

Lecture Notes in Artificial Intelligence 7362

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Johan Jeuring John A. Campbell
Jacques Carette Gabriel Dos Reis
Petr Sojka Makarius Wenzel
Volker Sorge (Eds.)

Intelligent
Computer Mathematics
11th International Conference, AISC 2012
19th Symposium, Calculemus 2012
5th International Workshop, DML 2012
11th International Conference, MKM 2012
Systems and Projects, Held as Part of CICM 2012
Bremen, Germany, July 8-13, 2012, Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Johan Jeuring
Utrecht University, The Netherlands, E-mail: j.t.jeuring@uu.nl

John A. Campbell
University College London, UK, E-mail: j.campbell@cs.ucl.ac.uk

Jacques Carette
McMaster University, Hamilton, ON, Canada, E-mail: carette@mcmaster.ca

Gabriel Dos Reis
Texas A&M University, College Station, TX, USA, E-mail: gdr@cs.tamu.edu

Petr Sojka
Masaryk University, Brno, Czech Republic, E-mail: sojka@fi.muni.cz

Makarius Wenzel
Université de Paris-Sud, Orsay Cedex, France, E-mail: makarius.wenzel@lri.fr

Volker Sorge
The University of Birmingham, UK, E-mail: v.sorge@cs.bham.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31373-8 e-ISBN 978-3-642-31374-5
DOI 10.1007/978-3-642-31374-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012940388

CR Subject Classification (1998): I.1, F.4.1, I.2.2-3, I.2.6, I.2, F.3.1, D.2.4, F.3, H.3.7,
H.3, G.4, H.2.8

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

As computers and communications technology advance, greater opportunities
arise for intelligent mathematical computation. While computer algebra, auto-
mated deduction, mathematical publishing and novel user interfaces individually
have long and successful histories, we are now seeing increasing opportunities
for synergy among these areas. The series of Conferences on Intelligent Com-
puter Mathematics (CICM) hosts collections of co-located meetings, allowing
researchers and practitioners active in these related areas to share recent results
and identify the next challenges.

The fifth in this series of Conferences on Intelligent Computer Mathematics
was held in Bremen, Germany, in 2012. Previous conferences, all also published
in Springer’s Lecture Notes in Artificial Intelligence series, were held in the UK
(Birmingham, 2008: LNAI 5144), Canada (Grand Bend, Ontario, 2009: LNAI
5625), France (Paris, 2010: LNAI 6167) and Italy (Bertinoro, 2011: LNAI 6824).
CICM 2012 included four long-standing international meetings:

– 11th International Conference on Mathematical Knowledge Management
(MKM 2012)

– 19th Symposium on the Integration of Symbolic Computation and Mecha-
nized Reasoning (Calculemus 2012)

– 11th International Conference on Artificial Intelligence and Symbolic Com-
putation (AISC 2012)

– 5th Workshop/Conference on Digital Mathematics Libraries (DML 2012)

Since 2011, CICM also offers a track for brief descriptions of systems and projects
that span the MKM, Calculemus, AISC, and DML topics, the “Systems and
Projects” track. The proceedings of the four international meetings and the
Systems and Projects track are collected in this volume.
CICM 2012 also contained the following activities:

– Demonstrations of the systems presented in the Systems and Projects track
– Less formal “work in progress” sessions

We used the “multi-track” features of the EasyChair system, and our thanks
are due to Andrei Voronkov and his team for this and many other features.
The multi-track feature also allowed transparent handling of conflicts of interest
between the Track Chairs and submissions: these submissions were moved to a
separate track overseen by the General Chair. There were 60 submissions, eight of
which were withdrawn. Each of the remaining 52 submission was reviewed by at
least two, and on average three, Program Committee members. The committee
decided to accept 38 papers. However, this is a conflation of tracks with different
acceptance characteristics. The track-based acceptance rates were:

VI Preface

MKM 13 acceptances out of 19 submissions
Calculemus 6 acceptances out of 9 submissions
AISC 6 acceptances out of 8 submissions
DML 2 acceptances out of 3 submissions
S & P 11 acceptances out of 12 submissions

One paper was not submitted to a particular track, and was rejected.
Three invited talks were given. The first one was by Conor McBride from the

Department of Computer and Information Sciences, University of Strathclyde,
and was entitled “A Prospection for Reflection”:

Gödel’s incompleteness theorems tell us that there are effective limita-
tions on the capacity of logical systems to admit reasoning about them-
selves. However, there are solid pragmatic reasons for wanting to try: we
can benefit considerably by demonstrating that systematic patterns of
reasoning (and programming, of course) are admissible. It is very useful
to treat goals as data in order to attack them with computation, adding
certified automation to interactive proof tools, delivering the efficiency
required to solve compute-intensive problems with no loss of trust.

Dependent type theory provides a ready means of reflection: goals be-
come types, and types may be computed from data. This technique has
proven highly successful when tightly targeted on specific problem do-
mains. But we may yet ask the bold question of how large a universe
of problems we can effectively reflect: how much of our type theory can
we encode within its own notion of data? To what extent can our type
theory capture its own typing discipline? Might we construct a hierar-
chy of type theories where the whole of each lower level can be reflected
at higher levels? In this talk, I shall outline grounds for modest opti-
mism and propose a plan of campaign. The obstacles may turn out to
be as fascinating as the objective. The reward, if we can reach it, is a
flexible technology for certified automation in problem-solving, honestly
articulating what at least computers can do.

The second invited talk was by Cezar Ionescu from the Potsdam Institute for
Climate Impact Research, on “Increasingly Correct Scientific Programming”:

Dependently typed languages promise an elegant environment for pro-
gramming from specifications: the properties that a program should sat-
isfy are expressed as logical formulas and encoded via the Curry–Howard
isomorphism as a type, a candidate implementation should be a member
of this type, and the type checker verifies whether this is indeed the case.
But sometimes the type checker demands “too much”: in particular, in
scientific programming, it often seems that one must formalize all of real
analysis before writing a single line of useful code. Alternatively, one
can use mechanisms provided by the language in order to circumvent
the type checker, and confirm that “real programmers can write Fortran
in any language.” We present an example of navigating between these

Preface VII

extremes in the case of economic modeling. First, we use postulates in
order to be able to reuse code, and achieve a kind of conditional correct-
ness (for example, we can find a Walrasian equilibrium if we are able to
solve a convex optimization problem). We then remove more and more
of the postulates, replacing them with proofs of correctness, by using
interval arithmetic methods.

Finally, Yannis Haralambous, Département Informatique, Télécom Bretagne,
gave a talk on “Text Mining Methods Applied to Mathematical Texts.”

April 2012 Johan Jeuring
John A. Campbell

Jacques Carette
Gabriel Dos Reis

Petr Sojka
Makarius Wenzel

Volker Sorge

Organization

CICM 2012 was organized by the Conference on Intelligent Computer Mathe-
matics Steering Committee, which was formed at CICM 2010 as a parent body to
the long-standing Calculemus and Mathematical Knowledge Management spe-
cial interest groups. The conferences organized by these interest groups continue
as special tracks in the CICM conference. The AISC conference, which is only
organized every other year, and DML workshop were organized in 2012 too.
These tracks and the Systems and Projects track had independent Track Chairs
and Program Committees. Local arrangements, the life-blood of any conference,
were handled by the Department of Computer Science of the Jacobs University
Bremen, Germany, and DFKI, Bremen, Germany.

CICM Steering Committee

Secretary

Michael Kohlhase Jacobs University Bremen, Germany

Calculemus Delegate

Renaud Rioboo ENSIIE, France

Treasurer

William Farmer McMaster University, Canada

DML Delegate

Thierry Bouche Université Joseph Fourier Grenoble, France

CICM PC Chair 2011

James Davenport University of Bath, UK

CICM PC Chair 2012
Johan Jeuring Utrecht University and Open University,

The Netherlands

MKM Trustees

Serge Autexier
James Davenport
Patrick Ion (Treasurer)

Florian Rabe
Claudio Sacerdoti Coen

Alan Sexton
Makarius Wenzel

X Organization

Calculemus Trustees

David Delahaye
Gabriel Dos Reis
William Farmer

Paul Jackson
Renaud Rioboo
Volker Sorge

Stephen Watt
Makarius Wenzel

AISC Steering Committee

Serge Autexier
Jacques Calmet

John Campbell
Jacques Carette

Eugenio Roanes-Lozano
Volker Sorge

CICM 2012 Officers

General Program Chair

Johan Jeuring Utrecht University and Open University,
The Netherlands

Local Arrangements

Michael Kohlhase Jacobs University Bremen, Germany
Serge Autexier DFKI, Germany

MKM Track Chair

Makarius Wenzel LRI, Paris Sud, France

Calculemus Track Chair

Gabriel Dos Reis Texas A&M University, USA

AISC Track CoChairs
John A. Campbell University College London, UK
Jacques Carette McMaster University, Canada

DML Track Chair

Petr Sojka Masaryk University Brno, Czech Republic

S & P Track Chair

Volker Sorge University of Birmingham, UK

Organization XI

Program Committee Mathematical Knowledge
Management

David Aspinall University of Edinburgh, UK
Jeremy Avigad Carnegie Mellon University, USA
Mateja Jamnik University of Cambridge, UK
Cezary Kaliszyk University of Tsukuba, Japan
Manfred Kerber University of Birmingham, UK
Christoph Lüth DFKI, Germany
Adam Naumowicz University of Bia�lystok, Poland
Jim Pitman University of California at Berkeley, USA
Pedro Quaresma University of Coimbra, Portugal
Florian Rabe Jacobs University Bremen, Germany
Claudio Sacerdoti Coen University of Bologna, Italy
Enrico Tassi INRIA Saclay, France
Makarius Wenzel LRI, Paris Sud, France
Freek Wiedijk Radboud University Nijmegen,

The Netherlands

Program Committee Calculemus

Andrea Asperti University of Bologna, Italy
Laurent Bernardin Maplesoft, Canada
James H. Davenport University of Bath, UK
Gabriel Dos Reis Texas A&M University, USA
Ruben Gamboa University of Wyoming, USA
Mark Giesbrecht University of Waterloo, Canada
Sumit Gulwani Microsoft Research, USA
John Harrison Intel Corporation, USA
Joris van der Hoeven CNRS, Ecole Polytechnique, France
Hoon Hong North Carolina State University, USA
Löıc Pottier INRIA Sophia-Antipolis, France
Wolfgang Windsteiger RISC Linz, Johannes Kepler University,

Austria

Program Committee Artificial Intelligence
and Symbolic Computation

Serge Autexier DFKI, Germany
Jacques Calmet Karlsruhe Institute of Technology, Germany
John Campbell University College London, UK
Jacques Carette McMaster University, Canada
Simon Colton Imperial College London, UK
Jacques Fleuriot University of Edinburgh, UK

XII Organization

Andrea Kohlhase Jacobs University Bremen, Germany
Taisuke Sato Tokyo Institute of Technology, Japan
Erik Postma Maplesoft, Canada
Alan Sexton Birmingham University, UK
Chung-chieh Shan Cornell University, USA
Toby Walsh University of New South Wales, Australia
Stephen Watt University of Western Ontario, Canada

Program Committee Digital Mathematics Libraries

José Borbinha Technical University of Lisbon, Portugal
Thierry Bouche Université Joseph Fourier Grenoble, France
Michael Doob University of Manitoba, Canada
Thomas Fischer Goettingen University, Germany
Yannis Haralambous Télécom Bretagne, France
Václav Hlaváč Czech Technical University Prague,

Czech Republic
Michael Kohlhase Jacobs University Bremen, Germany
Janka Chleb́ıková University of Portsmouth, UK
Enrique Maciás-Virgós University of Santiago de Compostela, Spain
Bruce Miller NIST, USA
Jǐŕı Rákosńık Mathematical Institute Prague, Czech Republic
Eugénio A.M. Rocha University of Aveiro, Portugal
David Ruddy Cornell University, USA
Volker Sorge University of Birmingham, UK
Petr Sojka Masaryk University Brno, Czech Republic
Masakazu Suzuki Kyushu University, Japan

Program Committee Systems and Projects

Josef Baker University of Birmingham, UK
John Charnley Imperial College London, UK
Manuel Kauers RISC Linz, Johannes Kepler University,

Austria
Koji Nakagawa Kyushu University, Japan
Christoph Lange Jacobs University Bremen, Germany
Piotr Rudnicki University of Alberta, Canada
Volker Sorge University of Birmingham, UK
Josef Urban Radboud University Nijmegen,

The Netherlands
Richard Zanibbi Rochester Institute of Technology, USA

Organization XIII

Additional Referees

In addition to the many members of the Program Committees who refereed for
other tracks, we are grateful to the following additional referees.

Marc Bezem
Flaminia Cavallo
Dominik Dietrich
Holger Gast
Mihnea Iancu
Temur Kutsia

Paul Libbrecht
Petros Papapanagiotou
Adam Pease
Wolfgang Schreiner
Christian Sternagel
Geoff Sutcliffe

Carst Tankink
René Thiemann
Matej Urbas
Jǐŕı Vyskočil
Iain Whiteside

Sponsoring Institutions

Jacobs University Bremen and DFKI, Bremen, Germany

Table of Contents

Mathematical Knowledge Management 2012

Dependencies in Formal Mathematics: Applications and Extraction
for Coq and Mizar . 1

Jesse Alama, Lionel Mamane, and Josef Urban

Proof, Message and Certificate . 17
Andrea Asperti

Challenges and Experiences in Managing Large-Scale Proofs 32
Timothy Bourke, Matthias Daum, Gerwin Klein, and Rafal Kolanski

Semantic Alliance: A Framework for Semantic Allies 49
Catalin David, Constantin Jucovschi, Andrea Kohlhase, and
Michael Kohlhase

Extending MKM Formats at the Statement Level . 65
Fulya Horozal, Michael Kohlhase, and Florian Rabe

A Streaming Digital Ink Framework for Multi-party Collaboration 81
Rui Hu, Vadim Mazalov, and Stephen M. Watt

Cost-Effective Integration of MKM Semantic Services into Editing
Environments . 96

Constantin Jucovschi

Understanding the Learners’ Actions when Using Mathematics
Learning Tools . 111

Paul Libbrecht, Sandra Rebholz, Daniel Herding,
Wolfgang Müller, and Felix Tscheulin

Towards Understanding Triangle Construction Problems 127
Vesna Marinković and Predrag Janičić

A Query Language for Formal Mathematical Libraries 143
Florian Rabe

Abramowitz and Stegun – A Resource for Mathematical Document
Analysis . 159

Alan P. Sexton

Point-and-Write – Documenting Formal Mathematics by Reference 169
Carst Tankink, Christoph Lange, and Josef Urban

XVI Table of Contents

An Essence of SSReflect . 186
Iain Whiteside, David Aspinall, and Gudmund Grov

Calculemus 2012

Theory Presentation Combinators . 202
Jacques Carette and Russell O’Connor

Verifying an Algorithm Computing Discrete Vector Fields for Digital
Imaging . 216

Jónathan Heras, Maŕıa Poza, and Julio Rubio

Towards the Formal Specification and Verification of Maple
Programs . 231

Muhammad Taimoor Khan and Wolfgang Schreiner

Formalizing Frankl’s Conjecture: FC-Families . 248
Filip Marić, Miodrag Živković, and Bojan Vučković

CDCL-Based Abstract State Transition System for Coherent Logic 264
Mladen Nikolić and Predrag Janičić

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases . . . 280
David J. Wilson, Russell J. Bradford, and James H. Davenport

Artificial Intelligence
and Symbolic Computation 2012

A System for Axiomatic Programming . 295
Gabriel Dos Reis

Reasoning on Schemata of Formulæ . 310
Mnacho Echenim and Nicolas Peltier

Management of Change in Declarative Languages . 326
Mihnea Iancu and Florian Rabe

MathWebSearch 0.5: Scaling an Open Formula Search Engine 342
Michael Kohlhase, Bogdan A. Matican, and
Corneliu-Claudiu Prodescu

Real Algebraic Strategies for MetiTarski Proofs . 358
Grant Olney Passmore, Lawrence C. Paulson, and
Leonardo de Moura

Table of Contents XVII

A Combinator Language for Theorem Discovery . 371
Phil Scott and Jacques Fleuriot

Digital Mathematics Libraries 2012

DynGenPar – A Dynamic Generalized Parser for Common
Mathematical Language . 386

Kevin Kofler and Arnold Neumaier

Writing on Clouds . 402
Vadim Mazalov and Stephen M. Watt

Systems and Projects 2012

A Web Interface for Matita . 417
Andrea Asperti and Wilmer Ricciotti

MaxTract: Converting PDF to LATEX, MathML and Text 422
Josef B. Baker, Alan P. Sexton, and Volker Sorge

New Developments in Parsing Mizar . 427
Czes�law Bylinski and Jesse Alama

Open Geometry Textbook: A Case Study of Knowledge Acquisition
via Collective Intelligence (Project Description) . 432

Xiaoyu Chen, Wei Li, Jie Luo, and Dongming Wang

Project Presentation: Algorithmic Structuring and Compression
of Proofs (ASCOP) . 438

Stefan Hetzl

On Formal Specification of Maple Programs . 443
Muhammad Taimoor Khan and Wolfgang Schreiner

The Planetary Project: Towards eMath3.0 . 448
Michael Kohlhase

Tentative Experiments with Ellipsis in Mizar . 453
Artur Korni�lowicz

Reimplementing the Mathematics Subject Classification (MSC)
as a Linked Open Dataset . 458

Christoph Lange, Patrick Ion, Anastasia Dimou,
Charalampos Bratsas, Joseph Corneli, Wolfram Sperber,
Michael Kohlhase, and Ioannis Antoniou

XVIII Table of Contents

The Distributed Ontology Language (DOL): Ontology Integration
and Interoperability Applied to Mathematical Formalization 463

Christoph Lange, Oliver Kutz, Till Mossakowski, and
Michael Grüninger

Isabelle/jEdit – A Prover IDE within the PIDE Framework 468
Makarius Wenzel

Author Index . 473

Dependencies in Formal Mathematics:

Applications and Extraction for Coq and Mizar

Jesse Alama1,�, Lionel Mamane2,��, and Josef Urban3,� � �

1 Center for Artificial Intelligence
New University of Lisbon
j.alama@fct.unl.pt

http://centria.di.fct.unl.pt/~alama/
2 59, rue du X Octobre

L-7243 Bereldange
Luxembourg

lionel@mamane.lu
3 Institute for Computing and Information Sciences

Radboud University Nijmegen
josef.urban@gmail.com

Abstract. Two methods for extracting detailed formal dependencies
from the Coq and Mizar system are presented and compared. The meth-
ods are used for dependency extraction from two large mathematical
repositories: the Coq Repository at Nijmegen and the Mizar Mathemati-
cal Library. Several applications of the detailed dependency analysis are
described and proposed. Motivated by the different applications, we dis-
cuss the various kinds of dependencies that we are interested in, and the
suitability of various dependency extraction methods.

1 Introduction

This paper presents twomethods for extracting detailed formal dependencies from
two state-of-the-art interactive theorem provers (ITPs) for mathematics: the Coq
system and the Mizar system. Our motivation for dependency extraction is
application-driven.We are interested in using detailed dependencies for fast refac-
toring of largemathematical libraries and wikis, for AI methods in automated rea-
soning that learn from previous proofs, for improved interactive editing of formal
mathematics, and for foundational research over formal mathematical libraries.

� Supported by the ESF research project Dialogical Foundations of Semantics
within the ESF Eurocores program LogICCC (funded by the Portuguese Science
Foundation, FCT LogICCC/0001/2007). Research for this paper was partially
done while a visiting fellow at the Isaac Newton Institute for the Mathematical
Sciences in the program ‘Semantics & Syntax’.

�� Supported during part of the research presented here by the NWO project “For-
mal Interactive Mathematical Document: Creation and Presentation”; during that
time, he was affiliated with the ICIS, Radboud University Nijmegen.

� � � Supported by the NWO project “MathWiki: A Web-based Collaborative Author-
ing Environment for Formal Proofs”.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://centria.di.fct.unl.pt/~alama/

2 J. Alama, L. Mamane, and J. Urban

These applications require different notions of formal dependency. We discuss
these different requirements, and as a result provide implementations that in
several important aspects significantly differ from previous methods. For Mizar,
the developed method captures practically all dependencies needed for success-
ful re-verification of a particular formal text (i.e., also notational dependencies,
automations used, etc.), and the method attempts hard to determine the min-
imal set of such dependencies. For Coq, the method goes farther towards re-
verification of formal texts than previous methods [5,13,4] that relied solely on
the final proof terms. For example, we can already track Coq dependencies that
appear during the tactic interpretation, but that do not end up being used in
the final proof term.

The paper is organized as follows. Section 2 briefly discusses the notion of
formal dependency. Section 3 describes the implementation of dependency ex-
traction in the Coq system, and Section 4 describes the implementation in the
Mizar system. Section 5 compares the two implemented approaches to depen-
dency computation. Section 6 describes several experiments and measurements
conducted using our implementations on the CoRN and MML libraries, includ-
ing training of AI/ATP proof assistance systems on the data, and estimating
the speed-up for collaborative large-library developments. Section 8 concludes.

2 Dependencies: What Depends on What?

Generally, we say that a definition, or a theorem, T depends on some definition,
lemma or other theorem T ′, (or equivalently, that T ′ is a dependency of T) if
T “needs” T ′ to exist or hold. The main way such a “need” arises is that the
well-formedness, justification, or provability of T does not hold in the absence
of T ′. We consider formal mathematics done in a concrete proof assistant so
we consider mathematical and logical constructs not only as abstract entities
depending on each other, but also as concrete objects (e.g., texts, syntax trees,
etc.) in the proof assistants. For our applications, there are at least two different
notions of “dependency” we are interested in:

– Semantic/logical: One might claim, for example, that in the Coq context
a λ-term (or proof object in the underlying formal framework) contains all
dependencies of interest for a particular theorem, regardless of any notational
conventions, library mechanisms, etc.

– Pragmatic: Such dependencies are met if a particular item still compiles, re-
gardless of possibly changed underlying semantics. This view takes the whole
proof assistant as the locus of dependency, with its sophisticated mechanisms
such as auto hint databases, notations, type automations, definitions expan-
sions, proof search depth, parser settings, hidden arguments, etc.

Formal dependencies can also be implicit and explicit. In the simple world of first-
order automated theorem proving, proofs and their dependencies are generally
quite detailed and explicit about (essentially) all logical steps, even very small
ones (such as the steps taken in a resolution proof). But in ITPs, which are

Dependencies in Formal Mathematics 3

generally oriented toward human mathematicians, one of the goals is to allow
the users to express themselves with minimal logical verbosity and ITPs come
with a number of implicit mechanisms. Examples are type mechanisms (e.g.,
type-class automations of various flavors in Coq [14] and Isabelle [8], Prolog-like
types in Mizar [17,15]), hint mechanisms (in Coq and Isabelle), etc. If we are
interested in giving a complete answer to the question of what a formalized
proof depends upon, we must expose such implicit facts and inferences.

Formal dependencies reported by ITPs are typically sufficient. Depending on
the extraction mechanism, redundant dependencies can be reported. Bottom-up
procedures like congruence-closure and type closure in Mizar (and e.g., type-class
mechanisms in other ITPs) are examples of mechanisms when the ITP uses avail-
able knowledge exhaustively, often drawing in many unnecessary dependencies
from the context. For applications, it is obviously better if such unnecessary
dependencies can be removed .

3 Dependency Extraction in Coq

Recall that Coq is based on the Curry-Howard isomorphism, meaning that:

1. A statement (formula) is encoded as a type.
2. There is, at the “bare” logical level, no essential difference between a defi-

nition and a theorem: they are both the binding (in the environment) of a
name to a type (type of the definition, statement of the theorem) and a term
(body of the definition, proof of the theorem).

3. Similarly, there is no essential difference between an axiom and a param-
eter: they are both the binding (in the environment) of a name to a type
(statement of the axiom, type of the parameter, e.g. “natural number”).

4. There is, as far as Coq is concerned, no difference between the notions of
theorem, lemma, corollary, . . .

The type theory implemented by Coq is called the predicative calculus of induc-
tive constructions, abbreviated as pCIC.

There are essentially three groups of Coq commands that need to be treated
by the dependency tracking:1

1. Commands that register a new logical construct (definition or axiom), either
– From scratch. That is, commands that take as arguments a name and

a type and/or a body, and that add the definition binding this name to
this type and/or body. The canonical examples are

Definition Name : type := body

and

Axiom Name : type

The type can also be given implicitly as the inferred type of the body,
as in

1 As far as logical constructs are concerned.

4 J. Alama, L. Mamane, and J. Urban

Definition Name := body

– Saving the current (completely proven) theorem in the environment.
These are the “end of proof” commands, such as Qed, Save, Defined.

2. Commands that make progress in the current proof, which is necessarily
made in several steps:
(a) Opening a new theorem, as in

Theorem Name : type

or

Definition Name : type

(b) An arbitrary strictly positive amount of proof steps.
(c) Saving that theorem in the environment.
These commands update (by adding exactly one node) the internal Coq
structure called “proof tree”.

3. Commands that open a new theorem, that will be proven in multiple steps.

The dependency tracking is implemented as suitable hooks in the Coq functions
that the three kinds of commands eventually call. When a new construct is
registered in the environment, the dependency tracking walks over the type
and body (if present) of the new construct and collects all constructs that are
referenced. When a proof tree is updated, the dependency tracking examines
the top node of the new proof tree (note that this is always the only change
with regards to the previous proof tree). The commands that update the proof
tree (that is, make a step in the current proof) are called tactics. Coq’s tactic
interpretation goes through three main phases:

1. parsing;
2. Ltac2 expansion;
3. evaluation.

The tactic structure after each of these phases is stored in the proof tree. This
allows to collect all construct references mentioned at any of these tree levels.
For example, if tactic Foo T is defined as

t ry apply BolzanoWeie r st rass ;
s o l v e [T | auto]

and the user invokes the tactic as Foo FeitThompson, then the first level will
contain (in parsed form) Foo FeitThompson, the second level will contain (in
parsed form)

t ry apply BolzanoWeie r st rass ;
s o l v e [FeitThompson | auto] . }

and the third level can contain any of:

2 Ltac is the Coq’s tactical language, used to combine tactics and add new user-defined
tactics.

Dependencies in Formal Mathematics 5

– refine (BolzanoWeierstrass ...),
– refine (FeitThompson ...),
– something else, if the proof was found by auto.

The third level typically contains only a few of the basic atomic fundamental
rules (tactics) applications, such as refine, intro, rename or convert, and
combinations thereof.

3.1 Dependency Availability, Format, and Protocol

Coq supports several interaction protocols: the coqtop, emacs and coq-interface
protocols. Dependency tracking is available in the program implementing the
coq-interface protocol which is designed for machine interaction. The
dependency information is printed in a specialmessage for each potentially progress-
making command that can give rise to a dependency.3 A potentially progress-
making command is one whose purpose is to change Coq’s state. For example,
the command Print Foo, which displays the previously loaded mathematical con-
struct Foo, is not a potentially progress-making command4. Any tactic invocation
is a potentially progress-making command. For example, the tactic auto silently
succeeds (without any effect) if it does not completely solve the goal it is assigned
to solve. In that case, although that particular invocation did not make any ac-
tual progress in the proof, auto is still considered a potentially progress-making
command, and the dependency tracking outputs the message ‘‘dependencies:
(empty list)’’. Other kinds of progress-making commands include, for exam-
ple notation declarations andmorphisms registrations. Some commands, although
they change Coq’s state, might not give rise to a dependency. For example, the Set
Firstorder Depth command, taking only an integer argument, changes the max-
imum depth at which the firstorder tactic will search for a proof. For such a
command, no dependency message is output.

One command may give rise to several dependency messages, when they
change Coq’s state in several different ways. For example, the intuition tactic5

can, mainly for efficiency reasons, construct an ad hoc lemma, register it into
the global environment and then use that lemma to prove the goal it has been
assigned to solve, instead of introducing the ad hoc lemma as a local hypothesis
through a cut. This is mainly an optimization: The ad hoc lemma is defined as

3 In other words, the system gives dependencies of individual proof steps, not only of
whole proofs.

4 Thus, although this commands obviously needs item Foo to be defined to succeed, the
dependency tracking does not output that information. That is not a problem in prac-
tice because such commands are usually issued by a user interface to treat an interactive
user request (e.g. “show me item Foo”), but are not saved into the script that is saved
on disk. Even if they were saved into the script, adding or removing them to (from,
respectively) the script does not change the semantics of the script.

5 The intuition tactic is a decision procedure for intuitionistic propositional calculus
based on the contraction-free sequent calculi LJT* of Roy Dyckhof, extended to hand
over subgoals which it cannot solve to another tactic.

6 J. Alama, L. Mamane, and J. Urban

“opaque”, meaning that the typechecking (proofchecking) algorithm is not al-
lowed to unfold the body (proof) of the lemma when the lemma is invoked, and
thus won’t spend any time doing so. By contrast, a local hypothesis is always
“transparent”, and the typechecking algorithm is allowed to unfold its body.
For the purpose of dependency tracking this means that intuition makes two
conceptually different steps:

1. register a new global lemma, under a fresh name;
2. solve the current subgoal in the proof currently in progress.

Each of these steps gives rise to different dependencies. For example, if the
current proof is BolzanoWeierstrass, then the new global lemma gives rise to
dependencies of the form

“BolzanoWeierstrass subproofN depends on . . . ”

where the subproofN suffix is Coq’s way of generating a fresh name. Closing
of the subgoal by use of BolzanoWeierstrass subproofN then gives rise to the
dependency

“BolzanoWeierstrass depends on BolzanoWeierstrass subproofN”

3.2 Coverage and Limitations

The Coq dependency tracking is already quite extensive, and sufficient for the
whole Nijmegen CoRN corpus. Some restrictions remain in parts of the Coq inter-
nals that the second author does not yet fully understand.6 Our interests (and
experiments) include not only purely mathematical dependencies that can be
found in the proof terms (for previous work see also [13,4]), but also fast recom-
pilation modes for easy authoring of formal mathematics in large libraries and
formal wikis. The Coq dependency tracking code currently finds all logically rel-
evant dependencies from the proof terms, even those that arise from automation
tactics. It does not handle yet the non-logical dependencies. Examples include no-
tation declarations, morphism and equivalence relation declarations,7 auto hint
database registrations,8 but also tactic interpretation. At this stage, we don’t
handle most of these, but as already explained, the internal structure of Coq
lends itself well to collecting dependencies that appear at the various levels of
tactic interpretation. This means that we can already handle the (non-semantic)
dependencies on logical constructs that appear during the tactic interpretation,
but that do not end up being used in the final proof term.

6 E.g. a complete overview of all datatypes of tactic arguments and how “dynamics”
are used in tactic expressions.

7 So that the tactics for equality can handle one’s user-defined equality.
8 auto not only needs that the necessary lemmas be available in the environment, but
it also needs to be specifically instructed to try to use them, through a mechanism
where the lemmas are registered in a “hint database”. Each invocation of auto can
specify which hint databases to use.

Dependencies in Formal Mathematics 7

Some of the non-logical dependencies are a more difficult issue in practice,
albeit not always in theory. For example, several dependencies related to tactic
parametrization (auto hint databases, firstorder proof depth search, mor-
phism declarations) need specific knowledge of how the tactic is influenced by
parameters or previous non-logical declarations. The best approach to handle
such dependencies seems to be to change (at the OCaml source level in Coq)
the type of a tactic, so that the tactic itself is responsible for providing such
dependencies. This will however have to be validated in practice, provided that
we manage to persuade the greater Coq community about the importance and
practical usefulness of complete dependency tracking for formal mathematics
and for research based on it.

Coq also presents an interesting corner case as far as opacity of dependencies
is concerned. On the one hand, Coq has an explicit management of opacity
of items; an item originally declared as opaque can only be used generically
with regards to its type; no information arising from its body can be used, the
only information available to other items is the type. Lemmas and theorems
are usually declared opaque9, and definitions usually declared transparent, but
this is not forced by the system. In some cases, applications of lemmas need to
be transparent. Coq provides an easy way to decide whether a dependency is
opaque or transparent: dependencies on opaque objects can only be opaque, and
dependencies on transparent objects are to be considered transparent.

Note that the pCIC uses a universe level structure, where the universes have to
be ordered in a well-founded way at all times. However, the ordering constraints
between the universes are hidden from the user, and are absent from the types
(statements) the user writes. Changing the proof of a theorem T can potentially
have an influence on the universe constraints of the theorem. Thus, changing the
body of an opaque item T ′ appearing in the proof of T can change the universe
constraints attached to it, potentially in a way that is incompatible with the
way it was previously used in the body of T . Detecting whether the universe
constraints have changed or not is not completely straightforward, and needs
specific knowledge of the pCIC. But unless one does so, for complete certainty
of correctness of the library as a whole, one has to consider all dependencies
as transparent. Note that in practice universe constraint incompatibilities are
quite rare. A large library may thus optimize its rechecking after a small change,
and not immediately follow opaque reverse dependencies. Instead, fully correct
universe constraint checking could be done in a postponed way, for example by
rechecking the whole library from scratch once per week or per month.

4 Dependency Extraction in Mizar

Dependency computation in Mizar differs from the implementation provided for
Coq, being in some sense much simpler, but at the same time also more robust
with respect to the potential future changes of the Mizar codebase. For compar-
ison of the techniques, see Section 5. For a more detailed discussion of Mizar,
see [11] or [7].

9 Thereby following the mathematical principle of proof irrelevance.

8 J. Alama, L. Mamane, and J. Urban

In Mizar, every article A has its own environment EA specifying the context
(theorems, definitions, notations, etc.) that is used to verify the article. EA, is
usually a rather conservative overestimate of the items that the article actually
needs. For example, even if an article A needs only one definition (or theorem,
or notation, or scheme, or. . .) from article B, all the definitions (theorems, nota-
tions, schemes, . . .) from B will be present in EA. The dependencies for an article
A are computed as the smallest environment E ′A under which A is still Mizar-
verifiable (and has the same semantics as A did under EA). To get dependencies
of a particular Mizar item I (theorem, definition, etc.,), we first create a mi-
croarticle containing essentially just the item I, and compute the dependencies
of this microarticle.

More precisely, computing fine-grained dependencies in Mizar takes three
steps:

Normalization. Rewrite every article of the Mizar Mathematical Library so
that:
– Each definition block defines exactly one concept.

(Definition blocks that contain multiple definitions or notations can lead
to false positive dependencies.)

– All toplevel logical linking is replaced by explicit reference: constructions
such as

φ ; then ψ ;

whereby the statement ψ is justified by the statement φ, are replaced by

Label1 : φ ;
Label2 : ψ by Label1 ;

where Label1 and Label2 are new labels. By doing this transformation,
we ensure that the only way that a statement is justified by another is
through explicit reference.

– Segments of reserved variables all have length exactly 1. For example,
constructions such as

reserve A for set ,
B for non empty set ,
f for Function of A, B,
M for Cardinal ;

which is a single reservation statement that assigns types to four variables
(A, B, f, and M) is replaced by four reservation statements, each of which
assigns a type to a single variable:

reserve A for s e t ;
reserve B for non empty se t ;
reserve f for Function of A, B;
reserve M for Cardinal ;

When reserved variables are normalized in this way, one can eliminate
some false positive dependencies. A theorem in which, say, the variable
f occurs freely but which has nothing to do with cardinal numbers has
the type Function of A,B in the presence of both the first and the

Dependencies in Formal Mathematics 9

second sequences of reserved variables. If the first reservation statement
is deleted, the theorem becomes ill-formed because f no longer has a
type. But the reservation statement itself directly requires that the type
Cardinal of cardinal numbers is available, and thus indirectly requires a
part of the development of cardinal numbers. If the theorem has nothing
to do with cardinal numbers, this dependency is clearly specious.

These rewritings do not affect the semantics of the Mizar article.
Decomposition. For every normalized article A in the Mizar Mathematical

Library, extract the sequence 〈IA1 , IA2 , . . . , IAn 〉 of its toplevel items, each of
which written to a “microarticle” Ak that contains only IAk and whose envi-
ronment is that of A and contains each Aj (j < k).

Minimization. For every article A of the Mizar Mathematical Library and
every microarticle An of A, do a brute-force minimization of smallest envi-
ronment EAn such that An is Mizar-verifiable.

The brute-force minimization works as follows. Given a microarticle A, we suc-
cessively trim the environment.10 For each item kind we have a sequence s of
imported items 〈a1, . . . , an〉, from which we find a minimal sublist s′ with re-
spect to which A is Mizar-verifiable.11 Applying this approach for all Mizar item
kinds, for all microarticles Ak, for all articles A of the MML is a rather expensive
computation (for some Mizar articles, this process can take several hours). It is
much slower than the method used for Coq described in Section 3. However the
result is truly minimized, which is important for many applications of dependen-
cies. Additionally, the minimization can be made significantly faster by applying
heuristics, see Section 6.4 for a learning-assisted approach.

5 Comparison of the Methods

Some observations comparing the Coq and Mizar dependency computation can
be drawn generally, without comparing the actual data as done in the following
sections.

Dependencies in the case of CoRN are generated by hooking into the actual
code and are thus quite exactly mirroring the work of the proof assistant. In
the case of Mizar, dependencies are approximated from above. The dependency
graph in this case starts with an over-approximation of what is known to be
sufficient for an item to be Mizar-verifiable and then successively refines this
over-approximation toward a minimal set of sufficient conditions. A significant
difference is that the dependencies in Coq are not minimized. The dependency
tracking there tells us exactly the dependencies that were used by Coq (in the
particular context) when a certain command is run. For example, if the context
is rich, and redundant dependencies are used by some exhaustive strategies, we
will not detect their redundancy. On the other hand, in Mizar we do not rely

10 Namely, theorems, schemes, top-level lemmas, definitional theorems, definientia, pat-
terns, registrations, and constructors. See [7] for a discussion of these item kinds.

11 There is a (possibly non-unique) minimal sublist, since we assume that A is Mizar-
verifiable to begin with.

10 J. Alama, L. Mamane, and J. Urban

on its exact operation. There, we exhaustively minimize the set of dependencies
until an error occurs. This process is more computationally intensive. However,
it does guarantee minimality (relative to the proof assistant’s power) which is
interesting for many of the applications mentioned below.

Another difference is in the coverage of non-logical constructs. Practically
every resource necessary for a verification of a Mizar article is an explicit part
of the article’s environment. Thus, it is easy to minimize not just the strictly
logical dependencies, but also the non-logical ones, like the sets of symbols and
notations needed for a particular item, or particular automations like definitional
expansions. For LCF-based proof assistants, this typically implies further work
on the dependency tracking.

6 Evaluation, Experiments, and Applications

6.1 Dependency Extraction for CoRN and MML

We use the dependency extraction methods described in 3 and 4 to obtain fine de-
pendency data for the CoRN library and an initial 100 article fragment of theMML.
As described above, for CoRN, we use the dependency exporter implemented di-
rectly using the Coq code base. The export is thus approximately as fast as the
Coq processing of CoRN itself, taking about 40 minutes on contemporary hard-
ware. The product are for each CoRN file a corresponding file with dependencies,
which have altogether about 65 MB. This information is then post-processed by
scripts of off-the shelf tools into the dependency graph discussed below.

For Mizar and MML we use the brute-force dependency extraction approach
discussed above. This takes significantly longer than Mizar processing alone; a
number of preprocessing and normalization steps that need to be done when
splitting articles into micro-articles also decreases performance. For our data
this now takes about one day for the initial 100 article fragment of the MML.
The main share of this time being spent on minimizing the large numbers of
items used implicitly by Mizar. Note that in this implementation we are initially
more interested in achieving completeness and minimality rather than efficiency,
and a number of available optimizations can reduce this time significantly.12

In order to compare the benefits of having fine dependencies, we also compute
for each library the full file-based dependency graph for all items. These graphs
emulate the current dumb file-based treatment of dependencies in these libraries:
each time an item is changed in some file, all items in the depending files have
to be re-verified. The two kinds of graphs for both libraries are then compared in
Table 1.

The graphs confirm our initial intuition that having the fine dependencies
will significantly speed up partial recompilation of the large libraries, which is
especially interesting in the CoRN and MML formal wikis that we develop.13

For example, the average number of items that need to be recompiled when a

12 See Section 6.4.
13 http://mws.cs.ru.nl/mwiki/, http://mws.cs.ru.nl/cwiki/

http://mws.cs.ru.nl/mwiki/
http://mws.cs.ru.nl/cwiki/

Dependencies in Formal Mathematics 11

random item is changed has dropped about seven times for CoRN, and about
five times for Mizar. The medians for these numbers are even more interesting,
increasing to fifteen for Mizar. The difference between MML and CoRN is also
quite interesting, but it is hard to draw any conclusions. The corpora differ in
their content and use different styles and techniques.

Table 1. Statistics of the item-based and file-based dependencies for CoRN and MML

CoRN/item CoRN/file MML-100/item MML-100/file

Items 9 462 9 462 9 553 9 553
Deps 175 407 2 214 396 704 513 21 082 287
TDeps 3 614 445 24 385 358 7 258 546 34 974 804
P(%) 8 54.5 15.9 76.7
ARL 382 2 577.2 759.8 3 661.1
MRL 12.5 1 183 155.5 2 377.5

Deps Number of dependency edges
TDeps Number of transitive dependency edges
P Probability that given two randomly chosen items, one depends (directly or indi-

rectly) on the other, or vice versa.
ARL Average number of items recompiled if one item is changed.
MRL Median number of items recompiled if one item is changed.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1000 2000 3000 4000 5000 6000

it
e
m

s

CoRN/item: reverse dependencies

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1500 3000 4500 6000 7500 9000

it
e
m

s

CoRN/file: reverse dependencies

Fig. 1. Cumulative transitive reverse dependencies for CoRN: file-based vs. item-based

Table 2 shows statistics about the number and structure of explicit and im-
plicit dependencies that we have done for Mizar. Explicit dependencies are any-
thing that is already mentioned in the original text. Implicit dependencies are
everything else, for example dependencies on type mechanisms (registrations,
see also Section 6.4). Note that the ratio of implicit dependencies is very signif-
icant, which suggests that handling them precisely is essential for the learning
and ATP experiments conducted in the next section.

12 J. Alama, L. Mamane, and J. Urban

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1500 3000 4500 6000 7500 9000

it
e
m

s

MML/item: reverse dependencies

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1500 3000 4500 6000 7500 9000

it
e
m

s

MML/file: reverse dependencies

Fig. 2. Cumulative transitive reverse dependencies for MML: file-based vs. item-based

Table 2. Statistics of Mizar direct dependencies from and to different items

theorem top-level lemma definition scheme registration

from 550 134 44 120 44 216 7 053 58 622
to 314 487 2 384 263 486 6 510 108 449

6.2 Dependency Analysis for AI-Based Proof Assistance

The knowledge of how a large number of theorems are proved is used by math-
ematicians to direct their new proof attempts and theory developments. In the
same way, the precise formal proof knowledge that we now have can be used for
directing formal automated theorem proving (ATP) systems and meta-systems
over the large mathematical libraries. In [2] we provide an initial evaluation of
the usefulness of our MML dependency data for machine learning of such proof
guidance of first-order ATPs.

These experiments are conducted on a set of 2078 problems extracted from the
Mizar library and translated to first-order ATP format. We emulate the growth
of the Mizar library (limited to these 2078 problems) by considering all previous
theorems and definitions when a new conjecture is attempted (i.e., when a new
theorem is formulated by an author, requiring a proof). The ATP problems thus
become very large, often containing thousands of the previously proved formulas
as available axioms, which obviously makes automated theorem proving quite
difficult [16,12]. We run the state-of-the-art Vampire-SInE [9] ATP system on
these large problems, and solve 548 of them (with a 10-second timelimit). Then,
instead of attacking such large problems directly, we use machine learning to
learn proof relevance from all previous fine-grained proof dependencies.

This technique works surprisingly well: in comparison with running Vampire-
SInE directly on the large problems, the problems pruned by trained machine
learners can be proved by Vampire in 788 resp. 824 cases, depending on the kind of
machine learning method (naive Bayes, resp. kernel-based) applied. This means
that the efficiency of the automated theorem proving is raised by 43.7% resp.
50.4% when we use the knowledge about previous proof dependencies. Thich is a
very significant improvement in the world of automated theorem proving, where
the search complexity is typically superexponential.

Dependencies in Formal Mathematics 13

In [3] we further leverage this automated reasoning technique by scaling the
dependency analysis to the whole MML, and attempting a fully automated proof
for every MML theorem. This yields the so-far largest number of fully automated
proofs over the whole MML, allowing us (using the precise formal dependencies
of the ATP and MML proofs) to attempt an initial comparison of human and
automated proofs in general mathematics.

6.3 Interactive Editing with Fine-Grained Dependencies

A particular practical use of fine dependencies (initially motivating the work
done on Coq dependencies in 3) is for advanced interactive editing. tmEgg [10]
is a TEXmacs-based user interface to Coq.14 Its main purpose is to integrate
formal mathematics done in Coq in a more general document (such as course
notes or journal article) without forcing the document to follow the structure of
the formal mathematics contained therein.

For example, it does not require that the order in which the mathematical
constructs appear in the document be the same as the order in which they are
presented to Coq. As one would expect, the latter must respect the constraints
inherent to the incremental construction of the formal mathematics, such as a
lemma being proven before it is used in the proof of a theorem or a definition
being made before the defined construct is used.

However, the presentation the author would like to put in the document may
not strictly respect these constraints. For example, clarity of exposition may
benefit from first presenting the proof of the main theorem, making it clear how
each lemma being used is useful, and then only go through all lemmas. Or a
didactic presentation of a subject may first want to go through some examples
before presenting the full definitions for the concepts being manipulated.

tmEgg thus allows the mathematical constructs to be in any order in the
document, and uses the dependency information to dynamically — and lazily —
load any construct necessary to perform the requested action. For example, if
the requested action is “check the proof of this theorem”, it will automatically
load all definitions and lemmas used by the statement or proof of the theorem.

An interactive editor presents slightly different requirements than the batch
recompilation scenario of a mathematical library described in Section 6.1. One
difference is that an interactive editor needs dependency information, as part of
the interactive session, for partial in-progress proofs. Indeed, if any in-progress
proof depends on an item T , and the user wishes to change or unload (remove
from the environment) T , then the part of the in-progress proof that depends
on T has to be undone, even if the dependency is opaque.

14 The dependency tracking for Coq was actually started by the second author as part
of the development of tmEgg. This facility has been already integrated in the official
release of Coq. Since then this facility was extended to be able to treat the whole of
the CoRN library. These changes are not yet included in the official release of Coq.

14 J. Alama, L. Mamane, and J. Urban

6.4 Learning Dependencies

In Section 6.2 it was shown that knowing the exact dependencies of previous
proofs and learning from them can very significantly improve the chance of
proving the next theorem fully automatically. Such AI techniques are however
not limited just to fully automated proving, but can be used to improve the
performance of many other tasks. One of them is also the actual process of
obtaining exact minimial dependencies, as done for Mizar in Section 4.

This may seem impossible (or cyclic) at first: how can the process of determin-
ing minimal dependencies be practically improved by having minimal dependen-
cies? The answer is that the (already computed) dependencies of the previous
items can help significantly to guess the dependencies of the next item, and thus
speed up the computation.

More precisely, for each Mizar item, we use its symbols (constructors) and
explicit theorem references as the characterization (input features) for the learn-
ing. The output features (labels) are the registrations (implicit type mechanisms)
needed for the item. For each item, we train the learner on all previous examples,
and produce a prediction (registrations re-ordered by their predicted relevance)
for the current item. The minimization algorithm is then modified to first do a
binary search of this re-ordered list for its minimal initial segment sufficient for
verifying the item, and then minimize this segment using the standard method.
This is compared to the standard method on a random sample of 1000 theorems.

Tables 3 and 4 present our findings. The recommendation-assisted minimiza-
tion algorithm was more than two times faster than unassisted minimization.
Table 4 shows the speedup factors as the recommendation-assisted algorithm
was applied to articles that are “deeper” in the MML, i.e., farther away from
the set-theoretic axioms of Mizar. Our data confirms our intuition that, as the
MML develops from the axioms of set theory to advanced mathematics, through
smart recommendation we can considerably speed up dependency calculation.

Table 3. Summary of recommendation-assisted registration minimization

Minimization time (sec) Avg. minimization time/theorem (sec)

Unassisted 5755 5.76
Assisted 2433 2.43

Speedup Factor 2.37

Number of cases
Faster theorems 826
Slower theorems 174

7 Related Work

Related work exists in the first-order ATP field, where a number of systems
can today output the axioms needed for a particular proof. Purely semantic

Dependencies in Formal Mathematics 15

Table 4. Speedup through the library

Number of theorems Unassisted time (sec) Assisted time (sec) Speedup Factor

200 143.81 90.18 1.59
400 967.90 541.70 1.79
600 1525.20 890.29 1.71
800 2828.82 1436.05 1.97

1000 5755.43 2433.26 2.37

(proof object) dependencies have been extracted several times for several ITPs,
for example by Bertot and the Helm project for Coq [5,13,4], and Obua and
McLaughlin for HOL Light and Isabelle. The focus of the latter two dependency
extractions is on cross-verification, and are based on quite low-level (proof object)
mechanisms. A higher-level15 semantic dependency exporter for HOL Light was
recently implemented by Adams [1] for his work on HOL Light re-verification in
HOL Zero. This could be usable as a basis for extending our applications to the
core HOL Light library and the related large Flyspeck library. The Coq/CoRN
approach quite likely easily scales to other large Coq libraries, like for example
the one developed in the Math Components project [6]. Our focus in this work
is wider than the semantic-only efforts: We attempt to get the full information
about all implicit mechanisms (including syntactic mechanisms), and we are
interested in using the information for smart re-compilation, which requires to
track much more than just the purely semantic or low-level information.

8 Conclusion and Future Work

In this paper we have tried to show the importance and attractiveness of formal
dependencies. We have implemented and used two very different techniques to
elicit fine-grained proof dependencies for two very different proof assistants and
two very different large formal mathematical libraries. This provides enough con-
fidence that our approaches will scale to other important libraries and assistants,
and our techniques and the derived benefits will be usable in other contexts.

Mathematics is being increasingly encoded in a computer-understandable
(formal) and in-principle-verifiable way. The results are increasingly large inter-
dependent computer-understandable libraries of mathematical knowledge. (Col-
laborative) development and refactoring of such large libraries requires advanced
computer support, providing fast computation and analysis of dependencies, and
fast re-verification methods based on the dependency information. As such auto-
mated assistance tools reach greater and greater reasoning power, the cost/ben-
efit ratio of doing formal mathematics decreases.

Given our work on various parts of this program, providing exact dependency
analysis and linking it to the other important tools seems to be a straightforward

15 By higher-level we mean tracking higher-level constructs, like use of theorems and
tactics, not just tracking of the low-level primitive steps done in the proof-assistant’s
kernel.

16 J. Alama, L. Mamane, and J. Urban

choice. Even though the links to proof automation, fast large-scale refactoring,
proof analysis, etc., are fresh, we believe that the significant performance boosts
we’ve seen already sufficiently demonstrate the importance of good formal depen-
dency analysis for formal mathematics, and for future mathematics in general.

References
1. Adams, M.: Introducing HOL Zero. In: Fukuda, K., Hoeven, J., Joswig, M.,

Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 142–143. Springer,
Heidelberg (2010)

2. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selec-
tion for mathematics by corpus analysis and kernel methods. CoRR abs/1108.3446
(2012), http://arxiv.org/abs/1108.3446

3. Alama, J., Kühlwein, D., Urban, J.: Automated andHumanProofs in General Math-
ematics: An Initial Comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 37–45. Springer, Heidelberg (2012)

4. Asperti, A., Padovani, L., Coen, C.S., Guidi, F., Schena, I.: Mathematical knowl-
edge management in HELM. Ann. Math. Artif. Intell. 38(1-3), 27–46 (2003)

5. Bertot, Y., Pons, O., Pottier, L.: Dependency graphs for interactive theorem
provers. Tech. rep., INRIA, report RR-4052 (2000)

6. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: PackagingMathematical Struc-
tures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

7. Grabowski, A., Kornilowicz, A., Naumowicz, A.: mizar in a nutshell. Journal of
Formalized Reasoning 3(2), 153–245 (2010)

8. Haftmann, F., Wenzel, M.: Constructive Type Classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer,
Heidelberg (2007)

9. Hoder, K., Voronkov, A.: Sine Qua Non for Large Theory Reasoning. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 299–314.
Springer, Heidelberg (2011)

10. Mamane, L., Geuvers, H.: A document-oriented Coq plugin for TeXmacs. In:
Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM 2007 - Work
in Progress. RISC Report, vol. 07-06, pp. 47–60. University of Linz, Austria (2007)

11. Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mechanized Mathematics
and Its Applications 4, 3–24 (2005)

12. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Applied Logic 7(1), 41–57 (2009)

13. Pons, O., Bertot, Y., Rideau, L.: Notions of dependency in proof assistants. In:
UITP 1998. Eindhoven University of Technology (1998)

14. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.
Mathematical Structures in Computer Science 21(4), 795–825 (2011)

15. Urban, J.: MoMM—fast interreduction and retrieval in large libraries of formalized
mathematics. International Journal on Artificial Intelligence Tools 15(1), 109–130
(2006)

16. Urban, J., Hoder, K., Voronkov, A.: Evaluation of Automated Theorem Proving
on the Mizar Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig,
M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 155–166. Springer,
Heidelberg (2010)

17. Wiedijk, F.: Mizar’s Soft Type System. In: Schneider, K., Brandt, J. (eds.)
TPHOLs 2007. LNCS, vol. 4732, pp. 383–399. Springer, Heidelberg (2007)

http://arxiv.org/abs/1108.3446

Proof, Message and Certificate

Andrea Asperti

Department of Computer Science
University of Bologna
asperti@cs.unibo.it

Abstract. The recent achievements obtained by means of Interactive
Theorem Provers in the automatic verification of complex mathematical
results have reopened an old and interesting debate about the essence
and purpose of proofs, emphasizing the dichotomy between message and
certificate. We claim that it is important to prevent the divorce between
these two epistemological functions, discussing the implications for the
field of mathematical knowledge management.

1 Introduction

In December 2010, Aaron Sloman posted a message on the MKM mailing list
that raised an interesting debate. His message was centered around the following
“proof” of Euclid’s Theorem, stating that the internal angles of a triangle add
up to a straight line (the argument was attributed to Mary Pardoe, a former
student of Aaron Sloman). The proof just involves rotating a pencil through
each of the angles at the corners of the triangle in turn, which results with the
pencil ending up in its initial location but pointing in the opposite direction.

��
��
��

��
��
��

������������������

������������������������������������

��
��
��
��
�������������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������������

��
��
��

��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

���
���
���

���
���
���

����������������������

��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��

��
��
��

������������������������

��
��
��
��

��
��
��
��

������������������

������������������

������������������

��
��
��
��

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��
��
��

��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

��
��
��

��
��
��

������������������

������������������������������������

��
��
��
��

������������������������ ��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
����������������� ��

��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

Sloman’s point was to show the relevance of graphical methods, in contrast
with a logicistic approach, in the spirit of the book Proofs without words: Exer-
cises in Visual Thinking by R. B. Nelsen [37] (see also D. Scott introduction to
[42], or Jamnik’s book on diagrammatic proofs [28]). As Sloman expected, his
post immediately raised a fierce debate in the community about the “validity”

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 17–31, 2012.
� Springer-Verlag Berlin Heidelberg 2012

18 A. Asperti

of the above argument, with prestigious supporters on both sides. Dana Scott
writes:

The proof is fine and really is the same as the classical proof. To see
this, translate (by parallel translation) all the three angles of the triangle
up to the line through the top vertex of the triangle parallel to the lower
side. [. . .] Preservation of angles by parallel translation is justified by the
Parallel Postulate.

α

γ

β

α
γ

β

β

α

In fact, the delicate point of the “proof” is the connection between three rotations
performed at different positions in the space, and their translation to a same
point, in order to sum them. This becomes evident if, instead of working on the
plane, we repeat the pencil experiment on a sphere:

Of course, the problems related to the fifth-postulate and non-Euclidean geome-
tries were evident to all people involved in the discussion: in fact the discussion
rapidly switched from the validity of the proof to its pedagogical value. The
supporters of the “proof” appreciated its nature of “thought experiment” (in
Lakatos sense) not eventually leading to the expected result.1 The fact that it
fails on the sphere is actually informative, and can be used to better explain
the relevance of the parallel postulate, that could otherwise be misunderstood.
On the other side, detractors of the proofs were more concerned with the risk

1 In Lakatos’ words [32], “after Columbus one should not be surprised if one does not
solve the problem one has set out to solve.”

Proof, Message and Certificate 19

to present to students as a “valid” proof, an argument that is actually flawed.
Quoting Arnon Avron:

If this “proof” is taught to students as a full, valid proof, then I do not
see how the teacher will be able to explain to those students where the
hell Euclid’s fifth postulate (or the parallels axiom) is used here, or even
what is the connections between the theorem and parallel lines.

2 Message and Certificate

It is usually acknowledged (see e.g. [36]) that proofs have a double epistemo-
logical function, playing both the role of message and certification. In the first
incarnation, the emphasis is entirely on communication: not only the proof is
supposed to explain – by providing intuitions – the reasons for believing in the
validity of a given statement, but it should also convey information about the line
of thought used to conjecture the result and the techniques used for approaching
it. In the second incarnation, the proof is supposed to provide a precise line of
reasoning that can be verified in an objective and essentially mechanical way:
you can follow and check the validity of the argument even without having a
clear understanding of its meaning.

The debate about the actual role of proofs in mathematics (see also [30] for a
recent survey) essentially concerns the different relevance attributed to the role
of message or certificate.

A very common position among mathematicians is to firmly negate any deduc-
tive validity to proofs; G. H. Hardy, who is traditionally credited with reforming
British mathematics by bringing rigor into it, described the notion of mathe-
matical proof as we working mathematicians are familiar with in the following
terms [22]:

There is strictly speaking no such thing as a mathematical proof; we can,
in the last analysis, do nothing but point; [. . .] proofs are what Littlewood
and I call gas, rhetorical flourishes designed to affect psychology, pictures
on the board in the lecture, devices to stimulate the imagination of pupils.

The opposite position consists in negating any possibility of communication with-
out a clear, objective and verifiable assessment of its actual content. The position
is nicely summarized by the following words of de Bruijn2 [16]

If you can’t explain your mathematics to a machine it is an illusion to
think you can explain it to a student.

A simple example can probably help to understand the issue. Consider the prob-

lem of proving that the sum of the first n positive integers is equal to n·(n+1)
2 .

2 See [3] for a deeper discussion of de Bruijn’s sentence.

20 A. Asperti

A simple approach (anecdotically attributed to the precocious genius of Gauss3),
is to write the sum horizontally forwards and backwards, observe that the sum of

each column amounts to n+1, and we have n of them, giving a total of n·(n+1)
2 .

– Message
1 2 . . . n− 1 n
n n− 1 . . . 2 1

n+ 1 n+ 1 . . . n+ 1 n+ 1

A seemingly simple proof can be given by induction: the case “n = 1” is obvious,
and the inductive case amounts to a trivial computation:

– Certification
(n− 1) · n

2
+ n =

n · (n+ 1)

2

The actual information provided by the two proofs is of course very different:
Gauss’ “trick” gives us a general methodology suitable to be used not only in
the given situation but, mutatis mutandi, in a wide range of similar problems;
in contrast, the inductive proof is quite sterile and uninformative: if we do not
know in advance the closed form of the progression (in general, the property we
are aiming to), induction provides no hint to guess it. The interesting part of
Gauss’ proof is its message, while the inductive proof is, in this case, a mere cer-
tificate. The importance of the message often transcends the actual relevance of
the statement itself: the fact that the sum of the arithmetic progression is equal
to n(n+ 1)/2 is of marginal interest, but Gauss’ technique is a major source of
inspiration. This is why we are interested in proofs: because they embody the
techniques of mathematics and shape the actual organization of this discipline
into a structured collection of interconnected notions and theories. What we
expect to gain from a solution of the P

?
= NP problem is not quite the knowl-

edge about the validity of this statement, but a new insight into notions and
techniques that appear to lie beyond the current horizon of mathematics. And
this is also the main reason why we are interested in formal proofs: because the
process of formalization obliges to a deeper, philosophical and scientific reflec-
tion of the logical and linguistic mechanisms governing the deployment and the
organization of mathematical knowledge [3].

3 Brian Hayes, [25] collected several hundred accounts of the story of Gauss’s boy-
hood discovery of the “trick” for summing an arithmetic progression, comprising the
following:

When Gauss was 6, his schoolmaster, who wanted some peace and quiet, asked
the class to add up the numbers 1 to 100. “Class,” he said, coughing slightly,
“I’m going to ask you to perform a prodigious feat of arithmetic. I’d like you all
to add up all the numbers from 1 to 100, without making any errors.” “You!”
he shouted, pointing at little Gauss, “How would you estimate your chances of
succeeding at this task?” “Fifty-fifty, sir,” stammered little Gauss, “no more
. . . ”

Proof, Message and Certificate 21

It is interesting to observe that Gauss’ argument is not so easy to formalize,
requiring several small properties of finite summations.4 In particular, it relies
on the following facts: (perm) the sum is unchanged under permutation of the
addends, (distr)

∑n
i=1 ai +

∑n
i=1 bi =

∑n
i=1(ai + bi) and (const) summing n

constant elements c yields n · c. The best approximation we can do of a “formal”
version of Gauss’ argument looks something like the following

2 ·
∑n

i=1 i =
∑n

i=1 i+
∑n

i=1 i
=
∑n

i=1 i+
∑n

i=1(n− i+ 1)
=
∑n

i=1(i + n− i+ 1) =
=
∑n

i=1(n+ 1)
= n · (n+ 1)

One could easily wonder if, in this process, the original message has not been en-
tirely lost.5 What is particularly annoying is that, in the formal proof, there isn’t
a single crucial step that embodies the essence of the proof: it is a clever combi-
nation of perm, distr and const that makes it work. In fact, the nice point of the
graphical representation is to put them together in a single picture: adding rows
is the same as adding columns, and each column sum up to the same value. But
this raises another interesting issue: namely, if what makes Gauss’ argument so
appealing is not due to an intrinsic property of the proof but to the fact that it
suits particularly well to the intellectual (and sensorial, synoptical) capacities of
the human mind.

Most of the proofs in elementary arithmetic have a similar nature. For in-
stance, this is a typical proof [27] of the main property of the Euler φ function,
computing for any positive integer n the number of integers between 1 and n
relative prime to n.

Proposition.
∑

d|n φ(d) = n.

Proof. Consider the n rational numbers 1
n ,

2
n ,

3
n , . . . ,

n−1
n , nn . Reduce

each to lowest terms; i.e., express each number as quotient of relative
prime integers. The denominators will all be divisors of n. If d|n, exactly
φ(d) of our numbers will have d in the denominator after reducing to
lowest terms. Thus

∑
d|n φ(d) = n.

Again, a formal proof [10,2,6] requires a not trivial play with summations prop-
erties that is eventually going to hide the intuitive argument so readily commu-
nicated by the previous sketch (this is also why a good library of “big ops” [12]
is essential for any formal development involving combinatorics).

In general, we should accept the fact that there will be many proofs that, once
formalized, will loose that degree of unexpectedness, combined with inevitability
and economy that according to Hardy [23] make the beauty of a mathematical

4 Since summation is defined by recursion, most proofs of its properties require recur-
sion too.

5 On the other side, one could also wonder if, after all, Gauss’s argument doesn’t hide
too many details that are worth to be spelled out.

22 A. Asperti

proof. But, mathematics itself is entering a new era of results requiring extraor-
dinarily long and difficult megaproofs, sometimes relying heavily on computer
calculations, and leaving a miasma of doubt behind them [35]. Maybe, enumer-
ation by cases, one of the duller forms of mathematical argument in Hardy’s
opinion [23], could turn out to be the only viable way to achieve a result, as in
the case of the four color theorem [21].

According to Lakatos, simplicity was the eighteenth-century idea of mathe-
matical rigor [32], and maybe as we already observed in [5] we should just learn
to appreciate a different, and less archaic, kind of beauty.

3 A Social Process

Strictly intertwined with the dichotomy between message and certificate is the
discussion about the actual nature of the process aimed to asses the validity of
a mathematical argument:6 a social process, or an objective, almost mechanical
activity (see [5] for a recent survey on this topic). The two positions can be
summarized by the following quotations:

social/subjective
We believe that, in the end, it is a social process that determines
whether mathematicians feel confident about a theorem.

– R. A. De Millo, R. J. Lipton, A. J. Perlis [17]
decidable/objective

A theorem either can or cannot be derived from a set of axioms. I
don’t believe that the correctness of a theorem is to be decided by a
general election.

– L. Lamport [33]

The main argument usually alleged by the paladins of the “social” perspective,
is the practical impossibility of developing fully formal demonstrations, due to
the “nearly inconceivable” length of a deduction from first principles.

Russell did succeed in showing that ordinary working proofs can be reduced
to formal, symbolic deductions. But he failed, in three enormous, taxing
volumes, to get beyond the elementary facts of arithmetic. He showed what
can be done in principle and what cannot be done in practice.
[. . .] A formal demonstration of one of Ramanujan’s conjectures assuming
set theory and elementary analysis would take about two thousand pages.

– R. A. De Millo, R. J. Lipton, A. J. Perlis [5]

Even Bourbaki,7 who is traditionally enlisted in the ranks of the formalist school
[34], labels the project of formalizing mathematics as absolutely unrealizable

6 It is important to stress that the debate is not about the overall mathematical
activity, that is indubitably a social process (at least, in the same complex, and often
conflictual way, artistic creation is), but is really confined to correctness checking.

7 Bourbaki did not particularly like logic, that he considered as a mere tool: “logic, as
far as we mathematicians are concerned, is no more and no less than the grammar
of the language which we use, a language which had to exist before the grammar
could be constructed” [14].

Proof, Message and Certificate 23

The tiniest proof at the beginning of the Theory of Sets would already
require several hundreds of signs for its complete formalization.

– Bourbaki [13]

As we observed in [5], the argument is reminiscent of the general disbelief about
the possibilities of writing long programs at the beginning of the fifties: in fact,
they were reasoning in terms of assembly languages, and the mistake was due to
the inability to conceive a process of automatic translation from a high level pro-
gramming language to a machine-understandable code. The same is true for for-
mal proofs: a modern interactive prover is precisely a tool interpreting a high level
mathematical language (we shall discuss them in the next section) into a set of low
level logical instructions automatically checked for correctness by the machine.

The arrival of the computer changes the situation dramatically. [. . .]
checking conformance to formal rules is one of the things computers are
very good at. [. . .] the Bourbaki claim that the transition to a completely
formal text is routine seems almost an open invitation to give the task
to computers.

– J. Harrison[24]

It is important to observe that the high level “proof” can be arbitrarily compact: it
only depends on howmuch time you are ready to pay for the translation. From this
point of view, a “proof” is any information sufficient to make decidable the cor-
rectness of a statement (that, in principle, fixed the formal system, is only semide-
cidable). For instance, an upper bound to its dimension (or any function of it) is
a perfectly formal (and decidedly compact) proof. So, something like “10 lines”
should be accepted as a perfectly formal argument (that we shall henceforth call
“à la Fermat”, paying homage to to his actual inventor): we have just to generate
and check all proof-terms of the formal language within the given bound: if one of
them proves the statement the argument is correct, and otherwise it is wrong.8

This sheds new light on the dichotomy between message and certificate: in
fact, what kind of message can be found in a proof à la Fermat? In other words,
it is true that formal proofs can be arbitrarily compact, but it is equally true
that the certificate can be arbitrarily distant from any message.

The divorce between the notions of message and certification induced by com-
puter proof assistants has been already remarked by Dana Mackenzie in a recent
article that appeared on Science, where he apparently attributes a positive value
to such a separation:

8 In a recent invited talk at CICM 2011, Trybulec suggested to use time complexity
to make a distinction between proofs and traces, reserving the title of proofs only
for those certificates that can be checked with a “reasonable” (say, polynomial)
complexity. For Automatic Interactive Provers it is of course important to be able to
perform proof checking in a reasonable amount of time (hence, certificates are usually
proofs in Trybulec sense). At the current state of the art, the dimension of formal
certificates is sensibly more verbose (2 to 10 times larger) than the corresponding
high level mathematical proof (see [4] for a discussion).

24 A. Asperti

Ever since Euclid, mathematical proofs have served a dual purpose: cer-
tifying that a statement is true, and explaining why it is true. Now those
two epistemological functions may be divorced. In the future, the com-
puter assistant may take care of the certification and leave the mathe-
matician to look for an explanation that humans can understand.

– D. Mackenzie [35]

Mackenzie’s argument, however, is pretty weak: if the certificate is divorced
from the message, it is enough (up to the adequacy of the encoding) to certify
the correctness of the statement, but it says nothing about the correctness of its
supposed “explanation”. Often, what is doubtful is not the validity of statements,
but of their proofs: so, if message and certificate are distant, we are essentially
back to the original situation: we are not sure if the “message” the author is
trying to communicate to the reader is correct.

The usual objections raised by mathematicians to the issue of automatic ver-
ification of statements concern either the correctness of the proof checker itself
or the correctness of the encoding of the problem (adequacy). For the first point,
proof checkers are single applications, often open source, in competition with
each other and subject to a severe experimental verification (see also [19] for
a list of properties that could strengthen our conviction that a proof checker
is reliable). For the second point, sometimes underestimated in the proof as-
sistant community, we should observe that the adequacy of the formalization
only depends on the formulation of definitions and statements, and checking
that they reflect their intended meaning is a much easier task than checking
the correctness of the entire proof. For instance, Gonthier emphasizes that the
formal statement of the 4-color theorem [21], including “all definitions” required
to understand it, fits on one A4 page; while we believe that this is somewhat an
overstatement and more pages are actually required, the point is that, if you trust
the proof assistant, you just need to understand and verify a small amount of
information.

A more substantial objection concerns the real added value provided by having
a formal proof in case we are not able to convey a human readable message out
of it. We would be in the odd situation to know the existence of a proof, but to
have a pretty vague idea of how it concretely works.9

9 With have a similar situation with proofs by reflection [15]. The basic idea of this
technique is that checking a proof involves running some certified decision proce-
dure. For instance, in order to compare two regular expressions, we can build the
corresponding automata and run a suitable bisimulation algorithm. In this case too,
we have no direct grasp of the specific proof, but the big difference is that we have
a clear understanding of the reasons why the proof is correct, i.e. of the metatheory
underlying the approach; if the algorithm is implemented correctly (and this can be
mechanically verified), then we can be confident in the proof.

Proof, Message and Certificate 25

4 Declarative vs. Procedural

It is usually believed that declarative languages are in a better position than
procedural ones to preserve the relation between message and certificate in the
realm of formal mathematics.

Before entering in this discussion, we would like to attempt a clarification of
the two classes of languages. To this end, we make a simple analogy with chess. A
chess game can be described in essentially two ways: as a sequence of moves or as
a sequence of positions (see Figure 1). In the first case, positions are implicit: they
can be reconstructed by executing a subsequence of the moves; in the second case,
moves are implicit: they can be deduced by the difference between consecutive
positions. Moves and positions are simple examples of, respectively, a procedural
and a declarative language.

procedural declarative

1 e4 c5
2 Nf3 d6
3 d4 cXd4
. . .

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNAQJBMR

a b c d e f g h

8rmblkans
7opZpopop
60Z0Z0Z0Z
5Z0o0Z0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNAQJBMR

a b c d e f g h

8rmblkans
7opZpopop
60Z0Z0Z0Z
5Z0o0Z0Z0
40Z0ZPZ0Z
3Z0Z0ZNZ0
2POPO0OPO
1SNAQJBZR

a b c d e f g h

8rmblkans
7opZ0opop
60Z0o0Z0Z
5Z0o0Z0Z0
40Z0ZPZ0Z
3Z0Z0ZNZ0
2POPO0OPO
1SNAQJBZR

a b c d e f g h

8rmblkans
7opZ0opop
60Z0o0Z0Z
5Z0o0Z0Z0
40Z0OPZ0Z
3Z0Z0ZNZ0
2POPZ0OPO
1SNAQJBZR

a b c d e f g h

8rmblkans
7opZ0opop
60Z0o0Z0Z
5Z0Z0Z0Z0
40Z0oPZ0Z
3Z0Z0ZNZ0
2POPZ0OPO
1SNAQJBZR

a b c d e f g h

Fig. 1. Moves and Positions

In the case of logic, you have a similar situation. A proof of Pn, in Hilbert’s
acception, is a sequence of formulae P1, . . . , Pn where each Pi is either an axiom
or is obtained from formulae preceding Pi in the sequence by means of suitable
(fixed) logical rules. This description is actually redundant: you may just give
the sequence of rules (procedural description) leaving implicit the sequence of
formulae, or you may give the whole sequence of intermediate results P1, . . . , Pn
leaving to the reader the (easy) task to understand the logical rule required for
each inference (declarative description).

The relative merits of the two representations should be clear. A procedural
description is very compact but quite unreadable: the point is that each move
refers to a state implicitly defined by the previous steps. To understand the

26 A. Asperti

proof, you should be able to figure out in your mind the state of the system after
each move. In the case of chess, this is still possible for a trained human, since
the board is a relatively simple structure, moves are elementary operations, and
games are not too long. However, it becomes practically impossible as soon as
you deal with more complex situations, such as symbolic logic.10

On the other side, declarative descriptions provide, at each instant, a full
description of the current state: since the evolution does not depend on the
past (the game is history free), you do not need to remember or rebuild any
information and may entirely focus on the given state. Declarative descriptions
are hence immediately readable,11 but also (as it is evident in the case of chess),
much more verbose.

The gap between procedural and declarative languages is not so large as it
may appear at first sight: in fact, they complement each other and integrate
together very well. For instance, when discussing a chess game in the procedural
style it is customary to explicitly draw the state of the board at particularly
interesting or instructive places (see Figure 2 - Fisher vs Larsen, Portoroz 1958,
Sicilian Defense, Yugoslavian Attack at the Dragon Variation).

1 e4 c5
2 Nf3 d6
3 d4 cXd4
4 NXd4 Nf6
5 Nc3 g6

8rmblka0s
7opZ0opZp
60Z0o0mpZ
5Z0Z0Z0Z0
40Z0MPZ0Z
3Z0M0Z0Z0
2POPZ0OPO
1S0AQJBZR

a b c d e f g h

6 Be3 Bg7
7 f3 O-O
8 Qd2 Nc6
9 Bc4

8rZbl0skZ
7opZ0opap
60Zno0mpZ
5Z0Z0Z0Z0
40ZBMPZ0Z
3Z0M0APZ0
2POPL0ZPO
1S0Z0J0ZR

a b c d e f g h

Fig. 2. Cuts

In the terminology of logic, this operation is called a cut, since it divides a
complex description (a game, a proof) into smaller components, each one with
an independent interest (not every position of the board is worth a draw, in the
same way as not every intermediate logical step is worth a cut). The tendency,
among interactive provers adopting a procedural style, to promote the use of
cuts and a more structured description of the proof (and hence to implicitly
move towards a more declarative and readable style of proofs) is clearly testified
by the most recent applications such as Ssreflect [20] or Matita [38,8].

10 The criticism that procedural languages lack readability is a bit unfair: the point is
that they are not meant to be read, but to be interactively re-executed.

11 By “readability” we mean here the mere possibility to follow more easily the chain
of reasoning in a proof; of course this does not imply a real grasp of the information
it is supposed to convey. For instance, it is difficult to learn chess by just studying
past games, no matter how they are represented, without auxiliary expertise.

Proof, Message and Certificate 27

On the other hand, we can make the declarative description less verbose by
simply augmenting the granularity of steps. For instance, without any loss of
information, we can decide to represent the board at each player-opponent move
instead of considering single half moves (see Figure 3). But we could arbitrarily

8rmblkans
7opZpopop
60Z0Z0Z0Z
5Z0o0Z0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNAQJBMR

a b c d e f g h

8rmblkans
7opZ0opop
60Z0o0Z0Z
5Z0o0Z0Z0
40Z0ZPZ0Z
3Z0Z0ZNZ0
2POPO0OPO
1SNAQJBZR

a b c d e f g h

8rmblkans
7opZ0opop
60Z0o0Z0Z
5Z0Z0Z0Z0
40Z0oPZ0Z
3Z0Z0ZNZ0
2POPZ0OPO
1SNAQJBZR

a b c d e f g h

Fig. 3. Augmenting the granularity

decide to represent the board every, say, pair of moves, relying on the reader’s
ability to fill in the missing information. The granularity could of course depend
on the state of the game, and the knowledge we expect from the reader. For
instance, chess openings have been deeply investigated, and each good chess
player immediately recognizes a particular opening from the state of the board
in which it ends up: so, a procedural part of several moves can be left implicit and
we can immediately jump in the middle of the game. In the case of declarative
languages for interactive provers, the intended reader is the machine, that is, a
device with limited intelligence: as a consequence the granularity cannot be too
coarse-grained.12 However, we can further reduce it by providing suitable proof
hints to the machine, or explicit procedural fragments.

Having clarified that procedural and declarative languages are not mutually
exclusive, and may easily integrate (see also [11,41]), there is however an impor-
tant observations that must be made.

In declarative languages, the level of granularity is somehow imposed by the
intelligence of the machine, and there is no reason to believe this corresponds
with the requirement of a good exposition in human terms. As we already ob-
served, granularity can be modified by adding suitable proof hints, but again
these proof-hints, similarly to procedural fragments, must be machine under-
standable, and they may hardly improve the readability of the text (they are
essentially meant to reduce verbosity).

On the other side, a procedural proof can be more or less arbitrarily split in
smaller fragments, for expository purposes. Moreover, the kind of enrichment we

12 This use of the machine, meant to relieve the user from the burden to fill in rel-
atively trivial steps by automatically completing the missing gaps (the underlying
“logical glue” of the mathematical language) is called small scale automation in [9],
in contrast with large scale automation referring to the more creative and complex
activity to help the user in the process of figuring out the actual proof. The two
kinds of automation seem to have different requirements and can possibly deserve
different approaches and solutions.

28 A. Asperti

can do on the text can be entirely aimed for humans: if we ask an automatic chess
player to print the state of the board at a given instant we do not necessarily ex-
pect the player to be able to reparse this representation, purely meant for human
convenience (even if we may agree that it could be a desirable property). In other
terms, the kind of enrichment corresponding with a “cut” does not necessarily
need to be a formal statement: it could be a comment, a picture, a diagram, an
animation, or whatever. The same is essentially true with a declarative language,
but in this case any additional comment or explanation is eventually going to
interfere with the original vernacular, adding a confusing level of “explanation”
to a language that was already supposed to be self-explanatory.

5 A Complex Problem

The complexity of the problem of preserving the relation between message and
certificate can be understood by an analogy13 with software, where we have
essentially the same situation: writing a program requires understanding and
solving a problem, but it is extremely difficult to extract such a knowledge
(the message) from the final code (playing the role of certification). The major
investment, in programming as well as in formalization, is not the actual writing
up of the program, but the preliminary phase of analysis, planning and design; it
is a real pity that this information gets essentially lost in the resulting encoding.
In spite of the evident relevance of the problem, we have assisted during the last
decades to the substantial failure of many interesting projects aimed to improve
writing and readability of programs. A relevant example is literate programming
[31], that in the intention of Knuth was not just a way to produce high-quality
formatted documentation, but a methodology aimed to improve the quality of
the software itself, forcing programmers to explicitly state the relevant concepts
behind their code. Literate programming was meant to represent what Knuth
called the “web of abstract concepts” hiding behind the design of software; in
particular, it supported the possibility to change the order of the source code
from a machine-imposed sequence to one more convenient to the human mind.

The reasons why literate programming failed to have a significant impact
on software development are not so evident. We could probably admit that in
modern programming languages (both object oriented and functional), the kind
of abstraction mechanisms provided by the language are already sufficient to
prevent that “dictatorship” of the machine that Knuth seemed to suffer in a
particular way.14 This is probably enough to explain why, at present, a simple

13 The analogy we are making here, comparing programs with proofs, is essentially the
so-called Curry-Howard analogy [26]. The fact of finding in the two realms the same
dichotomy message/certification proves once again the deep philosophical implica-
tions of this correspondance that largely transcend the technical aspects of proof
theory.

14 In any case, it is surely more interesting, and probably more useful, to improve the
programming language, than solving the problem at a meta level, via a generative
approach.

Proof, Message and Certificate 29

documentation generator like say, Doxygen,15 is largely more popular than the
more sophisticated and ambitious literate programming approach.

It is likely to expect a similar situation in the realm of interactive provers.
Nowadays, procedural languages for interactive provers permit to adhere with
sufficient precision to the natural “flows of thoughts”, and techniques and method-
ologies like small scale reflection [20], mathematical components [18] or small
scale automation [9] are meant to further improve on this situation. So, a sim-
ple documentation generators is likely to be more rapidly adopted by users of
interactive provers than a more sophisticated authoring interface.16

Many available proof assistant already provide functionalities for enriched
HTML presentation of their libraries, like the Coqdoc tool for the Coq System.
These tools allow to produce interesting ebooks, like for instance the “Software
Foundations” course at http://www.cis.upenn.edu/~bcpierce/sf/. The next
natural step would consist in improving on line interactivity with the document,
especially for editing and execution. An additional layer (called Proviola) is cur-
rently being developed [39] on top of coqdoc, with the goal of providing more
dynamic presentations of the Coq formalizations. Several system are develop-
ing web-interfaces for their application (see [29,7]), many of them inspired by
wikis [40,1]. The wiki-approach looks particularly promising: a large repository
of mathematical knowledge may be only conceived as a collaborative working
space. This is especially true in a formal setting where, in the long term, re-use
of mathematical components will be the crucial aspect underpinning the success
of interactive theorem provers.

Acknowledgments. This paper is partially based on two talks given by the
author, one at the Tata Institute of Technology, Mumbai (India) in 2009 and
another at the Summer School of Logic of the Italian Association for Logic and
Applications, held in Gargnano, Italy, in August 2011. I would like to thank,
respectively, Raja Natarajan and Silvio Ghilardi for offering me these opportu-
nities. I would also like to thank the anonymous reviewers for their detailed and
stimulating comments.

References

1. Alama, J., Brink, K., Mamane, L., Urban, J.: Large Formal Wikis: Issues and Solu-
tions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/
MKM 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg (2011)

2. Asperti, A., Armentano, C.: A page in number theory. Journal of Formalized Rea-
soning 1, 1–23 (2008)

3. Asperti, A., Avigad, J.: Zen and the art of formalization. Mathematical Structures
in Computer Science 21(4), 679–682 (2011)

15 http:www.doxygen.org
16 This does not imply that one is better than the other; in the long run, a highly

sophisticated authoring environment can still be the better solution.

http://www.cis.upenn.edu/~bcpierce/sf/
http:www.doxygen.org

30 A. Asperti

4. Asperti, A., Sacerdoti Coen, C.: Some Considerations on the Usability of Interac-
tive Provers. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L.,
Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 147–156. Springer,
Heidelberg (2010)

5. Asperti, A., Geuvers, H., Natarajan, R.: Social processes, program verification and
all that. Mathematical Structures in Computer Science 19(5), 877–896 (2009)

6. Asperti, A., Ricciotti, W.: About the Formalization of Some Results by Chebyshev
in Number Theory. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008.
LNCS, vol. 5497, pp. 19–31. Springer, Heidelberg (2009)

7. Asperti, A., Ricciotti, W.: A Web Interface for Matita. In: Jeuring, J., et al. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 417–421. Springer, Heidelberg (2012)

8. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: The Matita Interactive
Theorem Prover. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 64–69. Springer, Heidelberg (2011)

9. Asperti, A., Tassi, E.: Superposition as a logical glue. EPTCS 53, 1–15 (2011)
10. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime

number theorem. ACM Trans. Comput. Log. 9(1) (2007)
11. Barendregt, H.: Towards an interactive mathematical proof language. In:

Kamareddine, F. (ed.) Thirty Five Years of Automath, pp. 25–36. Kluwer (2003)
12. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical Big Operators. In:

Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170,
pp. 86–101. Springer, Heidelberg (2008)

13. Bourbaki, N.: The architecture of mathematics. Monthly 57, 221–232 (1950)
14. Bourbaki, N.: Theory of Sets. Elements of mathematics. Addison Wesley (1968)
15. Boutin, S.: Using Reflection to Build Efficient and Certified Decision Procedures.

In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer,
Heidelberg (1997)

16. De Bruijn, N.G.: Memories of the automath project. Invited Lecture at the
Mathematics Knowledge Management Symposium, November 25-29. Heriot-Watt
University, Edinburgh (2003)

17. De Millo, R.A., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems
and programs. Commun. ACM 22(5), 271–280 (1979)

18. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical
Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

19. Geuvers, H.: Proof Assistants: history, ideas and future. Sadhana 34(1), 3–25 (2009)
20. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in coq. Jour-

nal of Formalized Reasoning 3(2), 95–152 (2010)
21. Gonthier, G.: Formal proof – the four color theorem. Notices of the American

Mathematical Society 55, 1382–1394 (2008)
22. Hardy, G.H.: Mathematical proof. Mind 38, 1–25 (1928)
23. Hardy, G.H.: A Mathematician’s Apology. Cambridge University Press, London

(1940)
24. Harrison, J.: Formal proof – theory and practice. Notices of the American Mathe-

matical Society 55, 1395–1406 (2008)
25. Hayes, B.: Gauss’s day of reckoning. American Scientist 4(3), 200–207 (2006)
26. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P.,

Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Cal-
culus and Formalism, pp. 479–490. Academic Press, Boston (1980)

27. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.
Springer (2006)

Proof, Message and Certificate 31

28. Jamnik, M.: Mathematical Reasoning with Diagrams: from intuition to automa-
tion. CSLI Press, Stanford (2001)

29. Kaliszyk, C.: Web interfaces for proof assistants. Electr. Notes Theor. Comput.
Sci. 174(2), 49–61 (2007)

30. Kerber, M.: Proofs, Proofs, Proofs, and Proofs. In: Autexier, S., Calmet, J.,
Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010.
LNCS, vol. 6167, pp. 345–354. Springer, Heidelberg (2010)

31. Knuth, D.E.: Literate Programming. Center for the Study of Language and Infor-
mation (1992)

32. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery.
Cambridge University Press (1976)

33. Lamport, L.: Letter to the editor. Communications of the ACM 22, 624 (1979)
34. Lee, J.K.: Philosophical perspectives on proof in mathematics education. Philoso-

phy of Mathematics Education Journal 16 (2002)
35. MacKenzie, D.: What in the name of Euclid is going on here? Science 207(5714),

1402–1403 (2005)
36. Mackenzie, D.: Mechanizing Proof. MIT Press (2001)
37. Nelsen, R.B.: Proofs without Words: Exercises in Visual Thinking. The Mathemat-

ical Association of America (1997)
38. Coen, C.S., Tassi, E., Zacchiroli, S.: Tinycals: step by step tacticals. In: Proceed-

ings of User Interface for Theorem Provers 2006. Electronic Notes in Theoretical
Computer Science, vol. 174, pp. 125–142. Elsevier Science (2006)

39. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A Tool for Proof
Re-animation. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L.,
Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 440–454. Springer,
Heidelberg (2010)

40. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A Wiki for Mizar: Motivation, Con-
siderations, and Initial Prototype. In: Autexier, S., Calmet, J., Delahaye, D., Ion,
P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167,
pp. 455–469. Springer, Heidelberg (2010)

41. Wiedijk, F.: Formal proof sketches. In: Fokkink, W., van de Pol, J. (eds.) 7th Dutch
Proof Tools Day, Program + Proceedings. CWI, Amsterdam (2003)

42. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006)

Challenges and Experiences

in Managing Large-Scale Proofs

Timothy Bourke1, Matthias Daum1,2, Gerwin Klein1,2, and Rafal Kolanski1,2

1 NICTA, Sydney, Australia�
2 The University of NSW, Sydney, Australia

{timothy.bourke,matthias.daum,gerwin.klein,rafal.kolanski}@nicta.com.au

Abstract. Large-scale verification projects pose particular challenges.
Issues include proof exploration, efficiency of the edit-check cycle, and
proof refactoring for documentation and maintainability. We draw on in-
sights from two large-scale verification projects, L4.verified and Verisoft,
that both used the Isabelle/HOL prover. We identify the main challenges
in large-scale proofs, propose possible solutions, and discuss the Levity
tool, which we developed to automatically move lemmas to appropriate
theories, as an example of the kind of tool required by such proofs.

Keywords: Large-scale proof, Isabelle/HOL, Interactive theorem proving.

1 Introduction

Scale changes everything. Even simple code becomes hard to manage if there is
enough of it. The same holds for mathematical proof—the four-colour theorem
famously had a proof too large for human referees to check [3]. The theorem
was later formalised and proved in the interactive proof assistant Coq [4] by
Gonthier [7,8], removing any doubt about its truth. It took around 60,000 lines
of Coq script. While an impressive result, this was not yet a large-scale proof in
our sense. Verifications another order of magnitude larger pose new challenges.

To gain a sense of scale for proof developments, we analysed the Archive of
Formal Proofs (AFP) [12], a place for authors to submit proof developments in
the Isabelle/HOL proof assistant [14]. The vast majority of the over 100 archive
entries are proofs that accompany a separate publication. Submissions contain
from 3 to 3,938 lemmas per entry, from 145 to 80,917 lines of proof, and from 1
to 151 theory files. The average AFP entry has 340 lemmas shown in 6,000 lines
of proof in 10 theory files. Fig. 1 shows the size distribution of entries ordered by
submission date. The spikes between the majority of small entries are primarily
PhD theses. Beyond the AFP, an average PhD thesis in Isabelle/HOL is about
30,000 lines of proof in our experience.

In recent years, the first proofs on a consistently larger scale have appeared, in
particular the verification of an optimising compiler in the CompCert project [13],

� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 32–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Challenges and Experiences in Managing Large-Scale Proofs 33

80,000

60,000

40,000

20,000

0
Mar-2004 Feb-2012

Fig. 1. Size distribution of AFP entries in lines of proof, sorted by submission date

the pervasive system-level verification of Verisoft [2], and the operating system
microkernel verification in the L4.verified project [11]. CompCert 1.9.1 measures
101,608 lines with 3,723 lemmas in 143 theory files, the L4.verified repository
currently contains around 390,000 lines with 22,000 lemmas in 500 theories, and
the Verisoft project has published about 500,000 lines with 8,800 lemmas in over
700 theories in its three largest releases (duplicates removed). The L4.verified
proofs take 8 hours to check, the Verisoft proofs an estimated 12 hours.

When scale increases to this order of magnitude, there is a phase change
required in the level of support from the underlying proof assistant. Questions
of knowledge management, team interaction, scalability of the user interface,
performance, and maintenance become more important. In some cases, they can
become more important than the presence of advanced reasoning features.

Large-scale developments concern multiple people over multiple years, with
team members joining and leaving the project. The key difference between a
large-scale proof and a small one, or even a multi-year PhD, is that, in the
former, no single person can understand all details of the proof at any one time.

In this paper, we examine the consequences of this difference against the back-
ground of our combined experience from the L4.verified [11] and Verisoft [1, 2]
projects. We determine which main challenges result from the large-scale nature
of these projects for the theorem proving tool, for the proof itself, and for its
management. They range from proof exploration for new project members, over
proof productivity during development, to proof refactoring for maintenance,
and the distribution of a single proof over a whole team in managing the project.
We comment on our experience addressing these challenges and suggest some
solutions. We describe one of these solution in more technical detail: the proof
refactoring tool Levity, developed in L4.verified.

Many of the issues we list also occur for projects of much smaller scale and
their solution would benefit most proof developments. The difference in large-
scale proofs is that they become prohibitively expensive.

While both projects used Isabelle/HOL, we posit that the challenges we iden-
tify are more general. Some of them even are already sufficiently met by Is-
abelle/HOL. We include them here because the primary aim of this paper is to
give theorem prover developers a resource for supporting large proofs that is well
founded in practitioner’s experience.

34 T. Bourke et al.

2 Challenges

We divide the description of challenges into four perspectives: a new proof engi-
neer joining the project, an expert proof engineer interacting with colleagues
during main development, the maintenance phase of a project, and the so-
cial/management aspects of a development.

2.1 New Proof Engineer Joins the Project

Over the course of a large project, team members come and go, and must be
brought up to speed as quickly as possible. Learning how to use Isabelle was not
an issue, because extensive documentation and local experts in the system were
available. Understanding the subject of the verification, e.g. an OS kernel, was
harder, but many solutions from traditional software development applied.

However, quickly inducting new proof engineers, even expert ones, into a large-
scale verification remains challenging. Consider the theory graph of L4.verified
in Fig. 2, which shows roughly 500 theories. As mentioned, these contain 22,000
human-stated lemmas. Adding those generated by tools takes the count to 95,000.
In order to perform her first useful proof, a new proof engineer must find a way
through this jungle, identify the theorems and definitions needed, and under-
stand where they fit in the bigger picture.

Fig. 2. Theory dependencies in L4.verified

At the start of L4.verified, we
developed a find theorems tool which
allows, amongst other features,
pattern-matching against theorems
and their names, filtering rules against
the current goal, and ranking by
most accurate match. It also includes
an auto-solve function to warn users
if they restate an existing lemma;
a common occurrence not only for
newcomers.

Both tools were incorporated into
Isabelle/HOL, but our experience
echoed that of Verisoft who found that
Isabelle’s built in lemma search as-
sumes that theories are already loaded.
This is rarely the case in large developments like ours [. . .] [1]. Theorems not
already loaded are not visible to the prover. We therefore extended find theorems
with a web interface and combined it with our nightly regression test. Any team
member can search recent global project builds from their browser. Additionally,
we tag Isabelle heaps1 with revision control information and show this along
with the results.
1 A heap is a file containing a memory dump of prover data structures. It can be loaded
to avoid reprocessing theory files from scratch. Isabelle’s architecture precludes the
separate compilation of theory files possible in some other provers.

Challenges and Experiences in Managing Large-Scale Proofs 35

In addition to theorems, provers allow custom syntax definitions, which raises
questions such as what does [x,y.e.z] mean? To a newcomer it may not even
be clear if the syntax is for a type, an abbreviation, or a constant. Answering
such questions requires locating where a symbol is defined. Inspired by Coq,
we developed a locate command which identifies symbol definitions and syn-
tax. However, the implementation requires explicit knowledge of all definition
packages in Isabelle, which are user-extensible. The recent, more deeply inte-
grated approach of the Isabelle prover IDE (PIDE) [20] is promising. In gen-
eral, better prover IDEs would be beneficial, but designing them for scale is
tricky. A short delay in a small test case could translate to a 30 minute wait at
scale.

Ultimately, technology can solve only part of this problem. Good high-level
documentation of key project areas and ideas like an explicit mentor for each
new proof engineer are as important as good prover support.

2.2 Expert Proof Engineer during Main Development

For a long-term project member in the middle of proof development, the crucial
issue is productivity. In this section, we highlight related challenges.

Automation. A simple way to improve productivity is automation. Domain-
specific automation is important in any large-scale verification and the under-
lying prover should provide a safe extension mechanism. In Isabelle, the LCF
approach [9] enabled both projects to provide their own specialised tactics and
automated proof search without the risk of unsoundness. An example from
Verisoft [2] is a sound, automated verification-condition generator translating
Hoare triples about code in a deep embedded language into proof obligations
in higher-order logic [17]. L4.verified developed between 10 and 20 smaller au-
tomated tactics [6,22], including a tool to automatically state and prove simple
Hoare triples over whole sets of functions.

Non-local Change. The usual mode of interactive proof is iterative trial and
error: edit the proof, let the prover process it, inspect the resulting proof goals,
and either continue or go back and edit further. Verification productivity hinges
on this edit-check cycle being short. For local changes, this is usually the case.
However, proof development is not always local: an earlier definition may need
improvement, or a proof engineer would like to build on a colleague’s result. Re-
checking everything between a change and the previous point of focus can take
several hours if the distance between the points is large enough.

In addition, changes are often speculative; the proof engineer should be able
to tell quickly whether a change helps the problem at hand, and how much of
the existing proof it breaks. For the former, Isabelle provides support for inter-
actively skipping proof content. For the latter, L4.verified implemented a proof
cache that determines if a lemma remains provable, albeit not if the current proof

36 T. Bourke et al.

script will still work. The cache works by keeping track of theorem and definition
statements and dependencies. A theorem remains provable if none of its depen-
dencies changed, even though global context may have. The cache omits the proof
for such theorems using Isabelle’s existing skipping mechanism, but replays all
others. However, even just scanning definitions and lemma statements without
proof can still take tens of minutes. Both questions could be answered concur-
rently: while the proof engineer turns attention to the previous focus without
delay, skipping over intermediate proofs, the prover could automatically replay
these proofs and mark broken ones in the background.

Placing Lemmas. As argued, proof development is non-linear. Frequently, gen-
eral lemmas about higher-level concepts are required in a specialised main proof.
Once proven, the question arises where to put such a more general lemma in a
collection of hundreds of theory files. The answer is often not obvious, so Verisoft
developed the Gravity tool [2] that gives advice based on theorem dependencies.
But even if proof engineers have a reasonable idea where to put a lemma, long
edit-check cycles will inhibit them from placing it at the correct position, leading
to a significant risk of duplication and making it hard to build on results from
other team members. L4.verified addressed the question of lemma movement
with the Levity tool that we describe in Sec. 3.

Avoiding Duplication. It is already hard to avoid duplication in a small
project but it becomes a considerable challenge in large-scale proofs. Clearly,
proving the same fact multiple times is wasteful. Despite theorem search and
related features, duplication still occurred. Even harder than spotting exact du-
plication is avoiding similar formulations of the same concept. These will often
only be recognised in later proof reviews. Once recognised, eliminating dupli-
cation can still cause large overhead. In these cases, it would be beneficial if
lemmas or definitions could be marked with a deprecation tag or a comment
that becomes visible at the use point, not the definition point. A further aspect
is generalisation. Often lemmas are proved with constants where variables could
instead have been used, which again leads to duplication. Trivial generalisation
could be automated.

Proof and Specification Patterns. In software development, design patterns
have been recognised as a good way to make standard solutions to common prob-
lems available to teams in a consistent way. An observation in both projects was
that proof engineers tended to reinvent solutions to common problems such as
monadic specifications in slightly different ways. Worse, re-invention happened
even within the project. It is too simplistic to attribute this to a lack of docu-
mentation and communication alone. In software development, sets of standard
solutions are expected to be available in the literature and are expected to be
used. In proof and specification development, this is not yet the case. A stronger
community-wide emphasis on well-documented proof and specification patterns
could alleviate this problem.

Challenges and Experiences in Managing Large-Scale Proofs 37

Name Spaces. Names of lemmas, definitions, and types, syntax of constants,
and other notational aspects are a precious resource that should be managed
carefully in large projects. Many programming languages provide name space
facilities, provers like Isabelle provide some mechanisms such as locales, but have
mostly not been designed with large-scale developments in mind. The challenge
is of the same quality but harder for provers than for programming languages:
there exists a larger number of contexts, syntax and notation is usually much
more flexible in provers (as it should be), and it is less clear which default
policies are good. For instance, names of definitions and their syntax should
be tightly controlled to define interfaces. On the other hand facts and lemmas
should be easily searchable and accessible by default. At other times, the interface
really is a key set of lemmas whereas definitions and notation matters less. Any
such mechanism must come with high flexibility and low overhead. For instance,
Mizar’s [15] requirement of explicit import lists would make large-scale program
verification practically infeasible. On the other hand Isabelle’s global name space
pollutes very quickly and requires the use of conventions in larger developments.

Proof Style. Isabelle supports two styles of reasoning that can be mixed freely:
the imperative style, which consists of sequential proof scripts, and the more
declarative style of the Isar language [19], which aims at human-readable proofs.

The greater potential for readability ostensibly is an advantage of Isar. How-
ever, achieving actual readability comes with the additional cost of restructuring
and polishing. Neither of the projects were prepared to invest that effort. Instead,
both styles were used in both projects, and we did not observe a clear benefit
of either style. During maintenance, Isar proofs tend to be more modular and
robust with respect to changes in automation. However, by that same declara-
tive nature they also contain frequent explicit property statements which lead
to more updates when definitions change.

The usually beneficial modular nature of Isar had a surprising side-effect:
proof engineers inlined specialised facts within large sub-proofs. Though that is
often a good idea, it also often turned out that such facts were more generally
useful than initially thought, but by inlining, they were hidden from theorem
search tools. Since the main mechanism for intermediate facts in the imperative
style is a new global lemma statement, this occurred less frequently there.

Our recommendation is to mix pragmatically, and use the style most appro-
priate for the experience of the proof engineer and sub-proof at hand.

2.3 Proof Maintenance

As in software development, proof maintenance does not often get up-front atten-
tion. Fig. 3 gives an outline of proof activity over time on one L4.verified module:
a main development period, multiple cleanups and bursts of activity, and a long
maintenance phase, characterised by low levels of activity, starting well before
the project’s end. Over time, maintenance becomes the dominant activity.

Refactoring. A large part of maintenance involves refactoring existing proofs:
renaming constants, types, and lemmas; reformulating definitions or properties

38 T. Bourke et al.

��
��
��
��
�

��
��
��
�

��
��
��
�

�	
��
��
��

����� ������
����� ������
����� ������
����� ������
����� ������
�����

m
ai

n
re

fin
em

en
t p

ro
of

pr
oo

f o
f n

ew
 fe

at
ur

es

si
m

pl
ifi

ca
tio

ns
 maintenance

Fig. 3. Lines of proof over time in one L4.verified module

��

��

��

��

��

��

��

�������� ���������
������	� �������	�
������
� �������
�
�������� ���������
�������� ���������

Fig. 4. Number of team members working on one L4.verified module over time

for more consistency; moving lemmas; disentangling dependencies; removing du-
plication. Such refactorings are in part necessitated by failures to avoid duplica-
tion during development. This is inevitable in large multi-year projects.

We have already mentioned proof refactoring tools above. Such tools are be-
coming popular in programming environments, but even there they are often
imperfectly implemented. Current theorem proving systems offer no native sup-
port for even simple refactorings such as renaming or lemma movement. While
in programming languages strict semantics preservation is paramount, it is less
of an issue for proof assistants: the theorem prover will complain if the new proof
breaks. In practice, time overhead is more important. Refactorings are typically
non-local and can easily lead to edit-check cycles of multiple hours. This can
be mitigated to a degree by reliably automating refactorings in offline nightly
batch runs. Proof refactoring is an open, technically challenging research area,
important for large-scale proof. Even simple renaming requires a deep semantic
connection to the prover. Again, approaches like the PIDE [20] are promising,
but create their own challenges in scaling to hundreds of large theories.

Debugging and Performance. A frequent maintenance issue is proofs break-
ing after an update elsewhere in the project. In large proofs not written for
readability, finding and repairing the cause of the breakage is challenging. Con-
ventions for maintainable use of automated tactics help, but are not sufficient.

Challenges and Experiences in Managing Large-Scale Proofs 39

We have found it useful to provide single-step versions of our automated tactics to
help users pinpoint where proof searches go in unexpected directions. Extending
this to a general design principle for all tactics would increase maintenance pro-
ductivity, as well as helping beginners to understand what is happening under
the hood. The same single-stepping analysis could be used to improve perfor-
mance of proofs where automated methods run for too long. The right trade-off
is important. For instance, Isabelle provides a tracing facility for term rewriting,
but it easily overwhelms the user with information.

Context. Mathematical proof depends on context, i.e. a series of global assump-
tions and definitions under which one proves statements. Isabelle in particular
has fine-grained context management that both projects could benefit from. How-
ever, proof context in Isabelle also determines which facts automated reasoners
may use. On one hand, the concept of a background context has low mental
overhead for the user if set up correctly. On the other hand, it introduces an
extra-logical dependency on proof scripts. The same script might not work in
a different position where the same facts are known, because the background
context for automated tactics may differ. This makes it hard to move lemmas.
Provers such as HOL4 [18] name such tactic contexts explicitly. This is not ideal
either, since remembering their names within hundreds of theory files can be
overwhelming. The Isabelle sledgehammer tool [5] provides an interesting solu-
tion: it searches in the global context, but explicitly indicates which facts were
used in the proof, so that the proof now only depends on explicitly named enti-
ties. In theory this approach could be adopted for all proof search tools, making
them context independent while possibly improving replay performance by re-
ducing search. It would also answer a question frequently asked by new users:
which lemmas did automated method x use?

2.4 Social and Management Aspects

Since proofs at the L4.verified and Verisoft scale are necessarily a team effort,
social and management aspects play an important role. In this section, we con-
centrate on aspects that are either specific to proofs, or would not commonly be
associated with proof development.

The main challenge is managing a team of proof engineers in a way which
enables them to concurrently work towards the same overall proof goal with
minimal overhead and duplication of work.

Discipline. In our experience, self-discipline alone is not sufficient for enforcing
conventions and rules, be it for lemma naming, definitions, commit messages, or
documentation. While self-discipline is a passable short-term (months) measure,
adherence to conventions will deteriorate without incentive, explicit policing,
or mechanical tests, especially as team members join and leave. We found that
within the same group, this effect is stronger for proof development than for code.
We speculate that two factors play a role: firstly, proof engineers get used to the
theorem prover mechanically checking their work with immediate feedback for
right and wrong; and secondly, theorem proving involves many concepts which

40 T. Bourke et al.

need names. Given many similar concepts, labelling each lemma or definition
with a useful name is surprisingly hard: it can take longer to think about a
lemma’s name than it takes to prove it. An effective renaming tool would al-
low the rectification of poor naming decisions and retroactive enforcement of
conventions.

The Pragmatic Prover. An interesting challenge in managing a large-scale
verification is striking the right balance between doing the work and developing
tools to automate it. Duplication is a similar challenge. While duplication and
proofs by copy and paste lead to obvious overhead, avoiding it can be arbitrarily
hard. Both projects spent resources on increasing proof automation. In our expe-
rience, the views of the pragmatic programmer [10] are often directly applicable
to proof: avoid duplication by automation wherever useful. Semi-regular reviews
looking for automation opportunities can make a team significantly more produc-
tive. Semi-regular, informal code and proof reviews in general showed the same
advantages as in usual software development of increased quality and cohesion
within the team. In L4.verified, they were conducted mostly early in the project
and in the later maintenance phase when new members joined the team. We
should probably have held them more frequently.

The State of the Proof. In a large-scale project it is easy to lose view of which
parts of the proof currently work, which are under development, and which are
broken. A nightly and/or continuous regression test can generate and display
this information easily, as long as the prover provides a scriptable batch mode.

Concurrent Proof. A key technical challenge in large-scale formal verification
is efficient and useful distribution of proof sub-tasks to team members. Fig. 4
shows the number of L4.verified team members contributing per month to the
module mentioned in Fig. 3. Up to six people worked on the same proof dur-
ing development and maintenance. Ideally this is achieved by a compositional
calculus that allows clean, small interfaces between sub-tasks, which are defined
once and remain stable. In reality, this is rarely the case. Full compositionality
often comes with a high price in other aspects of complexity, while interfaces are
rarely small or stable. Nevertheless, work towards a common theorem could be
distributed effectively in L4.verified by compositionality under side-conditions.
Team members could work towards the same property on different parts of the
system, or on different properties of the same part. They did not need detailed
knowledge about the other properties or parts of the system [6]. When these side-
conditions changed, effectively communicating them entailed an overhead. Such
overhead is inevitable when for instance an invariant is discovered incrementally
by the entire team. The faster the discovery, the smaller the overhead.

Distributing a proof over a team creates another management issue: avoiding
that the separate pieces drift apart. An easy way of addressing this is to state
the final top-level theorem first, and to use a continuous regression test to check
that the parts still fit. Continuous integration avoids unpleasant surprises at the
end of the project, such as discovering that an overly weak statement in one
sub-proof requires significant rework in another. Note that proof interfaces do

Challenges and Experiences in Managing Large-Scale Proofs 41

not always have to fit together perfectly. Software patterns like adapters and
bridges can be applied to proofs, and, with suitable conversion lemmas, notions
in one formalism can often be transferred into another. As always, there is a
trade-off: the more bridging, the higher the overhead and the harder the proof
becomes to maintain.

Active Community. An active developer and user community around the main
verification system is crucial. The absence of good documentation, online dis-
cussion, and fixes for problems could turn small annoyances into major show-
stoppers. Active development also has a price, however. For instance, new proof
assistant releases will not be fully backwards compatible—it would be detrimen-
tal if they were. Updating the proof base to the next prover release can add
significant overhead. With one or two prover releases a year, a four-year project
may confront a significant update 4–8 times. The L4.verified project invested in
an update roughly once a year. Verisoft decided to stay with the 2005 Isabelle
version, but set aside budget for back-porting important features of new releases.
The latter approach works well for projects with a definite termination date. The
former is more appropriate if the project goes into a longer maintenance period.
A similar problem occurs in improving project- and domain-specific automation.

Libraries. Proof libraries play a role in any large-scale verification. The tech-
nical side of library development is handled well by mature theorem proving
systems. Both projects made use of existing libraries and contributed back to
the community. However, internal libraries are less polished and can become hard
to manage. This occurs when the library is not explicitly maintained and serves
only to accumulate roughly related lemmas. Sometimes this is appropriate, but
producing a coherent and re-usable library requires a different approach. Good
libraries do not emerge automatically, since library development takes significant
effort and is usually not a key goal of the project. Verisoft members introduced
the idea of a librarian [2], a person responsible for the consistency and mainte-
nance of a particular library, allowing other team members to contribute lemmas
as needed. While this alone is not sufficient to achieve a well-designed library,
it does yield a much higher degree of usefulness and re-use. If possible, team
leaders should set aside explicit budget for library and tool development. For
both projects, the decision to do so resulted in increased productivity.

Intellectual Property. Intellectual property (IP) is not a usual aspect of for-
mal proof, be it copyright and licenses, patents, or non-disclosure agreements.
Larger projects with an industrial focus are likely to involve such agreements,
which may constrain the proof. For instance, an agreement may require that
proof scripts related to a particular artefact be a partner’s property, but not
general libraries and tools. Classifying and separating each lemma according
to IP agreements during development would be detrimental to the project. In
L4.verified, automated analysis of theorem and definition dependencies iden-
tified proof parts specific to certain code artefacts, which were isolated with
semi-automated refactoring.

42 T. Bourke et al.

3 Tool Support for Moving Lemmas

In this section, we describe the design of a tool we developed to solve the lemma
placement issue introduced in Sec. 2.2. The tool is called Levity, it was named for
the idea that lemmas should float upward through a theory dependency graph
to the position that maximises the potential for their reuse.

The fact that we developed a tool for cutting-and-pasting lemmas attests
to one of the practical differences between small verification projects and larger
ones. In a large development, reprocessing intervening files after moving a lemma
to a new theory file may take tens of minutes or even hours; a loss of time
and a distraction. For this reason, proof engineers in the L4.verified project
resorted to adding comments before certain lemmas, like (* FIXME: move *)

or (* FIXME: move to TheoryLib_H *), with the hope of those lemmas being
moved afterward. It turns out that moving lemmas involves more than just
placing them after the other lemmas that they themselves require. A broader
notion of theory context is required. For instance, lemmas can be marked with
[simp], at or after their declaration, to add them to the global set of lemmas
that are automatically applied by the simplification method.

We think that a description of the design of Levity and the problems we
encountered will be instructive for developers of other tools that manipulate
interactive proof texts.

3.1 Design and Implementation Choices

Our first idea for implementing Levity was to use a scripting language and
lots of regular expressions, but we finally decided to use Standard ML and to
exploit APIs within Isabelle. This allowed us (a) to rely on the existing parsing
routines, which is especially important since Isabelle has an extensible syntax,
(b) to easily access the prover’s state accumulated as theories are processed, and
(c) to readily ‘replay’ lemmas so as to validate moves. The main disadvantage
of this approach is that the APIs within Isabelle evolve rapidly. This not only
necessitates regular maintenance, but poses the continual risk of obsolescence: a
key feature used today may not be available tomorrow!

The second major design decision was to incorporate Levity into the nightly
build process. Large proof developments are similar to large software develop-
ments. Proof engineers check-out the source tree to their terminals, state lemmas,
prove, and commit changes back to the repository. Nightly regression tests check
the entire proof development for errors. Levity is run directly after (successful)
regression tests because an up-to-date heap is required for the extraction of
lemma dependencies and the validation of lemma moves. We found that a sec-
ond build is required after Levity runs and before committing any changes to the
repository to ensure that the modified development builds without error. Having
to run two full and lengthy builds is problematic because, as mentioned in Sec. 2,
several hours may elapse from check-out to commit, and, especially in an active
development, there may be intervening commits which necessitate merging, and,
at least in principle, further test builds.

Challenges and Experiences in Managing Large-Scale Proofs 43

In the original design, we intended that Levity run regularly and with mini-
mal manual intervention, automatically shifting lemmas to the most appropriate
theory file during the night in readiness for the next day’s proving, but it may
in fact have been better to introduce some executive supervision. The destina-
tion theories chosen by Levity are optimal in terms of potential reuse, that is
Levity moves lemmas upward as far as possible in the theory dependency graph,
but they are not always the most natural; for instance, it is usually better to
group related lemmas regardless of their dependencies. While the possibility of
stating an explicit destination, or even a list of explicit destinations, in ‘fix me’
comments helps, it may have been even better to provide a summary of planned
moves and to allow certain of them to be rejected or modified.

In the remainder of this section, we discuss the four main technical aspects of
the Levity implementation: working with the theorem prover parser, calculating
where lemmas can be moved, replaying proofs, and working with theory contexts.
Although the technical details are specific to the Isabelle theorem prover and the
task of moving lemmas, other tools for manipulating proof developments likely
also need to manipulate the text of theories, interact with a theorem prover, and
handle theory contexts.

Parsing. Levity processes theories one-by-one from their source files. In process-
ing a file, it first calls the lexer routines within Isabelle to produce a list of tokens.
Working with lists of tokens is much less error prone than working directly with
text and avoids many of the complications of working with the sophisticated
and extensible Isabelle/Isar syntax (any syntactically correct theory file can be
processed). This is only possible because rather than filter out comments and
whitespace, as is standard practice, the lexer returns them as tokens.

Levity processes each file sequentially, maintaining a list of tokens to remain
in that file, namely those not marked for movement and those that could not be
moved, and a list of tokens yet to be processed. It shifts tokens from the latter
onto the former until it finds a ‘fix me’ comment followed by a lemma. As far as
concerns parsing, two further details are important. First, a lemma’s name and
attributes must be extracted. There are already functions within Isabelle to do
this, but we found that they were not general enough to be called directly and
we thus had to duplicate and modify them within our tool. Such duplications
make a tool harder to maintain as the underlying theorem prover evolves and
may engender errors that type checking cannot detect. Second, the last token
in the move must be identified. This is slightly more difficult than it may seem
as the keywords that terminate a proof (like done, qed, and sorry) may also
terminate sub proofs. And, furthermore, the extent of a definition depends on
the syntax defined by a particular package which may be defined externally to
the main theorem prover. Since, in any case, we simultaneously replay potential
moves to check for problems, we use feedback from Isabelle to find the token
that ends a proof or definition.

The tokens comprising a successful move are appended to a list maintained
for the destination theory. Levity always appends lemmas to the end of a theory
file. Inserting them between other lemmas would effectively require having to

44 T. Bourke et al.

replay all theory files, both to detect the gaps between declarations and also to
test moves in context. This would require more bookkeeping and take longer to
run, but it would have the advantage of testing an entire build in a single pass.
The tokens comprising failed moves are appended to the list of unmoved tokens.

Finally, theory files are remade from the lists of associated tokens, which works
marvellously as Isabelle’s command lexing and printing routines are mutually
inverse.

Calculating Lemma Destinations. Before trying to move a lemma, Levity calcu-
lates the lemmas, and thereby theories, on which the proof depends. They are
used to validate explicit destinations, and, when none are given, to choose the
destination.

For calculating lists of lemma dependencies, we modified a tool developed
within the Verisoft project, called Gravity [2], to handle sets of lemmas, to ac-
count for earlier moves, and to handle lemmas accessed by index. This tool
works through a proof term—the low-level steps that construct a new lemma
from existing lemmas, axioms and rules—to construct a dependency graph.

The calculation of destination theories in Gravity takes dependencies on lem-
mas into account, but not dependencies on constant definitions. Although not
usually a problem in practice, as most proofs will invoke theorems about con-
stants in the lemma statement, detecting such problems is difficult because con-
stants moved before their definitions are interpreted as free variables.

Controlling Isabelle. When moving a lemma, respecting its dependencies is not
enough. Besides the set of theorems, proofs also depend on several other elements
of the theory context; for example, syntax declarations, abbreviations, and the
sets of theorems applied by proof methods like simplification. Rather than try to
determine all such dependencies in advance, we decided to simply try replaying
lemmas in new contexts. The tool effectively replicates the actions of a proof
engineer who, after copying-and-pasting a proof, must test it interactively.

Levity replays lemmas by parsing tokens, using Isabelle library routines, into
commands which are applied through Isar, the Isabelle theory language. Isar op-
erates as a state machine with three main modes: toplevel, theory, and proof [19,
Fig. 3.1]. For each move, Levity initially executes a command to put Isar into
theory mode, the first command drawn from the list of tokens being replayed
should then cause a transition into the proof mode; if it does not, the move fails.
Subsequent commands are then passed one-by-one to Isar, while monitoring the
state for errors and the end of a proof. We use a time-out mechanism to interrupt
long running proof steps to recover from divergences in automatic tools due to
differences in the original and proposed theory contexts.

Lemmas are replayed at the end of destination theories, but theories cannot be
extended after they have been closed, so Levity creates a new ‘testing’ theory for
each replay. Each testing theory only depends on either the proposed destination
theory, or on the last successful testing theory for that destination (to account
for previous moves). In general, it is necessary to import, directly or transitively,
the testing theories of all required lemmas that have also been moved.

Challenges and Experiences in Managing Large-Scale Proofs 45

Theory Context. Interactive theorem proving inevitably involves the notion of
context or state. At any point in a theory, there are the set of existing lemmas
and definitions, syntax definitions, abbreviations, and sets of lemmas used by
proof methods. Furthermore, Isabelle also has locales for fine-grained context
management; lemmas stated within a locale may use its constants, assumptions,
definitions, and syntax. Levity does not resolve all problems related to theory
context, but it does address some aspects of locales and proof method sets.

To handle locales in Levity, the tokens being processed from a source file are
fed through a filter that tracks the commands that open and close contexts2 and
maintains a stack of active declarations. An alternative would be to replay all
commands through Isabelle and then to query the context directly. This would
be more reliable but also slower. In any case, given this contextual information,
Levity knows when a lemma is being moved from within a locale and it inserts
tokens into the lemma declaration to re-establish the target context. The context
stack also enables Levity to form fully-qualified lemma names.

As mentioned earlier, lemmas may be marked with attributes, like [simp], to
add them to proof method sets. Moving attributes with a lemma may interfere
with subsequent applications of methods in other proofs. To avoid this, Levity
parses attributes, strips certain of them, and inserts them as declarations at the
original location. In general, such declarations, whether inserted by Levity or
manually, should be tracked and considered when moving other lemmas. Con-
sider, for example, lemmas l1 and l2, both marked for movement, l1 having the
simp attribute, and l2 involving a simplification that implicitly uses l1. Mov-
ing l1 leaves the simp attribute in place. But now, moving l2 may fail as the
simplification step no longer implicitly uses l1.

3.2 Experience and Related Work

We ran Levity several times against the main L4.verified project development
during its final months. The results were encouraging, but several problems and
limitations inhibited its permanent introduction into our build process. Besides
the challenges of long build times, our biggest problems were unexpected depen-
dencies and changes to libraries within Isabelle.

By unexpected dependencies, we mean that some lemmas became ‘stuck’ at
seemingly inappropriate theories, and that other dependent lemmas then became
queued after them.3 Levity logs lemma dependencies before moving lemmas,
which helps to understand why destinations were chosen, but then it is too
late to do anything. When a lemma is not moved as far as expected due to
dependencies on related lemmas, it is not uncommon that those related lemma
should also have been marked for movement. Ideally then, some kind of manual
review should be incorporated into the process; perhaps gathering information
at night while performing approved moves, then requesting new approvals during
the day.

2 Namely, context, locale, class, instantiation, overloading, and end.
3 When a lemma move fails, other dependent lemmas are not moved either.

46 T. Bourke et al.

Levity relies on internal Isabelle routines for parsing, analysing lemma depen-
dencies, and interacting with Isar. When we went to prepare a public release for
the latest version of Isabelle, we found that the interfaces to these routines had
changed considerably from the version used in the L4.verified project, and, in
fact, several essential features were no longer available. Careful compromise is
needed between the evolution of a theorem prover’s design and the availability
of up-to-date third-party tools (and books and tutorials); both being important
factors in the success of large verification projects.

Our inability to upgrade the ML version of Levity led to a rewrite [16] using
the new PIDE interface to Isabelle [20]. This approach should make the tool
more robust to changes within Isabelle. But we cannot yet comment on the
efficacy of this tool against a large proof development like the L4.verified project:
in particular, on its integration into nightly regression tests, and the effect of
asynchronous recalculations while making automatic changes to large proofs.
Development continues on this new version.

Whiteside et al. [21] address the subject of proof refactoring formally and in
some generality. In particular, they define a minimal proof language, its formal
semantics, and a notion of statement preservation. They then propose several
types of refactoring, including renaming and moving lemmas (the latter defined
as a sequence of ‘swap’ operations), define some of them and their preconditions
in detail, and reason about their correctness. They explicitly do not cover all
aspects of a practical implementation, and, in contrast to Isar, their proof lan-
guage does not include proof method sets and attributes, definitions, locales, or
imported theory dependencies. Nevertheless, we find such a formal approach a
promising way to understand and validate refactoring tools like Levity; not just
to show that they preserve correctness but also that they do not introduce build
failures.

4 Summary

We have described challenges that are new or amplified when formal verification
reaches the scale of multi-person, multi-year projects. We draw on the experi-
ence from two of the largest such projects: Verisoft and L4.verified. Many of
these challenges arise from the inability of any single human to fully understand
all proof aspects. Without a mechanical proof checker, such proofs would be in-
feasible and meaningless. For some challenges, we have sketched solutions, and
for one, we have shown in more detail how it can be addressed by tool support.

The three most important lessons learnt from our verification experience are:
First, proof automation is crucial because it decreases cognitive load, allowing
humans to focus on conceptually hard problems. It also decreases the length
of proof scripts, reducing maintenance costs. To achieve this, prover extensi-
bility is critical and needs to allow for custom automation while maintaining
correctness. Second, introspective tools such as find theorems gain importance
for productivity because effective information retrieval is necessary in an other-
wise overwhelming fact base. Third, proof production at large scale hinges on an

Challenges and Experiences in Managing Large-Scale Proofs 47

acceptably short edit-check cycle; any tool or technique that shortens this cycle
increases productivity, even if temporarily sacrificing soundness.

Acknowledgements. Thomas Sewell and Simon Winwood contributed to the
requirements for the Levity tool of Sec. 3. We also thank June Andronick for
commenting on a draft of this paper.

References

1. Alkassar, E., Hillebrand, M., Leinenbach, D., Schirmer, N., Starostin, A.: The
Verisoft Approach to Systems Verification. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 209–224. Springer, Heidelberg (2008)

2. Alkassar, E., Hillebrand, M., Leinenbach, D., Schirmer, N., Starostin, A., Tsyban,
A.: Balancing the load — leveraging a semantics stack for systems verification.
JAR: Special Issue Operat. Syst. Verification 42(2-4), 389–454 (2009)

3. Appel, K., Haken, W.: Every map is four colourable. Bulletin of the American
Mathematical Society, 711–712 (1976)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer (2004)

5. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

6. Cock, D., Klein, G., Sewell, T.: Secure Microkernels, State Monads and Scalable
Refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 167–182. Springer, Heidelberg (2008)

7. Gonthier, G.: A computer-checked proof of the four colour theorem (2005),
http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf

8. Gonthier, G.: Formal proof — the four-color theorem. Notices of the American
Mathematical Society 55(11), 1382–1393 (2008)

9. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

10. Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley, Reading (2000)

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood,
S.: seL4: Formal verification of an OS kernel. In: 22nd SOSP, Big Sky, MT, USA,
pp. 207–220. ACM (October 2009)

12. Klein, G., Nipkow, T., Paulson, L.: The archive of formal proofs (2012),
http://afp.sf.net

13. Leroy, X.: Formal certification of a compiler back-end, or: Programming a com-
piler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) 33rd POPL,
Charleston, SC, USA, pp. 42–54. ACM (2006)

14. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL —A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

15. Rudnicki, P.: An overview of the MIZAR project. In: Workshop on Types for Proofs
and Programs, pp. 311–332. Chalmers University of Technology, Bastad (1992)

16. Ruegenberg, M.: Semi-automatic proof refactoring for Isabelle. Undergraduate the-
sis, Technische Universität München (2011)

http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf
http://afp.sf.net

48 T. Bourke et al.

17. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München (2006)

18. Slind, K., Norrish, M.: A Brief Overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

19. Wenzel, M.: Isabelle/Isar—a versatile environment for human-readable formal
proof documents. PhD thesis, Technische Universität München (2002)

20. Wenzel, M.: Isabelle as Document-Oriented Proof Assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS,
vol. 6824, pp. 244–259. Springer, Heidelberg (2011)

21. Whiteside, I., Aspinall, D., Dixon, L., Grov, G.: Towards Formal Proof Script
Refactoring. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM
2011 and Calculemus 2011. LNCS, vol. 6824, pp. 260–275. Springer, Heidelberg
(2011)

22. Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock, D., Norrish, M.: Mind the
Gap: A Verification Framework for Low-Level. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 500–515. Springer,
Heidelberg (2009)

Semantic Alliance:

A Framework for Semantic Allies

Catalin David, Constantin Jucovschi,
Andrea Kohlhase, and Michael Kohlhase

Computer Science, Jacobs University Bremen
http://kwarc.info

Abstract. We present an architecture and software framework for se-
mantic allies: Semantic systems that complement existing software ap-
plications with semantic services and interactions based on a background
ontology. On the one hand, our Semantic Alliance framework follows
an invasive approach: Users can profit from semantic technology with-
out having to leave their accustomed workflows and tools. On the other
hand, Semantic Alliance offers a largely application-independent way
of extending existing (open API) applications with MKM technologies.
The Semantic Alliance framework presented in this paper consists of
three components: i.) a universal semantic interaction manager for given
abstract document types, ii.) a set of thin APIs realized as invasive exten-
sions to particular applications, and iii.) a set of renderer components for
existing semantic services. We validate the Semantic Alliance approach
by instantiating it with a spreadsheet-specific interaction manager, thin
APIs for LibreOffice Calc 3.4 and MS Excel’10, and a browser-based
renderer.

1 Introduction

A major research interest in the field of Mathematical Knowledge Manage-
ment (MKM) consists in the development of semantic technologies: they can
be prototyped on mathematical knowledge and documents where meaning is
well-understood and then be transferred to other domains, where meaning is
less clearly given. These semantic technologies are frequently realized in stand-
alone applications (e.g. [Mata; Matb; Act; Cin]). The advantage is obvious: a
standalone system can be designed autonomously without interoperability con-
straints towards other systems or users’ previous practices with other systems.
Thus, with ‘no’ compromises, standalone MKM technologies are typically very
specialized in the kind of service they offer and very good at that.

The main disadvantage of standalone MKM systems is that they are insular.
On a conceptual level, workflows of users are centered around goals to be achieved.
Therefore, if the main goal is not the one solved by the standalone system, then
systems must be switched, so that the insularity of standalone systems disturbs
the workflow. On a technical level, the insularity often results in interoperabil-
ity issues with other systems, augmenting the disturbance of a user’s workflow

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 49–64, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://kwarc.info

50 C. David et al.

e.g. by the necessity of explicitly reentering data into the new structure of an-
other system. These effects are aggravated by cognitive issues: important context
information and thus understanding may get lost when switching systems: [Joh10]
shows that even a focus change on a small laptop screen flushes information from
short memory. All of these issues create a gap between standalone systems and
other parts of the information infrastructure and workflows, and conspire to keep
potential users from adopting standalone MKM systems.

In our earlier research on the adoption issue (cf. Semantic Authoring Dilemma;
see [Koh05]), we have argued for the creation of invasive semantic technology ,
i.e., a technology, where the semantic services are embedded in (figuratively:
invade) the host application, such that the services can draw on users’ previ-
ous knowledge and experience with well-known authoring tools. This approach
was inspired by HCI-driven “directness” requirements in [HHN85] and re-use
ideas from Software Engineering in [Aßm03]. To this end we developed the MS

Excel’03 add-in “SACHS”(e.g. [KK09a]) as a semantic extension of a spreadsheet
document.

In our latest project “SiSsI” (Software Engineering for Spreadsheet Interac-
tion) we now want to transfer the semantic functionalities in SACHS to more
spreadsheet systems: Spreadsheet users are locked into different applications
like LibreOffice Calc, MS Excel, or Google Docs for reasons beyond our con-
trol. But offering SACHS functionality as invasive technology, every new applica-
tion would induce a development effort similar to the original one for SACHS, as
the functionality has to be re-created in differing application contexts and pro-
gramming languages. Moreover, architectural differences like the ones between
desktop applications, server-based web applications or even mobile apps, require
radically different solutions for accessing the background ontology or visualizing
its knowledge (e.g. in a graph viewer). Differing security issues complicate the
picture even further.

The central idea to address these issues is based on a combination of the
Semantic Illustration architecture in [KK09b] with a new approach towards in-
vasive design. This gives rise to an innovative framework for semantic extensions
that we present in this paper. This framework realizes an “invasive” user expe-
rience not by re-implementing semantic technologies in the host system, but by
letting e.g. a separate MKM system contribute semantic services and interac-
tions to the host user interface, managed by a ‘semantic ally’. In Section 2 we
first elaborate on the combination of Semantic Illustration and invasive design,
followed by a presentation and discussion of the “Semantic Alliance” archi-
tecture, which allows to build semantic allies, reusing MKM components and
technologies to drive down the cost.

In section 3 we validate and report on our experiences with a first imple-
mentation “Sissi” of this Semantic Alliance framework. We review related
work in Section 4 with respect to (semantic) extensions of document players
and compare it with the Semantic Alliance setup. In Section 5 we summarize
Semantic Alliance and draft upcoming projects.

Semantic Alliance: A Framework for Semantic Allies 51

2 The Semantic Alliance Framework

First we recap the conceptual underpinnings of our Semantic Illustration
approach and sketch invasive design as an efficient replacement for invasive
technology. Then we combine both approaches into a framework for semantic
allies: Semantic Alliance. Taking the standpoint of Semantic Alliance be-
ing a mashup enabler in Subsection 2.2, conceptual tasks and responsibilities of
each component within Semantic Alliance are marked and explained.

2.1 Invasive Design via Semantic Illustration

In the Semantic Illustration [KK09b] architecture semantic technology is
made fruitful by “illustrating” existing software artifacts semantically via a
mapping into a structured background ontology O. We consider an underly-
ing “illustrator” and interaction manager a semantic ally. Semantic services
can be added to an application A by linking the specific meaning-carrying ob-
jects in A to concepts in O, that is A and O are connected via a semantic link;
see [KK09b] for a thorough discussion of the issues involved.

We combine that with a new approach to software design we call invasive
design to obtain the same effect as invasive technology does. We observe that
a service S feels embedded into an application A if it occupies a screen-area DS
that is part of the area DA originally claimed by the application itself: if the
screen area DS ‘belongs’ to A in this way and the service S was requested by
the user from within A, then the user perceives S as an application-dependent
service SA, see for example Chapter 1:“We perceive what we expect” in [Joh10].
This perception is amplified, if a service and its request refer to the local semantic
objects, we speak of “contextualized” services if they make use of this effect
(compare with, e.g. [MDD09]).

In semantic allies the semantic link between A and O drawn on by semantic
services S given by Semantic Illustration provides such a contextualization. In
particular, S does not need to be implemented as application-specific invasive
technology. From a technological standpoint, a thin client (see e.g. [NYN03])
invading A is sufficient to obtain the advantages of invasive technology in the
eyes of the user. This means especially, that development costs can be drastically
reduced. The only condition for S consists in being able to strictly outsource
application-dependent parts. Note that this is again an instance of the never-
ending quest for the separation of content and form, therefore semantic services
should not have big difficulties in adhering to this premise.

Thus, the combination of Semantic Illustration and invasive design results in
a framework for semantic allies, which we call “Semantic Alliance”. In a
nutshell, it has three components:

– a platform-independent semantic interaction manager “Sally” (as a seman-
tic ally), that has access to contextualizable semantic services, and that

– partners with a set of invasive, thin, application-specific “AlexA”, that es-
sentially only manage user interface events in A, and that

52 C. David et al.

– has access to a set of application-independent screen area managers “Theon”
that can render the available services.

Note that we restrict our attention here to applications which come in the form
of a “document player”, i.e., whose purpose is to give the user (read/write)
access to structured data collections that can be interpreted as “documents”
or “collections of documents” in some way. Prime examples of this category of
applications include office suites, CAD/CAM systems, and Web2.0 systems.

2.2 The Semantic Alliance Framework as a Mashup Enabler

We have observed above that functionalities of a semantic extension system can
be realized with invasive design. The Semantic Alliance framework introduced
in this paper is based on the additional observation that the pertinent semantic
extensions are already largely implemented in web-based Mathematical Know-
ledge Management systems (wMKM), and that semantic allies can be realized
by mashing up wMKM systems with the original application. But in contrast to
traditional mashups, which integrate web data feeds in a broad sense into web
portals, the Semantic Alliance framework mashes up the GUIs of wMKM sys-
tems and applications themselves. In this sense, the Semantic Alliance frame-
work can be considered a mashup enabler, a system that transforms otherwise
incompatible IT resources into a form where they can be combined.

Let us assume S to be a wMKM system drawing on an ontology O.1 In the
Semantic Alliance framework, the task of the mashup enabler between A and
S then is split into three parts (see Figure 1).

Fig. 1. Semantic Alliance as a Mashup Enabler for Semantic Allies

1 For the sake of the exposition we assume that S runs as a web service and is accessed
via the Internet, but nothing hinges on this; for offline situations, S could be started
locally. However, since O is probably be biggest investment necessary for enabling
semantic services (discussed in [KK09a]) via Sally, a shared, web-accessible mode
of operations for S is probably the most realistic until we have distributed MKM
systems.

Semantic Alliance: A Framework for Semantic Allies 53

Sally. The main part of the mashup enabler is realized in the “Sally” compo-
nent which integrates the functionalities ofA and S into a joint user interface
and interaction model and thus realizes the semantic extension functionality
for A. Sally can draw on an implementation of abstract document types,
which on the one hand abstract from the particulars of the data structures in
A and on the other hand tie particular interactions to (abstract) document
fragments. For instance, a click on a cell in a spreadsheet should lead to a
different reaction than a click to a textbox in a presentation.

Alex. The application A is extended by a slim API “Alex”2 that reports and
executes relevant user interactions with A like cell clicks in spreadsheets to
and from Sally. It allows to store a semantic illustration mapping, i.e.,
a mapping between semantic objects in A and concepts in O, with the doc-
ument itself. Note that – on a general level – any open API of an application
A provides us with an opportunity for invasion. Moreover, note that a thin
Alex limits the dependency on the host system; in the SACHS project, where
semantic functionality was directly implemented as a A extension, we were
confronted with an automatic Windows security update that made the used
sockets inoperative, forcing major re-implementation.

Theo. To enable invasive design, a screen-area manager “Theo”3 is needed.
S-supplied content is embedded as “popup” into the GUI of A. This em-
bedding can be implemented at two levels: natively, if A’s GUI allows to
embed browser layout engines or at the operating system level by superim-
posing browser windows over the GUI of A. Given enough care the latter
solution can be made very similar to a native integration from a user point
of view.

Nowadays software applications come in three flavors: traditional desktop appli-
cations, web/browser-based applications, and mobile apps. Semantic Alliance

can cope with all of these, if we are flexible in the deployment of the Semantic

Alliance components:

1. For a desktop application, the components of Semantic Alliance run as
local processes and use a runtime environment for a browser layout and
interaction engine to provide operating-system level GUI embedding (see
Figure 1).

2. For mobile apps , the application comes in two parts, the document and the
core data structures reside on an application server Acore, whereas (some
of) the user interface functions (AUI) run on the mobile device in the re-
spective app execution environment. In this situation (see Figure 2), we
usually cannot assume that a local process can be started, so the Semantic

Alliance components must run as web services on a Semantic Alliance

server. Here, Alex is realized as a web service that (a) distributes the user

2 Note that the Alex is the only real “invasive” part of Semantic Alliance, we have
named this system after Alexander the Great; one of the mightiest invaders in history.

3 German readers may recognize, that “Theo” is a shorthand for “Karl-Theodor” as
someone who pretends towards others that he does something, but in fact he’s doing
something else.

54 C. David et al.

Fig. 2. Semantic Alliance for Mobile Apps

interaction events to Acore and Sally, and (b) aggregates the contributions
of Acore (HTML pages) with those from the semantic services (via Sally

and Theo) into a consistent aggregated user experience.
3. For browser-based applications , one of the scenarios above applies: If we

cannot start processes (e.g. in locked down web-kiosk-style situations) we use
the “mobile apps” framework, otherwise a desktop-like deployment may have
advantages. In this case, Alex is realized as JavaScript browser extension that
embeds wMKM content directly into the web document used as GUI by the
application server.

Note that in all these cases, the Semantic Alliance components perform the
same functions and communicate with each other in essentially the same way,
even if two incarnations of Semantic Alliance differ in the way they deliver
their GUI contributions.

Observe that we need a two-way communication between Alex and Sally to
realize even simple semantic interactions, whereas Sally and the wMKM sys-
tem S can restrict their communication to a client-server communication, where
Sally takes the role of a client. For the browser-based case, communication
between the browser and Alex as well as between Alex and the app server is
unidirectional REST (Representational State Transfer). Observe also that for
the “mobile apps” case, the setup in Figure 2 is only possible, if the communi-
cation between the respective app server and app execution environment relies
on open APIs or open standards so that Alex can be positioned as a ‘man in
the middle’. This requirement is the analogue of the “open API” requirement
postulated for the desktop application case.

