that could provide additional information beyond that of 
the average scores. At a most general level, an MDS profile can help us determine 
whether a single model of psychological behaviors, which allows both individual- 
and group-specific parameter estimates, can provide a sufficient account of both 
normal and non-normal processes.

Table 10.4 Regression analysis of predicting psychological well-beings from the model derived 
profiles

Depression Psychological loneliness Life satisfaction

Profile 1 −0.36** −0.08 0.27**
Profile 2 −0.08 −0.27** 0.16
Level −0.31** −0.59** 0.45**

Note. Numbers are standardized regression coefficients
** p < 0.01

10.3 Example: Organization of Psychosocial Adjustment Among Adolescents
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10.4  Conclusion

In this chapter we discussed an MDS-based profile analysis in an attempt to enhance 
our understanding of psychological mechanisms underlying or covarying with 
human behaviors. An important preliminary step in this effort entailed augmenta-
tion of the analytical strategies used in psychological research to allow simultane-
ous estimation of group- and individual-specific parameters. The MDS profile 
analysis discussed here allows this possibility by estimating group-specific profiles 
while simultaneously estimating individual-specific profile match indices. The 
potential utility of this approach lies in the fact that it separates level parameters 
(i.e., means) from profile patterns; it thus focuses on individual differences in profile 
patterns. It provides an exploratory method to classify persons on a continuum scale 
rather than on a dichotomous scale. It can provide an opportunity for studying cor-
relates and predictors of group and/or individual behavior patterns.

This idiothetic research approach (hybridization of nomothetic and idiographic) 
should serve as a useful tool to link to more idiographic, but nomothetically 
informed, applications. We have argued that MDS techniques provide a promising 
method of characterizing relevant individual differences in psychological profiles. 
In addition, we have suggested that general linear models can be used in conjunc-
tion with MDS-derived profiles of psychological organization to illuminate the role 
of psychosocial adjustment in the operation of mental well-being. Admittedly, how-
ever, such applications are tentative because we simply do not yet know enough 
about the role of psychosocial processes in mental health to capitalize on these 
opportunities. We hope, nonetheless, to pique the reader’s interest in the potential 
applications of the MDS profile analysis methods for individualized psychological 
assessment.

There are some caveats, on the other hand, that need to be noted regarding MDS 
profile analysis. First, the determination of the number of dimensions or profiles can 
be subjective. The major criteria are based on interpretability and reproducibility of 
the profile patterns, along with the model fit statistic. Second, the interpretation of 
the statistical significance of the scale values (i.e., variable parameter estimates) is 
somewhat arbitrary. There are no objective criteria for decision-making regarding 
which scale values are salient. Some researchers (e.g., Davison and Sireci 2000; 
Ding 2005) suggested a bootstrapping method to estimate the standard error of scale 
values and statistical significance of these scale values. Third, it is not well known 
to what degree the profiles recovered by an MDS profile analysis approach can be 
generalized across populations. Based on the research so far, it seems that different 
profiles may be recovered in two different populations, such as in a female popula-
tion and a male population. On the other hand, it is also possible that the same pro-
file solutions may emerge from different populations. Fourth, this approach is based 
on deterministic MDS techniques that may misconstrue large proximity measures 
as indicators of large inter-stimulus distances due to large rating variability on a 
stimulus. In this aspect, probabilistic MDS models offer definite advantages, for it 
takes into consideration of such variability in the estimation of scale values.

10 Latent Profile Analysis
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Chapter 11
Longitudinal Analysis Using MDS

Abstract Discuss how to extend the MDS model for longitudinal data analysis in 
the context of growth mixture modeling. Scale values can be interpreted in terms of 
growth or change parameters. Posteriori profile probability is introduced to classify 
individuals into different growth/change profile types. An example of real data is 
provided to illustrate the idea.

Keyword Growth profile analysis · Posteriori profile probability · Person fit index

In this chapter, we discuss how to use multidimensional scaling to explore and analyze 
longitudinal data. In order to provide a context of such an analysis, we first describe an 
example often encountered in the literature that calls for longitudinal analysis. Then we 
move onto how to use multidimensional scaling analysis in such a situation.

11.1  A Numerical Example

Tracking and monitoring student progress in mathematic achievement has been an 
important issue. Concerned that students did not possess the basic mathematical 
knowledge needed to function in complex society, legislators focused on mandates 
to increase both performance and accountability in schools. Since 2001, all schools 
across the nation are required to ensure students make adequate yearly progress in 
math and reading. As a result, many schools are required to mandate tests in math 
for all students in grades three through eight. For example, a local school district 
assessed student mathematical achievement repeatedly at 3rd, 4th, 5th, and 6th 
grades (i.e., in year 97, 98, 99, and 2000). At each assessment time, students com-
pleted the Stanford Math Test-Ninth edition that was used by the school district to 
measure students’ math progress over the years. The scores were reported as scaled 
scores for each student across these four waves of data collection. Table 11.1 shows 
correlations and descriptive statistics for the dataset. The mean score indicates a 
linear growth. Figure  11.1 shows the growth patterns of 15 students randomly 
selected from the data.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78172-3_11&domain=pdf
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This example is a typical research context in which individuals are measured at 
multiple time points on a particular variable (and it could also be on multiple vari-
ables) (Bock, 1975), and the key purpose of the analysis is to detect differences in 
patterns of individual growth. Given this situation, one question is how we go about 
analyzing such data; that is, what should be the model for change, as McArdle sug-
gested (McArdle, 2009). A common methodology framework for longitudinal data 
analysis is latent growth curve modeling from the perspective of structural equation 
modeling (McArdle, 2009), which provides a powerful and flexible tool for research-
ers to study individual differences in growth as well as the correlates and predictors 
of the development. McArdle (2009) provided an extensive review of different lon-
gitudinal modeling approaches using structural equation models. It is beyond the 
scope of this chapter to discuss the details of these approaches. The discussion about 
the similarity and differences between multidimensional scaling approach and these 
other approaches can be found in Ding and his colleagues (Ding, 2005, 2007; Ding 
& Davison, 2005; Ding, Davison, & Petersen, 2005). It is now suffice to point out 

Table 11.1 Correlations, Means, and Standard Deviations for the Math Achievement Data of 15 
Students across Four Occasions

97 98 99 00

Math 97 1.00
Math 98 0.72 1.00
Math 99 0.68 0.76 1.00
Math 00 0.66 0.77 0.83 1.00
M
SD
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38.96

629.36
34.41

646.85
36.00

664.15
33.99

400

450

500

550

600

650

700

750

800

Math 97 Math 98 Math 99 Math 2000

S
A

T 
M

at
h 

S
co

re
s

Time of Testing

Fig. 11.1 Individual Students Growth Pattern of Math Achievement Over Four Measurement 
Occasions (N = 15)
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that recent developments in estimation and hypothesis testing of longitudinal data 
analysis are largely based on confirmatory structural equation approach. As Raykov 
(2000) pointed out, a major advantage of using covariance structure analysis is that 
this method explicitly takes account of measurement error and estimates error struc-
tures to incorporate individual differences.

However, if the nature of the data is concerned with change but not in the sense 
of growth, some latent growth models using structural equation approaches may not 
efficiently provide statistical estimates of change patterns (i.e., not growth pattern). 
In here, we particularly differentiate growth from change. Growth has convention-
ally been defined as systematic or directional changes, with the change considered 
as linear or monotonic (Willett, Ayoub, & Robinson, 1991). In contrast, change may 
be defined as being multidimensional in that it includes complex patterns such as 
oscillation between ups and downs. The multidimensional scaling approach 
described here is an alternative exploratory technique most suitable for the situation 
in which the growth or change patterns are to be derived from the data, rather than 
pre-specified by theory. Of course, we could also conduct confirmatory MDS growth 
profile analysis based on some theory or previous findings.

Based on the example described above, we discuss in the following sections how 
multidimensional scaling can be used in analyzing such longitudinal data.

11.1.1  Basic Ideas of Multidimensional Scaling (MDS) 
for Longitudinal Data Analysis

In Chap. 10, we discussed the multidimensional scaling model for profile analysis 
of cross-sectional data (Davison, Gasser, & Ding, 1996; Davison, Kuang, & Kim, 
1999; Ding, 2006). Such a model can also be suitable for either growth curve analy-
sis or change analysis, which involves (1) estimation of growth rates in form of 
scale values and re-scaling them to facilitate interpretation in the context of both 
growth curve analysis and change pattern analysis, (2) estimating the individual dif-
ferences parameters and classification of individuals based on posterior probability, 
and (3) then predict growth or change using covariates. In the following sections, 
we discuss each of these points in more detail.

In the longitudinal analysis via multidimensional scaling model, the variables are 
defined as t measurements over time with the following equation:

 
m w x c ep t k pk k t p p t( ) ( ) ( )= + +å  

(11.1)

where mp(t) is the score of person p at time t; wpk is, a weight characterizing the pth 
individual with respect to the kth growth or change pattern. In other words, wpk maps 
the observed data onto the several growth trajectories or change profiles represented 
by dimensions. xk(t), the scale value, is the location at time t along trajectory or pro-
file (i.e., dimension) k. Essentially, what Eq. 11.1 says is that the observed change 

11.1 A Numerical Example
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or growth patterns can be accounted for by some latent change or growth patterns 
and error (i.e., uniqueness due to individual differences).

Since MDS is a distance model, Fig. 11.2 illustrates the concept of distance as 
measured by scale value to represent growth rates. In Fig. 11.2, a set of variables 
over a six- time points is plotted along one dimension.1 The differences between 
scale values of adjacent time points indicate the change (i.e., slope) for a given time 
interval. As can be seen in the figure, little or no growth occurs from time 1 to time 
2 (slope1 = 0.05), but a large change is observed from time 3 to time 4 (slope3 = −2.27). 
It should be noted that although the interval must be the same for each individual, 
time intervals do not need to be equally spaced because growth rate is the slope for 
each particular interval. If the time unit between time 1 and time 2 is 3 months but 
the time unit between time 3 and time 4 is 1 year, then slope1 indicates growth for 
the 3 months and slope2 is the growth for 1 year.

