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Preface

The importance of learning biostatistics has been growing very fast due to its
increasing usage in addressing challenges in life sciences – in particular biomedical
and biological sciences. There are challenges, both old and new, in nature, mostly
attributable to interactive developments in the fields of life sciences, statistics, and
computer science. The developments in statistics and biostatistics have been
complementary to each other, biostatistics being focused to address the challenges
in the field of biomedical sciences including its close links with epidemiology,
health, biological science, and other life sciences. Despite the focus on
biomedical-related problems, the need for addressing important issues of concern in
the life science problems has been the source of some major developments in the
theory of statistics. The current trend in the development of data science indicates
that biostatistics will be in greater demand in the future.

The compelling motivation behind writing this book stemmed from our long
experience of teaching the foundation course on biostatistics in different universities
to students having varied background. The students seek a thorough knowledge
with adequate background in both theory and applications, employing a more
cohesive approach such that all the relevant foundation concepts can be linked as a
building block. This book provides a careful presentation of topics in a sequence
necessary to make the students and users of the book proficient in foundations of
biostatistics. In other words, the understanding of any of the foundation materials is
not left to the unfamiliar domain. In biostatistics, all these foundation materials are
deeply interconnected and even a single source of unfamiliarity may cause difficulty
in understanding and applying the techniques properly. In this textbook, immense
emphasis is given on coverage of relevant topics with adequate details, to facilitate
easy understanding of these topics by the students and users. We have used mostly
elementary mathematics with minor exceptions in a few sections in order to provide
a more comprehensive view of the foundations of biostatistics that are expected
from a biostatistician in real-life situations.
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There are 11 chapters in this book. Chapter 1 introduces basic concepts, and
organizing and displaying data. One section includes the introduction to designing
of sample surveys to make the students familiar with the steps necessary for col-
lecting data. Chapter 2 provides a thorough background on basic summary statis-
tics. The fundamental concepts and their applications are illustrated. In Chap. 3,
basic probability concepts are discussed and illustrated with the help of suitable
examples. The concepts are introduced in a self-explanatory manner. The appli-
cations to biomedical sciences are highlighted. The fundamental concepts of
probability distributions are included in Chap. 4. All examples are self-explanatory
and will help students and users to learn the basics without difficulty. Chapter 5
includes a brief introduction of continuous probability distributions, mainly normal
and standard normal distributions. In this chapter, emphasis is given mostly to the
appropriate understanding and knowledge about applications of these two distri-
butions to the problems in biomedical science. The sampling distribution plays a
vital role in inferential procedures of biostatistics. Without understanding the
concepts of sampling distribution, students and users of biostatistics would not be
able to face the challenges in comprehensive applications of biostatistical tech-
niques. In Chap. 6, concepts of sampling distribution are illustrated with very
simple examples. This chapter provides a useful link between descriptive statistics
in Chap. 2 with inferential statistics in Chaps. 7 and 8. Chapters 7 and 8 provide
inferential procedures, estimation, and tests of hypothesis, respectively. As a pre-
lude to Chap. 6 along with Chaps. 7 and 8, Chaps. 3–5 provide very important
background support in understanding the underlying concepts of biostatistics. All
these chapters are presented in a very simple manner and the linkages are easily
understandable by students and users. Chapters 9–11 cover the most extensively
employed models and techniques that provide any biostatistician the necessary
understanding and knowledge to explore the underlying association between risk or
prognostic factors with outcome variables. Chapter 9 includes correlation and
regression, and Chap. 10 introduces essential techniques of analysis of variance.
The most useful techniques of survival analysis are introduced in Chap. 11 which
includes a brief discussion about topics on study designs in biomedical science,
measures of association such as odds ratio and relative risk, logistic regression and
proportional hazards model. With clear understanding of the concepts illustrated in
Chaps. 1–8, students and users will find the last three chapters very useful and
meaningful to obtain a comprehensive background of foundations of biostatistics.

We want to express our gratitude to Halida Hanum Akhtar and Mahbub Elahi
Chowdhury for the BIRPERHT data on pregnancy-related complications, the
Health and Retirement Study (HRS), USA, M. Lichman, Machine Learning
Repository (http://archive.ics.uci.edu/ml) of the Center for Machine Learning and
Intelligent Systems, UCI, W. H. Wolberg, W. N. Street, and O. L. Mangasarian
of the University of Wisconsin, Creators of the Breast Cancer Wisconsin Data Set,
and NIPORT for BDHS 2014 and BMMS 2010 data. We would like to express our
deep gratitude to the Royal Statistical Society for permission to reproduce the
statistical tables included in the appendix, and our special thanks to Atinuke
Phillips for her help. We also acknowledge that one table has been reproduced from
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C. Dougherty’s tables that have been computed to accompany the text ‘Introduction
to Econometrics’ (second edition 2002, Oxford University Press, Oxford).

We are grateful to our colleagues and students at the King Saud University and
the University of Dhaka. The idea of writing this book has stemmed from teaching
and supervising research students at the King Saud University. We want to express
our heartiest gratitude to the faculty members and the students of the Department of
Statistics and Operations Research of the King Saud University and to the Institute
of Statistical Research and Training (ISRT) of the University of Dhaka. Our special
thanks to ISRT for providing every possible support for completing this book. We
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deepest gratitude to Rafiqul I. Chowdhury for his immense help at different stages
of writing this book. We want to express our gratitude to F. M. Arifur Rahman for
his unconditional support to our work whenever we needed. We would like to thank
Mahfuzur Rahman for his contribution in preparing the manuscript. Our special
thanks to Amiya Atahar for her unconditional help during the final stage of writing
this book. Further, we acknowledge gratefully the continued support from Tahmina
Khatun, Jayati Atahar, and Shainur Ahsan. We acknowledge with deep gratitude
that without help from Mahfuza Begum, this work would be difficult to complete.
We extend our deep gratitude to Syed Shahadat Hossain, Azmeri Khan, Jahida
Gulshan, Shafiqur Rahman, Israt Rayhan, Mushtaque Raza Chowdhury, Lutfor
Rahman, Rosihan M. Ali, Adam Baharum, V. Ravichandran, and A. A. Kamil for
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Chapter 1
Basic Concepts, Organizing,
and Displaying Data

1.1 Introduction

Biostatistics has emerged as one of the most important disciplines in recent decades.
A fast development in biostatistics has been experienced during the past decades
due to interactive advancements in the fields of statistics, computer science, and life
sciences. The process of development in biostatistics has been continuing to address
new challenges due to new sources of data and growing demand for biostatisticians
with sound background to face the needs. Biostatistics deals with designing studies,
analyzing data, and developing new statistical techniques to address the problems in
the fields of life sciences. It includes statistical analysis with special focus to the
needs in the broad field of life sciences including public health, biomedical science,
medicine, biological science, community medicine, etc. It may be noted that many
of the remarkable developments in statistical science were stemmed from the needs
in the biomedical sciences. A working definition of biostatistics states biostatistics
as the discipline that deals with the collection, organization, summarization, and
analysis of data in the fields of biological, health, and medical sciences including
other life sciences. Sometimes, biostatistics is defined as a branch of statistics that
deals with data relating to living organisms; however, due to rapid developments in
the fields of statistics, computer science, and life sciences interactively, the role and
scope of biostatistics have been widened to a large extent during the past decades.
Despite the differences at an advanced level of applications of statistics and bio-
statistics due to recent challenges, the fundamental components of both may be
defined to encompass the procedures with similar guiding principles.

At the current stage of information boom in every sector, we need to attain an
optimum decision utilizing the available data. The information used for making
decision through a statistical process is called data. The decision about the
underlying problem is to be made on the basis of a relatively small set of data that
can be generalized for the whole population of interest. Here, the term population is
used with specific meaning and a defined domain. For example, if an experimenter
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wants to know the prevalence of a disease among the children of age under 5 years
in a small town, then the population is comprised of every child of under 5 years of
age in that small town. In reality, it is difficult to conduct the study on the whole
population due to cost, time, and skilled manpower needed to collect quality data.
Under this circumstance, the population is represented statistically by a smaller set
to help the experimenter to provide with the required information. At this stage, the
experimenter faces two challenges: (i) to find the values that summarize the basic
facts about the unknown characteristics of the population as sought in the study, and
(ii) to make sure that the values obtained to characterize the sample can be shown to
have adequate statistical support for generalizing the findings for the domain or
more specifically the population from where the sample is drawn. These two criteria
describe the essential foundations of both statistics and biostatistics.

The data obtained from experiments or surveys among the subjects can provide
useful information concerning underlying reasons for such variations leading to
important findings for the users, researchers, and policymakers. Using the tech-
niques of biostatistics, we try to understand the underlying relationships and the
extent of variation caused by the potential risk or prognostic factors. The identifi-
cation of potential risk or prognostic factors associated with a disease, the efficacy
of a treatment, the relationship between prognostic factors and survival status, etc.
are some examples that can be analyzed by using biostatistical techniques.

Let us consider that an experimenter wants to know about the prevalence of
diabetes in an urban community. There are two major types of diabetes melli-
tus, insulin-dependent diabetes mellitus (IDDM) or Type 1 diabetes and
non-insulin-dependent diabetes mellitus (NIDDM) or Type 2 diabetes. The first
type may occur among the young, but the other type usually occurs among rela-
tively older population. To know the prevalence of the disease, we have to define
the population living in the community as the study population. It would be difficult
to conduct the study on the whole population because collection of blood glucose
sample from each one of the population would take a very long time, would be very
expensive, and a large number of skilled personnel with appropriate background for
collecting blood samples need to be involved. In addition, the nonresponse rate
would be very high resulting in bias in the estimate of prevalence rate. Thus, a
sample survey would be a better choice in this situation considering the pressing
constraints. For conducting the survey, the list of households in the community is
essential, and then we may collect the data from the population. It is obvious that
the result may deviate from the true population value due to use of a sample or a
part of the population to find the prevalence of diabetes mellitus. The representation
of the unknown population value by an estimate from the sample data is an
important biostatistical concern to an experimenter.

A similar example is if we want to find whether certain factors cause a disease or
not. It is difficult to establish a certain factor as a cause of that disease statistically
alone, but we can have adequate statistical reasoning to provide insights to make
conclusions that are of immense importance to understand the mechanism more
logically. It may be noted here that biostatistics has been developing very exten-
sively due to increasing demand for analyzing concerns regarding the health
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problems worldwide. Biostatistics covers a wide range of applications such as
designing and conducting biomedical experiments and clinical trials, study of
analyzing data from biological and biomedical studies along with the techniques to
display the data meaningfully and developing appropriate computational algo-
rithms, and also to develop statistical theories needed for analyzing and interpreting
such data. It is very important to note that biostatisticians provide insights to
analyze the problems that lead to advances in knowledge in the cross-cutting fields
of biology, health policy, epidemiology, community medicine, occupational haz-
ards, clinical medicine, public health policy, environmental health, health eco-
nomics, genomics, and other disciplines. One major task of a biostatistician is to
evaluate data as scientific evidence, so that the interpretations and conclusions from
the data can be generalized for the populations from which the samples are drawn.
A biostatistician must have (i) the expertise in the designing and conducting of
experiments, (ii) the knowledge of relevant techniques of collecting data, (iii) an
awareness of the advantages and limitations of employing certain techniques
appropriate for a given situation and the analysis of data, and (iv) the understanding
of employing the statistical techniques to the scientific contexts of a problem such
that meaningful interpretations can be provided to address the objectives of a study.
The results of a study should have the property of reproducibility in order to
consider the validity of a study. The insights provided by a biostatistician essen-
tially bridge the gap between statistical theories and applications to problems in
biological and biomedical sciences.

The fundamental objective is to learn the basics about two major aspects of
statistics: (i) descriptive statistics and (ii) inferential statistics. The descriptive
statistics deals with organization, summarization, and description of data using
simple statistical techniques, whereas the inferential statistics link the descriptive
statistics measures from smaller data sets, called samples, with the larger body of
data, called population from which the smaller data sets are drawn. In addition, the
inferential techniques take into account analytical techniques in order to reveal the
underlying relationships that might exist in the population on the basis of analysis
from the sample data.

In this book, the elementary measures and techniques covering the following
major issues will be addressed:

1. Descriptive statistics: This will address the organization, summarization, and
analysis of data.

2. Inferential statistics: This will address the techniques to reach decision about
characteristics of the population data by analyzing the sample data. The sample
is essentially a small representative part of the population.

For understanding the underlying mechanism to address issues concerning
inferential statistics, we need basic concepts of probability. Some important basic
concepts of probability and probability distributions are included in this book for a
thorough understanding of biostatistics.
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1.2 Some Basic Concepts

Statistics
Statistics, as a subject, can be defined as the study of collection, organization,
summarization, analysis of data, and the decision-making about the body of data
called population on the basis of only a representative part of the data called
sample. There are other usages of the term statistic in singular and statistics in plural
senses. The term statistic is defined as a value representing a descriptive measure
obtained from sample observations, and statistics is used in plural sense.

Population
The term population has a very specific meaning in statistics that may refer to
human population or population of the largest possible set of values on which we
need to conduct a study. For conducting a study on infants living in a certain rural
community, all the infants in that community constitute the population of infants of
that community at a particular time. In this case, the population is subject to change
over time. If we shift the date of our reference time by 3 months, then the popu-
lation of infants in the same community will be changed during the 3 months
preceding the new date due to inclusion of additional newborn babies during the 3
months preceding the new date, exclusion of infant deaths during the 3 months
preceding the new date, and exclusion of some infants who will be more than 1 year
old during the 3-month period preceding the new study time because they cannot be
considered as infants. A population of values is defined as the collection of all
possible values at the specified time of study of a random variable for which we
want to conduct the study. If a population is comprised of a fixed number of values,
then the population is termed as a finite population and on the other hand if a
population is defined to have an endless succession of values, then it is termed as an
infinite population. Hence, a population is the collection of all the possible entities,
elements, or individuals, on which we want to conduct a study at a specified time
and want to draw conclusions regarding the objectives of that study. It may be
noted that all the measurements of the characteristic of elements or individuals on
which the study is conducted form the population of values of that characteristic or
variable.
Example: Let us consider a study for estimating the prevalence of a disease among
the children of age under 5 years in a community. Then, all the under 5 children in
the community constitute the population for this study. If the objective of the study
is to find the prevalence of a specific disease, then we need to define a variable for
identifying each child under 5 in that community. The response may be coded as 1
for the presence of disease and 0 for the absence of disease at the time of study. The
population of the variable prevalence of that disease is comprised of all the
responses from each child of age under 5 year in that community.
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Population Size (N)
The population size is the total number of subjects or elements in the population,
usually denoted by N. In the previous example, the total number of children of age
under 5 years in the community is the population size of the study area.

Sample
A sample is defined as the representative part of a population that needs to be
studied in order to represent the characteristics of the population. The collection of
sample data is one of the major tasks that use some well-defined steps to ensure the
representativeness of the sample to represent the population from which the sample
is drawn.

Example: In the hypothetical example of the population of children of age under
5 years in a community being conducted to study the prevalence of a disease, all the
children of age under 5 years are included in the population for obtaining response
regarding the status of that disease among the children. If only some of the children
from the population are selected to represent all the children in the defined popu-
lation, then it is called a sample.

Sample Size (n)
The number of individuals, subjects, or elements selected in the sample is called the
sample size and is usually denoted by n.

Parameter
Parameter is defined to represent any descriptive characteristic or measure obtained
from the population data. Parameter is a function of population values.

Example: Prevalence of heart disease in a population, average weight of patients
suffering from diabetes in a defined population, average number of days suffered
from seasonal flu by children of age under 5 years in a population, etc.

Statistic
Statistic is defined to represent any descriptive characteristic or measure obtained
from sample data. In other words, statistic is a function of sample observations.

Example: Prevalence of heart disease computed from sample observations,
average weight of patients suffering from diabetes obtained from sample observa-
tions, average number of days suffered from seasonal flu by children of age under
5 years computed from sample observations, etc.

Data
We have already used the term data in our previous discussion several times which
indicates that data is one of the most extensively used terms in statistics. In the
simplest possible way, we define data as the raw material of statistics. Data may be
quantitative or qualitative in nature. The quantitative data may result from two
sources: (i) measurements: temperature, weight, height, etc., and (ii) counts: number
of patients, number of participants, number of accidents, etc. The qualitative data
may emerge from attributes indicating categories of an element such as blood type,
educational level, nationality, etc.
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Sources of Data
The raw materials of statistics can be collected from various sources. Broadly, the
sources of data are classified in terms of whether the data are being collected by
either conducting a new study or experiment or from an existing source already
collected by some other organization beforehand. In other words, data may be
collected for the first time by conducting a study or experiment if the objectives of
the study cannot be fulfilled on the basis of data from the existing sources. In some
cases, there is no need to conduct a new study or experiment by collecting a new set
of data because similar studies might have been conducted earlier but some of the
analysis, required for fulfilling the objectives of a new study, might not be per-
formed before. It may be noted here that most of the data collected by different
agencies remain unanalyzed. Hence, we may classify the sources of data as the
following types:

Primary Data: Primary data refer to the data being collected for the first time by
either conducting a new study or experiment which has not been analyzed before.
Primary data may be collected by using either observational studies for obtaining
descriptive measures or analytical studies for analyzing the underlying relation-
ships. We may conduct surveys or experimental studies to collect primary data
depending on the objectives of the study. The data may be collected by employing
questionnaires or schedules through observations, interviews, local sources, tele-
phones, Internet, etc. Questionnaire refers to a series of questions arranged in a
sequential order filled out by respondents and schedule is comprised of questions or
statements filled out by the enumerators by asking questions or observing the
necessary item in spaces provided.

Secondary Data: Secondary data refer to a set of data collected by others
sometime in the past. Hence, secondary data does not represent the responses
obtained at current time rather collected by someone else in the past for fulfilling
specific objectives which might be different or not from that of the researchers or
users. Sources of these data include data collected, compiled and published by
government agencies, hospital records, vital registrations (collected and compiled
by both government and non-government organizations), Internet sources, websites,
internal records of different organizations, books, journal articles, etc.

Levels of Measurement
The data obtained either from the primary or secondary sources can be classified
into four types of measurements or measurement scales. The four types or levels of
measurement are nominal, ordinal, interval, and ratio scales. These measures are
very important for analyzing data, and there are four criteria based on which these
levels are classified. The four criteria for classifying the scales of measurements are
identification, order, distance, and ratio. Identification indicates the lowest level of
measuring scale which is used to identify the subject or object in a category and
there are no meaningful order, difference between measures, and no meaningfully
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defined zero exists. The next higher level of measurement scale is order in the
measure such as greater than, less than, or equal. It is possible to find a rank order of
measurements. It is obvious that for measuring order by a scale both identification
and order must be satisfied. This shows that a scale that measures order needs to
satisfy identification criteria first implying that a measure for order satisfies two of
the four properties, identification and order. Similarly, the next higher criterion is
distance. To measure a distance, both identification and order criteria must be
satisfied. It means that a distance measure, the interval scale, satisfies three criteria,
identification, order, and distance. The highest level of criterion in measuring data is
ratio that satisfies all the lower levels of criteria, identification, order, and distance
and possesses an additional property of ratio. In this case, it is important to note that
a meaningful ratio measure needs to satisfy the condition that zero exists in the
scale such that it defines absolute zero for indicating the absence of any value. For
any lower level measure, zero is not a precondition or necessity but for ratio
measure the value of zero must exist with meaningful definition.

The levels of measurements are based on the four criteria discussed above. The
levels or scales of measurements are discussed below:

1. Nominal: Nominal scale measure is used to identify by name or label of cat-
egories. The order, distance, and ratio of measurement are not meaningful, and
thus can be used only for identification by names or labels of various categories.
Nominal data measure qualitative characteristics of data expressed by various
categories. Examples: gender (male or female), disease category (acute or
chronic), place of residence (rural or urban), etc.

2. Ordinal: Ordinal data satisfy both identification and order criteria, but if we
consider interval and ratio between measurements, then there is no meaningful
interpretation in case of ordinal data. Examples: Educational level of respondent
(no schooling, primary incomplete, primary complete, secondary incomplete,
secondary complete, college, or higher), status of a disease (severe, moderate,
normal), etc.

3. Interval: Interval data have better properties than the nominal and ordinal data.
In addition to identification and order, interval data possess the additional
property that the difference between interval scale measurements is meaningful.
However, there is a limitation of the interval data due to the fact that there is no
true starting point (zero) in case of interval scale data. Examples: temperature,
IQ level, ranking an experience, score in a competition, etc. If we consider
temperature data, then the zero temperature is arbitrary and does not mean the
absence of any temperature implying that zero temperature is not absolute zero.
Hence, any ratio between two values of temperature by Celsius or Fahrenheit
scales is not meaningful.
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4. Ratio: Ratio data are the highest level of measurements with optimum prop-
erties. Ratios between measurements are meaningful because there is a starting
point (zero). Ratio scale satisfies all the four criteria including absolute zero
implying that not only difference between two values but also ratio of two
values is also meaningful. Examples: age, height, weight, etc.

Variable and Random Variable
The variable is defined as the measure of a characteristic on the elements. The
element is the smallest unit on which the data are collected. The variable may take
any value within a specified range for each element. However, this definition of
variable does not express the underlying concept of a variable used in statistics
adequately. It is noteworthy that the data in statistics are collected through a random
experiment from a population. The sample collected from a population through a
random experiment is called a random sample. There may be numerous possible
random samples of size n from a population of size N. The selection of any value in
a random sample that is drawn from the population depends on the chance or
probability being assigned to draw each element of a sample. Hence, a random
variable is subject to random variation such that it can take different values each
with an associated probability. Examples: blood glucose level of respondents,
disease status of individuals, gender, level of education, etc. The values of these
random variables are not known until the selection of potential respondents and
selection of a respondent from the defined population depend on associated
probability.

Types of Random Variables

(1) Quantitative Random Variables

A quantitative random variable is a random variable that can be measured using
scales of measurement. The value of a quantitative variable is measured numerically
such as quantity that provides value in terms of measurements or counts. Examples:
family size, weight, height, expenditure on medical care, number of patients, etc.

Types of Quantitative Random Variables

(a) Discrete Random Variables

A discrete random variable is defined as a random variable that takes only countable
values from a random experiment. Examples: number of children ever born,
number of accidents during specified time intervals, number of obese children in a
family, etc.

(b) Continuous Random Variables

A continuous random variable is defined as a random variable that can take any
value within a specified interval or intervals of values. More specifically, it can be
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said that a continuous random variable can take any value from one or more
intervals resulting from a random experiment. Examples: height, blood sugar level,
weight, waiting time in a hospital, etc.

(2) Qualitative Random Variables

The values of a qualitative random variable are obtained from a random experiment
and take names, categories with or without meaningful ordering or attributes
indicating to which category an element belongs. Examples: gender of respondent,
type of hospital, level of education, opinion on the quality of medical care services,
etc.

Types of Qualitative Random Variables

(a) Nominal Qualitative Variables

A nominal random variable is a qualitative variable that considers non-ranked and
mutually exclusive categories of the variable. A nominal variable takes attributes
such as names or categories that are used for identification only but cannot be
ordered or ranked. Examples: sex, nationality, place of residence, blood type, etc.

(b) Ordinal Qualitative Variables

An ordinal variable is a qualitative variable that considers ranked and mutually
exclusive categories of the variable. In other words, an ordinal variable takes the
qualitative observations classified into various mutually exclusive categories that
can be ranked. It is possible to order or rank the categories of an ordinal variable.
Examples: severity of disease, level of satisfaction about the healthcare services
provided in a community, level of education, etc.

The classification of variables is displayed in Fig. 1.1.

Variables

Quantitative

Discrete

Interval, Ratio

Continuous

Interval, Ratio

Qualitative

Nominal Ordinal

Fig. 1.1 Classification of variables by measurement scales
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1.3 Organizing the Data

After collecting data, the major task is to organize data in such way that will help us
to find information which are of interest to a study. Collection of data from a
primary or secondary source is in a format that requires special techniques to
arrange the data for answering the questions related to the objectives of a study or
experiment. We need to organize the data from raw form in order to make suitable
for such applications. In this section, some basic techniques for organization of data
are discussed.

1.3.1 Frequency Distribution: Ungrouped

The data are collected on different variables from a well-defined population. Each
variable can be organized and presented in a suitable form to highlight the main
features of the data. One way to represent the sample data is to find the frequency
distribution. In other words, the data are presented in a form where the character-
istics of the original data are presented in a more meaningful way and the basic
characteristics of the data are self-explanatory.

To organize the data using ungrouped frequency distribution for qualitative
variables or discrete quantitative variables with a small number of distinct values
are relatively easy computationally. The frequency of a distinct value from a sample
represents the number of times the value is found in the sample. It means that if a
value occurs 20 times then it is not necessary to write it 20 times rather we may use
the frequency of that value 20, hence, it can be visualized in a more meaningful and
useful way. The relative frequency is defined as the proportion of frequency for a
value in the sample to the sample size. This can be multiplied by 100 to express it in
percentage of the sample size. We can also find the frequency up to a certain value
which is called the cumulative frequency.

In ungrouped form, data are displayed for each distinct value of the observations.
In case of qualitative variable, the categories of a qualitative variable are summa-
rized to display the number of times each category occurs. The number of times
each category occurs is the frequency of that category and the table is called a
frequency distribution table. Each observation is represented by only one category
in a frequency distribution table such that the total frequency is equal to the sample
size, n. An example below illustrates the construction of an ungrouped frequency
distribution table.

Example 1.1
Let us consider hypothetical data on level of education of 16 women in a sample:
3, 5, 2, 4, 0, 1, 3, 5, 2, 3, 2, 3, 3, 2, 4, 1 where 0 = no education, 1 = primary
incomplete, 2 = primary complete, 3 = secondary level education, 4 = college
level education, and 5 = university level education.
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Let variable = X = level of education (ordinal, qualitative), where the sample
size = n = 16. The ordered array is 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5. The
smallest value = 0 and the largest value = 5.

Frequency Bar Chart
A frequency bar chart displays the frequency distribution of a qualitative variable.
The bar charts can take into account one or more classification factors. In a simple
bar chart, we consider one classification factor. In a simple bar chart, a single bar for
each category is drawn where the height of the bar represents the frequency of the
category. For more than one classification factor, we may draw the bars for each
category for the classification factors as clustered or stacked columns. In case of
clustered bars, the bars for each category for all the classification factors are placed
side by side. On the other hand, for the stacked bars, the segment of bars repre-
senting frequencies of each classification factor is stacked on top of one another.
The following bar chart displays an example of a simple bar chart for the data on
education level of 16 women as shown above (Fig. 1.2).

Dot Plot
An alternative to bar chart is dot plot. The most important advantage of dot plot is
its simplicity. The dot plot displays a frequency distribution and grouped data
points are represented by dots on a simple scale. Usually, dot plots display uni-
variate quantitative data. It is used for relatively small or moderately large number
of groups of data. Dot plots clearly show clusters and their gaps along with outliers,
if any. To represent a frequency distribution, a dot plot simply provides number of
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Fig. 1.2 Bar chart displaying frequency distribution of level of education
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dots on the vertical axis against the values of the variable on the horizontal axis.
Here, the bars are replaced by stacks of dots. From a dot plot, some descriptive
measures such as mean, median, mode, and range can be obtained easily. It is also
convenient to compare two or three frequency distributions using a dot plot.

An example of dot plot is displayed in Fig. 1.3. For constructing this diagram,
the frequency distribution presented in Table 1.1 is used where the highest fre-
quency occurs at level of education 3 for the women in the hypothetical sample.

Pie Chart
A pie chart is very commonly used to represent frequency distribution of qualitative
variables using frequencies, percentage frequencies, or relative frequencies of cat-
egories of a qualitative variable. The pie or circle is divided into segments repre-
senting mutually exclusive categories of a qualitative variable, and the size of
segment in a pie chart represents frequency, percentage frequency, or relative fre-
quency of the corresponding category.
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0 1 2 3 4 5 6

Level of Education of Women

Fig. 1.3 Dot plot displaying level of education of women in a sample

Table 1.1 Frequency distribution of level of education of 16 women

Level of education Frequency (f) Relative frequency (f/n) Percent frequency ((f/n)100)

0 1 0.0625 6.25

1 2 0.1250 12.50

2 4 0.2500 25.00

3 5 0.3125 31.25

4 2 0.1250 12.50

5 2 0.1250 12.50

Total 16 1.0000 100.00
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A pie chart can be drawn using relative frequencies of a qualitative variable as
follows:

(i) A circle contains 360° which is equivalent to sample size n = total frequency
or 1 in case of relative frequency.

(ii) Compute the relative frequency for each category.
(iii) Multiply relative frequency by 360° to find the share of angle size for the

segment corresponding to the category. The total of all the angles corre-
sponding to exhaustive and mutually exclusive categories is 360°.

Alternatively, percentage frequency can also be used to draw a pie chart fol-
lowing the guidelines stated below.

(i) A circle contains 360° which is equivalent to sample size.
(ii) Compute the percentage frequencies for each category which add to 100%

for all the categories combined.
(iii) Dividing percentage for each category by 100 provides relative frequency,

and the size of the angle corresponding to a category is obtained by multi-
plying the relative frequency by 360°.

The following pie chart displays the level of education of women in a sample
where the frequency distribution includes 1 in no school, 6 in primary, 5 in sec-
ondary, and remaining 4 in college categories. The total sample size is 16. The
relative frequencies are 0.0625, 0.375, 0.3125, and 0.25, respectively, for no
schooling, primary, secondary, and college levels, respectively. The angle sizes are
obtained by multiplying the relative frequencies by 360° to draw the pie chart as
displayed below. The sizes of angles for no schooling, primary schooling, sec-
ondary schooling, and college level education are 22.5°, 135°, 112.5°, 45°, and 45°,
respectively. It can be checked that the total angle size in degrees for the pie chart is
22.5 + 135 + 112.5 + 45 + 45 = 360 (Fig. 1.4).

No Schooling

Primary

Secondary

College

Fig. 1.4 Pie chart displaying level of education of women in a sample
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1.3.2 Grouped Data: The Frequency Distribution

For ungrouped data, the frequency distribution is constructed for distinct values of
categories or values of the variable. In case of continuous variables, the number of
distinct values of the variable is too many and it is not meaningful or logical to
construct the frequency distribution using all the distinct values of the variable
observed in the sample. We know that the continuous random variable takes values
from intervals, and in that case it would be logical to group the set of observations
in intervals called class intervals. These class intervals are contiguous and
nonoverlapping and selected suitably such that the sample observations can be
placed in one and, only in one, of the class intervals. These groups are displayed in
a frequency distribution table where the frequencies represent the number of
observations recorded in a group. In grouped data, the choice of class intervals
needs special attention. If the variable is quantitative and discrete such as size of
household, then intervals such as 1–5, 6–10, 11–15, etc. are nonoverlapping.
However, if we consider a continuous variable such as age of individuals admitted
to a hospital, then the intervals 0–4, 5–9, 10–14, 15–19, etc. may raise the question
what happens if someone reports age between the upper limit of an interval and
lower limit of the next interval, for instance, if the reported age is 4 years 6 months.
To avoid such ambiguity, if we may consider the intervals 0–5, 5–10, 10–15, etc.,
then there is clear overlapping between two consecutive age intervals because the
upper limit of an interval is same as the lower limit of the next interval. To address
this situation, we need to find the true class intervals which ensure continuity of the
consecutive intervals and the values of the observations are considered to be
nonoverlapping. A simple way to compute the true class interval is summarized
here: (i) Find the gap between the consecutive class intervals, d = (lower limit of a
class interval − upper limit of the preceding interval); (ii) Divide the gap, d, by 2,
i.e., d/2; (iii) Lower limit of the true class interval can be obtained by subtracting
d/2 from the lower limit of a class interval; and (iv) Upper limit of the true class
interval can be obtained by adding d/2 to the upper limit of the class interval.

In grouped data, the class intervals are to be constructed in a meaningful way
depending on the nature of data. The number of class intervals should not be too
small or too large. However, in most of the cases, the number of intervals depends
on the purpose of the study. For example, if you conduct a survey to find the age
composition of the patients admitted to a hospital, then the class intervals may be
considered in five-yearly intervals such as 0–4, 5–9, 10–14, …, 90–94, where 90–
94 is the last interval. Here, the last interval depends on the largest observed value.
The five-yearly or ten-yearly age intervals are considered here to keep similarity
with the age compositions available from other sources. However, if we need to
construct intervals for data from laboratory tests, the intervals need to highlight the
ranges usually employed for normal, mild complication, severe complication, etc. If
these cut-off points are not taken into account, the main purpose of the table is not
fulfilled and the table will not provide any meaningful information.
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Let us consider that there are k intervals and the frequencies in those intervals are
f1; . . .; fk , then the sum of the frequencies is

Pk
i¼1 fi ¼ n. Now, we can define the

following terms necessary for constructing a table:

(i) Frequency in the ith class interval: Number of observations in the ith class
interval is fi; i ¼ 1; 2; . . .; k.

(ii) Relative frequency in the ith class interval: Proportion of total observations
in the ith class interval is fi=n, where fi is the frequency in the ith class
interval and n is the sample size, i = 1,2, …, k.

(iii) Percentage relative frequency in the ith class interval: Percentage of total
observations in the ith class interval is fi=nð Þ�100, where fi is the frequency
in the ith class interval and n is the sample size.

(iv) Cumulative frequency: Number of observations less than or equal to the
upper limit of a class interval is the cumulative frequency, usually denoted by
Fi for the ith class interval. As all the observations are less than the upper
limit of the last class interval, Fk ¼ n. For instance, the cumulative frequency
less than or equal to the upper limit of the first class interval is F1 ¼ f1;
similarly, the cumulative frequency less than or equal to the upper limit of
the second class interval is F2 ¼ f1 þ f2 (alternatively, F2 ¼ F1 þ f2) which is
the sum of frequencies in the first two classes, and the cumulative frequency
less than or equal to the upper limit of the last class interval (or the kth class
interval) is Fk ¼ f1 þ f2 þ � � � þ fk ¼ Fk�1 þ fk which is the sum of fre-
quencies in all the classes.

(v) Relative cumulative frequency: Proportion of observations less than or equal
to the upper limit of a class interval, which is Fi=n, is called the relative
cumulative frequency corresponding to the upper limit of the ith class
interval. As all the observations are less than the upper limit of the last class
interval, the proportion of cumulative frequency in the last class is
Fk=nð Þ ¼ n=nð Þ ¼ 1.

(vi) Percentage cumulative frequency: Percentage of observations less than or
equal to the upper limit of the ith class interval which is Fi=nð Þ�100 is called
the percentage cumulative frequency corresponding to the upper limit of the
ith class interval. As all the observations are less than the upper limit of the
last class interval, the corresponding percentage cumulative frequency is
Fk=nð Þ�100 ¼ n=nð Þ�100 ¼ 100.

Example 1.2
The following data represent the weight of 24 women in kilograms taken from a
randomly selected enumeration area of Bangladesh Demographic and Health
Survey 2014.
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Weight (in kilogram) of 24 women

46.4 53.2 52.8 42 50.8 43

51.9 59.2 55.1 38.9 49.7 43.1

42.2 52.7 49.8 50.7 44.8 49.2

47.7 42.9 52.9 54.1 45.4 49.9

In this example, let us denote the variable X = weight of women (in kg). The
sample size is n = 24. The minimum weight observed in this sample is 38.9 kg.
Similarly, the maximum weight is 59.2 kg. The range is the difference between the
maximum and the minimum weights which is range = maximum weight − mini-
mum weight = 59.2 kg − 38.9 kg = 20.3 kg. The possible class intervals include
the lowest weight in the first and the largest weight in the last interval; we may use
the following intervals of weight: 35.0–39.9, 40.0–44.9, 45.0–49.9, 50.0–54.9, and
55.0–59.9. There are 5 class intervals for grouping the weights (in kg) of 24 women
in this example, where the smallest value, 38.9 kg, is included in the first interval,
35.0–39.9, and the largest value, 59.2 kg, is included in the last interval, 55.0–59.9.

Table 1.2 displays the construction of frequency distribution table for weights of
women using tally marks. Then, dropping the column for tally marks from
Table 1.2, we can display the grouped frequency distribution of the weights of 24
women as shown in Table 1.3.

Table 1.2 A frequency distribution table for weights of women for a selected enumeration area
from BDHS 2014 (n = 24)

Class interval of weights of women (in kg) Tally Frequency (number of women)

35.0–39.9 1

40.0–44.9 6

45.0–49.9 7

50.0–54.9 8

55.0–54.9 2

Table 1.3 A frequency
distribution table for weights
of women for a selected
enumeration area from BDHS
2014 (n = 24)

Class interval of weights of
women (in kg)

Frequency (number of
women)

35.0–39.9 1

40.0–44.9 6

45.0–49.9 7

50.0–54.9 8

55.0–54.9 2
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Mid-Points of Class Intervals
We can find the mid-point of a class interval as shown below:

mid-point ¼ lower limitþ upper limit
2

:

It may be noted here that the mid-point of a class interval is considered as a
repetitive or typical value for all observations in that interval.

True Class Intervals
In a frequency distribution table for a continuous variable, there cannot be any gap
between two consecutive class intervals as displayed in Table 1.3. It is seen from
Table 1.3 that the first class interval is 35.0–39.9 and the second class interval starts
from 40.0 and ends at 44.9. Hence, there is a gap, d = 40.0 − 39.9 = 0.1, between
the end point of the first interval and the starting point of the second interval. In
other words, there is no continuity between these two points which violates the
condition of continuity necessary for a continuous variable. To overcome this
problem in constructing the frequency distribution of a continuous variable, let us
compute the true class intervals or class boundaries as follows (Table 1.4):

d = gap between class intervals,
d = lower limit − upper limit of the preceding class interval,
true upper limit = upper limit + d/2, and
true lower limit = lower limit − d/2.

The computations mid-points of the first and last intervals are

mid-point of the first interval = (34.95 + 39.95)/2 = 37.45;
mid-point of the last interval = (54.95 + 59.95)/2 = 57.45.

It may be noted that (i) mid-point of a class interval can be used to represent all
values of a class interval approximately, and (ii) there are no gaps between con-
secutive true class intervals. It may also be noted that the end point (true upper
limit) of each true class interval equals to the starting point (true lower limit) of the
next true class interval.

Cumulative Frequency Cumulative frequency of the first class interval = F1 ¼ f1.
Cumulative frequency of a class interval = frequency + cumulative frequency of
the preceding class interval. Hence, it can be shown that

Table 1.4 Frequency
distribution of weight of
women (in kg) using true
class intervals

Class
interval

True class
interval

Mid-point Frequency

35.0–39.9 34.95–39.95 37.45 1

40.0–44.9 39.95–44.95 42.45 6

45.0–49.9 44.95–49.95 47.45 7

50.0–54.9 49.95–54.95 52.45 8

55.0–59.9 54.95–59.95 57.45 2
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F1 ¼ f1;
F2 ¼ F1 þ f2;
F3 ¼ F2 þ f3;
..
.

Fk ¼ Fk�1 þ fk:

�

Relative Frequency and Percentage Frequency

Relative frequency = frequency/n,
Relative frequency of the ith class interval = fiPk

i¼1
fi
¼ fi

n.

Percentage frequency = Relative frequency � 100%.
Percentage frequency of the ith class interval = fiPk

i¼1
fi
�100% ¼ fi

n�100%.

We can answer different types of questions from the information summarized in
Table 1.5. Some examples are shown below using different columns of the table.

Frequency The most frequently responded weight of women belongs to the weight
interval 50.0–54.9 kg and the number of women in this interval is 8.

Cumulative Frequency The number of women having weight less than 50 kg is 14.

Percentage Frequency The percentage of women with weights in the interval
50.0–54.9 kg is 33.4% which is one-third of the total number of women in the
sample.

Cumulative Percentage Frequency The percentage of women with weight less
than 55 kg is 58.4%.

Table 1.5 Frequency distribution, relative frequency distribution, cumulative relative frequency
distribution, percentage frequency, and cumulative percentage frequency of weights (in kg) of
women

Class
interval

Frequency Cumulative
frequency

Relative
frequency

Cumulative
relative
frequency

Percentage
frequency

Cumulative
percentage
frequency

35.0–39.9 1 1 0.042 0.042 4.2 4.2

40.0–44.9 6 7 0.250 0.292 25.0 29.2

45.0–49.9 7 14 0.292 0.584 29.2 58.4

50.0–54.9 8 22 0.333 0.917 33.3 91.7

55.0–59.9 2 24 0.083 1.000 8.3 100.0
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1.4 Displaying Grouped Frequency Distributions

To display frequency, relative frequency, or percentage frequency distributions, we
may consider one of the following graphs or plots:

(i) The Histogram,
(ii) The Frequency Polygon,
(iii) Ogive, and
(iv) Stem-and-Leaf display.

For illustration of the graphs, the data on weights of 24 women presented in this
section are summarized in Table 1.6. This table is a slightly extended version of
Table 1.4.

Histogram
A histogram is constructed for continuous variable. In the X-axis, class boundaries or
true class intervals and in the Y-axis, the frequencies or relative frequencies are used.
The histogram displays the frequency distribution and that is why the underlying
characteristics of a frequency distribution are well represented by a histogram. We
can use the relative frequency to represent the frequency distribution. It is noteworthy
that area of rectangle is proportional to the frequency in a histogram. If an interval is
two times of other intervals, then the height for that interval in the Y-axis is
height = (relative frequency/2), in other words, height = (relative frequency/width of
the interval). The histogram is considered as very useful diagram for self-explanatory
exposition of a data set. There are some disadvantages of histogram: (i) class
boundaries are chosen arbitrarily and hence any change in the boundaries may change
the appearance of a histogram quite substantially specially in case of small samples,
(ii) the representation of a histogram by rectangular shapes assumes uniformity within
each interval which may not be true in real-life frequency distributions and it depends
largely on the width of an interval, and (iii) the comparison of two or more frequency
distributions by histograms is not a convenient option.

Organizing and Displaying Data using Histogram: Using the data presented in
Table 1.5, we can draw the following histogram (Fig. 1.5).

The Frequency Polygon
The frequency polygon is constructed for both continuous and discrete variables.
We can use relative frequencies to draw a frequency polygon too. We can plot

Table 1.6 Frequency distribution of weight of women (in kg) using true class intervals

Class interval True class interval Mid-point Frequency Cumulative frequency

35.0–39.9 34.95–39.95 37.45 1 1

40.0–44.9 39.95–44.95 42.45 6 7

45.0–49.9 44.95–49.95 47.45 7 14

50.0–54.9 49.95–54.95 52.45 8 22

55.0–59.9 54.95–59.95 57.45 2 24
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frequency corresponding to mid-point of each class. Mid-values of class intervals
are plotted along the X-axis and frequencies are plotted at the Y-axis. The latter
points are then joined by straight lines. The frequency polygon should be brought
down at each end to the X-axis by joining it to the mid-values of the next outlying
interval of zero frequency which is called the closed-ended frequency polygon and
if the outlying interval of zero frequency is not considered then it is called the
open-ended frequency polygon. The frequency polygon can be used for comparison
by superimposing two or more polygons. Both histogram and frequency polygons
are used to represent frequency distributions.

Example 1.3
Let us consider the following hypothetical frequency distribution of the age of 100
women (Table 1.7).

Table 1.7 Frequency distribution of age of 100 women

True class interval
(age in years)

Frequency
(No. of women)

Cumulative Frequency Mid-points

14.5–19.5 8 8 17

19.5–24.5 16 24 22

24.5–29.5 32 56 27

29.5–34.5 28 84 32

34.5–39.5 12 96 37

39.5–44.5 4 100 42

Total n = 100

Width of the interval: W = true upper limit − true lower limit = 19.5 − 14.5 = 5.0

Fig. 1.5 Histogram of weight of women (in kg)
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Frequency Polygon (Open)

The following frequency polygons represent the frequency of age of 100 women
(Fig. 1.6).

Frequency Polygon (Closed)

See Figs. 1.7 and 1.8.

Fig. 1.6 Histogram and open-ended frequency polygon for displaying frequency distribution of
age of 100 women

Fig. 1.7 Histogram and closed-ended frequency polygon for displaying frequency distribution of
age of 100 women
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Ogive
We can represent a cumulative frequency distribution by an ogive. An ogive can be
constructed by considering the true class limits or boundaries in the horizontal axis
and the cumulative frequencies in the vertical axis. Then, the cumulative fre-
quencies are indicated corresponding to the upper limit of the class intervals. The
cumulative frequency is zero at the lower limit of the first class interval and sample
size, n, at the upper limit of the last class interval. After connecting all the points for
cumulative frequencies using a line chart, we can draw an ogive. The ogive can be
drawn by using relative cumulative frequencies or percentage cumulative fre-
quencies in the vertical axis instead of cumulative frequencies as well (Fig. 1.9).

Stem-and-Leaf Display
The organization of data involves mainly ordering of the data and constructing a
frequency distribution table. The ordering of data for a moderate or large data set
does not provide a meaningful way to visualize characteristics inherent in the data.
In tables, the original data are summarized and presented in a way that the original
data are grouped, and it is not possible to examine the characteristics using

Fig. 1.8 A closed-ended frequency polygon for displaying frequency distribution of age of 100
women
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individual observations. In this context, the stem-and-leaf plot is an alternative
approach where the original data are visible and the ordering of data is also done in
the plot. In addition, this technique may be considered as a graphical representation
as well. A simple way to explore data is stem-and-leaf display which is an ex-
ploratory data analysis technique. A stem-and-leaf display resembles a histogram
which is useful for quantitative data sets. The purpose of a stem-and-leaf display is
similar to a histogram. A stem-and-leaf display provides the following information:
range of the data set, location of the highest concentration of measurements, reveals
the presence or absence of symmetry in the data.

A major advantage of the stem-and-leaf plot is that it preserves the original data
set. Another advantage is that the stem-and-leaf plot can be constructed during the
tallying process, so an ordered array is not necessary to be performed separately.
This is a very powerful but simple technique for exploring the data. Both the
organization of data and some basic characteristics can be explored without much
difficulty.

To construct a stem-and-leaf plot, we can follow the following steps:

(i) Each measurement is partitioned into two parts: stem and leaf.
(ii) The stem part represents one or more of the initial digits, and the leaf part

represents the remaining digits.
(iii) In a stem-and-leaf display, both stem and leaf parts are displayed.
(iv) In the display, the stem starts with the smallest value and ends with the

largest value. The values are displayed in an ordered column. It may be noted
that all the values within the range from the smallest to the largest values are
included in the stem. If some values of the stem are not in the data, still the
values are to be included in the stem of the display.

Fig. 1.9 An ogive displaying frequency distribution of age of 100 women
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(v) The leaves are placed on the right-hand side of the corresponding stems in
the rows of the display. If there are more than one digit in the leaves, first
digit is considered and remaining digits are ignored. If there are decimals in
the observed sample data, then the decimals are omitted in the display.

(vi) We can draw a vertical line between the stems and leaves.

Example 1.4
Let us consider the following data on age of 25 women drawn randomly from an
enumeration unit selected for a reproductive health study in Bangladesh in 2014
(BDHS, 2014):

39, 48, 40, 17, 23, 32, 31, 20, 38, 38, 27, 28, 45, 42, 36, 41, 22, 30, 33, 19, 36,
20, 36, 48, 22.

The stem-and-leaf display using the above data is

Stem Leaf

1 79

2 3078202

3 9218860366

4 805218

After rearranging the leaf values in order of magnitude, we can show that

Stem Leaf

1 79

2 0022378

3 0123666889

4 012588

From the above stem-and-leaf display, we can show that

smallest value = 17 years,
largest value = 48 years,
middle value = 33 years,
range = 48 years − 17 years = 31 years,
frequency of the women is the highest in the age group of 30s, and the most
frequently occurred age is 36 years.

Some important features like the ones showed above are readily available from a
stem-and-leaf plot.
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1.5 Designing of Sample Surveys

We have mentioned in the previous sections that data are the raw materials for
statistics. The drawing of a representative sample from the population is the most
important part to make the statistical exercises meaningful. In this section, a brief
description is highlighted for an understanding about the data collection procedures
with introduction to the preliminary concepts necessary for the data collection
procedures.

1.5.1 Introduction

It is known that the objective of statistics is to make inference about a population
from information contained in a sample. Some of the concepts necessary to
understand the data collection mechanism are described below.

Population: We have already defined population at the beginning of this
chapter. In the context of sampling, let us define the population once again. The
entire set of collection of elements about which we wish to make an inference can
be defined as population. In sampling, we may call population as target population
or universe too.

Element: An element is the smallest unit in a sampling on which data are
collected. In other words, measurement on a variable is obtained from an element.

Sampling Unit: Sampling units are elements or group of elements that are
defined clearly, can be identified without any ambiguity, and can be observed
conveniently. If the sampling unit is an element, then we may call it sampling
element.

Frame: An exhaustive and nonoverlapping list of all sampling units is called the
sampling frame.

Sample: A sample is defined as the collection of sampling units or sampling
elements selected for a study with specific objectives from the sampling frame.

1.5.2 Planning a Survey

Each item on the following checklist should be carefully considered in the planning
of a survey.

(i) Statement of objectives: It is necessary to state the objectives of the survey
at the planning stage. The stated objectives have to be very clear and
precise. At every stage of survey design and its implementation, the stated
objectives provide the guiding principles.
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(ii) Target population: It is necessary to define the population to be sampled
and it is called the target population due to its specified domain based on the
objectives of the study as well as its exhaustive coverage of sampling units
for selecting the sample. It is important to keep in mind that a sample must
be selected from the target population such that each unit in the population
can be assigned with a probability of being selected in the sample.

(iii) Frame: The sampling frame is comprised of the list of all sampling units
from the entire population, nonoverlapping, and exhaustive. It is expected
that there is close agreement between the target population and list of
sampling units because sampling units are defined using the elements of the
entire population.

(iv) Sample design: It is important to choose the design of the sample with
special attention to number of sampling units/elements and method of
selecting the sampling units/elements from the population in order to fulfill
the stated objectives of a study.

(v) Method of measurement: At the planning stage, it is necessary to decide
on the method of measurement. There are several methods of measurement
employed in sampling including personal interviews, telephone interviews,
mailed questionnaires, or direct observations.

(vi) Measurement instrument: To collect data from the elements of a survey,
we need to specify the necessary measurements and the method of obtaining
the relevant information using appropriate instruments to address the
objectives of the study. This step requires a detailed plan necessary to set
the questions for obtaining the data rigorously. The nonresponse and
incorrect response can be minimized by a carefully designed instrument.

(vii) Selection and training of fieldworkers: With a very well-planned design,
the success of a sample survey depends to a large extent on the selection,
training of fieldworkers, and monitoring the collection of data at the field
level. The fieldworkers are the most important persons responsible for
collecting quality data at the field level. Hence, the implementation of the
plans of a survey design heavily depends on the selection and training of
fieldworkers on questionnaire and measurements for producing quality data.

(viii) Pretest: It is very useful to select a small sample and conduct pretesting
prior to implement the survey design. The purpose of a pretest is to find
whether there are deficiencies in the questionnaire or other data collecting
measurement instrument, training of the fieldworkers, and monitoring of
survey design activities. The pretest findings can provide useful feedbacks
for making timely modifications prior to implementation at the field level.

(ix) Organization of fieldwork: To make a large-scale survey successful, the
organization of fieldwork plays a vital role. The management of field
activities at the field level involves careful monitoring activities of inter-
viewers, coordinators, and data managers with possible backup support.
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(x) Organization of data management: A carefully planned outline of han-
dling data at each stage of conducting a survey is an essential step. In
organizing data, different steps such as code plan, data entry, checking,
rechecking, editing, tabulation plan, analysis, etc. are to be planned very
carefully.

(xi) Data analysis: Data analysis is performed on the basis of the objectives of
the study.

1.5.3 Major Components of Designing a Sample Survey

The major components in designing sample surveys are

(i) sample design,
(ii) survey measurements,
(iii) survey operations, and
(iv) statistical analysis and report writing.

Sample Design
The core component of designing a sample survey is sample design and depending
on the sample design of a sample survey, other components are planned. The
sample design includes the core tasks of sampling plan and inferential procedure.
The selection of sample from the population is designed in the sampling plan of a
sample survey. The sampling plan provides the methodology of selecting the
sampling units and illustrating the selection of elements to be included in the
sample from the sampling frame. The sampling plan provides the outline of relating
the sample to the target population. The inferential procedure provides specific plan
for estimation and tests based on the objectives stated for conducting a survey.

Survey Measurements
The survey measurements are very crucial that need careful expert opinion and
extensive literature review in the light of the underlying objectives of the study
before making measurements to be employed finally. A pretest can play a vital role
to obtain feedback on whether the measurements are relevant and observable. The
main concern regarding the survey measurements is about addressing the objectives
adequately by analyzing the data obtained from the survey. If there is problem with
core measurements necessary to obtain estimates relevant to the objectives of a
study, the purpose of conducting a sample survey is grossly undermined.

Survey Operations The collection of data is the most important task in a sample
survey because all the estimates needed to address the stated objectives are obtained
from the data that are collected from the field. At this stage, every operation needs
to be implemented very carefully because once the data are collected there will be
no way to repeat the whole process once again. The quality requirements are to be
ensured from the beginning and monitored and coordinated with extensive survey

1.5 Designing of Sample Surveys 27



operations strategy for ensuring quality of the data. The steps of survey operations
include preparation of the process for data collection, training of the fieldwork team
and management, data collection at the field level, review of field level operations
for collecting data as an integral part, check for any inconsistency in the mea-
surements and necessary remedial steps such as re-interview, repeated attempts to
reduce the nonresponse, collection of the measurement instruments followed by
data entry, consistency check, coding process, and storing of data for analysis.

Statistical Analysis and Report Writing
After the data have been collected at the field level, the processes of coding, editing,
and processing for analysis are completed carefully. Once the data are processed,
the next step is to use the data for conducting statistical analysis necessary in order
to address the objectives of the sample survey and the findings are presented in a
final report.

1.5.4 Sampling

In a very broad term, we can say that the primary objectives of conducting a sample
survey are (i) to draw a random sample from the target population and (ii) to
estimate the parameters of the target population from the sample.

Probability and Nonprobability Sampling
There are two broad classes of sampling: (i) probability sampling and (ii) non-
probability sampling. The definition of a random variable has been introduced in
this chapter, and it is noted that a random variable has an associated probability
such that each value of a random variable has a known and nonzero probability of
being selected. In a probability sampling, there is an assigned probability for each
element of being selected in the sample which is performed by applying the process
of randomization. However, in case of a nonprobability sampling, the selection of
elements does not use any randomization and there is no known probability
of being selected. Only probability sampling can provide the estimated reliability of
which can be evaluated. On the other hand, the reliability of an estimate based on
nonprobability sampling cannot be evaluated and this weakness restricts a non-
probability sampling to generalize the estimates for any target population.

Probability Sampling A variety of probability sampling techniques have been
developed to provide efficient practical sample designs:

(i) Simple random sampling,
(ii) Stratified sampling,
(iii) Systematic sampling,
(iv) Cluster sampling,
(v) Multistage sampling, etc.
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Simple Random Sampling The simple random sampling is a simple but ideal
sampling procedure but cannot be applied in many situations particularly in large
surveys. A simple random sampling procedure is performed by drawing a sample of
size n from a population of size N where each element in the population of size
N has an equal probability or same chance of being included in the sample. In a
simple random sampling, the chance of being selected for every possible sample of
size n from a population of size N is same. Two types of simple random sampling
are (i) simple random sampling with replacement and (ii) simple random sampling
without replacement. We can use the random number tables for drawing a sample
of size n from a population of size N. A random number table displays a set of
integers that include all digits (0, 1, …, 9) with equal proportions approximately. It
is noteworthy that there is no observable trend in the patterns of digits included in a
generated random number table (see Appendix A.9).

Stratified Sampling It is important for sample survey to consider a strategy for a
fixed cost to maximize the amount of information by implementing. It is not always
possible to maximize the amount of information by using the simple random
sampling for a fixed cost due to practical reasons and there is a need for alternative
sampling procedures. One of the most popular alternatives is the stratified sampling
which may increase the amount of information for a given cost.

In a simple random sampling procedure, the sample is drawn from a single
population without separating the population elements into separate groups on the
basis of any criteria. Sometimes, it would be cost-effective in terms of sample size if
the population elements are classified into nonoverlapping groups termed as strata.
Then, simple random sampling from each stratum provides the stratified sample.
The reasons for choosing a stratified random sampling are as follows:

(i) Stratification is performed usually if there is proven homogeneity within
strata and there is heterogeneity between strata. In that case, the bound of
error estimation is smaller for sample data from a stratified sampling com-
pared to that of a simple random sample of same size.

(ii) Due to construction of strata by taking into account naturally formed groups
such as rural and urban areas as strata, the cost per element is reduced to a
large extent.

(iii) Sometimes, it is of great importance to obtain estimate for each stratum and a
stratified random sampling provides the random sample for each stratum
from which estimates for all the strata can be attained.

Systematic Sampling In a practical sense, both simple random sampling and
stratified sampling may involve steps that may pose formidable difficulty for
ensuring a feasible sample selection process in terms of time and cost. The sys-
tematic sampling procedure simplifies the sample selection process and it is used
widely for practical reasons.