Semantic Alliance: A Framework for Semantic Allies 55

2.3 Building on Open APIs

The Alex component in our architecture is an extension of an application A,
which is a document player. Alex uses the open API (that allows business de-
velopments for A from outside) to provide communication about internals of the
document player.

There are multiple levels at which the open API of A can offer access, in
particular, these data can be separated into a content API “contentAPI” (the
internal document object model or DOM) and a form API “layoutAPI” (its
representation). In order to achieve Semantic Illustration, the document player
needs to provide access to the DOM, while the access to representational data is
needed for invasive design. For example, in a spreadsheet system, an extension
would have access via the contentAPI to a cell, its formula and value, and via
the layoutAPI to its width, its color and its position within A’s window frame.

Therefore, we consider an open API of a document player suitable to be used
in Semantic Alliance, if the open API includes a contentAPI as well as a
layoutAPI. Only with such an API can the semantic ally provide contextual
information. Note that “contextual” comprises two dimensions: It is contextual
from a semantic point of view (the semantic illustration mapping ties objects to
ontology terms), and from an HCI perspective (using the positioning features
of the layoutAPI, the information is displayed in a locus near the object of
interest).

Interestingly, in most desktop systems (in particular spreadsheet systems),
there is no clear distinction between the contentAPI and the layoutAPI. In
contrast, in web systems, there is a clear separation between the document itself
and its rendering. The underlying reason consists in the assumption that the
document lives in the “cloud” but the rendered document in a browser. Moreover,
the document player is not the browser itself, but just a browser window. In
particular, due to security issues the communication language (e.g. Javascript)
has no access to browser facilities. Thus, unfortunately, the layoutAPI for web
document players is very limited or even inexistent for most of these. For Google
Docs for example, we had a very close look — yielding that it does not provide
basic layoutAPI features.

3 A Validation of the Semantic Alliance Framework

In order to validate the Semantic Alliance architecture, we have implemented
it for spreadsheet systems within the SiSsI project. Concretely, we have realized
Alexes for LibreOffice Calc 3.4 [Lib] and MS Excel 2010 to show the feasibility
of the framework, but also to get first measures on the efficiency of the Semantic
Alliance setup. In order to evaluate the new aspects of the Semantic Alliance

framework, our goal was to reach feature parity with and compare the actual
expenditures of doing so for two essential semantic services offered by the SACHS

system for MS Excel 2003 spreadsheets:

56 C. David et al.

Definition Lookup & Semantic Navigation in SACHS. Here, the event of a cell
click triggers the semantic interaction that the user had previously chosen. If
she opted for a “Definition Lookup”, then SACHS displays the definition from
the background ontology (associated with the selected cell via the semantic il-
lustration mapping) as a native MS Excel popup close to the chosen cell. If the
found definition involves other concepts that are semantically linked to cells in
the spreadsheet, then the “Semantic Navigation” service (enabled in SACHS’
dependency graph display option) allows the user to navigate to the resp. cell
on click of the according graph’s node.

3.1 Sissi: An Implementation of Semantic Alliance

In the following we describe the realized components of Semantic Alliance in
the SiSsI project, which show the feasibility of Semantic Alliance.

AlexA: Managing Interface Events
Our Alex instance for LibreOffice “AlexCalc” uses LibreOffice’s Java open
API for communication tasks as well as for exporting and managing requested
UI events. In contrast, the MS Excel 2010 Alex instance “AlexExcel” is solely
based on .NET infrastructure (here C#).

Due to Semantic Alliance’s invasive design requirement the employment
of semantic services is done from within the respective application, therefore
AlexCalc and AlexExcel are responsible for starting and stopping Sally. Note
that from the user’s perspective a semantic ally is started, so the menu en-
try is called “Sally”. To support multiple document types (like spreadsheets,
presentations, or texts), Alex identifies itself and its document type to Sally

during initialization. It also transmits to Sally the semantic illustration map-
ping stored with the spreadsheet document. Now, Sally as the semantic ally
takes on responsibility for all semantic interactions. For the moment, the Alexes
only

– report cell click events in the application A to Sally together with the cell’s
position information (X- and Y-coordinates in pixels) and the user’s display
option (definition lookup or graph exhibition), and

– move the cursor to a cell when requested from Sally.

In particular, the Alexes indeed stay very thin. Depending on future semantic
interactions based on other semantic objects, the UI listeners and UI actions
have to be extended. But note that the former extensions are mere expansions
of the listeners, that already are in place, and that the latter will handle nothing
more complicated than the resp. semantic objects.

Sally: Merging Interfaces and Interactions
Sally is the central interaction manager of the Semantic Alliance framework
and can be used universally for all kinds of semantic services. As we have seen
in Figures 1 and 2, Sally comes in two flavors, one for a desktop setting and one

Semantic Alliance: A Framework for Semantic Allies 57

for a web-based application. These two only differ in the communication to their
respective Theos and possibly Alexes. Concretely, we have only implemented the
desktop variant for now. As Sally has to be cross-platform, it is implemented
in Java making use of a Socket and WebSocket server for communication. Sally
keeps an abstract model of the documents played in the application, an abstract
interpretation mapping based on this, and maintains an abstract model of the
UI state. These abstractions are useful so that Sally can communicate with
different Alexes/Theos. To avoid hard-coding the set of services, Sally will query
the wMKM system for the services available for the respective document types
registered by the Alexes connected to Sally.

Theo: Managing Screen-Area
The main purpose of the Theo component is to provide interface items upon re-
quest by Sally. This component is realized as an instance of XULRunner [Xulb]
— the naked layout and communication engine behind Mozilla Firefox and Thun-
derbird. The layout of the interface items is given in the XUL format [Xula] and
the interactions are handled via JavaScript. For math-heavy applications, it is
important that Theo allows HTML5 presentation of any interface item (buttons,
text boxes, etc.) and text content. Note that Theo only concentrates on the ren-
dering of interface elements, acting as a renderer for Sally, which sends content,
placement and size information via Web Sockets4. Note that the communication
channel is bi-directional: Theo events (e.g. clicking on a node in a dependency
graph) are communicated to Sally, which then coordinates the appropriate re-
action.

wMKM = Planetary: Provisioning Semantic Services
For Sissi, we (re-)use much of the Planetary system [Koh+11; Planetary] as the
underlying wMKM system. The Planetary system is a Web 3.0 (or a Social Se-
mantic Web) system for semantically annotated technical document collections
based on MKM technologies. The background ontology O for semantic illustra-
tion is stored as a collection of documents in a versioned XML database, that
indexes them by semantic functional criteria and can then perform server-side se-
mantic services. Results of these queries (usually fragments selected/aggregated
from O) are transformed to HTML5 via a user-adaptive and context-based pre-
sentation process.

3.2 Discussion

To gain an intuition on the runtime-behavior of the Semantic Alliance frame-
work let us look at the new realization of SACHS functionality described earlier. In
the concrete examples, we reuse the SACHS ontology already described in [KK09a]
which could be adapted to the new setting.

4 The natural communication via sockets is prohibited by XULrunner for security
reasons; Web Sockets provide a safer abstraction that we can use in this context.

58 C. David et al.

Fig. 3. Definition Lookup in Sissi

Definition Lookup & Semantic Navigation in Sissi. In the Sissi implementa-
tion (see Figure 3), Alex responds to a click of cell [E9] by requesting a defini-
tion lookup window from Sally, which requests an HTML5 document from the
wMKM system S, on whose arrival Theo overlays the A-GUI at the appropriate
location with a browser window containing the requested information.

The definition lookup or the dependency graph service is invoked, as of now,
by the user’s selection in the “Sally menu” (visible in Fig.3 resp. 4). As this is
an interaction management task, it naturally belongs to Sally’s tasks, so in the
near future interaction configuration will be enabled via Sally itself.

Fig. 4. Semantic Navigation in Sissi

Now, let us look
at Figure 4, which
presents the depen-
dency graph of cell
[D15], that is, the
graph of “Actual Ex-
penses per time at
SemAnteX Corp”.
The nodes in this
graph are hyperlinks
to their (via the
semantic illustration
mapping) associated
cells. For example,
the concept “Actual
Utility Costs” from
O is associated with

cell range [B10:D10] on the same worksheet. If the user clicked this node, then
Theo – which is in control of the window that displays the dependency graph
– reports this click event to Sally, that interprets it as a navigation request

Semantic Alliance: A Framework for Semantic Allies 59

and relays this to Alex, which in turn moved the cursor to cell [D10] in the
GUI of A (based on the evident heuristic). Note that semantic navigation works
workbook wide and can be extended to go across. Figure 4 is a screenshot taken
from a LibreOffice Calc document on a Linux machine, which verifies Sissi’s
platform- and application independence.

This means that we reached feature parity wrt. SACHS’ definition lookup and
semantic navigation as described. But even with these very limited Alex proto-
types we already obtain some semantic features that go beyond the old SACHS

implementation:

1. The JOBAD interaction framework employed in Planetary allows to make
the interactions semantically interactive by embedding semantical services
in them as well [GLR09]. For instance, if a fragment of the definition lookup
text (e.g. “salary costs” in Figure 3) is linked to an ontology concept that is
itself associated with a cell in this workbook (in our example, “salary costs”
are associated with the cell range [B9:D9]), then semantic navigation (which
was only available via concept graphs in SACHS) comes for free.

2. The SACHS system was severely limited by the fact that native MS Excel 2003
popups are limited to simple text strings, which made layout, formula display,
and interactivity impossible. In the Semantic Alliance framework, we have
the full power of dynamic HTML55 at our hands. In particular, OpenMath
formulae can be nicely rendered (see Figure 3), which gives spreadsheet users
visual (and navigational) support in understanding the computation (and the
provenance) of the respective values.

3. Planetary has an integrated editing facility that can be used for building the
background ontology as an invasive service and with a little bit more work
on Sally, it can be used for managing the semantic illustration mapping.

Note that in the Semantic Alliance architecture, Sally is a reusable compo-
nent, which implies that Planetary services offered via Sally are open to other
applications A as long as they have access to a suitable (thin) AlexA.

To conclude our discussion let us see how our initial claim that the Semantic
Alliance framework allows the rapid deployment of semantic services in appli-
cations holds up to the implementation experiences. Naturally, the development
time of AlexCalc cannot be considered separately as it is indistinguishable from
the expenditures for developing Semantic Alliance and Sissi up to this point.
But we can look at AlexExcel and its development costs: Even though the au-
thor was not familiar with the MS Excel .NET backend, he succeeded building
AlexExcel in about 40 hours. Actually, much of this time was not spent on realiz-
ing the basic functionality, but on getting around idiosyncrasies of the MS Excel

system. For instance, MS Excel removes the cell focus markers, when the spread-
sheet window loses focus (which it necessarily does in the Semantic Alliance

framework, since the Theo supplied window gets the focus, as Theo is a separate

5 The full power of dynamic HTML5 means in particular HTML+CSS for text lay-
out, MathML for formula display, SVG/Canvas for diagrams, and JavaScript for
interactivity.

60 C. David et al.

process). Note that in this paper the general framework for semantic allies is
presented, thus no users are yet involved, which in turn means that usability is
not yet an issue. The validation of the framework consists in demonstrating its
feasibility and confirming its claimed value, the nice cost-benefit ratio, which is
exactly based on low API development costs.

4 Related Work

We have presented the Semantic Alliance framework as a mashup enabler for
semantic services with already existing applications, that allows to use those ser-
vices from within these applications to overcome users’ potential motivational
bootstrap hurdles, i.e., that yields invasive design. Here, we want to portray
Semantic Alliance’s contribution by assessing related work. In particular, we
review existing relevant (semantic) extensions of document players resp. docu-
ments and the frameworks used with respect to our architecture.

In recent years, a big variety of mashup enablers was created. “Greasemon-
key” [Pil05] is a well-known example for a client-side extension of a web browser.
In particular, it is a Firefox extension that allows to write scripts to persistently
alter web pages for a user on the fly. But Greasemonkey as well as those other
mashup enablers are limited to offer resulting web services. With the Semantic

Alliance architecture a very different kind of service is enabled: an application-
based service. Note that this application might be a web app, but can also be a
desktop-centered component of an office suite.

We can also consider Semantic Alliance as a mashup builder like “Mar-
mite” [WH07]. This specific one aligns programs and their data flows and is
realized as a proxy server, that mediates between a web browser and a webpage.
Again, there seems to be an underlying assumption that mashups only live on
the web, the very thing that Semantic Alliance extends.

When focusing on enabling semantic services as extensions of existing pro-
grams, we observe that the number of semantic service aggregators is on the
rise. The web search engine “WATSON” [dM11], a ‘gateway’ for the Semantic
Web, for a web example, collects, analyzes and gives access to ontologies and se-
mantic data on the Web. But the potential semantic services can only be used via
a unified UI, so that such service aggregators have to be considered standalone
systems, which we argued against in the introduction. Therefore, our Seman-
tic Alliance framework only contains the aggregating component Sally, but
separates its tasks via Alex and Theo.

There are desktop variants of semantic service aggregators like the “Semantic
Desktop” [Sem], which is an open-source semantic personal information man-
agement (PIM) and collaboration software system, that offers semantic services
based on the relations of structured data of desktop applications. In particular, it
uses desktop crawlers based on distinct document type- and application ontolo-
gies to collect metadata. Within the Semantic Desktop framework third party
components can be integrated via pluggable adaptors. The services can be used
by a user via a PIM-UI provided by the Semantic Desktop or via application-
UIs that are extended by invasive technology. The cost and redundancy issues

Semantic Alliance: A Framework for Semantic Allies 61

discussed in the introduction apply here as well, that is, the development costs
for each semantic extension is very high. In the Semantic Alliance architec-
ture only thin, invasive add-ons (“Alex”es) are necessary to provide the same
user experience. Moreover, the Semantic Desktop focuses on services using au-
tomatically gathered semantic data based on ontologies of desktop applications.
In contrast, Semantic Alliance centers around specific documents with their
individual ontology given by a semantic illustration mapping.

“truenumbers” [Tru] is a technology for supporting the representation, man-
agement and copy/pasting of engineering values as semantically enhanced data.
It encapsulates for instance the magnitude and precision of a number, its units,
its subject, and its context. The technology is realized as a set of plug-ins for
e.g. Eclipse, MS Office, or Adobe PDF. The metadata are stored in hosted or
private clouds and semantic services are offered via a Web client. We consider
truenumbers to be related closely to Semantic Alliance. But as truenumbers
only targets engineering values, its semantic objects are restricted, and hence,
its scope is limited.

In the Semantic Alliance framework we are elaborating the idea of “Inter-
face Attachments” [Ols+99]. These are small interactive programs that augment
the functionality of other applications with a “minimal set of ‘hooks’ into those ap-

plications” [ibd., p. 191], where the hooks exploit and manipulate the surface
representation of an application. We target with a Theo component this ma-
nipulation of the surface representation, but with our thin Alex component we
only address the mentioned minimality of hooks, as our main goal does not
consist in efficient service exploitation, but in the exploitation of the underly-
ing semantics of a document played by an application. Note that our Theo is
application-independent in contrast to “Interface Attachments”’ manipulation
hook. Moreover, with one Sally component we make complex services available
to distinct applications.

“Contextual Facets” [MDD09] are a UI technique for finding and navigating
to related websites. They are built automatically based on an analysis of web-
pages’ semi-structured data aligned to a user’s short term navigation history and
filter selection. They are contextual in the sense, that a user’s recent and cur-
rent webpage elements usage determines the context for available services (here,
navigation links). In Sally, Semantic Alliance’s interaction manager, we use
users’ interaction with semantic objects (that are given by an abstract document
type) like clicking a cell as context for semantic services. The time component
of user actions is not yet integrated within Sally. Note that we can consider
a semantic ally as a contextual facet, so that the Semantic Alliance archi-
tecture is a transition from the “Contextual Facets” technique from a browser
document extension to general document extensions via the underlying abstract
document type. We also like to mention that Medynskiy et al. report for their
implementation “FacetPatch” that “participants in an exploratory user evaluation

of FacetPatch were enthusiastic about contextual facets and often preferred them to an

existing, familiar faceted navigation interface.” [MDD09; p. 2013], which makes us
hopeful for the adaptation of Semantic Alliance.

62 C. David et al.

5 Conclusion and Future Work

We have presented the Semantic Alliance architecture and software frame-
work that allows the user from within different standalone document players
to use a semantic ally service (or semantic ally for short). From her point of
view, she uses specialized semantic allies tailored to the respective application,
whereas from a technical perspective, the main component of the framework is a
single, universal semantic ally Sally mashing up distinct semantic services with
the resp. application’s GUI. This is possible due to an innovative task distribu-
tion in Semantic Alliance based on a combination of the Semantic Illustration
architecture and invasive design.

In particular, the application-specific parts of a service are outsourced to
Alexes, which are just responsible for managing the application’s UI events and
thus can be built thin. In our reference implementation for AlexExcel, the devel-
opment merely took a week. The rendering parts of a service are executed by
Theos. Sally, the technical semantic ally, acts as an interaction manager between
the components and services on the one side and the user on the other. As such
it requires most development effort and time and incorporates thus substantial
MKM technology.

Our particular Sally implementation in Sissi as of now is desktop-based and
realized in Java, integrating much of the semantic functionality via web-services,
and our Theo is browser-based. Therefore, our setup of Semantic Alliance is
fully operating-system independent. So far we have only used Sally to mediate
between different types of spreadsheet programs, in the future we want to exploit
this to incorporate different applications with semantic allies. This will be simple
for the other elements of the LibreOffice suite, hence, we are looking forward
to blend semantic services between different document types in the near future.
Moreover, work is currently under way on an Alex for a CAD/CAM system as
envisioned in [Koh+09]. We expect the main work to be in the establishment
of an abstract document model (which resides in Sally and is shared across
semantic allies for CAD/CAM systems) and the respective background ontology.

Even though our work only indirectly contributes to the management of
mathematical knowledge, we feel that it is a very attractive avenue for out-
reach of MKM technologies. For instance, in the SiSsI project for which we
have developed the Semantic Alliance framework, we will use Sally to in-
tegrate verification of spreadsheet formulae against (formal) specifications in
the background ontology or test them against other computational engines. In
CAD/CAM systems the illustration mapping can be used to connect CAD ob-
jects to a bill of materials in the background ontology, which in turn can be
used to verify physical properties (e.g. holding forces). Computational note-
books in open-API computer algebra systems like Mathematica or Maple can be
illustrated with the papers that develop the mathematical theory. Theorem
provers can be embedded into MS Word, . . .— the opportunities seem endless.

The Semantic Alliance framework is licensed under the GPL and is available
at https://svn.kwarc.info/repos/sissi/trunk/.

https://svn.kwarc.info/repos/sissi/trunk/

Semantic Alliance: A Framework for Semantic Allies 63

Acknowledgements. The research in the SiSsI project is supported by DFG
grant KO 2428/10-1.

References

[Act] ActiveMath, http://www.activemath.org (visited on June 05, 2010)
[Aßm03] Aßmann, U.: Invasive software composition, pp. I–XII, 1–334. Springer

(2003) ISBN: 978-3-540-44385-8
[Car+09] Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.): MKM 2009, Held as

Part of CICM 2009. LNCS (LNAI), vol. 5625. Springer, Heidelberg (2009)
[Cin] Cinderella: Interactive Geometry Software, http://www.cinderella.de

(visited on February 24, 2012)
[dM11] d’Aquin, M., Motta, E.: Watson, more than a Semantic Web search en-

gine. Semantic Web 2(1), 55–63 (2011)
[GLR09] Giceva, J., Lange, C., Rabe, F.: Integrating Web Services into Active

Mathematical Documents. In: Carette, J., Dixon, L., Coen, C.S., Watt,
S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS (LNAI),
vol. 5625, pp. 279–293. Springer, Heidelberg (2009),
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/

jobad/jobad-server.pdf

[HHN85] Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct manipulation inter-
faces. Hum.-Comput. Interact. 1(4), 311–338 (1985) ISSN: 0737-0024

[Joh10] Johnson, J.: Designing with the Mind in Mind: Simple Guide to Un-
derstanding User Interface Design Rules. Morgan Kaufmann Publishers
(2010)

[KK09a] Kohlhase, A., Kohlhase, M.: Compensating the Computational Bias of
Spreadsheets with MKM Techniques. In: Carette, J., Dixon, L., Coen,
C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS
(LNAI), vol. 5625, pp. 357–372. Springer, Heidelberg (2009),
http://kwarc.info/kohlhase/papers/mkm09-sachs.pdf

[KK09b] Kohlhase, A., Kohlhase, M.: Semantic Transparency in User Assis-
tance Systems. In: Mehlenbacher, B., et al. (eds.) Proceedings of the
27th Annual ACM International Conference on Design of Communi-
cation (SIGDOC), Bloomington, Indiana, USA. ACM Special Interest
Group for Design of Communication, pp. 89–96. ACM Press, New York
(2009), http://kwarc.info/kohlhase/papers/sigdoc09-emtrans.pdf,
doi:10.1145/1621995.1622013

[Koh+09] Kohlhase, M., Lemburg, J., Schröder, L., Schulz, E.: Formal Management
of CAD/CAM Processes. In: Cavalcanti, A., Dams, D. (eds.) FM 2009.
LNCS, vol. 5850, pp. 223–238. Springer, Heidelberg (2009),
http://kwarc.info/kohlhase/papers/fm09.pdf

[Koh+11] Kohlhase, M., et al.: The Planetary System: Web 3.0 & Active Doc-
uments for STEM. Procedia Computer Science 4, 598–607 (2011);
Sato, M., et al. (eds.): Special issue: Proceedings of the International
Conference on Computational Science (ICCS). Finalist at the Executable
Papers Challenge (2011),
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf,
doi:10.1016/j.procs.2011.04.063

http://www.activemath.org
http://www.cinderella.de
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
http://kwarc.info/kohlhase/papers/mkm09-sachs.pdf
http://kwarc.info/kohlhase/papers/sigdoc09-emtrans.pdf
http://kwarc.info/kohlhase/papers/fm09.pdf
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf

64 C. David et al.

[Koh05] Kohlhase, A.: Overcoming Proprietary Hurdles: CPoint as Invasive Ed-
itor. In: de Vries, F., et al. (eds.) Proceedings at Open Source for Edu-
cation in Europe: Research and Practise, pp. 51–56. Open Universiteit
Nederland, Heerlen (2005), http://hdl.handle.net/1820/483

[Lib] Home of the LibreOffice Productivity Suite,
http://www.libreoffice.org (visited on November 13, 2011)

[Mata] Mathcad: Optimize your design and engineering,
http://www.ptc.com/products/mathcad (visited on February 24, 2012)

[Matb] Mathematica, http://www.wolfram.com/products/mathematica/
(visited on June 05, 2010)

[MDD09] Medynskiy, Y., Dontcheva, M., Drucker, S.M.: Exploring websites through
contextual facets. In: Proceedings of the 27th International Conference on
Human Factors in Computing Systems, CHI 2009, pp. 2013–2022. ACM,
Boston (2009) ISBN: 978-1-60558-246-7

[NYN03] Nieh, J., Jae Yang, S., Novik, N.: Measuring thin-client performance using
slow-motion benchmarking. ACM Trans. Comput. Syst. 21, 87–115 (2003)
ISSN: 0734-2071

[Ols+99] Olsen Jr., D.R., et al.: Implementing interface attachments based on sur-
face representations. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems: the CHI is the Limit, CHI 1999,
pp. 191–198. ACM, Pittsburgh (1999) ISBN: 0-201-48559-1

[Pil05] Pilgrim, M.: Greasemonkey Hacks: Tips & Tools for Remixing the Web
with Firefox (Hacks). O’Reilly Media, Inc. (2005) ISBN: 0596101651

[Planetary] Planetary Developer Forum, http://trac.mathweb.org/planetary/
(visited on September 08, 2011)

[Sem] Semantic Desktop, http://www.semanticdesktop.org/
(visited on February 24, 2012)

[Tru] Truenumbers, http://www.truenum.com (visited on February 24, 2012)
[WH07] Wong, J., Hong, J.I.: Making mashups with marmite: towards end-user

programming for the web. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI 2007, pp. 1435–1444. ACM,
San Jose (2007) ISBN: 978-1-59593-593-9

[Xula] XUL language, https://developer.mozilla.org/en/XUL
(visited on January 30, 2012)

[Xulb] XULRunner Runtime Environment,
https://developer.mozilla.org/en/XULRunner

(visited on February 29, 2012)

http://hdl.handle.net/1820/483
http://www.libreoffice.org
http://www.ptc.com/products/mathcad
http://www.wolfram.com/products/mathematica/
http://trac.mathweb.org/planetary/
http://www.semanticdesktop.org/
http://www.truenum.com
https://developer.mozilla.org/en/XUL
https://developer.mozilla.org/en/XULRunner

Extending MKM Formats

at the Statement Level

Fulya Horozal, Michael Kohlhase, and Florian Rabe

Computer Science, Jacobs University Bremen, Germany
http://kwarc.info

Abstract. Successful representation and markup languages find a good
balance between giving the user freedom of expression, enforcing the
fundamental semantic invariants of the modeling framework, and al-
lowing machine support for the underlying semantic structures. MKM
formats maintain strong invariants while trying to be foundationally un-
constrained, which makes the induced design problem particularly chal-
lenging.

In this situation, it is standard practice to define a minimal core lan-
guage together with a scripting/macro facility for syntactic extensions
that map into the core language. In practice, such extension facilities
are either fully unconstrained (making invariants and machine support
difficult) or limited to the object level (keeping the statement and theory
levels fixed).

In this paper we develop a general methodology for extending MKM
representation formats at the statement level. We show the utility (and
indeed necessity) of statement-level extension by redesigning the OMDoc
format into a minimal, regular core language (strict OMDoc) and an
extension (pragmatic OMDoc) that maps into strict OMDoc.

1 Introduction

The development of representation languages for mathematical knowledge is one
of the central concerns of the MKM community. After all, practical mathemat-
ical knowledge management consists in the manipulation of expressions in such
languages. To be successful, MKM representation formats must balance multi-
ple concerns. A format should be expressive and flexible (for depth and ease
of modeling), foundationally unconstrained (for coverage), regular and minimal
(for ease of implementation), and modular and web-transparent (for scalability).
Finally, the format should be elegant, feel natural to mathematicians, and be
easy to read and write. Needless to say that this set of requirements is over-
constrained so that the design problem for MKM representation formats lies in
relaxing some of the constraints to achieve a global optimum.

In languages for formalized mathematics, it is standard practice to define a
minimal core language that is extended by macros, functions, or notations. For
example, Isabelle [Pau94] provides a rich language of notations, abbreviations,
syntax and printing translations, and a number of definitional forms. In narrative

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 65–80, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://kwarc.info

66 F. Horozal, M. Kohlhase, and F. Rabe

formats for mathematics, for instance, the TEX/LATEX format – arguably the
most commonly used format for representing mathematical knowledge – goes a
similar way, only that the core language is given by the TEX layout primitives
and the translation is realized by macro expansion and is fully under user control.
This extensibility led to the profusion of user-defined LATEX document classes
and packages that has made TEX/LATEX so successful.

However, the fully unconstrained nature of the extensibility makes ensuring
invariants and machine support very difficult, and thus this approach is not im-
mediately applicable to content markup formats. There, MathML3 [ABC+10]
is a good example of the state of the art. It specifies a core language called
“strict content MathML” that is equivalent to OpenMath [BCC+04b] and “full
content MathML”. The first subset uses a minimal set of elements representing
the meaning of a mathematical expression in a uniform, regular structure, while
the second one tries to strike a pragmatic balance between verbosity and for-
mality. The meaning of non-strict expressions is given by a fixed translation: the
“strict content MathML translation” specified in section 4.6 of the MathML3
recommendation [ABC+10].

This language design has the advantage that only a small, regular sublan-
guage has to be given a mathematical meaning, but a larger vocabulary that is
more intuitive to practitioners of the field can be used for actual representation.
Moreover, semantic services like validation only need to be implemented for the
strict subset and can be extended to the pragmatic language by translation.
Ultimately, a representation format might even have multiple pragmatic front-
ends geared towards different audiences. These are semantically interoperable
by construction.

The work reported in this paper comes from an ongoing language design effort,
where we want to redesign our OMDoc format [Koh06] into a minimal, regular
core language (strict OMDoc 2) and an extension layer (pragmatic OMDoc 2)
whose semantics is given by a “pragmatic-to-strict” (P2S) translation. While
this problem is well-understood for mathematical objects, extension frameworks
at the statement level seem to be restricted to the non-semantic case, e.g. the
amsthm package for LATEX.

Languages for mathematics commonly permit a variety of pragmatic state-
ments, e.g., implicit or case-based definitions, type definitions, theorems, or
proof schemata. But representation frameworks for such languages do not in-
clude a generic mechanism that permits introducing arbitrary pragmatic state-
ments — instead, a fixed set is built into the format. Among logical frame-
works, Twelf/LF [PS99,HHP93] permits two statements: defined and undefined
constants. Isabelle [Pau94] and Coq [BC04] permit much larger, but still fixed
sets that include, for example, recursive case-based function definitions. Content
markup formats like OMDoc permit similar fixed sets.

A large set of statements is desirable in a representation format in order to
model the flexibility of individual languages. A large fixed set on the other hand is
unsatisfactory because it is difficult to give a theoretical justification for fixing any
specific set of statements. Moreover, it is often difficult to define the semantics of

Extending MKM Formats at the Statement Level 67

a built-in statement in a foundationally unconstrained representation format be-
cause many pragmatic statement are only meaningful under certain foundational
assumptions.

In this paper we present a general formalism for adding new pragmatic state-
ment forms to our OMDoc format; we have picked OMDoc for familiarity and
foundation-independence; any other foundational format can be extended simi-
larly. Consider for instance the pragmatic statement of an “implicit definition”,
which defines a mathematical object by describing it so accurately, that there
is only one object that fits this description. For instance, the exponential func-
tion exp is defined as the (unique) solution of the differential equation f = f ′

with f(0) = 1. This form of definition is extensively used in practical mathe-
matics, so pragmatic OMDoc should offer an infrastructure for it, whereas strict
OMDoc only offers “simple definitions” of the form c := d, where c is a new
symbol and d any object. In our extension framework, the P2S translation pro-
vides the semantics of the implicit definition in terms of the strict definition
exp := ιf.(f ′ = f ∧f(0) = 1), where ι is a “definite description operator”: Given
an expression A with free variable x, such that there is a unique x that makes
A valid, ιx.A returns that x, otherwise ιx.A is undefined.

Note that the semantics of an implicit definition requires a definite descrip-
tion operator. While most areas of mathematics at least implicitly assume its
existence, it should not be required in general because that would prevent the
representation of systems without one. Therefore, we make these requirements
explicit in a special theory that defines the new pragmatic statement and its
strict semantics. This theory must be imported in order for implicit definitions
to become available. Using our extension language, we can recover a large num-
ber of existing pragmatic statements as definable special cases, including many
existing ones of OMDoc. Thus, when representing formal languages in OMDoc,
authors have full control what pragmatic statements to permit and can define
new ones in terms of existing ones.

In the next section, we will recap those parts of OMDoc that are needed in this
paper. In Section 3, we define our extension language, and in Section 4, we look
at particular extensions that are motivated by mathematical practice. Finally,
in Section 5, we will address the question of extending the concrete syntax with
pragmatic features as well.

2 MMT/OMDoc

Theories

Statements

Objects D
oc

um
en

ts

OMDoc is a comprehensive content-based format for rep-
resenting mathematical knowledge and documents. It
represents mathematical knowledge at three levels: math-
ematical formulae at the object level, symbol declarations,
definitions, notation definitions, axioms, theorems, and
proofs at the statement level, and finally modular scopes
at the theory level. Moreover, it adds an infrastructure for representing func-
tional aspects of mathematical documents at the content markup level. OMDoc

68 F. Horozal, M. Kohlhase, and F. Rabe

1.2 has been successfully used as a representational basis in applications ranging
from theorem prover interfaces, via knowledge based up to eLearning systems.
To allow this diversity of applications, the format has acquired a large, inter-
connected set of language constructs motivated by coverage and user familiarity
(i.e., by pragmatic concerns) and not by minimality and orthogonality of lan-
guage primitives (strict concerns).

To reconcile these language design issues for OMDoc 2, we want to separate
the format into a strict core language and a pragmatic extension layer that is
elaborated into strict OMDoc via a “pragmatic-to-strict” (P2S) translation.

For strict OMDoc we employ the foundation-independent, syntactically mini-
mal MMT framework (see below). For pragmatic OMDoc, we aim at a language
that is feature-complete with respect to OMDoc 1.2 [Koh06], but incorporates lan-
guage features from other MKM formats, most notably from Isabelle/Isar [Wen99],
PVS [ORS92], and Mizar [TB85].

The MMT language was emerged from a complete redesign of the formal
core1 of OMDoc focusing on foundation-independence, scalability, modularity,
while maintaining coverage of formal systems. The MMT language is described
in [RK11] and implemented in [Rab08].

LF Isabelle

FOL HOL

Monoid Ring

Fig. 1. An MMT Theory Graph

MMT uses theories as a single primi-
tive to represent formal systems such as log-
ical frameworks, logics, or theories. These
form theory graphs such as the one on the
left, where single arrows → denote theory
translations and hooked arrows ↪→ denote
the meta-theory relation between two the-
ories. The theory FOL for first-order logic
is the meta-theory for Monoid and Ring.
And the theory LF for the logical frame-
work LF [HHP93] is the meta-theory of FOL

and HOL for higher-order logic. In general, we describe the theories with meta-
theory M as M-theories. The importance of meta-theories in MMT is that the
syntax and semantics of M induces the syntax and semantics of all M -theories.
For example, if the syntax and semantics are fixed for LF , they determine those
of FOL and Monoid .

At the statement level, MMT uses constant declarations as a single primitive
to represent all OMDoc statement declarations. These are differentiated by the
type system of the respective meta-theory. In particular, the Curry-Howard cor-
respondence is used to represent axioms and theorems as plain constants (with
special types).

In Figure 2, we show a small fragment of the MMT grammar that we need
in the remainder of this paper. Meta-symbols of the BNF format are given in
color.

1 We are currently working on adding an informal (natural language) representation
and a non-trivial (strict) document level to MMT, their lack does not restrict the
results reported in this paper.

Extending MKM Formats at the Statement Level 69

Modules G ::= (theory T = {Σ})∗
Theories Σ ::= · | Σ, c[: E][= E] | meta T
Contexts Γ ::= · | Γ, x[: E]
Expressions E ::= x | c | E E+ | E Γ. E

Fig. 2. MMT Grammar

The module level of MMT introduces theory declarations theory T = {Σ}.
Theories Σ contain constant declarations c[: E1][= E2] that introduce named
atomic expressions c with optional type E1 or definition E2. Moreover, each
theory may declare its meta-theory T via meta T .

MMT expressions are a fragment of OpenMath [BCC+04a] objects, for which
we introduce a short syntax. They are formed from variables x, constants c,
applications E E1 . . . En of functions E to a sequence of arguments Ei, and
bindings E1 Γ. E2 that use a binder E1, a context Γ of bound variables, and a
scope E2. Contexts Γ consist of variables x[: E] that can optionally attribute a
type E.

The semantics of MMT is given in terms of foundations for the upper-most
meta-theories. Foundations define in particular the typing relation between ex-
pressions, in which MMT is parametric. For example, the foundation for LF
induces the type-checking relation for all theories with meta-theory LF .

Example 1 (MMT-Theories). Below we give an MMT theory Propositions , which
will serve as the meta-theory of several logics introduced in this paper. It intro-
duces all symbols needed to declare logical connectives and inference rules of
a logic. The syntax and semantics of this theory are defined in terms of type
theory, e.g., the logical framework LF [HHP93].

type, →, and lam are untyped constants rep-
resenting the primitives of type theory. type
represents the universe of all types, → con-
structs function types α → β, and lam rep-
resents the λ-binder. o is the type of logical
formulas and proof is a constant that assigns
to each logical formula F : o the type proof F
of its proof.

theory Propositions = {
type
→
lam
o : type
proof : o → type

}

3 A Framework for Language Extensions

We will now define our extension language (EL). It provides a syntactic means
to define pragmatic language features and their semantics in terms of strict
OMDoc.

Syntax. EL adds two primitive declarations to MMT theories: extension decla-
rations and pragmatic declarations :

70 F. Horozal, M. Kohlhase, and F. Rabe

Σ::= Σ, extension e = Φ
| Σ, pragmatic c : ϕ

Extension declarations extension e = Φ introduce a new declaration schema
e that is described by Φ. Intuitively, Φ is a function that takes some arguments
and returns a list of declarations, which define the strict semantics of the decla-
ration scheme.

Pragmatic declarations pragmatic c : ϕ introduce new declarations that make
use of a previously declared extension. Intuitively, ϕ applies an extension e a
sequence of arguments and evaluates to the returned list of declarations. Thus,
c : ϕ serves as a pragmatic abbreviation of a list of strict declarations.

The key notion in both cases is that of theory families. They represent collec-
tions of theories by specifying their common syntactic shape. Intuitively, theory
families arise by putting a λ-calculus on top of theory fragments Σ:

Theory Families Φ ::= {Σ} | λx : E. Φ
ϕ ::= e | ΦE

We group theory families into two non-terminal symbols as shown above: Φ
is formed from theory fragments {Σ} and λ-abstraction λx : E. Φ. And ϕ is
formed from references to previously declared extension e and applications of
parametric theory families to arguments E. This has the advantage that both Φ
and ϕ have a very simple shape.

Example 2 (Extension Declarations). In Figure 3 we give the theory Assertion ,
which declares extensions for axiom and theorem declarations. Their semantics
is defined in terms of the Curry-Howard representation of strict OMDoc.

Both extensions take a logical formula F : o as a parameter. The extension
axiom permits pragmatic declarations of the form c : axiom F . These abbreviate
MMT constant declarations of the form c : proof F .

The extension theorem additionally takes a parameter D : proof F , which is a
proof of F . It permits pragmatic declarations of the form c : theorem F D. These
abbreviate MMT constant declarations of the form c : proof F = D.

theory Assertion = {
meta Propositions
extension axiom = λF : o. {

c : proof F
}
extension theorem = λF : o. λD : proof F. {

c : proof F = D
}

}

Fig. 3. An MMT Theory with Extension Declarations

Extending MKM Formats at the Statement Level 71

Any MMT theory may introduce extension declarations. However, pragmatic
declarations are only legal if the extension that is used has been declared in the
meta-theory:

Definition 1 (Legal Extension Declarations). We say that an extension
declaration extension e = λx1 : E1. . . . λxn : En. {Σ} is legal in an MMT
theory T , if the declarations x1 : E1, . . . , xn : En and Σ are well-formed in T .

This includes the case where Σ contains pragmatic declarations.

Definition 2 (Legal Pragmatic Declarations). We say that a pragmatic
declaration pragmatic c : e E1 . . . En is legal in an MMT theory T if there is a
declaration extension e = λx1 : E′

1. . . . λxn : E′
n. {Σ} in the meta-theory of T

and each Ei has type E′
i.

Here the typing relation is the one provided by the MMT foundation.

Semantics. Extension declarations do not have a semantics as such because the
extension declared in M only govern what pragmatic declarations are legal in
M -theories. In particular, contrary to the constant declarations in M , a model
of M does not interpret the extension declarations.

The semantics of pragmatic declarations is given by elaborating them into
strict declarations:

Definition 3 (Pragmatic-to-Strict Translation P2S). A legal pragmatic
declaration pragmatic c : e E1 . . . En is translated to a list of strict constant
declarations

c.d1 : γ(F1) = γ(D1), . . . , c.dm : γ(Fm) = γ(Dm)

where γ substitutes every xi with Ei and every dj with c.dj if we have

extension e = λx1 : E′
1. . . . λxn : E′

n. {d1 : F1 = D1, . . . , dm : Fm = Dm}

and every expression Ei has type E′
i.

Example 3. Consider the following MMT theories in Figure 4: HOL includes the
MMT theory Propositions and declares a constant i as the type of individuals.
It adds the usual logical connectives and quantifiers – here we only present
truth (true) and the universal quantifier (∀) – and introduces equality (.=) on
expressions of type α. Then it includes Assertion . This gives HOL access to the
extensions axiom and theorem .

Commutativity uses HOL as its meta-theory and declares a constant ◦ that
takes two individuals as arguments and returns an individual. It adds a pragmatic
declaration named comm that declares the commutativity axiom for ◦ using the
axiom extension from HOL.

Commutativity ′ is obtained by elaborating Commutativity according to Defi-
nition 3.

72 F. Horozal, M. Kohlhase, and F. Rabe

theory HOL = {
meta Propositions
i : type
true : o
...
∀ : (α → o) → o
.
= : α → α → o

include Assertion
}

theory Commutativity = {
meta HOL
◦ : i → i → i
pragmatic comm : axiom ∀x : i.∀y : i. x ◦ y

.
= y ◦ x

}

theory Commutativity ′ = {
meta HOL
◦ : i → i → i
comm.c : proof ∀x : i. ∀y : i. x ◦ y

.
= y ◦ x

}

Fig. 4. A P2S Translation Example

4 Representing Extension Principles

Formal mathematical developments can be classified based on whether they fol-
low the axiomatic or the definitional method. The former is common for logics
where theories declare primitive constants and axioms. The latter is common for
foundations of mathematics where a fixed theory (the foundation) is extended
only by defined constants and theorems. In MMT, both the logic and the foun-
dation are represented as a meta-theory M , and the main difference is that the
definitional method does not permit undefined constants in M -theories.

However, this treatment does not capture conservative extension principles:
These are meta-theorems that establish that certain extensions are acceptable
even if they are not definitional. We can understand them as intermediates be-
tween axiomatic and definitional extensions: They may be axiomatic but are
essentially as safe as definitional ones.

To make this argument precise, we use the following definition:

Definition 4. We call the theory family Φ = λx1 : E′
1. . . . λxn : E′

n. {Σ} con-
servative for M if for every M -theory T and all E1 : E′

1, . . . , En : E′
n, every

model of T can be extended to a model of T, γ(Σ), where γ substitutes every xi

with Ei.
An extension declaration extension e = Φ is called derived if all constant

declarations in Σ have a definiens; otherwise, it is called primitive.

Primitive extension declarations correspond to axiom declarations because they
postulate that certain extensions of M are legal. The proof that they are indeed
conservative is a meta-argument that must be carried out as a part of the proof
that M is an adequate MMT representation of the represented formalism. Simi-
larly, derived extension declarations correspond to theorem declarations because
their conservativity follows from that of the primitive ones. More precisely: If
all primitive extension principles in M are conservative, then so are all derived
ones.

Extending MKM Formats at the Statement Level 73

In the following, we will recover built-in extension statements of common rep-
resentation formats as special cases of our extension declarations. We will follow
a little foundations paradigm and state every extensions in the smallest theory
in which it is meaningful. Using the MMT module system, this permits maxi-
mal reuse of extension definitions. Moreover, it documents the (often implicit)
foundational assumptions of each extension.

Implicit Definitions in OMDoc. Implicit definitions of OMDoc 1.2 are captured
using the following derived extension declaration. If the theory ImplicitDefinitions
in Figure 5 is included into a meta-theory M , then M -theories may use implicit
definitions.

theory ImplicitDefinitions = {
meta Propositions
∃! : (α → o) → o
ι : (α → o) → α
ιax : proof ∃!x P x → proof P (ι P)

extension impldef = λα : type. λP : α → o. λm : proof ∃!x : α. P x. {
c : α = ι P

cax : proof ∃!x : α. P x
}

}
Fig. 5. An Extension for Implicit Definitions

Note that ImplicitDefinitions requires two other connectives: A description
operator (ι) and a unique existential (∃!) are needed to express the meaning of
an implicit definition. We deliberately assume only those two operators in order
to maximize the re-usability of this theory: Using the MMT module system,
any logic M in which these two operators are definable can import the theory
ImplicitDefinitions .

More specifically, ImplicitDefinitions introduces the definite description op-
erator as a new binding operator (ι), and describes its meaning by the axiom
∃!xP (x) ⇒ P (ι P) formulated in ιax for any predicate P on α. The extension
impldef permits pragmatic declarations of the form f : impldef α P m, which
defines f as the unique object which makes the property P valid. This leads to
the well-defined condition that there is indeed such a unique object, which is
discharged by the proof m. The pragmatic-to-strict translation from Section 3
translates the pragmatic declaration f : impldef α P m to the strict constant
declarations f.c : α = ι P and f.cax : proof ∃!x : α P x.

Mizar-Style Functor Definitions. The Mizar language [TB85] provides a wide
(but fixed) variety of special statements, most of which can be understood as
conservative extension principles for first-order logic. A comprehensive list of
the corresponding extension declarations can be found in [IKR11]. We will only
consider one example in Figure 6.

74 F. Horozal, M. Kohlhase, and F. Rabe

theory FunctorDefinitions = {
meta Propositions
∧ : o → o → o
⇒ : o → o → o
∀ : (α → o) → α
∃ : (α → o) → α
.
= : α → α → o
extension functor =

λα : type. λβ : type. λmeans : α → β → o.
λexistence : proof ∀x : α.∃y : β. means x y.
λuniqueness : proof ∀x : α.∀y : β. ∀y′ : β. means x y ∧ means x y′ ⇒ y

.
= y′. {

f : α → β
definitional theorem : proof ∀x : α.means x (f x)

}
}

Fig. 6. An Extension for Mizar-Style Functor Definitions

The theory FunctorDefinitions describes Mizar-style implicit definition of a
unary function symbol (called a functor in Mizar). This is different from the one
above because it uses a primitive extension declaration that is well-known to be
conservative. In Mizar, the axiom definitional theorem is called the definitional
theorem induced by the implicit definition. Using the extension functor , one can
introduce pragmatic declarations of the form pragmatic c : functor AB P E U
that declare functors c from A to B that are defined by the property P where
E and U discharge the induced proof obligations.

Flexary Extensions. The above two examples become substantially more power-
ful if they are extended to implicit definitions of functions of arbitrary arity. This
is supported by our extension language by using an LF-based logical framework
with term sequences and type sequences. We omit the formal details of this
framework here for simplicity and refer to [Hor12] instead. We only give one
example in Figure 7 that demonstrates the potential.

theory CaseBasedDefinitions = {
meta Propositions
∧ : on → o

∨! : on → o
⇒ : o → o → o
∀ : (α → o) → o
extension casedef = λn : N. λα : type. λβ : type. λc : (α → o)n.

λd : (α → β)n. λρ : proof ∀x : α. ∨!
[
ci x

]n

i=1
. {

f : α → β
ax : proof ∀x : α. ∧ [

ci x ⇒ (f x) = (di x)
]n
i=1}

}
Fig. 7. An Extension for Case-Based Definitions

Extending MKM Formats at the Statement Level 75

The theory CaseBasedDefinitions introduces an extension that describes the
case-based definition of a unary function f from α to β that is defined using n
different cases where each case is guarded by the predicate ci together with the
respective definiens di. Such a definition is well-defined if for all x ∈ α exactly
one out of the ci x is true. Note that these declarations use a special sequence
constructor: for example,

[
ci x

]n
i=1

simplifies to the sequence c1 x , . . . , cn x. More-
over, ∧ and ∨! are flexary connectives, i.e., they take a flexible number of argu-
ments. In particular, ∨!(F1, . . . , Fn) holds if exactly one of its arguments holds.

The pragmatic declaration pragmatic f : casedef n α β c1 . . . cn d1 . . . dn ρ cor-
responds to the following function definition:

f(x) =

⎧⎪⎨⎪⎩
d1(x) if c1(x)
...

...
dn(x) if cn(x)

HOL-Style Type Definitions. Due to the presence of λ-abstraction and a de-
scription operator in HOL [Chu40], a lot of common extension principles become
derivable in HOL, in particular, implicit definitions.

But there is one primitive definition principle that is commonly accepted
in HOL-based formalizations of the definitional method: A Gordon/HOL type
definition [Gor88] introduces a new type that is axiomatized to be isomorphic to
a subtype of an existing type. This cannot be expressed as a derivable extension
because HOL does not use subtyping.

theory Types = {
meta Propositions
∀ : (α → o) → o
∃ : (α → o) → o
.
= : (α → α) → o
extension typedef = λα : type. λA : α → o. λP : proof ∃x : α. A x. {

T : type
Rep : T → α
Abs : α → T
Rep′ : proof ∀x : T. A (Rep x)
Rep inverse : proof ∀x : T.Abs (Rep x)

.
= x

Abs inverse : proof ∀x : α. A x ⇒ Rep (Abs x)
.
= x

}
}

Fig. 8. An Extension for HOL-Style Type Definitions

The theory Types in Figure 8, formalizes this extension principle. Our sym-
bol names follow the implementation of this definition principle in Isabelle/HOL
[NPW02]. Pragmatic declarations of the form pragmatic t : typedef αAP in-
troduce a new non-empty type t isomorphic to the predicate A over α. Since all
HOL-types must be non-empty, a proof P of the non-emptiness of A must be
supplied. More precisely, it is translated to the following strict constant decla-
rations:

76 F. Horozal, M. Kohlhase, and F. Rabe

– t.T : type is the new type that is being defined,
– t.Rep : t.T → α is an injection from the new type t.T to α,
– t.Abs : α → t.T is the inverse of t.Rep from α to the new type t.T ,
– t.Rep′ states that the property A holds for any term of type t.T ,
– t.Rep inverse states that the injection of any element of type t.T to α and

back is equal to itself,
– t.Abs inverse states that if an element satisfies A, then injecting it to t.T

and back is equal to itself.

HOL-based proof assistants implement the type definition principle as a built-in
statement. They also often provide further built-in statements for other defini-
tion principles that become derivable in the presence of type definitions, e.g.,
a definition principle for record types. For example, in Isabelle/HOL [NPW02],
HOL is formalized in the Pure logic underlying the logical framework Isabelle
[Pau94]. But because the type definition principle is not expressible in Pure, it is
implemented as a primitive Isabelle feature that is only active in Isabelle/HOL.

5 Syntax Extensions and Surface Languages

Our definitions from Section 3 permit pragmatic abstract syntax, which is elab-
orated into strict abstract syntax. For human-oriented representations, it is de-
sirable to complement this with similar extensions of pragmatic concrete syntax.
While the pragmatic-to-strict translation at the abstract syntax level is usually
non-trivial and therefore not invertible, the corresponding translation at the
concrete syntax level should be compositional and bidirectional.

5.1 OMDoc Concrete Syntax for EL Declarations

First we extend OMDoc with concrete syntax that exactly mirrors the abstract
syntax from Section 3. The declaration extension e = λx1 : E1. . . . λxn :
En. {Σ} is written as

<extension name=”e”>

<parameter name=”x1”> E1 </parameter>
...

<parameter name=”xn”> En </parameter>

<theory>

Σ
</theory>

</extension>

Here we use the box notation A to gloss the XML representation of an entity
A given in abstract syntax.

Similarly, the pragmatic declaration pragmatic c : e E1 . . . En is written as

Extending MKM Formats at the Statement Level 77

<pragmatic name=”c” extension=”〈〈M〉〉?e”>
E1 . . . En

</pragmatic>

Here 〈〈M〉〉 is the meta-theory in which e is declared so that 〈〈M〉〉?e is the MMT
URI of the extension.

Example 4. For the implicit definitions discussed in Section 3, we use the ex-
tension impldef from Figure 5, which we assume has namespace URI 〈〈U〉〉. If ρ
is a proof of unique existence for an f such that f ′ = f ∧ f(0) = 1, then the
exponential function is defined in XML by

<pragmatic name=”exp” extension=”〈〈U〉〉?ImplicitDefinitions?impldef ”>

λf.f ′ = f ∧ f(0) = 1 ρ

</pragmatic>

5.2 Pragmatic Surface Syntax

OMDoc is mainly a machine-oriented interoperability format, which is not in-
tended for human consumption. Therefore, the EL-isomorphic syntax introduced
is sufficient in principle – at least for the formal subset of OMDoc we have dis-
cussed so far.

OMDoc is largely written in the form of “surface languages” – domain-specific
languages that can be written effectively and transformed to OMDoc in an au-
tomated process. For the formal subset of OMDoc, we use a MMT-inspired
superset of the Twelf/LF [PS99,HHP93] syntax, and for informal OMDoc we
use STEX [Koh08], a semantic extension of TEX/LATEX.

For many purposes like learning the surface language or styling OMDoc doc-
uments, pragmatic surface syntax, i.e., a surface syntax that is closer to the
notational conventions of the respective domain, has great practical advantages.
It is possible to support, i.e., generate and parse, pragmatic surface syntax by
using the macro/scripting framework associated with most representation for-
mats.

For instance, we can regain the XML syntax familiar from OMDoc 1.2 via
notation definitions that transform between pragmatic elements and the corre-
sponding OMDoc 1.2 syntax. For Twelf/LF, we would extend the module system
preprocessor, and for Isabelle we would extend the SML-based syntax/parsing
subsystem. We have also extended STEXas an example of a semi-formal surface
language. Here we used the macro facility of TEX as the computational engine.
We conjecture that most practical surface languages for MKM can be extended
similarly.

These translations proceed in two step. Firstly, pragmatic surface syntax is
translated into our pragmatic MMT syntax. Our language is designed to make
this step trivial: in particular, it does not have to look into the parameters
used in a pragmatic surface declaration. Secondly, pragmatic MMT syntax is

78 F. Horozal, M. Kohlhase, and F. Rabe

type-checked and, if desired, translated into strict MMT syntax. All potentially
difficult semantic analysis is part of this second step. This design makes it very
easy for users to introduce their own pragmatic surface syntax.

6 Conclusion and Future Work

In this paper, we proposed a general statement-level extension mechanism for
MKM formats powered by the notion of theory families. Starting with MMT as
a core language, we are able to express most of the pragmatic language features
of OMDoc 1.2 as instances of our new extension primitive. Moreover, we can
recover extension principles employed in languages for formalized mathematics
including the statements employed for conservative extensions in Isabelle/HOL
and Mizar. We have also described a principle how to introduce corresponding
pragmatic concrete syntax.

The elegance and utility of the extension language is enhanced by the modu-
larity of the OMDoc 2 framework, whose meta-theories provide the natural place
to declare extensions: the scoping rules of the MMT module system supply the
justification and intended visibility of statement-level extensions. In our exam-
ples, the Isabelle/HOL and Mizar extensions come from their meta-logics, which
are formalized in MMT.

We also expect our pragmatic syntax to be beneficial in system integration
because it permit interchanging documents at the pragmatic MMT level. For
example, we can translate implicit definitions of one system to those of another
system even if – as is typical – the respective strict implementations are very
different.

For full coverage of OMDoc 1.2, we still need to capture abstract data types
and proofs; the difficulties in this endeavor lie not in the extension framework
but in the design of suitable meta-logics that justify them. For OMDoc-style
proofs, the λμμ̃-calculus has been identified as suitable [ASC06], but remains to
be encoded in MMT. For abstract data types we need a λ-calculus that can reflect
signatures into (inductive) data types; the third author is currently working on
this.

The fact that pragmatic extensions are declared in meta-theories points to-
wards the idea that OMDoc metadata and the corresponding metadata ontolo-
gies [LK09] are actually meta-theories as well (albeit at a somewhat different
level); we plan to work out this correspondence for OMDoc 2.

Finally, we observe that we can go even further and interpret the feature of
definitions that is primitive in MMT as pragmatic extensions of an even more
foundational system. Then definitions c : E = E′ become pragmatic notations
for a declaration c : E and an axiom c = E′, where = is an extension symbol
introduced in a meta-theory for equality. Typing can be handled similarly. This
would also permit introducing other modifiers in declarations such as <: for
subtype declarations.

Extending MKM Formats at the Statement Level 79

References

ABC+10. Ausbrooks, R., Buswell, S., Carlisle, D., Chavchanidze, G., Dalmas, S.,
Devitt, S., Diaz, A., Dooley, S., Hunter, R., Ion, P., Kohlhase, M., Lazrek,
A., Libbrecht, P., Miller, B., Miner, R., Sargent, M., Smith, B., Soiffer, N.,
Sutor, R., Watt, S.: Mathematical Markup Language (MathML) version
3.0. W3C Recommendation, World Wide Web Consortium (W3C) (2010)

ASC06. Autexier, S., Sacerdoti-Coen, C.: A Formal Correspondence Between OM-
Doc with Alternative Proofs and the λμμ̃-Calculus. In: Borwein, J.M.,
Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 67–81.
Springer, Heidelberg (2006)

BC04. Bertot, Y., Castéran, P.: Coq’Art: The Calculus of Inductive Constructions.
Springer (2004)

BCC+04a. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase,
M.: The Open Math Standard, Version 2.0. Technical report, The Open
Math Society (2004), http://www.openmath.org/standard/om20

BCC+04b. Buswell, S., Caprotti, O., Carlisle, D.P., Dewar, M.C., Gaëtano, M.,
Kohlhase, M.: The Open Math standard, version 2.0. Technical report,
The OpenMath Society (2004)

Chu40. Church, A.: A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic 5(1), 56–68 (1940)

Gor88. Gordon, M.: HOL: A Proof Generating System for Higher-Order Logic. In:
Birtwistle, G., Subrahmanyam, P. (eds.) VLSI Specification, Verification
and Synthesis, pp. 73–128. Kluwer-Academic Publishers (1988)

HHP93. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Jour-
nal of the Association for Computing Machinery 40(1), 143–184 (1993)

Hor12. Horozal, F.: Logic translations with declaration patterns (2012),
https://svn.kwarc.info/repos/fhorozal/pubs/patterns.pdf

IKR11. Iancu, M., Kohlhase, M., Rabe, F.: Translating the Mizar Mathematical
Library into OMDoc format. Technical Report KWARC Report-01/11, Ja-
cobs University Bremen (2011)

Koh06. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Doc-
uments [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

Koh08. Kohlhase, M.: Using LATEX as a semantic markup format. Mathematics in
Computer Science 2(2), 279–304 (2008)

LK09. Lange, C., Kohlhase, M.: A Mathematical Approach to Ontology Authoring
and Documentation. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M.
(eds.) MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625, pp. 389–
404. Springer, Heidelberg (2009)

NPW02. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. Springer (2002)

ORS92. Owre, S., Rushby, J., Shankar, N.: PVS: A Prototype Verification System.
In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer,
Heidelberg (1992)

Pau94. Paulson, L.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer,
Heidelberg (1994)

PS99. Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical
Framework for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999.
LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

Rab08. Rabe, F.: The MMT System (2008), https://trac.kwarc.info/MMT/

http://www.openmath.org/standard/om20
https://svn.kwarc.info/repos/fhorozal/pubs/patterns.pdf
https://trac.kwarc.info/MMT/

80 F. Horozal, M. Kohlhase, and F. Rabe

RK11. Rabe, F., Kohlhase, M.: A Scalable Module System (2011),
http://arxiv.org/abs/1105.0548

TB85. Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In:
Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pp. 26–28 (1985)

Wen99. Wenzel, M.T.: Isar - A Generic Interpretative Approach to Readable For-
mal Proof Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin,
C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–184. Springer,
Heidelberg (1999)

http://arxiv.org/abs/1105.0548

A Streaming Digital Ink Framework

for Multi-party Collaboration

Rui Hu, Vadim Mazalov, and Stephen M. Watt

The University of Western Ontario
London Ontario, Canada N6A 5B7

{rhu8,vmazalov,Stephen.Watt}@uwo.ca

Abstract. We present a framework for pen-based, multi-user, online
collaboration in mathematical domains. This environment provides par-
ticipants, who may be in the same room or across the planet, with a
shared whiteboard and voice channel. The digital ink stream is trans-
mitted as InkML, allowing special recognizers for different content types,
such as mathematics and diagrams. Sessions may be recorded and stored
for later playback, analysis or annotation. The framework is currently
structured to use the popular Skype and Google Talk services for the
communications channel, but other transport mechanisms could be used.
The goal of the work is to support computer-enhanced distance collabo-
ration, where domain-specific recognizers handle different kinds of digital
ink input and editing. The first of these recognizers is for mathematics,
which allows converting math input into machine-understandable format.
This supports multi-party collaboration, with sessions recorded in rich
formats that allow semantic analysis and manipulation of the content.

Keywords: Pen computing, distance collaboration, mathematical
handwriting recognition, InkML, Skype, Google Talk.

1 Introduction

We are interested in development of an infrastructure that helps researchers, en-
gineers, teachers and students to collaborate online over pen-based and graphical
interfaces. Pen-based collaboration in mathematical domains can significantly in-
crease productivity, e.g. Gowers, et al. conducted an experiment of “attacking”
a mathematical problem through a collaboration of volunteers online [1]. In just
over five weeks, more than two dozen individuals contributed approximately 800
comments that led to the solution of the problem. We believe that the synergy of
pen-based collaboration and recognition of mathematical input can enhance the
efficiency of online interaction. Nevertheless, there is no technology that allows
to capitalize on both simultaneously: some software handles recognition with-
out the ability for real-time sharing, e.g. the Maple computer algebra system [2],
while other systems provide a whiteboard for collaboration, but no mathematical
recognition, e.g. Microsoft OneNote [3], Calliflower [4] or Dabbleboard [5].

We present a framework for multi-user online collaboration in a pen-based
and graphical environment. This environment allows participants conducting

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 81–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

82 R. Hu, V. Mazalov, and S.M. Watt

and archiving collaborative sessions that involve synchronized voice and digital
ink on a shared canvas. The digital ink is represented as InkML [6], allowing spe-
cial recognizers for different content types, such as mathematics and diagrams.
The collaborative sessions may be recorded and stored for later playback, anal-
ysis or annotation. The framework currently employs the popular Skype [7] or
Google Talk [8] services as the backbone to deliver data streams, but other trans-
port mechanisms could be used. Our objective is to support computer-enhanced
distance collaboration, where domain-specific recognizers handle different kinds
of digital ink input and editing. The first of these domains is mathematical in-
put, which has similarities to both natural language handwriting input and two-
dimensional diagramming. This framework has potential to increase productivity
in teleconferences or to enhance online learning and tutoring, as the participants
can interact in a natural way. A version of the framework implementation is
available for download at http://www.orcca.on.ca/InkChat/. The current re-
lease (version 0.9.5) has many of the features described in the paper. Some of
the features described here have been implemented in separate packages and will
be integrated in later versions of InkChat. This work is an outgrowth of earlier
work [9] that allowed collaborative inking, but which did not allow modular
extension.

The remainder of this article is organized as follows. In Section 2, we explain
why it is important for collaboration software to be portable. We then investigate
potential challenges that may be encountered in the development and propose
our solutions. Section 3 presents a high-level overview of the architecture of the
framework and gives details on each component. In Section 4, we describe the
implementation of the framework. A case study and a discussion of lessons learnt
are given in Section 5. Section 6 concludes the article.

2 Portability of the Framework

A number of digital ink applications have been developed over the past years,
following the emergence of digital ink. Most of these applications lack support
for portability and are consequently each restricted to a single platform. Col-
laboration software, however, is most useful when it is platform-independent,
both because an individual may use different platforms at different times, and
because teams may be composed of members using different systems. Dealing
with significantly different client software reduces the ability of the individual
or the group to master its use. If any of the members has difficulty, efficiency of
the whole team is reduced. Those tools that are cross-platform usually can work
only with proprietary ink standards and thus are restricted in their ability to
share data with other applications. In this section we investigate the challenges
of building a portable framework.

2.1 Portability of Software

Today’s platforms capture digital ink in various data structures and process it
using different mechanisms. Our framework must therefore deal with different

http://www.orcca.on.ca/InkChat/

A Streaming Digital Ink Framework for Multi-party Collaboration 83

Fig. 1. A cross-platform framework for digital ink applications

lower-level interfaces on different platforms. On Windows, digital ink is captured
in Wintab packets or Stroke objects and transmitted by the Wintab interface
or the Windows XP Tablet PC APIs. A similar scheme is applicable to Linux
platforms that use XInput events and the Linux Input Subsystem. For Mac OS X
we use the NSEvent objects and the Cocoa Framework. These platform-specific
APIs make development of pen-based collaboration software difficult.

Having explored available APIs on a variety of platforms, including Windows,
Windows Mobile, Linux, Mac OS X and Palm OS, we use a framework that can
capture digital ink across these platforms and provide a platform-independent,
consistent interface to digital ink applications. This framework, as illustrated in
Figure 1, contains two layers: the platform layer and the Java Native Interface
(JNI) layer. The platform layer receives digital ink input from drivers and passes
the data to the upper interfaces: Wintab for Windows, XInput for Linux/Unix
and Cocoa for Mac OS. These interfaces push the data to the user space in a
platform-specific way and describe each data event inconsistently. This puts the
responsibility for event conformance on the shoulders of developers of ink appli-
cations. One of our objectives is to allow developers to focus on functionality,
rather than the platform-specific issues. This leads to the design of the JNI layer.

The JNI layer interacts with the platform layer and provides consistent,
platform-independent APIs for digital ink applications. As the input APIs are
implemented in C-like languages, the JNI layer can invoke them using the Java
Native Interface. The JNI layer collects digital ink input from the platform layer,
converts it to platform-independent events and then dispatches to digital ink ap-
plications. This allows development of pen-based applications on top of the JNI
layer to be platform-independent.

84 R. Hu, V. Mazalov, and S.M. Watt

Fig. 2. Ink streaming

2.2 Portability of Digital Ink Data

Another challenge in developing whiteboard-diagramming software is associated
with the heterogeneous environment. Various pen devices have different charac-
teristics, including sampling rate, channel properties, screen resolution and so
on. The representation of the data generated by a device affects the usability
of an application. Previous whiteboard tools did not address this as thoroughly
as we require. An example is InkBoard [10], a collaborative sketching applica-
tion based on Microsoft’s Conference XP research platform [11] and designed
for Tablet PCs. InkBoard allows design teams to interact by streaming digital
ink in Microsoft’s proprietary Ink Serialized Format (ISF) [12]. As a result, the
application is limited in use to Windows environments where ISF is natively
supported.

To represent digital ink, we find it useful to adopt an open, flexible, powerful,
platform-, and vendor-independent standard, such as InkML [6]. This allows
complete and accurate representation of digital ink by capturing the recording
information such as the device characteristics, pen tilt, pen pressure and so on.
Most importantly, it provides support for collaboration applications that require
streaming ink between participants.

The InkML streaming of digital ink is based on the concept of “context.”
Whenever digital ink is written, there is some context in effect. Contexts may be
represented externally using the <context> element in InkML. This can contain
various associated attributes, including canvas properties, canvas transforma-
tion, trace format, ink source metadata, and time stamp. Initially, each ink col-
laboration participant obtains a default context and listens for context changes.
This is similar to an event-driven model in which context changes are made
when contextual elements are received. In practice, these elements will inter-
sperse among digital ink streams, as shown in Figure 2. With this model, each
participant can easily maintain the current context of the sender in addition to

A Streaming Digital Ink Framework for Multi-party Collaboration 85

Fig. 3. InkChat architecture

its own local context. Whenever a new contextual element is received, it simply
updates old values. Contextual elements are sent only when there is a context
change, which helps to decrease streaming overhead on the wire. The overhead
can be further reduced by making references to existing contextual elements,
which can be pre-defined or previously received. This can be accomplished by
using referencing attributes (e.g. brushRef) of <context>.

3 Architecture

We now present the framework for multi-user online collaboration, allowing ses-
sions to be recorded in formats that allow semantic analysis and manipulation
of the content. The framework currently consists of InkChat, a digital ink ap-
plication developed at Ontario Research Centre for Computer Algebra, and a
number of extensions. InkChat is the main platform of the application, on top
of which other extensions may be added. Figure 3 presents a high-level overview
of the architecture of InkChat. InkChat interacts with the cross-platform frame-
work, presented in Section 2.1, whose primary purpose is to collect digital ink
from a variety of platforms and to provide a platform-independent, consistent
interface for digital ink applications. The six extensions, most of which can work
independently and simultaneously, serve as plug-ins for InkChat. We outline the
details of each extension below.

3.1 The Collaboration Extension

Similar to the traditional concept of sharing a session between several parties
available in communication software (e.g. having a group call or a text chat),
the collaboration extension allows real-time sharing of the canvas among partici-
pants and enables the participants to edit content on the canvas. Synchronization
of the canvas is performed through the underlying communication backbone.

86 R. Hu, V. Mazalov, and S.M. Watt

Fig. 4. Collaboration framework

In addition, the voice and video channels are typically available through the
communication software as well. The collaboration scheme between two clients is
shown in Figure 4. Digital ink data is first converted into InkML format and then
sent in a data channel parallel to the voice channel. The collaboration extension
itself is an abstract layer that can handle different network protocols including
pipes and sockets in P2P (peer-to-peer) and the traditional client-server config-
urations. To adapt to the collaboration environment, we allow participants to
choose the most suitable protocol at the beginning of the conversation. For ex-
ample, if the collaboration is intended to take place in a small group and requires
only the basic functions of whiteboard, P2P would be preferable as it is inexpen-
sive and fairly simple to set up and manage. If the collaboration is intended to
comprise a large number of participants and demand sophisticated computing
services (e.g. mathematical formula simplification), client-server mode may be
more appropriate.

InkChat supports conference mode where more than two participants can
be involved in one conversation. Depending on the chosen network protocol,
InkChat employs different mechanism to communicate with other participants.
When a P2P backbone such as Skype is used, the conference is initiated by
the host that has a connection with every other participant. Digital ink routing
shares the same mechanism as audio routing, each ink stroke will be broadcast
by the host to all participants except the initiator. Figure 5 shows the two cases,
when a host and when a client initiate a stroke. In the client-server network, the
server will play the role of the host and establish a connection with each client,
as shown in Figure 6. Both the digital ink and audio data are sent to the server
first and then broadcast to all the other clients.

A Streaming Digital Ink Framework for Multi-party Collaboration 87

(a) (b)

Fig. 5. Sessions with the stroke initiated by (a) the host and (b) the client

3.2 The Training Extension

In an adaptive recognition environment, a separate training phase is not required.
Having some number of training samples in each class can, however, significantly
improve the initial recognition. The number of training samples that a class
should contain depends on the recognition methods. Using our approach, the
recognition rate depends on the minimal distance to convex hulls of neighbouring
classes. For most of the classes in our dataset, about 20 classes are required [13].

A training session may be initiated on first use of the application or when a
new character is first introduced. Once training is finished, a profile of classes
and training samples is saved as an XML document. The profile is a hierarchical
container of catalogs (groups of related characters, e.g. digits, Latin letters),
symbols, writing styles, and training samples [13]. Training samples are divided
by different forms for symbols (e.g. a one-stroke versus a two-stroke numeral
“φ”), since many recognition methods are sensitive to the direction and order of
strokes. The training extension also provides an interface for the user to manage
profiles of training samples.

3.3 The Mathematical Recognition Extension

The mathematical recognition extension is an ongoing project. The objective
is to have domain-specific recognizers that handle different kinds of digital ink
input. We currently focus on the classification of handwritten mathematical sym-
bols, as the essential component of math formula recognition, and spatial analysis
of characters. In our classification paradigm, each character is represented as a

88 R. Hu, V. Mazalov, and S.M. Watt

Fig. 6. A client-server configuration with a stroke initiated by a client

single point in a space of curves. The coordinates of this point are the coef-
ficients of truncated orthogonal series approximating the coordinate functions
of the trace [14]. Classification of a character is based on the distances to the
convex hulls of nearest neighbours in this space. A sequence of incoming strokes
is divided to form characters with the highest classification confidence. Spatial
analysis of samples is performed based on the relative positioning of the centers
of mass of adjacent characters.

This approach typically does not require many training samples to discrim-
inate a class. However, because there is a large number of classes, the training
dataset may contain tens of thousands of characters. The dataset evolves with
each recognized sample. Synchronization of the evolving per-user training ex-
emplars across several pen-based devices may become tiresome. To address this
aspect, the storage of the training database can be delegated to a cloud. [13]. At
present, recognition is always done locally, although this could alternatively be
done by a server. Locally, the recognition extension accepts raw ink from InkChat
and preprocesses it. This preprocessing typically includes computing approxima-
tion of the character and normalization with respect to the size and position.
Consecutive strokes are merged into candidate symbols and approximated, yield-
ing points in the space of curves. The coefficients are recognized [14] by the
recognition extension. A ranked list of recognition results is sent to InkChat for
display and confirmation or rejection/selection. The result is stored remotely as
classification experience for subsequent adjustment of training clusters.

3.4 The Compression Extension

The compression extension implements a hybrid of functional [15] and linear [16]
approximation. There are several schemes for segmentation of digital ink for

A Streaming Digital Ink Framework for Multi-party Collaboration 89

compression by the functional approximation method. The most robust is the
adaptive segmentation that dynamically selects the degree of approximation and
the size of coefficients. Coefficients are recorded as floating-point numbers with
base 2 [15]. The functional approximation is best-suited for curly handwriting,
for example as with math symbols.

Linear approximation allows compact representation of nearly linear seg-
ments, and is therefore suitable for many forms of representation of mathemati-
cal and engineering knowledge, such as graphs, tables, or diagrams. The method
removes points that least affect the shape of the curve, so long as the error be-
tween the original and the approximating curves remains within a threshold. The
method can be viewed as a dynamic adjustment of the density of points, depend-
ing on the shape of the stroke. The method is very fast and yields reasonable
compression.

3.5 The Rendering Extension

Different rendering styles are required for different drawing and writing activities.
For example digital painting and Chinese calligraphy may require an instrument
that behaves like a paint brush, while diagramming may best be done with an
instrument that behaves like a pen or pencil. To support these needs, different
brush models may be selected.

Round Brush. The round brush, as its name suggests, draws each ink point as a
filled circle. We use three parameters to model the round brush: x, y to indicate
the position and r to measure the circle radius which can be a function of the
pen tip pressure. We fill the gaps between the circles of consecutive points by
forming envelopes with circle tangents, as shown in Figure 7(a).

Tear Drop Brush. The idea of the tear drop brush is to model the contact of
a brush head as it varies in distance to the canvas and is dragged along. This
contact area is modelled as tear drop – a circle and the area enclosed by the
tangents to a trailing point (which may degenerately be on the circumference).
Varying the radius models what happens when the brush varies in distance to
the canvas, and the trailing point is determined by the past history of the brush.
There are five parameters, as shown in Figure 7(b): x and y give the position of
the ink point, r gives the head radius, θ the direction of the tail, and � the length
of the tail from (x, y). The tear drop brush model has been adopted by InkML [6]
and the calculation of r, θ and � from the stream of x, y and pressure values has
been discussed in [17,18]. As with the round brush, strokes are rendered by filling
brush shapes and the area formed by tangents between successive brush outlines.

3.6 The Archival Extension

InkChat stores handwritten input using InkML format. Strokes are converted
to an InkML stream as they are captured. They are then saved to the current
ink session before being sent to other participants. As the stream is received by

90 R. Hu, V. Mazalov, and S.M. Watt

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

r
1

r
2

22(x , y)

11(x , y)

(a)

(x, y)

l

r

θ

(b)

Fig. 7. The brush models: (a) the round brush and (b) the tear drop brush

a participant, InkChat immediately parses the stream and saves the strokes to
the current ink session. When the conversation is finished or the user requests
to save, InkChat writes the current ink session to an InkML file with the ink
from all participants. InkChat also supports loading collaboration sessions from
InkML documents.

4 Implementation

We have used the framework presented in section 3 to build the InkChat applica-
tion. Most components are implemented in Java as it provides strong portability
and applications can run on any Java Virtual Machine regardless of system ar-
chitecture. For platforms that do not support Java directly, the Java code can
be compiled to C. Our goal to maintain a single, coherent source that can be
compiled for all platforms. Below we briefly describe the implementation of the
major components.

4.1 User Interface

The InkChat user interface is illustrated in Figure 8. It is designed to have
buttons grouped so that the distance of moving the pen is minimized. Users
can write, erase, and highlight by selecting corresponding brushes. Editing is
also supported. Users can redo, undo, cut, copy, and paste different kinds of
content, such as images, typed-text, and digital ink. In order to better support
collaboration, we have provided a floating pointer and a page navigator. The
floating pointer can be used to point at target objects on the shared canvas
without leaving ink. Together with voice channel, this allows pointing to and
discussing aspects of the common canvas. The page navigator allows participants
to create new pages or review earlier pages. Once a session is finished, all pages
can be recorded and stored for later playback.

A Streaming Digital Ink Framework for Multi-party Collaboration 91

Fig. 8. An example of diagramming in InkChat with Skype service

4.2 Collaboration

The InkChat software combines digital ink and voice in a multi-user conversation
with a shared canvas. It is structured so it can use the popular Skype and
Google Talk services for transmitting data streams. InkChat can be used by
people working together in the same room or on opposite sides of the planet.
Sessions may be archived to be resumed later or for later processing. An example
of collaboration using InkChat is illustrated in Figure 8. Two participants, the
author and user InkChat Robot, are involved in the collaboration using Skype.
The author is working on a Windows machine while the InkChat Robot is on
a Linux machine. The top left screenshot shows the InkChat Robot’s canvas
and the bottom right screenshot shows the author’s canvas. Remarkably, the
InkChat Robot is using the floating pointer to point around coordinate (1, 1).
This is streamed to the author’s canvas in real time.

4.3 Training

The training extension presents an extensible catalog of symbols and styles, or-
ganized in a tabbed panel, as shown in Figure 9(a). Each tab contains a list of
symbols. Once the user selects a symbol, the panel with styles becomes avail-
able. Styles are shown as animated images for visualization of stroke order and
direction. Each sample is associated to an existing or new style. If a style has
not been selected, it is determined automatically based on its shape and the
number of strokes. All the elements of the interface (catalogs, symbols, styles

92 R. Hu, V. Mazalov, and S.M. Watt

(a) (b)

Fig. 9. The recognition interface: (a) the training extension and (b) the mathematics
recognition extension

and samples) are dynamic: A context menu is allows the user to create, delete
or merge elements. A profile can be saved locally or synchronized with a server.

4.4 Mathematical Recognition

Classification of symbols takes place when a user performs handwritten input
through InkChat and the recognition extension is enabled. For each character,
a context menu is available that lists the top recognition candidates, see Fig-
ure 9(b). If the user chooses another class from among the candidates listed
in the context menu, adjacent characters can be reclassified based on the new
context information. There are two usual approaches to expression recognition:
character-at-a-time (each character is recognized as it is written) and expression-
at-a-time (characters are recognized in a sequence, taking advantage of the
context) Our current approach lies between these: we are experimenting with
recognition within a moving window of context and consider all ink outside
that window to be “dry” and recognized. Classification results can be displayed
super-imposed on the digital ink or can replace it.

5 Discussion

5.1 Scenarios

Here we describe several cases in which the framework has been found useful.

Online Learning and Tutoring. Figure 10 shows the triangle inequality being
discussed by three persons. The top-right panel lists the available friends of
the user and the lower-right panel shows the participants who are currently
in the session (excluding the user). The Google Talk service is employed in this
session. The triangle was drawn by the participant Robot1 InkChat. It was later
annotated by the user to better explain the triangle inequality.

A Streaming Digital Ink Framework for Multi-party Collaboration 93

Fig. 10. An example of online learning and tutoring

Collaborative Work on Math and Diagrams. The framework provides a collabo-
rative environment where participants can interact through a shared canvas and
a voice channel. Figure 11 shows examples in different domains. The ink and
meta-information is shared between participants through Skype or Google Talk.

Demonstration of Animated Diagrams. At least in some cases, animation can sig-
nificantly improve understanding of certain complex diagrams [19]. The InkChat
framework allows digital ink to be animated, reproducing the original writing se-
quence, or sequenced in some other manner. Thus, animated sketched diagrams
can be created and shared in real-time or made available for download.

5.2 Lessons Learnt

The architecture we have presented is a multi-year ongoing project, and there
are several important lessons that we have learnt

– Lesson 1: Anticipate that the world will keep changing. It is important to
have the data streams for an application well specified so new technologies,
such as JavaScript and HTML 5 canvas can participate.

– Lesson 2: There is power in less capable, but more uniform, interfaces. We
initially had different interfaces for ink sharing, recognition and the other
behaviours. Having a common interface, while not perfectly adapted to any of
these tasks, allowed them to be combined flexibly in useful and unanticipated
ways (e.g., combining the recording/playback and recognition modules).

– Lesson 3: Plan on sharing. The extensions and the main platform should be
designed to allow sharing of the functionality with third parties through the
mechanism of web services. For example, the recognition extension should
be able to accept a SOAP message with coefficients of a character to be
classified and send back the recognition candidates.

– Lesson 4: Don’t pin the user down. Plan on individuals making use of many
devices. This implies a protocol for network storage of user-specific informa-
tion, such as personalized handwriting recognition data.

94 R. Hu, V. Mazalov, and S.M. Watt

(a) (b)

(c) (d)

Fig. 11. Examples of math and diagram collaboration (a) formula induction, (b) math
symbol recognition, (c) use case diagram, (d) circuit diagram

– Lesson 5: Anticipate standards. Tracking draft standards prior to their ma-
turity, and indeed participating in the standardization process, can be an
effective strategy to achieve interoperability. The project was using InkML
before it was recommended as a standard by W3C. Today InkML allows cut-
and-paste of digital ink between applications, e.g. between Microsoft Office
2010 and InkChat.

6 Conclusion and Future Work

We have presented a framework for pen-based, multi-user, online collaboration
applicable to mathematical domains. The framework supports teamwork on sci-
entific and engineering problems by allowing participants to make contributions
to a shared canvas while having a discussion. The framework is portable and
uses InkML, a W3C standard, as a representation format. The architecture of
the framework is extension-based with InkChat as the main component. On
top of InkChat, several extensions have been developed for collaboration, train-
ing, mathematical recognition, compression, rendering and archival. We have
presented a high-level overview of these components. In ongoing work, we are
particularly interested in improved recognition of mathematical formula and ar-
chitecting more powerful combinations of extensions.

A Streaming Digital Ink Framework for Multi-party Collaboration 95

References

1. Gowers, T., Nielsen, M.: Massively Collaborative Mathematics. Nature 461, 879–
881 (2009)

2. Maplesoft Inc.: Maple user manual
3. Microsoft Inc.: Onenote (2010)
4. Iotum Inc.: Calliflower, http://www.calliflower.com/
5. Dabbleboard Inc.: Dabbleboard, http://www.dabbleboard.com
6. Watt, S., Underhill, T.: Ink Markup Language (InkML),

http://www.w3.org/TR/InkML/

7. Microsoft Inc.: Skype, http://www.skype.com/
8. Google Inc.: Google Talk, http://www.google.com/talk/
9. Regmi, A., Watt, S.M.: A Collaborative Interface for Multimodal Ink and Audio

Documents. In: Proc. 10th International Conference on Document Analysis and
Recognition, ICDAR 2009, pp. 901–905. IEEE Computer Society (2009)

10. Ning, H., Williams, J.R., Slocum, A.H., Sanchez, A.: InkBoard - Tablet PC En-
abled Design oriented Learning. In: Proc. 7th IASTED International Conference
on Computers and Advanced Technology in Education, CATE 2004, August 16-18,
pp. 154–160. ACTA Press (2004)

11. Beavers, J., Chou, T., Hinrichs, R., Moffatt, C., Pahud, M., Powers, L., Eaton, J.V.:
The Learning Experience Project: Enabling Collaborative Learning with Confer-
enceXP. Technical Report MSR-TR-2004-42, Microsoft Research (2004)

12. Microsoft Inc.: Ink Serialized Format Specification,
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-

4342ED7AD886/InkSerializedFormat(ISF)Specification.pdf

13. Mazalov, V., Watt, S.M.: Writing on Clouds. In: Jeuring, J., et al. (eds.) CICM 2012.
LNCS (LNAI), vol. 7362, pp. 402–416. Springer, Heidelberg (2012)

14. Golubitsky, O., Watt, S.M.: Distance-Based Classification of Handwritten Symbols.
International J. on Document Analysis and Recognition 13(2), 113–146 (2010)

15. Mazalov, V., Watt, S.M.: Digital Ink Compression via Functional Approximation.
In: Proc. 12th International Conference on Frontiers in Handwriting Recognition,
ICFHR 2010, November 16-18, pp. 688–694. IEEE Computer Society (2010)

16. Mazalov, V., Watt, S.M.: Linear Compression of Digital Ink via Selection of Subsets
of Points. In: Proc. 10th IAPR International Workshop on Document Analysis
Systemsm, DAS 2012, March 27-29, pp. 429–434. IEEE Computer Society (2012)

17. Hu, R.: Portable Implementation of Digital Ink: Collaboration and Calligraphy.
Master’s thesis, The University of Western Ontario, Canada (2009)

18. Watt, S.M.: On the Mathematics of Calligraphy (invited talk). In: International
Conference on Mathematics Mechanization – In Honor of Professor Wen-TsunWu’s
Ninetieth Birthday, Beijing, China (2009)

19. Burd, E., Overy, D., Wheetman, A.: Evaluating Using Animation to Improve Un-
derstanding of Sequence Diagrams. In: Proc. 10th International Workshop on Pro-
gram Comprehension, IWPC 2002, p. 107. IEEE Computer Society (2002)

http://www.calliflower.com/
http://www.dabbleboard.com
http://www.w3.org/TR/InkML/
http://www.skype.com/
http://www.google.com/talk/
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/InkSerializedFormat(ISF)Specification.pdf
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/InkSerializedFormat(ISF)Specification.pdf

Cost-Effective Integration of MKM Semantic

Services into Editing Environments

Constantin Jucovschi

Jacobs University Bremen, Germany

Abstract. Integration of MKM services into editors has been of big in-
terest in both formal as well as informal areas of MKM. Until now, most
of the efforts to integrate MKM services into editing environments are
done on an individual basis which results in high creation and mainte-
nance costs.

In this paper, I propose an architecture which allows editing environ-
ments and MKM services to be integrated in a more efficient way. This
is accomplished by integrating editors and services only once with a real-
time document synchronization and service broker. Doing so simplifies
the development of services, as well as editor integrations. Integrating
new services into an arbitrary number of already integrated editors can
then take as little as 3-4 hours of work.

1 Introduction

Integration of MKM services into editors has been of big interest in both formal
as well as informal areas of MKM. In the formal area of MKM, it becomes more
and more important to have an efficient way to work with formal documents
and pass information between interactive provers and the user. Examples of
useful services are: showing type information when hovering over an expression,
navigating to definitions of symbols, and supporting editor features like folding
inside long formulae.

Informal MKM needs editing support to make it easier for authors to cre-
ate semantically annotated documents. This can mean integration of Natural
Language Processing (NLP) services to e.g. spot mathematical terms as well as
hiding (or folding) existing semantic annotations in order to provide a better
reading experience.

Until now, most of the efforts to integrate MKM services into editing environ-
ments were done on an individual basis, namely, some service X was integrated
into an editing environment Y . Obviously it would have been more efficient to in-
tegrate service X into all editing environments Y where this service makes sense.
The problem is that developing and maintaining such integrations requires a lot
of effort and hence MKM services are usually integrated with maybe one or two
editing environments.

The high cost of semantic service integration has an especially negative impact
on informal MKM because its users, the authors of mathematical texts, write
mathematics in a handful of different programs and operating systems. Even if

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 96–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cost-Effective Integration of MKM Semantic Services 97

one chooses to support the 5 most used editing environments, it would still be
too expensive to maintain 10 semantic service integrations. Clearly, a different
integration strategy is called for.

In this paper, I propose an architecture allowing tight integration of authoring
services into the authoring process. It enables distributed services, running on
different platforms and hardware, to be notified of changes made by the user
to a certain document. Services can then react to these changes by modify-
ing/coloring document’s text as well as enriching parts of the text with extra
(invisible to the user) semantic annotations. This architecture can accommodate
both 1. reactive services like syntax highlighting giving user the illusion that the
service runs natively in the editor as well as, 2. time-consuming services like Nat-
ural Language Processing tasks, without requiring the user to wait while text is
processed.

In the next section I discuss in more detail what type of services would fit
the presented framework, and compare it to other existing MKM frameworks.
In section 3, I present the proposed integration architecture. To validate the
architecture I implemented four services and integrated them in two editors. In
section 4, I briefly describe these services, and give some high level technical
details on how new services can be built. Section 5 concludes the paper.

2 Aims and Scope of Integration

The task of tool integration is a very complex and multi-faceted one. Many
frameworks and technologies [Wic04] have been proposed to integrate tools, each
optimizing some aspects of tool integration and yet, none of them is widely
adopted. The current paper does not attempt to create a framework to integrate
all possible editors with all possible services. It considers only pure text editors
and integrates only services that participate in the editing/authoring process.
The scope of the framework is purposefully kept relatively small so that it solves
a well-defined part of editor-service integration problem and can eventually be
used along with other integration frameworks.

In the next section, I would like to make more explicit the types of services
that are included in the scope of the framework. In section 2.2 I analyze what
integration strategies will be used to achieve optimal integration. This will later
help me in section 2.3 to differentiate the framework more clearly from other
existing frameworks.

2.1 Targeted Authoring Services

In this paper by “authoring service for text-based documents” (abbreviated as
“authoring service” or just “service”), I mean a service which provides some
added value to the process of authoring the text document by:

1. reacting to document changes and giving feedback e.g. by coloring/under-
lining parts of text,

98 C. Jucovschi

2. performing changes to the document e.g. as result of an explicit request to
autocomplete, use a template, or fold some part of text/formula.

The strategy to achieve editor-service integration is to require authoring services
to be agnostic of advanced editor features like the ability to fold lines or embed
images/MathML formulae. Services should only be allowed to assume a relatively
simple document model that allows a limited set of operations (both described
in section 3.2) and which are supported by most editing environments. Likewise,
services should only assume a limited set of possible interactions with the user
(see section 3.4).

A way to decide whether a certain service is in the scope of the presented
integration framework is to analyze whether it can be realized conforming to the
limited document model and interaction possibilities.

2.2 Levels of Integration

One of the classical ways used to describe and compare integrations was proposed
byWasserman [Was90] and later improved by Thomas and Nejmeh [TN92]. They
proposes 4 dimensions along which an integration can be analyzed, namely: pre-
sentation, data, control and process integration dimensions. Presentation inte-
gration accounts for the level at which tools share a common “look and feel”,
mental models of interaction, and interaction paradigms. Data integration di-
mension analyzes how data is produced, shared and kept consistent among tools.
Control integration dimension analyzes the level to which tools use each other’s
services. The process integration dimension describes how well tools are aware
of constraints, events and workflows taking place in the system.

Note that high or low level of integration does not reflect the quality of some
integration. Low integration level in some dimension only suggests that those
tools can be easily decoupled and interchanged. High integration level, on the
other hand, suggests that tools connect in a deeper way and can enable features
not possible otherwise. Experience suggests that, low level of integration require
less maintenance costs in the long run and should be used whenever possible.

According to description of the targeted authoring services, I derived the inte-
gration levels that need to be supported in each integration dimension. Namely
we need:

1. medium-high presentation integration level, because services need to be able
to change the text/colors of the document as well as interact with the user
using some high level interaction paradigms. While the type of changes/in-
teractions a service can perform are limited, a service should be able to
perform these actions unrestricted by other components.

2. high data integration level due to the fact all service are distributed and
still need to be able to perform changes to the edited document. Hence
synchronization and data consistency mechanisms are needed.

3. low control integration as the framework should only give support for in-
tegrating services with editors. Service-service integrations are outside the
scope of integration.

Cost-Effective Integration of MKM Semantic Services 99

4. low process integration mainly due to the fact that services are expected to
be mostly stand-alone and the workflows should only involve an editor and
a service.

2.3 Comparison to Other MKM Integrations

A lot of integrations combining several tools have been developed in MKM. In
the context of the current paper only several types of integrations are interesting:

1. frameworks that enable integration of services into authoring process in a
consistent, service independent way,

2. integrations which allowmultiple services to listen/react to document changes.

The Proof General (PG) framework along with the PGIP message protocol
[ALW07] constitute the base for several popular integrations between editors
(e.g. emacs, Eclipse) and interactive provers like Isabelle, Coq and HOL. PG
framework differs from presented framework in the following ways:

1. low presentation integration — consisting of changing the color of text re-
gions according to prover state, accompanied by locks of regions under pro-
cessing. The later is not a typical interaction a user would expect. Integrated
provers cannot directly influence the display or interact with the users. Hence
only the broker component is directly integrated from a presentation inte-
gration point of view.

2. low data integration — editors and services communicate mainly by sending
parts of the source text to the prover as result of the user changing regions of
text. This data never gets changed by services and hence no synchronization
or consistency checking is needed.

3. medium control integration — the broker uses different protocols to talk with
displays and provers. Additionally, it has the role of orchestrating interaction
between them.

The effort of Aspinall et al. [ALW06] further extends PG architecture to integrate
rendering processors (e.g. LATEX) and possibly other tools (e.g. code generators).
These newly integrated components are loosely integrated by running them on
a (hidden from the user) updated version of the original document. The broker-
prover integration becomes tighter due to the documentation and script backflow
mechanisms. Differences to the current framework are:

1. from the presentation integration perspective it extends the PG framework
by two (or more) additional views of the document. These views are pre-
sented and updated in separate windows and provide the user with more
focused views on the authored content. These new views do not seem to
provide additional interactions to the user. In conclusion, the presentation
integration is tighter compared to PG but still relatively low.

2. data integration becomes tighter between the broker and prover components
as a result of the backflow mechanisms but is still relatively low. The ad-
ditional complexity due to the backflow is mostly in the broker component

100 C. Jucovschi

which needs to know where in the central document to integrate data coming
from the prover. Data passed arround still never gets modified and hence no
advanced synchronization or consistency checking is needed.

3. control integration is similar to the PG framework.

The integration of provers and editors is done quite differently in PIDE [Wen10].
Instead of fixing a protocol encapsulating all the features a prover can provide
(like PGIP does), a document model is specified and the protocol to interact
with that document model is fixed. This has the advantage that editors need
to know much less about the provers features, and only need to provide them
with changes the user made to the document. Conceptually this is very similar
to the approach taken in the current work. The difference is that in the case of
PIDE, the document model is shared only between two entities (the editor and
the prover) and that these entities share the same running environment. The
current architecture allows several authoring services to listen and change the
shared document and allows them to be distributed.

3 Editor Service Integration Architecture

Creating and maintaining integrations between software programs is generally
an expensive task. However, there are some well known best practices for these
tasks which have been proven to help a lot in reducing both creation as well as
maintenance costs. A good example is the integration between database systems
and hundreds of languages and frameworks. Some of the key aspects that make
such integrations possible are:

P1. Client-server architecture allows clients and servers to be developed and
executed on arbitrarily different environments.

P2. Stable communication protocol on the server side reduces maintenance
costs and makes documentation more stable and complete.

P3. Declarative API is usually more stable as it requires definition of a small
set of primitives and some way to compose them.

The goal of the current architecture is to integrate m services into n editors.
Direct integration between editors and services (Figure 1a) would require n ·m
integrations to be implemented. To reduce this number, I propose to create an in-
dependent Real-Time Document Synchronization and Service Broker (ReDSyS)
component, as shown in Figure 1, which complies with the practices P1-P3,
and which integrates with each service and editor exactly once in a client-server
manner (ReDSyS being the server). In this way we only need n+m integrations.
The ReDSyS server API is expected to be stable (requirement P2) hence any
upgrades of editors/services may require adjustments in the integration only on
the editor/service part.

Section 3.1 describes in more detail the ReDSyS component and how it in-
tegrates with editors and services. Section 3.2 presents the shared document
model and shows how editing changes are represented. In section 3.3, I discuss
management of change issues that can appear when integrating time consuming

Cost-Effective Integration of MKM Semantic Services 101

services as well as make explicit some requirements for reactive services. Section
3.4 presents the interaction model between users, editors and services.

The ReDSyS Architecture

�������	

�������

���

��������

�������	

�������

���

��������

�������	

�������

���

��������

�������	

�������

���

��������

�����

n ·m integrations vs n+m integrations

Fig. 1. Direct integrations between editors and environments vs indirect integration
through ReDSyS component

3.1 The Real-Time Document Synchronization and Service Broker

The ReDSyS component has two main responsibilities:

1. provide a way for editors to trigger events to all or some subset of services,
2. allow editors and services to independently add/remove meta-data or text

to the shared document in real-time.

The first responsibility is typical for broker components. In our case, it makes it
possible for editors to request autocompletion suggestions (from all services) or
request the type of a symbol (from e.g. Twelf services for LF documents [Pfe91]).

The second responsibility enables services to run independently, distributed on
different systems and parallel to the editing process. So while the user is typing,
a service might decide to start processing and integrate the results back into the
document when finished. Whenever a user changes the document, services get
notified by the ReDSyS component and each service has the freedom to decide
whether to interrupt current processing (if available) or not. Thanks to real-time
document editing solutions, it is quite often possible to automatically merge
service results computed on older versions of the document into the current
version.

To understand the interaction between editors, services and ReDSyS better,
let me describe how STEX[Koh04] editing in Eclipse[Ecl] can be integrated with a
term spotting and an autocompletion service. You can follow the communication
between components in Figure 2.

The first step is to install the “STEX-padconnector” plugin into Eclipse which,
upon opening an STEX file, uploads it to the ReDSyS component and opens
it in a typical Eclipse editing window. The opened document is, in fact, the
shared document. The ReDSyS architecture takes care of starting the semantic
services.

102 C. Jucovschi

���������������������������������	�
��

���������	
	�����������
���������	
	�����������

����	�������	
	����������� ����	�������	
	�����������

����
��������
����
��������
����
��������

����
���������

����
���������

����
���������
����������

����
����������

����
���������������
�����������

Fig. 2. Communication diagram among architecture components after an autocomplete
requests followed by term spotting

The “STEX-padconnector” plugin is programmed so that, when the user presses
ctrl+space, it synchronously notifies (i.e. waits for the result) the ReDSyS ar-
chitecture that an event with a predefined URI “autocomplete.stex” took place
and passes the current cursor coordinates as parameters. The autocomplete ser-
vice catches the event and based on the parameters decides on autocompletion
suggestions. The editor receives autocomplete suggestions from ReDSyS and
displays them.

Whenever the user changes the document, a changeset (or diff) is computed
and sent to ReDSyS. This passes on the changeset to all the other services
so that they have an up-to-date version of the document. Let us suppose that
the Term Spotter service decides to start a relatively complex NLP processing
task for of the new version (e.g. version 40) of the document. While processing,
some other changeset comes to the Term Spotter service but it decides not to
cancel the NLP task. The shared document has now version 41 but the NLP
task has computed a changeset (Δ′′) which highlights new found terms based
on document version 40. The Term Spotter service sends change Δ′′ to ReDSyS
also including information about the document version on which the changeset
is based on (i.e. 40). The ReDSyS component tries to merge the changes and if
it succeeds, sends a merged changeset to all the other components.

3.2 Document Model and Changesets

In this section I introduce the shared document model as it is important to
understand what kind of information is shared among services and how. This
document model is the same as that of the Etherpad-lite system [Eth].

We define a finite alphabet A = {α1, α2, ..., αm}. A string sA = c1c2...cn is a
finite sequence of characters from alphabet A and length len(sA) = n is defined

Cost-Effective Integration of MKM Semantic Services 103

as the number of characters in that sequence. Let StrA be the set of strings over
alphabet A. For the sake of simplicity we will omit alphabet A in notations when
it can be unambiguously inferred from the context.

An attribute pool AP = {(id, (key, val)) ∈ N× (Str × Str) | id - is unique}
is a set of key-value pairs which also have a unique id assigned to each of them.
This defines a function attmap : N → (Str × Str) returning the key-value pair
associated to a certain id.

A document d = (text, attmap, att) where text ∈ Str represents the text in
that document, attmap ∈ N → (Str × Str) is the function associated to an
attribute pool and att : N → Set(N) with att(i) = S, ‖S‖ < ∞ specifies which
set of attributes are assigned to character i, 0 ≤ i < len(t) in document’s text.

A change operation d = (op, S, len, t) ∈ {+,−,=} × Set(N)× N× Str either

1. inserts (op=”+”) text t of length len and applies attributes in S to each of
the inserted characters, or

2. deletes (op=”-”) len characters (and their attributes) from a text (t = ””
and S = ∅), or

3. leaves unchanged (op=”=”) len characters but applies attributes in S (if
S
= ∅) to each of them.

Editing changes inside a document are represented using lists of change oper-
ations o = {op1op2...opk} where opj are change operations such that no two
consecutive operations have the same type and attribute sets (otherwise we can
join them together).

A changeset is defined as c = (l, l′, attmap, o), where l is the length of the
text before the change, l′ is the length of the text after the change, attmap
contains the updated attribute pool (only new elements allowed) and a sequence
of change operations to be applied on the text.

To provide a better intuition for these notions, consider the document

d =

⎛⎝”Math is great”,

⎧⎨
⎩

0→ (”bold”, ”true”)
1→ (”author”, ”p1”)
2→ (”author”, ”p2”)

⎫⎬⎭ ,

⎧⎨
⎩

0 ≤ i ≤ 4, {1}
5 ≤ i < 7, {0, 2}
7 ≤ i ≤ 12, {2}

⎫⎬⎭
⎞⎠ (1)

which says that word “Math” was authored by “p1”, the rest of the text by “p2”
and the word “is” is bold. Now consider a changeset

c =

⎛⎜⎜⎝13, 12,

⎧⎪⎪⎨⎪⎪⎩
0→ (”bold”, ”true”)
1→ (”author”, ”p1”)
2→ (”author”, ”p2”)
3→ (”author”, ””)

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
(” = ”, {3}, 1, ””),
(”− ”, ∅, 3, ””),
(” + ”, ∅, 2, ”KM”),
(” = ”, ∅, 9, ””),

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ (2)

which when applied to d, would change the text to “MKM is great”, the word
“MKM” would have no author and the rest remains unchanged.

104 C. Jucovschi

3.3 Time Consuming vs. Reactive Services

The ReDSyS architecture can support both time consuming services (e.g. NLP
tasks) that should not hinder the user from further editing of the document, as
well as services that need to give user the impression that the service is running
natively inside the editor (e.g. syntax highlighting).

As described in the communication workflow in the previous section, time
consuming services can start processing at any given point in time (e.g. version
40) and integrate their results automatically (e.g. at version 50) by creating and
sending a changeset (call it X) based on the version when processing started
(i.e. 40). The ReDSyS component has some merging strategies to integrate such
changes but they will fail if the changes done in between i.e. from version 41-50
overlap with areas in changeset X.

This default behavior can be improved in a number of ways. First, a time
consuming service is still notified of changes done to the document even while it
is processing. Hence, it can interrupt the processing or restart it if the document
was changed in the area currently under processing. In this way, computing
power to finish the processing (and then realize that it cannot be integrated) is
not lost. The second solution is to try to incorporate incoming changes while or
at the end of processing and ultimately create a changeset based on the latest
version of the document. Hence a time consuming service is responsible for it’s
own management of change.

To give users the feeling that reactive services run natively in the editor,
they need to be very optimized both in speed and in the size of the changesets
they produce. These services might need to run at a rate of 20 times a second
in order to accommodate several users editing in the same time. Hence it is
very important that reactive services can cache results and start processing a
document without reading all of it. Also the changesets that reactive services
produce should be small and only change areas of the document that really need
changing. For example, a bad syntax highlighting service that creates a changeset
recoloring the whole document (and not only the parts the need recoloring) could
invalidate the processing of all the time consuming services.

3.4 User Interaction Model

In the current framework, services and editors no longer integrate directly but
they still need to interact, e.g. services might need to ask the user to disambiguate
a mathematical term. Such interactions must be standardized so that all editors
ask services to perform a certain action (e.g. autocomplete) in the same way.

Every type of interaction between users, editors and services has a predefined
URI. An example of such URIs is “autocomplete.stex” which, when broadcasted
by the ReDSyS component to the services, expects them to return STEX based
autocompletion suggestions and then displayed to the user. Another example
is “contextmenu.spotter plugin.10”. This URI can be used inside an attribute
(“ui”,”contextmenu.spotter plugin.10”) which, just like the (“bold”,”true”) at-
tribute, can be applied to some part of the text in the shared document model
presented in section 3.2.

Cost-Effective Integration of MKM Semantic Services 105

When the editor sees attributes having key “ui” and value prefixed with “con-
textmenu.”, it knows to display a context menu when the text having this at-
tribute is right-clicked. The menu items in the context menu are fetched from
the “spotter plugin” component (i.e. the Term Spotter) and “10” is passed as
an argument to identify which context menu should be displayed.

It is the editor that is responsible to understand interaction URIs and act
accordingly. That is why it is important to define interactions in a general and
reusable manner so that many services can take advantage of it. Currently, the set
of predefined interaction URIs is relatively small and fits the use cases presented
in the implementation section. However, it certainly needs to be revised and
extended to fit a more general range of interactions.

4 Architecture Implementation

To validate the presented architecture and to prove its applicability to a wide
range of semantic services and editors, I chose to integrate four STEX semantic
services into two editors. The semantic services were picked to address different
integration issues and are described in more detail in Section 4.1. Section 4.2
gives a glimpse into the APIs that need to be used in order to create a service.
Finally, section 4.3 discusses extensibility and reuse issues of the architecture.

The editors I used to validate the architecture are: Eclipse (desktop based edi-
tor) and Etherpad’s Web Client (web-based editor). To support the Eclipse based
editor I implemented my own synchronization library with the ReDSyS compo-
nent called jeasysync2. The real-time document sharing platform (ReDSyS) used
in my implementation is an extension of the Etherpad-lite system and can be
found at https://github.com/jucovschi/etherpad-lite/tree/mkm.

4.1 Implemented Semantic Services

My architecture can be seen as an enabler for user-editor-service type of inter-
actions and hence this is the part which needs most testing. Let us consider
the service of semantic syntax highlighting. The user-editor-service interaction
consists in the service being able to change the color of text. Testing a more
complex service, requiring coloring parts of text does not make sense because
the additional service complexity is independent of the presented architecture.
Hence I chose services testing different aspects of user-editor-service interaction,
namely:

STEX Semantic Syntax Highlighter colors STEX code based on its semantic
meaning. This is a service which cannot be implemented using regular ex-
pressions — the main tool for syntax highlighting in many editors. Hence I
implemented it as a service and integrated it in editors via ReDSyS. Even
though it only needs to highlight text, it has to do that more often then most
other services hence it helps benchmarking the user-editor-service interaction
speed.

https://github.com/jucovschi/etherpad-lite/tree/mkm

106 C. Jucovschi

Term Spotter is a NLP based service which tries to spot mathematical terms
inside a document. The interaction with the user is very similar to that
of spell checking, namely, spotted mathematical terms are underlined while
the user is typing. The user can then choose to add semantic references
to spotted terms. This is an example of a service with heavier server side
part and helps us test how service results are automatically integrated (if
possible) into newer document versions.

TermRef Hider and Transclusion services are examples of advanced editing
features, one hiding parts of annotations from the user and other showing
referenced text instead of references. As both services showcase very impor-
tant results of using proposed architecture I address them in more detail in
the next section.

Support for Advanced Editing Features
Inline annotated documents are very hard to author because they contain addi-
tional implicit knowledge that 1. is redundant to the author as she already knows
it and 2. hinders a clear reading experience. Stand-off or parallel annotations
solve these problems but they require the use of special editing environments ev-
ery time a small update needs to be performed. Failing to do so may invalidate
existing annotations. Generally MKM systems only support inline annotations
on documents that are editable by users.

In Figures 3 and 4 compare a mathematical document to its semantically
annotated version. The difference between the readability of these documents is
quite obvious even though all we did was to annotate three terms (using \termref
macros) and do four transclusions (using \STRlabel and \STRcopy macros).

To make the text in figure 4 look as readable as the one in 3, we need to
support 2 features, namely: inline folding and transclusion. Using inline folding,
one could collapse a whole \termref to show only the text in its second argument.
The transclusion feature would then replace \STRcopy references with the text
in the \STRlabel.

The inline folding or transclusion features are not supported by most editing
environments used to author MKM formats like STEX, Mizar[UB06] or LF[Pfe91].
Adding these features directly in each of the authoring environments requires
a lot of initial development effort and incurs high maintenance costs when the
editor evolves.

4.2 Libraries and APIs

Currently one can create new services for my architecture using either JavaScript
or Java programming languages. JavaScript services are implemented in Etherpad-
lite’s native plugin system. Java services should use the jeasysync2 library. In
both cases services must implement the following interface:

void init(Changeset initialText, AttributePool pool);
2 void update(Changeset lastChangeset, AttributePool newPool, ChangesetAcceptor csAcceptor);

Cost-Effective Integration of MKM Semantic Services 107

1The gravitational potential energy of a system of masses $m 1$ and $M 2$
at a distance r using gravitational constant G is

3\begin{equation}
U = −G\frac{m 1M 2}{r}+K

5\end{equation}
where K is the constant of integration . Choosing the convention that $K=0$

7makes calculations simpler, albeit at the cost of making U negative.

Fig. 3. Conventional mathematical document

1The \termref{cd=physics−energy, name=grav−potential}{gravitational potential energy}
of a system of masses \STRlabel[m1]{$m 1$} \STRcopy{m1} and \STRlabel[m2]{$M 2$}

3\STRcopy{m2} at a distance \STRlabel[r]{r} \STRcopy{r} using
\termref{cd=physics−constants, name=grav−constant}{gravitational constant}

5\STRlabel[G]{G} \STRcopy{G} is \STRlabel[U]{U} \STRcopy{U}
\begin{equation}

7 \STRcopy{U} = −\STRcopy{G}\frac{\STRcopy{m1}\STRcopy{m2}}{\STRcopy{r}}+
\STRcopy{K}

9\end{equation}
where \STRcopy{K} is the \termref{cd=physics−constants, name=integration}{constant

11of integration}. Choosing the convention that \STRcopy{K}$=0$ makes calculations
simpler, albeit at the cost of making \STRcopy{U} negative.

Fig. 4. Semantically annotated mathematical document

The init method is called when initializing the service. The first parameter is
the changeset which, if applied to an empty text, generates the current document
(note that attributes are included as well).

The update method notifies the service of new updates. This is where the
service should decide whether to start/restart processing. The update function
is called asynchronously in separate threads so special care should be taken not
to run into race conditions. The ChangesetAcceptor callback allows the service
to send changesets back to the ReDSyS component when processing is finished.

Creating changesets is easily done through a utility class called Changeset-
Builder with the methods:

void keep(int noChars, AttributeList attribs);
2 void insert(String text, AttributeList attribs);

void remove(int noChars);

This class allows services to specify changes they want to perform in a sequen-
tial way e.g. keep the first 10 characters untouched, remove the next 5, insert
text “Hello World” and apply attribute [“bold”,”true”] to it, keep the next 2
characters unchanged but apply attribute [“bold”,””] to them etc. The Change-
setBuilder class will produce a correctly encoded changeset which can be then
transmitted to ReDSyS.

The last best practice I would like to share is a simple and efficient algorithm
of converting a list of changes of type “apply attribute [keyi, valuei] from char-
acter begini to character endi” to a sequential list of changes suitable for the
ChangesetBuilder. I used this algorithm (with minor changes) for all 4 services,
hence might be of interest for future service developers.

108 C. Jucovschi

– we create a list of “event” triples having signature (type, i, attr) where type
is either “add” - to add attribute “attr” to the list of attributes applied to all
following characters, or “remove” to remove attr from the list of attributes.
Index i specifies at which position in the sequence a certain event should
take place.

– for each rule of type “apply attribute [keyi, valuei] from character begini to
character endi” add event triples (“add”, begini, [keyi, valuei]) and (“re-
move”, endi + 1, [keyi, valuei])

– sort the event list by the i values
– initialize an empty list of attributes called currentAttrs and set lastPos = 0
– iterate through the sorted event list and let (type, i, attr) be the current

event

• if i > lastPos, add sequential operation keep(i− lastPos, currentAttrs)
and set lastPos = i.

• if type=”add”, add attr to currentAttrs
• if type=”remove”, remove attr from currentAttrs

This algorithm can be generalized to handle events which delete or insert text
as well.

4.3 Evaluation of Integration Costs

The aim of the presented architecture is to minimize integration costs and hence
in this section I want to evaluate what we gain by using it.

Costs for Integrating Custom Editors / Services
Both editors and services need to implement the following functionality

RE1. Connect to the ReDSyS component,
RE2. Implement document model and changeset synchronization mechanisms.

Both RE1 and RE2 can be reused from other already integrated editors/services.
If no such implementations exist for a certain programming language, my own
experience shows that one needs to invest about one day for implementing RE1
and about two weeks for RE2. Implementing RE2 requires mostly code porting
skills (for about 2k lines of code) i.e. good understanding of particularities of
programming languages but does not require deep understanding of the algo-
rithms themselves. Additionally, unit tests help a lot finding and fixing bugs.
Currently, RE1 and RE2 are available for Java and JavaScript languages using
jeasysync2 1 and easysync2 2 libraries.

Editors need to additionally implement styling and user interaction mech-
anisms based on attributes in the shared document model. Depending on the
editing environment, this might take several more days.

1 https://github.com/jucovschi/jeasysync2
2 https://github.com/Pita/etherpad-lite/static/js/Changeset.js

https://github.com/jucovschi/jeasysync2
https://github.com/Pita/etherpad-lite/static/js/Changeset.js

Cost-Effective Integration of MKM Semantic Services 109

Integration of services requires implementation of the interaction of the service
with the shared document and with the user. To integrate each service described
in section 4, I needed 50-100 lines of code.

Requirements for Integrating a Custom Interaction
To add new user interactions, one has to choose a unique URI to identify the
interaction and then use this URI from an editor (to trigger events) or from ser-
vices by using it inside an attribute. The biggest cost associated with adding/ex-
tending the set of interactions is that of propagating it to all already integrated
editors. Versioning and change management of interaction URIs is an open issue.

5 Conclusion and Future Work

The extent to which editing environments could support the authoring process
of MKM documents is far from being reached. There are lots useful authoring
services which, if integrated in editing environments, would make authoring of
MKM documents easier to learn, more efficient and less error-prone.

Many MKM editing services are available only in certain editing environments
but even more services live solely in the wish-lists of MKM authors. An important
reason for it is that creating and maintaining such integrations is very expensive.
This paper suggests that integration of editors with MKM authoring services can
be done in an efficient way. Namely, a service showing the type of LF symbols
needs to be integrated with the ReDSyS component once and then be used in
a ever-growing list of editors like Eclipse, jEdit or even web-editors. Conversely,
once an editor (e.g. TEXmacs) integrates with the ReDSyS component, it would
be able to provide the user with all the services already integrated with the
ReDSyS component.

The implementation part of this paper allowed me to test my ideas and I
found out that integrating a service into all already integrated editors can take
as little as 3-4 hours of work. In case that no communication and synchronization
libraries are available for a certain language, one can implement them in about
2-3 weeks,

While the focus of the current paper is to reduce the costs for integrating m
services into n editors, the suggested solution also:

1. makes is possible for services which need longer processing times to run in
the background without interrupting the user’s authoring experience,

2. allows services to be implemented in any convenient programming language
or framework and even be distributed on different hardware, and

3. extends the typical plain-text document model with attributes which pro-
vide a very convenient storage for layers of semantic information inferred by
services.

Future research directions include development and integration of new MKM
services into editors, extending the list of programming languages which can
connect to the ReDSyS component, and integrating additional editors into the
proposed architecture.

110 C. Jucovschi

References

[ALW06] Aspinall, D., Lüth, C., Wolff, B.: Assisted Proof Document Authoring.
In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 65–80.
Springer, Heidelberg (2006),
http://www.springerlink.com/index/fq4068582k604115.pdf ,
doi:10.1007/11618027 5

[ALW07] Aspinall, D., Lüth, C., Winterstein, D.: A Framework for Interactive Proof.
In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/Cal-
culemus 2007. LNCS (LNAI), vol. 4573, pp. 161–175. Springer, Heidelberg
(2007)

[Ecl] Eclipse: An open development platform (December 2011),
http://www.eclipse.org/

[Eth] Etherpad lite: real time collaborative editor (February 2012), web page
at https://github.com/Pita/etherpad-lite/raw/master/doc/easysync/

easysync-notes.pdf

[Koh04] Kohlhase, M.: Semantic Markup for TEX/LATEX. In: Libbrecht, P. (ed.)
Mathematical User Interfaces (2004),
http://www.activemath.org/~paul/MathUI04

[Pfe91] Pfenning, F.: Logic Programming in the LF Logical Framework. In: Huet,
G.P., Plotkin, G.D. (eds.) Logical Frameworks. Cambridge University Press
(1991)

[TN92] Thomas, I., Nejmeh, B.A.: Definitions of tool integration for en-
vironments. IEEE Software 9(2), 29–35 (1992) ISSN: 07407459,
http://doi.ieeecomputersociety.org/10.1109/52.120599,
doi:10.1109/52.120599

[UB06] Urban, J., Bancerek, G.: Presenting and Explaining Mizar. In: Autexier, S.,
Benzmüller, C. (eds.) Proceedings of the International Workshop User In-
terfaces for Theorem Provers (UITP 2006), Seattle, USA, pp. 97–108 (2006)

[Was90] Wasserman, A.L.: Tool integration in software engineering environments.
Development 1(6), 137–149 (1990) ISSN: 02686961,
http://www.springerlink.com/content/p582q2n825k87nl5,
doi:10.1007/3-540-53452-0 38

[Wen10] Wenzel, M.: Asynchronous Proof Processing with Isabelle/ Scala and Is-
abelle/jEdit. In: Sacerdoti Coen, C., Aspinall, D. (eds.) FLOC 2010 Satellite
Workshop User Interfaces for Theorem Provers (UITP 2010). ENTCS, Else-
vier (2010),
http://www.lri.fr/~wenzel/papers/async-isabelle-scala.pdf

[Wic04] Wicks, M.: Tool Integration in Software Engineering: The State of the Art
in 2004. Integration The VLSI Journal, 1–26 (August 2004),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1969

http://www.springerlink.com/index/fq4068582k604115.pdf
http://www.eclipse.org/
https://github.com/Pita/etherpad-lite/raw/master/doc/easysync/easysync-notes.pdf
https://github.com/Pita/etherpad-lite/raw/master/doc/easysync/easysync-notes.pdf
http://www.activemath.org/~paul/MathUI04
http://doi.ieeecomputersociety.org/10.1109/52.120599
http://www.springerlink.com/content/p582q2n825k87nl5
http://www.lri.fr/~wenzel/papers/async-isabelle-scala.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1969

Understanding the Learners’ Actions
when Using Mathematics Learning Tools

Paul Libbrecht1, Sandra Rebholz2, Daniel Herding3,
Wolfgang Müller2, and Felix Tscheulin2

1 Institute for Mathematics and Informatics, Karlsruhe University of Education
2 Media Education and Visualization Group, Weingarten University of Education

3 Computer-Supported Learning Research Group, RWTH Aachen University
Germany

Abstract. The use of computer-based mathematics tools is widespread
in learning. Depending on the way that these tools assess the learner’s so-
lution paths, one can distinguish between automatic assessment tools and
semi-automatic assessment tools. Automatic assessment tools directly
provide all feedback necessary to the learners, while semi-automatic as-
sessment tools involve the teachers as part the assessment process. They
are provided with as much information as possible on the learners’ inter-
actions with the tool.

How can the teachers know how the learning tools were used and which
intermediate steps led to a solution? How can the teachers respond to
a learner’s question that arises while using a computer tool? Little is
available to answer this beyond interacting directly with the computer
and performing a few manipulations to understand the tools’ state.

This paper presents SMALA, a web-based logging architecture that
addresses these problems by recording, analyzing and representing user
actions. While respecting the learner’s privacy, the SMALA architecture
supports the teachers by offering fine-grained representations of the lear-
ners’ activities as well as overviews of the progress of a classroom.

1 Learners’ Actions and the Perception of Teachers

Interactive learning tools offer rich possibili-
ties to students when learning mathematics.
On the one hand, they offer unprecedented
possibilities to explore dynamic representa-
tions of the mathematical concepts: they
allow students to discover the domain’s ob-
jects and the rules that hold between them
as much or as little as they want. Examples of such learning tools include func-
tion plotters and dynamic geometry systems. Another example is pictured on
the right: the tool Squiggle-M [Fes10] is used to explore relations between finite
sets in order to learn about functions, injectivity, and surjectivity.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 111–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

112 P. Libbrecht et al.

On the other hand, in-
teractive tools for learning
mathematics support the
automated corrections of a
broad range of typical ex-
ercises which allow lear-
ners to train and obtain
the routine that stabilizes
their mastery of the con-
cepts. Trainers of this sort

include the domain-reasoner powered exercises of ActiveMath [Gog09] and many
of the cognitive tutors [KAHM97]. Another example is pictured on the left, that
of ComIn-M [RZ11]: it allows the learners to apply the classical workflow of proof
by induction to proofs about number-theoretical formulæ.

Whenever computer tools are used in learning scenarios, the teacher plays a
central role: he1 explains the concepts by using representations and operations
that the learner can also find in the learning tools. He invites the learners to
use the learning tool: For example, he can indicate that a few exercises of the
assignment sheet are to be done using the learning tools which they can find in
the learning management systems. These usage incentives are not able to ensure
the quality of the usage that enhances what the learners have acquired. Indeed,
all sorts of risks appear when learning tools are used:
– An overwhelming cognitive load when introducing the learning tools (caused

by the amount of technical details, for example).
– Too steep a learning curve to use the tool (when the students need to con-

cretely apply the mathematical knowledge).
– Choice of exercises that lead to frustration due to unachieved exercises (for

mathematical, technical, or other reasons).
These risks are challenges to teachers – the issue is underlined as insufficiently
addressed in the report [AI11]: The recurrent difficulties [...] call into question
both the design of resources and the processes of their dissemination.

To assess these risks, teachers must understand the students’ usage of the
learning tools. But providing detailed logs of the students’ actions is not sufficient
since the details may be overwhelming. The vast amount of data that could be
produced by logging usually prevents the teachers using such a source to deduce
any useful information about the students’ learning processes.

User Requirements. Approaches and tools are required that allow the efficient
analysis and understanding of such log data. Learning analytics is the domain
investigating methods and tools to support this.2

1 In this paper, we shall use the feminine for the learner and the masculine for the
teachers even though we mean both genders for both roles.

2 Learning analytics is defined by G. Siemens as “the use of intelligent
data, learner-produced data, and analysis models to discover informa-
tion and social connections, and to predict and advise on learning.” in
http://www.elearnspace.org/blog/2010/08/25/what-are-learning-analytics.

http://www.elearnspace.org/blog/2010/08/25/what-are-learning- analytics

Understanding the Learners’ Actions 113

Teachers should be able to capture the overall progression of the learners
in a class; being informed on the successes and failures for each exercise and
each skilled acquisition aimed at. This has the potential to guide the lecture’s
content for such adjustments as revising a conceptual error commonly found
or demonstrating a manipulation in more detail with the same concepts and
representations of the learning tools.

In addition, we consider it important that the teachers complement the auto-
matic assessment capabilities of the learning tools, making it a semi-automatic
assessment [BHK+11]. Teachers should be able to see the detailed inputs a
learner has made and the precise automatic feedback she received when re-
quested to help. In the case of requesting help while using the learning tools,
the learners should be able to formulate a request for help linked to the list of
events that occurred until they needed assistance so that the teacher can analyze
what the learner did and suggest effectively what actions to take next (in both
computer-technical and mathematical terms).

In order to realize these objectives, teachers need a logging infrastructure
which is the focus of this contribution.

Technical Requirements. The purpose of this research aims at serving teachers
in universities to support the use of richly interactive learning tools, typically
of client-based applet-like tools which have not been designed with action log-
ging in mind. We aim to insert an architecture for logging into the widespread
infrastructure of learning management systems (LMS): those university-central
systems that are used for coordination of courses and which each student reg-
ularly visits. We aim our development to not require an LMS change; indeed
we have often met such a desire to be impossible to satisfy in university wide
learning management systems.

Thus, one of the basic technical challenges is that of enabling teachers, who
are privileged users of the LMS, to provide their learners with methods to start
the learning tools from the LMS so that identified logs are received.

Other technical challenges revolve around the display of relevant information
about the learning actions to the teachers in a way that is easily accessible and
navigable. The learning tools, the LMSs, and the log views should be web-based
and allow the servers to recognize the identity of learners and teachers.

At the Edge of Privacy. A major concern of learning analytics is the set of
regulations about the users’ privacy. Indeed, the usage of such a monitoring tool
may be turned into a powerful watching tool if not used carefully. Moreover, we
acknowledge that a part of the students we have met are bothered using a tool
where each of the attempted solution paths are always visible.

In comparison to log-views that irreversably show all steps of the problem
solving process, the classroom based usage where teachers and assistants can
come and see the current state of the learning tool generally allows the student
to cancel (and thus hide) erroneous steps that are irrelevant to a teacher question.

114 P. Libbrecht et al.

Thus, to support some free choice of disclosure of the students, we set forth
the following principles that respect Germany’s and EU’s laws on privacy:

– The log of a session is only associated to an identifiable person when that
individual expressly consents to being identified, i.e. when requesting help.

– The students always have the possibility to opt-out of the log collection.
– The information recorded is transparent to the learner.

These principles do not prevent all sessions of the same learner being grouped
together, as long as it remains impossible for a teacher to associate a person with
the log view of a session. As we shall describe below, this will be addressed by
presenting the learners’ pseudonym, a barely readable number derived from the
name. We acknowledge that teachers would still be able to track regularly by
remembering the pseudonym (or by many other means), but we explicitly warn
the teachers that such is the start of illicit monitoring.

These principles respect the privacy laws in a same manner as the widespread
Twitter or Facebook widgets in web-pages: they do not require a supplementary
privacy agreement by the students since the log information that is collected and
made available does not contain personal information.

Again similarly to these services, the privacy disclosure is agreed upon when
the learners explicitly decide to do so: in the case of such services, this implies
registrations, in the case of SMALA, it is when requesting help.

2 State of the Art in Logging User Actions

Logging users’ actions can be done in multiple ways; in this section we outline
existing approaches that are described in the current research literature. They
revolve around two axes: the methods to integrate learning tools in learning
management systems and the log-collection and log-view approaches.

2.1 Standards for Integrating Learning Tools

The widespread SCORM packaging standard3 allows makers of learning tools to
bundle a sequence of web pages that use an API for communication with the
LMS. A more recent derivative of SCORM is Common Cartridge, which extends
it with IMS Learning Tools Interoperability IMS-LTI4: this specification allows
the teacher of a module in an LMS to publish enriched forms of links which carry
the authentication.

Both SCORM and Common Cartridge provide basic infrastructures for the
web integration of learning tools. However, their logging capabilities in terms of
collecting and analysing usage data is very limited. Supported log views typically
show tables or counts inside the LMS. For a teacher to be able to evaluate the
progress of one learner, he needs to see a less abstract view, more resembling the
view the learner had when performing a learning activity.
3 The Shareable Content Object Reference Model standard emerged from ADLnet

about 10 y. ago. See http://www.adlnet.gov/Technologies/scorm/default.aspx.
4 The Learning Tools Interoperability specification is an emerging standard, see
http://www.imsglobal.org/toolsinteroperability2.cfm.

http://www.adlnet.gov/Technologies/scorm/default.aspx
http://www.imsglobal.org/toolsinteroperability2.cfm

Understanding the Learners’ Actions 115

Multiple other standards have been realized to provide single-sign-on infras-
tructures: [GRNR09] describes many of these infrastructures and conclude with
the proposal of yet another approach to authentication.

2.2 Research Around Log Collections

There are various approaches for collecting logs of user activities and making
them available via suitable views. In the following, we will characterize the log-
ging approaches by the level of detail of the collected data, the semantic content
that is available, and the analysis capabilities that are offered.

Jacareto: The most detailed approach for log collection is to record each of the
user’s actions and present these as a replay of the learning tool’s user inter-
face. This approach has been investigated in a software project called Jacareto
[SGZS05]: apart from input events such as mouse clicks in the learning applica-
tion tool-specific semantic events are stored in a recording file. Once the teacher
obtains the record file, he can analyze the solution process qualitatively – ei-
ther by looking at a hierarchical view of the events, or by replaying the events
and observing the learning application. However, quantitative analysis of a large
number of recordings is not supported, and remote logging is not yet available.

FORMID: The research project FORMID [GC06] aims at applying learning
scenarios and view logs based on these scenarios. Each scenario is implemented
as a script that specifies a sequence of learning activities to be followed by
learners. Additional monitoring facilities enable the teacher to observe learning
activities and provide support in real time. In this approach, the semantic content
of the logging data is quite rich, and sufficient analysis capabilities are offered
for assessing the learners’ progression but only within the given scenario.

LOCO-Analyst: The approach of LOCO-Analyst [JGB+08] intends to support
the teacher in analyzing learning processes in order to optimize and revise content
elements in online learning courses. For this reason, LOCO-Analyst focuses on
online learning activities such as text reading and obtaining scores when solving
multiple-choice exercises. Based on semantic web technologies, LOCO-Analyst
enhances logging data by semantic annotation and provides various analysis ser-
vices and graphical representations of the collected data. As opposed to Jacareto,
the level of detail of the logging data is quite low: it mostly considers high-level
events such as page views or successful exercise solutions.

Log Repositories: Learners’ activities logs are the basic input for the PSLC
DataShop5 and for a similar initiative in Kaleidoscope [MMS08]. These initiatives
are infrastructures for collecting logs of learning for their massive evaluations for
suchpurposes as data-mining to experimentallymeasure e-learning theories.These
logging repository initiatives are researcher-oriented: they bring together quanti-
ties of logs in order to formulate hypotheses about the learners’ actions. They are
not applicable for teachers, and often do not work on live streams of data.
5 For the PSLC DataShop see https://pslcdatashop.web.cmu.edu/.

https://pslcdatashop.web.cmu.edu/

116 P. Libbrecht et al.

2.3 Conclusions from Literature Review

From this review of the existing literature we conclude that no current standard
nor widespread learning management system offers sufficient support for the
deployment of logging-enabled learning tools run on the client or even for any
interaction-rich learning tools.

We also conclude that the approaches proposed by state-of-the-art research
initiatives provide interesting logging features but only few approaches are flex-
ible enough to log semantically-rich events in an adequate level of detail. Cus-
tomizable views that offer an efficient display of the logging data enhanced by
flexible analysis capabilities are still subject to ongoing research.

Figure 1 summarizes how the existing logging approaches can be assigned to
the dimensions amount of detail, semantic level, and analytics support. As shown
in the diagram, the SMALA architecture that we present in the following chapter
aims at high values in all three dimensions, with an intent to cover different
amounts of details, and thus represents a new category of logging system.

amount of details

analytics support

se
m

an
tic

 le
ve

l

LOCO-analyst

FORMID SMALA

Ja
ca

re
to

Fig. 1. The various logging systems along three dimensions

3 The SMALA Architecture

The contribution of our paper is an architecture for logging and analyzing lear-
ners’ activities and solution paths. SMALA, Sail-M’s Architecture for Learning
Analytics, responds to the requirements stated above and is realized as a service-
oriented web application. Figure 2 depicts the SMALA system architecture where
the sequence of components in the creation, deployment, initialization, usage, as-
sessment, logging, and log observation is numbered.

SMALA’s core component is the SMALA logging service that is responsible
for receiving events from the learning tools and storing them persistently in the
logging database. Authorized teachers can retrieve the recorded events from the
SMALA web server via suitable views and can analyze the learning activities
performed by individuals and groups of learners.

Understanding the Learners’ Actions 117

LMS

Course
activity 1

activity 2

SMALA

Learning-
Tool

Logging-
DB

logs
processing

logs
analysis

SMALA
log-views

 evaluate

choose
activity

create
course

login

learning
analytics

launch
learning-tool

3

4

events
7

6

1

2

8

5 start session

Automatic
Assessment

Teacher

Student

Fig. 2. The SMALA architecture. Gear wheels indicate actors and components with
analytical reasoning.

Being a generic logging infrastructure, SMALA offers various interfaces for
integrating concrete learning tools into the architecture. These interfaces are
related to the authentication, definition, and handling of tool-specific semantic
events. The following sections provide a detailed description of these interfaces
and their usage.

3.1 Software Components and Their Interactions

The SMALA server is a web server which, on the one hand, stores and displays
log event streams and, on the other hand, is able to deliver the learning tools to
the learners. In order to enable a learning tool to use the SMALA infrastructure,
the tool must be registered with one or more learning activities in the SMALA
environment. This means SMALA knows about the tool and the corresponding
activities via XML configuration files and is able to verify that it is allowed to
use the SMALA logging service by an application specific key and a whitelist of
allowed host URLs. In principle, every learning tool based on web technologies,
such as Java applets or AJAX web applications, can be deployed and make use
of SMALA’s logging facilities.

Typically, SMALA-enabled learning tools are made available to the learners
using an LMS (see Section 5) and thus, can be accessed as part of the lear-
ning materials available from the LMS course page. In order to use a learning
tool, course participants only have to log into the LMS using their usual LMS
user account and launch the tool. When starting up the tool, the LMS requests
the creation of a new SMALA session for the current LMS user. This session is
associated with all subsequent communication requests that occur between the
learning tool and the SMALA logging service. As soon as a valid SMALA ses-
sion is established, the learner can work with the tool in her local web browser.
While doing so, all relevant interactions are wrapped as semantic events and

118 P. Libbrecht et al.

sent to the logging service to store them in the database. Relevant interactions
include both the user actions, the assessment results, and the feedback provided
by the learning tools as a reaction to the users’ activities. Identifying the rele-
vant interactions is the responsibility of the learning tool designers and requires
pedagogical expertise and a thorough understanding of the tool’s application
domain. Based on the SMALA log objects knowledge structure as described in
the next section, the tool developers can model custom event objects as needed
and add logging functionality to their tools by simply sending these events to
the SMALA logging service.

The SMALA logging service is implemented as a Java servlet and accepts all
logging requests containing a valid SMALA session identifier and a serialized
event object. The obtained event object is deserialized by the SMALA logging
service and persisted to the SMALA logging database. Event objects have a
type and are associated with the current user session and learning activity, i.e.
a learning tool configured for a specific LMS course. All learning activities have to
be registered with SMALA using XML configuration files and can have so-called
trigger classes attached to them. If incoming events for these activities match
the event type specified by these trigger classes, the triggers are activated and
can handle the events appropriately. Currently, our semi-automatic assessment
tools make use of this functionality for handling manual feedback events. When
the SMALA logging service receives a manual feedback event object, it activates
the configured Send Mail trigger which sends an email to the designated teacher
or tutor, containing the learner’s question, her email address, and the associated
event data. So as to ensure the pseudonymity of the data, the email address is,
then, removed from the event.

Feeding events into the SMALA logging service is completely transparent to
the end users of the learning tools. The learners’ main focus is on using the
learning tools and getting direct feedback from the tool’s automatic assessment
component. Teachers, however, can make use of SMALA’s log views and op-
tional tool-specific summary views on the recorded data (see section 5). These
log views and summary views are presented using Java Server Pages (JSP) that
query and render the event data from the SMALA logging data base. By allow-
ing the deployment of tool-specific event renderer classes, not only general event
data such as the timestamp and a textual event description is displayed, but also
tool-specific event data such as rewritings, error messages or screenshots from the
tool’s user interface can be shown (see figure 3). In the same way, tool-specific
summary views and corresponding analyzer components for processing the se-
mantic event data can be plugged into the SMALA infrastructure and integrated
into the standard SMALA log views. The analysis done by these summary views
offer the teacher a usable view to support his analysis and decision making.

SMALA offers a flexible authorization mechanism to configure roles and access
rules per activity: an LMS provenance and a signature enables an authorized user
source; tutors (that can view log and deployment instructions) are authorized by
obtaining identity from external identity providers such as Google and Facebook.

Understanding the Learners’ Actions 119

3.2 Log Objects Knowledge Structure

Log-event objects form the basic information entity that describes the users’ ac-
tions. The semantic-event-based data sets are grouped by activity and by session
and form the starting point of the analytical process.

An activity is SMALA’s concept for a learning tool that is offered from within
a given course. It is configured with an authorization realm for teachers (a few
external accounts) and for students (an integration method into an LMS). Each
activity contains sessions which are a stream of log-events for a user.

Log-event objects have been designed with extensibility in mind since their
semantics are very tool specific. The basic types include question events, image
events, and action events. Common attributes of these basic types include the
session-identifier, the timestamp, as well as the exercise name. Based on the
exercise name the teacher can identify different parts of the learning activity.
Tool makers can refine their types for each of the learning tools, extending the
basic types described above. The events can thus include the user’s input (such
as the OpenMath representations in the case of ComIn-M), the exercise state
(such as the formula of the function being plotted in Squiggle-M), or even a URL
to reconstruct the exercise state.

The serialization of the events transmitted to the server uses a generic XML
format that is able to contain the tool specific logging information in form of key-
value pairs, strings, numbers, dates and binary blobs, making the learning tools
able to build their custom log event streams out of these datatypes. The events
sent from the client are decoded on the server where they are validated and stored
in the database using the Java Persistence Architecture.6 This form of storage,
close to the Java objects nature, allow sophisticated queries to be formulated
so that log-views are carefully engineered to be relevant to the analysis of the
students’ activities for each learning tool.

3.3 Availability

SMALA is publicly available from http://sail-m.de/sail-m/SMALA_en. Its
source code (under the Apache Public License), technical documentation, and a
link to the production and development servers with some demonstration parts
are also linked there.

4 Making the Learning Tools Available

SMALA relies on a continuous identification of the users of the learning tools.
The natural way to do so is to integrate the learnings tools in the LMS within
the course page where students find their learning materials.

Each activity is established by the SMALA team: it is made by configurations
of the roles, deployment explanations, and authorizations. A teacher then simply
6 The Java Persistence Architecture is an abstract API for object-relational mappings,

see http://jcp.org/aboutJava/communityprocess/final/jsr317/.

http://sail-m.de/sail-m/SMALA_en
http://jcp.org/aboutJava/communityprocess/final/jsr317/

120 P. Libbrecht et al.

adds a link to the learning tool to his course page using code fragments suggested
on the deployment explanations. As a result, the learning tools can be started
one or two clicks away from the main course page in the LMS, and thereby allow
teachers to easily promote the tool during the lectures or on assignment sheets.

5 Types of Log Views and Their Usage

Access to the logs starts with a dashboard view giving an overview of the recent
activity with the learning tools. From there, one can get a list of users and a list
of recent sessions. The users are not presented by name, but by their pseudonym,
which we expect to be a number impossible to remember by teachers; each of
them links to the list of sessions of that user, then to the detailed session-view.
From the dashboard, one can also access overview pages giving a global analysis
of the class performance.