To interpret the scale value properly, the origin of the scale values needs to be 
“centered” accordingly. Because Euclidean distances are invariant with respect to 
the choice of an origin, in MDS analyses, the fit of the model to the distance data is 
invariant with respect to a translation of origin. Therefore, once an MDS solution is 
obtained, the zero point on each dimension can be re-set in one of several ways, 
depending on the desired interpretation of the level parameter. The particular way of 

1 In MDS, dimensions are defined as a set of m directed axes that are orthogonal to each other in a 
geometric space. In the applied context, dimensions may be viewed as underlying representations 
of how the points may form certain groupings, which would meaningfully explain the data. This 
concept is similar to latent classes or factors in mixture modeling. Distance is defined as distribu-
tion of points along k dimension among pairs of objects (e.g., time points) in a plane that shows 
changes.
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“centering” the origin of scale values along each dimension determines whether the 
model is a growth model or a change model.

If growth along the time dimension is to be studied, the MDS growth profile 
model can be created by centering the dimension zero point in a way that is mean-
ingful for growth curve analysis. Given the importance of the initial level in the lit-
erature on growth, the zero point can be set to correspond to the scale value at the 
first time period (i.e., xk(1) = 0 for all k), then scale values will indicate growth rates 
for different time intervals. The intercept, cp, becomes the expected or estimated 
score under the model for person p at the initial time t = 1; that is, the intercept cor-
responds to the initial level.2

On the other hand, if the data involve change, not growth, the above-mentioned 
method of centering would be inappropriate since a change pattern does not follow 
a monotonic (at least implicitly) trajectory as does a growth curve, especially when 
change patterns are cyclical or multidimensional. In this case, the zero point of scale 
values on each dimension is set equal to the mean scale value along that dimension; 
that is, mean of scale values = 0 for all k. If the zero point on each dimension is so 
defined, then scale values will indicate change patterns over time, and the intercept, 
cp, becomes the average score of person p over several time periods. In most MDS 
algorithms, the origin of the scale values is set in this way by program default. Thus, 
the scale values do not need to be re-centered.

 Estimates of xk(t), cp and wpk in MDS

Fundamentally, the estimation of xk(t), cp and wpk in MDS growth profile analysis is 
the same as that described in Chap. 10. For the purpose of convenience, we repeat 
the idea again below.

In an MDS analysis, the analysis begins with a matrix containing a distance mea-
sure defined over all possible pairs of variables. The distance module in many stan-
dard statistical packages (e.g. SAS, SPSS, R) includes an option for the computation 
of squared distance or distance measures defined over all possible pairs of variables 
over time.

When the computed distance matrix is submitted to a multidimensional scaling 
algorithm, either metric or nonmetric, the analysis will yield one dimension for each 
latent growth curve. A metric MDS algorithm is appropriate if it assumes that, 
except for the error, the distance data are linearly related to squared Euclidean dis-
tances. A nonmetric MDS algorithm is appropriate if it is based on the assumption 
that, except for the error, the distance data are monotonically related to squared 
Euclidean distances. The set of scale values xk(t) over time t along dimension k is an 

2 The issue of setting the origin for each dimension in the PAMS model corresponds to the “center-
ing” issue in multiple regression. That is, just as the interpretation of the intercept parameter in 
multiple regression changes depending on how the predictor variables are centered, the interpreta-
tion of the intercept parameter in latent growth curve models changes depending on placement of 
the zero point along each growth dimension.

11.1 A Numerical Example
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estimate of growth or change parameter. After we obtain the scale value, we can 
then estimate the person parameters, cp and wpk, through regression by treating scale 
values as independent variables and cp and wpk as the dependent variable.

Using the data from our example, the distance matrix based on the data was 
shown in Table 11.2.

This distance matrix was then used as input for nonmetric MDS analysis. As sug-
gested by Borg and Groenen (2005), the choice between nonmetric and metric MDS 
is not consequential since the results tend to be the same. The analysis was done 
using Proc MDS in SAS. The results of the MDS analysis shows that two-dimension 
solution is appropriate, as assessed by MDS fit index, Stress formula 1 (Kruskal, 
1964). The Stress formula 1 value was close to zero (S1 = 0.001), indicating that the 
rank ordering of the six distance data points could be perfectly reproduced by the 
model estimated one-dimensional solution. More importantly, the person fit index 
R2, which indicates the percentage of variance in the observed profiles that can be 
accounted for by the two-dimensional model, suggests that two latent growth profile 
patterns describe most of the observed individual growth pattern well, with median 
R2 being 0.96 in comparison to median R2 being 0.88 for one-dimensional model. 
Figure 11.3 shows the distribution of individuals’ fit for one- and two-dimensional 
models, which clearly indicates that most of the observed individual growth pattern 
are well accounted for by the two-dimensional model.

The estimated MDS scale values over four data points are presented in Table 11.3. 
These scale values are re-centered by re-scaling the initial estimates so that the zero 
point corresponds to the scale value of time 1. Fig. 11.4 shows the latent growth 
pattern based on the re-centered scale values in Table 11.3.

Table 11.2 Distance matrix of math score over 4 years

YEAR 97 98 99 00

97 0
98 25.74 0
99 37.28 24.87 0
2000 48.90 32.66 24.18 0

Fig. 11.3 Distribution of individuals’ fit measure for one- and two-dimensional model
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After we re-center the scale values, least squares estimate of the person param-
eters, cp and wpk, can be obtained through regression. Because the origin of the scale 
values was re-set to correspond to the scale value at time 1, the intercept can be 
interpreted as the predicted estimate of the initial level; that is, the estimated average 
score at time 1, which is 595.26 in our current example. The average of the profile 
weights was 20.07 for growth profile 1, with a standard deviation of 8.50, and 1.61 
for growth profile 2, with a standard deviation of 14.75, which indicated that there 
were quite amount of individual variation in growth profile 2  in comparison to 
growth profile 1. The correlation between the intercept cp (i.e., initial status) and the 
profile weight wpk was −0.50 for growth profile 1 and 0.04 for growth profile 2. 
These correlations indicated that for students who resembled growth profile 1, hav-
ing high initial math scores tended to make less gain in achievement over the four- 
year period, but for students who resembled growth profile 2, there was no relation 
between their initial achievement and later growth pattern.

Table 11.3 Scale Values for 
the Growth Pattern of Math 
Achievement Over 4 Years

Scale Value

Growth profile 1 Growth profile 2
Math 97 0.00 -- 0.00 --
Math 98 1.59 (45%) 0.59 (16%)
Math 99 2.44 (24%) −0.85 (−40%)
Math 00 3.57 (32%) 0.38 (35%)
Average growth rate 33% 4%

Note. Percentage in parenthesis is growth rate.
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 Interpreting Scale Values

In MDS analysis, MDS is based on distance models, and the distance between any 
pair of adjacent time points (tj and tj + 1) represents a growth rate for that time inter-
val, as shown in Fig. 11.4. Also, for a given time interval, and the time intervals do 
not need to be evenly spaced; the growth rate is the slope for each particular interval. 
Put another way, a scale value of, say, 1.59 at time 2 has the same meaning for a 
scale value of, say, 2.44 at time 3, which indicate an equivalent distance between 
two time points, as shown in Fig. 11.4, regardless of whether the time interval is 
equal or unequal. Thus, a particular set of scale values in MDS growth analysis 
indicates the changes over time in a specific behavior during a particular time frame.

However, MDS scale values are difficult to interpret because they have no upper 
or lower bound and can range from zero to ±∞. In our example, the interpretation 
of scale values of 1.59 at time two and of 2.44 at time three for growth profile 1, is 
not quite intuitive and it is hard to evaluate the magnitude of change. All we know 
is that the change is positive (i.e., growth), with a difference of 0.85 in scale value 
units between these two time points. Therefore, it would be good if we have a famil-
iar metric that can be used to evaluate the magnitude of growth based on scale 
values.

Since the scale values in the spatial distance model are of Euclidean space, indi-
cating the distance between two points, they satisfy the following three axioms 
(Davison, 1983):

 
d a b,( ) ³ 0,

 

 
d a a,( ) = 0,

 

 
d a b d b a, ,( ) = ( )  

where d represents the distance between points a and b. Thus, we can assume that 
when the scale values between any pair of time points are equal, they indicate no 
change. In contrast, when there is a difference in scale values between any pair of 
time points, it indicates that there may be a change in the behavior under inquiry.

Thus, we can calculate the percentage of growth in scale values between any pair 
of time points in the following fashion:

 1. Calculate the difference in scale values between time t and time t + 1 for each 
time interval.

 2. Calculate the total change in scale values over the entire time period under study 
using the absolute difference in scale values since the sign only indicates the 
direction of change. This is a total change score for each profile. For the current 
example, that total change score is 3.57 for growth profile 1 and 3.26 for growth 
profile 2.

11 Longitudinal Analysis Using MDS
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 3. Calculate the percentage of growth for each time interval by dividing the 
 difference in scale values by the total change score. The resulting number indi-
cates the percentage of growth with respect to the total amount of change.

In our example, the last column of Table 11.3 shows the growth rate in percent-
age for each of the three time intervals. The growth scale values depict the growth 
pattern in terms of three line segments. Each segment covers one time interval: 3rd 
grade to 4th grade, 4th grade to 5th grade, and 5th grade to 6th grade. Differences in 
growth rate over the several time intervals are represented by the slopes of the line 
segments for those intervals. For a given person who fits the model, growth is more 
rapid over intervals with steep line segments than over intervals with shallow line 
segments. As can be seen in Table 11.3, the growth rate for students who resembled 
growth profile 1 were largest (45%) from 97 to 98. In contrast, the growth rate for 
students who resembled growth profile 2 was 16% from 97 to 98 but negative 
(−40%) from 98 to 99. Thus, the average growth rate was 33% over 4 years for 
students resembling growth profile 1 but only 4% for growth profile 2.