In a systematic sampling, the basic idea is very simple. Instead of sampling each
unit at a time, an appropriate interval of units in the sampling frame is chosen and
the starting point is selected randomly from the first interval of the list and every
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other element is selected at equal intervals from the list or frame. This systematic
procedure of selecting the sample with randomization of the element in the first
interval and selecting the remaining elements at equal intervals is known as the
systematic sampling.

In a link systematic sampling, the first element is selected from the first k ele-
ments of the sampling frame and every kth element thereafter is selected from the
complete list of elements. Often, the systematic sampling is used as an alternative to
the simple random sampling for the reasons listed below:

(i) Selection of elements by simple or stratified random sampling is difficult and
may be subject to error if the sampling frame is not updated or complete. In
this case, the systematic sampling can provide a sample with less selection
error at the field level.

(ii) Per unit cost may be reduced to a great extent for a systematic sampling as
compared to simple random sampling.

Cluster Sampling If we consider cluster of elements or collection of elements
instead of elements, then a cluster sampling can be employed to draw a sample. In a
cluster sampling, the sampling units are cluster of elements and the clusters are
selected using the simple random sampling. For a large sample survey, it is very
costly to prepare the updated sampling frame of elements, and the cost is reduced
substantially if a cluster of elements is considered as the sampling unit. The cost of
obtaining measurements from elements increases if the selected elements are spread
over at distant locations. On the other hand, the cost is reduced for a cluster
sampling because the elements form a cluster at the same location. The cluster
sampling can be used with minimum per unit cost under the following situations:

(i) The sampling frame of elements is either not available or may be very costly to
obtain or update but the list of clusters can be obtained and updated easily.

(ii) The distance separating the elements cause increased cost per element in
simple or stratified sampling but if the units are clusters then the cost of
obtaining observations from each element reduces substantially.

There is noteworthy difference between construction of strata and clusters. The
strata are constructed such that there is homogeneity within a stratum but hetero-
geneity between strata for the variable being measured from the elements. In
constructing the cluster, on the other hand, we have to consider just the opposite,
heterogeneity within the cluster, and homogeneity between clusters. If the hetero-
geneity within and homogeneity between clusters is satisfied, then the cluster
sampling can produce estimates with very low cost per unit.

Multistage Sampling
It has been stated that cluster sampling is economical under certain circumstances but
the cluster sampling may result in increased variance of the desired estimator for a
large population with large size of clusters. This limitation restricts the use of cluster
sampling to some extent. A possible remedy is to select only a small number of units
from each cluster rather than collecting data from each element of the selected
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clusters. In that case, we can increase the number of clusters in order to redistribute
number of elements being selected per cluster to a larger number of clusters. In this
case, two-stage sampling design is conducted. In the first stage, clusters are selected
and at the second stage a specified number of elements are selected from each of the
selected clusters. The first stage sampling units are called the primary sampling units
(clusters) and the second stage units are called the secondary sampling units (ele-
ments). This sampling procedure is known as a two-stage sampling and can be further
generalized to multistage sampling for three or higher stages.

Multistage sampling has been extensively used in practice in large-scale surveys.
It is noteworthy that the multistage sampling is expected to be

(i) less efficient than single-stage sampling and more efficient than cluster sam-
pling from the sampling variability point of view, and

(ii) more efficient than single-stage random sampling and less efficient than cluster
sampling from the cost and operational point of view.

The main advantage of this sampling procedure is that, at the first stage, the
frame of primary sampling units is required, which can be prepared easily. At the
second stage, the frame of second stage units is required only for the selected PSUs,
and so on.

The multistage sampling design is very flexible and allows different selection
procedures at different stages depending on the requirement of the study. In many
practical situations, the multistage sampling design may be considered as the only
choice for selecting ultimate sampling units in the context of availability of suitable
frame as well as cost per unit.

Design Effect (Deff)
With the more complex sampling plans such as multistage sampling, a useful
quantity is the design effect (deff) of the plan. The design effect is described as the
ratio of the variance of the estimate obtained by employing a more complex
sampling technique such as the multistage sampling to the variance of the estimate
that could be obtained from a simple random sampling of the same sample size. In
general, the design effect is used for determining sample size and assessing the
efficiency of a more complex sampling technique.

1.5.5 Methods of Data Collection

The major types of data collection methods are:

(i) personal interviews,
(ii) telephone interviews,
(iii) self-administered questionnaires, and
(iv) direct observation.
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Personal Interviews
The personal interviews are conducted on the selected elements with questionnaires
constructed beforehand and the responses are recorded. In most of the cases, the
respondents agree to respond if contacted personally. The advantage of personal
interview is obvious, ambiguity in a question can be explained, and reaction of a
respondent can be noted on a question. There are some disadvantages too, partic-
ularly if the interviewers are not trained adequately or are biased toward certain
potential responses, then that may influence the respondents and will result in bias
in the sample data.

Telephone Interviews
Telephone interviews have become a very popular mode of conducting interviews,
and the reasons for this popularity are (i) less expensive than personal interviews,
(ii) less time is needed because interviewers do not have to travel to the respon-
dents, and (ii) can be monitored whether the protocol is maintained or not. The
problems with telephone interviews cannot be ignored. Some of the limitations are
(i) there may be mismatch between sampling frame and list of telephone numbers,
(ii) telephone directory may contain numbers do not belong to the potential
respondents, (iii) there may be unlisted numbers, (iv) telephone interviews must be
short so the number of questions need to be very few, and (v) the nonresponse rate
can be much higher in telephone interviews.

Self-administered Questionnaires
Another very common mode is use of self-administered questionnaires. In this
method, the questionnaires are either mailed or distributed using other means to
selected individuals of the sample. Using this method, the cost of the survey can be
minimized. The major limitation of the self-administered questionnaire method is a
very low response rate.

Direct Observation
Sometimes, direct observation method is used to collect data if questionnaire
method cannot provide necessary information effectively. If the objective of a study
is to measure change in the behavior, occurrence of an event, physical condition,
prevailing situation, etc., then a direct observation may provide necessary data that
can reflect the objective of a study more appropriately and effectively. The direct
observation method can use both the structured and unstructured observation
methods; structured method may provide quantitative data and unstructured method
results in qualitative data. The use of direct observation methods may be effective if
the objective of the study is to provide estimates on indicators that do not involve
responses from respondents directly but the observation method can sufficiently
provide necessary data. This restricts the use of the direct observation method to
studies with only very special needs of such data.
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1.6 Summary

This chapter introduces biostatistics as a discipline that deals with designing
studies, analyzing data, and developing new statistical techniques to address the
problems in the fields of life sciences. This includes collection, organization,
summarization, and analysis of data in the fields of biological, health, and medical
sciences including other life sciences. One major objective of a biostatistician is to
find the values that summarize the basic facts from the sample data and to make
inference about the representativeness of the estimates using the sample data to
make inference about the corresponding population characteristics. The basic
concepts are discussed along with examples and sources of data, levels of mea-
surement, and types of variables. Various methods of organizing and displaying
data are discussed for both ungrouped and grouped data. The construction of table
is discussed in details. This chapter includes methods of constructing frequency bar
chart, dot plot, pie chart, histogram, frequency polygon, and ogive. In addition, the
construction of stem-and-leaf display is discussed in details. All these are illustrated
with examples. As the raw materials of statistics are data, a brief section on
designing of sample surveys including planning of a survey and major components
are introduced in order to provide some background about collection of data.

Exercises

1:1 Classify the following variables by the following types: (i) scale of mea-
surement, (ii) quantitative or qualitative, (iii) if qualitative, nominal or ordinal,
and (iv) if quantitative, discrete, or continuous:

(i) number of patients admitted to a hospital each day,
(ii) blood type of children,
(iii) age of individuals in a study,
(iv) height of individuals in a study,
(v) weight of individuals in a study,
(vi) duration of stay in emergency care,
(vii) level of education,
(viii) years of schooling,
(ix) gender of respondent,
(x) survival status of patient suffered from heart disease,
(xi) place of delivery,
(xii) current marital status,
(xiii) number of children ever born,
(xiv) pregnancy resulting in live birth or not,
(xv) duration of current pregnancy,
(xvi) number of antenatal visits during pregnancy,
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(xvii) delivery by cesarean section or not,
(xviii) place of residence, and
(xix) patient’s level of satisfaction with service provided in a hospital.

1:2 Consider a study of 300 males aged 18 years or higher conducted in a city
called D. The study indicates that there are 10% smokers. Answer the fol-
lowing questions:

(i) What is the sample?
(ii) What is the population?
(iii) What is the variable of interest?
(iv) What is the scale of measurement used for the variable?

1:3 (i) What are the main purposes of constructing a table?
(ii) What are the major steps in constructing a frequency distribution table?

1:4 Compare and contrast the following:

(i) sample and population,
(ii) quantitative and qualitative variables,
(iii) statistic and statistics,
(iv) discrete and continuous variables, and
(v) class boundaries and class limits.

1:5 An experimenter recorded times (in minutes) to complete a procedure sug-
gested to a sample of 50 patients with physical disability and the grouped
frequency distribution is shown below.

Time (minutes) 20–29 30–39 40–49 50–59 60–69

Frequency 4 16 21 6 3

(i) Find the true class limits.
(ii) Find the relative and cumulative frequencies of the times to complete the

suggested procedure.

1:6 (a) Compare and contrast between bar diagram and histogram.
(b) Compare between histogram and frequency polygon.

1:7 How can you construct a stem-and-leaf display? What are the advantages of a
stem-and-leaf display over histogram?

1:8 The following data show the number of hours 10 hospital patients had to stay
in the emergency care after accident:
17, 20, 22, 14, 14, 31, 14, 32, 25, 24.
Construct a stem-and-leaf plot and comment on the characteristics of the data.

1:9 The following are the age of 30 patients (in years) seen in the emergency room
of a hospital on Friday:
30, 29, 18, 40, 36, 26,
32, 39, 21, 42, 33, 20,
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42, 20, 31, 37, 31, 22,
32, 41, 37, 42, 39, 46,
27, 38, 45, 46, 49, 27.

(a) Construct a frequency distribution table. Show the class intervals and true
class intervals in the table.

(b) Obtain the relative frequency, percentage frequency, cumulative fre-
quency, and cumulative relative frequency distributions.

1:10 Using the data in (1.9), construct

(i) A histogram,
(ii) A frequency polygon,
(iii) An ogive,
(iv) A stem-and-leaf plot, and
(v) Comment on the features of the data.

1:11 (a) What are the diagrams that we use most frequently in representing fre-
quency distributions? Describe three important diagrams with their advan-
tages and limitations.
(b) Describe the construction and use of the pie diagram and the line diagram.

1:12 The following data show weight (in kg) of 24 women in a study:
46.4, 53.2, 52.8, 42.0, 50.8, 43.0, 51.9, 59.2, 55.1, 38.9, 49.7, 49.9, 43.1,
42.2, 52.7, 49.8, 50.7, 44.8, 49.2, 47.7, 42.9, 52.9, 54.1, 45.4.
Prepare the following (show i–iv in a table):

(i) A frequency distribution,
(ii) A relative frequency distribution,
(iii) A cumulative frequency distribution,
(iv) A cumulative relative frequency distribution,
(v) A stem-and-leaf plot, and
(vi) Comment on the findings.

1:13 Use the data in question 1.12, to construct the following:

(i) The histogram,
(ii) The frequency polygon, and
(iii) The ogive.

1:14 Heights (in cm) of 24 women in a study are shown below:
148.1, 158.1, 158.1, 151.4, 152.9, 159.1, 151.0, 158.2, 148.2, 147.3, 145.6,
155.1, 155.2, 149.7, 147.0, 152.2, 149.1, 145.2, 145.9, 149.7, 149.3, 152.3,
146.9, 148.2.

(a) Construct a frequency distribution table and show the following:

(i) Class interval,
(ii) True class interval,
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(iii) Frequency distribution,
(iv) Relative frequency distribution,
(v) Cumulative frequency distribution,
(vi) Relative cumulative frequency distribution,
(vii) Construct a stem-and-leaf plot, and
(viii) Comment on the main features of the data.

1:15 Use the data in Question 1.14 to construct the following:

(i) The histogram,
(ii) The frequency polygon, and
(iii) The ogive.

1:16 Fill in the following table on number of hours slept in a study on 100
individuals:

Class interval
(number of
hours)

True
class
interval

Frequency Cumulative
frequency

Relative
frequency

Cumulative
relative
frequency

3.0–4.9 15

5.0–6.9 40 B C

7.0–8.9 30

9.0–10.9 15 A 0.15

Find the following values from the table above:

(a) The value of A is
(b) The value of B is
(c) The value of C is
(d) What percentage of observations is less than 9 h?
(e) The true class interval for the first class is
(f) The percentage of observations greater than 4.9 h is

1:17 Suppose we have conducted a study on 200 males with age more than
20 years living in a city. We want to estimate the average weight for the
males of age more than 20 years living in that city. It is found that the average
weight of the men is 76 kg.

(i) What is the variable in this study?
(ii) What is the sample size?
(iii) (a) What is the scale of the variable?

(b) Is it qualitative or quantitative?
(c) If quantitative, discrete or continuous?
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1:18 Classify the following variables by (i) scale of measurement, (ii) quantitative
or qualitative, and (iii) if quantitative, discrete, or continuous:

Variable Scale of
measurement

Qualitative/
quantitative

Attribute/discrete/
continuous

Blood group

Time spent in
exercise
Daily

Temperature of
patients

Quality of service
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Chapter 2
Basic Summary Statistics

2.1 Descriptive Statistics

In Chap. 1, we have displayed the techniques of organizing and displaying the data.
In this chapter, we introduce the concept of summarization of data by means of
descriptive measures. A descriptive measure computed from the values of a sample
is called a statistic. A descriptive measure computed from the values of a population
is called a parameter.

As we have mentioned earlier, for the variable of interest, there are N population
values, and n sample of values. Let X1;X2; . . .;XN be the population values (in
general, they are unknown) of the variable of interest where the population
size = N and x1; x2; . . .; xn be the sample values (these values are known) where the
sample size = n.

A parameter is a measure, quantity, or numerical value obtained from the
population values X1;X2; . . .;XN ; and the value of a parameter is generally an
unknown but constant value characterizing the population. As the value of a
parameter is generally unknown but constant, we are interested in estimating a
parameter to understand the characteristic of a population using the sample data.

A statistic is a measure, quantity, or numerical value obtained from the sample
values x1; x2; . . .; xn and values of statistics can be computed from the sample as
functions of observations. Since parameters are unknown, statistics are used to
approximate (estimate) parameters.

The necessity of descriptive statistics is quite self-explanatory. In Chap. 1, we
have shown that the data can be organized and presented using figures and tables in
order to display the important features and characteristics contained in data.
However, tables and figures may not reveal the underlying characteristics very
comprehensively. For instance, if we want to characterize the data with a single
value, it would be very useful not only for communicating to everyone but also for
making comparisons. Let us consider that we are interested in number of c-section
births among the women during their reproductive period in different regions of a
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country. To collect information on this variable, we need to consider women who
have completed their reproductive period. With tables and figures, we can display
their frequency distributions. However, to compare tables and figures for different
regions, it would be a very difficult task. In such situations, we need a single
statistic which contains the salient feature of the data for a region. This single value
can be a statistic such as arithmetic mean in this case. In case of a qualitative
variable, it could be a proportion. With this single value, we can represent the whole
data set in a meaningful way to represent the corresponding population character-
istic and we may compare this value with similar other values at different times or
for different groups or regions conveniently. A single value makes it very conve-
nient to represent a whole data set of small, medium, or large size. This would be an
ideal situation if we could have represented the important features of the data set
using only a single value or a single measure but this may not be the case in reality.
Sometimes, we may need more such measures to provide as much insight as
possible.

The descriptive statistics are needed for representing the important features of
data using only a few measures. These measures are known broadly as descriptive
statistics. Four types of descriptive measures are commonly used for characterizing
underlying features of data:

(i) Measures of central tendency,
(ii) Measures of dispersion,
(iii) Measures of skewness, and
(iv) Measures of kurtosis.

All these measures are used to characterize different features contained in a set of
data. The first measure, central tendency or location, provides the central value
around which all other values in the data set are located. In other words, the
measure of central tendency provides the most important representative value of the
data set. The dispersion quantifies or measures the variability in the data where
variability between values of the data or difference between each value and the
measure of central tendency may reflect how scattered the data are from a central
value or what extent in variation among values of the data is there. The third
measure is used to know whether there is symmetry from the central value or there
exists asymmetry from the central value. The fourth measure indicates whether the
data are more concentrated with high peak, low or normal peaks, or frequencies
indicating extent of concentration of values.

2.2 Measures of Central Tendency

The values of a variable often tend to be concentrated around the center of the data.
The center of the data can be determined by the measures of central tendency.
A measure of central tendency is considered to be a typical (or a representative)
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value of the set of data as a whole. The measures of central tendency are sometimes
referred as the measures of location too. The most commonly used measures of
central tendency are the mean, the median, and the mode.

2.2.1 Mean

The Population Mean lð Þ
If X1;X2; . . .;XN are the population values, then the population mean is

l ¼ X1 þX2 þ � � � þXN

N
¼

PN
i¼1 Xi

N
:

The population mean l is a parameter. It is usually unknown, and we are
interested to estimate its value.

The Sample Mean �xð Þ
If x1; x2; . . .; xn are the sample values, then the sample mean is

�x ¼ x1 þ x2 þ � � � þ xn
n

¼
Pn

i¼1 xi
n

:

It is noteworthy that the sample mean �x is a statistic. It is known and we can
calculate it from the sample. The sample mean �x is used to approximate (estimate)
the population mean, l. A more precise way to compute the mean from a frequency
distribution is

�x ¼ f1x1 þ f2x2 þ � � � þ fkxk
f1 þ f2 þ � � � þ fk

¼
Pk

i¼1 fixi
n

;

where fi denotes the frequency of distinct sample observation xi; i ¼ 1; . . .; k:

Example 2.1 Let us consider the data on number of children ever born reported by
20 women in a sample: 4, 2, 1, 0, 2, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 2, 2, 1, 3, 2. Here
n = 20. We want to find the average number of children ever born from this sample.

The sample mean is

�x ¼
Pn

i¼1 xi
n

¼ 4þ 2þ 1þ 0þ 2þ 3þ 2þ 1þ 1þ 2þ 3þ 4þ 3þ 2þ 1þ 2þ 2þ 1þ 3þ 2
20

¼ 41
20

¼ 2:05:

Example 2.2 Employing the same data shown above, we can compute the arith-
metic mean in a more precise way by using frequencies. We can construct a
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frequency distribution table from this data to summarize the data first. The fre-
quency distribution table is displayed in Table 2.1.

Here, n ¼ P5
i¼1 fi ¼ 20 and k = 5. The value of k denotes the number of distinct

values observed for the variable X in the sample. It means that number of times a
value occurs becomes the frequency of that variable. The distinct values observed in
this case are 0, 1, 2, 3, and 4 with frequencies 1, 5, 8, 4, and 2, respectively. The
sample arithmetic can be computed from the above table easily as shown below:

�x ¼
Pk

i¼1 fixiPk
i¼1 fi

¼
Pk

i¼1 fixi
n

¼ 1� 0þ 5� 1þ 8� 2þ 4� 3þ 2� 4
20

¼ 41
20

¼ 2:05:

Advantages and disadvantages of the arithmetic mean

Advantages of the arithmetic mean are

(i) Simplicity: The mean is easily understood and easy to compute.
(ii) Uniqueness: There is one and only one mean for a given set of data.
(iii) The mean takes into account all values of the data.

Disadvantage

(i) The main disadvantage of the arithmetic mean is that extreme values have an
influence on the mean. Therefore, the mean may be distorted by extreme
values (Table 2.2).

(ii) The arithmetic mean cannot be used for qualitative data. The arithmetic mean
can only be found for quantitative variables.

Example 2.3

Table 2.1 A frequency
distribution table for number
of children ever born of 20
women

i Number of children ever born
(xi)

Number of women
(fi)

1 0 1

2 1 5

3 2 8

4 3 4

5 4 2

Total 20
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2.2.2 Median

The median of a finite set of numbers is that value which divides the ordered array
into two equal parts. The numbers in the first part are less than or equal to the
median, and the numbers in the second part are greater than or equal to the median.

Notice that 50% (or less) of the data are �Median and 50% (or less) of the data
are �Median.

Calculating the Median

Let x1; x2; . . .; xn be the sample values. The sample size (n) can be odd or even. The
steps for computing the median are discussed below:

(i) First, we order the sample to obtain the ordered array.
(ii) Suppose that the ordered array is

y1; y2; . . .; yn:

(iii) We compute the rank of the middle value(s):

rank ¼ nþ 1
2

:

(iv) If the sample size (n) is an odd number, there is only one value in the middle,
and the rank will be an integer:

rank ¼ nþ 1
2

¼ m: m is integerð Þ:

The median is the middle value of the ordered observations, which is

Median ¼ ym:

Ordered set (smallest to largest) ! y1 y2 … ym middle value … yn
Rank (or order) ! 1 2 … m … n

(v) If the sample size (n) is an even number, there are two values in the middle,
and the rank will be an integer plus 0.5:

Table 2.2 Mean from two
hypothetical sets of data

Sample Data Mean

A 2 4 5 7 7 10 5.83

B 2 4 5 7 7 100 20.83
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rank ¼ nþ 1
2

¼ mþ 0:5:

Therefore, the ranks of the middle values are (m) and (m + 1).
The median is the mean (average) of the two middle values of the ordered

observations:

Median ¼ ym þ ymþ 1

2
:

Ordered set y1 y2 … ym ymþ 1 … yn
Rank (or order) 1 2 m m + 1 … n

Example 2.4 (Odd number) Find themedian for the sample values: 10, 54, 21, 38, 53.

Solution
n = 5 (odd number)

There is only one value in the middle.
The rank of the middle value is

rank ¼ nþ 1
2

¼ 5þ 1
2

¼ 3: ðm ¼ 3Þ

Ordered set ! 10 21 38 (middle value) 53 54

Rank (or order) ! 1 2 3 (m) 4 5

The median = 38 (unit).

Example 2.5 (Even number) Find the median for the sample values: 10, 35, 41, 16,
20, 32.

Solution
n = 6 (even number)

There are two values in the middle. The rank is

rank ¼ nþ 1
2

¼ 6þ 1
2

¼ 3:5: ðm ¼ 3Þ

Ordered set ! 10 16 20 (middle value) 32 (middle value) 35 41

Rank (or order) ! 1 2 3 (m) 4 (m + 1) 5 6

The middle values are 20 and 32.
The median ¼ 20þ 32

2 ¼ 52
2 ¼ 26 unitð Þ:

It may be noted here that the unit of the median is the same as the unit of the
data.
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Advantages and disadvantages of the median
Advantages of the median are

(i) Simplicity: The median is easily understood and easy to compute.
(ii) Uniqueness: There is only one median for a given set of data.
(iii) The median is not as drastically affected by extreme values as is the mean.

An example is illustrated in Table 2.3.
Disadvantages of median are as follows:

(i) The median does not take into account all values of the sample after ordering
the data in ascending order.

(ii) In general, the median can only be found for quantitative variables. However,
in some cases, the median can be found for ordinal qualitative variables too.

2.2.3 Mode

The mode of a set of values is that value which occurs most frequently (i.e., with the
highest frequency). If all values are different or have the same frequencies, there
will be no mode. A set of data may have more than one mode (Table 2.4).

Example 2.6 It may be noted that the unit of the mode is same as the unit of the
data.

Advantages and disadvantages of the mode

Advantages of the mode are

(i) Simplicity: the mode is easily understood and easy to compute.
(ii) The mode is not as drastically affected by extreme values as is the mean

(Table 2.5).
(iii) The mode may be found for both quantitative and qualitative variables.

Disadvantages of the mode are as follows:

(i) The mode is not a good measure of location, because it depends on a few
values of the data.

(ii) The mode does not take into account all values of the sample.
(iii) There might be no mode for a data set.
(iv) There might be more than one mode for a data set.

Example 2.7

Table 2.3 Median from two
sets of data

Sample Data Median

A 9 4 5 9 2 10 7

B 9 4 5 9 2 100 7
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2.2.4 Percentiles and Quartiles

The mean, median, and mode are the measures of central tendency. There are other
measures, percentiles, and quartiles, which do not represent a measure of central
tendency generally (with some exceptions such as median) but represent a measure
of position. The measures of position indicate the location of a data set. The median
is a special case of the family of parameters known as position parameters. These
descriptive measures are called position parameters because they can be used to
designate certain positions on the horizontal axis when the distribution of a variable
is graphed. The position parameters include percentile and quartiles.

Percentile: Given a set of observations x1; x2; . . .; xn, the pth percentile, Pp, p = 0,
1, 2,…, 100, is the value of X such that p percent or less of the observations are less
than Pp and (100 − p) percent or less of the observations are greater than Pp.

The 10th percentile is denoted by P10 where P10 ¼ 10ðnþ 1Þ
100

th ordered value:

The 50th percentile is P50 ¼ 50ðnþ 1Þ
100

th ordered value ¼ median:

The median is a special case of percentile and it represents the 50th percentile.

Quartile: Given a set of observations x1; x2; . . .; xn, the rth quartile,Qr, r = 1, 2, 3,
is the value of X such that ð25� rÞ percent or less of the observations are less thanQr

and [100 − ð25� rÞ] percent or less of the observations are greater than Qr.

Table 2.4 Mode from seven
sets of data

Data set Type Mode(s)

26, 25, 25, 34 Quantitative 25

3, 7, 12, 6, 19 Quantitative No mode

3, 3, 7, 7, 12, 12, 6, 6, 19, 19 Quantitative No mode

3, 3, 12, 6, 8, 8 Quantitative 3 and 8

B C A B B B C B B Qualitative B

B C A B A B C A C Qualitative No mode

B C A B B C B C C Qualitative B and C

Table 2.5 Modes from two
sets of data with and without
extreme values

Sample Data Mode

A 7 4 5 7 2 10 7

B 7 4 5 7 2 100 7
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For quartiles, we use the following formulas:

Q1 ¼ nþ 1
4

th ordered observation,

Q2 ¼ 2ðnþ 1Þ
4

th ordered observation,

Q3 ¼ 3ðnþ 1Þ
4

th ordered observation:

The second quartile is Q2 ¼ 2ðnþ 1Þ
4 ¼ nþ 1

2 ¼ median and this is equal to the 50th
percentile.

2.3 Measures of Dispersion

The dispersion of a set of observations refers to the variation contained in the data.
A measure of dispersion conveys information regarding the amount of variability
present in a set of data. There are several measures of dispersion, some of which are
range, variance, standard deviation, and coefficient of variation. In addition, some
measures of dispersion based on percentiles and quartiles are also introduced in this
section. The box-and-whisker plot is a very useful technique to summarize the data
which is displayed in this section as well.

The variation or dispersion in a set of values refers to how spread out the values
is from each other. The dispersion is small when the values are close together.
There is no dispersion if the values are the same (Figs. 2.1, 2.2 and 2.3; Table 2.6).

Example 2.8 Let us consider the hypothetical data sets of size 5 with same measure
of central tendency displayed in Table 2.6, say arithmetic mean in this case:

In this example, if we represent the samples by only measure of central ten-
dency, or by arithmetic mean in this case, then all the samples have the same value.
In other words, although we observe that the measure of central tendency remains

Fig. 2.1 Displaying median using a dot plot
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same, the variation contained in each data set, or more specifically, the variation in
values of a data set from its central value are not same at all. This indicates that the
measure of central tendency alone fails to characterize different types of properties
of data sets. We want to represent the data by a small number of measures, if
possible by a single value, but sometimes a single value cannot represent the data
adequately or sufficiently. The above example shows one such inadequacy. The
measure of variation is an additional measure needed to characterize the data in
addition to a measure of central tendency.

Some of the most important measures of dispersion are discussed below.

Fig. 2.2 Figure displaying smaller and larger variations using the same center

Fig. 2.3 Figure displaying small and large variations

Table 2.6 Four sets of data
with same arithmetic mean

Data set 1 8, 9, 10, 11, 12 �x = 10

Data set 2 6, 8, 10, 12, 14 �x = 10

Data set 3 4, 7, 10, 13, 16 �x = 10

Data set 4 2, 6, 10, 14, 18 �x = 10
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2.3.1 The Range

The range is the difference between the largest value (Max) and the smallest value
(Min):

Range ðRÞ ¼ Max�Min:

Example 2.9 Find the range for the sample values: 26, 25, 35, 27, 29, 29.

Solution

Max ¼ 35

Min ¼ 25

Range ðRÞ = Max�Min ¼ 35� 25 ¼ 10:

The unit of the range is the same as the unit of the data. The usefulness of the range
is limited. The range is a poor measure of the dispersion because it only takes into
account two of the values, maximum and minimum; however, it plays a significant
role in many applications to have a quick view of the dispersion in a data set.

2.3.2 The Variance

The variance is one of the most important measures of dispersion. The variance is a
measure that uses the mean as a point of reference. More precisely, the variance
provides an average measure of squared difference between each observation and
arithmetic mean. The variance of the data is small when the observations are close
to the mean, is large when the observations are spread out from the mean, and is
zero (no variation) when all observations have the same value (concentrated at the
mean). In other words, the variance shows, on an average, how close the values of a
variable are to the arithmetic mean.

Deviations of sample values from the sample mean

Let x1; x2; . . .; xn be the sample values, and �x be the sample mean. The deviation of
the value xi from the sample mean �x is

xi � �x:

The squared deviation is

ðxi � �xÞ2:
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The sum of squared deviations is

Xn
i¼1

ðxi � �xÞ2:

Figure 2.4 shows the deviations and squared deviations of the values from their
mean.

The Population Variance, r2

Let X1;X2; . . .;XN be the population values. The population variance, r2, is defined
by

r2 ¼
PN

i¼1 Xi � lð Þ2
N

¼ X1 � lð Þ2 þ X2 � lð Þ2 þ � � � þ XN � lð Þ2
N

ðunitÞ2

where l ¼
PN

i¼1
Xi

N is the population mean and N is the population size.
It may be noted here that r2 is a parameter because it is obtained from the

population values, it is generally unknown. It is also always true that r2 � 0:

The Sample Variance, s2

Let x1; x2; . . .; xn be the sample values. The sample variance s2 is defined by

s2 ¼
Pn

i¼1 ðxi � �xÞ2
n

¼ ðx1 � �xÞ2 þðx2 � �xÞ2 þ � � � þ ðxn � �xÞ2
n

;

Fig. 2.4 Deviations and squared deviations of sample values from mean
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where �x ¼
Pn

i¼1
xi

n is the sample mean, and n is the sample size. It may be noted here
that the estimate of the population variance can be obtained as

s2 ¼
Pn

i¼1 ðxi � �xÞ2
n� 1

¼ ðx1 � �xÞ2 þðx2 � �xÞ2 þ � � � þ ðxn � �xÞ2
n� 1

:

For our estimate of the variance, we will use this formula to avoid ambiguity in
the subsequent chapters. The underlying reason will be clear in the later chapters on
estimation and test of hypothesis.

We can show that the numerator of the variance is

Xn

i¼1
ðxi � �xÞ2 ¼

Xn

i¼1
x2i � 2�x

Xn

i¼1
xi þ

Xn

i¼1
�x2

¼
Xn

i¼1
x2i � 2�xðn�xÞþ n�x2

¼
Xn

i¼1
x2i � n�x2:

Hence, the sample variance is

s2 ¼
Pn

i¼1 x
2
i � n�x2

n� 1
:

Equivalently, we can also express the above for computational convenience as

s2 ¼
Pn

i¼1 x
2
i � n

Pn
i¼1 xi=n

� �2
n� 1

;

which is

s2 ¼
Pn

i¼1 x
2
i �

Pn
i¼1

xi

� �2

=n

n� 1
:

The estimate of the population variance as shown above will be used for
inferential purposes in later sections. Hence, we have this expression of the sample
variance subsequently to avoid any ambiguity.

We may note that

(i) s2 is a statistic because it is obtained from the sample values and it is known.
(ii) s2 is used to approximate (estimate) r2.
(iii) s2 � 0; in other words, the sample variance is nonnegative.
(iv) s2 ¼ 0, this happens if all observations have the same value, indicating that

there is no dispersion.
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Using a frequency distribution, the sample variance with denominators n and
(n − 1) can be expressed as follows:

s2 ¼
Pk

i¼1 fiðxi � xÞ2
n

;

and

s2 ¼
Pk

i¼1 fiðxi � xÞ2
n� 1

:

In both the cases, the arithmetic mean can be expressed as

�x ¼
Pk

i¼1 fixiPk
i¼1 fi

¼
Pk

i¼1 fixi
n

:

Example 2.10 We want to compute the sample variance of the following sample
values: 10, 21, 33, 53, 54.

Solution
n = 5

�x ¼
Pn

i¼1 xi
n

¼
P5

i¼1 xi
5

¼ 10þ 21þ 33þ 53þ 54
5

¼ 171
5

¼ 34:2

s2 ¼
Pn

i¼1 xi � �xð Þ2
n� 1

¼
P5

i¼1 xi � 34:2ð Þ2
5� 1

:

s2 ¼ 10� 34:2ð Þ2 þ 21� 34:2ð Þ2 þ 33� 34:2ð Þ2 þ 53� 34:2ð Þ2 þ 54� 34:2ð Þ2
4

¼ 1506:8
4

¼ 376:7:

Another method for calculating sample variance:

xi xi � xð Þ ¼ xi � 34:2ð Þ xi � xð Þ2 ¼ xi � 34:2ð Þ2
10 −24.2 585.64

21 −13.2 174.24

33 −1.2 1.44

53 18.8 353.44

54 19.8 392.04P5
i¼1 xi ¼ 171

P5
i¼1 xi � �xð Þ ¼ 0

P
xi � �xð Þ2¼ 1506:8
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x ¼
P5

i¼1 xi
5

¼¼ 171
5

¼ 34:2 and s2 ¼ 1506:8
4

¼¼ 376:7:

Using the alternative methods, we can compute the sample variance for the same
data as shown below:

s2 ¼
Pn

i¼1 x
2
i � n�x2

n� 1

where

X5

i¼1
x2i ¼ 102 þ 212 þ 332 þ 532 þ 542 ¼ 100þ 441þ 1089þ 2809þ 2916 ¼ 7355;

n�x2 ¼ 5� ð34:2Þ2 ¼ 5� 1169:64 ¼ 5848:20; and

s2 ¼
P5

i¼1 x
2
i � nx2

5� 1
¼ 7355� 5848:20

4
¼ 1506:80

4
¼ 376:70:

Similarly,

s2 ¼
Pn

i¼1 x
2
i � ðPn

i¼1 xiÞ2=n
n� 1

;

where

X5

i¼1
x2i ¼ 102 þ 212 þ 332 þ 532 þ 542 ¼ 100þ 441þ 01089þ 2809þ 2916 ¼ 7355;X5

i¼1
xi

� �2
=5 ¼ ð171Þ2=5 ¼ 29241

5
¼ 5848:20; and

s2 ¼
P5

i¼1 x
2
i � ðP5

i¼1 xiÞ2=5
5� 1

¼ 7355� 5848:20
4

¼ 1506:80
4

¼ 376:70:

2.3.3 Standard Deviation

The variance represents squared units, and therefore is not appropriate measure of
dispersion when we wish to express the concept of dispersion in terms of the
original unit. The standard deviation is another measure of dispersion. The standard
deviation is the positive square root of the variance and is expressed in the original
unit of the data.

(i) Population standard deviation is r ¼
ffiffiffiffiffi
r2

p
:

(ii) Sample standard deviation is s ¼
ffiffiffiffi
s2

p
;
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � xÞ 2
n� 1

s
:

Example 2.11 For the previous example, the sample standard deviation is

s ¼
ffiffiffiffi
s2

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
376:7

p
¼ 19:41:

2.3.4 Coefficient of Variation (C.V.)

Although the variance and the standard deviation are useful measures of variation
of the values of a single variable for a single population, sometimes we need to
compare the variation of two variables. In that case, we cannot use the variance or
the standard deviation directly, because (i) the variables might have different units
and (ii) the variables might have different means. For comparison, we need a
measure of the relative variation that does not depend on either the units or on the
values of means. This measure is called the coefficient of variation (C.V.).

The coefficient of variation is defined by

C:V: ¼ s
�x
� 100%:

It is clearly evident that the C.V. is free of unit and the standard deviation is
divided by the corresponding arithmetic mean to make it comparable for different
means.

To compare the variability of two sets of data (i.e., to determine which set is
more variable), we need to calculate the following quantities:

Data set Mean Standard deviation C.V.

1 �x1 s1 C.V:1 ¼ s1
�x1
100%

2 �x2 s2 C.V.2 ¼ s2
�x2
100%

The data set with the larger value of C.V. has larger variation which is expressed
in percentage. The relative variability of the data set 1 is larger than the relative
variability of the data set 2 if C.V.1 > C.V.2 and vice versa.

Example 2.12 Suppose we have two data sets from two samples:
Data set 1: Let us consider that from the data in sample 1, the mean and the standard
deviation are �x1 ¼ 66 kg and s1 ¼ 4.5 kg, respectively. Hence, the coefficient of
variation is
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C.V.1 ¼ 4:5
66

� 100% ¼ 6:8%:

Data set 2: The mean and the standard deviation from the second sample are x2 ¼
36 kg and s2 ¼ 4.5 kg, respectively. The coefficient of variation for this data set is

C.V.2 ¼ 4:5
36

� 100% ¼ 12:5%:

Since C.V.2 [C.V.1, the relative variability of the data set 2 is larger than the
relative variability of the data set 1.

If we use the standard deviation to compare the variability of the two data sets,
we will wrongly conclude that the two data sets have the same variability because
the standard deviation of both sets is 4.5 kg.

2.3.5 Some Properties of �x; s; s2

Let the sample values are x1; x2; . . .; xn and let a and b are constants. Then, we can
summarize the impact of the shift in origin and scale in the data on the variance and
standard deviation as follows:

Case Sample data Sample
mean

Sample standard
deviation

Sample
variance

1 x1; . . .; xn �x s s2

2 ax1; . . .; axn a�x aj js a2s2

3 x1 þ b; . . .; xn þ b �xþ b s s2

4 ax1 þ b; . . .; axn þ b a�xþ b aj js a2s2

Case 1 Case 1 represents the data without any change in the origin or scale.
Hence, the mean, the standard deviation, and the variance represent the measures
unaffected.

Example 2.13 Let us consider a hypothetical data set of size 5 as follows:

x1 ¼ 3; x2 ¼ 1; x3 ¼ 4; x4 ¼ 2; x5 ¼ 1:

Using these data, we obtain the following measures of central tendency and
variation

�x ¼ 2:2;

s ¼ 1:3038;

s2 ¼ 1:7:
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Case 2 In this case, we observe that the sample observations are multiplied by a
scalar quantity, a. The difference between the data in Case 1 and Case 2 is that each
observation in Case 1 is a times than the corresponding observation in Case 2. This
may be termed as change in scale if divided or multiplied by a scalar quantity.

Example 2.14 Let us use the scalar quantity a = 10, and the data are now 30, 10,
40, 20, and 10 which are obtained multiplying by the scalar quantity 10. Due to
change in scale by 10, the mean, standard deviation, and variance are obtained as
follows:

�x ¼ 2:2� 10 ¼ 22;

s ¼ 1:3038� 10 ¼ 13:038;

s2 ¼ 1:7� 102 ¼ 1:7� 100 ¼ 170:

It is demonstrated here that mean, standard deviation, and variance all the
measures are changed due to change in scale.

Case 3 In Case 3, the origin is shifted by an amount, b. Shift in origin means the
values of sample data are shifted by an amount b which results in an increase or
decrease of sample observations by b.

Example 2.15 Let us use the scalar quantity b = 20 and the data are now 23, 21, 24,
22, and 21 which are obtained by adding 20 to all the sample observations 3, 1, 4, 2,
and 1, respectively. As we have shown, due to change in origin by 20, the mean,
standard deviation, and variance are obtained as follows:

�x ¼ 2:2þ 20 ¼ 22:2;

s ¼ 1:3038;

s2 ¼ 1:7:

It is shown that change in origin results in a change in the arithmetic mean but
both standard deviation and variance remain unaffected.

Case 4 Case 4 demonstrates the impact of change in both origin and scale. Let us
consider the scale value a and shift in origin by b. In other words, the observed
values are multiplied by a and then b is added to the values after multiplying by a.

Example 2.16 Let us use the scalar quantity a = 10 and b = 20; then, the data are
now 50, 30, 60, 40, and 30 which are obtained multiplying by the scalar quantity 10
and then by adding 20. Due to change in scale by 10 and shift in origin by 20, the
mean, standard deviation, and variance are obtained as follows:

�x ¼ 2:2� 10þ 20 ¼ 42;

s ¼ 1:3038� 10 ¼ 13:038;

s2 ¼ 1:7� 102 ¼ 1:7� 100 ¼ 170:
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It is demonstrated here that mean, standard deviation, and variance all these
measures are changed due to change in scale and shift in origin. In this case, the
arithmetic mean is affected by both change in scale and shift in origin but standard
deviation and variance are affected due to change in scale only.

A more detailed example is shown below.

Example 2.17 Let us consider a sample of size 5 as follows: 5, 3, 2, 4, 1. Let a = 3
and b = 5. Then, the mean, variance, and standard deviations from the original data
x1 ¼ 5, x2 ¼ 3, x3 ¼ 2, x4 ¼ 4, and x5 ¼ 1 are

�x ¼
P5

i¼1 xi
5

¼ 5þ 3þ 2þ 4þ 1
5

¼ 15
5

¼ 3;

s2 ¼
P5

i¼1 x
2
i � ðP5

i¼1 xiÞ2=5
5� 1

¼ 52 þ 32 þ 22 þ 42 þ 12 � ð15Þ2=5
4

¼ 55� 45
4

¼ 10
4

¼ 2:5;

s ¼
ffiffiffiffiffiffiffi
2:5

p
¼ 1:5811:

Let us consider that the scale is changed by a, then the new data set is
ax1; ax2; . . .; axn. Here, a = 3 and n = 5; hence, the mean, the variance, and the
standard deviation are

mean = a�x ¼ 3� 3 ¼ 9;

variance ¼ a2s2 ¼ 9� 2:5 ¼ 22:5 ¼ 2:5; and

standard deviation ¼ aj js ¼ 3j j
ffiffiffiffiffiffiffi
2:5

p
¼ 3� 1:5811 ¼ 4:7433:

This shows that change in the scale changes both the mean and the variance
which implies change in the standard deviation as well.

If we shift the origin by 5 such that the new data set is x1 þ b; x2 þ 5; . . .; xn þ 5,
then the mean, variance, and standard deviation are

mean ¼ �xþ b ¼ 3þ 5 ¼ 8;

variance ¼ s2 ¼ 2:5; and

standard deviation ¼ s ¼
ffiffiffiffiffiffiffi
2:5

p
¼ 1:5811:

It is clearly observed that if the origin is shifted by any value, then the mean is
shifted too but the variance and standard deviation remain unchanged. In other
words, the mean is affected by a shift in the origin but variance and standard
deviation are not affected.

Similarly, if we change both the scale and origin such that the new data set is
ax1 þ b; ax2 þ b; . . .; axn þ b, then we obtain the following:
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mean ¼ a�xþ b ¼ 3� 3þ 5 ¼ 9þ 5 ¼ 14;

variance ¼ a2s2 ¼ 9� 2:5 ¼ 22:5 ¼ 2; 5; and

standard deviation ¼ aj js ¼ 3j j
ffiffiffiffiffiffiffi
2:5

p
¼ 3� 1:5811 ¼ 4:7433:

This shows that if we consider changes in both scale and origin, then the mean is
affected by both but the variance and standard deviation need to be adjusted for
only the quantity of the change in scale only. In other words, the measure of central
tendency, mean, depends on both the scale and origin but the measures of dis-
persion, variance, and standard deviation are independent of change in the origin
but depend on the change in the scale.

2.3.6 Interquartile Range

A disadvantage of the range is that it is computed using the two extreme values of
the sample data, the smallest and the largest values. If the data contain extreme
outlier values, then the range is affected by those outliers. To overcome this limi-
tation of the range, an alternative measure called the interquartile range can be used.
The interquartile range is computed by taking the difference between the third
quartile and the first quartile. The interquartile range provides a more meaningful
measure that represents the range of the middle 50% of the data. The interquartile
range is defined as

IQR ¼ Q3 � Q1;

where Q3 is the third quartile and Q1 is the first quartile. As the extreme values are
not considered, the IQR is a more robust measure of variation in the data and is not
affected by outliers. The semi-interquartile range is defined as

ðQ3 � Q1Þ=2:

2.3.7 Box-and-Whisker Plot

We know that a measure of central tendency or location is a value around which
other values are clustered. The variation or spread in the data from the central value
is usually measured by a measure of dispersion. In addition, we want to know
whether the data are symmetric or not. The box-and-whisker plot displays all these
in a simple plot where the box contains features included in the middle 50% of the
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observations, and whiskers show the minimum and maximum values. For con-
structing a box-and-whisker plot, we need five points: three quartiles
Q1;Q2; and Q3, the minimum value and the maximum value. The box is con-
structed using Q1;Q2; and Q3. The box-and-whisker plot represents the main
features of the data very efficiently and precisely.

Steps of constructing a box-and-whisker plot are summarized below.

(i) The horizontal axis displays the variable of interest.
(ii) A box is drawn above the horizontal line. The first quartile is aligned with the

left end of the box and the third quartile is aligned with the right end of the
box.

(iii) The second quartile is aligned with a vertical line in the box.
(iv) A horizontal line from the left end of the box aligned to the smallest value of

the sample data is a whisker to the left.
(v) A horizontal line from the right end of the box aligned to the largest value of

the sample data is another whisker to the right.

Examination of box-and-whisker plot for a set of data reveals the following:
(i) amount of spread, (ii) location of concentration, and (iii) symmetry of the data.

The box plots can be used for another very important data characteristic. In
addition to the quartiles, the box plot can be used to identify the potential outliers in
data. The first and third quartiles provide the basis for determining the fences for
outliers or the observations which might be considered as outside of the box values.
Rousseeuw et al. (1999) considered the upper fence as Q2 þ 4ðQ3 � Q2Þ and the
lower fence as Q2 þ 4ðQ1 � Q2Þ where Q2 is the median. For constructing the
lower and upper fences of a box plot, we can use the following formulas:

lower fence ¼ Q1 � kðQ3 � Q1Þ;
upper fence ¼ Q3 þ kðQ3 � Q1Þ:

Here, ðQ3 � Q1Þ is the interquartile range. Customarily, k = 1.5, and the lower
and upper fences are

lower fence ¼ Q1 � 1:5ðQ3 � Q1Þ;
upper fence ¼ Q3 þ 1:5ðQ3 � Q1Þ:

The outside observations or outliers can be plotted individually, beyond the
fences, to have meaningful insights about the extreme data. The outliers are either
the observations <Q1 � 1:5ðQ3 � Q1Þ or the observations >Q3 þ 1:5ðQ3 � Q1Þ.
Hence, a modified box plot can also be constructed to display the individual
observations outside the lower and upper fences.

Example Consider the following data set: 14.6, 24.3, 24.9, 27.0, 27.2, 27.4, 28.2,
28.8, 29.9, 30.7, 31.5, 31.6, 32.3, 32.8, 33.3, 33.6, 34.3, 36.9, 38.3, 44.0.
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Here, n = 20.

Q1 ¼ nþ 1
4

th ordered observation ¼ 20þ 1
4

¼ 5:25th ordered observation

¼ 5th ordered observationþð0:25Þð27:4� 27:2Þ ¼ 27:2þð0:25Þð0:2Þ ¼ 27:25

Q2 ¼ 2ðnþ 1Þ
4

th ordered observation ¼ 20þ 1
2

¼ 10:5th ordered observation

¼ 10th ordered observationþð0:5Þð31:5� 30:7Þ
¼ 30:7þð0:5Þð31:5�30:7Þ ¼ 31:1

Q3 ¼ 3ðnþ 1Þ
4

th ordered observation ¼ 3ð20þ 1Þ
4

¼ 15:75th ordered observation

¼ 15th ordered observationþð0:75Þð33:6� 33:3Þ
¼ 33:3þð0:75Þð33:6�33:3Þ ¼ 33:525

IQR ¼ 33:525� 27:25 ¼ 6:275

Range ¼ 44:0� 14:6 ¼ 29:4

Ratio of IQR to Range (% ) ¼ 6:275
29:4

� 100 ¼ 21% of range:

Using the data shown in this example, we can construct the box-and-whisker
plot or box plot. The traditional box plot is based on five points, Q1;Q2; and Q3 for
drawing the box and minimum and maximum values for the whiskers as shown in
Fig. 2.5.

The second box plot shows the box plot where in addition to the box using
Q1;Q2; and Q3, the lower and upper fences are also shown. The lower and upper
fences are

Fig. 2.5 Box-and-whisker plot
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lower fence ¼ Q1 � 1:5 Q3 � Q1ð Þ
¼ 27:25� 1:5� IQR

¼ 27:25� 1:5� 6:275

¼ 17:8375

and

upper fence ¼ Q3 þ kðQ3 � Q1Þ
¼ 33:525þ 1:5� IQR

¼ 33:525þ 1:5� 6:275

¼ 42:9375:

We can find the outliers from the observations either the observations
<Q1 � 1:5ðQ3 � Q1Þ or the observations >Q3 þ 1:5ðQ3 � Q1Þ. It is observed that
following this rule for detecting the outliers, there are two outliers in the sample data:
one is less than the lower fence or outside the lower fence, 14.6, and the other value is
greater than the upper fence or outside the upper fence, 44.0.

The results from sample data used for constructing Fig. 2.6 are sample size: 20,
median: 31.1, minimum: 14.6, maximum: 44.0, first quartile: 27.25, third quartile:
33.525, interquartile range: 6.275, lower fence = 17.8375, upper fence = 42.9375,
and outliers: 14.6, 44.0, as shown in Fig. 2.6.

2.4 Moments of a Distribution

The moments are used to summarize the characteristics of data. These are de-
scriptive statistics if calculated from sample that can be used to explore charac-
teristics of data such as central tendency, dispersion, skewness, and kurtosis. The
measures of skewness and kurtosis are shape characteristics of the data which will
be discussed in subsequent sections. We can define both the population and sample
moments but for the sake of simplicity only sample moments are defined in this
section. The moments can be classified as (i) the raw moments, (ii) the moments
about any arbitrary value a, and (iii) the moments about mean or the central
moments.

Let x1; x2; . . .; xn be the n values assumed by the variable, X, then the quantity

m0
r ¼

Pn
i¼1 x

r
i

n

is called the rth raw sample moment of the variable, X.
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The rth sample moment about any value a, also denoted by m0
r, is defined as

m0
r ¼

Pn
i¼1 ðxi � aÞr

n
:

The rth central moment about mean or the rth moment about the mean is defined as

mr ¼
Pn

i¼1 ðxi � �xÞr
n

:

Fig. 2.6 Box-and-whisker
plot displaying outliers from
the sample data; sample size:
20, median: 31.1, minimum:
14.6, maximum: 44.0, first
quartile: 27.25, third quartile:
33.525, interquartile range:
6.275, and outliers: 14.6, 44.0
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If x1; x2; . . .; xk occur with frequencies f1; f2; . . .; fk , respectively, the above
moments are

m0
r ¼

Pk
i¼1 fix

r
i

n
;

m0
r ¼

Pk
i¼1 fiðxi � aÞr

n
;

and

mr ¼
Pk

i¼1 fiðxi � �xÞr
n

:

Relation between Moments

The first raw moment is defined as

m0
1 ¼

Pk
i¼1 fixi
n

¼ �x

which is the sample mean.
If x1; x2; . . .; xk occur with frequencies f1; f2; . . .; fk , respectively, then

m0
1 ¼

Pk
i¼1 fiðxi � aÞ

n
¼

Pk
i¼1 fixi � a

Pk
i¼1 fi

n
¼ �x� a; and

m1 ¼
Pk

i¼1 fiðxi � �xÞ
n

¼
Pk

i¼1 fixi � �x
Pk

i¼1 fi
n

¼ �x� �x ¼ 0:

For the second moment,

m0
2 ¼

Pk
i¼1 fiðxi � aÞ2

n
; and

m2 ¼
Pk

i¼1 fiðxi � �xÞ2
n

¼
Pk

i¼1 fifðxi � aÞ � ð�x� aÞg2
n

¼
Pk

i¼1 fifðxi � aÞ2 � 2ðxi � aÞð�x� aÞþ ð�x� aÞ2g
n

¼
Pk

i¼1 fiðxi � aÞ2
n

� 2ð�x� aÞð�x� aÞþ ð�x� aÞ2

¼
Pk

i¼1 fiðxi � aÞ2
n

� ð�x� aÞ2

¼ m0
2 � m02

1 :

By definition, this is the sample variance obtained from the data.
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Similarly, it can also be shown that

m3 ¼ m0
3 � 3m0

2m
0
1 þ 2m03

1 ; and

m4 ¼ m0
4 � 4m0

3m
0
1 þ 6m0

2m
02
1 � 3m04

1 :

Example 2.19 Let us consider the following data from a sample:
x1 ¼ 2; x2 ¼ 1; x3 ¼ 4; x4 ¼ 0; x5 ¼ 2, n = 5.

The sample raw moments are

m0
1 ¼

2þ 1þ 4þ 0þ 2
5

¼ 9
5
¼ 1:8

m0
2 ¼

22 þ 12 þ 42 þ 02 þ 22

5
¼ 25

5
¼ 5

m0
3 ¼

23 þ 13 þ 43 þ 03 þ 23

5
¼ 81

5
¼ 16:2

m0
4 ¼

24 þ 14 þ 44 þ 04 þ 24

5
¼ 289

5
¼ 57:8:

Using the relationships between raw and central moments, we can compute the
central sample moments as follows:

m2 ¼ m0
2 � m02

1 ¼ 5� ð1:8Þ2 ¼ 1:76

m3 ¼ m0
3 � 3m0

2m
0
1 þ 2m03

1 ¼ 16:2� 3� 5� 1:8þ 2� ð1:8Þ3
¼ 0:864;

m4 ¼ m0
4 � 4m0

3m
0
1 þ 6m0

2m
02
1 � 3m04

1 ¼ 57:8� 4� 16:2� 1:8þ 6� 5� ð1:8Þ2 � 3� ð1:8Þ4
¼ 6:8672:

2.5 Skewness

Skewness is the degree of asymmetry or departure of symmetry of a distribution. In
a skew distribution, the mean tends to lie on the same side of the mode as the longer
tail. In a symmetric distribution, the mean, the mode, and the median coincide.
Some commonly used measures of skewness are discussed as shown in Fig. 2.7.
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Pearson’sMeasure

skewness ¼ (mean-mode)
standard deviation

¼ 0 for symmetry,

[ 0 for positively skewed distribution,

\0 for negatively skewed distribution.

Alternatively,

skewness ¼ 3(mean-median)
standard deviation

¼ 0 for symmetry,

[ 0 for positively skewed distribution,

\0, for negatively skewed distribution.

Bowley’sMeasure

skewness ¼ ðQ3 � Q2Þ � ðQ2 � Q1Þ
ðQ3 � Q1Þ

ðQ3 � Q2Þ ¼ ðQ2 � Q1Þ for symmetry,

ðQ3 � Q2Þ[ ðQ2 � Q1Þ for positively skewed distribution,

ðQ3 � Q2Þ\ðQ2 � Q1Þ for negatively skewed distribution.

Example 2.20 Consider the following data set: 14.6, 24.3, 24.9, 27.0, 27.2, 27.4,
28.2, 28.8, 29.9, 30.7, 31.5, 31.6, 32.3, 32.8, 33.3, 33.6, 34.3, 36.9, 38.3, 44.0.

Here, n = 20. �x ¼ 30:58: There is no mode. The sample variance, s2 ¼ 36:3417
and the sample standard deviation, s ¼ 6:0284:

Fig. 2.7 Symmetric, negatively skewed, and positively skewed curves
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Q1 ¼ nþ 1
4

th ordered observation ¼ 20þ 1
4

¼ 5:25th ordered observation

¼ 5th ordered observationþð0:25Þð27:4� 27:2Þ ¼ 27:2þð0:25Þð0:2Þ ¼ 27:25

Median ¼ Q2 ¼ 2ðnþ 1Þ
4

th ordered observation ¼ 20þ 1
2

¼ 10:5th ordered observation

¼ 10th ordered observationþð0:5Þð31:5� 30:7Þ
¼ 30:7þð0:5Þð31:5�30:7Þ ¼ 31:1

Q3 ¼ 3ðnþ 1Þ
4

th ordered observation ¼ 3ð20þ 1Þ
4

¼ 15:75th ordered observation

¼ 15th ordered observationþð0:75Þð33:6� 33:3Þ
¼ 33:3þð0:75Þð33:6� 33:3Þ ¼ 33:525

IQR ¼ Q3 � Q1 ¼ 33:525� 27:25 ¼ 6:275:

As we cannot find any mode from the data shown in the example, it is not possible
to compute the Pearson’s measure of skewness using the following measure:

skewness ¼ ðmean-modeÞ
standard deviation

:

Hence, using the alternative measure, we can find the skewness:

skewness ¼ 3ðmean - medianÞ
standard deviation

¼ 3ð30:58� 31:1Þ
6:0284

¼ �1:56
6:0284

¼ �0:2588:

This shows that there is negative skewness in the distribution.
Similarly, the Bowley’s measure of skewness is

skewness ¼ ðQ3 � Q2Þ � ðQ2 � Q1Þ
ðQ3 � Q1Þ ¼ ð33:525� 31:1Þ � ð31:1� 27:25Þ

ð33:525� 27:25Þ
¼ 2:425� 3:85

6:275
¼ �0:2271:

This measure also confirms that there is negative skewness in the distribution.