5.1 Session Views

Fig. 3. The log view of a ComInM session

Sessions are displayed as
a chronological sequence
of user interactions in all
detail. Each of the in-
teractions’ types are dis-
played with a custom
representation.

This enables the ses-
sion log view to dis-
play, for example, each
input the learner has
made, and each fragment
of feedback she has re-
ceived. The purpose of
this session view is to
document the steps that were performed by the learner in the problem solv-
ing process and make it reproducible for the teacher.

This works well with learning tools that are made of dialogs where the learner
submits an input and receives feedback. An example is shown in the figure above:
it shows a logging session using the learning tool ComIn-M where each of the
induction proof constituents are presented. Such detailed log views enable lec-
turers to reproduce all actions a learner has made during the problem solving
process. However, this approach works less well for learning tools oriented to-
wards direct manipulations such as Squiggle-M: log views then become long lists
of small actions whose textual rendering is hard to read; e.g. created point P1 in
domain 1, created point P5 in domain 2, ..., linked P1 to P5).

Understanding the Learners’ Actions 121

5.2 Requests for Help
Smala notification

Activity: de.ph-ludwigsburg.MZimmermann.Modul1_2011.SetSails.

Exercise: Schnitt mit einer Mengendifferenz

See log till there.

This email has been sent you from Smala on http://sail-m.de/smala/ on Sat Jan 14
09:07:13 GMT+01:00 2012.

Hallo Herr Zimmermann,
ich habe ziemliche Probleme beim Lösen solcher Aufgaben. Ich komme immer bis
zu einem gewissen Punkt. Komme dann aber absolut nicht weiter.
Können Sie mir evtl einen Tipp geben?
Gruß
XXXX XXXX

Fig. 4. An actual tutor request email when using
SetSails [HS11] received during the evaluation

A special type of interaction
realizes the semi-automatic as-
sessment approach [BHK+11]:
that of a request to the tu-
tor formulated from within the
learning tool. This interaction
submits a special event to the
SMALA server, containing the
request of the student and a
snapshot representing the cur-
rent state of the tool (e.g.
a screen copy). As soon as
the SMALA server receives this
event, the request is forwarded
to the responsible teacher by
email along with a URL to ac-
cess the session until the mo-
ment of submitting the request.

These tutor request e-mails
allow the teachers to grasp what
the learner did (e.g. observing

that a function has been repeatedly used wrongly) therefore being able to guide
her accordingly. The semi-automatic feedback paradigm of [BHK+11] can be ap-
plied fully, enabling teachers to help students use the tool effectively and provide
hints that go beyond the automated guidance of the learning tools. An example
tutor request email is shown in figure 4.

5.3 Summary Views
Bearbeitete ComIn-M-Aufgaben:

Anzahl an bearbeiteten Aufgaben: 105

davon richtig gelöst: 97

davon falsch gelöst: 8

Aufgabe Gesamtanzahl richtig falsch Lösung Prüfen Tipps Tutoranfragen

induction1 33 21 12 177 31 3

induction10 5 4 1 21 3 0

induction2 21 16 5 99 24 1

induction3 7 12 5 39 3 1

induction4 6 11 5 46 3 0

induction5 10 14 4 75 14 2

induction6 5 7 2 25 4 0

induction7 6 3 3 23 0 1

induction8 8 0 8 58 10 1

induction9 4 9 5 25 1 0

Fig. 5. A table of progress of the learners

The two log views of the previ-
ous sections support teachers to
help individuals or get an idea of
sample solution paths, but they
are much less useful when trying
to obtain a broader overview of a
whole class’s advances in the us-
age of the learning tools.

The most basic summary view
is a list of all events of a given
type. These allow teachers to
find interesting sessions or detect
a lack of achievement. Another
summary is provided by a dash-
board with a timeline graph of the
usage activity.

122 P. Libbrecht et al.

Another summary view is the display of the success or failures in the usages
of the learning tools for each of the exercises that make up a learning tool. An
example in figure 5 shows a high involvement in attempting the first few exer-
cises but clear difficulties for the remaining exercises as well as lack of attempts.
The teacher could, from such a display, analyze and conclude a lack of under-
standing of the concepts, lack of engagement, or technical challenges; each of
these hypothetical diagnoses could be answered by an in-class demonstration of
success in one of the advanced exercises.

6 Evaluation of Learning Tools Using SMALA-Logging

This research has been made in parallel to several evaluations in which both
the learning tools’ qualities and the logging approach based on SMALA were
evaluated.

An early evaluation was run in the summer of 2011 in order to get first feed-
back from the students and teachers at Karlsruhe University of Education: about
forty students brought their laptops in two successive lectures and launched the
MoveIt-M learning tool [Fes10] for exploring plane isometries and their composi-
tion. This first evaluation showed that obtaining a reasonable network bandwidth
for launching the tool (20 MB download) may represent a challenge to other envi-
ronments. Missing bandwidth may stimulate students to find workarounds such
as choosing offline versions of the learning tools. Nonetheless, this first phase
showed that transmitting logs is technically easy.

Summative evaluations were run in the winter term of 2011-2012. In the basic
mathematics courses of math teachers education three learning tools were de-
ployed and used: Squiggle-M, SetSails [HS11], and ComIn-M. The logs witness
the usage of the learning tools by 156 users having run 965 sessions yielding
24655 events. The logs have been complemented by a questionnaire filled out on
paper and teacher interviews.

The evaluations have also shown that the transparent integration in which
the learning tool is started by the learning management system and the logs are
collected under pseudonym works fairly well and is acceptable to the students’
privacy requirements. Indeed, only a small portion (less than 2 %) insisted on
having no log collection. Teachers that collaborated with us found it acceptable
to expand the privacy circle when deploying such learning tools by enabling the
learning management system’s pages run by learners’ browsers to transmit the
user-information to the SMALA server. They made this decision because they
acknowledged the usefulness and clarity of SMALA’s mission.

6.1 Feature Usage Statistics

The central aspect of our evaluation was to measure the relevance of the semi-
automatic assessment paradigm. The usage of direct tutor requests from within
the learning tools has been low (only 11 requests). Asked why they did not use
the tutor request feature, many students responded that the automatic feedback

Understanding the Learners’ Actions 123

had been sufficient (26%). Most stated that they preferred asking peers (36%)
or tutors (26%) directly (thus waiting till they had the chance to ask a question
personnally), while a few responded that no help was necessary (11%), or that
formulating the question turned to be hard (15%).

Although only few help requests were formulated (such as the one in figure 4),
the requests that were actually submitted to the teachers could be answered:
the detailed log views of the sessions have been sufficiently complete for them
to answer questions with a precise hint that set the students on the right path.
For this central workflow, the evaluation showed a successful setup.

A teacher who had seen the logs of ComIn-M commended the screenshots
of the users’ input. In fact, the logs do not contain screenshots, but MathML
representations of the user’s input. This comment shows that a faithful graphi-
cal display of the entire mathematical formulas is important to understand the
students’ solutions.

The usage of the logging feature for each of the teachers has been almost
limited to responding to individual requests. When interviewed at the end of the
project, almost all teachers said they would consider using SMALA logging views
more intensively if richer summary views were offered. Indeed, we focused on the
log views to support individual requests, expecting overviews to be obtained by
sampling a few sessions. As a result such summary views as the table in figure 5
were implemented late in the development cycle. Our interviews also indicated
that the separation of statistics by exercise seems to be an important basis of
most log views.

Analyzing the web-server logs (1813 page views) showed that the students
made use of the myLog links displayed aside of each tool launch. This feature
is offered to support the transparency requirement. It allows each student to
review her activities in the same format in which a teacher would see it.

6.2 Technical Challenges

The development of SMALA towards its sustained usage in day-to-day class-
rooms has been iterative, based on the feedback of the teachers and the students.
It has faced the following technical challenges:

Genericity. The SMALA server was designed to serve both web-applications
and rich-client applications and it succeeded in doing so. Both ComIn-M (a web-
server that sent all its logs to SMALA) and Java Applets (SquiggleM, MoveItM,
and SetSails) could start and send identified logs to the SMALA server. Although
the learning tools send log-events of different types through different connection
methods, the resulting log displays are delivered in a unified user interface.

Scalability. The choice of persistence layers such as the Java Persistence Archi-
tecture has been an important key to ensure the scalability to several thousands
of log entries. For some display methods, large amounts of events still have to be
inspected and it is still a matter of a few seconds (e.g. to display thousands of log
entries). However, SMALA has sometimes been at the edge of performance even

124 P. Libbrecht et al.

though it only handled a handful of courses. For example, listing long sessions
or listing all uploaded screenshots takes several minutes during which the data
is extracted from the database and converted for display. Summary views, in
particular, need to strictly enforce the rule that their results are fetched using
statistical queries to the database, which the tool developers enter using the
JPQL language instead of iterating through numerous events.

An aspect at which the persistence libraries have shown to be too fragile is
that of the evolution of the database schema of the log events. While creating an
SQL schema based on the Java properties is transparent and effective (including
support in IDEs to formulate queries), the persistence architecture offers almost
no support to subsequently upgrade the SQL schema.

A modification such as raising the maximum size of a property (hence the
size of an SQL column) needs either to be done manually in SQL or by an
externalisation followed by a rebuild of the database. We ran the rebuild process
at almost every deployment, the last taking about three hours. This process is,
however, risky, and only thorough testing revealed that some information was
lost in the process. The web nature of the log views, accessible by simple URLs
allowed an easy test infrastructure: a simple web-page described each piece of
information expected at each log-viewer URL. This allowed us to ensure that
there are no unintended effects of the new versions’ deployment.

7 Conclusion

In this paper we have described an approach to convey to practicing teachers
what their students have been doing with learning tools. The approach relies on
the usage of a software whose role is both to make available the learning tool
in the learning management system and to display log views representing the
learner’s activity. This approach turns the automatic feedback of the assessment
tools into more intelligent tools which can exploit the teacher’s knowledge. The
implemented toolset conveys broad enough information to watch the learners’
overall progress, and to respond to individual queries.

Below we present research questions that this approach opens.

7.1 Open Questions

The involvement of the teachers in the usage of the learning tools remains a
broad area of research which this paper contributes to. It is a subtle mix of
mathematical competency, technical skills, and pedagogical sense – all of which
are addressed by a teacher support tool. It is bound to the teachers’ representa-
tions of the mathematical knowledge that students have in mind, the meaning
they attach behind them and behind the operations with them.

The instrumental orchestration [DT08] is a model of the role of the teacher who
uses the instruments (the tools) to let himself and the students (the orchestra)
play the mathematical music. It mostly studies the usage of the learning tools
in class, while students often use learning tools in the comfort of their homes:

Understanding the Learners’ Actions 125

the learning tools are there, precisely, to let the learners deepen or discover at
their own pace, away from the tight rythm of the lectures.

The research of this paper contributes to letting the teacher perceive this
activity. In this paper we have proposed a few solutions relying on both detailed
and summary views. Does it imply a high level of diagnostics? The survey [ZS06]
indicates that higher level indicators such as the learners’ mastery level and
misconceptions are much desired. We note, however, that they would only be
useful if they can be trusted by teachers to be complete and precise; we are not
sure that this is easily achievable, and indeed the paper highlights this difficulty
in its conclusion. Sticking to more concrete events, such as typical feedback types
might be easier to implement, easier to represent to the teacher, directly linkable
to steps in session actions, and thus much more trustable.

We have introduced SMALA in relatively traditional didactical settings in
which the learning tools are mostly used for the purposes of exercising. This is an
important aspect but other didactical setups can leverage a logging architecture.

Among didactical setups is the exploitation of the own log feature beyond
the mere transparency requirement. Displaying the individual logs of a selected
learner, this feature can be used by the student as a personal log to be reminded
of the competencies she has already acquired, much similar to the learning-
log approach. What needs to be achieved to encourage and make possible such
practice? Should links be made from a personal diary into concrete sessions?

As another example of a different didactical setup, Erica Melis suggested to
display the logs of past uses of the learning tool overlaid on the behaviour graph of
the Cognitive Tutor Authoring Tools [AMSK09] and to use this in coordination
with the learning tools. This approach would constitute a discussion tool that
allows the teacher to explain the possible avenues to solve the exercise, changing
the state of the exercise and discussing what was correct or what was wrong. An
approach and architecture such as SMALA makes such a tool possible.

Acknowledgements. This research has been partly funded by the Ministry
of Education and Research of Germany in the SAiL-M project. We thank our
student assistants Torsten Kammer and Michael Binder for their active support.

References

AI11. Michèle Artigue and International Group of Experts on Science and Math-
ematics Education Policies. Les défis de l’enseignement des mathématiques
dans l’éducation de base. Number 191776 - UNESCO Archive, IBE Geneva
(2011)

AMSK09. Aleven, V., McLaren, B., Sewall, J., Koedinger, K.: A new paradigm for
intelligent tutoring systems: Example-tracing tutors. International Journal
of Artificial Intelligence in Education 20 (2009)

BHK+11. Bescherer, C., Herding, D., Kortenkamp, U., Müller, W., Zimmermann,
M.: E-learning tools with intelligent assessment and feedback. In: Graf,
S., Lin, F., Kinshuk, McGreal, R. (eds.) Intelligent and Adaptive Learning
Systems: Technology Enhanced Support for Learners and Teachers. IGI
Global, Addison Wesley (2011) (in press)

126 P. Libbrecht et al.

DT08. Drijvers, P., Trouche, L.: From artifacts to instruments: a theoretical
framework behind the orchestra metaphor. In: Heid, K., Blume, G. (eds.)
Research on Technology and the Teaching and Learning of Mathematics,
Information Age, Charlotte, NC, USA, pp. 363–392 (2008)

Fes10. Fest, A.: Creating interactive user feedback in DGS using scripting inter-
faces. Acta Didactica Napocensia 3(2) (2010)

GC06. Guéraud, V., Cagnat, J.-M.: Automatic Semantic Activity Monitoring
of Distance Learners Guided by Pedagogical Scenarios. In: Nejdl, W.,
Tochtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp. 476–481.
Springer, Heidelberg (2006)

Gog09. Goguadze, G.: Representation for Interactive Exercises. In: Carette, J.,
Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of
CICM 2009. LNCS, vol. 5625, pp. 294–309. Springer, Heidelberg (2009)

GRNR09. Fontenla González, J., Rodríguez, M., Nistal, M., Anido Rifón, L.: Reverse
oauth: A solution to achieve delegated authorizations in single sign-on e-
learning systems. Computers and Security 28(8), 843–856 (2009)

HS11. Herding, D., Schroeder, U.: Using capture & replay for semi-automatic
assessment. In: Whitelock, D., Warburton, W., Wills, G., Gilbert, L. (eds.)
CAA 2011 International Conference (2011)

JGB+08. Jovanovic, J., Gasevic, D., Brooks, C., Devedzic, V., Hatala, M., Eap,
T., Richards, G.: LOCO-Analyst: semantic web technologies in learning
content usage analysis. International Journal of Continuing Engineering
Education and Life Long Learning 18(1), 54–76 (2008)

KAHM97. Koedinger, K., Anderson, J., Hadley, W., Mark, M.: Intelligent tutoring
goes to school in the big city. IJAIED 8(1) (1997)

MMS08. Melis, E., McLaren, B., Solomon, S.: Towards Accessing Disparate Edu-
cational Data in a Single, Unified Manner. In: Dillenbourg, P., Specht, M.
(eds.) EC-TEL 2008. LNCS, vol. 5192, pp. 280–283. Springer, Heidelberg
(2008)

RZ11. Rebholz, S., Zimmermann, M.: Applying computer-aided intelligent as-
sessment in the context of mathematical induction. In: eLearning Baltics
2011. Fraunhofer Verlag, Stuttgart (2011)

SGZS05. Spannagel, C., Gläser-Zikuda, M., Schroeder, U.: Application of qualita-
tive content analysis in user-program interaction research. Forum Quali-
tative Sozialforschung / Forum: Qualitative Social Research 6(2) (2005)

ZS06. Zinn, C., Scheuer, O.: Getting to Know Your Student in Distance Learning
Contexts. In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL 2006. LNCS,
vol. 4227, pp. 437–451. Springer, Heidelberg (2006)

Towards Understanding Triangle Construction

ProblemsÆ

Vesna Marinković and Predrag Janičić

Faculty of Mathematics, University of Belgrade, Serbia

Abstract. Straightedge and compass construction problems are one of
the oldest and most challenging problems in elementary mathematics.
The central challenge, for a human or for a computer program, in solving
construction problems is a huge search space. In this paper we analyze
one family of triangle construction problems, aiming at detecting a small
core of the underlying geometry knowledge. The analysis leads to a small
set of needed definitions, lemmas and primitive construction steps, and
consequently, to a simple algorithm for automated solving of problems
from this family. The same approach can be applied to other families of
construction problems.

Keywords: Triangle construction problems, automated deduction in
geometry.

1 Introduction

Triangle construction problems (in Euclidean plane) are problems in which one
has to construct, using straightedge1 and compass,2 a triangle that meets given
(usually three) constraints [10, 24, 26]. The central problem, for a human or for
a computer program, in solving triangle construction problems is a huge search
space: primitive construction steps can be applied in a number of ways, exploding
further along the construction. Consider, as an illustration, the following simple
problem: given the points A, B, and G, construct a triangle ABC such that G
is its barycenter. One possible solution is: construct the midpoint Mc of the seg-
ment AB and then construct a point C such that�McG��McC � 1�3 (Figure 1).
The solution is very simple and intuitive. However, if one wants to describe a
systematic (e.g., automatic) way for reaching this solution, he/she should con-
sider a wide range of possibilities. For instance, after constructing the point Mc,

Æ This work was partially supported by the Serbian Ministry of Science grant 174021
and by Swiss National Science Foundation grant SCOPES IZ73Z0 127979/1.

1 The notion of “straightedge” is weaker than “ruler”, as ruler is assumed to have
markings which could be used to make measurements. Geometry constructions typ-
ically require use of straightedge and compass, not of ruler and compass.

2 By compass, we mean collapsible compass. In contrast to rigid compass, one cannot
use collapsible compass to “hold” the length while moving one point of the compass
to another point. One can only use it to hold the radius while one point of the
compass is fixed [3].

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 127–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

128 V. Marinković and P. Janičić

one might consider constructing midpoints of the segments AG, BG, or even
of the segments AMc, BMc, GMc, then midpoints of segments with endpoints
among these points, etc. Instead of the step that introduces the point C such
that�McG��McC � 1�3 one may (unnecessarily) consider introducing a point X

such that�AG��AX � 1�3 or �BG��BX � 1�3. Also, instead of the step that in-

troduces the point C such that�McG��McC � 1�3 one may consider introducing

a point X such that�McG��McX � k, where k � 1�3, etc. Therefore, this trivial
example shows that any systematic solving of construction problems can face
a huge search space even if only two high-level constructions steps that are re-
ally needed are considered. Additional problem in solving construction problems
makes the fact that some of them are unsolvable (which can be proved by an
algebraic argument), including, for instance, three antiquity geometric problems:
circle squaring, cube duplication, angle trisection [31]. Although the problem of
constructibility (using straightedge and compass) of a figure that can be speci-
fied by algebraic equations with coefficients in Q is decidable [14, 17, 23], there
are no simple and efficient, “one-button” implemented decision procedures so,
typically, proofs of insolvability of construction problems are made ad-hoc and
not derived by uniform algorithms.

A B

C

G

Mc

Fig. 1. Construction of a triangle ABC given its vertices A, B and the barycenter G

Construction problems have been studied, since ancient Greeks, for centuries
and represent a challenging area even for experienced mathematicians. Since
early twentieth century, “triangle geometry”, including triangle construction
problems, has not been considered a premier research field [8]. However, con-
struction problems kept their role on all levels of mathematical education, al-
most in the same form for more than two and a half millenia, which make them
probably the problems used most constantly throughout the history of mathe-
matical education. Since the late twentieth century, geometry constructions are
again a subject of research, but this time mainly meta-mathematical. There are
two main lines of this work:

– Research in Axiomatic Foundations of Geometry Constructions
and Foundational Issues. According to Pambuccian and his survey of
axiomatizing geometric constructions, surprisingly, it is only in 1968 that
geometric constructions became part of axiomatizations of geometry [28].
In constructive geometry axiomatizations, following ancient understanding,

Towards Understanding Triangle Construction Problems 129

axioms are quantifier-free and involve only operation symbols (reflecting con-
struction steps) and individual constants, in contrast to the Hilbert-style ap-
proach with relation symbols and where axioms are not universal statements.
One such axiomatic theory of constructive geometry — ECG (“Elementary
Constructive Geometry”) was recently proposed by Beeson [3]. Constructive
axiomatizations bring an alternative approach in geometry foundations, but
they do not bring a substantial advantage to the Hilbert style when it comes
to solving concrete construction problems.

– Research in Developing Algorithms for Solving Construction Prob-
lems. There are several approaches for automated solving of construction
problems [13, 15, 16, 29]. However, most, if not all of them, focus on search
procedures and do not focus on finding a small portion of geometry knowl-
edge (axioms and lemmas) that are underlying the constructions (although,
naturally, all approaches have strict lists of available primitive construction
steps). Earlier attempts at (manual) systematization of triangle construc-
tion problems also didn’t provide small and clear, possibly minimal in some
sense, lists of needed underlying geometry knowledge [11, 12, 24].

We find that it is important to locate, understand and systematize the knowledge
relevant for solving construction problems or their subclasses. That should be
useful for teachers, students and mathematical knowledge base generally. Also,
such understanding should lead to a system that automatically solves these kinds
of problems (and should be useful in education).

In this work we focus on one family of triangle construction problems and
try to derive an algorithm for automated solving of problems based on a small
portion of underlying geometry knowledge. Our analyses lead us to a small set of
definitions, lemmas and construction rules needed for solving most of the solvable
problems of this family. The same approach can be applied to other sorts of
triangle construction problems and, more generally, to other sorts of construction
problems. The approach, leading to a compact representation of the underlying
geometry knowledge, can be seen not only as an algorithm for automated solving
of triangle construction problems but also as a work in geometry knowledge
management, providing a compact representation for a large sets of construction
problems, currently not available in the literature.

2 Constructions by Straightedge and Compass

There are several closely related definitions of a notion of constructions by
straightedge and compass [3, 9, 31]. By a straightedge-and-compass construc-
tion we will mean a sequence of the following primitive (or elementary) steps:

– construct an arbitrary point (possibly distinct from some given points);
– construct (with ruler) the line passing through two given distinct points;
– construct (with compass) the circle centered at some point passing through

another point;
– construct an intersection (if it exists) of two circles, two lines, or a line and

a circle.

130 V. Marinković and P. Janičić

In describing geometrical constructions, both primitive and compound construc-
tions can be used. A straightedge-and-compass construction problem is a prob-
lem in which one has to provide a straightedge-and-compass construction such
that the constructed objects meet given conditions. A solution of a geometrical
construction problem traditionally includes the following four phases/components
[1, 10, 18, 24]:

Analysis: In analysis one typically starts from the assumption that a certain
geometrical object satisfies the specification Γ and proves that properties Λ
enabling the construction also hold.

Construction: In this phase, straightedge-and-compass construction based on
the analysis (i.e, on the properties Λ which are proved within it) has to be
provided.

Proof: It this phase, it has to be proved that the provided straightedge-and-
compass construction meets the given specification, i.e., the conditions Γ .

Discussion: In the discussion, it is considered how many possible solutions to
the problem there exist and under which conditions.

3 Wernick’s Problems

In 1982, Wernick presented a list of triangle construction problems [34]. In each
problem, a task is to construct a triangle from three located points selected from
the following set of 16 characteristic points:

– A, B, C, O: three vertices and circumcenter;
– Ma, Mb, Mc, G: the side midpoints and barycenter (centroid);
– Ha, Hb, Hc, H : three feet of altitudes and orthocenter;
– Ta, Tb, Tc, I: three feet of the internal angles bisectors, and incenter;

There are 560 triples of the above points, butWernick’s list consists only of 139 sig-
nificantly different non-trivial problems. The triple �A,B,C� is trivial and, for in-
stance, the problems �A,B,Ma�, �A,B,Mb�, �B,C,Mb�, �B,C,Mc�, �A,C,Ma�,
and �A,C,Mc� are considered to be symmetric (i.e., analogous). Some triples are
redundant (e.g., �A,B,Mc�— given points A and B, the pointMc is uniquely de-
termined, so it is redundant in �A,B,Mc�), but are still listed and marked R in
Wernick’s list. Some triples are constrained by specific conditions, for instance, in
�A,B,O� the point O has to belong to the perpendicular bisector of AB (and in
that case there are infinitely many solutions). In these problems, the locus restric-
tion gives either infinitely many or no solutions. These problems are marked L in
Wernick’s list. There are 113 problems that do not belong to the groups marked
R and L. Problems that can be solved by straightedge and ruler are marked S and
problems that cannot be solved by straightedge and ruler are marked U.

In the original list, the problem 102 was erroneously marked S instead of
L [27]. Wernick’s list left 41 problem unresolved/unclassified, but the update
from 1996 [27] left only 20 of them. In the meanwhile, the problems 90, 109,
110, 111 [30], and 138 [33] were proved to be unsolvable. Some of the problems

Towards Understanding Triangle Construction Problems 131

Table 1. Wernick’s problems and their current status

1. A, B, O L 36. A, Mb, Tc S 71. O, G, H R 106. Ma, Hb, Tc U [27]
2. A, B, Ma S 37. A, Mb, I S 72. O, G, Ta U [27] 107. Ma, Hb, I U [27]
3. A, B, Mc R 38. A, G, Ha L 73. O, G, I U [27] 108. Ma, H, Ta U [27]
4. A, B, G S 39. A, G, Hb S 74. O, Ha, Hb U [27] 109. Ma, H, Tb U [30]
5. A, B, Ha L 40. A, G, H S 75. O, Ha, H S 110. Ma, H, I U [30]
6. A, B, Hc L 41. A, G, Ta S 76. O, Ha, Ta S 111. Ma, Ta, Tb U [30]
7. A, B, H S 42. A, G, Tb U [27] 77. O, Ha, Tb 112. Ma, Ta, I S
8. A, B, Ta S 43. A, G, I S [27] 78. O, Ha, I 113. Ma, Tb, Tc

9. A, B, Tc L 44. A, Ha, Hb S 79. O, H, Ta U [27] 114. Ma, Tb, I U [27]
10. A, B, I S 45. A, Ha, H L 80. O, H, I U [27] 115. G, Ha, Hb U [27]
11. A, O, Ma S 46. A, Ha, Ta L 81. O, Ta, Tb 116. G, Ha, H S
12. A, O, Mb L 47. A, Ha, Tb S 82. O, Ta, I S [27] 117. G, Ha, Ta S
13. A, O, G S 48. A, Ha, I S 83. Ma, Mb, Mc S 118. G, Ha, Tb

14. A, O, Ha S 49. A, Hb, Hc S 84. Ma, Mb, G S 119. G, Ha, I
15. A, O, Hb S 50. A, Hb, H L 85. Ma, Mb, Ha S 120. G, H, Ta U [27]
16. A, O, H S 51. A, Hb, Ta S 86. Ma, Mb, Hc S 121. G, H, I U [27]
17. A, O, Ta S 52. A, Hb, Tb L 87. Ma, Mb, H S [27] 122. G, Ta, Tb

18. A, O, Tb S 53. A, Hb, Tc S 88. Ma, Mb, Ta U [27] 123. G, Ta, I
19. A, O, I S 54. A, Hb, I S 89. Ma, Mb, Tc U [27] 124. Ha, Hb, Hc S
20. A, Ma, Mb S 55. A, H, Ta S 90. Ma, Mb, I U [30] 125. Ha, Hb, H S
21. A, Ma, G R 56. A, H, Tb U [27] 91. Ma, G, Ha L 126. Ha, Hb, Ta S
22. A, Ma, Ha L 57. A, H, I S [27] 92. Ma, G, Hb S 127. Ha, Hb, Tc

23. A, Ma, Hb S 58. A, Ta, Tb S [27] 93. Ma, G, H S 128. Ha, Hb, I
24. A, Ma, H S 59. A, Ta, I L 94. Ma, G, Ta S 129. Ha, H, Ta L
25. A, Ma, Ta S 60. A, Tb, Tc S 95. Ma, G, Tb U [27] 130. Ha, H, Tb U [27]
26. A, Ma, Tb U [27] 61. A, Tb, I S 96. Ma, G, I S [27] 131. Ha, H, I S [27]
27. A, Ma, I S [27] 62. O, Ma, Mb S 97. Ma, Ha, Hb S 132. Ha, Ta, Tb

28. A, Mb, Mc S 63. O, Ma, G S 98. Ma, Ha, H L 133. Ha, Ta, I S
29. A, Mb, G S 64. O, Ma, Ha L 99. Ma, Ha, Ta L 134. Ha, Tb, Tc

30. A, Mb, Ha L 65. O, Ma, Hb S 100. Ma, Ha, Tb U [27] 135. Ha, Tb, I
31. A, Mb, Hb L 66. O, Ma, H S 101. Ma, Ha, I S 136. H, Ta, Tb

32. A, Mb, Hc L 67. O, Ma, Ta L 102. Ma, Hb, Hc L 137. H, Ta, I
33. A, Mb, H S 68. O, Ma, Tb U [27] 103. Ma, Hb, H S 138. Ta, Tb, Tc U [33]
34. A, Mb, Ta S 69. O, Ma, I S 104. Ma, Hb, Ta S 139. Ta, Tb, I S
35. A, Mb, Tb L 70. O, G, Ha S 105. Ma, Hb, Tb S

were additionally considered for simpler solutions, like the problem 43 [2, 7],
the problem 57 [35], or the problem 58 [6, 30]. Of course, many of the problems
from Wernick’s list were considered and solved along the centuries without the
context of this list. The current status (to the best of our knowledge) of the
problems from Wernick’s list is given in Table 1: there are 72 S problems, 16 U
problems, 3 R problems, and 23 L problems. Solutions for 59 solvable problems
can be found on the Internet [30].

An extended list, involving four additional points (Ea, Eb, Ec — three Euler
points, which are the midpoints between the vertices and the orthocenter and
N — the center of the nine-point circle) was presented and partly solved by
Connelly [5]. There are also other variations of Wernick’s list, for instance, the
list of problems to be solved given three out of the following 18 elements: sides
a, b, c; angles α, β, γ; altitudes ha, hb, hc; medians ma, mb, mc; angle bisectors
ta, tb, tc; circumradius R; inradius r; and semiperimeter s. There are 186 signif-
icantly different non-trivial problems, and it was reported that (using Wernick’s
notation) 3 belong to the R group, 128 belong to the S group, 27 belong to the
U group, while the status of the remaining ones was unknown [4]. In addition
to the above elements, radiuses of external incircles ra, rb, rc and the triangle

132 V. Marinković and P. Janičić

area S can be also considered, leading to the list of 22 elements and the total of
1540 triples. Lopes presented solutions to 371 non-symmetric problems of this
type [24] and Fursenko considered the list of (both solvable and unsolvable) 350
problems of this type [11, 12].

4 Underlying Geometry Knowledge

Consider again the problem from Section 1 (it is problem 4 from Wernick’s list).
One solution is as follows: construct the midpoint Mc of the segment AB and
then construct a point C such that�McG��McC � 1�3. Notice that this solution
implicitly or explicitly uses the following:

1. Mc is the side midpoint of AB (definition of Mc);
2. G is the barycenter of ABC (definition of G);

3. it holds that�McG��McC � 1�3 (lemma);
4. it is possible to construct the midpoint of a line segment;
5. given points X and Y , it is possible to construct a point Z, such that
�XY ��XZ � 1�3.

However, the nature of the above properties is typically not stressed within solu-
tions of construction problems and the distinctions are assumed. Of course, given
a proper proof that a construction meets the specification, this does not really
affect the quality of the construction, but influences the meta-level understand-
ing of the domain and solving techniques that it admits. Following our analyses
of Wernick’s list, we insist on a clear separation of concepts in the process of
solving construction problems: separation into definitions, lemmas (geometry
properties), and construction primitives. This separation will be also critical for
automating the solving process.

Our analyses of available solutions of Wernick’s problems3 led to the list of
67 high-level construction rules, many of which were based on complex geome-
try properties and complex compound constructions. We implemented a simple
forward chaining algorithms using these rules and it was able to solve each of
solvable problems within 1s. Hence, the search over this list of rules is not prob-
lematic — what is problematic is how to represent the underlying geometry
knowledge and derive this list. Hence, our next goal was to derive high-level
construction steps from the (small) set of definitions, lemmas and construction
primitives. For instance, from the following:

– it holds that�McG � 1�3�McC (lemma);
– given points X , Y and U , and a rational number r, it is possible to construct

a point Z such that: �XY ��UZ � r (construction primitive; Figure 2);

we should be able to derive:

– given Mc and G, it is possible to construct C.

3 In addition to 59 solutions available from the Internet [30], we solved 6 problems,
which leaves us with 7 solvable problems with no solutions.

Towards Understanding Triangle Construction Problems 133

X

T1

T2

T3

T4

T5

Y
T6 U

Z

Fig. 2. Illustration for the construction: given points X, Y and U , and a rational
number r, it is possible to construct a point Z such that: �XY ��UZ � r (for r � 5�3)

After a careful study, we came to a relatively small list of geometry properties
and primitive constructions needed. In the following, we list all definitions, geom-
etry properties, and primitive constructions needed for solving most of the prob-
lems from Wernick’s list that are currently known to be solvable. The following
notation will be used: XY denotes the line passing through the distinct points X
and Y ;XY denotes the segment with endpointsX and Y ;�XY denotes the vector
with endpoints X and Y ; k�X,Y � denotes the circle with center X that passes
through Y ; H�X,Y ;Z,U� denotes that the pair of points X , Y is harmonically

conjugate with the pair of points Z, U (i.e., �XU��UY � ��XZ��ZY); sp�X� de-
notes the image of X in line reflection with respect to a line p; homothetyX,r�Y �
denotes the image of Y in homothety with respect to a point X and a coeffi-
cient r.

4.1 Definitions

Before listing the definitions used, we stress that we find the standard definition
of the barycenter (the barycenter of a triangle is the intersection of the medians)
and the like — inadequate. Namely, this sort of definitions hides a non-trivial
property that all three medians (the lines joining each vertex with the midpoint
of the opposite side) do intersect in one point. Our, constructive version of the
definition of the barycenter says that the barycenter G of a triangle ABC is
the intersection of two medians AMa and BMb (it follows directly from Pasch’s
axiom that this intersection exists). Several of the definitions given below are
formulated in this spirit. Notice that, following this approach, in contrast to the
Wernick’s criterion, for instance, the problems �A,B,G� and �A,C,G� are not
symmetrical (but we do not revise Wernick’s list).

For a triangle ABC we denote by (along Wernick’s notation; Figure 3):

1. Ma, Mb, Mc (the side midpoints): points such that �BMa��BC � 1�2,
�CMb��CA � 1�2,�AMc��AB � 1�2;

2. O (circumcenter): the intersection of lines perpendicular at Ma and Mb on
BC and AC;

3. G (barycenter): the intersection of AMa and BMb;
4. Ha, Hb, Hc: intersections of the side perpendiculars with the opposite sides;
5. H (orthocenter): the intersection of AHa and BHb;
6. Ta, Tb, Tc: intersections of the internal angles bisectors with the opposite

sides;

134 V. Marinković and P. Janičić

7. I (incenter): the intersection of ATa and BTb;
8. T �

a, T
�
b, T

�
c: intersections of the external angles bisectors with the opposite

sides;
9. H �

BC , H
�
AC , H

�
AB: images of H in reflections over lines BC, AC and AB;

10. Pa, Pb, Pc: feet from I on BC, AC and AB;
11. Na, Nb, Nc: intersections of OMa and ATa, OMb and BTb, OMc and CTc.

A

B

C

Ma
Mb

Mc

O

G

Hc

Hb

Ha

Tc

Tb

Ta

I

T �

c

H �

AB

H �

BC
Pc

Pb

Pa

Na

Nb

Nc

Fig. 3. Points used in solutions to Wernick’s problems

4.2 Lemmas

For a triangle ABC it holds that (Figure 3):

1. O is on the line perpendicular at Mc on AB;
2. G is on CMc;
3. H is on CHc;
4. I is on CTc;
5. B and C are on k�O,A�;
6. Pb and Pc are on k�I, Pa�;

7. �AG��AMa � 2�3,�BG��BMb � 2�3,�CG��CMc � 2�3;

8. �MbMa��AB � 1�2,�McMb��BC � 1�2,�McMa��AC � 1�2;

9. �HG��HO � 2�3;

10. �MaO��HA � 1�2,�MbO��HB � 1�2,�McO��HC � 1�2;
11. AB, BC, CA touch k�I, Pa�;

Towards Understanding Triangle Construction Problems 135

12. Na, Nb, Nc are on k�O,A�;
13. H �

BC , H
�
AC , H

�
AB are on k�O,A);

14. C, Hb, Hc are on k�Ma, B�; A, Ha, Hc are on k�Mb, C�; B, Ha, Hb are on
k�Mc, A�;

15. B, I are on k�Na, C�; C, I are on k�Nb, A�; A, I are on k�Nc, B�;
16. AH,BH,CH are internal angles bisectors of the triangle HaHbHc;
17. H�B,C;Ta, T �

a�, H�A,C;Tb, T �
b�, H�A,B;Tc, T

�
c�;

18. A is on the circle with diameter TaT
�
a; B is on the circle with diameter TbT

�
b;

C is on the circle with diameter TcT
�
c;

19. �TcITb � �BAC�2�π�2; �TbITa � �ACB�2�π�2;�TaITc � �CBA�2�
π�2;

20. The center of a circle is on the side bisector of its arbitrary arc;
21. If the points X and Y are on a line p, so is their midpoint;
22. If �XY ��ZW � r then �Y X��WZ � r;

23. If �XY ��ZW � r then �ZW ��XY � 1�r;

24. If �XY ��ZW � r then �WZ��Y X � 1�r;

25. If �XY ��XW � r then �WY ��WX � 1� r;
26. If H�X,Y ;Z,W � then H�Y,X ;W,Z�;
27. If H�X,Y ;Z,W � then H�Z,W ;X,Y �;
28. If H�X,Y ;Z,W � then H�W,Z;Y,X�;

29. If �XY ��XZ � r, Z is on p, and Y is not on p, then X is on
homothetyY,r��1�r��p�.

All listed lemmas are relatively simple and are often taught in primary or sec-
ondary schools within first lectures on “triangle geometry”. They can be proved
using a Hilbert’s style geometry axioms or by algebraic theorem provers.

4.3 Primitive Constructions

We consider the following primitive construction steps:

1. Given distinct points X and Y it is possible to construct the line XY ;
2. Given distinct points X and Y it is possible to construct k�X,Y �;
3. Given two distinct lines/a line and a circle/two distinct circles that intersect

it is possible to construct their common point(s);
4. Given distinct points X and Y it is possible to construct the side bisector of
XY ;

5. Given a point X and a line p it is possible to construct the line q that passes
through X and is perpendicular to p;

6. Given distinct points X and Y it is possible to construct the circle with
diameter XY ;

7. Given three distinct points it is possible to construct the circle that contains
them all;

136 V. Marinković and P. Janičić

8. Given points X and Y and an angle α it is possible to construct the set of
(all) points S such that �XSY � α;

9. Given a point X and a line p it is possible to construct the point sp�X�;
10. Given a line p and point X that does not lie on p it is possible to construct

the circle k with center X that touches p;
11. Given a point X outside a circle k it is possible to construct the line p that

passes through X and touches k;
12. Given two half-lines with the common initial point, it is possible to construct

an angle congruent to the angle they constitute;
13. Given two intersecting lines it is possible to construct the bisector of internal

angle they constitute;
14. Given one side of an angle and its internal angle bisector it is possible to

construct the other side of the angle;
15. Given a point X , a line p and a rational number r, it is possible to construct

the line homothetyX,r�p�;
16. Given points X , Y , and Z, and a rational number r it is possible to construct

the point U such that �UX��Y Z � r.

All of the above construction steps can be (most of them trivially) expressed in
terms of straightedge and compass operations. Still, for practical reasons, we use
the above set instead of elementary straightedge and compass operations. These
practical reasons are both more efficient search and simpler, high-level and more
intuitive solutions.

5 Search Algorithm

Before the solving process, the preprocessing phase is performed on the above
list of definitions and lemmas. For a fixed triangle ABC all points defined in
Section 4.1 are uniquely determined (i.e., all definitions are instantiated). We
distinguish between two types of lemmas:

instantiated Lemmas: lemmas that describe properties of one or a couple of
fixed objects (lemmas 1-20).

generic Lemmas: lemmas given in an implication form (lemmas 21-29). These
lemmas are given in a generic form and they are instantiated in a preprocess-
ing phase by all objects satisfying their preconditions. So the instantiations
are restricted with respect to the facts appearing in the definitions or lem-
mas.

Primitive constructions are given in a generic, non-instantiated form and they get
instantiated while seeking for a construction sequence in the following manner:
if there is an instantiation such that all objects from the premises of the primi-
tive construction are already constructed (or given by a specification of the prob-
lem) then the instantiated object from the conclusion is constructed, if not already
constructed. However, only a restricted set of objects is constructed – the ob-
jects appearing in some of the definitions or lemmas. For example, let us consider

Towards Understanding Triangle Construction Problems 137

the primitive construction stating that for two given points it is possible to con-
struct the bisector of the segment they constitute. If there would be no restrictions,
the segment bisector would be constructed for each two constructed points, while
many of them would not be used anywhere further. In contrast, this rule would be
applied only to a segment for which its bisector occurs in some of the definitions or
lemmas (for instance, when the endpoints of the segment belong to a circle, so the
segment bisector gives a line to which the center of the circle belongs to). This can
reduce search time significantly, as well as a length of generated constructions.

The goal of the search procedure is to reach all points required by the input
problem (for instance, for all Wernick’s problems, the goal is the same: construct
a triangle ABC, i.e., the points A, B and C). The search procedure is iterative
– in each step it tries to apply a primitive construction to the known objects
(given by the problem specification or already constructed) and if it succeeds, the
search restarts from the first primitive construction, in the waterfall manner. If
all required points are constructed, the search stops. If no primitive construction
can be applied, the procedure stops with a failure. The efficiency of solving,
and also the found solution may depend on the order in which the primitive
constructions are listed.

We implemented the above procedure in Prolog.4 At this point the program
can solve 58 Wernick’s problems, each in less than 1s (for other solvable prob-
lems it needs some additional lemmas).5 Of course, even with the above restricted
search there are redundant construction steps performed during the search pro-
cess and once the construction is completed, all these unnecessary steps are
eliminated from the final, “clean” construction. The longest final construction
consists of 11 primitive construction steps. Most of these “clean” constructions
are the same as the ones that can be found in the literature. However, for prob-
lems with several different solutions, the one found by the system depends on
the order of available primitive constructions/definitions/lemmas (one such ex-
ample is given in Section 5.1). Along with the construction sequence, the set of
non-degeneracy conditions (conditions that ensure that the constructed objects
do exist, associated with some of construction primitives) is maintained.

5.1 Output

Once a required construction is found and simplified, it can be exported to
different formats. Currently, export to simple natural language form is supported.
For example, the construction for problem 7 �A,B,H� is represented as follows:

1. Using the point A and the point H , construct the line AHa;
2. Using the point B and the point H , construct the line BHb;
3. Using the point A and the line BHb, construct the line AC;
4. Using the point B and the line AHa, construct the line BC;
5. Using the line AC and the line BC, construct the point C.

4 The source code is available at http://argo.matf.bg.ac.rs/?content=downloads.
5 Currently, the program cannot solve the following solvable problems: 27, 43, 55, 57,
58, 69, 76, 82, 87, 96, 101, 126, 131, 139.

http://argo.matf.bg.ac.rs/?content=downloads

138 V. Marinković and P. Janičić

The generated construction can be (this is subject of our current work) also
represented and illustrated (Figure 4) using the geometry language GCLC [21].

% free points

point A 5 5

point B 45 5

point H 32 18

% synthesized construction

line h_a A H

line h_b B H

perp b A h_b

perp a B h_a

intersec C a b

% drawing the triangle ABC

cmark_b A

cmark_b B

cmark_r C

cmark_b H

drawsegment A B

drawsegment A C

drawsegment B C

drawdashline h_a

drawdashline h_b

A B

C

H

Fig. 4. A GCLC representation (left) and the corresponding illustration (right) for the
solution to Wernick’s problem 7

The above automatically generated solution is also example of a different (and
simpler) solution from the one that can be found on the Internet [30] and that
we used in building of our system (slightly reformulated in the way to use our
set of primitive constructions):

1. Using the point A and the point B, construct the line AB;
2. Using the point H and the line AB, construct the line CHc;
3. Using the line AB and the line CHc, construct the point Hc;
4. Using the point H and the line AB, construct the point H �

AB;
5. Using the point A, the point B and point H �

AB , construct the circle k�O,A�;
6. Using the circle k�O,A� and the line CHc, construct the point C.

5.2 Proving Constructions Correct

Generated constructions can be proved correct using provers available within the
GCLC tool (the tool provide support for three methods for automated theorem
proving in geometry: the area method, Wu’s method, and the Gröbner bases
method) [19, 20]. For instance, the construction given in Section 5.1 in GCLC
terms, can be verified using the following additional GCLC code (note that the
given coordinates of the points A, B and H are used only for generating an
illustration and are not used in the proving process):

Towards Understanding Triangle Construction Problems 139

% definition of the orthocenter

line _a B C

perp _h_a A _a

line _b A C

perp _h_b B _b

intersec _H _h_a _h_b

% verification

prove { identical H _H }

% alternatively

% prove { perpendicular A H B C }

% prove { perpendicular B H A C }

The conjecture that H is indeed the orthocenter of ABC was proved by Wu’s
method in 0.01s. Instead of proving that H is identical to the orthocenter, one
could prove that it meets all conditions from the definition of the orthocen-
ter (which can be more suitable, in terms of efficiency, for automated theorem
provers). For example, the area method proves such two conditions in 0.04s. It
also returns non-degeneracy conditions [22] (needed in the discussion phase):
A, B and H are not collinear, neither of the angles BAH , ABH is right angle
(additional conditions, such as the condition that the lines a and b from the
GCLC construction intersect, are consequences of these conditions). If A and B
are distinct, and A and H are identical, then any point C on the line passing
through A and perpendicular to AB makes a solution, and similar holds if B and
H are identical. Otherwise, if A, B, and H are pairwise distinct and collinear or
one of the angles BAH and ABH is right angle, there are no solutions.

5.3 Re-evaluation

The presented approach focuses on one sort of triangle construction problems,
but it can be used for other sorts of problems. We re-evaluated our approach on
another corpus of triangle construction problems (discussed in Section 3). In each
problem from this corpus, a task is to construct a triangle given three lengths
from the following set of 9 lengths of characteristic segments in the triangle:

1. 	AB	, 	BC	, 	AC	: lengths of the sides;
2. 	AMa	, 	BMb	, 	CMc	: lengths of the medians;
3. 	AHa	, 	BHb	, 	CHc	: lengths of the altitudes.

There are 20 significantly different problems in this corpus and they are all
solvable. This family of problems is substantially different from Wernick’s prob-
lems: in Wernick’s problems, the task is to construct a triangle based on the
given, located points, while in these problems, the task is to construct a trian-
gle with some quantities equal to the given ones (hence, the two solutions to
the problem are considered identical if the obtained triangles are congruent).
However, it turns out that the underlying geometry knowledge is mostly shared
[4, 5, 11, 12, 24]. We succeeded to solve 17 problems from this family, using the
system described above and additional 9 defined points, 2 lemmas, and 8 prim-
itive constructions. Extensions of the above list of primitive constructions was

140 V. Marinković and P. Janičić

expected because of introduction of segment measures. Since a search space was
expanded by adding this new portion of knowledge, search times increased (the
average solving time was 10s) and non-simplified constructions were typically
longer than for the first corpus. However, simplified constructions are compara-
ble in size with the ones from the first corpus and also readable.

6 Future Work

We plan to work on other corpora of triangle construction problems as well.6

In order to control the search space, the solving system should first detect the
family to which the problem belongs and use only the corresponding rules. Apart
from detecting needed high-level lemmas and rules, we will try to more deeply
explore these lemmas and rules and derive them from (suitable) axioms and from
elementary straightedge and compass construction steps.

The presented system synthesizes a construction and can use an external
automated theorem prover to prove that the construction meets the specification
(as described in Section 5; full automation of linking the solver with automated
theorem provers is subject of our current work). However, the provers prove
only statements of the form: “if the conditions Γ are met, then the specification
is met as well”. They cannot, in a general case, check if the construction, the
conditions Γ , are consistent (i.e., if the points that are constructed do exist). For
instance, some provers cannot check if an intersection of two circles always exist.
We are planning to use proof assistants and our automated theorem prover for
coherent logic [32] for proving that the constructed points indeed exist (under
generated non-degenerate conditions). With the verified theorem prover based on
the area method [22] or with (more efficient) algebraic theorem proving verified
by certificates [25], this would lead to completely machine verifiable solutions of
triangle construction problems.

7 Conclusions

In our work we set up rather concrete tasks: �i� detect geometry knowledge
needed for solving one of the most studied problems in mathematical education
— triangle construction problems; �ii� develop a practical system for solving
most of these problems. To our knowledge, this is the first systematic approach
to deal with one family of problems (more focused than general construction
problems) and to systemize underlying geometric knowledge. Our current re-
sults lead to a relatively small set of needed definitions, lemmas, and suitable
primitive constructions and to a simple solving procedure. Generated construc-
tions can be verified using external automated theorem provers. We believe that

6 In our preliminary experiments, our system solved all triangle construction problems
(5 out of 25) in the corpus considered by Gulwani et.al [16]; our system can currently
solve only a fraction of 135 problems considered by Gao and Chou [13], since most
of them are not triangle construction problems or involve the knowledge still not
supported by our system.

Towards Understanding Triangle Construction Problems 141

any practical solver would need to treat this detected geometry knowledge one
way or another (but trading off with efficiency). We expect that limited addi-
tions to the the geometry knowledge presented here would enable solving most
of triangle construction problems appearing in the literature.

Acknowledgments. We are grateful to prof. Pascal Schreck and to prof. Xiao-
Shan Gao for providing us lists of construction problems solved by their systems
and for useful feedback.

References

[1] Adler, A.: Theorie der geometrischen konstruktionen, Göschen (1906)

[2] Anglesio, J., Schindler, V.: Solution to problem 10719. American Mathematical
Monthly 107, 952–954 (2000)

[3] Beeson, M.: Constructive geometry. In: Proceedings of the Tenth Asian Logic
Colloquium. World Scientific (2010)

[4] Berzsenyi, G.: Constructing triangles from three given parts. Quantum 396
(July/August 1994)

[5] Connelly, H.: An extension of triangle constructions from located points. Forum
Geometricorum 9, 109–112 (2009)

[6] Connelly, H., Dergiades, N., Ehrmann, J.-P.: Construction of triangle from a vertex
and the feet of two angle bisectors. Forum Geometricorum 7, 103–106 (2007)

[7] Danneels, E.: A simple construction of a triangle from its centroid, incenter, and
a vertex. Forum Geometricorum 5, 53–56 (2005)

[8] Davis, P.J.: The rise, fall, and possible transfiguration of triangle geometry: A
mini-history. The American Mathematical Monthly 102(3), 204–214 (1995)

[9] DeTemple, D.W.: Carlyle circles and the lemoine simplicity of polygon construc-
tions. The American Mathematical Monthly 98(2), 97–108 (1991)

[10] Djorić, M., Janičić, P.: Constructions, instructions, interactions. Teaching Math-
ematics and its Applications 23(2), 69–88 (2004)

[11] Fursenko, V.B.: Lexicographic account of triangle construction problems (part i).
Mathematics in Schools 5, 4–30 (1937)

[12] Fursenko, V.B.: Lexicographic account of triangle construction problems (part ii).
Mathematics in schools 6, 21–45 (1937)

[13] Gao, X.-S., Chou, S.-C.: Solving geometric constraint systems. I. A global propa-
gation approach. Computer-Aided Design 30(1), 47–54 (1998)

[14] Gao, X.-S., Chou, S.-C.: Solving geometric constraint systems. II. A symbolic
approach and decision of Rc-constructibility. Computer-Aided Design 30(2), 115–
122 (1998)

[15] Grima, M., Pace, G.J.: An Embedded Geometrical Language in Haskell: Construc-
tion, Visualisation, Proof. In: Proceedings of Computer Science Annual Workshop
(2007)

[16] Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing geometry constructions.
In: Programming Language Design and Implementation, PLDI 2011, pp. 50–61.
ACM (2011)

[17] Chen, G.: Les Constructions Géométriques á la Régle et au Compas par une
Méthode Algébrique. Master thesis, University of Strasbourg (1992)

142 V. Marinković and P. Janičić

[18] Holland, G.: Computerunterstützung beim Lösen geometrischer Konstruktionsauf-
gaben. ZDM Zentralblatt für Didaktik der Mathematik 24(4) (1992)

[19] Janičić, P.: GCLC — A Tool for Constructive Euclidean Geometry and More
Than That. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151,
pp. 58–73. Springer, Heidelberg (2006)

[20] Janičić, P., Quaresma, P.: System Description: GCLCprover + GeoThms. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 145–150.
Springer, Heidelberg (2006)

[21] Janičić, P.: Geometry Constructions Language. Journal of Automated Reason-
ing 44(1-2), 3–24 (2010)

[22] Janičić, P., Narboux, J., Quaresma, P.: The area method: a recapitulation. Journal
of Automated Reasoning 48(4), 489–532 (2012)

[23] Lebesgue, H.-L.: Leçons sur les constructions géométriques. Gauthier-Villars
(1950)

[24] Lopes, L.: Manuel de Construction de Triangles. QED Texte (1996)
[25] Marić, F., Petrović, I., Petrović, D., Janičić, P.: Formalization and implementation

of algebraic methods in geometry. Electronic Proceedings in Theoretical Computer
Science 79 (2012)

[26] Martin, G.E.: Geometric Constructions. Springer (1998)
[27] Meyers, L.F.: Update on William Wernick’s “triangle constructions with three

located points”. Mathematics Magazine 69(1), 46–49 (1996)
[28] Pambuccian, V.: Axiomatizing geometric constructions. Journal of Applied

Logic 6(1), 24–46 (2008)
[29] Schreck, P.: Constructions à la règle et au compas. PhD thesis, University of

Strasbourg (1993)
[30] Specht, E.: Wernicks liste (in German),

http://hydra.nat.uni-magdeburg.de/wernick/

[31] Stewart, I.: Galois Theory. Chapman and Hall Ltd. (1973)
[32] Stojanović, S., Pavlović, V., Janičić, P.: A Coherent Logic Based Geometry The-

orem Prover Capable of Producing Formal and Readable Proofs. In: Schreck, P.,
Narboux, J., Richter-Gebert, J. (eds.) ADG 2010. LNCS, vol. 6877, pp. 201–220.
Springer, Heidelberg (2011)

[33] Ustinov, A.V.: On the construction of a triangle from the feet of its angle bisectors.
Forum Geometricorum 9, 279–280 (2009)

[34] Wernick, W.: Triangle constructions vith three located points. Mathematics Mag-
azine 55(4), 227–230 (1982)

[35] Yiu, P.: Elegant geometric constructions. Forum Geometricorum 5, 75–96 (2005)

http://hydra.nat.uni-magdeburg.de/wernick/

A Query Language

for Formal Mathematical Libraries

Florian Rabe

Jacobs University Bremen, Germany

Abstract. One of the most promising applications of mathematical
knowledge management is search: Even if we restrict attention to the
tiny fragment of mathematics that has been formalized, the amount ex-
ceeds the comprehension of an individual human.

Based on the generic representation language MMT, we introduce the
mathematical query language QMT: It combines simplicity, expressiv-
ity, and scalability while avoiding a commitment to a particular logical
formalism. QMT can integrate various search paradigms such as unifica-
tion, semantic web, or XQuery style queries, and QMT queries can span
different mathematical libraries.

We have implemented QMT as a part of the MMT API. This combi-
nation provides a scalable indexing and query engine that can be readily
applied to any library of mathematical knowledge. While our focus here
is on libraries that are available in a content markup language, QMT
naturally extends to presentation and narration markup languages.

1 Introduction and Related Work

Mathematical knowledge management applications are particularly strong at
large scales, where automation can be significantly superior to human intuition.
This makes search and retrieval pivotal MKM applications: The more the amount
of mathematical knowledge grows, the harder it becomes for users to find relevant
information. Indeed, even expert users of individual libraries can have difficulties
reusing an existing development because they are not aware of it. Therefore, this
question has received much attention.

Object query languages augment standard text search with phrase queries
that match mathematical operators and with wild cards that match arbitrary
mathematical expressions. Abstractly, an object query engine is based on an in-
dex, which is a set of pairs (l, o) where o is an object and l is the location of o. The
index is built from a collection of mathematical documents, and the result of an
object query is a subset of the index. The object model is usually based on pre-
sentation MathML and/or content MathML/OpenMath [W3C03,BCC+04], but
importers can be used to index other formats such as LaTeX. Examples for ob-
ject query languages and engines are given in [MY03,MM06,MG08,KŞ06,SL11].
A partial overview can be found in [SL11]. A central question is the use of wild
cards. An example language with complex wild cards is given in [AY08]. Most

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 143–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 F. Rabe

generally, [KŞ06] uses unification queries that return all objects that can be
unified with the query.

Property query languages are similar to object query languages except
that both the index and the query use relational information that abstracts
from the mathematical objects. For example, the relational index might store
the toplevel symbol of every object or the “used-in” relation between statements.
This approximates an object index, and many property queries are special cases
of object queries. But property queries are simpler and more efficient, and they
still cover many important examples. Such languages are given in [GC03,AS04]
and [BR03] based on the Coq and Mizar libraries, respectively.

Compositional query languages focus on a complex language of query
expressions that are evaluated compositionally. The atomic queries are provided
by the elements of the queried library. SQL [ANS03] uses n-ary relations be-
tween elements, and query expressions use the algebra of relations. The SPARQL
[W3C08] data model is RDF, and queries focus on unary and binary predicates
on a set of URIs of statements. This could serve as the basis for mathematics
on the semantic web. Both data models match bibliographical meta-data and
property-based indices and could also be applied to the results of object queries
(seen as sets of pairs); but they are not well-suited for expressions. The XQuery
[W3C07] data model is XML, and query expressions are centered around oper-
ations on lists of XML nodes. This is well-suited for XML-based markup lan-
guages for mathematical documents and expressions and was applied toOMDoc
[Koh06] in [ZK09]. In [KRZ10], the latter was combined with property queries.
Very recently [ADL12] gave a compositional query language for hiproof proof
trees that integrates concepts from both object and property queries.

A number of individual libraries of mathematics provide custom query
functionality. Object query languages are used, for example, in [LM06] for Ac-
tivemath or in Wolfram|Alpha. Most interactive proof assistants permit some
object or property queries, primarily to search for theorems that are applicable
to a certain goal, e.g., Isabelle, Coq, and Matita. [Urb06] is notable for using
automated reasoning to prepare an index of all Mizar theorems.

It is often desirable to combine several of the above formalisms in the same
query. Therefore, we have designed the query language QMT with the goal of
permitting as many different query paradigms as possible. QMT uses a simple
kernel syntax in which many advanced query paradigms can be defined. This per-
mits giving a formal syntax, a formal semantics, and a scalable implementation,
all of which are presented in this paper.

QMT is grounded in the Mmt language (Module System for Mathematical
Theories) [RK11], a scalable, modular representation language for mathematical
knowledge. It is designed as a scalable trade-off between (i) a logical framework
with formal syntax and semantics and (ii) an MKM framework that does not
commit to any particular formal system. Thus, Mmt permits both adequate
representations of virtually any formal system as well as the implementation of
generic MKM services. We implement QMT on top of our Mmt system, which
provides a flexible and scalable query API and query server.

A Query Language for Formal Mathematical Libraries 145

Declaration Intended Semantics

base type a a set of objects
concept symbol c a subset of a base type
relation symbol r a relation between two base types
function symbol f a sorted first-order function
predicate symbol p a sorted first-order predicate

Kind of Expression Intended Semantics

Type T a set
Query Q : T an element of T

element query Q : t an element of t
set query Q : set(t) a subset of t

Relation R < a, a′ a relation between a and a′

Proposition F a boolean truth value

Fig. 1. QMT Notions and their Intuitions

Our design has two pivotal strengths. Firstly, QMT can be applied to the
libraries of any formal system that is represented asMmt. Queries can even span
libraries of different systems. Secondly, QMT queries can make use of other Mmt
services. For example, queries can access the inferred type and the presentation
of a found expression, which are computed dynamically.

We split the definition of QMT into two parts. Firstly, Sect. 2 defines QMT
signatures in general and then the syntax and semantics of QMT for an arbitrary
signature. Secondly, Sect. 3 describes a specific QMT signature that we use
for Mmt libraries. Our implementation, which is based on that signature, is
presented in Sect. 4.

2 The QMT Query Language

2.1 Syntax

Our syntax arises by combining features of sorted first-order logic – which leads
to very intuitive expressions – and of description logics – which leads to efficient
evaluations. Therefore, our signatures Σ contain five kinds of declarations as
given in Fig. 1.

For a given signature, we define four kinds of expressions: types T , relations
R, propositions F , and typed queries Q as listed in Fig. 1. The grammar for
signatures and expressions is given in Fig. 2.

The intuitions for most expression formation operators can be guessed easily
from their notations. In the following we will discuss each in more detail.

Regarding types T , we use product types and power type. However, we go
out of our way to avoid arbitrary nestings of type constructors. Every type is
either a product t = a1 × . . . × an of base types ai or the power type set(t) of
such a type. Thus, we are able to use the two most important type formation
operators in the context of querying: product types arise when a query contains
multiple query variables, and power types arise when a query returns multiple

146 F. Rabe

Signatures Σ ::= · | Σ, a : type | Σ, c < a | Σ, r < a, a
| Σ, f : T, . . . , T → T | Σ, p : T, . . . , T → prop

Contexts Γ ::= · | Γ, x : T

Simple Types t ::= a× . . .× a
General Types T ::= t | set(t)
Relations R ::= r | R−1 | R∗ | R;R | R ∪R | R ∩R | R \ R
Propositions F ::= p(Q, . . . , Q) | ¬F | F ∧ F | ∀x ∈ Q.F (x)
Queries Q ::= c | x | f(Q, . . . , Q) | Q ∗ . . . ∗Q | Qi

| R(Q) | ⋃x∈Q Q(x) | {x ∈ Q|F (x)}

Fig. 2. The Grammar for Query Expressions

results. But at the same time, the type system remains very simple and can be
treated as essentially first-order.

Regarding relations, we provide the common operations from the calculus
of binary relations: dual/inverse R−1, transitive closure R∗, composition R;R′,
union R ∪ R′, intersection R ∩ R′, and difference R \ R′. Notably absent is the
absolute complement operationRC; it is omitted because its semantics can not be
computed efficiently in general. Note that the operation R−1 is only necessary
for atomic R: For all other cases, we can put (R∗)−1 = (R−1)∗, (R;R′)−1 =

R′−1
;R−1, and (R ∗R′)−1 = R−1 ∗R′−1

for ∗ ∈ {∪,∩, \}.
Regarding propositions, we use the usual constructors of classical first-order

logic: predicates, negation, conjunction, and universal quantification. As usual,
the other constructors are definable. However, there is one specialty: The quan-
tification ∀x ∈ Q.F (x) does not quantify over a type t; instead, it is relativized
by a query result Q : set(t). This specialty is meant to support efficient evalua-
tion: The extension of a base type is usually much larger than that of a query,
and it may not be efficiently computable or not even finite.

Regarding queries, our language combines intuitions from description and
first-order logic with an intuitive mathematical notation. Constants c, variables
x, and function application are as usual for sorted first-order logic. Q1 ∗ . . . ∗Qn
for n ∈ N and Qi for i = 1, . . . , n denote tupling and projection. R(Q) represents
the image of the object given by Q under the relation given by R.

⋃
x∈QQ

′(x)
denotes the union of the family of queries Q′(x) where x runs over all objects in
the result of Q. Finally, {x ∈ Q|F (x)} denotes comprehension on queries, i.e.,
the objects in Q that satisfy F . Just like for the universal quantification, all
bound variables are relativized to a query result to support efficient evaluation.

Remark 1. While we do not present a systematic analysis of the efficiency of
QMT, we point out that we designed the syntax of QMT with the goal of sup-
porting efficient evaluation. In particular, this motivated our distinction between
the ontology part, i.e., concept and relation symbols, and the first-order part,
i.e., the function and predicate symbols.

Indeed, every concept c < t can be regarded as a function symbol c : set(t),
and every relation r < a, a′ as a predicate symbol r : a, a′ → prop. Thus, the
ontology symbols may appear redundant — their purpose is to permit efficient
evaluations. This is most apparent for relations. For a predicate symbol p :

A Query Language for Formal Mathematical Libraries 147

n not declared in Σ

n 	∈ Σ
 ·

 Σ a 	∈ Σ

 Σ, a : type

 Σ c 	∈ Σ a : type in Σ

 Σ, c < a

 Σ r 	∈ Σ
(
ai : type in Σ

)2
i=1

 Σ, r < a1, a2

 Σ f 	∈ Σ
(
Σ Ti : type

)n+1

i=1

 Σ, f : T1, . . . , Tn → Tn+1

 Σ p 	∈ Σ
(
Σ Ti : type

)n
i=1

 Σ, p : T1, . . . , Tn → prop

Fig. 3. Well-Formed Signatures

a, a′ → prop, evaluation requires a method that maps from �a�×�a′� to booleans.
But for a relation symbol r < a, a′, evaluation requires a method that returns for
any u all v such that (u, v) ∈ �r� or all v such that (v, u) ∈ �r�. A corresponding
property applies to concepts.

Therefore, efficient implementations of QMT should maintain indices for them
that are computed a priori: hash sets for the concept symbols and hash tables for
the relation symbols. (Note that using hash tables for all relation symbols permits
fast evaluation of all relation expressions R, which is crucial for the evaluation
of queries R(Q).) The implementation of function and predicate symbols, on
the other hand, only requires plain functions that are called when evaluating a
query.

Thus, it is a design decision whether a certain feature is realized by an ontology
or by a first-order symbol. By separating the ontology and the first-order part,
we permit simple indices for the former and retain flexible extensibility for the
latter (see also Rem. 2).

Judgment Intuition
� Σ well-formed signature Σ
�Σ T : type well-formed type T
Γ �Σ Q : T well-typed query Q of type T
Γ �Σ Q : T well-typed query Q of type T
�Σ R < a, a′ well-typed relation R between a and a′

Γ �Σ F : prop well-formed proposition F

Fig. 5. Judgments

Based on these in-
tuitions, it is straight-
forward to define the
well-formed expres-
sions, i.e., the expres-
sions that will have
a denotational seman-
tics. More formally,
we use the judg-
ments given in Fig. 5
to define the well-formed expressions over a signature Σ and a context Γ . The
rules for these judgments are given in Fig. 3 and 4.

In order to give some meaningful examples, we will already make use of the
symbols from the MMT signature, which we will introduce in Sect. 3.

148 F. Rabe

(
ai : type in Σ

)n
i=1

Σ a1 × . . .× an : type

(
ai : type in Σ

)n
i=1

Σ set(a1 × . . .× an) : type

c < t in Σ

Γ
Σ c : set(t)

f : T1,Tn → T in Σ Γ
Σ Qi : Ti

Γ
Σ f(Q1, . . . , Qn) : T

x : T in Γ

Γ
Σ x : T

Γ
Σ Qi : ti for i = 1, . . . , n

Γ
Σ Q1 ∗ . . . ∗Qn : t1 × . . .× tn

Γ
Σ Q : t1 × . . .× tn i ∈ {1, . . . , n}
Γ
Σ Qi : ti

Γ
Σ Q : set(t) Γ, x : t
Σ Q′(x) : set(t′)

Γ
Σ

⋃
x∈Q

Q′(x) : set(t′)

Γ
Σ Q : t
Σ R < t, t′

Γ
Σ R(Q) : set(t′)

Γ
Σ Q : set(t) Γ, x : t
Σ F (x) : prop

Γ
Σ {x ∈ Q|F (x)} : set(t)

r < a, a′ in Σ

Σ r < a, a′

Σ R < a, a′

Σ R−1 < a′, a

Σ R < a, a

Σ R∗ < a, a

Σ R < a, a′
Σ R′ < a′, a′′

Σ R;R′ < a, a′′

Σ R < a, a′
Σ R′ < a, a′ ∗ ∈ {∪,∩, \}

Σ R ∗ R′ < a, a′

p : T1, . . . , Tn → prop in Σ Γ
Σ Qi : Ti

Γ
Σ p(Q1, . . . , Qn) : prop

Γ
Σ F : prop

Γ
Σ ¬F : prop

Γ
Σ F : prop Γ
Σ F ′ : prop

Γ
Σ F ∧ F ′ : prop

Γ
Σ Q : set(t) Γ, x : t
Σ F (x) : prop

Γ
Σ ∀x ∈ Q.F (x) : prop

Fig. 4. Well-Formed Expressions

Example 1. Consider a base type id : type of MMT identifiers in some fixed
MMT library. Moreover, consider a concept symbol theory < id giving the iden-
tifiers of all theories, and a relation symbol includes < id , id that gives the
relation “theory A directly includes theory B”.

A Query Language for Formal Mathematical Libraries 149

Then the query theory of type set(id) yields the set of all theories. Given a

theory u, the query includes∗
−1

(u) of type set(id) yields the set of all theories
that transitively include u.

Example 2 (Continued). Additionally, consider a concept constant < id of iden-
tifiers of MMT constants, relation symbol declares < id , id that relates every
theory to the constants declared in it, a base type obj : type of OpenMath
objects, a function symbol type : id → obj that maps each MMT constant to its
type, and a predicate symbol occurs : id , obj → prop that determines whether
an identifier occurs in an object.

Then the following query of type set(id) retrieves all constants that are in-
cluded into the theory u and whose type uses the identifier v:

{x ∈ (includes∗; declares)(u) | occurs(v, type(x))}

2.2 Semantics
Judgment Semantics
�Σ T : type �T � ∈ SET

Γ �Σ Q : t �Q�α ∈ �t�
Γ �Σ Q : set(t) �Q�α ⊆ �t�

�Σ R < a, a′ �R� ⊆ �a�× �a′�
Γ �Σ F : prop �F �α ∈ {0, 1}

Fig. 6. Semantics of Judgments

A Σ-model assigns to every symbol s in
Σ a denotation. The formal definition is
given in Def. 1. Relative to a fixed model
M (which we suppress in the notation),
each well-formed expression has a well-
defined denotational semantics, given by
the interpretation function �−�. The se-
mantics of propositions and queries in
context Γ is relative to an assignment α, which assigns values to all variables in
Γ . An overview is given in Fig. 6. The formal definition is given in Def. 2.

Definition 1 (Models). A Σ-model M assigns to every Σ-symbol s a denota-
tion sM such that

– aM is a set for a : type
– cM ⊆ �a� for c < a
– rM ⊆ �a�× �a′� for r < a, a′

– fM : �T1�× . . .× �Tn� → �T � for f : T1, . . . , Tn → T
– pM : �T1�× . . .× �Tn� → {0, 1} for p : T1, . . . , Tn → prop

Definition 2 (Semantics). Given a Σ-model M , the interpretation function
�−� is defined as follows.
Semantics of types:

– �a1 × . . .× an� is the cartesian product aM1 × . . .× aMn
– �set(t)� is the power set of �t�

Semantics of relations:

– �r� = rM

– �R−1� is the dual/inverse relation of �R�, i.e., the set {(u, v) | (v, u) ∈ �R�}

150 F. Rabe

– R∗ is the transitive closure of �R�
– R;R′ is the composition of �R� and �R′�,

i.e., the set {(u,w)| exists v such that (u, v) ∈ �R�, (v, w) ∈ �R′�}
– R∪R′, R∩R′, and R\R′ are interpreted in the obvious way using the union,

intersection, and difference of sets

Semantics of propositions under an assignment α:

– �p(Q1, . . . , Qn)�
α = pM (�Q1�

α, . . . , �Qn�
α)

– �¬F �α = 1 iff �F �α = 0
– �F ∧ F ′�α = 1 iff �F �α = 1 and �F ′�α = 1
– �∀x ∈ Q.F (x)�α = 1 iff �F (x)�α,x/u = 1 for all u ∈ �Q�α

Semantics of queries Γ �Σ Q : T under an assignment α:

– �c�α = cM

– �x�α = α(x)
– �f(Q1, . . . , Qn)�

α = fM (�Q1�
α, . . . , �Qn�α)

– �R(Q)�α = {u ∈ �a′� | (�Q�α, u) ∈ �R�} for a relation �Σ R < a, a′ and a
query Γ �Σ Q : a
informally, �R(Q)�α is the image of �Q�α under �R�

– �
⋃
x∈QQ

′(x)�α is the union of all sets �Q′(x)�α,x/u where u runs over all
elements of �Q�α

– �{x ∈ Q|F (x)}�α is the subset of �Q�α containing all elements u for which
�F (x)�α,x/u = 1

Remark 2. It is easy to prove that if all concept and relation symbols are inter-
preted as finite sets and if all function symbols with result type set(t) always
return finite sets, then all well-formed queries of type set(t) denote a finite sub-
set of �t�. Moreover, if the interpretations of the function and predicate symbols
are computable functions, then the interpretation of queries is computable as
well. This holds even if base types are interpreted as infinite sets.

2.3 Predefined Symbols Symbol Type Semantics
{ } : t→ set(t) the singleton set
.
= : t, t→ prop equality
∈ : t, set(t)→ prop elementhood

Fig. 7. Predefined Symbols

We use a number of predefined
function and predicate symbols
as given in Fig. 7. These are as-
sumed to be implicitly declared
in every signature, and their se-
mantics is fixed. All of these symbols are overloaded for all simple types t. More-
over, we use special notations for them.

All of this is completely analogous to the usual treatment of equality as a
predefined predicate symbol in first-order logic. The only difference is that our
slightly richer type system calls for a few additional predefined symbols.

It is easy to add further predefined symbols, in particular equality of sets
(which, however, may be inefficient to decide) and binary union of queries. We
omit these here for simplicity.

A Query Language for Formal Mathematical Libraries 151

2.4 Definable Queries

Using the predefined symbols, we can define a number of further useful query
formation operators:

Example 3. Using the singleton symbol { }, we can define for Γ �Σ Q : set(t)
and Γ, x : t �Σ q(x) : t′

{q(x) : x ∈ Q} :=
⋃
x∈Q

{q(x)} of type set(t′).

It is easy to show that, semantically, this is the replacement operator, i.e.,
�{q(x) : x ∈ Q}�α is the set containing exactly the elements �q(x)�α,x/u for
any u ∈ �Q�α.

Example 4 (SQL-style Queries). For a query �Σ Q : set(a1 × . . .× aN), natural
numbers n1, . . . , nk ∈ {1, . . . , N}, and a proposition x1 : a1, . . . , xN : aN �Σ
F (x1, . . . , xn) : prop, we write

select n1, . . . , nk from Q where F (1, . . . , N)

for the query

{xn1 ∗ . . . ∗ xnk
: x ∈ {y ∈ Q |F (y1, . . . , yN)}}

of type set(an1 × . . .× ank
).

Example 5 (XQuery-style Queries). For queries �Σ Q : set(a) and x : a �Σ
q′(x) : a′ and x : a, y : a′ �Σ Q′′(x, y) : set(a′′), and a proposition x : a, y : a′ �Σ
F (x, y) : prop, we write

for x in Q let y = q′(x) where F (x, y) return Q′′(x, y)

for the query⋃
z∈P

Q′′(z1, z2) with P :=
{
z ∈ {x ∗ q′(x) : x ∈ Q} | F (z1, z2)

}
of type set(a′′).

Example 6 (DL-style Queries). For a relation �Σ R < a, a′, a concept c < a, and
a query �Σ Q : set(a′), we write �cR.Q for the query {x ∈ c | ∀y ∈ R(x).y ∈ Q}
of type set(a).

Note that, contrary to the universal restriction �R.Q in description logic, we
have to restrict the query to all x of concept c instead of querying for all x of
type a. This makes sense in our setting because we assume that we can only
iterate efficiently over concepts but not over (possibly infinite!) base types.

However, this is not a loss of generality: individual signatures may always
couple a base type a with a concept isa such that �isa� = �a�.

152 F. Rabe

Declaration Intuition

Base types

id : type URIs of Mmt declarations
obj : type Mmt (OpenMath) objects
xml : type XML elements

Concepts

theory < id theories
view < id views
constant < id constants
style < id styles

Relations

includes < id , id inclusion between theories
declares < id , id declarations in a theory
domain < id , id domain of structure/view
codomain < id , id codomain of structure/view

Functions

type : id → obj type of a constant
def : id → obj definiens of a constant
infer : id , obj → obj type inference relative to a theory
argp : obj → obj argument at position p
subobj : obj , id → set(obj) subobjects with a certain head
unify : obj → set(id × obj × obj) all objects that unify with a given one
render : id , id → xml rendering of a declaration using a certain

style
render : obj , id → xml rendering of an object using a certain style
u : id literals for Mmt URIs u
o : obj literals for Mmt objects o

Predicates

occurs : id , obj → prop occurs in

Fig. 8. The QMT Signature for Mmt

3 Querying MMT Libraries

We will now fix an Mmt-specific signature Σ that customizes QMT with the
Mmt ontology as well as with several functions and predicates based on the
Mmt specification. The declarations of Σ are listed in Fig. 8.

For simplicity, we avoid presenting any details of Mmt and refer to [RK11]
for a comprehensive description. For our purposes, it is sufficient to know that
Mmt organizes mathematical knowledge in a simple ontology that can be seen
as the fragment of OMDoc pertaining to formal theories. We will explain the
necessary details below when explaining the respective Σ-symbols.

An Mmt library is any set of Mmt declarations (not necessarily well-typed
or closed under dependency). We will assume a fixed library L in the following.
Based on L, we will define a model M by giving the interpretation sM for every
symbol s listed in Fig. 8.

A Query Language for Formal Mathematical Libraries 153

Base Types. We use three base types. Firstly, every Mmt declaration has a
globally unique canonical identifier, its Mmt URI. We use this to define idM

as the set of all Mmt URIs declared in L.
objM the set of all OpenMath objects that can be formed from the symbols

in idM . In order to handle objects with free variables conveniently, we use the
following convention: All objects in objM are technically closed; but we permit
the use of a special binder symbol free, which can be used to formally bind
the free variables. This has the advantage that the context of an object, which
may carry, e.g., type attributions, is made explicit. Using general OpenMath
objects means that the type obj is subject to exactly α-equality and attribution
flattening, the only equalities defined in the OpenMath standard. The much
more difficult problem of queries relative to a stronger equality relation remains
future work.

The remaining base type xml is a generic container for any non-Mmt XML
data such as HTML or presentation MathML. Thus, xmlM is the set of all XML
elements. This is useful because the Mmt API contains several functions that
return XML.

Ontology. For simplicity, we restrict attention to the most important notions of
the Mmt ontology; adding the remaining notions is straightforward. The ontol-
ogy only covers the Mmt declarations, all of which have canonical identifiers.
Thus, all concepts refine the type id , and all relations are between identifiers.

Among the Mmt concepts, theories are used to represent logics, theories of
a logic, ontologies, type theories, etc. They contain constants, which represent
function symbols, type operators, inference rules, theorems, etc. Constants may
have OpenMath objects [BCC+04] as their type or definiens. Theories are
related via theory morphisms called views. These are truth-preserving transla-
tions from one theory to another and represent translations and models. Theories
and views together form a multi-graph of theories across which theorems can be
shared. Finally, styles contain notations that govern the translation from con-
tent to presentation markup.

Mmt theories, views, and styles can be structured by a strong module system.
The most important modular construct is the includes relation for explicit im-
ports. The declares relation relates every theory to the constants it declares; this
includes the constants that are not explicitly declared in L but induced by the
module system. Finally, two further relations connect each view to its domain
and codomain .

All concepts and relations are interpreted in the obvious way. For example,
the set theoryM contains the Mmt URIs of all theories in L.

Function and Predicate Symbols. Regarding the function and predicate symbols,
we are very flexible because a wide range of operations can be defined for Mmt
libraries. In particular, every function implemented in the Mmt API can be
easily exposed as a Σ-symbol. Therefore, we only show a selection of symbols
that showcase the potential.

154 F. Rabe

In Sect. 2, we have deliberately omitted partial function symbols in order
to simplify the presentation of our language. However, in practice, it is often
necessary to add them. For example, defM must be a partial function because
(i) the argument might not be the Mmt URI of a constant declaration in L,
or (ii) even if it is, that constant may be declared without a definiens. The
best solution for an elegant treatment of partial functions is to use option types
opt(t) akin to set types set(t). However, for simplicity, we make �−� a partial
function that is undefined whenever the interpretation of its argument runs into
an undefined function application. This corresponds to the common concept of
queries returning an error value.

The partial functions typeM and defM take the identifier of a constant dec-
laration and return its type or definiens, respectively. They are undefined for
other identifiers.

The partial function inferM (u, o) takes an object o and returns its dynam-
ically inferred type. It is undefined if o is ill-typed. Since Mmt does not com-
mit to a type system, the argument u must identify the type system (which
is represented as an Mmt theory itself). If O is a binding object of the form
OMBIND(OMS(free), Γ, o′), the type of o′ is inferred in context Γ .

argp is a family of function symbols indexed by a natural number p. p indicates

the position of a direct subobject (usually an argument), and argMp (o) is the sub-

object of o at position p. In particular, argMi (OMA(f, a1, . . . , an)) = ai. Note that
arbitrary subobjects can be retrieved by iterating argp. Similarly, subobjM (o, h)
is the set of all subobjects of o whose head is the symbol with identifier h. In
particular, the head of OMA(OMS(h), a1, . . . , an) is h. In both cases, we keep track
of the free variables, e.g., argM2 (OMBIND(b, Γ, o)) = OMBIND(OMS(free), Γ, o) for
b
= OMS(free).

unifyM (O) performs an object query: It returns the set of all tuples u ∗ o ∗ s
where u is the Mmt URI of a declaration in L that contains an object o that
unifies with O using the substitution s. Here we use a purely syntactic definition
for unifiability of OpenMath objects.

renderM (o, u) and renderM (d, u) return the presentation markup dynamically
computed by theMmt rendering engine. This is useful because the query and the
rendering engine are often implemented on the same remote server. Therefore,
it is reasonable to compute the rendering of the query results, if desired, as part
of the query evaluation. Moreover, larger signatures might provide additional
functions to further operate on the presentation markup. render is overloaded
because we can present both Mmt declarations and Mmt objects. In both cases,
u is the Mmt URI of the style providing the notations for the rendering.

The predicate symbol occurs takes an object O and an identifier u, and
returns true if u occurs in O.

Finally, we permit literals, i.e., arbitrary URIs and arbitrary OpenMath
objects may be used as nullary constants, which are interpreted as themselves
(or as undefined if they are not in the universe). This is somewhat inelegant
but necessary in practice to form interesting queries. A more sophisticated QMT

A Query Language for Formal Mathematical Libraries 155

signature could use one function symbol for everyOpenMath object constructor
instead of using OpenMath literals.

Example 7. An Mmt theory graph is the multigraph formed by using the theo-
ries as nodes and all theory morphisms between them as edges. The components
of the theory graph can be retrieved with a few simple queries.

Firstly, the set of theories is retrieved simply using the query theory . Secondly,
the theory morphisms are obtained by two different queries:

views {v ∗ x ∗ y : v ∈ view , x ∈ domain(v), y ∈ domain(v)}
inclusions

⋃
y∈theory{x ∗ y : x ∈ includes∗(y)}

The first one returns all view identifiers with their domain and codomain. Here
we use an extension of the replacement operator { : } from Ex. 3 to multiple
variables. It is straightforward to define in terms of the unary one. The second
query returns all pairs of theories between which there is an inclusion morphism.

Example 8. Consider a constant identifier ∃I for the introduction rule of the
existential quantifier from the natural deduction calculus. It produces a con-
structive existence proof of ∃x.P (x); it takes two arguments: a witness w, and a
proof of P (w). Moreover, consider a theorem with identifier u. Recall that using
the Curry-Howard representation of proofs-as-objects, a theorem u is a constant,
whose type is the asserted formula and whose definiens is the proof.

Then the following query retrieves all existential witnesses that come up in
the proof of u:

{arg1(x) : x ∈ subobj (def (u), ∃I)}

Here we have used the replacement operator introduced in Ex. 3.

Example 9 (Continuing Ex. 8). Note that when using ∃I, the proved formula P
is present only implicitly as the type of the second argument of ∃I. If the type
system is given by, for example, LF and type inference for LF is available, we
can extend the query from Ex. 8 as follows:

{arg1(x) ∗ infer (LF , arg2(x)) : x ∈ subobj (def (u), ∃I)}

This will retrieve all pairs (w,P) of witnesses and proved formulas that come up
in the proof of u.

4 Implementation

We have implemented QMT as a part of the Mmt API. The implementation
includes a concrete XML syntax for queries and an integration with the Mmt
web server, via which the query engine is exposed to users. The server can
run as a background service on a local machine as well as a dedicated remote
server. Sources, binaries, and documentation are available at the project web
site [Rab08].

156 F. Rabe

The Mmt API already implements the Mmt ontology so that appropriate
indices for the semantics of all concept and relation symbols are available. Indices
scale well because they are written to the hard drive and cached to memory
on demand. With two exceptions, the semantics of all function and predicate
symbols is implemented by standard Mmt API functions.

The semantics of unify is computed differently: A substitution tree index of
the queries library is maintained separately by an installation of MathWebSearch
[KŞ06]. Thus, QMT automatically inherits some heuristics of MathWebSearch,
such as unification up to symmetry of certain relation symbols. MathWebSearch
and query engine run on the same machine and communicate via HTTP.

Another subtlety is the semantics of infer . The Mmt API provides a plugin
interface, through which individual type systems can be registered; the first
argument to inferM is used to choose an applicable plugin. In particular, we
provide a plugin for the logical framework LF [HHP93], which handles type
inference for any type system that is formalized in LF; this covers all type systems
defined in the LATIN library [CHK+11] and thus also applies to our imports of
the Mizar [TB85] and TPTP libraries [SS98].

Query servers for individual libraries can be set up easily. In fact, because
the Mmt API abstracts from different backends, queries automatically return
results from all libraries that are registered with a particular instance of the
Mmt API. This permits queries across libraries, which is particularly interesting
if libraries share symbols. Shared symbols arise, for example, if both libraries use
the standard OpenMath CDs where possible or if overlap between the libraries’
underlying meta-languages is explicated in an integrating framework like the
LATIN atlas [CHK+11].

Example 10. The LATIN library [CHK+11] consists of over 1000 highly modu-
larized LF signatures and views between them, formalizing a variety of logics,
type theories, set theories, and related formal systems. Validating the library
and producing the index for the Mmt ontology takes a few minutes with typical
desktop hardware; reading the index into memory takes a few seconds. Typical
queries as given in this paper are evaluated within seconds.

As an extreme example, consider the query Q = Declares(theory). It returns
in less than a second the about 2000 identifiers that are declared in any theory.
The query

⋃
x∈Q{x∗ type(x)} returns the same number of results but pairs every

declaration with its type. This requires the query engine to read the types of all
declarations (as opposed to only their identifiers). If none of these are cached in
memory yet, the evaluation takes about 4 minutes.

5 Conclusion and Future Work

We have introduced a simple, expressive query language for mathematical theo-
ries (QMT) that combines features of compositional, property, and object query
languages. QMT is implemented on top of the Mmt API; that provides any li-
brary that is serialized as Mmt content markup with a scalable, versatile query-
ing engine out of the box. As both Mmt and its implementation are designed to

A Query Language for Formal Mathematical Libraries 157

admit natural representations of any declarative language, QMT can be readily
applied to many libraries including, e.g., those written in Twelf, Mizar, or TPTP.

Our presentation focused on querying formal mathematical libraries. This
matches our primary motivation but is neither a theoretical nor a practical re-
striction. For example, it is straightforward to add a base type for presentation
MathML and some functions for it. MathWebSearch can be easily generalized
to permit unification queries on presentation markup. This also permits queries
that mix content and presentation markup, or content queries that find presen-
tation results. Moreover, for presentation markup that is generated from content
markup, it is easy to add a function that returns the corresponding content item
so that queries can jump back and forth between them.

Similarly, we can give a QMT signature with base types for authors and
documents (papers, book chapters, etc.) as well as relations like author-of and
cites. It is easy to generate the necessary indices from existing databases and to
reuse our implementation for them. Moreover, with a relation mentions between
papers and the type id of mathematical concepts, we can combine content and
narrative aspects in queries. An index for the mentions relation is of course
harder to obtain, which underscores the desirability of mathematical documents
that are annotated with content URIs.

References

ADL12. Aspinall, D., Denney, E., Lüth, C.: Querying Proofs. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 92–106. Springer,
Heidelberg (2012)

ANS03. ANSI/ISO/IEC. 9075:2003, Database Language SQL (2003)
AS04. Asperti, A., Selmi, M.: Efficient Retrieval of Mathematical Statements. In:

Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119,
pp. 17–31. Springer, Heidelberg (2004)

AY08. Altamimi, M., Youssef, A.: A Math Query Language with an Expanded Set
of Wildcards. Mathematics in Computer Science 2, 305–331 (2008)

BCC+04. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase,
M.: The Open Math Standard, Version 2.0. Technical report. The Open Math
Society (2004), http://www.openmath.org/standard/om20

BR03. Bancerek, G., Rudnicki, P.: Information Retrieval in MML. In: Asperti, A.,
Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp.
119–132. Springer, Heidelberg (2003)

CHK+11. Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project
Abstract: Logic Atlas and Integrator (LATIN). In: Davenport, J.H., Farmer,
W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824,
pp. 289–291. Springer, Heidelberg (2011)

GC03. Guidi, F., Sacerdoti Coen, C.: Querying Distributed Digital Libraries of
Mathematics. In: Hardin, T., Rioboo, R. (eds.) Proceedings of Calculemus,
pp. 17–30 (2003)

HHP93. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal
of the Association for Computing Machinery 40(1), 143–184 (1993)

Koh06. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Docu-
ments [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

http://www.openmath.org/standard/om20

158 F. Rabe

KRZ10. Kohlhase, M., Rabe, F., Zholudev, V.: Towards MKM in the Large: Modular
Representation and Scalable Software Architecture. In: Autexier, S., Calmet,
J., Delahaye, D., Ion, P., Rideau, L., Rioboo, R., Sexton, A. (eds.) AISC
2010. LNCS, vol. 6167, pp. 370–384. Springer, Heidelberg (2010)

KŞ06. Kohlhase, M., Sucan, I.: A Search Engine for Mathematical Formulae. In:
Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120,
pp. 241–253. Springer, Heidelberg (2006)

LM06. Libbrecht, P., Melis, E.: Methods to Access and Retrieve Mathematical Con-
tent in ActiveMath. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS,
vol. 4151, pp. 331–342. Springer, Heidelberg (2006)

MG08. Mǐsutka, J., Galamboš, L.: Extending full text search engine for mathematical
content. In: Sojka, P. (ed.) Towards a Digital Mathematics Lbrary, pp. 55–67
(2008)

MM06. Munavalli, R., Miner, R.: MathFind: a math-aware search engine. In: Efthimi-
adis, E., Dumais, S., Hawking, D., Järvelin, K. (eds.) International ACM SI-
GIR Conference on Research and Development in Information Retrieval, p.
735. ACM (2006)

MY03. Miller, B., Youssef, A.: Technical Aspects of the Digital Library of Mathe-
matical Functions. Annals of Mathematics and Artificial Intelligence 38(1-3),
121–136 (2003)

Rab08. Rabe, F.: The MMT System (2008), https://trac.kwarc.info/MMT/
RK11. Rabe, F., Kohlhase, M.: A Scalable Module System (2011),

http://arxiv.org/abs/1105.0548

SL11. Sojka, P., Ĺı̌ska, M.: Indexing and Searching Mathematics in Digital Libraries
- Architecture, Design and Scalability Issues. In: Davenport, J., Farmer, W.,
Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824, pp.
228–243. Springer, Heidelberg (2011)

SS98. Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning 21(2), 177–203 (1998)

TB85. Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi,
A. (ed.) Proceedings of the 9th International Joint Conference on Artificial
Intelligence, pp. 26–28 (1985)

Urb06. Urban, J.: MOMM - Fast Interreduction and Retrieval in Large Libraries
of Formalized Mathematics. International Journal on Artificial Intelligence
Tools 15(1), 109–130 (2006)

W3C03. W3C. Mathematical Markup Language (MathML) Version 2.0., 2nd edn.
(2003), http://www.w3.org/TR/MathML2

W3C07. W3C. XQuery 1.0: An XML Query Language (2007),
http://www.w3.org/TR/xquery/

W3C08. W3C. SPARQL Query Language for RDF (2008),
http://www.w3.org/TR/rdf-sparql-query/

ZK09. Zholudev, V., Kohlhase, M.: TNTBase: a Versioned Storage for XML. In:
Proceedings of Balisage: The Markup Conference 2009. Balisage Series on
Markup Technologies, vol. 3, Mulberry Technologies, Inc. (2009)

https://trac.kwarc.info/MMT/
http://arxiv.org/abs/1105.0548
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/rdf-sparql-query/

Abramowitz and Stegun – A Resource
for Mathematical Document Analysis

Alan P. Sexton

School of Computer Science
University of Birmingham, UK
a.p.sexton@cs.bham.ac.uk

Abstract. In spite of advances in the state of the art of analysis of math-
ematical and scientific documents, the field is significantly hampered by
the lack of large open and copyright free resources for research on and
cross evaluation of different algorithms, tools and systems.

To address this deficiency, we have produced a new, high quality scan
of Abramowitz and Stegun’s Handbook of Mathematical Functions and
made it available on our web site. This text is fully copyright free and
hence publicly and freely available for all purposes, including document
analysis research. Its history and the respect in which scientists have held
the book make it an authoritative source for many types of mathematical
expressions, diagrams and tables.

The difficulty of building an initial working document analysis system
is a significant barrier to entry to this research field. To reduce that bar-
rier, we have added intermediate results of such a system to the web site,
so that research groups can proceed on research challenges of interest to
them without having to implement the full tool chain themselves. These
intermediate results include the full collection of connected components,
with location information, from the text, a set of geometric moments and
invariants for each connected component, and segmented images for all
plots.

1 Introduction

Reliable, high quality tools for optical analysis and recognition of mathemat-
ical documents would be of great value in mathematical knowledge manage-
ment. Such tools would enable large scale, low cost capturing of mathematical
knowledge both from scanned images of documents and from electronic versions
such as the usual PDF formatted output from LATEX, which does not include
the semantic enrichments necessary for a knowledge-oriented representation of
mathematics.

In spite of advances in the state of the art of analysis of mathematical and
scientific documents [21], the field is significantly hampered by the lack of suit-
able large, open and copyright free document sets to serve as ground truth sets
and as data sets for testing and cross evaluation of different algorithms, tools
and systems.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 159–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 A.P. Sexton

A data set, in this context, is usually a collection of page images from math-
ematical documents, although they can be image clips of formulae from those
pages, or collections of character, symbol or diagram images.

A ground truth set is an input data set together with validated correct recogni-
tion results for the input data set. These correct recognition results are normally
produced manually or by automatic recognition followed by manual correction.
In particular they include full character and formula identification in spite of
problems such as touching or broken characters — even if these problems are
beyond the current state of the art of document analysis to resolve. As such it
provides an ideal recognition result by which document analysis systems can be
trained and against which they can be evaluated.

The most significant data sets for optical analysis of printed mathematical
documents is the series of data sets from the Infty project [8,16,18]:

– InftyCDB-1: 476 pages of ground truth text from 30 mathematics articles in
English with 688,580 character samples, 108,914 words and 21,056 mathe-
matical expressions.

– InftyCDB-2: has the same structure as InftyCDB-1. It has 662,142 characters
from English articles, 37,439 from French, and 77,812 from German.

– InftyCDB-3: is divided into two data sets. InftyCDB-3-A contains 188,752
characters. InftyCDB-3-B contains 70,637 characters. Word and mathemat-
ical expression structure is not included.

– InftyMDB-1: contains 4,400 ground truth mathematical formulae from 32
articles, which are mostly the same articles as in InftyCDB-1.

While an excellent resource for the mathematical OCR community, and espe-
cially useful for optical character and mathematical formula recognition training
purposes, the one drawback of these data sets is that the original articles are not
copyright free. The articles can not be distributed with the data sets and the
data sets are not allowed to contain sufficient information about the location of
characters so that the articles could be reconstructed from the data. Hence one
can not easily test and compare systems on the original articles while using the
ground truth for evaluation purposes.

Another data set is UW-III [14], the technical document ground truth data
set from the University of Washington, containing 25 pages of ground truth
mathematics. This data set is not free, currently costing $200 plus shipping.

Garain and Chaudhuri [9,10] discusses their proposed ground truth corpus of
400 real and synthetic mathematical document images. However their available
data set [9] is of 102 isolated expression images and 5 clips from mathematical
document pages, all with ground truth information.

Ashida et al. [2] produced a ground truth data set of symbols from 1400 pages
and formulae from 700 pages of mathematics (taken from Archiv der Mathematik
and Commentarii Mathematici Helvetici). Unfortunately, this data set is not
available for copyright reasons.

Building a ground truth for a significant number of mathematical document
pages is a very expensive and labour intensive project. It is particularly

A Resource for Mathematical Document Analysis 161

unfortunate that, to date, no entirely copyright and cost free data set, for which the
original documents are also copyright and cost free, has yet been made available.

In the remainder of this paper, we discuss a project to make available a very
large, high quality, copyright and cost free data set for optical analysis of math-
ematical documents which, although not yet ground truthed, has been prepared
to simplify processing and support future community based ground truthing.

2 Abramowitz and Stegun

Abramowitz and Stegun [1], or A&S, is an encyclopedia of mathematical func-
tions. As it was published by the United States Government Printing Office, it
is copyright free and hence fully available for researchers (and anyone else) to
scan, report on and make their results freely available. Its history [3] and the
respect in which scientists have held the book make it an authoritative source
for many types of expressions, diagrams and tables, as witnessed by the article
on the book in Wikipedia:

“Abramowitz and Stegun is the informal name of a mathematical refer-
ence work edited by Milton Abramowitz and Irene Stegun of the U.S.
National Bureau of Standards (now the National Institute of Standards
and Technology). Its full title is Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables.

Since it was first published in 1964, the 1046 page Handbook has
been one of the most comprehensive sources of information on special
functions, containing definitions, identities, approximations, plots, and
tables of values of numerous functions used in virtually all fields of ap-
plied mathematics. The notation used in the Handbook is the de facto
standard for much of applied mathematics today.”1

The fact that A&S was printed pre-TEX means that it can help researchers to
avoid over-tuning their systems to the much more readily available TEX/LATEX
sourced documents. For TEX documents, the availability of the ArXiv [5] with
its very large collection of TEX based documents with full sources, makes alter-
native methods of obtaining data sets for OCR much more productive. Indeed,
the ArXiv is already being data mined for the purposes of analysing semantic
content [15]

One could argue that the ArXiv is such a large and rich resource that there is
no need for a resource such as the one discussed here based on A&S. We respond
to this argument as follows:

1. Fonts and typesetting are different enough between TEX and non-TEX based
documents to significantly effect recognition. There is an enormous amount
of mathematics in non-TEX based material still available only as bitmap
images. Using only TEX based documents to train and test document analysis
systems could only handicap those systems in just the same way that not

1 Taken from: http://en.wikipedia.org/wiki/Abramowitz_and_Stegun

http://en.wikipedia.org/wiki/Abramowitz_and_Stegun

162 A.P. Sexton

using any TEX based document data sets would: both TEX based and non-
TEX based data sets are necessary.

2. It is significantly easier to produce a ground truth automatically when TEX
sources, or PDF produced from TEX, are available. However, this does not
cover the significant range of problems that earlier printing technologies in-
troduce, such as the number and type of broken and connected characters, the
level of ink bleed, problems caused by manual, rather than automatic typeset-
ting etc. Modern printing followed by re-scanning produces artificial data sets
that suffer from a much restricted and biased set of problems relative to those
that occur in the wild. Hence it is valuable to have a data set such as this one
that results from a true, non-digital printing process in addition to the data
sets that can be built from collections such as the ArXiv.

3. A&S is of interest in itself. There is interest in matching the equations in
A&S with those in the DLMF [12], it contains sections on probability that
are not included in the DLMF and the tables in A&S, due to the care and
rigour with which they were produced [3], are of interest in themselves if
they could be accurately recognised.

The nature of A&S makes it a particular challenge for mathematical document
analysis systems. Its 1060 pages contains a very high density of mathematical
formulae (c.f. Figure 1). It has a complex layout that makes segmentation difficult
— relatively few and short plain text passages, a two column default layout with
lines usually, but not always, separating them and with frequent switches to
single column layouts.

(a) Equation 1

(b) Equation 2

Fig. 1. Example Equations from A&S

A&S also has a very large numbers of tables (c.f. Figure 2), both of numbers
and of mathematical formulae. Many of these tables span multiple pages, most
without any inter-cell lines but many with a complex line structure and a signif-
icant number rotated to landscape format. Some of the tables have been printed
with approximately 5pt font sizes. Often the layout is spatially squeezed with
obvious manual adjustments.

A Resource for Mathematical Document Analysis 163

Fig. 2. Example Table from A&S

There are a large number of often complex plots (c.f. Figure 3).
The printing suffered from some problems in that there are a large number of

characters that are clearly broken, and other characters that are touching, as well
as reliably reproduced dirt or marks on the pages. These faults do not diminish
the readability of the text to a human, but cause issues for OCR software.

3 Rescan and Analysis

A digital capture of a new copy of A&S was carried out. It was scanned at 600dpi
to 8 bit grey scale TIFF images. The files contain all pages in the book, including
the front and back matter and blank pages separating sections. The latter were
included so that the relationship between TIFF/PDF file page numbers and
book page numbers would remain as simple as possible.

The original printing process for the book was such that there are a signifi-
cant number of printing flaws in the original book. Many flaws in the scanned
images are faithful reproductions of these printing flaws rather than artifacts
of the scanning process. In particular, most pages of the book have some slight
skew — up to 1.35◦ in the worst cases. While the scanning process undoubtedly
introduced some level of skew, most of the skew appears in the original book.

Post-scanning processing of the images was carried out to deskew, binarise
and remove any connected components smaller than the size of the smallest
correct dot.

The deskewing was carried out automatically based on a projection profile
approach and, although it is by no means perfect, it has reduced the skew in
all cases. The resulting processed images, at 600dpi and reduced to 300dpi, are
available at the project web site.

3.1 Connected Components and Geometric Moments

A connected component in a monochrome image is a maximal set of connected
foreground pixels. Extracting them from an image is typically the first step of
an OCR system after image pre-processing (binarisation, noise removal etc.).
All connected components from the 600dpi monochrome images of A&S were
extracted and have been made available. Although each connected component
could be stored as a g4 compressed monochrome TIFF image, we have stored
them as 8 bit grey scale TIFF images with an alpha, or transparency, channel

164 A.P. Sexton

(a) Line Plot 1

(b) Line Plot 2 (c) Chart

Fig. 3. Example Plots from A&S

and deflate compression. The foreground colour for these images is black, as
expected. However the background colour has been set to fully transparent white.
The result is that the original page image can be easily reconstructed for test
purposes by drawing all the connected component images of a page in the correct
location on a white page, The transparent background of the images ensures that
no individual image masks any part of another image just because the bounding
boxes of the images overlap. The resulting image files are not significantly larger
than the monochrome versions and can easily be flattened to true monochrome
if so desired.

There were 2,672,788 connected components extracted in total and the num-
ber of connected components per page ranges from 270 to 12824, with an average
of 2572.

A data file, in comma separated value (CSV) format, was prepared that iden-
tifies the correct page, location and bounding box size of all extracted connected
components.

One of the most historically popular approaches to optical printed character
recognition is based on geometric moments and moment invariants [6,13,20].
In order to lower the barrier to entry for students and groups to mathematical
document analysis research, we have pre-calculated and provided a set of features
based on these moments for each connected component and included them in
the CSV data file. The features included are

A Resource for Mathematical Document Analysis 165

– An aspect ratio feature:
1
2

+
h − w

2 max(h, w)

where h, w are the height and width respectively of the bounding box of the
connected component. This returns a number between 0 and 1.

– m00: the (0, 0) geometric moment, which corresponds to the number of fore-
ground pixels in the connected component.

– η20, η11, η02, η30, η21, η12, η03: all the second and third order normalised cen-
tral geometric moments (by definition, η00 = 1 and η01 = η10 = 0). These are
translation and scale invariant, but not rotation or general affine transform
invariant.

– I1, I2, . . . , I8: the extended set of Hu invariants [11]. Hu defined 7 rotation in-
variant moments, I1, . . . , I7. However, this set was shown by Flusser [6] to be
neither independent (in particular, I3 can be derived from I4, I5 and I7 and
therefore can be omitted without loss of recognition power) nor complete,
hence the addition of the I8 moment.

In the form that these features are provided, they can easily be used as the basis
for any number of pattern classification approaches such as a metric space based
k-nearest neighbour or cosine similarity [4,19]. However, the ranges of the values
are such that some features will overwhelm others without further scaling. For
this reason we include the ranges for all features in Table 1.

Table 1. Numeric Feature Ranges

Feature Min Max
aspect 0·0006785795 0·9989733
m00 6 2187349

η20 5·212947e − 05 64·39165
η11 −10·16923 12·31475
η02 0·0001275819 132·2743
η30 −135·2704 158·1855
η21 −27·66605 28·00989
η12 −39·19975 15·09384
η03 −347·5878 135·2028
I1 0·15625 132·2746
I2 0 17496·43
I3 0 120749

I4 0 120845

I5 −524301100 14597710000

I6 −28445·19 15781260

I7 −172762300 548055900

I8 −148817·6 281045·5

166 A.P. Sexton

4 Special Clips

A particular asset of A&S is its wealth of plots. There is a large range of plots
encompassing simple line plots, contour maps and branch cut plots, as shown in
Figure 3. There is interest in work on analysing and recognising such plots [7,17].
To support that work we have manually clipped and extracted all 399 plots from
A&S and provided them, with location and bounding box information, with the
resources available from our web site. Together with the feature information
about the connected components in A&S, this provides a low barrier to entry
for research in this area.

5 Conclusions

The main aim of the work has been to provide a much needed resource of high
quality for the mathematical document analysis community. While other data
sets provide the very important aspect of ground truthing, none of them are, to
date, fully open and free. The data set reported on here, while not provided
with ground truth data, is fully open and free, and future work to develop
a ground truth based on automatic recognition and community based crowd-
sourced correction is planned.

A further aim has been to lower the barriers to entry to research for students
interested in this area. Without such a data set, and partially processed initial
analyses, an undergraduate or MSc student has too little time, after completing
the software for initial processing, to pursue the more interesting goals of symbol
recognition, formula recognition and layout analysis. It is hoped that with this
data, this will no longer be the case.

We plan on adding full character recognition information to this data set in
the near future and invite contributions from other research groups to enhance
the data set.

The project web site, and all data sets and images from the project, is available
at http://www.cs.bham.ac.uk/~aps/research/projects/as/.

Because of their size (approximately 19GB), the full, losslessly compressed
set of original, 600 dots per inch, grey scale scanned images without any image
processing applied are not accessible directly from the web site, although they
are available from the author on request.

A version of both the original grey scale images and the deskewed grey scale
images in TIFF format with lossy JPEG compression at a compression level of
60% is available from the web site. Each of these sets comes to 2.5GB and they
are actually quite usable for document analysis purposes.

It is expected that these data sets may be useful for research on binarisation,
noise reduction, deskewing, or grey scale optical character recognition.

Acknowledgements. We thank Bruce Miller of the National Institute of Stan-
dards and Technology, for providing a clean new copy of A&S for scanning.

http://www.cs.bham.ac.uk/~aps/research/projects/as/

A Resource for Mathematical Document Analysis 167

We thank Bruno Voisin, of the Laboratory of Geophysical and Industrial
Flows (LEGI), Grenoble, France, who allowed the use of his code to create PDF
bookmarks for A&S as a basis for the bookmarks in the PDFs on the project
web site.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. US Government Printing Office, Washing-
ton, 10th printing, with corrections (December 1972)

2. Ashida, K., Okamoto, M., Imai, H., Nakatsuka, T.: Performance evaluation of a
mathematical formula recognition system with a large scale of printed formula
images. In: International Workshop on Document Image Analysis for Libraries, pp.
320–331 (2006), http://doi.ieeecomputersociety.org/10.1109/DIAL.2006.30

3. Boisvert, R.F., Lozier, D.W.: Handbook of mathematical functions. In: Lide, D.R.
(ed.) A Century of Excellence in Measurements Standards and Technology, pp.
135–139. CRC Press (2001),
http://nvl.nist.gov/pub/nistpubs/sp958-lide/135-139.pdf

4. Cheriet, M., Kharma, N., Liu, C.L., Suen, C.Y.: Character Recognition Systems
— A Guide for Students and Practitioners. Wiley & Sons Ltd., Hoboken (2007)

5. Cornell University Library (2012), http://www.arxiv.org
6. Flusser, J., Suk, T., Zitová, B.: Moments and Moment Invariants in Pattern Recog-

nition. Wiley & Sons Ltd., Chichester (2009)
7. Fuda, T., Omachi, S., Aso, H.: Recognition of line graph images in documents by

tracing connected components. Trans. IEICE J86-D-II(6), 825–835 (2003)
8. Fujiyoshi, A., Suzuki, M., Uchida, S.: Verification of Mathematical Formulae

Based on a Combination of Context-Free Grammar and Tree Grammar. In: Au-
texier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.)
AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 415–429. Springer,
Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-85110-3_35

9. Garain, U., Chaudhuri, B.B.: Ground truth datasets of mathematics,
http://www.isical.ac.in/~utpal/resources.php

10. Garain, U., Chaudhuri, B.B.: A corpus for OCR research on mathematical expres-
sions. IJDAR 7(4), 241–259 (2005),
http://dx.doi.org/10.1007/s10032-004-0140-5

11. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory 8(2), 179–187 (1962)

12. Miller, B.: Personal communication (2011)
13. Mukundan, R., Ramakrishnan, K.: Moment Functions in Image Analysis. World

Scientific, Singapore (1998)
14. Phillips, I., Chanda, B., Haralick, R.: UW-III english/technical document image

database. University of Washington (2000),
http://www.science.uva.nl/research/dlia/datasets/uwash3.html

15. Stamerjohanns, H., Kohlhase, M.: Transforming the arχiv to XML. In: Au-
texier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.)
AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 574–582. Springer,
Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-85110-3_46

http://doi.ieeecomputersociety.org/10.1109/DIAL.2006.30
http://nvl.nist.gov/pub/nistpubs/sp958-lide/135-139.pdf
http://www.arxiv.org
http://dx.doi.org/10.1007/978-3-540-85110-3_35
http://www.isical.ac.in/~utpal/resources.php
http://dx.doi.org/10.1007/s10032-004-0140-5
http://www.science.uva.nl/research/dlia/datasets/uwash3.html
http://dx.doi.org/10.1007/978-3-540-85110-3_46

168 A.P. Sexton

16. Suzuki, M., Uchida, S., Nomura, A.: A ground-truthed mathematical char-
acter and symbol image database. In: Eighth International Conference on
Document Analysis and Recognition (ICDAR 2005), pp. 675–679 (2005),
http://doi.ieeecomputersociety.org/10.1109/ICDAR.2005.14

17. Takagi, N.: On consideration of a pattern recognition method for mathemati-
cal graphs with broken lines. In: International Workshop on Digitization and E-
Inclusion in Mathematics and Science (DEIMS 2012), Tokyo, pp. 43–51 (2012)

18. The Infty Project: InftyCDB-1–3, InftyMDB-1 (2009),
http://www.inftyproject.org/en/database.html

19. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press
(2009)

20. Yampolskiy, R.: Feature Extraction Approaches for Optical Character Recognition.
Briviba Scientific Press, Rochester (2007)

21. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expres-
sions. International Journal on Document Analysis and Recognition, 1–27 (2012),
http://dx.doi.org/10.1007/s10032-011-0174-4

http://doi.ieeecomputersociety.org/10.1109/ICDAR.2005.14
http://www.inftyproject.org/en/database.html
http://dx.doi.org/10.1007/s10032-011-0174-4

Point-and-Write – Documenting Formal
Mathematics by Reference�

Carst Tankink1, Christoph Lange2,3,4, and Josef Urban1

1 Institute for Computing and Information Science, Radboud Universiteit,
Nijmegen, The Netherlands

carst@cs.ru.nl, josef.urban@gmail.com
2 FB 3, Universität Bremen, Germany

ch.lange@jacobs-university.de
3 Computer Science, Jacobs University Bremen, Germany

4 School of Computer Science, University of Birmingham, UK

Abstract. This paper describes the design and implementation of mech-
anisms for light-weight inclusion of formal mathematics in informal math-
ematical writings, particularly in a Web-based setting. This is
conceptually done in three stages: (i) by choosing a suitable representa-
tion layer (based on RDF) for encoding the information about available
resources of formal mathematics, (ii) by exporting this information from
formal libraries, and (iii) by providing syntax and implementation for
including formal mathematics in informal writings.

We describe the use case of an author referring to formal text from an
informal narrative, and discuss design choices entailed by this use case.
Furthermore, we describe an implementation of the use case within the
Agora prototype: a Wiki for collaborating on formalized mathematics.

1 Introduction

Formal, computer-verified, mathematics has been informally discussed and writ-
ten about for some fifty years: on dedicated mailing lists [10,19,13], in conference
and journal articles, online manuals, tutorials and courses, and in community
Wikis [9,20] and blogs [22].

In such informal writings, it is common to include and mix formal definitions,
theorems, proofs and their outlines, and sometimes whole sections of formal
articles. Such formal “islands” in a text do not have to follow any particular
logical order, and can mix content from different articles, libraries, and even
content based on different proof assistants. In this respect, the collection of such
formal fragments in a particular text is often informal, because the fragments
do not have to share and form a unifiable, linear, and complete formal context.

� The first and third author were funded by the NWO project “MathWiki”. The sec-
ond author was supported by DFG Project I1-[OntoSpace] of SFB/TR 8 “Spatial
Cognition” and EPSRC grant EP/J007498/1”. The final publication is available at
http://www.springerlink.com.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 169–185, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 C. Tankink, C. Lange, and J. Urban

In a Web setting, such pieces of formal code can however be equipped with
semantic and presentation functions that make formal mathematics attractive
and unique. Such functions range from “passive” markup, like (hyper)linking
symbols to their precise definitions in HTML-ized formal libraries, detailed and
layered explanations of implicit parts of reasoning (goals, types, subproofs, etc.),
to more “active”, like direct editing, re-verification, and HTML-ization of the
underlying formal fragment in its proper context, and using the formal code for
querying semantic search engines and automated reasoning tools [25].

In this paper, we describe, and support, a use case of an author writing such
an informal text: she gives references (points) to (fragments of) formalization
on the Web, and then describes (writes about) them in a natural language
narrative, documenting the formal islands. This use case is described in Section 2.

We support this use case in a light-weight manner, based on HTML presen-
tations of formal mathematics. The author can write pointers to formal objects
in a special syntax (described in Section 3), which get resolved to the objects
when rendering the narrative. To follow the pointers, our tools equip HTML
pages for formalizations with annotations describing what a particular HTML
fragment represents (Section 5). The annotations are drawn from suitable RDF
vocabularies,1 described in Section 4.

We show an implementation of the mechanisms in the Agora prototype,2
described in Section 6. The actual rendering of the final page with its inclusions
give rise to several issues that we do not consider here: we discuss some issues and
how we handle them in our implementation, but these decisions were not made
systematically: we focus here on the author’s use case of writing the references,
and provide the prototype as a proof of existence.

This paper does not contain a dedicated related work section: to our knowl-
edge, there is no system that provides similar functionality: there are alternatives
for including formal text, as well as alternative syntaxes, which we will compare
with our approach in the relevant sections. Additionally, the MoWGLI project
developed some techniques for rendering formal proofs with informal narratives,
which are compared to in Section 6.

2 Describing and Including Formal Text

The techniques described in this paper are mainly driven by a single use case,
that of an author writing a description (a “narrative”) of a development in formal,
computer-verified, mathematics. In this work, we assume that the author writes
this narrative for publication in a Wiki, although the use case could also be
applied for more traditional authoring, in a language like LATEX.

1 The RDF data model (Resource Description Framework) essentially allows for iden-
tifying any thing (“resource”) of interest by a URI, giving it a type, attaching data
to it, and representing its relations to other resources [1].

2 http://mws.cs.ru.nl/agora/

http://mws.cs.ru.nl/agora/

Point-and-Write – Documenting Formal Mathematics by Reference 171

2.1 Use Case

While writing a natural language narrative, the author will eventually want to
include snippets of formal code: for example to illustrate a particular implemen-
tation technique or to compare a formalization approach with a different one,
possibly in a different formal language. An advanced example is Section 5.3 of [6]
rendered in Agora.3

Because we allow for including formal text from the Web, there is a wrinkle
we have to iron out when supporting this use case, but before we get to that, we
describe typical steps an author can carry out while executing the use case:

Formalization. An author works on a formalization effort in some system and
puts (parts of) this formalization on the Web, preferably on the Wiki. We
will refer to the results of these efforts as source texts.

Natural Language Description. Sometime before, during or after the for-
malization, the author gives a natural language account of the effort on the
Wiki. As mentioned, we assume she writes this in a markup language suit-
able for Wikis, extended with facilities for writing mathematical formulae.4
We refer to the resulting description as a narrative.

Including Formalizations into the Narrative. In the natural language de-
scription, the author includes some of the formal artifacts of her effort, and
possibly some of the formalizations by other authors. These inclusions need
to look attractive (by being marked up) and should not be changed from the
source: the source represents a verifiable piece of mathematics, and a reader
should be able to ascertain himself that nothing was lost in transition.

These steps are not necessarily carried out in order, and can be carried out by
different authors or iteratively. In particular, the formal text included in the
narrative does not have to originate from the author or her collaborators, but
could be from a development that serves as competition or inspiration.

The end results of the workflow are pages like the one shown (in part) in
Figure 1: it includes a narrative written in natural language (including hyperlinks
and markup of formulae) and displays formal definitions marked up as code.

Because the source texts are stored on the Web, we consider their content to
be fluid : subject to change at any particular moment, but not under control of
the author. This implies that the mechanism for including formal text should be
robust against as much change as possible.

To determine how we can support this workflow, we first survey the existing
methods that are suitable for including formal mathematics.

2.2 Alternatives for Inclusion

Typical options for including formal mathematics—or any other type of code—,
when working with a document authoring tool like LATEX include:
3 http://mws.cs.ru.nl/agora/cicm_sandbox/CCL/
4 The specifics of suitable languages for writing in Wikis for formal mathematics are

not a subject of this paper; we refer to [18] for an overview.

http://mws.cs.ru.nl/agora/cicm_sandbox/CCL/

172 C. Tankink, C. Lange, and J. Urban

Fig. 1. Example of informal narrative with formal snippets

1. Referral: place the code on some Web page and refer readers to that page
from the document (by giving the URL),

2. Inclusion: include and format the source code files as listings, e.g. using the
LATEX package listings [12],

3. Literate Proving: the more extreme variant of (2): write the article in a
literate style, and extract both formal code and marked up text from it,

4. Copy-Paste: manually copy-paste the code into the document.

All of these options have their own problems for our use case.

1. Referral collides with the desire for juxtaposability [7]: a reader should not
have to switch between pages to look at the referred code and the text that
refers to it. Instead, he should be able to read the island within the context
of the narrative.

2. We certainly want the author to be able to include code, but most of the tools
only allow her to refer to the code by location, instead of a more semantic
means: she can give a range of lines (or character offsets) in a file, but cannot
write “include the Fundamental Theorem of Algebra, and its proof”.

3. Literate proving [8] is a way to tackle code inclusion, but it does not solve
the use case: it requires the author to shift her methods from writing code
and article separately to writing both aspects interleaved.

It also does not allow an author to include existing external code for ci-
tation (without copy-pasting) and does not allow her to write a document
including only snippets of formal code. These cases can arise where a lot
of setup and auxiliary lemmas are necessary for formalizing a theorem, but
only the theorem itself is the main focus of a paper. Typical literate program-
ming setups provide mechanisms for hiding code fragments, but we prefer to
take an inclusive instead of an exclusive view on the authoring process: the
former seems to be more in line with actual practices in the interactive theo-
rem proving community (see, for example, the proceedings of the Interactive
Theorem Proving conference [26]).

Point-and-Write – Documenting Formal Mathematics by Reference 173

4. Copy-pasting code has the traditional problem of maintaining consistency: if
the source file is changed, the citation should change as well. On the positive
side, it does not require much effort to implement, apart from adding facilities
for marking up code, which can be reused for in-line (new) code. To make the
implementation threshold even lower, the listings LATEX package previously
mentioned also supports marking up copy-pasted code.

The shortcomings of these methods mean we need to design a system providing
the following facilities:

Requirement 1. A syntax for writing, in a natural language document, ref-
erences to parts of a formal text, possibly outside of the referring text, and a
mechanism for including the referred objects verbatim in a rendered version of
the natural language text.

Requirement 2. A method for annotating parts of formal texts, so they can be
referenced by narratives.

The rest of this paper gives our approach to these two problems, demonstrating
how they interact, and gives a tour of our working implementation.5

3 Syntax for Referring

We will first focus on how the author can write references to formal content.
Below, we discuss considerations that guided the design of this syntax. The
considerations are partially based on the goals for a common Wiki syntax [21].

3.1 Requirements on Syntax

Simple. To encourage its use, the syntax should not be too elaborate. An exam-
ple of a short enough syntax is the hyperlink syntax in most Wiki systems:
only four characters surrounding the link, [[and]].

Collision Free. The syntax should not easily be ‘mistyped’: it should not be
part of the syntax already used for markup, and not likely used in a natural
language narrative.

Readable. It should be recognizable in the source of the narrative, to support
authors in learning a new syntax and making the source readable.

Familiar. We do not intend to reinvent the wheel, but want to adapt existing
syntax to suit our needs. This also keeps the syntax readable: when the
base syntax is already known to an author, it should be clear to her how
this syntax works in the context of referring to formal text. Because keeping
things similar but not completely equal could cause confusion, it also requires
us not to deviate the behavior too much from the original syntax.

5 http://mws.cs.ru.nl/agora/cicm_sandbox

http://mws.cs.ru.nl/agora/cicm_sandbox

174 C. Tankink, C. Lange, and J. Urban

In resolving these requirements on the syntax, we need to consider the context
in which it will be used. In our proposed use case, the syntax will be used
within a Wiki, so we prefer a syntax that fits with the markup families used for
Wiki systems. It should be possible to extend a different markup language (for
example, LATEX or literate comments for a formal system) with the reference
syntax, but this requires reconsidering the decisions we make here.

Considering that we want to base the reference syntax on existing mechanisms
(in line with the familiarity requirement), there are three basic options to use
as a basis: import statements like used in LATEX (or, programming and formal
languages), Wiki-style hyperlinks, and Isabelle/Isar’s antiquotation syntax.

Each of these is considered in the rest of this section, and tested against the
requirements stated before.

LATEX-Style Include Statements. The purpose of these statements in a LATEX
document is to include the content of a file in another, before rendering the
containing file. The command does not allow inclusion of file fragments, but could
be modified to allow this. As a concrete proof of existence, the listings package
mentioned earlier has the option to include file fragments by giving a line offset,
but not a pointer to an object. The statements should be recognizable by LATEX
users or users of a formal language that uses inclusions, but the statements are
rather long: if the author wants to use them more often, it might become tedious
to write.

The MediaWiki engine has a similar syntax for including entire pages.6 To in-
clude fragments of pages, however, one either needs to factor out these fragments
of the source text and include them both in the source text and the referring
text, or mark fragments of the source page which will be included. Both do not
give the author of a narrative fine-grained control over inclusion.

An extension to these inclusions7 allows inclusion of sections. This mechanism
is a valid option for adaption, but if we would want to support informal inclusion
at some point, it would be difficult to distinguish it, at the source level, from an
inclusion of a formal fragment.

Wiki-Style Hyperlinks. These cross-reference statements are not hard to learn
and short, but also using them for inclusion can overload the author’s under-
standing of the markup commands: if she already knows how to use hyperlinks,
she needs to learn how to write and recognize links that include formal objects.

Antiquotations. Isabelle/Isar [28] uses antiquotations to allow the author of Isar
proof documents to write natural-language, marked-up snippets in a formal doc-
ument (the ‘quotation’ from formal to informal), while including formal content
in these snippets (the ‘antiquotation’ of informal back to formal): these antiquo-
tations are written @{type [options] syntax }, where type declares what kind
of syntax the formal system can expect, the syntax specifying the formal content,

6 http://www.mediawiki.org/wiki/Transclusion
7 http://www.mediawiki.org/wiki/Extension:Labeled_Section_Transclusion

http://www.mediawiki.org/wiki/Transclusion
http://www.mediawiki.org/wiki/Extension:Labeled_Section_Transclusion

Point-and-Write – Documenting Formal Mathematics by Reference 175

and the options defining how the results should be rendered. The formal system
interprets these snippets and reinserts the results into the marked-up text.

For example, the antiquotation @{term [show_types] "% x y. x"} would ask
Isabelle to type-check the term λx y.x (% is Isabelle’s ASCII shorthand for λ)
in the context where it appears and reinserts the term annotated with its type:
it inserts the output λ(x::’a) y::’b. x.

Another example is @{thm foo} which inserts the statement of the theorem
labeled foo in the marked up text. The syntax also provides an option to insert
the label foo, which makes sure that it points to a correct theorem.

3.2 Resulting Syntax

From the options listed above, the antiquotation mechanism is closest to what
we want: it allows the inclusion of formal text within an informal environment,
relying on an external (formal) system to provide the final rendering. There are
some differences in the approaches that require some further consideration.

Context. In Isar, the informal fragments are part of a formal document, which
gives the context in which to evaluate the formal content. In our use case,
there is no formal context: the informal and the formal documents are strictly
separated, so the formal text has to exist already, and is only referred to from
a natural-language document.

We could provide an extension that allows the author to specify the formal
context in which formal text is evaluated. This would allow her to write new
examples based on an existing formalization, or combine literate and non-
literate approaches. This is an appealing idea, but beyond the scope of this
paper.

Feedback. In our use case, the natural language text only refers to the formal
text, and does not feed back any formal content into the formal document.
In Isar, it is possible to prove new lemmas in an antiquotation, but Wenzel
notes in his thesis [28, page 65] that antiquotations printing well-typed terms,
propositions and theorems are the most important ones in practice.

With these considerations in mind, we adopt the following syntax, based on the
antiquotations: @{ type reference [options] }. The main element is reference,
which is either a path in the Wiki or an external URL, pointing to a formal entity
of the given type. We will discuss possible types in the next section.

The options element instructs the renderer of the Wiki about how to render
the included entity. Compared to Isar, it has swapped positions with reference

because it provides rendering settings, and no instructions to a formal tool. This
means that they are processed last, after the reference has been processed to an
object. Possible uses include flagging whether or not to include the proof of a
theorem, or the level of detail that should be shown when including a snippet.

The reference points at an annotated object, by giving the location of the
document it occurs in and the name given in the annotation for that object.
The type corresponds to the type in the annotation of the object: it serves as a

176 C. Tankink, C. Lange, and J. Urban

disambiguation mechanism, but can be enforced in a more strict manner. If the
system cannot find a reference of the given type, it should fail in a user friendly
way: in our implementation, we inline reference in the output, marked up to
show it is not found. Inspired by MediaWiki, we color it red, and put a question
mark after it. An addition to this would be to make this rendering a link, through
which the author can write the formal reference, or search for similar objects.

The antiquotation for the Coq code in Figure 1, is @{oo:Definition

CoqBinomialCoefficient#C}. It points to the Definition C, found in the loca-
tion (a Wiki page) CoqBinomialCoefficient. This reference gets resolved into
the HTML shown in the screenshot.

4 Annotation of Types and Content

For transforming antiquotations to HTML, we could implement ad hoc reference
resolution mechanisms specific to particular formal systems. Then, any new for-
mal system would require building another specific dereferencing implementation
from scratch. We present a more scalable approach with lower requirements for
formal systems. We enrich the HTML export of the formal texts with annota-
tions, which clearly mark the elements that authors can refer to. The Wiki can
resolve them in a uniform way: when an author writes an antiquotation, the sys-
tem can dereference it to the annotated HTML, without further requirements
on the structure of the underlying formal texts.

This section introduces the two main kinds of annotations that are relevant
here; the next section explains how to put them into formal texts. We are inter-
ested in annotating an item of formalized mathematics with its mathematical
type (such as definition, theorem, proof), and annotating it by pointing to re-
lated content (such as pointing from a formalized proof to the Wikipedia article
that gives an informal account of the same proof). Type annotation requires a
suitable annotation vocabulary, whereas we had to identify suitable datasets as
targets for content annotation.

4.1 The Type Vocabulary of the OMDoc Ontology

The OMDoc ontology provides a wide supply of types of mathematical knowl-
edge items, as well as types of relations between them, e.g. that a proof proves a
theorem [16,17]. It is a reimplementation of the conceptual model of the OMDoc
XML markup language [15] for the purpose of providing semantic Web appli-
cations with a vocabulary of structures of mathematical knowledge.8 It is thus
one possible vocabulary (see [17] for others) applicable to the lightweight anno-
tation of mathematical resources on the Web desired here, without the need to
translate them from their original representation to OMDoc XML.

The OMDoc language has originally been designed for exchanging formaliza-
tions across systems for, e.g., structured specification, automated verification,

8 We use the terms “ontology” and “vocabulary” synonymously.

Point-and-Write – Documenting Formal Mathematics by Reference 177

and interactive theorem proving [15]. OMDoc covers a large subset of the con-
cepts of common languages for formalized mathematics, such as Mizar or Coq;
in fact, partial translations of the latter languages to OMDoc have been imple-
mented (see, e.g., [5]).

The OMDoc ontology covers most of the concepts that the OMDoc lan-
guage provides for mathematical statements, structured proofs, and theories.
Item types include Theory, Symbol [Declaration], Definition, Assertion (having
subtypes such as Theorem or Lemma), and Proof ; types of relations between
such items include Theory–homeTheoryOf–<any type of statement>, Symbol–
hasDefinition–Definition, and Proof–proves–Theorem. The ontology leaves the
representation of document structures without a mathematical semantics, such
as sections within a theory that have not explicitly been formalized as subtheo-
ries, to dedicated document ontologies (cf. [17]).

4.2 Datasets for Content Annotation

Our main use case for content annotation is annotating formalizations with re-
lated informal representations, but added-value services may still benefit from
the latter having a partial formal semantics. Consider linking a formalized proof
to a Wikipedia article that explains a sketch and the historical or application
context of the proof.9 The information in the Wikipedia article (such as the year
in which the proof was published) is not immediately comprehensible to Web
services or search engines. For this purpose, DBpedia10 makes the contents of
Wikipedia available as a linked open dataset.11

Further suitable targets for content annotation of mathematical formaliza-
tions – albeit not yet available as machine-comprehensible linked open data
– include the PlanetMath encyclopedia, the similar ProofWiki, and Wolfram’s
MathWorld.12

In the interest of machine-comprehensibility, the links from the annotated
sources to the target dataset should be typed. The two most widely used link
types, which are also widely supported by linked data clients, are rdfs:seeAlso
(a generic catch-all, which linked data clients usually follow to gather more
information) and owl:sameAs (asserting that all properties asserted about the
source also hold for the target, and vice versa). The OMDoc ontology furthermore
provides the link type formalizes for linking from a formalized knowledge item
to an informal item that verbalizes the former, and the inverse type verbalizes.

9 The Wikipedia category “Article proofs” lists such articles; see
http://en.wikipedia.org/wiki/Category:Article_proofs.

10 http://dbpedia.org
11 A collection of RDF descriptions accessible by dereferencing their identifiers [11].
12 See http://www.planetmath.org, http://www.proofwiki.org,

and http://mathworld.wolfram.com, respectively.

http://en.wikipedia.org/wiki/Category:Article_proofs
http://dbpedia.org
http://www.planetmath.org
http://www.proofwiki.org
http://mathworld.wolfram.com

178 C. Tankink, C. Lange, and J. Urban

5 Annotating Formal Texts

Now that we have established what to annotate formal texts with, we need to look
at the how. Considering that the formal documents are stored on the Web, we
assume that each document has an HTML representation. Indeed, the systems
we support in our prototype each have some way of generating appropriate type
annotations.

Text parts are annotated by enclosing them into HTML elements that carry
the annotations as RDFa annotations. RDFa is a set of attributes that allows for
embedding RDF graphs into XML or HTML [2]. For identifying the annotated
resources by URIs, as required by RDF, we reuse the identifiers of the original
formalization.

Desired Results. Regardless of the exact details of the formal systems involved,
and their output, the annotation process generally yields HTML+RDFa, which
uses the OMDoc ontology (cf. Section 4.1) as a vocabulary. For example, if the
formal document contains an HTML rendition of the Binomial Theorem, we
expect the following result (where the prefix oo: has been bound to the URI of
the OMDoc ontology13):

...

...

The “. . . ” in this listing represent the original HTML rendition of the formal
text, possibly including the information that was used to infer the annotations
now captured by the RDFa attributes. @about assigns a URI to the annotated
resource; here, we use fragment identifiers within the HTML document.

In this example, we wrap the existing HTML in span elements, because in
most cases, this preserves the original rendering of the source text. In particular,
empty spans, as typically used when there is no other HTML element around
that could reasonably carry some RDFa annotation, are invisible in the browser.
If the HTML of the source text contains div elements, it becomes necessary to
wrap the fragment in a div instead of a span.

Mizar Texts. Mizar processing consists of several passes, similar in spirit to
those used in compilation of languages like Pascal and C. The communication
between the main three passes (parsing, semantic analysis, and proof checking)
is likewise file-based. Since 2004, Mizar has been using XML as its native format
for storing the result of the semantic analysis [23]. This XML form has been
since used for producing disambiguated (linked) HTML presentation of Mizar
texts, translating Mizar texts to ATP formats, and as an input for a number
of other systems. The use of the XML as a native format guarantees that it
remains up-to-date and usable for such external uses, which has been an issue
with a number of ad-hoc ITP translations created for external use.
13 http://omdoc.org/ontology#

http://omdoc.org/ontology#

Point-and-Write – Documenting Formal Mathematics by Reference 179

This encoding has been gradually enriched to contain important presenta-
tional information (e.g., the original names of variables, the original syntax of
formulas before normalization, etc.), and also to contain additional information
that is useful for understanding of the Mizar texts, and ATP and Wiki func-
tions [25,24] over them (e.g., showing the thesis computed by the system after
each natural deduction step, linking to ATP calls/explanations, and section edit-
ing in a Wiki).

We implemented the RDF annotation of Mizar articles as a part of the XSL
transformation that creates HTML from the Mizar semantic XML format. While
the OMDoc ontology defines vocabulary that seems suitable also for many Mizar
internal proof steps, the current Mizar implementation only annotates the main
top-level Mizar items, together with the top-level proofs. Even with this limi-
tation this has already resulted in about 160000 annotations exported from the
whole MML,14 which is more than enough for testing the Agora system. The ex-
isting Mizar HTML namespace was re-used for the names of the exported items,
such that, for example, the Brouwer Fixed Point Theorem:15

:: $N Brouwer Fixed Point Theorem
theorem Th14:

for r being non negative (real number), o being Point of TOP-REAL 2,
f being continuous Function of Tdisk(o,r), Tdisk(o,r)

holds f has_a_fixpoint
proof ...

gets annotated as16

<div about="#T14" typeof="oo:Theorem">
<span rel="owl:sameAs"

resource="http://dbpedia.org/resource/Brouwer_Fixed_Point_Theorem"/> ...
<div about="#PF23" typeof="oo:Proof"> ... </div>

</div>

Apart from the appropriate annotations of the theorem and its proof, an ad-
ditional owl:sameAs link is produced to the DBpedia (Wikipedia) “Brouwer_
Fixed_Point_Theorem” resource. Such links are produced for all Mizar theo-
rems and concepts for which the author defined a long (typically well-known)
name using the Mizar ::$N pragma. Such pragmas provide a way for the users to
link the formalizations to Wikipedia (DBpedia, ProofWiki, PlanetMath, etc.),
and the links allow the data consumers (like Agora) to automatically mesh to-
gether different (Mizar, Coq, etc.) formalizations using DBpedia as the common
namespace.

Coq Texts. Coq has access to type information when verifying a document.
This information is written into a globalization file, which lists types and cross-
references on a line/character-offset basis. Coq’s HTML renderer, Coqdoc, pro-
cesses this information to generate hyperlinks between pages, and style parts of
14 MML version 4.178.1142 was used, see

http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/
15 http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/brouwer.html#T14
16 T14 is a unique internal Mizar identifier denoting the theorem. Th14 is a (possibly

non-unique) user-level identifier (e.g., Brouwer or SK300 would result in T14 too).

http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/
http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/brouwer.html#T14

180 C. Tankink, C. Lange, and J. Urban

the document according to the given types. Coqdoc is implemented as a single-
pass scanner and lexer, which reads a Coq proof script and outputs HTML (or
LATEX) as part of the lexing process.

The resulting HTML page contains the information we defined in Section 4,
but serves this in an unstructured way: individual elements of the text get
wrapped in span elements corresponding to their syntactical class, and there
is no further grouping of this sequence of spans in a more logical entity (e.g. a
<div id="poly_id" class="lemma">...</div>), which would be addressable from our
syntax. In particular, it puts the name anchor around a theorem’s label, instead
of around the entire group.

For example, the following Coq code:

Lemma poly_id: forall a, a→ a.

gets translated into the following HTML fragment (truncated for brevity and
whitespace added for legibility):

Lemma
poly_id
...