 Estimating Profile Type of Individuals

Based on the least squares estimate of the person parameter wpk, individuals can be 
classified into each growth dimension or growth profile by using posteriori profile 
probability (Ding, 2007). For each individual p, the probability, p, of profile mem-
bership in profile k can be calculated as follows:
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where Pp(k|wpk) is the estimated probability of observed individual p belonging to 
profile k, given the individual’s profile match index or weight wpk, and πp is the esti-
mated proportion of profile variance among the total variance in the observed pro-
files for a given individual. The quantity pp(wpk|k) is the probability of observing wpk 
for a given profile k. In a sense, the probability pp(k|wpk) can be viewed as an approx-
imation of the posterior probability of profile type membership. The posteriori pro-
file probability is calculated after estimation of the growth or change pattern. The 

Table 11.4 Estimated Growth Pattern Weights of Math Achievement for Six Students

Case Intercept (cp) Profile Weight (wpk) R2 Profile Type

1 604.34 16.42 0.99 1
2 657.43 8.13 0.58 1
3 651.76 4.78 0.18 1
4 613.53 12.10 0.09 2
5 605.07 8.08 0.53 2
6 614.75 −23.73 0.99 2

11.1 A Numerical Example
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resulting profile type can then be used in subsequent analyses with covariates. For 
example, we could investigate the relationships between growth profile type and the 
covariate of sex or motivation level.

In our example, 307 students were classified as growth profile 1 type, and 30 
students were classified as growth profile 2 type. To illustrate observed individual’s 
growth profile types, Table 11.4 shows the estimated intercept, profile weights, and 
R2 for six selected students. Fig. 11.5 shows their observed growth profiles by pro-
file type. As can be seen in Fig. 11.5, students 1 and 6 closely resembled their latent 
profile type (with high fit index). In contrast, students 3 and 4 did not resemble their 
latent profile type (with low fit index). Students 2 and 5 were somewhere between 
with respect to their latent profile type (with moderate fit index).

To summarize, MDS analysis of longitudinal data proceeds in the following 
steps. First, distance measures are computed over all possible pairs of variables 
over time. These distance measures are analyzed via MDS to yield estimates of the 
parameters xk(t) in our model. In the second step, if the data are growth in nature, the 
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zero point along each dimension is re-set so that the estimates of the intercept 
parameters will represent the initial level. In contrast, if the data are change in 
nature, the zero point along each dimension is set equal to the mean scale value of 
that dimension so that the estimates of the intercept represent the average score 
over time, and the scale values indicate change patterns along that dimension or 
profile over time. Third, we calculate the percentage growth from the estimated 
scale values. Fourth, the person parameters cp and wpk are estimated by regressing 
each person’s raw data onto the MDS scale values. Fifth, posteriori profile proba-
bility is estimated for each individual to classify him or her into a growth or change 
profile type.

11.2  An Example of Change Profile Analysis

In the above sections, we discussed how to use MDS for growth analysis. In this 
example, we show how MDS works with change data, which identify underlying 
cyclical patterns such as mood change. The major difference between these two 
examples is concerning the centering of scale value. For growth data, scale value is 
typically centered so that the level parameter (i.e., average score) corresponds to the 
initial score (i.e., time 1 score), while for change data, scale value is typically cen-
tered so that the level parameter is the average score over time. The other aspects of 
analysis remain the same.

To illustrate an application of change data, data on adolescent (n = 30) reported 
mood status was used (Petersen, 1989). Specifically, we demonstrate one mood 
change variable---drowsy-alert --- over the period of 1 week, collected by the pro-
cedures of the Experiential Sampling Method (ESM) (Csikszentmihalyi & Larson, 
1987). Specifically, over a period of 1 week the students were beeped 7 times per 
day at the following time intervals: between 7:30 am and 9:30 am, 9:30 am and 
11:30 am, 11:30 am and 1:30 pm, 1:30 pm and 3:30 pm, 3:30 pm and 5:30 pm, 
5:30 pm and 7:30 pm, and 7:30 pm and 9:30 pm. In addition, the students were 
asked to report their mood status on a 7-point semantic differential scale (Osgood, 
Suci, & Tannenbaum, 1957) before they went to bed and right after they got up in 
the morning. The exception was on Monday morning due to logistical reasons, 
where the students started to report their mood status from 9:30 am on. Thus, there 
were 61 data points collected on the mood variable. The variable was scaled so that 
a high score indicated a high degree of drowsiness and a low score indicated a high 
degree of alertness.

To facilitate the analysis, the data on drowsy-alert variable was grouped into 
three-time data points per day by averaging the data points of the morning, after-
noon, and evening/night, leading to one data point for the morning, one data point 
for the afternoon, and one for the evening and night. Thus, for a given student, there 
were 21 data points (3 times a day for 7 days) used in the example.

As in the case of MDS growth profile analysis, the model presented in Eq. 11.1 
was used to model drowsy-alert change patterns. The scale values were estimated 

11.2 An Example of Change Profile Analysis
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using the nonmetric MDS procedure in SAS. As discussed above, the zero point of 
scale values along each dimension in change profile analysis is set equal to the mean 
scale value along that dimension. Thus, the level parameter estimate cp indicates the 
average score over 21 data points for each person; the scale values indicate the 
change patterns rather than the growth in the data.

Because of lack of theoretical articulation with respect to mood swing in the 
normal adolescent population, it was difficult to determine how many dimensions 
were needed to describe the drowsy-alert change patterns based on theories ade-
quately. The MDS fit index, Stress formula 1 value, was 0.32 for a one-dimensional 
solution, 0.14 for a two-dimensional solution, 0.08 for a three-dimensional solution, 
and 0.06 for a four-dimensional solution. The person fit index R2 were about the 
same for three- and four-dimensional solution. The median R2 was 0.56 for the 
three-dimensional solution. Judging from these results, it seemed that the 
3- dimensional solution might be better in approximating the data without overfit-
ting the model. The moderate size of R2 might indicate that there might be more 
individual variations or more measurement errors in the data that could not be 
accounted for by the model.

Table 11.5 shows the change scale values for the 3-dimensional solution. 
Figs. 11.6, 11.7 and 11.8 show the plot of each change profile (i.e., dimension). As 
shown in these figures,

Table 11.5 Scale Values for Drowsy-Alert Change Profile Patterns

Dim1 Dim2 Dim3

Monday a.m 1.749 2.375 −1.703
p.m 1.459 0.717 0.277
Eve./night −2.551 1.225 −0.798

Tuesday a.m −1.063 2.832 1.190
p.m 0.574 0.284 1.202
Eve./night −1.495 0.544 −0.125

Wednesday a.m 0.048 0.387 0.661
p.m 1.381 −0.594 −0.586
Eve./night −0.722 −0.876 −0.177

Thursday a.m 0.216 0.443 0.679
p.m 0.943 −0.772 −0.002
Eve./night −1.760 −1.584 0.631

Friday a.m 0.204 −0.373 0.588
p.m 0.675 −0.304 0.736
Eve./night −0.894 0.240 0.055

Saturday a.m 1.772 −0.449 0.081
p.m 1.204 −0.591 −1.225
Eve./night −0.880 −0.781 −2.221

Sunday a.m 0.532 −0.640 0.106
p.m 0.386 −1.134 1.117
Eve./night −1.777 −0.949 −0.486

11 Longitudinal Analysis Using MDS
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Dimension 1 seemed to indicate a daily cycle of mood change: daytime 
 drowsiness versus evening/night alertness. Students who resembled this profile 
would be drowsier during the daytime and more alert at evening/night time. Whereas 
Dimension 1 seems to represent a daily cycle of change, Dimensions 2–4 seem to 
represent weekly cycles. Dimension 2 shows a weekly change pattern that gradually 
passes from highest drowsiness on Monday to lowest drowsiness (or highest alert-
ness) on Sunday. Respondents who resemble this profile pattern would manifest 
their highest degree of drowsiness early in the week and their highest degree of 
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Fig. 11.6 Dimension 1: A daily cycle of mood change of daytime drowsiness versus evening/night 
alertness
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Fig. 11.7 Dimension 2: A weekly change pattern that gradually passes from highest drowsiness 
on Monday to lowest drowsiness (or highest alertness) on Sunday
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alertness late in the week. Dimension 3 seems to represent a different weekly mood 
cycle with the highest drowsiness on Tuesday and Sunday and lowest drowsiness on 
Monday and Saturday. Such respondents are most alert on the first day of the week 
and the first day of the weekend.

These drowsiness findings demonstrated a MDS analysis of change, as opposed 
to growth. All three dimensions were interpreted in terms of change cycles. One 
interesting feature of the analysis is the detection of cycles with different periodici-
ties. That is, Dimension 1 seems to reflect a cycle with a period of 1  day. The 
remaining dimensions appear to cycle with a period of 1 week. Their cyclical form 
differs sharply from the monotonically increasing (decreasing) form of growth (or 
decline) patterns.