Measure of Skewness Using Moments

For a symmetrical distribution, m3 and any odd moment about mean is zero. Hence,
a suitable measure of skewness is given by

b1 ¼ m2
3

m3
2
; or

ffiffiffiffiffi
b1

p
¼ m3

m3=2
2

:
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This is the most important measure of skewness from theoretical point of view.

Example 2.21 Let us consider the following data from a sample: x1 ¼ 2; x2 ¼ 1;
x3 ¼ 4; x4 ¼ 0; x5 ¼ 2, n = 5.

Then,

m2 ¼ 1:76;

m3 ¼ 0:864:

Hence, the measure of skewness employing moments is

b1 ¼ m2
3

m3
2
¼ 0:8642

1:763
¼ 0:7465

5:4518
¼ 0:1369

ffiffiffiffiffi
b1

p
¼ m3

m3=2
2

¼ 0:3700:

The above data indicates a positively skewed distribution.
The measure of skewness is -0.0817 for the weights of women in the data of 24

women shown in Chap. 1 which shows that weight of women data is negatively
skewed.

2.6 Kurtosis

Kurtosis is the peakedness of a distribution, usually taken relative to a normal
distribution. A distribution with a relatively high peak is called leptokurtic; a curve
which is relatively flat topped is called platykurtic; a curve which is neither too
peaked nor flat topped is called mesokurtic (Fig. 2.8).

The measure of kurtosis is

b2 ¼ m4

m2
2
¼ n

Pn
i¼1 ðxi � �xÞ4Pn

i¼1 ðxi � �xÞ2
� �2

and b2 � 3

¼ 0; mesokurtic (not too high peak or not too flat topped)

\0; platykurtic (flat topped)

[ 0; leptokurtic (high peak):

Example 2.22 Using the same data as displayed in the previous example,
x1 ¼ 2; x2 ¼ 1; x3 ¼ 4; x4 ¼ 0; x5 ¼ 2, the second and fourth sample central
moments are
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m2 ¼ 1:76;

m4 ¼ 6:8672:

b2 ¼ m4

m2
2
¼ 6:8672

1:762
¼ 2:2169

and

b2 � 3 ¼ 2:2169� 3 ¼ �0:7831:

This indicates that the distribution is platykurtic or flat topped.

2.7 Summary

The basic descriptive statistics are introduced in this chapter. This chapter includes
the basic measures of summary statistics, namely measures of central tendency,
measures of dispersion, measures of skewness, and measures of kurtosis. These
summary measures of descriptive statistics characterize the underlying features of
data. The measures of central tendency include arithmetic mean, median, and mode
with examples; advantages and disadvantages of the measures are highlighted. The
measures of dispersion are discussed along with their properties. The measures of
dispersion include range, variance, standard deviation, coefficient of variation, and
interquartile range. In statistics and biostatistics, the first measure, central tendency
or location, provides the central value around which all other values in the data set

Fig. 2.8 Figure displaying
leptokurtic, mesokurtic, and
platykurtic distributions
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are located. In other words, the measure of central tendency provides the most
important representative value of the data set. The dispersion quantifies or measures
the variability in the data where variability between values of the data or difference
between each value and the measure of central tendency may reflect how scattered
the data are from a central value or what extent in variation among values of the
data is there. The third measure is used to know whether there is symmetry from the
central value or there exists asymmetry from the central value. The fourth measure
indicates whether the data are more concentrated with high peak, low or normal
peaks, or frequencies indicating extent of concentration of values.

Exercises

2:1 Are the following statements true? Write the correct answer giving appro-
priate justification:

(i) For any set of data x1; x2; . . .; xn with mean �x
Pn

i¼1 ðxi � �xÞ ¼ 0.
(ii) The standard deviation of a set of data does not depend on the units of

measurement of the data.
(iii) The median of 0, −1, −2, −3, and 6 is 0.
(iv) If n = 5 and

P5
i¼1 xi ¼ 10, then

P5
i¼1 x

2
i is not less than 20.

2:2 Consider the following sets of data:

E: 10, 15, 23, 30
F: 110, 115, 123, 130.

Is the data set F more dispersed than the data set E?
2:3 (a) The average and the standard deviation of weight of 24 women are

�x ¼ 50 kg and standard deviation = 9:5 kg. What are the average and
standard deviation in pounds (1 kg = 2.2046 lb)?

(b) The average and the standard deviation of temperature of 50 patients in a
sample are �x ¼ 37:8 �C and standard deviation = 6:5 �C. Let the con-
version from Celsius to Fahrenheit scale can be obtained by using the
relationship Fahrenheit = 32 + 1.8 °C. Find the average and standard
deviation in Fahrenheit scale.

2:4 Are the following statements true? Justify your answer.
The median of a set of data is affected by extreme values.
If the range of data is zero, the standard deviation must also be zero.

2:5 (a) Define two measures of skewness and show how these measures indicate
symmetry, positive skewness, and negative skewness.

(b) Show the following relationships: ðiÞm2 ¼ m0
2 � m02

1 ; ðiiÞm3 ¼ m0
3�

3m0
2m

0
1 þ 2m03

1 . Also show that if ui ¼ xi�a
c then m0

rðxÞ ¼ crm0
rðuÞ.
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2:6 The following data show the number of hours 10 hospital patients had to stay
at the emergency care after accident:
17, 20, 22, 14, 14, 31, 14, 32, 25, 24

(i) Compute the following:

(a) the mean, median, and mode,
(b) the sample variance,
(c) the interquartile range, and
(d) the coefficient of variation.

(ii) Construct the Box-and-Whisker plot.

2:7 (i) If for a sample we have RX2 = 12, RX = 4, n = 5
then find the sample variance.

(ii) Consider the data given in the table below:

X −1 0 1

Frequency 10 5 10

Find the following:

(i) the mean,
(ii) the median,
(iii) the range,
(iv) the variance,
(v) the standard deviation, and
(vi) the coefficient of variation.

2:8 Age (in years) of 50 patients in a study are summarized in the following
table.

Age in years Frequency f

10–19 12

20–29 23

30–39 15

50

Find the following:

(i) the mean,
(ii) the median,
(iii) the variance,
(iv) the standard deviation, and
(v) the coefficient of variation.
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2:9 (i) Define the raw and corrected moments. Show the relationship between the
first two raw and corrected moments.

(ii) Construct the box-and-whisker plot using the following data: 10, 10, 14,
15, 15,15, 17, 19, 20, 25. Comment on the main features of these data.

(iii) Using the data in 8(b), find the skewness and comment on the finding.
2:10 (i) Use the following data on weight (in pounds) of 20 individuals in a

sample: 100, 110, 114, 115, 115,115, 117, 119, 120, 135, 141, 143, 147,
150, 152, 157, 161, 162, 162, and 179 to compute the first four raw and
corrected moments.

(ii) Compute the quartiles 1, 2, and 3.
(iii) Compute percentiles 23, 55, and 80.
(iv) Construct the box-and-whisker plot using the same data. Is there any

outlier in the data? Comment on the main features of these data.
(v) Compute the measures of skewness and kurtosis using the moments.

2:11 Suppose we have two data sets with the following arithmetic means and
standard deviations:

Data Set 1: �x1 ¼ 60; s1 ¼ 30
Data Set 2: �x2 ¼ 40; s2 ¼ 30

Compute the coefficient of variation and compare the variability in two data
sets.

2:12 Consider the following data on age of 10 persons with allergy problems: 20,
25, 25, 30, 35, 30, 35, 40, 45, 40.

a. Find the following:

(i) Range
(ii) First quartile,
(iii) Second quartile,
(iv) Third quartile,
(v) Interquartile range,
(vi) Semi-interquartile range, and
(vii) Construct the box-and-whisker plot.

2:13 (i) If the sample variance of a variable, X, is 5, then what is the variance of
10X?

(ii) If the sample variance of a variable, X, is 5, then what is the variance of
10X + 3?

2:14 Show that
Pn

i¼1 ðxi � �xÞ2 ¼ Pn
i¼1 x

2
i � n�x2:

2:15 Consider the following data on the study hours of 10 students in a university:
3, 5, 4, 5, 6, 4, 5, 5, 7, 3.

(i) Find the range and interquartile range.
(ii) Construct the box-and-whisker plot.
(iii) Compute the Pearson’s and Bowley’s measures of skewness and

comment.
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2:16 (i) What are the measures of central tendency? How can you compute
arithmetic mean, median, and mode?

(ii) Suppose the following data represent the number of days in a hospital for
12 patients suffering from diabetes-related complications:

16, 10, 49, 15, 6, 15, 8, 19, 11. 22, 13, 17.

(a) Compute: (i) arithmetic mean, (ii) median, and (iii) mode.
(b) Which one is the best measure of central tendency in 15 (b)? Why?

2:17 (a) Using the data in 15 (b), construct the box-and-whisker plot and identify
outliers, if any.

(b) Compute the following using data in question 15 (b):

(i) Range,
(ii) Interquartile range, and
(iii) Sample standard deviation.

2:18 If x1; x2; . . .; xn are n observations from a sample with sample mean �x and
sample variance s2, then find

(i) Sample mean and variance for x1 þ 5; x2 þ 5; . . .; xn þ 5 where b is a
constant; and

(ii) Sample mean and variance for 3x1 þ 5; 3x2 þ 5; . . .; 3xn þ 5.

2:19 Consider the following results from two samples of females:

Sample 1 Sample 2

Age 25 years 20 years

Mean weight 130 lb 110 lb

Standard deviation 15 lb 10 lb

Use a suitable measure of dispersion to compare the variability in the weight
of the two 25- and 20-year-old females. What is your interpretation?

Reference

Rousseeuw, P. J., Ruts, I., & Tukey, J. W. (1999). The Bagplot: A Bivariate Boxplot. The
American Statistician, 53(4), 382–387.
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Chapter 3
Basic Probability Concepts

3.1 General Definitions and Concepts

As we have defined statistics, in broad terms, it deals with two major components,
descriptive measures, and inference. Probability is the foundation for making
inference about the population based on the sample as representative part of the
population. In other words, probability is the link between population and sample in
such a way that we can have an understanding about the degree of uncertainty in
making decision about the population characteristics on the basis of sample char-
acteristics with the help of underlying probabilities.

Probability
Probability is a measure used to measure the chance of the occurrence of some
event. Probability measure ranges from 0 to 1, where 0 indicates impossibility and 1
indicates the certainty of the occurrence of an event.

Experiment
An experiment is a procedure (or process) that we perform whose outcomes are not
predictable in advance.

Example: Experiment with coin tossing results in two outcomes, head or tail, but
the outcome is not known until the coin is tossed or until the experiment is con-
ducted. Here, the two outcomes, head and tail, are exhaustive, because one of these
two outcomes must occur in each experiment and there are no other possible
outcomes in this experiment.

Sample Space
The sample space of an experiment is the set of all possible outcomes of an
experiment. Also, it is called the universal set and is denoted by X.

Example In the coin tossing experiment with a single coin, the possible outcomes
are head (H) or tail (T). Hence, the sample space is X ¼ H; Tf g.
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Event
Any subset of the sample space X is called an event. For example, in the coin
tossing experiment, an event called success may occur if the outcome is a head (H).
If a tail (T) appears, then it may be called failure. It may be noted that

(i) / � X is an event is an impossible event, and
(ii) X � X is an event is a sure or certain event.

An example is shown here to illustrate the sample space and events.
Let us consider selecting a patient from a hospital room with six beds numbered

from 1 to 6 and observing the patient of the selected bed. Here, the patients are
identified by their respective bed numbers.

This experiment has six possible outcomes or elements.
The sample space is X ¼ 1; 2; 3; 4; 5; 6f g.
Consider the following events and the elements corresponding to the events:

E1 = getting an even number ¼ 2; 4; 6f g � X,
E2 = getting a number less than 4 ¼ 1; 2; 3f g � X,
E3 = getting 1 or 3 ¼ 1; 3f g � X,
E4 = getting an odd number ¼ 1; 3; 5f g � X,
E5 = getting a negative number ¼ fg ¼ / � X, and
E6 = getting a number less than 10 ¼ 1; 2; 3; 4; 5; 6f g ¼ X � X.

Notation nðXÞ = number of outcomes (elements) in X and
nðEÞ = number of outcomes (elements) in the event E.

Equally Likely Outcomes
The outcomes of an experiment are equally likely if the outcomes have the same
chance of occurrence. In other words, an experiment resulting in equally likely
outcomes is equally probable. It implies that if the sample space contains n equally
likely outcomes, then it is likely that probability of each outcome is 1/n. In case of
the coin tossing example, the outcomes are (H, T) and the outcomes are equally
likely for a fair coin. The probabilities of outcomes, Head or Tail, are equally likely
with probability 1/2 for each outcome.

Mutually Exclusive Outcomes
In an experiment, if only one outcome is observed at a time excluding the occur-
rence of any other outcome, then it is called mutually exclusive.

Example: In the coin tossing experiment, if the outcome is observed to be head,
the occurrence of tail is not possible at the same time and vice versa.

3.2 Probability of an Event

If the experiment has nðXÞ equally likely outcomes, then the probability of the
event E is denoted by P(E) and is defined by:
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PðEÞ ¼ nðEÞ
nðXÞ ¼

number of outcomes in E
number of outcomes in X

:

This is the classical definition of probability and under this definition the ex-
periment should satisfy the condition of equally likely as an essential precondition
which may not be true in many practical situations.
Example: If we conduct an experiment with a fair coin, then the outcomes H or
T are equally likely but if we consider outcomes of defective and non-defective
products from an experiment, the condition of equally likely outcomes may be
violated because outcomes are not necessarily equally likely. In that case, we may
use an alternative definition known as the relative frequency or empirical definition
to measure the probability as stated below.

Let an event E occurs nðEÞ times in a series of n trials, where n is the total
number of trials or sample size, the trials are conducted under the same conditions

in the experiment. Here, the ratio nðEÞ
n is the relative frequency of the event E in

n trials. If n tends to infinity, then we can define the probability of E as follows:

PðEÞ ¼ lim
n!1

nðEÞ
n

:

Example 3.1 (Example of Classical Probability)
In the experiment for selecting patients identified by bed number of six patients

as discussed in the previous example, suppose the bed number is selected at ran-
dom. Determine the probabilities of the following events:

E1 = the patient staying in a bed with even number,
E2 = the patient staying in a bed with a number less than 4, and
E3 = the patient staying in a bed with numbers 1 or 3.

Solution

X ¼ 1; 2; 3; 4; 5; 6f g ; n Xð Þ ¼ 6
E1 ¼ 2; 4; 6f g ; n E1ð Þ ¼ 3
E2 ¼ 1; 2; 3f g ; n E2ð Þ ¼ 3
E3 ¼ 1; 3f g ; n E3ð Þ ¼ 2

The outcomes are equally likely. Then, by definition the probabilities of the
events, E1;E2; andE3 are

P E1ð Þ ¼ 3
6
; P E2ð Þ ¼ 3

6
; and P E3ð Þ ¼ 2

6
:

Some Operations on Events
Let A and B be two events defined on the sample space X.
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(i) Union of Two events: (A[B)
The event A[B consists of all outcomes in A or in B or in both A and B. The
event A[B occurs if A occurs, or B occurs, or both A and B occur.

(ii) Intersection of Two Events: (A\B)
The event A\B consists of all outcomes in both A and B. The event A\B
occurs if both A and B occur.

(iii) Complement of an Event: (A) or (AC) or (A0)
The complement of the event A is denoted by A. The event A consists of all
outcomes of X that are not in A. The event A occurs if A does not.

Example 3.2 (Classical Probability)
Experiment: Selecting a patient randomly from a hospital room having six beds

numbered 1, 2, 3, 4, 5, and 6.
Define the following events:

E1 ¼ 2; 4; 6f g = selected an even number.
E2 ¼ 1; 2; 3f g = selecting a number <4.
E4 ¼ 1; 3; 5f g = selecting an odd number.
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(1) E1 [E2 ¼ 1; 2; 3; 4; 6f g ¼ selecting an even number or a number less than 4:

P E1 [E2ð Þ ¼ n E1 [E2ð Þ
n Xð Þ ¼ 5

6

(2) E1 [E4 ¼ 1; 2; 3; 4; 5; 6f g ¼ X ¼ selecting an even number or an odd number:

P E1 [E4ð Þ ¼ n E1 [E4ð Þ
n Xð Þ ¼ 6

6
¼ 1:

It can be shown that E1 [E4 ¼ X where E1 and E4 are called exhaustive events.
The union of these events gives the whole sample space.

(3) E1 \E2 ¼ 2f g = selecting an even number and a number less than 4.

P E1 \E2ð Þ ¼ n E1 \E2ð Þ
n Xð Þ ¼ 1

6
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(4) E1 \E4 ¼ / = selecting an even number and an odd number.

P E1 \E4ð Þ ¼ n E1 \E4ð Þ
n Xð Þ ¼ n /ð Þ

6
¼ 0

6
¼ 0:

Note: E1 \E4 ¼ /. In this case, E1 and E4 are called disjoint (or mutually
exclusive) events. These kinds of events cannot occur simultaneously (together
at the same time).

(5) The complement of E1

E1 ¼ not selecting an even number ¼ f2; 4; 6g ¼ 1; 3; 5f g
¼ selecting an odd number:

¼ E4:

Mutually Exclusive (Disjoint) Events
The events A and B are disjoint (or mutually exclusive) if
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A\B ¼ /:

In this case, it is impossible that both events occur simultaneously (i.e., together
in the same time). Hence,

(i) P A\Bð Þ ¼ 0
(ii) P A[Bð Þ ¼ PðAÞþPðBÞ:

If A \ B 6¼ /, then A and B are not mutually exclusive (not disjoint).

A \ B 6¼ / A \ B = /

A and B are not mutually exclusive A and B are mutually exclusive (disjoint)

It is possible that both events may occur at the
same time.

It is impossible that both events occur at the
same time.

Exhaustive Events
The events A1;A2; . . .;An are exhaustive events if

A1 [A2 [ . . .[An ¼ X:

For this case, P A1 [A2 [ . . .[Anð Þ ¼ PðXÞ ¼ 1.

Note

1. A[A ¼ X (A and A are exhaustive events),
2. A\A ¼ / (A and A are mutually exclusive (disjoint) events),
3. nðAÞ ¼ nðXÞ � nðAÞ, and
4. P A

� � ¼ 1� PðAÞ.
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General Probability Rules

1. 0�P Að Þ� 1,
2. P Xð Þ ¼ 1,
3. P /ð Þ ¼ 0, and
4. P A

� � ¼ 1� P Að Þ.

The Addition Rule
For any two events A and B:

P A[Bð Þ ¼ P Að ÞþP Bð Þ � P A\Bð Þ

and for any three events A, B, and C:

PðA[B[CÞ ¼ PðAÞþPðBÞþPðCÞ � PðA\BÞ � PðA\CÞ
� PðB\CÞþPðA\B\CÞ:

P A[Bð Þ ¼ P Að ÞþP Bð Þ � P A\Bð Þ

Special Cases

1. For mutually exclusive (disjoint) events A and B,

P A[Bð Þ ¼ P Að ÞþP Bð Þ:

2. For mutually exclusive (disjoint) events E1;E2; . . .;En,

P E1 [E2 [ � � � [Enð Þ ¼ P E1ð ÞþP E2ð Þþ � � � þP Enð Þ:
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If the events A1;A2; . . .;An are exhaustive and mutually exclusive (disjoint)
events, then

P A1 [A2 [ � � � [Anð Þ ¼ P A1ð ÞþP A2ð Þþ � � � þP Anð Þ ¼ PðXÞ ¼ 1:

3.3 Marginal Probability

Given some variable that can be broken down into (m) categories designated by
A1;A2; . . .;Am and another jointly occurring variable that is broken down into
(s) categories designated by B1;B2; . . .;Bs (Tables 3.1 and 3.2).

The marginal probability of Ai, PðAiÞ, is equal to the sum of the joint proba-
bilities of Ai with all categories of B. That is

PðAiÞ ¼ PðAi \B1ÞþPðAi \B2Þþ � � � þPðAi \BsÞ

¼
Xs

j¼1

PðAi \BjÞ:

For example,

PðA2Þ ¼ PðA2 \B1ÞþPðA2 \B2Þþ � � � þPðA2 \BsÞ

¼
Xs

j¼1

PðA2 \BjÞ:

We define the marginal probability of Bj, PðBjÞ, in a similar way.

Example 3.3 (Relative Frequency or Empirical)
Let us consider a bivariate table for variables A and B. There are three categories

for both the variables, A1;A2; and A3 for A and B1;B2; andB3 for B (Tables 3.3
and 3.4).

Table 3.1 Joint frequency distribution for m categories of A and s categories of B

B1 B2 … Bs Total

A1 nðA1 \B1Þ nðA1 \B2Þ … nðA1 \BsÞ nðA1Þ
A2 nðA2 \B1Þ nðA2 \B2Þ … nðA2 \BsÞ nðA2Þ
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Am nðAm \B1Þ nðAm \B2Þ … nðAm \BsÞ nðAmÞ
Total nðB1Þ nðB2Þ … nðBsÞ n
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For example,

PðA2Þ ¼ PðA2 \B1ÞþPðA2 \B2ÞþPðA2 \B3Þ
¼ 0:04þ 0:14þ 0:02

¼ 0:2:

3.4 Applications of Relative Frequency or Empirical
Probability

Example 3.4 Let us consider a hypothetical data on four types of diseases of 200
patients from a hospital as shown below:

Table 3.2 Joint probability distribution for m categories of A and s categories of B

B1 B2 … Bs Marginal
probability

A1 PðA1 \B1Þ PðA1 \B2Þ … PðA1 \BsÞ P(A1)

A2 PðA2 \B1Þ PðA2 \B2Þ … PðA2 \BsÞ P(A2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Am PðAm \B1Þ PðAm \B2Þ … PðAm \BsÞ P(Am)

Marginal
probability

PðB1Þ PðB2Þ … PðBsÞ 1.00

Table 3.3 Number of
elements in each cell

B1 B2 B3 Total

A1 50 30 70 150

A2 20 70 10 100

A3 30 100 120 250

Total 100 200 200 500

Table 3.4 Probabilities of
events

B1 B2 B3 Marginal
probability

A1 0.1 0.06 0.14 0.3

A2 0.04 0.14 0.02 0.2

A3 0.06 0.2 0.24 0.5

Marginal
probability

0.2 0.4 0.4 1

82 3 Basic Probability Concepts



Disease type A B C D Total

Number of patients 90 80 20 10 200

Experiment: Selecting a patient at random and observe his/her disease type.
Total number of trials, sample size, in this case, is

n ¼ 200:
Define the events

E1 = the disease type of the selected patient is A,
E2 = the disease type of the selected patient is B,
E3 = the disease type of the selected patient is C, and
E4 = the disease type of the selected patient is D.

Number of elements for each event is shown below:

n E1ð Þ ¼ 90; n E2ð Þ ¼ 80;
n E3ð Þ ¼ 20; n E4ð Þ ¼ 10:

Probabilities of the events are

P E1ð Þ ¼ 90
200

¼ 0:45; P E2ð Þ ¼ 80
200

� 0:40;

P E3ð Þ ¼ 20
200

¼ 0:1; P E4ð Þ ¼ 10
200

¼ 0:05:

Some Operations on the Events

1. E2 \E4 = the disease type of the selected patients is “B” and “D”.
E2 \E4 ¼ / (disjoint events/mutually exclusive events)

PðE2 \E4Þ ¼ Pð/Þ ¼ 0:

2. E2 [E4 = the disease type of the selected patients is “B” or “D”.

PðE2 [E4Þ ¼
n E2 [E4ð Þ

n Xð Þ ¼ 80þ 10
200

¼ 90
200

¼ 0:45

or

P E2ð ÞþP E4ð Þ ¼ 80
200

þ 10
200

¼ 90
200

¼ 0:45;

8>><
>>:

since E2 \E4 ¼ /.
3. E1 = the disease type of the selected patients is not “A”.

nðE1Þ ¼ n� nðE1Þ ¼ 200� 90 ¼ 110

PðE1Þ ¼ nðE1Þ
n

¼ 110
200

¼ 0:55:
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Another solution

PðEC
1 Þ ¼ 1� PðE1Þ ¼ 1� 0:45 ¼ 0:55:

It may be noted here that E1;E2;E3;E4 are mutually disjoint since Ei \Ej ¼ /
i 6¼ jð Þ, and E1;E2;E3;E4 are exhaustive events since E1 [E2 [E3 [E4 ¼ X.

Example 3.5 (Relative Frequency or Empirical Probability)
The breast cancer databases (see Mangasarian et al. 1990) from the University of

Wisconsin Hospitals include data on two variables, clump thickness categories
1–10 (A) and class referring to whether the case is malignant or benign (B). The
study includes data on 699 instances. After combining clump thickness categories
1 and 2 as A1, 3 and 4 as A2, 5 and above as A3, and denoting the benign category as
B1 and malignant category as B2, Table 3.5 summarizes the cross-classified data for
clump thickness and class.

Experiment: Selecting a case randomly.
The number of elements of the sample space is n ¼ 699. Here, n = 699 is the

sample size.
Some events and corresponding probabilities are shown below:

A3 = the selected case has clump thickness of category 5 or higher

P A3ð Þ ¼ n A3ð Þ
n

¼ 316
699

¼ 0:4521:

B2 = the selected case belongs to the malignant class

P B2ð Þ ¼ n B2ð Þ
n

¼ 241
699

¼ 0:3447:

A3 \B2 = the selected subject has clump thickness category 5 or above and the
case is malignant,

P A3 \B2ð Þ ¼ n A3 \B2ð Þ
n

¼ 210
699

¼ 0:3004:

Table 3.5 Data on two
variables, clump thickness,
and class referring to whether
the case is malignant or
benign (B)

Clump thickness Class

Benign (B1) Malignant (B2) Total

A1 188 7 195

A2 164 24 188

A3 106 210 316

Total 458 241 699
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A3 [B2 = the selected subject has clump thickness category 5 or above or the
case is malignant, and

P A3 [B2ð Þ ¼ P A3ð ÞþP B2ð Þ � P A3 \B2ð Þ
¼ 316

699
þ 241

699
� 210
699

¼ 0:4521þ 0:3448� 0:3004

¼ 0:4965:

A1 ¼ the selected subject does not belong to clump thickness categories 1 or 2

¼ A1 [A2 [A3

P A1
� � ¼ 1� P A1ð Þ

¼ 1� n A1ð Þ
n

¼ 1� 195
699

¼ 0:7210:

A2 [A3 = the selected subject belongs to clump thickness categories either
A2 or A3

P A2 [A3ð Þ ¼ n A2 [A3ð Þ
n

¼ 188þ 316
699

¼ 0:7210

P A2 [A3ð Þ ¼ P A2ð ÞþP A3ð Þ ¼ 188
699

þ 316
699

¼ 0:7210;

since A2 \A3 ¼ /.

Example 3.6 (Relative Frequency or Empirical Probability)
Let us consider a sample from a population of patients having health problems

during a specified period. It was observed that 20% of the patients visited physi-
cians but 41% of the patients had some medication. It was also observed that 15%
of the patients visited physicians and used some prescribed medications.

In other words, among the patients having health problems,

20% of the patients visited physicians for consultation.
41% of the patients used some medications.
15% of the patients visited physicians and used some medications.

Experiment: Selecting a patient having health problems from this population.
Define the events

D = The selected patient visited physician.
M = The selected patient used medication.
D\M = The selected patient visited physician and used some sort of medication.
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Percentages:

% Dð Þ ¼ 20% % Mð Þ ¼ 41% % D\Mð Þ ¼ 15%:

The complement events

D = The selected patient did not visit any physician.
M = The selected patient did not use any medication (Table 3.6).

The probabilities of the given events are

P Dð Þ ¼ % Dð Þ
100%

¼ 20%
100%

¼ 0:2

P Mð Þ ¼ % Mð Þ
100%

¼ 41%
100%

¼ 0:41

P D\Mð Þ ¼ % D\Mð Þ
100%

¼ 15%
100%

¼ 0:15:

Calculating probabilities of some events are illustrated below:

D[M = the selected patient visited physician or used medication

P D[Mð Þ ¼ P Dð Þþ Mð Þ � P D\Mð Þ
¼ 0:20þ 0:41� 0:15 ¼ 0:46:

M = The selected patient did not use medication

P M
� � ¼ 1� P Mð Þ ¼ 1� 0:41 ¼ 0:59;

P M
� � ¼ 59

100
¼ 0:59:

Table 3.6 (a) An incomplete
two-way table representing
percentage of respondents by
whether visited physician and
whether used any medication.
(b) A complete two-way table
representing percentage of
respondents by whether
visited physician and whether
used any medication

(a)

M M Total

D 15 ? 20

D ? ? ?

Total 41 ? 100
(b)

M M Total

D 15 5 20

D 26 54 80

Total 41 59 100
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D = The selected patient did not visit physician

P D
� � ¼ 1� P Dð Þ ¼ 1� 0:20 ¼ 0:80;

P D
� � ¼ 80

100
¼ 0:80:

D\M = the selected patient did not visit physician and did not use medication.

P D\M
� � ¼ 54

100
¼ 0:54:

D\M = the selected patient did not visit physician and used medication.

P D\M
� � ¼ 5

100
¼ 0:05:

D\M = the selected patient visited physician and did not use medication.

P D\M
� � ¼ 5

100
¼ 0:05:

D[M = the selected patient visited physician or did not use medication.

P D[M
� � ¼ P Dð Þþ M

� �� P D\M
� �

¼ 0:20þ 0:59� 0:26 ¼ 0:53:

D[M = the selected patient did not visit physician or used medication.

P D[M
� � ¼ P D

� �þ Mð Þ � P D\M
� �

¼ 0:80þ 0:41� 0:26 ¼ 0:95:

D[M = the selected patient did not visit physician or did not use medication.

P D[M
� � ¼ P D

� �þ M
� �� P D\M

� �
¼ 0:80þ 0:59� 0:54 ¼ 0:85:

3.5 Conditional Probability

The conditional probability of the event A when we know that the event B has
already occurred is defined by
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P AjBð Þ ¼ P A\Bð Þ
P Bð Þ ; P Bð Þ 6¼ 0:

P(A|B) = The conditional probability of A given B.
The following figure shows the events graphically:

Notes:

1. P AjBð Þ ¼ P A\Bð Þ
P Bð Þ ¼ n A\Bð Þ=n Xð Þ

n Bð Þ=n Xð Þ ¼ n A\Bð Þ
n Bð Þ

2. P BjAð Þ ¼ P A\Bð Þ
P Að Þ

3. For calculating P AjBð Þ, we may use any one of the following:

i. P AjBð Þ ¼ P A\Bð Þ
P Bð Þ

ii. P AjBð Þ ¼ n A\Bð Þ
n Bð Þ

iii. Using the restricted table directly.

Multiplication Rules of Probability
For any two events A and B, we have

P A\Bð Þ ¼ P Bð ÞP AjBð Þ;
P A\Bð Þ ¼ P Að ÞP BjAð Þ:

Example 3.7 Let us consider a hypothetical set of data on 600 adult males classified
by their ages and smoking habits as summarized in Table 3.7.

Consider the following event:
(B1|A2) = smokes daily given that age is between 30 and 39

Table 3.7 Two-way table displaying number of respondents by age and smoking habit of
respondents smoking habit

Daily B1ð Þ Occasionally B2ð Þ Not at all B3ð Þ Total

Age 20–29 A1ð Þ 57 18 13 88

30–39 A2ð Þ 200 55 90 345

40–49 A3ð Þ 50 40 55 145

50+ A4ð Þ 7 0 15 22

Total 314 113 173 600
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P B1ð Þ ¼ nðB1Þ
n

¼ 314
600

¼ 0:523

P B1jA2ð Þ ¼ P B1 \A2ð Þ
P A2ð Þ

¼ 0:333
0:575

¼ 0:579

P B1 \A2ð Þ ¼ n B1 \A2ð Þ
n ¼ 200

600 ¼ 0:333

P A2ð Þ ¼ n A2ð Þ
n ¼ 345

600 ¼ 0:575

( )

Another solution

P B1jA2ð Þ ¼ n B1 \A2ð Þ
n A2ð Þ ¼ 200

345
¼ 0:579:

Notice that

P B1ð Þ ¼ 0:523

P B1jA2ð Þ ¼ 0:579

P B1jA2ð Þ[P B1ð Þ; P B1ð Þ 6¼ P B1jA2ð Þ:

Example 3.8 (Multiplication Rule of Probability)
It was found from a study that 20% of the patients with some general health

problems visited physicians and out of those who visited physicians 75% were
prescribed some medications. If a person with health problem is selected randomly
from the population, what is the probability that the person will use medicine? What
is the percentage of patients who use medication?

Solution
Define the following events:

A = the event of visiting physician,
B = the event of using medication, and
A\B ¼ the event of visiting physician and using medication

¼ the event of experiencing both events:

Therefore, the probability of visiting physician and using medication is P(A\B).
From the given information, the probability of visiting physician is

P Að Þ ¼ 0:2
20%
100%

¼ 0:2
� �

:
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The probability of using medication given that the patient visited physician is

P BjAð Þ ¼ 0:75
75%
100%

¼ 0:75
� �

:

Now, we use the multiplication rule to find P(A\B) as follows:

PðA\BÞ ¼ P Að ÞP BjAð Þ ¼ 0:2ð Þ 0:75ð Þ ¼ 0:15:

We can conclude that 15% of the patients with general health problems visited
physician and used medication.

Independent Events
There are three cases in a conditional probability for occurrence of A if B is given:

(i) P AjBð Þ[P Að Þ
(given B increases the probability of occurrence of A),

(ii) P AjBð Þ\P Að Þ
(given B decreases the probability of occurrence of A), and

(iii) P AjBð Þ ¼ P Að Þ
(given B has no effect on the probability of occurrence of A). In this case, A is
independent of B.

Independent Events: Two events A and B are independent if one of the fol-
lowing conditions is satisfied:

(i) P AjBð Þ ¼ P Að Þ;
(ii) P BjAð Þ ¼ P Bð Þ; and
(iii) P B\Að Þ ¼ P Að ÞP Bð Þ:
Note: The third condition is the multiplication rule of independent events.

Example 3.9 Suppose that A and B are two events such that

P Að Þ ¼ 0:5; P Bð Þ ¼ 0:6; PðA\BÞ ¼ 0:2:
These two events are not independent because

P Að ÞP Bð Þ ¼ 0:5� 0:6 ¼ 0:3;

PðA\BÞ ¼ 0:2;

PðA\BÞ 6¼ P Að ÞP Bð Þ:

Also,

PðAÞ ¼ 0:5 6¼ PðAjBÞ ¼ PðA\BÞ
PðBÞ ¼ 0:2

0:6
¼ 0:3333 and

PðBÞ ¼ 0:6 6¼ PðBjAÞ ¼ PðA\BÞ
PðAÞ ¼ 0:2

0:5
¼ 0:4:

For this example, we may calculate probabilities of all events.
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We can use a two-way table of the probabilities as follows:

B B Total

A 0.2 ? 0.5

A ? ? ?

Total 0.6 ? 1.00

We complete Table 3.8:

PðAÞ ¼ 0:5

PðBÞ ¼ 0:4

PðA\BÞ ¼ 0:3

PðA\BÞ ¼ 0:4

PðA\BÞ ¼ 0:1

PðA[BÞ ¼ PðAÞþPðBÞ � PðA\BÞ ¼ 0:5þ 0:6� 0:2 ¼ 0:9

PðA[BÞ ¼ PðAÞþPðBÞ � PðA\BÞ ¼ 0:5þ 0:4� 0:3 ¼ 0:6:

The Addition Rule for Independent Events
If the events A and B are independent, then

P A[Bð Þ ¼ P Að ÞþP Bð Þ � P A\Bð Þ
¼ P Að ÞþP Bð Þ � PðAÞPðBÞ:

Example 3.10 Suppose that 12 patients admitted with fever (F = high fever,
F = low fever) in a hospital are selected randomly and asked their opinion about
whether they were satisfied with the services in the hospital (S = satisfied, S = not
satisfied). The table below summarizes the data.

F (high fever) F (low fever) Total

S (satisfied) 2 1 3

S (not satisfied) 6 3 9

Total 8 4 12

The experiment is to randomly choose one of these patients. Consider the fol-
lowing events:

Table 3.8 A two-way table
displaying probabilities

B B Total

A 0.2 0.3 0.5

A 0.4 0.1 0.5

Total 0.6 0.4 1.00
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S = satisfied with service and
F = high fever.

(a) Find the probabilities of the following events:

1. the chosen patient is satisfied with service in the hospital,
2. the chosen patient is suffering from high fever,
3. the chosen patient is satisfied with service and suffering from high fever, and
4. the chosen patient is satisfied with service and is not suffering from high

fever.

(b) Find the probability of choosing a patient who is suffering from high fever
given that the patient has high fever.

(c) Are the events S and F independent? Why?
(d) Are the events S and F disjoint? Why?

Solution

(a) The experiment has n = 12.
P(patient is satisfied with service)

P Sð Þ ¼ nðSÞ
n

¼ 3
12

¼ 0:25:

P(patient suffers from high fever)

P Fð Þ ¼ nðFÞ
n

¼ 8
12

¼ 0:6667:

P(satisfied with service and suffers from high fever)

PðS\FÞ ¼ nðS\FÞ
n

¼ 2
12

¼ 0:16667:

P(satisfied with service and does not suffer from high fever)

PðS\FÞ ¼ nðS\FÞ
n

¼ 1
12

¼ 0:0833:

(b) The probability of selecting a patient who suffers from high fever given that the
patient is satisfied with service is

PðFjSÞ ¼ PðS\FÞ
PðSÞ ¼ 2=12

0:25
¼ 0:6667:

(c) The events S and F are independent because PðFjSÞ ¼ PðFÞ.
(d) The events S and F are not disjoint because S\F 6¼ /; nðS\FÞ ¼ 2.
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3.6 Conditional Probability, Bayes’ Theorem,
and Applications

Bayes’ theorem gives a posterior probability using the estimate used for a prior
probability. This procedure is performed using the concept of the conditional
probability. Let us consider that there are two states regarding the disease and two
states stating the result of a test then the outcomes are

We define the following events:

D: the individual has the disease (presence of the disease),
D: the individual does not have the disease (absence of the disease),
T: the individual has a positive screening test result, and
T : the individual has a negative screening test result.

There are four possible situations as shown in the following table:

Status of the disease

+ve (D: Present) −ve (D: Absent)

Result of the test +ve (T) Correct diagnosis False positive result

−ve (T) False-negative result Correct diagnosis

We are interested in the true status of the disease for given test result which is a
posterior probability. This is essentially a conditional probability, for instance,
probability of being suffered from disease for the given fact that the screening test
result shows positive. On the other hand, the estimate of the prevalence of the
disease in the population may be considered as the prior probability which is a
marginal probability and does not depend on any other condition. This helps us to
understand or confirm how good the true status of the disease is for a given test
result.

There are two false results that can happen in an experiment concerning disease
status and test results.

1. A false-positive result: This is defined by a conditional probability

PðT jDÞ ¼ P positive resultjabsence of the diseaseð Þ

and this result happens when a test shows a positive status if the true status is
known to be negative.
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2. A false-negative result: The false negative can be defined by the following
conditional probability:

PðT jDÞ ¼ P negative resultjpresence of the diseaseð Þ;

where the conditional probability states that a test shows a negative status;
however, the true status is known to be positive.

Two Important Measures: The Sensitivity and Specificity of a Test

1. The Sensitivity: The conditional probability of a positive test given that the
disease status is the presence of disease is

PðT jDÞ ¼ P positive result of the testjpresence of the diseaseð Þ;

which is known as sensitivity of a test.
2. The specificity: The specificity is defined as

PðT jDÞ ¼ P negative result of the testjabsence of the diseaseð Þ;

which is the probability of a negative test result given the absence of the disease.

To clarify these concepts, suppose we have a sample of (n) subjects who are
cross-classified according to disease status and screening test result (Table 3.9).

For example, there are “a” subjects who have the disease and whose screening
test result was positive.

From this table, we may compute the following conditional probabilities:

1. The probability of false-positive result

PðTjDÞ ¼ nðT \DÞ
nðDÞ ¼ b

bþ d
:

2. The probability of false negative result

PðTjDÞ ¼ nðT \DÞ
nðDÞ ¼ c

aþ c
:

Table 3.9 Table displaying
test result and true status of
disease

Test result Disease

Present (D) Absent (D) Total

Positive (T) a b a + b = n
(T)

Negative
(T)

c d c + d = n
(T)

Total a + c = n
(D)

b + d = n
(D)

n
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3. The sensitivity of the screening test

PðTjDÞ ¼ nðT \DÞ
nðDÞ ¼ a

aþ c
:

4. The specificity of the screening test

PðTjDÞ ¼¼ nðT \DÞ
nðDÞ ¼ d

bþ d
:

The following conditional probabilities are used in biostatistics very extensively.
The predictive value positive: The predictive value positive is defined as the

conditional probability

PðDjTÞ ¼ P the subject has the diseasejpositive resultð Þ;

where the conditional probability states the chance of a subject has the disease
given that the subject has a positive test result.

The predictive value negative: The predictive value negative is defined as the
conditional probability

PðDjTÞ ¼ P the subject does not have the diseasejnegative resultð Þ;

where the conditional probability states chance of a subject does not have the
disease, given that the subject has a negative test result.

We calculate these conditional probabilities using the knowledge of the
following:

1. The sensitivity of the test = PðTjDÞ,
2. The specificity of the test = PðTjDÞ, and
3. The probability of the relevant disease in the general population, P(D). It is

usually obtained from another independent study or source.

We know that

PðDjTÞ ¼ PðT \DÞ
PðTÞ :

Using the rules of probability, we have defined earlier, it can be shown that

PðTÞ ¼ PðT \DÞþPðT \DÞ;
PðT \DÞ ¼ PðTjDÞPðDÞ;
PðT \DÞ ¼ PðTjDÞPðDÞ;
PðTÞ ¼ PðT jDÞPðDÞþPðT jDÞPðDÞ:
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Therefore, we reach the following version of Bayes’ theorem:

PðDjTÞ ¼ PðT jDÞPðDÞ
PðTjDÞPðDÞþPðTjDÞPðDÞ :

It is noteworthy that

PðT jDÞ ¼ sensitivity;

PðT jDÞ ¼ 1� PðT jDÞ ¼ 1�specificity;
P(D) = The probability of the relevant disease in the general population,

PðDÞ ¼ 1� PðDÞ:

To compute the predictive value negative of a test, we use the following
statement of Bayes’ theorem:

PðDjTÞ ¼ PðT jDÞPðDÞ
PðTjDÞPðDÞþPðTjDÞPðDÞ :

It may be noted that PðT jDÞ = specificity and PðT jDÞ ¼ 1� PðTjDÞ =
1 − sensitivity.

Example 3.11 Let us consider a study to examine the relationship between disease
and a screening test result. Two samples were drawn from the population, one for
the patients with symptoms of disease and another sample without symptoms of the
disease. For both the samples, the screening tests were performed in order to
confirm the disease status. The results are summarized in Table 3.10.

Based on another independent study, it is known that the percentage of patients
with disease (the rate of prevalence of the disease) is 8 per 100.

Table 3.10 Table displaying
test result and status of
disease for the respondents
with or without symptoms of
a disease

Disease status

Test result Present ðDÞ Absent (D) Total

Positive (T) 950 20 970

Negative (T) 50 980 1030

Total 1000 1000 2000
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Solution
Using these data, we estimate the following probabilities:

1. The sensitivity of the test

PðT jDÞ ¼ nðT \DÞ
nðDÞ ¼ 950

1000
¼ 0:95:

2. The specificity of the test:

PðT jDÞ ¼ nðT \DÞ
nðDÞ ¼ 980

1000
¼ 0:98:

3. The probability of the disease in the general population, P(D).

The rate of disease in the relevant general population, P(D), cannot be computed
from the sample data given in the table. However, it is estimated from a different
study that 8% of the population suffered from the disease. Therefore, P(D) can be
estimated as

P Dð Þ ¼ 8%
100%

¼ 0:08:

4. The predictive value positive of the test.

We wish to estimate the probability that a subject who is positive on the test has
the disease. We use the Bayes’ theorem as follows:

PðDjTÞ ¼ PðT jDÞPðDÞ
PðTjDÞPðDÞþPðTjDÞPðDÞ :

From the data displayed in table, we compute

PðT jDÞ ¼ 950
1000

¼ 0:95; and

PðT jDÞ ¼ nðT \DÞ
nðDÞ ¼ 20

1000
¼ 0:02:

Substituting these results, we get

PðDjTÞ ¼ ð0:95ÞPðDÞ
ð0:95ÞPðDÞþ ð0:02ÞPðDÞ

¼ 0:95ð Þ 0:08ð Þ
0:95ð Þ 0:08ð Þþ 0:02ð Þ 1� 0:08ð Þ ¼ 0:81:
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As we see, in this case, the predictive value positive of the test is moderately
high.

5. The predictive value negative of the test

We wish to estimate the probability that a subject who is negative on the test
does not have the disease. Using the Bayes’ formula, we obtain

PðDjTÞ ¼ PðT jDÞPðDÞ
PðTjDÞPðDÞþPðTjDÞPðDÞ :

To compute PðDjTÞ, we first compute the following probabilities:

PðT jDÞ ¼ 980
1000

¼ 0:98;

PðDÞ ¼ 1� PðDÞ ¼ 1� 0:08 ¼ 0:92;

PðT jDÞ ¼ nðT \DÞ
nðDÞ ¼ 50

1000
¼ 0:05:

Substituting these values, we find

PðDjTÞ ¼ PðTjDÞPðDÞ
PðT jDÞPðDÞþPðT jDÞPðDÞ

¼ ð0:98Þð0:92Þ
ð0:98Þð0:92Þþ ð0:05Þð0:08Þ

¼ 0:996:

As we see, the predictive value negative is very high.

3.7 Summary

The basic probability concepts are introduced in this chapter. It has been mentioned
in Chap. 1 that probability plays a vital role to link the measures based on samples
to the corresponding population values. The concept of random sampling provides
the foundation for such links that depend on the concepts of probability. The
definitions of probability along with experiment, sample space, event, equally
likely, and mutually exclusive outcomes are highlighted. The important operations
on events are discussed with examples. The concepts of marginal and conditional
probabilities are discussed in a self-explanatory manner with several examples. The
multiplication rules of probability and the concept of independent events are
introduced in this chapter. The applications of conditional probability and Bayes’
theorem in analyzing epidemiological data are shown. The measures of sensitivity
and specificity of tests are illustrated with examples.
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Exercises

3:1 Three patients are selected at random from a hospital. Consider that at each
draw it is equally likely that the randomly drawn patient can be either male
(M) or female (F).

(i) Write the elements of the sample space.
(ii) Write the elements corresponding to the event E = at least one of the

selected patients is female.
(iii) Define the event for the subset of sample space containing two male

patients.
(iv) Define the subset of sample space containing only male patients.

3:2 In Question 3.1, specify three patients by number of male patients out of
three randomly selected patients.

(i) Write the elements of the sample space.
(ii) Define the subspace of the sample space corresponding to the event

E1 = two or more male patients.
(iii) Define the subspace of the space corresponding to the event E2 = less

than two male patients.
(iv) Define the subspace of the sample space corresponding to the event

E3 = three male patients.

3:3 Define the subspace of the sample space defined in Question 3.2 for the
following events:

(i) E1 [E2;
(ii) E1 [E3;
(iii) E2 \E3;
(iv) E1 [E2 [E3;
(v) ðE1 [E2Þ \E3; and
(vi) ðE1 \E3Þ [E2:

3:4 Define the subspace of the sample space defined in Question 3.2 for the
following events:

(i) E1 [E2;

(ii) E1 [E3;

(iii) E1 \E3;

(iv) E2 \E3;

(v) ðE1 \E2Þ [E3; and
(vi) ðE1 \E2Þ \E3:

3:5 For sample space of Exercise 3.2, find the following probabilities:

(i) PðE1Þ;PðE2Þ andPðE3Þ;
(ii) PðE1 [E2Þ;
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(iii) PðE1 [E3Þ;
(iv) PðE1 \E3Þ;
(v) PðE2 \E3Þ;
(vi) PðE1 [E2 [E3Þ;
(vii) P½ðE1 [E2Þ \E3�; and
(viii) P½ðE1 \E3Þ [E2�:

3:6 The following table shows a hypothetical bivariate representation of 100,000
pregnant women by maternal age (A) and pregnancy-related deaths (B) in a
community.

Maternal age in years (A) Pregnancy-related deaths or
survival (B)

Total

Survived (B1) Died (B2)

<20 (A1) 19,989 11 20,000

20–39 (A2) 59,910 90 60,000

40–49 (A3) 19,993 7 20,000

Total 99,892 108 100,000

Find the following probabilities:

(i) PðA1Þ;PðA2Þ; andPðA3Þ:
(ii) PðB1Þ andPðB2Þ:
(iii) PðB2jA1Þ;PðB2jA2Þ andPðB2jA3Þ:
(iv) PðB1jA1Þ;PðB1jA2Þ andPðB1jA3Þ:
(v) Comment on your findings about pregnancy-related deaths and

maternal age for the community.

3:7 In a study on incidence of common flu among the students of a university.
Suppose the study was conducted on 200 male and female students during a
semester. The data are summarized in the following table:

Gender of students (A) Incidence of flu during
semester (B)

Total

Yes (Y) No (N)

Male (M) 15 85 100

Female (F) 20 80 100

Total 35 165 200

Suppose we pick a subject randomly from this group. Then, answer the
following questions:

(i) Find PðM \ YÞ.
(ii) Find PðM \ YÞ.
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(iii) Find the probabilities PðFÞ and PðYÞ.
(iv) Find the probability PðM [NÞ.
(v) Find PðY Fj Þ and PðN Mj Þ.
(vi) Are the events Y and F independent?

3:8 Let us consider the following sample space and events:

X ¼ 1; 2; 3; 4; 5; 6f g
E1 ¼ 4; 5; 6f g
E2 ¼ 1; 2; 3f g
E3 ¼ 1; 2; 5; 6f g:

Find the following:

(i) PðE1Þ;PðE2Þ;PðE3Þ:
(ii) PðE1Þ;PðE3Þ:
(iii) PðE1 \E2Þ;PðE2 \E3Þ:
(iv) PðE1 \E2Þ:
(v) PðE1 [E2Þ;PðE2 [E3Þ:

3:9 Suppose that the relationship between the performance of service in a hos-
pital and whether the work is at day (D), night (N), or rotating shift (R) is of
interest for a hospital administration. A hypothetical data set of 150 hospital
workers is presented in the following table.

Shift Performance of service

Poor (P) Average (A) Superior (S)

Day (D) 12 16 12

Night (N) 18 30 12

Rotating (R) 23 23 4

Calculate the probability that a worker selected at random

(i) Worked at night shift.
(ii) Performed of service is superior.
(iii) Performed average and served at day shift.
(iv) Performed poor given that the shift is rotating.
(v) Performed superior given that the shift is day.
(vi) Are the events poor performance and day shift independent?
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3:10 The following data show the results obtained in a screening test for a disease
on 10,000 persons based on a cross-sectional study.

Test result True diagnosis

Disease No disease

Positive 120 100

Negative 40 9740

Compute the following:

(i) Probability that a randomly selected individual is having test result
positive and true diagnosis diabetic.

(ii) Probability that a randomly selected individual is diabetic (true
diagnosis).

(iii) Probability that an individual with negative test result (given) is truly
diabetic.

(iv) Are the test results and true diagnosis independent?

3:11 Use the data given in Question 3.10 to answer the following:

(i) sensitivity,
(ii) specificity,
(iii) false positive,
(iv) false negative,
(v) predictive value positive, and
(vi) predictive value negative.

Reference

Mangasarian, O. L., Setiono, R., & Wolberg, W. H. (1990). Pattern recognition via linear
programming: Theory and application to medical diagnosis. In T. F. Coleman & Y. Li (Eds.),
Large-scale numerical optimization (pp. 22–30). Philadelphia: SIAM Publications.
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Chapter 4
Probability Distributions: Discrete

4.1 Introduction

The concept of random variables plays a pivotal role in statistics. A variable is
called a random variable if the value that the variable assumes in a given experi-
ment is a chance or random outcome which cannot be known before the experiment
is conducted. Some events can be defined using random variables.

There are two types of random variables: (i) discrete random variables, and
(ii) continuous random variables. If observations on a quantitative random variable
can assume only a countable number of values then the variable is defined as a
discrete random variable. On the other hand, if observations on a quantitative
random variable can assume any value from an interval, then the variable is defined
as a continuous random variable.

We need to know the probability of observing a particular sample outcome in
order to make any inference about the population from which the sample is drawn.
This necessitates the knowledge about the probability of each outcome of the
variable under consideration. It may be noted here that the relative frequencies
provide the empirical foundation of the theoretical probability distribution of the
underlying variable.

4.2 Probability Distributions for Discrete Random
Variables

The probability distribution for a discrete random variable shows the probability
associated with each value of the discrete random variable. The relative frequency
based on the sample data approximates the probability distribution for a large
sample size. The main properties of a discrete random variable are: (i) the proba-
bility of every value of a variable lies between 0 and 1; (ii) the sum of all
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probabilities of the variable is equal to 1; and (iii) the probabilities of a discrete
random variable are additive.

The probability distribution of a discrete variable, X, can be shown for different
number of outcome values of the variable. Some examples are shown below:

(i) PðX ¼ xÞ; x ¼ 0; 1;
(ii) PðX ¼ xÞ; x ¼ 0; 1; . . .; k;
(iii) PðX ¼ xÞ; x ¼ 0; 1; . . .;1.

Case (i) may arise from an experiment where there are only two outcomes such
as success or failure, defective or non-defective, disease or disease-free, yes or no,
etc. This type of a discrete variable may result from an experiment with two
outcomes where the outcomes may be qualitative in nature representing a nominal
scale but in this case, we consider this variable as discrete variable with binary
outcomes. Case (ii) variable is also discrete with (k + 1) outcomes ranging from 0
to k. A typical example of this type of discrete variables is number of successes in
an experiment which may be considered as a generalization of a binary variable in
Case (i). In other words, sum of binary variables may result in this type of discrete
variables. Case (iii) variables may take values ranging from 0 to infinity. In reality,
we may observe large values instead of infinity indicating that there may be small or
large values and the outcome values are not restricted to a specified upper limit.
Some examples are number of accidents in a city during a specified time interval,
number of experiments needed to get the first success, number of experiments
required to obtain the rth success, etc.

It can be shown that for the abovementioned probability distributions, the
probabilities add to 1:

(i) PðX ¼ 0ÞþPðX ¼ 1Þ ¼ P1
x¼0

PðX ¼ xÞ ¼1;

(ii) PðX ¼ 0ÞþPðX ¼ 1Þþ � � � þPðX ¼ kÞ ¼ Pk
x¼0

PðX ¼ xÞ ¼ 1;

(iii) PðX ¼ 0ÞþPðX ¼ 1Þþ � � � ¼ P1
x¼0

PðX ¼ xÞ ¼ 1.

First one represents a binary outcome with possible outcomes 0 or 1, second one
shows that there are k + 1 possible distinct outcome values ranging from 0, 1 to k,
and the third one shows that the number of possible distinct values of outcome is
not specified, it may be very large. However, under all these circumstances, the
probabilities add to one.

Example 4.1 The data on number of daily injury accidents for a period is used in
this example (Leiter and Hamdan 1973). Let us define the following discrete ran-
dom variable X = the number of daily injury accidents in a day.

The frequency distribution of number of injury accidents is displayed in
Table 4.1.
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Note that the possible values of the random variable X are
X = 0, 1, 2, 3, 4, 5.
Experiment: Selecting a day at random
Define the events

(X = 0) = The event that on the selected day there was no accident,
(X = 1) = The event that on the selected day there was one accident,
(X = 2) = The event that on the selected day there were 2 accidents,
(X = 3) = The event that on the selected day there were 3 accidents,
(X = 4) = The event that on the selected day there were 4 accidents,
(X = 5) = The event that on the selected day there were 5 accidents.

In general
(X = x) = the event that on the selected day there were x accidents.
Using the relative frequency definition, we know that n = 639.
The number of elements of the event (X = x) is n(X = x) = frequency of x.

nðX ¼ xÞ ¼ frequency of x:

The probability of the event (X = x) is (Table 4.2)

P X ¼ xð Þ ¼ n X ¼ xð Þ
n

¼ nðX ¼ xÞ
639

; for x ¼ 0; 1; 2; 3; 4; 5:

We can show that

P X ¼ xð Þ ¼ n X ¼ xð Þ
639

¼ relative frequency ¼ frequency
639

The probability distribution of the discrete random variable X is given in
Table 4.3.