Aside from the fact that the HTML is not valid (span elements do not allow
@type attributes), it has the main ingredients we are interested in extracting
for annotation (type and name), but no indication that the keyword Lemma, the
identifier poly_id following it, and the statement forall a, a→a. are related. The
problem worsens for proofs: blocks of commands are not indicated as a proof,
and there is no explicit relation between a statement and its proof, except for the
fact that a proof always directly follows a statement. This makes the Coqdoc-
generated HTML not directly suitable for our purpose; we need three steps of
post-processing:

1. Group Objects: The first step we take is grouping the ‘forest’ of markup
elements that constitutes a command for Coq in a single element. This means
parsing the text within the markup, and gathering the elements containing
a full command in a new element.

2. Export Type Information: We then export the type information from
Coq to the new element. We extract this information from the @type, derive
the corresponding OMDoc type from it, and put that into an RDFa @typeof

attribute.
3. Explicit Subject Identification: The final step is extracting @name and

putting it into @about, thus reusing it as a subject URI.

After post-processing, we obtain the desired annotated tree, containing the
HTML generated by Coqdoc.

The approach introduced here does not yet allow us to indicate the proof
blocks, for which we do need to modify Coqdoc. The adaption is fairly straight-
forward: each time the tool notices a keyword starting a proof, it outputs the
start of a new span, . Similarly, the adapted tool outputs
 when encountering a keyword signaling the end of a proof.

Point-and-Write – Documenting Formal Mathematics by Reference 181

Isar Texts. For Isar texts, the annotation process is still in development. We
make use of the Isabelle/Scala [27] library to generate HTML pages based on
the proof structure, already containing the annotation of a page. Because the
process has access to the full proof structure, it is easy to generate annotations:
the main obstacle is that the information about the identifiers at this level does
not distinguish between declaration and use, so it is difficult to know what items
to annotate with an @about.

6 System: Agora

We have implemented the mechanisms described in this paper as part of the
Agora prototype.17 A current snapshot of the source can be found in our code
repository.18 Agora provides the following functionality, grouped by the tasks
in the main use case. Writing and rendering the narrative is illustrated by the
Agora page about the binomial coefficient.19

Formalization. Agora allows the author to write her own formalizations grouped
in projects, which resemble repositories of formal and informal documents. Agora
has some support for verifying Coq formalizations, with a rudimentary editor for
changing the files. Alternatively, it allows an author to synchronize her working
directory with the system (currently, write access to the server is required for
this). Proof scripts from this directory are picked up, and provided as documents.
Agora also scrapes Mizar’s MML for HTML pages representing theories, and
includes them in a separate project. Regardless of origin and editing methods,
the proof scripts are rendered as HTML, and annotated using the vocabulary
specified in Section 4.

Narratives. To allow the author to write natural language narratives, we provide
the Creole Wiki syntax [21], which allows an author to use a lightweight markup
syntax. Next to this markup and the antiquotation described next, the author
can write formulae in LATEX syntax, supported by the MathJax20 library.

Antiquotation. The author can include formal content from any annotated
page by using the antiquotation syntax, just giving page names to refer to
pages within Agora, or referring to other projects or URLs by writing a ref-
erence of the form: @{type location#name}. For example, the formalization of
the binomial coefficient in Coq is included in the Wiki, so it can be referred to
by @{oo:Definition CoqBinomialCoefficient#C}. On the other hand, the Mizar
definition is given at an external Web page. Because the URL is rather long, the
antiquotation is @{oo:Definition mml:binom.html#D22}. In this reference, mml is

17 http://mws.cs.ru.nl/agora
18 https://bitbucket.org/Carst/agora
19 http://mws.cs.ru.nl/agora/cicm_sandbox/BinomialCoefficient
20 http://www.mathjax.org

http://mws.cs.ru.nl/agora
https://bitbucket.org/Carst/agora
http://mws.cs.ru.nl/agora/cicm_sandbox/BinomialCoefficient
http://www.mathjax.org

182 C. Tankink, C. Lange, and J. Urban

a prefix, defined using the Agora-specific command @{prefix mml=http://mizar.

cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html}. We do not consider prefixes
a part of the “core” syntax, as another implementation could restrict the system
to only work within a single Wiki, causing the links to be (reasonably) short.

Rendering a pagewritten in this way,Agora transforms the Wiki syntax into HTML
using a modified Creole parser.The modification takes the antiquotations and pro-
duces a placeholder div containing the type, reference and repository of the an-
tiquotation as attributes. When the page is loaded, the placeholders are replaced
asynchronously, by the referred-to entities. This step is necessary to prevent very
long loading times on pages referring to many external pages. When the content
is included, it is pre-processed to rewrite relative links to become absolute (with
the source page used as the base URL), a matter of a simple library call.

An alternative to asynchronously fetching the referenced elements would be
to cache them when the page is written. This approach could be combined with
the asynchronous approach implemented, and would allow authors to refer to
content that would, inevitably, disappear. We currently have not implemented
it, because it requires some consideration in the scope of Agora’s storage model.

Appearance of Included Content. The appearance of included snippets depends
on several things:

– Cascading Style Sheets (CSS) are used to apply styling to objects that have
certain attributes. When including the snippets, they can either be styled
using the information in the source document (because the syntax is marked
up according to rules for a specific system), or the styling can be specified in
the including document (to make the rendered document look more uniform).
In the implementation, we statically include the CSS files from the source
text. This is manageable due to the small number of included systems, but
requires further consideration.

– The system could use the included snippets to present the data using an
alternative notation than the plain text that is typical for interactive theorem
provers. This approach would require some system-dependent analysis of
the included snippets, maybe going further than just HTML inclusion. The
gathered data could then be used to render the included format in a new
way, either specified by the author of the source text, or the author of the
including text. This approach of “re-rendering” structured data was taken
as part of the MoWGLI project [3], where the author of an informal text
writes it as a view on a formal structure, including transformations from the
formal text to (mathematical) notation.

Because our approach intends to include a wide variety of HTML-based
documents, we do not consider this notational transformation viable in gen-
eral: it requires specific semantic information provided by the interactive
theorem prover, which is not preserved in the annotation process described
in Section 5, possibly not even exposed by the prover. However, where we
have this information available, it would be good to use it to make a better
looking rendered result.

http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html
http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html

Point-and-Write – Documenting Formal Mathematics by Reference 183

7 Conclusions and Future Work

This paper describes a mechanism for documenting formal proofs in an infor-
mal narrative. The narrative includes pointers to objects found in libraries of
formalized mathematics, which have been annotated with appropriate types and
names. The mechanism has been implemented as part of the Agora prototype.
Our approach is Web-scalable in that the Agora system is independent from a
particular formalized library: It may be installed in a different place, it refer-
ences formal texts by URL, and it does not make any assumptions about the
system underlying the library, except requiring an HTML+RDFa export. As fu-
ture work, we see several opportunities for making the mechanisms more user
friendly:

Include More Systems. By including more systems, we increase the number of
objects an author can refer to when writing a Wiki page. Because we made our
annotation framework generic, this should not be a very difficult task, and single
documents could be annotated by authors on the fly, if necessary.

Provide Other Methods for Reference. At the moment, the reference part of
our antiquotations is straightforward: the author should give a page and the
identifier of the object in this page. It would be interesting to allow the author
to use an (existing) query language to describe what item she is looking for, and
use this to find objects in the annotated documents.

Improve Editing Facilities. Agora currently has a simple text box for editing its
informal documents. We could provide some feedback to the author by showing
a preview of the marked up text, including resolved antiquotations. More elab-
orately, we could provide an ‘auto-completion’ option, which shows the possible
objects an author can refer to, limited by type and the partial path: if the au-
thor writes @{oo:Theorem Foo#A}, the system provides an auto-completion box
showing all the theorems in the “Foo” namespace, starting with “A”. This lookup
could be realized in a generic way, abstracting from the different formalizations,
by harvesting the RDFa annotations into an RDF database (“triple store”) and
implementing a query in SPARQL.

Consistency. The current design of the mechanisms already provides a better
robustness than just including objects by giving a location, but can still be
improved to deal with objects changing names. A solution would be to give
objects an unchanging identifier and a human-readable name, and storing the
antiquotation as a reference to this identifier. When an author edits a document
containing an antiquotation, the name is looked up, and returned in the editable
text.

Despite these shortcomings, we believe we have made significant steps towards
a system in which authors can document formal mathematics by pointing and
writing, without having to commit prematurely to a specific workflow, such as
literate proving, or even a tool chain, because representations of (formalized)
mathematics can be annotated after they have been generated.

184 C. Tankink, C. Lange, and J. Urban

References

1. Resource Description Framework (RDF): Concepts and abstract syntax. Recom-
mendation, W3C (2004), http://www.w3.org/TR/rdf-concepts

2. RDFa in XHTML: Syntax and processing. Recommendation, W3C (October 2008),
http://www.w3.org/TR/rdfa-syntax

3. Asperti, A., Geuvers, H., Loeb, I., Mamane, L.E., Coen, C.S.: An interactive alge-
bra course with formalised proofs and definitions. In: Kohlhase [14], pp. 315–329

4. Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton,
A.P. (eds.): AISC 2010. LNCS, vol. 6167. Springer, Heidelberg (2010)

5. Bancerek, G., Kohlhase, M.: Towards a Mizar Mathematical Library in OMDoc for-
mat. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in
Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, vol. 10(23),
pp. 265–275. University of Białystok (2007)

6. Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in MIZAR. J.
Autom. Reasoning 29(3-4), 189–224 (2002)

7. Blackwell, A.F., Green, T.R.G.: Cognitive dimensions of information artefacts: a
tutorial. Tutorial (1998),
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

8. Cairns, P., Gow, J.: Literate proving: Presenting and documenting formal proofs.
In: Kohlhase (ed.) [14], pp. 159–173

9. The Coq wiki, Browsable online at http://coq.inria.fr/cocorico

10. The Coq mailing list, coq-club@inria.fr
11. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.

Morgan & Claypool (2011)
12. Heinz, C., Moses, B.: The listings package. Technical report, CTAN (2007), http://

www.ctan.org/tex-archive/macros/latex/contrib/listings

13. The Isabelle mailing list, cl-isabelle-users@lists.cam.ac.uk
14. Kohlhase, M. (ed.): MKM 2005. LNCS (LNAI), vol. 3863. Springer, Heidelberg

(2006)
15. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents

[version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)
16. Lange, C.: OMDoc ontology (2011), http://kwarc.info/projects/docOnto/omdoc.

html

17. Lange, C.: Ontologies and languages for representing mathematical knowledge on
the semantic web. Semantic Web Journal (in press, 2012)

18. Lange, C., Urban, J. (eds.): Proceedings of the ITP 2011 Workshop on Mathemat-
ical Wikis (MathWikis). CEUR-WS, vol. 767 (2011)

19. The Mizar mailing list, mizar-forum@mizar.uwb.edu.pl
20. The Mizar wiki, Browsable online at http://wiki.mizar.org

21. Sauer, C., Smith, C., Benz, T.: Wikicreole: a common wiki markup. In: WikiSym
2007, pp. 131–142. ACM, New York (2007)

22. The homotopy type theory blog, http://homotopytypetheory.org/
23. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML

easy. In: Kohlhase (ed.) [14], pp. 346–360
24. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: Motivation,

considerations, and initial prototype. In: Autexier, et al. (eds.) [4], pp. 455–469
25. Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formal-

izing mathematics in Mizar. In: Autexier, et al. (eds.) [4], pp. 132–146

http://www.w3.org/TR/rdf-concepts
http://www.w3.org/TR/rdfa-syntax
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://coq.inria.fr/cocorico
http://www.ctan.org/tex-archive/macros/latex/contrib/listings
http://www.ctan.org/tex-archive/macros/latex/contrib/listings
http://kwarc.info/projects/docOnto/omdoc.html
http://kwarc.info/projects/docOnto/omdoc.html
http://wiki.mizar.org
http://homotopytypetheory.org/

Point-and-Write – Documenting Formal Mathematics by Reference 185

26. van Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F.: ITP 2011. LNCS,
vol. 6898. Springer, Heidelberg (2011)

27. Wenzel, M.: Isabelle as Document-Oriented Proof Assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI),
vol. 6824, pp. 244–259. Springer, Heidelberg (2011)

28. Wenzel, M.M.: Isabelle/Isar — a versatile environment for human-readable formal
proof documents. PhD thesis, Technische Universität München (2002)

An Essence of SSReflect

Iain Whiteside, David Aspinall, and Gudmund Grov

CISA, School of Informatics
University of Edinburgh

Edinburgh EH8 9AB, Scotland

Abstract. SSReflect is a powerful language for proving theorems in the
Coq system. It has been used for some of the largest proofs in formal
mathematics thus far. However, although it constructs proofs in a formal
system, like most other proof languages the semantics is informal making
it difficult to reason about such proof scripts. We give a semantics to a
subset of the language, using a hierarchical notion of proof tree, and show
some simple transformations on proofs that preserve the semantics.

1 Introduction

The SSReflect language for Coq was initially developed by Gonthier to facilitate
his proof style of small scale reflection during the pioneering formalisation of
the Four Colour Theorem (FCT), [7,9,14]. SSReflect provides powerful matching
facilities for precise rewriting, so-called views offering the power of reflection, and
a host of language constructs for managing the large numbers of variables and
assumptions typical of the combinatorial proofs encountered in the FCT. The
language has matured and is now being used more widely in the Coq community
[15,13]. In particular, Gonthier and his team are using it in their formalisation
of finite group theory and the Feit-Thompson theorem [8].

As in any programming or proof language, it is all too easy to write poorly
structured – even unreadable – scripts during exploration and it is a tedious, of-
ten error-prone task to refactor proofs to make them presentable, to have good
style [12]. Indeed, Gonthier claims to have spent months refactoring his proof of
the FCT. The notion of “good” and “bad” style is cultural, and one reason for
focussing on SSReflect is the clear ideas about what this style should be. Indeed,
a large part of the language – the part that we are most keenly interested in –
facilitates a style of proof that is designed to create proof scripts that are robust,
maintainable, and replayable. Such proofs involves ensuring each line (or sen-
tence) has a clear meaning mathematically (related formula manipulations, an
inductive step, etc), keeping scripts as linear as possible, emphasising important
goals, as well as supporting many convenient naming conventions.

The challenge is to provide refactorings that can be automated and, crucially,
can be proved correct. That is, performing the refactoring will not break a proof.
Unfortunately many existing proof languages, including SSReflect, have no for-
mal semantics and their behaviour is determined by execution on goals, making

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 186–201, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Essence of SSReflect 187

it difficult to relate equivalent proof scripts. In previous work [19], we investi-
gated proof refactorings – as a structured and automatable way to transform a
“bad” script into a “good” script – on a formally defined Isar-style declarative
proof language [18]. Here we make a step in this direction for SSReflect by first
modelling the semantics of (a subset of) the language, which we call eSSence,
then demonstrating how some simple transformations may be rigorously defined.
Our semantics is based on a tactic language called Hitac [1], which constructs
hierarchical proof trees (or Hiproofs) when executed. Hiproofs [4] offer the ad-
vantage that one can view the proof tree at many levels of abstraction: hiding
or showing as much detail as desired. We use Hiproofs as an underlying proof
framework because the structured proofs written in SSReflect have a very natural
hierarchical interpretation and give us novel ways to view the proof.

Contributions. We have identified the main contributions of our work as 1) pro-
viding a clear operational semantics for the eSSence language; and, 2) providing
some initial refactorings of SSReflect proofs. Furthermore, we believe this pre-
sentation will help disseminate both the novel features of the language – which
are by no means Coq-specific – and the Hiproof and Hitac formalisms.

Outline. In the next section, we introduce the eSSence language by example and
briefly sketch the Hitac and Hiproof formalisms. Section 3 introduces a simple
type theory as the underlying logic for our language. The syntax and semantics of
eSSence is described in Sections 4 and 5. We then show how to use the semantics
to refactor our example in Section 6, before concluding in Section 7.

2 Background

The simple eSSence (and SSReflect) script, shown below left, is a proof of (A →
B → C) → (A → B) → A → C.

move => h1 h2 h3.
move : h1.
apply.
-by [].
-apply: h2.
by [].

move => AiBiC AiB Atrue.
apply: AiBiC ; first by []
by apply: AiB.

An eSSence proof is a paragraph that, in this case, consists of three sentences
and then two nested paragraphs (the first a single sentence long, the second two
sentences). The hyphens marking the start of each paragraph are annotations
to explicitly show where the proof has branched. Each sentence operates on the
first goal in a stack and any subgoals resulting from the execution of the sentence
are pushed back on the top of the stack. We explain each sentence:

1. The move tactic here plays an explanatory role (acting as the identity tactic).
The work is done by ‘:’ and ‘=>’, which are actually tacticals to pop and push

188 I. Whiteside, D. Aspinall, and G. Grov

variables and assumptions to/from the context. This first sentence extends
the context to h1 : (A → B → C), h2 : (A → B), and h3 : A with the goal
being simply C.

2. The sentence move : h1. will then push h1 back into the goal, transforming
it to (A → B → C) → C. Note that the context is unordered, we can push
arbitrary context elements as long as the context stays well-formed.

3. In the first branch, apply attempts to match the conclusion of the goal with
the conclusion of the first assumption – motivating the previous step – then
breaks down the assumption as new subgoals - in this case, two: A and B.

4. The by tactical attempts to solve a goal with the supplied tactic (alongside
default automation applied after). The [] means that the goal is trivial and
is solved by the default automation – the assumption h3 is used to solve A.

5. The second branch requires further application using h2 in the first sentence
and solving by assumption in the second. In this branch, however, apply:,
behaves differently from apply as it takes arguments, the term to be applied.
With a single argument, for example h2, this behaves as move : h2. followed
by apply.

In this example, we see two main features of the language: clustering all book-
keeping operations into two tacticals (: and =>) and providing structure and
robustness to scripts using indentation, annotation, and by. The language has
many more constructs, but this gives a good flavour.

However, this isn’t a very well-presented script. It is too verbose and the
assumption names do not convey any information. We can apply structured
changes to improve the proof. We can compress move : h1. and apply. into a
single line, using the THEN tactical (;) move: h1 ; apply. Furthermore, we can
transform it to simply apply: h1 as move behaves as an identity tactic. Finally,
we can merge the obvious steps into the same line and rename the hypotheses.
To refactor apply. and -by []., we utilise the first tactical whose supplied
tactic operates only on the first subgoal of a branch. The resulting script is
displayed above right. Now, each sentence can be understood as an – albeit
simple – mathematical step. In Section 6, we show how to give provably correct
transformations that can achieve this refactoring.

�
�

�

�

�

Fig. 1. A Hiproof

�

� �

Fig. 2. The skeleton

����

����

����

�	
��

Fig. 3. INTROS

An Essence of SSReflect 189

Hierarchical proof. As an underlying language for eSSence proofs, we use Hiproofs.
First investigated by Denney et al in [4], Hiproofs are a hierarchical representa-
tion of the proof trees constructed by tactics. The hierarchy makes explicit the
relationship between tactic calls and the proof tree constructed by these tactics.
An abstract example of a Hiproof is given in Figure 1, where a, b, and c are called
atomic tactics i.e. the inference rules of the language. Figure 1 reads as follows:
the abstract tactic l first applies an atomic tactic a. The tactic a produces two
subgoals; the first is solved by the atomic tactic b within the application of l.
Thus, the high-level view is tactic l produces a single subgoal, which is then
solved by the tactic m. The underlying proof tree, called the skeleton, is shown
in Figure 2. More concretely, Figure 3 shows the application of an INTROS
tactic as a Hiproof. Following [1], we give a syntactic description of Hiproofs:

s ::= a | id | swap | [l]s | s ; s | s ⊗ s | 〈〉

Sequencing (s ; s) corresponds to composing boxes by arrows, tensor (s ⊗ s)
places boxes side-by-side, and labelling ([l]s) introduces a new labelled box.
Identity (id) and empty (〈〉) are units for ; and ⊗ respectively. A swap switches
the order of two goals. Labelling binds weakest, then sequencing with tensor
binding most tightly. We can now give a syntactic description of the Hiproof in
Figure 1: ([l]a ; b ⊗ id) ; [m] c. Atomic tactics, a, come from a fixed set A and
what we call an atomic tactic is an inference rule schema:

γ1 . . . γn

γ a ∈ A

stating that the atomic tactic a, when applied to the goal γ, breaks it down
into subgoals γ1, . . . , γn. We say Hiproofs are defined in terms of a derivation
system, which instantiates the atomic goals γ ∈ G and atomic tactics a ∈ A. A
Hiproof is valid if it is well-formed and if atomic tactics are applied correctly.
Validation is defined as a relation on lists of goals s g1 → g2, and is the key
proof checking property. We expand on this notion of derivation system and
provide an instantiation for eSSence in Section 3.

Hierarchical tactics. The Hitac language extends Hiproofs as follows:

t ::= . . . | assert γ | t | t | name (t, . . . , t) | X

In addition to the standard Hiproof constructs, goal assertions (assert γ) can con-
trol the flow; alternation (t | t) allows choice; and, defined tactics (name (t, . . . , t))
and variables (X) allow us to build recursive tactic programs. Tactic evaluation
is defined relative to a proof environment, specifying the defined tactics available.
Evaluation of a tactic is defined as a relation

〈g, t〉 ⇓t
E 〈s, g ′〉,

which should be read as: ‘the tactic t applied to the list of goals g returns a
Hiproof s and remaining subgoals g ′, under the proof environment E ’.

190 I. Whiteside, D. Aspinall, and G. Grov

To illustrate, we give the evaluation rules for sequencing, tensor, and defined
tactics below, where we write Xn as shorthand for the variable list [X1, . . . , Xn].
For a full presentation see [1].

〈g1, t1〉 ⇓t
E 〈s1, g〉 〈g, t2〉 ⇓t

E 〈s2, g2〉
〈g1, t1 ; t2〉 ⇓t

E 〈s1 ; s2, g2〉
(B-Tac-Seq)

〈g1, t1〉 ⇓t
E 〈s1, g ′

1〉 〈g2, t2〉 ⇓t
E 〈s2, g ′

2〉
〈g1@g2, t1 ⊗ t2〉 ⇓t

E 〈s1 ⊗ s2, g
′
1@g ′

2〉
(B-Tac-Tens)

E(name) = (Xn, t) 〈g, t[t1/X1, . . . , tn/Xn]〉 ⇓t
E 〈s, g ′〉

〈g, name (t1, . . . , tn)〉 ⇓t
E 〈s, g ′〉 (B-Tac-Def)

The evaluation rules for tactics are correct and construct valid proofs:

Theorem 1 (Correctness of Hitac semantics). If 〈g1, t〉 ⇓t
E 〈s, g2〉 then

s g1 −→ g2.

With Hitac we can, for example, define a parameterised tactic ALL(X), which
applies the tactic supplied as a parameter to all subgoals, as follows:

ALL(X) := X ⊗ (ALL(X) | 〈〉)
ID := ALL(id)

The supplied tactic, X, is applied to the first subgoal and the tactic is called
recursively on the remaining goals; it will succeed and apply the empty tactic
when the list of goals is empty. Thus, ID can be seen as a more general identity
tactic. We can also define tactics which rotate and reflect the order of subgoals:

NULL := 〈〉 | id
ROTATE := [(swap ⊗ ID) ; (id ⊗ (ROTATE) | 〈〉)] | NULL
ROTATE R := [(ID ⊗ swap) ; (id ⊗ (ROTATE R) | 〈〉)] | NULL
REFLECT := ROTATE ; ((REFLECT ⊗ id) | 〈〉)
The difference between ROTATE and ROTATE R is the direction of rota-

tion. The tactic ROTATE maps [g1, g2, g3, g4] to [g2, g3, g4, g1] and ROTATE R
maps to [g4, g1, g2, g3]. These are used to define the various rotation tacticals in
SSReflect.

3 Underlying Logic of eSSence

In keeping with the origins of SSReflect, we instantiate the Hiproof framework
with a type theory; however, we choose a less expressive theory than the Calculus
of Inductive Constructions used in Coq to simplify the presentation but keep
the flavour of the system. The logic is called λHOL and is well studied in e.g.
Barendregt [5]. The set of types, T , is given as follows:

T ::= V | Prop | Type | Type′ | T T | λ V : T . T | Π V : T .T

An Essence of SSReflect 191

where V is a collection of variables. A declaration is x : A where A ∈ T and
x ∈ V . A context is a finite, ordered sequence of declarations, with all subjects
distinct and the set of sorts, s = {Prop, Type, Type′}. Figure 4 enumerates the
rules that axiomatise the notion of a typing judgement Γ A : B (saying
A has the type B in the context Γ). The pairs (s1, s2) are drawn from the
set {(Type, Type), (Type, Prop), (Prop, Prop)}, allowing construction of function
types, universal quantification, and implication respectively.

Definition 1 (Atomic Goal). A goal is a pair of a context, Γ and a type
P ∈ T , such that Γ P : Prop. We will write Γ P for goals.

〈〉 Prop : Type

Γ A : s

Γ, x : A x : A

Γ A : B Γ C : s

Γ, x : C A : B

Γ A : B Γ B′ : s B =β B′

Γ A : B′

〈〉 Type : Type′

Γ, x : A b : B Γ (Πx : A.B) : s

Γ (λx : A.b) : (Πx : A.B)

Γ F : (Πx : A.B) Γ a : A

Γ Fa : B[x := a]

Γ A : s1 Γ, x : A B : s2

Γ (Πx : A.B) : s2

Fig. 4. The typing rules for λHOL

Atomic tactics, presented in Figure 5 as inference rules, should be read back-
wards: from a single goal, applying the rule gives zero or more subgoals. Side-
conditions (restricting applicability) are also written above the line, but will be
always the leftmost and not of a goal form.

A-Intro(n). The INTRO tactic performs an introduction step. The subgoal
generated is the obvious one and the assumption is given the name supplied.

A-Exact(t). The EXACT tactic takes a term as a parameter and solves the
goal if the term has a type convertible with the goal.

A-Refine(t). Refinement takes a term of a convertible type to the current
goal, containing proof variables – explicitly shown in the rule – and leaves
the variables as subgoals. There is an additional side-condition on the rule
A-Refine: that the variables xi cannot occur inside the P1 . . . Pn.

Atomic tactics preserve well-formedness in the sense that given a well-formed
goal (Definition 1), application of the tactic produces more well-formed goals.
Another important property for a proof system is:

Conjecture 1 (Soundness of Atomic Tactics.) The atomic tactics are
sound with respect to the low-level rules of λHOL. That is, if we construct a
proof term of the subgoals, then we can construct a proof term for the original
goals.

We have not proved this for our system, as it is not a key goal: rather the actual
logical system serves to illustrate our approach.

192 I. Whiteside, D. Aspinall, and G. Grov

Γ � t : Q P =β Q

Γ � P
(A-Exact(t))

(x : P) ∈ Γ for some x

Γ � P
(A-Assumption)

n /∈ Γ Γ, (n : T) � U

Γ � Πx : T.U
(A-Intro(n))

x : T ∈ Γ wf (Γ \ x : T) Γ \ x : T � Πx : T.P

Γ � P
(Revert(x))

Γ � U : Prop Γ � U Γ � U → P

Γ � P
(A-Assert(U))

t(?x1 : P1, . . . , ?xn : Pn) : Q P =β Q
Γ � P1 . . . Γ � Pn

Γ � P
(A-Refine(t))

Fig. 5. Atomic tactics

4 The eSSence Language

The syntax for eSSence is given in Figure 6. A sentence is a grammar ele-
ment sstac . The parameters num , term , and ident stand for numerals, terms,
and identifiers respectively. The basic tactics are move, apply, and one or more
rewrite steps. The have tactic allows forward proof and ; is the LCF THEN and
THENL tacticals. The by tactical ensures that the supplied tactic solves the
current goal. Using the first and last tacticals, one can operate on a subset
of goals and first n last performs subgoal rotation. Most bookkeeping oper-
ations are performed using the discharge and introduction tacticals (: and =>
respectively), which pop/push assumptions and variables from/to the context.
The first iitem in an application of the introduction tactical can be a branching
pattern, allowing for the case where the corresponding tactic introduces multi-
ple subgoals, which we can deal with simultaneously. For a full presentation and
tutorial guide to the original SSReflect language, see [9,10].

Paragraphs. A proof script in SSReflect is simply a list of sentences, separated by
full stops; however, one can optionally annotate a script with bullets (∗, +, and
−), which, along with indentation, helps make clear the subgoal flow within a
script. The idea of these annotations is to use bullets to highlight where a proof
branches. We build this directly into the eSSence language using the sspara
grammar element. Paragraphs can be understood abstractly as a non-empty
list of sentences followed by a possibly empty list of (indented) paragraphs. We
add the restriction that in each paragraph the annotations must be the same
bullets. There is no semantic difference between the various bullet symbols. The
SSReflect annotation guidelines state that:

– If a tactic sentence evaluates and leaves one subgoal, then no indentation
or annotation is required. If a tactic sentence introduces two subgoals – the
have tactic, for instance – then the proof of the first goal is indented. The
second is at the same level of indentation as the parent goal.

An Essence of SSReflect 193

ssscript ::= sspara

sstac ::= dtactic
| apply

| apply:

| rewrite rstep+

| have: term [by sstac]
| sstac ; chtac
| by chtac
| exact term
| sstac ; first [num] chtacopt
| sstac ; last [num] chtacopt
| sstac ; first [num] last
| sstac ; last [num] first
| dtactic: ditem . . . ditem
| sstac=> [iitemstart] iitem . . . iitem

dtactic ::= move

chtac ::= sstac | [sstac| . . . |sstac]
chtacopt ::= sstac | [[sstac]| . . . |[sstac]]
iitemstart ::= iitem | [iitem∗| . . . |iitem∗]

ssanno ::= + | − | ∗

sspara ::= sstac.
...
sstac.
(ssanno sspara)∗

rstep ::= ([-]term) | sitem

sitem ::= /= | // | //=

ditem ::= term

iitem ::= sitem | ipattern

ipattern ::= ipatt ident

Fig. 6. The eSSence language syntax

– If a sentence introduces three or more subgoals then bullets and indentation
are required to mark the start of each subgoal’s proof. The last, however, is
outdented to the same level as the parent.

The outdenting of the final goal is to emphasise that it is somehow more diffi-
cult or interesting; this concept motivates the tacticals for rotating subgoals. We
simplify the annotations by using explicit bullets even for the case of two sub-
goals and also bulleting the final subgoal. This notion of structuring corresponds
exactly with the hierarchy in Hiproofs - every bullet corresponds to a labelled
box. Figure 7 contains examples of scripts that follow our simplified structuring
guidelines (on the right is an indication of the arity of each tactic). Our seman-
tics, given next, enforces these guidelines and in Section 6 we give a syntax and
semantics for scripts without annotation and describe how to annotate a script
automatically.

5 Giving Meaning to eSSence Scripts

The semantics for eSSence is based on a static translation from eSSence to Hitac,
written �sstac�, giving us:

194 I. Whiteside, D. Aspinall, and G. Grov

s1. [γ1] → [γ2]
s2. [γ2] → [γ3]
s3. [γ3] → []

s1. [γ] → [γ1, γ2, γ3]
− s2. [γ1] → []
− s3. [γ2] → []
− s4. [γ3] → [γ4]

s5. [γ4] → []

s1. [γ] → [γ1, γ2]
− s2. [γ1] → []
− s3. [γ2] → [γ3, γ4]

+ s4. [γ3] → []
+ s5. [γ4] → []

Fig. 7. A linear script, one level of branching, and multiple branching levels

〈γ, �sstac�〉 ⇓t
E 〈s, g〉

〈γ, sstac〉 ⇓E 〈s, g〉

which says that under an environment E the tactic sstac applied to the goal γ
results in a list of generated subgoals g and a Hiproof s if the translated Hitac
tactic behaves the same. We present most of the translation rules in Figures 8
and 13. We will explain the rules in Figure 8 and leave the rest for the reader.

�move� = [move] assert (Γ Πx : A.B) | HNF

�by sstac� = [by] �sstac � ; ALL(DONE) ; 〈〉

�sstac1 ; first sstac2� = �sstac1� ; ([first] �sstac2�) ⊗ ID

�sstac ; first last� = [FL] �sstac � ; REFLECT

�sstac ; first k last� = [FkL] �sstac � ; ROTATE ;k

�sstac=> iitem1 . . . iitemn� = [=>] �sstac � ; �ipat iitem1� ; . . . ; �ipat iitemn�

�ipat ident � = INTRO(id)

Fig. 8. eSSence evaluation semantics part one

�move�. The move tactic behaves as an identity if an introduction step is possible
or transforms the goal to head normal form otherwise. We model this by
providing an assertion for checking a product and applying a tactic HNF,
which reduces the goal to head normal form. Note also that we ‘box up’ the
application of move to abstract away from any normalisation done by this
tactic. This is the first of many occasions in the semantics where we use
hierarchy to hide away details.

�by sstac�. This rule evaluates the primitive form of the closing tactical, ap-
plying the DONE tactic to all subgoals after its parameter as some sort
of default automation (including A-Assumption). We assume it to be built

An Essence of SSReflect 195

from more primitive tactics. The empty hiproof is used to fail the by tactical
if the goals are not solved after this automation is applied. The translation
is invoked recursively on sstac .

�sstac1 ; first sstac2�. In this primitive form of selection tactical, we apply
sstac2 to only the first subgoal generated and add hierarchy to hide the
proof.

�sstac ; first last�. This tactical simply reflects the subgoals and is imple-
mented by the Hitac reflection tactic described earlier.

�sstac ; first k last�. To the subgoals [g1, g2, g3, g4, g5], sstac1 ; first 2 last
would result in the remaining goals looking like [g3, g4, g5, g1, g2] and it is im-
plemented by an appropriate number of rotations. The syntax t ;n simply
means a sequence of applications of a tactic t of length n i.e. t ; . . . ; t.

�sstac=> iitem1 . . . iitemn� and �ipat ident �. These rules are used to translate
the non-branching version of the introduction tactical, an instance of which
would be sstac=> iitem1 . . . iitemn. The tactic sstac is evaluated first; then
each iitemi left to right. Each iitem can be either a simplification item or
an ipattern and each ipattern is simply an introduction step.

Paragraphs. We represent scripts abstractly as a pair of lists: a sstac list and a
paragraph list and we extend the evaluation relation to operate on a list of goals
and produce a list of subgoals and a Hiproof. The evaluation rules follow:

〈γ, sstac 〉 ⇓E 〈s, []〉
〈[γ], ([sstac], [])〉 ⇓E 〈[S]s, []〉

(SS-Tac)

sstacs �= [] 〈γ, sstac〉 ⇓E 〈sγ , [γ′]〉
〈[γ′], (sstacs , ssparas)〉 ⇓E 〈s, []〉

〈[γ], (sstac :: sstacs , ssparas)〉 ⇓E 〈([S]sγ); s, []〉
(SS-TacCons)

〈γ, sstac 〉 ⇓E 〈sγ , g〉 length(g) > 1 〈g, ([], ssparas)〉 ⇓E 〈s, []〉
〈[γ], ([sstac], ssparas)〉 ⇓E 〈([S]sγ); s, []〉

(SS-ParaStart)

〈[γ], sspara 〉 ⇓E 〈sγ , []〉 〈g, ([], ssparas)〉 ⇓E 〈sg , []〉
〈γ :: g, ([], sspara :: ssparas)〉 ⇓E 〈([P]sγ) ⊗ sg , []〉

(SS-ParaCons)

〈[], ([], [])〉 ⇓E 〈〈〉, []〉 (SS-ParaEnd)

The idea is that given a paragraph (a pair of sentence and sub-paragraph lists),
we first evaluate each sentence sequentially. All sentences except the last must
return one goal (SS-TacCons). The last must either solve the goal and be the
end of the paragraph (SS-Tac) or leave n > 1 and contain n nested paragraphs
(SS-ParaStart). We apply each paragraph to each goal, then label and glue
the proofs together (SS-ParaCons). Each sentence is also labeled to make clear
the script structure. In this, we simply labelled each sentence and paragraph with
S or P ; however, in future we plan to allow supplied names. It can be shown
that the evaluation relation behaves suitably:

Proposition 1 (Correctness of Evaluation). If (Γ P) ≡ γ is a well-
formed proposition, and 〈γ, sstac〉 ⇓E 〈s, g〉 then s is valid. That is, s [γ] → g.

196 I. Whiteside, D. Aspinall, and G. Grov

Example. Recall our proof from Section 2, shown here with sentences labelled:

move => AiBiC AiB Atrue. sent1
apply : AiBiC ; first by [] sent2
by apply : AiB. sent3

This script is parsed into a paragraph consisting of three sentences (and no ad-
ditional paragraphs). At the script level, each sentence is evaluated sequentially
using the rule SS-TacCons twice and then SS-Tac to finish the proof (since
it operates on a singleton sentence list and empty paragraph list). This gives us
the high-level Hiproof in Figure 9. At the level of sentences, we have:

�

��������	
�	
���
������	
����������
���

������	
��
�������
���

����	
�	
��	
��	
��	
�	
�

Fig. 9. High level view of Hiproof

���������	��	�
�
�������	�

�������
���

���

������������

�����

�
�������	�

�������
���

�
�������	�

�������
���

���

�

Fig. 10. The Hiproof for sent2

– sent1 is translated by applying introduction tactical translation rule at the
top level. During tactic evaluation, move behaves like an identity then each
iitem applies the INTRO tactic to generate a goal:

AiBiC : A → B → C , AiB : A → B , Atrue : A C.

– sent2, whose root is an application of the first tactical (where sstac1 is
apply : AiBiC and sstac2 is by []), is then translated. The resulting tactic
calls apply and generates two subgoals : A and B in a context with AiB and
Atrue. The second part of the translated first tactical – corresponding to
the closing tactical by [] – is evaluated and solves the goal.

– The final sentence is used to solve the goal AiB : A → B, Atrue : A B.
and proceeds similarly to sent2.

Figure 10 shows one view of the Hiproof generated by execution of sent2, in
context with the rest of the proof. Here we see a little of the power of Hiproofs,
as we can effectively hide the details of the proof of the first subgoal.

An Essence of SSReflect 197

6 Refactoring eSSence

We are now in a position to demonstrate a small number of refactorings and
illustrate the general approach to showing correctness. In order to do so we first
introduce a notion of unstructured script, which is simply a list of sentences
(sstacs). From an eSSence script, we can easily obtain an unstructured script
by simply dropping annotations, and collapsing paragraphs into a single list.
We end up, for example, using the second example in Figure 7, with the script
represented as s1 :: s2 :: . . . sn :: [] (or [s1, . . . , sn]), given in Figure 11.

s1. [γ] → [γ1, γ2, γ3]
s2. [γ1] → []
s3. [γ2] → []
s4. [γ3] → [γ4]
s5. [γ4] → []

Fig. 11. Unstructured script

〈[], []〉 ⇓E 〈〈〉, []〉 (NS-Emp)

〈γ, ss〉 ⇓E 〈sγ , gγ〉 n = len(g) − 1
〈gγ @ gs, tacs〉 ⇓E 〈s, g〉

〈γ :: gs, ss :: tacs〉 ⇓E 〈(sγ ⊗ idn) ; s, g〉
(NS-Cons)

Fig. 12. Evaluation of unstructured script

We give a semantics to evaluation with Figure 12 (writing idn for an identity
tensor of length n i.e. id ⊗ . . . ⊗ id). The rule NS-Cons peels off a goal from
the stack and applies the first tactic to it; it then pushes the resulting subgoals
onto the stack (pre-appending to a list) and recurses with the rest of the tactics
to be applied. The Hiproof is pieced together by tensoring together identity
tactics to ‘skip’ the rest of the goals in the initial list, with NS-Emp dealing
with the empty list case. Crucially, if an unstructured script is well-formed and
evaluates successfully, we can introduce structure using an annotation operation.
Annotation requires only information about the arity of each tactic (that is, the
number of resulting subgoals). Annotation and flattening are dual operations
and we have the following important property:

Theorem 2 (Correctness of annotation). If we have an unstructured script,
sstacs, such that: 〈γ, sstacs〉 ⇓E 〈s, g〉, then: 〈γ, annotate(sstacs)〉 ⇓E 〈s ′, g〉.

This means, that if we wish we can ignore the structure when reasoning about
refactorings as it doesn’t affect the resulting subgoals, just the Hiproof.

Transforming our example. In Section 2, we modified a simple proof script to
improve its style. In particular, the specific operations we used:

– Rename hypothesis: to rename, for example, h1 to AiBiC.
– Merge sentences: to shorten the proof by collapsing to sentences into one.
– Propogate closing tactical: to move a by tactical outwards.
– Replace move instance: replacing it with apply:.

We focus only on propagate and merge in this paper.

198 I. Whiteside, D. Aspinall, and G. Grov

Propagate. This refactoring moves an instance of by outside another tactical, if
possible. There is a transformation rule for each suitable tactical, for example:

propagate(sstac1 ; by sstac2) −→ by sstac1 ; sstac2

(Prop-1)

Propagate is correct if the sentence evaluates as 〈γ, sstac1 ; by sstac2〉 ⇓E 〈s, []〉
and then 〈γ, propagate(sstac1 ; by sstac2)〉 ⇓E 〈s ′, []〉, for some s ′. The con-
dition that the original sentence must successfully evaluate is called a pre-
condition and is important as often refactorings are not universally applica-
ble. The semantics of the closing tactical by sstac relates it directly to the
Hitac tactic sstac ; ALL(DONE) ; 〈〉. This means the LHS of Prop-1 is
sstac1 ; ALL(sstac2 ; ALL(DONE) ; 〈〉), which is equivalent to

(sstac1 ; ALL(sstac2)) ; ALL(DONE) ; 〈〉 ≡ by sstac1 ; sstac2.

We can perform this refactoring inside a larger proof – here we only specified
it on a single line – by integrating it with another refactoring called transform
sentence, which has the obvious behaviour and is easily shown correct for un-
structured scripts by a standard structural induction.

Merge sentences. There are two variations of this refactoring:

1. We merge move : h1. and apply into a single line, using the THEN tactical,
since move : h1. generates a single subgoal.

2. Since apply: h1 generates two subgoals and - by [] is the first, use the first
tactical to merge them as apply: h1 ; first by [].

The first version first drops annotations and works on unstructured scripts by
stepping through the sentence list until the sentences to be merged are encoun-
tered. Then the following rule is applied:

arity(s1) = 1

merge(s1 , s2 , s1 :: s2 :: sstacs) −→ s1 ; s2 :: sstacs
(SS-Merge-1)

The second case requires more sophistication. If arity(s1) > 1, then we can
merge it with the first sentence of any of the subparagraphs, using the first
tactical. The transformation rule can be seen on structured scripts as the fol-
lowing, where s is the first sentence, and i is the position of the second sentence
in the paragraph list. It merges the first sentence in the appropriate paragraph
(head(fst(sspara i))) with the supplied sentence.

arity(s) = n sspara ′
i = (tl(fst(sspara i)), snd(sspara i)) sstac = hd(fst(sspara i))

ssparas = [sspara1, . . . , sspara i−1, sspara
′
i, sspara i+1, . . . , ssparan]

merge(s, i , ([s],[sspara1, . . . , ssparan])) −→ ([s ; first i [sstac]], ssparas)
(SS-Merge-2)

Correctness of the first version is again an easy induction on unstructured
scripts; however, the second case is more difficult as it involves manipulating an

An Essence of SSReflect 199

�apply� = [apply] INTRO(top) ;

(REFINE(top) | REFINE(top) | . . .)

�apply: t1 . . . tn� = [apply] (REFINE(t1 (t2 . . . tn)) | REFINE(t1 (t2 . . . tn)) | . . .)

�rstep rev tm� = [rstep] REWRITE(rev, tm)

�rewrite rstep1 . . . rstepn� = [rewrite] �rstep1� ; . . . ; �rstepn�

�exact term� = [exact] EXACT(tm)

�by [sstac1| . . . |sstacn]� = [by] �sstac1� ; ALL(DONE) ; 〈〉 | . . . |

�sstacn� ; ALL(DONE) ; 〈〉

�have: term by sstac� = ASSERT(tm) ; (�sstac� ⊗ id)

�sstac1 ; sstac2� = �sstac1� ; ALL(�sstac2�)

�sstac0 ; [sstac1| . . . |sstacn� = �sstac0� ; (�sstac1� ⊗ . . . ⊗ �sstacn�)

�sstac1 ; last sstac2� = �sstac1� ; ID ⊗ ([last] �sstac2�)

�sstac0 ; last k [sstac1| . . . |sstacn]� = �sstac0� ; ID ⊗ ([last]�sstac1�) ⊗ . . . ⊗ ([last]�sstacn�) ⊗ idk−1

�sstac0 ; first k [sstac1| . . . |sstacn]� = �sstac0� ; idk−1 ⊗ ([first]�sstac1�) ⊗ . . . ⊗ ([first]�sstacn�) ⊗ ID

�sstac ; last first� = [LF] �sstac� ; REFLECT

�sstac ; last k first� = [LkF] �sstac� ; ROTATE R;k

�ditem term� = REVERT(tm)

�dtactic: ditem1 . . . ditemn� = [:] �ditem termn� ; . . . ; �ditem term1� ; �dtactic�

�//� = ALL([DONE]DONE)

�/=� = ALL([SIMP]SIMP)

�//=� = �/=� ; �//�

Fig. 13. Remaining translation rules

200 I. Whiteside, D. Aspinall, and G. Grov

arbitrary paragraph list. We identify the precise paragraph to refactor and use
the transform paragraph refactoring to simplify the problem. We can then induct
on the transformation over structured scripts and use equivalences in the Hitac
language to show that evaluation succeeds.

7 Conclusions

In this work, we have identified and provided a semantics for an important subset
of the SSReflect language, dealing primarily with proof style. Furthermore, we
believe we have disseminated the principles of the language in a clearer setting
and taken advantage of its inherent hierarchical nature by basing our semantics
on the Hiproof framework. Importantly for our future program of work, this
semantics enables us to reason about SSReflect scripts and, in particular, justify
the correctness of refactorings.

Related work. Most related to our work are [17,11], where a formal semantics
is given for a declarative language and a procedural language, which is used to
recover proof scripts from the underlying proof term. There has also been some
work on formal semantics for proof languages, such as C-zar for Coq, and the
Ωmega proof language [3,2], but we are not aware of any work which specifically
attempts to take advantage of this for these languages.

Refactoring is well-studied for programming languages and the literature is
well surveyed by Mens et al [16]. The canonical reference for programming lan-
guage refactoring is Fowler [6]. This book, widely considered to be the handbook
of refactoring, consists of over 70 refactorings with a detailed description of the
motivation for each refactoring and how to carry it out safely, and many of these
refactorings in the domain of programming map across directly to proof.

Further work. There are many ways to progress this work. In particular, we
would like to extend our semantics to cover a larger set of the SSReflect language;
in particular, we would like to study clear switches in SSReflect, which allow the
user to delete assumptions from the context. These are an important part of
the language’s design and make data flow explicit. In this work, we have not
dealt with meta-variables. This is something that we would like to investigate,
to see if our techniques could scale to a language which formally deals with
meta-variables. With the refactorings described above, we have only scratched
the surface of what is possible and plan to focus both on refactorings that are
specific to the SSReflect language and translating refactorings that we have
studied in previous work into a new language [19].

Acknowledgements. The authors would like to thank Georges Gonthier for
the many useful discussions which motivated this work. The first author was
supported by Microsoft Research through its PhD Scholarship Programme. The
third author was supported by EPSRC grant EP/H024204/1.

An Essence of SSReflect 201

References

1. Aspinall, D., Denney, E., Lüth, C.: Tactics for hierarchical proof. Mathematics in
Computer Science 3, 309–330 (2010)

2. Autexier, S., Dietrich, D.: A Tactic Language for Declarative Proofs. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 99–114. Springer,
Heidelberg (2010)

3. Corbineau, P.: A Declarative Language for the Coq Proof Assistant. In: Miculan,
M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84.
Springer, Heidelberg (2008)

4. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree.
Electr. Notes Theor. Comput. Sci. 155, 341–359 (2006)

5. Barendregt, H., et al.: Lambda calculi with types. In: Handbook of Logic in Com-
puter Science, pp. 117–309. Oxford University Press (1992)

6. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
(1999)

7. Gonthier, G.: The Four Colour Theorem: Engineering of a Formal Proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)

8. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formali-
sation of Finite Group Theory. Rapport de recherche RR-6156, INRIA (2007)

9. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Rapport de recherche RR-6455, INRIA (2008)

10. Gonthier, G., Stéphane Le, R.: An Ssreflect Tutorial. Technical Report RT-0367,
INRIA (2009)

11. Guidi, F.: Procedural representation of cic proof terms. J. Autom. Reason. 44(1-2),
53–78 (2010)

12. Harrison, J.: Proof Style. In: Giménez, E. (ed.) TYPES 1996. LNCS, vol. 1512, pp.
154–172. Springer, Heidelberg (1998)

13. Heras, J., Poza, M., Dénès, M., Rideau, L.: Incidence Simplicial Matrices Formal-
ized in Coq/SSReflect. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F.
(eds.) Calculemus/MKM 2011. LNCS, vol. 6824, pp. 30–44. Springer, Heidelberg
(2011)

14. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant: A tutorial (Au-
gust 2007)

15. Komendantsky, V.: Reflexive toolbox for regular expression matching: verification
of functional programs in Coq+SSReflect. In: PLPV 2012, pp. 61–70 (2012)

16. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Trans. Softw.
Eng. 30(2), 126–139 (2004)

17. Sacerdoti Coen, C.: Declarative representation of proof terms. J. Autom. Rea-
son. 44(1-2), 25–52 (2010)

18. Wenzel, M.: Isar - A Generic Interpretative Approach to Readable Formal Proof
Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–184. Springer, Heidelberg (1999)

19. Whiteside, I., Aspinall, D., Dixon, L., Grov, G.: Towards Formal Proof Script
Refactoring. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Cal-
culemus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 260–275. Springer, Heidelberg
(2011)

Theory Presentation Combinators�

Jacques Carette and Russell O’Connor

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada
{carette,roconn}@mcmaster.ca

Abstract. We motivate and give semantics to theory presentation com-
binators as the foundational building blocks for a scalable library of
theories. The key observation is that the category of contexts and fibered
categories are the ideal theoretical tools for this purpose.

1 Introduction

A mechanized mathematics system, to be useful, must possess a large library
of mathematical knowledge, on top of sound foundations. While sound founda-
tions contain many interesting intellectual challenges, building a large library
seems a daunting task because of its sheer volume. However, as has been well-
documented [5,6,13], there is a tremendous amount of redundancy in existing
libraries.

Our aim is to build tools that allow library developers to take advantage of
all the commonalities in mathematics so as to build a large, rich library for end-
users, whilst expending much less actual development effort. In other words,
we continue with our approach of developing High Level Theories [4] through
building a network of theories, by putting our previous experiments [5] on a
sound theoretical basis.

1.1 The Problem

The problem which motivates this research is fairly simple: give developers of
mathematical libraries the foundational tools they need to take advantage of the
inherent structure of mathematical theories, as first class mathematical objects
in their own right. Figure 1 shows the type of structure we are talking about:
The presentation of the theory Semigroup strictly contains that of the theory
Magma, and this information should not be duplicated. A further requirement
is that we need to be able to selectively hide (and reveal) this structure from
end-users.

� This research was supported by NSERC.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 202–215, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Theory Presentation Combinators 203

Magma

Semigroup

Pointed Semigroup

Monoid

Group

Abelian Group

Fig. 1. Theories

The motivation for these tools should be obvious, but
let us nevertheless spell it out: we simply cannot afford
to spend the human resources necessary (one estimate
was 140 person-years [21]; [1] explore this topic in much
greater depth) to develop yet another mathematical li-
brary. In fact, as we now know that there is a lot of struc-
tured redundancy in such libraries, it would be downright
foolish to not take full advantage of that. As a minor ben-
efit, it can also help reduce errors in axiomatizations.

The motivation for being able to selectively hide or re-
veal some of this structure is less straightforward. It stems
from our observation [4] that in practice, when mathe-
maticians are using theories rather than developing news
ones, they tend to work in a rather “flat” name space.
An analogy: someone working in Group Theory will un-
consciously assume the availability of all concepts from a
standard textbook, with their “usual” names and mean-

ings. As their goal is to get some work done, whatever structure system builders
have decided to use to construct their system should not leak into the applica-
tion domain. They may not be aware of the existence of pointed semigroups, nor
should that awareness be forced upon them. Some application domains rely on
the “structure of theories”, so we can allow those users to see it.

1.2 Contributions

To be explicit, our contributions include:

– A variant of the category of contexts, over a dependently-typed type theory
as the semantics for theory presentations.

– A simple term language for building theories, using “classical” nomenclature,
even though our foundations are unabashedly categorical.

– Using “tiny theories” to allow for maximal reuse and modularity.
– Taking names seriously, since these are meant for human consumption. More-

over, we further emphasize that theory presentations are purely syntactic
objects, which are meant to denote a semantic object.

– Treating arrows seriously: while this is obvious from a categorical standpoint,
it is nevertheless novel in this application.

– Giving multiple (compatible) semantics to our language, which better cap-
ture the complete knowledge context of the terms.

1.3 Plan of Paper

We motivate our work with concrete examples in section 2. The theoretical foun-
dations of our work, the fibered category of contexts, is presented in full detail in
section 3. This allow us in section 4 to formalize the language of our motivation
section, syntactically and semantically. We close with some discussion, related
work and conclusions in sections 5–7.

204 J. Carette and R. O’Connor

2 Motivation for Theory Presentation Combinators

Let us compare the presentation of two simple theories:

Monoid := Theory {
U: type ; ∗ : (U,U) −> U; e :U;
axiom r i g h t I d e n t i t y ∗ e : f o ra l l x :U. x∗e = x ;
axiom l e f t I d e n t i t y ∗ e : f o ra l l x :U. e∗x = x ;
axiom a s s o c i a t i v e ∗ : f o ra l l x , y , z :U. (x∗y)∗ z = x∗(y∗z)}

CommutativeMonoid := Theory {
U: type ; ∗ : (U,U) −> U; e :U;
axiom r i g h t I d e n t i t y ∗ e : f o ra l l x :U. x∗e = x ;
axiom l e f t I d e n t i t y ∗ e : f o ra l l x :U. e∗x = x ;
axiom a s s o c i a t i v e ∗ : f o ra l l x , y , z :U. (x∗y)∗ z = x∗(y∗z) ;
axiom commutative ∗ : f o ra l l x , y :U. x∗y = y∗x}

They are identical, save for the commutative * axiom, as expected. Given Monoid,
it would be much more economical to define

CommutativeMonoid := Monoid extended by {
axiom commutative ∗ : f o ra l l x , y :U. x∗y = y∗x}

and “expand” this definition, if necessary. Of course, given Group, we would
similarly find ourselves writing

CommutativeGroup := Group extended by {
axiom commutative ∗ : f o ra l l x , y :U. x∗y = y∗x}

which is also wasteful, as well as dangerous: is this “the same” axiom as before,
or a different one? There is no real way to tell. It is natural to further extend our
language with a facility that expresses this sharing. Taking a cue from previous
work, we might want to say

CommutativeGroup := combine CommutativeMonoid , Group over Monoid

Informally, this can be read as saying that Group and CommutativeMonoid are
both “extensions” of Monoid, and CommutativeGroup is formed by the union
(amalgamated sum) of those extensions. Another frequent feature is renaming:
an AbelianGroup, while isomorphic to a CommutativeGroup, is usually presented
additively. We could express this as

AbelianGroup := CommutativeGroup [∗ |−> +, e |−> 0]

Unfortunately, while this “works” to build a sizeable library (say of the order
of 500 concepts) in a very economical way, it is quite brittle. Let us examine
the reasons. It should be clear that by combine, we really mean pushout1. But
a pushout is a 5-ary operation on 3 objects and 2 arrows; our syntax gives the
3 objects and leaves the arrows implicit. This is a very serious mistake: these
arrows are (in general) not easy to infer, especially in the presence of renaming.
For example, there are two distinct arrows from Monoid to Ring, with neither
1 Following Burstall and Goguen [2] and Smith [18,19] and many others since.

Theory Presentation Combinators 205

arrow being “better” than the other. Furthermore, we know that pushouts can
also be regarded as a 2-ary operation on arrows. In other words, even though
our goal is to produce theory presentations, our decision to use pushouts2 as a
fundamental building block gives us no choice but to take arrows seriously.

So our task is now to find a category with “theory presentations” as objects,
and with arrows which somehow express the notions of extending, combining and
renaming as defined above. But before we explore that in depth, let us further
examine our operations. First, there is nothing specific to CommutativeGroup
in the renaming ∗ �→ +, e �→ 0, this can be applied to any theory where the
pairs (∗, +) and (e, 0) have compatible signatures (including being undefined).
Similarly, extend really defines a “construction” which can be applied whenever
all the symbols used in the extension are defined. In other words, a reasonable
semantics should associate a whole class of arrows3 to these operations.

But there is one more aspect to consider: in all our examples above, we have
used short, meaningful names. While great for humans, they are in part at fault
in the failure of being able to infer arrows. If, like in MMT [16], we used long
names, might we be able to build a robust system? Maybe so, but it would
immediately fall afoul of our second requirement: irrelevant information such as
choices made by developers regarding the order in which to build theories, would
leak into the long names, and thus be seen by users. Furthermore, when there
is ambiguity, a long name system can indeed resolve that ambiguity, but at too
high a cost to humans in absurdly long names for certain concepts.

In other words, to be able to maintain human-readable names for all concepts,
we will put the burden on the library developers to come up with a reasonable
naming scheme, rather than to push that issue onto end users. Another way to
see this is that symbol choice carries a lot of intentional, as well as contextual,
information which is commonly used in mathematical practice. Thus, to avoid
leaking irrelevant information and to maintain intentional/contextual informa-
tion, we will insist that on taking names seriously.

3 Category of Contexts

We observe that theories from the previous section can all be specified as contexts
of some dependent type theory. The work in this paper is abstract over the exact
details of the dependent type theory,4 so we simply assume that some dependent
type theory is given. Following Cartmell [8], we form the category of contexts �
of the given dependent type theory. The objects of � are contexts Γ that occur
in judgements like Γ s : σ of the dependent type theory. A context Γ consists
of a sequence of pairs of labels and types (or kinds or propositions),

Γ := 〈x0 : σ0; . . . ; xn−1 : σn−1〉 ,

2 Which will in fact become pullbacks.
3 We are being deliberately vague here, Section 3 will make this precise.
4 In fact, we expect this work to apply not only to dependent type theories, but to

any classifying category [14].

206 J. Carette and R. O’Connor

such that for each i < n the judgement

〈x0 : σ0; . . . ; xi−1 : σi−1〉 σi : Type

holds (resp. : Kind, or : Prop). Contexts of dependent type theory can be used
to define the types, operations, relations and axioms of a theory. We will use
the abbreviation 〈x : σ〉n−1

0 for a context Γ , and � for concatenation of two such
sequences.

Example 1. We can define the theory of semigroups via

Semigroup :=

〈
U : Type

(∗) : U × U → U
associative : ∀x, y, z : U. (x ∗ y) ∗ z = x ∗ (y ∗ z)

〉

where we use Haskell-style notation where (�) indicates (the name of) a binary
function used infix in terms.

Normally contexts are considered up to α-equivalence, that is, renaming or per-
muting the labels of a context makes no difference. But since labels do make a
difference, we will not do so. However, α-equivalent terms and types continue to
be considered equivalent.

Example 2. The signature for AdditiveSemigroup is given as the context〈 U : Type
(+) : U × U → U

associative : ∀x, y, z : U. (x + y) + z = x + (y + z)

〉

Traditionally Semigroup and AdditiveSemigroupwould be considered the same
context because they are α-equivalent.

In the rest of this section, we will use the convention that Γ = 〈x : σ〉n−1
0 and

Δ = 〈y : τ〉m−1
0 . Given two contexts Γ and Δ, a morphism Γ → Δ of � consists

of an assignment [y0 �→ t0, . . . , ym �→ tm−1], abbreviated as [y �→ t]m−1
0 where the

t0, . . . , tm−1 are terms such that

Γ t0 : τ0 . . . Γ tm−1 : τm−1 [y �→ t]m−2
0

all hold, where τ [y �→ t]i0 denotes the type τ with the labels y0, . . . , yi substituted
by the corresponding terms of the assignment. We will also use �� to denote con-
catenation of assignments, and

[
yf(j) �→ tg(j)

]b
j=a

for the “obvious” generalized
assignment.

Notice that an arrow from Γ to Δ is an assignment from the labels of Δ
to terms in Γ . This definition of an arrow may seem backwards at first, but
it is defined this way because arrows transform “models” of theories of Γ to
“models” of theories of Δ. For example, every Abelian Semigroup is, or rather
can be transformed into, an Additive Semigroup by simply forgetting that the

Theory Presentation Combinators 207

Semigroup is Abelian. A later example 4 will give the explicit arrow from Abelian
Semigroup to Additive Semigroup that captures this transformation.

Let us fix� as the (countable) infinite set of labels used in contexts. If π : �→
� is a permutation of labels, then we can define an action of this permutation
on terms, types and contexts:

π · 〈x : σ〉n−1
0 := 〈π (x0) : π · σ0; . . . ; π (xn−1) : π · σn−1〉 ≡ 〈πx : π · σ〉n−1

0

where π ·σi is the action induced on the (dependent) type σi by renaming labels.
The action of π induces an endofunctor (π · −) : � → �. Furthermore, each
permutation π : � → � induces a natural transformation in Iπ : (π · −) ⇒ id�
where

Iπ (Γ) := [x0 �→ π (x0) , . . . , xn−1 �→ π (xn−1)] : π · Γ → Γ.

We call an assignment of the form Iπ (Γ) a renaming. Because permutations
are invertible, each renaming Iπ (Γ) : π ·Γ → Γ is an isomorphism whose inverse
is the renaming Iπ−1 (π · Γ) : Γ → π ·Γ . From this we can see that α-equivalent
contexts are isomorphic.

Example 3. Let π : �→ � be some permutation such that π (U) = U , π ((∗)) =
(+), and π (associative) = associative. By the definition of Iπ (Semigroup) :
AdditiveSemigroup→ Semigroup, we have that

Iπ (Semigroup) := [U �→ U ; (∗) �→ (+) ; associative �→ associative]

is a renaming isomorphism between the contexts in examples 1 and 2.

The category of nominal assignments, �, a sub-category of � will be quite
important for use. For example, theorem 2 will show that � is the base category
of a fibration.

Definition 1. The category of nominal assignments, �, has the same objects
as �, but only those morphisms whose terms are labels.

Thus a morphism in � is an assignment of the form
[
yi �→ xa(i)

]m−1

i=0
such that

the judgements

Γ xa(0) : τ0 . . . Γ xa(m−1) : τm−1

[
yi �→ xa(i)

]m−2

i=0

all hold.

Definition 2. We define Γ to be a sub-context of Γ+ if every element x : τ
of Γ occurs in Γ+.

Definition 3. We call an assignment A : Γ → Δ a diagonal assignment if A is
of the form [y �→ y]n−1

0 (where Δ = 〈y : τ〉n−1
0), denoted by δΔ : Γ → Δ.

Definition 4. An assignment A : Γ+ → Γ is an extension when Γ is a sub-
context of Γ+, and A is the diagonal assignment.

208 J. Carette and R. O’Connor

Notice that an extension points from the extended context to the sub-context.
This is the reverse from what Burstall and Goguen [2] use (and most of the
algebraic specification community followed their lead). Our direction is inherited
from �, the category of contexts, which is later required by theorem 2 to satisfy
the technical definition of a fibration.

Example 4. Consider the theory AbelianSemigroup given as

〈 U : U : Type
(+) : U × U → U

associative : ∀x, y, z : U. (x + y) + z = x + (y + z)
commutative : ∀x, y : U. (x + y) = (y + x)

〉

Then δAdditiveSemigroup : AbelianSemigroup→ AdditiveSemigroup is an exten-
sion.

Example 5. Consider the following two distinct contexts (C1, C2) for the theory
of left unital Magmas with the order of their operators swapped:

〈 U : Type
e : U

(∗) : U × U → U
leftIdentity : ∀x : U.e ∗ x = x

〉 〈 U : Type
(∗) : U × U → U

e : U
leftIdentity : ∀x : U.e ∗ x = x

〉

The diagonal assignment δC1 : C2 → C1 is an extension (as is δC2 : C1 → C2).

Notice that, for any given contexts Γ+ and Γ , there exists an extension Γ+ → Γ
if and only if Γ is a sub-context of Γ+. If Γ is a sub-context of Γ+ then the
diagonal assignment δΓ : Γ+ → Γ is the unique extension.

In general, a renaming Iπ : π · Γ → Γ will not be an extension unless π is the
identity on the labels from Γ . In our work, both renaming and extentions are
used together, so we want to consider a broader class of nominal assignments
that include both extensions and renamings.

Definition 5. Those nominal assignments where every label occurs at most once
will be called general extensions.

We see that for every permutation of labels π : �→ � and every context Γ that
Iπ (Γ) : π ·Γ → Γ is a general extension (and hence also a nominal assignment).

Theorem 1. Every general extension A : Γ+ → Δ can be turned into an ex-
tension by composing it with an appropriate renaming.

The proof of this theorem, along with all other theorems, lemmas and corollaries
in this section can be found in the long version of this paper [7].

Theory Presentation Combinators 209

Corollary 1. Every general extension A : Γ+ → Δ can be decomposed into an
extension Ae : Γ+ → Γ followed by a renaming Ar : Γ → Δ.

These general extensions form a category which plays an important rôle.

Γ+ Δ+

Γ Δ

f+

A

f−

B

Definition 6. The category of general extensions �
has all general extensions from � as objects, and
given two general extensions A : Γ+ → Γ and
B : Δ+ → Δ, an arrow f : A → B is a commuta-
tive square from �. We will denote this commutative
square by 〈f+, f−〉 : A → B.

We remind the reader of the usual convention in category theory where arrows
include their domain and codomain as part of their structure (which we implicitly
use in the definition above).

Lemma 1. Every general extension is isomorphic in � to an extension B :
Γ ◦ → Γ where Γ is an initial segment of Γ ◦.

This category of general extensions � is fibered over the category � by the
codomain functor cod : � → �. Given general extensions A : Γ+ → Γ and
B : Δ+ → Δ and a morphism 〈f+, f−〉 : A → B in � we have

cod (A) := Γ cod (f) := f−

Theorem 2. The functor cod : �→ � is a fibration.

Corollary 2. Given u : Γ → Δ, a general extension A : Δ+ → Δ, and a
cartesian lifting ū (A) : u∗ (A) → A, if u is a general extension, then ū (A)+ is
also a general extension.

Example 6. The nominal assignment (and general extension)

u :=

⎡⎣ U �→ U
(∗) �→ (+)

associative �→ associative

⎤⎦ : AbelianSemigroup→ Semigroup

and the extension A := δSemigroup : Monoid → Semigroup induce the existence
(via theorem 2) of some Cartesian lifting ū (A) : u∗ (A) → A in �. One example
of such a Cartesian lifting for ū is

AbelianMonoid Monoid

AbelianSemigroup Semigroup

ū(A)+

u∗(A) A

u

210 J. Carette and R. O’Connor

where AbelianMonoid is

〈
U : Type
0 : U

(+) : U × U → U
rightIdentity : ∀x : U.x + 0 = x

leftIdentity : ∀x : U.0 + x = x
associative : ∀x, y, z : U. (x + y) + z = x + (y + z)

commutative : ∀x, y : U. (x + y) = (y + x)

〉

and u∗ (A) : AbelianMonoid → AbelianSemigroup is the diagonal assignment,
where ū (A)+ : AbelianMonoid→ Monoid is

ū (A)+ :=

⎡⎢⎢⎢⎢⎢⎢⎣
U �→ U
e �→ 0

(∗) �→ (+)
rightIdentity �→ rightIdentity

leftIdentity �→ leftIdentity
associative �→ associative

⎤⎥⎥⎥⎥⎥⎥⎦

〈
U : Type
U ′ : Type

〉
〈U : Type〉

〈U : Type〉 〈〉

〈U : Type〉

ū(u)+

u∗(u)

u

u
id

id

f

In almost all of the development
of the algebraic hierarchy, the
nominal assignments that we use
are all general extensions. How-
ever, it is important to note that
the definition of a Cartesian lifting
requires nominal assignments that
are not necessarily general exten-
sions, even if all the inputs are
general extensions.

Consider the simple case (pic-
tured above) where u : 〈U : Type〉
→ 〈〉 is the unique extension, and

a Cartesian lifting of u over itself. The mediating arrow for id : 〈U : Type〉 →
〈U : Type〉 and itself must be

f : 〈U : Type〉 → 〈U : Type; U ′ : Type〉
f := [U �→ U, U ′ �→ U]

which is not a general extension.

4 Semantics of Theory Presentation Combinators

Like in the previous section, we will assume that we have a background type
theory with well-formedness judgments, which defines four different sorts, namely
(Type, Term, Kind, Prop). The symbols used in the type theory itself will be called

Theory Presentation Combinators 211

labels, whereas the symbols used for theory presentations will be called names.
As above, a �→ b denotes a substitution. Using this, we can define the formal
syntax for our combinators as follows.

a, b, c ∈ labels τ ∈ Type

A, B, C ∈ names k ∈ Kind

l ∈ judgments∗ t ∈ Term

r ∈ (ai �→ bi)
∗

θ ∈ Prop

tpc ::= extend A by {l}
| combine A r1, B r2

| A ; B

| A r

| Empty

| Theory {l}

Intuitively, the six forms correspond to: extending a theory with new knowledge,
combining two theories into a larger one, sequential composition of theories,
renaming, a constant for the Empty theory, and an explicit theory.

What we do next is slightly unusual: rather than give a single denotational
semantics, we will give two, one in terms of objects of �, and one in terms of
objects of � (which are special arrows in �). In fact, we have a third semantics,
in terms of (partial) Functors over the contextual category, but we will omit it
for lack of space. First, we give the semantics in terms of objects of �, where
�−�π is the (obvious) semantics in �→ � of a renaming.

�−�� : tpc ⇀ |�|
�Empty�� = 〈 〉

�Theory {l}�� ∼= 〈l〉
�A r�� = �r�π · �A��

�A; B�� = �B��

�extend A by {l}�� ∼= �A�� � 〈l〉
�combine A1r1, A2r2�� ∼= D

D A1

A2 A

�r1�π ◦ δA1

�r2�π ◦ δA2

δA

δA

where D comes from the (potential) pullback diagram on the right, in which we
omit �−�� around the As for clarity. We use ∼= to abbreviate “when the rhs is a
well-formed context”. For the semantics of combine, it must be the case where
the diagram at right is a pullback (in �), where A is the greatest lower bound
context �A1�� � �A2��. Furthermore �r1�π and �r2�π must leave A invariant.
We remind the reader of the requirement for these renamings: the users must
pick which cartesian lifting they want, and this cannot be done automatically
(as demonstrated at the end of last section).

The second semantics, is in terms of the objects of �, in other words, the
special arrows of �, as defined in Section 3.

212 J. Carette and R. O’Connor

�−�� : tpc ⇀ |�|
�Empty�� = id〈 〉

�Theory {l}�� ∼= !〈l〉
�A r�� = �r�π · �A��

�A; B�� = �A�� ◦ �B��

�extend A by {l}�� ∼= δA

�combine A1r1, A2r2�� ∼= �r1�π ◦ δT1 ◦ �A1��
∼= �r2�π ◦ δT2 ◦ �A2��

D T1

T2 T

�r1�π ◦ δT1

�r2�π ◦ δT2

A2

A1

The diagram on the right has to be verified to be a pullback diagram (this is
why the semantics is partial here too). Here we assume �A1�� ∈ Hom(T1, T)
and �A2�� ∈ Hom(T2, T), and that both �r1�π and �r2�π leave T invariant.

Theorem 3. For all tpc terms except combine, �s�� = dom�s��. When s ≡
combine A1r1, A2r2, if cod (�A1��) = cod (�A2��) = �A1����A2��, and neither
arrows �A1�� nor �A2�� involve renamings, then �s�� = dom�s�� in that case
as well.

The proof is a straightforward comparison of the semantic equations. This theo-
rem basically says that, as long as we only use combine on the “natural” base of
two arrows which are pure extensions, our semantics are compatible. In a tiny
theories setting, this can be arranged.

5 Discussion

It is important to note that we are essentially parametric in the underlying type
theory. This should allow us to be able to generalize our work in ways similar to
Kohlhase and Rabe’s MMT [16].

The careful reader might have notice that in the syntax of section 2, our
combine had an over keyword. This allowed our previous implementation [5] to
come partway to the � semantics above. This is a straightforward extension to
the semantics: �combine A1r1, A2r2 over C�� would replace A = �A1�� � �A2��
with �C��, with corresponding adjustments to the rest of the pushout diagram.
For �−��, one would insist that cod (�A1��) = cod (�A2��) = �C��.

What is more promising5 still is that most of our terms can also be interpreted
as Functors between fibered categories. This gives us a semantic for each term
as a “construction”, which can be reused (as in our example with commutativity
in section 2). Furthermore, since fibered categories interact well will limits and
colimits, we should also be able to combine constructions and diagrams so as to
fruitfully capture further structure in theory hierarchies.

It should also be noted that our work also extends without difficulty to having
definitions (and other such conservative extensions) in our contexts. This is
5 Work in progress.

Theory Presentation Combinators 213

especially useful when transporting theorems from one setting to another, as is
done when using the “Little Theories” method [10]. We also expect our work to
extend to allow Cartesian liftings of extensions over arbitrary assignments (aka
views) from the full category of contexts.

Lastly, we have implemented a “flattener” for our semantics, which basi-
cally turns a presentation A into a flat presentation Theory{ l} by computing
cod (�A��). This fulfils our second requirement, where the method of construc-
tion of a theory is invisible to users of flat theories.

6 Related Work

We will not consider work in universal algebra, institutions or categorical logic as
“related”, since they employ α-equivalence on labels (as well as on bound vari-
ables), which we consider un-helpful for theory presentations meant for human
consumption. We also leave aside much interesting work on dependent record
types (which we use), as these are but one implementation method for theories,
and we consider contexts as a much more fundamental object.

We have been highly influenced by the early work of Burstall and Goguen [2,3],
and Doug Smith’s Specware [18,19]. They gave us the basic semantic tools we
needed. But we quickly found out, much to our dismay, that neither of these
approaches seemed to scale very well. Later, we were hopeful that CASL [9]
might work for us, but then found that their own base library was improperly
factored and full of redundancies. Of the vast algebraic specification literature
around this topic, we want to single out the work of Oriat [15] on isomorphism
of specification graphs as capturing similar ideas to ours on extreme modularity.
And it cannot be emphasized enough how crucial Bart Jacob’s book [14] has
been to our work.

From the mathematical knowledge management side, it should be clear that
MMT [16] is closely related. The main differences are that they are quite explicit
about being foundations-independent (it is implicit in our work), they use long
names, and their theory operations are mostly theory-internal, while ours are
external. This makes a big difference, as it allows us to have multiple semantics,
while theirs has to be fixed. And, of course, the work presented in the current
paper covers just a small part of the vast scope of MMT.

There are many published techniques and implementations of algebraic hier-
archies in dependently typed proof assistants including [12,20,11,17]. Our work
does not compete with these implementations, but rather complements them.
More specifically, we envision our work as a meta-language which can be used to
specify algebraic hierarchies, which can subsequently be implemented by using
any of the aforementioned techniques. In particular we note that maintaining the
correct structures for packed-classes of [11] is particularly difficult, and deriving
the required structures from a hierarchy specification would alleviate much of
this burden. Other cited work, (for example [17]) focus on other difficult prob-
lems such as usability, via providing coercions and unification hints to match
particular terms to theories. Even though some similar techniques (categorical
pullbacks) are used in a similar context, the details are very different.

214 J. Carette and R. O’Connor

7 Conclusion

There has been a lot of work done in mathematics to give structure to mathemat-
ical theories, first via universal algebra, then via category theory (e.g. Lawvere
theories). But even though a lot of this work started out being somewhat syn-
tactic, very quickly it became mostly semantic, and thus largely useless for the
purposes of concrete implementations.

We make the observation that, with a rich enough type theory, we can identify
the category of theory presentations with the opposite of the category of contexts.
This allows us to draw freely from developments in categorical logic, as well as
to continue to be inspired by algebraic specifications. Interestingly, key here is to
make the opposite choice as Goguen’s in two ways: our base language is firmly
higher-order, while our “module” language is first-order, and we work in the
opposite category.

We provide a simple-to-understand term language of “theory expression com-
binators”, along with multiple (categorical) semantics. We have shown that these
fit our requirements of allowing to capture mathematical structure, while also
allowing this structure to be hidden from users.

Even more promising, our use of very standard categorical constructions
points the way to simple generalizations which should allow us to capture even
more structure, without having to rewrite our library. Furthermore, as we are
independent of the details of the type theory, this structure seems very robust,
and our combinators should thus port easily to other systems.

References

1. Asperti, A., Sacerdoti Coen, C.: Some Considerations on the Usability of Interac-
tive Provers. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L.,
Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 147–156. Springer,
Heidelberg (2010), http://dl.acm.org/citation.cfm?id=1894483.1894498

2. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. In:
IJCAI, pp. 1045–1058 (1977)

3. Burstall, R.M., Goguen, J.A.: The Semantics of Clear, a Specification Language.
In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980)

4. Carette, J., Farmer, W.M.: High-Level Theories. In: Autexier, S., Campbell, J.,
Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008,
and MKM 2008. LNCS (LNAI), vol. 5144, pp. 232–245. Springer, Heidelberg (2008)

5. Carette, J., Farmer, W.M., Jeremic, F., Maccio, V., O’Connor, R., Tran, Q.:
The mathscheme library: Some preliminary experiments. Tech. rep., University
of Bologna, Italy (2011), uBLCS-2011-04

6. Carette, J., Kiselyov, O.: Multi-stage programming with functors and monads:
Eliminating abstraction overhead from generic code. Sci. Comput. Program. 76(5),
349–375 (2011)

7. Carette, J., O’Connor, R.: Theory Presentation Combinators (2012),
http://arxiv.org/abs/1204.0053v2

http://dl.acm.org/citation.cfm?id=1894483.1894498
http://arxiv.org/abs/1204.0053v2

Theory Presentation Combinators 215

8. Cartmell, J.: Generalised algebraic theories and contextual categories. Annals of
Pure and Applied Logic 32, 209–243 (1986),
http://www.sciencedirect.com/science/article/pii/0168007286900539

9. CoFI (The Common Framework Initiative): Casl Reference Manual. LNCS, IFIP
Series, vol. 2960. Springer (2004)

10. Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little Theories. In: Kapur, D. (ed.)
CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)

11. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathemati-
cal Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-03359-9_23

12. Geuvers, H., Wiedijk, F., Zwanenburg, J.: A Constructive Proof of the Funda-
mental Theorem of Algebra without Using the Rationals. In: Callaghan, P., Luo,
Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 96–111.
Springer, Heidelberg (2002)

13. Grabowski, A., Schwarzweller, C.: On Duplication in Mathematical Repositories.
In: Autexier, S., Calmet, J., Delahaye, D., Ion, P., Rideau, L., Rioboo, R., Sexton,
A. (eds.) AISC 2010. LNCS, vol. 6167, pp. 300–314. Springer, Heidelberg (2010)

14. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)

15. Oriat, C.: Detecting equivalence of modular specifications with categorical dia-
grams. Theor. Comput. Sci. 247(1-2), 141–190 (2000)

16. Rabe, F., Kohlhase, M.: A Scalable Module System,
http://kwarc.info/frabe/Research/mmt.pdf

17. Sacerdoti Coen, C., Tassi, E.: Nonuniform coercions via unification hints. In:
Hirschowitz, T. (ed.) TYPES. EPTCS, vol. 53, pp. 16–29 (2009)

18. Smith, D.R.: Constructing specification morphisms. Journal of Symbolic Compu-
tation 15, 5–6 (1993)

19. Smith, D.R.: Mechanizing the development of software. In: Broy, M., Stein-
brueggen, R. (eds.) Calculational System Design, Proceedings of the NATO Ad-
vanced Study Institute, pp. 251–292. IOS Press, Amsterdam (1999)

20. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.
Mathematical Structures in Computer Science 21(4), 795–825 (2011)

21. Wiedijk, F.: Estimating the cost of a standard library for a mathematical proof
checker (2001), http://www.cs.ru.nl/~freek/notes/mathstdlib2.pdf

http://www.sciencedirect.com/science/article/pii/0168007286900539
http://dx.doi.org/10.1007/978-3-642-03359-9_23
http://kwarc.info/frabe/Research/mmt.pdf
http://www.cs.ru.nl/~freek/notes/mathstdlib2.pdf

Verifying an Algorithm Computing Discrete

Vector Fields for Digital Imaging�

Jónathan Heras, Maŕıa Poza, and Julio Rubio

Department of Mathematics and Computer Science of University of La Rioja
{jonathan.heras,maria.poza,julio.rubio}@unirioja.es

Abstract. In this paper, we present a formalization of an algorithm to
construct admissible discrete vector fields in the Coq theorem prover tak-
ing advantage of the SSReflect library. Discrete vector fields are a tool
which has been welcomed in the homological analysis of digital images
since it provides a procedure to reduce the amount of information but pre-
serving the homological properties. In particular, thanks to discrete vec-
tor fields, we are able to compute, inside Coq, homological properties of
biomedical images which otherwise are out of the reach of this system.

Keywords: Discrete Vector Fields, Haskell, Coq, SSReflect,
Integration.

1 Introduction

Kenzo [10] is a Computer Algebra System devoted to Algebraic Topology which
was developed by F. Sergeraert. This system has computed some homology and
homotopy groups which cannot be easily obtained by theoretical or computa-
tional means; some examples can be seen in [23]. Therefore, in this situation, it
makes sense to analyze the Kenzo programs in order to ensure the correctness
of the mathematical results which are obtained thanks to it. To this aim, two
different research lines were launched some years ago to apply formal methods
in the study of Kenzo.

On the one hand, the ACL2 theorem prover has been used to verify the cor-
rectness of actual Kenzo programs, see [17,21]. ACL2 fits perfectly to this task
since Kenzo is implemented in Common Lisp [14], the same language in which
ACL2 is built on. Nevertheless, since the ACL2 logic is first-order, the full verifi-
cation of Kenzo is not possible, because it uses intensively higher order functional
programming. On the other hand, some instrumental Kenzo algorithms, involv-
ing higher-order logic, have been formalized in the proof assistants Isabelle/HOL
and Coq. Namely, we can highlight the formalizations of the Basic Perturbation
Lemma in Isabelle/HOL, see [2], and the Effective Homology of Bicomplexes in
Coq, published in [9].

� Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-
C02-01, and by the European Union’s 7th Framework Programme under grant agree-
ment nr. 243847 (ForMath).

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 216–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Verifying an Algorithm Computing Discrete Vector Fields 217

The work presented in this paper goes in the same direction that the latter
approach, formalizing Kenzo algorithms. In particular, we have focused on the
formalization of Discrete Vector Fields, a powerful notion which will play a key
role in the new version of Kenzo; see the Kenzo web page [10]. To carry out this
task, we will use the Coq proof assistant [7] and its SSReflect library [13].

The importance of Discrete Vector Fields, which were first introduced in [11],
stems from the fact that they can be used to considerably reduce the amount
of information of a discrete object but preserving homological properties. In
particular, we can use discrete vector fields to deal with biomedical images inside
Coq in a reasonable amount of time.

The rest of this paper is organized as follows. In the next section, we intro-
duce some mathematical preliminaries, which are encoded abstractly in Coq in
Section 3. Such an abstract version is refined to an effective one in Section 4;
namely, the implementation and formal verification of the main algorithm in-
volved in our developments are presented there. In order to ensure the feasibility
of our programs, a major issue when applying formal methods, we use them
to study a biomedical problem in Section 5. The paper ends with a section of
Conclusions and Further work, and the Bibliography.

The interested reader can consult the complete development in http://wiki.

portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples#wp3ex5.

2 Mathematics to Formalize

In this section, we briefly provide the minimal mathematical background needed
to understand the rest of the paper. We mainly focus on definitions which,
mainly, come from the algebraic setting of discrete Morse theory presented in [24]
and the Effective Homology theory [25]. We assume as known the notions of ring,
module over a ring and module morphism (see, for instance, [18]).

First of all, let us introduce one of the main notions in the context of Algebraic
Topology: chain complexes.

Definition 1. A chain complex C∗ is a pair of sequences (Cn, dn)n∈Z where for
everyn ∈ Z,Cn is anR-module and dn : Cn → Cn−1 is amodule morphism, called
the differential map, such that the composition dndn+1 is null. In many situations
the ring R is either the integer ring, R = Z, or the field Z2. In the rest of this
section, we will work with Z as ground ring; later on, we will change to Z2.

The module Cn is called the module of n-chains. The image Bn = im dn+1 ⊆
Cn is the (sub)module of n-boundaries. The kernel Zn = ker dn ⊆ Cn is the
(sub)module of n-cycles.

Given a chain complex C∗ = (Cn, dn)n∈Z, the identities dn−1 ◦ dn = 0 mean the
inclusion relations Bn ⊆ Zn: every boundary is a cycle (the converse in general
is not true). Thus the next definition makes sense.

Definition 2. The n-homology group of C∗, denoted by Hn(C∗), is defined as
the quotient Hn(C∗) = Zn/Bn

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples#wp3ex5
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples#wp3ex5

218 J. Heras, M. Poza, and J. Rubio

Chain complexes have a corresponding notion of morphism.

Definition 3. Let C∗ = (Cn, dn)n∈Z and D∗ = (Dn, d̂n)n∈Z be two chain com-
plexes. A chain complex morphism f : C∗ → D∗ is a family of module morphisms,
f = {fn : Cn → Dn}n∈Z, satisfying for every n ∈ Z the relation fn−1dn = d̂nfn.
Usually, the sub-indexes are skipped, and we just write fdC = dDf .

Now, we can introduce one of the fundamental notions in the effective homology
theory.

Definition 4. A reduction ρ between two chain complexes C∗ and D∗, denoted
in this paper by ρ : C∗⇒⇒D∗, is a triple ρ = (f, g, h) where f : C∗ → D∗ and
g : D∗ → C∗ are chain complex morphisms, h = {hn : Cn → Cn+1}n∈Z is a
family of module morphism, and the following relations are satisfied:

1) f ◦ g = IdD∗ ;
2) dC ◦ h+ h ◦ dC = IdC∗ − g ◦ f ;
3) f ◦ h = 0; h ◦ g = 0; h ◦ h = 0.

The importance of reductions lies in the fact that given a reduction ρ : C∗⇒⇒D∗,
then Hn(C∗) is isomorphic to Hn(D∗) for every n ∈ Z. Very frequently, D∗ is a
much smaller chain complex than C∗, so we can compute the homology groups
of C∗ much faster by means of those of D∗.

Let us state now the main notions coming from the algebraic setting of Dis-
crete Morse Theory [24].

Definition 5. Let C∗ = (Cn, dn)n∈Z be a free chain complex with distinguished
Z-basis βn ⊂ Cn. A discrete vector field V on C∗ is a collection of pairs V =
{(σi; τi)}i∈I satisfying the conditions:

• Every σi is some element of βn, in which case τi ∈ βn+1. The degree n
depends on i and in general is not constant.

• Every component σi is a regular face of the corresponding τi (regular face
means that the coefficient of σi in dn+1τi is 1 or −1).

• Each generator (cell) of C∗ appears at most one time in V .

It is not compulsory all the cells of C∗ appear in the vector field V .

Definition 6. A cell χ which does not appear in a discrete vector field V =
{(σi; τi)}i∈I is called a critical cell.

From a discrete vector field on a chain complex, we can introduce V -paths.

Definition 7.A V -path of degree n and lengthm is a sequence ((σik , τik))0≤k<m
satisfying:

• Every pair ((σik , τik)) is a component of V and τik is a n-cell.
• For every 0 < k < m, the component σik is a face of τik−1

(the coefficient of
σik in dnτik−1

is non-null) different from σik−1
.

Verifying an Algorithm Computing Discrete Vector Fields 219

Now we can present the notion of admissible discrete vector field on a chain com-
plex, a concept which can be understood as a recipe indicating both the “useless”
elements of the chain complex (in the sense, that they can be removed without
changing its homology) and the critical ones (those whose removal modifies the
homology).

Definition 8. A discrete vector field V is admissible if for every n ∈ Z, a
function λn : βn → N is provided satisfying the following property: every V -
path starting from σ ∈ βn has a length bounded by λn(σ).

Finally, we can state the theorem where Discrete Morse Theory and Effective
Homology converge.

Theorem 9. [24, Theorem 19] Let C∗ = (Cn, dn)n∈Z be a free chain complex
and V be an admissible discrete vector field on C∗. Then the vector field V
defines a canonical reduction ρ : (Cn, dn)⇒⇒ (Ccn, d

c
n) where Ccn = Z[βcn] is the

free Z-module generated by βcn, the critical n-cells.

Therefore, as the bigger the admissible discrete vector field V the smaller the
chain complex Cc∗, we need algorithms which produce admissible discrete vector
fields as large as possible.

If we consider the case of finite type chain complexes, where there is a finite
number of generators in each dimension of the chain complex, the differential
maps can be represented as matrices. In that case, the problem of finding an
admissible discrete vector field on the chain complex can be solved through the
computation of an admissible vector field for those matrices.

Definition 10. Let M be a matrix with coefficients in Z, and with m rows and
n columns. A discrete vector field V for this matrix is a set of natural pairs
{(ai, bi)} satisfying these conditions:

1. 1 ≤ ai ≤ m and 1 ≤ bi ≤ n.
2. The entry M [ai, bi] of the matrix is ±1.
3. The indexes ai (resp. bi) are pairwise different.

Given V be a vector field for our matrix M , we need to know if V is admissible.
If 1 ≤ a, a′ ≤ m, with a
= a′, we can decide a > a′ if there is an elementary
V -path from a to a′, that is, if a vector (a, b) is present in V and the entry
M [a′, b] is non-null. In this way, a binary relation is obtained. Then the vector
field V is admissible if and only if this binary relation generates a partial order,
that is, if there is no loop a1 > a2 > . . . > ak = a1.

Eventually, given a matrix and an admissible discrete vector field on it, we can
construct a new matrix, smaller than the original one, preserving the homological
properties. This is the equivalent version of Theorem 9 for matrices, a detailed
description of the process can be seen in [24, Proposition 14].

In the rest of the paper, we will focus on the formally certified construction
of an admissible discrete vector field from a matrix. The task of verifying the
reduction process remains as further work.

220 J. Heras, M. Poza, and J. Rubio

3 A Non Deterministic Algorithm in SSReflect

First of all, we have provided in Coq/SSReflect an abstract formalization of
admissible discrete vector fields on matrices and a non deterministic algorithm
to construct an admissible discrete vector field from a matrix1. SSReflect is
an extension for the Coq proof assistant, which was developed by G. Gonthier
while formalizing the Four Color Theorem [12]. Nowadays, it is used in the formal
proof of the Feit-Thompson theorem [1].

SSReflect provides all the necessary tools to achieve our goal. In particular,
we take advantage of the matrix, ssralg and fingraph libraries, which formal-
ize, respectively, matrix theory, the main algebraic structures and the theory of
finite graphs.

First of all, we are going to define admissible discrete vector field on a matrix
M with coefficients in a ring R, and with m rows and n columns. It is worth
noting that our matrices are defined over a generic ring instead of working with
coefficients in Z since the SSReflect implementation of Z, see [6], is not yet
included in the SSReflect distributed version. The vector fields are represented
by a sequence of pairs where the first component is an ordinal m and the second
one an ordinal n.

Variable R : ringType.

Variables m n : nat.

Definition vectorfield := seq (’I_m * ’I_n).

Now, we can define in a straightforward manner a function, called dvf, which
given a matrix M (with coefficients in a ring R, and with m rows and n columns,
’M[R]_(m,n)) and an object V of type vectorfield checks whether V satisfies
the properties of a discrete vector field on M (Definition 10).

Definition dvf (M : ’M[R]_(m,n)) (V : vectorfield) :=

all [pred p | (M p.1 p.2 == 1) || (M p.1 p.2 == -1)] V &&

(uniq (map (@fst _ _) V) && uniq (map (@snd _ _) V)).

It is worth noting that the first condition of Definition 10 is implicit in the
vectorfield type. Now, as we have explained at the end of the previous section,
from a discrete vector field V a binary relation is obtained between the first
elements of each pair of V. Such a binary relation will be encoded by means of
an object of the following type.

Definition orders := (simpl_rel ’I_m).

Finally, we can define a function, which is called advf, that given a matrix ’M

[R]_(m,n), M, a vectorfield, V and an orders, ords, as input, tests whether
both V satisfies the properties of a discrete vector field on M and the admissibility
property for the relations, ords, associated with the vector field, V. In order to
test the admissibility property we generate the transitive closure of ords, using

1 Thanks are due to Maxime Dénès and Anders Mörtberg which guided us in this
development.

Verifying an Algorithm Computing Discrete Vector Fields 221

the connect operator of the fingraph library, and subsequently check that there
is not any path between the first element of a pair of V and itself.

Definition advf (M:’M[R]_(m,n)) (V:vectorfield) (ords:orders) :=

dvf M V && all [pred i|~~(connect ords i i)] (map (@fst _ _) V).

Now, let us define a non deterministic algorithm which construct an admissible
discrete vector field from a matrix. Firstly, we define a function, gen_orders,
which generates the relations between the elements of the discrete vector field
as we have explained at the end of the previous section.

Definition gen_orders (M0 : ’M[R]_(m,n)) (i:’I_m) j :=

[rel i x | (x != i) && (M0 x j != 0)].

Subsequently, the function, gen_adm_dvf, which generates an admissible dis-
crete vector field from a matrix is introduced. This function invokes a recursive
function, genDvfOrders, which in each step adds a new component to the vec-
tor field in such a way that the admissibility property is fulfilled. The recursive
algorithm stops when either there is not any new element whose inclusion in
the vector field preserves the admissibility property or the maximum number of
elements of the discrete vector field (which is the minimum between the number
of columns and the number of rows of the matrix) is reached.

Fixpoint genDvfOrders M V (ords : simpl_rel _) k :=

if k is l.+1 then

let P := [pred ij | admissible (ij::V) M

(relU ords (gen_orders M ij.1 ij.2))] in

if pick P is Some (i,j)

then genDvfOrders M ((i,j)::V)

(relU ords (gen_orders M i j)) l

else (V, ords)

else (V, ords).

Definition gen_adm_dvf M :=

genDvfOrders M [::] [rel x y | false] (minn m n).

Eventually, we can certify in a straightforward manner (just 4 lines) the correct-
ness of the function gen_adm_dvf.

Lemma admissible_gen_adm_dvf m n (M : ’M[R]_(m,n)) :

let (vf,ords) := gen_adm_dvf M in admissible vf M ords.

As a final remark, it is worth noting that the function gen_adm_dvf is not
executable. On the one hand, SSReflect matrices are locked in a way that
do not allow direct computations since they may trigger heavy computations
during deduction steps. On the other hand, we are using the pick instruction,
in the definition of genDvfOrders, to choose the elements which are added to
the vector field; however, this operator does not provide an actual method to
select those elements.

222 J. Heras, M. Poza, and J. Rubio

4 An Effective Implementation: From Haskell to Coq

In the previous section, we have presented a non deterministic algorithm to con-
struct an admissible discrete vector field from a matrix. Such an abstract version
has been described on high-level datastructures; now, we are going to obtain from
it a refined version, based on datastructures closer to machine representation,
which will be executable.

The necessity of an executable algorithm which construct an admissible dis-
crete vector field stems from the fact that they will will play a key role to study
biomedical images. There are several algorithms to construct an admissible dis-
crete vector field; the one that we will use is explained in [24] (from now on,
called RS’s algorithm; RS stands for Romero-Sergeraert). The implementation
of this algorithm will be executable but the proof of its correctness will be much
more difficult than the one presented in the previous section.

4.1 The Romero-Sergeraert Algorithm

The underlying idea of the RS algorithm is that given an admissible discrete vec-
tor field, we try to enlarge it adding new vectors which preserve the admissibility
property. We can define algorithmically the RS algorithm as follows.

Algorithm 11 (The RS Algorithm) .
Input: a matrix M with coefficients in Z.
Output: an admissible discrete vector field for M .
Description:

1. Initialize the vector field, V , to the void vector field.
2. Initialize the relations, ords, to nil.
3. For every row, i, of M :
3.1. Search the first entry of the row equal to 1 or −1, j.
3.2. If (i, j) can be added to the vector field; that is, if we add it to V and

generate all the relations, the properties of an admissible discrete vector
field are preserved.

then:
- Add (i, j) to V .
- Add to ords the corresponding relations generated from (i, j).
- Go to the next row and repeat from Step 3.

else: look for the next entry of the row whose value is 1 or −1.
- If there is not any.

then: go to the next row and repeat from Step 3.
else: go to Step 3.2 with j the column of the entry whose
value is 1 or −1.

In order to clarify how this algorithm works, let us construct an admissible
discrete vector field from the following matrix.

Verifying an Algorithm Computing Discrete Vector Fields 223

⎛⎜⎜⎝
1 1 0 0
1 1 1 0
0 0 1 1
0 1 1 0

⎞⎟⎟⎠
We start with the void vector field V = {}. Running the successive rows, we
find M [1, 1] = 1, and we include the vector (1, 1) to V , obtaining V = {(1, 1)}.
Then, let us add the relations that, in this case is 1 > 2 because M [2, 1]
= 0.
So, it will be forbidden to incorporate the relation 2 > 1 as the cycle 1 > 2 > 1
would appear. Besides, the row 1 and the column 1 are now used and cannot be
used anymore. So, we go on with the second row and find M [2, 1] = 1, but we
cannot add (2, 1) as we have just said. Moreover, the element (2, 2) can not be
incorporated because the cycle 1 > 2 > 1 would be created. So, we continue and
find the next element, M [2, 3] = 1. This does not create any cycle and satisfies
the properties of a discrete vector field. Then, we obtain V = {(2, 3), (1, 1)} and
the relations 2 > 3 and 2 > 4. Running the next row, the first element equal
to 1 is in the position (3, 3), but we cannot include it due to the admissibility
property. Therefore, we try with the last element of this row (3, 4). No relation
is generated in this case because in this column the only non null element is in
the chosen position. So, V = {(3, 4), (2, 3), (1, 1)}. Finally, we run the last row.
The elements that could be added are (4, 2), (4, 3), but in both cases we would
have to append the relation 4 > 2. This would generate a cycle with one of
the previous restrictions, 2 > 4. So, we obtain V = {(3, 4), (2, 3), (1, 1)} and the
relations are: 1 > 2, 2 > 3 and 2 > 4.

In general, Algorithm 11 can be applied over matrices with coefficients in
a general ring R. From now on, we will work with R = Z2, since this is the
usual ring when working with monochromatic images in the context of Digital
Algebraic Topology.

The development of a formally certified implementation of the RS algorithm
has followed the methodology presented in [22]. Firstly, we implement a version
of our programs in Haskell [19], a lazy functional programming language. Sub-
sequently, we intensively test our implementation using QuickCheck [5], a tool
which allows one to automatically test properties about programs implemented
in Haskell. Finally, we verify the correctness of our programs using the Coq
interactive proof assistant and its SSReflect library.

4.2 A Haskell Program

The choice of Haskell to implement our programs was because both the code
and the programming style is similar to the ones of Coq . In this programming
language, we have defined the programs which implement the RS algorithm. The
description of the main function is shown here:

gen admdvf ord M : From a matrix M with coefficients in Z2, represented as a
list of lists, this function generates an admissible discrete vector field for M ,
encoded by a list of natural pairs, and the relations, a list of lists of natural
numbers.

224 J. Heras, M. Poza, and J. Rubio

Let us emphasize that the function gen_admdvf_ord returns a pair of elements.
The former one, (gen_admdvf_ord M).1, is a discrete vector field and the latter
one, (gen_admdvf_ord M).2, corresponds to the relations associated with the
vector field. To provide a better understanding of these tools, let us apply them
in the example presented in Subsection 4.1.

> gen_admdvf_ord [[1,1,0,0],[1,1,1,0],[0,0,1,1],[0,1,1,0]]

[([(3,4),(2,3),(1,1)], [[2,4],[2,3],[1,2],[1,2,4],[1,2,3]])]

Let us note that we return the transitive closure of the relations between the
first components of the pairs of the discrete vector field. This will make the proof
of the correctness of our programs easier.

4.3 Testing with QuickCheck

Using QuickCheck can be considered as a good starting point towards the formal
verification of our programs. On the one hand, a specification of the properties
which must be satisfied by our programs is given (a necessary step in the for-
malization process). On the other hand, before trying a formal verification of
our programs (a quite difficult task) we are testing them, a process which can
be useful in order to detect bugs.

In our case, we want to check that the output by gen_admdvf_ord gives us an
admissible discrete vector field. Then, let M be a matrix over Z2 with m rows
and n columns, V = (ai, bi)i be a discrete vector field from M and ords be the
transitive closure of the relations associated with V , the properties to test are
the ones coming from Definition 10 and the admissibility property adapted to
the Z2 case.

1. 1 ≤ ai ≤ m and 1 ≤ bi ≤ n.
2. ∀i ,M(ai, bi) = 1.
3. (ai)i (resp. (bi)i) are pairwise different.
4. ords does not have any loop (admissibility property).

These four properties has been encoded in Haskell by means of a function called
isAdmVecfield. To test in QuickCheck that our implementation of the RS al-
gorithm fulfills the specification given in isAdmVecfield, the following property
definition, using QuickCheck terminology, is defined.

condAdmVecfield M =

let advf = (gen_admdvf_ord M) in isAdmVecfield M (advf.1) (advf.2)

The definition of condAdmVecfield states that given a matrix M, the output
of gen_admdvf_ord, both the discrete vector field (first component) and the
relations (second component) from M , fulfill the specification of the property
called isAdmVecfield. Now, we can test whether condAdmVecfield satisfies
such a property.

Verifying an Algorithm Computing Discrete Vector Fields 225

> quickCheck condAdmVecfield

+ + + OK, passed 100 tests.

The result produced by QuickCheck when evaluating this statement, means that
QuickCheck has generated 100 random values for M, checking that the property
was true for all these cases. To be more precise, QuickCheck generates 100 ran-
dom matrices over Z; however, our algorithm works with matrices over Z2, then
to overcome this pitfall we have defined a function which transforms matrices
over Z into matrices over Z2 turning even entries of the matrices into 0’s and
odd entries into 1’s. In this way, we obtain random matrices over Z2 to test our
programs.

4.4 Formalization in Coq /SSReflect

After testing our programs, and as a final step to confirm their correctness, we
can undertake the challenge of formally verifying them.

First of all, we define the data types related to our programs, which are
effective matrices, vector fields and relations. We have tried to keep them as
close as possible to the Haskell ones; therefore, a matrix is represented by means
of a list of lists over Z2, a vector field is a sequence of natural pairs and finally,
the relations is a list of lists of natural numbers.

Definition Z2 := Fp_fieldType 2.

Definition matZ2 := seq (seq Z2).

Definition vectorfield := seq (prod nat nat).

Definition orders := seq (seq nat).

Afterwards, we translate both the programs and the properties, which were
specified during the testing of the programs, from Haskell to Coq, a task which
is quite direct since these two systems are close.

Then, we have defined a function isAdmVecfield which receives as input a
matrix over Z2, a vector field and the relations and checks if the properties,
explained in Subsection 4.3, are satisfied.

Definition isAdmVecfield (M:matZ2)(vf:vectorfield)(ord:orders):=

((longmn (size M) (getfirstElemseq vf)) /\

(longmn (size (nth [::] M 0)) (getsndElemseq vf))) /\

(forall i j:nat, (i , j) \in vf -> compij i j M = 1) /\

((uniq (getfirstElemseq vf)) /\ (uniq (getsndElemseq vf))) /\

(admissible ord).

Finally, we have proved the theorem genDvfisVecfield which says that given
a matrix M , the output produced by gen_admdvf_ord satisfies the properties
specified in isAdmVecfield.

Theorem genDvfisVecfield (M:matZ2):

let advf := (gen_admdvf_ord M) in

isAdmVecfield M (advf.1) (advf.2).

226 J. Heras, M. Poza, and J. Rubio

We have split the proof of the above theorem into 4 lemmas which correspond
with each one of the properties that should be fulfilled to have an admissible
discrete vector field. For instance, the lemma associated with the first property
of the definition of a discrete vector field is the following one.

Lemma propSizef (M:matZ2):

let advf := (gen_admdvf_ord M).1 in

(longmn (size M) (getfirstElemseq advf) /\

(longmn (size (nth nil M 0))(getsndElemseq advf)).

Both the functions which implement the RS algorithm and the ones which specify
the definitional properties of admissible discrete vector fields are defined using
a functional style; that is, our programs are defined using pattern-matching and
recursion. Therefore, in order to reason about our recursive functions, we need
elimination principles which are fitted for them. To this aim, we use the tool
presented in [3] which allows one to reason about complex recursive definitions
since Coq does not directly generate elimination principles for complex recursive
functions. Let us see how the tool presented in [3] works.

In our development of the implementation of the RS algorithm, we have de-
fined a function, called subm, which takes as arguments a natural number, n, and
a matrix, M, and removes the first n rows of M. The inductive scheme associated
with subm is set as follows.

Functional Scheme subm_ind := Induction for subm Sort Prop.

Then, when we need to reason about subm, we can apply this scheme with the
corresponding parameters using the instruction functional induction. How-
ever, as we have previously said both our programs to define the RS algorithm
and the ones which specify the properties to prove are recursive. Then, in several
cases, it is necessary to merge several inductive schemes to induction simultane-
ously on several variables. For instance, letM be a matrix andM ′ be a submatrix
ofM where we have removed the (k−1) first rows ofM ; then, we want to prove
that ∀j, M(i, j) =M ′(i − k + 1, j). This can be stated in Coq as follows.

Lemma Mij_subM (i k: nat) (M: matZ2):

k <= i -> k != 0 -> let M’ := (subm k M) in

M i j == M’ (i - k + 1) j.

To prove this lemma it is necessary to induct simultaneously on the parameters
i, k and M, but the inductive scheme generated from subm only applies induc-
tion on k and M. Therefore, we have to define a new recursive function, called
Mij_subM_rec, to provide a proper inductive scheme to prove this theorem.

Fixpoint Mij_subM_rec (i k: nat) (M: matZ2) :=

match k with

|0 => M

|S p => match M with

|nil => nil

|hM::tM => if (k == 1)

Verifying an Algorithm Computing Discrete Vector Fields 227

then a::b

else (Mij_subM_rec p (i- 1) tM)

end

end.

This style of proving functional programs in Coq is the one followed in the
development of the proof of Theorem genDvfisVecfield.

4.5 Experimental Results

Using the same methodology presented throughout this section, we are working
in the formalization of the algorithm which, from a matrix and an admissible
discrete vector field on it, produces a reduced matrix preserving the homological
properties of the original one. Up to now, we have achieved a Haskell implemen-
tation which has been both tested with QuickCheck and translated into Coq;
however, the proof of its correctness remains as further work.

Anyway, as we have a Coq implementation of that procedure, we can exe-
cute some examples inside this proof assistant. Namely, we have integrated the
programs presented in this paper with the ones devoted to the computation of
homology groups of digital images introduced in [15]. The reason to carry out
the computations within Coq, instead of transferring the verified algorithms
into a more efficient programming language like OCaml or Haskell, is the chance
that this approach provides us to reuse the result of our homological computa-
tions for further proofs. It is worth noting that the outputs produced by external
programs are untrusted so they cannot be imported inside Coq.

As a benchmark we have considered matrices coming from 500 randomly
generated images. The size of the matrices associated with those images was
initially around 100× 300, and after the reduction process the average size was
5×50. Using the original matrices Coq takes around 12 seconds to compute the
homology from the matrices; on the contrary, using the reduced matrices Coq
only needs milliseconds. Furthermore, as we will see in the following section, we
have studied some images which are originated from a real biomedical problem.

5 Application to Biomedical Images

Biomedical images are a suitable benchmark for testing our programs. On the
one hand, the amount of information included in this kind of images is usually
quite big; then, a process able to reduce those images but keeping the homological
properties can be really useful. On the other hand, software systems dealing with
biomedical images must be trustworthy; this is our case since we have formally
verified the correctness of our programs.

As an example, we can consider the problem of counting the number of
synapses in a neuron. Synapses [4] are the points of connection between neurons
and are related to the computational capabilities of the brain. Therefore, the
treatment of neurological diseases, such as Alzheimer, may take advantage of
procedures modifying the number of synapses [8].

228 J. Heras, M. Poza, and J. Rubio

Up to now, the study of the synaptic density evolution of neurons was a time-
consuming task since it was performed, mainly, manually. To overcome this issue,
an automatic method was presented in [16]. Briefly speaking, such a process can
be split into two parts. Firstly, from three images of a neuron (the neuron with
two antibody markers and the structure of the neuron), a monochromatic im-
age is obtained, see Figure 12. In such an image, each connected component
represents a synapse. So, the problem of measuring the number of synapses is
translated into a question of counting the connected components of a monochro-
matic image.

Fig. 1. Synapses extraction from three images of a neuron

In the context of Algebraic Digital Topology, this issue can be tackled by
means of the computation of the homology group H0 of the monochromatic im-
age. This task can be performed in Coq through the formally verified programs
which were presented in [15]. Nevertheless, such programs are not able to handle
images like the one of the right side of Figure 1 due to its size (let us remark that
Coq is a proof assistant tool and not a computer algebra system). In order to
overcome this drawback, as we have explained at the end of the previous section,
we have integrate our reduction programs with the ones presented in [15]. Us-
ing this approach, we can successfully compute the homology of the biomedical
images in just 25 seconds, a remarkable time for an execution inside Coq.

6 Conclusions and Further Work

In this paper, we have given the first step towards the formal verification of a
procedure which allows one to study homological properties of big digital im-
ages inside Coq. The underlying idea consists in building an admissible discrete
vector field on the matrices associated with an image and, subsequently reduce
those matrices but preserving the homology.

2 The same images with higher resolution can be seen in
http://www.unirioja.es/cu/joheras/synapses/

http://www.unirioja.es/cu/joheras/synapses/

Verifying an Algorithm Computing Discrete Vector Fields 229

Up to now, we have certified the former step of this procedure, the construc-
tion of an admissible discrete vector field from a matrix, both in an abstract and
a concrete way. The reason because the abstract formalization is useful is twofold:
on the one hand, it provides a high-level theory close to usual mathematics, and,
on the other hand, it has been refined to obtain the effective construction of ad-
missible discrete vector fields. As we have explained, there are several heuristics
to construct an admissible discrete vector field from a matrix, the one that we
have chosen is the RS algorithm [24] which produces, as we have experimentally
seen, quite large discrete vector fields, a desirable property for these objects. The
latter step, the process to reduce the matrices, is already specified in Coq, but
the proof of its correctness is still an ongoing work.

The suitability of our approach has been tested with several examples coming
from randomly generated images and also real images associated with a biomed-
ical problem, the study of synaptic density evolution. The results which have
been obtained are remarkable since the amount of time necessary to compute
homology groups of such images inside Coq is considerably reduced (in fact, it
was impossible in the case of biomedical images).

As further work, we have to deal with some formalization issues. Namely, we
have to verify that a reduction can be constructed from a matrix and an admissi-
ble discrete vector field to a reduced matrix. Moreover, we have hitherto worked
with matrices over the ring Z2; the more general case of matrices with coefficients
in a ring R (with convenient constructive properties) should be studied.

As we have seen in Subsection 4.4, it is necessary the definition of inductive
schema which fits to our complex recursive programs. Then, this opens the door
to an integration between Coq and the ACL2 Theorem Prover [20]. ACL2 has
good heuristics to generate inductive schemes from recursive functions; so, we
could translate our functional programs from Coq to ACL2, generate the in-
ductive schemes in ACL2; and finally return such inductive schemes to Coq.
Some preliminary experiments have been performed to automate that process,
obtaining encouraging results.

In a different research line, we can consider the study of more complex biomed-
ical problems using our certified programs. As an example, the recognition of the
structure of neurons seems to involve the computation of homology groups in
higher dimensions; a question which could be tackled with our tools.

References

1. Mathematical components team homepage,
http://www.msr-inria.inria.fr/Projects/math-components

2. Aransay, J., Ballarin, C., Rubio, J.: A mechanized proof of the Basic Perturbation
Lemma. Journal of Automated Reasoning 40(4), 271–292 (2008)

3. Barthe, G., Courtieu, P.: Efficient Reasoning about Executable Specifications in
Coq. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS,
vol. 2410, pp. 31–46. Springer, Heidelberg (2002)

4. Bear, M., Connors, B., Paradiso, M.: Neuroscience: Exploring the Brain. Lippincott
Williams & Wilkins (2006)

http://www.msr-inria.inria.fr/Projects/math-components

230 J. Heras, M. Poza, and J. Rubio

5. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In: ACM SIGPLAN Notices, pp. 268–279. ACM Press (2000)

6. Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered
fields to quantifier elimination (2011), http://hal.inria.fr/inria-00593738

7. Coq development team. The Coq Proof Assistant, version 8.3. Technical report
(2010)

8. Cuesto, G., et al.: Phosphoinositide-3-Kinase Activation Controls Synaptogenesis
and Spinogenesis in Hippocampal Neurons. The Journal of Neuroscience 31(8),
2721–2733 (2011)

9. Domı́nguez, C., Rubio, J.: Effective Homology of Bicomplexes, formalized in Coq.
Theoretical Computer Science 412, 962–970 (2011)

10. Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo program. Institut
Fourier, Grenoble (1998),
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

11. Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134, 90–145
(1998)

12. Gonthier, G.: Formal proof - The Four-Color Theorem, vol. 55. Notices of the
American Mathematical Society (2008)

13. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq.
Journal of Formal Reasoning 3(2), 95–152 (2010)

14. Graham, P.: ANSI Common Lisp. Prentice Hall (1996)
15. Heras, J., Dénès, M., Mata, G., Mörtberg, A., Poza, M., Siles, V.: Towards a certi-

fied computation of homology groups for digital images. In: Proceedings 4th Inter-
national Workshop on Computational Topology in Image Context (CTIC 2012).
LNCS (to appear, 2012)

16. Heras, J., Mata, G., Poza, M., Rubio, J.: Homological processing of biomedical
digital images: automation and certification. In: 17th International Conferences on
Applications of Computer Algebra. Computer Algebra in Algebraic Topology and
its Applications Session (2011)

17. Heras, J., Pascual, V., Rubio, J.: Proving with ACL2 the Correctness of Simplicial
Sets in the Kenzo System. In: Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564,
pp. 37–51. Springer, Heidelberg (2011)

18. Jacobson, N.: Basic Algebra II, 2nd edn. W. H. Freeman and Company (1989)
19. Jones, S.P., et al.: The Haskell 98 language and libraries: The revised report. Jour-

nal of Functional Programming 13(1), 0–255 (2003), http://www.haskell.org
20. Kaufmann, M., Moore, J.S.: ACL2 version 4.3 (2011)
21. Lambán, L., Mart́ın-Mateos, F.J., Rubio, J., Ruiz-Reina, J.L.: Applying ACL2 to

the Formalization of Algebraic Topology: Simplicial Polynomials. In: van Eekelen,
M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp.
200–215. Springer, Heidelberg (2011)

22. Mörtberg, A.: Constructive algebra in functional programming and type theory.
In: Mathematics, Algorithms and Proofs 2010 (2010),
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides

23. Romero, A., Rubio, J.: Homotopy groups of suspended classifying spaces: an ex-
perimental approach. To be published in Mathematics of Computation (2012)

24. Romero, A., Sergeraert, F.: Discrete Vector Fields and Fundamental Algebraic
Topology (2010), http://arxiv.org/abs/1005.5685v1

25. Rubio, J., Sergeraert, F.: Constructive Algebraic Topology. Bulletin des Sciences
Mathématiques 126(5), 389–412 (2002)

http://hal.inria.fr/inria-00593738
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www.haskell.org
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
http://arxiv.org/abs/1005.5685v1

Towards the Formal Specification

and Verification of Maple Programs�

Muhammad Taimoor Khan1 and Wolfgang Schreiner2

1 Doktoratskolleg Computational Mathematics
2 Research Institute for Symbolic Computation

Johannes Kepler University
Linz, Austria

muhammad.khan@dk-compmath.jku.at,
Wolfgang.Schreiner@risc.jku.at

http://www.risc.jku.at/people/mtkhan/dk10/

Abstract. In this paper, we present our ongoing work and initial results
on the formal specification and verification of MiniMaple (a substantial
subset of Maple with slight extensions) programs. The main goal of our
work is to find behavioral errors in such programs w.r.t. their speci-
fications by static analysis. This task is more complex for widely used
computer algebra languages like Maple as these are fundamentally differ-
ent from classical languages: they support non-standard types of objects
such as symbols, unevaluated expressions and polynomials and require
abstract computer algebraic concepts and objects such as rings and or-
derings etc. As a starting point we have defined and formalized a syntax,
semantics, type system and specification language for MiniMaple.

1 Introduction

Computer algebra programs written in symbolic computation languages such as
Maple and Mathematica sometimes do not behave as expected, e.g. by triggering
runtime errors or delivering wrong results. There has been a lot of research on
applying formal techniques to classical programming languages, e.g. Java [10],
C# [1] and C [2]; we aim to apply similar techniques to computer algebra lan-
guages, i.e. to design and develop a tool for the static analysis of computer
algebra programs. This tool will find errors in programs annotated with extra
information such as variable types and method contracts, in particular type in-
consistencies and violations of methods preconditions.

As a starting point, we have defined the syntax and semantics of a subset
of the computer algebra language Maple called MiniMaple. Since type safety
is a prerequisite of program correctness, we have formalized a type system for
MiniMaple and implemented a corresponding type checker. The type checker
has been applied to the Maple package DifferenceDifferential [7] developed at

� The research was funded by the Austrian Science Fund (FWF): W1214-N15, project
DK10.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 231–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.risc.jku.at/people/mtkhan/dk10/

232 M.T. Khan and W. Schreiner

our institute for the computation of bivariate difference-differential dimension
polynomials. Furthermore, we have defined a specification language to formally
specify the behavior of MiniMaple programs. As the next step, we will develop a
verification calculus forMiniMaple respectively a corresponding tool to automat-
ically detect errors in MiniMaple programs with respect to their specifications.
An example-based short demonstration of this work is presented in the accom-
panying paper [16].

Figure 1 gives a sketch of the envisioned system (the verifier component is
under development); any MiniMaple program is parsed to generate an abstract
syntax tree (AST). The AST is then annotated by type information and used
by the verifier to check the correctness of a program. Error and information
messages are generated by the respective components.

Fig. 1. Sketch of the System

There are various computer algebra languages, Mathematica and Maple be-
ing the most widely used by far, both of which are dynamically typed. We have
chosen for our work Maple because of its simpler, more classical and imperative
structure. Still we expect that the results we derive for type checking respec-
tive formal specification Maple can be applied to Mathematica, as Mathematica
shares with Maple many concepts such as basic kinds of runtime objects.

During our study, we found the following special features for type checking
respective formal specification of Maple programs (which are typical for most
computer algebra languages):

Towards the Formal Specification and Verification of Maple Programs 233

– The language supports some non-standard types of objects, e.g. symbols,
unevaluated expressions and polynomials.

– The language uses type information to direct the flow of control in the pro-
gram, i.e. it allows some runtime type-checks which selects the respective
code-block for further execution.

– The language lacks in the use of abstract data types, which are necessary
for the adequate specification of computer algebra functions.

The rest of the paper is organized as follows: in Section 2, we describe state of the
art related to our work. In Section 3, we introduce the syntax of MiniMaple by
an example. In Section 4, we briefly explain our type system for MiniMaple. In
Section 5, we discuss our formal specification language for MiniMaple. In Section
6, we highlight the interesting features of a formal semantics of MiniMaple.
Section 7 presents conclusions and future work.

2 State of the Art

In this section we first sketch state of the art of type systems for Maple and then
discuss the application of formal techniques to computer algebra languages.

Although there is no complete static type system for Maple; there have been
several approaches to exploit the type information in Maple for various purposes.
For instance, the Maple package Gauss [17] introduced parameterized types in
Maple. Gauss ran on top of Maple and allowed to implement generic algorithms
in Maple in an AXIOM-like manner. The system supported parameterized types
and parameterized abstract types, however these were only checked at runtime.
The package was introduced in Maple V Release 2 and later evolved into the
domains package. In [6], partial evaluation is applied to Maple. The focus of the
work is to exploit the available type information for generating specialized pro-
grams from generic Maple programs. The language of the partial evaluator has
similar syntactic constructs (but fewer expressions) as MiniMaple and supports
very limited types e.g. integers, rationals, floats and strings. The problem of
statically type-checking MiniMaple programs is related to the problem of stat-
ically type-checking scripting languages such as Ruby [13], but there are also
fundamental differences due to the different language paradigms.

In comparison to the approaches discussed above, MiniMaple uses the type
annotations provided by Maple for static analysis. It supports a substantial
subset of Maple types in addition to named types.

Various specification languages have been defined to formally specify the be-
havior of programs written in standard classical programming languages, e.g.
Java Modeling Language (JML) [10] for Java, Spec# [1] for C# and ACSL [2]
for ANSI C: these specification languages are used by various tools for extended
static checking and verification [8] of programs written in the corresponding lan-
guages. Also variously the application of formal methods to computer algebra
has been investigated. For example [9] applied the formal specification language
Larch [11] to the computer algebra system AXIOM respective its programming

234 M.T. Khan and W. Schreiner

language Aldor. A methodology for Aldor program analysis and verification was
devised by defining abstract specifications for AXIOM primitives and then pro-
viding an interface between these specifications and Aldor code. The project
FoCaLiZe [20] aims to provide a programming environment for computer al-
gebra to develop certified programs to achieve high levels of software security.
The environment is based on functional programming language FoCal, which
also supports some object-oriented features and allows the programmer to write
formal specifications and proofs of programs. The work presented in [5] aims
at finding a mathematical description of the interfaces between Maple routines.
The paper mainly presents the study of the actual contracts in use by Maple
routines. The contracts are statements with certain (static and dynamic) logical
properties. The work focused to collect requirements for the pure type inference
engine for existing Maple routines. The work was extended to develop the partial
evaluator for Maple mentioned above [6].

The specification language for MiniMaple fundamentally differs from those
for classical languages such that it supports some non-standard types of objects,
e.g. symbols, unevaluated expressions and polynomials etc. The language also
supports abstract data types to formalize abstract mathematical concepts, while
the existing specification languages are weaker in such specifications. In contrast
to the computer algebra specification languages above, our specification language
is defined for the commercially supported language Maple, which is widely used
but was not designed to support static analysis (type checking respectively veri-
fication). The challenge here is to overcome those particularities of the language
that hinder static analysis.

3 MiniMaple

MiniMaple is a simple but substantial subset of Maple that covers all the syntac-
tic domains of Maple but has fewer alternatives in each domain than Maple; in
particular, Maple has many expressions which are not supported in our language.
The complete syntactic definition of MiniMaple is given in [14]. The grammar
of MiniMaple has been formally specified in BNF from which a parser for the
language has been automatically generated with the help of the parser generator
ANTLR.

The top level syntax for MiniMaple is as follows:

Prog := Cseq;
Cseq := EMPTY | C,Cseq
C := ... | I,Iseq := E,Eseq | ...

A program is a sequence of commands, there is no separation between declaration
and assignment.

Towards the Formal Specification and Verification of Maple Programs 235

1. status:=0;
2. prod := proc(l::list(Or(integer,float)))::[integer,float];
3. global status;
4. local i::integer, x::Or(integer,float), si::integer:=1, sf::float:=1.0;
5. for i from 1 by 1 to nops(l) while (running) do
6. x:=l[i];
7. if type(x,integer) then
8. if (x = 0) then
9. return [si,sf];
10. else
11. si:=si*x;
12. end if ;
13. elif type(x,float) then
14. if (x < 0.5) then
15. return [si,sf];
16. else
17. sf:=sf*x;
18. end if ;
19. end if ;
20. end do;
21. return [si,sf];
22. end proc;

Listing 1. An example MiniMaple program

Listing 1 gives an example of a MiniMaple program which we will use in the
following sections for the discussion of type checking and behavioral specifica-
tion. The program consists of an assignment initializing a global variable status
and an assignment defining a procedure prod followed by the application of the
procedure. The procedure takes a list of integers and floats and computes the
product of these integers and floats separately; it returns as a result a tuple of
the products. The procedure may also terminate prematurely for certain inputs,
i.e. either for an integer value 0 or for a float value less than 0.5 in the list; in
this case the procedure computes the respective products just before the index
at which the aforementioned terminating input occurs.

As one can see from the example, we make use of the type annotations that
Maple introduced for runtime type checking. In particular, we demand that
function parameters, function results and local variables are correspondingly
type annotated. Based on these annotations, we define a language of types and
a corresponding type system for the static type checking ofMiniMaple programs.

4 A Type System for MiniMaple

A type is (an upper bound on) the range of values of a variable. A type sys-
tem is a set of formal typing rules to determine the variables types from the

236 M.T. Khan and W. Schreiner

text of a program. A type system prevents forbidden errors during the execu-
tion of a program. It completely prevents the untrapped errors and also a large
class of trapped errors. Untrapped errors may go unnoticed for a while and later
cause an arbitrary behavior during execution of a program, while trapped errors
immediately stop execution [4].

A type system in essence is a decidable logic with various kinds of judgments ;
for example the typing judgment

π � E :(τ)exp

can be read as “in the given type environment π, E is a well-typed expression
of type τ”. A type system is sound, if the deduced types indeed capture the
program values exhibited at runtime.

In the following we describe the main properties of a type system for Mini-
Maple. Subsection 4.1 sketches its design and Subsection 4.2 presents its imple-
mentation and application. A proof of the soundness of the type system remains
to be performed.

1. status:=0;
2. prod := proc(l::list(Or(integer,float)))::[integer,float];
3. # π={l:list(Or(integer,float))}
4. global status;
5. local i, x::Or(integer,float), si::integer:=1, sf::float:=1.0;
6. # π={..., i:symbol, x:Or(integer,float),..., status:anything}
7. for i from 1 by 1 to nops(l) do
8. x:=l[i];
9. status:=i;
10. # π={..., i:integer, ..., status:integer}
11. if type(x,integer) then
12. # π={..., i:integer, x:integer, si:integer, ..., status:integer}
13. if (x = 0) then
14. return [si,sf];
15. end if ;
16. si:=si*x;
17. elif type(x,float) then
18. # π={..., i:integer, x:float, ..., sf:float, status:integer}
19. if (x < 0.5) then
20. return [si,sf];
21. end if ;
22. sf:=sf*x;
23. end if ;
24. # π={..., i:integer, x:Or(integer,float),..., status:integer}
25. end do;
26. # π={..., i:symbol, x:Or(integer,float),..., status:anything}
27. status:=-1;
28. # π={..., i:symbol, x:Or(integer,float),..., status:integer}
29. return [si,sf];
30. end proc;
31. result := prod([1, 8.54, 34.4, 6, 8.1, 10, 12, 5.4]);

Listing 2. A MiniMaple procedure type-checked

Towards the Formal Specification and Verification of Maple Programs 237

4.1 Design

MiniMaple uses Maple type annotations for static type checking, which gives
rise to the following language of types:

T ::= integer | boolean | string | float | rational | anything
| { T } | list(T) | [Tseq] | procedure[T](Tseq)
| I (Tseq) | Or(Tseq) | symbol | void | uneval | I

The language supports the usual concrete data types, sets of values of type T ({
T }), lists of values of type T (list(T)) and records whose members have the
values of types denoted by a type sequence Tseq ([Tseq]). Type anything is the
super-type of all types. Type Or(Tseq) denotes the union type of various types,
type uneval denotes the values of unevaluated expressions, e.g. polynomials, and
type symbol is a name that stands for itself if no value has been assigned to
it. User-defined data types are referred by I while I (Tseq) denotes tuples (of
values of types Tseq) tagged by a name I.

A sub-typing relation (<) is defined among types, i.e. integer < rational
< ... < anything, such that integer is a sub-type of rational and the type
anything is the super-type of all types.

In the following, we demonstrate the problems arising from type checking
MiniMaple programs using the example presented in the previous section.

Global Variables. Global variables (declarations) can not be type annotated;
therefore to global variables values of arbitrary types can be assigned in Maple.
We introduce global and local contexts to handle the different semantics of the
variables inside and outside of the body of a procedure respective loop.

– In a global context new variables may be introduced by assignments and the
types of variables may change arbitrarily by assignments.

– In a local context variables can only be introduced by declarations. The types
of variables can only be specialized i.e. the new value of a variable should be
a sub-type of the declared variable type. The sub-typing relation is observed
while specializing the types of variables.

Type Tests. A predicate type(E,T) (which is true if the value of expression
E has type T) may direct the control flow of a program. If this predicate is used
in a conditional, then different branches of the conditional may have different
type information for the same variable. We keep track of the type information
introduced by the different type tests from different branches to adequately
reason about the possible types of a variable. For instance, if a variable x has
type Or(integer,float), in a conditional statement where the ”then” branch is
guarded by a test type(x,integer), in the ”else” branch x has automatically type
float. A warning is generated, if a test is redundant (always yields true or false).

238 M.T. Khan and W. Schreiner

For our example program our type system will generate the type information
as depicted in Listing 2. The program is annotated with the type environment
(a partial function from identifiers to their corresponding types) of the form
#π ={variable:type,...}. For example, the type environment at line 6 shows the
types of the respective variables as determined by the static analysis of parameter
and identifier declarations (global and local).

The static analysis of the two branches of the conditional command in the
body of the loop introduces the type environments at lines 12 and 18 respec-
tively; the type of variable x is determined as integer and float by the condi-
tional type-expressions respectively.

There is more type information to direct the program control flow for an
identifier x introduced by an expression type(E,T) at lines 11 and 17.

By analyzing the conditional command as a whole, the type of variable x is
determined as Or(integer, float) (at line 24), i.e. the union type of the two
types determined by the respective branches.

The local type information introduced/modified by the analysis of body of
loop does not effect the global type information. The type environment at lines
6 and 26 reflects this fact for variables status, i and x. This is because of the
fact that the number of loop iterations might have an effect on the type of the
variable otherwise and one cannot determine the concrete type by the static
analysis. To handle this non-determination of types we put a reasonable upper
bound (fixed point) on the types of such variables, namely the type of a variable
prior to the body of a loop.

4.2 Formalization

In this subsection we explain the typing judgments and typing rules for some
expressions and commands of MiniMaple. These judgments use the following
kinds of objects (“Identifier” and ”Type“ are the syntactic domains of identi-
fiers/variables and types of MiniMaple respectively):

– π: Identifier → Type: a type environment, i.e. a (partial) function from
identifiers to types.

– c ∈ {global, local}: a tag representing the context to check if the correspond-
ing syntactic phrase is type checked inside/outside of the procedure/loop.

– asgnset ⊆ Identifier: a set of assignable identifiers introduced by type check-
ing the declarations.

– εset ⊆ Identifier: a set of thrown exceptions introduced by type checking the
corresponding syntactic phrase.

– τset ⊆ Type: a set of return types introduced by type checking the corre-
sponding syntactic phrase.

– rflag ∈ {aret, not aret}: a return flag to check if the last statement of every
execution of the corresponding syntactic phrase is a return command.

Towards the Formal Specification and Verification of Maple Programs 239

MiniMaple supports various types of expressions but boolean expressions are
treated specially because of the test type(I,T) that gives additional type infor-
mation about the expression. The typing judgment for boolean expressions

π � E :(π1)boolexp

can be read as ”with the given π, E is a well-typed boolean expression with new
type environment π1“. The new type environment is produced as a fact of type
test that might introduce new type information for an identifier.

The typing judgment for commands

π, c, asgnset � C :(π1, τset, εset, rflag)comm

can be read as ”in the given type environment π, context c and an assignable
set of identifiers asgnset, C is a well-typed command and produces (π1, τset,
εset, rflag) as type information”. In the following we explain some typing rules
to derive typing judgments for boolean expressions and conditional commands.
These typing rules use different kinds of auxiliary functions and predicates as
given below.

Auxiliary Functions

– specialize(π1 , π2): specializes the identifiers of former type environment to
the identifiers in the latter type environment w.r.t. their types.

– combine(π1, π2): combines the identifiers in the two environments with re-
spect to their types.

– superType(τ1, τ2): returns the super-type between the two given types.

Auxiliary Predicates

– canSpecialize(π1 , π2): returns true if all the common identifiers (in both type
environments) have a super-type between their corresponding types.

– superType(τ1, τ2): returns true (in most cases) if the former type is general
(super) type than the latter type. Anything is the super-type of all types.

Typing Rules. The typing rule for boolean expressions is as follows:

– type(I,T)

π � I :(τ1)id π � T :(τ2)type superType(τ1,τ2)
π � type(I,T):({I:τ2})boolexp

The phrase “type(I,T)“ is a well-typed boolean expression if the declared
type of identifier (τ1) is the super-type of T (τ). The boolean expression
may introduce new type information for the identifier.

240 M.T. Khan and W. Schreiner

The typing rule for the conditional command is given below:

– if E then Cseq Elif end if

π � E : (π’)boolexp canSpecialize(π,π’)
specialize(π,π’), c, asgnset � Cseq:(π1,τset1,εset1,rflag1)cseq

π, c, asgnset � Elif :(π2,πset, τset2,εset2,rflag2)elif
π, c, asgnset � if E then Cseq Elif end

if :(combine(π1,π2),τset1 ∪ τset2,εset1 ∪ εset2,ret(rflag1, rflag2))comm

The phrase “if E then Cseq Elif end if“ is a well typed conditional com-
mand if the type of expression E does not conflict global type information.
The conditional command combines the type environment of its two condi-
tional branches (if and elif), because we are not sure which of the branches
will be executed at runtime.

4.3 Application

Based on the type system sketched above we have implemented a type checker
for MiniMaple [14] in Java (150+ classes and 15K+ lines of code). The type
checker also handles the specification language of MiniMaple.

Figure 2 shows that the output of the type checker applied to a file containing
the source code of the example program from the previous section. It shows
that the file has successfully parsed and also presents the type annotations for
the first assignment command. In the second part, it shows the resulting type
environment with the associated program identifiers and their respective types
introduced while type checking. The last message indicates that the program
type checked correctly.

/home/taimoor/antlr3/Test6.m parsed with no errors.
Generating Annotated AST...
...
**********COMMAND-SEQUENCE-ANNOTATION START**********
PI -> [
prod:procedure[[integer,float]](list(Or(integer,float)))
status:integer
result:[integer,float]
]
RetTypeSet -> {}
ThrownExceptionSet -> {}
RetFlag -> not_aret
**********COMMAND-SEQUENCE-ANNOTATION END************
Annotated AST generated.
The program type-checked correctly.

Fig. 2. Parsing and Type Checking the Program

The main test case for our type checker is the Maple package Difference-
Differential [7] developed by Christian Dönch at our institute. The package pro-
vides algorithms for computing difference-differential dimension polynomials by

Towards the Formal Specification and Verification of Maple Programs 241

relative Gröbner bases in difference-differential modules according to the method
developed by M. Zhou and F. Winkler [22].

We manually translated this package into a MiniMaple package so that the
type checker can be applied. This translation consists of

– adding required type annotations and
– translating those parts of the package that are not directly supported into

logically equivalent MiniMaple constructs.

No crucial typing errors have been found but some bad code parts have been
identified that can cause problems, e.g., variables that are declared but not used
(and therefore cannot be type checked) and variables that have duplicate global
and local declarations.

5 A Formal Specification Language for MiniMaple

Based on the type system presented in the previous section, we have developed a
formal specification language for MiniMaple. This language is a logical formula
language which is based on Maple notations but extended by new concepts.
The formula language supports various forms of quantifiers, logical quantifiers
(exists and forall), numerical quantifiers (add, mul, min and max) and se-
quential quantifier (seq) representing truth values, numeric values and sequence
of values respectively. We have extended the corresponding Maple syntax, e.g.,
logical quantifiers use typed variables and numerical quantifiers are equipped
with logical conditions that filter values from the specified variable range. The
example for these quantifiers is explained later in the procedure specification of
this section. The use of this specification language is described in the conclusions.

Also the language allows to formally specify the behavior of procedures by pre-
and post-conditions and other constraints; it also supports loop specifications
and assertions. In contrast to specification languages such as JML, abstract data
types can be introduced to specify abstract concepts and notions from computer
algebra.

At the top of MiniMaple program one can declare respectively define mathe-
matical functions, user-defined named and abstract data types and axioms. The
syntax of specification declarations

decl ::= EMPTY
| (define(I,rules);
| ‘type/I ‘:=T ; | ‘type/I ‘;
| assume(spec-expr);) decl

is mainly borrowed from Maple. The phrase “define(I,rules);“ can be used for
defining mathematical functions as shown in the following the factorial function:

define(fac, fac(0) = 1, fac(n::integer) = n * fac(n -1));

User-defined data types can be declared with the phrase ”‘type/I ‘:=T ;“ as
shown in the following declaration of ”ListInt” as the list of integers:

242 M.T. Khan and W. Schreiner

‘type/ListInt‘:=list(integer);

The phrase ”‘type/I ‘;” can be used to declare abstract data type with the
name I, e.g. the following example shows the declaration of abstract data type
“difference differential operator (DDO)”.

‘type/DDO‘;

The task of formally specifying mathematical concepts using abstract data types
is more simpler as compared to their underlying representation with concrete
data types. Also other related facts and the access functions of abstract concept
can be formalized for better reasoning.

Axioms can be introduced by the phrase “assume(spec-expr);“ as the follow-
ing example shows an axiom that an operator is a difference-differential operator,
if its each term is a difference-differential term, where d is an operator:

assume(isDDO(d) equivalent forall(i::integer, 1<=i and i<=terms(d) implies
isDDOTerm(getTerm(d,i,1),getTerm(d,i,2),

getTerm(d,i,3),getTerm(d,i,4));

Any predicate declaration can be introduced by the phrase “I (spec-expr);“ as
the following example shows a predicate that when a given field is supported:

inField(c);

The entities introduced by the specification declarations can be used in the
following specifications.

A procedure specification consists of a pre-condition, the set of global variables
that can be modified and the post condition, describing the relationship between
pre and post state. By an optional exception clause we can specify the exceptional
behavior of a procedure. The procedure specification syntax is influenced by the
Java Modeling Language:

proc-spec ::= requires spec-expr ;
global Iseq;
ensures spec-expr ; excep-clause

Listing 3 shows an example for the procedure specification. The specification is
a big logical disjunction to formulate two possible behaviors of the procedure:

1. when the procedure terminates normally and
2. when the procedure terminates prematurely.