11.3  Conclusion

In recent years, latent growth curve modeling has been widely used in longitudinal 
research. In this chapter, we discussed how to use MDS for analysis of longitudinal 
data with respect to growth or/and change. It was shown that if data were not 
growth in nature, latent growth modeling might not effectively handle the cyclical 
patterns in the data, as shown in the second example. In contrast, MDS is an explor-
atory analysis and can accommodate both growth and change in the data by appro-
priately setting the origin of the scale values. Thus, MDS analysis can be adapted 
to either model growth curve or model change but not growth, depending on the 
nature of the data.
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Fig. 11.8 Dimension 3: A weekly mood cycle with highest drowsiness on Tuesday and Sunday 
and lowest drowsiness on Monday and Saturday
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The MDS growth/change analytical approach offers several advantages. First, 
the nature of the underlying growth or change patterns is determined by the data not 
researchers, although hypothesis testing approach can be performed via the method. 
While a priori specification of a unidimensional growth pattern model is often fea-
sible, the difficulty of specifying the growth or change patterns a priori increases as 
the number of dimensions increases, as illustrated in the adolescent mood example 
above. Second, by appropriately setting the origin of the MDS solution, the approach 
can accommodate any of several desired interpretations for the intercept parameter 
estimate. Third, the assumptions are minimal. It assumes that the observed data are 
related to growth or change patterns by the model in Eq. 11.1 and it assumes homo-
geneity of error variances over time. Fourth, the approach can accommodate raw 
scores just as easily as deviation scores or Z-scores. Finally, the approach can pro-
vide level and growth pattern parameter estimates for each individual, thereby facil-
itating the study of the parameters themselves and their relationship to covariate. 
The approach provides estimates of model fit for each individual.
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Chapter 12
Testing Pattern Hypotheses with MDS

Abstract Discuss how to conduct confirmatory MDS analysis of profile  similarities 
in the context of configuration comparison. Model fit between hypothesized and 
observed profiles can be assessed with respect to local fit index rather than global fit 
index. Local fit can be assessed using correlation r, t-test or ANOVA, and F-test. An 
example is provided to demonstrate the idea.

Keywords Profile similarity · Local fit · Global fit

Traditionally, multidimensional scaling (MDS) is used in an exploratory method to 
detect and depict the patterns in the data. Much of the earlier efforts were devoted 
to discussion of the technical aspects of MDS estimation; that is, how to better 
recover the latent configuration based on the data such as avoiding degenerative 
solution or obtaining ‘true’ configuration. There are also discussions on studying 
configuration similarities and external MDS analysis that uses external information 
to study or interpret the properties of the MDS solutions. Few studies have dis-
cussed this aspect of the MDS analysis with respect to testing hypothesis (i.e., con-
firmatory analysis). However, the concept of configuration similarities and external 
MDS analysis can be extended to hypothesis testing since the idea of confirmatory 
analysis is to compare your hypothesis with the data and to examine the degree of 
similarities or fit between the two (i.e., hypothesized vs. observed). This is the same 
as what structural equation modeling tries to accomplish. In Chap. 9, we have dis-
cussed the process and procedures of comparing similarities and differences among 
a set of configurations. In this chapter, we specifically illustrate how to test growth 
or change profile patterns using MDS analysis and discuss the hypothesis testing of 
growth profiles rather than comparison among configuration.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78172-3_12&domain=pdf
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12.1  Basic Ideas of Pattern Hypothesis Testing in MDS

The idea of hypothesis testing is and should be straightforward. We have a  hypothesis 
about a particular behavioral phenomenon and we want to see if our hypothesis can 
be supported by the data. In other words, if our hypothesis is consistent with data, 
our hypothesis is confirmed, at least by the data at hand. If not, more evidence is 
needed. The operationalization of confirmatory analysis is done by comparing two 
or more sets of profiles via correlation estimated from the model or our hypothesis 
with those computed from the data. Ideally, these two sets of configurations should 
match, indicating that data support our hypothesis.

Borg et al. (2013) classify confirmatory MDS into two types: regular confirma-
tory MDS and weak confirmatory MDS. A weak confirmatory MDS is the one in 
which the hypothesized configuration pattern is used as initial starting value for 
estimating the latent configuration. Since the goodness-of-fit of the final estimated 
configuration is partially based on the initial starting value, a quick convergence and 
goodness of fit may suggest the hypothesized configuration is consistent with the 
data. In my view, however, this is not really confirmatory since the extent to which 
observed data match the configuration expected by theory is unknown or inconclu-
sive. Thus, when I speak of confirmatory MDS, it refers to regular confirmatory 
MDS in which we directly compare configurations or certain aspects of configura-
tions expected by theory or previous findings with observed data.

Some complexity may arise in conducting confirmatory MDS. One issue is how 
to pre-specify a configuration in a two-dimensional space since we do not often 
define a set of behaviors as spatial configuration in most studies of social sciences. 
Thus, to translate theories into a configuration may not be so easy. One way to do so 
is to use clustering approach, in which we could pre-specify the configuration by 
clustering certain behaviors together in a two-dimensional space. Then we can com-
pare the configurations from the data and generated by theory, as we discussed in 
Chap. 9.

However, in profile analysis, either cross-sectional or longitudinal profile analy-
sis, it can relatively be easier to pre-specify a behavioral profile based on theory or 
previous findings. For example, in longitudinal profile analysis we can pre-specify 
a growth trend or change pattern of student learning achievement since we often 
expect certain achievement patterns based on previous findings. Thus, I think that 
the utility of confirmatory MDS is mainly in profile analysis.

Another issue of confirmatory MDS is what to compare or test. We can certainly 
compare observed distance matrix with estimated distance matrix from the model. 
This may be the most straightforward approach and very similar to comparing cova-
riance matrix in confirmatory factor analysis.

Literature also discusses comparing or testing similarities of profiles, which 
becomes more complicated. This complexity arises with respect to level, shape, and 
scatter of the profiles and statistical indexes need to take into consideration of all of 
these aspects. Here are some examples of profiles:

12 Testing Pattern Hypotheses with MDS
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• How similar are an individual’s self-report of their own self-image traits, com-
pared to ratings on the same traits made by another?

• How close is a student to an empirically established “risk profile” consisting of 
specific values for drug use, parent relations, and psychological distress such as 
anxiety or loneliness?

• How similar is an individual with respect to a set of behaviors such as math 
scores at several time points (e.g. 5 times)?

Consider two sets of scores on self-image trait over a period of 7  months in 
Fig. 12.1; one set is self-reported, and the second set is parent’s report about the 
child.

The first thing we notice is that both raters agree on the rank ordering of the trait 
for the children. We call this the shape of the profile. However, child and parent 
disagree on the average level of the trait in the target over time. We call the mean 
level of each profile its elevation, which is just the mean of the elements in the vec-
tor (i.e., the average of a set of scores). Apparently, parents report a higher level of 
self-image of the child over time. A third element to profiles is called scatter, which 
is the standard deviation of elements in each vector about the vector’s mean. Thus, 
in comparing these two profiles, we need to consider shape, level, and possibly scat-
ter. A measure of profile similarity or equivalence should take these three elements 
into consideration, as often described in the literature.

In confirmatory MDS analysis, we often have a known profile pattern (i.e., 
expected profile), and we want to test whether the observed profile is the same as the 
one expected by theory. In this case, we need to test both shape and level. Please 
note that as we mentioned previously, we can test two distance matrices, but the 
distance matrix is determined by the shape of the profile, not by level. Therefore, in 
confirmatory MDS, we need to be careful as to what we want to accomplish. I will 
discuss these specific issues involved when we discuss the methods of testing the 
hypothesis about profiles.
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12.2  Methods for Hypothesis Testing of Profiles

There are several ways we can use to conduct confirmatory MDS. Each method may 
focus on different aspects of testing two or more latent profiles. One way to do so is 
by using Procrustes analysis as we discussed in Chap. 9. For purpose of conve-
nience, we repeat some of these materials again to remind us about the fact that 
comparing configurations can be used to hypothesis testing. Briefly, Procrustes 
analysis (Gower 1975) involves moving hypothesized configuration(s) X or 
observed configuration matrices into closest conformity and form a new configura-
tion matrix Z, called “centroid configuration,” allowing only rotation, reflection, 
rescaling, and translation of origin. The centroid configuration is best-fitting con-
figuration since each of its points is a least-square fit to the corresponding points of 
the original configurations. Various names are also used for this centroid matrix, 
such as average configuration, group configuration, compromise, or consensus con-
figuration. Interested readers can find the iterative procedure for producing the cen-
troid configuration described by Gower (1975).

The goodness-of-fit of a set of models (i.e., hypothesized vs observed) can be 
examined in is terms of model similarity index P0 (basic model), P1, P2, P3, and P4 
models. P0 model involves “admissible transformation” in which the relative dis-
tances are unchanged. The other models involve “inadmissible transformation” in 
that the original relative distances are changed. P1 and P2 are distance model in 
which dimensional weighting are applied to either centroid configuration or each 
configuration in order to move centroid configuration into maximum conformity 
with the original configuration. Similarly, P3 and P4 are vector or perspective model 
in which vector weighting are applied to either centroid configuration or each con-
figuration in order to reach such conformity.

Briefly, P1 model (the weighted distance model with fixed dimensional orienta-
tion) rotates the centroid configuration in such a way so that dimension weights in 
each configuration are estimated accordingly. This is equivalent to INDSCAL anal-
ysis. P2 model (the idiosyncratically rotated and weighted distance model) differen-
tially rotates and estimates the dimension weight of centroid configuration to fit 
each configuration idiosyncratically. This is equivalent to IDIOSCAL analysis 
(Carroll and Wish 1973).

P3 model (the weighted vector model with fixed origin) is weighted vector model 
in which a set of vector weights consistently transform the centroid configuration 
into as close as possible to each individual configuration. For any configuration, the 
closer the weights are close to +1, the more that each configuration resembles the 
centroid. The large size or sign of the weights may indicate where the differences 
are located, and the vector weights are comparable across each configuration. When 
vector weight of a variable point varies across configurations, it indicates that this 
variable is least stable in the configuration and should be further studied. This is 
very useful to identify where the mis-fits are when testing configuration hypothesis; 
that is, it may provide insight into the detail about the source of variation in 
configuration.
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P4 model (the idiosyncratically translated and weighted vector model) is to dif-
ferentially translate and weight each individual vector to fit each configuration, 
which is termed as the “point of view” model in that the idiosyncratic origins can be 
directly compared. We can compare whether two groups of individuals differ sig-
nificantly in their perspectives.

These models can be used for different purposes. But for hypothesis testing of 
configuration or profile equivalence, I would suggest using only basic model P0 
index because P0 does not distort the relative distance of points. We may use the 
other models when we want to investigate why or how there are some differences in 
the profiles.

12.2.1  Testing the Hypothesis of Profile Equivalence

Let us repeat the example shown in Fig. 12.1 and Table 12.1 shows the correspond-
ing rating by parents and child self on his/her self-image trait.