Table 4.1 Frequency distribution of number of injury accidents in a day

X = x (number of accidents) Frequency of X = x (number of days)

0 286

1 216

2 92

3 30

4 14

5 1

Total 639
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The probability distribution of any discrete random variable X must satisfy the
following three properties:

(i) 0�P X ¼ xð Þ� 1;
(ii)

P
x P X ¼ xð Þ ¼ 1; and

(iii) the probabilities are additive,
for example, PðX ¼ 2 or X ¼ 3Þ ¼ PðX ¼ 2ÞþPðX ¼ 3Þ.

Some examples

(i) P X� 2ð Þ ¼ P X ¼ 2ð ÞþP X ¼ 3ð ÞþP X ¼ 4ð ÞþP X ¼ 5ð Þ ¼ 0:1440þ
0:0469þ 0:0219þ 0:0016 ¼ 0:2144:

(ii) P X[ 2ð Þ ¼ P X ¼ 3ð ÞþP X ¼ 4ð ÞþP X ¼ 5ð Þ ¼ 0:0469þ 0:0219þ 0:0016 ¼ 0:0704:

½note : P X[ 2ð Þ 6¼ P X� 2ð Þ�
(iii) P 1�X\3ð Þ ¼ P X ¼ 1ð ÞþP X ¼ 2ð Þ ¼ 0:3380þ 0:1440 ¼ 0:4820:

(iv) P X� 2ð Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð ÞþP X ¼ 2ð Þ
¼ 0:4476þ 0; 3380þ 0:1440 ¼ 0:9296:

This can be solved alternatively using the following relationship:

P X� 2ð Þ ¼ 1� PððX � 2ÞÞ
¼ 1� P X[ 2ð Þ ¼ 1� P X ¼ 3ð Þ � P X ¼ 4ð Þ � P X ¼ 5ð Þ
¼ 1� 0:0469� 0:0219� 0:0016 ¼ 1� 0:0704 ¼ 0:9296:

Table 4.2 Relative
frequency of number of
accidents in a day

X = x Frequency of X = x
n X ¼ xð Þ

P X ¼ xð Þ ¼ n X¼xð Þ
639

(relative frequency)

0 286 0.4476

1 216 0.3380

2 92 0.1440

3 30 0.0469

4 14 0.0219

5 1 0.0016

Total 639 1.0000

Table 4.3 Probability
distribution of number of
accidents in a day

X = x P X ¼ xð Þ ¼ f ðxÞ
0 0.4476

1 0.3380

2 0.1440

3 0.0469

4 0.0219

5 0.0016

Total 1.0000
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(v) P �1�X\2ð Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð Þ ¼ 0:4476þ 0:3380 ¼ 0:7856:
(vi) P �1:5�X\1:3ð Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð Þ ¼ 0:4476þ 0:3380 ¼ 0:7856:
(vii) PðX ¼ 3:5Þ ¼ 0
(viii) P X � 10ð Þ ¼ PðX ¼ 0ÞþPðX ¼ 1ÞþPðX ¼ 2ÞþPðX ¼ 3ÞþPðX ¼ 4ÞþPðX ¼ 5Þ ¼ P Xð Þ ¼ 1

(ix) The probability that on the selected day there were at least 2 accidents

P X � 2ð Þ ¼ P X ¼ 2ð ÞþP X ¼ 3ð ÞþP X ¼ 4ð ÞþP X ¼ 5ð Þ
¼ 0:1440þ 0:0469þ 0:0219þ 0:0016 ¼ 0:2144:

(x) The probability that on the selected day there were at most 2 accidents

P X� 2ð Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð ÞþP X ¼ 2ð Þ
¼ 0:4476þ 0; 3380þ 0:1440 ¼ 0:9296:

(xi) The probability that on the selected day there were more than 2 accidents

P X[ 2ð Þ ¼ P X ¼ 3ð ÞþP X ¼ 4ð ÞþP X ¼ 5ð Þ
¼ 0:0469þ 0:0219þ 0:0016 ¼ 0:0704:

(xii) The probability that on the selected day there were less than 2 accidents

P X\2ð Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð Þ ¼ 0:4476þ 0:3380 ¼ 0:7856:

Graphical Presentation
The probability distribution of a discrete r. v. X can be graphically represented.

Example 4.2 The probability distribution of the random variable in the previous
example is

X = x PðX ¼ xÞ ¼ f ðxÞ
0 0.4476

1 0.3380

2 0.1440

3 0.0469

4 0.0219

5 0.0016

Total 1.0000

The graphical presentation of this probability distribution is given in Fig. 4.1.
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4.3 Expected Value and Variance of a Discrete Random
Variable

The population mean and variance are introduced in Chap. 2. It is shown in Chap. 2
that if we use all the population values, then the population mean and variance can
be defined. In this section, the population mean and variance are defined using
corresponding probabilities of a variable. The population mean is defined as the
expected value of a variable and it can be expressed as follows:

The population mean or expected value of a discrete random variable X is
denoted by l or lX and it is defined by

EðXÞ ¼ l ¼
X
x

x P X ¼ xð Þ:

Similarly, the population variance of a discrete random variable X is denoted by
r2 or r2X and it is defined by

Fig. 4.1 Figure displaying probabilities of number of accidents
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VarðXÞ ¼ EðX � lÞ2 ¼ r2 ¼
X
x

ðx� lÞ2P X ¼ xð Þ:

An alternative expression for the variance of a variable, X, is

VarðXÞ ¼ EðX � lÞ2 ¼ r2 ¼ EðX2Þ � EðXÞ½ �2;

where

EðXÞ ¼ l and EðX2Þ ¼
X
x

x2PðX ¼ xÞ:

Example 4.3 We wish to calculate the mean l and the variance r2 of the discrete
random variable X whose probability distribution is given by the following table:

x P X ¼ xð Þ
0 0.05

1 0.25

2 0.45

3 0.25

Solution
X P X ¼ xð Þ x P X ¼ xð Þ ðx� lÞ ðx� lÞ2 ðx� lÞ2

PðX ¼ xÞ
0 0.05 0 −1.9 3.61 0.1805

1 0.25 0.25 −0.9 0.81 0.2025

2 0.45 0.9 0.1 0.01 0.0045

3 0.25 0.75 1.1 1.21 0.3025

Total l ¼P x P X ¼ xð Þ ¼ 1:9 r2 ¼P ðx� lÞ2
PðX ¼ xÞ ¼ 0:69

l ¼
X
x

x P X ¼ xð Þ ¼ 0ð Þ 0:05ð Þþ 1ð Þ 0:25ð Þþ 2ð Þ 0:45ð Þþ 3ð Þ 0:25ð Þ ¼ 1:9

r2 ¼
X
x

ðx� 1:9Þ2 P X ¼ xð Þ

¼ 0� 1:9ð Þ2 0:05ð Þþ 1� 1:9ð Þ2 0:25ð Þþ 2� 1:9ð Þ2 0:45ð Þþ 3� 1:9ð Þ2 0:25ð Þ
¼ 0:69:
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Alternatively, we can use the following table to find the variance of X:

X P X ¼ xð Þ x P X ¼ xð Þ x 2 x2PðX ¼ xÞ
0 0.05 0 0 0

1 0.25 0.25 1 0.25

2 0.45 0.9 4 1.80

3 0.25 0.75 9 2.25

Total l ¼P x P X ¼ xð Þ ¼ 1:9
X

x2PðX ¼ xÞ
¼ 4:30

VarðXÞ ¼ EðX � lÞ2 ¼ r2 ¼ EðX2Þ � EðXÞ½ �2¼ 4:30� 1:92 ¼ 0:69:

Cumulative Distributions
The cumulative distribution function of a discrete random variable, X, is defined by

FðxÞ ¼ P X � xð Þ ¼
X
a� x

P X ¼ að Þ ðSum over all values� xÞ

and this is denoted by F(x).

Example 4.4 Calculate the cumulative distribution of the discrete random variable,
X, with probability distribution given in the following table:

x P X ¼ xð Þ
0 0.05

1 0.25

2 0.45

3 0.25

Let us use the cumulative distribution to find

PðX� 2Þ;P X\2ð Þ;PðX � 1:5Þ;P X\1:5ð Þ;P X[ 1ð Þ;PðX � 1Þ

Solution
The cumulative distribution of X is

x P X� xð Þ
0 0.05 P X� 0ð Þ ¼ P X ¼ 0ð Þ
1 0.30 P X� 1ð Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð Þ
2 0.75 P X� 2ð Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð ÞþP X ¼ 2ð Þ
3 1.00 P X� 3ð Þ ¼ P X ¼ 0ð Þþ � � � þP X ¼ 3ð Þ
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Using the cumulative distribution, the probabilities are

PðX� 2Þ ¼ 0:75

P X\2ð Þ ¼ PðX� 1Þ ¼ 0:30

PðX � 1:5Þ ¼ PðX� 1Þ ¼ 0:30

PðX\1:5Þ ¼ PðX� 1Þ ¼ 0:30

PðX[ 1Þ ¼ 1� P ðX[ 1Þ
� �

¼ 1� PðX� 1Þ ¼ 1� 0:30 ¼ 0:70

PðX� 1Þ ¼ 1� P ðX� 1Þ
� �

¼ 1� PðX\1Þ ¼ 1� PðX� 0Þ
¼ 1� 0:05 ¼ 0:95:

Example 4.5 Let us consider the following probability distribution for the variable
X = number of children died to a mother in a village community from hypothetical
relative frequencies.

x Frequency P(X = x)
Relative frequency

0 79 0.65

1 27 0.22

2 10 0.08

3 4 0.03

4 2 K

Total 122 1

(a) Find the value of K.
(b) Find the following probabilities:

1. P(X < 3)
2. P(X � 3)
3. P(X < 5)
4. P(X < 1)
5. P(X = 3.5)

(c) Find the probability that a mother has lost at least two children.
(d) Find the probability that a mother has lost at most two children.
(e) Find the expected number of children died.
(f) Find the variance of X.
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Solution

(a) 1 ¼PPðX ¼ xÞ ¼ 0:65þ 0:22þ 0:08þ 0:03þK
1 ¼ 0:98þK

K ¼ 1� 0:98

K ¼ 0:02

The probability distribution of X is:

X P(X = x)

0 0.65

1 0.22

2 0.08

3 0.03

4 0.02

(b) Finding the probabilities:

1. PðX\3Þ ¼ PðX ¼ 0ÞþPðX ¼ 1ÞþPðX ¼ 2Þ ¼ 0:65þ 0:22þ 0:08 ¼ 0:95
2. PðX� 3Þ ¼ PðX ¼ 0ÞþPðX ¼ 1ÞþPðX ¼ 2ÞþPðX ¼ 3Þ ¼ 0:65þ 0:22þ 0:08þ 0:03 ¼ 0:98

3. PðX\5Þ ¼ PðX ¼ 1ÞþPðX ¼ 2ÞþPðX ¼ 3ÞþPðX ¼ 4Þ ¼ PðXÞ ¼ 1
4. PðX\1Þ ¼ PðX ¼ 0Þ ¼ 0:65
5. PðX ¼ 3:5Þ ¼ Pð/Þ ¼ 0

(c) The probability that the mother has lost at least two children

PðX � 2Þ ¼ PðX ¼ 2ÞþPðX ¼ 3ÞþPðX ¼ 4Þ ¼ 0:08þ 0:03þ 0:02 ¼ 0:13

(d) The probability that the mother has lost at most two children

PðX � 2Þ ¼ PðX ¼ 0ÞþPðX ¼ 1ÞþPðX ¼ 2Þ ¼ 0:65þ 0:22þ 0:08 ¼ 0:95

(e) The expected number of children died

X P(X = x) xP(X = x)

0 0.65 0

1 0.22 0.22

2 0.08 0.16

3 0.03 0.09

4 0.02 0.08

Total
P

PðX ¼ xÞ ¼ 1 l ¼P x PðX ¼ xÞ ¼ 0:55
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The expected number of children died (mean of X) is

l ¼ EðXÞ ¼ 0� 0:65þ 1� 0:22þ 2� 0:08þ 3� 0:03þ 4� 0:02 ¼ 0:55

(f) The variance of X: The following table displays the computation of population
variance using relative frequency as probability.

X P X ¼ xð Þ ðx� lÞ ðx� lÞ 2 ðx� lÞ 2PðX ¼ xÞ
0 0.65 −0.55 0.3025 0.1966

1 0.22 0.45 0.2025 0.0446

2 0.08 1.45 2.1025 0.1682

3 0.03 2.45 6.0025 0.1801

4 0.02 3.45 11.9025 0.2381

Total 1.00 r2 ¼P ðx� lÞ2PðX ¼ xÞ ¼ 0:8276

The variance is r2 ¼P ðx� lÞ2PðX ¼ xÞ ¼ 0:8276:

4.4 Combinations

Notation (n!):n! is read “n factorial”. It is defined by

n! ¼ n n� 1ð Þ n� 2ð Þ. . . 2ð Þ 1ð Þ for n� 1

and for zero it is defined as

0! ¼ 1:

Example: 5! ¼ ð5Þð4Þð3Þð2Þð1Þ ¼ 120
The number of different ways for selecting r objects from n distinct objects is

denoted by nCr or
n
r

� �
and is given by

nCr ¼ n!
r! n� rð Þ! ; for r ¼ 0; 1; 2; . . .; n
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Notes:

1. nCr is read as “n” choose “r”.
2. nCn ¼ 1; nC0 ¼ 1;
3. nCr ¼ nCn�r (for example: 10C3 ¼ 10C7

4. nCr = number of unordered subsets of a set of (n) objects such that each subset
contains (r) objects.

Example 4.6 For n = 4 and r = 2,

4C2 ¼ 4!
2! 4� 2ð Þ! ¼

4!
2!� 2!

¼ 4� 3� 2� 1
ð2� 1Þ � ð2� 1Þ ¼ 6

4C2 = 6 = the number of different ways for selecting 2
objects from 4 distinct objects.

Example 4.7 Suppose that we have the set {a, b, c, d} of (n = 4) objects.
We wish to choose a subset of two objects. The possible subsets of this set with

two elements in each subset are

fa; bg; fa; cg; fa; dg; fb; dg; fb; cg; fc; dg

The number of these subsets is 4C2 ¼ 6:

4.5 Bernoulli Distribution

The Bernoulli distribution arises from a trial with two possible outcomes which are
termed traditionally as success or failure. Each trial with two outcomes may be
considered as a Bernoulli trial. The probabilities of success or failure are comple-
mentary to each other so that if the probability of success is denoted by p then the
probability of failure is 1 − p, where p satisfies 0� p� 1. One very familiar
example is if we randomly draw an individual then the selected individual may or
may not suffer from a disease at the time of survey with probability p of suffering
from the disease and with probability 1 − p = q of not suffering from the disease. In
that case, p + q = 1. A Bernoulli process consists of n repeated Bernoulli trials
where trials are independent with a constant probability of success, p. The Bernoulli
distribution plays a very important role in biostatistics and epidemiology.

The Bernoulli variable, X, is a binary variable with discrete probability mass
function as shown below

f ðx; pÞ ¼ PðX ¼ xÞ ¼ pxð1� pÞ1�x for x = 0,1
0 otherwise:

�
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Here the parameter of the Bernoulli distribution is p which implies that if p is
known then the probability distribution is completely specified.

The expected value and the variance of a Bernoulli variable X are

EðXÞ ¼ l ¼ p;

VarðXÞ ¼ pð1� pÞ:

Example 4.8 In a study on reproductive health conducted in a rural area, question
was asked to the women with their last pregnancy whether a pregnant woman had
weight taken during the time of antenatal care visit. If the response was yes then the
variable is defined as X = 1 for weight taken and X = 0 for weight not taken.
Sample size is n = 10. The sample values of X are: 1, 1, 0, 1, 1, 1, 0, 1, 0, 1.

The frequency distribution table is displayed below

X Frequency Relative frequency

0 3 0.3

1 7 0.7

Total 10 1.0

Here p = 0.7 and q = 1 − p = 0.3 implying that weight was taken for 7 out of
10 women and weight was not taken for 3 out of 10 women. The expected value
E(X) = p = 0.7 and the variance is Var(X) = p(1 − p) = 0.7 � 0.3 = 0.21. It may
be noted here that these relative frequencies are shown for a very small set of
hypothetical data and with a large sample size, these relative frequencies will tend
to corresponding true probabilities.

4.6 Binomial Distribution

Bernoulli Trial is an experiment with only two possible outcomes: S = success and
F = failure (boy or girl, sick or well, dead or alive, etc.). Binomial distribution is a
discrete distribution which is developed on the basis of a sequence of Bernoulli
trials. Binomial distribution is used to model an experiment for which:

1. The experiment has a sequence of n Bernoulli trials.
2. The probability of success is PðSÞ ¼ p, and the probability of failure is

PðFÞ ¼ 1� p ¼ q.
3. The probability of success PðSÞ ¼ p is constant for each trial.
4. The trials are independent, that is, the outcome of one trial has no effect on the

outcome of any other trial.

In this type of experiment, we are interested in the discrete random variable
representing the number of successes in the n trials.
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Let X = number of successes in the n trials, then the possible values of
X (number of success in n trails) are x = 0, 1, 3, …, n.

The random variable, X, has a binomial distribution with parameters n and p, and
we write X�Binomialðn; pÞ.

The probability distribution of X is given by

P X ¼ xð Þ ¼ nCxpxqn�x for x ¼ 0; 1; 2; . . .; n
0 otherwise

�
;

where nCx ¼ n!
x! n�xð Þ!.

We can write the probability distribution of X as displayed in the following table:

X PðX ¼ xÞ
0 nC0 p0 qn�0 ¼ qn

1 nC1 p1 qn�1

2 nC2 p2 qn�2

..

. ..
.

n- 1 nCn�1 pn�1 q1

n nCn pn q0 ¼ pn

Total 1

The Expected Value and the Variance of a Binomial Variable X
If X * Binomial(n, p), then using expectations defined in the previous section, the
expected value and the variance of a binomial variable X can be obtained.

The expected value or mean is EðXÞ ¼ l ¼ np and the variance is
VarðXÞ ¼ EðX � lÞ2 ¼ r2 ¼ npq.

Example 4.9 Suppose that the probability that an adult person is suffering from
diabetes in a population is 0.10. Suppose that we randomly select a sample of 6
persons.

(1) Find the probability distribution of the random variable (X) representing the
number of persons with diabetes in the sample.

(2) Find the expected number of persons with diabetes in the sample (mean of X).
(3) Find the variance of X.
(4) What is the probability that there will be exactly two persons with diabetes?
(5) What is the probability that there will be at most two persons with diabetes?
(6) What is the probability that there will be at least four persons with diabetes?

Solution
We are interested in the following random variable:

X = the number of persons with diabetes in the sample of six persons.
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Notes:

(i) Bernoulli trial: diagnosing whether a person has diabetes or not. There are
two outcomes for each trial, diabetic (S) or nondiabetic (F).

(ii) Number of trials = 6 or n = 6.
(iii) Probability of success: PðSÞ ¼ p ¼ 0:10:
(iv) Probability of failure: PðFÞ ¼ q ¼ 1� p ¼ 0:9.
(v) The trials are independent because of the fact that the result of each person

does not affect the result of any other person since the selection was made at
random.

The random variable, X, has a binomial distribution with parameters: n = 6 and
p = 0.10, that is X * Binomial (6, 0.10).

The possible values of X are X = x, where

x ¼ 0; 1; 2; 3; 4; 5; 6:

(1) The probability distribution of X is

P X ¼ xð Þ ¼ 6Cx 0:1ð Þx 0:9ð Þ6�x; x ¼ 0; 1; 2; 3; 4; 5; 6
0; otherwise:

�

The probabilities of all values of X are

P X ¼ 0ð Þ ¼ 6C0 0:1ð Þ0 0:9ð Þ6¼ 1ð Þ 0:1ð Þ0 0:9ð Þ6¼ 0:531441

P X ¼ 1ð Þ ¼ 6C1 0:1ð Þ1 0:9ð Þ5¼ 6ð Þ 0:1ð Þ 0:9ð Þ5¼ 0:354294

P X ¼ 2ð Þ ¼ 6C2 0:1ð Þ2 0:9ð Þ4¼ 15ð Þ 0:1ð Þ2 0:9ð Þ4¼ 0:098415

P X ¼ 3ð Þ ¼ 6C3 0:1ð Þ3 0:9ð Þ3¼ 20ð Þ 0:1ð Þ3 0:9ð Þ3¼ 0:014580

P X ¼ 4ð Þ ¼ 6C4 0:1ð Þ4 0:9ð Þ2¼ 15ð Þ 0:1ð Þ4 0:9ð Þ2¼ 0:001215

P X ¼ 5ð Þ ¼ 6C5 0:1ð Þ5 0:9ð Þ1¼ 6ð Þ 0:1ð Þ5 0:9ð Þ1¼ 0:000054

P X ¼ 6ð Þ ¼ 6C6 0:1ð Þ6 0:9ð Þ0¼ 1ð Þ 0:1ð Þ6 1ð Þ ¼ 0:000001

The probability distribution of X can be presented by the following table:

X PðX ¼ xÞ
0 0.531441

1 0.354294

2 0.098415

3 0.01458

4 0.001215

5 0.000054

6 0.000001
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The probability distribution of X can be presented by the following graph
(Fig. 4.2):

(2) The mean of the distribution (the expected number of men out of 6 with
diabetes) is

l ¼ np ¼ ð6Þð0:1Þ ¼ 0:6:

(3) The variance is

r2 ¼ npq ¼ ð6Þð0:1Þð0:9Þ ¼ 0:54:

(4) The probability that there will be exactly two men with diabetes is

PðX ¼ 2Þ ¼ 0:098415:

Fig. 4.2 Figure displaying binomial probabilities
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(5) The probability that there will be at most two men with diabetes is

PðX� 2Þ ¼ PðX ¼ 0ÞþPðX ¼ 1ÞþPðX ¼ 2Þ
¼ 0:531441þ 0:354294þ 0:098415

¼ 0:98415:

(6) The probability that there will be at least four men with diabetes is

PðX� 4Þ ¼ P X ¼ 4ð ÞþP X ¼ 5ð ÞþP X ¼ 6ð Þ
¼ 0:001215þ 0:000054þ 0:000001

¼ 0:00127:

Example 4.10 An experiment is conducted to select a sample of five patients
admitted to the emergency care in a hospital randomly. Let the probability of
selecting a patient with diabetes-related complications is 0.25. Here, the variable
X denotes the number of patients admitted to the emergency care with
diabetes-related complications. Then some of the typical questions relevant to the
study can be outlined as follows:

(a) Find the probability distribution of X.
(b) Find the probability that at least two patients have diabetes-related

complications.
(c) Find the probability that at most three patients have diabetes-related

complications.
(d) Find the expected number of patients with diabetes-related complications.
(e) Find the variance of the number of patients with diabetes-related complications

out of the five patients.

Solution
X = the number of patients out of five with diabetes-related complications

The Bernoulli trial is the process of diagnosing the person with diabetes-related
complications with

p = probability of selecting a patient in emergency care with diabetes-related
complications,

q = 1 − p = probability of selecting a patient in emergency care without
diabetes-related complications.

Here, n ¼ 5 ¼ number of patients selected randomly;

p ¼ 0:25;

q ¼ 1� p ¼ 0:75:
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(a) X has a binomial distribution Binomial distribution with parameter n ¼ 5 and
p ¼ 0:25 or X �Binomial 5; 0:25ð Þ:
The possible values of X = x are x = 0, 1, 2, 3, 4, 5.
The probability distribution is

P X ¼ xð Þ ¼ nCxpxqn�x; for x ¼ 0; 1; 2; . . .; n

0; otherwise

�

P X ¼ xð Þ ¼ 5Cxð0:25Þxð0:75Þ5�x; for x ¼ 0; 1; 2; 3; 4; 5

0; otherwise

(

X P(X = x)

0 5C0 � 0:250 � 0:755�0 ¼ 0:23730

1 5C1 � 0:251 � 0:755�1 ¼ 0:39551

2 5C2 � 0:252 � 0:755�2 ¼ 0:26367

3 5C3 � 0:253 � 0:755�3 ¼ 0:08789

4 5C4 � 0:254 � 0:755�4 ¼ 0:01465

5 5C5 � 0:255 � 0:755�5 ¼ 0:00098

Total
P

PðX ¼ xÞ ¼ 1

(b) The probability that at least two patients have diabetes-related complications is

PðX � 2Þ ¼ P X ¼ 2ð ÞþP X ¼ 3ð ÞþP X ¼ 4ð ÞþP X ¼ 5ð Þ
¼ 0:26367þ 0:08789þ 0:01465þ 0:00098

¼ 0:36719:

(c) The probability that at most three patients have diabetes-related complications is

PðX � 3Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð ÞþP X ¼ 2ð ÞþP X ¼ 3ð Þ
¼ 0:23730þ 0:39551þ 0:26367þ 0:08789

¼ 0:98437:

(d) The expected number of patients with diabetes-related complications out of the
five patients is

l ¼ np ¼ 5� 0:25 ¼ 1:25:

(e) The variance of the number of patients with diabetes-related complications is

r2 ¼ n pq ¼ 5� 0:25� 0:75 ¼ 0:93750:
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4.7 The Poisson Distribution

The Poisson distribution is used to model a discrete random variable representing
the number of occurrences or counts of some random events in an interval of time
or space (or some volume of matter). The possible values of X = x are x = 0, 1, 2, 3,
…

The discrete random variable, X, is said to have a Poisson distribution with
parameter (average or mean) k if the probability distribution of X is given by

P X ¼ xð Þ ¼ e�kkx

x! ; for x ¼ 0; 1; 2; 3; . . .
0; otherwise

�
;

where e = 2.71828 (the natural number). We can write X * Poisson (k).

Mean and Variance of the Poisson Distribution
If X * Poisson (k), then it can be shown that the mean and variance are equal.

The expected value of X is l ¼ k, and the variance of X is r2 ¼ k.

Example 4.11 Some random quantities that can be modeled by Poisson distribution
are

Note:

(i) k is the expected value of the distribution.
(ii) If X = the number of patients seen in the emergency unit in a day, and if

X * Poisson (k), then

1. the expected value of patients seen every day in the emergency unit = k,
2. the expected value of patients seen every month in the emergency

unit = 30k,
3. the expected value of patients seen every year in the emergency unit =

365k, and
4. the expected value of patients seen every hour in the emergency unit = k/24.

(i) number of patients in a waiting room in an hour,
(ii) number of surgeries performed in a month,
(iii) number of car accidents daily in a city,
(iv) number of rats in each house in a particular city, etc.

Also, notice that

(i) If Y = the number of patients seen every month, then
Y * Poisson (k*), where k* = 30k.

(ii) W = the number of patients seen every year, then
W * Poisson (k*), where k* = 365k,

(iii) V = the number of patients seen every hour, then
V * Poisson (k*), where k	 ¼ k

24.
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Example 4.12 Suppose that the number of accidents per day in a city has a Poisson
distribution with average 2 accidents.

(1) What is the probability that in a day

(i) the number of accidents will be 5,
(ii) the number of accidents will be less than 2.

(2) What is the probability that there will be six accidents in 2 days?
(3) What is the probability that there will be no accidents in an hour?

Solution

(1) X = number of accidents in a day

X� Poissonð2Þ ðk ¼ 2Þ

P X ¼ xð Þ ¼ e�22x

x!
; x ¼ 0; 1; 2; . . .

(i) P X ¼ 5ð Þ ¼ e�225
5! ¼ 0:036089

(ii) P X\2ð Þ ¼ P X ¼ 0ð ÞþP X ¼ 1ð Þ ¼ e�220

0!
þ e�221

1!
¼ 0:135335þ 0:270670 ¼ 0:406005:

(2) Y = number of accidents in 2 days

Y � Poissonð4Þ k	 ¼ 2k ¼ ð2Þð2Þ ¼ 4ð Þ

P Y ¼ yð Þ ¼ e�44y

y!
: y ¼ 0; 1; 2. . .

P Y ¼ 6ð Þ ¼ e�446

6!
¼ 0:1042:

(3) W = number of accidents in an hour

W � Poisson 0:083ð Þ k		 ¼ k
24

¼ 2
24

¼ 0:083
� �

P W ¼ wð Þ ¼ e�0:0830:083w

w!
: w ¼ 0; 1; 2. . .

P W ¼ 0ð Þ ¼ e�0:083 0:083ð Þ0
0!

¼ 0:9204:
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Poisson Approximation for Binomial Distribution
Suppose that the random variable X has a binomial distribution with parameter
n and p, that is X * binomial (n, p). If the number of trial is large (n ! ∞), and
the probability of success is small (p ! 0), and the quantity l = np remains
constant, then the binomial distribution, binomial (n, p), can approximated by
Poisson distribution Poisson(l), where l ¼ np. That is, for large n and small p we
have

Binomial (n, p) 
 Poisson(l)

n
x

� �
pxð1� pÞn�x 
 e�llx

x!
; x ¼ 0; 1; . . .; n;

where l = np.

Example 4.13 Let us consider that X has a binomial distribution with parameters
n = 5000 and p = 0.002. The probability that the number of success is less than or
equal to 5 or P(X � 5) can be obtained as follows.

Solution

(a) The probability of number of success less than or equal to 5 for X * binomial
(5000, 0.002):

PðX� 5Þ ¼
X5
x¼0

5000
x

� �
ð0:002Þxð0:998Þ5000�x ¼ 0:0669

(b) We can use the Poisson approximation of binomial for this problem because
n = 5000 is quite large and p = 0.002 is very small.

We can approximate the mean for Poisson distribution by the following
relationship:

l ¼ np ¼ 5000� 0:002 ¼ 10:

Using this as the parameter of the Poisson distribution as an approximation for
binomial, we obtain the probability of less than or equal to 5 for with parameter
l = 10, i.e., X * Poisson(10).

PðX� 5Þ ¼
X5
x¼0

e�1010x

x!
¼ 0:0671:

We observe that the approximation is quite satisfactory.
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4.8 Geometric Distribution

In an experiment, if we are interested in the random variable, X, representing the
total number of trials required in order to obtain the success for the first time after
X − 1 failures, then it follows a geometric distribution. The probability function of
the random variable, X, is

fXðxÞ ¼ PðX ¼ xÞ ¼ pð1� pÞx�1; x ¼ 1; 2; 3; . . .
0; otherwise

�

In this case, we can write X�GeometricðpÞ. The geometric distribution depends
on only one parameter which is the probability of success (p). The variable
X resembles in some sense incidence of disease.

Mean and Variance of the Geometric Distribution
The expected value and the variance of the geometric distribution are

lX ¼ EðXÞ ¼ 1
p
;

r2X ¼ VarðXÞ ¼ ð1� pÞ
p2

:

Example 4.14 Let us consider a hypothetical follow-up study on incidence of heart
disease. The study is continued until the incidence of heart disease is diagnosed
starting with no heart disease at the beginning of the study. Once an individual in
the sample is diagnosed with heart disease, the number of follow-ups required is the
variable X. We want to find the probability that the researcher needs to continue for
four follow-ups to find an incidence case of heart disease. Let us assume that the
probability of an incidence case is 0.3.

Solution
Let X be the random variable representing the number of follow-ups required to
diagnose the incidence of heart disease. The random variable, X has a geometric
distribution with parameter p ¼ 0:3 that is

X�GeometricðpÞ ¼ Geometricð0:30Þ:
The probability function is

fXðxÞ ¼ PðX ¼ xÞ ¼ 0:30� 0:7x�1; x ¼ 1; 2; 3; . . .
0; otherwise:

�
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The probability that four follow-ups will be necessary to find an incidence case
of heart disease at the fourth follow-up is

PðX ¼ 4Þ ¼ 0:3� ð0:7Þ3 ¼ 0:1029:

4.9 Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution. As we
have mentioned earlier, Bernoulli trial is an experiment that can have only two
outcomes (either success or failure) and a binomial random variable is the number of
times of obtaining the outcome of success when we independently perform the
Bernoulli trial n times. Analogically, a multinomial trial is an experiment that can
have k outcomes (say: A1;A2; . . .;Ak). It is assumed that the probability of the ith
outcome ðAiÞ is pi ¼ PðAiÞ, where ði ¼ 1; 2; . . .; kÞ, andPk

i¼1 pi ¼
Pk

i¼1 PðAiÞ ¼ 1.
Now, suppose that we independently repeat performing a multinomial trial

n times with the probabilities ðp1; p2; . . .; pkÞ being constant in each trial, and let us
define the random variable Xi to be the number of times we obtain the ith outcome
ðAiÞ. In this case, the random vector ðX1;X2; . . .;XkÞ follows a multinomial dis-
tribution with parameters ðn; p1; p2; . . .; pkÞ, and the probability function of this
multinomial distribution is:

P X1 ¼ x1;X2 ¼ x2; . . .;Xk ¼ xkð Þ ¼
n!

x1!x2!...xk !
px11 p

x2
2 . . .p

xk
k ; when

Pk
i¼1 xi ¼ n

0; otherwise:

�

Some Notes

1. The event X1 ¼ x1;X2 ¼ x2; . . .;Xk ¼ xkð Þ means that the outcome ðA1Þ occurs
ðx1Þ times, the outcome ðA2Þ occurs ðx2Þ times, …, and the outcome ðAkÞ occurs
ðxkÞ times when we independently repeat performing the multinomial trial
(n) times.

2. 0� pi � 1
3.
Pk

i¼1 pi ¼
Pk

i¼1 PðAiÞ ¼ 1

4.
Pk

i¼1 xi ¼ n
5. The value of one of the variables ðX1;X2; . . .;XkÞ can be determined by the

values of the other variables, for example, x1 ¼ n�Pk
i¼2 xi.

6. The random variable Xi follows a binomial distribution with parameters ðn; piÞ.
7. The mean of Xi is npi.
8. The variance of Xi is npið1� piÞ.
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Example 4.15 Suppose that we have conducted a study on three different types of
complications associated with a disease. The probability of suffering from com-
plication type 1 is 0.1, complication type 2 is 0.3, and complication type 3 is 0.6.
Let us select 6 patients randomly. Then, the following questions are asked.

(1) What is the probability of selecting 2, 1, and 3 patients with complication types
1, 2, and 3 respectively?

(2) What is the expected number of patients with complication type 2 in the
sample?

Solution
The trial is the procedure of selecting six patients with complication types 1, 2, and
3. Let A1 = complication type 1, A2 = complication type 2, A3 = complication type
3. The experiment is comprised of n = 6 trials. Then the probabilities of compli-
cation types are

p1 ¼ PðA1Þ ¼ P complication type 1ð Þ ¼ 0:1;

p2 ¼ PðA2Þ ¼ P complication type 2ð Þ ¼ 0:3; and

p3 ¼ PðA3Þ ¼ P complication type 3ð Þ ¼ 0:6:

Let us define X1 = number of patients with complication type 1, X2 = number of
patients with complication type 2 and X3 = number of patients with complication
type 3. The random vector (X1;X2;X3) follows a multinomial distribution with
parameters ðn ¼ 6; p1 ¼ 0:1; p2 ¼ 0:3; p3 ¼ 0:6Þ.
(1) The event ðX1 ¼ 2;X2 ¼ 1;X3 ¼ 3Þ = the event of getting 2 with complication

type 1, 1 with complication type 2 and 3 with complication type 3. The cor-
responding multinomial probability is

PðX1 ¼ 2;X2 ¼ 1;X3 ¼ 3Þ ¼ 6!
2!� 1!� 3!

0:12 � 0:31 � 0:63 ¼ 0:039:

(2) The expected number of patients with type 2 complication in the sample = the
expected value of X2 ¼ np2 ¼ 6� 0:3 ¼ 1:8.

4.10 Hypergeometric Distribution

Let us consider a population with two types of elements (or 2 categories). Each
element in the population can be classified as first type (success) or second type
(failure). Let us define the following quantities: N = population size, K = number
of elements of the first type in the population and N − K = number of elements of
the second type in the population. Suppose that we select a sample of n elements at
random from this population, and define the random variable, X, to be the number
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of elements of first type (number of successes) in the sample. We are interested in
finding the probability distribution of X.

To find the probability distribution of X, we should distinguish between two
cases since there are two methods of selection, which are selection with replace-
ment and selection without replacement.

(1) Case 1: If we select the elements of the sample at random and with replacement
(i.e., each selected element is replaced back to the population before the next
selection), then

X �Binomial n; pð Þ

where p ¼ K
N.

(2) Second case: suppose that we select the elements of the sample at random and
without replacement (i.e., each selected element is removed from the population
before the next selection). When the selection is made without replacement, the
random variable X has a hypergeometric distribution with parameters N, n, and
K, and we write X * h(N, n, K).

The probability distribution of X is given by

f ðxÞ ¼ PðX ¼ xÞ ¼ hðx;N; n;KÞ ¼

K

x

 !
�

N � K

n� x

 !

N

n

 ! ; x ¼ 0; 1; 2; . . .; n;

0; otherwise:

8>>>>>><
>>>>>>:

It should be noticed that the possible values of X must satisfy the following
inequalities: 0 � x � K and 0 � n − x � N − K implying 0 � x � K and
n − N + K � x � n or max{0, n − N + K} � x � min{K, n}.

Mean and Variance
The expected value and the variance of the hypergeometric distribution h(N, n,K) are

EðXÞ ¼ l ¼ n� K
N
;

VarðXÞ ¼ r2 ¼ n� K
N
� 1� K

N

� �
� N � n
N � 1

:

Example 4.16 Consider a hypothetical study on admission to emergency care in a
hospital with acute breathing problem. During the study period, 50 patients were
admitted, 15 males and 35 females. A sample of five patients has been selected
randomly without replacement.
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(1) What is the probability that exactly one male patient is found in the sample?
(2) What is the expected number (mean) of males in the sample?
(3) What is the variance of number of males in the sample?

Solution
There are two types or categories male and female. Let X = number of males in the
sample. We have N = 50, K = 15, and n = 5. Then X has a hypergeometric dis-
tribution with parameters N = 50, n = 5, and K = 15 which can be denoted by
X * h(N, n, K) = h(50, 5, 15) and the probability distribution of X is given by

f ðxÞ ¼ PðX ¼ xÞ ¼ hðx; 50; 5; 15Þ ¼

15
x

� �
� 35

5� x

� �
50
5

� � ; x ¼ 0; 1; 2; . . .; 15

0; otherwise

8>>>><
>>>>:

but the values of X must satisfy: 0 � x � K and n − N + K � x � n , 0
� x � 15 and −30 � x � 5, hence, the probability distribution of X is given by

f ðxÞ ¼ PðX ¼ xÞ ¼ hðx; 50; 5; 15Þ ¼

15
x

� �
� 35

5� x

� �
50
5

� � ; x ¼ 0; 1; 2; 3; 4; 5

0; otherwise:

8>>>><
>>>>:

(1) The probability that exactly one male is found in the sample is

f 1ð Þ ¼ P X ¼ 1ð Þ ¼ h 1; 50; 5; 15ð Þ ¼
15
1

� �
� 35

5� 1

� �
50
5

� � ¼
15
1

� �
� 35

4

� �
50
5

� �

¼ 15� 52360
2118760

¼ 0:3707

(2) The expected number of males is

EðXÞ ¼ n� k
N

¼ 5� 15
50

¼ 1:50:
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(3) The variance of the number of the females in the sample is

VarðXÞ ¼ r2 ¼ n
K
N

1� K
N

� �
N � n
N � 1

¼ 5� 15
50

� 1� 15
50

� �
� 50� 5
50� 1

¼ 0:9643:

The Relationship Between Hypergeometric and Binomial Distribution
The probability function of the binomial distribution is

bðx; n; pÞ ¼ n
x

� �
pxð1� pÞn�x; x ¼ 0; 1; . . .; n

and the probability function of the hypergeometric distribution is

hðx;N; n;KÞ ¼
K
x

� �
N � K
n� x

� �
N
n

� � ; maxf0; n� NþKg� x�minfK; ng:

If n is small compared to N and K, then the hypergeometric distribution h(x; N, n,
K) can be approximated by the binomial distribution b(x; n, p), where p ¼ K

N; i.e.,
for large N and K and small n, we have

h x;N; n;Kð Þ 
 b x; n;
K
N

� �
K

x

 !
N � K

n� x

� �

N

n

 ! 
 n

x

� �
K
N

� �x

1� K
N

� �n�x

; x ¼ 0; 1; . . .; n:

Note:

If n is very small compared to N and K, then there will be almost no difference
between selection without replacement and selection with replacement
K
N 
 K�1

N�1 
 � � � 
 K�nþ 1
N�nþ 1

� �
.

Example 4.17 Let us consider a random variable X follows a hypergeometric
distribution with parameters N = 10,000, n = 5, and K = 3000, i.e.

X� h N; n;Kð Þ ¼ h 10;000; 5; 3000ð Þ:
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Find P(X = 2) using the exact method and binomial approximation of hyper-
geometric distribution.

Solution

(1) Exact method

The exact probability using hypergeometric distribution is

PðX ¼ 2Þ ¼
3000
2

� �
7000
3

� �
10;000

5

� � ¼ 0:3088

(2) Approximate method

Since n = 5 is small relative to N = 10000 and K = 3000, we can approximate
the hypergeometric probabilities using binomial probabilities as follows:

n ¼ 5 number of trialsð Þ
p ¼ K=N ¼ 3000=10000 ¼ 0:3 probability of successð Þ

X� hðx; 10000; 5; 3000Þ 
 bðx; 5; 0:3Þ

PðX ¼ 2; 5; 0:3Þ ¼ 5

2

� �
ð0:3Þ2ð0:7Þ3 ¼ 0:3087

We notice that the approximation is very good.

4.11 Negative Binomial Distribution

The negative binomial distribution is based on an experiment consisting of a
sequence of repeated independent Bernoulli trials. The experiment is continued
until the rth success is obtained under the following conditions:

(i) Each trial has only two outcomes (success and failure).
(ii) The trials are independent.
(iii) The probability of success P(S) = p remains constant in each trial.
(iv) The number of success required is r, where r is a fixed given positive integer

(r = 1, 2, …).
(v) The experiment is immediately terminated once the rth success is obtained.

In the negative binomial experiment, we are interested in the random variable, X,
representing the total number of trials required to obtain the first r successes for the
first time. For example, let the experiment consists of independently continuing
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observing until r successes are observed and recording the number of trials required
to obtain r successes.

In the negative binomial experiment, we should notice the following:

(i) the number of successes is r (fixed number),
(ii) the number of trials is X (random variable),
(iii) the number of failures = X − r (random),
(iv) the result of the last trial (the Xth trial) is success,
(v) there are r − 1 successes and X − r failures in the first X − 1 trails (the trials

before the last one),
(vi) the number of trials required for obtaining the first r successes must not be

less than r (i.e., X � r),
(vii) the set of possible values of X is {r, r + 1, r + 2, …}.

The probability function of the random variable, X, is

fXðxÞ ¼ PðX ¼ xÞ ¼
x� 1

r � 1

 !
prð1� pÞx�r; x ¼ r; rþ 1; rþ 2; . . .

0; otherwise:

8><
>:

In this case, we write X�NBðr; pÞ. The negative binomial distribution depends
on two parameters which are the number of successes (r) and the probability of
success (p). The geometric distribution is a special case of the negative binomial
distribution where r ¼ 1. We should notice that NBð1; pÞ ¼ Geometric(pÞ.
Mean and Variance
The mean (expected value) and the variance of the negative binomial distribution
NBðr; pÞ are

lX ¼ EðXÞ ¼ r
p
;

r2X ¼ VarðXÞ ¼ rð1� pÞ
p2

:

Notes:

1. For the special case where r = 1, the negative binomial distribution NBð1; pÞ is
called the geometric distribution with parameter p, and in this case, the random
variable X �NBð1; pÞ ¼ Geometric(pÞ represents the total number of trials
required to obtain the first success.

2. In the case of negative binomial distribution, the number of trials is random and
the number of successes is fixed. While in the case of binomial distribution, the
number of trials is fixed and the number of successes is random.
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Example 4.18 Let us consider a hypothetical study on utilization of health care
services. For an elderly person, let the number of days required to make the rth visit
to a community hospital is of interest. Let us also consider that the probability of a
visit each time remains constant and it has been considered to be 0.4. The researcher
wants to find the probability of number of days required to make the third visit since
the start of the study. Suppose that the random variable X represents the total
number of days required to visit the community clinic for the third time.

(1) Find the probability distribution of X.
(2) What is the expected number (mean) of days required for an elderly to visit the

community clinic for the third time?
(3) What is the probability that 10 days will be needed to make the third visit to the

community clinic?

Solution

(1) The random variable, X has a negative binomial distribution with parameters:
r ¼ 3 and p ¼ 0:4, that is

X �NBðr; pÞ ¼ NBð3; 0:4Þ:

The probability function is

PðX ¼ xÞ ¼
x� 1
2

� �
� 0:43 � 0:6x�3; x ¼ 3; 4; 5; . . .

0; otherwise:

8<
:

(2) The expected number (mean) of days required to make the third visit is

lX ¼ EðXÞ ¼ r
p
¼ 3

0:4
¼ 7:5:

(3) The probability that the researcher will have to wait for ten days to observe the
third visit to the community clinic is

PðX ¼ 10Þ ¼ 9

2

 !
0:43ð0:6Þ7 ¼ 0:0645:

The negative binomial distribution provides answers to very useful questions
regarding count data. The geometric distribution is a special case of the negative
binomial distribution for r = 1. Sometimes, the negative binomial distribution is
used as an alternative to the Poisson distribution if there is overdispersion in the
data. As we know that in case of the Poisson distribution, there is equality of mean
and variance which may not represent some count data in reality where the variance
is greater than the mean resulting in overdispersion. The negative binomial distri-
bution can be employed to analyze such data instead of the Poisson distribution.
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4.12 Summary

The discrete probability distributions are introduced in this chapter. The general
rules of discrete probability distributions are illustrated and the concepts of
expected value and variance are shown. The rules are illustrated with a number of
examples. This chapter includes brief introduction of the Bernoulli distribution,
binomial distribution, Poisson distribution, geometric distribution, multinomial
distribution, hypergeometric distribution, and negative binomial distribution. The
important properties of these distributions are discussed and illustrated with
examples. The applications of these useful distributions are given high priority in
illustrations.

Exercises

4:1 Suppose that X be a discrete random variable with the following probability
distribution:

X PðX ¼ xÞ
0 K

1 0.2

2 0.3

3 0.2

4 0.1

Find the following:

(i) the value of k;
(ii) the expected value of X;
(iii) the expected value of X2;
(iv) the variance of X;
(v) the cumulative probability distribution of X;
(vi) PðX � 2Þ;
(vii) PðX[ 2Þ:

4:2 The following probability distribution represents probability of X = number
of complications a person suffers at old age in a community.

X 0 1 2 3 4 5

P(x) 0.01 0.09 0.15 0.40 0.25 0.10
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Find the probability that the number of complications is

(a) 0;
(b) more than 2;
(c) more than or equal to 3;
(d) 1�X � 3:

4:3 Suppose a diagnostic test conducted on five persons. The purpose is to
determine probability of x, the number who suffer from a certain disease.
Suppose that 20% of all the individuals suffer from the disease. Then find

(a) PðX ¼ xÞ;
(b) the mean and standard deviation of X;
(c) the probability of X � 2;
(d) the probability of X > 3;
(e) the probability of X = 1;
(f) Pð2\X � 4Þ:

4:4 If the mean number of serious accidents per week in a city is six, find the
probability of

(a) X = x;
(b) exactly seven accidents in a week;
(c) six or more accidents in a week;
(d) no accidents in a week;
(e) fewer than three accidents in a week;
(f) two accidents in a day;
(g) no accident in four weeks;
(h) variance of X.

4:5 Suppose that the percentage of pregnancy-related deaths during pregnancy is
25, 15% during delivery and 60% during postpartum period.

(i) What is the probability that out of seven pregnancy-related maternal
deaths, two occurred during pregnancy, one during delivery, and
remaining four during postpartum stage?

(ii) What is the probability that all the maternal deaths occurred during
postpartum period?

(iii) What is the probability that none of the maternal deaths occurred
during postpartum period?

(iv) Find the expected number of pregnancy-related deaths during preg-
nancy, during delivery, and during postpartum stage.

4:6 Suppose that a study is conducted to obtain subjects with a rare disease with
probability of success p = 0.001. Consider that the study is conducted on a
large number of subjects where n = 10,000. Then find the probability of
selecting less than or equal to 9 subjects with the rare disease.
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4:7 A study is conducted to find the probability of diagnosing an individual with
a complication associated with a certain disease. The subjects are observed
every month since the diagnosis of the disease. If it is known that the
probability of developing the complication is 0.2, then find the probability of
developing the disease in 5 months. Write the probability function and find
the mean and variance for number of months required for developing the
complication among the subjects diagnosed with the disease.

4:8 Suppose that in a study on 20 patients, 14 patients are already registered and
6 patients need to register in a clinic. If 5 patients are selected randomly
without replacement out of 20 patients for a quick survey regarding their
disease status then what is the probability that 4 of the patients are not
registered?

4:9 Suppose that in a study to diagnose a case with symptoms of infection among
the patients after surgery is 0.2. What is the probability that the third
infection case will be found after the seventh surgery?

Reference

Leiter, R. E., & Hamdan, M. A. (1973). Some bivariate models applicable to traffic accidents and
fatalities. International Statistical Review, 41(1), 87–100.
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Chapter 5
Probability Distributions: Continuous

5.1 Continuous Probability Distribution

Some important discrete distributions are introduced in Chap. 4. In many cases, we
need to deal with a continuous variable which takes values from continuous scale in
intervals rather than values of a variable which takes values from set of possible
countable outcomes. Some examples of continuous variables are time from onset of
a disease to an event such as recovery, height, weight, etc. In an interval, the values
of the continuous variables are infinite or uncountable. In this chapter, an intro-
duction of the continuous probability distributions is given with examples. The
normal and standard normal distributions are discussed.

5.2 Continuous Probability Distributions

For any continuous random variable, X, there exists a function, f(x), called the
probability density function (pdf) of X, for which the following conditions apply:

(i) The total area under the curve of f(x) equals to 1 (Fig. 5.1).
(ii) The probability that X lies between the points a and b equals to the area

under the curve of f(x) which is bounded by the point a and b.
(iii) In general, the probability of an interval event is given by the area under the

curve of f(x) corresponding to that interval.

If X is a continuous random variable then we can find probabilities as shown
below (Figs. 5.2 and 5.3)

(i) P X ¼ að Þ ¼ 0 for any a,
(ii) P X � að Þ ¼ P X\að Þ ¼ FðaÞ;
(iii) P X � bð Þ ¼ P X[ bð Þ ¼ 1� FðbÞ;
(iv) Pða�X� bÞ ¼ Pða�X\bÞ ¼ Pða\X� bÞ ¼ Pða\X\bÞ;
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(v) P X � xð Þ ¼ FðxÞ;
(vi) P X � að Þ ¼ 1� P X\að Þ ¼ 1� P X� að Þ ¼ 1� FðaÞ;
(vii) P a�X� bð Þ ¼ P X � bð Þ � P X� að Þ ¼ FðbÞ � FðaÞ (Fig. 5.3).

Fig. 5.1 Displaying areas under the probability density curves

Fig. 5.2 Figures displaying areas
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5.3 The Normal Distribution

The normal distribution is one of the most important continuous probability density
functions in statistics. It will be seen in the next chapters that the role of the normal
density function is manyfold. Many measurable characteristics are normally or
approximately normally distributed. The probability density function of the normal
distribution is given by

f x; l; r2
� � ¼ 1

r
ffiffiffiffiffiffi
2p

p e�
1
2

x�l
rð Þ2 ; �1\x\1;

where (e = 2.71828) and (p = 3.14159).
The parameters of the distribution are the mean l and the variance r2. The

continuous random variable, X, which has a normal distribution possessing several
important characteristics such as

Fig. 5.3 Figures displaying probabilities greater than or equal to a and between a and b
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(i) �1\X\1;
(ii) The area under the curve is 1 and it can be shown that

Z1
�1

f x; l; r2
� �

dx ¼
Z1
�1

1

r
ffiffiffiffiffiffi
2p

p e�
1
2

x�l
rð Þ2dx ¼ 1:

(iii) The density function of X, f(x), is a bell-shaped curve (Fig. 5.4).

The highest point of the curve of f(x) is at the mean l. Hence, the
mode = mean = l.
The curve of f(x) is symmetric about the mean l.
In other words, mean = mode = median.
The normal distribution depends on two parameters

mean ¼ l and standard deviation ¼ r:

(vii) If the random variable, X, is normally distributed with mean l and standard
deviation r (variance r2), we write X * N l; r2ð Þ.

(viii) The location of the normal distribution depends on l. The scale of the
normal distribution depends on r and if the values of these parameters are
known then the normal distribution is fully specified (Fig. 5.5).

Fig. 5.4 Figure displaying a normal distribution with mean l and variance r2
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5.4 The Standard Normal Distribution

The normal distribution with mean l ¼ 0 and variance r2 ¼ 1 is called the standard
normal distribution and is denoted by Normal (0,1) or N(0,1). The standard normal
random variable is denoted by Z, and we write

Z�N 0; 1ð Þ:

It can be shown that if X * Normal l; r2ð Þ, then Z ¼ X�l
r * Normal (0,1). The

mean and variance of the standard normal variate, Z, can be shown as follows:

EðZÞ ¼ E
X � l
r

� �
¼ EðXÞ � l

r
¼ EðXÞ � l

r
¼ l� l

r
¼ 0:

It may be noted here that l and r2 are constants and we know that expected
values on any constant remain same implying that EðlÞ ¼ l and E 1

r

� � ¼ 1
r.

Similarly, variance of Z is

Fig. 5.5 Comparison of normal distributions with X1 �Nðl1;r21Þ and X2 �Nðl2;r22Þ
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VarðZÞ ¼ Var
X � l
r

� �
¼ VarðXÞ

r2
¼ r2

r2
¼ 1:

In this case, as is shown in Chap. 2 that variance is independent of shift in origin
ðlÞ but depends on the change in scale ðrÞ then VarðaXÞ ¼ a2VarðXÞ where a ¼ 1

r

and VarðXÞ ¼ r2.
The probability density function (pdf) of Z * N(0,1) is given by (Fig. 5.6)

f ðzÞ ¼ Nðz; 0; 1Þ ¼ 1ffiffiffiffiffiffi
2p

p e�
1
2z

2

The standard normal distribution, N(0,1), is very useful and plays a very
important role in statistics because area under any normal curve can be calculated
from the probabilities of the standard normal distribution due to the fact that both
the mean and variance of the standard normal distribution are known hence the
distribution is fully specified. The following figures indicate the area under speci-
fied range of the standard normal variate, Z (Fig. 5.7).

Calculating Probabilities of Normal (0,1)
We need to know various probability calculations using the standard normal distri-
bution. The value for area under a specified value represents the corresponding prob-
ability. Suppose that Z * N (0,1). For the standard normal distribution Z * N(0, 1),
there is a special table used to calculate probabilities of the form

P Z � zð Þ:

(i) P Z � að Þ where z = a can be found from the table for Z. The probability of
less than or equal to z = a is given. Sometimes probabilities greater than any
value z = a or probabilities in tail areas of a standard normal distribution are
given too.

Fig. 5.6 Figure displaying a
standard normal distribution
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(ii) PðZ[ bÞ ¼ 1� PðZ� bÞ where PðZ� bÞ can be obtained from the standard
normal table for any specified value of z = b.

(iii) P a� Z� bð Þ ¼ P Z � bð Þ � P z� að Þ where PðZ� bÞ is obtained for
z = b and similarly PðZ� aÞ for z = a is also from the table.

Fig. 5.7 Areas under standard normal distribution curve
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(iv) If PðZ � aÞ where a\0 then it can be obtained from the table where
PðZ � aÞ is shown for a� 0. In case of a positive value PðZ� aÞ can be
found directly from the table as:

  20.0 10.0 00.0 z  90.0 ...

 0005.0 10.0  ... ...  9535.0 

  ....  ...  ...  ...  ...  ...

 8999.0 6.3 ..  9999.0 ... ... ...

Example 5.1 If z = 0.94 then find the probability for PðZ� 0:94Þ. Using the
relationship in (ii), we obtain

P Z � 0:94ð Þ ¼ 1� P Z� 0:94ð Þ
¼ 1� 0:8264

¼ 0:1736

Suppose that Z * N(0,1) then using (i), we can calculate the probability of
Z less than or equal to z = 1.72 as shown below

P Z� 1:72ð Þ ¼ 0:9573

144 5 Probability Distributions: Continuous



(3) If Z * N(0, 1) then the area under z = −1.65 and z = 1.48 can be calculated
using the standard normal table as follows

Pð�1:65� Z � 1:48Þ ¼ PðZ� 1:48Þ�

PðZ� � 1:65Þ ¼ 0:9306� 0:0548

¼ 0:8758

(4) P Z � 0ð Þ ¼ P Z� 0ð Þ ¼ 0:5
(5) To find the value of Z, if area under that value is given, let us define

P Z � zað Þ ¼ a where a is given and we want to find the value of za. As the
normal curve is symmetric about zero, it can also be shown that P Z� z1�að Þ ¼
1� a implies that za ¼ �z1�a because P Z� z1�að Þ ¼ 1� P Z � z1�að Þ ¼
1� ð1� aÞ ¼ a.