(*@
requires true;
global status;
ensures
(status = -1 and RESULT[1] = mul(e, e in l, type(e,integer))
and RESULT[2] = mul(e, e in l, type(e,float))
and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],integer) implies l[i]<>0)
and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],float) implies l[i]>=0.5))

Towards the Formal Specification and Verification of Maple Programs 243

or
(1<=status and status<=nops(l)
and RESULT[1] = mul(l[i], i=1..status-1, type(l[i],integer))
and RESULT[2] = mul(l[i], i=1..status-1, type(l[i],float))
and ((type(l[status],integer) and l[status]=0)

or (type(l[status],float) and l[status]<0.5))
and forall(i::integer, 1<=i and i<status and type(l[i],integer) implies l[i]<>0)
and forall(i::integer, 1<=i and i<status and type(l[i],float) implies l[i]>=0.5));

@*)
proc(l::list(Or(integer,float)))::[integer,float]; ... end proc;

Listing 3. A MiniMaple procedure formally specified

The listing gives a formal specification of the example procedure introduced
in Section 3. The procedure has no pre-condition as shown in the requires
clause; the global clause says that a global variable status can be modified by
the body of the procedure. The normal behavior of the procedure is specified in
the ensures clause.

The post condition specifies that, if the complete list is processed then we get
the result as the product of all integers and floats in the list; if the procedure
terminates pre-maturely, then we only get the product of integers and floats till
the value of variable status (index of the input list).

From the example one can also notice the application of numerical quantifier
mul. The quantifier multiplies only those elements of the input array l that
satisfy the test type(e,integer).

Loops can be specified by invariants and termination terms denoting non-
negative integers as follows:

loop-spec := invariant spec-expr ; decreases spec-expr ;

The following example specifies the loop that iterates over integers from 1...100
respectively computes the sum.

i := 1; s := 0; n := 100;
while (i <= n) do{
(*@invariant s = OLD s + i - 1; decreases n-i;@*)
s := s + i; i := i + 1;
}

From the example one can see the relationship between the loop variables that
holds after every iteration and that the value of the termination term decreases
after every iteration.

Loop specifications help in reasoning about loops, i.e. about partial correctness
(invariants) and total correctness (termination term).

Assertions have Maple borrowed syntax as given:

asrt := ASSERT(spec-expr, (EMPTY | “I “));

An assertion can be a logical formula or a named assertion. The following ex-
ample shows a named assertion (”test failed”).

244 M.T. Khan and W. Schreiner

x := 1; y := x; x := x + y;
ASSERT(type(y,integer), ”test failed“);

The implemented type checker also checks the correct typing of the formal spec-
ifications. We have used the specification language to formally specify parts of
DifferenceDifferential. While the specifications are not yet formally checked, they
demonstrate the adequacy of the language for the intended purpose.

6 Formal Semantics of MiniMaple

We have defined a formal denotational semantics of MiniMaple programs as a
pre-requisite of a verification calculus which we are currently developing: the
verification conditions generated by the verification calculus must be sound with
respect to the semantics. There is no formally defined semantics for Maple and
only the implementation of Maple can be considered as a basis for our work.
However, our semantics definition attempts to depict the internal behavior of
Maple. Based on this semantics, now we can ask the question about the cor-
rect behavior of any MiniMaple program. The complete definition of a formal
semantics of MiniMaple is given in [15]. Its core features are as follows:

– MiniMaple has expressions with side-effects, which is not supported in func-
tional programming languages like Haskel [12] and Miranda [21]. As a result
the evaluation of an expression may change the state. The formal seman-
tics of expression evaluation and command execution is therefore defined
as a state relationship between pre- and post-states. A formal denotational
semantics is defined as a state relationship is easier to integrate with non-
uniquely specified procedures as compared to the function-based semantics
definition [19].

– Semantic domains of values have some non-standard types of objects, for
example symbol, uneval and union etc. MiniMaple also supports additional
functions and predicates, for example type tests i.e. type(E,T), which are
correspondingly modeled in semantics algebras.

– In MiniMaple a procedure is introduced by an assignment command, e.g.
I := proc() . . . end proc, such that assignments take the role of declarations
in classical languages. Furthermore, static scoping is used in the definition
of a MiniMaple procedure.

The denotational semantics is based on semantic algebra [18]. For example Value
is a disjunctive union domain composed of all kinds of primitive semantic values
(domains) supported in MiniMaple. It also defines some interesting domains i.e.
Module, Procedure, Uneval and Symbol. The domain Value is a recursive domain,
e.g. List is defined by Value* as follows:

List = V alue∗
V alue = ...|List|...

Towards the Formal Specification and Verification of Maple Programs 245

A valuation function defines a mapping of a language’s abstract syntax structures
to its corresponding meaning (semantic algebras) [18]. A valuation function D
for a syntax domain D is usually formalized by a set of equations, one per
alternative in the corresponding BNF rule for the MiniMaple syntactic domain.
As the formal semantics of MiniMaple is defined as a state relationship so we
define the result of valuation function as a predicate. For example the state
relation (StateRelation) is defined as a power set of pair of pre- and post-states
as follows:

StateRelation := P(State× StateU)

The valuation function for command sequence takes the abstract syntax of com-
mand sequence, a value of type Cseq and type environment Environment and
results in a StateRelation as follows:

[[Cseq]] : Environment → StateRelation

The denotational semantics of MiniMaple while-loop is defined as a relationship
between a pre-state s and post-state s′ as follows:

[[while E do Cseq end do]](e)(s,s’) ⇔
∃ k ∈ Nat′, t, u ∈ StateU∗ : t(1) = inStataU(s) ∧ u(1) = inStateU(s)∧
(∀i ∈ Nat′k : iterate(i, t, u, e, [[E]], [[Cseq]]))∧

((u(k) = inError() ∧ s′ = u(k))∨
(returns(data(inState(u(k)))) ∧ s′ = t(k))∨
(∃ v ∈ V alueU : [[E]](e)(inState(t(k)), u(k), v)
∧v <> inV alue(inBoolean(True))∧
IF v = inV alue(inBoolean(False)) THEN

s’=t(k)
ELSE s′ = inError() END

)
)

The corresponding iterate predicate formalizes the aforementioned while-loop
semantics. For the complete list of semantic algebras, domains and valuation
functions, please see [15].

7 Conclusions and Future Work

In this paper we gave an overview of MiniMaple and its formal type system. We
plan to automatically infer types as a future goal. Also we presented our ini-
tial work on a formal specification language for MiniMaple that can be used to
specify the behavior of MiniMaple programs. As a main test case we have used
our specification language to formally specify various abstract computer alge-
braic concepts used in the Maple package DifferenceDifferential, e.g. difference-
differential operator and terms and various related access functions. We may use

246 M.T. Khan and W. Schreiner

this specification language to generate executable assertions that are embedded
in MiniMaple programs and check at runtime the validity of pre/post conditions.
Our main goal, however, is to use the specification language for static analysis, in
particular to detect violations of methods preconditions. For this purpose, based
on the results of a prior investigation we intend to use the verification framework
Why3 [3] to implement the verification calculus for MiniMaple as depicted in
Fig. 3.

Fig. 3. Verification Calculus for MiniMaple

As one can see in the figure, here we need to translate our specification-
annotated MiniMaple program into the intermediate language of Why3 and
then use the various proving back-ends of Why3. Currently we are working on
this translation.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Baudin, P., Filliâtre, J.C., Hubert, T., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI C Specification Language (preliminary design V1.2), preliminary
edn. (May 2008)

3. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroc�law, Poland (August 2011)

4. Cardelli, L.: Type Systems. In: Tucker, A.B. (ed.) The Computer Science and
Engineering Handbook, pp. 2208–2236. CRC Press (1997)

5. Carette, J., Forrest, S.: Mining Maple Code for Contracts. In: Ranise, S., Bigatti,
A. (eds.) Calculemus. Electronic Notes in Theoretical Computer Science. Elsevier
(2006)

Towards the Formal Specification and Verification of Maple Programs 247

6. Carette, J., Kucera, M.: Partial Evaluation of Maple. In: Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation, PEPM 2007, pp. 41–50. ACM Press (2007)

7. Dönch, C.: Bivariate Difference-Differential Dimension Polynomials and Their
Computation in Maple. Technical report, Research Institute for Symbolic Com-
putation, Johannes Kepler University, Linz (2009)

8. D’Silva, V., Kroening, D., Weissenbacher, G.: A Survey of Automated Techniques
for Formal Software Verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 27(7), 1165–1178 (2008)

9. Dunstan, M., Kelsey, T., Linton, S., Martin, U.: Lightweight Formal Methods For
Computer Algebra Systems. In: International Symposium on Symbolic and Alge-
braic Computation, ISSAC 1998, pp. 80–87. ACM Press (1998)

10. Leavens, G.T., Cheon, Y.: Design by Contract with JML. A Tutorial (2006),
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

11. Guttag, J.V., Horning, J.J., Garl, W.J., Jones, K.D., Modet, A., Wing, J.M.: Larch:
Languages and Tools for Formal Specification. Texts and Monographs in Computer
Science. Springer (1993)

12. Hudak, P.: The Haskell School of Expression: Learning Functional Programming
through Multimedia. Cambridge University Press (June 2000)

13. Foster, J.S., Furr, M., An, J.-H., Hicks, M.: Static Type Inference for Ruby. In:
Proceedings of the 24th Annual ACM Symposium on Applied Computing, OOPS
Track, Honolulu, HI (2009)

14. Khan, M.T.: A Type Checker for MiniMaple. RISC Technical Report 11-05, also
DK Technical Report 2011-05, Research Institute for Symbolic Computation, Jo-
hannes Kepler University, Linz (2011)

15. Khan, M.T.: Formal Semantics of MiniMaple. DK Technical Report 2012-01, Re-
search Institute for Symbolic Computation, Johannes Kepler University, Linz (Jan-
uary 2012)

16. Khan, M.T., Schreiner, W.: On Formal Specification of Maple Programs. In: Con-
ferences on Intelligent Computer Mathematics, Systems and Projects Track (sub-
mitted, 2012)

17. Monagan, M.B.: Gauss: A Parameterized Domain of Computation System with
Support for Signature Functions. In: Miola, A. (ed.) DISCO 1993. LNCS, vol. 722,
pp. 81–94. Springer, Heidelberg (1993)

18. Schmidt, D.A.: Denotational Semantics: a methodology for language development.
William C. Brown Publishers, Dubuque (1986)

19. Schreiner, W.: A Program Calculus. Technical report, Research Institute for Sym-
bolic Computation (RISC), Johannes Kepler University, Linz, Austria (September
2008)

20. Boulmé, S., Hardin, T., Hirschkoff, D., Ménissier-Morain, V., Rioboo, R.: On the
Way to Certify Computer Algebra Systems. In: Proceedings of the Calculemus
Workshop of FLOC 1999 (Federated Logic Conference, Trento, Italie). ENTCS,
vol. 23, pp. 370–385. Elsevier (1999)

21. Lambert, T., Lindsay, P., Robinson, K.: Using Miranda as a First Programming
Language. Journal of Functional Programming 3(1), 5–34 (1993)

22. Zhou, M., Winkler, F.: Computing Difference-Differential Dimension Polynomials
by Relative Gröbner Bases in Difference-Differential Modules. Journal of Symbolic
Computation 43(10), 726–745 (2008)

ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

Formalizing Frankl’s Conjecture: FC-Families

Filip Marić, Miodrag Živković, and Bojan Vučković

Faculty of Mathematics, University of Belgrade�

Abstract. The Frankl’s conjecture, formulated in 1979. and still open,
states that in every family of sets closed for unions there is an element
contained in at least half of the sets. FC-families are families for which
it is proved that every union-closed family containing them satisfies the
Frankl’s condition (e.g., in every union-closed family that contains a one-
element set a, the element a is contained in at least half of the sets, so
families of the form a are the simplest FC-families). FC-families play an
important role in attacking the Frankl’s conjecture, since they enable
significant search space pruning. We present a formalization of the com-
puter assisted approach for proving that a family is an FC-family. Proof-
by-computation paradigm is used and the proof assistant Isabelle/HOL
is used both to check mathematical content, and to perform (verified)
combinatorial searches on which the proofs rely. FC-families known in
the literature are confirmed, and a new FC-family is discovered.

1 Introduction

Formalized mathematics and interactive theorem provers (sometimes referred to
as proof assistants) have made great progress in recent years. Many classical
mathematical theorems have been formally proved and proof assistants have
been intensively used in hardware and software verification. The most successful
proof assistants now days are Coq, Isabelle/HOL, HOL Light, etc.

Several of the most important results in formal theorem proving are for the
problems that require proofs with much computational content. These proofs
are usually highly complex (and therefore often require justifications by for-
mal means) since they combine classical mathematical statements with com-
plex computing machinery (usually computer implementation of combinatorial
algorithms). The corresponding paradigm is sometimes referred to as proof-by-
evaluation or proof-by-computation. Probably, the most famous examples of this
approach are the proofs of the Four-Color Theorem and the Kepler’s conjecture.

Georges Gonthier has formalized a proof of the Four-Color Theorem1 in Coq
[6]. The Four Colour Theorem is famous for being the first long-standing mathe-
matical problem, analyzed by many famous mathematicians, finally resolved by
� The first author was partially supported by the Serbian Ministry of Education and

Science grant 174021 and by the SNF grant SCOPES IZ73Z0127979/1, the second
author by the Serbian Ministry of Education and Science grant 174021 and the third
author by the Serbian Ministry of Education and Science grant 044006 (III).

1 In 1852. Francis Guthrie conjectured that every map can be colored with at most 4
colors such that no two adjacent regions share the same color.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 248–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Formalizing Frankl’s Conjecture: FC-Families 249

a computer program (Appel and Haken [2]). This proof broke new ground be-
cause it involved using IBM 370 assembly language computer programs to carry
out a gigantic case analysis, which could not be performed by hand. The proof
attracted criticism: computer programming is known to be error-prone, and dif-
ficult to relate precisely to the formal statement of a mathematical theorem.
Several attempts to simplify the proofs were made (e.g., Robertson et al. [13]),
number of cases was reduced and programs were written in C instead of assem-
bly language. However, all doubts were removed only when Gonthier employed
proof assistant Coq reducing the whole proof to several basic logical principles.

Another example of a similar kind is the proof of Kepler’s conjecture2. As
described by Nipkow et al. [9]: “In 1998. Thomas Hales announced the first (by
now) accepted proof of Kepler’s conjecture. It involves 3 distinct large computa-
tions. After 4 years of refereeing by a team of 12 referees, the referees declared
that they were 99% certain of the correctness of the proof. Dissatisfied with this,
Hales started the informal open-to-all collaborative flyspeck project to formalize
the whole proof with a theorem proof.”

In this work, we apply the proof-by-evaluation paradigm to a problem of veri-
fying FC-families — a special case of the Frankl’s conjecture. Frankl’s conjecture,
an elementary and fundamental statement formulated by Péter Frankl in 1979.,
states that for every family of sets closed under unions, there is an element con-
tained in at least half of the sets (or, dually, in every family of sets closed under
intersections, there is an element contained in at most half of the sets). Up to the
best of our knowledge, the problem is still open. The conjecture has been proved
for many special cases. In particular, it is known to be true for: (i) families of
at most 36 sets3 [4]; (ii) families of sets such that their union has at most 11
elements [3].

FC-families are families for which it is proved that all union closed families
containing them satisfy the Frankl’s condition (if the Frankl’s conjecture would
be proved, then every family would be an FC-family). For example, it can easily
be shown that if a family contains a one-element set, then it satisfies the Frankl’s
condition. Similar results holds for any two-element set, etc. FC-families are
important building block for attempting to prove the Frankl’s conjecture since
they justify pruning large portions of the search space.

Related work. The Frankl’s conjecture has also been formulated and studied as
a question in lattice theory [12,1].

FC-families have been introduced by Poonen [11] and further studied by Gao
and Yu [5], Vaughan [14,15,16], Morris [8], Marković [7], Bošnjak and Marković
[3], and Živković and Vučković [17].

The basic technique used (the Frankl’s condition characterization based on
weight functions and shares) is introduced by Poonen [11] and later successfully
used by Bošnjak and Marković [7,3], and Živković and Vučković [17].

2 In 1611 Kepler asserted that the so called cannonball packing is a densest arrange-
ment of 3-dimensional balls of the same size.

3 Unpublished report by Roberts from 1992 claimis a similar result for families of at
most 40 sets.

250 F. Marić, M. Živković, and B. Vučković

First attempts in using computer-assisted computational approach on solving
special cases of the Frankl’s conjecture are described by Živković and Vučković
[17]. Computations are performed by (unverified) Java programs. However, in
order to increase the level of trust, Java programs generate certificates that can
be checked by independent tools.

The present paper represent a formalized reformulation of the results of
Živković and Vučković [17]. All mathematical content is rigorously formalized
within Isabelle/HOL and proofs are mechanically checked. JAVA programs are
reimplemented in a functional language of Isabelle/HOL and their correctness is
formally verified. A clear separation of mathematical and computational content
is done and parts of the proofs that rely on computations are clearly isolated.
Since the whole formalization is performed and verified within a proof assistant,
there is no need for explicit certificates for statements proved by computation.

Our main contribution are rigorous, machine-verifiable proofs4 that all FC-
families previously described in the literature are indeed FC-families. Unlike
most pen-and-paper proofs, our proofs follow a uniform approach, supported by
an underlying combinatorial search procedure. The second contribution is a new
type of FC-families: four three-element sets all contained in a seven-element set.

Background logic and notation. Logic and the notation given in this paper will
follow Isabelle/HOL. Isabelle/HOL [10] is a development of Higher Order Logic
(HOL), and it conforms largely to everyday mathematical notation. The basic
types include truth values (bool), natural numbers (nat) and integers (int). Func-
tions can be defined by recursion (either primitive or general). Sets over type α,
type α set , follow the usual mathematical conventions5. Sets of sets (i.e., object
of the type α set set) are called families. Set of all subset for a set A is denoted
by pow A, and its number of elements is denoted by |A|. Lists over type α, type
α list , come with the empty list [], the infix prepend constructor #, the infix @
that appends two lists, and the conversion function set from lists to sets. N-th
element of a list l is denoted by l[n]. List [0, 1, . . . , n− 1] is denoted by [0.. < n].
The function sort sorts a list, listsum calculates its sum, and remdups removes
duplicate elements. List with no repeated elements are called distinct. Standard
higher order functions map, filter, foldl are also supported (for details see [10]).

All definitions and statements given in this paper are formalized within Is-
abelle/HOL. However, in order to make the text accessible to a more general
audience not familiar with Isabelle/HOL, many minor details are omitted and
some imprecisions are introduced (for example, we used standard symbolics used
in related work, although it is clear that some symbols are ambigous). Statements
are grouped into propositions, lemmas, and theorems. Propositions usually ex-
press simple, technical results and are printed here without proofs. All sets and
families are considered to be finite and this assumptions (present in Isabelle/HOL
formalization) will not be explicitly stated in the rest of the paper.

4 Corresponding Isabelle/HOL proof documents are available from
http://argo.matf.bg.ac.rs

5 In a strict type setting, sets containing elements of mixed types are not allowed.

http://argo.matf.bg.ac.rs

Formalizing Frankl’s Conjecture: FC-Families 251

Outline. The rest of the paper is organized as follows. In Section 2 we give
mathematical background on union-closed families, the Frankl’s conjecture and
prove main theoretical results. In Section 3 we formulate the combinatorial search
algorithm, prove its correctness and give its efficient implementation. In Section
4 we introduce uniform families and techniques used for avoiding symmetries
when analyzing them. In Section 5 we verify several kinds of uniform FC-families.
Finally, in Section 6 we draw conclusions and give directions for further work.

2 Frankl’s Families

2.1 Union Closed Families

First we give basic definitions of union-closed families, closure under unions, and
operations used to incrementally obtain closed families.

Definition 1. Let F and Fc be families.
F is union closed, denoted by uc F , iff ∀A ∈ F. ∀B ∈ F. A ∪ B ∈ F. F is

union closed for Fc, denoted by ucFc F , iff uc F ∧(∀A ∈ F. ∀B ∈ Fc. A∪B ∈ F).
Closure of F , denoted by 〈F 〉, is the minimal family of sets (in sense of in-

clusion) that contains F and is union closed. Closure of F for Fc, denoted by
〈F 〉Fc

, is the minimal family of sets (in sense of inclusion) that contains F and
is union closed for Fc.

Insert and close operation of set A to family F , denoted by ic A F , is the family
F∪ {A} ∪ {A∪B. B ∈ F}. Insert and close operation for Fc of set A to family F ,
denoted by icFc A F , is the family F∪ {A} ∪ {A∪B. B ∈ F} ∪ {A∪B. B ∈ Fc}.
Proposition 1
1. 〈F 〉 = {

⋃
F ′. F ′ ∈ pow F − {∅}}

2. 〈F ∪ {A}〉 = ic A 〈F 〉, 〈F ∪ {A}〉I = icI A 〈F 〉
3. If F ⊆ pow

⋃
A and ucA F then uc〈A〉 F .

2.2 The Frankl’s Condition

The next definition formalizes the Frankl’s condition and the notion of FC-family.

Definition 2. Family of sets F satisfies the Frankl’s condition and we say that
it is a Frankl’s family, denoted by frankl F , if it contains an element that occurs
in at least half sets in the family, i.e., frankl F ≡ ∃a. a ∈

⋃
F ∧ 2 ·#aF ≥ |F |,

where #aF denotes |{A ∈ F. a ∈ A}|
Family of sets Fc is FC-family if it is proved that every union closed family

such that F ⊇ Fc is Frankl’s.

2.3 Family Isomorphisms

The domain of the family does not play any important role for many properties
related to the Frankl’s condition — many properties are invariant for domain
changes using injective functions (that establish a kind of isomorphisms between

252 F. Marić, M. Živković, and B. Vučković

two families). Therefore, in many cases it suffices to consider only families over
canonical domains — initial ranges {0, 1, . . . , n − 1} of natural numbers.

Proposition 2. Let F be a family of sets and f a function injective on
⋃

F .
Let F ′ be the image of F under f (then f is a bijection between

⋃
F and

⋃
F ′).

1. If a ∈
⋃

F , then #aF = #f(a)F
′.

2. |F | = |F ′|
3. If A ∈ F and A′ ∈ F ′ is the image of A under f , then |A| = |A′|.
4. F is union closed if and only if F ′ is.
5. F is Frankl’s if and only if F ′ is.
6. If F ′ is an FC-family, then so is F .

2.4 FC Characterization by Weight Functions and Shares

We describe the central technique for proving that a family is FC-family, relying
on characterizations of the Frankl’s condition using weights and shares.

Definition 3. A function w : X → N is a weight function on A ⊆ X, denoted
by wfA w, iff ∃a ∈ A. w(a) > 0. Weight of a set A wrt. weight function w,
denoted by w(A), is the value

∑
a∈A w(a). Weight of a family F wrt. weight

function w, denoted by w(F), is the value
∑

A∈F w(A).

Lemma 1. frankl F ⇐⇒ ∃w. wf(
⋃

F) w ∧ 2 · w(F) ≥ w(
⋃

F) · |F |

Proof. Assume frankl F and let a be the element satisfying the Frankl’s condition.
Let w be the weight function assigning 1 to a and 0 to all other elements. Since
w(F) = #aF and w(

⋃
F) = 1, the statements holds.

Conversely, suppose that ¬frankl F . Then, for every a ∈
⋃

F , 2 · #aF < |F |.
Hence, 2 · w(F) =

∑
a∈

⋃
F w(a) · 2 · #aF < |F | ·

∑
a∈

⋃
F w(a) = |F | · w(

⋃
F).

A concept that will enable a slightly more operative formulation of the previous
characterization is the concept of share6.

Definition 4. Let w be a weight function. Share of a set A wrt. w and a set X,
denoted by w̄X(A), is the value 2 ·w(A)−w(X). Share of a family F wrt. w and
a set X, denoted by w̄X(F), is the value

∑
A∈F w̄X(A).

Example 1. Let w be a function such that w(a0) = 1, w(a1) = 2, and w(a) = 0
for all other elements. w is clearly a weight function. Then, w({a0, a1, a2}) = 3
and w({{a0, a1}, {a1, a2}, {a1}}) = 7. Also, w̄{a0,a1,a2}({a1, a2}) = 2·w({a1, a2})−
w({a0, a1, a2}) = 4 − 3 = 1, and w̄{a0,a1,a2}({{a0, a1}, {a1, a2}, {a1}}) = (2 · 3 −
3) + (2 · 2 − 3) + (2 · 2 − 3) = 5.

Proposition 3. w̄X(F) = 2 · w(F) − w(X) · |F |

Lemma 2. frankl F ⇐⇒ ∃w. wf(
⋃

F) w ∧ w̄(
⋃

F)(F) ≥ 0

6 Note that in order to accommodate for computer implementation only integer
weights are allowed, and to avoid rational numbers share of a set A is defined as
2 · w(A) − w(X), instead of w(A) − w(X)/2 that is used in the literature.

Formalizing Frankl’s Conjecture: FC-Families 253

Proof. Follows directly from Proposition 3 and Lemma 1.

Hypercubes. Sets of a family can be grouped into so called hypercubes.

Definition 5. An S-hypercube with a base K, denoted by hcS
K , is the family

{A. K ⊆ A ∧ A ⊆ K ∪ S}. Alternatively, a hypercube can be characterized by
hcS

K = {K ∪ A. A ∈ pow S}.

Example 2. Let S ≡ {s0, s1}, and K ≡ {k0, k1}. If K ′ ⊆ K, then all S-
hypercubes with a base K ′ are:

hcS
{} = {{}, {s0}, {s1}, {s0, s1}}

hcS
{k0} = {{k0}, {k0, s0}, {k0, s1}, {k0, s0, s1}}

hcS
{k1} = {{k1}, {k1, s0}, {k1, s1}, {k1, s0, s1}}

hcS
{k0,k1} = {{k0, k1}, {k0, k1, s0}, {k0, k1, s1}, {k0, k1, s0, s1}}

Previous example indicates that (disjoint) S-hypercubes can span the whole
pow (K ∪ S). Indeed, this is generally the case.

Proposition 4. (i) pow (K∪S) =
⋃

K′⊆K hcS
K′ . (ii) If K1 and K2 are different

and disjoint with S, then hcS
K1

and hcS
K2

are disjoint.

Families of sets can be separated into (disjoint) parts belonging to different
hypercubes (formed as hcS

K ∩ F).

Definition 6. A hyper-share of a family F wrt. weight function w, the hyper-
cube hcS

K and the set X, denoted by w̄S
KX(F), is the value

∑
A∈hcS

K∩F w̄X(A).

Example 3. Let S and K be as in the Example 2, let X ≡ K ∪ S, let
F ≡ {{s0}, {s1}, {k0, s0}, {k0, k1, s0, s1}}, and w(a) = 1 for all a ∈ X . Then,
w̄S

{}X(F) = w̄X({s0}) + w̄X({s1}) = −4, w̄S
{k0}X(F) = w̄X({k0, s0}) = 0,

w̄S
{k1}X(F) = 0, and w̄S

{k0,k1}X(F) = w̄X({k0, k1, s0, s1}) = 4.

Share of a family can be expressed in terms of sum of hyper-shares.

Proposition 5. If K ∪ S =
⋃

F and K ∩ S = ∅, then w̄(
⋃

F)(F) =∑
K′⊆K w̄S

K′(
⋃

F)(F).

Lemma 3. Let w be a weight function on
⋃

F . If K ∪ S =
⋃

F , K ∩ S = ∅,
and ∀K ′ ⊆ K. w̄S

K′(
⋃

F)(F) ≥ 0, then frankl F .

Proof. Immediate consequence of Proposition 5 and Lemma 2.

Definition 7. Projection of a family F onto a hypercube hcS
K , denoted by

hcS
K �F �, is the set {A − K. A ∈ hcS

K ∩ F}.

Example 4. Let K, S and F be as in Example 3. Then hcS
{} �F � = {{s0}, {s1}},

hcS
{k0} �F � = {{s0}}, hcS

{k1} �F � = {}, and hcS
{k0,k1} �F � = {{s0, s1}}.

254 F. Marić, M. Živković, and B. Vučković

Proposition 6

1. If K ∩ S = ∅ and K ′ ⊆ K, then hcS
K′ �F � ⊆ pow S

2. If uc F , then uc (hcS
K �F �).

3. If uc F , Fc ⊆ F , S =
⋃

Fc, K ∩ S = ∅, then ucFc (hcS
K �F �).

4. If ∀x ∈ K. w(x) = 0, then w̄S
KX(F) = w̄X(hcS

K �F �).

Union closed extensions. The next definition introduces an important notion for
checking FC-families.

Definition 8. Union closed extensions of a family Fc are families that are cre-
ated from elements of Fc and are union closed for Fc. Family of all union closed
extensions is denoted by uce Fc, and uce Fc ≡ {F ′. F ′ ⊆ pow

⋃
Fc ∧ ucFc F ′}.

Lemma 4. Let F be a non-empty union closed family, and let Fc be a subfamily
(i.e., Fc ⊆ F). Let S denote

⋃
Fc, and let K denote

⋃
F −

⋃
Fc. Let w be

a weight function on
⋃

F , that is zero for all elements of K. If shares of all
union closed extension of Fc are nonnegative, then F is Frankl’s, i.e., if ∀F ′ ∈
uce Fc. w̄(

⋃
Fc)(F ′) ≥ 0, then frankl F .

Proof. Since, K ∪ S =
⋃

F and K ∩ S = ∅, by Lemma 3, it suffices to show
that ∀K ′ ⊆ K. w̄S

K′(
⋃

F)(F) ≥ 0. Fix K ′ and assume that K ′ ⊆ K. Since w is

zero on K, by Proposition 6, it holds that w̄S
K′(

⋃
F)(F) = w̄(

⋃
F)(hcS

K′ �F �). On
the other hand, since uc F , Fc ⊆ F , and K ∩ S = ∅, by Proposition 6 it holds
that ucFc (hcS

K′ �F �). Moreover, hcS
K′ �F � ⊆ pow S, so hcS

K′ �F � ∈ uce Fc. Then,
w̄(

⋃
Fc)(hcS

K′ �F �) ≥ 0 holds from the assumption. However, since w is zero on K,
it holds that w(

⋃
Fc) = w(

⋃
F) and w̄(

⋃
F)(hcS

K′ �F �) = w̄(
⋃

Fc)(hcS
K′ �F �) ≥ 0

Theorem 1. A family Fc is an FC-family if there is a weight function w such
that shares (wrt. w and

⋃
Fc) of all union closed extension of Fc are nonnegative.

Proof. Consider a union-closed family F ⊇ Fc. Let w be the weight function
such that ∀F ′ ∈ uce Fc. w̄(

⋃
Fc)(F

′) ≥ 0. Let w′ be a function equal to w on⋃
Fc and 0 on other elements. Since ∀F ′ ∈ uce Fc. w̄′

(
⋃

Fc)(F ′) = w̄(
⋃

Fc)(F
′),

Lemma 4 applies to F and F is Frankl’s.

3 Combinatorial Search

Theorem 1 inspires a procedure for verifying FC families. It should take a weight
function on

⋃
Fc and check that all union closed extensions of Fc have non-

negative shares. We will now define a procedure SomeShareNegative, denoted
by ssn Fc w, such that if ssn Fc w = ⊥, then for all F ′ ∈ uce Fc it holds
that w̄(

⋃
Fc)(F ′) ≥ 0. The heart of this procedure will be a recursive function

ssnFc,w,X L Ft that preforms a systematic traversal of all union closed extensions
of Fc, but with pruning that speeds up the search. If a union closed extension of
Fc has a negative share, it must contain one or more sets with a negative share.
Therefore, a list L of all different subsets of

⋃
Fc with negative shares is formed

Formalizing Frankl’s Conjecture: FC-Families 255

and each candidate family is determined by elements of L that it includes. A
recursive procedure creates all candidate families by processing elements of L
sequentially, either skipping them (in one recursive branch) or including them
into the current candidate family Ft (in the other recursive branch), maintain-
ing the invariant that the current candidate family Ft is always union closed.
If the current element of L has been already included in Ft (by earlier closure
operations required to maintain the invariant) the search can be pruned. If the
sum of (negative) shares of the remaining elements of L is less then the (non-
negative) share of the current Ft, then Ft cannot be extended to a family with
a negative share (even in the extreme case when all the remaining elements of
L are included) so, again, the search can be pruned.

Definition 9. The function ssnFc,w,X L Ft is defined by a primitive recursion
(over the structure of the list L):

ssnFc,w,X [] Ft ≡ w̄X(Ft) < 0

ssnFc,w,X (h # t) Ft ≡ if w̄X(Ft) +
∑

A∈h # t

w̄X(A) ≥ 0 then ⊥

else if ssnFc,w,X t Ft then �
else if h ∈ Ft then ⊥
else ssnFc,w,X t (icFc h Ft)

Let L be a distinct list such that its set is {A. A ∈ pow
⋃

Fc ∧ w̄X(A) < 0}.

ssn Fc w ≡ ssn〈Fc〉,w,(
⋃

Fc) L ∅

Next we prove the soundnes of the ssn Fc w function.

Lemma 5. If (i) ssnFc,w,X L Ft = ⊥, (ii) for all elements A in L it holds that
w̄X(A) < 0, (iii) for all A ∈ F ′−Ft, if w̄X(A) < 0, then A is in L, (iv) F ′ ⊇ Ft,
and (v) ucFc F ′, then w̄X(F ′) ≥ 0.

Proof. The proof is by induction. First, note that

w̄X(F ′) =
∑

A∈F ′
w̄X(A) =

∑
A∈Ft

w̄X(A) +
∑

A∈F ′−Ft

w̄X(A). (1)

Consider the base case of L = []. Since ssnFc,w,X [] Ft = ⊥, it holds that∑
A∈Ft

w̄X(A) = w̄X(Ft) ≥ 0 and first term in (1) is nonnegative. If there were
some A ∈ F ′ − Ft such that w̄X(A) < 0, then, from the assumptions it would
be in L, which is impossible since L is empty. Therefore, the second term in (1)
is also nonnegative which completes the proof.

Consider the inductive step, and assume that L ≡ h # t.
First consider the case when w̄X(Ft) +

∑
A∈h # t w̄X(A) ≥ 0. Let P denote

the set {A. A ∈ F ′ − Ft ∧ w̄X(A) ≥ 0}, and let N denote the set {A. A ∈
F ′−Ft∧w̄X(A) < 0}. Since, by assumptions, all elements of N are in L ≡ h # t,
and since, by assumptions, all shares of h # t − N are negative, it holds that

256 F. Marić, M. Živković, and B. Vučković∑
A∈h # t

w̄X(A) =
∑
A∈N

w̄X(A) +
∑

A∈h # t−N

w̄X(A) ≤
∑
A∈N

w̄X(A). (2)

It holds that
∑

A∈F ′−Ft
w̄X(A) =

∑
A∈P w̄X(A) +

∑
A∈N w̄X(A). Therefore,

since all shares of P are nonnegative, from (1) and (2) and the assumption of
the current case it holds that

w̄X(F ′) ≥
∑

A∈Ft

w̄X(A) +
∑
A∈N

w̄X(A) ≥ w̄X(Ft) +
∑

A∈h # t

w̄X(A) ≥ 0.

Next, consider the case when w̄X(Ft) +
∑

A∈h # t w̄X(A) < 0. Since, by assump-

tions, ssnFc,w,X (h # t) Ft = ⊥, by the definition of ssn it must hold that
ssnFc,w,X t Ft = ⊥.

Consider the case when h ∈ Ft or h /∈ F ′. Then h /∈ F ′ − Ft. The conclusion
follows by induction hypothesis for the recursive call ssnFc,w,X t Ft, since all
assumptions are satisfied. Indeed, all elements of F ′ − Ft with negative shares
must be in t, since h /∈ F ′ − Ft, and other assumptions are trivially satisfied.

Finally, consider the case when h /∈ Ft and h ∈ F ′. The conclusion follows
by induction hypothesis for the recursive call ssnFc,w,X t (icFc h Ft), since all
assumptions are satisfied for this call. Indeed, in this case ssnFc,w,X (h # t) Ft =
ssnFc,w,X t (icFc h Ft) and the left hand side is ⊥ from the current assumptions.
All elements of F ′ − icFc h Ft with negative shares must be in t. Indeed, this
holds since Ft ⊆ icFc h Ft, and h ∈ icFc h Ft, and since all elements of F ′ − Ft

with negative shares are in h # t. It holds that icFc h Ft ⊆ F ′ since Ft ⊆ F ′,
h ∈ F ′ and ucFc F ′. Other assumptions trivially hold.

Theorem 2. If ssn Fc w = ⊥ and F ′ ∈ uce Fc then w̄(
⋃

Fc)(F
′) ≥ 0.

Proof. Fix F ′ from uce Fc. Then F ′ ⊆ pow
⋃

Fc and ucFc F ′. Let L be a distinct
list such that its set is {A. A ∈ pow

⋃
Fc ∧ w̄X(A) < 0}. From ssn Fc w = ⊥

and the definition of ssn it holds that ssn〈Fc〉,w,(
⋃

Fc) L ∅ = ⊥. All assumptions
of Lemma 5 apply. Indeed, for all A in L, w̄(

⋃
Fc)(A) < 0. For all A in F ′ − ∅, if

w̄(
⋃

Fc)(A) < 0, then, since F ′ ⊆ pow
⋃

Fc, A is in L. ∅ ⊆ F ′. Since ucFc F ′, by
Proposition 1, it holds that uc〈Fc〉 F ′. Therefore, w̄(

⋃
Fc)(F ′) ≥ 0 holds.

Apart from being sound, the procedure can also be shown to be complete.
Namely, it could be shown that if ssn Fc w = �, then there is an F ′ ∈ uce Fc

such that w̄(
⋃

Fc)(F
′) < 0. This comes from the invariant that the current family

Ft in the search is always in uce Fc, which is maintained by taking the closure
icFc h Ft whenever an element h is added. Since this aspect of the procedure is
not relevant for the rest of the proofs, it will not be formally stated nor proved.

3.1 Efficient Implementation

In order to obtain executability and increase efficiency, a series of refinements of
ssn F w is done. Each refined version introduces a new implementation feature
that makes it more efficient than the previous one, but still equivalent with it.

Formalizing Frankl’s Conjecture: FC-Families 257

First, a function cannot operate on families of sets. Without loss of generality,
it suffices only to consider families of sets of natural numbers. Sets of natural
numbers are represented by natural number codes. A set A is represented by the
code Ã =

∑
k∈A 2k. Families of sets of natural numbers F are represented by

(distinct) lists of natural number codes F̃ . This representation will be referred
to as list-of-nats representation (e.g., F = {{0, 1}, {1, 2}, {0, 1, 2}} is represented
by the list-of-nats F̃ = [3, 6, 7]). Basic set operations have their corresponding
list-of-nat counterparts.

– The union of two sets ∪ corresponds to bitwise disjunction (denoted by �).
It holds that if C = A ∪ B, then C̃ = Ã � B̃.

– Adding a set A to a family of sets F (i.e., A ∪ F) corresponds to the operation
(also denoted by �) that prepends Ã to F̃ , but only if it is not already
present, i.e., by: if Ã ∈ F̃ then F̃ else Ã # F̃ . It holds that if F ′ = A ∪ F ,
then F̃ ′ = Ã � F̃ .

– Union of two families (i.e., F ′ ∪ F), also denoted by �, is performed by
iteratively adding sets from one family to another, i.e., as foldl (λ Ã F̃ . Ã �
F̃) F̃ F̃ ′. It holds that if F ′′ = F ∪ F ′, then F̃ ′′ = F̃ � F̃ ′.

– Adding a set A to all members of a family of sets F (i.e., {A ∪ B. B ∈ F}),
denoted by [Ã � B̃. B̃ ∈ F̃], is performed by map (λ B̃. Ã � B̃) F̃ . It holds
that if F ′ = {A ∪ B. B ∈ F}, then F̃ ′ = [Ã � B̃. B̃ ∈ F̃].

– Insert and close for F (i.e., icFc a F), denoted by ĩc, is computed as ([Ã] @ [Ã �
B̃. B̃ ∈ F̃] @ [Ã � B̃. B̃ ∈ F̃c]) � F̃ . It holds that if F ′ = icFc a F , then
F̃ ′ = ĩcF̃c

ã F̃ .

Important optimization to the basic ssn Fc w procedure is to avoid repeated
computations of family shares (both for the elements of the list L and the current
family Ft). So, instead of accepting a list of families of sets L, and the current
family of sets Ft, the function is modified to accept a list of ordered pairs where
first component is a list-of-nats representation of corresponding element of L, and
the second component is its share (wrt. w and X), and to accept an ordered pair
(F̃t, st) where F̃t is the list-of-nats representation of Ft, and st is its family share
(wrt. w and X). The summation of shares of elements in L is also unnecessarily
repeated. It can be avoided if the sum (sl) is passed trough the function.

ssnF̃c,w,X ([], 0) (F̃t, st) ≡ st < 0

ssnF̃c,w,X ((h̃, sh) # t, sl) (F̃t, st) ≡ if st + sl ≥ 0 then ⊥
else if ssnF̃c,w,X (t, sl − sh) (F̃t, st) then �
else if h̃ ∈ F̃t then ⊥
else let F̃t

′
= ĩcF̃c

h̃ F̃t; s′t = w̄X(F̃t
′
) in

ssnF̃c,w,X (t, ls − sh) (F̃t
′
, s′t)

Another source of inefficiency is the calculation of w̄X(F̃t
′
). If performed directly

based on the definition of family share for F̃t
′
, the sum would contain shares of

258 F. Marić, M. Živković, and B. Vučković

all elements from F̃t and of all elements that are added to F̃t when adding h̃ and
closing for F̃ . However, it is already known that the sum of shares for elements
of F̃t is st and the implementation could benefit from this fact. Also, calculating
shares of sets that are added to F̃t can be made faster. Namely, it happens that
set share of a same set is calculated over and over again in different parts of the
search space. So, it is much better to precompute shares of all sets from pow X
and store them in a lookup table that will be consulted each time a set share
is needed. Note that in this case there is no more need to pass the function w
itself, nor the domain X , but only the lookup table, denoted by sw.

ssnF̃c,sw ([], 0) (F̃t, st) ≡ st < 0

ssnF̃c,sw ((h̃, sh) # t, sl) (F̃t, st) ≡ if st + sl ≥ 0 then ⊥
else if ssnF̃c,sw (t, sl − sh) (F̃t, st) then �
else if h̃ ∈ F̃t then ⊥
else ssnF̃c,sw (t, sl − sh) (ĩc

sw

F̃c
h̃ (F̃t, st))

ĩc
sw

F̃c
h̃ (F̃t, st) ≡ let add = [h̃] @ [h̃ � Ã. Ã ∈ F̃t] @ [h̃ � Ã. Ã ∈ F̃c];

add = filter (λÃ. Ã /∈ F̃) (remdups add) in

(add @ F̃ , s + listsum (map sw add))

It is shown that this implementation is (in some sense) equivalent to the starting,
abstract one. This proof is technically involved, but conceptually uninteresting
so we omit it in the text.

4 Uniform nkm-Families

Most FC-families that are considered in this paper are uniform, i.e., consist of
sets having the same number of elements.

Definition 10. A family of sets F is a uniform nkm-family if it contains m
different sets, each containing k elements and their union has at most n elements.
Uniform nkm-family is natural if its union is contained in {0, 1, . . . , n − 1}.

Within the Isabelle/HOL implementation, natural nkm-families will be repre-
sented by nkm-lists — (lexicografically) sorted, distinct lists of length m contain-
ing sorted, distinct lists of length k with all elements contained in {0, 1, . . . , n−1}.
To simplify presentation, we will identify natural nkm-families with their corre-
sponding nkm-lists. Assuming that the Isabelle/HOL function comb l k gener-
ates all sorted k-element sublists of a sorted list l, all nkm-lists for given n, k
and m can be generated by famsnkm ≡ comb (comb [0.. < n] k) m.

Symmetries. Often one uniform nkm-family can be obtained from the other
by permuting its elements (e.g., {{a0, a1, a2}, {a1, a3, a4}, {a2, a3, a4}} can be
obtained from {{a0, a1, a2}, {a0, a1, a3}, {a2, a3, a4}} by the permutation (a0,
a1, a2, a3, a4) �→ (a3, a4, a1, a2, a0)). Applying permutations on sets and fam-
ilies can be implemented in Isabelle/HOL by the functions perm set A p ≡

Formalizing Frankl’s Conjecture: FC-Families 259

sort (map (λx. p[x]) A) and perm fam F p ≡ sort (map perm set F). Permuta-
tions establish bijections between natural uniform families:

Proposition 7. If p is a permutation of [0, 1, . . . , n − 1] and F is a natural
uniform family, then perm fam F p is also natural uniform family and there is
a bijection between F and perm fam F p.

Since, by Proposition 2, FC-families are preserved under bijections (isomor-
phisms), to check if all elements of a given list of nkm-families F are FC-families,
many elements need not be considered. Indeed, it suffices to consider only a list
(denoted by nefP F) of its non-equivalent representatives (under a given list of
permutations P). Computation of such representatives can start from the given
list F , choose its arbitrary member for a representative, remove it and all its
permuted variants from the lists, and repeat this sieving process until the list
becomes empty. Isabelle/HOL implementation of this procedure can be given
by:

nef auxP F Fr ≡ case F of [] ⇒ Fr

| F # ⇒ let FP
F = remdups (map (λ p. perm fam F p) P) in

nef auxP (filter (λ F. F /∈ FP
F) F) (F # Fr)

nefP F ≡ nef auxP F []

The following lemma proves the correctness of this implementation.

Lemma 6. If P is a list of permutations of [0, 1, . . . , n − 1] and if F is a list
of natural nkm-families, then for each element F ∈ F there is an F ′ ∈ nefP F
such there is a bijection between F and F ′.

Proof. First, note that the function nef auxP F Fr is monotone, i.e., Fr ⊆
nef auxP F Fr.

By induction, we show that if the assumptions hold for F and P , then for
each element F ∈ F there is an element F ′ ∈ nef auxP F Fr such there is a
bijection between F and F ′.

In the base case, when F is empty, the statement trivially holds.
Assume that F ≡ F # F ′. Let FP

F denote all different families obtained by
permuting F by all elements of P (i.e., FP

F ≡ remdups (map (λ p. perm fam F p)
P)) and let F− denote what remains of F when those are removed (i.e., F− ≡
filter (λ F. F /∈ FP

F) F . It holds that nef auxP F Fr = nef auxP F− (F # Fr).
Let F ′ be an arbitrary element from F . Since F = F # F ′, either F ′ = F or

F ′ ∈ F ′.
Assume that F ′ = F . By monotonicity it holds that F ∈ nef auxP F Fr,

so F is an element from nef auxP F Fr such that there is a bijection (identity
function) between F ′ and it.

Assume that F ′ ∈ F ′.
Consider the case when F ′ ∈ FP

F . Then there is p ∈ P such that
F ′ = perm fam F p. Since F ′ ∈ F is natural and p ∈ P is a permutation of

260 F. Marić, M. Živković, and B. Vučković

[0, 1, . . . , n−1], by Proposition 7, there is a bijection between F and F ′. Since, by
monotonicity, it holds that F ∈ nef auxP F Fr, F is an element in nef auxP F Fr

such that there is a bijection between F ′ and it.
Consider the case when F ′ /∈ FP

F . Then F ′ ∈ F−. By inductive hypothesis
for the call nef auxP F− (F # Fr), there is an element F ′′ in F # Fr such
that there is a bijection between F ′ and it. By monotonicity, F ′′ ∈ F # Fr ⊆
nef auxP F− (F # Fr) = nef auxP F Fr, so the statement holds.

Finally, the following lemma shows that only non-equivalent representatives need
to be considered when checking FC-families.

Lemma 7. Let F ⊆ famsnkm and P ⊆ perm [0, 1, . . . , n − 1]. If all families
represented by elements of nefP F are FC-families, then all families represented
by elements of famsnkm are FC-families.

Proof. Let F ∈ famsnkm. By Lemma 6 there is an F ′ ∈ nefP F and a bijection
between F and F ′. So, F ′ is an FC-family, and by Proposition 2, so is F .

5 FC-Families Verified

Having established all the necessary mathematics, in this Section we prove that
certain uniform families are FC-families (mainly by performing verified calcu-
lations). First, we calculate non-equivalent representatives for fams533, fams634,
and fams734.

Lemma 8. The first column of Table 1 contains (respectively) all elements of:
nefperm [0..<5] fams533,
nefperm [0..<6] (filter (λF. ¬check533 F) fams634),

nefperm [0..<7] (filter (λF. ¬check533 F ∧ ¬check634 F) fams734),

where perm l is the function that generates all permutations of a list l, check533

is a function that checks if any 3 of the 4 given 3-element sets are have their
union contained in a 5-element set, and check634 is a function that checks if the
union of 4 given 3-element sets is contained in a 6-element set.7

Proof. By calculations performed by a computer.

Next, we show that all these representatives have non-negative shares.

Lemma 9. For all Fc and w given in Table 1, it holds that ssn F̃c w = ⊥.

Proof. By calculations performed by a computer.

Finally, the main result can be easily proved.

7 Formal definition of these functions is not given here and is available in the Is-
abelle/HOL proof documents, along with correctness arguments.

Formalizing Frankl’s Conjecture: FC-Families 261

Table 1. Families and weights

Fc w

[[0, 1]] 0 �→ 1, 1 �→ 1

[[0, 1, 2], [0, 1, 3], [2, 3, 4]] 0 �→ 2, 1 �→ 2, 2 �→ 2, 3 �→ 2, 4 �→ 1
[[0, 1, 2], [0, 1, 3], [0, 2, 4]] 0 �→ 6, 1 �→ 5, 2 �→ 5, 3 �→ 3, 4 �→ 3
[[0, 1, 2], [0, 1, 3], [0, 2, 3]] 0 �→ 1, 1 �→ 1, 2 �→ 1, 3 �→ 1
[[0, 1, 2], [0, 1, 3], [0, 1, 4]] 0 �→ 3, 1 �→ 3, 2 �→ 2, 3 �→ 2, 4 �→ 2

[[0, 1, 2], [0, 3, 4], [1, 3, 5], [2, 4, 5]] 0 �→ 1, 1 �→ 1, 2 �→ 1, 3 �→ 1, 4 �→ 1, 5 �→ 1
[[0, 1, 2], [0, 1, 3], [2, 4, 5], [3, 4, 5]] 0 �→ 1, 1 �→ 1, 2 �→ 1, 3 �→ 1, 4 �→ 1, 5 �→ 1

[[0, 1, 2], [0, 3, 4], [1, 3, 5], [2, 4, 6]] 0 �→ 2, 1 �→ 2, 2 �→ 2, 3 �→ 2, 4 �→ 2, 5 �→ 1, 6 �→ 1
[[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5]] 0 �→ 2, 1 �→ 1, 2 �→ 1, 3 �→ 1, 4 �→ 1, 5 �→ 1, 6 �→ 1
[[0, 1, 2], [0, 1, 3], [2, 4, 5], [4, 5, 6]] 0 �→ 3, 1 �→ 3, 2 �→ 4, 3 �→ 2, 4 �→ 3, 5 �→ 3, 6 �→ 2
[[0, 1, 2], [0, 1, 3], [2, 4, 5], [3, 4, 6]] 0 �→ 3, 1 �→ 3, 2 �→ 3, 3 �→ 3, 4 �→ 2, 5 �→ 1, 6 �→ 1
[[0, 1, 2], [0, 1, 3], [0, 4, 5], [4, 5, 6]] 0 �→ 6, 1 �→ 4, 2 �→ 3, 3 �→ 3, 4 �→ 4, 5 �→ 4, 6 �→ 2
[[0, 1, 2], [0, 1, 3], [0, 4, 5], [2, 4, 6]] 0 �→ 3, 1 �→ 2, 2 �→ 3, 3 �→ 1, 4 �→ 3, 5 �→ 2, 6 �→ 2
[[0, 1, 2], [0, 1, 3], [0, 4, 5], [1, 4, 6]] 0 �→ 2, 1 �→ 2, 2 �→ 1, 3 �→ 1, 4 �→ 1, 5 �→ 1, 6 �→ 1
[[0, 1, 2], [0, 1, 3], [0, 4, 5], [0, 4, 6]] 0 �→ 2, 1 �→ 1, 2 �→ 1, 3 �→ 1, 4 �→ 1, 5 �→ 1, 6 �→ 1

Theorem 3. The following are FC-families:

1. all families containing one 1-element set (i.e., {{a}});
2. all families containing one 2-element set (i.e., {{a, b}}, for a = b);
3. all families containing 3 3-element sets whose union is contained in a 5-

element set (i.e., uniform 533-families);
4. all families containing 4 3-element sets whose union is contained in a 6-

element set (i.e., uniform 634-families);
5. all families containing 4 3-element sets whose union is contained in a 7-

element set (i.e., uniform 734-families).

Proof. The case 1 trivially holds (since for each family member A that does not
contain a, there is a member A ∪ {a} that contains a).

Other proofs are based on the techniques described in this paper. By Propo-
sition 2 it suffices to consider only families F such that

⋃
F ⊆ {0, 1, . . . , n − 1}.

All families corresponding to rows in Table 1 are FC-families. Indeed, for each
Fc and w given in a table row, by Lemma 9 it holds that ssn Fc w. Therefore, by
Lemma 2 for all F ′ ∈ uce Fc it holds that w̄(

⋃
Fc)(F

′) ≥ 0. Then, Fc is FC-family
by Theorem 1.

In the case 2 this completes the proof.
In the case 3 the statement holds by Lemma 7, since, by Lemma 8 four rows

given in Table 1 correspond to four non-equivalent families.
To show the case 4, let Fc be any family containing 4 3-element sets whose

union is contained in {0, 1, . . . , 5} and let F be a union-closed family such that
F ⊇ Fc. If check533 Fc holds (i.e., if union of any 3 members of Fc is contained
in a 5-element set), then F is Frankl’s by case 3. If ¬check533 Fc holds, then
Fc is in filter (λF.¬check533 F) fams634. The statement then holds by Lemma 7,

262 F. Marić, M. Živković, and B. Vučković

since, by Lemma 8 two rows given in Table 1 correspond to two non-equivalent
families of filter (λF.¬check533 F) fams634.

The case 5 is proved similarly, using the proofs for both the case 3 and the
case 4.

6 Conclusions and Further Work

In this paper, we have formalized (within Isabelle/HOL) a computer-assisted
approach of Živković and Vučković for verifying FC-families. Well-known FC-
families are confirmed and a new uniform FC-family is discovered.

The Isabelle/HOL formalization has around 260KB of data organized into
around 6500 lines of Isabelle/Isar proof text. Ratio between the size of the for-
malization and the size of the corresponding pen and paper proof (DeBruijn
index) is estimated at around 5.5. Total time required to do the formalization is
very roughly estimated at around 200 man/hours (25 full working days spread
over a period of around 8 months).

Total proof checking time of Isabelle/HOL takes around 28 minutes on a note-
book PC with 2.1GHz Intel/Pentium CPU and 4GB RAM. The major fraction
of this time (around 23 minutes) is spent in the combinatorial search. Check-
ing Lemma 9 consumes most of this time, and its last 8 cases (related to the
uniform-734 families) alone take 22.8 minutes. This is quite long compared to the
original JAVA programs (that perform the whole combinatorial search in around
1 minute), but still bearable. The big difference is due to the use of machine-
integers supporting atomic bitwise-or in JAVA and the use of big-integers that do
not support atomic bitwise-or in Isabelle/ML. The search time could be reduced
if machine-integers were also used in Isabelle/ML. In a simple approach, the
code generator could be instructed to replace mathematical integers in the for-
malization by machine-integers in the code, but that would make a gap between
the formalization and the generated code and would require trusting that no
overflows occur. A better approach would require formalizing machine-integers
and their properties and using them within the formalization itself.

Compared to the prior pen-and-paper work, the computer assisted approach
significantly reduces the complexity of mathematical arguments behind the proof
and employs computing-machinery in doing its best — quickly enumerating and
checking a large search space. This enables formulation of a general framework
for checking various FC-families, without the need of employing human intel-
lectual resources in analyzing specificities of separate families. Compared to the
work of Živković and Vučković, apart from achieving the highest level of trust
possible, the significant contribution of the formalization is the clear separation
of mathematical background and combinatorial search algorithms, not present
in earlier work. Also, separation of abstract properties of search algorithms and
technical details of their implementation significantly simplifies reasoning about
their correctness and brings them much closer to classic mathematical audience,
not inclined towards computer science.

Formalizing Frankl’s Conjecture: FC-Families 263

This work represents a significant part in formally proving the Frankl’s con-
jecture for families F such that |

⋃
F | ≤ 11, and |

⋃
F | ≤ 12 (already informally

done by Živković and Vučković [17]) which in the focus of our current and future
work. We also plan to investigate other FC-families (not necessarily uniform).

References

1. Abe, T.: Strong Semimodular Lattices and Frankl’s Conjecture. Algebra Univer-
salis 44, 379–382 (2000)

2. Appel, K.I., Haken, W.: Every Planar Map is Four Colorable. American Mathe-
matical Society (1989)

3. Bošnjak, I., Marković, P.: The 11-element Case of Frankl’s Conjecture. Electronic
Journal of Combinatorics 15(1) (2008)

4. Faro, G.L.: Union-closed Sets Conjecture: Improved Bounds. J. Combin. Math.
Combin. Comput. 16, 97–102 (1994)

5. Gao, W., Yu, H.: Note on the Union-Closed Sets Conjecture. Ars Combinatorica
49 (1998)

6. Gonthier, G.: Formal Proof – the Four-Color Theorem. Notices of AMS 55(11)
(2008)

7. Marković, P.: An attempt at Frankl’s Conjecture. Publications de l’Institut Math-
matique 81(95), 29–43 (2007)

8. Morris, R.: FC-families and Improved Bounds for Frankls Conjecture. European
Journal of Combinatorics 27(2), 269–282 (2006)

9. Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: Tame Graphs. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21–35. Springer,
Heidelberg (2006)

10. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

11. Poonen, B.: Union-closed Families. Journal of Combinatorial Theory, Series
A 59(2), 253–268 (1992)

12. Reinhold, J.: Frankl’s Conjecture is True for Lower Semimodular Lattices. Graphs
and Combinatorics 16, 115–116 (2000)

13. Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The Four Colour The-
orem. Journal of Combinatorial Theory, Series B (1997)

14. Vaughan, T.P.: Families Implying the Frankl Conjecture. European Journal of
Combinatorics 23(7), 851–860 (2002)

15. Vaughan, T.P.: A Note on the Union-closed Sets Conjecture. J. Combin. Math.
Combin. Comput. 45, 95–108 (2003)

16. Vaughan, T.P.: Three-sets in a Union-closed Family. J. Combin. Math. Combin.
Comput. 49, 95–108 (2004)

17. Živković, M., Vučković, B.: The 12-element Case of Frankls Conjecture (submitted,
2012)

CDCL-Based Abstract State Transition System

for Coherent Logic�

Mladen Nikolić and Predrag Janičić

Faculty of Mathematics, University of Belgrade,
Belgrade, Studentski Trg 16, Serbia

Abstract. We present a new, CDCL-based approach for automated the-
orem proving in coherent logic — an expressive semi-decidable fragment
of first-order logic that provides potential for obtaining human readable
and machine verifiable proofs. The approach is described by means of
an abstract state transition system, inspired by existing transition sys-
tems for SAT and represents its faithful lifting to coherent logic. The
presented transition system includes techniques from which CDCL SAT
solvers benefited the most (backjumping and lemma learning), but also
allows generation of human readable proofs. In contrast to other ap-
proaches to theorem proving in coherent logic, reasoning involved need
not to be ground. We prove key properties of the system, primarily that
the system yields a semidecision procedure for coherent logic. As a con-
sequence, the semidecidability of another fragment of first order logic
which is a proper superset of coherent logic is also proven.

Keywords: coherent logic, CDCL SAT solving, abstract state transition
systems, machine verifiable proofs, readable proofs.

1 Introduction

Coherent logic (CL) is a fragment of first-order logic that involves formulae of
the form: p1(�v)∧. . .∧pn(�v)⇒ ∃�y Q1(�v, �y)∨. . .∨∃�y Qm(�v, �y) which are implicitly
universally quantified and where 0 ≤ n, 0 ≤ m, �v denotes a sequence of variables
v1, v2, . . . , vk, pi (for 1 ≤ i ≤ n) denote atomic formulae (involving some of the
variables from �v), �y denotes a sequence of variables y1, y2, . . . , yl, and Qj denote
conjunctions of atomic formulae (involving some of the variables from �v and �y).
If n = 0, then the p1(�v) ∧ . . . ∧ pn(�v) part is assumed to be �, and if m = 0,
then the ∃�y Q1(�v, �y) ∨ . . . ∨ ∃�y Qm(�v, �y) part is assumed to be ⊥. There are no
function symbols with arity greater than 0.

CL was initially defined by Skolem and in recent years it gained new attention
[2,8,4,18]. It allows certain existential quantification, so it is more expressive than
the resolution logic. In contrast to the resolution method, the conjecture being
proved is kept unchanged and is directly proved (refutation, Skolemization and

� This work was partially supported by the Serbian Ministry of Science grant 174021
and by SNF grant SCOPES IZ73Z0 127979/1.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 264–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

CDCL-Based Abstract State Transition System for Coherent Logic 265

transformation to clausal form are not used). Hence, proofs in CL are natural
and intuitive. In addition, reasoning is constructive and proof objects (verifiable
by a proof assistant) can be easily obtained [2,18]. The proof objects in CL
also give readable proofs, which is significant for many applications (e.g., in
formalizing mathematics and in education). A number of theories and theorems
can be formulated directly and simply in CL.

CL is semi-decidable and there are several semi-decision procedures and cor-
responding theorem provers implemented for it and for similar logics [9,18,2,15].
However, most (although not all) of them are rather simple forward-chaining pro-
cedures that can hardly tackle complex conjectures. For such tasks, CL needs
more powerful proving engines. We believe that such engine can be based on
the dominating CDCL (conflict-driven clause-learning based) approach for SAT
solving [5]. A problem with CDCL-based systems is that, in general, they use
clausal form, refutation, and Skolemization, so the obtained proofs are not read-
able (since they are not given in terms of the original signature). In this paper
we present one such approach for CL, given in terms of abstract state transition
systems, inspired by a transition system for SAT [10]. Our system is a general-
ization of the system for SAT and can be used as a base both for SAT solving
and CL solving. An important distinguishing feature of our system is non-ground
reasoning which promises large benefits in practice. Also, we take advantage of
nature of CL and design our system so that readable proofs (for instance, in a
natural language form or in the Isabelle/Isar form [19]) can be generated. The
presented approach, is motivated by and built on the three strong pillars:

Suitability of CL. Coherent logic has a number of good features and is suit-
able for many automation tasks. It is very expressive and gives potential for
obtaining both readable and machine verifiable proofs.

Practical advances in SAT. Over the last decade, a huge progress has been
made in SAT solving: a number of high-level algorithmic and low-level im-
plementation features have been developed, so modern SAT solvers can deal
with industrial instances with hundreds of thousands of clauses. Our ap-
proach should enable the transfer of these advances to coherent logic.

Theoretical advances in SAT. SAT solvers have been described, precisely
and suitably for rigorous mathematical analysis, in terms of abstract state
transition systems. Their correctness has been proved, first informally [13,10]
and then formally (using a proof assistant) [11,12]. These results helped a
separation of different concepts used in SAT solvers (often intermixed in
typical optimized implementations) and a deeper understanding of operation
of SAT solvers. Ideas from transition systems for SAT were used in designing
and describing our transition system and for proving its properties (it gives
a decision procedure for SAT and a semidecision procedure for CL).

Overview of the paper. The rest of the paper is organized as follows: in Section 2
we give some relevant background information on CL, SAT, and transition sys-
tems for SAT; in Section 3 we present our abstract state transition system for CL
and in Section 4 we outline its soundness and completeness proofs. In Section 5

266 M. Nikolić and P. Janičić

we briefly present the mechanism for generating readable proofs based on the pre-
sented transition system. In Section 6 we discuss related work, and in Section 7
we draw final conclusions and discuss further work.

2 Background

Propositional logic, First order logic, SAT. We assume the standard notions of
propositional and first-order logic (FOL). Propositional logic can be considered
as a first-order logic theory with each propositional variable corresponding to a
0-arity predicate symbol. This convention enables considering both propositional
logic and coherent logic within the context of first-order logic. For instance, the
SAT problem can be defined in the context of FOL, in the following way: SAT is
a problem of deciding if it holds Γ |= ⊥ (i.e., whether Γ is unsatisfiable), where
Γ is a set of clauses over a signature L with no function symbols and only with
predicate symbols of arity 0. The SAT problem is decidable and is NP-complete.

Abstract State Transition Systems for SAT. The transition system (by Krstić
and Goel [10]) given in Figure 1 and referred to as the SAT system hereafter, is
used for checking if a set of propositional clauses is satisfiable. It is a terminating,
sound and complete (under a certain restrictions) [12]: for any initial state, the
system (subject to certain limitations to forget and restart) terminates and then,
if C differs from no cflct, then the current formula F is satisfiable (and so is
the initial formula F0) and the current trail M is its model and, otherwise, the
current formula F is unsatisfiable (and so is the initial formula F0).

Coherent logic. The definition of a coherent logic formula is given in Section
1. Coherent logic does not involve negation and the reasoning involved is intu-
itionistic. For an atomic formula A, ¬A can be represented in the form A⇒ ⊥,
but this translation is not applicable in a general case (for arbitrary formula).
In order to reason about negated atomic formulae, for every predicate symbol
p, typically a new predicate symbol p is introduced that stands for p and the
following additional axioms are used [17]: ∀�x(p(�x)∨ p(�x)), ∀�x(p(�x)∧ p(�x)⇒ ⊥).

The validity problem in CL is a problem of deciding if it holds Γ |= Φ, where Γ
is a set of coherent formulae, Φ is a coherent formula, and |= denotes the seman-
tical consequence relation (Γ |= Φ holds if Φ is true in all non-empty Tarskian
models for Γ). The validity problem in CL is undecidable, but semidecidable [3].

Any FOL formula can be translated into a CL formula with preserved validity
[17]. However, this translation may rely on steps that involve classical logic.

Typically, along a proof of a CL formula, there are new (fresh) constants,
witnesses, added to the current signature. The term constant is used both for
the constant symbols from the initial signature and for the witnesses.

3 Abstract State Transition System for CL

In this section we present an abstract state transition system for CL, a base for
a semi-decision procedure for CL. It extends and modifies the transition system
for SAT given in Section 1. The two system share the same spirit and the rules

CDCL-Based Abstract State Transition System for Coherent Logic 267

Decide:
l ∈ L l, l /∈ M

M := M ld

UnitPropag:
l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M l, l /∈ M

M := M li

Conflict:
C = no cflct l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M

C := {l1, . . . , lk}
Explain:
l ∈ C l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ≺ l

C := C ∪ {l1, . . . , lk} \ {l}
Learn:
C = {l1, . . . , lk} l1 ∨ . . . ∨ lk /∈ F

F := F ∪ {l1 ∨ . . . ∨ lk}
Backjump:
C = {l, l1, . . . , lk} l ∨ l1 ∨ . . . ∨ lk ∈ F level l > m ≥ level li

C := no cflct M := Mm l
i

Forget:
C = no cflct c ∈ F F \ c |= c

F := F \ c
Restart:
C = no cflct

M := M [0]

Fig. 1. Transition system for SAT solving by Krstić and Goel (li ≺ lj denotes that
the literal li precedes lj in M , ld denotes a decision literal, li an implied literal, level l
denotes the decision level of a literal l in M , and Mm denotes the prefix of M up to
the level m)

from the SAT system have their counterparts, but typically in a more involved
form. In the rest of the paper, the following form of an implicitly universally
quantified formula will be considered:

∀�x p1(�v, �x) ∧ . . . ∧ ∀�x pn(�v, �x)⇒ ∃�y q1(�v, �y) ∨ . . . ∨ ∃�y qm(�v, �y)

where atoms pi involve some of the variables �v and �x and atoms qi involve
some of the variables from �v and �y. In the rest of the text, by coherent formula,
we mean a formula of this form. Note that there are two differences from the
original coherent form. The first one is that qi are atoms and not conjunctions
of atoms. This restriction does not decrease the expressiveness, since there is a
straightforward transformation from the original to this restricted form, since
each conjunction can be attributed a new predicate symbol of an appropriate
arity, which is then linked, by additional axioms, to that conjunction. Using these
axioms, the introduced predicates can be eliminated from the object-level proofs.
The second difference from the coherent form is that universal quantifiers may
appear in the lefthand side of the formula. This extension can be easily avoided
if necessary, but it has some beneficial consequences that we discuss later.

268 M. Nikolić and P. Janičić

In the rest of the paper we, standardly, do not differentiate between the for-
mulae equal up to renaming of variables. To simplify the presentation, the set of
elements of a list L will also be denoted L and the empty list will also be denoted
∅. In addition, the set of quantified atoms in the conjunction P or disjunction Q
will also be denoted P or Q. Hence, for a coherent formula P ⇒ Q where P is
a conjunction of quantified atomic formulae and Q is a disjunction of quantified
atomic formulae, P and Q can be also considered as sets. If P = {p1, . . . , pn}
and Q = {q1, . . . , qn}, ∀�xP will denote {∀�xp1, . . . , ∀�xpn} and ∃�yQ will mean
{∃�yq1, . . . , ∃�yqn}. Substitutions will be denoted λ, σ, σ′, . . .

Definition 1 (Signature and conjecture). Let V be a countable set of vari-
ables and let L = (Σ∞, Π, ar) be a signature such that Σ∞ = {ci | i ∈ N \ {0}},
where for each i = 1, . . . it holds ar(ci) = 0, and Π is a finite set of predi-
cates with defined arities. Let no cflct be a special symbol not appearing in the
signature.

Let there be given a coherent theory T , i.e., a finite set of coherent axioms
AX , over a signature (ΣT , Π, ar) where ΣT = {c1, . . . , ck} ⊆ Σ∞ and k ≥ 0,
and a conjecture ∀�xH0(�v, �x)⇒ G0(�v) (over the same signature), where H0(�v, �x)
is h01(�v, �x) ∧ . . . ∧ h0m(�v, �x) and G0(�v) is ∃�y g01(�v, �y) ∨ . . . ∨ ∃�y g0n(�v, �y) and h0i
and g0i are atomic formulae. Let ∀�xH denote ∀�xH0(�v, �x)λ, let G denote G0(�v)λ,
for a ground substitution λ over �v where all constants appearing in λ belong to
Σ∞ \ΣT and are pairwise distinct.

In our system, H will serve as an initial assumption and an element from G
should be reached.

In SAT solving, the model is built incrementally by asserting literals. When
both the positive and the corresponding negative literal are asserted the search
branch is closed and the backtrack ensues. We define relevant elementary for-
mulae that will take this role in our system.

Definition 2 (Quantified literal). Positive quantified literal or a quantified
atom is a ground atom or p(�v) or ∃�y p(�y) where p is a predicate symbol and
∃�y p(�y) is closed. Formulae ∀�x p(�v, �x) and ∃�y p(�v, �y) are extended quantified
atoms or eq-atoms. A formula (∀�x p(�v, �x))⇒ ⊥ is a negative quantified literal.
A quantified literal is a positive or negative quantified literal. An extended quan-
tified literal or eq-literal is an extended quantified atom or a negative quantified
literal. Instead of l ⇒ ⊥, we may write l.

Example 1. In this and the following examples, constants c1, c2, . . . will be re-
ferred to as a, b, We will assume Π = {p, q, r, s} where ar(p) = ar(q) =
ar(r) = 2 and ar(s) = 1. Formulae p(a, b), p(a, x), and ∃y p(a, y) are quantified
atoms. Formulae ∀x p(a, x), ∀x p(v, x), and ∃y p(x, y) are extended quantified
atoms (due to the presence of universal quantifiers in first two cases, and due
to the presence of the free variable x in the third example). Formulae p(a, b),
p(a, x), p(x, y), and ∀x p(x, y) are negative quantified literals.

CDCL-Based Abstract State Transition System for Coherent Logic 269

Definition 3 (State). A state is a 6-tuple (Σ,Γ,M, C1, C2, �), where Σ is a
finite list of elements from Σ∞, Γ is a finite list of coherent formulae over V and
(Σ,Π, ar), M is a list of (pairwise distinct) eq-literals (called a trail) over V and
(Σ,Π, ar), C1 ⇒ C2 is a formula called a conflict implication, and � is the index
of last introduced constant. An initial state is a state S0 = (Σ0,AX ,H,G, ∅, ∅, n),
where Σ0 is the union of constants from H∪G and ΣT (if Σ0 is empty a constant
from Σ∞ is added in it) and n is the maximal index of constants from Σ0.

Intuitively, the role of the state components is as follows: Σ stores the current set
of constants, Γ stores the axioms and learnt lemmas,M stores the current set of
inferred or assumed eq-literals. The inferred conclusions are logical consequences
of the axioms along with assumed quantified literals. The formula C1 ⇒ C2 is
used in a process called conflict analysis.

Definition 4 (Decision levels). The elements of lists M and Σ are divided
into decision levels. The elements of different decision levels are separated by the
symbol |.

The prefix of a list L that includes exactly the elements of the first m decision
levels is denoted Lm.

For an element e, L�me denotes a list obtained from L by inserting e at the
end of the decision level m of L if e /∈ L, and L if e ∈ L. If the number m is
omitted, the last level is assumed.

We write e ∈m L if e belongs to them-th level of L. If ei ∈mi L for i = 1, . . . , k
where k > 0, and if m = maximi, then we write {e1, . . . , ek} ⊆m L. If k = 0,
we write ∅ ⊆0 L.

We introduce relation denoting precedence of eq-literals in the trail (≺).

Definition 5 (Relation ≺). We write l ≺ l′ in some state if it holds M =
M1 l M2 l

′M3 in that state, where any of Mi (i=1,2,3) can be empty. For a set
S, we write S ≺ l′ if it holds l ≺ l′ for each l ∈ S.

Example 2. LetM = [p(a, b), q(x, y), r(x, y)]. Then p(a, b) ≺ q(x, y). It also holds
{p(a, b), q(x, y)} ≺ r(x, y).

Next, we define the relations of entailment of eq-literals (�), and validity of
eq-literal with respect to the current trail (↑).

Definition 6 (Relations � and ↑). For eq-literals l and l′ we write l � l′ if
there is a substitution λ such that lλ = l′ and we write l � ∀�xl′ if l � l′ and we
write l � ∃�y l′ if l � l′[�x �→ �t] for some vector of variables and/or constants �t.
We write S � S′ if there exist l ∈ S and l′ ∈ S′ such that l � l′. If some of these
sets is singleton, we write its only element instead of it. We write l ↑m if there
is a function m such that m(l) ∈M and m(l) � l.

Example 3. It holds p(x, y) � p(a, y), p(x, y) � ∀x p(x, b), and p(x, b) � ∃y∃z
p(y, z). Consequently, if it holds p(x, b) ∈ M , then it holds ∃y∃z p(y, z) ↑m for
any function m such that m(∃y∃z p(y, z)) = p(x, b).

270 M. Nikolić and P. Janičić

The following two definitions introduce the conflict between eq-literals (×), and
conflict of a formula with the current trail (↓). Note that the term conflict is not
used in the strict sense of contradiction, but it plays the same role the proper
conflict plays in the SAT solving — it signals that backtracking is needed.

Definition 7 (Relation ×). We write p(�x,�t)×λ ∀�x′p(�x′,�t′) (or ∀�x′p(�x′,�t′)×λ
p(�x,�t)) if �tλ = �t′λ. We write ∃y p(�y,�t) ×λ p(�x′,�t′) (or p(�x′,�t′) ×λ ∃y p(�y,�t)) if
�tλ = �t′λ. We write l × l′ if it holds l×λ l′ for some λ.

Example 4. It holds p(a, b) × p(x, y), p(x, y) × ∀x p(x, b), p(x, b) × ∀x p(x, b),
and ∃x p(x, b)× p(x, y).

Definition 8 (Relation ↓). We write l ↓mλ if there is a function m such that
m(l) ∈ M and l ×λ m(l), and we write l ↓ if it holds l ↓mλ for some m and λ.
For a formula P ⇒ Q, a substitution λ, and a partial function m : P ∪Q →M
we write P ⇒ Q ↓mλ if for each l ∈ P it holds m(l) � lλ, and for each l ∈ Q it
holds either m(l)×λ l or lλ � G (in the latter case m(l) is not defined). We write
P ⇒ Q ↓ if it holds P ⇒ Q ↓mλ for some m and λ. The function m is called the
conflict mapping and the set m(P ∪Q) is called the conflict set for P ⇒ Q. We
denote {l′ ∈ P ∪ Q | m(l′) = l} by m−1(l).

Example 5. Let G = ∃x q(a, x) ∨ ∃y q(y, b) and M = [p(x, b), r(a, b), s(a)]. It
holds (p(x, y)⇒ r(x, y)) ↓mλ where m(p(x, y)) = p(x, b) and m(r(x, y)) = r(a, b)
and λ = [x �→ a, y �→ b]. It also holds (p(x, y) ⇒ r(x, y) ∨ q(x, b)) ↓mλ for the
same m and λ (since q(x, b)λ � G).

Negations of �, ↑, and ↓ are denoted �, ↑� , and ↓� respectively.
For a fixed set of predicates, the set of all quantified atoms l over the signature

Σ for which it holds l � G is denoted A(Σ). The restriction l � G on the set
A(Σ) is imposed for technical convenience.

The conflict mapping can map several eq-atoms from a formula to the same
quantified literal on the trail. We define the merging of these eq-atoms.

Definition 9 (Relation ⇒λ). Let l1=∀�x p(t1, . . . , tn) and l2=∀�x′ p(t′1, . . . , t′n)
such that �x ∩ �x′ = ∅. Let J = {i | ti /∈ �x ∧ t′i /∈ �x′}. We write {l1, l2} ⇒λ

∀�x′′ p(w1, . . . , wn) if:

– there is a most general unifier λ for all pairs (ti, t
′
i) (i ∈ J);

– ui = tiλ and u′i = t′iλ are not constants if i /∈ J ;
– wi = ui = u′i for i ∈ J and wi = uiu

′
i for i /∈ J where uiu

′
i is a new variable

and uiu
′
i ∈ �x′′.

For n > 2, we write {l1, . . . , ln} ⇒λ l if {l1, l2} ⇒μ l
′ and {l′, l3, . . . , ln} ⇒ν l

and λ = μν. If λ is not relevant it can be omitted. For eq-literals ∃�y p(t1, . . . , tn)
and ∃�y′ p(t′1, . . . , t′n), relation ⇒λ is defined by analogy.

Example 6. Denote S = {∀x∀y φ(x, x, y, y, u, v, w, c), ∀z φ(z, z, z, z, z, z, t, t)}.
It holds S ⇒[w 	→c,t	→c] ∀xz∀yz∀uz∀vz φ(xz, xz, yz, yz, uz, vz, c, c) where c is a
constant. It also holds {ψ(u, u, v), ψ(v, w, u)}⇒[u	→v,w 	→v] ψ(v, v, v). It does not
hold {∀x ψ(x, u, u), ∀y∀z ψ(y, z, c)}⇒λ l for any l and any λ.

CDCL-Based Abstract State Transition System for Coherent Logic 271

Definition 10 (CL transition system). For a given (fixed) signature L =
(Σ∞, Π, ar), a CL transition system is a system of rules1 given in Figure 2.
Each rule, when applicable, maps one state to another.
S

r−→ S′ denotes that state S′ can be obtained from state S by the rule r.
S → S′ denotes that S

r−→ S′ holds for some rule r. A sequence of states Si such
that Si → Si+1 is called a chain. A chain is maximal if it is finite and no rule
is applicable in its last state or if it is infinite.

Definition 11 (Final states). An accepting state is a state S in which it holds
C2
= {no cflct} and C1 ⇒ C2 ↓m where m(C1 ∪ C2) ⊆ H. In that case, we write
AX �CL ∀�xH0(�v, �x) ⇒ G0(�v). A rejecting state is a state S for which there is
no state S′ such that S → S′ and S is not an accepting state. A state is a final
state if it is an accepting state or a rejecting state.

Note that the conditionm(C1∪C2) ⊆0 M would suffice for the purpose of deciding
validity. However, the stronger condition is suitable for purposes of object-level
proof generation. We give informal explanations of the rules and some examples.

Decide: This rule makes an assumption. An assumption can be a quantified
atom that is not redundant nor contradictory with respect to the current trail
(for instance, if there is a quantified literal s(y) on the trail, then the rule is not
applicable for s(c), ∃x s(x)). Within this step, in M and Σ it is denoted that a
new level begins (that depends on the decision made).
Intro: This rule eliminates existential quantifiers and introduces new constant
symbols as witnesses. For example, if M = [p(a, b), ∃y q(x, y)], and Σ = a, b, the
rule can insert a fresh constant symbol c into Σ and q(a, c) (or q(b, c)) into M .
Unit propagate left/right: If the removal of an atom from a formula results
in a conflict of that formula and the trail, that eq-literal can be propagated in
positive or negative form depending on the side of the implication it belongs to.
If p(x, y) ∈ M , a formula s(x) ⇒ ∃y p(x, y) can propagate s(x). If p(a, y) ∈ M ,
s(a) can be propagated. Note that sometimes it is not the propagated eq-literal
lλ that is logically implied, but the eq-literal (l ⇒ G)λ. Still, we propagate lλ for
technical convenience. This does not jeopardize the soundness of our system nor
the generation of object-level proofs. Also, note that the propagated eq-literal is
inserted into M at the lowest level such that all objects it was derived from are
below it.2

Branch end: If P ⇒ Q ↓ holds, then the current assumptions are either incon-
sistent or imply G, so backtracking is needed. The process of conflict analysis3

begins, which aims at finding a lemma that can be used to end subsequent
branches that can be ended by derivation analogous to the current one.

1 Explanations of the rules (we recommend the reader to read them in parallel with
the definitions of the rules) and a detailed execution example follow.

2 This corresponds to exhaustive unit propagation in SAT solving.
3 The term (somewhat misleading in this context) comes from the SAT solving, where
the goal is to reach a contradiction (i.e., a conflict). In CL, the goal is to reach a
contradiction or the conclusions of a given target formula.

272 M. Nikolić and P. Janičić

Decide:
l ∈ A(Σ) l ↑� l ↓�
M := M |l Σ := Σ|

Intro:
∃�y l ∈ M (∃�y l)λ ∈ A(Σ) lλλ′ ↑� for any λ′

M := M�l[y1 �→ c�+1, . . . , yk �→ c�+k]λ Σ := Σ�c�+1, . . . , c�+k � := �+ k

Unit propagate left:

P ∪ {l} ⇒ Q ∈n1 Γ P ⇒ Q ↓mλ m(P ∪ Q) ⊆n2 M lλ ↑� lλ ↓�
M := M�max(n1,n2)lλ

Unit propagate right:

P ⇒ Q∪ {l} ∈n1 Γ P ⇒ Q ↓mλ m(P ∪ Q)n2 ⊆ M lλ ↑� lλ ↓�
M := M�max(n1,n2)lλ

Branch end:
C2 = {no cflct} P ⇒ Q ∈ Γ P ⇒ Q ↓

C1 := P C2 := Q
Explain left ∀:

C1 ⇒ C2 ↓m l ∈ m(C1) S = m−1(l) S ⇒ ∀�xp(�v, �x)
P ⇒ Q∪ {p(�v′, �x′)} ∈ Γ P ⇒ Q ↓m′

m′(P ∪ Q) ≺ l ∀�xp(�v, �x) ×λ p(�v′, �x′)
C1 := (∀�x′P ∪ (C1 \ S))λ C2 := (∃�x′Q∪ C2)λ

Explain left ∃:
C1 ⇒ C2 ↓m l ∈ m(C1) S = m−1(l) S ⇒σ p(�v, �x)

P ⇒ Q∪ {∃�x′p(�v′, �x′)} ∈ Γ P ⇒ Q ↓m′
m′(P ∪Q) ≺ l p(�v, �x)×λ ∃�x′p(�v′, �x′)

C1 := (P ∪ ∀�x(C1σ \ Sσ))λ C2 := (Q∪ ∃�x(C2σ))λ
Explain right ∀:

C1 ⇒ C2 ↓m l ∈ m(C2) S = m−1(l) S ⇒σ p(�v, �x)

{∀�x′p(�v′, �x′)} ∪ P ⇒ Q ∈ Γ P ⇒ Q ↓m′
m′(P ∪Q) ≺ l p(�v, �x)×λ ∀�x′p(�v′, �x′)

C1 := (P ∪ ∀�x(C1σ))λ C2 := (Q∪ ∃�x(C2σ \ Sσ))λ
Explain right ∃:

C1 ⇒ C2 ↓m l ∈ m(C2) S = m−1(l) S ⇒ ∃�xp(�v, �x)
{p(�v′, �x′)} ∪ P ⇒ Q ∈ Γ P ⇒ Q ↓m′

m′(P ∪ Q) ≺ l ∃�xp(�v, �x) ×λ p(�v′, �x′)
C1 := (∀�x′P ∪ C1)λ C2 := (∃�x′Q ∪ (C2 \ S))λ

Learn:
C2 = {no cflct} C1 ⇒ C2 /∈ Γ

Γ := Γ�C1 ⇒ C2
Backjump:
C1 ⇒ C2 ∈ Γ C1 ⇒ C2 ↓m l ∈ m(C1) S = m−1(l) C1 \ S ⇒ C2 ↓m′

λ

m′ ⊆ m m′(C1 \ S ∪ C2) ⊆n M l ∈n′
M n ≤ t < n′ Sλ ⇒ l′

M := M t�nl
′

Σ := Σt C1 := ∅ C2 := {no cflct}

Fig. 2. Abstract state transition system for CL

Explain left/right ∀/∃: These rules perform conflict analysis by performing a
kind of generalized resolution on the conflict implication and formulae from Γ
that (could have) propagated quantified literals in the conflict set. The resolution
can be described by following schematic rules, but in the Explain rules it is
adjusted for resolving several literals at once when several eq-atoms from conflict
implication correspond to the same quantified literal in the conflict set.

CDCL-Based Abstract State Transition System for Coherent Logic 273

P ⇒ Q ∪ {∃	yp(x, 	y)} {p(x′, 	y′)} ∪ P′ ⇒ Q′

(P ∪ ∀	y′P′ ⇒ Q ∪ ∃	y′Q′)λ

P ⇒ Q ∪ {p(x, 	y)} {∀	x′p(x′, 	y′)} ∪ P′ ⇒ Q′

(∀	xP ∪ P′ ⇒ ∃	xQ ∪ Q′)σ

where λ is the most general unifier for �x and �x′ and σ is the most general unifier
for �y and �y′. Notice that if length of �y in the first case and �x′ in the second case
is 0, the two rules are the same and in such case it is not important which one is
used. Suppose a conflict implication is p(x, y)∧q(x, y)⇒ r(x, y) and that there is
an axiom s(x)⇒ ∃y p(x, y). If the Explain left ∃ is applied to obtain a new con-
flict implication by resolving these two, s(x)∧∀y q(x, y)⇒ ∃y r(x, y) is obtained.
Now, suppose that the conflict implication is p(v, z) ∧ ∀x q(x, v) ∧ ∀x q(v, x)⇒
∃y r(z, y), where both q eq-atoms in its lefthand side correspond to the same
quantified atom in the conflict set, and that there is an axiom p(x, y)⇒ q(x, y).
If Explain left ∀ is applied, since it holds {∀x q(x, v), ∀x q(v, x)}⇒ ∀u∀w q(u,w),
the new conflict implication is (∀v p(v, z) ∧ ∀x∀v p(x, v))⇒ ∃y r(z, y).
Learn: In the conflict analysis process, an implication C1 ⇒ C2 is derived. Since
it is a consequence of the axioms, it can be added to Γ as a learnt lemma.

Backjump: Since the conflict implication C1 ⇒ C2 is in conflict with M , some
of the quantified literals have to be removed from the trail, so backjumping is
performed. The level of the backjump is chosen so that only the quantified literal
l from the top level in the conflict set is removed. Also, since other quantified
literals from the conflict set are still present on the trail, a negative quantified
literal can be derived from C1 ⇒ C2 that prevents l from appearing on the trail
again. The last condition in the rule is concerned with the case when there are
several quantified literals in C1 that correspond to l.

Example 7. Let us illustrate the operation of the CL transition system on the
following (artificial) example. Let the axioms AX of T be (implicitly univer-
sally quantified) formulae: (Ax1) p(x, y) ∧ q(x, y) ∧ r(x, y) ⇒ ⊥, (Ax2) s(x) ⇒
∃y q(x, y), (Ax3) q(x, y)⇒ r(x, y), and (Ax4) s(x) ∨ q(y, y), and the conjecture
is ∀z p(x, z)⇒ ⊥.

The free variable of the conjecture is instantiated by fresh constant a: H =
p(a, z) and G = ⊥. The initial state is S0 = ({a},AX , p(a, z), ∅, ∅, 1). The details
of operation are given in the following table (note that the order in which the
rules are applied is not fixed). Since the last state is an accepting state, the
theorem has been proved.

Rule applied Σ Γ \ AX (lemmas) M C1 ⇒ C2

a ∅ p(a, z) ∅ ⇒ {no cflct}
Decide a| ∅ p(a, z)|s(a) ∅ ⇒ {no cflct}
U. p. right (Ax2) a| ∅ p(a, z)|s(a), ∃y q(a, y) ∅ ⇒ {no cflct}
Intro a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b) ∅ ⇒ {no cflct}
U. p. left (Ax1) a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) ∅ ⇒ {no cflct}
Branch end (Ax3) a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) q(x, y) ⇒ r(x, y)

Ex. right ∀/∃ (Ax1) a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) p(x, y) ∧ q(x, y) ⇒ ⊥
Ex. left ∃ (Ax2) a|b ∅ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) ∀y p(x, y) ∧ s(x) ⇒ ⊥
Learn a|b ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z)|s(a), ∃y q(a, y), q(a, b), r(a, b) ∀y p(x, y) ∧ s(x) ⇒ ⊥
Backjump a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a) ∅ ⇒ {no cflct}
U. p. right (Ax4) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y) ∅ ⇒ {no cflct}
U. p. left (Ax1) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) ∅ ⇒ {no cflct}
Branch end (Ax3) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) q(x, y) ⇒ r(x, y)

Ex. right ∀/∃ (Ax1) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) p(x, y) ∧ q(x, y) ⇒ ⊥
Ex. left (Ax4) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) p(x, x) ⇒ s(z)

Ex. right (lemma) a ∀y p(x, y) ∧ s(x) ⇒ ⊥ p(a, z), s(a), q(y, y), r(a, a) p(x, x) ∧ ∀u p(z, u) ⇒ ⊥

274 M. Nikolić and P. Janičić

As already noted, the fragment we are working with is syntactically broader
than CL due to the presence of universal quantifiers in the lefthand side of
the formulae. This extension allows more expressive lemma learning mechanism,
compliant with the use of (implicitly) universally quantified literals on the trail.
If one wants to stay within the original CL fragment, three conditions should be
fulfilled. The rule Decide should insert only closed quantified atoms on the trail.
The Explain rules should choose the literal l from the conflict set such that all
other literals from the set precede it on the trail and should resolve the conflict
implication with an axiom (or a learnt lemma) that was used to propagate (or
derive in the backjump) the literal l. Finally, if there are universal quantifiers in
the left side of the conflict implication, the Explain rules should be applied until
these quantifiers are removed.

4 Properties of CL Transition Systems

In this section we state the properties of the proposed system. Both soundness
and completeness are proven with respect to non-empty Tarskian models of the
axiom set. The relation |= denotes a logical consequence. Full proofs of the
theorems are available in the appendix.4

The soundness of the transition system given in Figure 2 is proven by showing
that if an accepting state is reached for a coherent formula Φ and a coherent
theory AX , then Φ is a logical consequence of AX .

Theorem 1 (Soundness). If it holds AX �CL ∀�xH0(�v, �x) ⇒ G0(�v), then it
holds AX |= ∀�xH0(�v, �x)⇒ G0(�v).

Proof outline. Since the accepting state can be reached, there is a conflict impli-
cation C1 ⇒ C2 and its corresponding resolution proof (in the sense of generalized
resolution defined by the Explain rules). Resolution steps defined by the Explain
rules are sound, and they involve only the axioms and previously learnt lemmas
(derived again from the axioms), so C1 ⇒ C2 is a logical consequence of AX . By
the definition of an accepting state, the conflict set S for C1 ⇒ C2 is a subset
of H. Moreover, by the definition of the conflict set, S contains positive quanti-
fied literals that satisfy all conjuncts from C1λ for some λ. Also, each disjunct
from C2 either implies G or corresponds to a negative quantified literal from S.
Since S ⊆ H and H has no negative quantified literals, in C2 there can be only
disjuncts that imply G. Therefore, C1 ⇒ G is a logical consequence of AX , so
(C1 ⇒ G)λ and (since G is closed) C1λ⇒ G are logical consequences of AX . If H
is true in some model of AX , then C1λ is true in that model, and consequently
G, too.

There are no guarantees that an arbitrary order of rule applications for a valid
formula leads to the accepting state. In order to ensure this property, that we
call strong completeness, we introduce the following restrictions to our system.

4 The appendix is available online from http://argo.matf.bg.ac.rs/cdclcl.pdf

http://argo.matf.bg.ac.rs/cdclcl.pdf

CDCL-Based Abstract State Transition System for Coherent Logic 275

We extend the state with a list of numbers Δ and a number δ. So, a state is
a 8-tuple (Σ,Γ,M, C1, C2, �,Δ, δ). In an initial state S0, it holds δ0 = �0 and
Δ0 = δ0. Also, we add the limiter rule:

Limiter:
No other rules applicable δ < max{i | ci ∈ Σ}

δ := δ + 1

The indices of constants in the quantified atom l in Decide and Intro rule have
to be less than or equal to δ. The same holds for substitution λ in Backjump
and Unit propagate. Effects of the Decide rule are extended by Δ := Δ| δ and
of the Backjump rule by Δ := Δm and δ := δ′ where δ′ is the last element of
Δm. Although weaker restriction can be made, we restrict the Explain rules to
choose the literal l from the conflict set such that all other literals from the set
precede it on the trail, and to resolve the conflict implication with an axiom (or a
learnt lemma) that was used to propagate (or derive in the backjump) the literal
l. These formulae (called reason clauses in SAT solving) can be easily found if
the record is kept when Unit propagation and Backjump are applied, as is the
common practice in SAT solving. Note that the new system is a restriction of
the original one, so the soundness arguments hold for the new system, too. The
strong completeness can be proven — that for a valid formula, any order of rule
applications (compliant with the imposed restrictions) will reach an accepting
state.

Theorem 2 (Strong completeness). If it holds AX |= ∀�xH0(�v, �x)⇒ G0(�v),
then in each maximal chain S0 → . . . there exists an accepting state.

Proof outline. Suppose that there is no accepting state in the chain. Then, the
chain is either infinite or ends in a state in which no rule is applicable. Let L
be the set of all quantified atoms that are permanently kept on the trail after
some state in the chain. Consider a ground model M in which a ground atom
l is true if L � l. If the premises of an axiom are true in M, it can be shown
that its conclusions are also true inM. So,M is a model for AX . H is trivially
true in M. Let us suppose that in some state S it holds g ↑ for some g ∈ G.
This indicates a branch end, and it can be shown that a backjump follows, after
which g ↑� holds. Hence G is not true in M. This shows that M is not a model
for (∀ ∗H)⇒ G even though it is a model for AX which is a contradiction with
the assumptions of the statement.

5 Generation of Readable Proofs

CDCL-based systems typically provide resolution refutation proofs that are not
readable because transformation to clausal form, refutation and Skolemization
are used. These proofs can, in principle, be transformed to forward chaining
proofs, but these proofs would be hardly readable (because of the transformed
axioms and function symbols non-existent in the original theory) and would
not resemble textbook proofs (e.g., in geometry). This is avoided in our system,

276 M. Nikolić and P. Janičić

enabling generation of forward chaining proofs that can serve for simple building
of readable proofs (for instance, in a natural language form or in the Isabelle/Isar
form). We define a coherent forward chaining proof system (inspired by proof
system given in [17]) as follows. The axioms are Γ,⊥ � Φ and Γ, φ � Φ if φ � Φ.
The rules are:

Γ,A,A⇒ B,B � Φ
Γ,A,A⇒ B � Φ ⇒ Γ,A � Φ Γ,B � Φ

Γ,A ∨B � Φ ∨ Γ,A,Aσ � Φ
Γ,A � Φ Inst

Γ, p(�x), ∀�x p(�x) � Φ
Γ, p(�x) � Φ ∀

Γ, ∃�y p(�x, �y), p(�a,�c) � Φ
Γ, ∃�y p(�x, �y) � Φ ∃

Γ, p(�a), p(�x) � Φ
Γ, p(�a) � Φ Eigen

where in ∨ rule A and B share no free variables, in Inst, σ is an arbitrary
substitution over variables and constants from Σ∞, in ∃ rule �a consists of con-
stants appearing in Γ and ∃�y p(�x, �y) and �c consists of fresh constants, and Eigen
can be applied to constants from �a only in one branch of the proof and those
constants must have been introduced by Inst as fresh constants at the step in
which they first appear (this is a kind of eigenvariable condition). For a formula
∀�xH0(�v, �x)⇒ G0(�v) the coherent forward chaining proof is a derivation tree for
AX ,H � G.

Theorem 3. If AX �CL ∀�xH0(�v, �x) ⇒ G0(�v), there exists a coherent forward
chaining proof for ∀�xH0(�v, �x)⇒ G0(�v).

Proof outline. Since the accepting state can be reached, there is a conflict im-
plication C1 ⇒ C2 and its resolution proof built from the axioms. A proof of the
conjecture can be generated recursively from this resolution proof. Let resolv-
ing an eq-literal from the lefthand side of some F1 and an eq-literal from the
righthand side of some F2 yield a conflict implication C1 ⇒ C2. If Pr1 and Pr2
are forward chaining proofs for F1 and F2, then the proof of the conjecture is
constructed (roughly) by replacing non-contradiction leafs of Pr1 by Pr2 (with
appropriate renaming of fresh constants and free variables in Pr2).

A generated proof need not be axiom-level, but can involve learnt lemmas with
their proofs generated separately.

Example 8. We present the resolution tree for last derived C1 ⇒ C2, correspond-
ing to the example of system execution given in Example 7.

s(x) ∨ q(y, y)

q(x, y) ⇒ r(x, y) p(x, y) ∧ q(x, y) ∧ r(x, y) ⇒ ⊥
p(x, y) ∧ q(x, y) ⇒ ⊥

p(x, x) ⇒ s(z)

s(x) ⇒ ∃y q(x, y)

q(x, y) ⇒ r(x, y) p(x, y) ∧ q(x, y) ∧ r(x, y) ⇒ ⊥
p(x, y) ∧ q(x, y) ⇒ ⊥

∀y p(x, y) ∧ s(x) ⇒ ⊥
p(x, x) ∧ ∀u p(z, u) ⇒ ⊥

To make the notation more readable, in forward chaining proofs, we do not write
the hole context, but only the last derived fact. The forward chaining proofs for
p(x, x)⇒ s(z) and ∀y p(x, y) ∧ s(x)⇒ ⊥ are:

CDCL-Based Abstract State Transition System for Coherent Logic 277

s(b) � s(b)

s(x) � s(b)
Inst

⊥ � s(b)

r(a, a) � s(b)
⇒ (Ax1)

q(a, a) � s(b)
Inst

r(y, y) � s(b)
Inst

q(y, y) � s(b)
⇒ (Ax3)

AX , p(a, a) � s(b)
∨

⊥ � ⊥
p(a, b) � ⊥

⇒ (Ax1)

r(a, b) � ⊥ Inst

q(a, b) � ⊥
⇒ (Ax3)

∃y q(a, y) � ⊥ ∃

AX , p(a, y), s(a) � ⊥
⇒ (Ax2)

If we denote the first one by Pr1 and the second one by Pr2, and apply the rules
applied in Pr1 starting from the root AX , p(a, z) � ⊥, we obtain Pr′1. Then
starting from each leaf of Pr′1 that did not end in contradiction, we can apply
all the rules applied in Pr2. The obtained proof is the proof for conjecture:

⊥ � ⊥
p(a, b) � ⊥

⇒ (Ax1)

r(a, b) � ⊥ Inst

q(a, b) � ⊥
⇒ (Ax3)

∃y q(a, y) � ⊥ ∃

s(a) � ⊥
⇒ (Ax2)

s(x) � ⊥ Inst

⊥ � ⊥
p(a, a) � ⊥

⇒ (Ax1)

r(a, a) � ⊥ Inst

q(a, a) � ⊥ Inst

r(y, y) � ⊥ Inst

q(y, y) � ⊥
⇒ (Ax3)

AX , p(a, z) � ⊥
∨

A corresponding readable (Isar-style) proof would be as follows:Assume ∀z p(a, z).
With (Ax4), it holds ∀x s(x) or ∀y q(y, y). Assume ∀x s(x). From ∀x s(x), it
holds s(a). With (Ax2), it holds ∃y q(a, y). From ∃y q(a, y), obtain b such that
q(a, b). With (Ax3), it holds r(a, b). From ∀z p(a, z), it holds p(a, b). With (Ax1),
this leads to a contradiction. Assume ∀y q(y, y). With (Ax3), it holds ∀y r(y, y).
From ∀y q(y, y), it holds q(a, a). From ∀y r(y, y), it holds r(a, a). From ∀z p(a, z),
it holds p(a, a). With (Ax1), this leads to a contradiction. All the branches are
closed and the conjecture has been proven.

6 Related Work

There are several proving procedures for coherent logic and similar fragments of
FOL, and several corresponding automated theorem provers. To our knowledge,
the first CL automated theorem prover was developed in Prolog by Janičić and
Kordić [9] and was used for one axiomatization of Euclidean geometry. This
prover was later reimplemented in C++ to give a more efficient and generic
theorem prover ArgoCLP that produces both natural language proofs and object
level proofs in the Isabelle form [18]. Bezem and Coquand developed in Prolog a
sound and complete CL prover [2] based on breadth-first search that generates
proof objects in Coq. Berghofer and Bezem developed an internal prover for CL
in ML to be used within the system Isabelle [19]. Neither of these provers uses
backjumps or lemma learning. De Nivelle implemented a theorem prover for logic
close to coherent logic, that uses a mechanism for learning lemmas of somewhat
restricted form [15]. All of these systems perform only ground reasoning.

Our work is also related to research focused on CDCL-based SAT solvers.
Various modifications to the original DPLL procedure have been proposed, both
on the high, logical level, and on the lower, algorithmic and implementation

278 M. Nikolić and P. Janičić

level [5]. Modern SAT solvers have been recently described (with some imple-
mentation features omitted) via abstract state transition systems [13,10]. These
systems provided a solid ground for rigorous analysis of the SAT solvers and
their correctness was formally proved within the system Isabelle [12]. On the op-
erational, practical level, our CL system enables the transfer of SAT algorithms
and heuristics (that had a great impact on SAT solving) to CL in some form.

Our system builds on the SAT system presented in Section 2. The differences
are primarily due to the first order nature and the form of coherent logic. Use
of existential quantifiers results in use of Intro rule which is not present in SAT.
Also, dealing with first order formulae results in more complex rules due to the
use of substitutions and quantifiers. At this moment we do not include Forget
and Restart rules, which can be trivially added, but with them an additional
care has to be taken not to jeopardize completeness.

Our work is also related to work on effectively propositional logic, also known
as EPR, or as the Bernays-Schönfinkel fragment of first-order logic [16].

Another lifting of DPLL procedure, to the clausal fragment of first order logic,
is the Model evolution calculus [1]. There are several differences between this sys-
tem and ours. The first is the underlying logic itself. Working in CL, one can
avoid transformation to clausal form when working with coherent theories (like
geometry). In our system, the refutation is avoided and forward proofs are used.
Skolemization is avoided and existential quantifiers are used. These properties
enable generation of readable proofs, close to proofs from mathematical text-
books. Also, in Model evolution calculus, backjump is not treated as a part of
the calculus, but as an implementation technique [1].

7 Conclusions and Future Work

In this paper we presented an abstract state transition system for proving validity
in coherent logic, but also in a somewhat broader fragment of first order logic.
The system is sound and complete: any formula proved by the system is indeed a
theorem, and for any input theorem, the system can and will prove it. This also
proves the semidecidability of the defined extension of coherent logic. The system
is based on a transition system for CDCL-based SAT solving. In contrast to other
coherent theorem provers, the reasoning need not to be ground. An important
property is that the system allows the generation of formal and human readable
forward chaining proofs and we showed how they can be generated.

We are currently developing the implementation that faithfully matches the
presented system and expect it to perform well compared to the existing provers.
Heuristics that guide applications of the rules should be devised to improve
the performance, hopefully in the spirit of heuristics for SAT [14]. Also, the
generation of formal (in Isabelle/Isar) and readable object-level proofs will be
implemented. We are planning to use the prover for a range of applications,
including applications in formalization of mathematics, education, and program
synthesis.

CDCL-Based Abstract State Transition System for Coherent Logic 279

References

1. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus as a First-Order DPLL
Method. Artificial Intelligence 172(4-5) (2008)

2. Bezem, M., Coquand, T.: Automating Coherent Logic. In: Sutcliffe, G., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg
(2005)

3. M. Bezem. On the Undecidability of Coherent Logic. Processes, Terms and Cycles
(2005)

4. Bezem, M., Hendriks, D.: On the Mechanization of the Proof of Hessenberg’s The-
orem in Coherent Logic. J. of Automated Reasoning 40(1) (2008)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press (2009)

6. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. J. of
ACM 7(3) (1960)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7) (1962)

8. Fisher, J., Bezem, M.: Skolem Machines and Geometric Logic. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 201–215. Springer,
Heidelberg (2007)

9. Janičić, P., Kordić, S.: EUCLID — the geometry theorem prover. FILOMAT 9(3)
(1995)

10. Krstić, S., Goel, A.: Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720,
pp. 1–27. Springer, Heidelberg (2007)

11. Marić, F.: Formalization and Implementation of Modern SAT Solvers. J. of Auto-
mated Reasoning 43(1) (2009)

12. Marić, F., Janičić, P.: Formalization of Abstract State Transition Systems for SAT.
Logical Methods in Computer Science 7(3) (2011)

13. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
of ACM 53(6) (2006)

14. Nikolić, M., Marić, F., Janičić, P.: Instance-Based Selection of Policies for SAT
Solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer,
Heidelberg (2009)

15. de Nivelle, H., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite
Model Search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI),
vol. 4130, pp. 303–317. Springer, Heidelberg (2006)

16. Piskač, R., de Moura, L., Bjorner, N.: Deciding effectively propositional logic using
DPLL and substitution sets. J. of Automated Reasoning 44 (2010)

17. Polonsky, A.: Proofs, Types, and Lambda Calculus. PhD thesis, University of
Bergen (2010)

18. Stojanović, S., Pavlović, V., Janičić, P.: Automated Generation of Formal and
Readable Proofs in Geometry Using Coherent Logic. In: Schreck, P., Narboux, J.,
Richter-Gebert, J. (eds.) ADG 2010. LNCS, vol. 6877, Springer, Heidelberg (2011)

19. Wenzel, M.: Isar - A Generic Interpretative Approach to Readable Formal Proof
Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)

Speeding Up Cylindrical Algebraic

Decomposition by Gröbner Bases�

David J. Wilson, Russell J. Bradford, and James H. Davenport

Department of Computer Science,
University of Bath

Bath BA2 7AY, U.K.
{D.J.Wilson,R.J.Bradford,J.H.Davenport}@bath.ac.uk

Abstract. Gröbner Bases [Buc70] and Cylindrical Algebraic Decomp-
osition [Col75,CMMXY09] are generally thought of as two, rather differ-
ent, methods of looking at systems of equations and, in the case of Cylin-
drical Algebraic Decomposition, inequalities. However, even for a mixed
system of equalities and inequalities, it is possible to apply Gröbner bases
to the (conjoined) equalities before invoking CAD. We see that this is,
quite often but not always, a beneficial preconditioning of the CAD prob-
lem.

It is also possible to precondition the (conjoined) inequalities with
respect to the equalities, and this can also be useful in many cases.

1 Introduction

Solving systems of equations, or equations and inequations (
=)/inequalities
(>,<) is an old subject. Deciding the truth of, or more generally eliminating
quantifiers from, quantified Boolean combinations of such statements, is more
recent [Tar51]. We can distinguish many families of methods, even if we restrict
attention to the real numbers, or possibly the complex numbers.

=G The method of Gröbner bases. Here the input is a set S = {s1, . . . , sk}
of polynomials in some polynomial ring k[x1, . . . , xn] equipped with a total
order1 ≺ on the monomials, and the output is a set G = {p1, . . . , pl} which
is equivalent, in the sense that it generates the same ideal, i.e. (G) = (S),
and is simpler, or “surprise-free”, in that the leading monomial with respect
to ≺ (denoted lm≺) behaviour is explicit, (lm≺(G)) = (lm≺((G))). Then the
solutions of G are those of S, i.e.

{x : p1(x) = 0 ∧ p2(x) = 0 ∧ · · · ∧ pl(x) = 0} . (1)

� The examples used in this paper are available in [Wil12]. This work was partially
supported by the U.K.’s EPSRC under grant number EP/J003247/1.

1 We have concentrated on purely lexicographical orders, since these seem to be the
most useful to us.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 280–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases 281

=Δ The method of triangular decomposition via regular chains [ALMM99,MM05].
Here the output is a set of regular chains of polynomials

{(p1,1, p1,2, . . .), (p2,1, p2,2, . . .), . . .}, (2)

and the solution is the union of the set of regular zeros of these regular
chains:{

x : p1,1(x) = p1,2(x) = · · · = 0 ∧
(∏

i

init(p1,i)

)
(x)
= 0

}
∪ · · · . (3)

<Col The method of Cylindrical (semi-)Algebraic Decomposition for real closed
fields, computed via repeated projection to R1 and repeated lifting [Col75,
and many improvements].

=Col The previous case restricted to equality.
<ΔR The method of Cylindrical (semi-)Algebraic Decomposition for real closed

fields via triangular decomposition [CMMXY09].

=ΔC The method of Cylindrical Decomposition over the complexes via triangu-

lar decomposition, which was introduced in [CMMXY09] as a stepping-stone
to the previous method, but which probably has independent interest.

 ∃CH Quantifier Elimination by partial (i.e. taking account of the Boolean struc-
ture and quantifier structure) Cylindrical Algebraic Decomposition [CH91].

Others such as Weispfenning’s Virtual Term Substitution [Bro05, is a readable
introduction], or Tarski’s original method [Tar51].

Conversely instead of asking for solutions x to ∃xf1(x) ≥ 0∧ · · · , we may use
a Positivstellensatz to show that no such x exist, as in [PQR09]. We do not
discuss this direction further here.

It should be noted that both <Col and <ΔR/
=ΔC (but not
 ∃CH) have the draw-
back that the Cylindrical Algebraic Decomposition produces decompositions for,
not only the question posed, e.g. ∀y∃zp(x, y, z) = 0∧q(x, y, z) = 0∧r(x, y, z) > 0,
but also all other questions involving the same polynomials, provided the quan-
tifiers are over variables in the same order, e.g. ∃y∀zp(x, y, z) < 0 ∨ (q(x, y, z >
0 ∧ r(x, y, z) = 0).

This paper asks the question: “can these methods usefully be combined?” The
combinations we are thinking about are those of conjunction: Can the fact that
B is in the context of a1 = 0 ∧ · · · ∧ ak = 0 ∧ B be used to simplify B? In
particular, we look at the use of Gröbner base methods to simplify the equalities
in the conjunction and to simplify the inequalities in the light of the equalities.

Technical Note: All computations (=G, <ΔR and
=ΔC) were performed in
Maple 16β on a 3.1GHz Intel processor, except for the <Col, =Col and
 ∃CH

ones, which were performed on a 2.83GHz Intel processor with QEPCAD B
version 1.65 [Bro03]. Times for a hybrid calculation, e.g. =G/<Col, are either
quoted as the total time or a decomposition a + b = c where a is the time (in
milliseconds) for =G, b for <Col, and c is the sum. We have run QEPCAD in
three modes:

282 D.J. Wilson, R.J. Bradford, and J.H. Davenport

1. on the problem as given in [BH91], implementing
 ∃CH;
2. as above but with the full-cad option to ignore the Boolean structure of

the expression;
3. with no quantifiers stated, and the full-cad option, implementing <Col.

2 Examples in This Paper

2.1 [BH91]

This paper has a variety of examples for
 ∃CH, all of a form to which =G is
applicable.

2.2 [CMMXY09]

This paper has a variety of examples for <ΔR. We chose some of those to which
=G is applicable.

2.3 Two Spheres and a Cylinder

Let the following be spheres in R3:

S1 : (x− 1)2 + y2 + z2 − 3;

S2 : (x+ 1)2 + y2 + z2 − 3;

S3 : (x − 1)2 +
(
y − 1

2

)2
+ z2 − 3;

S4 : (x+ 1)2 +
(
y + 2

3

)2
+
(
z + 3

4

)2 − 3.

Denote the infinite cylinder centred on the z-axis with radius 1 by C, so that
the equation defining the cylinder is:

C : x2 + y2 − 1.

Now we investigate intersecting pairs of spheres (roughly increasing in CAD
‘difficulty’) under conditions based on the cylinder. We assume the spheres’
equation will always be required to equal 0 but make no assumptions on the
condition on the cylinder. That is, we wish to solve the problem:

Si = 0 ∧ Si+1 = 0 ∧ C ∗ 0 ∗ ∈ {=,
=, <,>,≤,≥}, i = 1, 2, 3. (4)

We use the underlying variable ordering2 (z, y, x).

2 This is the QEPCAD notation, meaning that we will project from (z, y, x)–space
to (z, y)–space to (z)–space. We therefore end up with polynomials in z alone,
so this is equivalent to a purely lexicographical Gröbner base with z ≺ y ≺
x, i.e. plex([z,y,x]) in Maple: =GC is used to indicate Gröbner bases with
this (compatible) ordering. The CAD package in Maple [CMMXY09] requires
PolynomialRing([x,y,z]) to achieve the same effect as QEPCAD’s (z, y, x). =GR

denotes the reverse plex order.

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases 283

3 Prior Art

Needless to say, we are not the first to have had this idea.

3.1 Buchberger–Hong

[BH91] considers the case of =G ([BGK85] re-implemented in C) applied to <Col

(an early version of [CH91] re-implemented in C), i.e., rather than computing
a CAD for the zeros of a system of equations E (i.e. e1 = 0 ∧ e2 = 0 ∧ · · ·)
and inequalities F , compute it for G, a (purely lexicographical) Gröbner base
for E, and F . They generally found a very substantial speed-up in the total
computation time, e.g. “Solotareff A”3

∃x∃y 3x2 − 2x− a = x3 − x2 − ax− 2b+ a− 2 = (5)

3y2 − 2y − a = y3 − y2 − ay − 2b+ a− 2 = 0 ∧ (6)

4a ∈ [1, 7] ∧ 4b ∈ [−3, 3] ∧ x ∈ [−1, 0] ∧ y ∈ [0, 1] (7)

(with the variable ordering (b, a, x, y)) took them 11500 ms for
 ∃CH, but 717
for =G, and 117 for
 ∃CH applied to the result, a total of 834 ms, or a 13-
fold speed-up. “Solotareff B” is the same problem but with (a, b, x, y) as the
variable ordering, and here the
 ∃CH time was again greatly reduced, but the =G
time was excessive. Of course, there have been substantial improvements in the
implementation of all these algorithms since [BH91] was published, and Table 2
shows that the =G time is now less than 1/3 of the
 ∃CH time. We choose rather
to focus on the number of cells generated, which is closely connected to the =Col

time, and also affects the time taken to make use of the output. The cell counts
are shown in Table 1.

Table 1. Cell counts for Solotareff

Ordering A Ordering B
<Col =G/<Col <Col =G/<Col

(5–7) Partial 153 63 375 41
Full 349 625 1063 237

(5–6) Partial 29 15 97 17
Full 29 33 97 17

More reruns of [BH91] are given in Table 2. We see that, with today’s tech-
nology, the conclusion of [BH91], viz. that =G generally improves
 ∃CH for the
class of problems to which it is applicable, is still generally valid, but the details
differ: notably the Gröbner base time is generally insignificant today.

3 There are various problems labelled “Solotareff”: for a description of this class see
[Wil12] and the links therein.

284 D.J. Wilson, R.J. Bradford, and J.H. Davenport

Table 2. [BH91] with today’s technology

	 ∃CH =G/	 ∃CH 	 ∃CH/full-cad =G/	 ∃CH/full-cad
Time Cells Time Cells Time Cells Time Cells

I A 190 503 22+72= 94 23 188 503 22+73= 95 51
I B 199 369 21+74= 95 17 191 369 21+75= 96 33
R A 85 1 24+73= 97 1 86 1 24+71= 95 1
R B 129 1 24+72= 96 1 125 1 24+72= 96 1
E A 297 621 25+134= 159 621 576 11139 25+394= 419 11139
E B Error ? 50+?= Error ? Error ? 50+?= Error ?
S A 89 153 22+72= 94 63 199 349 22+185= 207 625
S B 113 375 23+75= 98 41 228 1063 23+180= 203 237
C A 133 19 42+?= Error ? 235 19 42+?= Error ?
C B Error ? 132+?= Error ? Error ? 132+?= Error ?

Table 3. [BH91] Examples for full CADs

=Col =G/=Col <ΔR =G/<ΔR

Time Cells Time Cells Time Cells Time Cells

I A 236 3723 22+77= 99 273 29426 3763 2470 273
I B 212 3001 21+76= 97 189 36262 2795 1482 189
R A 150 2101 24+86= 110 105 17355 1267 570 165
R B 21091 7119 24+80= 104 141 356670 7119 470 141
E A* 7390 114541 25+3189= 3214 53559 262623 28557 62496 14439
E B* Error ? 50+?= Error ? > 1000s ? > 1000s ?
S A* 115 1751 22+82= 104 297 16014 1751 2025 297
S B* 253 6091 23+82= 105 243 43439 6091 1647 243
C A* 820 8387 42+?= Error ? 216028 7895 > 1000s ?
C B* Error ? 132+?= Error ? > 1000s ? > 1000s ?

* indicates that the linear inequalities have been omitted in this version.

There is one point which is not explicit in [BH91]. As the computation of
Gröbner bases in one variable is just equivalent to Euclid’s algorithm, i.e. Gaus-
sian elimination in Sylvester’s matrix, Gröbner base computations which are not
genuinely multi-variate do not affect the set of resultants etc. generated in <Col,
and hence are of limited use in the projection phase. They might still reduce the
work done in the lifting phase, of course.

Table 3 re-runs the examples of [BH91], but asking for complete cylindrical al-
gebraic decompositions, and hence we can compare <Col with <ΔR legitimately.
Given that the algorithms are fundamentally different, the similarities in cell
counts are striking. The differences in cell counts (where present) reflect differ-
ences in the cylindrical algebraic decompositions for the same input problem.

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases 285

3.2 Phisanbut

Phisanbut [Phi11], considering branch cuts in the complex plane, observed that
g = 0 ∧ f > 0 could be reduced to g = 0 ∧ prem(f, g) > 0 under suitable
conditions, where prem denotes the pseudo-remainder operation. More precisely,
if f and g are regarded as polynomials in the main variable x, of degrees d
and e respectively, then prem(f, g) = rem(cd−e+1f, g), where c is the leading
coefficients of g. When g = 0 and c > 0, or when d − e + 1 is even, prem(f, g)
has the same sign as f . Unfortunately c might have variable sign, and d− e+ 1
might be odd, so define pprecond(f, g) = rem(c(d−e+1)∗f, g), where n∗ is n if n is
even and n+ 1 if n is odd. Maple also defines sprem(f, g) = rem(cmf, g), where
m is the smallest integer such that the division is exact, and by analogy we have
sprecond(f, g) = rem(cm

∗
f, g). Note that sprecond(f, g) = pprecond(f, g) or a

strict divisor of it, i.e. sprecond is never worse. She generally, but not always,
saw [Phi11, Tables 8.13, 8.14] a significant decrease in the number of cells, and
the time taken to compute sprecond was minimal.

4 Further Developments

4.1 =G with <ΔR

It would seem natural to apply =G to<ΔR, as [BH91] did to
 ∃CH. The results are
in Table 3, and show a speed-up in all instances except the Collision problems.
We also note the substantial speed advantage enjoyed by <Col, and this is a
subject for further study.

4.2 =G with �=ΔC

We can also mix =G with
=ΔC, and these results are shown in Table 4, which
also compares
=ΔC with <ΔR. <ΔR involves doing
=ΔC first, and then running
the MakeSemiAlgebraic algorithm from [CMMXY09]. For these examples, the
MakeSemiAlgebraic step is the most expensive initially, but often not after we
apply =G.

4.3 =G with Inequalities in <ΔR

Having reduced the equalities to a Gröbner base G, it is now possible to reduce
the inequalities by G, since adding/subtracting a multiple of an element of G is
adding/subtracting 0. We can reduce with respect to the main variable, denoted
=G/→G

x , with respect to secondary variables, denoted =G/→G
y , or with respect

to all variables (Maple’s NormalForm), denoted =G/
∗→
G
.If we compare tables

6 and 7 we see that the number of cells produced is the same across the two
methods.

286 D.J. Wilson, R.J. Bradford, and J.H. Davenport

Table 4. Timings for [BH91] Examples: <ΔR/	=ΔC

	=ΔC <ΔR =G/	=ΔC =G/<ΔR

Time Time Ratio Time Time Ratio

Intersection A 5691 29426 4.17 1168 2470 1.11
Intersection B 5584 36262 5.49 886 1482 0.67
Random A 4614 17355 2.76 310 570 0.84
Random B 67343 356670 4.30 318 470 0.48
Ellipse A* 85425 262623 2.07 27916 62496 1.24
Ellipse B* 441245 > 1000s - > 1000s > 1000s -
Solotareff A* 6666 16014 1.40 1760 2025 0.15
Solotareff B* 9536 43439 3.56 1404 1647 0.17
Collision A* 41085 216028 4.26 > 1000s > 1000s -
Collision B* > 1000s > 1000s - > 1000s > 1000s -

“Ratio” = (<ΔR−	=ΔC)/	=ΔC, i.e. the relative cost of MakeSemiAlgebraic.

Table 5. Examples from [CMMXY09]

<ΔR =G/<ΔR Ratio
Time Cells Time Cells Time Cells

Cyclic–3 3136 381 20 + 245 = 265 21 11.83 18.14
Cyclic–4 > 1000s ? 64 + 5813 = 5877 621 ? ?
2 2249 895 22 + 1845 = 1867 579 1.20 1.55
4 3225 421 24 + 19738 = 19762 1481 0.16 0.28
6 363 41 20 + 918 = 938 89 0.39 0.46
7 3667 895 26 + 6537 = 6563 1211 0.56 0.74
8 3216 365 21 + 174 = 195 51 16.49 7.16
13 14342 4949 18 + 220 = 238 81 60.26 61.10
14 334860 27551 21 + 971 = 992 423 337.56 65.13

Table 6. Spheres and Cylinders: <ΔR

<ΔR =G/<ΔR =G/→G
y /<ΔR =G/→G

x /<ΔR =G/
∗→G

/<ΔR

Time Cells Time Cells Time Cells Time Cells Time Cells

S1, S2, C 9830 1073 1057 267 394 91 528 183 298 99
S2, S3, C 187048 12097 5880 1299 3171 627 2149 517 506 213
S3, S4, C 247458 11957 8164 1359 9177 1123 5476 881 590 213

Table 7. Spheres and Cylinders: <Col

<Col =G/<Col =G/
∗→G

/<Col

Time Cells Time Cells Time Cells

S1, S2, C 30 1073 23 + 8 = 31 267 24 + 4 = 28 99
S2, S3, C 763 12097 27 + 36 = 63 1299 28 + 13 = 41 213
S3, S4, C 1760 11957 28 + 37 = 65 1359 29 + 14 = 43 213

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases 287

5 Choice of Method

Suppose we are given a problem, which we may formulate as

quantified variables e1 = 0 ∧ · · · ∧ ek = 0 ∧B(f1, . . . , fl), (8)

where B is a Boolean combination of conditions = 0,
= 0, < 0 etc. on some
polynomials fj, then we may be able, by applying Gröbner techniques to the

ej , producing e
(i)
j , and then reducing the fj , to produce various alternative

formulations

quantified variables e
(i)
1 = 0 ∧ · · · ∧ e(i)

k(i)
= 0 ∧B(f

(i)
1 , . . . , f

(i)
l), (8(i))

and each of these may have several variable orderings compatible with the con-
straints implied by the quantification (if any). Which should we choose? Of
course, in the presence of arbitrary parallelism, we can start them all, and ac-
cept the first to finish, but we may wish to be less extravagant.

In the contexts of
 ∃CH (strictly speaking, the REDLOG implementation), and
where the only choice was in the variable order, this question was considered by
[DSS04]. Retrospectively, there are two measures for the difficulty of a CAD
computation: the time taken and the number of cells produced. For a given
 ∃CH

problem, they observed that two are usually correlated for different formulations,
and we observe the same here for <ΔR — see our tables. However, we would
like a measure that could be calculated in advance, rather than retrospectively.

The processes of [Col75,CH91] starts with a set An of polynomials in n (or-
dered) variables x1, . . . , xn, and

1. repeatedly project Ai into Ai−1 in one fewer variable, until A1 has only one
variable,

* (denote the set {An, . . . , A1} by A(x1, . . . , xn))
2. isolate the roots of these polynomials to get a decomposition of R1,
3. repeatedly lift the decomposition until we get a (partial for [CH91]) cylin-

drical algebraic decomposition of Rn.

The third step is, both theoretically and practically, by far the most expensive.
Hence the question arises: what can we measure at the end of step 1, i.e. depend-
ing on A only, which is well-correlated with the final cost? Three things come to
mind.

card(A(x1, . . . , xn)) =
∑n
i=1 |Ai|.

td(A(x1, . . . , xn)) =
∑n

i=1

∑
pi,j∈Ai

td(pi,j) where td denotes total degree.

sotd(A(x1, . . . , xn)) =
∑n
i=1

∑
pi,j∈Ai

∑
monomials m of pi,j td(m).

[DSS04] discard td, observing that td and sotd are highly correlated and sotd

“has the advantage of favouring sparse polynomials”. They then observe that
sotd(A(x1, . . . , xn)) is significantly more correlated with the retrospective mea-
sures for any given problem than card. This gives a first algorithm for deciding
how to project: for all admissible (i.e. compatible with the quantifier structure, if

288 D.J. Wilson, R.J. Bradford, and J.H. Davenport

any) permutations π of (x1, . . . , xn), compute A(xπ(1), . . . , xπ(n)), and choose the
one with the least sotd value. The drawback of this is that it requires potentially
(n−1)n! projection operations. They show that (at least on their examples) this
always produces a good projection order, and frequently the optimal.

Table 8. Spheres and Cylinders: <ΔR — choice of orderings

<ΔR =G/<ΔR =G/
∗→G

/<ΔR

Time Cells Time Cells Time Cells

S1, S2, C C 8654 1073 905 267 270 99
R 902 267 453 183

S2, S3, C C 189202 12097 5911 1299 499 213
R 18941 2639 5307 859

S3, S4, C C 248340 11957 8159 1359 580 213
R 160171 9091 196714 11203

They therefore propose a greedy algorithm, where for all permissible choices
of the first variable to be projected, we compute sotd(An−1), and choose the
variable which gives the least value. Having fixed this as the first variable to
project, for all permissible choices of the second variable to be projected, we
compute sotd(An−2), and choose the variable which gives the least value, and
so on. Hence, assuming all projection orders are possible, the number of pro-
jections done is n+(n− 1)+ · · · = O(n2) rather than n!. It is currently an open
question whether the cost of projections behaves similarly.

We proposed taking this idea still further, and suggested that, for several
different formulations An, Bn, . . . of a problem, we should compute sotd(An),
sotd(Bn), . . . and take the formulation that yields the lowest sotd. We observed,
however, that neither td nor sotd are good predictors in Table 11, despite seem-
ing useful in Table 10.

6 The Metric TNoI

When we apply Gröbner techniques to a set of equations (either by calculating
a basis or a normal form) we are, in some sense, trying to simplify the set
of equations. In a zero-dimensional ideal, as shown in the Gianni-Kalkbrener
Theorem [Gia89,Kal89], a purely lexicographic Gröbner basis has a very distinct,
triangular structure.

With this in mind we thought it may be of some use to consider the number
of variables present in a certain problem and so defined the following quantity,
TNoI, which stand for “Total Number of Indeterminates”:

TNoI(F) =
∑
f∈F

NoI(f), (9)

where NoI(f) is the number of indeterminates present in a polynomial f .

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases 289

Table 9. [BH91]: effect of orderings =GC versus =GR

<ΔR =G/<ΔR

Time Cells Time Cells

Intersection A C 29426 3763 2470 273
R > 1000s ?

Intersection B C 36262 2795 1482 189
R > 1000s ?

Random A C 17355 1219 570 165
R > 1000s ?

Random B C 356670 7119 470 141
R > 1000s ?

Ellipse A* C 262623 28557 62496 14439
R 271726 29939

Ellipse B* C > 1000s ? > 1000s ?
R > 1000s ?

Solotareff A* C 16014 1751 2025 297
R > 1000s ?

Solotareff B* C 43439 6091 1647 243
R > 1000s ?

Collision A* C 216028 7895 > 1000s ?
R > 1000s ?

Collision B* C > 1000s ? > 1000s ?
R > 1000s ?

We note that =GR is definitely worse than =GC .

Table 10. Spheres and Cylinders: <ΔR —degrees

<ΔR =G/<ΔR =G/
∗→G

/<ΔR

degrees Time Cells degrees Time Cells degrees Time Cells

S1, S2, C 6 / 18 8654 1073 5 / 9 905 267 5 / 7 270 99
S2, S3, C 6 / 19 189202 12097 5 / 11 5911 1299 5 / 10 499 213
S3, S4, C 6 / 21 248340 11957 5 / 15 8159 1359 5 / 15 580 213

‘degrees’ is td(An)/sotd(An).

Table 11. [BH91]: degrees

<ΔR =G/<ΔR

degrees Time Cells degrees Time Cells

Intersection A 6 / 14 29426 3763 17 / 50 2470 273
Intersection B 6 / 14 36262 2795 15 / 41 1482 189
Random A 9 / 16 17355 1219 19 / 68 570 165
Random B 9 / 16 356670 7119 19 / 73 470 141
Ellipse A* 6 / 24 262623 28557 6 / 26 62496 14439
Ellipse B* 6 / 24 > 1000s ? 25 / 253 > 1000s ?
Solotareff A* 10 / 25 16014 1751 10 / 28 2025 297
Solotareff B* 10 / 25 43439 6091 21 / 69 1647 243
Collision A* 6 / 23 216028 7895 27 / 251 > 1000s ?
Collision B* 6 / 23 > 1000s ? 36 / 875 > 1000s ?

290 D.J. Wilson, R.J. Bradford, and J.H. Davenport

6.1 TNoI Data

The results of calculating such a quantity are given in Table 8, Table 9 and
Table 10, showing a promising correlation to whether our preconditioning (with
compatible ordering) is beneficial or not. In particular we note the following
points:

– In every example where preconditioning reduces TNoI (15 cases) there is a
significant reduction in timing (a decrease factor ranging from 4.20 to 757.26)
and number of cells produced (a decrease factor ranging from 1.98 to 65.13).

– When preconditioning increases TNoI (7 cases) then generally there is an
increase in time (an increase factor ranging from 1.79 to 6.13) and the number
of cells created (an increase factor ranging from 1.35 to 3.52) or the problem
remains infeasible. There is one ‘false positive’ result ([CMMXY09, Example
2]) where there is an increase in TNoI but a slight improvement in the time
(a decrease factor of 1.20) and cells produced (a decrease factor of 1.55).

– TNoI alone does not measure the abstract difficulty of the calculations: In-
tersection A has a higher TNoI than Ellipse A yet the latter takes 25 times
longer and produces over 50 times as many cells. We have only shown how
to use it to compare variants of the same problem.

As mentioned above, calculating TNoI alone is not of a huge use, and even con-
sidering the difference or ratio does little to predict the degree of improvement
to expect. However, if we take the logarithm of the ratio (equivalently the dif-
ference of the logarithms) of TNoI and compare to the time or number of cells
we get some interesting results.

Plotting these quantities against each other certainly suggested there was a
positive correlation. Recall that the sample correlation coefficient is defined as

rX,Y =

∑n
i=1(Xi −X)(Yi − Y)√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y)2
(10)

and is a number between -1 and 1 that indicates how correlated data is. A
sample coefficient of 1 indicates perfect positive correlation and a coefficient of
-1 indicates perfect negative correlation. Although we are only working with
a small bank of data (22 examples) and partially incomplete data (timings of
> 1000s were replaced by 10000 seconds and unknown cell numbers were replaced
by 100000 to allow for coefficient calculation) there were still promising results.

Let S be the polynomial input, DS its corresponding CAD, tS the time taken
to calculate DS and cS the number of cells in DS . Let G be the Gröbner basis
calculated with respect to the compatible ordering and define DG, tG and cG in a
similar fashion. With the data set we obtained the sample correlation coefficients
were as follows:

– comparing log(TNoI(S))− log(TNoI(G)) with log(tS)− log(tG) gives a sam-
ple coefficient r = 0.821 which indicates strong correlation (for our limited
sample set).

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases 291

– comparing log(TNoI(S))−log(TNoI(G)) with log(cS)−log(cG) gives a sample
coefficient r = 0.829 which again indicate a strong correlation (for our limited
sample set).

Of course correlation does not imply causation, especially with a relatively small
data set, so let us look more deeply at what TNoI is measuring.

Table 12. TNoI for Spheres

<ΔR =G/<ΔR =G/
∗→G

/<ΔR

TNoI Time Cells TNoI Time Cells TNoI Time Cells

S1, S2, C 8 8654 1073 5 905 267 4 270 99
S2, S3, C 8 189202 12097 6 5911 1299 6 499 213
S3, S4, C 8 248340 11957 7 8159 1359 7 580 213

Table 13. TNoI for [BH91]

<ΔR =G/<ΔR

TNoI Time Cells TNoI Time Cells

Intersection A 8 29426 3763 7 2470 273
Intersection B 8 36262 2795 7 1482 189
Random A 9 17355 1219 5 570 165
Random B 9 356670 7119 5 471 141
Ellipse A* 7 262623 28557 6 62496 14439
Ellipse B* 7 > 1000s ? 21 > 1000s ?
Solotareff A* 9 16014 1751 8 2025 297
Solotareff B* 9 43439 6091 7 1647 243
Collision A* 7 216028 7895 18 > 1000s ?
Collision B* 7 > 1000s ? 22 > 1000s ?

6.2 What Is TNoI Measuring?

Consider what causes TNoI to decrease. Let S be a set of polynomials in variables
x1, . . . , xn ordered x1 < x2 < · · · < xn. The following are three possible reasons
for a decrease in TNoI:

1. The number of polynomials in a specific set of variables, {xi1 , . . . , xil}, is
decreased. If xk is the most important variable then reducing the number of
these polynomials will simplify the decomposition in the (x1, . . . , xk)-plane.
This will simplify the overall CAD, reducing the number of cells produced
and hence the time taken to calculate the decomposition.

2. At least one variable is eliminated from a polynomial. If the variable xk
is eliminated from a polynomial p then the decomposition based around p
will be greatly simplified. This will again simplify the overall CAD, reducing
the number of cells produced and hence the time taken to calculate the
decomposition.

292 D.J. Wilson, R.J. Bradford, and J.H. Davenport

Table 14. TNoI for [CMMXY09]

<ΔR =G/<ΔR

TNoI Time Cells TNoI Time Cells

Cyclic–3 9 3136 381 6 20 + 245 = 265 21
Cyclic–4 16 > 1000s ? 6 64 + 5813 = 5877 621
2 7 2249 895 14 22 + 1845 = 1867 579
4 6 3225 421 11 24 + 19738 = 19762 1481
6 4 363 41 5 20 + 918 = 938 89
7 8 3667 895 22 26 + 6537 = 6563 1211
8 6 3216 365 5 21 + 174 = 195 51
13 9 14342 4949 4 18 + 220 = 238 81
14 11 334860 27551 9 21 + 971 = 992 423

3. A polynomial in a large number of variables, say k, is replaced by j poly-
nomials each with ni variables such that

∑
ni < k. Intuitively this would

increase the number of discriminants and resultants calculated, be it in the
projection phase of <Col or in
=ΔC, but the results appear in lower levels of
the projection tree, and this effect is more potent than the apparent increase
in the number of discriminants and resultants. We have yet to build a good
model of this, though.

Obviously, in general, a combination of these factors will be the reason for the
decrease in TNoI. Also, there may be opposing increases in TNoI, which pre-
sumably explains why the ‘false positive’ of [CMMXY09, Example 2] shows an
increase in TNoI but an improvement in the CAD efficiency.

7 Conclusions

– For both <Col and <ΔR and
=ΔC, pre-conditioning the equations (where
applicable) by means of a Gröbner calculation is often well worth doing.

– Gröbner reduction of inequalities with respect to equalities has never, in our
examples, made things worse.

– A priori , it can be quite difficult to see which combinations of Gröbner base
and Gröbner reduction will be best, but the Gröbner side is generally cheap4.

– We therefore have multiple equivalent formulations of a given problem. We
have investigated the metrics of [DSS04], but have concluded that, at the
level of choice of formulation, TNoI is a better predictor. It does not help for
predicting the best ordering of variables, for which [DSS04] or the Brown
heuristic [Bro04] are appropriate. Phisanbut [Phi11, Chapter 8] found the
Brown heuristic sufficiently good, and simpler to compute.

4 This is a significant change from [BH91], who had examples where the Gröbner cal-
culations was much more expensive than the Cylindrical Algebraic Decomposition.