As we mentioned previously, the profile equivalence involves the profile’s shape, 
level, and scatter. In this example, the shape of these two profiles seems to be the 
same, but the level of the self-image trait seems different, with parents reporting a 
higher level of the child self-image. In the literature, it was said that a measure of 
profile equivalence should take into consideration of both shape and level (i.e., the 
average score of each vector of ratings).

Various measures of profile equivalence have been proposed. Among them 
includes correlation, intra-class correlation, Cronbach and Gleser’s D or D2 (1953), 
or McCrae’s rpa for “r profile agreement (McCrae 1993). Each of these indices has 
advantages and disadvantages. For example, correlation is perfect for assessing 
similarity of shape, but not level or scatter. Cronbach and Gleser’s D or D2 is a mea-
sure of geometric distance between vectors, which has no significance test and is 
impacted by extreme scores. McCrae’s rpa is developed to deal with this problem 
specifically in personality profiles by weighting disagreement at extreme levels of a 
variable less, and crediting agreement in these extreme values more. However, 
because of this weighting, scores that are in quite close agreement but near the 
middle of the distribution will have low rpa. In addition, it is difficult to evaluate 
“good agreement”.

Table 12.1 Rating by 
parents and child self on his/
her self-image trait over time

Time in month Parent Child

1 3 2.4
2 1 0.8
3 3 2.4
4 4 3.2
5 4 3.2
6 3 2.4
7 2 1.6

12.2 Methods for Hypothesis Testing of Profiles
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My view on the measure of profile equivalence is this: why do we have to find a 
global index, which may not be useful? For instance, if the global index is high, it 
indicates that two profiles are equivalent with respect to shape, level, and scatter. 
But if the global index is in the middle or low range, what does it indicate? It is pos-
sible the shape is the same but not the level or scatter. It could also be any combina-
tion of these. Thus, a global fit index is not very helpful in identifying where the 
misfit locates even if we can develop such a measure by taking into consideration of 
shape, level, and scatter.

I think that the solution is simply--focusing on local fit index. If all local indices 
show a good fit, then the profile equivalence is supported. If some local fit index is 
not acceptable, we will know what the problem may be. Thus, I suggest that we use 
correlation rp as a measure of profile shape equivalence, t-test or analysis of vari-
ance (if more than two profiles involved) for level difference, and F-test for scatter 
difference. These tests are well developed and measure each aspect of profile equiv-
alence. A global measure may look fancy and impressive, but these local fit indices 
may just do a very good job.

Using the data from our example in Table 12.1, we get the follow local fit indi-
ces: [rp = 1, tl = 1.10, p = 0.029, Fs(6,6) = 1.56, p = 0.30]. These results indicate that 
the two profiles are equivalent with respect to shape, level, and scatter, indicating 
parent and child have the same assessment of self-image trait. Thus, the hypothesis 
of profile equivalence is supported.

It should be noted that testing profile equivalence with respect to level and scatter 
is impacted by the scale of the profile involved. Thus, the scale metric of the profiles 
should be the same (e.g., scale is from 0 to 5 for both profiles). If the profile scale is 
different, the shape may be the same but the level and scatter will be different, 
although there may not be any real differences between two levels or scatters.

12.2.2  Testing a Hypothesis of Specific Patterns

In above sections, we discussed hypothesis testing of configuration or profile equiv-
alence based on observed data. We did not use hypothesized configuration or profile 
because it is sometimes difficult to pre-specify configuration. Whether the configu-
ration or profile is pre-specified or not, the testing procedure we discussed above is 
the same. But we need to be cautious about the scale of the profiles and make sure 
that they are on the same scale before testing level and scatter equivalence of the 
profiles involved.

Although pre-specifying a configuration is not so common, it is relative easy to 
pre-specify growth profiles based on some theory or previous finding. For example, 
we can hypothesize certain growth patterns based on our expectation or previous 
findings. Also, it is important to note that in this case, we may mainly be interested 
in shape of the growth or change rather than difference in level. Let us use an exam-
ple to illustrate.

12 Testing Pattern Hypotheses with MDS
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The example comes from the Motor Performance Study at Michigan State 
University. For the univariate growth modeling analysis, Park and Schutz (2005) 
used the jump-and-reach variable (JAR) that was repeatedly measured from 204 
male children at five occasions from ages 8–12 year. They analyzed the correla-
tion matrix using structure equation model and reported the linear growth model 
fit the data best, with the average jump growth of 1.02 per year from ages 8–12. 
Based on this finding, we expect children’s ability to jump should be a linear 
increase with age.

In order to test this hypothesis, we collected data on 50 children of five age 
groups: ages 6, 7, 8, 9, and 10. This is not ideal since it is not truly longitudinal 
rather a cohort sequential design to save time and resources. Given the physical 
nature of normal development of children, cohort sequential design roughly approx-
imates true longitudinal design of the same children. Thus, we scaled these jump 
data using MDS analysis.

There are two ways to perform this kind of confirmatory MDS analysis. The first 
one is to compare two profiles and test for growth pattern equivalence between 
hypothesized one and observed one using the method discussed above. The second 
one is to use maximum likelihood MDS analysis program such as Proscal (MacKay 
and Zinnes 2014) to test the same hypothesis. Let us start with the first method, 
which is relatively simply. Based on the means and average growth rate of 1.02 per 
year reported by Park and Schutz (2005), we pre-specified the linear growth trend 
as shown in the second column of Table 12.2.

We scaled the data using MDS analysis, and the result of the scale values are 
shown in the third column of Table 12.2. To test growth profile equivalence, correla-
tion between the two profiles was computed, and rp  =  0.98, indicating that the 
hypothesized growth profile was supported by the data. It should be noted that the 
scale values obtained from MDS analysis were re-scaled to have a similar metric. 
But this re-scaling is not affecting the relative distance, nor the shape of the profile. 
Again, since we are only interested in shape of the profile, we are not concerned 
about the level and scatter of the profiles, which are affected by the re-scaling of the 
scale value. If we are interested in all three aspects of the profile equivalence, we 
should put them on the same metric before doing MDS analysis. But in longitudinal 
analysis, we focus primarily on shape and the initial value.

The second method of confirmatory MDS analysis is to use maximum likelihood 
MDS analysis (ML-MDS), which naturally fit for confirmatory analysis. In addition 
to testing shape,

Table 12.2 Hypothesized 
and observed growth trend 
over five-time points

Time Hypothesize trend Observed trend

1 9.800 5.62
2 9.996 7.46
3 12.220 10.16
4 13.066 12.36
5 14.290 13.75

12.2 Methods for Hypothesis Testing of Profiles
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ML-MDS also provides for the testing of hypotheses concerning the variance 
structure of the profile among other things such as dimensionality of the space, 
metric properties of the space, the existence of a common space for proximity and 
hedonic rating, dependent or independent sampling and the structure of the mea-
surement model. Typically, the question of whether a complex model is signifi-
cantly better than the simpler model can be answered by using a likelihood ratio test 
or information criterion statistics.

In the current example, we used the same scale values in Table  12.2 as our 
hypothesized configuration profile, which was then tested against the estimated pro-
file from the data. We tested the degree of similarity between the hypothesized 
growth profile and the growth profile derived based on the data. The results of the 
analysis using Proscal program indicated that the match between two profiles was 
very high, r = 0.98, suggesting the hypothesized growth profile was supported by 
the data. Fig. 12.2 shows the two profiles estimated using Proscal.

12.3  Conclusion

In this chapter, we discussed how to conduct confirmatory MDS analysis. As it may 
be apparent to you by now, the procedure and process of confirmatory analysis 
using MDS model is different from that of commonly used method such as struc-
tural equation modeling, although the concept of confirmatory analysis is identical. 
Most researchers are familiar with structural equation modeling approach to confir-
matory analysis, but much less familiar with MDS approach. The take-home mes-
sage for conducting MDS confirmatory analysis is that we are testing to two (may 
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be more) configurations or profiles, with one of them being hypothesized or 
 pre- specified. Then we assess the degree of similarity or equivalence between them 
using correlation, t-test, or F-test, depending on what aspect of similarity we would 
like to test. The process is simple and straightforward and much less complex, 
which may seem too boring or less exciting, particularly to research in social sci-
ences or education. But we should know why we are conducting research from the 
first place rather than focusing on new or complicated analytical methods. If the 
methods fit the purpose of our study, they are appropriate, regardless of how simple 
or complicated they are. In this case, simpler methods may be better.
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Chapter 13
Mean-Level Change vs. Pattern Change

Abstract Illustrate the similarities and differences between MDS growth analysis 
and growth mixture modeling approach using structural equation modeling. The 
key point is that MDS focuses on pattern with mean-level removed, while growth 
mixture modeling focuses on mean-level. Although the results from both approaches 
may be the same at times, two approaches may provide different aspects of growth 
or change. An example is provided to demonstrate these two approaches.

Keywords Growth profile analysis · Mean-level change · Pattern change

In recent years, statistical methods for latent growth modeling have been com-
monly used in educational and psychological research. In Chap. 11, we discussed 
how MDS can be used to study latent growth profile. One issue that has not been 
explicitly discussed is the level vs. pattern differences when modeling profiles 
(either longitudinal or cross-sectional). In this chapter, we discuss how MDS pro-
file analysis focuses on patterns per se in the data, not on level patterns, and illus-
trate how MDS growth pattern analysis may differ with respect to modeling changes 
in level, as commonly done with other methods, given that all these methods have 
similarities in terms of model estimation, latent groups identification, classification 
of individuals, and the interpretation of growth trajectory. The goal is to show that 
MDS models changes in shape not in elevation, a differentiation should be made 
(Skinner 1978).