From the above relationship, it is seen that PðZ � z1�aÞ ¼ a. From table, we can
we can find this using the relationship

za ¼ �z1�a:
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Some examples are displayed in the following figures:

Example 5.2 Since the pdf of Z * N(0, 1) is symmetric about 0, we have

z1�a ¼ �za; and
za ¼ �z1�a:

For example, Z0:48 ¼ �Z1�0:48 ¼ �Z0:52
Z0:73 ¼ �Z1�0:73 ¼ �Z0:27:

Suppose that Z * N(0, 1).
If P Z � zað Þ ¼ 0:9306
Then za ¼ 1:48

z0:0694 ¼ z1�0:9306 ¼ �z0:9306 ¼ �1:48
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PðZ� zaÞ ¼ 0:9306; PðZ� Z0:9306Þ ¼ 0:9306;
za ¼ z0:9306; za ¼ z0:9306 ¼ 1:48;
PðZ� z1�aÞ ¼ PðZ � � zaÞ
PðZ� z1�0:9306Þ ¼ PðZ � � z0:9306Þ
z0:0694 ¼ z1�0:9306 ¼ �z0:9306 ¼ �1:48:

Example 5.3 Suppose that Z * N(0, 1). Find the value of k such that

PðZ � kÞ ¼ 0:0465:

Solution

k ¼ �1:68; k ¼ Z0:0465 ¼ �1:68

Using the relationship za ¼ �z1�a we find that

z0:0465 ¼ z1�0:9535 ¼ �z0:9535 ¼ �1:68:
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Example 5.4 If Z * N(0, 1), then some useful values are

z0:90 ¼ 1:285;
z0:95 ¼ 1:645;
z0:975 ¼ 1:96; and
z0:99 ¼ 2:325:

Using the result za ¼ �z1�a, it can also be shown that

z0:10 ¼ �z0:90 ¼ �1:285;

z0:05 ¼ �z0:95 ¼ �1:645;

z0:025 ¼ �z0:975 ¼ �1:96; and

z0:01 ¼ �z0:99 ¼ �2:325:

Calculating Probabilities of Normal (l, r2)
Recall the result based on the relationship between X and Z

X * Normal l; r2ð Þ and Z ¼ X�l
r � Normal (0,1).

Let us consider X � a and if we subtract l from X and divide by r then we can
rewrite equivalently

X � l
r

� a� l
r

which is essentially

Z� a� l
r

:
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Similarly, we can also show the following relationships:

1. P X � að Þ ¼ P Z� a�l
r

� �
2. P X � að Þ ¼ 1� P X� að Þ ¼ 1� P Z� a�l

r

� �
3. P a�X� bð Þ ¼ P X� bð Þ � P X � að Þ ¼ P Z� b� l

r

� �
� P Z � a� l

r

� �

Applications
Following examples show some applications of the normal distribution.

Example 5.5 Let us consider weight of women in reproductive age follows a
normal distribution with mean 49 kg and variance 25 kg2

(a) Find the probability that a randomly chosen woman in her reproductive age has
weight less than 45 kg.

(b) What is the percentage of women having weight less than 45 kg?
(c) In a population of 20,000 women of reproductive age, how many would you

expect to have weight less than 45 kg?

Solution Here the random variable, X = weight of women in reproductive age,
population mean = 49 kg, population variance= r2 = 25 kg2, population standard
deviation = r = 5 kg. Hence, X * Normal (49,25).

(a) The probability that a randomly chosen woman in reproductive age has weight
less than 45 kg is P X\45ð Þ:

P X � 45ð Þ ¼ P Z� 45� l
r

� �

¼ P Z� 45� 49
5

� �
¼ P Z � � 0:8ð Þ
¼ 0:2119:

(b) The percentage of women of reproductive age who have weight less than 45 kg
is P X � 45ð Þ � 100% = 0.2119 � 100% = 21.19%

(c) In a population of 20,000 women of reproductive age, we would expect that the
number of women with weight less than 45 kg is P X� 45ð Þ � 20,000 =
0.2119 � 20,000 = 4238.

Example 5.6 Let us consider that the birth weight of girls in rural community of
Bangladesh is 2.59 kg ðlÞ and the standard deviation is 0.43 kg ðrÞ.
(a) Find the probability that a randomly chosen girl has a birth weight between 3.0

and 4.0 kg.
(b) What is the percentage of girls who have a birth weight between 3.0 and

4.0 kg?
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(c) In a population of 100,000 girls, how many would you expect to have birth
weight between 3.0 and 4.0 kg?

Solution The random variable is X = birth weight of a girl in rural community in
Bangladesh, the population mean, l = 2.59 kg, the population standard deviation,
r = 0.43 kg, the population variance, r2 = (0.43 kg)2 = 0.1849 kg2, and it is
assumed that X is normally distributed then X * N (2.59,0.1849).

(a) The probability that a randomly chosen girl has a birth weight between 3.0 and
4.0 kg is P 3:0\X\4:0ð Þ.

P 3:0\X\4:0ð Þ ¼ P X\4:0ð Þ � P X � 3:0ð Þ

¼ P Z\
4:0� l

r

� �
� P Z� 3:0� l

r

� �

¼ P Z\
4:0� 2:59

0:43

� �
� P Z� 3:0� 2:59

0:43

� �
¼ P Z\3:27ð Þ � PðZ � 0:95Þ
¼ 0:99946� 0:82894 ¼ 0:17052:

(b) The percentage of girls who have a birth weight between 3.0 and 4.0 kg is

P 3:0\X\4:0ð Þ � 100% ¼ 0:17052� 100% ¼ 17:05%

(c) In a population of 100,000 Bangladeshi girls community, we would expect that
the number of babies with birth weight between 3.0 and 4.0 kg to be

P 3:0\X\4:0ð Þ � 100,000 ¼ 0:17052� 100,000 ¼ 17,052 girls:

5.5 Normal Approximation for Binomial Distribution

Suppose that the random variable, X, has a binomial distribution with parameters, n
and p, that is X * Binomial (n,p). If the number of trial is large (n ! ∞), and the
probability of success is close to half (p ! 0.5), then the binomial distribution,
binomial (n,p), can be approximated by Normal distribution N(l, r2),where l ¼ np
and r2 ¼ npð1� pÞ. That is, for large n, we have

Binomialðn; pÞ � Nðnp; npð1� pÞÞ:
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Then it can be shown that

X � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp � Nð0; 1Þ:

As X is a discrete variable and it has limiting distribution that is N(0,1), we need
a continuity correction to obtain probability for an interval

PðX ¼ xÞ ¼ Pðx� 0:5\X\xþ 0:5Þ
� P x�0:5�npffiffiffiffiffiffiffiffiffiffiffiffi

npð1�pÞ
p \Z\ xþ 0:5�npffiffiffiffiffiffiffiffiffiffiffiffi

npð1�pÞ
p

	 

:

Similarly, we can find the following probabilities using the limiting distribution:

PðX� xÞ ¼ PðX\xþ 0:5Þ � P Z\
xþ 0:5� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp
" #

;

PðX � xÞ ¼ PðX[ x� 0:5Þ � P Z[
x� 0:5� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp
" #

; and

Pðx1 �X � x2Þ

¼ Pðx1 � 0:5\X\x2 þ 0:5Þ � P
x1 � 0:5� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp \Z\
x2 þ 0:5� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp
" #

:

The following figures illustrate the idea of the continuity correction for the case
PðX ¼ xÞ and for the case PðX � xÞ (Fig. 5.8).

Fig. 5.8 Binomial
probability using continuity
correction for normal
approximation
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Example 5.7 Suppose that the random variable X has a binomial distribution with
parameters n = 100 and p = 0.5, i.e., X * Binomial(100,0.5). Find PðX� 45Þ
using an exact method and an approximated method.

Solution

(a) Calculating the exact probability using the fact that X * Binomial(100,0.5):

PðX � 45Þ ¼ P45
x¼0

100
x

� �
� 0:5x � 0:5100�x ¼ 0:1841:

(b) Calculating the approximated probability using normal approximation

We notice that n = 100 (n is large) and p = 0.5. The mean and the variance of
the distribution are, respectively,

l ¼ np ¼ 100� 0:5 ¼ 50

r2 ¼ npð1� pÞ ¼ 100� 0:5� 0:5 ¼ 25:

Therefore, we can approximate the distribution of X by the normal distribution
with mean l = 50 and variance r2 ¼ 25, as follows:

PðX� 45Þ ¼ PðX\45þ 0:5Þ ¼ PðX\45:5Þ � P Z\
45:5� 50ffiffiffiffiffi

25
p

� �
¼ 0:1841:

5.6 Summary

Two of the most essential continuous distributions, the normal probability distri-
bution and the standard normal probability distribution, are discussed in this chapter
with specific focus to the need of users who want to use these distributions in their
applications. In this chapter, examples are displayed in a way that the users will be
able to learn the applications of these distributions without ambiguity. The general
rules of a continuous distribution are illustrated and the relationship between
probability in an interval and cumulative probability are shown. The computational
procedures of probabilities are illustrated with many examples and figures using the
standard normal probability distributions.

Exercises

5:1 Find the following probabilities using the standard normal distribution:

(i) PðZ � 0Þ;
(ii) PðZ ¼ 1Þ;
(iii) PðZ � 1Þ;
(iv) PðZ � � 1Þ;
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(v) PðZ � 1Þ;
(vi) PðZ � � 1Þ;
(vii) PðZ � 1:75Þ;
(viii) PðZ � � 1:75Þ;
(ix) Pð1:68� Z � 2:75Þ;
(x) Pð�1� Z � 1Þ; and
(xi) Pð�1� Z � 2:45Þ:

5:2 Find the values of the standard normal variate for the following probabilities:

(i) PðZ � zaÞ ¼ 0:975;
(ii) PðZ � zaÞ ¼ 0:025;
(iii) PðZ � z0:05Þ ¼;
(iv) PðZ � zaÞ ¼ 0:01;
(v) PðZ � zaÞ ¼ 0:99;
(vi) PðZ � zaÞ ¼ 0:35; and
(vii) PðZ � zaÞ ¼ 0:65:

5:3 Using the relationship Za ¼ �Z1�a, find the following values of the standard
normal distribution variable:

(i) z0:2;
(ii) z0:7;
(iii) z0:01; and
(iv) z0:9:

5:4 For a normally distributed variable, X, where X �Nð25; 9Þ, find the following
probabilities:

(i) PðX � 25Þ;
(ii) PðX � 10Þ; and
(iii) Pð15�X� 40Þ:

5:5 Suppose that the mean duration of suffering from a viral infection is dis-
tributed normally with mean 10 days and standard deviation 5 days.

(i) Find the probability that a randomly selected subject will suffer for less
than 7 days.

(ii) Find the probability that a randomly selected subject will suffer from the
viral infection for more than 5 days.

(iii) Find the probability that the subject will suffer from the viral infection
for 8 to 12 days.

(iv) Find the number of days above which 70% of the subjects will suffer
from viral infection.
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5:6 Suppose that the money spent for medical purpose in among the elderly in a
community is $50 per month with a standard deviation $9.

(i) Find the amount of money or less spent by an elderly person in a month
such that the probability is 0.75.

(ii) Find the probability that an elderly person will spend less than $30.
(iii) Find the amount of money or more spent by an elderly subject with

probability 0.9.

5:7 In a study, it is found that the proportion of underweight children under
5 years in a community is 0.41. Let the sample size n = 200 and the random
variable X denotes the number of underweight children.

(i) Find the probability that the number of underweight children is less than
40.

(ii) Find the probability that the number of underweight children is greater
than 90.

(iii) Find the probability that the number of children lies between 50 and 80.
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Chapter 6
Sampling Distribution

6.1 Sampling Distribution

The probability distribution of a statistic is called the sampling distribution of that
statistic. The sampling distribution of the statistic is used to make statistical in-
ference about the unknown parameter. There may be question regarding probability
distribution of a statistic when the probability distribution of a variable is known. It
involves the role of a random sample in statistics. Let us consider a variable, X, and
the population of X is comprised of N elements denoted by ðX1; . . .;XNÞ which
means that whenever we draw a sample of size, n, the values in the sample must be
selected from these elements in the population. Before a sample is drawn, we do not
have any idea which values from the population are being selected although it is
known that n values in the sample must be from N values in the population. In that
case for each value of the sample, a random variable can be defined, which are
denoted by ðX1; . . .;XnÞ. The realization of random sample can be represented as
X1 ¼ x1; . . .;Xn ¼ xn where x1; . . .; xnð Þ. A random sample implies that each random
variable in a random sample can take any of the N values from the population. In
other words, n random variables in the random sample may take N � . . .� N ¼ Nn

possible samples with replacement. Here, the term with replacement indicates that if
one value from the population is already selected can be considered for being
selected again in subsequent draws in the same sample. That is the population
values can be selected multiple times in a sample. To avoid this repetition in the
same sample, we may use the other approach named as sampling without
replacement. Sampling without replacement ensures that if one value is drawn
already from the population in a sample, it will be dropped from the next selection.
In that case, the number of possible samples is N � ðN � 1Þ � . . .� ðN � nþ 1Þ
where there is no replacement in a single sample and considering the order of
selection. However, due to change in the order of selection in the sample which
occurs in n! ways, there are n! samples with same elements if the order is considered
in samples. Hence, to select samples without repetition within the sample (without
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replacement) or between samples (disregarding order), we have N � ðN � 1Þ �

. . .� ðN � nþ 1Þ=n! ¼ N

n

 !
samples without replacement disregarding the order

of selection in samples. This has a very useful interpretation with deep-rooted
implications in statistics. Let us illustrate with a small population size in the fol-
lowing example.

Example 6.1 Let us consider a population with four elements represented by
X1 ¼ 1;X2 ¼ 3;X3 ¼ 2; and X4 ¼ 4. The population size is N = 4. We want to
draw a sample of size n = 2. Let us define the random sample as X1;X2ð Þ. Then we
can select the samples by either with replacement or without replacement.

With replacement: The number of samples with replacement is 24 ¼ 16. The
samples are: (1, 1), (1, 3), (1, 2), (1, 4), (3, 1), (3, 3), (3, 2), (3, 4), (2, 1), (2, 3),
(2, 2), (2, 4), (4, 1), (4, 3), (4, 2), (4, 4).

Without replacement: The number of samples without replacement in each
sample is 4� 3 ¼ 12 and the samples are (1, 3), (1, 2), (1, 4), (3, 1), (3, 2), (3, 4),
(2, 1), (2, 3), (2, 4), (4, 1), (4, 3), (4, 2). It is clearly seen from these possible
samples that each sample is repeated 2! ¼ 2� 1 times if we disregard the order of
selection such as (1, 3) and (3, 1). Hence, the number of samples without
replacement within each sample (without replacement) and between samples (dis-

regarding order) is
4

2

 !
¼ 6. If we consider without replacement and disregard

order then the samples are: (1, 3), (1, 2), (1, 4), (3, 2), (3, 4), and (2, 4).
We have discussed about the random sample with or without replacement above.

The important point here is that we select only one sample out of all the possible
samples using with or without replacement. Let us consider a hypothetical situation
where all the possible samples could be drawn of same sample size, n. In that situation,
we could find the value of statistic for all the possible samples. As an example, let us
consider about the statistic, sample mean. If there are Nn possible samples with
replacement then the number of values of statistic, mean, will be Nn too. Similarly,

disregarding order the number of samples without replacement is
N

n

 !
. We can find

the frequency distribution and probability distribution of the mean based on these
values. This probability distribution is known as the sampling distribution. In other
words, probability distribution of a statistic is known as the sampling distribution.

6.2 Sampling Distribution of the Sample Mean

The sampling distribution of the sample mean is widely used in statistics. Suppose
that we have a population with mean l and variance r2 and let X1;X2; . . .;Xn be a
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random sample of size n selected randomly from this population. We know that the
sample mean is

�X ¼
Pn

i¼1 Xi

n
:

Example 6.2 Let us consider a population of size N = 5 and a sample of size n = 3.
The population elements are X1 ¼ 30;X2 ¼ 25;X3 ¼ 40;X4 ¼ 27; and X5 ¼ 35.
The random sample is X1;X2;X3ð Þ. All the possible samples, disregarding order and
obtained without replacement randomly, are shown below. The number of samples

using without replacement and disregarding order is
5

3

 !
¼ 10. The population

mean is l ¼
P5

i
Xi

5 ¼ 157
5 ¼ 31:40.

The mean of the sample means is Table 6.1

l ¼
P10

i
�Xi

10
¼ 314

10
¼ 31:40:

The population mean of the variable X and the population mean of means from
the random samples of size n are exactly the same. From the above example, we
observe that in both the cases, the mean is 31.40. This can be summarized as

EðXÞ ¼ l;

Eð�XÞ ¼ l:

This is an important property of the sampling distribution of mean.
It is observed that the value of the sample mean, X, varies from one random

sample to another. The value of X is random and it depends on the random sample.
Hence, the sample mean X is a random variable. The probability distribution of X is
called the sampling distribution of the sample mean, X.

Table 6.1 Sample means of
all possible samples of size 3
from a population of size 5

Sample X1 X2 X3 �X

1 30 25 40 31.67

2 30 25 27 27.33

3 30 25 35 30.00

4 30 40 27 32.33

5 30 40 35 35.00

6 30 27 35 30.67

7 25 40 27 30.67

8 25 27 35 29.00

9 25 40 35 33.33

10 40 27 35 34.00

6.2 Sampling Distribution of the Sample Mean 157



For the sampling distribution of the sample mean, we need to know the form of
the sampling distribution, the expected value of the mean of the sample mean, �X,
and the variance of the sample mean, �X.

6.3 Some Important Characteristics of the Sampling
Distribution of X

Mean and Variance of X
If X1;X2; . . .;Xn is a random sample of size n from any distribution with mean l

and variance r2, then:

1. The mean of X is

l�X ¼ l:

2. The variance of X is

r2�X ¼ r2

n
:

3. The standard deviation of X is called the standard error of X and is defined by

r�X ¼
ffiffiffiffiffiffi
r2�X

q
¼ rffiffiffi

n
p :

It may be noted here that the square root of the variance of a statistic is termed as
standard error. In this case, the standard error of the sample mean is rffiffi

n
p .

6.4 Sampling from Normal Population

If X1;X2; . . .;Xn is a random sample of size n from a normal population with mean
l and variance r2 that is Normal l; r2ð Þ, then the sample mean has a normal
distribution with mean l and variance r2=n that is
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1. X � Normal l; r
2

n

� �
.

The sampling distribution of the sample mean, �X, can be shown as

f ð�x; l; r2=nÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2=n

p e�
n

2r2
ð�x�lÞ2 ;�1\�x\1:

This is also a normal distribution with the same expected value as the expected
value of X but with a different variance. The expected value of �X is

Eð�XÞ ¼ E
X1 þ . . .þXn

n

� �

¼ EðX1Þþ . . .þEðXnÞ
n

¼ lþ . . .þ l
n

¼ l:

We know that the random samples can take values randomly from the population
with probability density function X �Nðl; r2Þ. Hence, EðX1Þ ¼ . . . ¼ EðXnÞ ¼ l.

Similarly, the variance of the sample mean, if X1; . . .;Xn are independent, is

Varð�XÞ ¼ Var
X1 þ . . .þXn

n

� �

¼ VarðX1Þþ . . .þVarðXnÞ
n2

¼ r2 þ . . .þ r2

n2

¼ nr2

n2

¼ r2

n
:

For variance also, the random variable in a random sample satisfies the
assumption that X �Nðl; r2Þ where population mean and population variance
remain same for all the random variables in a random sample. Hence, it can be
shown that VarðX1Þ ¼ . . . ¼ VarðXnÞ ¼ r2.

2. Z ¼ �X�l
r=
ffiffi
n

p �Normal ð0; 1Þ:
We use this result when sampling from normal distribution with known variance

r2. As we have shown that if X �Nðl; r2Þ then �X�Nðl; r2=nÞ implying that the
sampling distribution of the sample mean follows the normal distribution as well.
Hence, the standardized normal variate can be obtained for the sample mean as a
random variable which is
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Z ¼
�X � l
r=

ffiffiffi
n

p ;

where Z�Nð0; 1Þ.

6.4.1 Central Limit Theorem: Sampling from Non-normal
Population

Let X1;X2; . . .;Xn be a random sample of size n from non-normal population with
mean l and variance r2. If the sample size n is large or if n ! 1 then the sample
mean has approximately a normal distribution with mean l and variance r2=n that
is

(i) X � Normal l; r
2

n

� �
;

(ii) Z ¼ �X�l
r=
ffiffi
n

p � Nð0; 1Þ Normal ð0; 1Þ:

Note: “�” means “approximately distributed”.
We can use this result when sampling from non-normal distribution with known

variance r2 and with large sample size too.

6.4.2 If r2 is Unknown and Sample is Drawn from Normal
Population

If X1;X2; . . .;Xn is a random sample of size n from a normal distribution with mean
l and unknown variance r2 that is Normal l; r2ð Þ, then the statistic

T ¼
�X � l
S=

ffiffiffi
n

p

has a t-distribution with ðn� 1Þ degrees of freedom, where S is the sample standard
deviation given by

S ¼
ffiffiffiffiffi
S2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Xi � X
� �2
n� 1

s
:
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We write

T ¼
�X � l
S=

ffiffiffi
n

p � tðn� 1Þ;

where the sampling distribution of T is known as t-distribution with degrees of
freedom = df = m = n − 1.

6.5 The T-Distribution

The Student’s t-distribution is a distribution of a continuous random variable similar
to Z defined earlier. The difference between t and Z lies in the fact that although
both assume the random sample X1, X2, …, Xn is a random sample of size n from a
normal distribution with mean l and variance r2, i.e., N(l, r2), r2 is assumed to be
known for defining Z but it is not known for t and hence needs to be estimated. We
defined Z as

Z ¼
�X � l
r=

ffiffiffi
n

p �Nð0; 1Þ

which is theoretically correct if r2 is known. If r2 is unknown, we replace the
population variance r2 with the sample variance

S2 ¼
Pn

i¼1 Xi � X
� �2
n� 1

to define the following statistic known as T or Student’s T

T ¼
�X � l
S=

ffiffiffi
n

p :

Then we can define the statistic T more precisely as follows. If (X1, X2, …, Xn) is
a random sample of size n from a normal distribution and the random variables are
independent with mean l and variance r2, i.e., N(l, r2), then the statistic

T ¼
�X � l
S=

ffiffiffi
n

p

has a t-distribution with (n − 1) degrees of freedom and we write T � tðmÞ or
T � tðn�1Þ. The t-distribution with m degrees of freedom is
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f ðt; mÞ ¼ Þðmþ 1Þ=2
Þm=2 ffiffiffiffiffi

pm
p 1þ t2

m

	 
�ðmþ 1Þ
2

; �1\t\1:

The mean and variance of T are

EðTÞ ¼ 0;

VarðTÞ ¼ m
m� 2

; m[ 2:

The t-distribution is a continuous distribution, the value of random variable
T ranges from −∞ to +∞ (that is, −∞ < t < ∞), the mean of T is 0, variance is
m=ðm� 2Þ, and the shape of t-distribution is similar to the shape of the standard
normal distribution. It may also be noted that t-distribution ! standard normal
distribution as n ! ∞.

The following figure displays the t-distribution curves for different degrees of
freedom. It shows that as the degrees of freedom increases, the t-distribution curve
tends to standard normal distribution (Figs. 6.1 and 6.2).

Fig. 6.1 Comparison between normal and t-distributions
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Area under the t-distribution curves is shown for P(T < ta) and P(T < t1−a) in the
figures displayed below. The mean of T is zero and the curve is symmetric that
results in ta = −t1−a or t1−a = −ta.

It may be noted here that

(i) ta = the t-value under which we find an area equal to a = the t-value that
covers an area of a to the left.

(ii) The value ta satisfies: P(T < ta)= a.
(iii) Since the curve of the pdf of T * t(m) is symmetric about 0, we have

t1�a ¼ �ta;

for example t0.35 = −t1−0.35 = −t0.65, t0.86 = −t1−0.86 = −t0.14.

(iv) In a table for t-distribution, the values of ta are given for degrees of freedom. In
other words, the value of t depends on degrees of freedom which implies that if
the degree of freedom is specified then the area under a certain value of
T = t can be determined.

Example 6.3 Find the t-value with m = 14 that shows an area of

(a) 0.95 to the left,
(b) 0.95 to the right.

Solution
Here it is given that m = 14 which is and T * t14 (Fig. 6.3).

Fig. 6.2 Areas of t-distribution to the left and right tails
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(a) The t-value that determines an area of 0.95 to the left is

t0:95 ¼ 1:761:

(b) The t-value that leaves an area of 0.95 to the right is (Fig. 6.4)

t0:05 ¼ �t1�0:05 ¼ �t0:95 ¼ �1:761

Note: Some t-tables contain values of a that are greater than or equal to 0.90. When
we search for small values of a in these tables, we may use the fact that

Fig. 6.3 Area of t to the left with 14 degrees of freedom

Fig. 6.4 Area of t to the right with 14 degrees of freedom
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t1�a ¼ �ta

Example 6.4 For m = 10 degrees of freedom, find t0.93 and t0.07.

Solution

t0.93= (1.372 + 1.812)/2 = 1.592 (from the table)
t0.07 = −t1−0.07 = −t0.93 = −1.592 (using the rule: t1−a = −ta) (Fig. 6.5)

Applications

Example 6.5 Let us consider that the temperature of patients with acute nephritis of
renal pelvis origin may be greater than the individuals without having this disease
rise and let the temperature of patients is normally distributed with the population
mean 38.7 °C and the population standard deviation 1.82 Â °C. Find the proba-
bility that a random sample of 40 patients will have average temperature less than
38 °C.

Solution

X = the temperature of patient with acute nephritis of renal pelvis origin,
l = 38.7 °C,
r = 1.82 °C,
r2 = 3.31 °C2,
X�Nð38:7; 3:31Þ,
Sample size, n = 40.

It has been shown earlier that the sampling distribution �X is �X�N l; r2=nð Þ. The
sample mean obtained from the sample of size 40 is �x ¼ 37 and the population

Fig. 6.5 t0.93 for v = 10
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variance is assumed to be known as r2 = 3.31 °C2. Hence, the standard error of the

mean is r�X ¼
ffiffiffiffi
r2
n

q
¼

ffiffiffiffiffiffi
3:31
40

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:08275
p ¼ 0:2877.

Using the central limit theorem, �X has a normal distribution with mean l�X ¼
38:7 and variance r2�X ¼ 0:2877 that is

�X�N l;
r2

n

	 

¼ N 38:7; 0:2877ð Þ

Z ¼
�X � l
r=

ffiffiffi
n

p ¼
�X � 38:7
0:2877

�N 0; 1ð Þ

The probability that a random sample of 40 patients with acute nephritis of renal
pelvis origin will have an average temperature of less than 38 °C is

Pð�X\38Þ ¼ P
�X � l
r=

ffiffiffi
n

p \
38� l

1:82=
ffiffiffiffiffi
40

p
	 


¼ P
�X � 38:7

1:82=
ffiffiffiffiffi
40

p \
38� 38:7
0:2877

	 


¼ P Z\
38� 38:7
0:2877

	 

¼ P Z\� 2:43ð Þ
¼ 0:007549:

Example 6.6 If the mean and standard deviation of height of women in their
reproductive age is 152 cm and standard deviation is 5 cm then find the probability
that a random sample of size 50 women will yield a mean height between 150 and
154 cm.

Solution

X = the height of a woman in her reproductive period,
l = 152 cm,
r = 5 cm,
r2 = 25 cm2,
X�Nð152; 25Þ,
Sample size, n = 50.

It has been shown earlier that the sampling distribution �X is �X�N l; r2=nð Þ. The
standard error of the mean is r�X ¼

ffiffiffiffi
r2
n

q
¼

ffiffiffiffi
25
50

q
¼ ffiffiffiffiffiffiffiffiffi

0:50
p ¼ 0:7071.

Using the central limit theorem, �X has a normal distribution with mean l�X ¼
152 cm and variance r2�X ¼ 0:50 cm2 that is
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�X�N l;
r2

n

	 

¼ N 152; 0:50ð Þ

and it can be shown that

Z ¼
�X � l
r=

ffiffiffi
n

p ¼
�X � 152
0:7071

�N 0; 1ð Þ:

The probability that the random sample of 50 women will yield average height
in-between 150 and 154 cm is

Pð150\�X\154Þ ¼ P
150� l

5=
ffiffiffiffiffi
50

p \
�X � l
r=

ffiffiffi
n

p \
154� l

5=
ffiffiffiffiffi
50

p
 !

¼ P
150� 152

5=
ffiffiffiffiffi
50

p \Z\
154� 152

5=
ffiffiffiffiffi
50

p
 !

¼ P �1:4142\Z\1:4142ð Þ
¼ P Z\1:4142ð Þ � P Z\� 1:4142ð Þ
¼ 0:9213� 0:0787 ¼ 0:8426

Example 6.7 t-distribution for single sample
Let us consider that in a rural population, the mean weight of women in their

reproductive ages is 52 kg. The population variance is not known. Using the data
from a sample of size n = 24 from a normally distributed population, the sample
variance is s2 = 90.0217. Find the probability that a randomly selected woman of
childbearing age has weight less than 49 kg. Also, find the probability that a
randomly selected woman of childbearing age has weight in between 49 and 53 kg.

Solution
X = the weight of women in their childbearing age in a rural community,
l = 52 kg

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90:0217

p
¼ 9:4880 kg;

X�Nðl; r2Þ;

sample size, n = 24.
It is shown earlier that if r2 is unknown, then we use the sample variance and

replace the population variance r2 with

S2 ¼
Pn

i¼1 Xi � X
� �2
n� 1

:
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The Student’s T is defined as

T ¼
�X � l
S=

ffiffiffi
n

p ;

where T � tðmÞ or T � tðn�1Þ. The standard error of the mean for unknown variance isffiffiffiffi
S2
n

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
90:0217

24

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:7509
p ¼ 1:9367.

Now using the above results, we obtain

T ¼
�X � l
S=

ffiffiffi
n

p ¼
�X � 52
1:9367

which is tð23Þ.
The probability that a random sample of weights of 24 women in their child-

bearing period is less than 49 kg is

Pð�X\49Þ ¼ P
�X � l
S=

ffiffiffi
n

p \
49� l

9; 4880=
ffiffiffiffiffi
24

p
 !

¼ P
�X � l
S=

ffiffiffi
n

p \
49� 52
1:9367

	 


¼ P T\
49� 52
1:9367

	 

¼ P T\� 1:5490ð Þ ¼ 0:0675:

Now if we want to find the probability that a randomly selected woman will have
weight in between 49 and 53 kg then

Pð49\�X\53Þ ¼ P
49� l

9; 4880=
ffiffiffiffiffi
24

p \
�X � l
S=

ffiffiffi
n

p \
53� l

9; 4880=
ffiffiffiffiffi
24

p
 !

¼ P
49� 52
1:9367

\
�X � l
S=

ffiffiffi
n

p \
53� 52
1:9367

	 


¼ P
49� 52
1:9367

\T\
53� 52
1:9367

	 

¼ P �1:5490\T\0:5163ð Þ:

From the t-table, this probability can be obtained from the following:

P �1:5490\T\0:5163ð Þ ¼ P T\0:5163ð Þ � P T\� 1:5490ð Þ
¼ 0:6947� 0:0675 ¼ 0:6272:
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6.6 Distribution of the Difference Between Two Sample
Means (�X1 � �X2)

The difference between two sample means where random samples are considered
for two different populations is of interest in many applications. Let the two random
samples from populations 1 and 2 are denoted by X11; . . .;X1n1ð Þ for the first sample
with sample size n1 and X21; . . .;X2n2ð Þ for the second sample with sample size n2.
Here the first population is characterized with mean l1 and variance r21 and the
second population with mean l2 and variance r22. We are interested in comparing l1
and l2, or equivalently, making inferences about the difference between the means
(l1 − l2). In this case, to make any inference about the difference between two
means, we need the sampling distribution of the difference between two means. Let
us assume that we independently select a random sample of size n1 from the first
population and another random sample of size n2 from the second population. Let
�X1 and S21 be the sample mean and the sample variance of the first sample and �X2

and S22 be the sample mean and the sample variance of the second sample. Then the
sampling distribution of �X1 � �X2 is used to make inferences about l1 − l2.

The Sampling Distribution of �X1 � �X2

The mean, the variance, and the standard error of �X1 � �X2 are:
Mean of �X1 � �X2

l�X1��X2
¼ l1 � l2

Variance of �X1 � �X2

r2�X1��X2
¼ r21

n1
þ r22

n2
;

Standard error of �X1 � �X2

r�X1��X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�X1��X2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q
.

If the two random samples are selected from normal distributions (or non-normal
distributions with large sample sizes) with known variances r21 and, r22 then the
difference between the sample means (�X1 � �X2) has a normal distribution with
mean (l1 � l2) and variance ðr21=n1Þþ ðr22=n2Þ that is

�X1 � �X2 �N l1 � l2;
r21
n1

þ r22
n2

	 


and
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Z ¼ ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q �N 0; 1ð Þ:

In the above mentioned sampling distribution for the difference between two
means, the population variances are assumed to be known. If that assumption does
not hold true then we need to replace the population variance by the sample
variance as shown before in case of single sample. Let us consider that the dif-
ference between the sample means is

�X1 � �X2 �N l1 � l2;
r21
n1

þ r22
n2

	 


as before and the sample variances for samples 1 and 2 are

S21 ¼
Pn1
i¼1

ðX1i � X1Þ2

n1 � 1
; and

S22 ¼
Pn2
i¼1

ðX2i � X2Þ2

n2 � 1
:

Then we can define the statistic T as follows:

T ¼ ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1
þ S22

n2

q � tðn1 þ n2�2Þ

which is distributed as t with n1 þ n2 � 2ð Þ degrees of freedom. Here, degrees of
freedom are reduced by 2 from the total sample size, one from each sample, due to
the following reasons: (i) Initially, we assumed that the random variables in the
random samples from populations 1 and 2 have probability distributions
X1i �Nðl1; r21Þ and X2i �Nðl2; r22Þ respectively; (ii) If r21 and r22 are unknown
then while defining S21 and S22 for the random samples 1 and 2 respectively to
replace the corresponding population variances, we need to assume that population
means remain fixed that means the random samples have expected values equal to
the population means that are given by the sample means from the two random
samples. This restricts the random sample such that ðn1 � 1Þ and ðn2 � 1Þ values of
random samples 1 and 2 can be drawn randomly from populations 1 and 2,
respectively, without restrictions but to satisfy the condition that the random samples
have the means equal to the population means, one of the values from each random
sample has to be constrained to make the random sample mean equal to the corre-
sponding population. (iii) Hence, one degree of freedom is lost from each sample
resulting in a total degrees of freedom = ðn1 � 1Þþ ðn2 � 1Þ ¼ ðn1 þ n2 � 2Þ.
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Application

Example 6.8 Let us consider birth weights of two groups of babies with means and
standard deviations of 3.3 and 0.6 kg for the first group and 3.1 and 0.5 kg for the
second group. Find the probability of difference between means of birth weights from
random samples of two groups of babies is greater than 0.3 kg. Let the sample size for
the first group is 100 and the second group is 125. Also, find the probability of a
difference between mean weights of two groups of babies between 0.1 and 0.3 kg.

Solution
For the first group:

l1 ¼ 3:3 kg, r1 ¼ 0:6 kg, r21 ¼ 0:36 kg2, n1 ¼ 100.

For the second group:

l2 ¼ 3:1 kg, r2 ¼ 0:5 kg, r22 ¼ 0:25 kg2, n2 ¼ 125.

The mean, the variance, and the standard error of �X1 � �X2 are shown below.
Mean of �X1 � �X2 is

l�X1��X2
¼ l1 � l2 ¼ 3:3� 3:1 ¼ 0:2:

The variance of �X1 � �X2 is

r2�X1��X2
¼ r21

n1
þ r22

n2
¼ 0:36

100
þ 0:25

125
¼ 0:0056:

The standard error of �X1 � �X2 is

r�X1��X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�X1��X2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0056

p
¼ 0:0748:

The sampling distribution of �X1 � �X2 is

�X1 � �X2 �N 0:2; 0:0056ð Þ:

It can be shown that

Z ¼
�X1 � �X2ð Þ � 0:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0056
p �Nð0; 1Þ:

We can now find the probability of the difference between means of birth
weights greater than 0.3 kg from the following steps:

P �X1 � �X2 [ 0:3ð Þ ¼ P
ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
n1

þ r22
n2

q [
0:3� ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
n1

þ r22
n2

q
0
B@

1
CA
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P Z[
0:3� 0:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0056

p
	 


¼ P Z[
0:3� 0:2
0:0748

	 

¼ P Z[ 1:3368ð Þ

¼ 1� P Z� 1:3368ð Þ ¼ 1� 0:9082 ¼ 0:0918:

Similarly, the probability of a difference in between 0.1 and 0.3 kg can be
obtained from

Pð0:1\�X1 � �X2\0:3Þ ¼ P
0:1� ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
n1
þ r22

n2

q \
ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
n1
þ r22

n2

q \
0:3� ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
n1
þ r22

n2

q
0
B@

1
CA

Hence

P
0:1� 0:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0056

p \Z\
0:3� 0:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0056

p
	 


¼ P
0:1� 0:2
0:0748

\Z\
0:3� 0:2
0:0748

	 

¼ P 1:3368\Z\1:3368ð Þ ¼ P Z\1:3368ð Þ

� P Z\1:3368ð Þ
¼ 0:9082� 0:0918 ¼ 0:8164:

Application

Example 6.9 Let us consider weights of women in their reproductive age from two
populations. Suppose that the mean for populations 1 and 2 are 50 kg and 49 kg
respectively. The population variances are unknown and samples are drawn ran-
domly of size 12 and 10, respectively, from populations 1 and 2. The sample
variances are 30 kg2 for sample 1 and 25 kg2 for sample 2. Then find the proba-
bility of a difference between the sample means is greater than 3 kg. Also, find the
probability of a difference between the average weights in-between 1 and 2 kg.

For the first set:

l1 ¼ 50 kg, S1 ¼ 5:48 kg, S21 ¼ 30 kg2, n1 ¼ 12.

For the second set:

l2 ¼ 49 kg, S2 ¼ 5 kg, S22 ¼ 25 kg2, n2 ¼ 10.

The mean, the variance, and the standard error of �X1 � �X2 are:
Mean of �X1 � �X2 is

l�X1��X2
¼ l1 � l2 ¼ 50� 49 ¼ 1:
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The sample variance of �X1 � �X2 is

S2�X1��X2
¼ S21

n1
þ S22

n2
¼ 30

12
þ 25

10
¼ 5:

The standard error of �X1 � �X2 is

S�X1��X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2�X1��X2

q
¼

ffiffiffi
5

p
¼ 2:2361:

We can define the statistic T by

T ¼
�X1 � �X2ð Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21
n1
þ S22

n2

q � tðn1 þ n2�2Þ:

To find the probability of the difference between means of weights less than 3 kg

P �X1 � �X2\3ð Þ ¼ P
�X1 � �X2ð Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21
n1
þ S22

n2

q [
3� ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21
n1
þ S22

n2

q
0
B@

1
CA

P T [
3� 1ffiffiffi

5
p

	 

¼ P T [

2
2:2361

	 

¼ P T [ 0:4472ð Þ

¼ 1� P T � 0:4472ð Þ ¼ 1� 0:6702 ¼ 0:3298:

Here, the degrees of freedom of t is 20.
Similarly, the probability of a difference in between 0.1 and 0.3 kg can be

obtained from

P 0:1\�X1 � �X2\0:3ð Þ ¼ P
0:1� ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
n1

þ r22
n2

q \
�X1 � �X2ð Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
n1

þ r22
n2

q \
0:3� ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
n1

þ r22
n2

q
0
B@

1
CA:

Hence

P
0:1� 0:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0056

p \Z\
0:3� 0:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0056

p
	 


¼ P
0:1� 0:2
0:0748

\Z\
0:3� 0:2
0:0748

	 

¼ P 1:3368\Z\1:3368ð Þ ¼ P Z\1:3368ð Þ

� P Z\1:3368ð Þ
¼ 0:9082� 0:0918 ¼ 0:8164:
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6.7 Distribution of the Sample Proportion (p̂)

Let us define a random variable X = number of elements or subjects with a spec-
ified characteristic A. Let n = total number of elements in the sample. The proba-
bility that a randomly selected subject or element has characteristic A is denoted as
p which is essentially the proportion of elements or subjects with characteristic A in
the population. We know from the Bernoulli distribution that each subject or ele-
ment in a Bernoulli trial has a probability, p. Let us define Xi ¼ 1, if the ith
Bernoulli trial results in selecting an element or subject with characteristic A,
Xi ¼ 0, otherwise. If a sequence of n Bernoulli trials is performed independently
then the number of successes is X and it can be expressed as a binomial variable.

The random sample of size n is X1; . . .;Xnð Þ. Here X ¼Pn
i¼1

Xi = the number of

elements or subjects selected with characteristic A. Then the proportion is defined
for a random sample of size n as

p̂ ¼ X
n

which is a statistic.
We have to use the sampling distribution of p to make inferences about the

parameter, p. The mean of the sample proportion (p̂) is the population proportion
(p) that is

lp̂ ¼ p:

It is known that EðXiÞ ¼ p and EðXÞ ¼ E
Pn

i¼1 Xi
� � ¼Pn

i¼1 EðXiÞ ¼ np.
The variance of the sample proportion p can be defined as

Varðp̂Þ ¼ r2p̂ ¼ Var
X
n

	 

¼ VarðXÞ

n2
;

where

VarðXÞ ¼ Var
Xn
i¼1

Xi

 !
¼
Xn
i¼1

VarðXiÞ ¼ npð1� pÞ ¼ npq:

Hence, the variance of the sample proportion is

r2p̂ ¼
np 1� pð Þ

n2
¼ pq

n
:
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The standard error of the sample proportion, p̂, is

rp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

n

r
¼

ffiffiffiffiffi
pq
n

r
:

For large sample size (n� 30; np[ 5; nq[ 5), the sample proportion (p̂) has
approximately a normal distribution with mean lp̂ ¼ p and a variance r2p̂ ¼ pq=n
that is

p̂�N p;
pq
n

� �
;

Z ¼ p̂� pffiffiffiffipq
n

p �Nð0; 1Þ:

Example 6.10 Let us suppose that the proportion of under 5 children with under-
weight for their height is 17%. If a sample of 50 under 5 children is selected at
random, find the probability that

1. the proportion of children in the sample will be underweight for their height is
greater than 0.3, and

2. the proportion of children in the sample will be underweight for their height is
between 0.1 and 0.2.

Solution
The sample size is n = 50 which is greater than 30 and we may use the Central
Limit Theorem to obtain the sampling distribution characteristics of proportion. The
percentage of underweight children for their height is 17% which means that the
proportion of underweight children for their height is p ¼ 0:17.

Hence, the mean, variance, and standard error of p̂ are

lp̂ ¼ p ¼ 0:17;

r2p̂ ¼
pð1� pÞ

n
¼ 0:17� 0:83

50
¼ 0:1411

50
¼ 0:0028;

rp̂ ¼ 0:0531:

The asymptotic distribution of the sample proportion using the Central Limit
Theorem is standardized normal distribution as shown below

Z ¼ p̂� pffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

q � Nð0; 1Þ:

Then the probability that the sample proportion of underweight children for
height greater than 0.3 is
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Pðp̂[ 0:3Þ ¼ P
p̂� pffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q [
0:3� pffiffiffiffiffiffiffiffiffiffiffi

p 1�pð Þ
n

q
0
B@

1
CA

¼ 1� P
p̂� pffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q � 0:3� pffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q
0
B@

1
CA

¼ 1� P Z� 0:3� pffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q
0
B@

1
CA ¼ 1� P Z� 0:3� 0:17

0:0531

	 


¼ 1� P Z� 2:4482ð Þ ¼ 1� 0:9928 ¼ 0:0072:

Similarly, the probability that the sample proportion of underweight children for
height lies between 0.1 and 0.2 is

Pð0:1\p̂\0:2Þ ¼ P
0:1� pffiffiffiffiffiffiffiffiffiffiffi

p 1�pð Þ
n

q \
p̂� pffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q \
0:2� pffiffiffiffiffiffiffiffiffiffiffi

p 1�pð Þ
n

q
0
B@

1
CA

¼ P Z\
0:2� pffiffiffiffiffiffiffiffiffiffiffi

p 1�pð Þ
n

q
0
B@

1
CA� P Z� 0:1� pffiffiffiffiffiffiffiffiffiffiffi

p 1�pð Þ
n

q
0
B@

1
CA

¼ P Z\
0:2� 0:17
0:0531

	 

� P Z� 0:1� 0:17

0:0531

	 

¼ P Z\0:5650ð Þ � P Z� � 1:3183ð Þ
¼ 0:7140� 0:0937 ¼ 0:6203:

6.8 Distribution of the Difference Between Two Sample
Proportions, p̂1 � p̂2ð Þ

Let us consider random samples of size n1 and n2, respectively, from two different
populations. The random samples are defined as X11; . . .;X1n1ð Þ for population 1
and X21; . . .;X2n2ð Þ for population 2. The variables in the random samples in both
the cases are assumed to be Bernoulli trials for selecting elements or subjects
randomly with characteristic A, then let us define

X1 ¼
Pn1

i¼1 X1i = number of elements or subjects with characteristic A in the first
random sample,
X2 ¼

Pn2
i¼1 X2i = number of elements or subjects with characteristic A in the second

random sample,
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p1 = proportion of elements of type (A) in the first population,
p2 = proportion of elements of type (A) in the second population.

We are interested in comparing p1 and p2, or equivalently, making inferences
about p1 − p2. Let us assume that we independently select the random samples of
size n1 from the first population and another random sample of size n2 from the
second population, then

p̂1 ¼ X1
n1

= sample proportion of elements or subjects with characteristic A in ran-
dom sample 1,
p̂2 ¼ X2

n2
= sample proportion of elements or subjects with characteristic A in ran-

dom sample 2, and
p̂1 � p̂2 = difference between sample proportions.

The Sampling Distribution of p̂1 � p̂2
The mean of the difference between sample proportions p̂1 � p̂2ð Þ is

lp̂1�p̂2 ¼ p1 � p2:

We can show that

EðX1iÞ ¼ p1 and EðX1Þ ¼ E
Xn1
i¼1

X1i

 !
¼
Xn2
i¼1

EðX1iÞ ¼ n1p1;

and

EðX2iÞ ¼ p2 and EðX2Þ ¼ E
Xn2
i¼1

X2i

 !
¼
Xn2
i¼1

EðX2iÞ ¼ n2p2:

Hence

lp̂1�p̂2 ¼ E p̂1 � p̂2ð Þ ¼ E
X1

n1
� X2

n2

	 

¼ EðX1Þ

n1
� E X2ð Þ

n2
¼ p1 � p2:

The variance of the difference between two sample proportions where random
samples are drawn independently is

Varðp̂1 � p̂2Þ ¼ r2p̂1�p̂2 ¼ Var
X1

n1
� X2

n2

	 

¼ VarðX1Þ

n21
þ VarðX2Þ

n22
;
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where

VarðX1Þ ¼ Var
Xn1
i¼1

X1i

 !
¼
Xn1
i¼1

VarðX1iÞ ¼ n1p1ð1� p1Þ ¼ n1p1q1

and

VarðX2Þ ¼ Var
Xn2
i¼1

X2i

 !
¼
Xn2
i¼1

VarðX2iÞ ¼ n2p2ð1� p2Þ ¼ n2p2q2;

The variance of the difference between two sample proportions is

r2p̂1�p̂2 ¼
n1p1 1� p1ð Þ

n21
þ n2p2 1� p2ð Þ

n22
¼ p1q1

n1
þ p2q2

n2
:

The standard error of the sample proportion, p̂1 � p̂2, is

rp̂1�p̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
n1

þ p2q2
n2

r
:

For large samples sizes, the Central Limit Theorem can be used to show that the
difference between two sample means is asymptotically normal and the standard-
ized normal statistic can be defined as

Z ¼ ðp̂1 � p̂2Þ � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
n1

þ p2q2
n2

q �Nð0; 1Þ:

Example 6.11 Suppose that stunting among under 5 children in rural and urban
areas in a region are 45 and 36% respectively. We have randomly and indepen-
dently selected a sample of 120 rural and 100 urban children of under 5 years. What
is the probability that the difference between the sample proportions, p̂1 � p̂2, is
between 0.10 and 0.20?

Solution
The proportions in the populations are defined as

p1 = population proportion of under 5 children with stunting in rural area,
p2 = population proportion of under 5 children with stunting in urban area.

The estimates are
p̂1 = sample proportion of under 5 children with stunting in rural area,
p̂2= sample proportion of under 5 children with stunting in urban area.
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The population proportions given are p1 = 0.45 for rural area and p2 = 0.36 for
urban area and sample size for rural and urban areas are n1 ¼ 120 and n2 ¼ 100,
respectively. The difference between sample proportions is

lp̂1�p̂2 ¼ p1 � p2 ¼ 0:45� 0:36 ¼ 0:09

The variance and standard error of the difference between two sample estimates
can also be obtained as shown below

r2p̂1�p̂2 ¼
p1 � q1

n1
þ p2 � q2

n2

¼ 0:45� 0:55
120

þ 0:36� 0:64
100

¼ 0:0021þ 0:0023

¼ 0:0044:

The standard error of the difference between two sample proportions is

rp̂1�p̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 � q1

n1
þ p2 � q2

n2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0044

p

¼ 0:0663:

To find the probability of the difference between the sample proportions,
p̂1 � p̂2, between 0.10 and 0.20, we follow the steps shown below:

Pð0:10\p̂1 � p̂2\0:20Þ ¼ P
0:10� ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1q1
n1

þ p2q2
n2

q \
p̂1 � p̂2 � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1q1
n1

þ p2q2
n2

q \
0:20� ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1q1
n1

þ p2q2
n2

q
0
B@

1
CA

¼ P
0:10� ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1q1
n1

þ p2q2
n2

q \Z\
0:20� ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1q1
n1

þ p2q2
n2

q
0
B@

1
CA

¼ P
0:10� 0:10
0:0663

\Z\
0:20� 0:10
0:0633

	 

¼ P 0\Z\1:5798ð Þ
¼ P Z\1:5798ð Þ � P Z� 0ð Þ
¼ 0:9429� 0:5 ¼ 0:4429:
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6.9 Chi-Square Distribution (v2—Distribution)

We learned about the standardized normal distribution in Chap. 5. Let us consider a
random sample of size n, ðX1; . . .;XnÞ, from a normal population with mean l and
variance r2 expressed as X�Nðl; r2Þ then the standardized normal variable is
defined by

Z ¼ X � l
r

�Nð0; 1Þ:

The random sample is drawn independently from the identical normal distri-
bution X �Nðl; r2Þ. This implies that Xi; i ¼ 1; . . .; n is drawn independently from
the population such that Xi �Nðl; r2Þ that is each variable in the random sample
has an identical distribution. Then a chi-square is defined as the sum of squared
standardized normal variables for known l and r2 as shown below

v2 ¼
Xn
i¼1

Z2
i ;

where this is called chi-square statistic with n degrees of freedom and is denoted by
v2n.

It is not practical to use chi-square in situations when the population mean and
the variance are not known. Another problem with the chi-square statistic described
above is that the normality assumption may not hold in many instances. Let us
discuss these situations. If the mean and the variance of the normal population from
where the random sample is drawn are not known then we can define the following
components of a chi-square

v2n ¼
Xn
i¼1

Xi � l
r

	 
2

¼
Xn
i¼1

Xi � �Xð Þ2 þð�X � lÞ2
r2

" #

¼
Xn
i¼1

Xi � �Xð Þ2
r2

þ nð�X � lÞ2
r2

¼
Xn
i¼1

Xi � �Xð Þ2
r2

þ ð�X � lÞ2
r2=n

As we have shown earlier that �X�Nðl; r2=nÞ and �X�l
r=
ffiffi
n

p �Nð0; 1Þ then it follows
that

180 6 Sampling Distribution



�X � lð Þ2
r2=n

¼ Z2 � v21:

The other component is

Xn
i¼1

Xi � �Xð Þ2
r2

¼ ðn� 1ÞS2
r2

� v2n�1;

where S2 ¼
Pn

i¼1
Xi��Xð Þ2

n�1 and one degree of freedom is lost in the component of
chi-square due to replacing l by �X or, in other words, the sample mean is estimated
to replace the population mean that constrains the computation of chi-square by one
degree of freedom.

A continuous random variable X is defined to have a chi-square distribution if
the probability density function is

f ðxÞ ¼ 1

Þðr=2Þ2r=2 x
r=2�1e�x=2; 0\x\1:

This is a chi-square distribution with r degrees of freedom. The expected value is
r and the variance is 2r.

In most of the applications, we are interested in obtaining the critical value of the
v2-distribution which is that value of the random variable X that leaves an area
equal a to the right, this value is denoted by v2aðnÞ. More precisely, the critical value
v2aðnÞ is that value satisfying the following condition

PðX[ v2aðnÞÞ ¼ a:

Figure 6.6 illustrates this value.
Special tables are available in literature where we can find the critical values,

v2aðnÞ, for several values of a and n. The following figure illustrates how to use
these tables to find the value after determining the value of a and the value of the
degrees of freedoms n = df:

Fig. 6.6 Figure displaying
the shape of a chi-square
distribution
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Example 6.12 (1) Suppose that the random variable X has a v2 distribution with
parameter r = 10, i.e., X� v2ð10Þ. Find the value of the random variable X that
leaves an area equal a ¼ 0:05 to the right of it.

Solution
The value of the random variable X that leaves an area equal a ¼ 0:05 to the right of
it is v20:05ð10Þ ¼ 18:31. Figure 6.7 illustrates this value.

6.10 F-Distribution

The F-distribution is an important continuous distribution used in many statistical
applications. To introduce this distribution, suppose that we have two independent
chi-square random variables X and Y with degrees of freedoms n and m, respec-
tively, i.e., X � v2ðnÞ and Y � v2ðmÞ. The random variable F which is defined by
the following ratio:

Fig. 6.7 Area of chi-square with 10 degrees of freedom
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F ¼ X=n
Y=m

has an F-distribution with parameters n and m, and we write F�Fðn;mÞ. The F-
distribution is characterized by two parameters n and m and we can find the
probabilities of F on the basis of these degrees of freedom. In general, the F-
distribution is used extensively to compare sample variances and it has a wide range
of applications to compare two or more samples.

The sampling distribution of F is the probability density function of the ratio

F ¼ X=n
Y=m where X � v2ðnÞ and. Y � v2ðmÞ, n and m are degrees of freedom,

respectively. The sampling distribution of F is given by the density function

gðf Þ ¼ Þ ðnþmÞ=2 n=mð Þn=2
Þ n=2Þm=2

f n=2�1

1þ nf =mð ÞðnþmÞ=2 ; 0\f\1:

In most of the applications, we are interested in obtaining the critical value of
F which is that value of the random variable F that leaves an area equal a to the
right, this value is denoted by Faðn;mÞ. More precisely, the critical value Faðn;mÞ
is that value satisfying the following condition:

PðF[Faðn;mÞÞ ¼ a:

Figure 6.8 illustrates this value.
A special table is available in literature where we can find the critical value

Faðn;mÞ for several values of n, m, and a. The following figure illustrates how to
use these tables to find the critical value Faðn;mÞ after determining the value of a
and the values of the degrees of freedoms n and m:

Fig. 6.8 Figure displaying
the shape of an F-distribution
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Example 6.13 Suppose that the random variable F has an F-distribution with pa-
rameters n = 5 and m = 10, i.e., F�Fð5; 10Þ. Find the value of the random vari-
able F that leaves an area equal a ¼ 0:05 to the right of it.

Solution
The value of the random variable F that leaves an area equal a ¼ 0:05 to the right of
it is F0:05ð5; 10Þ ¼ 3:33. Figure 6.9 illustrates this value.

6.11 Summary

In this chapter, the concepts of sampling distribution are introduced. The meaning
of a sampling distribution is illustrated with examples in order to provide the users
with fundamental concepts in a step-by-step procedure. The sampling distributions
of mean for both small and large samples are discussed. The underlying assump-
tions about the distributions from which the samples are drawn and about the
population variance are also highlighted. Similarly, the sampling distributions of

Fig. 6.9 Figure displaying F-distribution with (5, 10) degrees of freedom
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difference between two means along with the underlying assumptions about the
populations are shown with examples. The sampling distributions of sample pro-
portion and difference between two proportions are discussed with examples. The
sampling distributions included in this chapter are normal, t, chi-square, and F-
distributions.

Exercises

6:1 Suppose that a population is comprised of 10 elements. The elements of the
population are X1 ¼ 10;X2 ¼ 7;X3 ¼ 15; X4 ¼ 16;X5 ¼ 5;X6 ¼ 11;X7 ¼
14; X8 ¼ 8;X9 ¼ 15;X10 ¼ 11.
In other words, the population size is N = 10. A sample of size n = 2 is to be
drawn randomly.