Speeding Up Cylindrical Algebraic Decomposition by Gröbner Bases 293

– In Section 3.2 we saw how g = 0 ∧ f > 0 could be reduced to g = 0 ∧
sprecond(f, g) > 0. In principle, given s1 = 0 ∧ · · · ∧ sk = 0 ∧ f > 0, after
computing a Gröbner base G for the si, we could attempt a more general
reduction of f by G. Pure NormalForm reduction has proved useful (Tables
6, 7), but we do not have enough good examples to measure the utility of a
more general pseudoremainder-like reduction.

References

ALMM99. Aubry, P., Lazard, D., Moreno Maza, M.: On the Theories of Triangular
Sets. J. Symbolic Comp. 28, 105–124 (1999)

BGK85. Böge, W., Gebauer, R., Kredel, H.: Gröbner Bases Using SAC2. In: Cavi-
ness, B.F. (ed.) ISSAC 1985 and EUROCAL 1985. LNCS, vol. 204, pp.
272–274. Springer, Heidelberg (1985)

BH91. Buchberger, B., Hong, H.: Speeding-up Quantifier Elimination by Gröbner
Bases. Technical Report 91-06 (1991)

Bro03. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic
sets using CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)

Bro04. Brown, C.W.: Tutorial handout (2004),
http://www.cs.usna.edu/~wcbrown/research/ISSAC04/handout.pdf

Bro05. Brown, C.W.: SLFQ — simplifying large formulas with QEPCAD B
(2005), http://www.cs.usna.edu/~qepcad/SLFQ/Home.html

Buc70. Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines
algebraischen Gleichungssystem (English translation in [Buc98]). Aequa-
tiones Mathematicae 4, 374–383 (1970)

Buc98. Buchberger, B.: An Algorithmic Criterion for the Solvability of a System
of Algebraic Equations. In: Gröbner Bases and Applications, pp. 535–545
(1998)

CH91. Collins, G.E., Hong, H.: Partial Cylindrical Algebraic Decomposition for
Quantifier Elimination. J. Symbolic Comp. 12, 299–328 (1991)

CMMXY09. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing Cylindrical
Algebraic Decomposition via Triangular Decomposition. In: May, J. (ed.)
Proceedings ISSAC 2009, pp. 95–102 (2009)

Col75. Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition. In: Proceedings 2nd GI Conference Automata
Theory & Formal Languages, pp. 134–183 (1975)

DSS04. Dolzmann, A., Seidl, A., Sturm, T.: Efficient Projection Orders for CAD.
In: Gutierrez, J. (ed.) Proceedings ISSAC 2004, pp. 111–118 (2004)

Gia89. Gianni, P.: Properties of Gröbner Bases Under Specializations. In: Dav-
enport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp.
293–297. Springer, Heidelberg (1989)

Kal89. Kalkbrener, M.: Solving Systems of Algebraic Equations by Using
Gröbner Bases. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL
1987. LNCS, vol. 378, pp. 282–292. Springer, Heidelberg (1989)

MM05. Moreno Maza, M.: On Triangular Decompositions of Algebraic Varieties
(2005),
http://www.csd.uwo.ca/~moreno/Publications/M3-MEGA-2005.pdf

Phi11. Phisanbut, N.: Practical Simplification of Elementary Functions using
Cylindrical Algebraic Decomposition. PhD thesis, University of Bath
(2011)

http://www.cs.usna.edu/~wcbrown/research/ISSAC04/handout.pdf
http://www.cs.usna.edu/~qepcad/SLFQ/Home.html
http://www.csd.uwo.ca/~moreno/Publications/M3-MEGA-2005.pdf

294 D.J. Wilson, R.J. Bradford, and J.H. Davenport

PQR09. Platzer, A., Quesel, J.-D., Rümmer, P.: Real World Verification. In:
Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer,
Heidelberg (2009)

Tar51. Tarski, A.: A Decision Method for Elementary Algebra and Geometry,
2nd edn. Univ. Cal. Press (1951)

Wil12. Wilson, D.J.: Real Geometry and Connectness via Triangular Description:
CAD Example Bank (2012), http://opus.bath.ac.uk/29503

http://opus.bath.ac.uk/29503

A System for Axiomatic Programming

Gabriel Dos Reis

Texas A&M University
gdr@cse.tamu.edu

Abstract. We present the design and implementation of a system for axiomatic
programming, and its application to mathematical software construction. Key
novelties include a direct support for user-defined axioms establishing local equal-
ities between types, and overload resolution based on equational theories and
user-defined local axioms. We illustrate uses of axioms, and their organization
into concepts, in structured generic programming as practiced in computational
mathematical systems.

1 Introduction

We want our programs to look as much as possible like the mathematical formulation
of the algorithms they implement. If the current state of our mathematical software is of
any indication, an abstraction gap between a published algorithm and its realization as
computer program grows to the point where we have trouble convincing ourselves that
a program really does what it is supposed to. Of course, this situation is not unique to
computer algebra. It is a general problem in the software industry. However, computer
algebra deals with entities with rich mathematical structures. Therefore, it is a natural
place to try to understand and to attempt to solve the abstraction gap problem.

The weak programming language support for direct expression of mathematical al-
gorithms as computer codes has baffling consequences, and may at times prove to ren-
der some of our computer algebra systems quite embarrassing tools for education. For
example, in the AXIOM computer algebra system [13] (and its derivatives), a domain
that satisfies the AbelianMonoid category does not necessarily satisfy those of the
Monoid category. Yet, we don’t think a freshman student could easily get away with
pretending that an Abelian monoid is not a monoid. The problem has been known for
quite a long period of time. It has several root causes. The most fundamental one was
the lack of programming language features to express concise mathematical properties
of operations in ways that could be effectively used by compilers. In the case of AX-
IOM, the notion of axiom was considered in the early 1980s but never implemented [2].
With the lack of linguistic features to directly express that some operations obey certain
laws, programmers have developed elaborate schemes, often culminating with confer-
ring to names — i.e. syntax — far more importance than semantics, at the very expense
of mathematical correctness. As a result, we have seen proposals (and software) that use
AdditiveMonoid to represent the mathematical idea of Abelian monoid, where the op-
eration is decided once for all to be named +, and the name MultiplicativeMonoid
to designate a monoid that is not necessarily known to be Abelian, where its operation

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 295–309, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

296 G. Dos Reis

is decided (again) once for all to be named *. As to be expected, one runs into seri-
ous problems when the same datatype carries simultaneously several instances of the
same abstract structure. For example, the set of integers is obviously an Abelian monoid
with respect to both usual + and *, and we do want our software to reflect the fact that
the operation * is commutative. Furthermore, those are not the only Abelian monoid
operations on integers; gcd is another example; so is the operation ϕ defined by

ϕ (x, y) = x + y + xy.

In short, the workaround that consists of conferring more importance to syntax than
semantics is not just conceptually incorrect: it does not scale.

The main contribution of this paper is the design and implementation of a system
(named Liz) that directly supports axioms, and structured generic programming as
practiced in computer algebra. The system is an extension of a subset of the popular
programming language C++ [21,12]. The long term goal is to bring structured generic
programming to mainstream and accessible to “ordinary programmers”. This can be
achieved if we have enough automation. The extensions are “concepts” [7,10] and “ax-
ioms” [9]. A key design concern has been to reduce the amount of “boilerplate” that
programmers have to write in order for the compiler to “understand” that their pro-
grams have structures. The core of the type system is based on equational reasoning
and axioms introduced by users. A central problem is: How can the compiler use user-
defined constraint to resolve calls to overloaded functions? Overall, the Liz system of-
fers a remarkable application of symbolic mathematics and deduction techniques [27]
to the field of programming language design and implementation. Liz’s type checker
combines pattern matching and automated logical deduction.

The remaining of this paper is structured as follows. We introduce axiomatic
programming and the key language features behind Liz in (Section 2.) The general ar-
chitecture, and the problems of Type checking, code generation, and constraint satis-
faction are discussed in Section 3. Finally we discuss related work and we conclude in
Section 4.

2 Axiomatic Programming

We define axiomatic programming as the practice of structured generic programming
[4,3,15,16,5,19] that expresses and uses axioms or mathematical properties directly in
code. The idea has been recently illustrated by Stepanov and McJones [19]. They show-
cased programming as a mathematical activity, a wonderful journey in the land of sim-
plicity and generality. Their approach and exposition makes essential use of properties
and concepts. In spite of this, all of their codes is compilable as almost C++03 [12]
program fragments. There are two reasons for this. First, although the exposition is
centered around concepts, the book never actually presents any single concept in con-
crete code — concepts were defined as abstract mathematical entities. From the C++
compiler point of view, concepts — the propellers — are effectively equivalent to com-
ments, i.e. white spaces. Second, the actual computer codes use a few simple macros.
In particular, the requires “keyword” is actually a C99 variadic macro defined [19,
Appendix B.2] that ignores its arguments. Consequently, one of the benefits of concepts

A System for Axiomatic Programming 297

— turning informal descriptions into codes that can be verified and used for type check-
ing template definitions and uses — is not realized. The next subsections introduce the
programming system Liz designed to support axiomatic programming.

2.1 Axioms and Concepts

In Liz, an axiom is a property that states what an algorithm may assume of values,
operations, etc. but also what a user should and should not assume about these enti-
ties. Those properties are logical expressions about semantics we assume to hold for a
proper execution of an algorithm. As such, what we call an axiom in Liz corresponds to
the usual mathematical practice of “hypothesis forming” in developing a theorem. For
example the notion of associativity is expressed in Liz as

template<BinaryOperation Op>
axiom associative(Op op) {
forall(Domain(Op) a, Domain(Op) b, Domain(Op) c)
op(op(a, b), c) == op(a, op(a, b));

}

That is, the axiom associative can be applied to a specific binary operation — not all
binary operations are associative. The template header is used here to introduce the
type Op of the parameter op. It also indicates that when used as in

associative(gcd);

Liz should magically figure out the value for Op — assuming gcd is not overloaded.
The “type” BinaryOperation of the template parameter Op is a concept.

A concept [7,19] is a collection of properties (existence of operations, values, se-
mantics, etc.) about types, operations, and values. For example the notion of a magma
operation is rendered in Liz as the concept BinaryOperation. In general, concepts are
organized in hierarchies. A magma operation is a binary homogeneous function, i.e. a
function whose argument types are identical. In Liz, that concept is expressed as

concept HomogenousFunction(Function F) {
Arity(F) > 0;
forall(int i, int j) i < Arity(F) and j < Arity(F) =>
InputType(F, i) == InputType(F, j);

}

which says that a function type F satisfies the requirements of HomogenousFunction if
and only if, it is of positive arity (i.e. functions of that type take at least one argument),
and all parameter types are identical. The function InputType is a builtin binary func-
tion that returns the argument type of a function. It is an example of what we call type
function, i.e. type producing functions. Programmers can define their own type func-
tions, as we will shortly see. Notice that we use a logical formula to state that property
at a sufficiently abstract level. The homogeneity property implies that it makes sense to
define the following function

typename Domain(HomogenousFunction F) {
return InputType(F, 0);

}

298 G. Dos Reis

Here, Domain is a function that accepts any homogenous function type argument and
returns the common argument type. Notice the use of typename as return type. Indeed,
typename is a concept that designates the collection of all types in Liz. Type functions
can be evaluated at both compile and run time.

We refine further the notion of homogenous function to that of operation, where the
domain is the same as the target

concept Operation(HomogenousFunction Op) {
Codomain(Op) == Domain(Op);

}

Here, we use a builtin type function, Codomain, to specify that constraint on the re-
turn type. Again, so far the expressions of the concepts are very close to their ab-
stract mathematical statements. Finally, we define a magma operation as an operation of
arity 2.

concept BinaryOperation(Operation Op) {
Arity(Op) == 2;

}

As an illustration of use, here is how in Liz one defines a function that applies a binary
operation to the same argument

template<BinaryOperation Op>
Domain(Op) square(const Domain(Op)& x, Op op) {
return op(x, x);

}

As defined, the square function can be applied to any binary Liz function like in

int mult(int x, int y { return x * y; }
int i = square(4, mult);

but also to any binary function object like in

int j = square(3, plus<int>());

where plus<int> is the equivalent of C++ standard function object of the same name.
This versatility is possible precisely because the specification of BinaryOperation is
abstract enough to allow several concrete representations of operations to be used. Yet,
it is also precise enough to allow for complete type checking at the definition site —
unlike the case of traditional C++ templates.

2.2 Associated Types and Values

Algebraic structures are usually determined by fundamental operations and derived or
associated values and types. For instance, a monoid structure is uniquely defined by a
monoid operation. In turn the neutral element of a monoid structure is uniquely associ-
ated with the monoid operation, i.e. the neutral value of a monoid is a function of the
monoid operation. The notion of neutral value can be generally defined for any binary
operation:

A System for Axiomatic Programming 299

template<BinaryOperation Op>
axiom has_neutral(Op op, Domain(Op) e) {
forall(Domain(Op) x)
op(x, e) == x and op(e, x) == x;

}

From there, the notion of monoid operation comes as:

concept MonoidOperation(BinaryOperation Op) {
associative(op);
exist(Domain(op) e) {
has_neutral(op, e);
using neutral_value = e; // name it from now on

}
}

Here, we express a monoid operation as a binary operation that is associative and that
happens to admit a left- and rigt-neutral value. Furthermore, the MonoidOperation
definition introduces the name neutral_value as an alias for that neutral value. It
is clear that alias depends on the operation op, as indicated by existential quantifica-
tion. Associated values and types can be referred to outside concepts definitions using
a functional notation. The Liz compiler internally uses Skolemization to process asso-
ciated entities. For example, after the statement

assume has_neutral(gcd, 0);

the Liz compiler can determine that the operation gcd satisfies the MonoidOperation
concept and that neutral_value(gcd) is 0.

3 Implementation

Given the abstract level of specification of operations in Liz, it is natural to expect
the implementation to depart from conventional type checking. Below, we describe the
challenges we face and solutions currently implemented in Liz. Despite being based
on C++, Liz’s template system behaves quite differently from standard C++ templates.
Indeed, in C++ the following function template

template<typename T>
T twice(T x) {

return x + x;
}

is perfectly fine, even though the compiler cannot determine all possible operator+
that could be used. That decision is deferred until the function template twice is in-
stantiated.

In Liz, that template definition will not type check. The elaborator objects with:

no match for operation ‘operator+’ with argument
type list (T, T)

candidates are
operator+: (int, int) -> int
operator+: (double, double) -> double

300 G. Dos Reis

This difference is deliberate. One of our goal is to understand what it takes to support
axiomatic programming with C++-like template-like system with early checking by
default.

3.1 Structure of the Liz System

The Liz system is designed with careful phase distinction considerations in mind. How-
ever, it is currently implemented as an interactive read-eval-print system. An input pro-
gram fragment is decomposed into a token stream by a lexer. A parser arranges the token
stream into a sequence of AST objects following the Liz grammar. Then, an elaborator
takes the AST object sequence and type checks it, generating an alternative represen-
tation of the input program in a much simpler expression-based intermediate language.
The intermediate expression language is designed in such a way that the evaluator does
not require type information, i.e. the elaboration phase implements a type-erasure se-
mantics. This design choice reflects our desire to ultimately reflect core C++ semantics
and efficiency. Liz deliberately blurs the syntactic distinction between “type expression”
and “ordinary expression”. This stems from the fact that Liz supports type function, e.g.
functions (such as Domain from Section 2.1) which when applied to arguments pro-
duce types. Consequently, while the elaborator can most of the time determine through
type checking that an expression designates a type, it occasionally needs some form
of evaluation to reduce type function calls. Finally, the main feature of Liz — axioms
— requires compile-time expression evaluation (involving function calls) to determine
whether a combination of types and values satisfy certain logical formulæ. Compile-
time evaluation of calls to user-defined functions with constant expressions is now part
of standard C++ [8].

3.2 Type Checking

The main features of the Liz system are axioms and concepts. And that is the focus of
this section.

Intermediate Language. The elaborator type checks and translate the input source
program into an internal intermediate language. We briefly describe that intermediate
language here for the benefit of the following subsections. First, it should be noted that
the intermediate language is an expression-based language. This means that there is
no arbitrary syntactic distinction between statements, expressions, or definitions. Every
expression produces a value of one sort or the other.

Second, the intermediate language does not involve any notion of overloading. How-
ever, since Liz programs can overload functions, we must represent overloaded symbols
in some way. We do this by pairing every symbol with its type (as computed by the elab-
orator).

Third, we present the syntax of intermediate language as s-expressions to ease vi-
sualization. Note, however, that Liz is itself implemented in ISO C++. The building
blocks are:

A System for Axiomatic Programming 301

– (@formalp l n) represents a formal parameter at position p, nesting level l, and
named n

– (@symboln t) represents a reference to symbol named n, and with declared type t
– (@reada) represents a read operation from a location designated by a
– (@writea v) represents a write operation to location a with value v
– (@unary f x) represents the call of a builtin unary operation f with argument x
– (@binaryf x y) represents the call of a builtin binary operation f with arguments

x and y
– (andx y) represents a conjunction logical formula
– (orx y) represents a disjunction logical formula
– (=>x y) represents an implication logical formula
– (@call f x0 . . . xn−1) represents the call of a user defined operation f with argu-

ments x0, . . . , xn−1

– (@if p x y) represents an if-statement with condition p, and branches x and y
– (@whilep x) represents an do-statement with condition p, and body x
– (@returnv) represents a return-statement with value v
– (@blockx0, . . . xn−1) represents a block composed of the statement sequence x0,

. . . , xn−1

– (@bindn t) represents a symbol n with type t in the current frame.
– (@forall (@parametersp0 . . . pn−1) x) represents a universally quantified log-

ical formula x, and that binds the parameters p0, . . . , pn−1

In addition to these forms, there are are representations for basic type, basic constants.
Unary builtin and binary builtin operations are represented as

– (@builtinn t) where n is the name of the operation and t is its (function) type

Finally, because the implementation of the intermediate language is strongly typed, we
use the form

– (@type_expre) for expressions that represent types; this is typically the case when
a type function is applied to archetypes (Section 3.2)

Elaborating Axioms. Axioms are first-order predicate formulæ. They can make refer-
ences to any user-defined function. Before type checking and code generation, an axiom
is first put in prenex form. The body is then elaborated as a Boolean expression, where
names bound by the quantifiers prefix are treated as if they where formal (function)
parameters with the declared types. For example, the following axiom taken from the
definition of HomogenousFunction

forall(int i, int j) i < Arity(F) and j < Arity(F) =>
InputType(F, i) == InputType(F, j);

is elaborated as

(@forall (@parameters (@formal 0 1 i) (@formal 1 1 j))
(=> (and (@binary

(@builtin operator< (int, int) -> bool)

302 G. Dos Reis

(@formal 0 1 i)
(@unary (@builtin Arity (Function) -> int)
(@type_expr (@formal 0 0 F))))

(@binary
(@builtin operator< (int, int) -> bool)
(@formal 1 1 j)
(@unary (@builtin Arity (Function) -> int)
(@type_expr (@formal 0 0 F)))))

(@binary
(@builtin operator== (typename, typename) -> bool)
(@type_expr
(@binary
(@builtin InputType (Function, int) -> typename)
(@type_expr (@formal 0 0 F))
(@formal 0 1 i)))

(@type_expr
(@binary
(@builtin InputType (Function, int) -> typename)
(@type_expr (@formal 0 0 F))
(@formal 1 1 j))))))

Notice that all overloaded operators have been resolved. It is this elaboration that is
stored for future uses, in particular in deciding constraints satisfaction (see Section 3.2.)

Concept Elaboration. Recall that a concept is a collection of syntactic, semantics,
and complexity requirements on a collection of operations, types, and values. In Liz,
concepts are expressed as a sequence of axioms, refinements, and operation signature
specifications. The result of elaborating a concept is a 5-tuple:

1. a concept name
2. a sequence of elaboration of parameters explicitly bound in the concept definition

— we refer to these as explicit concept parameters
3. a sequence of elaborations of formulæ mentioned in the concept definition
4. a sequence of elaborations of refined concepts
5. a sequence of elaborations of signatures explicitly mentioned in the concept defini-

tion — we refer to these operations as implicit concept parameters.

An explicit concept parameter is elaborated just like any other kind of parameter. If
the type mentioned in the parameter declaration is a (unary) concept, then the elabo-
ration goes through an additional step called dressing to create an archetype as will be
explained in Section 3.2.

Refined concepts are elaborated as predicates, with the understanding that they are
properties that a function template definition can assume and use, while they acts as pre-
conditions at a function template call site. These refined concepts are also used during
dressing of archetypes.

An operation signature explicitly mentioned in a concept definition is to be thought
of as a requirement, a proof obligation to be fulfilled at the point of the concept use
(through function template call.) Consequently, they are handled as parameters — ex-
cept that their values are implicitly deduced during constraint satisfaction.

A System for Axiomatic Programming 303

The collection of explicit concept parameters and implicit concept parameters form
the domain of the substitution that results from a successful constraint satisfaction
checking. That substitution is then used to expand or instantiate the elaboration of the
selected function template (see Section 3.3.)

Archetypes and Dressing. Conventional type checking assumes that types are values
that are known at compile-time. To deal with type variables (used by generic functions),
one synthesizes an arbitrary value for the type variable, and type checking proceeds as
usual. That arbitrary value is what we call archetype of a type parameter. It symbolizes
any value that parameter may take on when the generic function is instantiated. At the
basic level, the archetype does not have any properties, except that it is a type value.
To be useful in generic algorithms, the archetype T needs to carry information use-
ful for type-checking purposes. The process of endowing an archetype with additional
assumptions is what we call dressing.

Dressing of an archetype Twith a concept type C is given by the following algorithm:

1. for each logical formula f in C, simplify the instantiation of f , based on the existing
property set of T. If the result is not vacuously true, add it to the property set of T.

2. for each refined concept C′ in C, dress the archetype T with C′.

Note that in abstract, the order in which properties are added to the property set of an
archetype does not matter. However, from a practical point of view, we do want to keep
property sets as small as possible for reasons that will become obvious by the end of
the type equivalence subsection. We observe that in a concept hierarchy, a refining con-
cept usually adds more information that restricts the collection of satisfying types. In
particular, formulæ from refined concepts may get simpler with the addition of new con-
straints. We can see this with our HomogenousFunction example. With that concept,
all we know is that the arity of any function type F that satisfies HomogenousFunction
must be a positive integer. The definition concept of BinaryOperationgives a definite
value to the arity. Consequently, the dressing of an archetype Op of BinaryOperation
produces the following trace of its property set:

1. Start with P0 ={Arity(Op) == 2}, which is the sole formula in HomogenousFunction
2. Dress Op with Operation

(a) simplify the formula
Codomain(Op) == Domain(Op)

with P0. This involves reducing each side of the equality operator in irre-
ducible form. In particular the type function call Domain(Op) is reduced to
InputType(Op,0). There is no other formula in P0 that would reduce the
formula.

(b) Add Codomain(Op) == InputType(Op,0) to P0 to obtain the new property
set

P1 =

{
Arity(Op) == 2,

Codomain(Op) == InputType(Op,0)

}

304 G. Dos Reis

3. Dress Op with HomogenousFunction
(a) simplify

forall(int i, int j)
i < Arity(Op) and j < Arity(Op) =>
InputType(Op,i) == InputType(Op,j)

with the property set P1 to obtain
forall(int i, int j)
i < 2 and j < 2 =>
InputType(Op,i) == InputType(Op,j)

Note that although we show the input-source form above, the simplification
is really done on the elaboration of the formula. The simplification is imple-
mented a typefull term rewrite engine.

(b) Add the resulting formula to P1 to obtain

P2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Arity(Op) == 2,

Codomain(Op) == InputType(Op,0),

forall(int i, int j)

i < 2 and j < 2 =>

InputType(Op,i) == InputType(Op,j)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(c) simplify the formula Arity(2) > 0 with respect to the property set P2 to

obtain 2 > 0, which is vacuously true. So the final property set of the archetype
Op is P2.

4. Dress Op with the builtin concept Function, which does not actually add any
formula.

During the dressing procedure we interpret an equality formula a == b as defining the
expression a in terms of the expression b, even though the equality operator is in fact
commutative. We could avoid this restriction by using unification algorithms that cope
with commutativity. That is an improvement we consider as future work.

Type Equivalence. During type checking we need to determine when an expression of
type T is acceptable in a context where a value of type S is expected. Conventional type
checking solves this essentially as an equality problem in the free algebra generated by
base types and type constructors.

That approach is inadequate for axiomatic programming. In fact, the defining trait
of this style of programming is precisely that programmers can state in very abstract,
if somewhat stylized fashion, relations between types. Consequently determining the
equivalence of two type expressions amounts to determining identities in an equational
theory. The set of equations to consider varies from one context to the next, depending
on the set of assumptions in scope. Consider the square function example

template<BinaryOperation Op>
Domain(Op) square(const Domain(Op)& x, Op op) {
return op(x, x);

}

A System for Axiomatic Programming 305

Here, to check that the call op(x,x) is well-formed, we need to check that x can be
used as both the first and second argument to the operation op. First, we discuss the
type of op, then we move on the matching of arguments.

When the type checker sees the call op(x,x), it first tries to determine that op is
an expression that can be used in an operator position. The answer is yes, because the
archetype Op satisfies Function. Next, it needs to determines its arity. This information
is found by pattern matching the expression Arity(Op) == n against the formulæ in
the property set of Op. Which gives the value 2. The elaborator then synthesizes the type

(InputType(Op, 0), InputType(Op, 1)) -> InputType(Op, 0)

The return type is the result of rewriting Codomain(Op) with respect to the property
set P2. With this type for op the elaborator proceeds to check the arguments.

The type of the parameter x is const Domain(Op)&. This type expression
involves a type function, Domain, which is defined only on types that satisfy
HomogenousFunction. Since the archetype Op satisfies BinaryOperation, it also
satisfies HomogenousFunction. Hence, evaluation of Domain(Op) is legitimate, and
yields InputType(Op,0). So the type of x is const InputType(Op,0)&.

Next, we need to determine if the use of x as first argument to op is well-formed.
In general, the use of a reference in a non reference context implies a read operation.
The read operation yields an expression of type const InputType(Op,0). Finally,
we observe that using a value of type const T in a context where a value of type T
is expected is OK — in another term, it is fine to lose toplevel const-qualification on
values.

We now need to determine whether the use of x as second argument of op is well-
formed. We follow the same procedure as in the previous paragraph. Which leads to
determining the equivalence InputType(Op,0) and InputType(Op,1). At this point,
we consider again the property set P2. We obtain the equality we were looking for by
considering the formula

forall(int i, int j)
i < 2 and j < 2 =>
InputType(Op,i) == InputType(Op,j)

and using standard deduction system based on sequent calculus. This deduction engine
is part of the elaborator.

As can been seen from the example just discussed, every single type equivalence
problem implies a search of a set of databases formed by property sets of relevant
archetypes, intertwined with possible logical formulæ satisfiability. For this reason, it is
beneficial to keep property sets sizes as small as possible.

Concept Satisfaction. The problem of concept satisfaction is a fruitful source of de-
bates. Essentially, there are two schools of thoughts.

On the one hand, there is explicit conformance, that is the elaborator should consider
that a type satisfies a concept only if there is an explicit statement to that effect — not
just because some function declarations are in scope and predicates are satisfied. This
is the approach implemented by the AXIOM system (and its variants including Aldor),

306 G. Dos Reis

and the Haskell programming language. It certainly is the favorite approach in certain
type theory circles. A problem with this approach, in our opinion, is that it does not
scale well in practice. One of the key aspects of C++ templates, that contributed to the
success of the Standard Template Library [18], is the implicit matching of interfaces
— or “duck typing” as it is called. Also, we believe that this approach has a deep
justification rooted in the lack of language features to differentiate operations based on
mathematical properties (or lack thereof.)

On the other hand, we have the notion of implicit conformance: a type satisfies a
concept if it meets all its predicates, and all signatures have matching concrete function
definitions. This is the approach we take for the Liz system. To determine that a type τ
satisfies a concept C, we use the following algorithm:

1. Instantiate C by substituting τ for its parameter. Simplify all logical formulæ. If any
refined concept of C is not satisfied, then satisfaction of C fails.

2. For each signature specification in C, try to find a matching declaration in scope. If
the matching fails, or has more than one solution, satisfaction of C fails. This step
finds values for the implicit parameters.

3. Substitute implicit parameters in logical formulæ in C, if any of them is not satisfi-
able then satisfaction of C fails.

3.3 Code Generation

There are several code generation techniques for handling generic functions. We briefly
mention two, which are used in mainstream programming languages that support generic
programming.

A common technique is to associate with each generic function a vector of used op-
erations (or dictionary) that maps abstract operations to their concrete implementations.
When a generic function is called, a dictionary argument is constructed and passed as
an implicit additional argument. This technique is used in the implementation of the
AXIOM system [13], in the implementation of Aldor, and is the conventional imple-
mentation [1,11] of the Haskell programming language [17] for its type classes features
[26]. This technique is very attractive in the sense that code generated for a program
that uses a generic function contains only one definition or instance of that function, no
matter how many times it is statically used. The technique also supports separate com-
pilation. However, in practice it does bring a non-negligible abstraction penalty. This
is because every (abstract) operation used in a generic function (no matter how cheap
its concrete realization is) is looked up at runtime through the dictionary argument. It
is obvious that the cost of this implementation technique is unacceptable for certain
operations. There are a number of implementation tricks to reduce the dynamic lookup
overhead. For example, if it is known that an abstract operation designates the same
concrete realization during the execution of a generic function call, the result of the
first lookup can be cached and reused during the lifetime of that particular call instance.
But, it is equally clear that for a modular algorithm that operates directly on machine
integers, the cost of adding (or multiplying) two machine integers becomes prohibitive
if the integer operation is not directly inlined, resulting in simple machine code [7]. The
Aldor programming language uses the notion of domain inlining to help programmers

A System for Axiomatic Programming 307

work around this efficiency issue. The idea is that a programmer, after careful analysis,
would single out domains that are tightly coupled with generic function (mostly for ef-
ficiency reasons). The compiler will then resolve statically all calls to operations imple-
mented by those domains, thereby bypassing the runtime dictionary lookup overhead.
The technique is effective. However, separate compilation is lost because the resulting
function now depends on implementation details of the domain. Moreover, we believe
it requires a fair amount of foresight from programmers, especially library writers; and
it is not clear how that approach scales when independently developed components
(written by several independent groups of people) are composed.

The second code generation technique for generic function expands every generic
function reference (but unique in its parameter types) into a new and distinct copy of
the original generic function, where abstract parameters are replaced by their concrete
values. The result is then subject to normal conventional code generation technologies.
This technique is popular with C++ template implementations and some implementa-
tions of Ada generics [25]. Codes generated for generic functions by this approach are
near optimal. However, it should be observed this technique may lead to code bloat
in case of undisciplined programs that are not properly organized to take advantage of
structural and semantics commonalities. In the case of C++ template, this technique
can actually lead to code bloat removal, as surprising as it may come contrary to the
conventional wisdom. The reason is very simple: a template function is instantiated if
and only if it is used. That is, the C++ language type system contains explicit provision
for “dead code” removal for generic function instances.

The second code generation technique just discussed is the approach we use in the
Liz system. However it differs from conventional C++ template compilation in the sense
that we expand the result of elaboration. That is, a function template definition is fully
type checked, with corresponding generated code. It is the result of that elaboration that
is expanded when the function is called. The concept system as currently designed and
implemented ensures that no type error will occur at code expansion time. This is to
be contrasted with what happens with current C++ templates. We achieve this result by
rejecting some popular implicit conversions (mostly between basic types such has bool,
int, double), which insures that expression types are preserved under substitution. We
fully acknowledge that this restriction rules out many real world C++ programs, but the
purpose of the Liz system is not to emulate anarchic type conversions [20].

4 Related Work and Conclusion

There is a large body of work in the general area of advanced language features for
generic programming but, to our knowledge, none in major use today aims at direct
support for axiomatic programming. Within the computer algebra community, Jenks
and Trager [14] explained the design and implementation of the Scratchpad system,
which later became AXIOM. The Aldor programming language (the better version of
the AXIOM library extension language) aims at a more categorial view of programs.
However, it does not have support for axiomatic constructions. With the C++ com-
munity, the most relevant work is the collaborative effort [7,10] to introduce concepts
into C++0x. While axioms were identified [6] early as key aspects of concepts, they

308 G. Dos Reis

are formally proposed only very late in the process [9]. At that point, the C++ con-
cepts proposal was already exhibiting worrisome complexities that would prompt its
eventual removal [22,23] from the C++0x draft. Our opinion is that a good part of the
complexity came from the fact that the proposal did not provide good enough support
for more abstract definitions of algorithms. For a language as complex as C++ that has
been in industrial use for nearly 3 decades, a successful proposal to support axiomatic
programming must abstract over details, as opposed to aiming at reflecting them. An-
drew Sutton and Bjarne Stroustrup recently begun investigation of semantics-oriented
libraries for C++ [24]. The Liz system was designed to support more abstract generic
algorithm definitions. It needs a terrain for experimentations, and computer algebra is
a natural testbed — for it is hard to quibble with maths (semantics). Its implementation
is a remarkable application of computer algebra and symbolic mathematics techniques.

Acknowledgment. I would like to thank Bjarne Stroustrup, Erik Katzen, Jasson Casey
for comments on earlier drafts of this paper. Carla Villoria contributed to an early im-
plementation of the Liz parser. This work was partially supported by NSF grants CCF-
1035058 and CCF-1150055.

References

1. Augustsson, L.: Implementing Haskell Overloading. In: Functional Programming Languages
and Computer Architecture, pp. 65–73 (1993)

2. Davenport, J.H.: Private communication (May 2009)
3. Davenport, J.H., Gianni, P., Trager, B.M.: Scratchpad’s View of Algebra II: A Categorical

View of Factorization. In: ISSAC 1991: Proceedings of the 1991 International Symposium
on Symbolic and Algebraic Computation, pp. 32–38. ACM Press, New York (1991)

4. Davenport, J.H., Trager, B.M.: Scratchpad’s View of Algebra I: Basic Commutative Algebra.
In: Miola, A. (ed.) DISCO 1990. LNCS, vol. 429, pp. 40–54. Springer, Heidelberg (1990)

5. Dehnert, J.C., Stepanov, A.: Fundamentals of Generic Programming. In: Jazayeri, M.,
Musser, D.R., Loos, R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766, pp. 1–11.
Springer, Heidelberg (2000)

6. Reis, G.D.: Generic Programming in C++: The next level. In: The Association of C and C++
Users Spring Conference (April 2002)

7. Reis, G.D., Stroustrup, B.: Specifying C++ Concepts. In: Conference Record of POPL 2006:
The 33th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Charleston, South Carolina, USA, pp. 295–308 (2006)

8. Reis, G.D., Stroustrup, B.: General Constant Expressions for System Programming Lan-
guages. In: Proceedings of the 25th Symposium on Applied Computing, Sierre, Switzerland,
pp. 2133–2138. ACM Press (March 2010)

9. Reis, G.D., Stroustrup, B., Meredith, A.: Axioms: Semantics Aspects of C++ Con-
cepts. Technical Report N2887=09-0077, ISO/IEC SC22/JTC1/WG21 (June 2009),
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2887.pdf

10. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Reis, G.D., Lumsdaine, A.: Concepts: Linguis-
tic Support for Generic Programming in C++. In: OOPSLA 2006: Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-Oriented Programming Languages, Systems,
and Applications, pp. 291–310. ACM Press, New York (2006)

11. Hall, C.V., Hammond, K., Jones, S.P., Wadler, P.L.: Type classes in Haskell. ACM Transac-
tions on Programming Languages and Systems 18(2), 109–138 (1996)

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2887.pdf

A System for Axiomatic Programming 309

12. International Organization for Standards. International Standard ISO/IEC 14882. Program-
ming Languages — C++, 2nd edn. (2003)

13. Jenks, R.D., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer (1992)
14. Jenks, R.D., Trager, B.M.: A Language for Computational Algebra. SIGPLAN Not. 16(11),

22–29 (1981)
15. Musser, D.A., Stepanov, A.A.: Generic Programming. In: Gianni, P. (ed.) ISSAC 1988.

LNCS, vol. 358, pp. 13–25. Springer, Heidelberg (1989)
16. Musser, D.R., Stepanov, A.: Algorithm-oriented Generic Libraries. Software–Practice and

Experience 24(7), 623–642 (1994)
17. Jones, S.P.: Haskell 98 Language and Libraries, The Revised Report. Cambridge University

Press (2003)
18. Stepanov, A., Lee, M.: The Standard Template Library. Technical Report N0482=94-0095,

ISO/IEC SC22/JTC1/WG21 (May 1994)
19. Stepanov, A., McJones, P.: Elements of Programming. Addison-Wesley (2009)
20. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley (1994)
21. Stroustrup, B.: The C++ Programming Language, special edn. Addison-Wesley (2000)
22. Stroustrup, B.: Simplifying the use of concepts. Technical Report N2906, ISO/IEC

SC22/JTC1/WG21 (June 2009)
23. Stroustrup, B.: The C++0x ”Remove Concepts” Decision. Dr. Dobb’s Journal (2009),
http://www.ddj.com/cpp/218600111?pgno=1 , Republished with permission in Over-
load Journal 92 (August 2009)

24. Sutton, A., Stroustrup, B.: Design of Concept Libraries for C++. In: Sloane, A., Aßmann, U.
(eds.) SLE 2011. LNCS, vol. 6940, pp. 97–118. Springer, Heidelberg (2012)

25. Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E. (eds.): Consolidated Ada Refer-
ence Manual. LNCS, vol. 2219. Springer, Heidelberg (2001)

26. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Austin, Texas, USA, pp. 60–76 (1989)

27. Watt, S.: What Happened to Languages for Symbolic Mathematical Computation? In: Pro-
ceedings of Programming Languages for Mechanized Mathematics (PLMMS), Hagenberg,
Austria, June 29-30, pp. 81–90. RISC-Linz (2007)

28. Weibel, T., Gonnet, G.H.: An Assume Facility for CAS, with a Sample Implementation for
Maple. In: Fitch, J. (ed.) DISCO 1992. LNCS, vol. 721, pp. 95–103. Springer, Heidelberg
(1993)

http://www.ddj.com/cpp/218600111?pgno=1

Reasoning on Schemata of Formulæ�

Mnacho Echenim and Nicolas Peltier

University of Grenoble (LIG, Grenoble INP/CNRS)
{Mnacho.Echenim,Nicolas.Peltier}@imag.fr

Abstract. A logic is presented for reasoning on iterated sequences of
formulæ over some given base language. The considered sequences, or
schemata, are defined inductively, on some algebraic structure (for in-
stance the natural numbers, the lists, the trees etc.). A proof procedure
is proposed to relate the satisfiability problem for schemata to that of
finite disjunctions of base formulæ. It is shown that this procedure is
sound, complete and terminating, hence the basic computational pro-
perties of the base language can be carried over to schemata.

1 Introduction

We introduce a logic for reasoning on iterated schemata of formulæ. The
schemata we consider are infinite sequences of formulæ over a given base lan-
guage, and these sequences are defined by induction on some algebraic structure
(e.g. the natural numbers). As an example, consider the following sequence of
propositional formulæ φn, parameterized by a natural number n:

φ0 → � φn+1 → φn ∧ (p(n) ⇔ p(n + 1)).

It is clear that the formula φn ∧ p(0) ∧ ¬p(n) is unsatisfiable, for every n ∈ N.
This can be easily checked by any SAT-solver, for every fixed value of n. Here
the base language is propositional logic and the sequence is defined over the
natural numbers. However, proving that it is is unsatisfiable for every n ∈ N is
a much harder task which obviously requires the use of mathematical induction.
Similarly, consider the sequence:

ψnil → � ψcons(x,y) → ψy ∧ (∃u p(y, u)) ⇔ (∃v p(cons(x, y), v))

Then ψl ∧ p(nil, a)∧∀u¬p(l, u) is unsatisfiable, for every (finite) list l. Here the
base language is first-order logic and the sequence is defined over the set of lists.
Such inductively defined sequences are ubiquitous in mathematics and computer
science. They are often introduced to analyze the complexity of proof procedures.
From a more practical point of view, schemata of propositional formulæ are used
to model properties of circuits parameterized by natural numbers, which can rep-
resent, e.g., the number of bits, number of layers etc. (see for instance [15], where
� This work has been partly funded by the project ASAP of the French Agence Na-

tionale de la Recherche (ANR-09-BLAN-0407-01).

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 310–325, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Reasoning on Schemata of Formulæ 311

a language is introduced to denote inductively defined boolean functions which
can be used to model such parameterized circuits). In mathematics, schemata
of first-order formulæ can model inductive proofs, which can be seen as infinite
(unbounded) sequences of first-order formulæ (see [5] for an example of the use
of this technique in proof analysis).

We now provide a slightly more complex example. The following schema ψt

encodes a multiplexer, inductively defined as follows. The base case is denoted
by Base(x), where x denotes an arbitrary signal. In this case, the output of the
circuit is simply the output of x, denoted by signal(x). The inductive case is
denoted by Ind(i, x, y), where i is a select input and x and y are two smaller
instances of the multiplexer. Its output is either the output of x or that of y,
depending on the value of i.

ψBase(x) → out(Base(x)) ⇔ signal(x)
ψInd(i,x,y) → (¬signal(i) ∨ (out(Ind(x, y)) ⇔ out(x)))

∧ (signal(i) ∨ (out(Ind(x, y)) ⇔ out(y)))
∧ ψx ∧ ψy

Note that this kind of circuit cannot be encoded in the language of (regular)
propositional schemata defined in [2,3], because the number of inputs is ex-
ponential in the depth of the circuit. Hence, the use of non-monadic function
symbols is mandatory.

In this paper, we devise a proof procedure to check the satisfiability of these se-
quences. More precisely, we introduce a formal language for modeling sequences
of formulæ defined over an arbitrary base language (encoded as first-order for-
mulæ interpreted in some particular theory) and we show that the computational
properties of the base logic carry over to these schemata: If the satisfiability
problem is decidable (resp. semi-decidable) for the base language then it is also
decidable (resp. semi-decidable) for the corresponding schemata. For instance,
the satisfiability problem is decidable for schemata of propositional formulæ and
semi-decidable for schemata of first-order formulæ. The basic principle of our
proof procedure consists in relating the satisfiability of any iterated schemata of
formulæ to that of a finite disjunction of base formulæ. The complexity of the
satisfiability problem, however, is not preserved in general, since the number of
formulæ in the disjunction may be exponential.

This work generalizes previous results [2,3] in two directions: first the base
language is no longer restricted to propositional logic1 and second the sequences
are defined over arbitrary algebraic structures, and not only over the natural
numbers. Abstracting from the base language leads to an obvious gain in appli-
cability since our approach now applies to any logic, provided a proof procedure
exists for testing the satisfiability of base formulæ. Besides, it has the advantage
that the reasoning on schemata is now clearly separated from the reasoning on
formulæ in the base language, which may be postponed. This should make our
approach much more scalable, since any existing system could now be used as a
1 A first extension to some decidable theories such as Presburger arithmetic was con-

sidered in [4].

312 M. Echenim and N. Peltier

“black box” to handle the basic part of the reasoning (whereas the two aspects
were closely interleaved in our first approach, yielding additional computational
costs). Both extensions significantly increase the scope of our approach.

The extension to arbitrary structures turns out to be the most difficult from
a theoretical point of view, mainly because, as we shall see, the number of pa-
rameters can increase during the decomposition phase, yielding an increase of
the number of related non-decomposable formulæ in each branch, which can in
principle prevent termination. In contrast to what happens in the simpler case
of propositional schemata [2], these formulæ cannot in general be deleted by the
purity principle, since they are not independent from the other formulæ in the
branch. To overcome this problem, we devise a specific instantiation strategy
based on a careful analysis of the depth of terms represented by the parameters,
and we define a new loop detection mechanism. This blocking rule is more gen-
eral and more complex than the one in [2]. We show that it is general enough –
together with the proposed instantiation strategy – to ensure termination. Ter-
mination is however much more difficult to prove than for propositional schemata
defined over natural numbers.

The types of structures that can be handled are quite general: they are defined
by sets of – possibly non-free – constructors on a sorted signature. The terms
can possibly contain elements of a non-inductive sort. For instance, a list may
defined inductively on an arbitrary set of elements.

Related Work

There exist many logics and frameworks in which the previous schemata can be
encoded, for instance higher-order logic [7]), first-order μ-calculus [18], or logics
with inductive definitions [1] that are widely used in proof assistants [19]. How-
ever, the satisfiability problem is not even semi-decidable for these logics (due
to Gödel’s famous result). Very little published research seems to be focused
on the identification of complete subclasses and iterated schemata definitely do
not lie in these classes and cannot be reduced to them either. Our approach
ensures that the basic computational properties of the base language (decidabil-
ity or semi-decidability) are preserved, at the cost of additional restrictions on
the syntax of the schemata under consideration. Furthermore, the modeling of
schemata in higher-order languages, although possible from a theoretical point
of view, is cumbersome and not very natural in practice.

There exist several approaches in inductive theorem proving, ranging from
explicit induction approaches (see for instance [11] or [6]) used mainly by proof
assistants to implicit induction schemes used in rewrite-based theorem provers
[8,9], or even to inductionless induction [16,12], where inductive validity is re-
duced to a mere satisfiability check. Such approaches can in principle handle
some of the formulæ we consider in the present work, provided the base lan-
guage can be axiomatized. Existing approaches are usually only complete for
refutation, in the sense that false conjectures can be disproved, but that induc-
tive theorems cannot always be recognized (this is theoretically unavoidable).
Once again, very few termination results exist for such provers and our language

Reasoning on Schemata of Formulæ 313

does not fall in the scope of the known complete classes (see for instance [14]).
In general, inductive theorem proving requires strong human guidance, espe-
cially for specifying the needed inductive lemmata. In contrast, our procedure is
purely automatic. Of course, this comes at the expense of strongly reducing the
form of the inductive axioms. Furthermore, although very restricted to ensure
termination and/or completeness, our language allows for more general queries,
possibly containing nested quantifiers, which are in general out of the scope of
existing automated inductive theorem provers. Indeed, most existing approaches
aim at establishing the inductive validity of universal queries w.r.t. a first-order
axiomatization (usually a set of clauses). In contrast, our method can handle
more general goals of the form ∀x φ, where x is a vector of variables interpreted
over the considered algebraic structure and φ is a formula containing arbitrary
quantifiers in the base language.

Practical attempts to use existing inductive theorem provers (such as ACL
[10]) to check the satisfiability of schemata such as those in the Introduction fail
for every formula except the most trivial ones. We believe that this is not due
to a lack of efficiency, but rather to the fact that additional inductive lemmata
are required, which cannot be generated automatically by the systems. In some
sense, our method (and especially the loop detection rule) can be viewed as an
automatic way to generate such lemmata. Our method is also more modular:
we make a clear distinction between the reasoning over the base logic and the
one over inductive definitions. Inference rules are devised for the latter and an
external prover is used to establish the validity of formulæ in the base language.

Since parameterized schemata can obviously be seen as monadic predicates, a
seemingly natural idea would be to encode them in monadic second-order logic
and use an automata-based approach (see, e.g., [17]) to solve the satisfiability
problem. However, as we shall see in Section 3, the unfolding of the inductive
definitions contained in a given formula may well increase the number of param-
eters occurring in it. Since these parameters may share subterms, the formulæ
containing them are not independent hence they must be handled simultane-
ously, in the same branch. Thus a systematic decomposition into monadic atoms
(in the style of automata-based approaches) is not feasible.

Due to space restrictions, the proofs are omitted and can be found in [13].

2 A Logic for Iterated Schemata

The schemata we consider in this paper are encoded as first-order formulæ, to-
gether with a set of rewrite rules specifying the interpretation of certain monadic
predicate symbols. Our language is not a subclass of first-order logic: indeed,
some sort symbols will be interpreted on an inductively defined domain (e.g.
on the natural numbers). Furthermore, the formulæ can be interpreted modulo
some particular theory, specified by a class of interpretations.

We first briefly review usual notions and notations. We consider first-order
terms and formulæ defined on a sorted signature. Let S be a set of sort symbols.
Let Σ be a set of function symbols, together with a function profile mapping

314 M. Echenim and N. Peltier

every symbol in Σ to a unique non-empty sequence of elements of S. We write
f : s1 × · · · × sn → s if profile(f) = s1, . . . , sn, s with n > 0, and a : s if
profile(a) = s (in this case a is a constant symbol). A symbol is of sort s and of
arity n if its profile is of the form s1, . . . , sn, s (possibly with n = 0). The set of
function symbols of sort s is denoted by Σs. Let (Vs)s∈S be a family of pairwise
disjoint set of variables of sort s, and V def=

⋃
s∈S Vs. We denote by Ts the sets of

terms of sort s built as usual on Σ and V . A term not containing any variable
is ground.

Definition 1. Let I be a subset of S. The elements of I are called the inductive
sorts. An I-term is a term of a sort s ∈ I.

Let C ⊆ Σ be a set of constructors, such that the sort of every symbol in C
is in

⋃
s∈I Σs and such that every non-constant symbol of a sort in

⋃
s∈I Σs is

in C. A parameter is a constant symbol of a sort occurring in the profile of a
constructor (parameters are denoted by upper-case letters). A term containing
only function symbols in C and variables of sorts in S \ I is a constructor term.

Constructors of a sort s ∈ I are meant to define the domain of s, see Definition
5. The constant symbols that are not constructors can be seen as existential vari-
ables denoting arbitrary elements of a sort in I (notice however that C possibly
contains constant symbols). We assume that I contains a sort symbol nat, with
two constructors 0 : nat and succ : nat → nat.

Example 1. Assume that we intend to reason on lists of elements of an arbitrary sort
s. Then S contains the sort symbols s and list, where I = {list}. The constructors
are nil : list and cons : s × list → list. The set of parameters contains constant
symbols of sorts s or list (denoting respectively elements and lists). If A1, A2 are
parameters of sort s, then cons(A1, cons(A2, nil)) is a term of sort list.

Similarly, if one wants to reason on lists of natural numbers, then one should take
I = S = {nat, list}. In this case, C = {nil : list, cons : nat × list → list, 0 :
nat, succ : nat → nat}.

Let (Ds)s∈I be a family of disjoint sets of defined symbols of sort s, disjoint from
Σ, and D def=

⋃
s∈I Ds. An atom is either an equation of the form t # s, where

t, s are terms of the same sort, or a defined atom, of the form dt, where d ∈ Ds,
for some s ∈ I, and t ∈ Ts. The arguments of the symbols in D are written as
indices in order to distinguish them from predicate symbols that may occur in
Σ (such predicate symbols may be encoded as functions of profile s → bool).
Formulæ are built as usual on this set of atoms using the connectives ∨,∧,¬, ∀, ∃.
We assume for simplicity that all formulæ are in Negation Normal Form (NNF).
A variable x is free in φ if it occurs in φ, but not in the scope of the quantifier
∀x or ∃x. If φ has no free variables then φ is closed.

An interpretation I maps every sort s to a set of elements sI , every variable
x of sort s to an element xI ∈ sI , every function symbol f : s1 × · · · × sn → s
to a function f I from s1I × · · · × snI to sI and every defined symbol d ∈ Ds to
a subset of sI . The set

⋃
s∈S sI is the domain of I. As usual, any interpretation

I can be extended to a function mapping every term t of sort s to an element

Reasoning on Schemata of Formulæ 315

[t]I ∈ sI and every formula φ to a truth value [φ]I ∈ {true, false}. We write
I |= φ (and we say that I validates φ) if [∀x φ]I = true, where x is the vector of
free variables in φ. We assume, w.l.o.g., that the sets sI (for s ∈ S) are disjoint.
Sets of formulæ are interpreted as conjunctions. If φ and ψ are two formulæ or
sets of formulæ, we write φ ≡I ψ if either I |= φ and I |= ψ or I |= φ and I |= ψ.
We write φ ≡ ψ if φ ≡I ψ for all interpretations I.

We introduce two transformations operating on interpretations. The first one
is simple: it only affects the value of some variables or constant symbols. If I is
an interpretation, x1, . . . , xn are distinct variables or constant symbols of sort
s1, . . . , sn respectively and v1, . . . , vn are elements of s1I , . . . , snI , then we denote
by I[v1/x1, . . . , vn/xn] the interpretation coinciding with I, except that for every
i = 1, . . . , n, we have: xi

I[v1/x1,...,vn/xn] def= vi.
The second transformation is slightly more complex. The idea is to change

the values of the elements of an inductive sort, without affecting the remaining
part of the interpretation. An I-mapping for an interpretation I is a function λ
mapping every element e in the domain of I to an element of the same sort, that
is the identity on every element occurring in a set sI , where s ∈ I. Then λ(I)
is the interpretation coinciding with I, except that for every symbol f of a sort
s ∈ I, we have: fλ(I)(e1, . . . , en) def= f I(λ(e1), . . . , λ(en)).

In the following, we assume that all interpretations belong to a specific class
I. This is useful to fix the semantics of some of the symbols, for instance one may
assume that the interpretation of a sort int is not arbitrary but rather equal to Z.
Of course, I is not arbitrary: the following definitions specify all the conditions
that must be satisfied by the considered class of interpretations. We start by
the interpretation of the defined symbols. As explained in the Introduction, the
value of these symbols are to be specified by convergent systems of rewriting
rules, satisfying some additional conditions defined as follows:

Definition 2. Let < be an ordering on defined symbols. Let R be an orthogonal
system of rules of the form df(x1,...,xn) → φ, where d is a defined symbol in s,
f is of profile s1 × · · · × sn → s, and x1, . . . , xn are distinct variables of sorts
s1, . . . , sn. We assume that φ and R satisfy the following conditions:

1. The free variables of φ occur in x1, . . . , xn.
2. All I-terms occurring in φ belong to the set {x1, . . . , xn, f(x1, . . . , xn)}.
3. If φ contains a formula d′t then either d′ < d and t = f(x1, . . . , xn), or

t ∈ {x1, . . . , xn}.
4. For every constructor f , R contains a rule of the form df(x1,...,xn) → φ.

It is clear from the conditions of Definition 2 that R is convergent (the condition
on the ordering ensures termination, and orthogonality ensures confluence). We
denote by dt↓R the normal form of dt w.r.t. R. The following condition states
that the interpretation of defined symbols must correspond to the one specified
by the rewrite system R, for every interpretation in I.

Definition 3. An interpretation is R-compatible iff for all sort symbols s ∈ I,
for all defined symbols d ∈ Ds, for all function symbols f : s1 × · · · × sn → s, we
have df(x1,...,xn) ≡I df(x1,...,xn)↓R.

316 M. Echenim and N. Peltier

The second condition that is required ensures that any equation between two
constructor terms can be reduced to equations between variables:

Definition 4. An interpretation is #-decomposable iff the following conditions
hold:

1. For every s ∈ I and for every f, g ∈ Σs of arity n and m respectively,
there exists a formula Δ(f,g) built on ∨,∧,# and on n+m distinct variables
x1, . . . , xn, y1, . . . , ym such that f(x1, . . . , xn) # g(y1, . . . , ym) ≡I Δ(f,g).

2. For every i ∈ [1, n] we have Δ(f,g) |=
∨m

k=1 xi # yk, and for every j ∈ [1, m],
we have Δ(f,g) |=

∨n
k=1 yj # xk.

If t = f(t1, . . . , tn) and s = g(s1, . . . , sm) are two non-variable I-terms, we
denote by Δ(t # s) the formula obtained from Δ(f,g) by replacing each variable
xi (1 ≤ i ≤ n) by ti and each variable yj (1 ≤ j ≤ m) by sj.

Example 2. If, for instance, elements of a sort s ∈ I are interpreted as terms built
on a set of free constructors, then we have Δ(f,g) � ⊥ if f �= g and Δ(f,f) def

= x1 �
y1 ∧ · · · ∧ xn � yn (where n denotes the arity of f). Indeed, in this case, we have
f(x1, . . . , xn) � f(y1, . . . , yn) ≡ (x1 � y1 ∧ · · · ∧ xn � yn). If, on the other hand, g
is intended to denote a commutative binary function then we should have: Δ(g,g) =
(x1 � y1 ∧x2 � y2)∨ (x1 � y2 ∧x2 � y1). The variables xi and yj are those introduced
in Definition 4.

The third condition ensures that the interpretation of every inductive sort is
minimal (w.r.t. to set inclusion).

Definition 5. An interpretation is I-inductive iff for every s ∈ S, and for every
element u ∈ sI , there exists a constructor term t such that u = [t]I .

Notice that, by definition, a constructor term contains no variable of a sort
in I. For instance, every element in natI should be equal to a ground term
succk(0), for some k ∈ N. If list denotes the sort of the lists built on elements
of a sort s ∈ I, then any element of listI must be equal to a term of the
form cons(x1, cons(x2, . . . , cons(xn, nil) . . .)), where x1, . . . , xn are variables of
sort s. This condition implies in particular that for every s ∈ I and for every
element v ∈ sI , there exists a variable x such that xI = v (this is obviously not
restrictive, since the variables may be interpreted arbitrarily).

The next definition summarizes all the conditions that are imposed:

Definition 6. A class of interpretations I is schematizable iff all interpreta-
tions I ∈ I satisfy the following properties:

1. I is R-compatible.
2. I is #-decomposable.
3. I is I-inductive.
4. For all variables v of a sort s and for all elements e ∈ sI , I[e/v] ∈ I.
5. For all I-mappings λ, λ(I) ∈ I.

A formula φ is I-satisfiable iff φ has a model in I.

Reasoning on Schemata of Formulæ 317

From now on we focus on testing I-satisfiability for a schematizable class of
interpretations. Before that we impose some restrictions on the formulæ to be
tested. As we shall see, these conditions will be useful mainly to ensure that the
proof procedure presented in Section 3 only generates a finite number of distinct
formulæ, up to a renaming of the parameters. This property is essential for the
proof of termination, although it is not a sufficient condition.

Definition 7. A class of formulæ F is admissible if all formulæ φ ∈ F satisfy
the following properties:

1. For all parameters A, B, φ[B/A] ∈ F.
2. φ contains no constructor and no variable of a sort in I.
3. For every subformula ψ of φ, if ψ is not a disjunction, a conjunction, or

a defined atom, then ψ contains no defined symbol and no pairs of distinct
parameters.

4. For every defined symbol d occurring in φ and for every rule dt → φ in R, the
formula obtained from φ by replacing each I-term by an arbitrary parameter
is in F.

A formula occurring in F is a schema. It is a base formula iff it contains no
defined symbol, and no equation between parameters.

The conditions in Definition 7 ensure that the formulæ in F are boolean combina-
tions (built on ∨,∧) of base formulæ containing at most one parameter, of defined
atoms and of equations and disequations between parameters. The definition of
base formulæ in Definition 7 ensures that the truth values of base formulæ do
not depend on the interpretation of the parameters, but only on the relation
between them. Base formulæ can contain parameters, but they can only occur
as arguments of function symbols, whose images must be of a non-inductive sort.
The only way of specifying properties of the parameters themselves (and not of
the terms built on them) is by using the rewrite rules in R. As we shall see, this
property is essential for proving the soundness of the loop detection rule that
ensures termination of our proof procedure. Similarly, no quantification over
variables of an inductive sort is allowed.

In the following, I denotes a schematizable class of interpretations and F
denotes an admissible class of formulæ. The goal of the paper is to prove that if
I-satisfiability is decidable (resp. semi-decidable) for base formulæ in F then it
must be so for all formulæ in F. We give examples of classes of formulæ satisfying
the previous conditions:

Example 3. Assume that Σ only contains 0, succ and symbols of profile nat → bool.
Let I0 be the class of all R-compatible interpretations on this language with the usual
interpretation of nat, 0 and succ, and let F0 be the set of all quantifier-free formulæ
containing no occurrence of 0 and succ. Clearly, I0 is schematizable and F0 is admissible.
The formulæ in F0 denote schemata of propositional formulæ. For instance the schema
p0∧¬pN ∧∧N−1

K=0(¬pK ∨psucc(K)) is specified by the formulæ: p(0)∧¬p(N)∧dN , where
d is defined by the rules d0 → � and dsucc(K) → dK ∧ (¬p(K) ∨ p(succ(K))). F0 is
equivalent to the class of regular schemata in [3].

318 M. Echenim and N. Peltier

Example 4. Let S = {nat, int} and I = {nat}. Assume that Σ contains the symbols
0 and succ, constant symbols of sort int, function symbols of profile nat → int and
all the symbols of Presburger arithmetic. Let IZ be the class of all R-compatible in-
terpretations such that the interpretations of nat, int, 0, succ, +,≤, . . . are the usual
ones. Let FZ be the set of all formulæ built on this language, containing no occur-
rence of 0, succ, and satisfying Condition 3 in Definition 7. It can be easily checked
that IZ is schematizable and that FZ is admissible. Formulæ in FZ denote schemata of
Presburger formulæ (the base formulæ in FZ are formulæ of Presburger arithmetic).
For instance

∨N
K=0 a(K) > 0 is denoted by dM , with the rules d0 → (a(0) > 0) and

dsucc(K) → dK ∨ a(succ(K)) > 0. Note however, that schemata containing atoms with
several distinct terms of sort nat, such as

∧N
K=0 a(K) � a(succ(K)) cannot occur in

FZ. It is also important to remark that the sort int must be distinct from the sort of
the indices nat (terms of the form da(K) are not allowed).

The class FZ is not comparable to the class of SMT-schemata in [4] (the latter
class may contain formulæ of the previous form, at the cost of additional restric-
tions on the considered theory). Let I1 and F1 be the sets of interpretations and
formulæ fulfilling the conditions of Definitions 6 and 7. The following proposition
is easy to establish (F0 and FZ are defined in Examples 3 and 4):

Proposition 1. I0-satisfiability (resp. IZ-satisfiability) is decidable for base for-
mulæ in F0 (resp. FZ), and I1-satisfiability is semi-decidable for base formulæ
in F1.

Before describing the proof procedure for testing the satisfiability of schemata,
we provide a simple example of an application. It is only intended to give a taste
of what can be expressed in our logic, and of which properties are outside its
scope (see also the examples in the Introduction, that can be easily encoded).

Example 5. A (binary) DAG δ labeled by elements of type elem can be denoted by a
function symbol δ : DAG → elem, where the signature contains two constructors of sort
DAG: a constant symbol ⊥ (denoting the empty DAG), and a 3-ary symbol c(n, l, r),
where l and r denote the left and right children respectively and n denotes the current
node2. Various properties can be expressed in our logic, for instance the following
defined symbol Aδ,p

x expresses the fact that all the elements occurring in a DAG δ
satisfies some property p.

Aδ,p
⊥ → � Aδ,p

c(n,l,r) → Aδ,p
l ∧ Aδ,p

r ∧ p(δ(c(n, l, r)))

Obviously this can be generalized to any set of regular positions: for instance, we can
state that there exists a path from the root to a leaf in the DAG on which all the
element satisfy p:

Eδ,p
⊥ → � Eδ,p

c(n,l,r) → (Eδ,p
l ∨ Eδ,p

r) ∧ p(δ(c(n, l, r)))

δ and p are meta-variables: δ must be replaced by a function symbol of profile DAG →
elem and p can be replaced by any property of elements of sort elem (provided it is
expressible in the base language e.g. first-order logic). For instance, we can express the

2 This extra-argument is necessary to ensure that distinct nodes can have the same
children.

Reasoning on Schemata of Formulæ 319

fact that all the elements of δ are equal to some fixed value, or that all the elements of δ
are even. We can check that the following formula is valid: (∀x, p(x) ⇒ q(x)) ⇒ (Eδ,p ⇒
Eδ,q). However, the converse cannot be expressed in our setting, because it would
involve a quantification over an element of type DAG which is forbidden by Condition 2
in Definition 7. The formula Aδ,p ∧ ¬Aδ,q ∧ ¬Aδ,¬q is satisfiable on the interpretations
whose domain contains two elements e1, e2 such that p(e1), p(e2), ¬q(e1), and q(e2)
hold (but for instance it is unsatisfiable if p(x) ≡ (x � 0)). We can express the fact
that two DAGs δ and δ′ share an element: ∃x, ∀y, (p(y) ⇔ x = y)∧¬Aδ,¬p ∧ ¬Aδ′,¬p.
We can also define a symbol Mapδ,δ′,f stating that δ′ is obtained from δ by applying
some function f on every element of δ:

Mapδ,δ′,f
⊥ → �

Mapδ,δ′,f
c(n,l,r) → Mapδ,δ′,f

l ∧ Mapδ,δ′,f
r ∧ δ′(c(n, l, r)) = f(δ(c(n, l, r)))

Then, we can check, for instance, that if all the elements of δ are even and if f is the
successor function, then all the elements of δ′ must be odd:

(even(0) ∧ (∀x, even(succ(x)) ⇔ ¬even(x)) ∧ Aδ,even
A) ∧ Mapδ,δ′,succ ⇒ Aδ′,¬even

A

We are not able, however, to express transformations affecting the shape of the DAG
(e.g. switching all the right and left subgraphs) because this would require to use
non-monadic defined symbols.

Altδ,p,q expresses the fact that all the elements at even positions satisfy p and that
the elements at odd positions satisfy q:

Altδ,p,q
⊥ → � Altδ,p,q

c(n,l,r) → Altδ,q,p
l ∧ Altδ,q,p

r ∧ p(δ(c(n, l, r)))

Our procedure can be used to verify that Altδ,p,q
A ⇒ Aδ,p∨q

A . The following defined
symbol pδ,δ′,δ′′ states that a DAG δ′′ is constructed by taking elements from δ and δ′

alternatively:

pδ,δ′,δ′′
⊥ → �

pδ,δ′,δ′′
c(n,l,r)

→ pδ′,δ,δ′′
l ∧ pδ′,δ,δ′′

r ∧ δ′′(c(n, l, r)) = δ(c(n, l, r))

We can check that if the elements of δ and δ′ satisfy Properties p and q respectively,
then the elements in δ′′ satisfy p and q alternatively: (pδ,δ′,δ′′

A ∧Aδ,p
A ∧Aδ′,q

A) ⇒ Altδ′′,p,q
A .

Notice that, in this example, the subgraphs can share elements. Thus it is not
possible in general to reason independently on each branch (in the style of automata-
based approaches): one has to reason simultaneously on the whole DAG. Other data
structures such as arrays or lists can be handled in a similar way. An example of
property that cannot be expressed is sortedness. Indeed, it would be stated as follows:

Sortδ
c(n,l,r) → Sortδ

l ∧ SortA
r ∧ δ(c(n, l, r)) ≥ δl ∧ δ(c(n, l, r)) ≥ δr

However, the atom δ(c(n, l, r)) ≥ δl is not allowed in our setting: since it contains
several parameters, it contradicts Condition 3 in Definition 7.

3 Proof Procedure

In this section, we present our procedure for testing the I-satisfiability of ad-
missible formulæ. We employ a tableaux-based procedure, with several kinds of

320 M. Echenim and N. Peltier

inference rules: Decomposition rules that reduce each formula to a conjunction
of base formulæ, equational literals, and defined literals; Unfolding rules that
allow to unfold the defined atoms (by applying the rules in R); Equality rules
for reasoning on equational atoms; and Delayed instantiation schemes that re-
place a parameter A by some term f(B1, . . . , Bn), where f is a constructor and
B1, . . . , Bn are new constant symbols. We consider proof trees labeled by sets of
formulæ. If α is a node in a tree T then T (α) denotes the label of α. A node is
closed if it contains ⊥. As usual, our procedure is specified by a set of expansion

rules of the form Ψ
Ψ1 . . . Ψn

with n ≥ 1, meaning that a non-closed leaf

node labeled by a set Φ ⊇ Ψ (up to a substitution of the meta-variables) may
be expanded by adding n children labeled by (Φ \ Ψ) ∪ Ψ1, . . . , (Φ \ Ψ) ∪ Ψn

respectively. We assume moreover that the formulæ Ψ1, . . . , Ψn have not already
been generated in the considered branch (to avoid redundant applications of the
rules). For any tree T , we write α ≥T β iff β is a child of α. ≥∗

T denotes as usual
the reflexive and transitive closure of ≥T .

We need to introduce some additional notations and definitions. For any in-
terpretation I and for any element v in the domain of I, we denote by depthI(v)
the depth of the constructor term denoted by v, formally defined as follows:
depthI(v) = 0 if v is in Ds and s ∈ I, otherwise depthI([f(t1, . . . , tn)]I) =
1 + max({depthI([ti]I) | i ∈ [1, n]}), with the convention that max(∅) = 0.
It is easy to check that the function v �→ depthI(v) is well-defined, for every
interpretation I ∈ I.

For the sake of readability, we shall assume that there exists a function symbol
depth such that: depthI(v) def= depthI(v). The formula max(E) # t (where E is a
finite set of terms) is written as a shorthand for

∧
s∈E(s ≤ t) ∧

∨
s∈E(s # t) if

E = ∅ and for 0 # t if E = ∅.
Let T be a tree and let α be a node in T . A parameter A is solved in α if the

only formula of T (α) containing A is of the form A # B where B is a parameter.
An equation A # B is solved in α if A is solved. Notice that # is not considered
as commutative. For every set of formulæ Φ, Eq(Φ) denotes the set of equations
in Φ and NonEq(Φ) def= Φ \ Eq(Φ). A renaming is a function ρ mapping every
parameter to a parameter of the same sort, such that ρ(N) = N . Any renaming
ρ can be extended into a function mapping every formula φ to a formula ρ(φ),
obtained by replacing every parameter A occurring in φ by ρ(A). Let Φ and Ψ
be two sets of formulæ. We write Φ % Ψ iff there exists a renaming ρ such that
ρ(Ψ) ⊆ Φ.

A proof tree for φ is a tree constructed by the rules of Figure 1 below and
such that the root is obtained by applying Start on φ. We assume that ∨-
Decomposition and ∧-Decomposition are applied with the highest priority.

Most of the rules in in Figure 1 are self-explanatory. We only briefly comment
on some important points.

Start is only applied once, in order to create the root node of the tree. The
label of this node contains the formula at hand together with an additional

Reasoning on Schemata of Formulæ 321

formula stating that the max of the depth of the constructor terms represented
by the parameters must equal to some natural number N .

The decomposition and closure rules are standard. However, we do not use
them to test the satisfiability of the formula, but only to decompose it into a
conjunction of defined atoms, equational literals and base formulæ. This is always
feasible, thanks to the particular properties of formulæ in F (see Definition 7).
Notice that the separation rule has no premises. The only requirement is that A
and B occur in the considered branch.

Unfolding replaces a defined atom dA by its definition according to the rules
in R. This is possible only when the head symbol and arguments of the term
represented by A are known.

#-Decomposition decomposes equalities, using the specific properties of #-
decomposable interpretations: if a node contains two equations A # t and A # s
then the formula Δ(t # s) necessarily holds. #-Decomposition performs a
similar task for inequalities.

Several rules are introduced to reason on the depth of the terms represented by
the parameters. The principle is to separate the parameters representing terms
of a depth exactly equal to N from those whose depth is strictly less than N
(so that only the former ones may be instantiated). By definition of Start, the
initial node must contain an equation depth(A) & N for each parameter A = N .
Strictness expands this inequality by using the equivalence x & y ⇔ (x ≺
y ∨ x # y). Then ∨-Decomposition will apply, yielding either x ≺ y or x # y.
≺-Decomposition gets rid of strict equalities of the form depth(A) ≺ succ(t)
that are introduced by N -Explosion.

The Explosion rules instantiate the parameters, which is done by adding equa-
tions of the form A # f(B), where B is a vector of fresh parameters.

Explosion instantiates the parameters distinct from N . We choose to in-
stantiate only the parameters representing terms of maximal depth, and only
after N has been instantiated. Thus we instantiate a parameter B only if there
exists an atom of the form depth(B) # t, where t is of the form succ(s), for
some s ∈ {0, N}. Explosion enables further applications of Unfolding, which
in turn may introduce new complex formulæ into the nodes (by unfolding the
defined symbols according to the rules in R).

N -Explosion instantiates the parameter N . Since the depth of the terms of
a sort in I is at least 1 and since N is intended to denote the maximal depth
of the parameters, N cannot be 0, thus it is instantiated either by succ(0) or by
succ(N). Unlike the other parameters, direct replacement is performed. This rule
is applied with the lowest priority. Hence, when the rule is applied, all parameters
of a depth strictly greater than N must have been instantiated. By replacing N
by a term of the form succ(t), the rule will permit to instantiate the parameters
of depth N − 1. This strategy ensures that the parameters will be instantiated
in decreasing order w.r.t. the depth of the terms they represent.

Loop is intended to detect cycles and prune the corresponding branches,
by closing the nodes that are subsumed by a previous one. It only applies on
some particular nodes, that are irreducible w.r.t. all rules, except (possibly)

322 M. Echenim and N. Peltier

N -Explosion. We shall call any such node a layer. This rule can be viewed as an
application of the induction principle. If Φ % Ψ then it is clear that Ψ is a logical
consequence of Φ, up to a renaming of parameters. Thus, if some open node
exists below a node labeled by Φ, some other open node must exist also below
a node labeled by Ψ , hence the node corresponding to Φ may be closed without
threatening soundness (a satisfiable branch is closed, but global satisfiability is
preserved). Since Ψ is a layer, the parameter N must be instantiated at least
once between the two nodes, which ensures that the reasoning is well-founded
and that there exists at least one open node outside the branch of Φ.

At first glance, it may seem odd to remove equations from Φ and Ψ before
testing for subsumption (see the application condition of Loop). Indeed, it is
clear that this operation does not preserve satisfiability in general. For instance,
the formula p(A) ∧ ¬p(B) ∧ dB ∧ A # 0 is unsatisfiable if d is defined by the
rules: d0 → � and dsucc(K) → ⊥. However, p(A)∧¬p(B)∧dB is satisfiable (with
AI = 0). In the context in which the rule is applied however, it will be ensured
that satisfiability is preserved. The intuition is that if an equation such as A # 0
occurs in the node, then A must have been instantiated previously, hence the
term represented by A must be of a depth strictly greater than N . Due to the
chosen instantiation strategy, all parameters of depth greater or equal to that
of A, must have been instantiated (this property is not fulfilled by the previous
formula: B should be instantiated since its depth is at most 1 by definition).
Then it may be seen that the interpretation of the remaining formulæ does not
depend on the value of A, since the depth of their indices must be strictly less
than that of A. Note that the removal of equations is essential for ensuring
termination.

We provide a simple example to illustrate the rule applications.

Example 6. Consider the formula ∀x¬p(x) ∧ dA, together with the rules: da → p(b)
and df(x,y) → dx ∧ dy (where C = {a:s, f:s×s→ s, 0, succ} and profile(A) = s).
The root formula is ∀x¬p(x) ∧ dA ∧ max({depth(A)}) � N . By normalization using
∧-Decomposition we get {∀x¬p(x), dA, depth(A) � N}. No rule applies, except N-
Explosion, which replaces N by succ(0) or succ(N). In both cases, Explosion applies
on A. In the first branch, the rule adds the formula A � a and in the second one, it yields
A � f(B, C) (where B, C are fresh parameters). In the former branch, Unfolding
replaces the formula dA by p(b), then an irreducible node is reached. In the latter
branch, the formulæ dB and dC are inferred. Then Loop applies, using the renaming:
ρ(A) = B or ρ(A) = C, hence the node is closed. The only remaining (irreducible) node
is {p(b),∀x¬p(x)}. The unsatisfiability of this set of formulæ can be easily checked.

The following example shows evidence of the importance of the depth rules:

Example 7. Consider the formula: p(A)∧dA∧cB with the rules dsucc(x) → dx, d0 → �,
csucc(x) → ⊥ and c0 → ¬p(0). If the parameters were instantiated in an arbitrary order,
then one could choose for instance to instantiate A by succ(A′), yielding an obvious
loop (indeed, the unfolding of dA yields dA′ , thus it suffices to consider the renaming
ρ(A) = A′ and ρ(B) = B). Then the only remaining branch corresponds to the case
A � 0, which is actually unsatisfiable. This trivial but instructive example shows
that reasoning on the depth of the parameters is necessary to ensure that the model will

Reasoning on Schemata of Formulæ 323

Start:
φ, max({depth(Ai) | i ∈ [1, n]}) � N

Where φ denotes the formula at hand
A1, . . . , An are the parameters in φ

∨-Decomposition:
φ ∨ ψ

φ ψ
∧-Decomposition:

φ ∧ ψ

φ, ψ
If φ ∧ ψ is
not a base formula

Closure:
¬φ, φ

⊥ �-Closure:
A �� A

⊥ N-Closure:
0 � succ(t)

⊥

Unfolding: dA, A � f(B)

ψ

¬dA, A � f(B)

NNF(¬ψ)
ψ = df(B) ↓R [A/f(B)], A �

f(B)

�-Decomposition:
A � f(B), A � g(C)

ψ, A � f(B)

A �� B, A � f(B), B � g(C)

NNF(¬ψ), A �� B, A � f(B), B � g(C)
Where ψ = Δ(f(B) � g(C))a

Replacement:
φ, A � B

φ[B/A], A � B
If A and B are two parameters and A occurs in φ

Strictness:
depth(A) � N

depth(A) � N ∨ depth(A) ≺ N
≺-Decomposition:

t ≺ succ(N)

t � N

≺-Separation: depth(A) ≺ N, depth(B) � N

depth(A) ≺ N, depth(B) � N, A �� B
Separation:

A � B ∨ A �� B

Explosion:
depth(B) � succ(t)∨

i∈[1,n] max(Ei) � t ∧ B � ti

If ti are terms of the form fi(Ai), such that f1, . . . , fn are all the
function symbols of the same sort as B, and the Ai’s are vectors of pairwise
distinct, fresh, constant symbols of the appropriate sort, and Ei is the set of
terms depth(C), where C is a component of Ai of a sort in I.

N-Explosion:
Φ

Φ[succ(0)/N] Φ[succ(N)/N]

If no other rule applies and N occurs in Φ. Notice that in contrast
with the previous rules, Φ must denote the whole label (not a subset of it)

Loop:
Φ

⊥
If there exists in the same branch a (non leaf) layer labeled by
a set of formulæ Ψ such that NonEq(Φ) � NonEq(Ψ)

a See Definition 4 for the definition of Δ(t � s)

Fig. 1. Expansion rules

324 M. Echenim and N. Peltier

eventually be reached. In this example, the depth of A is maximal and that of B is
not, e.g.: A � succ(0) and B � 0. The problem stems from the fact that Loop is not
sound in general, since equational atoms are removed from the formulæ before testing
for subsumption (the removal of such atoms is crucial for termination).

4 Properties of the Proof Procedure

This short section merely contains the theorems formalizing the main properties
of the proof procedure. Due to space restrictions, the proofs are omitted and can
be found in [13]. We first state that the previous rules are sound.

Theorem 1. Let T be a proof tree for a formula φ. If T is closed then φ is
unsatisfiable.

We then state that the procedure is complete, in the sense that the satisfiability
of every irreducible node can be tested by the procedure for base formulæ.

Theorem 2. Let T be a proof tree. If α is a node in T that is irreducible by all
the expansion rules then T (α) is I-satisfiable iff NonEq(T (α)) is. Furthermore,
NonEq(T (α)) is a set of base formulæ.

We finally state that the procedure is terminating.

Theorem 3. The expansion rules terminate on every formula in F.

Corollary 1. If the satisfiability problem is decidable (resp. semi-decidable) for
base formulæ in F then it is so for all formulæ in F.

5 Conclusion

We have proposed a proof procedure for reasoning on schemata of formulæ (de-
fined by induction on an arbitrary structure, such as natural numbers, lists, trees
etc.) by relating the satisfiability problem for such schemata to that of a finite
disjunction of formulæ in the base language. Our approach applies to a wide
range of formulæ, which may be interpreted in some specific class of structures
(e.g. arithmetics). It may be seen as a generic way to add inductive capabilities
into logical languages, in such a way that the main computational properties of
the initial language (namely decidability or semi-decidability) are preserved. To
the best of our knowledge, no published procedure offers similar features. There
are very few decidability or even completeness results in inductive theorem prov-
ing and we hope that the present work will help to promote new progress in this
direction. Future work includes the implementation of the proof procedure and
its extension to non-monadic defined symbols.

Reasoning on Schemata of Formulæ 325

References
1. Aczel, P.: An Introduction to Inductive Definitions. In: Barwise, K.J. (ed.) Hand-

book of Mathematical Logic, pp. 739–782. North-Holland, Amsterdam (1977)
2. Aravantinos, V., Caferra, R., Peltier, N.: A Schemata Calculus for Propositional

Logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp.
32–46. Springer, Heidelberg (2009)

3. Aravantinos, V., Caferra, R., Peltier, N.: Decidability and undecidability results
for propositional schemata. Journal of Artificial Intelligence Research 40, 599–656
(2011)

4. Aravantinos, V., Peltier, N.: Schemata of SMT-Problems. In: Brünnler, K., Met-
calfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 27–42. Springer, Heidelberg
(2011)

5. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: CERES: An analysis of
Fürstenberg’s proof of the infinity of primes. Theor. Comput. Sci. 403(2-3), 160–175
(2008)

6. Baelde, D., Miller, D., Snow, Z.: Focused Inductive Theorem Proving. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 278–292. Springer, Heidelberg
(2010)

7. Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - A Cooperative
Automatic Theorem Prover for Classical Higher-Order Logic (System Description).
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 162–170. Springer, Heidelberg (2008)

8. Bouhoula, A., Kounalis, E., Rusinowitch, M.: SPIKE, an Automatic Theorem
Prover. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 460–462. Springer,
Heidelberg (1992)

9. Bouhoula, A., Rusinowitch, M.: Implicit induction in conditional theories. Journal
of Automated Reasoning 14, 14–189 (1995)

10. Boyer, R.S., Moore, J.S.: A Theorem Prover for a Computational Logic. In: Stickel,
M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 1–15. Springer, Heidelberg (1990)

11. Bundy, A.: The automation of proof by mathematical induction. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 845–911. Elsevier and
MIT Press (2001)

12. Comon, H.: Inductionless induction. In: Robinson, A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, ch. 14, pp. 913–962. North-Holland (2001)

13. Echenim, M., Peltier, N.: Reasoning on Schemata of Formulae. Technical report,
CoRR, abs/1204.2990 (2012)

14. Giesl, J., Kapur, D.: Decidable Classes of Inductive Theorems. In: Goré, R.P.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–484.
Springer, Heidelberg (2001)

15. Gupta, A., Fisher, A.L.: Parametric Circuit Representation Using Inductive
Boolean Functions. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp.
15–28. Springer, Heidelberg (1993)

16. Kapur, D., Musser, D.: Proof by consistency. Artificial Intelligence 31 (1987)
17. Lenzi, G.: A New Logical Characterization of Büchi Automata. In: Ferreira, A.,

Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 467–477. Springer, Heidelberg
(2001)

18. Park, D.M.: Finiteness is Mu-ineffable. Theoretical Computer Science 3, 173–181
(1976)

19. Paulin-Mohring, C.: Inductive Definitions in the system Coq - Rules and Proper-
ties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993)

Management of Change

in Declarative Languages

Mihnea Iancu and Florian Rabe

Jacobs University, Bremen, Germany

Abstract. Due to the high degree of interconnectedness of formal math-
ematical statements and theories, human authors often have difficul-
ties anticipating and tracking the effects of a change in large bodies of
symbolic mathematical knowledge. Therefore, the automation of change
management is often desirable. But while computers can in principle
detect and propagate changes automatically, this process must take the
semantics of the underlying mathematical formalism into account. There-
fore, concrete management of change solutions are difficult to realize.

The Mmt language was designed as a generic declarative language
that captures universal structural features while avoiding a commitment
to a particular formalism. Therefore, it provides a promising framework
for the systematic study of changes in declarative languages. We leverage
this framework by providing a generic change management solution at
the Mmt level, which can be instantiated for arbitrary specific languages.

1 Introduction

Mathematical knowledge is growing at an enormous rate. Even if we restrict
attention to formalized mathematics, libraries are reaching sizes that users have
difficulties overseeing. Since this knowledge is also highly interconnected, it is
getting increasingly difficult for humans to anticipate and follow the effects of
changes. Therefore, management of change (MoC) for mathematics has received
attention recently.

In this paper, we focus on change management for formalized mathemat-
ics, which — contrary to traditional, semi-formal mathematics — permits me-
chanically computing and verifying declarations. In principle, this should permit
change management tools to automatically identify and recheck those declara-
tions that are affected by a change. However, current computer algebra and
deduction systems have not been designed systematically with change manage-
ment in mind. In fact, the question of how to do that is still open.

A major motivation of our work was to provide change management for the
LATIN library [CHK+11], a collection of formalizations of logics and related lan-
guages in a logical framework. Using the Little Theories approach [FGT92], the
LATIN library takes the form of a highly modular and inter-connected network
of theories, which creates an urgent need for change management.

We contribute to the solution of this problem by studying change manage-
ment for the Mmt language [RK11]. Because it was introduced as a foundation-

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 326–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Management of Change in Declarative Languages 327

independent, modular, and scalable representation language for formal mathe-
matical knowledge, it is a very promising framework for change management.
Firstly, foundation-independence means that Mmt avoids a syntactic or se-
mantic commitment to any particular formalism. Thus, an Mmt-based change
management system could be applied to virtually any formal system. Secondly,
modularity is a well-known strategy to rein in the impacts of changes and has
been the basis of successful change management solutions such as [AHMS02].
Thirdly, Mmt deemphasizes sequential in-memory processing of declarations in
favor of maintaining a large scale network of declarations that are retrieved on
demand, a crucial prerequisite for revisiting exactly the affected declarations.

We introduce a formal notion of differences between Mmt documents, an
abstract notion of semantic dependency relation, and a change propagation al-
gorithm that guarantees that validity is preserved. We state our results for a
small fragment of Mmt, but our treatment extends to the full language. Our so-
lution is implemented within the Mmt system [Rab08], thus providing a generic
change management system for formal mathematical languages.

In Sect. 2, we briefly introduce theMmt language in order to be self-contained.
In Sect. 3, we refine our problem statement and compare it to related work. Then
we develop the theory of change management in Mmt in Sect. 4 and give an
overview of our implementation in Sect. 5.

2 The MMT Language

We will only give a brief overview of Mmt and refer to [RK11] for details. The
fragment of the Mmt grammar that we discuss in this paper is given in Fig. 1. In
particular, we have to omit the Mmt module system for simplicity. The central
notion is that of a theory graph, a list of modules, which are theories T or
theory morphisms v.

A theory declaration T = {Sym∗} introduces a theory with name T contain-
ing a list of symbol declarations. A symbol declaration c : ω = ω′ introduces
a symbol named c with type ω and definiens ω′. Both type and definiens are

Theory Graph G ::= · | G, Mod
Module Declaration Mod ::= T = {Sym∗} | v : T → T = {Ass∗}
Symbol Declaration Sym ::= c : ω = ω
Assignment Declaration Ass ::= c := ω
Term ω ::= ⊥ | T ?c | x | ω ω+ | ωX.ω | ωv

Variable Context X ::= · | X, x : ω = ω

Module Identifier M ::= T | v
Theory Identifier T ::= Mmt URI

Morphism Identifier v ::= Mmt URI

Local Declaration Name c ::= Mmt Name

Fig. 1. Simplified MMT Grammar

328 M. Iancu and F. Rabe

optional. However, in order to reduce the number of case distinctions, we use
the special term ⊥: If the type or definiens is omitted, we assume they are ⊥.

Terms ω over a theory T are formed from constants T ?c declared in T , bound
variables x, application ω ω1 . . . ωn of a function ω to a sequence of arguments,
bindings ωX.ω′ using a binder ω, a bound variable context X , and a scope
ω′, and morphism application ωv. Except for morphism application, this is a
fragment of the OpenMath language [BCC+04], which can express virtually
every object.

Theory morphism declarations v : T → T ′ = {Ass∗} introduce a morphism
with name v from T to T ′ containing a list of assignment declarations. Such
a morphism must contain exactly one assignment c := ω′ for each undefined
symbol c : ω = ⊥ in T ; here ω′ is some term over T ′. Theory morphisms extend
homomorphically to a mapping of T -terms to T ′ terms.

Intuitively, a theory morphism formalizes a translation between two formal
languages. For example, the inclusion from the theory of semigroups to the
theory of monoids (which extends the former with two declarations for the unit
element and the neutrality axiom) can be formalized as a theory morphism. More
complex examples are the Gödel-Gentzen negative translation from classical to
intuitionistic logic or the interpretation of higher-order logic in set theory.

Every Mmt declaration is identified by a canonical, globally unique URI. In
particular, the URIs of symbol and assignment declarations are of the form T ?c
and v?c.

Mmt symbol declarations subsume most semantically relevant statements in
declarative mathematical languages including function and predicate symbols,
type and universe symbols, and — using the Curry-Howard correspondence —
axioms, theorems, and inference rules. Their syntax and semantics is determined
by the foundation, in which Mmt is parametric. In particular, the validity of a
theory graph is defined relative to a type system provided by the foundation:

Definition 1. A foundation provides for every theory graph G a binary re-
lation on terms that is preserved under morphism application. This relation is
denoted by G � ω : ω′, i.e., we have G � ω : ω′ implies G � ωv : ω′v.

Constant declarations c : ω = ω′ in a theory graph G are valid if G � ω′ : ω.
Thus, a foundation also has to define typing for the special term⊥: The judgment
G � ⊥ : ω is interpreted as “ω is a well-typed universe, i.e., it is legal to declare
constants with type ω”. Similarly, G � ω : ⊥ means that ω may occur as the
definiens of an untyped constant. This way the foundation can precisely control
what symbol declarations are well-formed. Similarly, an assignment c := ω in a
morphism v is valid if G � ω : ω′v where ω′ is the type of c in the domain of v.

Running Example 1. Below we present a simple Mmt theory for proposi-
tional logic over two revisions Rev1 and Rev2. For simplicity, we will assume
that the Mmt module system is used and that the symbols type, →, and λ have
been imported from a theory representing the logical framework LF, and that all
theory graphs are validated relative to a fixed foundation for LF. PL of Rev1 in-
troduces a type bool of formulas and three binary connectives, the last of which is

Management of Change in Declarative Languages 329

defined in terms of the other two. This theory is valid. In Rev2, bool is renamed
to form, ∨ is deleted, and ¬ is added. The other declarations remain unchanged,
thus making the theory invalid.

Rev1

PL = {
bool : type = ⊥
∨ : bool → bool → bool = ⊥
∧ : bool → bool → bool = ⊥
⇒: bool→ bool→ bool
= λx.λy.y ∨ (x ∧ y)

}

Rev2

PL = {
form : type = ⊥
¬ : form → form = ⊥
∧ : bool → bool→ bool = ⊥
⇒: bool→ bool → bool
= λx.λy.y ∨ (x ∧ y)

}

3 Related Work

MoC has been applied successfully in a number of domains such as software
engineering (e.g., [EG89]) or file systems ([Apa00,CVS,Git]). A typical MoC
work flow in this setting uses compilation units, e.g., the classes of a Java pro-
gram: These are compiled independently, and a compilation manager can record
the dependency relation between the units. In particular, if compilation units
correspond to source files, changes in a file can be managed by recompiling all
depending source files.

Intuitively, this work flow can be applied to declarative languages for math-
ematics as well if we replace “compilation” with “validation” where the latter
includes, e.g., type reconstruction, rewriting, and theorem proving. However,
there are a few key differences. Firstly, the validation units are individual types
and definitions (which includes assertions and proofs in Mmt), of which there
are many per source file (around 50 on average in the Mizar library [TB85]).
Their validation can be expensive, and there may be many dependencies within
the same theory and many little theories in the same source file. Therefore,
validation units cannot be mapped to files so that the notions of change and
dependency must consider fragments of source files. Moreover, since foundations
may employ search with backtracking, the validation of a unit U may access
more units than the validity of U depends on. Therefore, the dependency rela-
tion should not be recorded by a generic Mmt validation manager but produced
by the foundation. Recently several systems have become able to produce such
dependency relations, in particular Coq and Mizar [AMU11].

MoC systems for mathematical languages can be classified according to the
nature of changes. In principle, any change in a declarative language can be
expressed as a sequence of add and delete operations on declarations. But us-
ing additional change natures is important for scalability. We use updates to
change the type or definiens of a declaration without changing its Mmt URI,
and renames to change only the Mmt URI. We do not use reordering operations
because Mmt already guarantees that the order of declarations has no effect on
the semantics. More complex natures have been studied in [BC08], which uses

330 M. Iancu and F. Rabe

splits in ontologies to replace one concept with two new ones. Dually, we could
consider merge changes, which identify two declarations.

Moreover, MoC systems can be classified by the abstraction level of their
document model. The most concrete physical and bit level are relatively bor-
ing, and standard MoC tools operate at the character level treating documents
as arrays of lines [Apa00,CVS,Git]. More abstract document models such as
XML are better suited for mathematical content [AM10,Wag10] and have been
applied to document formats for mathematics [Wag10,ADD+11]. Our work con-
tinues this development to more abstract document models by usingMmt, which
specifically models mathematical data structures. For example, the order of dec-
larations, the flattening of imports, and the resolution of relative identifiers are
opaque in XML but transparent in Mmt representations. Moreover, Mmt URIs
are more suitable to identify the validation units than the XPath-based URLs
usually employed in generic XML-based change models.

The development graph model [AHMS99], which has been applied to change
management in [Hut00,AHMS02], is very similar toMmt: Both are parametric in
the underlying formal language, and both make the modular structure of math-
ematical theories explicit. The main difference is that Mmt uses a concrete (but
still generic) declarative language for mathematical theories; modular structure
is represented using special declarations. Somewhat dually, development graphs
use an abstract category of theories using diagrams to represent modular struc-
ture; the declarations within a theory can be represented by refining the abstract
model as done in [AHM10].

At an even more abstract level, document models can be specific to one foun-
dational language. While foundation-independent approaches like ours can only
identify potentially affected validation units, those could determine and possi-
bly repair the impact of a change. That would permit treating even subobjects
as validation units. However, presently no systems exists that can provide such
foundation-specific information so that such MoC systems remain future work.

Finally we can classify systems based on how they propagate changes. Our
approach focuses on the theoretical aspect of identifying the (potentially) af-
fected parts. The most natural post-processing steps are to revalidate them,
as, e.g., in [AHMS02], or to present them for user interaction as in [ADD+11].
The Mmt system can be easily adapted for either one. A very different treat-
ment is advocated in [KK11] based on using only references that include revision
numbers so that changes never affect other declarations (because each change
generates a new revision number).

4 A Theory of Changes

4.1 A Data Structure for Changes

Just like we can consider only an exemplary fragment of Mmt here, we can only
consider some of the possible changes. We will only treat changes of declarations
within modules. This is justified because these occur most frequently. However,

Management of Change in Declarative Languages 331

our treatment can be generalized to changes of any declaration in the full Mmt
language. The grammar for our formal language of changes is given in Fig. 2.

Diff Δ ::= · | Δ �δ
Change δ ::= A(M, c : ω = ω) | D(M, c : ω = ω) | U(M, c, o, ω, ω) | R(T, c, c)
Component o ::= def | tp
Box Terms ω ::= ω | · in addition to existing productions for ω

Fig. 2. The Grammar for Mmt Changes

We use terms as validation units because they are the smallest units that can
be validated separately by foundations. Therefore, besides adding and deleting
whole declarations, we use updates that change a term. In updates, we use
components o to distinguish between changes to the type (o = tp) or the
definiens (o = def). More precisely:

– A(M, c : ω = ω′) adds a declaration to the module M

– D(M, c : ω = ω′) deletes a declaration from the module M .

– U(M, c, o, ω, ω′) updates component o of declaration M?c from ω to ω′.

– R(T, c, c′) renames the declaration c in theory T to c′.

Finally, Diffs Δ are sequences of changes. In our implementation, we locate
changes even more precisely by referring to subobjects of type and definiens.
This is important for user interaction: If an impact has been detected, this
permits showing the user exactly what change caused the impact.

Notation 1. In order to unify the cases of changing symbols in a theory and
assignments in a morphism, we use the following convention: A declaration c :=
ω′ in a morphism v abbreviates a declaration c : ω = ω′ and the components tp
and def are defined accordingly. The type ω is uniquely determined by Mmt to
ensure the type preservation of morphisms: Its value is τv where τ is the type of
c in the domain of v. Updates to assignments work in the same way as updates
to symbols except that the component tp cannot be changed.

We need one additional detail in our grammar: We add two special productions
for terms ω, which we call box terms. These represent invalid terms that are
introduced during change propagation.
· represents a missing term. ω represents a possibly invalid term ω. More

sophisticated box terms can also record the required type, which gives users a
hint what change is needed and permits applications to type-check a declaration
relative to the box terms in it. We omit this here for simplicity.

Algebraically, the set of diffs Δ is the free monoid generated from changes δ.
As we will see below, the operation of applying a diff to a theory graph can be
regarded as this monoid acting on the set of theory graphs.

332 M. Iancu and F. Rabe

·−1 = ·
(Δ �δ)−1 = δ−1 �Δ−1

A(M, c : ω = ω′)−1 = D(M, c : ω = ω′)
D(M, c : ω = ω′)−1 = A(M, c : ω = ω′)
R(T, c, c′)−1 = R(T, c′, c)
U(M, c, o, ω, ω′)−1 = U(M, c, o, ω′, ω)

As seen on the right, our diffs are
invertible. This permits transactions
where partially applied diffs are rolled
back if they cause an error. This is also
useful to offer undo-redo functionality
in a user interface.

In order to talk efficiently about
Mmt theory graphs, we introduce a
few definitions that permit looking up
information in the theory graph:

Definition 2 (Lookup in Theory Graphs). For a theory graph G, we write

– � G(M) =Mod if a module declaration Mod with URI M is present in G.
– G � T ?c : ω = ω′ if T is a theory URI in G and the symbol declaration
c : ω = ω′ exists in the body of T . We also define the corresponding notation
for morphisms.

– � G(M?c) = Sym if � G(M) =Mod and Sym is the declaration with name
c in the body of Mod.

– � G(M?c/o) = ω if � G(M?c) = Sym and ω is the component o of Sym.
– G � π if � G(π) = Dec for some module or symbol declaration Dec.

We will now define the application of diffs Δ on theory graphs G, which we
denote by G � Δ. In MoC tools, this is sometimes called patching.

Definition 3. A diff Δ is called applicable to the theory graph G if G � Δ
according to the rules in Fig. 3.

G
 M G 	
 M?c
Adec

G
 A(M, c : ω = ω′)

G
 M?c : ω = ω′
Ddec

G
 D(M, c : ω = ω′)

 G(T ?c/o) = ω
Usym

G
 U(T, c, o, ω, ω′)

 G(v?c/def) = ω
Uass

G
 U(v, c, def, ω, ω′)

G
 T ?c G 	
 T ?c′
Rdec

G
 R(T, c, c′)

ΔbaseG
 ·
G
 Δ G � Δ
 δ

ΔdecG
 Δ �δ

Fig. 3. Applicability of Changes

Management of Change in Declarative Languages 333

Definition 4 (Change Application). Given a theory graph G and a G-
applicable change δ, we define G � δ as follows:

– If δ = A(M, c : ω = ω′) then G � δ is the graph constructed from G by
adding the declaration c : ω = ω′ to module M .

– If δ = D(M, c : ω = ω′) then G � δ is the graph constructed from G by
deleting the declaration c : ω = ω′ from module M .

– If δ = U(M, c, o, ω, ω′) then G � δ is the graph constructed from G by up-
dating the component at M?c/o from ω to ω′.

– If δ = R(T, c, c′) then G � δ is the graph constructed from G by renaming
the declaration at T ?c to T ?c′.

Moreover, we define G � Δ by G � · = G and G � (Δ �δ) = (G � Δ)� δ.

Running Example 2 (Continuing Ex. 1). We have Rev1 � Δ = Rev2
where Δ is the diff: D(PL, bool : type = ⊥) �A(PL, form : type = ⊥) �D(PL,∨ :
bool→ bool→ bool = ⊥) �A(PL,¬ : form → form = ⊥). Alternatively, we could
use a rename R(PL, bool , form) instead of the add-delete pair.

The following simple theorem permits lookups in a hypothetical patched theory
graph. This is important for scalability in the typical case where a large G should
be neither changed nor copied:

Theorem 1. Assume a theory graph G and a G-applicable diff Δ. Then

� (G � ·)(M?c/o) = G(M?c/o)

� (G � (Δ �A(M, c : ω = ω′))) (M?c/o) =

{
ω if o = tp

ω′ if o = def

� (G � (Δ �D(M, c : ω = ω′))) (M?c/o) = undefined
� (G � (Δ �U(M, c, o, ω, ω′))) (M?c/o) = ω′

� (G � (Δ �R(M, c′, c))) (M?c/o) = (G � Δ) (M?c′/o)
� (G � (Δ �)) (M?c/o) = (G � Δ) (M?c/o)

where is any change not covered by the previous cases.

Proof. This is straightforward to prove using the definitions.

We will now introduce and study an equivalence relation between diffs. Intu-
itively, two diffs are equivalent if their application has the same effect:

Definition 5. Given a theory graph G, two G-applicable diffs Δ and Δ′ are
called G-equivalent iff G � Δ = G � Δ′. We write this as Δ ≡G Δ′.

Our main theorem about change application is that diffs can be normalized. We
need some auxiliary definitions first:

Definition 6. The referenced URIs of a change are defined as follows: For
both A(M, c : ω = ω′) and D(M, c : ω = ω′) they are M?c/tp and M?c/def, for
U(M, c, o, ω, ω′) it is only M?c/o, and for R(T, c, c′) they are T ?c/tp, T ?c/def,

334 M. Iancu and F. Rabe

T ?c′/tp and T ?c′/def. Two changes δ and δ′ have a clash if they reference the
same URI.

A diff Δ is called minimal if there are no clashes between any two changes
in Δ. A minimal diff is called normal if it is of the form Δ1

�Δ2 where Δ1

contains no renames and Δ2 contains only renames.

Theorem 2. Reordering the changes in a minimal diff yields an equivalent diff.

Proof. In a minimal diff, each change affects a different declaration so the order
of application is irrelevant.

Definition 7. G′ − G is obtained as follows:

1. The diff Δ contains the following changes (in any order):

U(M, c, o, ω, ω′) for G(M?c/o) = ω, G′(M?c/o) = ω′, ω
= ω′

D(M?c : ω = ω′) for G �M?c : ω = ω′, G′
�M?c
A(M?c : ω = ω′) for G′ �M?c : ω = ω′, G
�M?c

2. We say that a pair (A,D) of changes in Δ matches if A = A(T, c : ω = ω′)
and D = D(T, c′ : ω = ω′). They match uniquely if there is no other A′ that
matches D and no other D′ that matches A.

3. G′ − G arises from Δ by removing every uniquely matching pair (A,D) and
appending the respective rename R(T, c, c′).

This definition first generates an add or delete for every URI that exists only in
G′ or G, respectively, and 0− 2 updates for every URI that exists in both. Then
uniquely matching add-delete pairs are replaced with renames. The uniqueness
constraint is necessary to make the last step deterministic.

Running Example 3 (Continuing Ex. 2). The first step of the computation
of the difference Rev2 −Rev1 yields the diff from Ex. 2. The next steps simplify
this diff to D(PL,∨ : bool → bool → bool = ⊥) �A(PL,¬ : form → form = ⊥) �

R(PL, bool , form).

Theorem 3. G′ − G is normal, G-applicable, and G � (G′ − G) = G′.

Proof. The proof is straightforward from the definition.

Theorem 4. If G′ = G � Δ, then there is a normal diff Δ′ such that Δ ≡G Δ′.

Proof. We put Δ′ = (G � Δ)− G. Then the result follows from Thm. 3.

4.2 A Data Structure for Dependencies

As our validation units are the components of Mmt declarations, we need to
formulate the validity of Mmt theory graphs in a way that permits separate
validation of each component:

Management of Change in Declarative Languages 335

Definition 8. A theory graph G is called foundationally valid if for all symbol
or assignment declarations G �M?c : ω = ω′ (recall Not. 1), we have G � ω′ : ω.

Now we can make formal statements how the validity of a theory graph is affected
by changes. First, a typical property of typing relations is that they satisfy a
weakening property: Additional information can not invalidate a type inference:

Definition 9. A foundation is called monotonous if the following rules are
admissible for any A = A(M, c : =) and for any U = U(M, c, o,⊥,):

G � ω : ω′ G � A
G � A � ω : ω′

G � ω : ω′ G � U
G � U � ω : ω′

Almost all practical foundations for Mmt are monotonous. This includes even
substructural type theories like linear LF [CP02] because we only require weak-
ening for the set of global declarations, not for local contexts. A simple counter-
example is a type theory with induction in which constructors can be added as
individual declarations: Then adding a constructor will break an existing induc-
tion. But most type theories introduce all constructors in the same declaration.

While monotony permits handling additions to a theory graphs in general, we
must introduce dependency relations between components to handle updates and
deletes. Intuitively, if a validation unit U does not depend on U ′, then deleting
U ′ is guaranteed not to affect the validity of U :

Definition 10. A dependency relation for a theory graph G is a binary re-
lation � between declaration components M?c/o and M ′?c′/o′ such that the
following rules are admissible:

G �M?c/o = ω′′ G �M ′?c′ : ω = ω′ M?c/o
�M ′?c′/tp

G � U(M, c, o, ω′′,⊥) � ⊥ : ω

G �M?c/o = ω′′ G �M ′?c′ : ω = ω′ M?c/o
�M ′?c′/def

G � U(M, c, o, ω′′,⊥) � ω′ : ω

bool/tp

∨/tp ∧/tp ⇒ /tp

⇒ /def

Note that dependency relations are not nec-
essarily transitive. That way changes can
be propagated one dependency step at a
time, and intermediate revalidation can show
that no further propagation is necessary. Of
course, the transitive closure (in fact: any
larger relation) is again a dependency rela-
tion. Our definition of a dependency relation
was inspired by the one in [RKS11].

Running Example 4 (Continuing Ex. 3). For the theory graph Rev1, we
obtain a dependency relation by assuming a dependency whenever a constant
occurs in a component. We also assume a dependency from each definiens to its
type. The graph in the figure above illustrates this relation.

336 M. Iancu and F. Rabe

4.3 Change Propagation

It is tempting to study the propagation of only a change δ. But this does not
cover the important case of transactions, where multiple changes are propagated
together. This is typical in practice when an author makes multiple related
changes. But it is very complicated to propagate an arbitrary diff. Our key
insight is to focus on the propagation of minimal diffs. These are very easy
to work with, and due to Thm. 3, this is not a loss of generality.

The central idea of our propagation algorithm is to introduce box terms that
mark expressions as impacted. This has the advantage that propagation can be
formalized as a closure operator on sets of changes so that no additional data
structures for impacts are needed.

Definition 11. For a term ω and a rename R = R(T, c, c′), we define ωR as the
term obtained from ω by replacing all occurrences of T ?c with T ?c′. Similarly, if
Δ contains only renames, we define ωΔ by ωΔ

�R = (ωΔ)R and ω· = ω.

Definition 12. For the purposes of Def. 13, we say that a component M?c/o
is modified by Δ if Δ contains a change of the form D(M, c : =) or
U(M, c, o, ω,).

The following definition and theorem express our main result. We state them for
the special case for a diff that does not add or delete assignments. The general
case holds as well but is more complicated.

Definition 13 (Propagation). Assume a fixed theory graph G and a fixed de-
pendency relation � (which we omit from the notation). Assume a G-applicable
diff in normal form Δ = Δ1

�Δ2 that does not contain any adds or deletes of
assignments. We define the propagation Δ of Δ in multiple steps as follows:

1. Δ′
1 contains the following changes (in any order): whenever M?c/o

�M ′?c′/o′ and M?c/o is modified by Δ1, the change

U(M ′, c′, o′, ω, ω) for G � Δ �M ′?c′/o′ = ω

2. Δ′
2 contains the following changes (in any order): whenever R(T, c,) ∈ Δ2

and T ?c/o�M ′?c′/o′, the change

U(M ′, c′, o′, ω, ωΔ2) for G � Δ �Δ′
1 �M ′?c′/o′ = ω

3. Δ′
3 contains the following changes for every morphism G � v : T → T ′ (in

any order):
– whenever A(T, c : = ⊥) ∈ Δ or U(T, c, def, ,⊥) ∈ Δ, the change

A(v, c := ·)

– whenever D(T, c : = ⊥) ∈ Δ or U(T, c, def,⊥,) ∈ Δ, the change

D(v,Ass) for G � Δ �Δ′
1
�Δ′

2 � v?c = Ass

Management of Change in Declarative Languages 337

– whenever R(T, c, c′) ∈ Δ and G � Δ �Δ′
1
�Δ′

2 � T ?c/def = ⊥ and
G � Δ �Δ′

1
�Δ′

2 � v?c := ω, the changes

D(v, c := ω),A(v, c′ := ω)

4. Δ is obtained as Δ′
1
�Δ′

2
�Δ′

3.

Intuitively, Δ′
1 updates all impacted terms to box terms. If � is transitive,

this includes all terms that depended on the now boxed terms. Δ′
2 updates all

references to renamed declarations to the new name.
Δ′

3 ensures that all morphisms have exactly one assignment for every unde-
fined constant in the domain. The first two subcases add empty assignments or
delete existing ones if necessary. The third subcase renames those assignments
where the corresponding constant in the domain has been renamed.

Theorem 5. Consider the situation of Def. 13. Assume that the foundation
is monotonous, that G is foundationally valid, and that � is transitive. Let
G′ = G � Δ �Δ, and let G∗ be a theory graph that arises from G′ by replacing
every box term with a term that type checks in the sense of Def. 8. Then G∗ is
foundationally valid.

Proof. Let us first consider the special case without renames or morphisms. We
apply Def. 8 to G∗. Due to Δ′

1 and the transitivity of �, all possibly ill-typed
terms have been replaced with box terms in G′; and according to the assumptions,
these are replaced with well-typed terms in G∗. Thus, the claim follows.

If there are renames, care must be taken to update all references to the re-
named declarations. If there are adds, care must be taken to guarantee the
totality of morphisms. Both conditions are already fulfilled in G′. We omit the
details.

PL = {
form : type = ⊥
¬ : form → form = ⊥
∧ : form → form → form = ⊥
⇒: form → form → form

= λx.λy.y ∨ (x ∧ y)
}

A typical situation where we would apply
Thm. 5 is after a user made the changes Δ.
Then propagation marks all terms that have
to be revalidated and — if not well-typed —
replaced interactively with well-typed terms.
The theorem guarantees the resulting graph
is valid again.

Running Example 5 (Continuing Ex. 3 and 4). Using Δ = Rev2 − Rev1
and the dependency relation from Ex. 4, we compute Δ. First Δ = Δ1

�Δ2 with
Δ1 = D(PL,∨ : bool → bool → bool = ⊥) �A(PL,¬ : form → form = ⊥) and
Δ2 = R(PL, bool , form). Then

Δ′
1 = U(PL,⇒, def, λx.λy.y ∨ (x ∧ y), λx.λy.y ∨ (x ∧ y))

as well as Δ′
2 = U(PL,∧, tp, bool → bool → bool, form → form → form) �

U(PL,⇒, tp, bool → bool → bool, form → form → form) and Δ′
3 = ·. Finally,

the theory graph Rev1 � Δ �Δ is shown above. As stated in Thm. 5, it becomes
foundationally valid after replacing the box term with a term of the right type.

338 M. Iancu and F. Rabe

5 A Generic Change Management API

Implementation We have implemented the data structures and algorithms from
Sect. 4 as a part of the Mmt API [Rab08]. In fact, our implementation covers a
much larger fragment of Mmt than discussed in this paper.

In particular, the API now contains functions that compute the difference
G′ −G of two theory graphs. The difference of two modules can be computed as
well. The two arguments can either be provided directly or the previous revision
can be pulled automatically from an SVN repository.

We also added functions for change propagation that enrich a normal diff
with its direct impacts according to Def. 13. The generated box terms are repre-
sented as OpenMath error objects. During the propagation algorithm, we make
crucial use of Thm. 1 to increase the efficiency.

Both of these algorithms are implemented foundation-independently. The
foundation is only needed to obtain the dependency relation and to revalidate
the impacted declarations. Both are special cases of type checking.

The Mmt API relegates a type checking obligation ω′ : ω to a plugin for
the respective foundation. In particular, there is a plugin for a monotonous foun-
dation for the logical framework LF [HHP93], which induces implementations of
type checking for all formal systems represented in LF (i.e., for a lot of formal
systems [CHK+11]).

The plugin interface is such that the plugin calls back to the main system
whenever it needs to look up any component M?c/o. In the simplest case, we
can trace these callbacks to obtain the set of components Used(ω′, ω) that were
used to validate ω′ : ω. When the system validates a theory graph G according
to Def. 8, we obtain a dependency relation by putting for every symbol or
assignment G �M ′?c′ : ω = ω′

M?c/o�M ′?c′/tp if M?c/o ∈ Used(⊥, ω)

M?c/o�M ′?c′/def if M?c/o ∈ Used(ω′, ω)

M ′?c′/tp �M ′?c′/def

Note that we first check the type of the declaration and then separately check
the definiens against that type even though the latter implies the former. This
is important because the type will usually have much less dependencies than the
definiens.

This dependency relation is stored in the Mmt ontology, which Mmt main-
tains together with the content [HIJ+11]. Alternatively, the foundation can ex-
plicitly provide a dependency relation, or we can import dependency relations
externally, e.g., the ones from [AMU11].

Application We have applied the resulting system to obtain a change manage-
ment API for the LATIN library. Using the MMT plugins for LF — the language
underlying the LATIN library — we obtain a foundation that validates the li-
brary and computes a dependency relation for it. Fig. 4 gives a summary of the

Management of Change in Declarative Languages 339

dependency relation, where we include only the about 1700 components falling
into the fragment of Mmt treated in this paper. The tables group the compo-
nents by the number of components that they depend on (left) or that depend
on them (right). This includes only direct dependencies — taking the transitive
closure increases the numbers by about 20 %.

dependencies components (%)

0− 5 1373 (79)
6− 10 271 (15.6)
11− 15 81 (4.7)
16− 26 13 (0.7)

impacts components (%)

0− 5 1504 (86.5)
6− 10 101 (5.8)
11− 25 76 (4.4)
26− 50 31 (1.8)
50− 449 26 (1.5)

Fig. 4. Components grouped by dependencies and impacts

The number of dependencies and impacts is generally low. This is a major
benefit of our choice of using type and definiens as separate validation units,
which avoids the exponential blowup one would otherwise expect. Indeed, on
average a type has 3 times as many impacts as a definiens.

Our differencing algorithm can detect and propagate changes easily, and it
is straightforward to revalidate the impacted components. The numbers show
that even manual inspection (as opposed to automatic revalidation) is feasible
in most cases: For example, changes to 86 % of the components impact only
5 or less components. Even if the number of impacted components is so small,
it is usually very difficult for humans to identify exactly which components are
impacted. Our MoC infrastructure, on the other hand, does not only identify
them automatically but also guarantees that all other components stay valid.

6 Conclusion

We have presented a theory of change management based on the Mmt language
including difference, dependency, and impact analysis. As Mmt is foundation-
independent, our work yields a theory of change management for an arbitrary
declarative language. Our work is implemented as a part of the Mmt API and
thus immediately applicable to any language that is represented in Mmt. The
latter includes in particular the logical framework LF and thus every language
represented in it.

Because we use fine-grained dependencies, change propagation can identify in-
dividual type checking obligations (which subsume proof obligations) that have
to be revalidated. The Mmt API already provides a scalable framework for val-
idating individual such obligations efficiently. Therefore, our work provides the
foundation for a large scale change management system for declarative languages.

While our presentation has focused on a small fragment of Mmt, the results
can be generalized to the whole Mmt language, in particular the module system.

340 M. Iancu and F. Rabe

Presently the most important missing feature is a connection between the
Mmt abstract syntax and the concrete syntax of individual languages. There-
fore, change management currently requires an export into Mmt’s abstract syn-
tax (which exists for, e.g., Mizar [TB85], TPTP [SS98], and OWL [W3C09]).
Consequently, future work will focus on developing fast bidirectional transla-
tions between human-friendly source languages and their Mmt content represen-
tation. If these include fine-grained cross-references between source and content,
Mmt can propagate changes into the source language; this could happen even
while the user is typing.

More generally, this approach extends to pure mathematics where the source
language is, e.g., LATEX. If the source is formalized manually, it is sufficient to
include cross-references in the above sense. Then changes in the LATEX source can
be treated and propagated like changes in the formalization. Alternatively, we
can avoid a manual formalization if certain annotations are present in the source:
firstly, annotations that map a line number to the identifier of the statement
(definition, theorem, etc.) made at that line; secondly, annotations that explicate
the dependency relation between statements. For example, the sTeX package for
LATEX permits such annotations in a way that supports automated extraction.

References

ADD+11. Autexier, S., David, C., Dietrich, D., Kohlhase, M., Zholudev, V.: Work-
flows for the Management of Change in Science, Technologies, Engineering
and Mathematics. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe,
F. (eds.) MKM 2011 and Calculemus 2011. LNCS (LNAI), vol. 6824, pp.
164–179. Springer, Heidelberg (2011)

AHM10. Autexier, S., Hutter, D., Mossakowski, T.: Change Management for Het-
erogeneous Development Graphs. In: Siegler, S., Wasser, N. (eds.) Walther
Festschrift. LNCS, vol. 6463, pp. 54–80. Springer, Heidelberg (2010)

AHMS99. Autexier, S., Hutter, D., Mantel, H., Schairer, A.: Towards an Evolution-
ary Formal Software-Development Using CASL. In: Bert, D., Choppy, C.,
Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 73–88. Springer,
Heidelberg (2000)

AHMS02. Autexier, S., Hutter, D., Mossakowski, T., Schairer, A.: The Development
Graph Manager MAYA. In: Kirchner, H., Ringeissen, C. (eds.) AMAST
2002. LNCS, vol. 2422, pp. 495–502. Springer, Heidelberg (2002)

AM10. Autexier, S., Müller, N.: Semantics-Based Change Impact Analysis for Het-
erogeneous Collections of Documents. In: Gormish, M., Ingold, R. (eds.)
Proceedings of 10th ACM Symposium on Document Engineering (Do-
cEng2010) (2010)

AMU11. Alama, J., Mamane, L., Urban, J.: Dependencies in Formal Mathematics.
CoRR, abs/1109.3687 (2011)

Apa00. Apache Software Foundation. Apache Subversion (2000),
http://subversion.apache.org/

BC08. Bundy, A., Chan, M.: Towards Ontology Evolution in Physics. In: Hodges,
W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI), vol. 5110, pp.
98–110. Springer, Heidelberg (2008)

http://subversion.apache.org/

Management of Change in Declarative Languages 341

BCC+04. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase,
M.: The Open Math Standard, Version 2.0. Technical report, The Open
Math Society (2004), http://www.openmath.org/standard/om20

CHK+11. Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.:
Project Abstract: Logic Atlas and Integrator (LATIN). In: Davenport,
J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus
2011. LNCS, vol. 6824, pp. 289–291. Springer, Heidelberg (2011)

CP02. Cervesato, I., Pfenning, F.: A Linear Logical Framework. Information and
Computation 179(1), 19–75 (2002)

CVS. Concurrent Versions System: The open standard for Version Control, Web
site at http://cvs.nongnu.org/ (seen February 2012)

EG89. Ellis, C., Gibbs, S.: Concurrency control in groupware systems. In: Proceed-
ings of the 1989 ACM SIGMOD International Conference on Management
of Data, pp. 399–407. ACM (1989)

FGT92. Farmer, W., Guttman, J., Thayer, F.: Little Theories. In: Kapur, D. (ed.)
CADE 1992. LNCS, vol. 607, pp. 467–581. Springer, Heidelberg (1992)

Git. Git, Web Site at http://git-scm.com/
HHP93. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Jour-

nal of the Association for Computing Machinery 40(1), 143–184 (1993)
HIJ+11. Horozal, F., Iacob, A., Jucovschi, C., Kohlhase, M., Rabe, F.: Combining

Source, Content, Presentation, Narration, and Relational Representation.
In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011
and Calculemus 2011. LNCS, vol. 6824, pp. 212–227. Springer, Heidelberg
(2011)

Hut00. Hutter, D.: Management of change in structured verification. In: Proceed-
ings Automated Software Engineering, ASE 2000, pp. 23–34 (2000)

KK11. Kohlhase, A., Kohlhase, M.: Versioned links. In: Proceedings of the 29th
Annual ACM International Conference on Design of Communication (SIG-
DOC), (2011)

Rab08. Rabe, F.: The MMT System (2008), https://trac.kwarc.info/MMT/
RK11. Rabe, F., Kohlhase, M.: A Scalable Module System (2011),

http://arxiv.org/abs/1105.0548

RKS11. Rabe, F., Kohlhase, M., Sacerdoti Coen, C.: A Foundational View on In-
tegration Problems. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe,
F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp. 107–122.
Springer, Heidelberg (2011)

SS98. Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning 21(2), 177–203 (1998)

TB85. Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In:
Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pp. 26–28 (1985)

W3C09. W3C. OWL 2 Web Ontology Language (2009),
http://www.w3.org/TR/owl-overview/

Wag10. Wagner, M.: A change-oriented architecture for mathematical authoring
assistance. PhD thesis, Universität des Saarlands (2010)

http://www.openmath.org/standard/om20
http://cvs.nongnu.org/
http://git-scm.com/
https://trac.kwarc.info/MMT/
http://arxiv.org/abs/1105.0548
http://www.w3.org/TR/owl-overview/

MathWebSearch 0.5:

Scaling an Open Formula Search Engine

Michael Kohlhase, Bogdan A. Matican, and Corneliu-Claudiu Prodescu

Computer Science, Jacobs University Bremen
http://kwarc.info

Abstract. MathWebSearch is an open-source, open-format, content-
oriented search engine for mathematical formulae. It is a complete system
capable of crawling, indexing, and querying expressions based on their
functional structure (operator tree) rather than their presentation.

In version 0.5, we concentrate on scalability issues in MathWeb-
Search to take advantage of corpora in the giga-formula range. We re-
implemented the index to make it distributable and made all the APIs
web standards conformant. Our experiments show that this architecture
results in a scalable application.

1 Introduction

As the world of information technology grows, being able to quickly search data
of interest becomes one of the most important tasks in any kind of environ-
ment, be it academic or not. Here we tackle the problem of finding information
that is given in the form of (mathematical) formulae. Standard search engines
like Google cannot deal with formulae at all, severely limiting the reach and
utilization of technical, scientific, and engineering documents.

In this paper we present new work in the context of the MathWebSearch
system; a search engine that addresses the problem of searching mathematical
formulae from a semantic point of view, it finds formulae by their structure and
meaning not via their presentation.

In [KŞ06] we have presented the motivation, query language, and web front
end of MathWebSearch 0.1. In [KK07] we have re-examined the value propo-
sition of semantic search for mathematical knowledge homing in on the benefits
and sacrifices induced by the various search approaches [You06b, MM06, LM06],
from a user’s perspective. The result of this analysis is MathWebSearch
0.5, which we describe in this paper. The new version features significant ef-
ficiency gains (space efficiency increased by a factor of five), new management
features, advanced searching capabilities, and a new user interface. The Math-
WebSearch system (see [MWS] for details) is released under the Gnu General
Public License.

The motivation for the work reported in this paper is the availability of large1

corpora, such as the arXMLiv corpus [SK08] with almost three quarters of a mil-
lion scientific articles and an estimated giga-formula. This has not only re-kindled

1 We deem a corpus as large if it has more than 20 million expressions

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 342–357, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://kwarc.info

MathWebSearch 0.5: Scaling an Open Formula Search Engine 343

interest in formula search2, but also severely taxes the scalability of systems.
Scalability issues for presentation-based search engines have been addressed
in [SL11]. Such engines map formulae to “special words” which can then be
indexed by conventional bag-of-word information retrieval engines, which have
become extremely scalable over the last years. The case forMathWebSearch is
completely different, since the content-based unification queries it offers require
an index data structure that reflects the inner structure of formulae (rather
than just pointers to words). Even with the space efficiency gains in Math-
WebSearch 0.5, the indices will surpass the main memory of most machines.
Therefore, we have laid the foundations for distributing the MathWebSearch
in this version.

Before we present MathWebSearch 0.5 from a technical perspective in Sec-
tion 3, we will recap unification-based querying. We evaluate the system on a
large corpus in Section 4 and see that we need to distribute MathWebSearch
to cope with linear RAM usage. Section 5 presents the necessary extensions of
the indexing. Section 6 concludes the paper and discusses future work.

2 Querying Mathematics by Unification

Retrieval of mathematical knowledge and information via unification-based
queries for content-encoded mathematical formulae is very natural. In [KŞ06] we
have already discussed instantiation queries, which can be used to retrieve par-
tially remembered formulae, e.g. the query for the formula for energy of a given sig-
nal s(t) in Figure 1. Note that instantiation queries are more expressive as a query
language than e.g. regular expressions supported by some text-based search en-
gine, since we can use variable co-occurrences to query for co-occurring subterms.

Query (query variables marked as named boxes) Result (Parseval’s Theorem)∫ max

min
f (x)2dx

1

T

∫ T

0

s2(t)dt =
∞∑

k=−∞
‖ck‖2

Fig. 1. An Instantiation Query

To see the full power of unification-based querying consider a student who
encounters

∫
R2 | sin(t) cos(t)|dt and wishes to know if there are any mathemati-

cal statements (like theorems, identities, inequalities) that can be applied to it.
Indeed, there are many such statements (for example Hölder’s inequality) and
they can be found using generalization queries. The idea behind answering
generalization queries is that the index marks universal3 variables in subterms

2 The next NTCIR-10 Challenge in spring 2013 will have a “math track”. NTCIR
evaluates information access technologies in a series of competition events in Japan.

3 We consider an identifier as universal if it can be instantiated without changing the
truth value of the containing expression. In formal representations like first-order
logic, such variable occurrences can be effectively computed, but in semi-formal
settings like mathematical textbooks, they have to be approximated by heuristic
methods; see the discussion in the conclusion for details.

344 M. Kohlhase, B.A. Matican, and C.-C. Prodescu

as generalization targets. Hence, the search engine looks for terms in the index
which, after instantiating the universal identifiers, become equal to the query. For
our example, we have in the index the term (we reuse the box notation for gen-
eralization targets in the index) in Figure 2, which the search engine instantiates

x �→ t, f �→ sin, g �→ cos, D �→ R2 in order to find the generalization query.

Note that the variant query
∫
R2 | sin(t) cos(2t)|dt will not find Hölder’s inequality

since that would introduce inconsistent substitutions x �→ t and x �→ 2t.

∫
D

∣∣∣ f (x) g (x)
∣∣∣ d x ≤

(∫
D

∣∣∣ f (x)
∣∣∣p d x

) 1

p

(∫
D

∣∣∣ g (x)
∣∣∣q d x

) 1

q

Fig. 2. A Formula with Universal Variables in the Index

A very similar idea is used in variation queries where the indexed terms are
searched to match the search expression but only renamings of generic terms are
allowed. This type of queries prove to be helpful when the structure of the term
needs to be maintained.

Sometimes, however, one is in the position that the searching criteria is
somewhere between instantiation queries (i.e. parts are unknown) and gener-
alization queries (parts are probably instantiated already). In this case we give
the possibility to pose unification queries. As the name suggests, the query
just finds terms which are unifiable with the search expression. A query like

g2 cos(x) + b sin(
√
y) would match the term a cos(t) + b sin(t) as we can sub-

stitute x �→ √
y, t �→ √

y, a �→ g2, b �→ b to get the term g2 cos(
√
y)+b sin(

√
y).

3 The MathWebSearch System, Version 0.5

The MathWebSearch system consists of the three main components pictured
in Figure 3. The crawler subsystem collects data from the corpora4. It transforms
the mathematical formulae in the corpus into MWS Harvests (XML files that
contain formula-URIreference pairs) and feeds them into the core system. The
core system (the MathWebSearch daemon mwsd) builds the search index and
processes search queries: it accepts the MathWebSearch input formats (MWS
Harvest and MWS Query; see [KP]) and generates the MathWebSearch out-
put format (MWS Answer Set). These are communicated through the RESTful
interface restd which provides a public HTTP API conforming to the REST
paradigm.

4 Note that we envision essentially one crawler per corpus. The crawlers are specialized
to the respective formula representation, the organization and access methods to the
corpus, etc. We have only implemented a crawler for the arXiv (see Section 4), but
additional crawlers can be patterned after this (see Section 6.1).

MathWebSearch 0.5: Scaling an Open Formula Search Engine 345

Fig. 3. MWS-0.5 System Structure

These components have been implemented using POSIX-compliant [Pos] C++.
We use the MicroHTTPd library [Mic] API for handling HTTP, and LibXML2 [Vei]
API for XML parsing. The meta-data accompanying the internal index is stored
using an external database system. As we are dealing mainly with key-value
retrieval, the BerkeleyDB [Ber] API was preferred.

The system supports two main workflows:

1. The crawler sends an MWS Harvest to mwsd. The XML is parsed and an
internal representation is generated. This is used to update the Substitution
Indexing Tree and consequently the database.

2. The user sends an MWS Query to mwsd. The XML is parsed, an internal
query is generated. Using an efficient traversal of the index tree, formulas
matching the search term are retrieved and aggregated into a result. This is
translated to an MWS Answer Set and sent back to the user.

3.1 Substitution Tree Indexing in MathWebSearch

As we are interested in indexing mathematical formulae at a large scale (docu-
ment archives, text corpora), repetitive content is expected. After all, theorems
are built on top of other theorems and terms on top of subterms. With this in
mind, we chose a space-efficient internal representation based on substitutions.

@0

@1(@2)

f(@2)

b

f(a) f(b)

@1(@2) b

f

a b

Fig. 4. Example DFS
Substitution Tree

In the previous version of MathWebSearch, we
used a technique borrowed from Automated Theorem
Proving called Substitution Indexing [Gra96]. It in-
volves indexing expressions in a tree based on gener-
ality. The root is a generic variable and, as we go from
a node to one of its children, one or more substitutions
occur. For this version, we kept the substitution tree
model and performed a few changes to better fit our
design goals.

As such, we improved query times, by imposing a
fixed substitution ordering. Hence, the query term de-
scribes a deterministic path through the index. The
chosen ordering instantiates the left-most variable

346 M. Kohlhase, B.A. Matican, and C.-C. Prodescu

first, equivalent to DFS traversal of the operator tree. An example index, con-
taining the terms f(a), f(b) and b, is presented in Figure 4. Note that the edges
in the tree are labeled with the operators and operations: @1(@2) stands for the
application operation.

Additionally, we save space by performing two steps of pre-processing for
inserted terms, as well as query terms.

Firstly, we detect and reduce identical subterms. This is done by breaking
the term into all possible subterms and detect equivalent subterms. Following
this, the term is rewritten using only unique subterms (repeated matches are
replaced through references to the first match in DFS order). For example the
term f(a, g(b), g(b)) can be rewritten to f(a, g(b),@[4]), where @[4] represents
the 4th term in DFS order: the subterms in DFS order are: f(a, g(b),@[4]), f , a,
g(b), g, b.

Furthermore, query terms with repeating identical query variables are reduced
and handled as query terms with no repeating query variables. More importantly,
this makes the search process stateless, as no previously matched query variable
instantiations need to be stored.

Secondly, we hold an internal dictionary which maps symbols (in Content-
MathML, represented by element name, attributes and text content) to integer
IDs. The encoding relies on the fact that there are relatively few distinct tokens
(compared to the number of expressions, for example). This achieves significant
memory savings at a small price, since each (inserted or query) term is encoded
exactly once.

3.2 Search Front Ends and Embeddings

For practical applications, mwsd serves as a search back-end that needs to be em-
bedded into a front-end system, which hides some of the complexities of writing
MathWebSearch queries from the user. One example of a front-end system
we are experimenting with is given in Figure 5. Here the user can enter queries
in the LATEX extended with the \qvar macro for query variables. This is then
transformed into the content-MathML-based MathWebSearch queries by the
LATEXML daemon [GSK11] (the formula is also presented to the user with the
query variables colored red). Upon receiving the resulting URIs, the frontend
assembles a list of formulae and paper titles which link to the original paper.
In this situation we are making use of the fact that TEX/LATEX is a lingua
franca for technical communication in the Mathematics community. For other
communities, leveraging the MS Office equation editors might be an attractive
option. For active document settings (e.g. in semantic publishing systems like
Planetary [Koh+11]), formulae might be instrumented with a “search similar for-
mulae” interaction. The same holds for integrated semantic development system
such as Mathematica.

MathWebSearch 0.5: Scaling an Open Formula Search Engine 347

Fig. 5. MWS-0.5 arXivDemo Search Interface

4 Evaluation

We evaluate the MathWebSearch implementation on a large corpus of math-
ematical formulae:

The arXMLiv Corpus. Our group is working on the translation of the almost
750.000 TEX/LATEX articles on Physics, Mathematics, and Computer Science in
the Cornell ePrint archive (see http://www.arXiv.org) to MathML [SK08].
The arXMLiv corpus is the result of translating ∼72% of the arXiv papers.
For our evaluation we have harvested ca 65% (the fragment that have been con-
verted without errors), resulting in a total of 115 million expressions. A trivial
estimation suggests that the full arXMLiv corpus would contain approx. 245 mil-
lion formulae. To harvest these, the arXMLiv crawler goes recursively through
the pages of [arXMLiv] extracting the content MathML5 elements, combines
them with URI references, and reports them to MathWebSearch. We will
now report on a performance analysis for MathWebSearch parametrized on
harvest size (see Figure 6). As our index also indexes subformulae, we include
them in the harvest size. Note that in the arXMLiv corpus a formula has 5.6
proper subformulae on average6 so we estimate the number of indexable formula

5 The result of the transformation contains both Content and Presentation MathML
representations in parallel markup.

6 This rather low number comes from the fact that roughly 2/3 of the formulae in
the arXMLiv corpus consist of only one letter; these are largely irrelevant for search
purposes.

http://www.arXiv.org

348 M. Kohlhase, B.A. Matican, and C.-C. Prodescu

occurrences in the arXiv corpus to be 6.6 × 245 × 108 or 1.6 billion. Note that
many of these formulae will actually be identical, leading to space savings in the
index: recall that the URIs of the subformula occurrences are stored in a data
base indexed by the leaves of the index (see Figure 3). Thus the index grows
with the formula, whereas the database grows with the formula occurrences.

(a) Query Times

(b) Memory Usage

Fig. 6. Experimental Performance Analysis

Average query times. We’ll start with the time efficiency aspect, as this is highly
relevant for a search system. The average query times 7 are presented in Fig-
ure 6(a). This experiment involves measuring several query response times. A
standard query has answsize = 30 and limitmin < 9000. Response times are mea-
sured for standard queries (fresh and cached) from 0 up to 5 qvars. Additionally,
stress queries with answsize = 10000 are used.

As one can see, the query response times are fairly constant as the harvest
data increases. This fits with the theory, as the querying process will follow

7 Note that the queries were sent from the local network, to eliminate any channel
delays.

MathWebSearch 0.5: Scaling an Open Formula Search Engine 349

the same paths in the index (because the query data remains constant). The
small increase is due to the slightly higher density of the index tree (which
affects retrieval of the right path). The gap between the fresh and cached stress
queries is expected, due to the fact that the current bottleneck is retrieving the
meta-data from the external database. Hence, caching significantly improves the
results. In comparison to MathWebSearch 0.1 [KŞ06], which reported query
times below 50 ms for simple queries and 200 ms for stress queries on a harvest
size of 1.6 million, we see that the query times have not increased (even after
normalization for hardware effects).

Memory usage. The graph in Figure 6(b) presents the memory footprint of the
mwsd process, as the system indexed 11.5 million expressions (67 million includ-
ing subterms) harvested from the arXMLiv corpus. In comparison to Math-
WebSearch 0.1, which reported a memory footprint of 770 MB for a harvest
size of 1.6 million, we see a space efficiency improvement by a factor of five. Con-
trary to our expectations of logarithmic increase, we see a fairly linear graph;
the fact that the gradient became steeper after ∼33 million expressions is par-
ticularly unexpected. We are still investigating this.

Nevertheless, the experimental results are valuable to estimate the memory
necessary to index the entire arXiv corpus. Assuming linear scaling across the
245 million formulae estimated for the arXiv, the memory necessary to index all
the formulae would be 245 × 8/11.5 ≈ 170Gb according to our experiment. As
this transcends the RAM of most machines, we have extended mwsd so that it
can be distributed: a reasonable size computer cluster could easily accommodate
the entire arXMLiv corpus and thus provide content-based formula search for
arXiv.org.

5 Distributing MathWebSearch

We are currently implementing a distributed version of MathWebSearch. The
core components, like the RESTful interface, the data formats, and the indexing
data structures, remain the main building blocks. We complement them with a
distributable version of our storage data structure, data persistency, migration
and load balancing. Next, we will present some of the design decisions.

5.1 A Distributable Substitution Tree

As presented in Section 3, the main indexing data structure is a DFS substitution
tree. To represent the tree in a manner that supports cross-machine links, we
use three types of index nodes:

Internal Index Nodes are used to navigate through most parts of the tree.
Their data stores mappings from token ID to the corresponding index node.

Leaf Index Nodes represent the end of a particular formula and its corre-
sponding ID in the URL+URI database.

arXiv.org

350 M. Kohlhase, B.A. Matican, and C.-C. Prodescu

Remote Index Nodes represent cross-sector links. Their data consists of a
pair of memory sector ID and node ID, which uniquely determine the corre-
sponding index node.

As harvests are fed into the system, the index is built. Instead of building it on
the heap (with no control over individual node’s memory locations), the system
places index nodes inside specific memory sectors.

Memory sectors are basically the smallest units of replication, migration, and
load balancing. Each consist of a forest of index node trees packed into a con-
tinuous area of memory of fixed size8. Also, for each memory sector, we have
an attached local database corresponding to the leaf index node results. As the
index grows, individual sectors get filled with these trees. When a sector reaches
a given threshold, two new sectors are created and the contents of the original
sector get split between the new ones.