13.1  Differentiating Level, Scatter, and Shape of a Pattern

For the purpose of convenience, we repeat the equation of MDS profile analysis as 
discussed in Chap. 10:

 
m w x c esv k sk kv s sv= + +∑  

(13.1)
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where msv is an observed score of person s on variable v, wsk is profile match indices 
for person s on dimension k, that is, wsk is a participant by dimension matrix, with 
the order of s participants by k dimensions; xkv is a variable location parameter (i.e., 
scale value or coordinate) along dimension k, cs is a level parameter, and esv is an 
error term. For Eq. 13.1, we have the constraints for scale values as:

 v kv for all k∑ =x 0
 

(13.2)

This constraint specifically states that each profile is ipsative; that is, the mean of 
the scores in each profile is zero. Thus, profiles will produce profile patterns (scatter 
plus shape), but not the mean (i.e., level) of the profiles, which is reproduced by 
level parameter cs. The implication of this constraint is that the growth profiles from 
MDS analysis may differ from those that are based on models explicitly using level 
information; that is, MDS profile analysis depicts growth patterns of scatter and 
shape, while the other growth modeling analysis depicts growth patterns of level. 
We will discuss this difference in the context of growth mixture modeling.

13.2  A Brief Overview of Growth Mixture Modeling

One particular kind of latent growth curve modeling1 receiving more attention in 
recent years is growth mixture modeling (GMM). It is beyond the scope of this 
chapter to introduce the details of GMM. Those unfamiliar with GMM may wish to 
consult Jung and Wickrama (2008) or Ram and Grimm (2009) for a good introduc-
tion. Suffice it to say here, GMM is an extension of single-population latent growth 
models, combining latent class analysis and latent growth curve modeling into one 
coherent modeling system. It is particularly useful when the subpopulation is unob-
served or unknown a priori and is designed to identify and describe qualitatively 
distinct classes of cases with respect to change in level, allowing different growth 
parameters across the classes. As such, it can be employed to test the hypotheses of 
(a) whether there are different change trajectories actually present in the clinical 
population and (b) if they exist, whether the trajectories are defined by different 
initial growth status (i.e., initial level) as well as later growth rates in level. Ram and 
Grimm (2009) specify GMM model as follows:

 
y f f eit ic ic ct ic ct ict= + +( ) Σ π λ λ0 0 1 1  

(13.3)

where yit is an individual’s score y at time t. f0ic and f1ic are latent growth factors that 
represent intercept (i.e., initial score) and slope (i.e., growth shape) of latent class c 

1 As indicated by Ram and Grimm (2009), latent growth modeling is a generic term that include 
various similar growth modeling approaches, such as latent trajectory analysis, latent curve model-
ing, mixed effects models of change, multilevel models of change, etc.

13 Mean-Level Change vs. Pattern Change
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to which individual i belongs. λ0ct and λ1ct are factor loadings corresponding to the 
two growth factors. eict is a time-specific residual. πic is the probability that individ-
ual i belongs to latent class c, with 0 ≤ πic ≤ 1, and Σπic = 1. Estimated posterior 
probabilities for each individual’s class membership are derived as πic = p(kic = 1|yi), 
with the latent class membership indicators, kic, being 1 if individual i belongs to 
class c, and 0 otherwise. The objective of GMM is (1) to represent across-class dif-
ferences in the initial score and the growth shape, (2) to determine the means of 
growth factors, and (3) to establish variance and covariance of the growth factors.

As indicated by Jung and Wickrama (2008), there are three main areas of GMM 
that attract much of the current debates: (1) identification of latent classes, (2) which 
model fit index to use, and (3) the problem of convergence. The first two issues are 
not unique to GMM since many other modeling methods encounter the same issues. 
In this regard, good research should focus on questions that prompt the clinical 
hypotheses. We need to judge the models by whether they conform to our theories. 
The third issue is more challenging since the computational load of GMM estima-
tion is very heavy and mathematically modeling a sample distribution that consists 
of a mixture of many different kinds of sub-distributions is extremely difficult (Jung 
and Wickrama2008). As a result, some models are less stable or difficult to estimate. 
Accordingly, Wang and Bodner (2007) recommend using GMM in a confirmatory 
manner rather than exploratory manner in which the model may undergo many 
modifications to find a better fit.

13.2.1  Growth Mixture Modeling Via MDS

Since Chap. 11 discusses the analytical approach of growth and change via MDS, in 
this chapter we only focus on some key differences between MDS approach and 
GMM using a SEM approach. As discussed above, multidimensional scaling growth 
pattern analysis is an exploratory method that focuses on modeling change in pat-
tern only, with level being removed. This is the chief difference between the two 
approaches. That is, a key distinction between GMM and MDS is that MDS does 
not accommodate level differences, while GMM can be used with a random inter-
cept factor within-class to account for differences in level, with differences in shape 
being accommodated through class level differences. Although MDS analysis has 
the same objective as GMM, its methodological foundation is a geometric or spatial 
representation of relationships among repeated measures. As discussed in Chaps 10 
and 11, dimensions represent profile, and thus a dimension from MDS growth anal-
ysis represents changes in pattern (i.e., scatter and shape) when the variable under 
study is repeated across time. In other words, in MDS models, each dimension k 
represents a growth curve, or an exemplar of a particular arrangement of scores of 
different time points, called a prototypical growth pattern or latent growth profile. 
This growth curve is quantified by a set of scale value estimates xkt from the 
Euclidean distance model in MDS analysis. In a sense, this set of scale value esti-
mates can be considered a set of polynomial contrast coefficients, which can be 
used for hypothesis testing in a subsequent analysis.

13.2 A Brief Overview of Growth Mixture Modeling
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For convenience, we repeat the equation of the MDS growth pattern model in 
Chap. 11. The model is:

 
y c w xit i k ik kt it= + +∑ ε

 
(13.4)

where yit is the observed score for individual i at time t. xkt is a scale value, as 
described previously. ci is a level parameter or initial score for person i if the average 
scale value is centered on the first time of measurement. εit is an error term for per-
son i at time t. wik represents the individual’s profile match index that quantifies the 
degree to which an individual manifests the identified growth profile. First, MDS 
analysis involves estimating scale values from a distance matrix computed for every 
pair of time points, ti and ti + 1. The distance data for time points ti and ti + 1 is the dif-
ference between the scores yi at times ti and ti + 1 for person i.

MDS growth pattern analysis to modeling growth mixture, as we described 
above and in Chap. 11, has three main aspects that differ from commonly discussed 
GMM. First, the estimation of growth pattern or profile, as indicated by scale val-
ues, and the number of growth classes (i.e., growth profile type), as indicated by the 
number of dimensions, are different. For GMM, latent class analysis model is first 
used for classification of individuals and a latent class indicator variable is com-
puted. The growth model is then estimated using this information (e.g., Asparouhov 
and Muthén 2012; Vermunt, 2010). MDS growth pattern analysis takes the reverse 
approach, first identifying the typical growth patterns or profiles and then determin-
ing how much each individual resembles a given growth pattern or profile. However, 
both approaches can be subject to classification error.

One practical implication of this difference is that the model building process for 
MDS growth pattern analysis is easier to implement as one only needs to specify a 
set of 1 to k dimensional solutions and choose a k dimensional solution that best 
approximates the data. The measure for model selection is Stress value (Kruskal 
1964) or R2, an index of the proportion of variance in observed growth profiles 
accounted for by the model. There is no need to specify a series of models with 
respect to growth trajectory and number of classes, as recommended by Muthén and 
Muthén (2001) and Ram and Grimm (2009) for GMM analysis.

Second, and more importantly, MDS growth pattern analysis typically models 
change in patterns rather than in levels that mirror the observed trajectories. This is 
because the growth profiles of MDS solutions have a mean of zero and are repre-
sented as deviations about the growth profile’s mean of zero. Positive growth profile 
scale values signify scores above the growth profile’s mean; negative scale values 
signify scores below the growth profile’s mean. Thus, the MDS solutions display the 
patterning of scores in a prototypical growth profile but do not display elevation or 
level information (Davison et al. 1996). In most GMM analysis, growth trajectory is 
typically represented by a regression model, either linear or nonlinear, which indi-
cates the change in level. This is a key difference between the two approaches as 
discussed previously. One implication of this distinction is that MDS and GMM 
analysis may result in a different number of growth classes/types. Specifically, 

13 Mean-Level Change vs. Pattern Change
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when change in pattern displays the same information as the level, two approaches 
reach the similar findings. But if there are fewer changes in pattern than in level, 
then MDS growth pattern analysis may results in a fewer growth classes/types than 
that from GMM analysis.

13.3  Numerical Examples

Two hypothetical examples and one actual data are used to illustrate the points dis-
cussed in the previous sections. In the first example, we simulate a dataset (n = 500) 
with two latent classes that have only one growth pattern but have differences in 
growth levels. That is, given one overall growth pattern (an increased trend), the 
individuals in each latent class may differ in level with respect to the growth pattern, 
with some individuals having a higher growth level and some having a lower growth 
level. Figure 13.1 shows observed growth trajectories of 50 individuals randomly 
selected from this first simulated dataset. Figure 13.2 shows the estimated latent 
trajectory from MDS growth pattern analysis and Fig.  13.3 shows the estimated 
latent trajectories from GMM analysis.

As can be seen from Fig. 13.2, the growth trajectory from MDS growth pattern 
analysis reflects the observed overall patterns with differences in mean or level 
removed. Thus, one growth profile is estimated to represent the prototypical growth 
pattern in the observed trends. On the other hand, the growth trajectories in Fig. 13.3 
from GMM analysis indicate two growth classes, which can be expressed as

 class yit1 1 24 1 68 0 74 2: . . .


= + +time time  

 class yit2 1 10 1 67 0 03 2: . . .


= + +time time  

These two classes mainly differ with respect to mean level, although class 1 
seems to have a faster growth acceleration.

In the second example, we simulate another dataset (n = 500) that has two latent 
classes, each with its own growth pattern - one is linear and another is quadratic. 
Accordingly, the grow trajectory differs not only in terms of level but also in terms 
of growth pattern (i.e., scatter and shape). Figure 13.4 shows observed growth tra-
jectories of 50 individuals randomly selected from this second simulated dataset. 
Figure 13.5 shows the estimated latent trajectory from MDS growth pattern analy-
sis. Figure 13.6 shows the estimated latent trajectories from GMM analysis.