(i) How many samples can be drawn with replacement?
(ii) How many samples can be drawn without replacement?
(iii) Find the sample means of all possible samples that can be drawn

without replacement.
(iv) Find the population mean, l.
(v) Find the population variance, r2.
(vi) Find the expected value of the sample mean, �X; l�X :

(vii) Find the variance of the sample mean, �X, r2�X .
(viii) Using the above results, are the following statements true?

(a) l�X ¼ l;
(b) r2�X ¼ r2

n .

6:2 Suppose X is distributed as normal with population mean 10 and population
variance 4. For a random sample of size 9, what is the sampling distribution
of the sample mean, �X? Also, define the standard normal variate using the
given information.

6:3 Let us consider a non-normal population with mean 150 and variance 25.
How can you find the sampling distribution of the sample mean for a random
sample of size n = 100? What are the underlying preconditions for the
asymptotic sampling distribution?

6:4 Find the following values for m ¼ 14:

(a) (i) t0:05,
(ii) t0:95,
(iii) t0:01,
(iv) t0:025, and
(v) t0:001.

6:5 Find the following probabilities:

(i) Pð�1:476\T\1:476Þ for m ¼ 5,
(ii) Pð�1:7959\T\1:7959Þ for m ¼ 11,
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(iii) Pð�2:1009\T\2:1009Þ for m ¼ 18,
(iv) PðT\� 2:500Þ for m ¼ 23, and
(v) PðT [ 2:500Þ for m ¼ 23.

6:7 Suppose that the variable X be a normal distribution with population mean 15
and standard deviation 3.5. A study is conducted with sample size n = 70.

(i) What is the sampling distribution of the sample mean �X?
(ii) Find the probability Pð�X\17Þ.
(iii) Find the probability Pð�X[ 12Þ.
(iv) Find the probability Pð12\�X\17Þ.

6:8 Let X be distributed with population mean 40 and variance 16 where the
population is not normal. If a random sample of size 100 is drawn from the
population then find:

(i) the sampling distribution of the sample mean �X,
(ii) the probability Pð�X\25Þ,
(iii) the probability Pð�X[ 45Þ,
(iv) the probability Pð30\�X\50Þ.

6:9 Let the variable X be normal with population mean 125 but the population
variance is unknown. A random sample of size 16 is drawn from the pop-
ulation and the sample variance is obtained where the sample variance s2 is
81. Then find:

(i) the sampling distribution of the sample mean �X,
(ii) the probability Pð�X\100Þ,
(iii) the probability Pð�X[ 150Þ,
(iv) the probability Pð90\�X\150Þ.

6:10 The population mean, and variance of a characteristic, X, of two groups of
individuals are l1 ¼ 25; r21 ¼ 9 for group 1 and l2 ¼ 31; r22 ¼ 12 for group
2. In a study on the difference between two population means, the sample
sizes for groups 1 and 2 are 100 and 150, respectively.

(i) Show the sampling distribution of the difference between two popu-
lation means.

(ii) Find the probability Pð�X1 � �X2 [ 10Þ.
(iii) Find the probability Pð�X1 � �X2\5Þ.
(iv) Find the probability Pð2\�X1 � �X2\7Þ.

6:11 Suppose that the population mean and variance of a variable, X, for group
A are
l1 ¼ 10 and r21 ¼ 5 and for group B are l2 ¼ 12 and r22 ¼ 7. A study is
conducted to find the difference between two population means. The sample
sizes for groups A and B are 11 and 14, respectively.
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(i) What is the sampling distribution of �X1 � �X2?
(ii) Find the probability Pð�X1 � �X2 [ 4Þ.
(iii) Find the probability Pð�X1 � �X2\1Þ.
(iv) Find the probability Pð1\�X1 � �X2\4Þ.

6:12 In a population, the proportion of infants suffering from high fever during the
month of December in a community is believed to be 0.2. A random sample
of 100 infants is drawn randomly from the population.

(i) What is the sampling distribution of sample proportion for large
sample size?

(ii) Find the probability that more than 30% of the infants suffered from
high fever.

(iii) What is the probability that less than 10% of the infants suffered from
high fever.

(iv) What is the probability that the proportion of infants suffered from
high fever lies between 0.1 and 0.3?

6:13 Two independent samples are drawn from male and female populations with
proportion of a complication associated with a chronic disease. The pro-
portion of complication among the male population is 0.25 and among the
female population is 0.20. The sample size for male is 150 and for female is
175.

(i) What is the sampling distribution of the difference between sample
proportions for male and female?

(ii) Find the probability that the difference between male and female
proportions is less than 1%.

(iii) Find the probability that the probability of a difference between male
and female proportions having complications greater than 10%.

(iv) What is the probability that the difference between proportions of male
and female suffering from complications lies between 0.03 and 0.07?
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Chapter 7
Estimation

7.1 Introduction

Statistical inference refers to the methods by which we arrive at a conclusion about
a population on the basis of the information contained in a sample drawn from that
population. The sample is drawn from a population randomly and hence a random
sample of size n considers a method of selecting a sample with predetermined
probability. We have discussed about the sampling distribution of statistics in
Chap. 6 and it is shown that a sampling distribution provides the underlying
probability distribution of the statistics by which we try to generalize for popula-
tion. As the sampling distribution is based on all the possible samples from a
population of size N, the expected value, variance, and other population charac-
teristics can be obtained theoretically from the statistics of a random sample.
Statistical inference is comprised of two broad components: (i) estimation and
(ii) test of hypothesis. Estimation refers to the methods of finding the value of
statistic from a sample corresponding to its population value such that it satisfies
some good properties to represent a parameter. On the other hand, once we obtain a
value to estimate the corresponding population value or parameter, it is needed to
know whether the sample value used as an estimate is close to the true value. This
issue is of great importance in statistics and there are various techniques to make
comment or to make decision about generalizing the estimates obtained by esti-
mating parameters for the population as a whole. As the estimates are obtained from
randomly drawn samples, it is likely that the values we consider to be population
characteristics may differ from the true value. It means that although drawn from the
population, a sample estimate may not be exactly equal to the corresponding
parameter. Hence, as a statistician or biostatistician, it is necessary to provide
procedures to make decision about the population values such that with the help of
underlying sampling distribution, we may come up with decision about the popu-
lation value where underlying probability distribution of statistic or sampling dis-
tribution plays an important role.
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Let us consider two examples here to highlight the role of estimation and test in
biostatistics. In the first example, let us consider a study to find the mean duration of
breastfeeding in a population. A random sample ðX1; . . .;XnÞ is considered with
X� f ðx; l;r2Þ and the sample observations are X1 ¼ x1; . . .;Xn ¼ xn. The sample
mean of the duration is found to be �x. Let the sampling distribution of �X be known
or assumed and we also know that Eð�XÞ ¼ l where l is the population mean of the
population from which the random sample is drawn. Then the statistical procedure
to establish �x as an estimate of l is called a method of estimation. Once we obtain
an estimate for l, the next step is to confirm whether the population mean is a
specified value, say l ¼ l0. Based on the sample mean and also using the sampling
distribution of the sample mean, we may not reject or reject the hypothesis that the
mean duration of breastfeeding in the population is l ¼ l0.This is a typical problem
of test of hypothesis. In other words, a test of hypothesis is used to generalize the
findings from the sample estimates for the population from where the sample is
drawn randomly. In a study on old age population, the proportions of males and
females suffering from high blood pressure are estimated. The sample values or
statistics are p̂1 and p̂2 and the corresponding parameters are p1 and p2, respectively.
In this case, p̂1 and p̂2 may be used to estimate the population values or parameters
p1 and p2. The estimates are computed from sample values as p̂1¼ X1

n1
and p̂2 ¼ X2

n2
where X1 and X2 are number of males and females with high blood pressure, and
n1 and n2 are number of males and females in the survey. The sample values or
statistics of proportions with high blood pressure among males and females are used
to represent the population values. As the sample is drawn randomly, we can show
that expected values of the sample proportions are equal to the parameters. The way
the sample values are chosen to estimate the parameters is a technique of estima-
tion. Once we have the estimates, let us test for the hypothesis that proportion of
males and females suffering from high blood pressure are the same in the popu-
lation. If not same, then either males or females may suffer from high blood
pressure at a higher proportion. Using the sampling distribution of difference
between sample proportions, we can come up with a decision regarding
non-rejection or rejection of the hypothesis. The means to test the difference or
equality of sample proportions is performed by using a method of test of hypoth-
esis. We try to arrive at a correct decision about the population characteristic on the
basis of a sample value known as estimate and a test of hypothesis.

7.2 Estimation

Let us assume that some characteristics of the elements in a population be repre-
sented by a random variable X with probability density f ðx; hÞ where the form of the
probability density function is assumed known except that it contains an unknown
parameter, h. If h were known, the density function would be completely specified,
and there would be no need to make inferences about it. We assume that the values
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ðx1; . . .; xnÞ of a random sample ðX1; . . .;XnÞ from f ðx; hÞ can be observed. It is
desired to estimate the value of the unknown parameter, h.

This estimation can be made in two ways:

i. Point estimation: If some statistic, say �X, represents or estimates the unknown
parameter, l, then �X is called a point estimator. A point estimate is a single
value such as �X ¼ �x used to estimate the corresponding population parameter.
Hence, a point estimator is a statistic that represents the function of random
variables of a random sample to represent or estimate an unknown parameter
and any single value of the statistic or more specifically estimator in this case
used to estimate the parameter is a point estimate.

ii. Interval estimation: Let us define two statistics, L and U, where L < U such that
(L, U) constitutes an interval for which the probability can be determined that it
contains the unknown parameter. An interval estimate consists of two numer-
ical values defining a range of values that most likely includes the parameter
being estimated with a specified degree of confidence.

There are two problems that we need to address in point estimation:

(i) to desire some means of obtaining a statistic to use as an estimator,
(ii) to select criteria and techniques to define and find best estimator among many

possible estimators.

7.2.1 Methods of Finding Point Estimators

Let X1; . . .;Xn be a random sample from a population density or mass function,
fXðx; hÞ, which is denoted as f ðx; hÞ in this book for simplicity, where the form of
the density is known but the parameter is unknown. We need to find statistics,
functions of observations to be used as estimator of the parameter.

Estimator and Estimate
Any statistic is a function of observable random variables that is itself a random
variable. The value of statistic that is used to estimate the parameter, say h, is called
the estimator of the parameter h. Any specific value of the estimator from a sample

is called as estimate. Example: �X ¼
Pn

i¼1
Xi

n is an estimator of mean l and �x ¼Pn

i¼1
xi

n is an estimate where X1 ¼ x1; . . .;Xn ¼ xn are the realizations of the variable
by the sample observations. It may be noted here that the estimator, �X, is a random
variable because it is a function of observable random variables X1; . . .;Xn and the
estimate, �x, is a specific value of the function from the sample observations.

Sometimes, it is an easy task to find estimators, for example, estimating a
parameter with its sample analogue is usually reasonable. In particular, the sample
mean is a good estimate for the population mean. In more complicated models, we
need to use a more methodical way. The most extensively used techniques of
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estimating parameters are: (i) method of moments, (ii) method of maximum like-
lihood, and (iii) method of least squares. We will illustrate the first two methods
very briefly in this section and the third method will be discussed in Chap. 9.

Method of Moments

The method of moments is the oldest technique for estimating parameters of a
probability distribution. This method is simple to use and almost always yields
some sort of estimate. However, method of moments sometimes provides estimator
that needs improvement. If other methods are intractable, method of moments can
be a good starting point.

Let ðX1; . . .;XnÞ be a sample from a population with probability density function
(pdf) or probability mass function (pmf), fXðx; hÞ, then the method of moments
estimators is found by equating the first k sample moments to the corresponding
k population moments if there are k parameters to be estimated, and solving the
resulting system of simultaneous equations, we obtain the estimates. In other words,
if there is a single parameter, then we have to use the first sample moment and
equating with the first population moment. Similarly, if there are two parameters,
we can use the first two sample and population moments.

If there are k parameters, then we need first k raw sample and population
moments as defined below:

SampleMoments PopulationMoments

m0
1 ¼

Pn

i¼1
xi

n l01 ¼ EðXÞ
m0

2 ¼
Pn

i¼1
x2i

n l02 ¼ EðX2Þ
..
. ..

.

m0
k ¼

Pn

i¼1
xki

n l0k ¼ EðXkÞ

Then the estimates are obtained for the k parameters by solving the following
simultaneous equations:

~l01 ¼ m0
1;

~l02 ¼ m0
2;

..

.

~l0k ¼ m0
k:

Example 7.1 Let ðX1; . . .;XnÞ be a random sample from a Poisson distribution with
parameter k, then

l01 ¼ EðXÞ ¼ k
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and

m0
1 ¼

Pn
i¼1 xi
n

¼ �x:

Hence, the method of moments estimate for k is

~k ¼ �x:

Method of Maximum Likelihood

The concept of a joint distribution arises if we draw a random sample of size n from
a multivariate population. If a sample of size n is drawn from a population
simultaneously, we need to define the underlying joint probability for
X1 ¼ x1; . . .;Xn ¼ xn. The joint probability density or mass function is

f ðx1; . . .; xn; hÞ

where this joint distribution expresses the probability distribution for the random
sample values X1 ¼ x1; . . .;Xn ¼ xn. Here h is unknown. The joint distribution
involves not only parameters of a univariate distribution but also parameters for
association or correlation between random sample variables X1; . . .;Xn. However, if
the random variables X1; . . .;Xn are independent then there is a simple relationship
between joint distribution and univariate distributions as shown below

f ðx1; . . .; xn; hÞ ¼ f ðx1; hÞ . . . f ðxn; hÞ:
It means that the joint distribution is the multiplication of marginal probabilities

under independence of the random variables.
It is stated in case of a random sample that the joint probability of X1 ¼

x1; . . .;Xn ¼ xn is of concern in a joint distribution and once the parameter is
known, then the probabilities of observed values for n random variables can be
obtained. Now if we consider that for a random sample the values of variables are
known, i.e., the sample observations x1; . . .; xn are given, then what the likely
estimate of h would be for which the probability of h is maximum. This idea leads
to the concept of the likelihood function.

The concept of the theory of likelihood is not only the most popular but also the
most useful technique with very important properties for deriving estimates of
parameters of any probability distribution. If X1; . . .;Xn are independently and
identically distributed random variables with pdf or pmf f ðx; hÞ then the likelihood
function is defined by

L h x1; . . .; xnjð Þ ¼
Yn
i¼1

f xi hjð Þ:

The left-hand side defines the probability of the likely values of parameter for
given observed values x1; . . .; xn of a random sample and the right-hand side is the
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joint probability of X1 ¼ x1; . . .;Xn ¼ xn for a given h. The left-hand side is equal to
the right-hand side only when the random variables X1; . . .;Xn independently and
identically distributed. It may be noted here that for each sample point x, let there be
a parameter value at which L h xjð Þ is expected to attain its maximum as a function of
h, if x is held fixed. A maximum likelihood estimator (MLE) of the parameter h
based on a sample X1; . . .;Xn is ĥ Xð Þ or simply ĥ.

If the likelihood function is differentiable in h, then the MLE is obtained by
solving the following equation:

d
dh

L h x1; . . .; xnjð Þ ¼ 0:

The likelihood function for k parameters, h1; . . .; hk is

L h1; . . .; hk x1; . . .; xnjð Þ ¼
Yn
i¼1

f xi h1; . . .; hkjð Þ

and the maximum likelihood equations are

d
dh1

L h1; . . .; hk x1; . . .; xnjð Þ ¼ 0;

..

.

d
dhk

L h1; . . .; hk x1; . . .; xnjð Þ ¼ 0:

The maximum likelihood estimates are obtained by solving the maximum
likelihood equations and the estimates are denoted by ĥ1; . . .; ĥk .

To confirm maximization, we need to find the second derivatives of the likeli-
hood functions and negative value of the second derivatives indicate that the
estimates provide maximum likelihood. The second derivatives are

d2

dh21
L h1; . . .; hk x1; . . .; xnjð Þ\0;

..

.

d2

dh2k
L h1; . . .; hk x1; � � � ; xnjð Þ\0:

It is noteworthy that instead of the likelihood functions, we can use the
log-likelihood functions for making the equations more convenient to obtain the
same solutions. The log-likelihood function for k parameters, h1; . . .; hk is

ln L h1; . . .; hk x1; . . .; xnjð Þ ¼
Xn
i¼1

ln f xi h1; . . .; hkjð Þ
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and the maximum log-likelihood equations are

d
dh1

ln L h1; . . .; hk x1; . . .; xnjð Þ ¼ 0;

..

.

d
dhk

ln L h1; . . .; hk x1; . . .; xnjð Þ ¼ 0:

and the second derivatives are

d2

dh21
ln L h1; . . .; hk x1; . . .; xnjð Þ\0;

..

.

d2

dh2k
ln L h1; . . .; hk x1; . . .; xnjð Þ\0:

Some important properties of the maximum likelihood estimators are summa-
rized here: (i) Invariance Property: If ĥ is a maximum likelihood estimator of h, then
gðĥÞ is the maximum likelihood estimator of gðhÞ where gðhÞ is a function of h;
(ii) Asymptotically Unbiased: The maximum likelihood estimator, ĥ, is asymptot-
ically unbiased such that EðĥÞ ! h as n ! 1 but not necessarily exactly unbiased;
(iii) Consistency: Under certain regularity conditions, the maximum likelihood
estimator ĥ is a consistent estimator of h; and (iv) Normality: Under regularity
conditions, the maximum likelihood estimator ĥ is asymptotically normally dis-
tributed with mean h.

Example 7.2 Let X1; . . .;Xn be iid Bernoulli (p).
The likelihood function is

L p xj 1; . . .; xn
� � ¼Yn

i¼1

pxi 1� pð Þ1�xi

¼ py 1� pð Þn�y; y ¼
X

xi

ln L p xj 1; . . .; xn
��� � ¼ y ln pþ n� yð Þ ln 1� pð Þ

d ln LðpÞ
dp

¼ y
p
� n� y

1� pð Þ ¼ 0

or bp ¼ y
n
:

7.2.2 Interval Estimation

We have discussed about point estimation in the previous section. From point
estimation, it has been observed that a single value represents the parameter in point
estimation. The use of point estimation for generalizing the result from sample to
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population is relatively simple and convenient but it may not provide some
important information regarding the extent of error associated with the point esti-
mate. In other words, if a point estimate is accompanied by a measure of the extent
of error associated with a point estimate then the reliability of an estimate becomes
more meaningful and the extent of confidence about the estimation can also be
assigned to such estimation.

An interval estimate of h is an interval (L, U) containing the true value of h with
a probability of 1� a where 1� a is called the confidence coefficient (level),
L = lower limit of the confidence interval, and U = upper limit of the confidence
interval. Hence, we can express the 100ð1� aÞ% two-sided confidence interval as
P L� h�Uð Þ ¼ 1� a. Similarly, we can define the one-sided lower confidence
interval as P L� hð Þ ¼ 1� a where L is the one-sided lower confidence limit for h
and P h�Uð Þ ¼ 1� a where U is the one-sided upper confidence limit for h. It is
important to remember that L and U are random variables, not h, hence the inter-
pretation of confidence interval needs a very careful attention. As h remains con-
stant which is a parameter, we can only interpret in terms of whether the parameter
h is included in the interval or not. Furthermore, the interval constructed from a
single sample cannot provide the probability statement but it has to be interpreted in
reference to the construction of similar intervals for each sample repeated a very
large number of times with same sample size from the same population. In other
words, the sampling distribution of the pivotal quantity provides the necessary
background for both construction and interpretation of confidence interval.

The most extensively used method of finding confidence interval is the Pivotal
Quantity Method. In addition, sometimes other statistical methods are also
employed. Another method, known as the confidence sets, is also used for con-
structing confidence intervals. The most commonly used technique, the Pivotal
Quantity Method, is highlighted in this chapter.

Pivotal Quantity Method: Let us consider a random sample X1; . . .;Xn of size
n from the population density X � f ðx; hÞ and let Q ¼ qðX1; . . .;Xn; hÞ where Q is a
function of random variables X1; . . .;Xn and parameter h such that the sampling
distribution of Q does not depend on h then Q is defined as a pivotal quantity.
Based on the pivotal quantity, we obtain the confidence intervals using the sampling
distribution of pivotal quantity. Let us define the following probability with lower
and upper limits or bounds for the pivotal quantity, Q ¼ qðX1; . . .;Xn; hÞ:

P q1ðX1; . . .;Xn; hÞ\Q\q2ðX1; . . .;Xn; hÞ½ �\1� a

then after some algebraic manipulation, we arrive at the confidence interval for the
parameter with confidence coefficient 1� a as

P LðX1; . . .;Xn; hÞ\h\UðX1; . . .;Xn; hÞ½ �\1� a;

where L and U are lower and upper bounds, limits or lower and upper end points of
the confidence interval. The lower and upper limits are computed from a sample
X1 ¼ x1; . . .;Xn ¼ xn
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L ¼ lðx1; . . .; xnÞ andU ¼ uðx1; . . .; xnÞ:

Some examples of pivotal quantities are shown below:

(i) Z ¼ �X�l
r=
ffiffi
n

p where Z� Nð0; 1Þ does not depend on l,

(ii) T ¼ �X�l
S=
ffiffi
n

p where T � tn�1 does not depend on l,

(iii) v2¼Pn
i¼1

Xi��Xð Þ2
r2 ¼ ðn�1ÞS2

r2 � v2n�1 does not depend on r2, and (Fig. 7.1).

(iv) F ¼ X=ðn�1Þ
Y=ðm�1Þ � Fðn� 1;m� 1Þ where X� v2ðn� 1Þ; Y � v2ðm� 1Þ,

v2ðn� 1Þ ¼
Xn

i¼1

Xi � �Xð Þ2
r2X

¼ ðn� 1ÞS2X
r2X

� v2n�1 and

v2ðm� 1Þ ¼
Xm

i¼1

Yi � �Yð Þ2
r2Y

¼ ðm� 1ÞS2Y
r2Y

� v2m�1

,

and it is seen that F does not depend on the parameters r2X and r
2
Y .

All these statistics satisfy the conditions required for pivotal quantity, hence, can
be employed to construct confidence intervals (Fig. 7.2).

7.2.3 Estimation of Population Mean lð Þ

In this section, we are interested in estimating the parameters of population such as
the mean of a certain population lð Þ. Let us define the population and sample
characteristics as displayed below.

Fig. 7.1 Chi-square distribution
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Population Sample

Population size = N Sample size = n

Population values: X1; . . .;XN Sample values: X1; . . .;Xn

Population mean: l ¼
PN

i¼1
Xi

N
Sample mean: �X ¼

Pn

i¼1
Xi

n

Population variance: r2 ¼
PN

i¼1
Xi�lð Þ2
N Sample variance: S2 ¼

Pn

i¼1
Xi�Xð Þ2

n�1

(i) Point Estimation of l

A point estimate of the mean is a single number used to estimate (or approxi-
mate) the true value of l. Let us consider a random sample of size n, X1; . . .;Xn with
X� Nðl; r2Þ. Then the sample mean of the random sample is �X ¼ 1

n

Pn
i¼1 Xi and

the sample mean computed from observations X1 ¼ x1; . . .;Xn ¼ xn is
�x ¼ 1

n

Pn
i¼1 xi. It should be noted here that �X is a variable and �x is a value of the

variable �X from observations of the random sample. We obtain the estimator of the
sample mean using the maximum likelihood method as shown below.

The likelihood function is

Lðl; r2; x1; . . .; xnÞ ¼
Yn
i¼1

f ðxi;l; r2Þ

¼ 1

2pr2ð Þn=2
Yn
i¼1

e�
1

2r2
xi�lð Þ2

¼ 1

2pr2ð Þn=2
e
� 1

2r2

Pn
i¼1

xi�lð Þ2

and the log-likelihood function can be shown as

Fig. 7.2 F-distribution
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ln L l; r2; x1; . . .; xn
� � ¼ � n

2
ln 2pr2
� �� 1

2r2
Xn
i¼1

xi � lð Þ2:

The maximum likelihood estimate of the population mean, l, is found by
solving the equation

@ ln L
@l

¼ � 2
2r2

Xn
i¼1

ðxi � lÞð�1Þ ¼ 1
r2
Xn
i¼1

ðxi � lÞ ¼ 0

and the maximum likelihood estimate is

l̂ ¼
Pn

i¼1 xi
n

:

The estimator of the population for the random sample is denoted as l̂ ¼ �X ¼Pn

i¼1
Xi

n which is a random variable.

(ii) Confidence Interval (Interval Estimate) of l

An interval estimate of l is an interval (L, U) containing the true value of l with
a probability of 1� a where 1� a = is called the confidence coefficient, L = lower
limit of the confidence interval, and U = upper limit of the confidence interval. The
100ð1� aÞ% confidence interval is P L� l�Uð Þ ¼ 1� a where L and U are
variables and different samples will produce different values of end points of
confidence interval L and U. From any sample data, we can find L = l and U = u.

A. Let us consider the case when r is known.

If X1; . . .;Xn is a random sample of size n from a normal distribution with mean
l and known variance r2, then let us define the pivotal quantity

Z ¼
�X � l
r=

ffiffiffi
n

p :

This statistic is independent of parameters l and r and Z is a variable with
probability distribution N (0, 1). The probability of 1� a can be obtained from the
following interval:

Pðza=2\Z\z1�a=2Þ ¼ 1� a:

Here 1� a is the confidence coefficient. We know that Z is a function of sample
observations and population mean and it can be shown in the interval
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P za=2\Z ¼
�X � l
r=

ffiffiffi
n

p \z1�a=2

� �
¼ 1� a

¼ P za=2 � r=
ffiffiffi
n

p
\�X � l\z1�a=2 � r=

ffiffiffi
n

p� � ¼ 1� a

¼ P ��X þ za=2 � r=
ffiffiffi
n

p
\� l\� �X þ z1�a=2 � r=

ffiffiffi
n

p� � ¼ 1� a

¼ P �X � z1�a=2 � r=
ffiffiffi
n

p
\l\�X � za=2 � r=

ffiffiffi
n

p� � ¼ 1� a:

The above interval is the 1� að Þ100% confidence interval for population mean
l where r is assumed to be known. We know that Za=2 ¼ �Z1�a=2, hence, the
interval can be expressed as

Pð�X � z1�a=2 � r=
ffiffiffi
n

p
\l\�X þ z1�a=2 � r=

ffiffiffi
n

p Þ ¼ 1� a:

The lower and upper limits or end points of this confidence interval are

L ¼ �X � z1�a=2 � r=
ffiffiffi
n

p
and

U ¼ �Xþ z1�a=2 � r=
ffiffiffi
n

p
:

From observed data of a sample, the end points are

l ¼ �x� z1�a=2 � r=
ffiffiffi
n

p
and

u ¼ �xþ z1�a=2 � r=
ffiffiffi
n

p
:

The lower and upper limits or bounds for 1� að Þ100% confidence interval can
be expressed in the following ways too:

�x� z1�a=2 � r=
ffiffiffi
n

p
; or

�x� z1�a=2 � r=
ffiffiffi
n

p
;�xþ z1�a=2 � r=

ffiffiffi
n

p� �
:

The confidence interval with a probability of 1� að Þ can be interpreted as the
probability 1� að Þ of containing l in the interval. In other words, the probability of
containing l interval does not imply the probability of l being included in a
particular interval because the probability statement is not about any specific
interval rather about large number of such intervals either containing l or not. If l is
contained 1� að Þ100% of the times in confidence intervals constructed from a
large number of repeated samples, then it refers to 1� að Þ100% confidence
interval.

B. If X1; . . .;Xn is a random sample of size n from a non-normal distribution
with mean l and known variance r2, and if the sample size n is large

If X1; . . .;Xn is a random sample of size n from a non-normal distribution with
mean l and known variance r2 and the sample size is large then the pivotal quantity is
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Z ¼
�X � l
r=

ffiffiffi
n

p ;

which is independent of parameters l and r, and Z is asymptotically N(0,1).
The 1� að Þ100% confidence interval for population mean l, if r is assumed to

be known and sample size is large, is similar as

Pð�X � z1�a=2 � r=
ffiffiffi
n

p
\l\�X þ z1�a=2 � r=

ffiffiffi
n

p Þ ¼ 1� a:

The lower and upper limits of this confidence interval are

L ¼ �X � z1�a=2 � r=
ffiffiffi
n

p
; and

U ¼ �Xþ z1�a=2 � r=
ffiffiffi
n

p
:

The lower and upper bounds for sample data are

l ¼ �x� z1�a=2 � r=
ffiffiffi
n

p
and

u ¼ �xþ z1�a=2 � r=
ffiffiffi
n

p
:

The lower and upper limits or bounds for 1� að Þ100% confidence interval for
the population parameter l if and population variance r2 for large sample
non-normal population can be expressed in the following ways too:

�x� z1�a=2 � r=
ffiffiffi
n

p
; or

�x� z1�a=2 � r=
ffiffiffi
n

p
;�xþ z1�a=2 � r=

ffiffiffi
n

p� �
:

We may summarize the findings from both A and B as noted below.

(i) We are 1� að Þ100% confident that the true value of l belongs to the
interval, ð�X � z1�a

2

rffiffi
n

p ; �X þ z1�a
2

rffiffi
n

p Þ;
(ii) Upper limit of the confidence interval = �X þ z1�a

2

rffiffi
n

p ;

(iii) Lower limit of the confidence interval = �X � z1�a
2

rffiffi
n

p ;

(iv) z1�a
2
= reliability coefficient;

(v) z1�a
2
� rffiffi

n
p = margin of error = precision of the estimate;

(vi) In general, the interval estimate (confidence interval) may be expressed as
follows:

�X � z1�a
2
r�X ;
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which means
estimator ± (reliability coefficient) � (standard error) or
estimator ± margin of error.

Confidence Interval for l: r is Unknown
We have already introduced and discussed the t-distribution. In this section, we

discuss some applications of t-statistic to obtain confidence intervals.

A. Confidence Interval for l for the Case when r is Unknown and the
Population is Normal

If X1; . . .;Xn is a random sample of size n from a normal distribution with mean
l and unknown variance r2, then the pivotal quantity may be defined as

T ¼
�X � l
S=

ffiffiffi
n

p

where S2 ¼
Pn

i¼1
Xi��Xð Þ2

n�1 ; T � tn�1 and the 1� a probability can be obtained from

Pðtðn�1Þ;a=2\T\Tðn�1Þ;1�a=2Þ ¼ 1� a:

Here 1� a is the confidence coefficient. It is known that T is a function of
sample observations and population mean and the interval can be expressed as

P tðn�1Þ;a=2\T ¼
�X � l
S=

ffiffiffi
n

p \tðn�1Þ;1�a=2

� �
¼ 1� a

¼ P tðn�1Þ;a=2 � S=
ffiffiffi
n

p
\�X � l\tðn�1Þ;1�a=2 � S=

ffiffiffi
n

p� � ¼ 1� a

¼ P ��X þ tðn�1Þ;a=2 � S=
ffiffiffi
n

p
\� l\� �X þ tðn�1Þ;1�a=2 � S=

ffiffiffi
n

p� � ¼ 1� a

¼ P �X � tðn�1Þ;1�a=2 � S=
ffiffiffi
n

p
\l\�X � tðn�1Þ;a=2 � S=

ffiffiffi
n

p� � ¼ 1� a:

The above interval is the 1� að Þ100% confidence interval for population mean
l where r is unknown. It has been shown earlier that for a t-distribution
tðn�1Þ;a=2 ¼ �tðn�1Þ;1�a=2, hence, the interval can be expressed as

P �X � tðn�1Þ;1�a=2 � S=
ffiffiffi
n

p
\l\�X þ tðn�1Þ;1�a=2 � S=

ffiffiffi
n

p� � ¼ 1� a:

The lower and upper limits of this confidence interval are

L ¼ �X � tðn�1Þ;1�a=2 � S=
ffiffiffi
n

p
and

U ¼ �Xþ tðn�1Þ;1�a=2 � S=
ffiffiffi
n

p
:

The lower and upper limits for 1� að Þ100% confidence interval from sample
data for r unknown can be expressed in following ways too:
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�x� tðn�1Þ;1�a=2 � s=
ffiffiffi
n

p
; or

�x� tðn�1Þ;1�a=2 � s=
ffiffiffi
n

p
;�xþ tðn�1Þ;1�a=2 � s=

ffiffiffi
n

p� �
;

where �x ¼
Pn

i¼1
xi

n and s2 ¼
Pn

i¼1
xi��xð Þ2

n�1 .
Notes:

1. We are 1� að Þ100% confident that the true value of l is contained in the
interval

�X � tðn�1Þ;1�a
2

Sffiffiffi
n

p ; �Xþ tðn�1Þ;1�a
2

Sffiffiffi
n

p
� �

:

2. r̂�X ¼ Sffiffi
n

p (estimate of the standard error of �xÞ
3. tðn�1Þ;1�a

2
= reliability coefficient

4. In this case, we replace r by s and z by t.
5. In general, the interval estimate (confidence interval) may be expressed as

follows:
�X � tðn�1Þ;1�a

2
r̂�X

which is
estimator ± (reliability coefficient) � (estimate of the standard error)
Notes: Finding Reliability Coefficient

(1) We find the reliability coefficient Z1�a
2
from the Z-table as follows (Fig. 7.3):

(2) We find the reliability coefficient tðn�1Þ;1�a
2
from the t-table as follows: (df =

= n − 1) (Fig. 7.4)

Example 7.3 Suppose that Z * N(0,1). Find Z1�a
2
for the following cases:

(1) a = 0.1 (2) a = 0.05 (3) a = 0.01

Fig. 7.3 Finding reliability coefficient using Z-table
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Solution

(1) For a = 0.1:

1� a
2 ¼ 1� 0:1

2 ¼ 0:95 From Z-table

) Z1�a
2
¼ Z0:95 ¼ 1:645

0.040.05

1.6 0.9495        0.9505

(2) For a = 0.05:

1� a
2 ¼ 1� 0:05

2 ¼ 0:975 From Z-table

) Z1�a
2
¼ Z0:975 ¼ 1:96:

0.06           

1.9 0.9750

(3) For a = 0.01:

1� a
2 ¼ 1� 0:01

2 ¼ 0:995 From Z-table

) Z1�a
2
¼ Z0:995 ¼ 2:575

0.07            0.08

2.5 0.9949        0.9951

Fig. 7.4 Finding reliability coefficient using t-table
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Example 7.4 Suppose that t * t(30). Find t1�a
2
for a = 0.05.

Solution
Here,

df = m = 30 From t-table
1� a

2 ¼ 1� 0:05
2 ¼ 0:975

) t1�a
2
¼ t0:975 ¼ 2:0423

df 0.975           

30 2.0423     

Example 7.5 (The case where r2 is known)

Confidence Interval for l if r2 is Assumed to be Known
Let us consider that in a study, a random sample of 123 patients admitted to a
hospital with old age complications has the mean age, 55 years. If it is assumed that
the sample is drawn from a normal population with unknown mean, l, and known
population variance, r2 ¼ 82, then we want to find the 90% confidence interval for
the population mean.

Solution
Here, the variable X represents the age of patients with old age complications. The
parameter of interest is l ¼ the population mean age of patients admitted to the
hospital with old age complications. The population variance is assumed to be known
and r2 ¼ 82. We can write X�Nðl; 82Þ. We can find the maximum likelihood
estimate of the population mean, l̂ ¼ �x ¼ 55. The sample size is n ¼ 123.

Point Estimation
For constructing the confidence interval, we need to find a point estimate for l first.
The sample mean is the maximum likelihood estimate for a normal distribution,
hence,

�x ¼ 55 is a point estimate for l, and
l̂ ¼ 55:

Interval Estimation
We need to find 90% C. I. for l where 90% = 1� að Þ100%.

The confidence coefficient is

1� a ¼ 0:9

and a ¼ 0:1. For a two-sided confidence interval, a
2 ¼ 0:05 and 1� a

2 ¼ 0:95. The
reliability coefficient is: Z1�a

2
¼ Z0:95 ¼ 1:645
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The 90% confidence interval for l is

�x� Z1�a
2

rffiffiffi
n

p ;�xþ Z1�a
2

rffiffiffi
n

p
� �

:

For the given data, we obtain

55� 1:645ð Þ 9:055ffiffiffiffiffiffiffiffi
123

p ; 55þ 1:645ð Þ 9:055ffiffiffiffiffiffiffiffi
123

p
� �

and the confidence interval for the population mean age of elderly patients with old
age complications is

53:6569; 56:3431ð Þ:

We may interpret this confidence interval in following way: if the samples of the
same size were drawn repeatedly a very large number of times from the same
population then in 90% of the times the true value of the population mean would be
included in the intervals. For this example even if the distribution were not normal,
we might have used the same interval because the sample size is large enough for
the application of the central limit theorem.

Example 7.6 Confidence Interval for l if r2 is Unknown
Let us consider a hypothetical study on the height of women in their adulthood.

A sample of 24 women is drawn from a normal distribution with population mean l
and variance r2. The sample mean and variance of height of the selected women are
151 cm and 18.65 cm2 respectively. Using given data, we want to construct a 99%
confidence interval for the mean height of the adult women in the population from
which the sample was drawn randomly.

Solution
Let us summarize the information provided in this example.

The random variable X represents the height of women in their adulthood.
The population mean l is unknown. The population variance is r2. The variable

X is distributed as X� Nðl; r2Þ.
The sample size is 24. The sample mean and standard deviations are �x ¼ 151

and s ¼ 4:32.

(a) Point Estimation

We need to find a point estimate for l.
It may be noted that �x ¼ 151 is a point estimate for l.
We obtain l̂ ¼ 151 cm.
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(b) Interval Estimation

We need to find 99% C. I. for l, where 99% = 1� að Þ100% and as
1� a ¼ 0:99, it can be shown that a ¼ 0:01. For a two-sided interval, we define
a
2 ¼ 0:005 and 1 � a

2 ¼ 0:995. The sample size is n = 24.

The reliability coefficient is tm;1�a
2
¼ t23;0:995 ¼ 2:807

df 0.995           

23 2.807         

From t-table
99% confidence interval for l is:
The confidence interval for the population mean when the population variance is

unknown can be constructed from the following:

�x� t1�a=2 � s=
ffiffiffi
n

p

where for 99% confidence interval, the lower and upper limits are

l ¼ �x� t1�a=2 � s=
ffiffiffi
n

p

¼ 151� 2:807� 4:32=
ffiffiffiffiffi
24

p

¼ 151� 2:4753

¼ 148:5247;

and

u ¼ �xþ t1�a=2 � s=
ffiffiffi
n

p

¼ 151þ 2:807� 4:32=
ffiffiffiffiffi
24

p

¼ 151þ 2:4753

¼ 153:4753:

This can be expressed more precisely as (148.5247,153.4753).
If the random samples of size 24 were drawn very large number of times from

the same population then out of all intervals constructed for each sample, 99% of
the times the population mean would be contained in the intervals. It may be noted
here that for large sample size, the test statistic T would tend to standard normal
variate, Z, asymptotically.
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7.2.4 Estimation of the Difference Between Two Population
Means (l1 − l2)

Suppose that we have two populations such that the first population is characterized
with mean l1 and variance r21 and the second population with mean l2 and variance
r22. We are interested in comparing l1 and l2, or equivalently, making inferences
about the difference between the means (l1 − l2). We select independently a
random sample of size n1 from the first population and another random sample of
size n2 from the second population. Let �X1 and S21 be the sample mean and the
sample variance of the first sample and �X2 and S22 be the sample mean and the
sample variance of the second sample. The sampling distribution of �X1 � �X2 is used
to make inferences about l1 − l2.

The sampling distribution of the difference between two sample means has been
discussed and the following results are summarized about the sampling distribution
of the difference between two sample means:

1. Mean of �X1 � �X2 is l�X1��X2
¼ l1 � l2

2. Variance of �X1 � �X2 is r2�X1��X2
¼ r21

n1
þ r22

n2

3. Standard error of �X1 � �X2 is r�X1��X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q
4. If the two random samples were selected from normal distributions (or

non-normal distributions with large sample sizes) with known variances r21 and
r22, then the difference between the sample means ð�X1 � �X2Þ has a normal
distribution with mean ðl1 � l2Þ and variance ððr21=n1Þþ ðr22=n2ÞÞ, that is

�X1 � �X2 �N l1 � l2;
r21
n1

þ r22
n2

� �

and we can show that

Z ¼ ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q �N 0; 1ð Þ:

(i) Point Estimation of l1 − l2

It can be shown that �X1 � �X2 is a point estimator for l1 − l2.

(ii) Interval Estimation (Confidence Interval) of l1 − l2

We will consider two cases.

A. First Case: r21 and r22 are known
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If r21 and r22 are known, we use the following pivotal quantity to find an interval
estimate for l1 − l2.

Z ¼ ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q
A (1 − a)100% confidence interval for l1 − l2 is obtained from the following

probability statement:

Pðza=2\Z\z1�a=2Þ ¼ 1� a:

and it can be shown that

P za=2\Z ¼ ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q \z1�a=2

0B@
1CA ¼ 1� a

¼ P za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
\ð�X1 � �X2Þ � ðl1 � l2Þ\z1�a=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s0@ 1A ¼ 1� a

¼ P

�ð�X1 � �X2Þþ za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
\� ðl1 � l2Þ\� ð�X1 � �X2Þ

þ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
0BBBBB@

1CCCCCA ¼ 1� a

¼ P

ð�X1 � �X2Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
\ðl1 � l2Þ\ð�X1 � �X2Þ

�za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
2666664

3777775 ¼ 1� a:

The above interval for the difference between two population means is the
1� að Þ 100% confidence interval if population variances are assumed to be known.
Using the known relationship Za=2 ¼ �Z1�a=2, the interval can be expressed as

P ð�X1 � �X2Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
\ðl1 � l2Þ\ð�X1 � �X2Þþ z1�a=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s24 35
¼ 1� a
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The lower and upper limits of this confidence interval are

L ¼ ð�X1 � �X2Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
and

U ¼ ð�X1 � �X2Þþ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s

and the values from sample data are

l ¼ ð�x1 � �x2Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
and

u ¼ ð�x1 � �x2Þþ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s

Alternative ways to represent the lower and upper limits for 1� að Þ 100%
confidence interval of the difference between two population means are

ð�x1 � �x2Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
; or

ð�x1 � �x2Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s
; ð�x1 � �x2Þþ z1�a=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

s0@ 1A:

B. Second Case: Unknown equal variances: r21 ¼ r22 ¼ r2
�

is unknown)

Let us consider two random samples X11; . . .;X1n1 and X21; . . .;X2n2 with prob-
ability density functions X1 �Nðl1; r21Þ and X2 �Nðl2; r22Þ, respectively, for
samples 1 and 2.

The point estimate of the difference between two population means is �X1 � �X2.
If r21 and r22 are equal but unknown ðr21 ¼ r22 ¼ r2Þ, then the pooled estimate of

the common variance r2 is

S2p ¼
ðn1 � 1ÞS21 þðn2 � 1ÞS22

n1 þ n2 � 2
;

where S21 ¼
Pn1

i¼1
X1i��X1ð Þ2

n1�1 and S22 ¼
Pn1

i¼1
X2i��X2ð Þ2

n2�1 are the variance of the first and
second samples, respectively.

If r21 and r22 are assumed to be equal but unknown then the pivotal quantity to
find an interval estimate for l1 − l2 is
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T ¼ ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1
þ 1

n2

� 	r ;

where T � tn1 þ n2�2.
A (1 − a)100% confidence interval for l1 − l2 can be obtained by using the

pivotal quantity as shown below

Pðtðn1 þ n2�2Þ;a=2\T\tðn1 þ n2�2Þ;1�a=2Þ ¼ 1� a:

and it can also be shown that

Pðtðn1 þ n2�2Þ;a=2\T ¼ ð�X1 � �X2Þ � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1
þ 1

n2

� 	r \tðn1 þ n2�2Þ;1�a=2Þ ¼ 1� a

¼ Pðtðn1 þ n2�2Þ;a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
\ð�X1 � �X2Þ � ðl1 � l2Þ

\tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
¼ 1� a

¼ Pð�ð�X1 � �X2Þþ tðn1 þ n2�2Þ;a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
\� ðl1 � l2Þ

\� ð�X1 � �X2Þþ tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
¼ 1� a

¼ P

ð�X1 � �X2Þ � tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
\ðl1 � l2Þ

\ð�X1 � �X2Þ � tðn1 þ n2�2Þ;a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
2666664

3777775 ¼ 1� a:

The above interval for the difference between two population means is the 1� að Þ
100% confidence interval if population variances are assumed to be unknown and
equal. Using the known relationship tðn1 þ n2�2Þ;a=2 ¼ �tðn1 þ n2�2Þ;1�a=2, the interval
can be expressed as

P

ð�X1 � �X2Þ � tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s

\ðl1 � l2Þ\ð�X1 � �X2Þ � tðn1 þ n2�2Þ;a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
2666664

3777775 ¼ 1� a:
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The lower and upper limits of this confidence interval are

L ¼ ð�X1 � �X2Þ � tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
; and

U ¼ ð�X1 � �X2Þþ tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �s
:

The lower and upper bounds from sample data can be shown as

l ¼ ð�x1 � �x2Þ � tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

1
n1

þ 1
n2

� �s
; and

u ¼ ð�x1 � �x2Þþ tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

1
n1

þ 1
n2

� �s
;

where s2p ¼ ðn1�1Þs21 þðn2�1Þs22
n1 þ n2�2 ; s21 ¼

Pn1
i¼1

x1i��x1ð Þ2
n1�1 and s22 ¼

Pn1
i¼1

x2i��x2ð Þ2
n2�1 .

The 1� að Þ100% lower and upper limits of confidence interval, using sample
data for difference between two population means if the population variances are
unknown but assumed to be equal, are shown alternatively as follows:

ð�x1 � �x2Þ � tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

1
n1

þ 1
n2

� �s
; or

ð�x1 � �x2Þ � tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

1
n1

þ 1
n2

� �s
; ð�x1 � �x2Þ

þ tðn1 þ n2�2Þ;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

1
n1

þ 1
n2

� �s
0BBBBB@

1CCCCCA:

Example 7.7 (Case 1: r21 and r22 are known)
Let us consider an experiment for comparing duration of stay of patients in

intensive care unit of a hospital with complication types A and B. Two random
samples are drawn for types A and B with sample sizes 100 and 70, respectively.
Both the random samples are drawn from normally distributed populations with
mean and variance lA and r2A for type A and lB and r2B for type B. The mean
duration of stay with complication type A is 40 h and with complication type B is
50 h. If the population variances for mean duration of stay with complication types
A and B are known to be 15 and 20, respectively, then the interval estimation of the
difference in the population means of duration of stay with complication types A
and B is to be determined. The experimenter wants to find the 95% confidence
interval for lA − lB.
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Solution
Let us summarize the information provided in this example in the following table.

Surgery Type (A) Type (B)

Sample size nA = 100 nB = 70

Sample mean �xA ¼ 40 �xB ¼ 50

Population variance r2A ¼ 15 r2B ¼ 20

A point estimate for lA � lB is

ð�xA � �xBÞ ¼ 40� 50 ¼ �10:

To find a 95% confidence interval for lA � lB, we can define

95% ¼ ð1� aÞ100%

which implies that 0. 95 = (1 − a), a = 0.05 and a/2 = 0.025.
The reliability coefficient is z1�a=2 ¼ z0:975 ¼ 1:96.
A 95% C.I. for lA � lB is defined as

ð�xA � �xBÞ � Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A
nA

þ r2B
nB

s
:

The lower and upper limits can be computed as follows:

�10� Z0:975

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15
100

þ 20
70

r
which provides

l ¼ �10� 0:8540 ¼ �10:8540

and

u ¼ �10þ 0:8540 ¼ �9:1460:

The above 95% confidence interval of the difference between two means can
also be shown as

�10:8540\lA � lB\� 9:1460:

This confidence interval can be interpreted as: if the samples were drawn from
populations A and B with sizes nA and nB, respectively, very large number of times
then the true difference in the population means would be included in the intervals
in 95% of times. There is a link between confidence interval and hypothesis testing
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because in both the cases we use the statistic known as pivotal quantity in con-
structing the confidence interval and test statistic in case of testing a null hypothesis.
For instance, since the confidence interval does not include zero, we may conclude
that the sample data do not provide evidence in favor of equality of two population
means and it may be said that the population means are not equal lA � lBð 6¼ 0 or
equivalently, lA 6¼ lBÞ. This will be discussed in more details in Chap. 8.

Example 7.8 (Case II: r21 ¼ r22 unknown)
In the previous example, population variances for populations A and B are

assumed to be known. In reality, the population variances are generally not known.
Now let us consider a study where samples are drawn from normal populations on
the variables X1= time taken for remission of body temperature from high fever to
normalcy with medication type A and X2= time taken for remission of body tem-
perature from high fever to normalcy with medication type B which are assumed to
be distributed as follows

XA �NðlA; r2AÞandXB �NðlB; r2BÞ:

The parameters are unknown. The sample data from populations A and B on
time taken for remission of body temperature from high fever (in hours) are dis-
played below

Type A: 55, 70, 35, 48, 71, 40
Type B: 30, 35, 52, 64, 25, 45

The experimenter wants to find the 95% confidence interval of the difference
between mean times of remission of body temperature from high to normal using
medication types A and B. Let us assume that the population variances are equal,
i.e., r2A¼r2B ¼ r2.

Solution
First we calculate the mean and the variances of the two samples, and we get

Surgery Type (A) Type (B)

Sample size nA = 6 nB = 6

Sample mean �xA ¼ 53:17 �xB ¼ 41:83

Sample variance S2A ¼ 226:97 S2B ¼ 214:97

(1) A point estimate for lA � lB is

�xA � �xB ¼ 53:17� 41:83 ¼ 11:34:

(2) To find the 95% confidence interval for lA � lB, we need to state the
following:
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ð1� aÞ ¼ 0:95; a ¼ 0:05 and a=2 ¼ 0:025:

It is assumed that the population variances are equal, hence, the pooled variance
can be employed to compute the pivotal quantity, statistic t. In that case, the degree
of freedom for T, is m ¼ nA þ nB � 2 ¼ 10. The reliability coefficient is

t10;1�a=2 ¼ t10;0:975 ¼ 2:228:

The pooled estimate of the common variance is

s2p ¼
ðnA � 1Þs2A þðnB � 1Þs2B

nA þ nB � 2

¼ ð6� 1Þ � 226:97þð6� 1Þ � 214:97
6þ 6� 2

¼ 220:97:

The 95% confidence interval for lA � lB is

ð�xA � �xBÞ � t1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p
nA

þ s2p
nB

s

The lower and upper limits of the confidence interval using the sample data from
populations A and B are

l ¼ ð�xA � �xBÞ � t1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p
nA

þ s2p
nB

s

¼ ð53:17� 41:83Þ � 2:228�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
220:97

6
þ 220:97

6

r
¼ 11:34� 19:12

¼ �7:78

and

u ¼ ð�xA � �xBÞþ t1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p
nA

þ s2p
nB

s

¼ ð53:17� 41:83Þþ 2:228�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
220:97

6
þ 220:97

6

r
¼ 11:34þ 19:12

¼ 30:46:

7.2 Estimation 215



This can be shown as

�7:78\lA � lB\30:46:

95% of the times, the confidence interval for difference between the true pop-
ulation means would include the true difference between the population means out
of all the intervals calculated for each of the samples of same size drawn repeatedly
very large number of times. Since the confidence interval includes zero, we con-
clude that the two population means may be equal (lA − lB= 0, equivalently,
lA= lB). Therefore, we may conclude that the mean time required for remission of
body temperature is the same for the two types.

7.2.5 Estimation of a Population Proportion (P)

If we recall from Chap. 6, the random variable X = number of elements or subjects
with a specified characteristic A, N = total number of elements in the population
and n = total number of elements in the sample. The probability of a randomly
selected subject or element has characteristic A is denoted by p which is essentially
the proportion of elements or subjects with characteristic A in the population. We
defined Xi ¼ 1, if the ith Bernoulli trial results in selecting an element or subject
with characteristic A, Xi ¼ 0, if the selected element does not have characteristic
A. After conducting the trial on n elements of the sample independently, we have
X ¼Pn

i¼1 Xi = the number of elements or subjects selected with characteristic A.
The joint distribution of n Bernoulli variables X1; . . .;Xnð Þ, if Xi s are inde-

pendently and identically distributed, is

f ðx1; . . .; xn; pÞ ¼
Yn
i¼1

f ðxi; pÞ ¼
Yn
i¼1

pxið1� pÞð1�xiÞ ¼ pxð1� pÞn�x

and the distribution of X ¼ x, where X is the sum of n Bernoulli variables, is

f ðx; n; pÞ ¼ n

x

 !
pxð1� pÞn�x

where the number of mutually exclusive events is
n

x

 !
. This probability function

is similar to the likelihood function of the Bernoulli distribution for X1; . . .;Xn but
the difference between the Bernoulli and binomial trials is that in Bernoulli trial, we
are interested in the sequence of outcomes for elements in a Bernoulli trial but in
total number of successes, X, out of n in a binomial distribution where n is fixed.
Then the likelihood function of p for known value of n is
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Lðp; xÞ ¼ f ðx; n; pÞ ¼ n

x

 !
pxð1� pÞn�x:

The log-likelihood function is

ln Lðp; xÞ ¼ ln
n

x

 !
þ x ln pþðn� xÞ lnð1� pÞ:

Differentiating with respect to p, we obtain the likelihood equation

@

@p
ln Lðp; xÞ ¼ x

p
� n� x
1� p

¼ 0:

Solving this equation for p, we obtain the maximum likelihood estimate p̂ ¼ x
n. This

is the point estimate of p. The maximum likelihood estimator is the statistic P̂ ¼ X
n.

In Chap. 6, we have shown that EðP̂Þ ¼ p and VarðP̂Þ ¼ pð1�pÞ
n and it is also

shown for large sample size using the Central Limit Theorem

P̂ 	 N p;
pð1� pÞ

n

� �
:

The pivotal quantity can be defined for population proportion or probability p as

Z ¼ P̂� pffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

q
Then the probability of 1� a can be shown approximately to be in the interval

P za=2\Z ¼ P̂� pffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

q \z1�a=2

0B@
1CA ¼ 1� a:

The confidence interval for pwith confidence coefficient 1� a can be expressed as

P za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
\P̂� p\z1�a=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !
¼ 1� a

¼ P �P̂þ za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
\� p\� P̂þ z1�a=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !
¼ 1� a

¼ P �X � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
\p\�X � za=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !
¼ 1� a:
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The above interval is the 1� að Þ 100% confidence interval for population
proportion p for large sample size. Using the relationship Za=2 ¼ �Z1�a=2 for
standard normal distribution, the confidence interval can be expressed as

P P̂� z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
\p\P̂þ z1�a=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !
¼ 1� a:

The lower and upper limits or end points of this confidence interval are

L ¼ P̂� z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
and

U ¼ P̂þ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
:

Using the sample data, the lower and upper limits of the confidence interval are

l ¼ p̂� z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
and

u ¼ p̂þ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
:

Alternative Methods
The method of constructing confidence interval of a proportion discussed above is
based on the asymptotic normality of the sample proportion. This is the most
popular way to present confidence interval for proportion or binomial parameter
p. However, several studies such as studies by Agresti and Coull (1998) and Brown
et al. (2001) showed that this method, known as the Wald confidence interval for p,
first proposed by Laplace (1812) and may be considered as one of the oldest
confidence intervals proposed for a parameter, may provide very erratic behavior of
the coverage probability even for a large n, where the value of large n may be quite
arbitrary and vague in case of sample proportion. The Wald confidence interval for
p based on asymptotic normality may produce small coverage probability. It is also
known that the coverage probability is poor for p near 0 or 1. In many cases even
with the assumption that n�minðp; 1� pÞ should be at least 5 (some prefer 10)
may produce poor coverage for p near 0 or 1. Brown et al. (2001) showed that even
when this condition is satisfied, there is no guarantee that the coverage probability
is close to confidence level. As an alternative, Clopper and Pearson (1934) exact
method is suggested for p where a hypothesized value for p, say p0, is used to
compute lower and upper end points as shown below
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Xn
x¼k

n

x

 !
px0ð1� p0Þn�x ¼ a

2
; and

Xk
x¼0

n

x

 !
px0ð1� p0Þn�x ¼ a

2
:

In this exact method, the lower and upper bounds are 0 and 1 for x = 0 and
x = n, respectively. This exact method provides interval estimator with guaranteed
coverage of at least 1� a for every possible value of p (Agresti and Coull 1998). It
may be noted here that this method depends on a test value for p ¼ p0. The choice
of p ¼ p0 will play a major role in obtaining the coverage probability or confidence
coefficient by using the exact method. Brown et al. (2001) pointed out that for any
fixed p, the coverage probability may be much higher than 1� a unless n is quite
large and that is why it may not be considered as a good choice for practical use
because it may lead to inaccurate confidence interval. The cumulative probabilities
for selected values of n and p are shown in Appendix.

Two methods of constructing confidence intervals that may perform better as
recommended by Brown et al. (2001) are summarized below.