Memory Sector 1 [9/12]

@0

@1(@2)

f(@2)

b

f(a)

@1(@2) b

a

f

(a) Initial Index Tree

Memory Sector 2 [10/12]

@0

@1(@2)

f(@2) g(@2)

b

f(a)

@1(@2) b

a

f g

Memory Sector 3 [7/12]

g(@2)

g(@3(@4))

g(f(@4))

g(f(x))

@3(@4)

f

x

(b) Distributed Index Tree

Fig. 7. Tree Distribution across Memory Sectors

In Figure 7, we present an example of term insertion which causes a tree
split. Consider the initial tree containing the expressions f(a) and b and memory
sectors of size 12 units, as depicted in Figure 7(a). We consider a memory model
where each link and each node costs 1 unit. Let’s insert g(f(x)). As the resulting
tree would overflow the current memory sector, a new one is created and parts
of the tree are migrated to this new sector (See Figure 7(b)). To split the tree,
the system performs a DFS traversal. As it traverses, the algorithm monitors
two factors:

– the size of the already explored part of the tree (equivalent to the proportion
of the split)

– the DFS fringe (each internal index node in here will generate remote index
nodes).

8 The exact size depends on the RAM sizes of the nodes where the system will run,
typical values ranging between 256Mb and 2048Mb.

MathWebSearch 0.5: Scaling an Open Formula Search Engine 351

We want to minimize the number of remote index nodes, while making the best
balancing effort. In the current version, we choose the split which separates the
trees with at most 40-60 bias, while minimizing the number of generated remote
index nodes.

By representing the sectors as memory mapped files, persistency is achieved,
since the contents of a sector can be easily dumped to, and loaded from secondary
storage. Additionally, migration becomes trivial, since the persistent copy can
be sent across the network, and re-mapped into another system’s memory (of
course, we assume endian-compatible machines).

Last but not least, by clustering the big index into continuous memory sectors,
we can further reduce its size. By restricting sector sizes to 2 Gb, we can use
32bit relative pointers and further reduce the overall memory footprint of the
tree. We have not been able to conduct large tests yet, however, since with
64bit pointers we could not determine any significant differences in memory
consumption between the centralized and decentralized implementations, with
the 32bit ones, we expect a memory reduction on the order of 40%.

5.2 Architectural Overview

Figure 8 portrays the major system components, as well as the communication
flow around the cluster. There are a couple of central components listed on the
figure, as well as some internal ones which are not, all of which to be explained
in this section.

There are two main entry points for the application. The first one is the REST-
ful Interface, which like its centralized counterpart, is tasked with waiting on in-
coming requests (in the form of HTTP POSTs), reading and forwarding them.
Moreover, it will also be in charge of replying to the connected client with the
response to his request, once it is resolved. The Expression Encoder is an interme-
diary component that encodes the received input data (from REST requests) into
the respective internal format (for either updates or queries) that is to be used
throughout. This encoding is algorithmically similar to the centralized version,
(see section 3.1), yet adapted for distributed communication. The second entry
point in the application is through admin clients. These are entities that can be
used to connect to the cluster and issue live commands as well as monitor state.

RESTful Interface

Admin Client

Expression Encoder Slave 1

Slave 2

Slave k

...

Master

Fig. 8. Distributed Architecture - Communication Flow

352 M. Kohlhase, B.A. Matican, and C.-C. Prodescu

Since our architecture follows a Master-Slave communication model, the main
coordination in the cluster is done by the Master Node. Its responsibility is to
direct external requests, from either the RESTful interface or from admin clients,
to the respective slave nodes that should handle them. Furthermore, it is also
tasked with internally coordinating communication and work among the various
slave nodes. As such, on cluster start-up, the master comes online, prepares
the internal book-keeping (including the connection to the REST daemon) and
proceeds to listen for incoming connections. These can be either slaves connecting
to it to join the cluster setup, or admin clients. It is important to note that, the
master will only handle overview tasks – above the actual memory sector level,
so it will not impose a bottleneck.

Slaves, on the other hand, are in charge of serving, updating and querying
across memory sectors. Each Slave is in charge of a partition of the memory
sectors, on which it performs actions upon receiving messages. These can be data
messages (update or query) or admin messages (like dropping or loading specific
memory sectors). While updates and queries can originate from any node, admin
messages are always sent from the master node. Upon coming online, slaves need
runtime information to locate the master and connect to it. After establishing
connection, the master issues them a unique machine ID that will represent them
throughout the session, along with some extra information to help coordinate
further communication.

For this, the master maintain the following internal metadata-structures:

Slave Map represents the mapping between assigned Slave Machine IDs to
their addresses. This is used by slaves to directly connect to each other.

Memory Sector Distribution Map represents the mapping between assigned
Memory Sector IDs to the slave machine IDs of the servants. This is used to
resolve requests that need to go to a specific memory sector directly into a
message to a machine.

Expression Root Map represents the mapping between an encoded expres-
sion token ID to the memory sector id of its container9. This is used by the
master to resolve a request on a given expression directly to a memory sector
that it will be found on.

Split Tree Record represents the history of splits for all the memory sectors
in the system, as well as data about the designated remote index node IDs. It
maps each remote index node ID to the corresponding memory sector. This is
used by the slave nodes to resolve remote index node jumps to the subsequent
memory sectors. Also, this is lively updated throughout the cluster in case
of memory sector splits.

Some of this metadata is also copied to the slaves: The Slave Map and Memory
Sector Distribution Map are fully replicated, as slaves need to resolve requests
pertaining to memory sectors that they might not be responsible for. Further-
more, the part of the Split Tree Record that related to the memory sectors a
slave is responsible for is also replicated on each respective slave, for the same

9 The memory sector forest contains trees starting from these expression roots.

MathWebSearch 0.5: Scaling an Open Formula Search Engine 353

resolution reasons. The Expression Root Map is only used by the master to di-
rect encoded requests (and it is modified on every update going towards memory
sectors).

Another important observation is that, once a master-slave connection is es-
tablished, this enables a two way communication protocol. Through this, the
master is allowed to send messages to the slave at any given time (such as query
or update requests or status notices), while the slave is responsible to periodi-
cally check-in with the master (currently, every 60 seconds) via heartbeats. For
each of these heart-beats, the master will lazily10 ask the slave to update their
internal mappings, should it be necessary. If a slave fails to respond within the
allotted time, it will be assumed dead by the master and thus it and all mapping
entries that would lead to it or its memory sectors will be invalidated.

Distributed Updates. In the current setup, the only way to load the main in-
dex of the system is via admin commands. Through this, the master takes in
an MWS harvest file and proceeds to read and parse the expressions. For each
one, the Expression Encoder is used to transform it into internal representation.
Afterwards, if the Expression Root already exists in some memory sector, the
prepared insertable item is forwarded to the respective machine that is responsi-
ble for it, by performing a lookup on the Expression Root Map and subsequently
on the Memory Sector Distribution Map. If the Expression Root did not exist,
than it will be assigned to a memory sector in a Round Robin fashion and then
the request will be forwarded. Finally, once the request reaches the respective
memory sector, a DFS of the tree starting at the Expression Root will end in
two possible ways. Either a leaf index node is reached and a database insertion
will be triggered, or a remote index node will be discovered, case in which, after
mapping resolution, the remaining request will be forwarded to the respective
machine and the algorithm recurses there.

Distributed Querying. As for queries, upon receiving a request Q, the RESTful
interface assigns it an unique ID and passes it on to the Expression Encoder
and then onto the master. From here, the same resolution used for insertion is
employed to find the slave which serves the memory sector containing the root
of the query expression. Here, the query is first searched in the slave cache. In
case of a hit, the response is sent back to the RESTful interface, which uses the
assigned ID to reply to the client. If the query misses the cache, the slave node
initiates and coordinates the internal searching process. The expression look up
starts within the memory sector. Whenever a remote index node is reached,
the query is forwarded to the respective memory sector. However, when a leaf
index node is reached, the respective solutions are fetched from the database,
forwarded to the coordinating slave node and cached there. An individual search
process is stopped either when there are no more pending remote queries, or when

10 The lazy updates allow us to not worry about invalid connections or two-way com-
munication requests; if messages need to be routed to machines that do not have an
address cached, the requests are just dropped.

354 M. Kohlhase, B.A. Matican, and C.-C. Prodescu

a set limit of results is reached. To increase performance, remote requests are
handled asynchronously, results are sent directly to the coordinator (the slave
which initiated it) and queries are processed in bulks11.

6 Conclusion and Future Work

We have presented a scalable extension of a search engine for mathematical for-
mulae. In contrast to other approaches, MathWebSearch uses the full content
structure of formulae and is easily extensible to other content-oriented formats.
Our first evaluation shows that query times are low and essentially constant
in index/harvest size, so that a search engine can scale up to web proportions.
Contrary to our expectations, index size is linear in harvest size for the arXiv
corpus, which transcends the main memory limits of standard servers. There-
fore, developing parallelization/distribution strategies is a priority. This paper
reports the establishment of the core distribution algorithms and functionality
and shows viability of the approach in principle. Exploring the distribution, man-
agement, and load balancing of a distributed cluster of search nodes is beyond
the scope of this paper.

Even though based on standard practices from distributed systems, the sys-
tem architecture presented here is tailored to the case of distributed substitution
indexes and unification-based queries. Standard database distribution techniques
do not seem to be applicable, since there indexes essentially contain metadata
about locating or accessing data efficiently (and are thus orders of magnitude
smaller than the data itself), whereas the substitution tree index is basically an
organization of the data (formulae) itself optimized for sharing. Generic database
features, such as ACID properties, which might benefit from database distribu-
tion techniques are not currently in the scope of this system.

We conclude the paper with a tabulation of open research areas for informa-
tion retrieval in mathematical/technical documents.

6.1 Additional Corpora

The arXiv corpus we are currently using for benchmarking is paradigmatic for
the “informal but rigorous mathematics” that dominates mathematical commu-
nication today. Here, the ContentMathML has to be heuristically reconstructed
from the presentation in the sources. This is unnecessary for corpora of formal-
ized mathematics, e.g. the Mizar Mathematical Library [Miz] with over 50 000
formal theorems. The problems of obtaining the content MathML are different
here: Even though the representations are formal in principle, the surface lan-
guages are human-oriented, and fully explicit representations need reconstruc-
tion processes (e.g. for reconstructing elided types and arguments, resolution
of operator overloading, etc.). We are currently working on Content MathML
exporters for the Mizar Library and the TPTP (Thousands of Problems for

11 Although the client only requests 30 items, up to 1000 may be retrieved internally
and placed into the cache.

MathWebSearch 0.5: Scaling an Open Formula Search Engine 355

Theorem Proving) library [SS]. Other future targets could be the input files of
mathematical software systems e.g. computer algebra systems like Mathematica,
numerical computation systems like MatLab, or statistics programs like the R
system [Tee11].

6.2 Extending the Indexing

A current weakness of the system is the fact that it can only search for formu-
lae that match the query terms up to α-equivalence. Many applications would
for instance benefit from stronger equalities. Our search in the running exam-
ple might be used to find a useful identity for

∫∞
0 f(x) · g(x)dx, if we know that

s(x)·s(x) = s2(x). MathWebSearch can be extended to an E-Retrieval engine
(i.e., search modulo an equational theory E or logical equivalence) without com-
promising efficiency by simply E-normalizing index and query terms (see [NK07]
for a first implementation).

In the long run, we plan to extend MathWebSearch, so that it can take
more document context information into account, i.e., not just keywords from
the text around the formulae but e.g. the topology of theories in the OMDoc
format: It would be very useful, if we could restrict searches to formulae that
are consistent with current (mathematical) assumptions.

6.3 Result Ranking

Advances in ranking have made word-based search engines scalable from a user
point of view. For formula search engines ranking is an open research question,
there is only one paper that covers this in a more presentation-search oriented
setting [You06a]. To solve the problem, we have to consider the following aspects:
1. What is a good measure for relevance in theory (pagerank only applies to
pages)? 2. How can be compute this efficiently. 3. Can we organize the index,
so that it finds the most relevant hits (as estimated by this measure) first? 4. Is
a single measure enough? We plan to look at the following simple measures as
starting points: 1. pagerank by citations over the papers 2. the size (whatever
that means) of the substitutions (small might be beautiful) 3. similarly, the size
of the formulae 4. popularity of the papers (by download) Finally, we would like
to allow specification of content queries using more widely known formats, like
LATEX: strings like \frac{1}{x^2} or 1/x^2 could be processed as well. This
can be reached by applying an extension (by query variables) of the LATEX to
XML transformation used on the arXiv to process queries. The new LATEXML
daemon [GSK11] allows integrating this efficiently.

6.4 Advanced Search Services

Another important application of the unification search in MathWebSearch
is applicable theorem search (like our example with Hölder’s inequality in Sec-
tion 2). The MathWebSearch system already supports the necessary queries

356 M. Kohlhase, B.A. Matican, and C.-C. Prodescu

(unification), but the arXiv corpus we are currently using does not have the nec-
essary degree of formalization (explicitly marked up universal quantifications).
We plan to utilize (possibly shallow) linguistic technologies to reliably analyze
phrases like “Let f and g be functions from R to R. . . ” that mark the identifiers
f and g as universal and to retrieve the associated sortal restrictions. Note that
the linguistic capabilities of the variable spotter have to be considerable to de-
tect the difference between “. . . where c is a natural number” and “. . . where x
is the number between 1 and n, such that. . . ” (only is c universal) or to detect
that universals in a negative scope are indeed existential.

References

[arXMLiv] arXMLiv build system, http://arxmliv.kwarc.info (visited on May 15,
2010)

[Ber] Berkeley, D.B.: http://www.oracle.com/technology/products/

berkeley-db/index.html (visited on March 03, 2010)
[BF06] Borwein, J.M., Farmer, W.M. (eds.): MKM 2006. LNCS (LNAI), vol. 4108.

Springer, Heidelberg (2006)
[Dav+11] Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.): MKM 2011

and Calculemus 2011. LNCS (LNAI), vol. 6824. Springer, Heidelberg
(2011)

[Gra96] Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)
[GSK11] Ginev, D., Stamerjohanns, H., Miller, B.R., Kohlhase, M.: The LaTeXML

Daemon: Editable Math on the Collaborative Web. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus
2011. LNCS (LNAI), vol. 6824, pp. 292–294. Springer, Heidelberg (2011)

[Kau+07] Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.): MKM/CAL-
CULEMUS 2007. LNCS (LNAI), vol. 4573. Springer, Heidelberg (2007)

[KK07] Kohlhase, A., Kohlhase, M.: Reexamining the MKM Value Proposition:
From Math Web Search to Math Web ReSearch. In: Kauers, M., Kerber,
M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS
(LNAI), vol. 4573, pp. 313–326. Springer, Heidelberg (2007)

[Koh+11] Kohlhase, M., et al.: The Planetary System: Web 3.0 & Active Documents
for STEM. Procedia Computer Science 4, 598–607 (2011); Sato, M., et al.
(eds.) Special issue: Proceedings of the International Conference on Com-
putational Science (ICCS). Finalist at the Executable Papers Challenge,
doi:10.1016/j.procs.2011.04.063

[KP] Kohlhase, M., Prodescu, C.: Mathwebsearch manual. Web manual. Jacobs
University

[KŞ06] Kohlhase, M., Sucan, I.: A Search Engine for Mathematical Formulae. In:
Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120,
pp. 241–253. Springer, Heidelberg (2006)

[LM06] Libbrecht, P., Melis, E.: Methods to Access and Retrieve Mathematical
Content in ActiveMath. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006.
LNCS (LNAI), vol. 4151, pp. 331–342. Springer, Heidelberg (2006)

[Mic] GNU MicroHTTPd library (July 2011),
http://www.gnu.org/software/libmicrohttpd/ (visited on November
07, 2011)

http://arxmliv.kwarc.info
http://www.oracle.com/technology/products/berkeley-db/index.html
http://www.oracle.com/technology/products/berkeley-db/index.html
http://www.gnu.org/software/libmicrohttpd/

MathWebSearch 0.5: Scaling an Open Formula Search Engine 357

[Miz] Mizar mathematical library, http://www.mizar.org/library (visited on
February 12, 2009)

[MM06] Munavalli, R., Miner, R.: Mathfind: a math-aware search engine. In:
SIGIR 2006: Proceedings of the 29th Annual International ACM SI-
GIR Conference on Research and Development in Information Re-
trieval, pp. 735–735. ACM Press, New York 1148348 (2006), doi:
http://doi.acm.org/10.1145/1148170

[MWS] Math Web Search (January 2011), https://trac.mathweb.org/MWS/
[NK07] Normann, I., Kohlhase, M.: Extended Formula Normalization for ε-

Retrieval and Sharing of Mathematical Knowledge. In: Kauers, M., Ker-
ber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007.
LNCS (LNAI), vol. 4573, pp. 356–370. Springer, Heidelberg (2007)

[Pos] IEEE POSIX, ISO/IEC 9945 (1988)
[SK08] Stamerjohanns, H., Kohlhase, M.: Transforming the arχiv to XML. In: Au-

texier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.)
AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144,
pp. 574–582. Springer, Heidelberg (2008)

[SL11] Sojka, P., Ĺı̌ska, M.: Indexing and Searching Mathematics in Digital Li-
braries. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.)
MKM 2011 and Calculemus 2011. LNCS (LNAI), vol. 6824, pp. 228–243.
Springer, Heidelberg (2011)

[SS] Sutcliffe, G., Sutner, C.: The TPTP problem library for automated theo-
rem proving, http://www.tptp.org (visited on December 12, 2011)

[Tee11] Teetor, P.: R Cookbook, 2nd edn. O’Reilly (2011) ISBN: 978-3486705171
[Vei] Veillard, D.: The XML c parser and toolkit of gnome; libxml
[You06a] Youssef, A.: Methods of Relevance Ranking and Hit-content Generation in

Math Search. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS
(LNAI), vol. 4108, pp. 393–406. Springer, Heidelberg (2006)

[You06b] Youssef, A.M.: Roles of Math Search in Mathematics. In: Borwein, J.M.,
Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 2–16.
Springer, Heidelberg (2006)

http://www.mizar.org/library
http://doi.acm.org/10.1145/1148170
https://trac.mathweb.org/MWS/
http://www.tptp.org

Real Algebraic Strategies for MetiTarski Proofs

Grant Olney Passmore1,2, Lawrence C. Paulson1, and Leonardo de Moura3

1 Computer Laboratory, University of Cambridge
2 LFCS, University of Edinburgh
3 Microsoft Research, Redmond

{gp351,lp15}@cam.ac.uk, leonardo@microsoft.com

Abstract. MetiTarski [1] is an automatic theorem prover that can prove
inequalities involving sin, cos, exp, ln, etc. During its proof search, it
generates a series of subproblems in nonlinear polynomial real arithmetic
which are reduced to true or false using a decision procedure for the
theory of real closed fields (RCF). These calls are often a bottleneck: RCF
is fundamentally infeasible. However, by studying these subproblems, we
can design specialised variants of RCF decision procedures that run faster
and improve MetiTarski’s performance.

1 Introduction

MetiTarski [1] is an automatic theorem prover for special functions such as sin,
cos, exp and ln, with variables ranging over the real numbers.1 A typical problem
is a universally quantified first-order formula involving inequalities between real-
valued arithmetic expressions involving such functions; MetiTarski can prove
many nontrivial problems in seconds, such as the following problem drawn from
hybrid systems verification [6]:

∀ t ∈ (0,∞), v ∈ (0,∞)

((1.565 + 0.313 v) cos(1.16 t) + (0.01340 + 0.00268 v) sin(1.16 t)) e−1.34 t

− (6.55 + 1.31 v) e−0.318 t + v + 10 ≥ 0

Internally, MetiTarski is a resolution theorem prover integrated with various de-
cision procedures for the theory of real-closed fields (RCF) [2,7,9]. MetiTarski
reduces its input problem to a series of logical combinations of polynomial in-
equalities, which are further reduced to true or false by an RCF decision pro-
cedure. Unfortunately, the RCF decision problem is hyper-exponential in the
number of variables [3]. The RCF tests typically dominate the overall processor
time, and thus far the success of our methods has been limited to problems in
less than six variables. In this paper, we show that by analysing the structure of

1 MetiTarski accepts first-order formulas over equations and inequalities, with terms
involving real arithmetic, including an open-ended axiomatised collection of special
functions. As this theory is undecidable, MetiTarski employs heuristic methods.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 358–370, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Real Algebraic Strategies for MetiTarski Proofs 359

the RCF subproblems generated by MetiTarski, we can design specialised vari-
ants of RCF decision procedures. In many cases, RCF ceases to be a bottleneck,
and MetiTarski’s improved performance extends its practical reach.

MetiTarski requires axiom files that supply upper and lower bounds for the
special functions of interest. In some cases, these bounds are polynomials, typi-
cally truncated Taylor series. More often, they are rational functions (fractions
of polynomials) obtained from continued fraction approximations. MetiTarski
includes arithmetic simplification designed to help transform special function in-
equalities so as to isolate one particular special function occurrence. The general
resolution procedure, augmented with this simplification, automatically iden-
tifies relevant axioms, thereby replacing the special function occurrence by a
polynomial or rational function that is an upper or lower bound, as appropriate
for the context in which the special function occurs. In the case of a rational
function, the division operator is eliminated through use of an axiom relating
division with multiplication (again chosen by the general resolution mechanism).
At this point, a special function inequality has been replaced by one or more
polynomial inequalities.

The integration between resolution theorem proving and an RCF decision
procedure takes the form of a novel simplification rule. Resolution, like DPLL-
based SAT solving, is concerned with disjunctions of literals where a literal is an
atomic formula or its negation. These disjunctions of literals are called clauses.
When MetiTarski encounters a literal consisting of a polynomial inequality, it
asks an RCF decision procedure whether this literal can possibly be true, taking
into account its context. Formally, MetiTarski builds a conjunction combining
all known clauses that express polynomial inequalities with the negations of the
other literals in the clause. If this conjunction is logically inconsistent, then the
literal is equivalent to false and can be deleted from the clause [1].

MetiTarski also uses RCF decisions to discard freshly-generated clauses that
express nothing new, in the sense that their polynomial content is implied by
other known polynomial inequalities. This RCF-based redundancy test is not es-
sential, but it is a powerful heuristic nevertheless because it prevents the buildup
of logically superfluous but syntactically complex facts.

The search for a proof typically generates hundreds of calls to the RCF
decision procedure, often with gigantic formulas. In earlier work, we used
QEPCAD-B [2] with a text-based interface, and in some cases formulas given to
QEPCAD-B were longer than 50,000 characters. QEPCAD-B works extremely
well for univariate problems, but it deteriorates rapidly with two or three vari-
ables. In such cases, when proofs are found, hardly any processor time spent
in the resolution part of the proof search, and nearly all the time is spent in
QEPCAD-B. A smarter approach to RCF will allow us to tackle harder prob-
lems, and to improve the speed at which we solve problems. We describe an
approach to such improvements below.

1.1 Motivating Hypotheses

The following hypotheses motivate our work:

360 G.O. Passmore, L.C. Paulson, and L. de Moura

1. By studying the structure of the sequences of RCF subproblems MetiTarski
generates during its proof search, we can devise specialised RCF proof meth-
ods which outperform general “off the shelf” RCF proof methods on these
sequences of RCF subproblems.

2. By making use of these specialised RCF proof methods during MetiTarski’s
proof search, we can significantly improve MetiTarski’s performance.

The results in this paper strongly support these hypotheses. Moreover, extrap-
olating from the particular case of MetiTarski, we believe this work supports a
broader hypothesis: That a methodology of studying the structure of generated
subproblems and specialising decision methods to them can lead to substantial
gains for many similarly arranged combinations of automatic proof methods.

1.2 Overview of Contributions

Based upon detailed analysis of the RCF subproblems generated by MetiTarski,
we have made the following improvements:

1. A method for quickly recognising the satisfiability of generated ∃ RCF sub-
problems through retaining, during any given MetiTarski run, a history of
past models produced for satisfiable RCF subproblems. This improvement
works because ∃ RCF subproblems generated during MetiTarski proof search
very often have models in common with each other. To instrument this im-
provement, we communicate models between MetiTarski and the external
RCF decision methods it invokes. When a retained past model consists only
of rational points, we test the model against new ∃ RCF subproblems from
within MetiTarski alone.

2. We observe that the univariate polynomials appearing in RCF subproblems
generated by MetiTarski are almost always irreducible over Z[x]. Thus, at-
tempting to factor them, which is a step applied by default by most RCF
decision methods known to us, is almost always a waste of time. For the
∃ RCF decision procedure in the SMT solver Z3 [4], we observe that per
RCF instance, disabling univariate factorisation has only a small speed-up,
usually less than 0.02 seconds.2 However, for typical univariate RCF sub-
problems, this speed-up is anywhere from 40% - 90% of the total decision
method run time. As MetiTarski may generate many thousands of RCF sub-
problems during its search for a single proof, each of which may contain
tens of different polynomials, this speed-up nontrivially aggregates, leading
to serious gains.

Methodologically, these improvements were motivated by extensive computa-
tional study of the RCF subproblems generated during MetiTarski proofs.3

2 The Z3 program we use in this paper is a new unreleased version with nlsat, a novel
approach to making ∃ RCF decisions. It (and an accompanying paper [7]) may be
retrieved: http://cs.nyu.edu/~dejan/nonlinear/.

3 This collection of RCF subproblems consists of over 400,000 ∃ RCF sentences, each
occurring in MetiTarski’s search for a proof of one of ≈ 800 special function inequality
benchmarks drawn from many mathematical, scientific and engineering sources.

http://cs.nyu.edu/~dejan/nonlinear/

Real Algebraic Strategies for MetiTarski Proofs 361

The success of these methods is supported by extensive experimentation as well.
As we shall see, their combination allows MetiTarski to find proofs much more
quickly than it can with non-specialised “off the shelf” RCF proof methods.

2 Model Sharing

Given ϕ, a universally quantified boolean combination of special function in-
equalities, MetiTarski attempts to prove ϕ through a combination of resolution
and RCF reasoning. For the MetiTarski problems considered in this paper, these
generated RCF subproblems are always purely ∃. We will say an ∃ RCF sen-
tence F is satisfiable if it is true, i.e., if ∃r ∈ R

n s.t. QF (F)(r) holds, where
QF (F) is the quantifier-free matrix of F . We say F is unsatisfiable otherwise.
Let F1, . . . , Fk be the sequence of RCF subproblems generated by MetiTarski
during its search for a proof of ϕ. Then, the following hold:

1. Fi only contributes to a MetiTarski proof when Fi is unsatisfiable over R
n,

2. Many of the Fi share common subexpressions with each other.

From the first point, we see that time spent analysing the truth of satisfiable
RCF subproblems is ultimately time wasted for MetiTarski. Thus, it is desir-
able to have methods for quickly recognising and throwing away satisfiable Fi.
Combining this desire with the second point above, we are led naturally to the
following question:

Given a satisfiable RCF subproblem Fi and a subsequent satisfiable RCF
subproblem Fi+k, is it often the case that Fi and Fi+k have a model in
common?

As we will see, the answer to this question is a resounding yes. These observations
lead to one of our key improvements to MetiTarski: By recording in MetiTarski
models that an RCF decision procedure has found for satisfiable Fi’s, we can
gain a tremendous speed-up by using these past models to quickly recognise the
satisfiability of subsequently generated RCF subproblems. The overhead involved
in communicating, storing and testing these models is far outweighed by the
savings made through avoiding invoking an RCF decision method.

2.1 MetiTarski Proof Search in More Detail

To motivate this model-sharing improvement to MetiTarski, let us study the
sequence of RCF subproblems generated during MetiTarski’s search for a proof
of a particularly simple special function inequality.4 In our benchmark set, this
problem is named max-sin-2 and is the following claim over R:
4 This problem can in fact be solved quickly by Mathematica directly, using some

recent methods it contains for computing with transcendental functions [10]. We
focus on this problem in our discussion of MetiTarski’s proof search for didactic
reasons.

362 G.O. Passmore, L.C. Paulson, and L. de Moura

∀x ∈ (−8, 5) max(sin(x), sin(x + 4), cos(x)) > 0.

In searching for a proof of this theorem, MetiTarski will make use of axioms it
knows for sin, cos and max. With default settings, and without using any of the
enhancements we describe in this paper, MetiTarski finds a proof consisting of
600 steps. Each step is either a resolution step, a substitution step, an arithmeti-
cal simplification step, or an RCF decision step. This proof makes use of three
different lower bounds and three different upper bounds for cos, six different
upper bounds and six different lower bounds for sin, and two definitional axioms
for max. For example, one of the sin lower bounds used is the following:5

cnf(sin_lower_bound_5_neg, axiom,

(0 < X |

~lgen(R, Y,

X - 1/6 * X ^ 3 + 1/120 * X ^ 5 - 1/5040 * X ^ 7 +

1/362880 * X ^ 9 - 1/39916800 * X ^ 11 +

1/6227020800 * X ^ 13 - 1/1307674368000 * X ^ 15 +

1/355687428096000 * X ^ 17 - 1/121645100408832000 * X ^ 19

+ 1/51090942171709440000 * X ^ 21) | lgen(R, Y, sin(X)))).

Many of the intermediate clauses used in the proof contain very large polynomials
with high coefficient bit-width and degree. When pretty-printed to a text file at
75 columns per line, this proof consists of 12,453 lines.

Let us now examine some properties of MetiTarski’s search for this proof.
The total number of RCF inferences used in the proof is 62. But how many
RCF subproblems were generated and sent to an RCF decision procedure in
search of this proof? This number is much higher: 2,776. Of these subproblems,
2,221 are satisfiable. Thus, over 80% of the RCF subproblems generated cannot
contribute anything towards MetiTarski’s proof. Deciding their satisfiability is a
waste of time. This waste can be large, as the RCF subproblems are often very
complicated. For instance, the set of all polynomials appearing in these 2,776
RCF subproblems has the following statistics: max total degree is 24, average
total degree is 3.53, max coefficient bit-width is 103, and average coefficient
bit-width is 21.03.

To get an idea of the expense involved in deciding these satisfiable RCF sub-
problems generated by MetiTarski, let us examine them using Mathematica’s
Reduce command. This command is one of the best and most sophisticated
general-purpose tools for deciding RCF sentences, containing highly-tuned im-
plementations of a vast array of approaches to making RCF decisions [8,9].

Using Mathematica’s Reduce to decide all of these 2,776 RCF sentences, we
see that 253.33 seconds is spent in total. Of that time, 185.28 seconds is spent
deciding the satisfiable formulas. Thus, over 70% of the total RCF time for Meti-
Tarski’s proof search is spent deciding formulas which in the end can contribute
nothing to MetiTarski’s proof. Such results are typical. Table 1 analyses ten rep-
resentative problems. For each, it displays the effort (in terms of the number of
5 Here lgen(R, X, Y) is a generalised inequality relation. It eliminates the need to

have separate instances of the axiom for < and ≤.

Real Algebraic Strategies for MetiTarski Proofs 363

RCF problems and the time taken deciding them), followed by the subset of this
effort that is wasted on satisfiable problems and finally the percentage of wasted
effort, again in terms of the number of problems and the time taken. We list the
contents of these problems in Table 2. Clearly, quick methods for identifying and
discarding satisfiable RCF subproblems could greatly improve performance.

Table 1. RCF Subproblem Analysis for Ten Typical Benchmarks

Problem All RCF SAT RCF % SAT

secs # secs # secs

CONVOI2-sincos 268 3.28 194 2.58 72% 79%

exp-problem-9 1213 6.25 731 4.11 60% 66%

log-fun-ineq-e-weak 496 31.50 323 20.60 65% 65%

max-sin-2 2776 253.33 2,221 185.28 80% 73%

sin-3425b 118 39.28 72 14.71 61% 37%

sqrt-problem-13-sqrt3 2031 22.90 1403 17.09 69% 75%

tan-1-1var-weak 817 19.5 458 7.60 56% 39%

trig-squared3 742 32.92 549 20.66 74% 63%

trig-squared4 847 45.29 637 20.78 75% 46%

trigpoly-3514-2 1070 17.66 934 14.85 87% 84%

Now, given our previous discussions, it is natural to ask the following: How
many of these satisfiable RCF subproblems share models with each other? Ob-
taining an exact answer to this question is certainly computationally infeasible.
However, we can obtain a lower bound. We will do this in the following simple way:
Whenever the RCF procedure decides a formula to be satisfiable, we will ask it to
report to us a model satisfying the formula, and we will store this model within a
model history data-structure in MetiTarski. Note that these models may in gen-
eral contain irrational real algebraic points. Whenever we encounter a new RCF
subproblem, we will first check, within MetiTarski, whether this RCF subproblem
is satisfied by any rational model we have recorded within the model history.

Performing this experiment, we see that at least 2,172 of the 2,221 satisfiable
RCF subproblems share a common model with a previously generated SAT RCF
subproblem. Moreover, only 37 separate rational models were used to satisfy all
of these 2,172 formulas. Note that these numbers are very much lower bounds,
as we (i) only consider the particular models previously recorded (i.e., perhaps
Fi and Fi+k share a model, but this common model is different than the one we
have recorded for Fi), and (ii) we have only considered common rational models.

In Table 3, we show this type of model sharing analysis for the same collection
of ten benchmark problems encountered previously. For each MetiTarski prob-
lem considered, we show (i) the number of SAT RCF subproblems generated,
(ii) the number of those problems which could be recognised to be SAT using the
simple rational model-sharing described above, (iii) the number of different ra-
tional models stored in MetiTarski’s model history, and (iv) the number of those

364 G.O. Passmore, L.C. Paulson, and L. de Moura

Table 2. Typical MetiTarski Benchmarks

CONVOI2-sincos

∀ t ∈ (0,∞), v ∈ (0,∞)

((1.565 + 0.313 v) cos(1.16 t) + (0.01340 + 0.00268 v) sin(1.16 t)) e−1.34 t

− (6.55 + 1.31 v) e−0.318 t + v + 10 ≥ 0

exp-problem-9

∀x ∈ (0,∞)
1 − e−2 x

2x (1 − e−x)2
− 1

x2
≤ 1

12

log-fun-ineq-e-weak

∀x ∈ (0, 12), y ∈ (−∞,∞)

xy ≤ 1

5
+ x ln(x) + ey−1

max-sin-2

∀x ∈ (−8, 5)

max(sin(x), sin(x + 4), cos(x)) > 0

sin-3425b

∀x ∈ (0,∞), y ∈ (−∞,∞)

(x < y ∧ y2 < 6) ⇒ sin(y)

sin(x)
≤ 10−4 +

y − 1
6
y3 + 1

120
y5

x − 1
6
x3 + 1

120
x5

sqrt-problem-13-sqrt3

∀x ∈ (0, 1)

1.914

√
1 + x −√

1 − x

4 +
√

1 + x +
√

1 − x
≤ 0.01 +

x

2 +
√

1 − x2

tan-1-1var-weak

∀x ∈ (0, 1.25)

tan(x)2 ≤ 1.75 10−7 + tan(1) tan(x2)

trig-squared3

∀x ∈ (−1, 1), y ∈ (−1, 1)

cos(x)2 − cos(y)2 ≤ − sin(x + y) sin(x − y) + 0.25

trig-squared4

∀x ∈ (−1, 1), y ∈ (−1, 1)

cos(x)2 − cos(y)2 ≥ − sin(x + y) sin(x − y) − 0.25

trigpoly-3514-2

∀x ∈ (−π, π)

2 | sin(x)|+ | sin(2 x)| ≤ 9

π

models which were successfully shared between at least two RCF subproblems
(the successful models in the model history). We see that with the exception of
trigpoly-3514-2, a very large majority of the SAT RCF subproblems can be

Real Algebraic Strategies for MetiTarski Proofs 365

Table 3. Model Sharing Lower Bounds for Ten Typical Benchmarks

Problem # SAT # SAT by MS # Q Models # Successful

CONVOI2-sincos 194 168 9 7

exp-problem-9 731 720 11 7

log-fun-ineq-e-weak 323 305 24 18

max-sin-2 2,221 2,172 37 37

sin-3425b 72 64 8 6

sqrt-problem-13-sqrt3 1403 1350 26 21

tan-1-1var-weak 458 445 13 9

trig-squared3 549 280 15 11

trig-squared4 637 497 21 16

trigpoly-3514-2 934 4 4 2

recognised to be satisfiable through the use of past rational models. We have
found the vast majority of our benchmark problems to exhibit behaviour con-
sistent with the first nine problems in the table. We note that of those problems
considered, trigpoly-3514-2 is the only one involving π, which is approximated
by MetiTarski using rational upper and lower bounds. Perhaps the presence of
π in the problem has something to do with why its rational model sharing lower
bounds are so much lower than the rest.

Clearly, there is much potential for improving MetiTarski through using past
models of SAT RCF subproblems to quickly recognise subsequent SAT RCF
subproblems. However, we have found that in some cases, the cost of finding a
suitable model in our model history can be quite high. This is due to the fact
that evaluating very large RCF formulas upon rational numbers of very large
bit-width can become expensive (even if somewhat sophisticated approaches to
polynomial sign determination are employed).

To efficiently apply this model-sharing technique in the context of MetiTarski’s
proof search, we have found it necessary to seek some heuristic methods for
prioritising the models based upon their success rates in recognising SAT RCF
subproblems. Through experimentation, we have found that prioritising models
based upon recent success to be most useful. We store all rational models within
MetiTarski, but maintain at any time a list of the ten most successful models,
ordered descendingly by how recently they have been successfully applied to
recognise a SAT RCF subproblem. When a new RCF subproblem is encountered,
we first try the prioritised models in order. If that fails, then we try the remaining
models in our model history, this time in an order based solely upon success rate.

3 Univariate Factorisations

RCF decision procedures typically devote a significant effort to factoring polyno-
mials, effort that is wasted if a polynomial is irreducible. In our case, it has turned

366 G.O. Passmore, L.C. Paulson, and L. de Moura

out that most of the polynomials generated by MetiTarski are irreducible. This is
presumably because most of the polynomials we use to bound special functions
are themselves irreducible. Frequently, a bound is the ratio of two polynomi-
als; MetiTarski will then multiply both sides by the denominator. The resulting
simplifications do not necessarily have to yield another irreducible polynomial;
empirically, however, this usually happens.

Of the well-known transcendental functions, polynomials involved in their
bounds used by MetiTarski only have very simple factors, if they have any at
all. In the case of the functions sin(X) and tan−1(X), this factor is simply X ,
which is unsurprising because their value is zero when X = 0. Similarly, for the
function ln(X), some polynomials have X − 1 as a factor. On the other hand,
bounds for the function sqrt(X) have many non-trivial factors. Note that the
square root bounds are derived using Newton’s method, while most other bounds
come from Taylor series or continued fractions.

Table 4. Factorisation in RCF Subproblems for Typical Univariate Benchmarks

Problem # Factor # Irreducible % Runtime

asin-8-sqrt2 7791 5975 (76.7%) 22.4%

atan-problem-2-sqrt-weakest21 65304 63522 (97.3%) 55.4%

atan-problem-2-weakest21 9882 8552 (86.5%) 2.2%

cbrt-problem-5a 88986 61068 (68.6%) 38.6%

cbrt-problem-5b-weak 138861 25107 (18.0%) 53.1%

cos-3411-a-weak 150354 138592 (92.1%) 53.9%

ellipse-check-2-weak2 5236 3740 (71.4%) 88.7%

ellipse-check-3-ln 1724 1284 (74.4%) 86.7%

ellipse-check-3-weak 12722 9464 (74.3%) 77.9%

Table 4 analyses a representative set of MetiTarski problems. For each, it
displays the number of times the factorisation subprocedure is invoked in Z3,
the number of times the polynomial argument is irreducible, the percentage of
irreducible polynomials, and the percentage of runtime spent in the factorisation
subprocedure.6

For univariate benchmarks, we observed that the overhead of polynomial fac-
torisation is quite significant. Moreover, our RCF procedure in Z3 does not seem
to benefit from factorisation as a preprocessing step even when polynomials
can be factored. Consider the problem instances ellipse-check-2-weak2 and
ellipse-check-3-weak from Table 4. MetiTarski creates respectively 803 and
1569 RCF subproblems for these instances. The RCF procedure in Z3 spends
respectively 88.69% and 77.95% of the runtime in the polynomial factorisation
subprocedure. Although each instance can be solved in less than 20 milliseconds,

6 These experiments were performed on an Intel Core i7-2620M 2.70GHz with 8GB
RAM running Windows 7 64-bit.

Real Algebraic Strategies for MetiTarski Proofs 367

a signficant amount of time can be saved by disabling the factorisation subpro-
cedure. The experimental results in Sect. 4 demonstrate that this indeed the
case.

4 Experimental Results

We have compared four separate MetiTarski runs using different RCF decision
procedures: QEPCAD, Mathematica, Z3 and finally our specially modified ver-
sion of Z3 incorporating the reduced factorisation strategy (cf. Sect. 3) and pri-
oritised model-sharing (cf. Sect. 2).7 We have allowed up to 120 seconds per
problem, using a Perl script to count how many theorems were proved in 10, 20,
. . . , 120 seconds processor time (the total of the time spent in proof search and
RCF calls). These experiments used a subset of 409 problems taken from our full
set of 853 problems. This subset omits trivial problems (defined as those that
can be proved in less than one second). It also omits the existential problems, of
which there are 39, because none of the new methods work for them.8 Figure 1
displays our results:9

For runtimes up to about 60 seconds, the graphs show a clear advantage for
Z3 as modified using Strategy 1, but even unmodified Z3 does very well. By
120 seconds, all four runs appear to converge. This conclusion is not quite accu-
rate, as the different decision procedures are succeeding on different problems.
Mathematica does particularly well on problems with three or more variables.
QEPCAD cannot prove many of these, but it does very well on univariate prob-
lems. As more processor time is allowed, Mathematica is able to prove more
theorems that only it can prove, giving it an advantage.

We also compared the four decision procedures in terms of the number of
problems for which they find the fastest proof. We use a threshold in this com-
parison, counting a proof only if it is faster by a given margin (10%, 50% or
100%, respectively) than all other proofs found; these results appear in Figure 2.

With a threshold of 10% faster, Z3 modified by Strategy 1 dramatically out-
performs all other decision procedures. Its advantage decreases rapidly as this
threshold is increased, while Mathematica’s score largely holds steady. The sit-
uation is complicated by unique proofs: 18 theorems are proved by one system
only, and of these, Mathematica proves 15. (QEPCAD-B proves one, while mod-
ified Z3 proves two.) Mathematica’s superiority for higher-dimensional problems
(each theorem that it uniquely proves has at least two variables, generally more)
gives it an advantage as the threshold is increased, because a unique proof will

7 These experiments were performed on a 2×2.4 GHz Quad-Core Intel Xeon PowerMac
with 10GB of 1066 MHz DDR3 RAM using QEPCAD-B 1.62, Mathematica 8.0.1
and Z3 4.0. This same machine and Mathematica installation were used for the
experiments in Sect. 2.

8 The extension to MetiTarski allowing existentially-quantified problems must be seen
as experimental. It only works on trivial problems such as ∀y ∃x sinh x > y.

9 There is a web resource for this paper containing the MetiTarski source code, bench-
marks and related data: http://www.cl.cam.ac.uk/~gp351/cicm2012/.

http://www.cl.cam.ac.uk/~gp351/cicm2012/

368 G.O. Passmore, L.C. Paulson, and L. de Moura

0 20 40 60 80 100 120
0%

10%

20%

30%

40%

50%

60%

70%
Z3 + Strategy 1

Z3

QEPCAD

Mathematica

Fig. 1. Theorems Proved (by percentage of the total)

always be counted as the fastest. If the threshold is pushed high enough, only
unique proofs will be counted, and here Mathematica has an inbuilt advantage.
Modified Z3 remains top even with the threshold of 200% faster (which means
three times faster). Mathematica finally wins at four times faster, with 17 prob-
lems against 8 for modified Z3, but these are mostly unique proofs rather than
faster proofs.

Our data suggest another question: how is it that QEPCAD-B so often outper-
forms Mathematica, especially on univariate problems? Mathematica has much
better algorithms for real algebraic numbers, and is generally more up-to-date.
Overheads outside of Mathematica’s core RCF decision procedure are presum-
ably to blame. At present, we do not know whether these overheads are concerned
with parsing, preprocessing or something else altogether.

5 Future Work

We see many ways this work might be improved and extended. First, we would
like to better understand how the lineage of RCF subproblems (i.e., the clauses
from which the RCF subproblems were generated) influences model sharing. If
two SAT RCF subproblems share a common ancestry, is it more likely that
they might share a model? This seems likely. It seems plausible that lineage-
based methods for prioritising which stored models we should try may yield
serious efficiency improvements. It would also be very interesting to incorporate
machine learning into this process. Second, we would like to make use of irrational
real algebraic models in our model-sharing machinery. Currently, only rational
models are used to recognise SAT RCF subproblems from within MetiTarski.
One approach which interests us involves using retained real algebraic models to
guide an RCF proof procedure towards certain regions of R

n. This may involve
combining techniques based upon interval constraint propagation and paving [5]
to guide the manner in which Z3 explores its search space, for instance.

Real Algebraic Strategies for MetiTarski Proofs 369

0

30

60

90

120

150

Z3 + Str 1Z3QEPCADMathematica

0

10

20

30

40

50

60

70

80

Z3 + Str 1Z3QEPCADMathematica

0

10

20

30

40

50

60

Z3 + Str 1Z3QEPCADMathematica

(10% faster)

(50% faster)

(100% faster)

Fig. 2. Number of Fastest Proofs (by the Given Threshold) Per Run

370 G.O. Passmore, L.C. Paulson, and L. de Moura

6 Conclusion

We have shown that through detailed analysis of the RCF subproblems generated
during MetiTarski’s proof search, we can devise specialised variants of RCF
decision procedures that greatly outperform general-purpose methods on these
problems.

The approach described here is applicable to the design of any expensive
proof procedure. Given a sufficiently large corpus of representative problems,
the general-purpose procedure can be tuned, which should yield dramatically
better results. This principle also applies when proof procedures are combined:
the subsidiary proof engine should not be viewed as a black box, but should be
refined by analysing the generated problems given to it. It follows that expensive
proof procedures should offer easy customisation so that their users can try such
refinements with the least effort.

Acknowledgements. The research was supported by the Engineering and
Physical Sciences Research Council [grant numbers EP/I011005/1 and
EP/I010335/1]. We thank the referees for their helpful suggestions which im-
proved our paper.

References

1. Akbarpour, B., Paulson, L.: MetiTarski: An Automatic Theorem Prover for Real-
Valued Special Functions. Journal of Automated Reasoning 44(3), 175–205 (2010)

2. Brown, C.W.: QEPCAD-B: A System for Computing with Semi-algebraic Sets via
Cylindrical Algebraic Decomposition. SIGSAM Bull. 38, 23–24 (2004)

3. Davenport, J.H., Heintz, J.: Real Quantifier Elimination is Doubly Exponential. J.
Symb. Comput. 5, 29–35 (1988)

4. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. Granvilliers, L., Benhamou, F.: RealPaver: An Interval Solver using Constraint
Satisfaction Techniques. ACM Trans. on Mathematical Software 32, 138–156 (2006)

6. Gulwani, S., Tiwari, A.: Constraint-Based Approach for Analysis of Hybrid Sys-
tems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203.
Springer, Heidelberg (2008)

7. Jovanovic̀, D., de Moura, L.: Solving Nonlinear Arithmetic. In: IJCAR 2012 (2012)
8. Strzebonski, A.: Solving Systems of Strict Polynomial Inequalities. Journal of Sym-

bolic Computation 29(3), 471–480 (2000)
9. Strzebonski, A.: Cylindrical Algebraic Decomposition using Validated Numerics.

Journal of Symbolic Computation 41(9), 1021–1038 (2006)
10. Strzebonski, A.: Real Root Isolation for Tame Elementary Functions. In: Proceed-

ings of the 2009 International Symposium on Symbolic and Algebraic Computation,
ISSAC 2009, pp. 341–350. ACM, New York (2009)

A Combinator Language for Theorem Discovery

Phil Scott and Jacques Fleuriot

School of Informatics, University of Edinburgh, UK
phil.scott@ed.ac.uk, jdf@inf.ed.ac.uk

Abstract. We define and implement a combinator language for
intermediate lemma discovery.We start by generalising an algebraic data-
structure for unbounded search and then extend it to support case-analysis.
With our language defined, we expect users to be able to write discoverers
which collaborate intelligently in specific problem domains. For now, the
language integrates rewriting, forward-deduction, and case-analysis and
discovers lemmas concurrently based on an interactive proof context. We
argue that the language is most suitable for adding domain-specific au-
tomation tomechanically formalised proofs written in a forward-style, and
we show how the language is used via a case-study in geometry.

1 Introduction

The task of exhibiting a formal proof of a mathematical theorem is hard. Domain-
agnostic tools are generally unusably slow at automatically finding proofs of even
relatively trivial mathematical theorems. Instead, those attempting to produce
formal verifications of mathematics typically use interactive proof assistants.
Here, a human can contribute their own mathematical insight, typically by guid-
ing and coordinating various proof searching tools in an intelligent way. But even
then, the task is laborious. It has been estimated that it takes a week for an ex-
pert to formalise just one page of prose mathematics [4], which is a big problem
for large scale verification efforts such as the Flyspeck Project [3].

1.1 Incidence Reasoning in the Foundations of Geometry

The labour involved in formalised mathematics has been of particular con-
cern to us in regards to Hilbert’s Foundations of Geometry. We have been for-
malising Hilbert’s axiomatics declaratively in the LCF-style [2] theorem-prover
HOL Light [5], and previous work here [7,11] has shown that when its proofs are
formalised, the majority of the proof-script involves reasoning about incidence
between points, lines and planes. This domain is clearly combinatorial, and it is
challenging to find the correct paths of inference towards the necessary lemmas,
or to even know what inferences are possible. The prose text is of no help, since
Hilbert omits all of the complexity of incidence reasoning.

Our early proof-scripts were therefore dominated by forward inference steps
that derived a large collection of collinear, non-collinear and planar sets.
These, in turn, served to justify the explicit inferences in Hilbert’s prose proofs.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 371–385, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

372 P. Scott and J. Fleuriot

We typically worked out the implicit incidence reasoning by hand, and then
translated these into our mechanisation. Working out the correct inferential
paths was laborious and error-prone, and the vast number of choices meant
that in various places we found that we had chosen suboptimal paths.

Once the proofs were mechanised, there were clear patterns of reasoning, as
the incidence theorems were fed through our various incidence rules. Sketching
out the typical flow of incidence theorems revealed the complex network shown
in Figure 1.

The aim of this paper is to express this pattern of forward-reasoning and others
like it using a suitable algebraic language for intermediate lemma discovery.
Following the examples of tactics and conversions [8], we implement the language
in terms of ML-combinators [14]. The advantage of this implementation is that
it fully integrates with the host programming language (in this case, ML [9]).
This means the user is free to extend the system and is free to parameterise and
inject computations into it using arbitrary pieces of the native language.

We should stress that our focus here is on programmable automated tools to
assist interactive proof. As such, many of the concerns of more general theorem
discovery need not apply. For instance, we will not attempt to formalise a general
notion of “interestingness”. Our lemma search is implicitly guided by the proof
context during interactive proof, and so interestingness can be controlled by
the users who may: guide the search by refining the proof context; apply their
own filters, and tailor the composition of discoverers to their chosen domain; use
proof commands to reference lemmas of interest from those discovered. For more
general theory discovery, see, for instance, Colton et al [1] and McCasland and
Bundy [6].

In the next section, we describe the basic data-structures and combinators for
a discovery algebra. Then, in §3, we add primitives and derive new functionality
which tailor the tools towards interactive theorem proving. Finally, in §4, we
evaluate our new tools in the context of the problem we have outlined here.

2 Stream Discoverers

We take it that the overarching purpose of search and discovery is to output
one or more theorems. If we think of this output as the implementation, then
we can unify both search and discovery in terms of a procedure which lazily
generates successive elements of a list. Search and discovery are distinguished
only according to whether we expect the lists to be finite or whether we expect
them to be infinite streams.

For the purposes of this section, we leave unspecified what computations are
used to generate the basic streams. It might be that a stream is produced by
supplying it with a list of definite theorems; it might be that a stream is generated
using input data; it might even be delivered by some other automated tool. We
shall focus instead on the algebra of transformations on streams, and in how we
might lift typical symbolic manipulation used in theorem proving to the level of
streams.

A Combinator Language for Theorem Discovery 373

Fig. 1. A network for incidence reasoning: boxes represent collections of various kinds
of theorem, while triangles represent inference rules

One reason why lists and streams are a good choice is that they are the
ubiquitous data-structure of ML and its dialects, and have rich interfaces to
manipulate them. A second reason why lists are an obvious choice is that they
have long been known to satisfy a simple set of algebraic identities and thus to
constitute a monad [15]. We can interpret this monad as decorating computations
with non-deterministic choice and backtracking search.

Monads themselves have become a popular and well-understood abstraction
in functional programming, and have gained recent interest in other languages.
Formally, a monad is a type-constructor M together with three operations

return : α→M α

fmap : (α→ β)→M α→M β

join :M (M α)→M α

satisfying the algebraic laws given in Figure 2.
However, the list monad uses list concatenation concat : [[α]] → [α] as the

join, which makes it unsuitable for non-terminating discovery. If the list xs
represents unbounded discovery, then we have xs + ys = xs1 for any ys, and
thus, all items discovered by ys are lost. This is an undesirable property. We
want to be able to combine unbounded searches over infinite domains without
losing any data.

1 Here, + is just list append.

374 P. Scott and J. Fleuriot

fmap (λx. x) m = m

fmap f ◦ fmap g = fmap (f ◦ g)
fmap f ◦ return = return ◦ f
fmap f ◦ join = join ◦ fmap (fmap f)

(join ◦ return) m = m

(join ◦ fmap return) m = m

join ◦ join = join ◦ fmap join (1)

Fig. 2. The Monad Laws

2.1 The Stream Monad

There is an alternative definition of the monad for streams (given in Spivey [13])
which handles unbounded search. Here, the join function takes a possibly infinite
stream of possibly infinite streams, and produces an exhaustive enumeration of
all elements. We show how to achieve this in Figure 3 using a function shift,
which moves each stream one to the “right” of its predecessor. We can then
exhaustively enumerate every element, by enumerating each column, one-by-
one, from left-to-right.

shift

[[D0,0, D0,1, D0,2, . . . , D0,n, . . .],
[[D1,0, D1,1, D1,2, . . . , D1,n, . . .],
[[D2,0, D2,1, D2,2, . . . , D2,n, . . .],
[[D3,0, D3,1, D3,2, . . . , D3,n, . . .],
[[D4,0, D4,1, D4,2, . . . , D4,n, . . .],
[[D5,0, D5,1, D5,2, . . . , D5,n, . . .],

=

[[D0,0, D0,1, D0,2, D0,3, D0,4, D0,5, D0,6, D0,7, D0,8, D0,9, D0,10, . . .],

[D1,0, D1,1, D1,2, D1,3, D1,4, D1,5, D1,6, D1,7, D1,8, D1,9, . . .],

[D2,0, D2,1, D2,2, D2,3, D2,4, D2,5, D2,6, D2,7, D2,8, . . .],

[D3,0, D3,1, D3,2, D3,3, D3,4, D3,5, D3,6, D3,7, . . .],

[D4,0, D4,1, D4,2, D4,3, D4,4, D4,5, D4,6, . . .],

[D5,0, D5,1, D5,2, D5,3, D5,4, D5,5, . . .],

[D6,0, D6,1, D6,2, D6,3, D6,4, . . .]

...

Fig. 3. Shifting

If we understand these streams as the outputs of discoverers, then the outer
stream can be understood as the output of a discoverer which discovers discov-
erers. The join function can then be interpreted as forking each discoverer at

A Combinator Language for Theorem Discovery 375

the point of its creation and combining the results into a single discoverer. The
highlighted column in Figure 3 is this combined result: a set of values generated
simultaneously and thus having no specified order (this is required to satisfy
Law 1 in Figure 2).

However, this complicates our stream type, since we now need additional
inner structure to store the combined values. We will refer to instances of this
inner structure as generations, each of which is a finite collection of simultaneous
values discovered at the same level in a breadth-first search. We then need to
define the join function, taking care of this additional structure.

Suppose that generations have type G α where α is the element type. The
manner in which we will define our shift and join functions on discoverers of
generations assumes certain algebraic laws on them: firstly, they must constitute
a monad; secondly, they must support a sum operation (+) : G α→ G α→ G α
with identity 0 : G α. The join function for discoverers must then have type
[G [G α]] → [G α], sending a discoverer of generations of discoverers into a
discoverer of generations of their data.

To see how to define this join function, we denote the kth element of its
argument by gsk = {dk,0, dk,1, . . . , dk,n} : G [G α]. Each dk,i is, in turn, a
discoverer stream [gki,0, g

k
i,1, g

k
i,2, . . .] : [G α]. We invert the structure of gsk using

a function transpose :M [α]→ [M α], which we can define for arbitrary monads
M . This generality allows us to abstract away from Spivey’s bags and consider
more exotic inner data-structures. We choose the name “transpose” since its
definition generalises matrix transposition on square arrays (type [[α]]→ [[α]]):

transpose xs = fmap head xs :: transpose (fmap tail xs)

The transpose produces a stream of generations of generations
(type [G (G α)]). If we join each of the elements, we will have a stream
[Dk,0, Dk,1, Dk,2, . . .] : [G α] (see Figure 4), and thus, the shift function of Fig-
ure 3 will make sense. Each row is shifted relative to its predecessor by prepend-
ing the 0 generation, and the columns are combined by taking their sum.

The type of discoverers now constitutes a monad (see Spivey [13] for details).
The fact that we have a monad affords us a tight integration with the host lan-
guage in the following sense: we can lift arbitrary functions in the host language
to functions on discoverers, and combine one discoverer d : [G α] with another
discoverer d′ : α → [G α] which depends, via arbitrary computations, on each
individual element of d.

There is further algebraic structure in the form of a monoid: streams can be
summed by summing corresponding generations, an operation whose identity is
the infinite stream of empty generations.

2.2 Case-Analysis

Our algebra allows us to partition our domain into discoverers according to our
own insight (for instance, in geometry, we saw we should divide the domain into
various sorts of incidence relations). We can then compose the discoverers in a
way that reflects the typical reasoning patterns found in the domain.

376 P. Scott and J. Fleuriot

map join (transpose {dk,0, dk,1, . . . , dk,n})

=map join

⎛
⎜⎜⎜⎜⎜⎜⎝
transpose

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[gk0,0, gk0,1 , gk0,2, . . .]

[gk1,0, gk1,1 , gk1,2, . . .]

...

[gkn,0, gkn,1 , gkn,2, . . .]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎣
join {gk0,0, gk1,0, . . . , gkn,1},
join

{
gk0,1 , gk1,1 , . . . , gkn,1

}
,

join {gk0,2, gk1,2, . . . , gkn,2},
...

⎤
⎥⎥⎥⎥⎦

=[Dk,0, Dk,1, Dk,2, . . .]

Fig. 4. Transpose

However, when it comes to theorem-proving, the sets of theorems are further
partitioned by branches on disjunctive theorems. In proof-search, when we en-
counter a disjunction, we will want to branch the search and associate discovered
theorems in each branch with its own disjunctive hypothesis.

Ideally, we want to leave such case-splitting as a book-keeping issue in our
algebra, and so integrate it into the composition algorithm. Streams must then
record a context for all of their theorems, and this context must be respected as
discoverers are combined.

Luckily, we left ourselves room to implement the generations output by our
discoverers. To solve the problem of case-analysis, we have chosen to implement
the generations as trees. We have briefly described a version of this data-structure
elsewhere [12]. However, the data-structure has since been simplified and we have
now provided a definition of its join.

2.3 Trees

Each tree represents a discovered generation. Each node is a (possibly empty)
conjunction of theorems discovered in that generation. Branches correspond to
case-splits, with each branch tagged for the disjunct on which case-splitting was
performed. The branch labels along any root-path therefore provide a context
of disjunctive hypotheses for that subtree.

Thus, the tree in Figure 5 can be thought as representing the formula:

φ1 ∧ φ2 ∧ · · · ∧ φn ∧ (P → ψ1 ∧ ψ2 ∧ · · · ∧ ψn) ∧ (Q→ χ1 ∧ χ2 ∧ · · · ∧ χn
∧ (R→ α1 ∧ α2 ∧ · · · ∧ αn) ∧ (S → β1 ∧ β2 ∧ · · · ∧ βn))

The principal operation on trees is a sum function which is analogous to the
append function for lists, combining all values from two trees. We combine

A Combinator Language for Theorem Discovery 377

[φ1, φ2, . . . , φn]
P Q

[ψ1, ψ2, . . . , ψn] [χ1, χ2, . . . , χn]
R S

[α1, α2, . . . , αn] [β1, β2, . . . , βn]

Fig. 5. Tagged Proof-trees

case-analyses by nesting them, replacing the leaf nodes of one tree with copies
of the other tree. For definiteness, we always nest the right tree in the left.

To keep the trees from growing indefinitely, we consider the following simpli-
fications: firstly, we prune subtrees which contain no data; secondly, if a case
is introduced whose context is larger than a parallel case further up the tree,
it can be dropped, since any theorem which can be eliminated in the stronger
branch will have to be discovered again under weaker assumptions further up
the tree; finally, if a branch label is introduced which appears further up the
root path, then all sibling branches are dropped, while the subtree is summed
with its parent — a move which corresponds to weakening. We illustrate these
rules in Figure 6.

xs
P Q

ys
R S

zs
T U

+

ts us vs ws

xs′

X P

ys′

T Q

zs′

R S

ts′ us′ vs′ ws′

xs+ xs′

P Q

= ys+ zs′

R S

zs
T U

ts+ vs′ us+ ws′ vs
X

ws
X

ys′ + ts′ + us′ ys′ + us′

Fig. 6. Proof tree combination and simplification. The highlighted subtrees are com-
bined applying simplification rules which yield a subtree with the same topology.

378 P. Scott and J. Fleuriot

Finally, we allow trees to be empty, containing a single empty root node. This
is the identity of our sum function. From these, we can define a join analogous
to list concatenation. Suppose we are given a tree t whose nodes are themselves
trees (so the type is Tree (Tree α)). Denote the inner trees by t0, t1, t2, . . .,
tn : Tree α. We now replace every node of t with an empty conjunction, giving
a new tree t′ with the new type Tree α. We can now form the sum

t′ + t0 + t1 + t2 + · · ·+ tn

The resulting tree will then contain discovered theorems which respect disjunc-
tive hypotheses from their place in t and from their respective inner-trees.

3 Additional Primitives and Derived Discoverers

As we described in §2.1, discovery constitutes a monoid. The sum function can
be understood as a simple way to compose two discoverers by effectively running
them in parallel, respecting their case-splits. Composing with the identity discov-
erer, which generates nothing but empty generations, yields the same discoverer
as before.

3.1 Case-Splitting

Case-splits are introduced by disjuncts, which is a discoverer parameterised
on arbitrary theorems. Here, disjuncts (� P0 ∨ P1 ∨ · · · ∨ Pn) outputs a single
tree with n branches from the root node. The ith branch is labelled with the
term Pi and contains the single theorem Pi � Pi. This process can be undone by
flattening trees using flatten, which discharges all tree labels and adds them
as explicit antecedents on the theorems of the respective subtrees.

3.2 Filtering

In many cases, we will not be interested in all the outputs generated by a discov-
erer. Fortunately, filtering is a library function for monads with a zero element,
and can be defined as:

xs >>= f = join (fmap f xs)

filter p xs = xs >>= (λx. if p x then return x else 0)

More challenging is a function to perform something akin to subsumption. The
idea here is that when a theorem is discovered which “trivially” entails a later
theorem, the stronger theorem should take the place of the weaker. This is in-
tended only to improve the performance of the system by discarding redundant
search-paths.

We can generalise the idea to arbitrary data-types, and parameterise the fil-
tering by any partial-ordering on the data, subject to suitable constraints. One
intuitive constraint is that a stronger item of data should only replace a weaker

A Combinator Language for Theorem Discovery 379

item so long as we don’t “lose” anything from later discovery. Formally, we re-
quire that any function f used as the first argument to fmap is monotonic with
respect to the partial-order. That is, if x ≤ y then f x ≤ f y.

We then implement a “subsumption” function in the form of the transfor-
mation maxima. This transforms a discoverer into one which does two things:
firstly, it transforms every individual generation into one containing only max-
ima of the partial-order. Secondly, it discards data in generations that is strictly
weaker than some item of data from an earlier generation. Note that the partial-
ordering is automatically refined to cope with case-splits, so that data higher up
a case-splitting tree is always considered stronger than data below it (since it
carries fewer case-splitting assumptions).

3.3 Deduction

Direct deduction, or Modus Ponens, is the basis of forward-chaining and we
provide two main ways to reproduce it for discoverers. In our theorem-prover,
the Modus Ponens inference rule can throw an exception, so we first redefine fmap
to filter thrown exceptions out of the discovery. Then we can define functions
fmap2′ and fmap3′ which lift two and three-argument functions up to the level
of discoverers.

fmap′ f xs = xs >>= (λx. try return (f x) with → 0) xs

fmap2′ f xs ys = fmap f xs >>= (λf. fmap′ f ys)

fmap3′ f xs ys zs = fmap f xs >>= (λf. fmap2′ f ys zs)

With these, we can define the following forward-deduction functions:

chain1 imp xs = fmap2′ MATCH MP (return imp) xs

chain2 imp xs ys = fmap2′ MATCH MP (chain1 imp xs) ys

chain3 imp xs ys zs = fmap2′ MATCH MP (chain2 imp xs ys) zs

chain imps xs = imps >>= (λimp. if is imp imp

then chain (fmap (MATCH MP imp) thms) thms

else return imp)

The function is imp returns true if its argument is an implication, while
MATCH MP imp is a function which attempts to match the antecedent of imp with
its argument. Thus, chain1 applies a rule of the form P → Q across a discoverer
of antecedents. The function chain2 applies a rule of the form P → Q → R
across two discoverers of antecedents. The function chain3 applies a rule of the
form P → Q→ R → S across three discoverers of antecedents. The final, more
general function, recursively applies rules with arbitrary numbers of curried an-
tecedents from the discoverer imps across all possible combinations of theorems
from the discoverer xs.

380 P. Scott and J. Fleuriot

3.4 Integration

Finally, we consider how our discoverers integrate with term-rewriting, declara-
tive proof and tactics. Integrating term-rewriting is trivial: we simply lift rewrit-
ing functions with fmap and its derivatives.

To use our discoverers in declarative proofs, we introduce a keyword
obviously. This keyword can be used to augment any step in a declarative
proof and takes an arbitrary function mapping discoverers to discoverers. When
the keyword is encountered in the evaluation of a proof script, all intermediate
facts inferred up to that point in the proof are fed into the function, and search
is evaluated to a maximum depth. Afterwards, discovered facts are added as
justification for the augmented step.

Tactics can also readily make use of discovery. We provide a tactic chain tac

which, again, takes a function mapping discoverers to discoverers, and also takes
a tactic which depends on a list of theorems. The tactic chain tac takes a goal,
feeds its hypotheses through the discovery function and evaluates search to a
maximum depth. The discovered theorems are then fed to the list dependent
tactic, which attempts to simplify the goal. For example, the tactic

chain tac by incidence REWRITE TAC

feeds a goal’s hypotheses into an incidence discoverer, and then rewrites the goal
using the discovered theorems.

We finally supply a primitive discoverer monitor which discovers theorems
concurrently during proof development. We have made this discoverer the basis
for a more collaborative discovery framework, which we describe elsewhere [12].

4 The Problem Revisited

We now return to our original geometry problem. In Figure 7, we capture the
complex network from Figure 1. Each of the five kinds of theorem depicted
corresponds to the definition of a new discoverer, and the mutual dependencies
of the network are captured by mutual recursion2.

Search can now be further refined. For instance, the network in Figure 1 has
some redundancy: point-inequalities delivered from non-collinear sets cannot be
used to infer new non-collinear sets. This redundancy can be eliminated by
splitting neqs into two discoverers, neqs and neqs’. The latter is used only to
derive non-collinear sets, while the sum of both is used for all other inference.

4.1 Results

A relatively simple description of a discoverer can now systematically recover
the implicit incidence-reasoning in Hilbert’s Foundations of Geometry. We show
its results through part of an example proof. Here, we are trying to prove a
transitivity property of Hilbert’s three-place between relation on points: if B lies
between A and C, and C between B and D, then C lies between A and D.

2 The inference rule CONJUNCTS sends a conjunctive theorem to list of its conjuncts.

A Combinator Language for Theorem Discovery 381

sum = foldr (+) 0 ◦ map return

by incidence thms =

let rec collinear = maxima (filter is collinear thms

+ fmap3’ col union (delay collinear) (delay collinear) neqs)

and non collinear = maxima (filter is non collinear thms

+ fmap3’ triangle collinear (delay non collinear) neqs)

and eqs = filter is eq thms

+ maxima(sum (fmap3’ intersect

collinears collinear non collinear))

and neqs = maxima(filter is neq thms

+ sum (fmap2’ colncolneq collinear (delay non collinear))

+ sum (fmap’ CONJUNCTS (rule1 ncol neq non collinear)))

and planes = maxima (filter is plane thms

+ fmap3’ plane union (delay planes) (delay planes)

non collinear

+ fmap3’ colplaneplane collinear (delay planes) neqs

+ fmap2’ colcolplane collinear collinear

+ fmap’ colplane collinear

+ fmap’ ncolplane non collinear)

in collinear+non collinear + eqs + neqs + planes

Fig. 7. Incidence Discovery

prove between A B C ∧ between B C D =⇒ between A C D

assume between A B C ∧ between B C D at 0 consider E such that such

that ¬(∃a. A on a ∧ B on a ∧ E on a) from 0 by II,1 and triangle

The assume step adds the goal’s antecedent to the current hypotheses, while
the consider step introduces a non-collinear point E using one of Hilbert’s
axioms and a lemma triangle (see Appendix A). These hypotheses form the
context for our discoverer. They are automatically picked up by monitor and
then fed through our incidence network to produce the following theorems within
0.31 seconds:3

A	=E, B	=E, between A B C, between B C D, A	=B, A	=C, B	=C, B	=D,

C	=D, ¬(∃a. A on a ∧ B on a ∧ E on a),¬(∃a. A on a ∧ C on a ∧ E on a),

¬(∃a. B on a ∧ C on a ∧ E on a), C	=E,

(∃a. A on a ∧ B on a ∧ C on a ∧ D on a),

¬(∃a. B on a ∧ D on a ∧ E on a), ¬(∃a. C on a ∧ D on a ∧ E on a),

(∃α. A on α ∧ B on α ∧ C on α ∧ D on α ∧ E on a), D	=E

The obviously keyword picks up these theorems, and from C
= E we are
able to find a point F :

obviously by incidence consider F such that between C E F by II,2 at 1

3 We have tested this on an Intel Core 2 2.53GHz machine.

382 P. Scott and J. Fleuriot

The next set of discovered theorems are found within 1.21 seconds:

between C E F, (∃a. C on a ∧ E on a ∧ F on a), C	=F, E	=F,

(∃α. A on α ∧ B on α ∧ C on α ∧ D on α ∧ E on a ∧ F on a),

A	=F, B	=F, D	=F

¬(∃a. A on a ∧ C on a ∧ F on a), ¬(∃a. A on a ∧ E on a ∧ F on a),

¬(∃a. B on a ∧ C on a ∧ F on a), ¬(∃a. B on a ∧ E on a ∧ F on a),

¬(∃a. C on a ∧ D on a ∧ F on a), ¬(∃a. D on a ∧ E on a ∧ F on a),

¬(∃a. A on a ∧ B on a ∧ F on a), ¬(∃a. B on a ∧ D on a ∧ F on a),

The rest of the proof consists of repeatedly applying a complex axiom due to
Pasch. The axiom says that if a line enters one side of a triangle then it leaves
by one of the other two sides. By cleverly applying this axiom, it is possible to
prove our original theorem (this is not a trivial matter, and the proof had eluded
Hilbert in the first edition of Foundations of Geometry where the theorem was
an axiom; the proof was later supplied by Moore [10]).

The challenge, however, lies in verifying when all the preconditions on Pasch’s
Axiom have been met, something we handle by adding a discover by pasch to
our existing incidence discovery (we omit the definition for space). It reveals the
following additional theorems, found within 2.82 seconds.

∃G. (∃a. B on a ∧ E on a ∧ G on a) ∧ (between A G C ∨ between A G F)

∃G. (∃a. A on a ∧ E on a ∧ G on a) ∧ (between B G C ∨ between B G F)

∃G. (∃a. B on a ∧ E on a ∧ G on a) ∧ (between A G F ∨ between C G F)

∃G. (∃a. B on a ∧ E on a ∧ G on a) ∧ (between C G D ∨ between D G F)

∃G. (∃a. B on a ∧ F on a ∧ G on a) ∧ (between A G E ∨ between C G E)

∃G. (∃a. D on a ∧ E on a ∧ G on a) ∧ (between B G C ∨ between B G F)

Further exploration of the proof involves applying one of these theorems. We
can, for instance, try the penultimate instance with the step

obviously by pasch consider G such that (∃a. B on a ∧ F on a ∧ G on a)

∧ (between A G E ∨ between C G E)

The monitor now picks up the disjunction and creates a tree to represent a
case-split. As this feeds into the discoverer, our combinators will automatically
partition the search on the two assumptions. Our discoverer then produces three
sets of theorems in 9.58 seconds 4

The first set of theorems are proven independently of the case-split:

(∃α. A on α ∧ B on α ∧ C on α ∧ D on α ∧ E on a ∧ F on a ∧ G on a)

C	=G ∧ E	=G ∧ A	=G ∧ D	=G

4 Note that the outputs from the three sets are interleaved, and are not generated
simultaneously. While the full set of theorems requires 9.58 seconds, most of the
theorems shown here are actually generated in under 1 second. The theorem required
to advance the proof, between C G E → F = G is generated in 6.19 seconds.

A Combinator Language for Theorem Discovery 383

The next set of theorems are discovered in a branch on the assumption of
between A G E:

between A G E, (∃a. A on a ∧ G on a ∧ E on a), B	=G, F	=G,

¬(∃a. A on a ∧ B on a ∧ G on a), ¬(∃a. B on a ∧ E on a ∧ G on a)

¬(∃a. A on a ∧ C on a ∧ G on a), ¬(∃a. C on a ∧ E on a ∧ G on a)

¬(∃a. E on a ∧ F on a ∧ G on a), ¬(∃a. B on a ∧ D on a ∧ G on a)

¬(∃a. C on a ∧ D on a ∧ G on a), ¬(∃a. C on a ∧ F on a ∧ G on a)

¬(∃a. D on a ∧ F on a ∧ G on a)

The final set of theorems are discovered in a branch on the assumption of
between C G E:

between C G E, (∃a. C on a ∧ E on a ∧ F on a ∧ G on a), B	=G,

¬(∃a. A on a ∧ C on a ∧ G on a), ¬(∃a. A on a ∧ E on a ∧ G on a)

¬(∃a. B on a ∧ C on a ∧ G on a), ¬(∃a. B on a ∧ E on a ∧ G on a)

¬(∃a. C on a ∧ D on a ∧ G on a), ¬(∃a. D on a ∧ E on a ∧ G on a)

¬(∃a. A on a ∧ B on a ∧ G on a), ¬(∃a. B on a ∧ D on a ∧ G on a)

F = G, between C F E

The obviously step collapses the stream of trees, pushing the branch labels
into the theorems as antecedents, and then uses the resulting lemmas to justify
the step. Thus, the fact F = G becomes between C G E → F = G. This fact is
sufficient to derive a contradiction with between C E F and thus eliminate the
case-split:

obviously by incidence have between A G E from 1 by II,3

The rest of the proof proceeds similarly. While the prose proof has 9 steps and
our earlier formalisation without discovery runs to over 80 steps, the new formal-
isation has just 17 steps. We found this roughly 80% reduction in proof length
across all 18 theorems from our earlier formalisation, with the new formalisations
comparing much more favourably with the prose.

5 Conclusion and Further Work

We have implemented a lemma discovery language which copes with complex
interdependencies between different kinds of theorems. We demonstrated the
composability with a prototype discoverer which reasons about incidence in ge-
ometry, and we showed its results when exploring a non-trivial proof.

As mentioned in earlier work [12], the language does not yet provide functions
for more powerful first-order and higher-order reasoning. For instance, we would
like to be able to speculate inductive hypotheses and infer universals by induction.
Since the basic discovery data-type is polymorphic and not specific to theorem-
proving, we hope that lemma speculation will just be a matter of defining appro-
priate search strategies. We would also like to handle existential reasoning auto-
matically, and we are still working on a clean way to accomplish this.

384 P. Scott and J. Fleuriot

With more case-studies, we hope to find new abstractions and derived trans-
formations to handle such reasoning, and find ways to make it easier to write
discoverers. We also would like to investigate performance issues. For now, there
are inefficiencies when it comes to subsumption, and we have not yet found an
effective way to integrate normalisation with respect to derived equalities. We
suspect we will need to enrich the underlying data-structures to cope with this.

Acknowledgements. We would like to thank our anonymous reviewers for
their excellent comments and feedback. This research was partly supported by
EPSRC grant EP/J001058/1.

A Axioms and Theorems

An elementary axiom and two theorems used for incidence and order reasoning
in the Foundations of Geometry:

Axiom II,1: between A B C → (∃a. A on a ∧B on a ∧ C on a)

∧ A 	= B ∧ A 	= C ∧ B 	= C ∧ between C B A

Axiom II,2: A 	= B → ∃C. between A B C

Axiom II,3: between A B C → ¬between A C B

triangle: A 	= B → ∃C. ¬(∃a. A on a ∧B on a ∧ C on a)

ncolneq: ∀A B C. ¬(∃a. A on a ∧B on a ∧ C on a) → A 	= B ∧A 	= C ∧B 	= C

References

1. Colton, S., Bundy, A., Walsh, T.: On the notion of interestingness in automated
mathematical discovery. Int. J. Hum.-Comput. Stud. 53(3), 351–375 (2000)

2. Gordon, M.: From LCF to HOL: a short history. In: Proof, Language, and Inter-
action: Essays in Honour of Robin Milner, pp. 169–185. MIT Press, Cambridge
(2000)

3. Hales, T.: Introduction to the Flyspeck Project, http://drops.dagstuhl.de/

opus/volltexte/2006/432/pdf/05021.HalesThomas.Paper.432.pdf

4. Hales, T.: Formal proof. Notices of the American Mathematical Society 55, 1370–
1381 (2008)

5. Harrison, J.: HOL Light: a Tutorial Introduction. In: Srivas, M., Camilleri, A.
(eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

6. McCasland, R.L., Bundy, A.: MATHsAiD: A Mathematical Theorem Discovery
Tool. In: SYNASC, pp. 17–22 (2006)

7. Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer,
Heidelberg (2003)

8. Milner, R., Bird, R.S.: The Use of Machines to Assist in Rigorous Proof [and
Discussion]. Philosophical Transactions of the Royal Society of London. Series A,
Mathematical and Physical Sciences 312(1522), 411–422 (1984)

http://drops.dagstuhl.de/opus/volltexte/2006/432/pdf/05021.HalesThomas.Paper.432.pdf
http://drops.dagstuhl.de/opus/volltexte/2006/432/pdf/05021.HalesThomas.Paper.432.pdf

A Combinator Language for Theorem Discovery 385

9. Milner, R., Tofte, M., Harper, R., Macqueen, D.: The Definition of Standard ML
- Revised. The MIT Press, rev. sub. edn. (May 1997)

10. Moore, E.H.: On the Projective Axioms of Geometry. Transactions of the American
Mathematical Society 3, 142–158 (1902)

11. Scott, P.: Mechanising Hilbert’s Foundations of Geometry in Isabelle. Master’s
thesis, University of Edinburgh (2008)

12. Scott, P., Fleuriot, J.: Composable Discovery Engines for Interactive Theorem
Proving. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP
2011. LNCS, vol. 6898, pp. 370–375. Springer, Heidelberg (2011)

13. Spivey, J.M.: Algebras for combinatorial search. Journal of Functional Program-
ming 19(3-4), 469–487 (2009)

14. Swierstra, S.D., Alcocer, P.R.A., Saraiva, J.: Designing and Implementing Com-
binator Languages. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS,
vol. 1608, pp. 150–206. Springer, Heidelberg (1999)

15. Wadler, P.: Monads for Functional Programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)

DynGenPar – A Dynamic Generalized Parser

for Common Mathematical Language�

Kevin Kofler and Arnold Neumaier

University of Vienna, Austria
Faculty of Mathematics

Nordbergstr. 15, 1090 Wien, Austria
kevin.kofler@chello.at, Arnold.Neumaier@univie.ac.at

Abstract. This paper introduces a dynamic generalized parser aimed
primarily at common natural mathematical language. Our algorithm
combines the efficiency of GLR parsing, the dynamic extensibility of
tableless approaches and the expressiveness of extended context-free
grammars such as parallel multiple context-free grammars (PMCFGs). In
particular, it supports efficient dynamic rule additions to the grammar at
any moment. The algorithm is designed in a fully incremental way, allow-
ing to resume parsing with additional tokens without restarting the parse
process, and can predict possible next tokens. Additionally, we handle
constraints on the token following a rule. This allows for grammatically
correct English indefinite articles when working with word tokens. It can
also represent typical operations for scannerless parsing such as maximal
matches when working with character tokens. Our long-term goal is to
computerize a large library of existing mathematical knowledge using the
new parser, starting from natural language input as found in textbooks
or in the papers collected by the digital mathematical library (DML)
projects around the world. In this paper, we present the algorithmic
ideas behind our approach, give a short overview of the implementa-
tion, and present some efficiency results. The new parser is available at
http://www.tigen.org/kevin.kofler/fmathl/dyngenpar/ .

Keywords: dynamic generalized parser, dynamic parser, tableless parser,
scannerless parser, parser, parallel multiple context-free grammars, com-
mon mathematical language, natural mathematical language, controlled
natural language, mathematical knowledge management, formalized
mathematics, digital mathematical library.

1 Introduction

The primary target application for our parser is the FMathL (Formal Math-
ematical Language) project [21]. FMathL is the working title for a modeling
and documentation language for mathematics, suited to the habits of mathe-
maticians, to be developed in a project at the University of Vienna. The project

� Support by the Austrian Science Fund (FWF) under contract numbers P20631 and
P23554 is gratefully acknowledged.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 386–401, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.tigen.org/kevin.kofler/fmathl/dyngenpar/

A Dynamic Generalized Parser for Common Mathematical Language 387

complements efforts for formalizing mathematics from the Computer Science and
automated theorem proving perspective. In the long run, the FMathL system
might turn into a user-friendly automatic mathematical assistant for retrieving,
editing, and checking mathematics (but also Computer Science and theoreti-
cal physics) in both informal, partially formalized, and completely formalized
mathematical form.

A major goal of the FMathL project is to build a computer-oriented library
of mathematics, in a formalized form the computer can work with, from input
as informal as possible. The input language we are working on is a subset of
LATEX, in which the textual parts are written in a controlled natural language,
which we are aiming at growing incrementally to become closer and closer to true
natural mathematical language as found in common use (common mathematical
language). This is the primary target of our parser. Our current main working
grammar is a grammar in extended BNF form [25] produced from German sen-
tences in [20]. We also started work on MathNat [12]. Both those grammars are
work in progress; we expect to extend them incrementally over time. Of course,
mathematical documents also contain formulas: For those, we will be supporting
both sTEX [18] and a subset of the traditional LATEX formula syntax as input.
Once we have an internal representation of the input, we can not only process it
internally, but also generate output, not only in our input formats, but also in
domain-specific languages such as, depending on the problem class, AMPL (in
which we can already produce some output for simple optimization problems) or
the languages used by proof checkers. Our current results are summarized in [24].
We believe our library of mathematical knowledge will nicely supplant DML’s
human-oriented one. Additionally, our long term goal is to allow computerizing
informal knowledge, such as standard textbooks or papers as collected in the
DML projects around the world, with minimal user interaction. We expect some
interactive input to be needed when processing documents which have not been
formalized yet, but the goal is to keep the required interaction as minimal as
possible. Finally, we also believe that our software’s eventual understanding of
mathematics will help building a semantic search engine for DML (and other
mathematical) contents.

Our application imposes several design requirements on our parser. It must:

– allow the efficient incremental addition of new rules to the grammar at any
time (e.g., when a definition is encountered in a mathematical text – this
possibility is typical for mathematical applications –, or to allow teaching the
grammar new rules interactively), without recompiling the whole grammar;

– be able to parse more general grammars than just LR(1) or LALR(1) ones
– natural language is usually not LR(1), and being able to parse so-called
parallel multiple context-free grammars (PMCFGs) [28] is also a necessity
for reusing the natural language processing facilities of the Grammatical
Framework (GF) [22,23];

– exhaustively produce all possible parse trees (in a packed representation), in
order to allow later semantic analysis to select the correct alternative from
an ambiguous parse, at least as long as their number is finite;

388 K. Kofler and A. Neumaier

– support processing text incrementally and predicting the next token (pre-
dictive parsing);

– be transparent enough to allow formal verification and implementation of
error correction in the future;

– support both scanner-driven (for common mathematical language) and scan-
nerless (for some other parsing tasks in our implementation) operation.

These requirements, especially the first one, rule out all efficient parsers currently
in use.

We solved this with an algorithm loosely modeled on Generalized LR [29,30],
but with an important difference: To decide when to shift a new token and which
rule to reduce when, GLR uses complex LR states which are mostly opaque enti-
ties in practice, which have to be recomputed completely each time the grammar
changes and which can grow very large for natural-language grammars. In con-
trast, we use the initial graph, which is easy and efficient to update incrementally
as new rules are added to the grammar, along with runtime top-down informa-
tion. The details will be presented in the next section.

This approach allows our algorithm to be both dynamic:

– The grammar is not fixed in advance.
– Rules can be added at any moment, even during the parsing process.
– No tables are required. The graph we use instead can be updated very effi-

ciently as rules are added.

and generalized :

– The algorithm can parse general PMCFGs.
– For ambiguous grammars, all possible syntax trees are produced.

We expect this parsing algorithm to allow parsing a large subset of common
mathematical language and help building a large database of computerized math-
ematical knowledge. Additionally, we envision potential applications outside of
mathematics, e.g., for domain-specific languages for special applications [19].
These are currently mainly handled by scannerless parsing using GLR [31] for
context-free grammars (CFGs), but would benefit a lot from our incremental
approach. The possibility to add rules at any time, even during parsing, also al-
lows users to quickly add rules if the current grammar does not understand the
input, which helps design grammars incrementally. Therefore, we believe that
its distinctive features will also make DynGenPar extremely useful on its own,
independently of the success of the very ambitious FMathL project.

The algorithm was first presented in our technical report [17].

2 State of the Art

No current parser generator combines all partially conflicting requirements men-
tioned in the introduction.

Ambiguous grammars are usually handled using Generalized LR (GLR)
[29,30], needing the compilation of a GLR table, which can take several seconds

A Dynamic Generalized Parser for Common Mathematical Language 389

or even minutes for large grammars. Such tables can grow extremely large for
natural-language grammars. In addition, our parser also supports PMCFGs,
whereas GLR only works for context-free grammars (but it may be possible to
extend GLR to PMCFGs using our techniques). Costagliola et al. [5] present
a predictive parser XpLR for visual languages. However, in both cases, since
the tables used are mostly opaque, they have to be recomputed completely each
time the grammar changes.

The well-knownCYK algorithm [13,32] needs no tables, but is very inefficient
and handles only CFGs. Hinze & Paterson [11] propose a more efficient tableless
parser; their idea hasn’t been followed up by others.

The most serious competitor to our parser is Angelov’s PMCFG parser [3]
as found in the code of the Grammatical Framework (GF) [22,23], which
has some support for natural language and predictive parsing. Alanko and An-
gelov are currently developing a C version in addition to the existing Haskell
implementation. Compared to Angelov’s parser, we offer similar features with a
radically different approach, which we hope will prove better in the long run.
In addition, our implementation already supports features such as incremental
addition of PMCFG rules which are essential for our application, which are not
implemented in Angelov’s current code and which may or may not be easy to
add to it. Our parser also supports importing the compiled PGF [4] files from
GF, allowing to reuse the rest of the framework. When doing so, as evidenced
in section 6, it reaches a comparable performance. Unlike the GF code, we can
also enforce next token constraints, e.g., an restaurant is not allowed.

3 The DynGenPar Algorithm

In this section, we describe the basics of our algorithm. (Details about the im-
plementation of some features will be presented in section 5.) We start by ex-
plaining the design considerations which led to our algorithm. Next, we define
the fundamental concept of our algorithm: the initial graph. We then describe
the algorithm’s fundamental operations and give an example of how they work.
Finally, we conclude the section by analyzing the algorithm as a whole.

3.1 Design Considerations

Our design was driven by multiple fundamental considerations. Our first obser-
vation was that we wanted to handle left recursion in a most natural way, which
has driven us to a bottom-up approach such as LR. In addition, the need for sup-
porting general context-free grammars (and even extensions such as PMCFGs)
requires a generalized approach such as GLR. However, our main requirement,
i.e., allowing to add rules to the grammar at any time, disqualifies table-driven
algorithms such as GLR: recomputing the table is prohibitively expensive, and
doing so while the parsing is in progress is usually not possible at all. Therefore,
we had to restrict ourselves to information which can be produced dynamically.

390 K. Kofler and A. Neumaier

3.2 The Initial Graph

To fulfill the above requirements, we designed a data structure we call the initial
graph. Consider a context-free grammar G = (N, T, P, S), where N is the set of
nonterminals, T the set of terminals (tokens), P the set of productions (rules)
and S the start symbol. Then the initial graph corresponding to G is a directed
labeled multigraph on the set of symbols Γ = N∪T ofG, defined by the following
criteria:

– The tokens T are sources of the graph, i.e., nodes with no incoming edges.
– The graph has an edge from the symbol s ∈ Γ to the nonterminal n ∈ N if

and only if the set of productions P contains a rule p: n→ n1 n2 . . . nk s . . .
with ni ∈ N0 ∀i, where N0 ⊆ N is the set of all those nonterminals from
which ε can be derived. The edge is labeled by the pair (p, k), i.e., the rule
(production) p generating the edge and the number k of ni set to ε.

– In the above, if there are multiple valid (p, k) pairs leading from s to n, we
define the edge as a multi-edge with one edge for each pair (p, k), labeled
with that pair (p, k).

This graph serves as the replacement for precompiled tables and can easily be
updated as new rules are added to the grammar.

For example, for the basic expression grammar G = (N, T, P, S) with N =
{S,A,B}, T = {+, ∗, x, n} (where n stands for a constant number, and would
in practice have a value, e.g., of double type, attached), and P contains the
following rules:

– S → S +A | A,
– A→ A ∗B | B,
– B → x | n,

the initial graph would look as follows:

+

∗

S

(S→S+A,0)

��
A

(S→A,0)
��

(A→A∗B,0)

��
B

(A→B,0)
�� x

(B→x,0)��

n.
(B→n,0)

������������������

It shall be noted that there is no edge from, e.g., + to S, because + only appears
in the middle of the rule S → S+A (and the S that precedes it cannot produce
the empty string ε), not at the beginning.

To add a new rule, in the simplest case, we just add an edge from the first
symbol on the right hand side to the nonterminal on the left hand side. If we have
epsilon rules, we may also have to add edges from symbols further on the right to
the nonterminal on the left, add the nonterminal on the left to the set of nullable
nonterminals if all symbols in the rule can be epsilon, and then go through the
rules in the labels of the edges starting at the now nullable nonterminal and
recursively repeat the same update process there. But this expensive recursion
is rarely needed in practice.

A Dynamic Generalized Parser for Common Mathematical Language 391

We additionally define neighborhoods on the initial graph: Let s ∈ Γ = N ∪T
be a symbol and z ∈ N be a nonterminal (called the target). The neighborhood
N (s, z) is defined as the set of edges from s to a nonterminal n ∈ N such that
the target z is reachable (in a directed sense) from n in the initial graph. Those
neigborhoods can be computed relatively efficiently by a graph walk and can be
cached as long as the grammar does not change.

In the example, we would have, e.g., N (+, S) = ∅ (because there is no path
from + to S), N (x, S) = {B → x}, and N (A,S) = {S → A,A→ A ∗ B}. Note
that in the last example, we also have to consider the loop, i.e., the left recursion.

3.3 Operations

Given these concepts, we define four elementary operations:

– matchε(n), n ∈ N0: This operation derives n to ε. It works by top-down
recursive expansion, simply ignoring left recursion. This is possible because
left-recursive rules which can produce ε necessarily produce infinitely many
syntax trees, and we decided to require exhaustive parsing only for a finite
number of alternatives.

– shift : This operation simply reads in the next token, just as in the LR algo-
rithm.

– reduce(s, z), s ∈ Γ, z ∈ N : This operation reduces the symbol s to the target
nonterminal z. It is based on and named after the LR reduce operation,
however it operates differently: Whereas LR only reduces a fully matched
rule, our algorithm already reduces after the first symbol. This implies that
our reduce operation must complete the match. It does this using the next
operation:

– match(s), s ∈ Γ = N ∪ T : This operation is the main operation of the
algorithm. It matches the symbol s against the input, using the following
algorithm:

1. If s ∈ N0, try ε-matches first: mε := matchε(s). Now we only need to
look for nonempty matches.

2. Start by shifting a token: t := shift .
3. If s ∈ T , we just need to compare s with t. If they match, we return a

leaf as our parse tree, otherwise we return no matches at all.
4. Otherwise (i.e., if s ∈ N), we return mε ∪ reduce(t, s).

Given the above operations, the algorithm for reduce(s, z) can be summarized
as follows:

1. Pick a rule c→ n1 n2 . . . nk s α1 α2 . . . α� in the neighborhood N (s, z).
2. For each ni ∈ N0: Tni := matchε(ni).
3. s was already recognized, let Ts be its syntax tree.
4. For each αj ∈ Γ = N ∪ T : Tαj := match(αj). Note that this is a top-down

step, but that the match operation will again do a bottom-up shift-reduce
step.

392 K. Kofler and A. Neumaier

5. The resulting syntax tree is: c

Tn1 . . . Ts Tα1 . . .
6. If c
= z, continue reducing recursively (reduce(c, z)) until the target z is

reached. We also need to consider reduce(z, z) to support left recursion; this
is the only place in our algorithm where we need to accomodate specifically
for left recursion.

If we have a conflict between multiple possible reduce operations, we need to
consider all the possibilities. We then unify our matched parse trees into DAGs
wherever possible to both reduce storage requirements and prevent duplicating
work in the recursive reduce steps. This is described in more detail in section 5.

Our algorithm is initialized by calling match(S) on the start symbol S of
the grammar. The rest conceptually happens recursively. The exact sequence of
events in our practical implementation, which allows for predictive parsing, is
described in section 5.

3.4 Example

As an example, we show how our algorithm works on the basic expression gram-
mar from section 3.2. The example was chosen to be didactically useful rather
than realistic: In practice, we work with grammars significantly more complex
than this example. It shall be noted that in this example, the set N0 of nonter-
minal which can be derived to ε is empty. Handling ε-productions requires some
technical tricks (skipped initial nonterminals with empty derivation in rules,
matchε steps), but does not impact the fundamental algorithm.

We consider the input x * x, a valid sentence in the example grammar. We
will denote the cursor position by a dot, so the initial input is .x * x. The
algorithm always starts by matching the start category, thus the initial step is
match(S). The match step starts by shifting a token, then tries to reduce it to
the symbol being matched. In this case, the shift step produces the token x, the
input is now x.* x, and the next step is reduce(x, S), after which the parsing is
complete.

It is now the reduce task’s job to get from x to S, and to complete the
required rules by shifting and matching additional tokens. To do this, it starts
by looking for a way to get closer towards S, by looking at the neighborhood
N (x, S) = {B → x}. In this case, there is only one rule in the neighborhood,
so we reduce that rule. The right hand side of the rule is just x, so the rule is
already completely matched, there are no symbols left to match. We remember
the parse tree B − x and proceed recursively with reduce(B,S).

Now we have N (B,S) = {A → B}. Again, there is only a single rule that
matches and it is fully matched, so we reduce it, remember the parse treeA−B−x
and continue the recursion with reduce(A,S).

This time, the neighborhood N (A,S) = {S → A,A→ A ∗B} contains more
than one matching rule, we have a reduce-reduce conflict. Therefore, we have
to consider both possibilities, as in GLR. If we attempt to reduce S → A, the

A Dynamic Generalized Parser for Common Mathematical Language 393

parsing terminates here (or we try reducing the left-recursive S → S + A rule
and hit an error on the unmatched + token), but the input is not consumed
yet, thus we hit an error. Therefore, we retain only the option of reducing the
left-recursive A→ A ∗B rule. This time, there are two remaining tokens: ∗ and
B, thus we proceed with match(∗) and match(B). Our parse tree matched so
far is A

A

B

x

∗

?

B

?

.

The match(∗) operation is trivial: ∗ is a token, so we only need to shift the
next token and compare it to ∗. The input is now x *.x, and the match(B) step
proceeds by a last shift consuming the last token, and a reduce(x,B) which is
also trivial because N (x,B) = {B → x}.

Thus the reduction of the left-recursive rule A → A ∗ B is complete and we
recursively proceed with another reduce(A,S). This time, attempting to reduce
the left-recursive rule again yields an error (there is no input left to match the
∗ against) and we reduce S → A, giving the final parse tree.

A similar, but slightly longer example can be found in the slides [16].

3.5 Analysis

The above algorithm combines enough bottom-up techniques to avoid trouble
with left recursion with sufficient top-down operation to avoid the need for tables
while keeping efficiency. The initial graph ensures that the bottom-up steps never
try to reduce unreachable rules, which is the main inefficiency in existing tableless
bottom-up algorithms such as CYK [13,32].

One disadvantage of our algorithm is that it produces more conflicts than LR
or GLR, for two reasons: Not only are we not able to make use of any lookahead
tokens, unlike common LR implementations, which are LR(1) rather than LR(0),
but we also already have to reduce after the first symbol, whereas LR only needs
to make this decision at the end of the rule. However, this drawback is more
than compensated by the fact that we need no states nor tables, only the initial
graph which can be dynamically updated, which allows dynamic rule changes. In
addition, conflicts are not fatal because our algorithm is exhaustive (like GLR),
and we designed our implementation to keep its efficiency even in the presence
of conflicts; in particular, we never execute the same match step at the same
text position more than once.

4 Implementation

In this section, we first give an overview of the technologies and the license
chosen for our implementation. Then, we describe how it integrates into our
main application software.

The DynGenPar implementation is available for free download at [15].

394 K. Kofler and A. Neumaier

4.1 Technologies and Licensing

Our implementation is written in C++ using the Qt [1] toolkit. It is licensed
under the GNU General Public License [9,10], version 2 or later.

We also implemented Java bindings using the Qt Jambi [2] binding generator
to allow its usage in Java programs.

4.2 Integration into FMathL Concise

The Java bindings are used in the Concise [27] GUI of the FMathL project
[21]. Concise is a framework for viewing and manipulating, both graphically
and programmatically, semantic graphs. It is the main piece of software in our
application. Concise offers editable views of semantic content in the form of
graphs, records or text, can execute programs operating on that content, and
supports importing information from and exporting it to various types of files.
It is written in Java.

The Concise GUI fully integrates our DynGenPar parser into our applica-
tion’s workflow. The FMathL type system [26] is represented in the form of text
files called type sheets. Those type sheets can not only represent a pure type
hierarchy, but also carry grammatical annotations, which allow the type system
to double as a grammar. Concise can import such type sheets at runtime and
automatically convert them to grammar rules suitable for DynGenPar. It can
then parse documents using the converted grammar.

This feature allows to read user-written rules into the parser at runtime, rather
than hardcoding them as C++ code or compiling them with the Grammatical
Framework (GF) to its binary PGF format. Concise type sheets represent a
user-friendly mechanism for specifying rules which can be easily converted to our
internal representation. The feature is thus an ideal showcase for the dynamic
properties of our algorithm.

5 Implementation Considerations

This section documents some tweaks we made to the above basic algorithm
to improve efficiency and provide additional desired features. We describe the
modifications required to support predictive parsing, efficient exhaustive parsing,
peculiarities of natural language, arbitrary rule labels, custom parse actions and
next token constraints. Next, we briefly introduce our flexible approach to lex-
ing. Finally, we give a short overview on interoperability with the Grammatical
Framework (GF).

5.1 Predictive Parsing

The most intuitive approach to implement the above algorithm would be to use
straight recursion with implicit parse stacks and backtracking. However, that
approach does not allow incremental operation, and it does not allow discarding

A Dynamic Generalized Parser for Common Mathematical Language 395

short matches (i.e., prefixes of the input which already match the start symbol)
until the very end. Therefore, we replaced the backtracking by explicit parse
stacks, with token shift operations driving the parse process: Each time a token
has to be shifted, the current stack is saved and processing stops there. Once
the token is actually shifted, all the pending stacks are processed, with the shift
executed. If there is no valid match, the parse stack is discarded, otherwise it is
updated. We also remember complete matches (where the entire starting symbol
S was matched) and return them if the end of input was reached, otherwise we
discard them when the next token is shifted. This method allows for incremen-
tal processing of input and easy pinpointing of error locations. It also allows
changing the grammar rules for a specific range of text only.

The possible options for the next token and the nonterminal generating it
can be predicted. This is implemented in a straightforward way by inspecting
the parse stacks for the next pending match, which yields the next highest-level
symbol, and if that symbol is a nonterminal, performing a top-down expansion
(ignoring left recursion) on that symbol to obtain the possible initial tokens for
that symbol, along with the nonterminal directly producing them. Once a token
is selected, parsing can be continued directly from where it was left off using the
incremental parsing technique described in the previous paragraph.

5.2 Efficient Exhaustive Parsing

In order to achieve efficiency in the presence of ambiguities, the parse stacks are
organized in a DAG structure similar to the GLR algorithm’s graph-structured
stacks. [29,30] In particular, a match operation can have multiple parents, and
our algorithm produces a unified stack entry for identical match operations at
the same position, with all the parents grouped together. This prevents having
to repeat the match more than once. Only once the match is completed, the
stacks are separated again.

Parse trees are represented as packed forests. Top-down sharing is explicit:
Any node in a parse tree can have multiple alternative subtrees, allowing to
duplicate only the local areas where there are ambiguities and share the rest.
This representation is created by explicit unification steps. This sharing also
ensures that the subsequent reduce operations will be executed only once on
the shared parse DAG, not once per alternative. Bottom-up sharing, i.e., multi-
ple alternatives having common subtrees, is handled implicitly through the use
of reference-counted implicitly shared data structures, and through the graph-
structured stacks ensuring that the structures are parsed only once and that the
same structures are referenced everywhere.

5.3 Rule Labels

Our implementation allows labeling rules with arbitrary data. The labels are
reproduced in the parse trees. This feature is essential in many applications to
efficiently identify the rule which was used to derive the relevant portion of the
parse tree.

396 K. Kofler and A. Neumaier

5.4 Custom Parse Actions

The algorithm as described in section 3 generates only a plain parse tree and
cannot execute any other actions according to the grammar rules. But in order
to efficiently support things such as mathematical definitions, we need to be
able to automatically trigger the addition of a new grammar rule (which can be
done very efficiently by updating the initial graph) by the encountering of the
definition. Therefore, the implementation makes it possible to attach an action
to a rule, which will be executed when the rule is matched. This is implemented
by calling the action at the end of a matchRemaining step, when the full rule
has been matched.

5.5 Token Sources

The implementation can be interfaced with several different types of token
sources, e.g., a Flex [7] lexer, a custom lexer, a buffer of pre-lexed tokens, a
dummy lexer returning each character individually etc. The token source may
or may not attach data to the tokens, e.g., a lexer will want to attach the value
of the integer to INTEGER tokens.

The token source can also return a whole parse tree instead of the usual
leaf node. That parse tree will be attached in place of the leaf. This feature
makes hierarchical parsing possible: Using this approach, the token source can
run another instance of the parser (DynGenPar is fully reentrant) or a different
parser (e.g., a formula parser) on a token and return the resulting parse tree.

5.6 Natural Language

Natural language, even the subset used for mathematics, poses some additional
challenges to our implementation. There are two ways in which natural lan-
guage is not context free: attributes (which have to agree, e.g., for declination or
conjugation) and other context sensitivities best represented by PMCFGs [28].

Agreement issues are the most obvious context sensitivity in natural lan-
guages. However, they are easily addressed: One can allow each nonterminal to
have attributes (e.g., the grammatical number, i.e., singular or plural), which can
be inherent to the grammatical category (e.g., the number of a noun phrase) or
variable parameters (e.g., the number for a verb). Those attributes must agree,
which in practice means that each attribute must be inherent for exactly one
category and that the parameters inherit the value of the inherent attribute.
While this does not look context-free at first, it can be transformed to a CFG
(as long as the attribute sets are finite) by making a copy of a given nonterminal
for each value of each parameter and by making a copy of a given production for
each value of each inherent attribute used in the rule. This transformation can
be done automatically, e.g., the GF compiler does this for grammars written in
the GF programming language.

A Dynamic Generalized Parser for Common Mathematical Language 397

A less obvious, but more difficult problem is given by split categories, e.g., verb
forms with an auxiliary and a participle, which grammatically belong together,
but are separated in the text. The best solution in that case is to generalize the
concept of CFGs to PMCFGs [28], which allow nonterminals to have multiple
dimensions. Rules in a PMCFG are described by functions which can use the
same argument more than once, in particular also multiple elements of a multi-
dimensional category. PMCFGs are more expressive than CFGs, which implies
that they cannot be transformed to CFGs. They can, however, be parsed by
context-free approximation with additional constraints. Our approach to han-
dling PMCFGs is based on this idea. However, we do not use the naive and
inefficient approach of first parsing the context-free approximation and then fil-
tering the result, but we enforce the constraints directly during parsing, leading
to maximum efficiency and avoiding the need for subsequent filtering. This is
achieved by keeping track of the constraints that apply, and immediately ex-
panding rules in a top-down fashion (during the match step) if a constraint
forces the application of a specific rule. The produced parse trees are CFG parse
trees which are transformed to PMCFG syntax trees by a subsequent unification
algorithm, but the parsing algorithm ensures that only CFG parse trees which
can be successfully unified are produced, saving time both during parsing and
during unification. This unification process uses DynGenPar’s feature to attach,
to CFG rules, arbitrary rule labels which will be reproduced in the parse tree:
The automatically generated label of the CFG rule is an object containing a
pointer to the PMCFG rule and all other information needed for the unification.

5.7 Next Token Constraints

Our implementation also makes it possible to attach constraints on the token
following a rule, i.e., that said token must or must not match a given context-
free symbol, to that rule. We call such constraints next token constraints. This
feature can be used to implement scannerless parsing patterns, in particular,
maximally-matched character sequences, but also to restrict the words following
e.g., “a” or “an” in word-oriented grammars. We implement this by collecting
the next token constraints as rules are reduced or expanded and attaching them
to the parse stacks used for predictive parsing. Each time a token is shifted,
before processing the pending stacks, we check whether the shifted token fulfills
the pending constraints and reject the stacks whose constraints aren’t satisfied.

5.8 Interoperability with GF

Our implementation can import PGF [4] grammar files produced by the Gram-
matical Framework (GF) [22,23], a binary format based on PMCFGs. This is
handled by converting them to PMCFG standard form, with a few extensions
supported by our parser:

– Additional context-free rules can be given, the left-hand sides of which can
be used as “tokens” in the expression of PMCFG functions.

398 K. Kofler and A. Neumaier

– Next token constraints can be used. This and the previous extension are
required to support GF’s rules for selecting e.g., “a” vs. “an”.

– PMCFG functions can be given a token (or a context-free nonterminal as
above) as a parameter, in which case the syntax tree will reproduce the parse
tree of that symbol verbatim, including attached data, if any. This extension
is required to support GF’s builtin String, Int and Float types.

We also implemented a GF-compatible lexer.

6 Results

Our main achievement is the dynamism of the algorithm. However, the algorithm
must also be fast enough for practical use (in particular, faster than recompiling
the grammar with a static parser). Therefore, we compared the speed of our
implementation to the well-established GNU Bison [8] parser on a hierarchical
(two-layer) grammar we devised for the Naproche [14,6] language: There are
2 context-free grammars, one for text and one for formulas, each using a lexer
based on Flex [7]. In one version of our Naproche parser, the 2 context-free gram-
mars are processed with Bison (using its support for GLR parsing), in the other
with DynGenPar. We measured the times required to compile the code to an exe-
cutable (using GCC with -O2 optimization), to convert the grammar rules to the
internal representation (GLR tables for Bison, initial graphs for DynGenPar),
and to actually parse a sample input (representing the Burali-Forti paradoxon
in Naproche). It shall be noted that for Bison, the grammar conversion is done
before the compilation, so the compilation time also has to be considered when
working with dynamically changing grammars, whereas DynGenPar can convert
grammars at runtime. Our test machine is a notebook with a Core 2 Duo T7700
(2 × 2.40 GHz) and 4 GiB RAM running Fedora 16 x86 64. For each measure-
ment, we averaged the execution times of 100 tests (except for the compilation
time of DynGenPar, where we used only 3 tests due to time constraints) and
took the median of 3 attempts. Our results are summarized in table 1.

We conclude that, while Bison is 4 to 5 times faster at pure parsing, Dyn-
GenPar is much faster at adapting to changed grammars. The time required
to compile modified grammars makes Bison entirely unsuitable for applications
where the grammar can change dynamically. Even if Bison were changed to allow
loading a different LR table at runtime, it would still take 11 times longer than
DynGenPar to process our fairly small two-layered grammar, and we expect the

Table 1. Benchmarking results on the Naproche grammar

compilation time grammar conversion time parsing time (Burali-Forti)

Bison 2722 ms 83 ms* 2.79 ms

DynGenPar 20890 ms 7.54 ms 12.2 ms**

* . . . at compile time, thus requires recompilation
** . . . total execution time of 19.7 ms minus grammar conversion time

A Dynamic Generalized Parser for Common Mathematical Language 399

discrepancy to only grow as the grammar sizes increase. (Moreover, DynGenPar
can handle dynamic rule addition, so in many cases even the 7.54 ms for gram-
mar conversion can be saved.) In the worst case, where we have a new input for
an existing grammar and do not have the initial graph in memory, DynGenPar
(19.7 ms) is still only 7 times slower than Bison (2.79 ms), even though the latter
was optimized specifically for this usecase and DynGenPar was not.

We also benchmarked our support for PGF [4] grammar files produced by
the Grammatical Framework (GF) [22,23] against two PGF runtimes provided
by the GF project (we used a snapshot of the repository from February 24):
the production runtime written in Haskell and the new experimental runtime
written in C. As an example grammar, we used GF’s Phrasebook example, which
is the one explicitly documented as being supported by the current version of
GF’s C runtime, with the sample sentence See you in the best Italian restaurant
tomorrow!, a valid sentence in the Phrasebook grammar. (We also tried parsing
with the full English resource grammar, but DynGenPar would not scale to such
huge grammars and did not terminate in a reasonable time.) We measured the
time to produce the syntax tree only, without outputting it. The tests were run
on the same Core 2 Duo notebook as above. Again, for each measurement, we
averaged the execution times of 100 tests and took the median of 3 attempts.
Our results are summarized in table 2.

We conclude that DynGenPar is competitive in speed with both GF runtimes
on practical application grammars. In addition, both GF runtimes happily accept
the incorrect input Where is an restaurant? (should be a restaurant), whereas
DynGenPar can enforce the next token constraint.

Table 2. Benchmarking results on the GF Phrasebook grammar

parsing time (See you in the best Italian restaurant tomorrow!)

GF Haskell runtime 37 ms

GF C runtime 84 ms

DynGenPar 81 ms

7 Conclusion

We introduced DynGenPar, a dynamic generalized parser for common mathe-
matical language, presented its requirements, the basics of the algorithm and
the tweaks required for an efficient implementation, and compared our approach
with the state of the art, evidencing the huge advancements we made.

However, there is still room for even more features, which will bring us further
towards our goal of computerizing a library of mathematical knowledge:

– context-sensitive constraints on rules: Currently, we support only some very
specific types of context-sensitive constraints, i.e., PMCFG and next token
constraints. We would like to support more general types of constraints, and
our algorithm is designed to accomodate that. The main research objective
here will be to figure out the class of constraints that is actually needed.

400 K. Kofler and A. Neumaier

– stateful parse actions: Custom parse actions currently have access only to
minimal state information. We plan to make more state available to parse
actions to provide as much flexibility as we find will be needed.

– a runtime parser for rules: Reading rules into the parser from a user-writable
format at runtime, rather than from precompiled formats such as machine
code or PGF grammars, is currently possible through the Concise [27] GUI.
We are considering implementing a mechanism for specifying rules at runtime
within DynGenPar. However, this has low priority for us because we use the
mechanism provided by Concise in our application.

– scalability to larger PMCFGs: Currently, we have several optimizations which
improve scalability, but only apply in the context-free case. In order to be
able to process huge PMCFGs such as the resource grammars of the Gram-
matical Framework, we need to find ways to improve scalability also in the
presence of constraints.

– error correction: At this time, DynGenPar only has basic error detection
and reporting: A parse error happens when a shifted token is invalid for all
pending parse stacks. We would like to design intelligent ways to actually
correct the errors, or suggest corrections to the user. This is a long-term
research goal.

Our hope is that the above features will make it easy to parse enough math-
ematical text to build a large database of mathematical knowledge, as well as
adapting to a huge variety of applications in mathematics and beyond.

References

1. Qt – Cross-platform application and UI framework, http://qt.nokia.com
2. Qt Jambi – The Qt library for Java, http://qt-jambi.org
3. Angelov, K.: Incremental parsing with parallel multiple context-free grammars. In:

Proceedings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics, pp. 69–76 (2009)

4. Angelov, K., Bringert, B., Ranta, A.: PGF: A Portable Run-Time Format for
Type-Theoretical Grammars. Journal of Logic, Language and Information 19(2),
201–228 (2010)

5. Costagliola, G., Deufemia, V., Polese, G.: Visual language implementation through
standard compiler-compiler techniques. Journal of Visual Languages & Comput-
ing 18(2), 165–226 (2007); selected papers from Visual Languages and Computing
2005

6. Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.: The
Naproche Project Controlled Natural Language Proof Checking of Mathematical
Texts. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 170–186. Springer,
Heidelberg (2010)

7. Flex Project: flex: The Fast Lexical Analyzer, http://flex.sourceforge.net
8. Free Software Foundation: Bison – GNU parser generator,

http://www.gnu.org/software/bison

9. Free Software Foundation: GNU General Public License (GPL) v2.0 (June 1991),
http://www.gnu.org/licenses/old-licenses/gpl-2.0

10. Free Software Foundation: GNU General Public License (GPL) v3.0 (June 2007),
http://www.gnu.org/licenses/gpl-3.0

http://qt.nokia.com
http://qt-jambi.org
http://flex.sourceforge.net
http://www.gnu.org/software/bison
http://www.gnu.org/licenses/old-licenses/gpl-2.0
http://www.gnu.org/licenses/gpl-3.0

A Dynamic Generalized Parser for Common Mathematical Language 401

11. Hinze, R., Paterson, R.: Derivation of a typed functional LR parser (2003)
12. Humayoun, M.: Developing the System MathNat for Automatic Formaliza-

tion of Mathematical texts. Ph.D. thesis, University of Grenoble (2012),
http://www.lama.univ-savoie.fr/~humayoun/phd/mathnat.html

13. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free
languages. Tech. Rep. AFCRL-65-758, Air Force Cambridge Research Laboratory,
Bedford, MA (1965)

14. Koepke, P., Schröder, B., Buechel, G., et al.: Naproche – Natural language proof
checking, http://www.naproche.net

15. Kofler, K.: DynGenPar – Dynamic Generalized Parser,
http://www.tigen.org/kevin.kofler/fmathl/dyngenpar

16. Kofler, K., Neumaier, A.: The DynGenPar Algorithm on an Example, slides,
http://www.tigen.org/kevin.kofler/fmathl/dyngenpar-example.pdf

17. Kofler, K., Neumaier, A.: A Dynamic Generalized Parser for Common Mathemat-
ical Language. In: Work-in-Progress Proceedings of CICM/MKM (2011),
http://www.tigen.org/kevin.kofler/fmathl/dyngenpar-wip.pdf

18. Kohlhase, M.: Using LaTeX as a Semantic Markup Format. Mathematics in Com-
puter Science 2.2, 279–304 (2008)

19. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific
languages. ACM Computing Surveys (CSUR) 37(4), 316–344 (2005)

20. Neumaier, A.: Analysis und lineare Algebra, unpublished lecture notes,
http://www.mat.univie.ac.at/~neum/FMathL/ALA.pdf

21. Neumaier, A.: FMathL – Formal Mathematical Language,
http://www.mat.univie.ac.at/~neum/fmathl.html

22. Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming 14(2), 145–189 (2004)

23. Ranta, A., Angelov, K., Hallgren, T., et al.: GF – Grammatical Framework,
http://www.grammaticalframework.org

24. Schodl, P.: Foundations for a Self-Reflective, Context-Aware Semantic Represen-
tation of Mathematical Specifications. Ph.D. thesis, University of Vienna (2011),
http://www.mat.univie.ac.at/~schodl/pdfs/diss_online.pdf

25. Schodl, P., Neumaier, A.: An experimental grammar for German mathematical
text. Tech. rep., University of Vienna (2009),
http://www.mat.univie.ac.at/~neum/FMathL/ALA-grammar.pdf

26. Schodl, P., Neumaier, A.: The FMathL type system. Tech. rep., University of Vi-
enna (2011), http://www.mat.univie.ac.at/~neum/FMathL/types.pdf

27. Schodl, P., Neumaier, A., Kofler, K., Domes, F., Schichl, H.: Towards a Self-
reflective, Context-aware Semantic Representation of Mathematical Specifications.
In: Kallrath, J. (ed.) Algebraic Modeling Systems – Modeling and Solving Real
World Optimization Problems, ch. 2. Springer (2012)

28. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 191–229 (1991)

29. Tomita, M.: An Efficient Augmented Context-Free Parsing Algorithm. Computa-
tional Linguistics 13(1-2), 31–46 (1987)

30. Tomita, M., Ng, S.: The Generalized LR parsing algorithm. In: Tomita, M. (ed.)
Generalized LR Parsing, pp. 1–16. Kluwer (1991)

31. Visser, E.: Scannerless generalized-LR parsing. Tech. Rep. P9707, Programming
Research Group, University of Amsterdam (1997)

32. Younger, D.: Recognition and parsing of context-free languages in time n3. Infor-
mation and Control 10(2), 189–208 (1967)

http://www.lama.univ-savoie.fr/~humayoun/phd/mathnat.html
http://www.naproche.net
http://www.tigen.org/kevin.kofler/fmathl/dyngenpar
http://www.tigen.org/kevin.kofler/fmathl/dyngenpar-example.pdf
http://www.tigen.org/kevin.kofler/fmathl/dyngenpar-wip.pdf
http://www.mat.univie.ac.at/~neum/FMathL/ALA.pdf
http://www.mat.univie.ac.at/~neum/fmathl.html
http://www.grammaticalframework.org
http://www.mat.univie.ac.at/~schodl/pdfs/diss_online.pdf
http://www.mat.univie.ac.at/~neum/FMathL/ALA-grammar.pdf
http://www.mat.univie.ac.at/~neum/FMathL/types.pdf

Writing on Clouds

Vadim Mazalov and Stephen M. Watt

Department of Computer Science
The University of Western Ontario
London Ontario, Canada N6A 5B7
{vmazalov,Stephen.Watt}@uwo.ca

Abstract. While writer-independent handwriting recognition systems
are now achieving good recognition rates, writer-dependent systems will
always do better. We expect this difference in performance to be even
larger for certain applications, such as mathematical handwriting recog-
nition, with large symbol sets, symbols that are often poorly written,
and no fixed dictionary. In the past, to use writer-dependent recogni-
tion software, a writer would train the system on a particular computing
device without too much inconvenience. Today, however, each user will
typically have multiple devices used in different settings, or even simulta-
neously. We present an architecture to share training data among devices
and, as a side benefit, to collect writer corrections over time to improve
personal writing recognition. This is done with the aid of a handwriting
profile server to which various handwriting applications connect, refer-
ence, and update. The user’s handwriting profile consists of a cloud of
sample points, each representing one character in a functional basis. This
provides compact storage on the server, rapid recognition on the client,
and support for handwriting neatening. This work uses the word “cloud”
in two senses. First, it is used in the sense of cloud storage for informa-
tion to be shared across several devices. Secondly, it is used to mean
clouds of handwriting sample points in the function space representing
curve traces. We “write on clouds” in both these senses.

Keywords: Handwriting Recognition, Mathematical Handwriting
Recognition, Cloud Computing, Service Oriented Architecture.

1 Introduction

We are interested in online recognition of handwritten mathematics. The wide-
spread use of hand-held mobile devices and tablets has created a ubiquitous
environment for two-dimensional math input. Writing mathematics on a digital
canvas is similar to traditional pen-on-paper input. It does not require learn-
ing any typesetting languages and can be efficient, given a robust and reliable
implementation. According to one study [1], pen-based input of mathematics is
about three times faster and two times less error-prone than standard keyboard-
and mouse-driven techniques. However, recognition of mathematics is a harder
problem than recognition of natural language text.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 402–416, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Writing on Clouds 403

In our classification paradigm, a character is represented by the coefficients of
an approximation of trace curves with orthogonal polynomials [4]. Classification
is based on computation of the distance to convex hulls of nearest neighbours
in the space of coefficients of approximation. Typically, the method does not
require many training samples to discriminate a class. However, because there
are a large number of classes in handwritten mathematics, the training dataset
may contain tens of thousands of characters. The underlying recognition model
allows the dataset to evolve over the course of normal use. Furthermore, as a
user makes corrections to mis-recognized input, new training data is obtained.
Therefore, synchronization of the dataset across several pen-based devices may
become tiresome. To address this aspect, we propose to delegate the storage of
the training database, as well as some of the recognition tasks to a cloud.

In the present work we describe a cloud-based recognition architecture. It
has potential to be beneficial not only to end users, but also to researchers in
the field. A cloud infrastructure can assist in the capture of recognition history.
The “knowledge” obtained from the public usage of the recognition software can
help to improve the accuracy continuously. This serves as a basis for an adap-
tive recognition that results in asymptotic increase of user-, region-, or country-
centered classification rate. Additionally, such a model has a number of other
advantages: First, it allows the writer to train the model only once and then use
the cloud with any device connected to the Internet. Secondly, it gives the user
access to various default collections of training samples across different alpha-
bets (e.g. Cyrillic, Greek, Latin), languages (e.g. English, French, Russian), and
domains (e.g. regular text, mathematics, musical notation, chemical formulae).
Thirdly, it provides a higher level of control over the classification results and
correction history.

The architecture we present may be applicable to a variety of recognition
methods across different applications, including voice recognition, document
analysis, or computer vision. To demonstrate its use in recognizing handwrit-
ten mathematical characters, we have performed an experiment to measure the
error convergence as a function of the input size and find an average number of
personal samples in a class to achieve high accuracy.

The rest of the paper is organized as follows. Section 2 introduces the char-
acter approximation and recognition foundation, as well as some preliminary
concepts required by the proposed architecture. Section 3 describes the cloud–
based recognition framework, starting by giving an overview of the components.
Then the flow of recognition and correction, as well as possible manipulations
of clusters, are presented. Section 4 describes details of the implementation of
the system, the structure of a personal profile, the interface for training and
recognition, the server side, as well as calligraphic representation of recognized
characters. The recognition error decrease as a function of the input size of a
writer is presented in Section 5. Section 6 concludes the paper.

404 V. Mazalov and S.M. Watt

2 Preliminaries and Related Work

2.1 Recognition Aspects

In an online classification environment, a curve may be given as an ordered set
of points in a Euclidean plane. Devices are capable of sampling the coordinates
of a stylus as functions of time. The inputs to online classification are typically
given as vectors of pen coordinates, represented as real numbers received at a
fixed frequency [4]. In addition, some devices can collect other information, such
as pressure or pen angle, as well as spatial coordinates when a stylus is not
touching the surface. We however do not rely on this additional information so
we can maintain hardware independence.

The input traces may be regarded as parametric functions and we may rep-
resent these using standard approximation methods as truncated orthogonal
polynomial series

X(t) ≈
d∑
i=0

xiBi(λ), Y (λ) ≈
d∑
i=0

yiBi(λ)

where Bi(λ) are the orthogonal basis polynomials, e.g. Chebyshev, Legendre or
Legendre-Sobolev polynomials, and λ is a parameter, e.g. time or arc-length [4].
Multi-stroke characters may be represented by concatenating the coordinate
sequences of the strokes.

Having the coefficients of approximation, a character can be represented as
the tuple

x0, x1, ..., xd, y0, y1, ..., yd.

In this vector, coefficients x0 and y0 give the initial position of the sample and
can be neglected to normalize location of the character. Dividing the rest of the
vector by the Euclidean norm will normalize the sample with respect to size. We
base classification on a distance (in some norm) to the convex hull of k nearest
neighbours in the space of coefficients [4].

2.2 Architectural Aspects

Cloud computing allows remote, distributed storage and execution. The eco-
nomic stimuli for providing software services in a cloud infrastructure are similar
to those for centralized supply of water or electricity. This relieves consumers
from a number of issues associated with software maintenance, while the provider
may continuously improve the service.

Agility of a cloud service is usually achieved by its internal organization ac-
cording to the principles of the Service-Oriented Architecture (SOA). SOA al-
lows splitting computational tasks into loosely coupled units, services, that can
be used in multiple unassociated software packages. An external application ex-
ecutes a service by making a call through the network. The service consumer
remains independent of the platform of the service provider and the technology
with which the service was developed.

Writing on Clouds 405

2.3 Related Work

Several related projects have been described that mostly target development of
managed experimental repositories and resource sharing in the context of: docu-
ment analysis [7], astronomical observations [14], or environmental research [2].
In contrast, our primary objective is improvement of usability of recognition
software across different pen-based devices. Collecting a comprehensive database
that facilitates research is the second priority.

3 Clouds Serving Clouds

Touch screens with the ability to handle digital ink are becoming de facto stan-
dards of smart phones and tablet computers. The variety of such platforms
challenges conventional recognition applications because:

– Certain mobile devices have limited storage capacity and computational
power, restricting ink storage and processing. Recognition of handwritten
math requires extra resources to build classification theories and to calcu-
late the confidence of each theory [3].

– Development of a single recognition engine that runs efficiently across all the
platforms is not easy, and in most cases a trade off has to be made, affecting
classification performance.

– The evolving personal training datasets and correction histories are not syn-
chronized across the devices.

Similar to the software as a service delivery model, we propose to have digital
ink collected and, possibly, processed through a thin client, but its storage and
some computationally intensive procedures are performed centrally in the cloud.

From the high-level, the system contains the following elements

– Canvas of a pen-based device, that can collect digital ink.
– HLR (High-Level Recognizer) accepts raw ink from the canvas and performs

initial preprocessing of the ink.
– Recognizer is a character recognition engine, developed according to the

principles described in [4].
– Database stores personal handwriting data, profiles of samples, correction

history, etc.

Profiles of training samples are clouds of points in the space of approximated
curves, each point being one character. These points are saved in a database
in the cloud. When users sign up for the service, they are assigned a default
dataset of training samples. If a person has several handwriting domains (e.g.
different fields using mathematics, physics, music, etc), each domain should have
a separate dataset, and the recognition application should allow switching be-
tween the subjects. The user shapes the datasets through a series of recognitions
and corrections. Below, we show experimentally that the number of corrections
decreases over time and eventually becomes quite small.

406 V. Mazalov and S.M. Watt

Fig. 1. The data flow diagram for recognition and correction

3.1 Recognition Flow

The overall recognition flow is shown in Figure 1. The High-Level Recognizer
(HLR) accepts raw ink from the canvas and preprocesses it. The output of the
HLR is available to the recognizer in the form of normalized coefficients. The
coefficients are recognized. The results of classification are sent to the canvas
and saved in the database.

Representation of Characters. For a single-stroke character, after approxi-
mation of coordinates with truncated orthogonal series, the sample can be rep-
resented as

1

‖x, y‖ , x0, y0, x
′
1, y

′
1, ..., x

′
d, y

′
d (1)

where x0, y0 are Legendre-Sobolev coefficients that control the initial position
of the character, x′1, y

′
1, ..., x

′
d, y

′
d are normalized coefficients, and ‖x, y‖ is the

Euclidean norm of the vector [4]

x1, ..., xd, y1, ..., yd

The first three elements in (1) are ignored during recognition, but used in restor-
ing the initial size and location of the character.

For a multi-stroke symbol, coefficients are computed for every stoke, as de-
scribed for a single-stroke character, and also for all strokes joined sequentially.
Coefficients of strokes are used for display of the sample and normalized coeffi-
cients of joined strokes are used for classification.

The described representation of samples allows significant saving on storage
space and computations, since coefficients of symbols can be directly used in
recognition without repetitive approximation [10]. However, this compression
scheme is lossy and should not be used when precision of digital ink is of high
importance, e.g. in applications that involve processing of personal signatures.

Recognition. Individual handwriting can differ significantly from the default
collection of training samples. This is illustrated by the historical use of a per-
sonal signature as a form of authentication of documents. It is to be expected
that a successful recognition system should adapt to personal writing style. With

Writing on Clouds 407

coefficients ::= 1
‖x,y‖ ;x0; y0;x

′
1; y

′
1; ...; x

′
d; y

′
d

msg ::= <m:Process>
<m:mt>coefficients</m:mt>
(<m:tr>coefficients</m:tr> <m:tr>coefficients</m:tr> +)?

</m:Process>

Fig. 2. The format of the SOAP message sent to the cloud

...

<soap:Body xmlns:m="http://www.inkml.org/processing ">

<m:Process >

<m:mt >0.005;94; -91;11;2; -14;64; -70;

-18;1; -75;14;14;8;4; -2;4;0; -9;5;10; -11;5; </m:mt >

</m:Process >

</soap:Body >

...

Listing 1. An example of the body of a SOAP message for a single-stroke character

k-nearest neighbors and related methods, the test sample can be easily intro-
duced to the training set after classification. This facilitates adaptive recognition,
since the model remains synchronized with the writer’s style.

Two modes of recognition are possible, local and remote.
Local recognition is suitable for devices with sufficient computational capabil-

ities. In this mode, the points that form the convex hulls of classes are stored on
the device locally and periodically synchronized with the server. Synchronization
can be performed through a profile of samples. The local recognition mode is
useful when the user does not have a network connection and therefore can not
take advantage of the remote recognition described below.

In remote recognition mode, digital curves are collected and preprocessed lo-
cally, and the coefficients are sent to a remote recognition engine. Having rec-
ognized the character, the server returns encoding of the symbol and nearest
candidates. This mode allows to minimize the load on the bandwidth, since the
training dataset does not have to be synchronized with the device.

Coefficients can be transmitted in the body of a SOAP message, using the syn-
tax shown in Figure 2. The element <m:mt> contains the normalization weight,
the original coefficients of the 0-degree polynomials, and the normalized coeffi-
cients used in recognition. Additionally, for a multi-stroke sample, the <m:tr>

element is used to represent each stroke independently. Examples of messages for
a single-stroke and a multi-stroke character are shown in Listing 1 and Listing 2
respectively. The bodies of the SOAP messages contain enough information for
both recognition and restoring approximate representation of a character in its
initial position.

The results of recognition can be returned in a SOAP message, as shown in
Listing 3. The body contains Unicode values of the top candidates to enable
the client application to visualize recognized characters in a printed format. For
calligraphic rendering, corresponding coefficients can be included as well.

408 V. Mazalov and S.M. Watt

...

<soap:Body xmlns:m="http://www.inkml.org/processing ">

<m:Process >

<m:mt >1;0;0; -5; -22; -14; -15; -44; -72;20;13;-27;43;4;

-28;48; -1; -10;16; -32; -17; -1; -12; </m:mt >

<m:tr >0.005;92;-85; -1;3; -7;62; -79; -30;

4; -61;32;4;-2;15; -4; -4;6; -3;0;6;-9;0;</m:tr >

<m:tr >0.009;115; -100; -71; -102; -10; -1;11;1;

-6; -8;5;6; -5; -9;2;3; -2; -5;6;6; -5; -9; </m:tr >

</m:Process >

</soap:Body >

...

Listing 2. An example of the body of a SOAP message for a multi-stroke character

...

<soap:Body xmlns:m="http://www.inkml.org/processing ">

<m:Response >

<m:Unicode >0030, 004F, 006F</m:Unicode >

</m:Response >

</soap:Body >

...

Listing 3. An example of the body of a SOAP response from the recognition service

When the recognition is incorrect, the user can fix the result on the canvas. A
correction message is sent from the canvas to the recognizer and the database,
see Figure 1. The correction message may contain Unicode value of the new
character and the ID of the sample. After correction, if the recognition engine
is context-sensitive, neighboring characters can be reclassified. Implementation
of sensitivity to the context depends on the domain. With handwritten text,
this task is solved by comparing a recognized word with entries in a dictionary.
With mathematics, it is a harder problem, since expressions are represented as
trees. Progress can be achieved by considering the most popular expressions in
the subject and their empirical or grammatical properties, see for example [8].

3.2 Manipulation of Clouds

With the discussed representation of samples as clouds in high dimensional space,
they can also be treated as sets. In this context, corresponding theoretical do-
mains become applicable, such as the set theory or some elements of compu-
tational geometry. Consider training characters from two classes, say i and j,
forming sets Si and Sj respectively. Then Si∩Sj will produce samples written in
an ambiguous way: If classes i and j represent characters 9 and q then a sample
that belongs to both classes can look as the one shown in Figure 3. A näıve
approach to compute such intersection is to find the subset of points in each
cluster with the distance to the second cluster being zero. To make the clouds
linearly separable, the samples that belong to both clusters can be deleted or

Writing on Clouds 409

Fig. 3. A sample that belongs to classes “q” and “9”

assigned a specific label. A similar operation is to find Sq \S9 that will result in
points that can not be confused with the adjacent class.

Another example is computing the “average” character, as the center of mass
of samples in a style, and using the character in calligraphic rendering of recog-
nized samples.

These and other operations can be expressed naturally as operations on the
classes represented as clouds of points. With some other machine learning frame-
works the analogous procedures can be more awkward.

4 Implementation

From a high level viewpoint, the system contains the following parts, as shown
in Figure 4.

– A user interface for training (used to collect profiles of characters).
– A user interface for recognition (ink canvas, HLR, and recognizer).
– A cloud – a web infrastructure that serves as a recognizer (in the remote

recognition mode) and as an efficient storage of user-specific training data,
allowing access, update, sharing, continuous adaptation of the shapes of
clusters, etc. In the current prototype implementation, the back end consists
of a web server, an application server, and a DBMS.

Communication between the client application for training and the cloud is per-
formed through sending profiles, i.e. zipped XML documents that contain per-
sonal catalogs (clouds of points). The application server communicates with the
database through SQL.

4.1 Initial Training

In an adaptive recognition environment, the training phase is not required. How-
ever, having some number of training samples in each class can significantly im-
prove the initial recognition. Training is normally performed before usage of the
application or after introducing a new character to the repository. Once training
is finished the profile is synchronized with the cloud.

410 V. Mazalov and S.M. Watt

Fig. 4. Interaction of user interfaces for collection and recognition with the cloud

Catalog

Symbol1

Style1

Sample1 Sample2 ...

Style2

...

...

Symbol2

...

...

Fig. 5. The structure of a catalog

The Structure of a User Profile. A profile is a dataset of training characters
used in recognition. The dataset is a collection of catalogs. Each catalog is a
hierarchical container of symbols, styles, and samples. Figure 5 shows a structure
of a catalog where

– Catalog is a catalog of related symbols, e.g. Latin characters, digits, mathe-
matical operators, etc.

– Symboli is a recognition class, e.g. “a”, “1” or “±”.
– Stylei is a style, i.e. one of the possible ways to write the symbol. Our recog-

nition algorithm is dependent on the direction of writing and the number of
pen-ups of a character. For example, symbol l can have two styles: one style
represents writing the character from the top to the bottom and another
style – from the bottom to the top.

– Samplei is a training sample, written according to the corresponding style.

Writing on Clouds 411

Fig. 6. The main window of the training application

Each user can have several profiles used together or independently, representing,
for example, different areas of mathematics, chemistry or music. System profiles
should also be available – the default collections of typical symbols, styles, and
samples in a domain.

The XML tree of a profile corresponds to the hierarchy of a catalog: It should
contain symbols, styles, samples, and coefficients. The normalized coefficients
ci ∈ [−1, 1] can be compactly stored in a byte variable as [127ci], where [x] is
rounding of x to an integer [4].

4.2 Implementation of the Application

For simplicity, our current model is implemented in three-tier architecture. The
client applications for collection, recognition, and the application server have
been developed in Java. Requests to the application server are routed through a
web server.

Client Application for Collection of Characters. The front end provides
a convenient interface for the user to input and manage training samples. The

412 V. Mazalov and S.M. Watt

interface comes along with the structure of the user profile. Specifically, the main
window of the application is a tabbed panel with each tab representing a catalog
of samples, as shown in Figure 6. A tab contains a list of symbols of the catalog.
Once the user selects a symbol, the panel with styles becomes available. Styles
are shown as animated images for visualization of stroke order and direction.
The discussed elements of the interface (catalogs, symbols, styles, and samples)
are highly dynamic: A context menu is available that allows to create, to delete
or to merge with another element. A profile can be saved on a local hard drive
and reopened, as well as synchronized with the server.

Each provided sample should be assigned to a style. If a style has not been
selected, it is determined automatically based on its shape and the number of
strokes. This recognition is usually of high accuracy, since the candidate classes
are styles of the selected symbol and the number of styles is typically small.

The Client Interface for Recognition. Classification of handwritten char-
acters takes place when a user performs handwritten input through a separate
application. The current implementation is integrated with the InkChat [5], a
whiteboard software that facilitates engineering, scientific, or educational pen-
based collaboration online. Nevertheless, a number of alternative applications
can be used as the recognition front end, e.g. MathBrush [6], a pen-based sys-
tem for interactive mathematics, or MathInk [13], a mathematical pen-based
plug-in that can run inside computer algebra systems, such as Maple [9], or
document processing software, such as Microsoft Word.