As can be seen from Fig. 13.5, two MDS growth patterns reflect the observed 
growth patterns with differences in mean removed. That is, two growth profiles are 
estimated to indicate the prototypical growth patterns in the observed trends. 
Similarly, the growth trajectories in Fig. 13.6 from GMM analysis also indicate two 
growth classes, which can be expressed as

13.3 Numerical Examples
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 class yit1 0 96 1 56 0 48 2: . . .


= + +time time  

 class yit2 2 29 3 69 1 28 2: . . .


= + −time time  

Thus, the key point is that both analytic approaches are correct in depicting the 
growth trends, but in a different way. One practical implication of this difference is 
that the growth trajectory from these two analytic approaches may manifest a differ-
ent pattern as can be seen here, depending on the degree to which the observed pat-
terns coincide with the level.

In this third example, we analyzed the mathematic achievement of 9549 children 
with the complete data across the four waves of a mathematic assessment, which 
contains items that assess basic skills such as counting, shapes, addition, fractions, 
area, and volume. Scale scores derived from item response theory (IRT) were used 
for the growth analysis. The data were based on the Early Childhood Longitudinal 
Study, Kindergarten Class of 1998–99 (ECLS-K) study, which were collected from 

Fig. 13.1 An example of observed growth trajectories of 50 individuals randomly selected from 
the first simulated data with two latent classes but one growth pattern
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a nationally representative cohort of children when they were in kindergarten ( fall- 
1998 and spring-1999), during first grade (fall-2000 and spring-2001), during third 
grade (spring-2002), and during fifth grade (spring-2004) (Denton et  al. 2003; 
Princiotta et al. 2006). Details of the discussion of ECLS-K can be found in the 
references provided.

The results of the MDS growth analysis is shown in Fig. 13.7, which depicted 
one growth profile corresponding to the one dimensional solution and revealed an 

Fig. 13.3 Estimated mean growth trajectory of GMM analysis based on the first simulated data

Fig. 13.4 Observed growth trajectories of 50 individuals randomly selected from the second sim-
ulated data with two classes, each with its own growth pattern (one is linear and another is 
quadratic)
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Fig. 13.6 Estimated mean growth trajectory of GMM analysis based on the second simulated data
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overall increased pattern of achievement over time. This growth pattern indicated a 
pretty steady rate (39%, 38%, and 23% from K to grade 1, grades 1 to 3, and grade 
3 to 5, respectively), identifying an overall linear trend with a slower growth rate 
from grades 3 to 5.

The results from GMM analysis is shown in Fig. 13.8, which depicted the two- 
class solution. Essentially, there was one pattern of growth (as in MDS growth pat-
tern) but with differences in level. We can say that Class 1 indicated an initial low 
developing group and Class 2 indicated an initial high developing group. But both 
groups had a similar growth pattern over time.

13.4  Conclusion

The purpose of this chapter was to illustrate MDS modeling of change in pattern, 
which may differ from change in level using GMM approach. Since the method of 
MDS growth pattern analysis is less well known, we discussed some major aspects 
of such an approach as well as some of its differences from GMM. Given that the 
GMM approach is more common in modeling growth, the significance of the chap-
ter is that it discusses the MDS-based approach in the context of growth mixture 
modeling, showing that the MDS model can be a viable method for growth analysis 
that has been exclusively belonging to the realm of SEM technique. Researchers 
and practitioners should be aware of the utilities of MDS in modeling growth.

Based on the results from two simulated datasets used to illustrate MDS growth 
pattern analysis in the context of GMM, the following points were worth noting. 
First, the growth pattern from MDS analysis reflected the observed growth trends in 
the data with differences in level removed. When the observed growth mean 
 trajectories did not significantly differ from patterns, as shown in Figs. 13.1 and 
13.2, MDS growth pattern analysis seems to capture that pattern as a prototypical 
pattern in the data regardless of any mean differences in these trajectories. In con-
trast, GMM analysis captures the mean level differences in growth trajectory 

Fig. 13.8 Estimated mean growth trajectory of mathematic achievement

13.4 Conclusion
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 resulting in two growth classes. However, when growth patterns significantly differ 
from the growth mean trajectories, MDS growth pattern analysis reflects these dif-
ferent growth patterns resulting in two growth profiles. This is similar to those from 
GMM analysis as shown in Figs. 13.3 and 13.6. Thus, the MDS approach is model-
ing the patterning of scores without level information of growth trajectories. With 
the same goal of identifying latent growth trajectories, these two approaches focus 
on different aspects of growth trajectory.

Second, the focus of the MDS analysis on pattern rather than level may account 
for differences in number of growth classes/types. Since class membership is 
assigned after the growth pattern is identified, there was only one growth class from 
MDS analysis. In contrast, GMM analysis takes the reverse approach. The number 
of latent classes is estimated first and then the growth trajectory is estimated with 
respect to each class, resulting in two growth classes.

Third, one may naturally ask which approach is better or best reflects the reality? 
The response can be considered from two angles. First, since GMM approach and 
MDS analysis are modeling different aspects of trajectory, we should focus on what 
information is more important or relevant to know. Second, as Cudeck and Henly 
(2003) said, a realistic perspective of data modeling is that there are no true models 
to discover, and searching for the true number of latent classes is “pointless because 
there is no true number to find” (p.381). Thus, "the issue of model misspecification 
is irrelevant in practical terms. The purpose of a mathematical model is to summa-
rize data, to formalize the dynamics of a behavioral process, and to make predic-
tions. All of this is scientifically valuable and can be accomplished with a carefully 
developed model, even though the model is false"(p. 378). In this regard, MDS 
analysis provides another perspective in understanding the nature of the change.

Thus, one needs to realize that in selecting a growth modeling method, one 
should consider the desired information to be obtained from such an analysis. We 
hope that this illustration of MDS latent growth modeling approach can facilitate 
researchers in better understanding how MDS analysis can shed light on the growth 
trajectory of individual behaviors in relation to a GMM approach. Besides the peda-
gogical value of the chapter, we also hope that it can pique the interest of the readers 
to employ MDS growth analysis in their research.
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Chapter 14
Historical Review

Abstract Briefly discuss the key development of MDS models over time. Explain 
some new or possible applications of MDS analysis. Strengths and limitations are 
also discussed.

Keywords Historical development of MDS models

Up until the late 1980’s, articles and books on multidimensional scaling (MDS) 
appeared at an ever-increasing rate, and MDS applications grew in a great number 
of disciplines, with the historical root in psychology. Because of such a large bibli-
ography, it is hard to be exhaustive in tracking all technical materials on MDS as 
well as its applications. In the following sections, I present an overview of develop-
ment of multidimensional scaling up to the late 1980’s since most of the MDS 
developments occurred before this time period. Beginning in 1990, MDS may have 
lost favor with the advent and popularity of structural equation modeling.

There are quite a few writings on the history of MDS developments (e.g., Shepard 
et al. 1972; Young 1987). The following review is based primarily on Young (1987).

14.1  Four Stages of MDS Development

The First Stage: Metric MDS Model According to Young (1987), development 
of MDS models went through four stages. The first stage, started in the 1950’s, is 
characterized by Torgerson’s MDS model or algorithm (Torgerson 1952). The algo-
rithm determines or constructs the multidimensional map of points by (1) obtaining 
a scale of comparative distances among these points, (2) converting the comparative 
distances into ratio distances, and (3) determining the dimensionality that underlies 
these ratio distances. In 1956, Messick and Abelson (1956) provided a better algo-
rithm to Torgerson’s original model to accomplish the same goal. The enhancement 
was made by improving the estimation of the additive constant, as in Torgerson’s 
second step, that converts comparative distances to ratio distances based on firm 
mathematical grounds. These approaches to MDS have become known as metric 
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MDS in the literature since the observed distances are assumed to be equal or 
 proportional to model-derived distance in a multidimensional space in Torgerson’s 
algorithm.

The Second Stage: Non-metric MDS Model The assumptions of Torgerson’s 
metric model are very restrictive (discussed in later section), and thus his algorithm 
is rarely used in its original form. This limitation leads to the second stage of MDS 
developments in the 1960s. Thus, this second stage is characterized by development 
of what is now known as non-metric MDS started by Shepard (1962) and followed 
by Kruskal (1964). Non-metric MDS requires less restrictive assumptions than a 
metric MDS model by Torgerson (1952). The chief difference between non-metric 
and metric MDS is that non-metric MDS requires only that the rank order of 
observed distances be the same as (i.e., monotonically related to) the distance esti-
mates derived from the pre-specified MDS model.

Kruskal’s Contribution It is worthy to note Kruskal’s contribution to the develop-
ment of non-metric MDS at this stage which will have implications for our interpre-
tations of the findings. First, he introduced a least square fit function that objectively 
defined the goal of the MDS analysis by minimizing normalized residuals between 
a monotonic (i.e., rank order) transformation of the data and the model-derived 
distance based on multidimensional space. Second, he defined two optimization 
procedures that handled data that have equal distance between any two pairs of 
objects (called tied data): primary procedure (i.e., untie tied data) and secondary 
procedure (i.e., tied data remain tied). Third, his algorithm could analyze incom-
plete data matrices and be able to obtain MDS solutions in non-Euclidean distance 
space, such as the city-block distance space used by Attneave (1950).

Coombs’ Contribution Another noteworthy contribution to non-metric MDS 
development is by Coombs’ data theory, which states that relationships among data 
can be represented in a space (Coombs 1964). Although not directly related to MDS 
algorithm, Coombs’ data theory is of central interest to MDS. Specifically, he sug-
gested four types of data: (a) preferential choice data, when a person indicates he/
she prefers a particular object or behavior (i.e. an adolescent girl prefers talking to 
her mother with respect to sexual behaviors); (b) liking data, when a person indi-
cates whether he/she likes or dislike certain behaviors (i.e. a female may indicate 
she likes children while a male may indicate he likes playing computer games); (c) 
comparison data, when a person indicates which of the two objects is more of some 
attributes (i.e. a student may indicate that teachers are more helpful than students in 
school); and (d) similarity data, when a person indicates how similar the two objects 
are (i.e. an adolescent may indicate that smoking and drinking are the same with 
respect to deviant behaviors). All of these four types of data can be represented in 
multidimensional space. As we will see later in the chapter, different MDS analyses 
can be performed using these four types of data. For example, the MDS preference 
models can employ one of these types of data to study individual differences in 
behavioral preferences.