(i) The Wilson Interval

This confidence interval for p was introduced by Wilson (1927). In this method,
the end points are based on solutions of the equations

p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p ¼ �za=2;

where p ¼ p0 is called the null value or null hypothesis value of p. The form of the
confidence interval for p is

p̂þ
z2a=2
2n

� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þþ z2a=2=4n
h i

=n

r !
=ð1þ z2a=2=nÞ:

This interval is also known as the score confidence interval. Here, the standard
error of the estimator of p is based on the null hypothesis value of p rather than
maximum likelihood estimators as used in case of the Wald confidence interval. It is
shown by Agresti and Coull that score confidence interval tends to perform much
better than the Wald or exact intervals for obtaining coverage probability close to
the confidence level.

(ii) The Agresti–Coull Interval

The Wald interval would be the best choice for the students to use and remember
for its simplicity. The score confidence may be little difficult although it has
attractive properties and it performs much better. Agreti and Coull suggested an
alternative similar to the Wald interval in terms of its form but performs better than
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the Wald interval and they named it as the “add two successes and two failures”
adjusted Wald interval. In this method, instead of p̂ ¼ X

n, it is suggested that ~p ¼ ~X
~n ;

where ~X ¼ X þ z2a=2=2 and ~n ¼ nþ z2a=2. For 95% confidence interval for p,

a ¼ 0:05 so that za=2 ¼ 1:96 	 2 and z2a=2 ¼ 1:962 	 4, the Agresti–Coull point

estimator is

~p ¼
~X
~n
¼ Xþ 2

nþ 4
:

The Agresti–Coull confidence interval with confidence level 1� a is

~p� za=2
~pð1� ~pÞffiffiffi

~n
p ;

where the lower and upper end points are

l ¼ ~p� za=2
~pð1� ~pÞffiffiffi

~n
p ; and

u ¼ ~pþ za=2
~pð1� ~pÞffiffiffi

~n
p :

Both the Wilson interval and Agresti–Coull interval are centered on the same
value, ~p, and Agresti–Coull intervals are never shorter than the Wilson intervals
(Brown et al. 2001).

Example 7.9 In a study on the diagnosis of acute inflammations of urinary bladder
and acute nephritises, a sample of 120 is considered (Czerniak and Zarzycki 2003).
Out of 120 in the sample, 50 are found to have acute nephritis of renal pelvis origin.
Then we want to find the point estimate and the 95% confidence interval for the true
proportion of acute nephritis of renal pelvis origin.

Solution
The variable is X = number of subjects having acute nephritis of renal pelvis origin.
The sample size is n = 120. The number of subjects with acute nephritis of renal
pelvis origin is 50. The sample proportion is

p̂ ¼ x
n
¼ 50

120
¼ 0:4167:

A point estimate for p is p̂ ¼ 0:4167.
For constructing the 95% confidence interval for proportion, p, let us define
The confidence coefficient = 1� a ¼ 0:95; a ¼ 0:05; a=2 ¼ 0:025.
The reliability coefficient = z1�a=2 ¼ z0:975 ¼ 1:96.
The 95% confidence interval for proportion of acute nephritis of renal pelvis

region is
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P P̂� z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
\p\P̂þ z1�a=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r !
¼ 1� a:

The lower and upper limits of the confidence interval using the sample data are

l ¼ p̂� z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
¼ 0:4167� 1:96�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4167� 0:5833

120

r
¼ 0:4167� 0:0882

¼ 0:3285
and

u ¼ p̂þ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
¼ 0:4167þ 1:96�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4167� 0:5833

120

r
¼ 0:4167þ 0:0882

¼ 0:5049:

As it is shown that the above method may fail to provide a reasonably good
confidence interval for proportion, two alternative methods are also used here for a
comparison.

The Wilson Interval
The Wilson confidence interval considers

p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p ¼ �za=2

where p ¼ p0 is called the null value or null hypothesis value of p. It may be noted
here that za=2 ¼ �ð1� za=2Þ. Let p ¼ 0:50, hence

p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p ¼ 0:4167� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5� 0:5

p ¼ �0:1666:

The form of the confidence interval for p is

p̂þ
z2a=2
2n

� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þþ z2a=2=4n
h i

=n

r !
=ð1þ z2a=2=nÞ:
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The lower and upper limits are

l ¼ p̂þ
z2a=2
2n

þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þþ z2a=2=4n
h i

=n

r !
=ð1þ z2a=2=nÞ

¼
0:4167þ ð�0:1666Þ2

2� 120
þð�0:1666�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:4167� 0:5833þð�0:1666Þ2=ð4� 120Þ
h i

=120

r
0BBB@

1CCCA=½1þð�0:1666Þ2=120�

¼ 0:4092

u ¼ p̂þ
z2a=2
2n

� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þþ z2a=2=4n
h i

=n

r !
=ð1þ z2a=2=nÞ

¼
0:4167þ ð�0:1666Þ2

2� 120
� ð�0:1666�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:4167� 0:5833þð�0:1666Þ2=ð4� 120Þ
h i

=120

r
0BBB@

1CCCA=½1þð�0:1666Þ2=120�

¼ 0:4242:

The Agresti–Coull Interval

Agresti and Coull suggested an alternative similar to the Wald interval shown as
the first example that performs better than the Wald interval and it is called as “add
two successes and two failures” adjusted Wald interval.

In this method, instead of p̂ ¼ X
n, we use the estimator ~p ¼ ~X

~n ;

where ~X ¼ X þ z21�a=2=2 and ~n ¼ nþ z21�a=2. For 95% confidence interval for p,

a ¼ 0:05 so that z1�a=2 ¼ 1:96 	 2 and z21�a=2 ¼ 1:962 	 4, the Agresti–Coull

point estimator is

~p ¼
~X
~n
¼ Xþ 2

nþ 4
¼ 50þ 2

120þ 4
¼ 0:4194:

The Agresti–Coull confidence interval with confidence level 0.95 is

~p� z0:95 � ~pð1� ~pÞffiffiffi
~n

p ;

222 7 Estimation



where the lower and upper end points are

l ¼ ~p� z1�a=2 �
~pð1� ~pÞffiffiffi

~n
p

¼ 0:4194� 2� 0:4194� 0:5806ffiffiffiffiffiffiffiffi
124

p

¼ 0:4194� 0:0437

¼ 0:3757;

and

u ¼ ~pþ z1�a=2 �
~pð1� ~pÞffiffiffi

~n
p

¼ 0:4194þ 2� 0:4194� 0:5806ffiffiffiffiffiffiffiffi
124

p

¼ 0:4194þ 0:0437

¼ 0:4631:

Both the Wilson interval and Agresti–Coull interval are centered on the same
value, ~p, but it is seen that the Agresti–Coull interval is larger than the Wilson
interval.

7.2.6 Estimation of the Difference Between Two Population
Proportions ðp1 � p2Þ

Let us define two independent random samples X11; . . .;X1n1ð Þ and X21; . . .;X2n2ð Þ
with sample size n1 and n2, respectively. The random sample 1 is drawn from
X1i �Bernoulliðp1Þ and the second sample from X2i �Bernoulliðp2Þ. Here X1i ¼ 1,
if the ith Bernoulli trial (or simply ith element of the random sample 1) results in
selecting an element with a specified characteristic A in sample 1; X1i ¼ 0, other-
wise and X2i ¼ 1, if the ith Bernoulli trial (or simply ith element of the random
sample 2) results in selecting an element with a specified characteristic A in sample
2; X2i ¼ 0, otherwise. Then let us define X1 ¼

Pn1
i¼1 X1i and X2 ¼

Pn1
i¼1 X2i repre-

senting number of elements with characteristic A in samples 1 and 2, respectively.
The probability distributions of X1 ¼

Pn1
i¼1 X1i andX2 ¼

Pn1
i¼1 X2i are then

X1 �Binomialðp1Þ for random sample and the second sample from
X2 �Binomialðp2Þ.
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The point estimator of the difference between two parameters is
p̂1 � p̂2 ¼ X1

n1
� X2

n2
.

The expected value and variance of these statistics are

Eðp̂1 � p̂2Þ ¼ E
X1

n1
� X2

n2


 �
¼ EðX1Þ

n1
� EðX2Þ

n2

¼ n1p1
n1

� n2p2
n2

¼ p1 � p2:

The variance is

Varðp̂1 � p̂2Þ ¼ Var
X1

n1
� X2

n2


 �
¼ VarðX1Þ

n21
þ VarðX2Þ

n22

¼ n1p1ð1� p1Þ
n21

þ n2p2ð1� p2Þ
n22

¼ p1ð1� p1Þ
n1

þ p2ð1� p2Þ
n2

:

If both n1 and n2 are large then the pivotal quantity is

Z ¼ p̂1 � p̂2ð Þ � p1 � p2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1�p̂1Þ

n1
þ p̂2ð1�p̂2Þ

n2

q 	 Nð0; 1Þ:

Then the confidence level 1� a can be shown approximately as

Pðza=2\Z ¼ p̂1 � p̂2ð Þ � p1 � p2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1�p1Þ

n1
þ p2ð1�p2Þ

n2

q \z1�a=2Þ ¼ 1� a:

The confidence interval for p1 � p2 with confidence coefficient 1� a can be
expressed as
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P

za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

n1
þ p2ð1� p2Þ

n2

s
\ p̂1 � p̂2ð Þ � p1 � p2ð Þ

\z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

n1
þ p2ð1� p2Þ

n2

s
0BBBBB@

1CCCCCA ¼ 1� a

¼ P

� p̂1 � p̂2ð Þþ za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

n1
þ p2ð1� p2Þ

n2

s
\� p1 � p2ð Þ

\� p̂1 � p̂2ð Þþ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

n1
þ p2ð1� p2Þ

n2

s
0BBBBB@

1CCCCCA ¼ 1� a

¼ P

p̂1 � p̂2ð Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

n1
þ p2ð1� p2Þ

n2

s
\ p1 � p2ð Þ

\ p̂1 � p̂2ð Þ � za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

n1
þ p2ð1� p2Þ

n2

s
0BBBBB@

1CCCCCA ¼ 1� a:

Using the relationship Za=2 ¼ �Z1�a=2 and replacing p1 and p2 by maximum
likelihood estimators in the lower and upper end points, the confidence interval can
be expressed as

P

p̂1 � p̂2ð Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n1
þ p̂2ð1� p̂2Þ

n2

s
\ p1 � p2ð Þ\ p̂1 � p̂2ð Þ

þ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n1
þ p̂2ð1� p̂2Þ

n2

s
0BBBBB@

1CCCCCA
¼ 1� a:

The lower and upper limits or end points of this confidence interval, using the
estimates of the proportions, are

l ¼ p̂1 � p̂2ð Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n1
þ p̂2ð1� p̂2Þ

n2

s
and

u ¼ p̂1 � p̂2ð Þþ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n1
þ p̂2ð1� p̂2Þ

n2

s
:

Example 7.10 A researcher was interested in comparing the proportion of people
suffering from breathing problem in two cities, A and B. A random sample of 2500
people is taken from city A, and another independent random sample of 2000
people is taken from city B. It is found that 110 people in city A and 74 people in
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city B have been found with breathing problem. The researcher is interested in
finding the 90% confidence interval of the difference between the two proportions.

Solution
Let us define the parameters and estimators for the populations A and B:

p1 population proportion of people having breathing problem in city A,
p2 population proportion of people having breathing problem in city B,
x1 number of people with breathing problem in the sample from city A,
x2 number of people with breathing problem in the sample from city B,
n1 sample size for city A,
n2 sample size for city B,
p̂1 sample proportion of the sample from city A, and
p̂2 sample proportion of the sample from city B.

The point estimates of proportions with breathing problems in cities A and B are
shown below:

p̂1 ¼ x1
n1

¼ 110
2500

¼ 0:044;

p̂2 ¼ x2
n2

¼ 74
2000:

¼ 0:037

Point Estimation for p1 − p2:
The point estimate for the difference between the two proportions, p1 − p2, is

p̂1 � p̂2 ¼ 0:044� 0:037 ¼ 0:007:

The lower and upper limits or end points of this confidence interval, using the
estimates of the proportions, are

l ¼ p̂1 � p̂2ð Þ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n1
þ p̂2ð1� p̂2Þ

n2

s

¼ 0:007� 1:645�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:044� 0:956

2500
þ 0:037� 0:963

2000

r
¼ 0:007� 0:0097

¼ �0:0027
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and

u ¼ p̂1 � p̂2ð Þþ z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n1
þ p̂2ð1� p̂2Þ

n2

s

¼ 0:007þ 1:645�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:044� 0:956

2500
þ 0:037� 0:963

2000

r
¼ 0:007þ 0:0097

¼ 0:0167:

The 95% confidence interval for the difference between two proportions for
cities A and B is (−0.0027, 0.0167). This includes 0 that indicates the no difference
between the proportions.

7.3 Summary

In this chapter, the concepts and applications of estimation are discussed. The
methods of point estimation namely the method of maximum likelihood and the
method of moments are introduced in this chapter. The interval estimation is also
highlighted in this chapter and the construction of confidence intervals are dis-
cussed at length. The construction of confidence interval for single population
mean, difference between two population means, single population proportion, and
difference between two population proportions are shown with examples under
different underlying assumptions about population as well as about small or large
sample sizes. The pivotal quantities under the assumption of known or unknown
variances are also highlighted. In addition to the traditional Wald method, alter-
native methods of interval estimation of the population proportion namely the exact
method, the Wilson method and the Agresti–Coull method are also illustrated with
examples.

Exercises

7:1 Define the following briefly with example:

(i) Parameter,
(ii) Statistic,
(iii) Estimator,
(iv) Estimate.

7:2 Find the estimator of the parameter of the Bernoulli distribution using the
method of moments.

7:3 Write the probability mass function of the geometric distribution and find the
estimator of the parameter using method of moments.
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7:4 Using the method of moments, find the estimator of the parameters of a
normal distribution.

7:5

(i) What is the difference between joint density function and likelihood
function?

(ii) Write the likelihood function for a Poisson distribution.
(iii) Find the likelihood estimators of the parameters of a Poisson

distribution.

7:6 Use the method of moments to estimate the parameter of the following
distribution:

f ðy; hÞ ¼ 1
h
e�

y
h:

7:7

(i) Find the 100ð1� aÞ% confidence interval for the population mean l if
the variance r2 is known.

(ii) Consider that the time necessary for conducting a surgery is distributed
as normal with population mean l and variance r2, where variance is
known. A study is conducted to find the estimate of the population
mean. The sample size is n = 40 and the estimated mean time is �x ¼ 25
minutes. The population variance is known to be 15 min2. Find the 99%
confidence interval of the population mean time of performing the
surgery. Interpret your result.

7:8

(i) Find the 100ð1� aÞ% confidence interval for the population mean l if
the variance r2 is known. A sample of size n is drawn from a
non-normal population with the population mean l and known variance
r2.

(ii) A study is conducted on children under 5 years regarding duration of
breathing problem (in days) due to environmental problems in a city.
The size of the sample is 75. The probability distribution of the variable,
duration of breathing problem, is not normal. The population mean is l
and the variance is known r2 ¼ 3 days2. The estimated mean time is
�x ¼ 5 days. Find the 95% confidence interval of the population mean
duration of breathing problem among children of under 5 years.
Interpret your result.

7:9

(i) Find the 100ð1� aÞ% confidence interval for the population mean l if
the variance r2 is unknown.
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(ii) In a study on blood glucose level among adult population, it is found
that the mean glucose level and standard deviation are 80 mg/dL and
27 mg/dL, respectively. The sample size is 21. Find the 95% confidence
interval of the population mean glucose level among adult population.
Interpret your result.

7:10

(i) Find the 100ð1� aÞ% confidence interval for difference between two
population means if r21 and r22 are unknown and assumed to be equal.

(ii) An experiment was conducted to compare time duration of stay in a
hospital with two types of complications (A) and (B) and 9 patients
with complication type A and 16 patients with complication type B
were selected randomly. The average time lengths were 12 days for A
and 7 days for B and sample variances were 8 days2 for A and 5 days2

for B. Assuming equality of variances in the populations, find the 99%
confidence interval for the difference in population means of A and B.

7:11

(i) Find the 90% confidence interval for population proportion, p, if p̂ ¼
0:4 and n = 100 using the asymptotic normality assumption.

(ii) Use the alternative methods: (a) exact method, (b) Wilson interval and
(c) Agresti–Coull interval for constructing confidence interval.

(iii) Compare all these confidence intervals and comment on the suitability
of confidence intervals for the given data.

7:12 Among the adult males and females, a study is conducted to estimate the
proportion of diabetics. The sample sizes are 250 for males and 200 for
females. It is found from the estimates from the samples that the proportion
of diabetics among males is 10% and among females is 7%. Find the 95%
confidence interval of the difference between population proportions for
males and females.

7:13

(i) What is interval estimation? Define the 100 ð1� aÞ% confidence
interval and illustrate with a pivotal quantity.

(ii) Find the 100ð1� aÞ% confidence interval for the difference between
two population means for two correlated variables.

7:14

(i) Briefly describe the method of estimating parameters by the method of
maximum likelihood.

(ii) Let X1; . . .;Xn be a random sample from the following population:

f ðx; l; 5Þ ¼ 1ffiffiffiffiffiffi
10p

p e�
1
10ðx�lÞ2 , and find the maximum likelihood estimators

of the parameters. If l̂ is the ML estimator of l then find the ML
estimator of l2.
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7:15 Consider the following probability mass functions:

f ðx; n; pÞ ¼ n

x

 !
pxqn�x; x ¼ 0; 1; . . .; n;

Find the estimator of p using the method of moments and the method of
maximum likelihood.

7:16 Find the 100ð1� aÞ% confidence interval for the difference between two
means, l1 � l2, if r

2
1 and r22 are unknown and assumed to be unequal and

sample sizes are small; also indicate what would be the confidence interval if
the sample sizes are large.

7:17 Consider the following probability mass function:

f ðx; hÞ ¼ e�hhx

x!
; x ¼ 0; 1; . . .

(i) Find the estimator of the parameter of the above pmf for a random
sample X1; . . .;Xn using the method of moments.

(ii) Find the estimator of the parameter of the above pmf for a random
sample X1; . . .;Xn using the method of maximum likelihood.

(iii) What is the invariance property of a maximum likelihood estimator?

7:18 Find the 100ð1� aÞ% confidence interval for the following:

(i) difference between two population means if r21 and r22 are unknown and
assumed to be equal, and

(ii) difference between two population means if r21 and r22 are unknown and
assumed to be unequal.

7:19

(i) Suppose X1; . . .;Xn are an iid sample from a population with pdf or pmf
f ðx h1; . . .; hkÞj then find the joint density or mass function and then
define the likelihood function. How can you estimate the parameters
using the likelihood function?

(ii) Find the likelihood estimates of the parameters of the following
distributions:

ðaÞf ðx; kÞ ¼ ke�xk, and (b) f ðx; l; 1Þ ¼ 1ffiffiffiffi
2p

p e�
1
2ðx�lÞ2 .

7:20

(a) Let X1; . . .;Xn be an iid random sample from a population with pdf or
pmf f ðx h1; . . .; hkÞj . Briefly show the estimating equations for esti-
mating parameters h1; . . .; hk using method of moments.
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(b) Use the method of moments to estimate the parameters of the fol-
lowing distributions:

ðiÞ f ðx; hÞ ¼ 1
h e

�x=h, and (ii) f ðx; l; r2Þ ¼ 1ffiffiffiffiffiffiffi
2pr2

p e�
1

2r2
ðx�lÞ2 .

7:21

(a) Suppose X1; . . .;Xn are an iid sample from a population with pdf or
pmf f ðx h1; . . .; hkÞj then find the joint density or mass function and
then define the likelihood function. How can you estimate the
parameters using the likelihood function?

(b) Find the likelihood estimates of the parameters of the following
distributions:
ðiÞf ðx; kÞ ¼ ke�xk, and (ii) f ðx; pÞ ¼ pxð1� pÞ1�x; x ¼ 0; 1:
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Chapter 8
Hypothesis Testing

8.1 Why Do We Need Hypothesis Testing?

The hypothesis testing deals with answering research questions about the unknown
parameters of the population or, in other words, confirming or denying some
conjectures or statements about the unknown parameters. In the chapter on esti-
mation (Chap. 7), we have shown point and interval estimation of unknown
parameters from random samples. The estimation procedures ensure that the ran-
dom samples provide us good estimates to represent the corresponding population
values called parameters, which are unknown. Once we obtain the estimate, the
next important phase is to confirm whether the estimate represents the population
value adequately. This question arises because there are various estimates that can
be obtained from random samples depending on a specified sample size. The
possible variations in the estimates are discussed in sampling distribution presented
in Chap. 6. As there are various estimates that can be obtained from random
samples of fixed size, each one competing to represent the population value or
parameter, it may be a difficult task to confirm whether the estimate from the sample
can be considered as the value representing the parameter of a population from
which the sample is drawn. Although we consider usually a single sample from the
population using random sampling, the concept of underlying sampling distribution
provides us insights regarding the possible distribution and its characteristics that
help us in understanding the nature of variability in the sampling distribution of the
statistic used to estimate the parameter. The process that involves making a decision
about the parameter on the basis of a random sample is called the test of hypothesis,
where hypothesis is a statement about the parameter and test involves a method that
helps to make a decision about the statement about the parameter.
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8.2 Null and Alternative Hypotheses

Let us consider a population with some unknown parameter h. We are interested in
testing (confirming or denying) some hypotheses about h. A hypothesis is a
statement about one or more populations. A research hypothesis is the statement
about a population parameter that motivates the research. We may define a statis-
tical hypothesis as a statement about the population, which can be evaluated by an
appropriate statistical technique. For example, if h is an unknown parameter of the
population, we might be interested in testing the statement stating that h � h0
against h < h0 (for some specific value h0) or h ¼ h0 against h 6¼ h0.

We usually test the null hypothesis (H0) against the alternative (or the research)
hypothesis (H1 or HA) by choosing one of the following situations:

(i) H0: h ¼ h0 against H1: h 6¼ h0;
(ii) H0: h � h0 against H1: h < h0,
(iii) H0: h � h0 against H1: h > h0.

There are two types of statements about the unknown parameter we need to
consider in testing of hypothesis, one is null hypothesis and another is alternative
hypothesis, as shown in the examples above. The hypothesis that is being tested
provides a statement about the unknown parameter or population denoted by H0.
We may accept or reject the null hypothesis on the basis of evidence from the
sample data as well from the underlying sampling distribution of the statistic being
used to estimate the unknown parameter. Rejection of a null hypothesis leads to
another hypothesis known as alternative hypothesis. While acceptance of a null
hypothesis implies that there is not much evidence to reject the statement in the null
hypothesis, an alternative hypothesis implies that if we cannot accept the null
hypothesis or more specifically if we do not have enough evidence in favor of the
null hypothesis or to support the null hypothesis, we may accept the alternative
statement called the alternative hypothesis denoted usually by H1. A simple
example of a null hypothesis is H0: h ¼ h0 and the corresponding alternative
hypothesis is H1: h 6¼ h0. These hypotheses imply that if we do not have sufficient
evidence to reject the null hypothesis H0: h ¼ h0, it may lead to non-rejection of the
null hypothesis statement. By non-rejection of this null hypothesis, we are not
saying that this value is exactly equal to the population value but it may be
interpreted that there is not much evidence to reject this hypothesis. It may also be
noted that, from random samples, we may obtain estimates close to h0 and for each
of those values the null hypothesis may not be rejected, which may lead to
non-rejection of the null hypothesis.
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8.3 Meaning of Non-rejection or Rejection of Null
Hypothesis

Let us consider a study on a disease and we are interested in finding the proportion
of individuals suffering from the disease in the population. The proportion of
individuals suffering from the disease in the population is denoted by p. The value
of p is unknown. A random sample is considered and the observed values of the
random sample provide an estimated p, say p̂ ¼ 0:17. We want to test for the null
hypothesis statement H0: p ¼ 0:15 against the alternative hypothesis H1: p 6¼ 0:15.
If we fail to reject the null hypothesis based on the fact that the estimated value
from the sample, 0.17, is not exactly equal to the hypothesized population value of
0.15, still we do not have sufficient evidence to reject this null hypothesis. This
might happen with some other estimates from different random sample values as
well due to the sampling distribution variation in the possible samples with same
sample size having drawn from the same population with parameter, p. Hence, the
non-rejection or rejection of null hypothesis should be interpreted very carefully
with a proper understanding of the underlying concepts correctly. It needs to be
remembered that failure to reject H0 does not imply that the null hypothesis is true
rather it indicates that there is no sufficient evidence to reject H0 or no sufficient
evidence to support the alternative hypothesis, H1. Another point to be remembered
in hypothesis testing is that the formulation of hypothesis needs very careful
consideration and understanding about the underlying probability of the random
sample variables as well as about the sampling distribution of the statistic being
used to estimate the unknown parameter for arriving at an acceptable decision
statistically.

One-sided and Two-sided Tests
Both the null and alternative hypotheses have to be stated before the test is per-
formed. Depending on the objectives of the study, the formulation of the hypothesis
can be either one tailed or two tailed referring to one-sided or two-sided tests.
A statistical test in which the alternative hypothesis states the value of the parameter
either above the value specified by H0 or below the value specified by H0 is called a
one-sided test or one-tailed test.

Examples

(i)
H0: h ¼ h0;

H1: h[ h0;

(ii)
H0: h ¼ h0;

H1: h\h0:

On the other hand, if the alternative hypothesis states in a test that the value of
the parameter can be taken from either side of the stated null hypothesis value it
leads to a two-sided or two-tailed test.
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Example

H0: h ¼ h0;

H1: h 6¼ h0:

8.4 Test Statistic

For testing hypothesis, we need a statistic which provides the sampling distribution
for defining the probability of accepting or rejecting the stated null hypothesis
which is called the test statistic. The test statistic is a statistic defined as a function
of random sample variables and parameters and the test statistic may also be
considered as a random variable. The sampling distribution of the test statistic is
independent of the parameters for which the test of hypothesis is performed. Two of
the most familiar and widely used test statistics corresponding to their hypotheses
are shown below.

(i) Test for H0: l ¼ l0;H1: l 6¼ l0 assuming that the random sample is drawn
from X�Nðl; r2Þ, where r2 is known. The sampling distribution of �X ¼Pn

i¼1 Xi=n is �X �N l; r2=nð Þ. Then, the test statistic can be obtained from the
standard normal variable

Z ¼
�X � l
r=

ffiffiffi
n

p �Nð0; 1Þ

by replacing l with l0 under the null hypothesis. Hence, the test statistic is
(Fig. 8.1)

Z ¼
�X � l0
r=

ffiffiffi
n

p :

Fig. 8.1 Standard normal distribution
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(ii) Test for H0: l ¼ l0;H1: l 6¼ l0 assuming that the random sample is drawn
from X �Nðl; r2Þ, where r2 is unknown. The sampling distribution of �X ¼Pn

i¼1 Xi=n is �X�N l; r2=nð Þ. Then, the test statistic can be obtained from the
standard normal variable

T ¼
�X � l
S=

ffiffiffi
n

p � tn�1

by replacing lwith l0 under the null hypothesis (Fig. 8.2). Hence, the test statistic is

T ¼
�X � l0
S=

ffiffiffi
n

p :

8.5 Types of Errors

In performing a test of hypothesis, the decision-making process is not free from
making errors. There are two types of errors arising from accepting or rejecting the
null hypothesis. If we reject a null hypothesis when it is true, it is called the Type I
error. The probability of Type I error is denoted by a. The probability of Type I
error is called the size of the test or level of significance too. The second type of
error is due to failing to reject the null hypothesis, when it is false. The probability
of Type II error is denoted by b. The correct decisions are: (i) reject the null

Fig. 8.2 t-distributions with degrees of freedom 3, 9, and 25
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hypothesis if the null hypothesis is false, and (ii) failing to reject the null hypothesis
if the null hypothesis is true. In performing a test, our goal is to keep both the Type I
and II errors minimum or in many instances a fixed. These decisions can be shown
in a 2� 2 table as shown below.

Condition of null hypothesis H0

H0 is true H0 is false

Possible action (decision) Fail to reject H0 Correct decision Type II error

Reject H0 Type I error Correct decision

We can define this decision procedure more precisely using the conditional
probabilities as summarized below.

(i) P ðType I errorÞ ¼ P ðreject H0 H0 is trueÞ ¼ aj
This probability statement shows the chance of rejecting a null hypothesis when in
reality the null hypothesis is true. This probability is fixed at the pre-experiment
stage and the rejection region is determined by the Type I error rate. In order to
control the overall erroneous rejections, the Type I error rate is fixed at a low level
before the experiment is conducted.

(ii) P ðType II errorÞ ¼ Pðfail to reject H0 H0 is falseÞ ¼ bj
In the above probability statement, the chance of failing to reject a null hypothesis
when it might be false is stated. This probability should be kept as low as possible.

(iii) P ðfail to reject H0 H0 is trueÞ ¼ 1� aj
The above probability statement shows the chance of failure to reject a null hy-
pothesis, when it is true that results in a correct decision of non-rejection of the null
hypothesis if given that the null hypothesis is true. If the probability of Type I error
is fixed then the complementary event of not making an error by non-rejection of
the null hypothesis is also fixed at the pre-experiment stage.

(iv) P ðreject H0 H0 is falseÞ ¼ 1� bj
The probability of rejecting a null hypothesis when it is truly false is stated in (iv).
This is the probability of making a right decision by rejecting the null hypothesis
when it might be false. This probability is called the power of the test.

The probabilities of correct decisions, subject to the condition that the under-
lying null and alternative hypotheses values are known, are shown in (iii) for
non-rejection of a null hypothesis if it is true, and in (iv) for rejection of a null
hypothesis if it is false. It has to be remembered here that underlying population
value is not known generally in most of the cases, but we may consider a hypo-
thetical value based on which the test is performed. So when we say that the null
hypothesis is given to be true or false it provides only a hypothetical statement
about the population value, there might be other competing null hypothesis values
that could be tested with equal importance in many cases. Hence, the test is
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conducted under a hypothetical situation about the underlying population and in a
relative sense, the probability statements leading to specific decisions about the
population value reflect only one of the many hypothetical situations. We try to use
a test for which the probability of correct decisions (iii) and (iv) are maximized. If
we decrease the probability of one type of error it may increase the probability of
other types of error for a fixed sample size. However, both the probabilities of
Type I and Type II errors will decrease with an increase in sample size. Usually we
consider a fixed probability of Type I error, a. The probability of non-rejection of
the null hypothesis if it is true is used in constructing a confidence interval as
confidence level or confidence coefficient. Similarly, the probability of rejecting a
null hypothesis when it is false is called the power of a test and by increasing the
power of a test we try to minimize the Type II error.

8.6 Non-rejection and Critical Regions

The non-rejection and critical regions are defined on the basis of the null and
alternative hypotheses as well as the test statistic. It is shown that the test statistic is
also a variable and there is sampling distribution from which we can find the
probabilities of greater than or smaller than some specified values of the test
statistic. The specification of these values are based on two criteria: (i) the alter-
native hypothesis, one-sided or two-sided, and (ii) specification of Type I error, a. If
the test is one-sided, then based on the alternative hypothesis, we may define the
critical region either to the left or to the right side of the sampling distribution of the
test statistic. On the other hand, if the test is two-sided then the critical region is
defined to both the left- and right-hand sides of the sampling distribution of the test
statistic. The critical region may be defined as the region of a sample space with the
property that if the observed value of a test statistic for testing a null hypothesis
against an alternative falls in that region then the null hypothesis is rejected.
Depending on the alternative hypothesis, the critical region is defined on one or
both sides of the sampling distribution of a test statistic. The non-rejection region
may be defined as the region with the property that if the observed value of a test
statistic for testing a null hypothesis against an alternative falls in that region then
the null hypothesis is not rejected. It implies that the non-rejection region is the
region under the sampling distribution complementary to the critical region. The
value of the test statistic that separates the critical region and non-rejection region is
called a critical value for a one-sided test and there are two critical values for a
two-sided test. The level of significance, a, determines the size of a test and the
critical region depends on the choice of a. Usually, the choices of a are 0.05, 0.01 or
in some cases 0.001.
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8.7 p-Value

Let us consider a test statistic, Z, to test the null hypothesis H0: l ¼ l0 against the
alternative hypothesis H1: l[ l0 for a random sample of size n.

Instead of a fixed size of a test, sometimes many users prefer to use a p-value to
report the result of a test. Currently, there is a debate in the statistical community
regarding the conclusions based on statistical significance by using the p-value
which is commonly misused and misinterpreted (Wasserstein and Lazar 2016).
Although it is used by the applied statisticians widely, statisticians may disagree in
some situations on its appropriate use and on its interpretation as a measure of
evidence (Goodman 1992; Hung et al. 1997). In their ASA’s statement on p-values,
context, process, and purpose, Wasserstein and Lazar (2016) defined informally that
a p-value is the probability under a specified statistical model that a statistical
summary of the data would be equal to or more extreme than its observed value.
The p-value is a random variable derived from the test statistic and used for testing
a null hypothesis in analyzing a set of data. According to Hung et al. (1997), “the p-
value is derived from the perspective of a test of hypothesis in which a test statistic
is calculated from results of a given set of data and, under the assumption that the
null hypothesis is true, the distribution of the test statistic is used to obtain the tail
probability of observing that result or a more extreme result.” The probability of
Type I error, a, is a pre-experiment error rate that determines the rejection region
and the purpose of the fixed Type I error is to control the overall frequency of
making erroneous rejections of the null hypothesis.

Some principles of p-values stated in the ASA’s statement on p-values are
quoted from Wasserstein and Lazar (2016)

(i) “P-values can indicate how incompatible the data are with a specified sta-
tistical model.

(ii) P-values do not measure the probability that the studied hypothesis is true, or
the probability that the data were produced by random chance alone.

(iii) Scientific conclusions and business or policy decisions should not be based
only on whether a p-value passes a specific threshold.

(iv) A proper inference requires full reporting and transparency.
(v) A p-value, or statistical significance, does not measure the size of an effect or

the importance of a result.
(vi) By itself, a p-value does not provide a good measure of evidence regarding a

model or hypothesis.”

In case of a test statistic employed to test a null hypothesis against an alternative
hypothesis, p-value is the probability of the test statistic under null hypothesis
would be equal to or more extreme than its observed value. Let us consider an
example to illustrate the computation of p-values.

Example 1: For testing a null hypothesis H0: l ¼ l0 against an alternative
hypothesis H1: l 6¼ l0 assuming that the random sample ðX1; . . .;XnÞ is from a
population X�Nðl; r2Þ. The test statistic is
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Z ¼
�X � l0
r=

ffiffiffi
n

p

and the sampling distribution of Z is Z�Nð0; 1Þ. Then, the observed values of
random samples are X1 ¼ x1; . . .;Xn ¼ xn and the sample mean is

�x ¼
Pn

i¼1 xi
n

:

Now, we can obtain the value of the test statistic for the given sample and under
the null hypothesis as

z ¼ �x� l0
r=

ffiffiffi
n

p :

Then, we can define the p-value as the probability under a specified statistical
hypothesis that the test statistic value from the data would be equal to or more
extreme than its observed value stated by

p-value ¼ PðZ[ zj jÞ þPðZ\� zj jÞ:

Here, the absolute value of z is used to define the tail areas for observed value or
more extreme values to both the tail areas in case of either a negative or a positive
value of the test statistic. In case of a two-sided alternative, more extreme values of
the test statistic can be obtained from the left or right tail areas of the sampling
distribution. For a positive value of z, it can be shown directly as

p-value ¼ PðZ[ zÞþPðZ\� zÞ

because the standard normal distribution is symmetric and the tail areas are greater
than z and less than −z. Similarly, for a negative value of z, the p-value for the
two-sided test is (Fig. 8.3)

Fig. 8.3 Figure displaying standard normal distribution with two-sided critical regions

8.7 p-Value 241



p-value ¼ PðZ\zÞþPðZ[ � zÞ:

For a one-sided test for a null hypothesis H0: l ¼ l0 versus an alternative hy-
pothesis H1: l[ l0, the p-value is

p-value ¼ PðZ[ zÞ:

Alternatively, this can be defined as

p-value ¼ 1� PðZ\zÞ ¼ 1� FðzÞ

where F(z) is the distribution function value (cumulative probability) of the stan-
dard normal at Z = z (Fig. 8.4).

If the tail area is to the left side of a one-sided test for a null hypothesis
H0: l ¼ l0 versus an alternative hypothesis H1: l\l0, the p-value is

p-value ¼ PðZ\zÞ. This can be defined alternatively as
p-value ¼ PðZ\zÞ ¼ FðzÞ

where F(z) is the distribution function value (cumulative probability) of the stan-
dard normal at Z = z (Fig. 8.5).

Fig. 8.4 Figure displaying standard normal distribution with critical region to the right tail
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8.8 The Procedure of Testing H0 (Against HA)

The test procedure for not rejecting H0 or rejecting H0 involves the following steps:

Steps 1. Specify the statements for null and alternative hypotheses and the size of
the test or level of significance, a.

Steps 2. Carefully note the following: (i) probability distribution of the random
variable from which the sample is drawn, (ii) if X �Nðl; r2Þ and the test
is about the population mean then whether the variance is known or
unknown, and (iii) sample size, n, and whether the sample size is small or
large. This step will vary depending on whether we consider a test for
mean, proportion or variance from single or multiple populations, and size
of sample.

Steps 3. Find: (i) the point estimator of the parameter being tested, (ii) the sam-
pling distribution of the point estimator, (ii) the test statistic and (iii) the
sampling distribution of the test statistic.

Steps 4. Calculate the value of the test statistic from the data and find the critical
value to define the rejection region and non-rejection or acceptance
region.

Steps 5. Make decision and interpret result based on whether the calculated value
of the test statistic falls in the critical region or non-rejection region.
Alternatively, the p-value is computed by determining the probability of
observed or more extreme values from the sampling distribution of the test
statistic.

Fig. 8.5 Figure displaying standard normal distribution with critical region to the right tail
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8.9 Hypothesis Testing: A Single Population Mean (l)

1. r2 is known

Suppose that X1; . . .;Xn is a random sample of size n from a distribution (or
population) with mean l and variance r2. Then, the steps of performing the test of
hypothesis regarding a single population mean are shown below.

Step 1: Let the null and alternative hypotheses are H0:l ¼ l0 versus H1: l 6¼ l0.
The level of significance is a, say a ¼ 0:05.

Step 2: Two different cases are considered.
Case 1: Let the probability distribution of X is X�Nðl; r2Þ for the random

sample X1; . . .;Xn and let us assume that r2 is known. Here the sample size is n,
small or large.

Case 2: Alternatively, the random sample is drawn from a non-normal popula-
tion with mean l and variance r2 and sample size is large.

Step 3: The point estimator of l is �X ¼
Pn

i¼1
Xi

n . The sampling distributions for
two different cases specified in step 2 are

Case 1: �X�Nðl; r2=nÞ, the standard error of �X is r=
ffiffiffi
n

p
.

Case 2: For a large sample size, it can be shown asymptotically that
�X � Nðl; r2=nÞ, the standard error of �X is r=

ffiffiffi
n

p
approximately.

The statistic for both cases 1 and 2 is

Z ¼
�X � l
r=

ffiffiffi
n

p

where the sampling distribution of Z is Z�Nð0; 1Þ for case 1 and if the sample size
is large then approximately Z � Nð0; 1Þ for case 2.

Step 4: The observed value of the test statistic from the sample data X1 ¼
x1; . . .;Xn ¼ xn is

z ¼ �x� l0
r=

ffiffiffi
n

p :

The critical values for a two-sided alternative are za=2 and z1�a=2 (Fig. 8.6).
Step 5: If z\za=2 or z[ z1�a=2 then the test statistic value from the sample data

falls in the rejection region and the decision is in favor of rejecting the null hy-
pothesis. On the other hand, if z[ za=2 and z\z1�a=2 then the test statistic falls in
the non-rejection region. In this case, the decision is in favor of non-rejection of null
hypothesis as evident from the sample data (Fig. 8.7).

2. r2 is unknown

Let us consider that X1; . . .;Xn be a random sample of size n from a normal
distribution (or population) with mean l and variance r2 where r2 is not known.
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The steps of performing the test of hypothesis regarding a single population mean
are shown below.

Step 1: The null and alternative hypotheses are H0: l ¼ l0 versus H1: l 6¼ l0.
The level of significance is a, say a ¼ 0:05.

Step 2: Two different cases are considered.
Case 1: Let us assume that the probability distribution of X is X�Nðl; r2Þ for

the random sample X1; . . .;Xn and let r2 be unknown. The sample size n is small.
Case 2: Alternatively, the random sample is drawn from a normal population

with mean l and variance r2 and sample size is large.

Step 3: The point estimator of l is �X ¼
Pn

i¼1
Xi

n . The sampling distributions for
two different cases specified in step 2 are

Fig. 8.7 Figure displaying standard normal distribution with non-rejection and rejection regions

Fig. 8.6 Figure displaying standard normal distribution with critical values for two-sided
alternative
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Case 1: �X�Nðl; r2=nÞ, the standard error of �X is r=
ffiffiffi
n

p
.

Case 2: For a large sample size, it can be shown asymptotically that
�X � Nðl; r2=nÞ, the standard error of �X is r=

ffiffiffi
n

p
approximately.

The test statistic for case 1 is

T ¼
�X � l0
S=

ffiffiffi
n

p

where r is replaced by its estimator S and the sampling distribution of T is T � tn�1

for case 1 and if the sample size is large then T is approximately standard normal
and can be expressed as Z � Nð0; 1Þ for case 2.

Step 4: The observed value of the test statistics for cases 1 and 2 from the sample
data X1 ¼ x1; . . .;Xn ¼ xn are

Case 1: t ¼ �x�l0
s=
ffiffi
n

p

The critical values for a two-sided alternative are tðn�1Þ;a=2 and tðn�1Þ;1�a=2.

Case 2: z ¼ �x�l0
s=
ffiffi
n

p

The critical values for a two-sided alternative are za=2 and z1�a=2.
Step 5: The decision for cases 1 and 2 can be made as follows:
Case 1: It is mentioned that case 1 represents a random sample drawn from

normal population, where the population variance is unknown. Then to perform the
test for the population mean, we have considered a t-test statistic with (n − 1)
degrees of freedom. If t\tðn�1Þ;a=2 or t[ tðn�1Þ;1�a=2, then the test statistic value
from the sample data falls in the rejection region and the decision is in favor of
rejecting the null hypothesis. However, if tðn�1Þ;a=2\t\tðn�1Þ;1�a=2 then the test
statistic falls in the non-rejection region. In this case, the decision based on the
sample data is in favor of non-rejection of the null hypothesis (Fig. 8.8).

Fig. 8.8 Figure displaying t-distribution with non-rejection and rejection regions
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Case 2: In this case also the random sample is assumed to be drawn from a
normal population with variance unknown. Then, the test statistic tends to follow a
standard normal distribution for a large sample size. If the value of the test statistic
is z\za=2 or z[ z1�a=2, then the sample data favor rejection of the null hypothesis
because the test statistic value from sample data falls in the critical or rejection
region. If za=2\z\z1�a=2 then the test statistic falls in the non-rejection region and
the decision is in favor of non-rejection of null hypothesis.

Example 8.1 Test for l, r2 is known.
The example we have employed to illustrate the confidence interval for popu-

lation mean for known population variance is used here. In that example, we have
considered a random sample of 123 patients admitted to a hospital with old age
complications. The sample mean age is 55 years. The population variance is
assumed to be r2 ¼ 82. Let us assume that the population is normal with mean l
and variance r2 ¼ 82. Then a test is performed to know whether the population
mean is l ¼ 50.

In this example, X1; . . .;Xn is a random sample of size n from a distribution (or
population) with mean l and variance r2.

Step 1: The null and alternative hypotheses are

H0: l ¼ 50 versus H1:l 6¼ 50:

The level of significance is a ¼ 0:05.
Step 2: The probability distribution of X is X�Nðl; r2Þ for the random sample

X1; . . .;Xn and let us assume that r2 is known.

Step 3: The point estimator of l is �X ¼
Pn

i¼1
Xi

n and its sampling distribution is
�X�Nðl; r2=nÞ, the standard error of �X is r=

ffiffiffi
n

p
.

The statistic is

Z ¼
�X � l
r=

ffiffiffi
n

p

where the sampling distribution of Z is Z �Nð0; 1Þ.
Step 4: The observed value of the test statistic from the sample data is

z ¼ �x� l0
r=

ffiffiffi
n

p ¼ 55� 50

9:06=
ffiffiffiffiffiffiffiffi
123

p ¼ 5
0:8169

¼ 6:1207:

The critical values for a two-sided alternative are z0:025 ¼ �196 and z0:975 ¼
1:96 (Fig. 8.9).

Step 5: The calculated value of the test statistic is 6.1207 which is greater than
the critical value, i.e., z[ z0:975 where z = 6.1207 and z0:975 ¼ 1:96. It shows that
the test statistic value from the sample data falls in the rejection region and the
decision is in favor of rejecting the null hypothesis.
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Example 8.2 Test for l, r2 is unknown.
Using the data on height of women in their adulthood presented in Chap. 7, an

example for test on population mean (when r2 is unknown) is shown here.
A hypothetical sample of 24 women considered here is assumed to be drawn from a
normal distribution with population mean l and variance r2. The sample mean and
variance of height of the selected women are 151 cm and 18.65 cm2 respectively.
Then, let us test for the null hypothesis whether population mean is 153 cm or not.

Solution
The random sample X1; . . .;Xn is assumed to be drawn from a normal distribution
with mean l and variance r2 where r2 is not known.

Step 1: The null and alternative hypotheses are
H0: l ¼ 153 versus H1: l 6¼ 153. The level of significance is a ¼ 0:05.
Step 2: The probability distribution of X is X�Nðl; r2Þ for the random sample

X1; . . .;Xn and let r2 be unknown. The sample size n is small.

Step 3: The point estimator of l is �X ¼
Pn

i¼1
Xi

n and
�X�Nðl; r2=nÞ, the standard error of �X is r=

ffiffiffi
n

p
.

The test statistic is

T ¼
�X � l0
S=

ffiffiffi
n

p

and the sampling distribution of T is T � tn�1,
Step 4: The observed value of the test statistics is

t ¼ �x� l0
s=

ffiffiffi
n

p ¼ 151� 153

4:32=
ffiffiffiffiffi
24

p ¼ �2
0:8818

¼ �2:2681

Fig. 8.9 Figure displaying critical regions for test about population mean, when variance is
known
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where n = 24 and s ¼ þ
ffiffiffiffi
s2

p
¼ þ ffiffiffiffiffiffiffiffiffiffiffi

18:65
p ¼ 4:32.

The critical values for a two-sided alternative are t23;0:025 ¼ �2:067 and t23;0:975 ¼
2:067 (Fig. 8.10).

Step 5: The calculated value of the test statistic, t, appears to be less than the
critical value at the lower tail, i.e., t\tðn�1Þ;a=2 , hence the test statistic value from
the sample data falls in the rejection region and the decision is in favor of rejecting
the null hypothesis.

8.10 Hypothesis Testing: The Difference Between Two
Population Means: Independent Populations

Suppose that we have two independent populations where the first population is
characterized with parameters mean = l1 and variance = r21 and the second pop-
ulation with mean = l2 and variance = r22. The random samples from the first and
second populations are X11; . . .;X1n1ð Þ and X21; . . .;X2n2ð Þ respectively. Let us
denote the probability distributions for the variables for the first and second random
samples as X1 �Dðl1; r21Þ and X2 �Dðl2;r22Þ, respectively, where D represents
underlying population distribution. Here, we are interested in comparing l1 and l2,
or equivalently, making inferences about the difference between the means
ðl1 � l2Þ. Let us select a random sample of size n1 from the first population and
another random sample of size n2 from the second population independently and let
�X1 and S21 be the sample mean and the sample variance of the first random sample
and �X2 and S22 be the sample mean and the sample variance of the second random
sample. The sampling distribution of �X1 � �X2 is used to make inferences about
ðl1 � l2Þ.

Fig. 8.10 Figure displaying critical regions for test about population mean when variance is
unknown
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The steps discussed in the previous section can be used to illustrate the testing of
hypothesis of difference between two population means. The steps are highlighted
below.

1. r21 and r22 are known

Suppose that the random samples from the first population is X11; . . .;X1n1ð Þ with
sample size n1 and the random sample from the second population is X21; . . .;X2n2ð Þ
with sample size n2.

Step 1: The null and alternative hypotheses are H0: l1 � l2 ¼ 0 versus
H1: l1 � l2 6¼ 0. The level of significance is a, say a ¼ 0:05.

Step 2: Two different cases are considered.
Case 1: Let the probability distribution of X1 is X1 �Nðl1; r21Þ for the random

sample X11; . . .;X1n1 and X2 is X2 �Nðl2;r22Þ for the random sample X21; . . .;X2n2

let us assume that r21 and r22 are known.
Case 2: Alternatively, let the probability distribution of X1 is non-normal for the

random sample X11; . . .;X1n1 with mean l1 and variance r21 and X2 is non-normal
for the random sample X21; . . .;X2n2 with mean l2 and variance r22 for the random
sample X21; . . .;X2n2 . Let us assume that r21 and r22 are known and sample sizes for
both the samples are large.

Step 3: The point estimator of l1 is �X1 ¼
Pn1

i¼1
X1i

n1
and l2 is �X2 ¼

Pn2
i¼1

X2i

n2
. The

sampling distributions of �X1 � �X2 for two different cases specified in step 2 are
summarized below.

Case 1: �X1 � �X2 �Nðl1 � l2; r
2
1=n1 þ r22=n2Þ and the standard error of

�X1 � �X2 is r1=
ffiffiffiffiffi
n1

p þ r2=
ffiffiffiffiffi
n2

p
.

Case 2: For large sample, it can be shown asymptotically that

�X1 � �X2 � Nðl1 � l2; r
2
1=n1 þ r22=n2Þ and the standard error

of �X1 � �X2 is approximately r1=
ffiffiffiffiffi
n1

p þ r2=
ffiffiffiffiffi
n2

p
.

The statistic for both cases 1 and 2 is

Z ¼
�X1 � �X2 � ðl1 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21=n1 þ r22=n2
p

where the sampling distribution of Z is Z�Nð0; 1Þ for case 1 and if the sample
sizes are large then approximately Z � Nð0; 1Þ for case 2.

Step 4: The observed value of the test statistic from the sample data X11 ¼
x11; . . .;X1n1 ¼ x1n1 for sample 1 and X21 ¼ x21; . . .;X2n1 ¼ x2n2 for sample 2 is
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z ¼ �x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21=n1 þ r22=n2

p :

The critical values for a two-sided alternative are za=2 and z1�a=2 (Fig. 8.11).
Step 5: The rejection region is defined by z\za=2 or z[ z1�a=2. If the test

statistic’s value from the sample data falls in the rejection region, the decision is in
favor of rejecting the null hypothesis. On the other hand, if za=2\z\z1�a=2 then the
value of the test statistic falls in the non-rejection region and the decision is in favor
of non-rejection of null hypothesis as evident from the sample data.

2. r21 and r22 are unknown

Let us consider the random sample from the first population is X11; . . .;X1n1ð Þ
with sample size n1 and from the second population is X21; . . .;X2n2ð Þ with sample
size n2. The variance of both the populations 1 and 2 are unknown.

Step 1: The null and alternative hypotheses are H0: l1 � l2 ¼ 0 versus
H1: l1 � l2 6¼ 0. The level of significance is a, say a ¼ 0:05.

Step 2: Two different cases are considered.
Case 1: Let X1 �Nðl1; r21Þ and X2 �Nðl2; r22Þ and r21 and r22 are unknown.
Case 2: Let the probability distribution of X1 is non-normal for the random

sample X11; . . .;X1n1 with mean l1 and variance r21 and X2 is non-normal for the
random sample X21; . . .;X2n2 with mean l2 and variance r22 for the random sample
X21; . . .;X2n2 . In this case also, r21 and r22 are unknown and sample size for both
the samples are large.

Fig. 8.11 Figure displaying critical regions for test about equality of population means when
population variances are known

8.10 Hypothesis Testing: The Difference Between Two Population Means … 251



Step 3: The point estimators of population means: the estimator of l1 is �X1 ¼Pn1
i¼1

X1i

n1
and the estimator of l2 is �X2 ¼

Pn2
i¼1

X2i

n2
. The sampling distribution of �X1 �

�X2 for 1 and 2 are summarized below.
Case 1: �X1 � �X2 �Nðl1 � l2; r

2
1=n1 þ r22=n2Þ.

Case 2: For large sample, it can be shown asymptotically that

�X1 � �X2 � Nðl1 � l2; r
2
1=n1 þ r22=n2Þ:

The test statistic for case 1 is

T ¼
�X1 � �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21=n1 þ S22=n2
p

where the sampling distribution of T is T � tm for case 1.
The denominator of T shown above, which is the standard error of the estimators

of two population means, may be estimated under different assumptions about the
population variances. We address two different situations here.

Case 1(i) The population variances of two independent populations are unknown
but assumed to be equal which imply r21 ¼ r22 ¼ r2. The sample variances are
defined as

S21 ¼
Pn1

i¼1 X1i � �X1ð Þ2
n1 � 1

and S22 ¼
Pn2

i¼1 X2i � �X2ð Þ2
n2 � 1

:

For equality of population variances a pooled estimator of population variance is
preferred as shown below

S2p ¼
Pn1

i¼1 X1i � �X1ð Þ2 þ Pn2
i¼1 X2i � �X2ð Þ2

n1 þ n2 � 2
¼ ðn1 � 1ÞS21 þðn2 � 1ÞS22

n1 þ n2 � 2
:

Under this assumption of equality of variances, the test statistic is redefined as

T ¼
�X1 � �X2

Sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=n1Þþ ð1=n2Þ

p :

Here, T is T � tm and the degrees of freedom m ¼ n1 þ n2 � 2.
Case 1(ii) If the population variances are assumed to be unequal and unknown

then we have to deal with r21 6¼ r22 and the pooled estimator of the variance can not
be used. In this case, the test statistic is
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T ¼
�X1 � �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21=n1 þ S22=n2
p

where the sampling distribution of T is T � tm as shown earlier and the degrees of
freedom is obtained by using the following approximation popularly known as the
Satterthwaite approximation introduced in 1946 (Satterthwaite 1946)

m ¼ s21=n1 þ s22=n2
� �2

s21=n1
� �2

=ðn1 � 1Þ
h i

þ s22=n2
� �2

=ðn2 � 1Þ
h i :

Usually, this approximation is not an integer and we can approximate the
degrees of freedom by rounding the result to the nearest integer.

The test statistic for case 2 is

Z ¼
�X1 � �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21=n1 þ S22=n2
p

where the sampling distribution of Z is asymptotically Z � Nð0; 1Þ if sample sizes
are large for case 2.

Step 4: The values of the test statistics for cases 1 and 2 are shown below.
The value of the test statistic from sample data for case 1(i) is

t ¼ �x1 � �x2
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=n1Þþ ð1=n2Þ
p

and the critical values for the two-tailed test at the left and right tail areas are
tn1 þ n2�2;a and tn1 þ n2�2;1�a:

Similarly, the test statistic from sample data for case 1(ii) is

t ¼ �x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21=n1 þ s22=n2

p :

The critical values are tm;a and tm;1�a, where the degrees of freedom, m, is

m ¼ s21=n1 þ s22=n2
� �2

s21=n1
� �2

=ðn1 � 1Þ
h i

þ s22=n2
� �2

=ðn2 � 1Þ
h i :

For case 2, the value of the test statistic for large sample size is

z ¼ �x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21=n1 þ r22=n2

p :

The critical values for a two-sided alternative are za=2 and z1�a=2. Here, the
sampling distribution of Z is asymptotically Z � Nð0; 1Þ if sample sizes are large.
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Step 5: The decision is based on test statistic value from sample data as dis-
played in Step 4.

Case 1: The rejection region is defined by t\tn1 þ n2�2;a=2 or t[ tn1 þ n2�2;1�a=2.
The decision is in favor of rejecting the null hypothesis if the test statistic value, t,
falls in the rejection region. On the other hand, if ta=2\t\t1�a=2 then the value of
the test statistic falls in the non-rejection region, and the decision is in favor of
non-rejection of null hypothesis as we observe from the sample data (Fig. 8.12).

Case 2: The rejection region is defined by z\za=2 or z[ z1�a=2. If the test
statistic value from the sample data, z, falls in the rejection region, the decision is in
favor of rejecting the null hypothesis. On the other hand, if za=2\z\z1�a=2 then the
value of the test statistic falls in the non-rejection region and the decision is in favor
of non-rejection of null hypothesis (Fig. 8.13).

Fig. 8.12 Figure displaying critical regions for test about equality of population means when
population variances are unknown

Fig. 8.13 Figure displaying critical regions for test about equality of population means when
population variances are unknown but sample sizes are large
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Example 8.3 Test for Equality of l1 and l2 if r21 and r22 are known.
In a study on birth weights measured within 72 h of birth (BBS, 2005), mean

birth weights of rural and urban areas are estimated to be 2622 g (n1= 2774) and
2698 g (n2 = 311) respectively. Let us assume that the standard deviations of birth
weights in rural area (439 g) and urban area (389 g) represent their population
values. For known r21 and r22, we want to test for the equality of mean birth
weights in rural and urban areas at 1% level of significance.