There can be two approaches to recognition – character-at-a-time (each char-
acter is recognized as it is written) and formula-at-a-time (characters are recog-
nized in a sequence, taking advantage of the context and common deformation
of samples). Classification results can be displayed super-imposed on the digital
ink or replace it. For each entered character, a context menu is available that
lists the top recognition candidates, as shown in Figure 7. If the user chooses
another class from the candidates listed in the context menu, adjacent characters
should be reclassified based on the new context information.

The Server Side. The server side has the following interacting parts: the
Apache web server, an application server, and MySQL DBMS. The user uploads
a profile to the application server as a zipped file. The profile is unzipped and
parsed. Information is inserted in the database.

Upon download of a profile, the process is reversed – the user sends a request
to the application server over the web server. The application server selects data
from the database, forms an XML profile, performs compression, and sends it to
the client.

In the current implementation, a client communicates with the application
server over HTTP, but an encrypted communication channel is suggested in a
production environment. Furthermore, profiles are recommended to be stored in
the database in an encrypted format.

Writing on Clouds 413

Fig. 7. Client interface for recognition

(a) (b)

Fig. 8. (a) A set of provided samples, and (b) the average sample

4.3 Attractive Display of Recognized Characters

Some research has shown that averaging can be used to make faces look attrac-
tive [12]. We adopt a similar approach to generate visually appealing output.
The shape of each output stroke is obtained by taking the average of coefficients
of approximation of corresponding strokes of samples in the style

c̄i =

∑n
j=1 cij

n

where c̄i is the i-th average coefficient of a stroke and n is the number of samples
in the style. The traces of the average character are then computed from the
average series. This approach allows personalized output, representing samples
in a visually appealing form and yet preserving the original style of the writer,
as illustrated in Figure 8.

5 Experimental Evaluation

We describe results of an experiment that shows performance of adaptive author-
centered recognition that can be implemented with the cloud infrastructure.
The experimental setting aims to simulate decrease in the classification error
depending on a user’s input size, given that the application is initially trained
with a default dataset.

414 V. Mazalov and S.M. Watt

(a) The Null strategy (b) The Basic strategy

Fig. 9. The average recognition error of the (N+1)-th sample in a class among all
classes by an author. All authors are shown in the plot.

5.1 Setting

The experimental dataset is identical to the one described in [4]. Further, each
sample is assigned to one of the 369 authors. Then for each author, the dataset is
split in two parts: samples provided by the author (used in testing) and the rest of
the dataset (used in training). A test sample is extracted from a randomly chosen
class among those written by the test author and recognized. The recognition
error of the N -th sample by the author is computed as the ratio of the number of
misrecognitions of the N -th sample to the total number of N -th samples tested.
This run is repeated 200 times and the average is reported. We consider two
strategies for processing the recognized character

– Null strategy: The test sample is disregarded after recognition. This strategy
is implemented for comparison with the Basic strategy.

– Basic strategy: The test sample is added to the corresponding training class.
This facilitates adaptive recognition when the training cluster is adjusted to
the style of the current user with each new sample provided.

The Basic strategy does not provide a mechanism to remove training
samples that have negative impact on recognition. In [11], we developed
an adaptive instance-based classifier that assigns a dynamic weight to each
training exemplar. If the exemplar participates in a correct (incorrect) clas-
sification, the weight is increased (decreased). Samples with the minimal
average weight are removed from the dataset.

5.2 Results

Figures 9(a) and 9(b) demonstrate the average recognition error of the N -th
sample in a class among all classes by an author for the Null and the Basic

Writing on Clouds 415

Fig. 10. The average recognition error among all authors of the (N+1)-th sample in a
class for the Basic strategy (solid) and the Null strategy (dash)

strategies respectively. Authors are shown in the plot in different colors. These
figures show that the approach gives consistent results for different authors. The
average recognition error among all authors is presented in Figure 10 for the
Basic and the Null strategies.

On average, the Basic strategy demonstrates improvement over the course
of use, which is most noticeable for less than 20 samples in a class by an au-
thor. Given that the dataset contains several hundred classes, synchronization
of samples across devices is a valuable advantage and can make the recognition
workflow efficient and smooth.

6 Conclusion

We have shown how online handwriting recognition systems can take advantage
of centralized, cloud-based repositories. Incremental training data, ground truth
annotations, and the machine learning framework can usefully reside on a server
for the benefit of multiple client devices. We find this particularly effective for
symbol sets that occur in mathematical handwriting.

With another meaning of the word “cloud”, our character recognition methods
rely on clouds of points in an orthogonal series coefficient space. The represen-
tation of these clouds of training and recognition support data is quite com-
pact, allowing collections of data sets to be cached locally even on small devices
or transmitted over slow network connections. These clouds can evolve as new
data is received by the server, improving recognition. These clouds also provide

416 V. Mazalov and S.M. Watt

a simple but effective method for handwriting neatening, by taking an average
point for each style.

We find that placing recognition point sets (“clouds” in one sense) in dis-
tributed storage and computing environments (“clouds” in another sense) to be
a particularly fruitful combination.

References

1. Anthony, L., Yang, J., Koedinger, K.R.: Evaluation of multimodal input for enter-
ing mathematical equations on the computer. In: CHI 2005 Extended Abstracts on
Human Factors in Computing Systems, CHI EA 2005, pp. 1184–1187. ACM, New
York (2005), http://doi.acm.org/10.1145/1056808.1056872

2. Beran, B., van Ingen, C., Fatland, D.R.: Sciscope: a participatory geoscientific
web application. Concurrency and Computation: Practice and Experience 22(17),
2300–2312 (2010)

3. Chan, K.F., Yeung, D.Y.: Mathematical expression recognition: a survey. IJ-
DAR 3(1), 3–15 (2000)

4. Golubitsky, O., Watt, S.M.: Distance-based classification of handwritten symbols.
International J. Document Analysis and Recognition 13(2), 133–146 (2010)

5. Hu, R.: Portable implementation of digital ink: collaboration and calligraphy. Mas-
ter’s thesis, University of Western Ontario, London, Canada (2009)

6. Labahn, G., Maclean, S., Marzouk, M., Rutherford, I., Tausky, D.: A preliminary
report on the MathBrush pen-math system. In: Maple 2006 Conference, pp. 162–
178 (2006)

7. Lamiroy, B., Lopresti, D., Korth, H., Heflin, J.: How carefully designed open re-
source sharing can help and expand document analysis research. In: Document
Recognition and Retrieval XVIII - DRR 2011, vol. 7874. SPIE, San Francisco
(2011)

8. MacLean, S., Labahn, G., Lank, E., Marzouk, M., Tausky, D.: Grammar-based
techniques for creating ground-truthed sketch corpora. Int. J. Doc. Anal. Recog-
nit. 14, 65–74 (2011), http://dx.doi.org/10.1007/s10032-010-0118-4

9. Maplesoft: Maple 13 user manual (2009)
10. Mazalov, V., Watt, S.M.: Digital ink compression via functional approximation.

In: Proc. of International Conference on Frontiers in Handwriting Recognition, pp.
688–694 (2010)

11. Mazalov, V., Watt, S.M.: A structure for adaptive handwriting recognition. In:
Proc. of the International Conference on Frontiers in Handwriting Recognition
(submitted, 2012)

12. Perrett, D., May, K., Yoshikawa, S.: Facial shape and judgments of female attrac-
tiveness. Nature 368, 239–242 (1994)

13. Smirnova, E., Watt, S.M.: Communicating mathematics via pen-based computer
interfaces. In: Proc. 10th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing (SYNASC 2008), pp. 9–18. IEEE Computer
Society (September 2008)

14. Szalay, A.S.: The sloan digital sky survey and beyond. SIGMOD Rec. 37, 61–66
(2008), http://doi.acm.org/10.1145/1379387.1379407

http://doi.acm.org/10.1145/1056808.1056872
http://dx.doi.org/10.1007/s10032-010-0118-4
http://doi.acm.org/10.1145/1379387.1379407

A Web Interface for Matita�

Andrea Asperti and Wilmer Ricciotti

Department of Computer Science, University of Bologna
{asperti,ricciott}@cs.unibo.it

This article describes a prototype implementation of a web interface for the
Matita proof assistant [2]. The motivations behind our work are similar to those
of several recent, related efforts [7,9,1,8] (see also [6]). In particular:

1. creation of a web collaborative working environment for interactive theo-
rem proving, aimed at fostering knowledge-intensive cooperation, content
creation and management;

2. exploitation of the markup in order to enrich the document with several
kinds of annotations or active elements; annotations may have both a pre-
sentational/hypertextual nature, aimed to improve the quality of the proof
script as a human readable document, or a more semantic nature, aimed to
help the system in its processing (or re-processing) of the script;

3. platform independence with respect to operating systems, and wider acces-
sibility also for users using devices with limited resources;

4. overcoming the installation issues typical of interactive provers, also in view
of attracting a wider audience, especially in the mathematical community.

The second part of point 2. above is maybe the most distinctive feature of our
approach, and in particular the main novelty with respect to [7].

In fact, delivering a proof assistant as a web application enables us to exploit
the presentational capabilities of a web browser with little effort. Purely presen-
tational markup does not require any special treatment on the part of the prover
and is natively supported by the web browser. However, having an easy access
to HTML-like markup allows much more flexibility. Not only can we decorate
comments by means of textual formatting or pictures; executable parts of scripts
reference concepts defined elsewhere, either in the same script or in the library,
using possibly overloaded identifiers or notations: it is natural to enrich those
identifiers with hyperlinks to the associated notions. This association is actually
computed by the system every time the script is parsed, hence it is the system’s
job to enrich the script accordingly. Since computing associations of identifiers
to library notions can be expensive, it is natural to have the system use such
hyperlinks to speed up the execution of the script. Moreover, when the source
text is particularly ambiguous, hyperlinks provide essential semantic informa-
tion to avoid asking the user for explicit disambiguation every time the script is
executed.
� The project CerCo acknowledges the financial support of the Future and Emerg-

ing Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 417–421, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

418 A. Asperti and W. Ricciotti

Hyperlinks are an example of a textual annotation having both a presenta-
tional and a semantic value. The text enriched with hyperlinks not only provides
a more dynamic and flexible format to access the library, but is also a more ex-
plicit and hence more robust representation of the information.

A further use of markup is to attach to the script information that is valuable
to the system, but is not thought to be normally read by the user. This is
technically a kind of presentational markup, used to hide parts of the script
rather than for decorating text.

Our current implementation supports three categories of markup:

– standard HTML markup, used to add formatting to text; formatted text is
currently assumed to occur in Matita comments;

– hyperlinks to Matita definitions, typically produced by the system and reused
on a new parsing of the script to avoid a second disambiguation of the input
(at the time of the submission, traversing hyperlinks is not yet supported,
but implementing it does not look problematic);

– markup wrapping traces of execution of automation steps in the script, pro-
duced by the system on a first execution and granting a notable speed-up on
future executions; the trace is normally transparent to the user, but visible
on demand.

Structure of the System

Matita core The server runs a minimally reworked version of the Matita engine,
equivalent to its stand-alone counterpart, but for the following features:

– the status of Matita includes the user id of its owner, as needed by an
inherently multi-user web application: this allows the system to run at the
same time several user-specific versions of the library;

– the lexical analyzer and the parser take into account the script markup;
– the disambiguation engine and the automation tactic produce and return

information suitable for enriching the script.

For what concerns the lexical analyzer, producing specific tokens for the markup
would require major modifications to the parser, which in Matita is a complex
component extensible at runtime with user provided notations. In an effort to
keep the parser as untouched as possible, the token stream returned by our lexical
analyzer ignores the markup; however, hyperlinks that can be used for immediate
disambiguation are stored in an additional table that is later accessible to the
parser, which is then able to build a disambiguated abstract syntax tree (AST)
for it. In order for this technique to work, we assume that disambiguation markup
is only located around “leaves” of the AST (and in particular, identifiers or
symbols); at the moment, this assumption does not seem to be restrictive.

Markup for automation traces, which is used only to hide additional argu-
ments to the automation tactic, is completely handled by the user interface and
can thus be safely ignored by the lexical analyzer and the parser.

A Web Interface for Matita 419

Matita web daemon. The Matita web daemon is a specialized HTTP server,
developed using the Netplex module of the Ocamlnet library1, providing remote
access to the Matita system. It exports several services:

– storage of user accounts and authentication;
– storage of user libraries;
– synchronization of user libraries with the shared library via svn;
– remote execution of scripts.

Such services are invoked through a CGI interface and return XML documents
encoding their output.

Remote execution of scripts allows a user authoring a script on a web browser
to send it to the server for processing. The typical interactions with a script are
allowed, in the style of Proof-General [4] and similarly to [7]: executing one step
(tactic or directive) or the whole script, as well as undoing one step or the whole
script (execution of a script until a given point is reached is performed by the
client by multiple calls to single-step execution).

Parsing of the script is performed on the server, as client-side parsing of the
extensible syntax used by Matita is essentially unfeasible. To execute (part of)
a script, the server needs thus to receive all of the remaining text to be parsed,
because the end of the next statement is not predictable without a full parsing.
The Matita daemon will answer such a request by returning to the client

– the length of the portion of the original script that has been successfully
executed;

– a (possibly empty) list of parsed statements, which have been enriched with
mechanically generated markup including disambiguation hints and automa-
tion traces (the length of this updated text does not match the previous value
in general);

– an HTML representation of the proof state of the system after the execution
of the last statement (if the execution stopped in the middle of a proof);

– a representation of the error that prevented a further execution of the script
(if the execution stopped because of an error).

Collaborative formalization. The daemon provides a preliminary support for
collaborative formalization, currently coming in the form of a centralized library
maintained by means of svn. Other authors (see [1]) have advocated the use
of distributed versioning systems (e.g. Git). Our choice is mainly related to the
reuse of the original Matita repository and to the fact that svn already supports
the kind of distributed activity we have in mind. The effective usability and
scalability of this approach will be tested in the future.

The client. The Matita web client (Figure 1) was initially written in plain
Javascript and is currently being ported to the jQuery2 framework. The client

1 http://projects.camlcity.org/projects/ocamlnet.html
2 http://jquery.com

http://projects.camlcity.org/projects/ocamlnet.html
http://jquery.com

420 A. Asperti and W. Ricciotti

implements a user interface that is essentially similar to the one of ProofGen-
eral [4], CtCoq and CoqIDE [5], or stand-alone Matita [3], but in the form of a
web page. This includes displaying the script (disabling editing for the already
executed part), buttons for script navigation, boxes for proof state (including
multiple open goals) and disambiguation, instant conversion of TEX-like escapes
to Unicode symbols, and essential interface for accessing the remote file system.

The implementation issues are similar to those described in [10]. The web
interface does not need to understand much of Matita: information like being
in an unfinished proof or in disambiguation mode can be easily inferred from
the data structures returned from the server. On the other hand, some code is
necessary to convert Matita markup to HTML markup and vice-versa.

Fig. 1. MatitaWeb in action

Availability. The Matita web interface is accessible from the website
http://pandemia.helm.cs.unibo.it/login.html. Accounts for accessing the
interface are provided by the authors on request.

References

1. Alama, J., Brink, K., Mamane, L., Urban, J.: Large Formal Wikis: Issues and
Solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM
2011 and Calculemus 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg
(2011)

2. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: The Matita Interactive
Theorem Prover. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 64–69. Springer, Heidelberg (2011)

http://pandemia.helm.cs.unibo.it/login.html

A Web Interface for Matita 421

3. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the
Matita proof assistant. Journal of Automated Reasoning 39(2), 109–139 (2007)

4. Aspinall, D.: Proof General: A Generic Tool for Proof Development. In: Graf, S.
(ed.) TACAS 2000. LNCS, vol. 1785, pp. 38–43. Springer, Heidelberg (2000)

5. Bertot, Y., Théry, L.: A generic approach to building user interfaces for theorem
provers. Journal of Symbolic Computation 25, 161–194 (1998)

6. Geuvers, H.: Proof Assistants: history, ideas and future. Sadhana 34(1), 3–25 (2009)
7. Kaliszyk, C.: Web interfaces for proof assistants. Electr. Notes Theor. Comput.

Sci. 174(2), 49–61 (2007)
8. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A Tool for Proof

Re-animation. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L.,
Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 440–454. Springer,
Heidelberg (2010)

9. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for mizar: Motivation,
considerations, and initial prototype. CoRR, abs/1005.4552 (2010)

10. Wenzel, M.: Isabelle as Document-Oriented Proof Assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS,
vol. 6824, pp. 244–259. Springer, Heidelberg (2011)

MaxTract: Converting PDF

to LATEX, MathML and Text

Josef B. Baker, Alan P. Sexton, and Volker Sorge

School of Computer Science, University of Birmingham
{j.baker,a.p.sexton,v.sorge}@cs.bham.ac.uk
http://www.cs.bham.ac.uk/~{jbb|aps|vxs}

1 Introduction

In this paper we present the first public, online demonstration of MaxTract; a
tool that converts PDF files containing mathematics into multiple formats in-
cluding LATEX, HTML with embedded MathML, and plain text. Using a bespoke
PDF parser and image analyser, we directly extract character and font informa-
tion to use as input for a linear grammar which, in conjunction with specialised
drivers, can accurately recognise and reproduce both the two dimensional rela-
tionships between symbols in mathematical formulae and the one dimensional
relationships present in standard text.

The main goals of MaxTract are to provide translation services into standard
mathematical markup languages and to add accessibility to mathematical doc-
uments on multiple levels. This includes both accessibility in the narrow sense
of providing access to content for print impaired users, such as those with visual
impairments, dyslexia or dyspraxia, as well as more generally to enable any user
access to the mathematical content at more re-usable levels than merely visual.
MaxTract produces output compatible with web browsers, screen readers, and
tools such as copy and paste, which is achieved by enriching the regular text with
mathematical markup. The output can also be used directly, within the limits
of the presentation MathML produced, as machine readable mathematical input
to software systems such as Mathematica or Maple.

2 MaxTract Process

Although the PDF documents that MaxTract works on are electronic documents
with character and font information, actually extracting that information and
then analysing it to construct an interpretation of the text and mathematical
formulae contained is a somewhat involved process.

We start by using image analysis over an input file rendered to TIF to identify
the precise bounding boxes of the glyphs, or connected components, on a page.
This is necessary as the PDF format does not encode this information but precise
bounding box information for the characters is critical to the two dimensional
analysis necessary for mathematical formula recognition. The bounding boxes
are mapped to the character and font information extracted via PDF analysis

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 422–426, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cs.bham.ac.uk/~{jbb|aps|vxs}

MaxTract: Converting PDF to LATEX, MathML and Text 423

to produce a list of symbols with their detailed location and bounding box in-
formation. The extraction is completed by parsing the content streams and font
objects comprising a PDF file with a bespoke PDF parser we have written, based
upon the PDF specification [1]. A symbol consists of a name, bounding box, base
point, font size and font name. Projection profile cutting is then used to identify
lines of symbols which are passed to a linear grammar as lists of symbols.

The linear grammar creates a parse tree based upon the two dimensional rela-
tionships of the symbols and their appearance. The grammar has been designed
to produce a parse tree rich enough to be translated by specialised drivers to
produce a wide variety of output in various markup. The extraction process,
analysis and grammar are explained in detail in [3,4].

3 Translation

We use three main output drivers to produce markup, namely a LATEX, MathML
and plain text driver. We combine these drivers in a number of ways to produce
various output formats designed to be accessible to users with a wide variety of
software. Here we explain the basic drivers.

3.1 Basic Drivers

Each of the basic drivers are used in conjunction with a layout analysis module,
which identifies structures such as display mathematics, alignment and justifi-
cation, columns and paragraphs.

LATEX. This produces a .tex file which, when compiled, has been designed to
reproduce the original formatting and style closely. All of the fonts identified
from the original PDF file are reused, and reproduced together with layout and
spacing where possible.

MathML. TheMathML driver returns an .xhtml file, containing standard HTML,
interspersed with presentation MathML where appropriate. Unlike the LATEX
driver, styling is not closely reproduced, with standard HTML fonts and for-
matting used instead of the originals, however elements such as headings and
paragraphs are retained.

Festival. The festival driver produces plain text that can be given to text-to-
speech engines directly. We have particularly focused on and experimented with
Festival [5], and have added some optimisation for this particular engine.

3.2 Annotated PDF

The idea of annotated PDFs is not only to reproduce the original document
using the LATEX driver, but also allow the user to view and copy the markup for
each mathematical formula when viewing the compiled PDF. By associating each

424 J.B. Baker, A.P. Sexton, and V. Sorge

formula with a \pdfannot command, which is processed by pdflatex, the user
is presented with clickable notes containing the respective markup. These notes
can be opened, closed, moved and edited by the user, and of course their content
can be viewed and copied. An example is shown in Figure 1. The annotation
features are not universally supported by PDF browsers, although they are part
of the PDF specification and supported by Adobe Reader [2].

Fig. 1. Equation in a PDF file annotated with LATEX

LATEX Annotations. A special version of the LATEX driver is used to produced the
LATEX annotations. As the markup is designed to be viewed, copied and possibly
edited, positioning and font commands are removed in order to improve the
clarity and simplicity of the generated code.

MathML Annotations. These are produced by the same MathML driver as de-
scribed previously, containing valid snippets of MathML for each formula.

Double Annotations. In addition to the singly annotated files we can also produce
doubly annotated files, where each formula is associated with both the MathML
and LATEX.

3.3 Layered PDF

By taking advantage of the Optional Content features of PDF, we can create
files that contain multiple layers, allowing a user to switch between, say the
rendered file and the underlying LATEX. To achieve this we make use of two
additional packages, OCG [7] and textpos [6], the first of which is used to produce
the separate layers and the second to position each layer correctly. Again these
official features of PDF are not widely supported by PDF browsers other than
Adobe Reader. Figure 2 shows the layer choice dialog in Adobe Reader with the
various layers available in a document produced by MaxTract.

Text Layer. This layer is produced by using the festival driver. The layer has
been designed to work with the read-out-loud facility in Adobe Reader, allowing
the screen reader to accurately read the whole document, including mathematics
which is usually garbled in standard documents.

LATEX Code Layer. In a similar manner to the annotated PDF, this allows the
user to see and copy the underlying LATEX code. However, the layer shows the
code for the whole page rather than just the formulae. This is the simple LATEX
code, without fonts and spacing commands.

MaxTract: Converting PDF to LATEX, MathML and Text 425

Fig. 2. Selection of layers in a PDF file

Both Layers. Again, we can also produce double layered PDF files containing
both the LATEX and text.

3.4 Accessibility Formats

The accessibility formats that we produce are designed to be compatible with all
screen readers. This is achieved by producing standard, plain text files, with none
of the special characters or formatting that are often incompatible with accessi-
bility tools. Any non ASCII symbols, or groups of symbols with non-linear rela-
tionships are replaced with alternative ASCII based text.

Text Only. This is the direct output of the festival driver, producing a plain text
file that can be given to text-to-speech engines.

Text Only as Latex. Text only as LATEX wraps the text described above with a
standard LATEX header and footer so that it can be compiled into a PDF file. No
other commands are used and any mathematics is replaced by alternative text.
This is essentially the same as the text layer from the layered PDF.

Text Only as HTML. This produces a standard .html file to be used with speech
enabled browsers. The text is wrapped in HTML with a standard header and
footer, and line break is the only tag used. Mathematical equations are replaced
by in line alternative text.

4 MaxTract Online Interface

The MaxTract demonstration consists of an HTML form to select and upload a
PDF file for extraction, select an output format and enter an email address. It can
be found at http://www.cs.bham.ac.uk/research/groupings/reasoning/

sdag/maxtract.php .
A PDF file is compatible with MaxTract if it contains only fonts and encodings

that are embedded and of type 1. This can be checked by viewing the fonts tab
in the file properties within Adobe Reader. Once uploaded, the file is processed
if it is found to be compatible with MaxTract, and the user is emailed with a link

http://www.cs.bham.ac.uk/research/groupings/reasoning/sdag/maxtract.php
http://www.cs.bham.ac.uk/research/groupings/reasoning/sdag/maxtract.php

426 J.B. Baker, A.P. Sexton, and V. Sorge

to download the output. If the file cannot be processed, this will be confirmed
via email.

An example of each type of output is also available to be viewed or downloaded
from the MaxTract web site. As stated in section 3, some of these formats make
use of advanced features of PDF which are not supported by all readers, however
they are compatible with Adobe Reader which should be used to view our output.

References

1. Adobe. PDF Reference fifth edition Adobe Portable Document Format Version 1.6.
Adobe Systems (2004)

2. Adobe. Adobe Reader X. Adobe Systems (2012),
http://get.adobe.com/uk/reader/

3. Baker, J.B., Sexton, A.P., Sorge, V.: A Linear Grammar Approach to Mathematical
Formula Recognition from PDF. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M.
(eds.) MKM 2009, Held as Part of CICM 2009. LNCS (LNAI), vol. 5625, pp. 201–
216. Springer, Heidelberg (2009)

4. Baker, J.B., Sexton, A.P., Sorge, V.: Towards reverse engineering of PDF documents.
In: Sojka, P., Bouche, T. (eds.) Towards a Digital Mathematics Library, DML 2011,
Bertinoro, Italy, pp. 65–75. Masaryk University Press (July 2011)

5. Black, A.W., Taylor, P.A.: The Festival Speech Synthesis System: System documen-
tation. Technical Report HCRC/TR-83, Human Communciation Research Centre,
University of Edinburgh, Scotland, UK (1997),
http://www.cstr.ed.ac.uk/projects/festival.html

6. Gray, N.: Textpos (2010), http://purl.org/nxg/dist/textpos
7. Marik, R.: OCGtools (2012), http://ctan.org/pkg/ocgtools

http://get.adobe.com/uk/reader/
http://www.cstr.ed.ac.uk/projects/festival.html
http://purl.org/nxg/dist/textpos
http://ctan.org/pkg/ocgtools

New Developments in Parsing Mizar�

Czesław Bylinski and Jesse Alama

Center for Artificial Intelligence
New University of Lisbon

Portugal
j.alama@fct.unl.pt

Abstract. The Mizar language aims to capture mathematical vernacu-
lar by providing a rich language for mathematics. From the perspective
of a user, the richness of the language is welcome because it makes writ-
ing texts more “natural”. But for the developer, the richness leads to
syntactic complexity, such as dealing with overloading.

Recently the Mizar team has been making a fresh approach to the
problem of parsing the Mizar language. One aim is to make the language
accessible to users and other developers. In this paper we describe these
new parsing efforts and some applications thereof, such as large-scale text
refactorings, pretty-printing, HTTP parsing services, and normalizations
of Mizar texts.

1 Introduction

The Mizar system provides a language for declaratively expressing mathematical
content and writing mathematical proofs. One of the principal aims of the Mizar
project is to capture “the mathematical vernacular” by permitting authors to
use linguistic constructions that mimic ordinary informal mathematical writing.
The richness is welcome for authors of Mizar texts. However, a rich, flexible,
expressive language is good for authors can lead to difficulties for developers and
enthusiasts. Certain experiments with the Mizar language and its vast library of
formalized mathematical knowledge (the Mizar Mathematical Library, or MML),
naturally lead to rewriting Mizar texts in various ways. For some purposes one
can work entirely on the semantic level of Mizar texts; one may not need to know
precisely what the source text is, but only its semantic form. For such purposes,
an XML presentation of Mizar texts has long been available [6]. However, for
some tasks the purely semantic form of a Mizar text is not what is wanted. Until

� Supported by the ESF research project Dialogical Foundations of Semantics within
the ESF Eurocores program LogICCC (funded by the Portuguese Science Founda-
tion, FCT LogICCC/0001/2007). Research for this paper was partially done while
a visiting fellow at the Isaac Newton Institute for the Mathematical Sciences in the
program ‘Semantics & Syntax’. Karol Pąk deserves thanks for his patient assistance
in developing customized Mizar text rewriting tools.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 427–431, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

428 C. Bylinski and J. Alama

recently there has been no standalone tool, distributed with Mizar, that would
simply parse Mizar texts and present the parse trees in a workable form.1

Parsing texts for many proof assistants is often facilitated through the envi-
ronment in which these proof assistants are executed. Thus, texts written for
those systems working on top of a Lisp, such as IMPS, PVS, and ACL2, already
come parsed, so one has more or less immediate access to the desired parse trees
for terms, formulas, proofs, etc. Other systems, such as Coq and HOL light, use
syntax extensions (e.g., Camlp4 for Objective Caml) to “raise” the ambient pro-
gramming language to the desired level of proof texts. For Mizar, there is no such
ambient environment or read-eval-print loop; working with Mizar is more akin
to writing a C program or LATEX document, submitting it to gcc or pdflatex,
and inspecting the results.

This paper describes new efforts by the Mizar team to make their language
more workable and illustrates some of the fruits these efforts have already borne.
This paper does not explain how to parse arbitrary Mizar texts. And for lack of
space we cannot go into the detail about the Mizar system; see [3,4].

In Section 2, we discuss different views of Mizar texts that are now available.
Section 3 describes some current applications made possible by opening up Mizar
texts, and describes some HTTP-based services for those who wish to connect
their own tools to Mizar services. Section 4 concludes by sketching further work
and potential applications.

2 Layers of a Mizar Text

It is common in parsing theory to distinguish various analyses or layers of a text,
considered in the first place as a sequence of bytes or characters [1]. Traditionally
the first task in parsing is lexical analysis or scanning: to compute, from a
stream of characters, a stream of tokens, i.e., terminals of a production grammar
G. From a stream of tokens one then carries out a syntactic analysis, which
is the synthesis of tokens into groups that match the production rules of G.

One cannot, in general, lexically analyze Mizar texts without access to the
MML. Overloading (using the same symbol for multiple, possibly unrelated
meanings) already implies that parsing will be non-trivial, and overloading is
used extensively in the Mizar library. Even with a lexical analysis of a Mizar
text, how should it be understood syntactically? Through Mizar’s support for
dependent types, the overloading problem is further complicated. Consider,
for example, the Mizar fragment

let X be set ,
R be Relation of X, Y;

The notion of a (binary) relation is indicated by the non-dependent (zero-
argument) type Relation. There is also the binary notion relation whose do-
main is a subset of X and whose range is a subset of Y , which is expressed
1 One parser tool, lisppars, is distributed with Mizar. lisppars is mainly used to facil-

itate authoring Mizar texts with Emacs [5]; it carries out fast lexical analysis only
and does not output parse trees.

New Developments in Parsing Mizar 429

as Relation of X,Y. Finally, we have the one-argument notion relation whose
domain is a subset of X and whose range is a subset of X which is written
Relation of X. In the text fragment above, we have to determine which possi-
bility is correct, but this information would not contained in a token stream (is
Y the second argument of an instance of the binary Relation type, or is it the
third variable introduced by the let?).

2.1 Normalizations of Mizar Texts

One goal of opening up the Mizar parser is to help those interested in working
with Mizar texts to not have to rely on the Mizar codebase to do their own ex-
periments with Mizar texts. We now describe two normalizations of (arbitrary)
Mizar texts, which we call weakly strict and more strict. The results of these two
normalizations on a Mizar text can be easily parsed by a standard LR parser,
such as those generated by the standard tool bison2 and have further desir-
able syntactic and semantic properties. Other normalizations beyond these two
are certainly possible. For example, whitespace, labels for definitions, theorems,
lemmas, etc., are rewritten by the normalizations we discuss; one can imagine
applications where such information ought not be tampered with.

2.2 Weakly Strict Mizar

The aim of the weakly strict Mizar (WSM) transformation is to define a class of
Mizar texts for which one could easily write an standard, standalone parser that
does not require any further use of the Mizar tools. In a weakly strict Mizar text
all notations are disambiguated and fully parenthesized, and all statements take
up exactly one line. (This is a different transformation than single-line variant
AUT-SL of the Automath system [2].) Consider:

reserve P,R for Relation of X,Y;

This Mizar fragment is ambiguous: it is possible that the variable Y is a third
reserved variable (after the variables P and R), and it is possible that Y is an argu-
ment of the dependent type Relation of X,Y. The text becomes disambiguated
by the weakly strict Mizar normalization to

reserve P , R for (Relation of X , Y) ;

and now the intended reading is syntactically evident, thanks to explicit bracket-
ing and whitespace. (Any information that is implicitly contained by whitespace
structure in the original text is destroyed.)

The result of the one-line approach of the weakly strict Mizar normalization
is, in many cases, excessive parenthesization, unnecessary whitespace, and rather
long lines.3 The point of the weakly strict Mizar normalization is not to produce
2 http://www.gnu.org/software/bison/
3 The longest line in the “WSM-ified” library has length 6042. About 60% (to be

precise, 694) of the articles in the WSM form of the current version of the Mizar
Mathematical Library (4.181.1147) have lines of length at least 500 characters. The
average line length across the whole “WSM-ified” library is 54.7.

http://www.gnu.org/software/bison/

430 C. Bylinski and J. Alama

attractive human-readable texts. Instead, the aim is to transform Mizar texts so
that they have a simpler grammatical structure.

2.3 More Strict Mizar

A second normalization that we have implemented is called, for lack of a better
term, more strict Mizar (MSM). The aim of the MSM normalization is to to
define a class of Mizar texts that are canonicalized in the following ways:

– From the name alone of an occurrence of a variable one can determine the
category (reserved variable, free variable, bound variable, etc.) to which the
occurrence belongs. (Such inferences are of course not valid for arbitrary
Mizar texts.)

– All formulas are labeled, even those that were unlabeled in the original text.
– Some “syntactic sugar” is expanded.
– Toplevel logical linking is replaced by explicit reference. Thus,

φ; then ψ;

using the keyword then includes the previous statement (φ) as the justifi-
cation of ψ. Under the MSM transformation, such logical relationships are
rewritten as

Label1: φ;
Label2: ψ by Label1;

Now both formulas have new labels Label1 and Label2. The logical link
between φ and ψ, previously indicated by the keyword then, is replaced by
an explicit reference to the new label (Label1) for φ.

– All labels of formulas and names of variables in a Mizar are serially ordered.

MSM Mizar texts are useful because they permit certain “semantic” inferences
to be made simply by looking at the syntax. For example, since all formulas
are labeled and any use of a formula must be done through its label, one can
infer simply by looking at labels of formulas in a text whether a formula is used.
By looking only at the name of a variable, one can determine whether it was
introduced inside the current proof or was defined earlier.

3 Applications

Opening up the Mizar parser by providing new tools that produce parse trees
naturally suggests further useful text transformations, such as pretty printing.
An HTTP parsing service for these new developments is available for public
consumption. Four services are available. Submitting a suitable GET request to
the service and supplying a Mizar text in the message body, one can obtain as
a response the XML parse tree for the text, a pretty-printed form of it, or the
WSM or MSM form of a text (either as plain text or as XML). The HTTP
services permit users to parse Mizar texts without having access to the MML, or
even the Mizar tools. See

New Developments in Parsing Mizar 431

http://mizar.cs.ualberta.ca/parsing/

to learn more about the parsing service, how to prepare suitable HTTP parsing
requests, and how to interpret the results.

4 Conclusion and Future Work

Parsing is an essential task for any proof assistant. In the case of Mizar, parsing
is a thorny issue because of the richness of its language and its accompanying
library. New tools for parsing Mizar, with an eye toward those who wish to
design their own Mizar applications without (entirely) relying on the Mizar tools,
are now available. Various normalizations for Mizar texts have been defined.
Further useful normalizations are possible. At present we are experimenting with
a so-called “without reservations” Mizar (WRM), in which there are no so-called
reserved variables; in WRM texts the semantics of any formula is completely
determined by the block in which it appears, which should make processing of
Mizar texts even more efficient.

References

1. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and
Tools. Pearson/Addison Wesley (2007)

2. de Bruijn, N.G.: AUT-SL, a single-line version of Automath. In: Nederpelt, R.,
Geuvers, J.H., de Vrijer, R.C. (eds.) Selected Papers on Automath. Studies in Logic
and the Foundations of Mathematics, vol. 133, ch. B.2, pp. 275–281. North-Holland
(1994)

3. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of
Formalized Reasoning 3(2), 153–245 (2010)

4. Matuszewski, R., Rudnicki, P.: Mizar: The first 30 years. Mechanized Mathematics
and its Applications 4(1), 3–24 (2005)

5. Urban, J.: MizarMode—An integrated proof assistance tool for the Mizar way
of formalizing mathematics. Journal of Applied Logic 4(4), 414–427 (2006),
http://www.sciencedirect.com/science/article/pii/S1570868305000698

6. Urban, J.: XML-izing Mizar: Making Semantic Processing and Presentation of MML
Easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.
Springer, Heidelberg (2006)

http://mizar.cs.ualberta.ca/parsing/
http://www.sciencedirect.com/science/article/pii/S1570868305000698

Open Geometry Textbook: A Case Study of

Knowledge Acquisition via Collective Intelligence

(Project Description)

Xiaoyu Chen1, Wei Li1, Jie Luo1, and Dongming Wang2

1 SKLSDE – School of Computer Science and Engineering, Beihang University,
Beijing 100191, China

2 Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie – CNRS,
4 place Jussieu – BP 169, 75252 Paris cedex 05, France

Abstract. We present an Open Geometry Textbook project whose main
objective is to develop a web-based platform for acquiring geometric
knowledge to form a textbook via the collective intelligence of a massive
number of web users. The platform will provide a formal representation
language for users to contribute formalized geometric knowledge contents
and will integrate software tools for automated knowledge processing and
content management. Collected geometric knowledge will be presented as
a dynamic textbook, which can be freely accessed, timely updated, and
soundly revised by any interested web user and whose authoritatively
ideal versions will be published in print. We will design and implement
effective mechanisms and tools for open textbook author identification,
soundness checking, revision assessment, and version maintenance.

Keywords: Geometry, knowledge acquisition, collective intelligence,
open textbook, version maintenance.

1 Motivations

Textbooks, as a standard form of presentation for structured domain knowledge,
have played a significant role in education and research. Classical textbooks share
some common features.

– They are static documents in which domain knowledge is machine-readable
rather than machine-comprehensible.

– The contents of a textbook are constructed usually by a few domain experts
with their own intelligence. There is no effective mechanism for acquiring
input and feedback from widespread readers.

– Textbook revision, update, and improvement are not timely, depending on
the publishers and the availability of the authors and taking long periods of
time in practice.

Inspired by the rapid development of web and computing technologies, the swift
growth of web users (or netizens) around the world, and the new approach of
acquiring knowledge via collective intelligence [7], we have started developing a
kind of modern textbook, called open textbook. It is a running software system

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 432–437, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Open Geometry Textbook 433

that appears as an electronic, dynamic textbook and is freely accessible. Netizens
are allowed to revise the contents of the textbook and can review the latest
revisions and assess them using implemented mechanisms. When the assessments
of revisions are justified, the textbook is updated automatically in real time and
its new version is then published online.1 The open textbook does not have fixed
authors, is maintained by a dynamic subcommunity of netizens, and thus may
live longer than a traditional textbook.

Compared with articles in Wikipedia (http://www.wikipedia.org/) and mod-
ules in the open educational content repository of Connexions (http://cnx.org/),
domain knowledge collected in the open textbook will be formalized, more fo-
cused, and better structured, so software tools can be developed or integrated to
automate the process of theorem proving, diagram generation, consistency and
soundness checking, textbook version maintenance, etc.

Euclidean geometry has been taken for our case study because it is a rich and
typical subject of mathematics involving complex knowledge of various kinds
and because the geometric knowledge base [2], the formal Geometry Description
Language (GDL – http://geo.cc4cm.org/text/GDL.html), and the prototype of
an electronic geometry textbook [1] produced from our past research on EGT [3]
can be used for our implementation of the open textbook project.

2 Objectives

The main objective of the Open Geometry Textbook project is to design and
implement a web-based platform for acquiring geometric knowledge to form
a textbook via the collective intelligence of a massive number of web users
(including geometry experts, teachers, learners, and amateurs) and to study the
feasibility of our open textbook approach for automated acquisition of knowledge
in mathematics, with geometry as a special case. The project will also help
build up a collection of geometric knowledge from netizens’ contributions and
an integrated environment with sophisticated software tools for interested users
to access, explore, communicate, disseminate, and publish geometric knowledge.
To succeed in our objectives, we will focus our research and development on the
following three aspects.

Content Management. A structural knowledge base will be created to man-
age textbook contents (in natural languages and/or formalized representations),
their revisions, and the results of assessments, so that new versions of the text-
book or parts thereof may be generated by incorporating accepted revisions

1 By content we mean a structural part of the textbook. It can be a chapter, a
paragraph, a theorem, or an example. By revision we mean either a new content
obtained from an existing content of the textbook by deletion and/or modification,
or a newly added content. Version is used for the entire textbook. A new version
is produced from an existing version of the textbook by incorporating accepted
revisions. Creative Commons Attribution-ShareAlike license will be adopted as the
main content license for the open textbook.

434 X. Chen et al.

in real time and in different formats (e.g., PDF and HTML) for display and
printing at the reader’s choice.

Revision Assessment. Factors (such as correctness, logicality, and presenta-
tion) of impact on the quality of the textbook will be studied. Models and mecha-
nisms will be introduced to measure and rate the quality of revisions. It is expected
that the coverage and quality of the textbook will tend to be improved gradually
as the number of its version increases.

Knowledge Processing. A language for formalizing textbook contents will
be provided and most textbook contents will be formalized as possible (by
motivated users and/or the developers). Several external software packages will
be integrated into the textbook for automated geometric computation, theorem
proving, diagram generation, and consistency and soundness checking. Practical
tools will be developed to guide and assist users to formalize, structure, annotate,
and validate their contributions.

3 Methodologies

Several available methodologies will be adapted for developing software com-
ponents of the textbook to manage knowledge contents and to assist authors to
make sound revisions, as well as readers to assess contributions. One of them we
have used is to encapsulate interrelated knowledge data into knowledge objects
and structure knowledge objects into knowledge graphs to realize a knowledge
base for managing multiversion geometric knowledge contents [2]. We will adopt
this methodology to encapsulate revisions with their corresponding assessment
results for managing constantly revised contents. For presenting contents in
readable formats, we have implemented interfaces to generate XML documents
by assembling the required data from the knowledge base and transform them
into HTML documents for display [1]. Our choice of notations for knowledge
presentation will be justified by consulting the census in [6] and other references.

The language GDL proposed in our EGT project can be used to formalize geo-
metric definitions, configurations, propositions, etc. We have implemented an in-
terface via which formalized geometric theorems in the textbook can be proved
automatically by calling provers from GEOTHER (http://www-polsys.lip6.fr/
˜wang/GEOTHER/). An interface has also been developed to generate drawing
instructions in the syntax of GeoGebra (http://www.geogebra.org/cms/) auto-
matically from configurations formulated in GDL [1].

GDL can serve as the basis of a formalization language for contents of the
open geometry textbook. We will extend its expressibility such that theories
in the textbook can be formalized by using the same language. To make
consistency and soundness checking as automatic as possible, we will enlarge
our collection2 of formalized geometric definitions and propositions and motivate
users to contribute formalized contents. When contents of the textbook are

2 Currently, it contains 137 formalized definitions and 102 formalized theorems.

Open Geometry Textbook 435

revised, theories in the textbook may become inconsistent. We will adapt our
general-purpose implementation (http://R.nlsde.buaa.edu.cn/) of R-calculus [5]
to produce consistent candidate theories after content revisions. Any of the
candidate theories may be selected to substitute the original theory, but in
this case all the proofs that use axioms or theorems not included in the new
theory need be verified. Geometric proofs will be formulated with structure so
that their correctness can be (partially) verified by using proof assistants (such
as Isabelle – http://www.cl.cam.ac.uk/research/hvg/Isabelle/). For checking the
consistency of presentation structure and the completeness and redundancy of
textbook contents in real time, some methods have been implemented [3].

Checking the consistency and soundness of informal contents is a challenging
issue. We are going to make use of some existing tools (e.g., LanguageTool –
http://www.languagetool.org/) for language spelling and grammar checking and
to develop assistants for authors to encapsulate informal and formalized contents
with same meanings into individual objects interactively in order to facilitate
their interplay. This work is not hard because the meanings of formalized
contents can be easily interpreted. By means of such encapsulation, validation
of informal contents can be reduced to consistency and soundness checking of
formalized contents. The validity of informal contents for which no corresponding
formalized contents are provided would depend on the knowledge level and
reliability of the authors.

The open textbook will build on the basis of an open source web content
management system (such as Plone – http://plone.org/) which has facilities for
object-oriented data management, revision control, and document publication.

4 Mechanisms

Assessments of content revisions will be performed at three levels: at the first
level, revisions (on formalized contents, authoring formats, language spelling and
grammar, etc.) are checked and their quality is measured by using software tools
(see, e.g., [4] for some measurement models); at the second level, the quality
of each revision is rated by interested readers (by means of giving scores on
impact factors, as in the rating system of WikiProject Mathematics/Wikipedia
1.0). An algorithm will be designed and implemented to rank versions of the
textbook, generated with different accepted revisions, according to the results of
assessments. The order of textbook versions itself will change dynamically. At
any time, the version ranked first is accepted as a temporarily ideal version of
the textbook.

At certain times (e.g., once a year or after several major revisions), assessments
are done at the third level by experts, who may be authors with high reliability
and expertise determined according to their past behaviors and the quality of
the contributions they made. Such experts are invited to help review, revise, and
improve the textbook to produce milestone versions, accepted as authoritatively
ideal versions. The experts are advised to take the results of assessments from
the first two levels into account, so each authoritatively ideal version has the

436 X. Chen et al.

highest rank at the time when it is produced. Some of the authoritatively ideal
versions will be published in print and thus become static.

Interested netizens are the principal working force for the construction,
maintenance, improvement, and expansion of the open geometry textbook. Open
textbook authors will be kept anonymous with identification codes to the public
unless they choose to reveal their real names and the privacy of all personal
information will be securely protected. To find good strategies to popularize
our project and to attract netizens to participate as authors and readers, we
will take necessary measures, for example, cooperating with teachers in selected
schools and awarding authors for distinguished contributions and readers for
fairest assessments. We will approach relevant organizations and project teams
to get our platform linked to their webpages and find leading publishers to
publish some of the authoritatively ideal versions of the textbook.

5 Timelines

We plan to build up the infrastructure for the web-based platform within one and
half years. A prototype of the platform with a preliminary version of the textbook
will be accessible to a limited number of netizens from early 2013. Meanwhile,
supporting tools will be released. We will spend one year to test and enhance
the platform and tools by soliciting input and feedback from experts in the
community of mathematical knowledge management and from netizens outside
this research area. An initial yet complete version of the textbook prepared by the
developers will be released and made publicly accessible via the platform in early
2014. We expect that a substantially improved and expanded milestone version
of the textbook with contributions from over 500 authors will be produced by
the end of 2016. A webpage for the proposed project is under construction and
will be available at http://OpenText.nlsde.buaa.edu.cn/. The reader is welcome
to contribute to the project by submitting comments, suggestions, ideas, and
criticisms via the webpage.

Acknowledgments. The authors wish to thank Christoph Lange and the
referees for many insightful comments which have helped bring the paper to
the present form. This work has been supported by the SKLSDE Open Fund
SKLSDE-2011KF-02.

References

1. Chen, X.: Electronic Geometry Textbook: A Geometric Textbook Knowledge
Management System. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau,
L., Rioboo, R., Sexton, A.P. (eds.) MKM 2010. LNCS (LNAI), vol. 6167, pp. 278–
292. Springer, Heidelberg (2010)

2. Chen, X., Huang, Y., Wang, D.: On the Design and Implementation of a Geometric
Knowledge Base. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS (LNAI),
vol. 6301, pp. 22–41. Springer, Heidelberg (2011)

Open Geometry Textbook 437

3. Chen, X., Wang, D.: Management of Geometric Knowledge in Textbooks. Data &
Knowledge Engineering 73, 43–57 (2012)

4. Hu, M., Lim, E.-P., Sun, A., Lauw, H.W., Vuong, B.-Q.: Measuring Article Quality
in Wikipedia: Models and Evaluation. In: CIKM 2007, pp. 243–252. ACM Press,
New York (2007)

5. Li, W.: R-calculus: An Inference System for Belief Revision. The Computer
Journal 50(4), 378–390 (2007)

6. Libbrecht, P.: Notations Around the World: Census and Exploitation. In: Autexier,
S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.)
MKM 2010. LNCS (LNAI), vol. 6167, pp. 398–410. Springer, Heidelberg (2010)

7. Richardson, M., Domingos, P.: Building Large Knowledge Bases by Mass
Collaboration. In: K-CAP 2003, pp. 129–137. ACM Press, New York (2003)

Project Presentation: Algorithmic Structuring

and Compression of Proofs (ASCOP)

Stefan Hetzl

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
hetzl@logic.at

Abstract. Computer-generated proofs are typically analytic, i.e. they
essentially consist only of formulas which are present in the theorem that
is shown. In contrast, mathematical proofs written by humans almost
never are: they are highly structured due to the use of lemmas.

The ASCOP-project aims at developing algorithms and software
which structure and abbreviate analytic proofs by computing useful
lemmas. These algorithms will be based on recent groundbreaking re-
sults establishing a new connection between proof theory and formal
language theory. This connection allows the application of efficient algo-
rithms based on formal grammars to structure and compress proofs.

1 Introduction

Proofs are the most important carriers of mathematical knowledge. Logic has
endowed us with formal languages for proofs which make them amenable to al-
gorithmic treatment. From the early days of automated deduction to the current
state of the art in automated and interactive theorem proving we have witnessed
a huge increase in the ability of computers to search for, formalise and work with
proofs. Due to the continuing formalisation of computer science (e.g. in areas
such as hardware and software verification) the importance of formal proofs will
grow further.

Formal proofs which are generated automatically are usually difficult or even
impossible to understand for a human reader. This is due to several reasons:
one is a potentially extreme length as in the well-known cases of the four colour
theorem or the Kepler conjecture. But one need not go that far to make this
point, a quick glance at the output of most of the current automated theorem
provers may very well suffice to demonstrate this difficulty. In such cases, where
mere size is not problematic, one faces logical issues such as the use of deduction
formats more suited for finding than for representing proofs as well as engineering
issues such as user interfaces.

Below all these aspects however is lurking a reason of a much more funda-
mental nature: computer-generated proofs are analytic, i.e. they essentially only
contain such formulas which are already present in the theorem that is shown.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 438–442, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Algorithmic Structuring and Compression of Proofs (ASCOP) 439

In contrast, human-generated mathematical proofs almost never are; in a well-
structured proof the final result is usually derived from lemmas. Indeed, the
computer-generated part of the proof of the four colour theorem as well as that
of the the Kepler conjecture is – from the logical point of view – essentially
the verification of a huge case distinction by calculations, a typical form of an
analytic proof. With increasing automation in many areas, the share of such
proofs can be expected to grow, another recent example being the solution to
the Sudoku Minimum Number of Clues problem [15].

Such inscrutable analytic proofs do carry mathematical knowledge, after all
they show that the theorem is true. However they carry this knowledge only
in an implicit form which renders it inaccessible (to a human reader). The aim
of the ASCOP-project is to develop methods and software which makes this
knowledge accessible by making it explicit in the form of new lemmas.

2 Theoretical Foundations

Since the very beginning of structural proof theory, marked by the seminal
work [6], it is well understood that arbitrary proofs can be transformed into
analytic proofs and how to do it. This process: cut-elimination, has been the
central axis of the development of proof theory in the 20th century (the infer-
ence rule cut formalises the use of a lemma in a proof). The approach of the
ASCOP-project is to develop algorithms which reverse this process: starting
from an analytic proof (e.g. one that has been generated algorithmically) the
task is to transform it into a shorter and more structured proof of the same
theorem by the introduction of cuts which – on the mathematical level – repre-
sent lemmas. An algorithmic reversal of cut-elimination is rendered possible by
recent groundbreaking results (like [10,8] and [12], see also [9]) that establish a
new connection between proof theory and formal language theory.

For explaining this connection, let us first consider one of the most most fun-
damental results about first-order logic: Herbrand’s theorem [7]. In its simplest
form it states that ∃xA, for a quantifier-free formula A, is valid iff there are terms
t1, . . . , tn s.t.

∨n
i=1 A[x\ti] is a propositional tautology. A disjunction of instances

of a formula which is a tautology is therefore also often called Herbrand-disjunction.
This theorem can be greatly generalised (see e.g. [16]), for expository purposes we
stick to formulas of the form ∃xA here. A Herbrand-disjunction corresponds to a
cut-free proof in the sense that ∃xA has a cut-free proof with n quantifier infer-
ences iff it has a Herbrand-disjunction with n disjuncts. We write H(π) for the set
of disjuncts of the Herbrand-disjunction induced by the proof π.

It is well-known that cut-elimination may increase the length of proofs consid-
erably, e.g. in first-order logic the growth rate is 2n where 20 = 1 and 2i+1 = 22i .
Now, if a large Herbrand-disjunction arose from eliminating the cuts of a small
proof, then this Herbrand-disjunction must necessarily contain a certain amount
of regularity / redundancy because it has a short description: the original proof
with cuts. While this observation is obvious, the question what that redundancy
is and how it can be characterised and detected is much less so.

440 S. Hetzl

This question has recently been answered in [10,8] for the case of proofs with
Σ1-cuts, i.e. proofs whose cut formulas have a prenex normal form ∃xB where B
is quantifier-free (note that a cut on a formula ∀xB can easily be transformed to a
Σ1-cut by adding a negation and switching the left and right subproofs). In [10,8]
it is shown that a Herbrand-disjunction that arose from a proof π with Σ1-cuts
can be written as the language of a totally rigid acyclic tree grammar
that has the size of π. Rigid tree languages have been introduced in [13] with
applications in verification in mind (e.g. of cryptographic protocols as in [14]).
A rigid tree grammar differs from a regular tree grammar (see e.g. [5]) in that
it allows certain equality constraints. Totally rigid acyclic tree grammars are a
subclass of them, see [10,8] for details. Such results that describe the structure
of Herbrand-disjunctions depending on the class of proofs with cut from which
they originate will be called structure theorems in the sequel.

proof π with cuts −→cut-elimination cut-free proof π∗

↓ ↓
grammar G(π) −→defines language L(G(π)) = H(π∗)

Fig. 1. Proofs and Tree Grammars

What has thus been obtained is a correspondence as depicted in Figure 1: on
the level of Herbrand-disjunctions, cut-elimination is nothing but the computa-
tion of the language of a totally rigid acyclic tree grammar. Consequently this
structure theorem tells us what we have to look for in a Herbrand-disjunction if
we want to abbreviate it using Σ1-cuts: we have to write it as the language
of a totally rigid acyclic tree grammar!

These results suggest the following systematic approach to the design of proof
compression algorithms: a first theoretical step consists in proving a structure
theorem for a particular class of proofs with cut. The proof compression algo-
rithm is then designed to start from a Herbrand-disjunction H and proceed in
two phases:

– First, a grammar that represents H is computed. This is a pure term problem
consisting of finding a minimal (w.r.t. the number of productions) grammar
for a given finite language (i.e. a trivial grammar). This problem is closely
related to automata minimisation, one of the most standard problems in
formal language theory.

– Secondly, cut formulas that realise this grammar in the form of a proof with
cuts are computed. In the case of a single Σ1-cut there is always a canonical
solution which is computable in linear time [11]. This property carries over
to an arbitrary number of Σ1-cuts and – a priori – there is no reason to
assume a different behaviour in the general case.

Furthermore, one obtains a completeness result of the following form: if there is
a proof with cuts that leads to H via cut-elimination, the above algorithm finds

Algorithmic Structuring and Compression of Proofs (ASCOP) 441

it (note the contrast to the undecidability of k/l-compressibility [3]). Therefore
one also obtains a maximal compression: the algorithm finds the proof with the
smallest grammar that leads to a given cut-free proof.

A first proof-of-concept algorithm realising this approach for the class of proofs
having a single Σ1-cut is presented in [11].

3 Aims of the ASCOP-Project

The purpose of the ASCOP-project is to fully exploit the potential of this ap-
proach to structuring and compression of proofs. On the theoretical side, our
main aim is to extend the classes of lemmas that can be computed beyond those
in [11]. Preliminary investigations show that this extension is rather straightfor-
ward as long as the lemmas do not contain quantifier alternations. To treat those,
an extension of the theoretical results of [10,8] is necessary first. As a bridge to
practical applications it will also be useful to generalise these algorithms to work
modulo simple theories such as equality for uninterpreted function symbols or
linear arithmetic.

We will implement these proof compression algorithms based on the GAPT-
project [1]. GAPT (Generic Architecture for Proofs) is a general framework for
proof-theoretic algorithms implemented in Scala. Its primary application is to
serve as a basis for the CERES-system [4], a system for the analysis of formalised
mathematical proofs based on resolution provers. As an appropriate frame for
these algorithms we envisage an implementation that allows to use the output
of a resolution theorem prover as input and to compute a sequent calculus proof
with cuts of the same theorem. Frequently, the user will primarily be interested
in the computed lemmas, viewing the complete proof being only an option for a
more detailed analysis. The existing graphical user interface of GAPT provides
an adequate basis for a sufficiently flexible user interaction. As a large-scale test
of our algorithms we plan to apply them as post-processing step to the output
of standard resolution provers on the TPTP library [17], as in [18].

The ASCOP-project envisages a varied range of applications. In the short term
we expect the system to be useful for improving the readability of the output
of automated theorem provers. We furthermore expect these simplification and
compression capabilities to be useful for the integration of automated provers
in proof assistants (such as sledgehammer in Isabelle [2]) as they allow to break
up automatically generated proofs into smaller pieces (thus facilitating their
replay by Isabelle’s trusted resolution prover metis). In the long term we hope
that these methods have the potential to compute mathematically meaningful
information from large and inscrutable analytic proofs such as that of the four
colour theorem, the Kepler conjecture, the Sudoku clues proof and other similar
proofs to be expected to surface in the future.

The reader interested in following the progress of the ASCOP-project is in-
vited to consult its website at http://www.logic.at/people/hetzl/ascop/.

http://www.logic.at/people/hetzl/ascop/

442 S. Hetzl

References

1. Generic Architecture for Proofs (GAPT), http://code.google.com/p/gapt/
2. Sledgehammer,

http://www.cl.cam.ac.uk/research/hvg/Isabelle/sledgehammer.html

3. Baaz, M., Zach, R.: Algorithmic Structuring of Cut-free Proofs. In: Martini, S.,
Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS,
vol. 702, pp. 29–42. Springer, Heidelberg (1993)

4. Dunchev, T., Leitsch, A., Libal, T., Weller, D., Woltzenlogel Paleo, B.: System
Description: The Proof Transformation System CERES. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 427–433. Springer, Heidelberg (2010)

5. Gécseg, F., Steinby, M.: Tree Languages. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages. Beyond Words, vol. 3, pp. 1–68. Springer, Heidel-
berg (1997)

6. Gentzen, G.: Untersuchungen über das logische Schließen I. Mathematische
Zeitschrift 39(2), 176–210 (1934)

7. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Univer-
sité de Paris (1930)

8. Hetzl, S.: Proofs as Tree Languages, submitted, preprint,
http://hal.archives-ouvertes.fr/hal-00613713/

9. Hetzl, S.: On the form of witness terms. Archive for Mathematical Logic 49(5),
529–554 (2010)

10. Hetzl, S.: Applying Tree Languages in Proof Theory. In: Dediu, A.H., Mart́ın-Vide,
C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012)

11. Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. In:
Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 228–242.
Springer, Heidelberg (2012)

12. Hetzl, S., Straßburger, L.: Herbrand-Confluence for Cut-Elimination in Classical
First-Order Logic (submitted)

13. Jacquemard, F., Klay, F., Vacher, C.: Rigid Tree Automata. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 446–457.
Springer, Heidelberg (2009)

14. Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Infor-
mation and Computation 209, 486–512 (2011)

15. McGuire, G., Tugemann, B., Civario, G.: There is no 16-Clue Sudoku: Solving the
Sudoku Minimum Number of Clues Problem, http://arxiv.org/abs/1201.0749

16. Miller, D.: A Compact Representation of Proofs. Studia Logica 46(4), 347–370
(1987)

17. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

18. Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention
of New Definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 447–462. Springer, Heidelberg (2010)

http://code.google.com/p/gapt/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/sledgehammer.html
http://hal.archives-ouvertes.fr/hal-00613713/
http://arxiv.org/abs/1201.0749

On Formal Specification of Maple Programs�

Muhammad Taimoor Khan1 and Wolfgang Schreiner2

1 Doktoratskolleg Computational Mathematics
2 Research Institute for Symbolic Computation

Johannes Kepler University
Linz, Austria

muhammad.khan@dk-compmath.jku.at,
Wolfgang.Schreiner@risc.jku.at

http://www.risc.jku.at/people/mtkhan/dk10/

Abstract. This paper is an example-based demonstration of our ini-
tial results on the formal specification of programs written in the com-
puter algebra language MiniMaple (a substantial subset of Maple with
slight extensions). The main goal of this work is to define a verification
framework for MiniMaple. Formal specification of MiniMaple programs
is rather complex task as it supports non-standard types of objects, e.g.
symbols and unevaluated expressions, and additional functions and pred-
icates, e.g. runtime type tests etc. We have used the specification lan-
guage to specify various computer algebra concepts respective objects of
the Maple package DifferenceDifferential developed at our institute.

1 Introduction

We report on a project whose goal is to design and develop a tool to find behav-
ioral errors such as type inconsistencies and violations of method preconditions
in programs written in the language of the computer algebra system Maple; for
this purpose, these programs need to be annotated with the types of variables
and methods contracts [8].

As a starting point, we have defined a substantial subset of the computer
algebra language Maple, which we call MiniMaple. Since type safety is a prereq-
uisite of program correctness, we have formalized a type system for MiniMaple
and implemented a corresponding type checker. The type checker has been ap-
plied to the Maple package DifferenceDifferential [2] developed at our institute
for the computation of bivariate difference-differential dimension polynomials.
Furthermore, we have defined a language to formally specify the behavior of
MiniMaple programs. As the next step, we will develop a verification calculus
for MiniMaple. The other related technical details about the work presented in
this paper are discussed in the accompanying paper [7]. For project details and
related software, please visit http://www.risc.jku.at/people/mtkhan/dk10/.

The rest of the paper is organized as follows: in Section 2, we briefly demon-
strate formal type system for MiniMaple by an example. In Section 3, we

� The research was funded by the Austrian Science Fund (FWF): W1214-N15, project
DK10.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 443–447, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.risc.jku.at/people/mtkhan/dk10/
http://www.risc.jku.at/people/mtkhan/dk10/

444 M.T. Khan and W. Schreiner

introduce and demonstrate the specification language for MiniMaple by an ex-
ample. Section 4 presents conclusions and future work.

2 A Type System for MiniMaple

MiniMaple procedure parameters, return types and corresponding local (vari-
able) declarations needs to be (manually) type annotated. Type inference would
be partially possible and is planed as a later goal. The results we derive with
type checking Maple can also be applied to Mathematica, as Mathematica has
almost the same kinds of runtime objects as Maple.

Listing 1 gives an example of a MiniMaple program which we will use in the
following section for the discussion of type checking respective formal specifica-
tion. Also the type information produced by the type system is shown by the
mapping π of program variables to types. For other related technical details of
the type system, please see [4].

1. status:=0;
2. prod := proc(l::list(Or(integer,float)))::[integer,float];
3. # π={l:list(Or(integer,float))}
4. global status;
5. local i, x::Or(integer,float), si::integer:=1, sf::float:=1.0;
6. # π={..., i:symbol, x:Or(integer,float),..., status:anything}
7. for i from 1 by 1 to nops(l) do
8. x:=l[i]; status:=i;
9. # π={..., i:integer, ..., status:integer}
10. if type(x,integer) then
11. # π={..., i:integer, x:integer, si:integer, ..., status:integer}
12. if (x = 0) then
13. return [si,sf];
14. end if ;
15. si:=si*x;
16. elif type(x,float) then
17. # π={..., i:integer, x:float, ..., sf:float, status:integer}
18. if (x < 0.5) then
19. return [si,sf];
20. end if ;
21. sf:=sf*x;
22. end if ;
23. # π={..., i:integer, x:Or(integer,float),..., status:integer}
24. end do;
25. # π={..., i:symbol, x:Or(integer,float),..., status:anything}
26. status:=-1;
27. # π={..., i:symbol, x:Or(integer,float),..., status:integer}
28. return [si,sf];
29. end proc;
30. result := prod([1, 8.54, 34.4, 6, 8.1, 10, 12, 5.4]);

Listing 1. The example MiniMaple procedure type-checked

On Formal Specification of Maple Programs 445

The following problems arise from type checking MiniMaple programs:

– Global variables (declarations) can not be type annotated; therefore values
of arbitrary types can be assigned to global variables in Maple. Therefore we
introduce global and local contexts to handle the different semantics of the
variables inside and outside of the body of a procedure respectively loop.
• In a global context new variables may be introduced by assignments and
the types of variables may change arbitrarily by assignments.

• In a local context variables can only be introduced by declarations. The
types of variables can only be specialized i.e. the new value of a vari-
able should be a sub-type of the declared variable type. The sub-typing
relation is observed while specializing the types of variables.

– A predicate type(E,T) (which is true if the value of expression E has type
T) may direct the control flow of a program. If this predicate is used in
a conditional, then different branches of the conditional may have different
type information for the same variable. We keep track of the type information
introduced by the different type tests from different branches to adequately
reason about the possible types of a variable. For instance, if a variable x has
type Or(integer,float), in a conditional statement where the ”if” branch is
guarded by a test type(x,integer), in the ”else” branch x has automatically
type float. This automatic type inferencing only applies if an identifier has
a union type. A warning is generated, if a test is redundant (always yields
true or false).

The type checker has been applied to the Maple packageDifferenceDifferential [2].
No crucial typing errors have been found but some bad code parts have been
identified that can cause problems, e.g., variables that are declared but not used
(and therefore cannot be type checked) and variables that have duplicate global
and local declarations.

3 A Specification Language for MiniMaple

Based on the type system presented in the previous section, we have developed a
formal specification language for MiniMaple. This language is a logical formula
language which is based on Maple notations but extended by new concepts.
The formula language supports various forms of quantifiers, logical quantifiers
(exists and forall), numerical quantifiers (add, mul, min and max) and se-
quential quantifier (seq) representing truth values, numeric values and sequence
of values respectively. We have extended the corresponding Maple syntax, e.g.,
logical quantifiers use typed variables and numerical quantifiers are equipped
with logical conditions that filter values from the specified variable range.

Also the language allows to formally specify the behavior of procedures by pre-
and post-conditions and other constraints; it also supports loop specifications
and assertions. In contrast to specification languages such as Java Modeling
Language [3], abstract data types can be introduced to specify abstract concepts
and notions from computer algebra.

446 M.T. Khan and W. Schreiner

(*@

requires true;

global status;

ensures

(status = -1 and RESULT[1] = mul(e, e in l, type(e,integer))

and RESULT[2] = mul(e, e in l, type(e,float))

and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],integer) implies l[i]<>0)

and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],float) implies l[i]>=0.5))

or

(1<=status and status<=nops(l) and RESULT[1] = mul(l[i], i=1..status-1, type(l[i],integer))

and RESULT[2] = mul(l[i], i=1..status-1, type(l[i],float))

and ((type(l[status],integer) and l[status]=0) or (type(l[status],float) and l[status]<0.5))

and forall(i::integer, 1<=i and i<status and type(l[i],integer) implies l[i]<>0)

and forall(i::integer, 1<=i and i<status and type(l[i],float) implies l[i]>=0.5));

@*)

proc(l::list(Or(integer,float)))::[integer,float]; ... end proc;

Listing 2. The example MiniMaple procedure formally specified

Listing 2 gives a formal specification of the example procedure introduced
in Section 2. The procedure has no pre-condition as shown in the requires
clause; the global clause says that a global variable status can be modified by
the body of the procedure. The normal behavior of the procedure is specified
in the ensures clause. The post condition specifies that, if the complete list
is processed then we get the result as the product of all integers and floats in
the list but if procedure terminates pre-maturely then we only get the product
of integers and floats till the value of variable status (index of the input list).
For the complete syntax and other details of the formal specification language
see [6]. To test the specification language, we have formally specified some parts
of the Maple package DifferenceDifferential [2] developed at our institute as the
main test for the specification language.

4 Conclusions

We may use the specification language sketched in this short paper to gener-
ate executable assertions that are embedded in MiniMaple programs and check
at runtime the validity of pre/post conditions. Our main goal, however, is to
use the specification language to verify the correctness of MiniMaple annotated
programs by static analysis, in particular to detect violations of methods precon-
ditions. For this purpose, based on the results of a prior investigation, we intend
to use the verification framework Why3 [1] to implement the verification calcu-
lus for MiniMaple, i.e., to translate MiniMaple into the intermediate language
of Why3 and to apply its verification condition generator to generate verifica-
tion conditions and prove their correctness with various back-end provers. Since
the verification calculus must be sound, we have defined a formal semantics of
MiniMaple [5] such that the correctness of the transformation can be shown.

On Formal Specification of Maple Programs 447

References

1. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroc�law, Poland (August 2011)

2. Dönch, C.: Bivariate Difference-Differential Dimension Polynomials and Their Com-
putation in Maple. Technical report, Research Institute for Symbolic Computation,
Johannes Kepler University, Linz (2009)

3. Leavens, G.T., Cheon, Y.: Design by Contract with JML. A Tutorial (2006),
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

4. Khan, M.T.: A Type Checker for MiniMaple. RISC Technical Report 11-05, also DK
Technical Report 2011-05, Research Institute for Symbolic Computation, Johannes
Kepler University, Linz (2011)

5. Khan, M.T.: Formal Semantics of MiniMaple. DK Technical Report 2012-01, Re-
search Institute for Symbolic Computation, Johannes Kepler University, Linz (Jan-
uary 2012)

6. Khan, M.T., Schreiner, W.: Towards a Behavioral Analysis of Computer Algebra
Programs (Extended Abstract). In: Pettersson, P., Seceleanu, C. (eds.) Proceedings
of the 23rd Nordic Workshop on Programming Theory (NWPT 2011), Vasteras,
Sweden, pp. 42–44 (October 2011)

7. Khan, M.T., Schreiner, W.: Towards the Formal Specification and Verification of
Maple Programs. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362,
pp. 231–247. Springer, Heidelberg (2012)

8. Meyer, B.: Applying Design by Contract. Computer 25, 40–51 (1992)

ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

The Planetary Project: Towards eMath3.0

Michael Kohlhase�

Computer Science,
Jacobs University Bremen, Germany
http://planetary.mathweb.org

Abstract. The Planetary project develops a general framework – the
Planetary system – for social semantic portals that support users in
interacting with STEM (Science/Technology/Engineering/Mathematics)
documents. Developed from an initial attempt to replace the aging portal
of PlanetMath.org with a mashup of existing MKM technologies, the
Planetary system is now in a state, where it can serve as a basis for
various eMath3.0 portals, ranging from eLearning systems over scientific
archives to semantic help systems.

The Planetary project aims at developing a general framework – the Plane-
tary system – for social semantic portals that support users in interacting with
STEM documents. It is carried by enthusiasts from Jacobs University and The
Open University.

Main Concepts and Project Genesis

Work on the Planetary system was triggered in August 2010 by the real-
ization that the KWARC group at Jacobs University had developed semantic
counterparts of much of the components underlying the PlanetMath portal [Pla].
PlanetMath.org is an online community that creates and manages an encyclo-
pedia of mathematical concepts; hundreds of regular contributors have pub-
lished about 8500 encyclopedia entries called articles. PlanetMath was founded
in 2000; even before Wikipedia, and is thus one of the first Web2.0 systems. The
Noösphere system [Noo] underlying the portal – essentially a LATEX-based Wiki
implemented in Perl – is showing its age and becoming hard to manage. We
felt that extending Planetmath to an eMath3.0 system – a social semantic web
platform for Mathematics – via MKM technologies, might breathe additional life
into the PlanetMath community and at the same time serve as a showcase of
MKM technologies into the mathematics community.

The pre-existing MKM components that can be combined to form a semantic
counterpart of Noösphere are (see also Figure 1):

1. TNTBase [Tnt] for web-enabled, versioned storage

� For the Planetary Group.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 448–452, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://planetary.mathweb.org

The Planetary Project: Towards eMath3.0 449

2. The LaTeXML daemon [GSK11] for transforming TEX/LATEX document
fragments to HTML51

3. STEX [sTeX], a semantic variant of LATEX that can be transformed to OM-
Doc [Koh06] and further to semantically annotated HTML5 [KMR08]

4. JOBAD [JOBAD], a JavaScript API embedding semantic services into Web
documents

The only missing piece was a front-end that integrated them, added user and
permissions management, and added discussion fora (an essential feature of
PlanetMath). We found this component in the open source Vanilla Forums sys-
tem [Van], that could easily be extended by wrapping the MKM components
into Vanilla plugins. Another plugin that had to be added to the mix for Planet-
Math feature parity was a system for metadata management and visualization:
Planetary exports metadata to an RDF triple store (here an instance of the
Openlink Virtuoso system [Olv]) and integrates custom SPARQL queries into
the user interface e.g. to allow access to PlanetMath articles via the MSC2010
classification [Msc].

Already the proof-of-concept implementation in Fall 2010 made it clear that
this combination of MKM technologies could be much more useful than for just
re-implementing PlanetMath.

Framework for Semantic Publishing and Active Documents

Firefox CMS TNTBaseHTML5

LaTeXML

Virtuoso

REST

HTML5
SPA

R
Q
L

ST
E
X O

M
D
oc

R
D
F

JOBAD

Content
Management

System

Fig. 1. Architecture of the Planetary system

The Planetary system has
been generalized into a com-
prehensive eMath3.0 frame-
work for semantic publishing
and knowledge management,
which has been instantiated
prototypically in a variety
of settings to validate the
framework and support com-
munities. The portals real-
ized in the Planetary sys-
tem range from eLearning systems over scientific archives to semantic help sys-
tems. All share the common basic architecture (see Figure 1), which integrates
the components discussed above as web services into a central Container Man-
agement System (CMS) that mediates all user interaction. Note that in this
MKM-centric architecture, we greatly extend the role of the content manage-
ment subsystem (denoted by the dotted box in Figure 1). The CMS (initially
Vanilla Forums, later Drupal) supplies management and interaction at the “con-
tainer level”, i.e., without ever looking into the documents it manages (hence
the somewhat non-standard name). The management of structured document

1 We use HTML5 as it integrates HTML for document layout with MathML for for-
mula presentation, SVG for diagrams, and RDFa for document-embedded metadata
and is supported by the major browsers.

450 M. Kohlhase

content is split between TNTBase and the RDF triple store in Planetary,
since they can perform semantic services.

Active Documents by Example

Note that the level of semantic interaction afforded by the Planetary system
depends on the depth of semantic annotations in the documents, and thus on
different instances of the Planetary system: They range from simple folding
and localized commenting services in a front-end system for the Cornell ePrint
arXiv to a front-end system which features in-place type reconstruction and
elision of arguments and brackets for the fully formal LATIN atlas [Cod+11].

Fig. 2. Interacting with an arXiv article

We start with the for-
mer and work our
way to more seman-
tics. In all cases, ser-
vices are accessible
locally for objects with
(fine-grained) seman-
tic annotations – e.g.
a subterm of a for-
mula – via a special
context menu menu of
icons centered around
the object. The icon
menu has one entry
per service available
in the current context.
For instance, the ques-
tion mark icon triggers the discussion service supports localized discussion
threads fror reporting problems or asking questions about the selected object.
The InfoBar on the right of Figure 2 is a secondary device that visualizes state
information for the objects in the respective line of the paper, e.g. the availability
of questions or discussions, which can be accessed by the icon menu.

The FoldingBar in Figure 2, similar to source code
IDEs, enables folding document structures, and the
InfoBar icons on the right indicate the availability of local
discussions. In the image on the left, we selected a subterm
and requested to fold it, i.e. to simplify its display by re-
placing it with an ellipsis.

The richer semantic markup of OMDoc-based representations of lecture ma-
terials and the Logic Atlas collections enable services that utilize logical and
functional structures – reflected by a different icon menu. Figure 3 demonstrates
looking up a definition and exploring the prerequisites of a concept. The def-
inition lookup service obtains the URI of a symbol from the annotation of a
formula and queries the server for the corresponding definition. The server-side
part of the prerequisite navigation service obtains the transitive closure of all
dependencies of a given item and returns them as an annotated SVG graph.

The Planetary Project: Towards eMath3.0 451

Fig. 3. Definition Lookup and Prerequisites Navigation

Current and Future Work

In June 2011, the Planetary system became one of the finalist systems in
the Elsevier Executable Papers Challenge [Koh+11]. But the development push
to reach this milestone also revealed crucial shortcomings of the CMS at the
heart of the Planetary system, and the system was ported to Drupal whose
container model and editing facilities are more suitable. Unfortunately, work on
the port, on improving the subsystems, and data conversion issues have delayed
any deployment of production systems based on Planetary.

Currently, the work in the Planetary project focuses on four Planetary-
based systems:

– finishing a production-ready Planetary instance of PlanetMath, see
http://alpha.planetmath.org

– developing a Web2.0 frontend with lightweight semantic features for
http://arxiv.org, an archive of over 700 000 scientific documents. Par-
ticular care will be placed on extracting functional semantics from give
LATEX documents and using this in formula search, see http://arxivdemo.
mathweb.org

– re-establishing the separate compilation and linking functionality for mod-
ular semantic publishing (see [Dav+11b]) in the eLearning3.0 System Pan-
taRhei used in teaching CS courses at Jacobs University, see
http://panta.kwarc.info and

– integrating Planetary as a knowledge provider in semantic allies; see
[Dav+12].

Note that all the Planetary instances referenced in the URIs are under active
research, so your experience may vary.

http://alpha.planetmath.org
http://arxiv.org
http://arxivdemo.mathweb.org
http://arxivdemo.mathweb.org
http://panta.kwarc.info

452 M. Kohlhase

References

[Cod+11] Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.:
Project Abstract: Logic atlas and integrator (LATIN). In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011.
LNCS(LNAI), vol. 6824, pp. 289–291. Springer, Heidelberg (2011)

[Dav+11a] Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.): MKM 2011 and
Calculemus 2011. LNCS(LNAI), vol. 6824. Springer, Heidelberg (2011)

[Dav+11b] David, C., et al.: A Framework for Modular Semantic Publishing
with Separate Compilation and Dynamic Linking. In: Castro, A.G., et
al. (eds.) 1st Workshop on Semantic Publication (SePublica), Aachen.
CEUR Workshop Proceedings, vol. 721 (2011), https://svn.mathweb

.org/repos/planetary/doc/sepublica11/paper.pdf
[Dav+12] David, C., et al.: SAlly: A Framework for Semantic Allies. In: Intelligent

Computer Mathematics. LNCS (LNAI). Springer (2012),
http://kwarc.info/kohlhase/submit/mkm12-SAlly.pdf

[GSK11] Ginev, D., Stamerjohanns, H., Miller, B.R., Kohlhase, M.: The LATEXML
Daemon: Editable Math on the Collaborative Web. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calcule-
mus 2011. LNCS(LNAI), vol. 6824, pp. 292–294. Springer, Heidelberg
(2011), https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/

paper.pdf
[JOBAD] JOBAD Framework – JavaScript API for OMDoc-based active documents,

http://jobad.omdoc.org (visited on February 18, 2012)
[KMR08] Kohlhase, M., Müller, C., Rabe, F.: Notations for Living Mathemat-

ical Documents. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V.,
Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM
2008. LNCS (LNAI), vol. 5144, pp. 504–519. Springer, Heidelberg (2008),
http://omdoc.org/pubs/mkm08-notations.pdf

[Koh+11] Kohlhase, M., et al.: The Planetary System: Web 3.0 & Active Documents
for STEM. Procedia Computer Science 4, 598–607 (2011); Sato, M., et al.
(eds.) Special issue: Proceedings of the International Conference on Com-
putational Science (ICCS). Finalist at the Executable Papers Challenge,
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf,
doi:10.1016/j.procs.2011.04.063

[Koh06] Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Doc-
uments [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006),
http://omdoc.org/pubs/omdoc1.2.pdf

[Msc] Mathematics Subject Classification MSC 2010 (2010),
http://msc2010.org (visited on November 16, 2011)

[Noo] Noösphere (diaresis optional) is the software that underlies the Planet-Math
Website, http://code.google.com/p/noosphere/ (visited on September
30, 2010)

[Olv] OpenLink Software. OpenLink Universal Integration Middleware – Virtuoso
Product Family, http://virtuoso.openlinksw.com (visited on October 22,
2009)

[Pla] PlanetMath.org – Math for the people, by the people,
http://planetmath.org (visited on September 08, 2011)

[sTeX] Semantic Markup for LATEX. Project Homepage,
http://trac.kwarc.info/sTeX/ (visited on February 22, 2011)

[Tnt] TNTBase TRAC, http://tntbase.org (visited on December 16, 2009)
[Van] VanillaForums,http://vanillaforums.org (visited onSeptember22, 2010)

https://svn.mathweb.org/repos/planetary/doc/sepublica11/paper.pdf
https://svn.mathweb.org/repos/planetary/doc/sepublica11/paper.pdf
http://kwarc.info/kohlhase/submit/mkm12-SAlly.pdf
https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/paper.pdf
https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/paper.pdf
http://jobad.omdoc.org
http://omdoc.org/pubs/mkm08-notations.pdf
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
http://msc2010.org
http://code.google.com/p/noosphere/
http://virtuoso.openlinksw.com
http://planetmath.org
http://trac.kwarc.info/sTeX/
http://tntbase.org
http://vanillaforums.org

Tentative Experiments with Ellipsis in Mizar

Artur Korni�lowicz

Institute of Informatics
University of Bia�lystok, Poland

arturk@mizar.org

Abstract. Ellipses are ubiquitous in mathematical texts. They allow
writing sequences of terms or formulas in a concise way. In this paper,
we show how ellipses are incorporated into the Mizar language and how
they are verified by the Mizar proof checker.

1 Motivation

Mizar Mathematical Library (MML) is a collection of articles written in the
Mizar language and verified by the Mizar proof checker [1,2]. Besides important
theorems it contains series of some quite technical lemmas. For the purpose of
this paper let us cite a sequence of lemmas

for n being Nat st n <= 1 holds n = 0 or n = 1;
for n being Nat st n <= 2 holds n = 0 or n = 1 or n = 2;
for n being Nat st n <= 3 holds n = 0 or n = 1 or n = 2 or n = 3;

stated in [3], which for a long time contained 13 such formulas. However, as the
MML grew, other cases of the property were required, and increasingly more
cases may be needed in the future. Therefore it would be worth to generalize the
property and formulate it in a concise way

(*) for m,n being Nat st n <= m holds n = 0 or ... or n = m;

using the ellipsis (. . .) covering cases between the bounds.
In this paper we present how ellipses are incorporated into the Mizar language

and are verified by the Mizar proof checker.
Ellipses are discussed and used in some other formal languages as well, e.g.

[4], [5], [6] and [7].

2 Ellipsis

Extension of formal systems and languages by new constructions can be pro-
cessed in different ways, e.g.:

– as syntactic sugar of some built-in mechanisms preprocessed at the syntactic
level,

– by introducing new inference rules.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 453–457, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

454 A. Korni�lowicz

In the case of flexary formulas, each flexary conjunction φ(a) ∧ · · · ∧ φ(b) could
be treated as syntactic sugar of the formula ∀i∈N : a ≤ i ∧ i ≤ b ⇒ φ(i)
and each flexary disjunction φ(a) ∨ · · · ∨ φ(b) as syntactic sugar of the formula
∃i∈N : a ≤ i ∧ i ≤ b ∧ φ(i). Syntactic sugar makes texts more varied, but it
does not enable us to replace the above mentioned sequence of lemmas with one
lemma. If we expand (*) we get

for m,n being Nat st n <= m
ex i being Nat st 0 <= i & i <= m & n = i;

that only states, in a complicated way, that natural numbers are non-negative.
To enable replacing such a sequence with one lemma, it is enough to add one

inference rule proposed by Andrzej Trybulec

α(i) & ... & α(j)
α(i) & ... & α(j)

that may be used if the length of the conjunction is known, for example

α(1) & ... & α(4)
α(1) & α(2) & α(3) & α(4)

Please note the difference in fonts (different dots): & ... & is a Mizar ellipsis,
while & ... & is a meta Mizar ellipsis.

The actual implementation is rather restricted:

– bounds i and j must be numerals (or 0 that technically in Mizar is a nullary
functor),

– the difference j − i must be small. We put j − i ≤ 100, but it is a subject of
further experiments and discussions.

2.1 Parsing

In the Mizar language, flexary formulas are represented by two new logical
connectives & ... & and or ... or denoting the flexary conjunction and the
flexary disjunction having priorities weaker than their non-flexary counterparts.
That is, Mizar allows connectives not, &, & ... &, or, or ... or, implies
and iff listed in the descending priority order1. Formulas being arguments of
flexary formulas have to be of the same form, i.e. for some α the left argument
equals α(τ1) and the right argument equals α(τ2), where terms τ1 and τ2 have
the type “natural number”. This implies that if we allow a formula with a flexary
connective to be an argument of another flexary connective we get the formula of
the form α(m, i)∧· · ·∧α(m, j)∧· · ·∧α(n, i)∧· · ·∧α(n, j). If such an embedding
is applied k times, we get a formula containing 2k − 1 ellipses, where the main
one is on the 2k−1-th place. To improve the readability of such formulas, when
arguments of flexary formulas are flexary, parentheses around arguments are
obligatory.
1 Implication and equivalence have the same priority.

Tentative Experiments with Ellipsis in Mizar 455

2.2 Reasoning

Flexary connectives require establishing communication with non-flexary math-
ematics. This is realized by a particular formula (which we call an expansion)
generated by each occurrence of a flexary connective. In the case of a flexary
conjunction φ(a)∧· · ·∧φ(b) the formula is ∀i∈N : a ≤ i∧ i ≤ b ⇒ φ(i), where the
computation of the bounds a and b is based on terms occurring in formulas φ(a)
and φ(b). The terms a and b represent the minimum difference between forms of
terms of φ(a) and φ(b). For example, φ(n) ∧ · · · ∧ φ(n + 5) results in a = n and
b = n + 5, while φ(n + 0) ∧ · · · ∧ φ(n + 5) gives a = 0 and b = 5.

Generated expansions are used by the Mizar checker in different aspects.
Mizar proof system is based on the Jaśkowski style of natural deduction [8] (sim-
ilar systems have been developed independently by F. B. Fitch [9] and K. Ono
[10]). If, for some reason, it is difficult or impossible to lead reasoning on the level
of flexary formulas, the Mizar verifier allows moving to non-flexary reasonings
through such expansions. Possible forms of proof sketches are:

P[a] & ... & P[b] P[a] or ... or P[b]
proof proof
let i be natural number; take i = example;
assume a <= i & i <= b; thus a <= i & i <= b;
thus P[i]; thus P[i];

end; end;

which are compatible with generated formulas.

2.3 Verifying

The main idea behind justification of inferences including flexary formulas is to
add to each flexary formula its expansion. But, what does “to add” mean? From
the satisfiability point of view there are two possible answers: the expansion can
be added to the original flexary formula creating a new conjunction or a new
disjunction – α is satisfiable if and only if α∧α is satisfiable and α is satisfiable
if and only if α ∨ α is satisfiable. Then we expand one copy of α getting α ∧ α̂
or α ∨ α̂, where α̂ is the expansion of α.

Because we want to strengthen the power of the checker, what we do depends
on the sign of the flexary formula to be expanded, whether it is positive or
negative. If it occurs positively, i.e. when α is a premise, then we expand it to
α ∧ α̂. If it is negative, i.e. when ¬α is a premise, then we expand it to α ∨ α̂,
what by the de Morgan law results in ¬α∧¬α̂. In both cases we get the stronger
set of premises.

3 Applications in MML

A preliminary revision of the MML has been completed. It resulted in 43 occur-
rences of flexary conjunction and 201 occurrences of flexary disjunction. Primary
applications are in theorems on the basic properties of natural numbers, such as

456 A. Korni�lowicz

k <= n implies k = 0 or ... or k = n;
m <= i & i <= m+k implies i = m+0 or ... or i = m+k;

Other usages occur in constructions of particular objects for some fixed limits, for
example describing instructions of mathematical models of computing machines
or kinds of formulas in formalizations of different logical languages and systems.

Another, quite obvious, application of flexary formulas can be the theory of
finite sequences, in which many formulas are of the form

for i being natural number st 1 <= i & i <= len f holds P[i];

which is simply the expansion of

P[1] & ... & P[len f];

The question is whether all such general statements should be rewritten in terms
of flexary formulas. Since property P occurs twice in the flexary form, readability
of such formulations depends on the length of the property P. When P is long,
the readability is decreased.

4 Conclusions and Future Work

This paper is a report of implementing flexary conjunction and flexary disjunc-
tion in the Mizar system. Although the current implementation is still limited—
for example, a more advanced version should manage to infer

φ(i) & . . . & φ(j)
φ(j + 1) & . . . & φ(k)

φ(i) & . . . & φ(k)

which the current version does not—the results are promising. For example, the
usage of flexary formulas in the article DESCIP 1 stored in the MML shortened
it from 4,430 to 3,360 lines (24%) and from 153,917 to 114,975 bytes (25%).

One direction in which development of flexary formulas can proceed is defining
flexary terms. For example, enumerable sets {F(i),...,F(j)} could be modeled
as Fraenkel terms

{F(k) where k is Nat : k = i or ... or k = j}.
More advanced use of flexary formulas is connected with introducing indexed
variables to the Mizar language, what will allow us to quantify sequences of
variables. Works are under discussion and design.

Modules responsible for ellipsis are incorporated into Mizar version 7.14.01.
The software can be downloaded from the Mizar homepage: http://mizar.org.

Acknowledgements. Special thanks go to Andrzej Trybulec for his support
during software implementation and the preparation of this paper. General ideas
and concepts about ellipses in Mizar were presented by Andrzej Trybulec during
his invited talk entitled “Why the linguistic superstructure is needed?” at CICM
2011 in Bertinoro.

http://mizar.org

Tentative Experiments with Ellipsis in Mizar 457

References

1. Mizar homepage, http://mizar.org/
2. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of

Formalized Reasoning, Special Issue: User Tutorials I 3(2), 153–245 (2010)
3. Bancerek, G.: The fundamental properties of natural numbers. Formalized Math-

ematics 1(1), 41–46 (1990)
4. Horozal, F., Kohlhase, M., Rabe, F.: Extending OpenMath with Sequences. In:

Asperti, A., Davenport, J., Farmer, W., Rabe, F., Urban, J. (eds.) Intelligent
Computer Mathematics, Work-in-Progress Proceedings, Volume UBLCS-2011-04
of Technical Report, University of Bologna, pp. 58–72 (2011)

5. Bundy, A., Richardson, J.: Proofs About Lists Using Ellipsis. In: Ganzinger, H.,
McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp.
1–12. Springer, Heidelberg (1999)

6. Sexton, A.P., Sorge, V.: Abstract matrices in symbolic computation. In: Dumas,
J.G. (ed.) International Symposium on Symbolic and Algebraic Computation (IS-
SAC), Genova, Italy, pp. 318–325. ACM Press (July 2006)

7. �Lukaszewicz, L.: Triple dots in a formal language. Journal of Automated Reason-
ing 22, 223–239 (1999)

8. Jaśkowski, S.: On the rules of suppositions in formal logic. Studia logica. Nak�ladem
Seminarjum Filozoficznego Wydzia�lu Matematyczno-Przyrodniczego Uniwersytetu
Warszawskiego (1934)

9. Fitch, F.B.: Symbolic logic, an introduction. Ronald Press Co., New York (1952)
10. Ono, K.: On a practical way of describing formal deductions. Nagoya Mathematical

Journal 21, 115–121 (1962)

http://mizar.org/

Reimplementing
the Mathematics Subject Classification (MSC)

as a Linked Open Dataset�

Christoph Lange1,2,3, Patrick Ion4,5, Anastasia Dimou5, Charalampos Bratsas5,
Joseph Corneli6, Wolfram Sperber7, Michael Kohlhase1, and Ioannis Antoniou5

1 Computer Science, Jacobs University Bremen, Germany
2 University of Bremen, Germany

3 School of Computer Science, University of Birmingham
4 American Mathematical Society

5 Web Science, Aristotle University Thessaloniki, Greece
6 Knowledge Media Institute, The Open University, UK

7 FIZ Karlsruhe, Germany
Project page: http://msc2010.org/mscwork/

Abstract. The Mathematics Subject Classification (MSC) is a widely
used scheme for classifying documents in mathematics by subject. Its
traditional, idiosyncratic conceptualization and representation makes the
scheme hard to maintain and requires custom implementations of search,
query and annotation support. This limits uptake e.g. in semantic web
technologies in general and the creation and exploration of connections
between mathematics and related domains (e.g. science) in particular.

This paper presents the new official implementation of the MSC2010
as a Linked Open Dataset, building on SKOS (Simple Knowledge Orga-
nization System). We provide a brief overview of the dataset’s structure,
its available implementations, and first applications.

Introduction

The Mathematics Subject Classification (MSC [7]) maintained by Mathematical
Reviews (MR) and Zentralblatt Math (Zbl) is a widely used system for classifying
mathematical documents. All major mathematical journals and digital libraries
use the MSC1, mainly as a means of structuring literature in libraries and for
the purposes of retrieving information by topic. As the original format of the
MSC2010 hindered its automated use and maintenance, we have reimplemented
it as a machine-readable linked open dataset, which will soon be announced as
the single official implementation.
� First author supported by DFG project I1-[OntoSpace] of SFB/TR 8 “Spatial Cog-

nition” and EPSRC grant “EP/J007498/1 – Formal representation and proof for
cooperative games”; second author by the University of Michigan.

1 For details about this and about most other aspects of this project presentation, we
refer to a full paper published recently [6].

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 458–462, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://msc2010.org/mscwork/

Reimplementing the Mathematics Subject Classification (MSC) 459

MSC Usage and Maintenance So Far. Previously, the right MSC class for a
publication (e.g. 53A45 for “Vector and tensor analysis”) was typically chosen
by consulting a human-readable document. Web forms for uploading or searching
publications typically required manual input of the desired MSC classes, rather
than offering assistance. The source of the MSC had been maintained in one
plain TEX file for almost 30 years. From this file, scripts produced several derived
forms, including a KWIC index, a printable PDF, and HTML. Quality control
of the source file with its custom macros could only be done by few experts, the
derived forms did not particularly target machine processing, and the scripts
that created them were once more custom, MSC-specific solutions.

Requirements for a Reimplementation. After the content of the MSC2010 had
been settled, MR and Zbl decided to technically reimplement the source, ac-
cording to the following requirements: (1) facilitate reuse, i.e. facilitate ac-
cess, search, queries, and auto-classification; (2) facilitate maintenance, i.e.
preserve all of the original information, use a standard format supported by
existing tools, enable integration of further maintenance information into the
master source (such as the changes from MSC2000 to MSC2010); (3) enable
knowledge workers and service developers to adapt and extend the
MSC for their purposes, such as connecting mathematical subjects to related
fields, adding descriptive labels in further languages, without affecting the core
scheme; and (4) allow end users to explore such connections in order to
discover new knowledge. We chose to reimplement the MSC2010 as an RDF
Linked Open Dataset, using the W3C-standardized SKOS vocabulary (Simple
Knowledge Organization System [8]), which had been in use in digital libraries
for several years.

Structure of the MSC/SKOS Concept Scheme

SKOS’s built-in vocabulary covers a major part of the MSC concept scheme in
a straightforward way; however, for full MSC coverage, we had to extend SKOS
in an MSC-specific way. We summarize the design below but refer to [6] for full
technical detail.

Basics. The basic concept hierarchy was implemented as a SKOS concept scheme
with 63 top-level concepts, which narrow down into 528 intermediate-level con-
cepts, having 5606 final leaves. SKOS also supports collections of concepts be-
sides the main hierarchy, such as “all historical topics”. The 5-character MSC
class numbers (e.g. 53A45) are used as URIs of the concepts for identifying
them and making their descriptions technically retrievable (see below). SKOS
allows for attaching multilingual labels to concepts; so far we have English, Chi-
nese, Italian, and Russian, each from authoritative sources, and the RDF data
model allows for maintaining further, non-authoritative translations separately.
Finally, SKOS supports links across concept schemes, which we have so far used
for making explicit the changes from MSC1991 and MSC2000 to MSC2010.

460 C. Lange et al.

Advanced Features. We go beyond the SKOS core, but follow established best
practices, by linking MSC classes to concept schemes that have not yet fully been
implemented in SKOS (the Dewey Decimal Classification). We extended the
SKOS vocabulary with partitive relations, i.e. when a link to a related concept
is restricted to a certain scope such as “numeric approximations” or “applica-
tions in physics”. 0.4 percent of the concepts have labels containing mathematical
markup, which cannot be expressed in Unicode but requires MathML. RDF sup-
ports XML in labels, but it conflicts with multilinguality – a problem unsolved
so far. Finally, we attach some information, for which we have not yet designed
a dedicated representation, such as co-classification policies, as generic notes to
the respective concepts.

Available Implementations

The Dataset. We generated the new SKOS master source of the MSC2010 with
a Perl script that translated the old TEX source to RDF/XML. We publish
the data in four complementary ways, aiming to address a large audience of
users and developers. The project page at http://msc2010.org/mscwork/ contains
links to all alternatives. For linked data access (i.e. directly retrieving an
RDF description of each MSC class by dereferencing its URI; cf. [3]), we split
the SKOS master file into one file per MSC class and serve the latter with
the application/rdf+xml MIME type. For querying the dataset, we expose it
through a SPARQL endpoint, i.e. a standardized interface for querying RDF.
For browsing, we offer a wiki frontend. Finally, for application developers, we
offer the whole dataset for download as self-contained files in several formats.

Easy and reliable maintenance requires a master source without redundancy,
e.g. the concept hierarchy should not be represented both top-down and bottom-
up. Linked data browsing, as well as other uses in large-scale applications that
use plain RDF without inferencing support for performance, require a richer
dataset with most practically relevant entailments expanded. We automatically
create this expanded version by applying a set of first-order rules implemented in
N3, covering a subset of the SKOS semantics and our MSC-specific extensions.

In Use. The new implementation of the MSC2010 is currently in use on two
websites linked from the project page. Both have been developed independently
using the RDF-aware Drupal 7 content management system. On the homepage
of the School of Mathematics at Aristotle University Thessaloniki (AUTH), we
annotated the scientific fields covered by the courses and the faculty’s research
interests in terms of MSC/SKOS. The new version of the PlanetMath encyclo-
pedia (shortly entering beta testing) is powered by the Planetary system [4]. In
the old version, MSC-based navigation accounted for estimated 5–6 percent of
all accesses. We have now reimplemented this functionality in a more generic
way: all article metadata (including MSC classifications) are maintained within
LATEX preambles, the articles are transformed from LATEX to XHTML+RDFa,
from which RDF is harvested into an RDF triple store, which also holds a copy

http://msc2010.org/mscwork/

Reimplementing the Mathematics Subject Classification (MSC) 461

of the MSC/SKOS dataset. This approach is more flexible than the older static
MSC access: our plan is to use SPARQL queries to expose specific slices of the
encyclopedia content (e.g. “all articles by my co-authors in algebraic topology”).
The following listing, slightly adapted from the actual situation in PlanetMath,
shows a SPARQL query that returns the subclasses of the given MSC class
(which would actually be a parameterizable variable), and the number of arti-
cles classified with them2:
PREFIX msc: <http://msc2010.org/resources/MSC/2010/>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX dct: <http://purl.org/dc/terms/>

SELECT DISTINCT ?subclass ?notation ?label COUNT(?article) WHERE {

msc:53Axx skos:narrower ?subclass . # get subclasses; then, for each subclass:

?subclass skos:notation ?notation ; # get the MSC class number

skos:prefLabel ?label . # get the preferred label

OPTIONAL { ?article dct:subject ?subclass } # get classified articles (if any)

FILTER langMatches(lang(?label), "en") # only English labels

}

GROUP BY ?subclass ?notation ?label # grouping just needed for COUNT() to work

Conclusion and Future Work

We deliver the first implementation of the MSC that is easily comprehensible
to machines. It does not only facilitate maintenance and development of novel
services, but the rigorous conceptual modeling approach [6] also helped to un-
cover issues in the MSC conceptualization, which we have now fixed. We are
now planning to do three things in parallel: (1) refining the dataset implemen-
tation by making the internal structures of the MSC even more explicit3 and by
adopting further best practices for modeling classification schemes in SKOS [9];
(2) supporting the MKM community in building applications that make use of
the MSC, using our new implementation; and (3) interlinking the MSC dataset
with further mathematical and non-mathematical datasets, particularly includ-
ing the OpenMath Content Dictionaries [5] and DBpedia [2].

References

[1] ARQ – A SPARQL Processor for Jena, http://jena.sourceforge.net/ARQ/ (visited
on April 23, 2012)

[2] DBpedia, http://dbpedia.org (visited on January 23, 2010)
2 The number is determined using the COUNT() aggregation function provided by

the ARQ extension to SPARQL [1].
3 So far, our implementation makes two structural aspects more explicit than the old

TEX source: the concept hierarchy, which was previously given implicitly by the
numbering scheme, and the cross-references, parts of which were previously given
in natural language. Our current implementation does not yet explicitly represent
co-classification policies.

http://jena.sourceforge.net/ARQ/
http://dbpedia.org

462 C. Lange et al.

[3] Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space, 1st
edn. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan &
Claypool, San Rafael (2011), http://linkeddatabook.com

[4] Kohlhase, M., et al.: The Planetary System: Web 3.0 & Active Documents for
STEM. Procedia Computer Science 4, 598–607 (2011); Sato, M., et al. (eds.)
Special issue: Proceedings of the International Conference on Computational
Science (ICCS). Finalist at the Executable Papers Challenge,
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf,
doi:10.1016/j.procs.2011.04.063

[5] Lange, C.: Krextor - An Extensible Framework for Contributing Content Math to
the Web of Data. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.)
MKM 2011 and Calculemus 2011. LNCS(LNAI), vol. 6824, pp. 304–306. Springer,
Heidelberg (2011) ISBN: 978-3-642-22672-4,
http://kwarc.info/clange/pubs/krextor-system.pdf

[6] Lange, C., Ion, P., Dimou, A., Bratsas, C., Sperber, W., Kohlhase, M., Antoniou, I.:
Bringing Mathematics to the Web of Data: The Case of the Mathematics Subject
Classification. In: Simperl, E. (ed.) ESWC 2012. LNCS, vol. 7295, pp. 763–777.
Springer, Heidelberg (2012), http://kwarc.info/clange/pubs/eswc2012-mscskos

[7] Mathematics Subject Classification MSC 2010 (2010), http://msc2010.org (visited
on November 16, 2011)

[8] Miles, A., Bechhofer, S.: SKOS Simple Knowledge Organization System Reference.
W3C Recommendation. World Wide Web Consortium (W3C) (August 18, 2009),
http://www.w3.org/TR/2009/REC-skos-reference-20090818/

[9] Panzer, M., Zeng, M.L.: Modeling Classification Systems in SKOS: Some Chal-
lenges and Best-Practice Recommendations. In: Proceedings of the International
Conference on Dublin Core and Metadata Applications (Seoul). Dublin Core Meta-
data Initiative (2009),
http://dcpapers.dublincore.org/index.php/pubs/article/view/974/0

http://linkeddatabook.com
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf
http://kwarc.info/clange/pubs/krextor-system.pdf
http://kwarc.info/clange/pubs/eswc2012-mscskos
http://msc2010.org
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://dcpapers.dublincore.org/index.php/pubs/article/view/974/0

The Distributed Ontology Language (DOL):
Ontology Integration and Interoperability
Applied to Mathematical Formalization�

Christoph Lange1,2, Oliver Kutz1, Till Mossakowski1,3, and Michael Grüninger4

1 Research Center on Spatial Cognition, University of Bremen
2 School of Computer Science, University of Birmingham

3 DFKI GmbH Bremen
4 Department of Mechanical and Industrial Engineering, University of Toronto

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntoIOp

Abstract. The Distributed Ontology Language (DOL) is currently be-
ing standardized within the OntoIOp (Ontology Integration and Inter-
operability) activity of ISO/TC 37/SC 3. It aims at providing a unified
framework for (1) ontologies formalized in heterogeneous logics, (2) mod-
ular ontologies, (3) links between ontologies, and (4) annotation of on-
tologies. This paper focuses on an application of DOL’s meta-theoretical
features in mathematical formalization: validating relationships between
ontological formalizations of mathematical concepts in COLORE (Com-
mon Logic Repository), which provide the foundation for formalizing
real-world notions such as spatial and temporal relations.

1 Distributed Ontologies for Interoperability

An ontology is a formal description (in a logical language) of the concepts and
relationships that are of interest to an agent (user or service) or a community of
agents. Today, ontologies are applied in virtually all information-rich endeavors,
for example eBusiness, eHealth, eLearning, and ambient assisted living. Ontolo-
gies facilitate semantic integration of data and services by providing a common
formal model, onto which data from different sources, as well as descriptions of
different services, can be mapped.

Complex applications, which involve multiple ontologies with overlapping con-
cept spaces, also require data mapping on a higher level of abstraction, viz. be-
tween different ontologies, where it is called ontology alignment. While ontology
alignment is most commonly studied for ontologies in the same logic, the differ-
ent ontologies driving complex applications may also be formalized in different
logics. Popular choices include propositional logic (e.g. in industrial requirements
engineering), description logic (e.g. in biomedical applications and semantic web
� The development of DOL is supported by the German Research Foundation (DFG),

Project I1-[OntoSpace] of the SFB/TR 8 “Spatial Cognition”; the first author is
additionally supported by EPSRC grant EP/J007498/1. The authors would like to
thank the OntoIOp working group within ISO/TC 37/SC 3 for their feedback.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 463–467, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntoIOp

464 C. Lange et al.

services), and first-order logic (required for formalizing mereology and notions of
space and time, but exhibiting undecidable reasoning tasks). Our approach faces
this diversity not by proposing yet another ontology language – based on a logic
that would subsume all the others – but instead we accept the diverse reality
and formulate means (on a sound and formal semantic basis) to compare and
integrate ontologies formalized in different logics. We aim at addressing the chal-
lenge of automatically checking the coherence (e.g. consistency, conservativity,
intended consequences) of ontologies and ontology-based services.

2 The Distributed Ontology Language (DOL) – Overview

An ontology in the Distributed Ontology Language (DOL) consists of modules
formalized in basic ontology languages, such as OWL (based on description logic)
or Common Logic (based on first-order logic with some second-order features).
These modules are serialized in the existing syntaxes of these languages as to fa-
cilitate reuse of existing ontologies. DOL adds a meta-level on top, which allows
for expressing heterogeneous ontologies and links between ontologies.1 Such links
include (heterogeneous) imports and alignments, conservative extensions (impor-
tant for the study of ontology modules), and theory interpretations (important
for reusing proofs). Thus, DOL gives ontology interoperability a formal ground-
ing and makes heterogeneous ontologies and services based on them amenable
to automated verification.

DOL is currently being standardized within the OntoIOp (Ontology Inte-
gration and Interoperability) activity of ISO/TC 37/SC 32. The international
working group comprises around 50 experts (around 15 active contributors so
far), representing a large number of communities in ontological research and
application, such as different (1) ontology languages and logics (e.g. the Com-
mon Logic and OWL), (2) conceptual and theoretical foundations (e.g. model
theory), (3) technical foundations (e.g. ontology engineering methodologies and
linked open data), and (4) application areas (e.g. manufacturing). For details
and earlier publications, see the OntoIOp project page.

The OntoIOp/DOL standard is currently in the working draft stage and will
be submitted as a committee draft (the first formal ISO standardization stage)
in August 2012.3 The final international standard ISO 17347 is scheduled for
2015. The standard specifies syntax, semantics, and conformance criteria:

Syntax: abstract syntax of distributed ontologies and their parts; three concrete
syntaxes: a text-oriented one for humans, XML and RDF for exchange among
tools and services, where RDF particularly addresses exchange on the Web.

1 The languages that we call “basic” ontology languages here are usually limited to
one logic and do not provide meta-theoretical constructs.

2 TC = technical committee, SC = subcommittee.
3 The standard draft itself is not publicly available, but negotiations are under way

to make the final standard document public, as has been done with the related
Common Logic standard [2].

The Distributed Ontology Language (DOL) 465

Semantics: (1) a direct set-theoretical semantics for the core of the language,
extended by an institutional and category-theoretic semantics for advanced
features such as ontology combinations (technically co-limits), where basic
ontologies keep their original semantics; (2) a translational semantics, em-
ploying the semantics of the expressive Common Logic ontology language for
all basic ontologies, taking advantage of the fact that for all basic ontology
languages known so far translations to Common Logic have been specified or
are known to exist4; (3) finally, there is the option of providing a collapsed se-
mantics, where the semantics of the meta-theoretical language level provided
by DOL (logically heterogeneous ontologies and links between them) is not
just specified on paper in semiformal mathematical textbook style, but once
more formalized in Common Logic, thus in principle allowing for machine
verification of meta properties. For details about the semantics, see [6].

Conformance criteria provide for DOL’s extensibility to other basic ontology
languages than those considered so far, including possible future languages.
(1) A basic ontology language conforms with DOL if its underlying logic has
a set-theoretic or, for the extended DOL features, an institutional semantics.
Similar criteria apply to translations between languages. (2) A concrete syn-
tax (serialization) of a basic ontology language conforms if it supports IRIs
(Unicode-aware Web-scalable identifers) for symbols and satisfies some fur-
ther well-formedness criteria. (3) A document conforms if it is well-formed
w.r.t. one of the DOL concrete syntaxes, which particularly requires ex-
plicitly mentioning all logics and translations employed. (4) An application
essentially conforms if it is capable of processing conforming documents, and
providing logical information that is implied by the formal semantics.

CL

Prop

SROIQ
(OWL 2 DL)

FOL=

 bijection of models

surjection of models

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

DL-LiteR
(OWL 2 QL)

DL-RL
(OWL 2 RL)

CL-

EL++
(OWL 2 EL)

Fig. 1. A core logic translation graph for basic ontology languages

4 Even for higher-order logics this works, in principle, by using combinators.

466 C. Lange et al.

Figure 1 shows some logics and translations relevant for ontologies5: SROIQ,
the logic of OWL, and its sublogics corresponding to sublanguages (“profiles”) of
OWL – EL++, DL-LiteR, and RL – which aim at lowering the complexity of rea-
soning in certain relevant application domains; propositional logic; first-order logic
with equality, Common Logic without second-order features, and full Common
Logic. We have defined the translations between them in earlier publications [6, 5];
elaborating these definitions into annexes to the standard, which establish the con-
formance of these logics and translations with DOL, remains to be done.

3 Applications to Mathematical Formalization

The first application of DOL can be seen in COLORE, the Common Logic
Repository, an open repository of more than 500 Common Logic ontologies. The
objective of COLORE is to provide an “adequate set of generic ontologies that
can be used to specify the semantics of primitive concepts”, as, for example, “any
product ontology must refer to relationships from geometry and topology, and
different manufacturing standards may require different ontologies for time”6.
One of the primary applications of COLORE is to support the verification of
ontologies for commonsense domains such as time, space, shape, and processes.
Verification consists in proving that the ontology is equivalent to a set of core
ontologies for mathematical domains such as orderings, incidence structures,
graphs, and algebraic structures. COLORE comprises core ontologies that for-
malize algebraic stuctures (such as groups, fields, and vector spaces), orderings
(such as partial orderings, lattices, betweenness), graphs, and incidence struc-
tures in Common Logic, and, based on these, representation theorems for generic
ontologies for the above-mentioned commonsense domains.

Meta-theoretical relationships between these ontologies are of particular inter-
est, including maps (signature morphisms), definitional extension, conservative
extension, inconsistency between modules, imports, relative interpretation, faith-
ful interpretation, and definable equivalence. DOL allows for formalizing them
(as compared to the earlier approach of just writing them down as metadata),
and we have started to automatically verify them using Hets (Heterogeneous
Tool Set [7]). The listing below shows an example7 for interpreting linear orders
(linear_ordering) as orders between time intervals that begin and end with
an instant (owltime_le). A third ontology (mappings/owltime2orderings) takes
care of mapping the different predicate names used by the source and the tar-
get ontology, respectively. We state that the source ontology can be interpreted
in terms of the union of the target ontology and the mapping ontology in a

5 The logics and translations have mostly been specified as part of the Logic Atlas [1].
6 http://colore.googlecode.com
7 An excerpt from https://colore.googlecode.com/svn/trunk/ontologies/complex/

owltime/owltime_interval/mappings/owltime_le.dol; the individual ontologies are
actually stored in separate files, but here we demonstrate DOL’s ability to main-
tain different ontologies within one file.

linear_ordering
owltime_le
mappings/owltime2orderings
http://colore.googlecode.com
https://colore.googlecode.com/svn/trunk/ontologies/complex/owltime/owltime_interval/mappings/owltime_le.dol
https://colore.googlecode.com/svn/trunk/ontologies/complex/owltime/owltime_interval/mappings/owltime_le.dol

The Distributed Ontology Language (DOL) 467

model-theoretically conservative way, and that mappings/owltime2orderings ex-
tends owltime_le with definitions.
%prefix(%% prefixes for abbreviating long IRIs: this distributed ontology
: <http://code.google.com/p/colore/.../owltime/owltime_interval/mappings/owltime_le.dol#>
log: <http://purl.net/dol/logics/> %% DOL-conforming logics (Fig. 1)
ser: <http://purl.net/dol/serializations/> %% serializations, i.e. concrete syntaxes
int: <http://code.google.com/p/colore/.../owltime/owltime_interval/> %% namespaces of the ontologies
ord: <http://code.google.com/p/colore/.../orderings/>)% %% in this distributed ontology

%% The following ontologies are in the logic Common Logic, and written in the Lisp-style CLIF syntax
logic log:CommonLogic syntax ser:CommonLogic/CLIF

ontology ord:linear_ordering = %% Here we use Common Logic’s ontology import facility, but ...
(cl-imports ord:partial_ordering) (forall (x y) (or (leq x y) (leq y x) (= x y)))

%% DOL also has a general import facility: We create the ontology of linearly ordered time intervals
ontology int:owltime_le = int:owltime_linear then int:owltime_e %% that begin and end with an instant
%% ... by extending linearly ordered time intervals with intervals that begin and end with an instant

ontology int:mappings/owltime2orderings = (forall (x y) (iff (leq x y) (or (before x y) (= x y))))
(forall (x y) (iff (lt x y) (before x y))) %% map time intervals to general linear orderings

interpretation i %mcons : %% interpreting linear orderings as time interval orders
ord:linear_ordering to {int:owltime_le and %def int:mappings/owltime2orderings}

DOL can also be used to specify the relationships between ontologies axioma-
tized in different logics. There are several cases in which there exist ontologies for
the same domain, some of which are axiomatized in description logic and others
in first-order logic. The best example of this is OWL-Time, which was originally
proposed with an OWL axiomatization, and later extended with a first-order
axiomatization [4]. (COLORE includes a modularized version of OWL-Time [3];
the listing shows some of the modules.) Using DOL, one can specify that the
first-order axiomatization is a nonconservative extension of the OWL axiomati-
zation, but that there exists a subtheory of the first-order axiomatization that
is definably equivalent to the OWL axiomatization.

References
[1] Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project Ab-

stract: Logic Atlas and Integrator (LATIN). In: Davenport, J.H., Farmer, W.M.,
Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI), vol. 6824, pp.
289–291. Springer, Heidelberg (2011)

[2] Common Logic (CL): a framework for a family of logic-based languages. Technical
Report 24707, ISO/IEC (2007), http://iso-commonlogic.org

[3] Grüninger, M.: Verification of the OWL-Time Ontology. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 225–240. Springer, Heidelberg (2011)

[4] Hobbs, J., Pan, F.: An Ontology of Time for the Semantic Web. ACM Transactions
on Asian Language Processing 3, 66–85 (2004)

[5] Mossakowski, T., Kutz, O.: The Onto-Logical Translation Graph. In: Kutz, O.,
Schneider, T. (eds.) Modular Ontologies. IOS (2011)

[6] Mossakowski, T., Kutz, O., Lange, C.: Three Semantics for the Core of the Dis-
tributed Ontology Language. In: FOIS (in press, 2012)

[7] Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007)

mappings/owltime2orderings
owltime_le
http://iso-commonlogic.org

Isabelle/jEdit – A Prover IDE

within the PIDE Framework

Makarius Wenzel

Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France
CNRS, Orsay, F-91405, France
http://www.lri.fr/~wenzel/

1 Overview

PIDE is a general framework for document-oriented prover interaction and inte-
gration, based on a bilingual architecture that combines ML and Scala [2]. The
overall aim is to connect LCF-style provers like Isabelle [5, §6] (or Coq [5, §4]
or HOL [5, §1]) with sophisticated front-end technology on the JVM platform,
overcoming command-line interaction at last.

The present system description specifically covers Isabelle/jEdit as part of the
official release of Isabelle2011-1 (October 2011). It is a concrete Prover IDE im-
plementation based on Isabelle/PIDE library modules (implemented in Scala) on
the one hand, and the well-known text editor framework of jEdit (implemented
in Java) on the other hand.

The interaction model of our Prover IDE follows the idea of continuous proof
checking: the theory source text is annotated by semantic information by the
prover as it becomes available incrementally. This works via an asynchronous
protocol that neither blocks the editor nor stops the prover from exploiting
parallelism on multi-core hardware. The jEdit GUI provides standard metaphors
for augmented text editing (highlighting, squiggles, tooltips, hyperlinks etc.) that
we have instrumented to render the formal content from the prover context.
Further refinement of the jEdit display engine via suitable plugins and fonts
approximates mathematical rendering in the text buffer, including symbols from
the TEX repertoire, and sub-/superscripts.

Isabelle/jEdit is presented here both as a usable interface for current Isabelle,
and as a reference application to inspire further projects based on PIDE.

2 Using the System

The described system is part of the official release Isabelle2011-1 (October 2011).
The download archives from http://isabelle.in.tum.de/website-Isabelle2011-
1/download.html cover the three main platform families: Linux, Mac OS X, and
Windows (with Cygwin). Isabelle/jEdit has already a history of about 4 years; a
preliminary version is discussed in [3]. October 2011 marks the point of the first
stable release of the Prover IDE; some remaining limitations are described in

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 468–471, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.lri.fr/~wenzel/

Isabelle/jEdit – A Prover IDE within the PIDE Framework 469

its README panel. The website http://isabelle.in.tum.de points dynamically
to the latest official release, and further improvements of Isabelle/jEdit can be
anticipated with coming Isabelle distributions.

The Isabelle distribution bundles sources and multi-platform binaries, includ-
ing Isabelle/jEdit. Conceptually, the Prover IDE is a rich-client platform with
significant hard-disk foot-print, but it runs seamlessly for most users. The shell
command Isabelle2011-1/bin/isabelle jedit opens a text editor session
of jEdit which we have augmented by some plugins to communicate with the
prover in the background. Source files with .thy extension are treated specifi-
cally: Isabelle/jEdit adds them to the formal document-model of Isabelle/PIDE,
that maintains semantic information provided by the prover in the background,
while the user is editing the text in the foreground.

The subsequent screenshot shows the editor view after opening a certain
Example.thy file. The Isabelle distribution contains many other examples, e.g.
Isabelle2011-1/src/HOL/Unix/Unix.thywhere the editor will also propose to
load further imported theory files.

The main text area is surrounded by dockable windows that are associated
with jEdit plugins. For example, we provide Output for prover messages and
traditional goal states, which is internally based on existing HTML4/CSS2 ren-
dering on the JVM. The tree view is provided by Sidekick, which is an existing
jEdit plugin that has been instrumented to understand some Isabelle theory
structure.

The general aim of Isabelle/jEdit is to expose the specific virtues of both
Isabelle and jEdit to the user, without accidental technical limitations imposed

470 M. Wenzel

on either system. This is in contrast to the classic Proof General / Emacs [1],
where the locked region is essentially an intrusion of the prover command prompt
into the editor; it restricts the user to a single focus inherited from TTY mode.

Having replaced the prover Read-Eval-Print-Loop by native document edit-
ing in Isabelle/PIDE, we can connect the editor more directly. The sophisti-
cated features that qualify jEdit as “Programmer’s Text Editor”1 are retained,
and augmented by the semantic information from the prover. The underlying
JVM platform is sufficiently flexible to support our requirements for this for-
mal document-model, but instead of Java we are always using Scala [2] for our
own implementations. Higher-order functional-object-oriented programming on
multi-threaded JVM is far removed from untyped single-threaded Emacs-Lisp.

Physical rendering of document content draws from the standard repertoire of
known IDEs for programming languages, with highlighting, squiggles, tooltips,
hyperlinks etc. In the above screenshot, only the bold keywords of the Isar lan-
guage use traditional syntax-highlighting in jEdit with static tables; all other
coloring is based on dynamic information from the logical context of the prover.

Such annotated text regions can be explored further by using the CONTROL

modifier key (or COMMAND on Mac OS X), together with mouse hovering or click-
ing. It reveals tooltips and hyperlinks, e.g. see constant "Example.path" above,
and thus explains how a certain piece of source text has been interpreted.

The combination of Isabelle/jEdit and the underlying semantic document-
model should help users that are accustomed to Netbeans or Eclipse to approach
formal logic and formalized mathematics. Thus we hope to see new generations
of users continuing the tradition of the “LCF approach” from the 1970-ies.

3 Implemented Concepts

Conceptually, the implementation consists of two main parts: (1) Isabelle/PIDE
infrastructure in ML and Scala that is considered an integral part of the prover
distribution, and (2) Isabelle/jEdit plugins and supporting code to assemble the
main application. PIDE provides the main concepts for document-oriented inter-
action, and is most challenging to implement. Some aspects of previous versions
are described in [3, 4], but the main issues are still unpublished. Compared to
that the jEdit application is relatively small and simple: ≈ 100Kb of Scala code.

The implemented concepts of Isabelle/jEdit in Isabelle2011-1 that are visible
to end-users are as follows:

Continuous checking of source text while editing; no locking, no need to save
intermediate files.

Dependency management between text buffers: each theory file corresponds
to a node in the development graph of the current Isabelle session. Imports
are resolved by reloading required files; edits on some node are propagated
through the dependency graph as expected.

1 http://www.jedit.org

Isabelle/jEdit – A Prover IDE within the PIDE Framework 471

Limitation: non-theory add-on files still need to be managed manually, to
ensure that the prover loads the proper version.

Status overview of single text buffers and the overall prover session, with in-
cremental update while the prover processes theories and proofs (usually in
parallel on multi-core hardware).

Annotated input of source text, which is semantically decorated and physi-
cally highlighted via standard GUI metaphors.

Annotated output of prover messages, which is produced by traditional
pretty-printing of the term language that is augmented by semantic markup.
Rendering is delegated to HTML4/CSS on the JVM.
Limitation: no hyperlinks within the browser window yet.

Integration of Isabelle/ML into the Prover IDE: ML source inside Isar is
fully annotated by the compiler, with inferred types and identifier scopes.

Integration of Isabelle/Scala into the jEdit Console plugin, which provides
command line to access the running JVM via the Scala toplevel.
Limitation: only minimal IDE integration via terminal window.

Mathematical rendering of the source text based on Unicode characters,
custom-made IsabelleText font with common glyphs from the TEX reper-
toire, and sub-/superscripts via extended jEdit text styles
Limitation: only 1-dimensional layout following traditional text editing, no
support for 2-dimensional boxes (fractions, roots, matrices).

Completion mechanism for mathematical symbols and keywords of the for-
mal Isar language.
Limitation: based on static tables, no connection to semantic context yet.

Regular jEdit functionality and generic plugin can be used as well. The physical
representation of formal sources coincides with JVM and jEdit conventions. So
copy-and-paste or hyper-search of mathematical symbols does not cause any
surprises to jEdit users.

References

[1] Aspinall, D.: Proof General: A Generic Tool for Proof Development. In: Graf, S.
(ed.) TACAS 2000. LNCS, vol. 1785, pp. 38–43. Springer, Heidelberg (2000)

[2] Odersky, M., et al.: An overview of the Scala programming language. Technical
Report IC/2004/64, EPF Lausanne (2004)

[3] Wenzel, M.: Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit.
In: Coen, C.S., Aspinall, D. (eds.) User Interfaces for Theorem Provers (UITP
2010). ENTCS (July 2010); FLOC 2010 Satellite Workshop

[4] Wenzel, M.: Isabelle as Document-Oriented Proof Assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI),
vol. 6824, pp. 244–259. Springer, Heidelberg (2011)

[5] Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006)

Author Index

Alama, Jesse 1, 427
Antoniou, Ioannis 458
Asperti, Andrea 17, 417
Aspinall, David 186

Baker, Josef B. 422
Bourke, Timothy 32
Bradford, Russell J. 280
Bratsas, Charalampos 458
Bylinski, Czes�law 427

Carette, Jacques 202
Chen, Xiaoyu 432
Corneli, Joseph 458

Daum, Matthias 32
Davenport, James H. 280
David, Catalin 49
de Moura, Leonardo 358
Dimou, Anastasia 458
Dos Reis, Gabriel 295

Echenim, Mnacho 310

Fleuriot, Jacques 371

Grov, Gudmund 186
Grüninger, Michael 463

Heras, Jónathan 216
Herding, Daniel 111
Hetzl, Stefan 438
Horozal, Fulya 65
Hu, Rui 81

Iancu, Mihnea 326
Ion, Patrick 458

Janičić, Predrag 127, 264
Jucovschi, Constantin 49, 96

Khan, Muhammad Taimoor 231, 443
Klein, Gerwin 32
Kofler, Kevin 386
Kohlhase, Andrea 49
Kohlhase, Michael 49, 65, 342, 448, 458
Kolanski, Rafal 32
Korni�lowicz, Artur 453
Kutz, Oliver 463

Lange, Christoph 169, 458, 463
Li, Wei 432
Libbrecht, Paul 111
Luo, Jie 432

Mamane, Lionel 1
Marić, Filip 248
Marinković, Vesna 127
Matican, Bogdan A. 342
Mazalov, Vadim 81, 402
Mossakowski, Till 463
Müller, Wolfgang 111

Neumaier, Arnold 386
Nikolić, Mladen 264

O’Connor, Russell 202

Passmore, Grant Olney 358
Paulson, Lawrence C. 358
Peltier, Nicolas 310
Poza, Maŕıa 216
Prodescu, Corneliu-Claudiu 342

Rabe, Florian 65, 143, 326
Rebholz, Sandra 111
Ricciotti, Wilmer 417
Rubio, Julio 216

Schreiner, Wolfgang 231, 443
Scott, Phil 371
Sexton, Alan P. 159, 422
Sorge, Volker 422
Sperber, Wolfram 458

Tankink, Carst 169
Tscheulin, Felix 111

Urban, Josef 1, 169

Vučković, Bojan 248

Wang, Dongming 432
Watt, Stephen M. 81, 402
Wenzel, Makarius 468
Whiteside, Iain 186
Wilson, David J. 280

Živković, Miodrag 248

	Title
	Preface
	Organization
	Table of Contents
	Mathematical Knowledge Management 2012
	Dependencies in Formal Mathematics: Applications and Extraction for Coq and Mizar
	Introduction
	Dependencies: What Depends on What?
	Dependency Extraction in Coq
	Dependency Availability, Format, and Protocol
	Coverage and Limitations

	Dependency Extraction in Mizar
	Comparison of the Methods
	Evaluation, Experiments, and Applications
	Dependency Extraction for CoRN and MML
	Dependency Analysis for AI-Based Proof Assistance
	Interactive Editing with Fine-Grained Dependencies
	Learning Dependencies

	Related Work
	Conclusion and Future Work
	References

	Proof, Message and Certificate
	Introduction
	Message and Certificate
	A Social Process
	Declarative vs. Procedural
	A Complex Problem
	References

	Challenges and Experiences in Managing Large-Scale Proofs
	Introduction
	Challenges
	New Proof Engineer Joins the Project
	Expert Proof Engineer during Main Development
	Proof Maintenance
	Social and Management Aspects

	Tool Support for Moving Lemmas
	Design and Implementation Choices
	Experience and Related Work

	Summary
	References

	Semantic Alliance: A Framework for Semantic Allies
	Introduction
	The Semantic Alliance Framework
	Invasive Design via Semantic Illustration
	The Semantic Alliance Framework as a Mashup Enabler
	Building on Open APIs

	A Validation of the Semantic Alliance Framework
	Sissi: An Implementation of Semantic Alliance
	Discussion

	Related Work
	Conclusion and Future Work
	References

	Extending MKM Formats at the Statement Level
	Introduction
	MMT/OMDoc
	A Framework for Language Extensions
	Representing Extension Principles
	Syntax Extensions and Surface Languages
	OMDoc Concrete Syntax for EL Declarations
	Pragmatic Surface Syntax

	Conclusion and Future Work
	References

	A Streaming Digital Ink Framework for Multi-party Collaboration
	Introduction
	Portability of the Framework
	Portability of Software
	Portability of Digital Ink Data

	Architecture
	The Collaboration Extension
	The Training Extension
	The Mathematical Recognition Extension
	The Compression Extension
	The Rendering Extension
	The Archival Extension

	Implementation
	User Interface
	Collaboration
	Training
	Mathematical Recognition

	Discussion
	Scenarios
	Lessons Learnt

	Conclusion and Future Work
	References

	Cost-Effective Integration of MKM Semantic Services into Editing Environments
	Introduction
	Aims and Scope of Integration
	Targeted Authoring Services
	Levels of Integration
	Comparison to Other MKM Integrations

	Editor Service Integration Architecture
	The Real-Time Document Synchronization and Service Broker
	Document Model and Changesets
	Time Consuming vs. Reactive Services
	User Interaction Model

	Architecture Implementation
	Implemented Semantic Services
	Libraries and APIs
	Evaluation of Integration Costs

	Conclusion and Future Work
	References

	Understanding the Learners’ Actions when Using Mathematics Learning Tools
	Learners' Actions and the Perception of Teachers
	State of the Art in Logging User Actions
	Standards for Integrating Learning Tools
	Research Around Log Collections
	Conclusions from Literature Review

	The SMALA Architecture
	Software Components and Their Interactions
	Log Objects Knowledge Structure
	Availability

	Making the Learning Tools Available
	Types of Log Views and Their Usage
	Session Views
	Requests for Help
	Summary Views

	Evaluation of Learning Tools Using SMALA-Logging
	Feature Usage Statistics
	Technical Challenges

	Conclusion
	Open Questions

	References

	Towards Understanding Triangle Construction Problems
	Introduction
	Constructions by Straightedge and Compass
	Wernick's Problems
	Underlying Geometry Knowledge
	Definitions
	Lemmas
	Primitive Constructions

	Search Algorithm
	Output
	Proving Constructions Correct
	Re-evaluation

	Future Work
	Conclusions
	References

	A Query Language for Formal Mathematical Libraries
	Introduction and Related Work
	The QMT Query Language
	Syntax
	Semantics
	Predefined Symbols
	Definable Queries

	Querying MMT Libraries
	Implementation
	Conclusion and Future Work
	References

	Abramowitz and Stegun – A Resource for Mathematical Document Analysis
	Introduction
	Abramowitz and Stegun
	Rescan and Analysis
	Connected Components and Geometric Moments

	Special Clips
	Conclusions
	References

	Point-and-Write – Documenting Formal Mathematics by Reference
	Introduction
	Describing and Including Formal Text
	Use Case
	Alternatives for Inclusion

	Syntax for Referring
	Requirements on Syntax
	Resulting Syntax

	Annotation of Types and Content
	The Type Vocabulary of the OMDoc Ontology
	Datasets for Content Annotation

	Annotating Formal Texts
	System: Agora
	Conclusions and Future Work
	References

	An Essence of SSReflect
	Introduction
	Background
	Underlying Logic of eSSence
	The eSSence Language
	Giving Meaning to eSSence Scripts
	Refactoring eSSence
	Conclusions
	References

	Calculemus 2012
	Theory Presentation Combinators
	Introduction
	The Problem
	Contributions
	Plan of Paper

	Motivation for Theory Presentation Combinators
	Category of Contexts
	Semantics of Theory Presentation Combinators
	Discussion
	Related Work
	Conclusion
	References

	Verifying an Algorithm Computing Discrete Vector Fields for Digital Imaging
	Introduction
	Mathematics to Formalize
	A Non Deterministic Algorithm in SSReflect
	An Effective Implementation: From Haskell to Coq
	The Romero-Sergeraert Algorithm
	A Haskell Program
	Testing with QuickCheck
	Formalization in Coq /SSReflect
	Experimental Results

	Application to Biomedical Images
	Conclusions and Further Work
	References

	Towards the Formal Specification and Verification of Maple Programs
	Introduction
	State of the Art
	MiniMaple
	A Type System for MiniMaple
	Design
	Formalization
	Application

	A Formal Specification Language for MiniMaple
	Formal Semantics of MiniMaple
	Conclusions and Future Work
	References

	Formalizing Frankl’s Conjecture: FC-Families
	Introduction
	Frankl’s Families
	Union Closed Families
	The Frankl’s Condition
	Family Isomorphisms
	FC Characterization by Weight Functions and Shares

	Combinatorial Search
	Efficient Implementation

	Uniformnkm-Families
	FC-Families Verified
	Conclusions and Further Work
	References

	CDCL-Based Abstract State Transition System for Coherent Logic
	Introduction
	Background
	Abstract State Transition System for CL
	Properties of CL Transition Systems
	Generation of Readable Proofs
	Related Work
	Conclusions and Future Work
	References

	Speeding Up Cylindrical Algebraic Decomposition by Gr¨obner Bases
	Introduction
	Examples in This Paper
	BuchbergerHong1991
	Chenetal2009d
	Two Spheres and a Cylinder

	Prior Art
	Buchberger–Hong
	Phisanbut

	Further Developments
	=G with <R
	=G with =C
	=G with Inequalities in <R

	Choice of Method
	The Metric TNoI
	TNoI Data
	What Is TNoI Measuring?

	Conclusions
	References

	Artificial Intelligence and Symbolic Computation 2012
	A System for Axiomatic Programming
	Introduction
	Axiomatic Programming
	Axioms and Concepts
	Associated Types and Values

	Implementation
	Structure of the Liz System
	Type Checking
	Code Generation

	Related Work and Conclusion
	References

	Reasoning on Schemata of Formulæ
	Introduction
	A Logic for Iterated Schemata
	Proof Procedure
	Properties of the Proof Procedure
	Conclusion
	References

	Management of Change in Declarative Languages
	Introduction
	The MMT Language
	Related Work
	A Theory of Changes
	A Data Structure for Changes
	A Data Structure for Dependencies
	Change Propagation

	A Generic Change Management API
	Conclusion
	References

	MathWebSearch 0.5: Scaling an Open Formula Search Engine
	Introduction
	Querying Mathematics by Unification
	The MathWebSearch System, Version 0.5
	Substitution Tree Indexing in MathWebSearch
	Search Front Ends and Embeddings

	Evaluation
	Distributing MathWebSearch
	A Distributable Substitution Tree
	Architectural Overview

	Conclusion and Future Work
	Additional Corpora
	Extending the Indexing
	Result Ranking
	Advanced Search Services

	References

	Real Algebraic Strategies for MetiTarski Proofs
	Introduction
	Motivating Hypotheses
	Overview of Contributions

	Model Sharing
	MetiTarski Proof Search in More Detail

	Univariate Factorisations
	Experimental Results
	Future Work
	Conclusion
	References

	A Combinator Language for Theorem Discovery
	Introduction
	Incidence Reasoning in the Foundations of Geometry

	Stream Discoverers
	The Stream Monad
	Case-Analysis
	Trees

	Additional Primitives and Derived Discoverers
	Case-Splitting
	Filtering
	Deduction
	Integration

	The Problem Revisited
	Results

	Conclusion and Further Work
	References

	Digital Mathematics Libraries 2012
	DynGenPar – A Dynamic Generalized Parser for Common Mathematical Language
	Introduction
	State of the Art
	The DynGenPar Algorithm
	Design Considerations
	The Initial Graph
	Operations
	Example
	Analysis

	Implementation
	Technologies and Licensing
	Integration into FMathL Concise

	Implementation Considerations
	Predictive Parsing
	Efficient Exhaustive Parsing
	Rule Labels
	Custom Parse Actions
	Token Sources
	Natural Language
	Next Token Constraints
	Interoperability with GF

	Results
	Conclusion
	References

	Writing on Clouds
	Introduction
	Preliminaries and Related Work
	Recognition Aspects
	Architectural Aspects
	Related Work

	Clouds Serving Clouds
	Recognition Flow
	Manipulation of Clouds

	Implementation
	Initial Training
	Implementation of the Application
	Attractive Display of Recognized Characters

	Experimental Evaluation
	Setting
	Results

	Conclusion
	References

	Systems and Projects 2012
	A Web Interface for Matita
	References

	MaxTract: Converting PDF to LATEX, MathML and Text
	Introduction
	MaxTract Process
	Translation
	Basic Drivers
	Annotated PDF
	Layered PDF
	Accessibility Formats

	MaxTract Online Interface
	References

	New Developments in Parsing Mizar
	Introduction
	LayersofaMizar Text
	Normalizations of Mizar Texts
	Weakly Strict Mizar
	More Strict Mizar

	Applications
	Conclusion and Future Work
	References

	Open Geometry Textbook: A Case Study of Knowledge Acquisition via Collective Intelligence
	Motivations
	Objectives
	Methodologies
	Mechanisms
	Timelines
	References

	Project Presentation: Algorithmic Structuring and Compression of Proofs (ASCOP)
	Introduction
	Theoretical Foundations
	Aims of the ASCOP-Project
	References

	On Formal Specification of Maple Programs
	Introduction
	A Type System for MiniMaple
	A Specification Language for MiniMaple
	Conclusions
	References

	The Planetary Project: Towards eMath3.0
	References

	Tentative Experiments with Ellipsis in Mizar
	Motivation
	Ellipsis
	Parsing
	Reasoning
	Verifying

	Applications in MML
	Conclusions and Future Work
	References

	Reimplementing the Mathematics Subject Classification (MSC) as a Linked Open Dataset
	References

	The Distributed Ontology Language (DOL): Ontology Integration and Interoperability Applied to Mathematical Formalization
	Distributed Ontologies for Interoperability
	The Distributed Ontology Language (DOL) – Overview
	Applications to Mathematical Formalization
	References

	Isabelle/jEdit – A Prover IDE within the PIDE Framework
	Overview
	Using the System
	Implemented Concepts
	References

	Author Index