14 Historical Review
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The Third Stage: Individual Differences Models The third stage of MDS 
 developments involves individual differences MDS models. The basic idea of indi-
vidual differences MDS models is that when we analyze data from individuals, we 
have two choices: (1) analyze a single matrix of data, averaging across all individu-
als or (2) analyze each data matrix if we believe that the manipulation of indepen-
dent variables has had an effect on individuals. Individual differences models, so 
named, have been used mainly to investigate variations of data structure across indi-
viduals, such as to describe variation in person’s perceptions across time, settings, 
or treatment conditions. Thus, individual differences MDS models are able to 
simultaneously analyze a number of individual data matrices, producing indices of 
individual differences with respect to certain behavioral traits, with individual dif-
ferences being represented by dimensional importance indices (called weights) in a 
Euclidean distance space.

INDSCAL There are several individual differences MDS models. The most well- 
know model is the Weighted Euclidean Model, also called INDSCAL, developed by 
Carroll and Chang (1970). Several other researchers also contributed to this line of 
work such as Horan (1969), Bloxom (1968), McGee (1968), Tucker (1972), and 
Tucker and Messick (1963). However, the model developed by Carroll and Chang 
is most used because they developed the computer algorithm (also called INDSCAL) 
to implement the model, which turns out to be successful in many applications. 
Based on these developments, Takane, Young, and de Leeuw (1977) developed a 
computer algorithm called ALSCAL (alternating least squares scaling), which has 
been incorporated into SAS and SPSS, making MDS more accessible to a wider 
audience than before.

ALSCAL In a sense, the ALSCAL program can be viewed as a consolidation of all 
previous developments during the first three stages. It includes metric MDS model 
(Torgerson 1952), nonmetric MDS models (Kruskal 1964; Shepard 1962), individ-
ual differences models (Carroll and Chang 1970; McGee 1968), and multidimen-
sional unfolding (preference) models (Carroll 1972; Coombs 1964).

The Fourth Stage: Maximum Likelihood MDS The fourth stage of MDS devel-
opment involves maximum likelihood multidimensional scaling, which makes it 
possible for MDS models to be an inferential tool rather than a descriptive tool. This 
inferential nature of MDS analysis is based on the idea that maximum likelihood 
MDS allows significance tests to determine dimensionality, the appropriate models, 
the appropriate error models, and confidence regions for stimuli and individuals.

The most well-known maximum likelihood MDS algorithm is MULTISCAL 
developed by Ramsay (Ramsay 1991) and PROSCAL developed by MacKay and 
Zinnes (2005). In addition, there are many articles on maximum likelihood MDS 
and its applications such as those by Ramsay (1977), Takane (1978a, 1978b), Takane 
and Carroll (1981), DeSarbo et al. (1991), and more recently Treat et al. (2002), 
MacKay (2007), and Ver et al. (2009).

14.1 Four Stages of MDS Development
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This brief historical review of the MDS developments provides a fundamental 
picture of where we are with MDS as a psychological and educational analytical 
tool. In here I did not discuss a great number of literature that dealt with various 
technical issues around the MDS, nor did I discuss the different applications using 
the MDS models. However, one can explore those issues and applications using the 
four themes of MDS developments as a roadmap. Moreover, one should realize that 
given about 40 years of development, MDS has reached to its young adulthood, as 
Schiffman et al. (1981) suggested. In other words, MDS has become quite a sophis-
ticated analytical tool that is yet to be taken full advantage of, especially when we 
have access to computing power unavailable for MDS analysis 20 year ago.

14.2  New Applications of the MDS Models

Currently, continued efforts have been devoted to improving the estimation algo-
rithms of MDS analysis (Busing and de Rooij 2009; Busing et  al. 2005; Busing 
et al. 2010). On the other hand, the new applications of MDS models have been 
focused on latent profile analysis for both cross-sectional data (Davison et al. 1996) 
and longitudinal data (Ding 2001; Ding et  al. 2005). Latent growth analysis via 
MDS models has been shown to be a viable alternative to explore developmental 
trajectories. At its core, MDS latent growth analysis applies the distance model to a 
set of time related variables and examines their configuration. Conceptually, the 
MDS latent growth model has similar analytic goals as growth mixture models 
(GMM) (Muthen 2001) and the group-based approach (GBA) (Nagin 1999)--to 
determine the optimal number of latent growth groups and the shape of the trajec-
tory for each group that best fit the data. Then, outcome measures and covariates can 
be incorporated into the analysis with respect to the different latent growth groups.

In the MDS model, a latent growth class is called a “latent growth profile”, and 
it is represented by a single dimension. The dimension is estimated from a distance 
model and consists of a set of scale values that indicate the shape of the growth 
trajectory. For instance, if a potential cubic trend exists in the data, the set of scale 
values estimated by the model would potentially recover that pattern. In a way, the 
set of scale values functions like a set of polynomial contrasts. Depending on the 
number of dimensions, one set of scale values for a given dimension reflects a par-
ticular shape of the trajectory for a given latent group. The number of dimensions 
can be determined by Akaike Information Criterion (AIC) (Akaike 1973) in addi-
tion to traditional Stress values (Ding and Davison 2010). Each participant can be 
assigned to a latent growth profile group based on probability of profile membership 
(Ding 2007). Moreover, MDS growth modeling can be used to explore the latent 
growth trend by using deterministic MDS analysis as well as to conduct a hypoth-
esis testing regarding developmental trajectories by using maximum likelihood 
MDS analysis.

In summary, the key issues discussed are that the MDS latent growth model can 
be used to identify distinct forms of growth/decline profiles in the data, which may 
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reflect the source of heterogeneity. The distance-based MDS growth model is 
 flexible because it does not restrict the functional form of trajectories across differ-
ent latent groups, and no distributional assumptions are required. This approach 
provides the opportunity to analyze potential latent profiles via continuous or dis-
crete observed variables, and to include covariates in the subsequent analyses.

14.3  Strengths and Limitations

In this chapter, I have covered some of the major topics on MDS models and analy-
sis. As I mentioned at the beginning of the chapter, the literature on MDS is quite 
extensive and it is not possible to cover every line of work on MDS. As a conclu-
sion, I mention strengths and limitations of MDS analysis with respect to its use in 
psychological and educational research.

Strengths A main strength of MDS models is they can be used for analyzing vari-
ous types of data such as row-conditional data, matrix-conditional data, and other 
types of preference data. These types of data contain rich information about indi-
vidual differences and MDS models provide various ways to capture the informa-
tion. In its application of longitudinal data analysis, it provides an alternative and 
complementary method to study growth heterogeneity in the population.

Second, because MDS models can accommodate more data types, it encourages 
researchers to think critically about the assumptions about the data. For example, in 
commonly-encountered data of person by variable matrix, does each individual use 
the scale (e.g., Likert-type response scale) in the same way? The other questions 
may be: How will a change in the wording of an item change participants’ percep-
tion and liking of that item? Do male students and female students perceive mathe-
matics concepts in the same way? How many different latent or subgroups are there 
in the data and how big are they? Which attribute of a construct should be empha-
sized in the assessment of that construct?

Third, the maximum likelihood MDS models can be used to test various hypoth-
eses with regard to instruments as well as people. The application in this area is 
under-developed and has much potential in psychological research.

Limitations One main limitation is that interpretation of configuration of MDS 
analysis is impacted by similarity transformation of the configuration. Thus seem-
ingly different but essentially the same configuration may be interpreted differently. 
For example, if we change the sign of the scale values along the dimensions, the 
configuration may appear different from the original one, which may lead to a dif-
ferent interpretation of the configuration.

Second, MDS has traditionally been viewed as a data visualizing method. 
However, data are not always visualized in two dimensions. Higher dimensionality, 
on the other hand, makes dimensional solution difficult to be visualized, which 
defeats its original purpose.

14.3 Strengths and Limitations
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14.4  Future Directions

MDS has not developed into a mature analysis technique, as predicted by some 
researchers (e.g., Young 1987). The issues that need to be addressed include, but are 
not limited to, the following:

 1. Covariates need to be incorporated into MDS models so that underlying struc-
ture of data can be better modeled.

 2. Statistical procedures for assessing participants’ ideal point with respect to latent 
group configuration needs to be developed. Rather than relying on visual inspec-
tion of participants’ ideal point, some statistical criteria need to be used to objec-
tively examine the degree to which an individual prefers a particular behavior.

 3. Analytical method of assessing participants’ preference is typically standard 
multiple regression analysis. It may be useful to incorporate logistic or multino-
mial regression to examine the probability of preference with respect to a set of 
behaviors.

 4. In MDS latent growth analysis, the person-model fit index is based on R2 statis-
tic. But a better set of person-model fit indices needs to be developed so that we 
can perform statistical testing.

However, MDS models, particularly preference modeling and profile analysis, 
can provide a unique method for studying individual differences that cannot be 
revealed by a structural equation modeling analysis. For instance, in research of 
moral reasoning, MDS preference modeling may be employed to investigate, using 
the concept of differential preferences, age differences or developmental trajectory 
that represents an emerging desire to imagine one’s good behaviors as internally 
motivated, but one’s bad behaviors are externally provoked. In addition, confirma-
tory MDS using maximum likelihood method can be used to test specific hypothe-
ses regarding latent profiles of individuals, as that can be done in structural equation 
modeling analysis. These analytical possibilities, along with many others, for exam-
ple, studying participants’ multiple ideal points, can further advance MDS models 
as a psychological and educational research tool.
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