Solution
Let us consider two random samples X11; . . .;X1n1ð Þ with sample size n1 from

Nðl1; r21Þ and X21; . . .;X2n2ð Þ with sample size n2 from Nðl2; r22Þ.
Step 1: The null and alternative hypotheses are
H0: l1 � l2 ¼ 0 versus H1: l1 � l2 6¼ 0. The level of significance is a ¼ 0:01:
Step 2: The probability distribution of X1 is approximately X1 �Nðl1; r21Þ for the

rural area and X2 is approximately X2 �Nðl2; r22Þ for the urban area, let us assume
that r21 and r22 are known.

Step 3: The point estimators of l1 and l2 are

�X1 ¼
Pn1

i¼1 X1i

n1
and �X2 ¼

Pn2
i¼1 X2i

n2
:

The sampling distribution of �X1 � �X2 is

�X1 � �X2 �Nðl1 � l2; r
2
1=n1 þ r22=n2Þ:

The test statistic is

Z ¼
�X1 � �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21=n1 þ r22=n2
p

where the sampling distribution of Z is approximately Z�Nð0; 1Þ.
Step 4: The observed value of the test statistic is

z ¼ �x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21=n1 þ r22=n2

p
¼ 2622� 2698ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

192721=2774þ 151321=311
p

¼ �76
23:5804

¼ �3; 2230:

The critical values for a two-sided alternative are z0:005 ¼ �2:575 and z0:995 ¼
2:575 (Fig. 8.14).
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Step 5: The rejection region is defined by z\z0:005 or z[ z0:995 and as the value
of the test statistic from the sample data falls in the rejection region, the decision is
in favor of rejecting the null hypothesis of equality of the birth weights in rural and
urban areas.

Example 8.4 Test for Equality of l1 and l2 if r21 and r22 are unknown.

Case 1 r21 and r22 are unknown but Assumed to be Equal.
In a study on heights, two samples of height of women are drawn randomly from

normal populations with means l1 and l2 and variances r21 and r22 respectively.
The size of sample 1 is 28 and sample 2 is 24. The sample 1 mean and variance are
151.88 cm and 26.53 cm2 and sample 2 mean and variance are 150.99 cm and
18.65 cm2. It is of interest to test the equality of two population means if population
variances are unknown.

Solution
The sample from the first population is X11; . . .;X1n1ð Þ with sample size n1 and from
the second population is X21; . . .;X2n2ð Þ with sample size n2. The variance of both
the populations 1 and 2 are unknown.

Step 1: The null and alternative hypotheses are
H0: l1 � l2 ¼ 0 versus H1: l1 � l2 6¼ 0.
The level of significance is a ¼ 0:05.
Step 2: Let X1 �Nðl1; r21Þ and X2 �Nðl2; r22Þ and r21 and r22 are unknown.

Step 3: The point estimator l1 is �X1 ¼
Pn1

i¼1
X1i

n1
and l2 is �X2 ¼

Pn2
i¼1

X2i

n2
. The

sampling distribution of �X1 � �X2 is

Fig. 8.14 Figure displaying critical regions for test about equality of population means when
population variances are known
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�X1 � �X2 �Nðl1 � l2; r
2
1=n1 þ r22=n2Þ:

The test statistic is

T ¼
�X1 � �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21=n1 þ S22=n2
p

where the sampling distribution of T is T � tm.
If the population variances of two independent populations are unknown but

assumed to be equal which imply r21 ¼ r22 ¼ r2. The estimator of the pooled
variance under the assumption of equality of population variances is

S2p ¼
Pn1

i¼1 X1i � �X1ð Þ2 þ Pn2
i¼1 X2i � �X2ð Þ2

n1 þ n2 � 2
¼ ðn1 � 1ÞS21 þðn2 � 1ÞS22

n1 þ n2 � 2
:

The test statistic is redefined as

T ¼
�X1 � �X2

Sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=n1Þþ ð1=n2Þ

p :

Here, T is T � tm and the degrees of freedom m ¼ n1 þ n2 � 2.
Step 4: The values of the test statistic is

t ¼ �x1 � �x2
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=n1Þþ ð1=n2Þ
p ;

where

l̂1 � l̂2 ¼ �x1 � �x2 ¼ 151:88� 150:99 ¼ 0:89;

s2p ¼
ðn1 � 1Þs21 þðn2 � 1Þs22

n1 þ n2 � 2

¼ 27� 26:53þ 23� 18:65
50

¼ 23:45;

and sp ¼ 4:84.
The value of t is

t ¼ �x1 � �x2
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=n1Þþ ð1=n2Þ
p

¼ 0:89

4:84
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=28Þþ ð1=24Þp

¼ 0:6610:
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The critical values for the two-tailed test at the left and right tail areas are
t50;0:025 ¼ �2:009 and t50;0:975 ¼ 2:009 (Fig. 8.15).

Step 5: The non-rejection region is defined by ta=2\t\t1�a=2. The decision is in
favor of not rejecting the null hypothesis because the test statistic value, t, falls in
the non-rejection region. We may conclude that we may not reject the null
hypothesis of equality of mean heights of women from two different populations.

Example 8.5 Test for Equality of l1 and l2 if r21 and r22 are unknown and
assumed to be unequal.

Case II r21 and r22 are unknown and assumed to be unequal.
Let us consider that a study was conducted to collect data on weight of women in

two areas, denoted by area 1 and area 2. Using the data on weight from both the
samples we have found the mean weights of women in areas 1 and 2 are 48.68 and
49.34 kg, respectively. The sample variances are 25.50 kg2 for area 1 and
90.02 kg2 in area 2. We have to test for the equality of two population means of
women in areas 1 and 2 at 5% level of significance.

Solution
Step 1: The null and alternative hypotheses are

H0: l1 � l2 ¼ 0 versus H1:l1 � l2 6¼ 0:

The level of significance is a ¼ 0:05.
Step 2: Let X1 �Nðl1; r21Þ and X2 �Nðl2; r22Þ, where r21 and r22 are unknown

and assumed to be unequal.

Fig. 8.15 Figure displaying critical regions for test about equality of population means when
population variances are unknown
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Step 3: The point estimators of population means the estimator of l1 is �X1 ¼Pn1
i¼1

X1i

n1
and the estimator of l2 is �X2 ¼

Pn2
i¼1

X2i

n2
. The sampling distribution of �X1 �

�X2 is �X1 � �X2 �Nðl1 � l2; r
2
1=n1 þ r22=n2Þ.

The test statistic is

T ¼
�X1 � �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21=n1 þ S22=n2
p

where the sampling distribution of T is T � tm.
The Satterthwaite approximation of degrees of freedom is

m ¼ s21=n1 þ s22=n2
� �2

s21=n1
� �2

=ðn1 � 1Þ
h i

þ s22=n2
� �2

=ðn2 � 1Þ
h i

¼ 25:51=24þ 76:91=28ð Þ2

25:51=24ð Þ2=23
h i

þ 76:91=28ð Þ2=27
h i

¼ 25:51=24þ 76:91=28ð Þ2

25:51=24ð Þ2=23
h i

þ 76:91=28ð Þ2=27
h i

� 44:

Step 4: The test statistic from sample data is

t ¼ �x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21=n1 þ s22=n2

p
¼ �0:72ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25:51=24þ 76:91=28
p

¼ �0:3692

where the degrees of freedom is approximately 44. The critical values for the
two-tailed test are t44;0:025 ¼ �2:0154 and t44;0:975 ¼ 2:0154 (Fig. 8.16).

Step 5: The decision is in favor of not rejecting the null hypothesis because the
test statistic value, t = 0.3692, falls in the non-rejection region, ta=2\t\t1�a=2.
This decision implies that the null hypothesis of equality of weights of women in
areas 1 and 2 may not be rejected.
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8.11 Paired Comparisons

In this section, we are interested in comparing the means of two correlated variables
from normal populations. In other words, we wish to make statistical inference for
the difference between the means of two correlated normal populations. Paired t-test
is used for testing the equality of the means of two related normal populations.
Examples of related populations are: (i) height of the father and height of his son,
(ii) weight of subjects before and after a diet program, (iii) pulse rate of patient
before and after a medical treatment, (iv) hemoglobin level of the patient before and
after the medical treatment, etc. It is clear from the examples that data are observed
in pairs. In a paired comparison, we perform a test to arrive at a decision whether
there is any difference between the population means. In the before and after
receiving a treatment experiments, if the difference in the means is not statistically
significant then it indicates that there is not much evidence in favor of rejecting the
null hypothesis of no difference in the correlated variables representing outcomes
before and after the experiment is conducted.

Let us consider n pairs of a random sample X1; Y1ð Þ; . . .; ðXn;YnÞ and the
observations in the sample are x1; y1ð Þ; . . .; ðxn; ynÞ. We assume that the data are
continuous and differences in the matched pairs follow a normal probability dis-
tribution. It is noteworthy that the assumption of normality is required for the
difference in the pairs of variables, D ¼ X � Y , not for the original variables, X and
Y. The observed difference in pairs is denoted by d ¼ x� y.

Let us consider that the differences in pairs, Di ¼ Xi � Yi; i ¼ 1; . . .; n, follow a
normal probability density with mean lD and variance r2D. The estimator for the
population mean of the differences is denoted by

Fig. 8.16 Figure displaying critical regions for test about equality of population means when
population variances are unknown and unequal
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�D ¼
Pn

i¼1 Di

n

and the corresponding sample mean from the observed data is

�d ¼
Pn

i¼1 di
n

:

Similarly, the sample variance of the differences for the random pairs is S2d ¼Pn

i¼1
ðDi��DÞ2
n�1 and the corresponding sample variance from the observed data is

s2d ¼
Pn

i¼1
ðdi��dÞ2

n�1

.

The steps of performing the test of hypothesis regarding the mean difference in
the pairs of variables are discussed below.

Step 1: The null and alternative hypotheses are H0: lD ¼ lX � lY =
0versusH1: lD 6¼ 0. The level of significance is a, say a ¼ 0:05.

Step 2: Let us assume that the probability distribution of D is D�NðlD; r2DÞ for
the random sample of pairs ðX1; Y1Þ; . . .; ðXn; YnÞ and let r2D be unknown. The
random sample is comprised of n pairs.

Step 3: The point estimator of lD is

�D ¼
Pn

i¼1 Di

n
:

The sampling distribution of �D is summarized below.

(i) Eð�DÞ ¼ Eð�X � �YÞ ¼ lX � lY ¼ lD,
(ii) �D�NðlD; r2D=nÞ, the standard error of �D is rD=

ffiffiffi
n

p
.

The test statistic for testing the difference in the means of the paired variables is

T ¼
�D� lD
Sd=

ffiffiffi
n

p

where rD is replaced by its estimator Sd and the sampling distribution of T is
T � tn�1.

Step 4: The observed value of the test statistic from the sample data
ðx1; y1Þ; . . .; ðxn; ynÞ is

t ¼
�d

sd=
ffiffiffi
n

p

The critical values for a two-sided alternative are tðn�1Þ;a=2 and tðn�1Þ;1�a=2

(Fig. 8.17).
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Step 5: If t\tðn�1Þ;a=2 or t[ tðn�1Þ;1�a=2 then the test statistic value from the
sample data falls in the rejection region and the decision is in favor of rejecting the
null hypothesis. However, if tðn�1Þ;a=2\t\tðn�1Þ;1�a=2 then the test statistic falls in
the non-rejection region. In this case, the decision based on the sample data is in
favor of non-rejection of the null hypothesis.

Example 8.6 Paired t-test.
Let us consider the following paired hypothetical data on 10 individuals dis-

playing their weights in kg before (X) and after (Y) a diet program was introduced in
order to find any possible change in weight of subjects of age 15–49 years attri-
butable to the diet program.

Individual 1 2 3 4 5 6 7 8 9 10

x 53 51 43 59 55 39 50 42 53 51

y 50 50 45 53 52 42 51 40 50 52

The research question is whether the diet program could make any difference in
the weight of subjects. Consider a ¼ 0:05.

Solution
The steps of a paired t-test are discussed below.

Step 1: The null and alternative hypotheses are

H0: lD ¼ lX � lY = 0 versus H1: lD 6¼ 0:

The level of significance is a ¼ 0:05.
Step 2: It is assumed that the probability distribution of D is D�NðlD; r2DÞ,

where D = X − Y for pairs ðX1; Y1Þ; . . .; ðXn; YnÞ, and let r2D be unknown.

Fig. 8.17 Figure displaying critical regions for test about equality of population means using
paired t-test
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Step 3: The point estimator of lD is

�D ¼
Pn

i¼1 Di

n
:

The expected value and variance of �D are
Eð�DÞ ¼ Eð�X � �YÞ ¼ lX � lY , Varð�DÞ ¼ r2D=n and
�D�NðlD; r2D=nÞ, the standard error of �D is rD=

ffiffiffi
n

p
.

The test statistic is

T ¼
�D� lD
Sd=

ffiffiffi
n

p

where T � tn�1.
Step 4: The observed value of the test statistic from the sample data

ðx1; y1Þ; . . .; ðxn; ynÞ is

t ¼
�d

sd=
ffiffiffi
n

p

Using the paired data, we compute the values of d as shown in the following
table

Individual 1 2 3 4 5 6 7 8 9 10

x 53 51 43 59 55 39 50 42 53 51

y 50 50 45 53 52 42 51 40 50 52

d 3 1 −2 6 3 −3 −1 2 3 −1

Here, n = 10 and we can estimate the mean of the differences in x and y as

�d ¼
P10

i¼1 di
10

¼ 11
10

¼ 1:1

and

s2d ¼
P10

i¼1 ðdi � �dÞ2
10� 1

¼
P10

i¼1 d
2
i � 10� �d2

9

¼ 83� 10� 1:21
9

¼ 7:88:

The standard deviation is sd ¼ 2:81:
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Hence, we can obtain the value of t for sample of paired data as

t ¼
�d

sd=
ffiffiffi
n

p

¼ 1:1

2:81=
ffiffiffiffiffi
10

p

¼ 0:1238:

The critical values for a two-sided alternative are t9;0:025 ¼ �2:262 and t9;0:975 ¼
2:262 (Fig. 8.18).

Step 5: The value of t from sample data is 0.1238, which lies in the non-rejection
region tðn�1Þ;a=2\t\tðn�1Þ;1�a=2, i.e., �2:262\t\2:262. Hence, it shows that the
decision, based on the sample data, may be in favor of non-rejection of the null
hypothesis that there is no difference in the weight of individuals attributable to the
diet program.

8.12 Hypothesis Testing: A Single Population
Proportion (P)

The sampling distribution of estimator of population proportion, p, is discussed in
Chap. 6. The point and interval estimators are presented in Chap. 7. For a sequence
of n Bernoulli trials, performed independently, the number of successes is denoted
by X and it can be expressed as a binomial variable. The random sample of size
n from Bernoulli population with population proportion, p, is ðX1; . . .;XnÞ. Here,
X ¼Pn

i¼1 Xi = the number of elements or subjects selected with characteristic A.
Then estimator of the proportion is defined for a random sample of size n as

Fig. 8.18 Figure displaying critical regions for paired t-test using the sample data

264 8 Hypothesis Testing



p̂ ¼ X
n

which is a statistic.
The steps for testing the null hypothesis on the population proportion are

summarized below. Suppose that X1; . . .;Xn is a random sample of size n from a
sequence of Bernoulli trials with probability of success, p.

Step 1: Let the null and alternative hypotheses are H0: p ¼ p0 versus H1: p 6¼ p0.
The level of significance is a, say a ¼ 0:05.

Step 2: Let the probability distribution of X is X �Binomialðn; pÞ and let us
assume that n is known and large.

Step 3: The point estimator of p is

p̂ ¼ X
n
:

We have shown in Chap. 6 that the mean and variance of the number of suc-
cesses, X are

EðXÞ ¼ E
Xn
i¼1

Xi

 !
¼
Xn
i¼1

EðXiÞ ¼ np; and

VarðXÞ ¼ Var
Xn
i¼1

Xi

 !
¼
Xn
i¼1

VarðXiÞ ¼ npð1� pÞ ¼ npq:

For a large sample size, we can use the normal approximation of binomial
variable, X, with parameters l ¼ np0 and r2 ¼ np0ð1� p0Þ under the null hy-
pothesis. The test statistic is

Z ¼ X � np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0ð1� p0Þ

p
where the sampling distribution of Z is approximately Z � Nð0; 1Þ.

For small sample size, we can either use exact binomial probabilities under null
hypothesis or a Poisson approximation to find the tail probabilities if the value of
p under null hypothesis is close to 0 or 1.

Step 4: Using the normal approximation, the value of the test statistic from the
sample data is

z ¼ x� np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0ð1� p0Þ

p :

The critical values for a two-sided alternative are za=2 and z1�a=2 (Fig. 8.19).
Step 5: If the test statistic value is either z\za=2 or z[ z1�a=2 then the sample

data falls in the rejection region and the decision is in favor of rejecting the null
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hypothesis. On the other hand, if za=2\z\z1�a=2 then the test statistic value is in
the non-rejection region and the decision is in favor of non-rejection of null
hypothesis for the given sample data.

Example 8.7 In a study on the diagnosis of acute inflammations of the urinary
bladder and acute nephritises, a sample of 120 subjects is considered (Czerniak and
Zarzycki 2003). The inflammation of urinary bladder is found among 59 out of 120
subjects. The hypothesis needs to be tested is whether the true population pro-
portion is 50% of the total subjects in the population. The level of significance is
a ¼ 0:05.

Solution
The steps in testing the whether the specified value is the true population proportion
are illustrated here.

Step 1: H0: p ¼ 0:5 versus H1: p 6¼ 0:5.
The level of significance is a ¼ 0:05.
Step 2: X�Binomialðn; pÞ, n is known and large.
Step 3: The point estimator of p is
p̂ ¼ X

n. The expected value and variance of the estimator are

EðXÞ ¼ np; ðandÞ

VarðXÞ ¼ npð1� pÞ:

The test statistic is approximately normal under null hypothesis with parameters
l ¼ np0 and r2 ¼ np0ð1� p0Þ which is

Fig. 8.19 Figure displaying critical regions for test about population proportion assuming
normality approximation
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Z ¼ X � np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0ð1� p0Þ

p
where the sampling distribution of Z is approximately Z � Nð0; 1Þ.

Step 4: Using the normal approximation, the value of the test statistic from the
sample data is

z ¼ x� np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np0ð1� p0Þ

p
¼ 59� 120� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

120� 0:5� 0:5
p

¼ �0:1826:

The critical values for a two-sided alternative are z0:025 ¼ �1:96
and z0:975 ¼ 1:96.

Step 5: The test statistic value from the sample data is −0.1826, which falls in
the non-rejection region �1:96\ z\1:96 and the decision is in favor of
non-rejection of null hypothesis that the true population proportion is 0.5
(Fig. 8.20).

Fig. 8.20 Figure displaying critical regions for test about population proportion using sample data
assuming normality approximation
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8.13 Hypothesis Testing: The Difference Between Two
Population Proportions (P1 − P2)

In this section, we are interested in testing some hypotheses about the difference
between two population proportions (p1 − p2). Suppose that we have two popula-
tions with p1 = population proportion of the first population, p2 = population pro-
portion of the second population. We want to compare p1 and p2, or equivalently, to
make inferences about p1 − p2. If we select a random sample of size n1 from the first
Bernoulli population with parameter p1 and another random sample of size n2 from
the second Bernoulli population with parameter p2 then let X1 = number of elements
of type A in the first sample and X2 = number of elements of type A in the second
sample. Then, we can define p̂1 ¼ X1

n1
= the sample proportion of the first sample and

p̂2 ¼ X2
n2

= the sample proportion of the second sample. The sampling distribution of
p̂1 � p̂2 is used to make inferences about p1 − p2.

For large n1 and n2, we can show asymptotically

Z ¼ ðp̂1 � p̂2Þ � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1
n1

þ p2q2
n2

q �N 0; 1ð Þ

where q1 ¼ 1� p1 and q2 ¼ 1� p2.
The steps for testing the null hypothesis on the equality of population propor-

tions are shown below.
Step 1: The null and alternative hypotheses are H0: p1 ¼ p2 versus H1: p1 6¼ p2.

The level of significance is a, say a ¼ 0:05.
Step 2: Let the probability distribution of X1 and X2 are X1 �Binomialðn1; p1Þ

and X2 �Binomialðn2; p2Þ respectively.
Step 3: The point estimator of p1 and p2 are

p̂1 ¼ X1

n1

and

p̂2 ¼ X2

n2
:

The mean and variance of the difference between two population proportions,
assuming independence of X1 and X2, are

Eðp̂1 � p̂2Þ ¼ p1 � p2; and

Varðp̂1 � p̂2Þ ¼ p1ð1� p1Þ
n1

þ p2ð1� p2Þ
n2

:
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For large sample sizes n1 and n2, we can use the following test statistic as an
approximation of difference between two binomial proportions with parameters

lp̂1�p̂2 ¼ p1 � p2 and r2p̂1�p̂2 ¼
p1ð1�p1Þ

n1
þ p2ð1�p2Þ

n2
.

The test statistic is

Z ¼ p̂1 � p̂2 � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1�p1Þ

n1
þ p2ð1�p2Þ

n2

q

and under the null hypothesis of equality of these proportions, the test statistic
becomes

Z ¼ p̂1 � p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1�p1Þ

n1
þ p2ð1�p2Þ

n2

q

where the sampling distribution of Z is approximately Z � Nð0; 1Þ.
Step 4: Using the normal approximation, the value of the test statistic from the

sample data is

z ¼ p̂1 � p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1�p̂1Þ

n1
þ p̂2ð1�p̂2Þ

n2

q :

However, under the null hypothesis p1 ¼ p2, hence, a pooled estimator of p can
be computed

p̂ ¼ x1 þ x2
n1 þ n2

:

Then, z can be redefined as

z ¼ p̂1 � p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ 1

n1
þ 1

n2

h ir :

We can find the critical values for a two-sided alternative, za=2 and z1�a=2

(Fig. 8.21).
Step 5: If the test statistic value is either z\za=2 or z[ z1�a=2 then the sample

data favor rejection of the null hypothesis that there is equality of population
proportions. On the other hand, if za=2\z\z1�a=2 then the test statistic value is in
the non-rejection region and the decision is in favor of non-rejection of null
hypothesis for the sample data.

Example 8.8 In Chap. 7, we have shown an example of constructing confidence
interval of difference between two proportions. The same hypothetical data are
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employed in this chapter to illustrate the procedure for testing the hypothesis of
equality of two population proportions. Let us consider that a researcher has con-
ducted a study to compare the proportion of people suffering from breathing
problem in two cities, A and B. In a random sample of 2500 people from city A,
110 are suffering from breathing problem and in another independent random
sample of 2000 people, 74 people from city B are found to have breathing problem.
The researcher wants to test for equality of proportions of people suffering from
breathing problem in cities A and B. The level of significance is 0.05.

Solution
The steps for conducting the test hypothesis for the example are illustrated below.

Step 1: H0: p1 ¼ p2 versus H1: p1 6¼ p2.
The level of significance is a, say a ¼ 0:05.
Step 2: The independent probability distributions for number of people suffering

from breathing problem in cities A and B, respectively, are
X1 �Binomialðn1; p1Þ for city A and X2 �Binomialðn2; p2Þ for city B.
Step 3: The point estimator of p1 and p2 are

p̂1 ¼ X1

n1

and

p̂2 ¼ X2

n2
:

Fig. 8.21 Figure displaying critical regions for test about equality of population proportions
assuming normality approximation

270 8 Hypothesis Testing



Assuming independence of X1 and X2, the mean and variance of the difference
between two population proportions are

Eðp̂1 � p̂2Þ ¼ p1 � p2; and Varðp̂1 � p̂2Þ ¼ p1ð1� p1Þ
n1

þ p2ð1� p2Þ
n2

:

For large sample size, the test statistic under null hypothesis is

Z ¼ p̂1 � p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1�p1Þ

n1
þ p1ð1�p1Þ

n1

q

where the sampling distribution of Z can be shown approximately as Z � Nð0; 1Þ.
Step 4: The estimates of p1 and p2 as well as the pooled estimator of p can be

computed

p̂1 ¼ x1
n1

¼ 110
2500

¼ 0:044;

p̂2 ¼ x2
n2

¼ 74
2000

¼ 0:037;

and

p̂ ¼ x1 þ x2
n1 þ n2

:

¼ 110þ 74
2500þ 2000

¼ 0:041:

Then z can be obtained as

z ¼ p̂1 � p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ 1

n1
þ 1

n2

h ir

¼ 0:044� 0:037ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:041� 0:959 1

2500 þ 1
2000

� �q
¼ 1:1771:

We can find the critical values for a two-sided alterna-
tive,z0:025 ¼ �1:96 and z0:975 ¼ 1:96 (Fig. 8.22).

Step 5: The test statistic value falls in the non-rejection region, �196\z\1:96,
so the decision is made in favor of non-rejection of the null hypothesis that the
proportion of population with breathing problem is the same in cities A and B.
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8.14 Summary

The concepts and techniques of hypothesis testing are introduced in this chapter.
The definition and concept of null and alternative hypotheses, rejection and
non-rejection of null hypothesis, one-sided and two-sided tests, test statistic, types
of error, critical region, and p-value are discussed with examples. The step-by-step
procedures of testing a null hypothesis against an alternative are shown in this
chapter. The hypothesis testing procedures are illustrated with examples for single
mean and single proportion and difference between two means and two proportions
under various situations arising from assumptions about population (normal or
non-normal), sample size (small or large), population variance (known or
unknown), and sample sizes equal or unequal in case of two samples. In addition, if
the equality of population means is tested for correlated data then the paired t-test is
shown with an example. This chapter includes many examples to illustrate the
procedures in easy steps.

Exercises

8:1 Explain the following briefly with example:

(i) Null and alternative hypotheses,
(ii) Non-rejection and rejection of null hypothesis,
(iii) One-sided and two-sided tests,
(iv) Test statistic,
(v) Type I and Type II errors,
(vi) Level of significance,
(vii) Critical region, and
(viii) P-value.

Fig. 8.22 Figure displaying critical regions for test about equality of population proportions using
sample data assuming normality approximation
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8:2 Let us consider the age (in years) of 40 respondents from a study on women
in their reproductive ages. The data are listed below.

28; 44; 20; 28; 19; 40; 21; 29; 32; 21; 18; 27; 23; 34; 38; 33; 23; 21; 28; 19;

36; 31; 25; 18; 28; 39; 42; 41; 21; 36; 25; 25; 43; 22; 41; 34; 25; 37; 34; 21:

(i) It is of interest to researcher whether the population mean age is
28 years or not. What are the null hypothesis and alternative
hypothesis?

(ii) Perform the test of hypothesis at level of significance = 0.01 stating
the underlying assumptions.

(iii) What is your conclusion?

8:3 Let us consider a study on cholesterol level (in mg/dL) in a community. The
sample size is 135. The sample mean and standard deviation are 175 and
30 mg/dL respectively. Can we say that the population mean of cholesterol
level is 165 mg/dL? Perform the test for a one-sided test (greater than the
null hypothesis value) with a ¼ 0:05.

8:4 Let us consider a study of sample size 15 on systolic blood pressure
(mm Hg). The sample mean and standard deviation are 120 and 20 mm Hg
respectively. Test for the null hypothesis that the population mean of the
systolic blood pressure is 125 mm Hg, H0: l ¼ 125 mm Hg. The alternative
hypothesis is H1: l[ 125 mm Hg. Consider the level of significance value
for this test be a ¼ 0:01. What is your conclusion?

8:5 In a study on cholesterol level of men and women, it is of interest to know
whether the cholesterol level of men (m) and women (w) are the same. The
mean cholesterol level for men and women, say, are 177 mg/dL for men and
173 mg/dL for women. The standard deviation of cholesterol level for men is
32 mg/dL and for women is 28 mg/dL. The number of men and women in
the study are 70 and 65 respectively. Test for the following null and alter-
native hypotheses assuming that the population variances for men and
women are unknown but equal:

H0: lm ¼ lw
H1: lm 6¼ lw:

Let a ¼ 0:05

Does your conclusion change if you assume unknown but unequal variances
instead of unknown but equal variances for men and women?
Summarize your comments.

8:6 In a study on blood glucose level among adult men (m) and women (w), it is
found that the mean glucose level and standard deviation for men are 85 and
29 mg/dL and for women are 75 and 25 mg/dL respectively. The number of
men and women are 12 and 9 respectively. Perform the test on the following
null and alternative hypotheses for a ¼ 0:05:
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H0: lm ¼ lw:

H1: lm [ lw:

Comment on your test results.
8:7 An experiment was conducted to compare time duration of stay in a hospital

with two types of complications (A) and (B) and 9 patients with complication
type A and 16 patients with complication type B were selected randomly.
The average time lengths were 12 days for A and 7 days for B and sample
variances were 8 days2 for A and 5 days2 for B. Assuming equality of
variances in the populations, test for the equality of population means at 1%
level of significance.

8:8 Let the proportion of obese children estimated from a sample of size 100 is
0.15. Test for the following null and alternative hypotheses at 5% level of
significance and comment on your findings:

H0: p ¼ 0:20:

H1: p 6¼ 0:20:

8:9 Among the adult males and females, a study is conducted to estimate the
proportion of diabetics. The sample sizes are 250 for males and 200 for
females. It is found from the estimates from the samples that the proportion
of diabetics among males is 10% and among females is 7%. Test for the
equality of proportions of diabetics among males and females in the popu-
lation at 5% level of significance. Consider the one-sided alternative that the
proportion of diabetics is higher among the males.

8:10 Following results are given from two independent random samples:
p̂1 ¼ 0:3; n1 ¼ 49, and p̂2 ¼ 0:5; n2 ¼ 81. Test for the equality of two
population proportions and then comment on the test result.

8:11 Following results are given from two independent random samples:
�x1 ¼ 20; s21 ¼ 16; n1 ¼ 10, and �x2 ¼ 25; s22 ¼ 16; n2 ¼ 12. State the null and
alternative hypotheses for testing the equality of two population means and
comment on the result, if r21 and r22 are unknown and assumed to be equal.

8:12 The following hypothetical data show the systolic blood pressure (SBP) of
10 subjects before and after exercise:

SBP before exercise (mm Hg) SBP after exercise (mm Hg)

115 125

120 132

100 114

125 130

121 130

117 132

106 119
(continued)
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(continued)

SBP before exercise (mm Hg) SBP after exercise (mm Hg)

118 131

110 121

117 128

Perform the test for the null hypothesis that there is no difference in the mean of
systolic blood pressure due to exercise. What would be a reasonable alternative
hypothesis? Justify your choice of the alternative hypothesis. Comment on your test
result. The level of significance is 0.05.
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Chapter 9
Correlation and Regression

9.1 Introduction

In many applications, we may want to study the underlying nature of relationships
among the variables. Furthermore, we may also want to utilize these relationships
for predicting or estimating the values of some variables (outcome variables) on the
basis of the given values of other variables (explanatory variables). By exploring
the underlying relationships, we can find whether there is any association between
variables as well as whether there is dependence of outcome variables on
explanatory variables that can provide necessary inputs required for useful deci-
sions. Some examples of these relationships are (i) relationship between height and
weight, (ii) relationship between weight and cholesterol level, (iii) relationship
between income and expenditure on health care, etc. In these studies, we are
interested in answering several important questions, some of which are

(i) Is there a relationship between the variables? What is the nature of this rela-
tionship? What is the strength of this relationship?

(ii) If there is a relationship between the variables, how can we formulate it
mathematically? How can we interpret it? What are the policy implications?
What is the significance of such finding in explaining the underlying truth in
population?

Suppose that we are interested in studying the relationship between the height of
the person and his weight in a certain population of a community. In this case, we
select a random sample of size n from this population, and then we measure the
height (X) and the weight (Y) of each individual in the sample. The random sample
of pairs of variables is

ðX1; Y1Þ; ðX2; Y2Þ; . . .; ðXn; YnÞ:

The observations of the sample will be a set of pairs ðx1; y1Þ; ðx2; y2Þ; . . .; ðxn; ynÞ
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where xi and yi are, respectively, the height and the weight of the ith individual in
the sample (i = 1, 2, …, n). In this example, we want to explore the nature and
strength of the relationship between the variable X (height) and the variable
Y (weight).

The first step in exploring the relationship between Y and X is to construct the
scatter diagram.

Scatter Diagram

If we graph the pairs of values of the variables X and Y in a diagram where values of
one variable are represented by X-axis, while the values of the other variable are
represented by Y-axis then plotting the pairs of values simultaneously using dots is
called a scatter diagram. It may be noted here that in a scatter diagram, one dot
represents two values, one for the variable X and the other for the variable Y. The
following figure illustrates a typical shape of scatter diagram:

9.2 Correlation Analysis

The correlation analysis deals with studying the existence, nature, and strength of
the linear relationship between the variables. In particular, if the variables X and
Y are quantitative (interval or ratio scale), we are interested in studying the strength
of the linear relationship between these variables. Another assumption for the
measure of correlation based on quantitative data is that the pairs of observations for
the variables X and Y are drawn from a bivariate normal distribution. Another
measure of correlation is discussed in this chapter for the pairs of data that can be
ranked.

There are several measures of correlation called coefficients of correlation. These
measures are used to measure the strength of the linear relationship between the
variables X and Y. On the basis of the values of these measures, we may determine
the direction and the strength of the linear relationship between the variables. We
may observe the following situations:
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(i) The coefficient of correlation is positive if the large values of Y are associated
with large values of X which implies that the values of Y tend to be large with
large values of X, and vice versa.

(ii) The coefficient of correlation is negative if the large values of Y are asso-
ciated with small values of X implying that the values of Y tend to be large
with small values of X, and vice versa.

(iii) The coefficient of correlation is zero if the values of Y are not linearly
affected by the values of X.

It may also be noted here that the existence of correlation indicating a linear
association between variables does not necessarily imply that there is a cause and
effect relationship between the variables.

The following figures illustrate some typical cases.

(a) Complete (perfect) negative linear 

correlation

(b) Complete (perfect) positive linear 

correlation

(c) Negative linear correlation (d) Positive linear correlation
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(e) No linear correlation (f) No linear correlation

(g) Strong positive linear correlation

(scatter points are more clustered 

around a line)

(h) Weak positive linear correlation

(scatter points are less clustered around 

a line)

There are several measures used to measure the correlation or association
between variables. Two of these measures commonly employed are

(i) Pearson’s correlation coefficient: This measure is used in the case where both
variables are quantitative.

(ii) Spearman’s Rank Correlation coefficient: This measure is used in the case
where the variables can be expressed as ranks.

9.2.1 Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient provides a measure of the strength of linear
relationship between two variables, say X and Y. As we have mentioned earlier, this
measure can be used when both variables are ratio or interval scaled.
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Definition

The population correlation coefficient for N pairs of population values
ðX1; Y1Þ; ðX2; Y2Þ; . . .; ðXN ; YNÞ is defined by

q ¼
PN

i¼1 ðXi � lXÞðYi � lYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðXi � lXÞ2=N

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðYi � lYÞ2=N

q
¼ E X � lXð Þ Y � lYð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðX � lXÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðY � lYÞ2
q

¼ rXYffiffiffiffiffiffi
r2X

p ffiffiffiffiffiffi
r2Y

p
;

where lX ¼PN
i¼1 Xi=N; lY ¼PN

i¼1 Yi=N; rXY ¼PN
i¼1 ðXi � lXÞðYi � lYÞ=N;

r2X ¼PN
i¼1ðXi � lXÞ2 and r2Y ¼PN

i¼1ðYi � lYÞ2:
As we cannot measure the population correlation coefficient generally due to

lack of observing the pairs of values from the population, we estimate it by the
sample correlation coefficient.

The sample correlation coefficient for n given pairs of observations
ðx1; y1Þ; . . .; ðxn; ynÞ is denoted by r and is defined by

r ¼
Pn

i¼1 ðxi � xÞðyi � �yÞ=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xÞ2=n

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyi � �yÞ2=n

q
¼

Pn
i¼1 ðxi � xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyi � �yÞ2
q

¼ Sxyffiffiffiffiffiffi
Sxx

p ffiffiffiffiffiffi
Syy

p ;

where Sxy ¼
Pn

i¼1 ðxi � �xÞðyi � �yÞ, Sxx ¼
Pn

i¼1 ðxi � �xÞ2, and Syy ¼
Pn

i¼1 ðyi � �yÞ2.
The computational formula for calculating r is shown below

r ¼
Pn

i¼1 xiyi � n�x�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i � nð�xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i � nð�yÞ2

q
which can be expressed in the following form too:

r ¼ n
Pn

i¼1 xiyi �
Pn

i¼1 xi
Pn

i¼1 yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1 x
2
i �

Pn
i¼1 xi

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1 y
2
i �

Pn
i¼1 yi

� �2q :
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9.2.2 Two Important Properties of the Correlation
Coefficient

Two important properties of the Pearson’s correlation coefficient are discussed here.

1. The correlation coefficient between two variables is independent of origin and
scale of measurement.

Proof Let us consider the original variables X and Y and the pairs of n observation
drawn from ðX; YÞ are ðx1; y1Þ; . . .; ðxn; ynÞ. Then, let us consider four constant
values a, b, c, and d, and let us define two variables W and Z such that
W = aX + b and Z = cY + d, then it can be shown that the correlation coefficient
between X and Y, rxy, is equal to the correlation coefficient between W and Z, rwz.
The n pairs of observations from (W, Z) are ðw1; z1Þ; . . .; ðwn; znÞ.

The arithmetic means, sum of product and sum of squares of the variables W and
Z are

�w ¼
Pn

i¼1 wi

n
¼
Pn

i¼1 ðaxi þ bÞ
n

¼ a�xþ b;

�z ¼
Pn

i¼1 zi
n

¼
Pn

i¼1 ðcyi þ dÞ
n

¼ c�yþ d;

Swz ¼
Xn
i¼1

ðwi � �wÞðzi � �zÞ

¼
Xn
i¼1

ðaxi þ b� a�x� bÞðcyi þ d � c�y� dÞ

¼ ac
Xn
i¼1

ðxi � �xÞðyi � �yÞ ¼ acSxy;

Sww ¼
Xn
i¼1

ðwi � �wÞ2

¼
Xn
i¼1

ðaxi þ b� a�x� bÞ2

¼ a2
Xn
i¼1

ðxi � �xÞ2 ¼ a2Sxx;

Szz ¼
Xn
i¼1

ðzi � �zÞ2 ¼
Xn
i¼1

ðcyi þ d � c�y� dÞ2

¼ c2
Xn
i¼1

ðyi � �yÞ2 ¼ c2Syy:
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The correlation coefficient between W and Z is

rwz ¼
Pn

i¼1 ðwi � �wÞðzi � �zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðwi � �wÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðzi � �zÞ2

s

¼ Swzffiffiffiffiffiffiffiffi
Sww

p ffiffiffiffiffiffi
Szz

p ¼ acSxyffiffiffiffiffiffiffiffiffiffi
a2Sxx

p ffiffiffiffiffiffiffiffiffiffi
c2Syy

p
¼ Sxyffiffiffiffiffiffi

Sxx
p ffiffiffiffiffiffi

Syy
p ¼ rxy:

The above result proves that the correlation coefficient between two variables is
independent of origin and scale of measurement.

2. The value of the correlation coefficient lies between −1 and +1.

Proof As we know that the correlation coefficient is independent of origin and
scale, let us assume that �x ¼ �y ¼ 0. Let us consider the following nonnegative
expression:

Q ¼
Xn
i¼1

ðaxi � yÞ2;

where a is any constant value.
Then, we can show that

Q ¼
Xn
i¼1

ðaxi � yÞ2 ¼
Xn
i¼1

ða2x2i � 2axiyi þ y2i Þ� 0

which is

a2
Xn
i¼1

x2i � 2a
Xn
i¼1

xiyi þ
Xn
i¼1

y2i � 0

 !

As the above inequalities hold for any value of a, let us put a ¼
Pn

i¼1
xiyiPn

i¼1
x2i
, then,

the above inequality can be expressed asPn
i¼1 xiyiPn
i¼1 x

2
i

� �2Xn

i¼1
x2i � 2

Pn
i¼1 xiyiPn
i¼1 x

2
i

� �Xn

i¼1
xiyi þ

Xn

i¼1
y2i � 0
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and Pn
i¼1 xiyi

� �2Pn
i¼1 x

2
i

� 2
Pn

i¼1 xiyi
� �2Pn

i¼1 x
2
i

þ
Xn
i¼1

y2i � 0:

Multiplying both sides by
Pn

i¼1 x
2
i , we have

�
Xn
i¼1

xiyi

 !2

þ
Xn
i¼1

x2i

 ! Xn
i¼1

y2i

 !
� 0

which can be expressed as

Xn
i¼1

x2i

 ! Xn
i¼1

y2i

 !
�

Xn
i¼1

xiyi

 !2

and dividing both sides by
Pn

i¼1 x
2
i

� � Pn
i¼1 y

2
i

� �
1�

Pn
i¼1 xiyi

� �2Pn
i¼1 x

2
i

� � Pn
i¼1 y

2
i

� � ¼ r2:

It means that

r2 � 1

which proves �1� r� 1:
Some important points to be remembered about the correlation coefficient are

listed below.

1. The value of r lies between −1 and +1, inclusive, that is −1� r � +1.
2. If the correlation (linear association) is positive and strong, then the value of r is

close to +1.
3. If the correlation (linear association) is negative and strong, then the value of r is

close to −1.
4. If the correlation (linear association) is weak, then the value of r is close to 0.
5. If there is no correlation (no linear association) between the variables, i.e., if

there is no linear relationship between the variables, then the value of r equals 0.
However, this does not mean that there is no other form of nonlinear relationship
between the variables.

6. A positive correlation with value (r = +a) and a negative correlation with value
(r =−a) (where 0 < a � 1) have the same strength and opposite directions.

7. The existence of correlation (linear association) between variables, even if it is
strong, does not imply that there is a cause and effect relationship between them.
For instance, a strong positive correlation between income and saving does not
mean that more income causes more saving.
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Example 9.1
Let us consider weight (kg) and height (cm) of 12 children under 5 years of age.
Assume that the sample of children was drawn randomly. It is of interest to find the
strength of linear relationship between height (X) and weight (Y) of children under
5 years of age.

i xi yi i xi yi
1 72.1 7.4 7 92.5 11.5

2 93.5 11.3 8 93.5 12.2

3 78.9 9.8 9 97.7 12.3

4 85.2 12.1 10 79.9 10.5

5 89.1 11.6 11 83.2 9.3

6 100.3 13.2 12 68.8 6.6

(1) Draw the scatter diagram. What indications does the scatter diagram reveal?
(2) Calculate Pearson’s correlation coefficient (r).

The scatter plot below displays the pairs of sample data for height and weight of
the children. In this diagram, each point in a scatter plot represents pairs of values
where X-axis represents height and Y-axis represents weight. It shows that there is a
linear relationship between height and weight because as the height increases, the
weight also increases linearly. Hence, there is a positive correlation between the
variables height and weight of children (Fig. 9.1).
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Fig. 9.1 Scatter plot of height and weight of 12 children of age under 5 years
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(2) The computation of Pearson’s correlation coefficient is illustrated below for the
height and weight data of 12 children. We have shown that the Pearson’s
correlation coefficient can be computed using the following formula

r ¼
Pn

i¼1 xiyi � n�x�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i � nð�xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i � nð�yÞ2

q :

Table 9.1 can be used to facilitate the computation of the correlation coefficient
from the sample data.

�x ¼
P12

i¼1 xi
12

¼ 1034:7
12

¼ 86:225

�y ¼
P12

i¼1 yi
12

¼ 127:8
12

¼ 10:65

The correlation coefficient then can be estimated as

r ¼
Pn

i¼1 xiyi � n�x�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i � nð�xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i � nð�yÞ2

q
¼ 11224:7� 12� 86:225� 10:65ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

90307:29� 12� ð86:225Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1406:38� 12� ð10:65Þ2
q

¼ 0:92:

Table 9.1 Table for computation of Pearson’s correlation coefficient on height and weight of 12
children under 5 years of age

x
Height (cm)

y
Weight (kg)

xy x2 y2

72.1 7.4 533.54 5198.41 54.76

93.5 11.3 1056.55 8742.25 127.69

78.9 9.8 773.22 6225.21 96.04

85.2 12.1 1030.92 7259.04 146.41

89.1 11.6 1033.56 7938.81 134.56

100.3 13.2 1323.96 10060.09 174.24

92.5 11.5 1063.75 8556.25 132.25

93.5 12.2 1140.70 8742.25 148.84

97.7 12.3 1201.71 9545.29 151.29

79.9 10.5 838.95 6384.01 110.25

83.2 9.3 773.76 6922.24 86.49

68.8 6.6 454.08 4733.44 43.56P
xi ¼ 1034:7

P
yi ¼ 127:8

P
xiyi ¼ 11224:7

P
x2i ¼ 90307:29

P
y2i ¼ 1406:38
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The measure of correlation coefficient shows that: (i) there is a positive linear
relationship between height and weight of children under 5 years of age, and (ii) the
linear relationship between height and weight of children appears to be quite strong.

9.2.3 Inferences About the Correlation Coefficient

In the previous section, we have seen that the first step in studying the relationship
between two quantitative phenomena are construction of the scatter diagram and
calculating the value of the correlation coefficient using Pearson’s correlation
coefficient, r. Indeed, the calculated value of r is used as a point estimate for the true
value of the coefficient of linear correlation between X and Y, denoted by q.

The second step is to test the significance of the true value of (q) and con-
structing confidence intervals about it.

(i) Testing hypotheses about the coefficient of linear correlation (q)

Suppose that ðX1; Y1Þ; ðX2; Y2Þ. . .; ðXn; YnÞ is a random sample of size n taken
from a bivariate normal distribution with linear correlation coefficient q.

We are interested in knowing whether there is a correlation between the vari-
ables X and Y (q 6¼ 0) or not (q ¼ 0). Also, we are interested in knowing the nature
of the linear correlation in case it exists; whether it is positive (q[ 0) or negative
(q\0). In other words, we aew interested in testing hypotheses according to one of
the following cases:

(a)
H0: q ¼ 0
H1: q 6¼ 0

�
(b)

H0: q� 0
H1: q[ 0

�
(c)

H0: q� 0
H1: q\0

�

The test statistic for testing these hypotheses for r from the pairs of random
sample data ðX1; Y1Þ; . . .; ðXn; YnÞ is

T ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

where r is the estimator of the Pearson’s coefficient of correlation. Under
H0: q ¼ 0, the test statistic T has a t-distribution with degrees of
freedom = m ¼ n� 2.

The test statistic value of T from observed sample data ðx1; y1Þ; . . .; ðxn; ynÞ is

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

where r is computed from the sample data. The decision of rejecting or not rejecting
H0: q ¼ 0 will be as follows according to the three cases mentioned above:
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(a) For the first case: We reject H0: q ¼ 0 against H1: q 6¼ 0 at the level of sig-
nificance a if t[ tðn�2Þ;1�a=2 or if t\� tðn�2Þ;1�a=2. That is we reject H0: q ¼ 0
if jtj[ tðn�2Þ;a=2.

(b) For the second case: We reject H0: q� 0 against H1: q[ 0 at the level of
significance a if t[ tðn�2Þ;1�a.

(c) For the third case: We reject H0: q� 0 against H1: q\0 at the level of sig-
nificance a if t\� tðn�2Þ;1�a.
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A more general approach of testing the null hypothesis H0: q ¼ q0 against one-
or two-sided alternatives is based on Fisher’s transformation of r which tends to
normal distribution with an increase in the sample size. The Fisher’s transformation
of r is

Z ¼ 1
2
ln

1þ r
1� r

� �
and VarðZÞ ¼ 1

n�3.

Here, Z is approximately normally distributed with an expected value 1
2 ln

1þq
1�q

� 	
and variance 1

n�3.
The test statistic value of Z for the sample data is

z ¼
1
2 ln

1þ r
1�r


 �� 1
2 ln

1þ q0
1�q0

h i
ffiffiffiffiffiffi
1

n�3

q :

Confidence intervals for the coefficient of correlation (q) is obtained from the
Fisher’s transformation shown above and the confidence interval for q are com-
puted from the following:

z� z1�a=2

ffiffiffiffiffiffiffiffiffiffiffi
1

n� 3

r
where let us denote

zL ¼ z� z1�a=2

ffiffiffiffiffiffiffiffiffiffiffi
1

n� 3

r
;

and

zU ¼ zþ z1�a=2

ffiffiffiffiffiffiffiffiffiffiffi
1

n� 3

r
:

Using inverse Fisher’s transformation, we can find

z ¼ 1
2
ln

1þ r
1� r

� �
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which can be expressed as

ln
1þ r
1� r

� �
¼ 2z

) 1þ r
1� r

¼ e2z

) 1þ r ¼ ð1� rÞe2z
) r e2z þ 1

� � ¼ e2z � 1

) r ¼ e2z � 1
e2z þ 1

:

The lower and upper limits of the confidence interval

rL ¼ e2zL � 1
e2zL þ 1

;

and

rU ¼ e2zU � 1
e2zU þ 1

:

A ð1� aÞ100% confidence interval for q is:

e2zL � 1
e2zL þ 1

\q\
e2zU � 1
e2zU þ 1

:

Example 9.2
Using the data displayed in Example 9.1, answer the following questions.

(1) Find a point estimate for the correlation coefficient between X and Y.
(2) Find a 95% confidence interval for the correlation coefficient between X and Y.
(3) Do the data provide us with a sufficient evidence to conclude that there is a

linear relationship between X and Y? Suppose a ¼ 0:05:

Solution
In the previous example, we found that the value of the Pearson’s correlation
coefficient is r = 0.92.

(1) A point estimate for the correlation coefficient between X and Y is

r ¼ þ 0:92

(2) In ordered to calculate a 95% confidence interval for the correlation coefficient
between X and Y, we calculate the following quantities:
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z ¼ 1
2
ln

1þ r
1� r

� �
¼ 1

2
ln

1þ 0:92
1� 0:92

� �
¼ 1:589

zL ¼ z� z1�a=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p ¼ 1:589� Z0:975ffiffiffi
9

p ¼ 1:589� 1:96ffiffiffi
9

p ¼ 0:9357;

zU ¼ zþ z1�a=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p ¼ 1:589þ Z0:975ffiffiffi
9

p ¼ 1:589þ 1:96ffiffiffi
9

p ¼ 2:2423:

Now, a 95% confidence interval for q is

expð2zLÞ � 1
expð2zLÞþ 1

\q\
expð2zUÞ � 1
expð2zUÞþ 1

expð2� 0:9357Þ � 1
expð2� 0:9357Þþ 1

\q\
expð2� 2:2423Þ � 1
expð2� 2:2423Þþ 1

and the 95% confidence interval for the population correlation coefficient can be
expressed as

0:7332\q\0:9777:

Therefore, we can say that if the paired random samples of same size would be
repeated a very large number of times from the same population and the confidence
interval is constructed for each sample then 95% of the times the confidence
intervals may include the true population correlation coefficient.

(3) We need to test the following hypotheses:
H0: q ¼ 0 implies that there is no linear relationship between X and Y
H1: q 6¼ 0 implies that there is a linear relationship between X and Y

Let us assume that X and Y have a joint bivariate normal distribution, then we
can use the t-test as shown below.

The value of the test statistics is

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ¼ 0:92� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:922

p ¼ 7:4232

From the t-table, and using df ¼ v ¼ 12� 2 ¼ 10, we find the critical values for
the lower and upper tails

tðn�2Þ;0:025 ¼ t10;0:025 ¼ �2:228 and tðn�2Þ;0:975 ¼ t10;0:975 ¼ 2:228:

Since tj j[ tðn�2Þ;1�a=2, we reject H0: q ¼ 0 at a ¼ 0:05, and we conclude that
there is evidence from the sample data of a linear relationship between X and Y.
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An alternative test can also be used based on Fisher’s transformation. The
assumption in that case is that either the joint distribution of X and Y is a bivariate
normal distribution or the sample size is sufficiently large, then under the null
hypothesis

z ¼
1
2 ln

1þ r
1�r


 �ffiffiffiffiffiffi
1

n�3

q
and the test statistic follows approximately a standard normal distribution.

9.3 Spearman’s Rank Correlation Coefficient

As we mentioned earlier, Pearson’s correlation coefficient can be used only when
both variables are quantitative. In addition to the Pearson’s correlation coefficient
for ratio or interval scale data, the Spearman’s correlation coefficient is introduced
in this section for the ordinal qualitative scale data. The assumption of the bivariate
normality is not required as an underlying assumption for the Spearman’s corre-
lation coefficient.

It may be noted here that the Spearman’s correlation coefficient is a statistical
measure of the strength of a monotonic relationship between paired data from
variables X and Y. Here the monotonic relationship shows that if the value of one
variable increases than the value of other variable may also increase or if the value
of one variable increases then the value of other variable decreases. There is sim-
ilarity in the interpretation of the Pearson’s and the Spearman’s correlation, e.g., the
value closer to +1 or −1 indicates the stronger monotonic relationship in case of the
Spearman’s correlation.

In the case where variables can be expressed as ordinal qualitative (a qualitative
variable whose values can be ordered or ranked), we can use the Spearman’s rank
correlation coefficient. If both the variables are quantitative but it is possible to
transform the variables in rank orders then also we can use the Spearman’s rank
correlation. This can also be employed in some situations when the original data
have nonlinear monotonic relationships but after transforming into rank orders the
relationship tends to be linear.

Suppose that ðX1; Y1Þ; ðX2; Y2Þ; . . .; ðXn; YnÞ is a random sample of size, n, of
paired variables. Let us define the following variables:

Vi ¼ Rank of Xi ¼ rðXiÞ

Wi ¼ Rank of Yi ¼ rðYiÞ

where i ¼ 1; 2; . . .; n. In the case where same values (ties) exist, each one of these
values will receive the mean value of their ranks.
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Definition

Spearman’s rank correlation coefficient of the variables X and Y is denoted by rS
and can be expressed similar to the Pearson’s correlation coefficient of the variables
V and W. More specifically, Spearman’s rank correlation coefficient of the variables
X and Y is defined by

rS ¼
Pn

i¼1 ðVi � VÞðWi �WÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðVi � VÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðWi �WÞ2

q
¼

Pn
i¼1 ViWi � nV WffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 V
2
i � nðVÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 W

2
i � nðWÞ2

q
¼ n

Pn
i¼1 ViWi �

Pn
i¼1 Vi

Pn
i¼1 Wiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1 V
2
i � Pn

i¼1 Vi
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1 W
2
i �

Pn
i¼1 Wi

� �2q

where Vi ¼ rðxiÞ, Wi ¼ rðyiÞ, V ¼
Pn

i¼1
Vi

n , W ¼
Pn

i¼1
Wi

n ,
If there are no ties, or if the number of ties is small, we may use the following

simpler formula to calculate the Spearman’s rank correlation (rS)

rS ¼ 1� 6
Pn

i¼1 D
2
i

nðn2 � 1Þ

where Di ¼ rðXiÞ � rðYiÞ.
Example 9.3
Let us consider the following hypothetical data on two different methods of mea-
suring the severity of a disease, say both are measured on a scale of 100. The first
method is denoted as A and the second method as B. The number of subjects drawn
randomly is 10. The hypothetical scores are shown below.

i 1 2 3 4 5 6 7 8 9 10

xi 54 35 72 67 38 81 66 48 69 15

yi 50 45 65 73 44 80 66 52 77 20

Let us find the Spearman’s rank correlation coefficient, rS, between the variables
X and Y.

Solution
For computing the rank correlation, let us illustrate the procedures based on a
method similar to the Pearson’s method as shown below
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Pn
i¼1 viwi � n�v�wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 v
2
i � nð�vÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 w

2
i � nð�wÞ2

q
and the Spearman’s method

rS ¼ 1� 6
Pn

i¼1 d
2
i

nðn2 � 1Þ :
Table 9.2 provides the computations necessary for the first method.
From Table 9.2, we obtain

�v ¼
P10

i¼1 vi
10

¼ 55
10

¼ 5:5;

�w ¼
P10

i¼1 wi

10
¼ 55

10
¼ 5:5;

and

r ¼
Pn

i¼1 viwi � n�v�wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 v

2
i � nð�vÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 w

2
i � nð�wÞ2

q
¼ 377� 10� 5:5� 5:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

385� 10� 5:52
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

385� 10� 5:52
p

¼ 0:90:

It shows that there is a positive association in the ranking of A and B indicating
that both the scores ranked the severity of the disease quite similarly with little
deviation (Table 9.3).

Table 9.2 Table for computation of rank correlation using Pearson’s method

x y v w vw v2 w2

54 50 5 4 20 25 16

35 45 2 3 6 4 9

72 65 9 6 54 81 36

67 73 7 8 56 49 64

38 44 3 2 6 9 4

81 80 10 10 100 100 100

66 66 6 7 42 36 49

48 52 4 5 20 16 25

69 77 8 9 72 64 81

15 20 1 1 1 1 1P
vi ¼ 55

P
wi ¼ 55

P
viwi ¼ 377

P
v2i ¼ 385

P
w2
i ¼ 385
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Using the Spearman’s method, we obtain

rS ¼ 1� 6
Pn

i¼1 d
2
i

nðn2 � 1Þ
¼ 1� 6� 16

10ð100� 1Þ
¼ 0:90:

This value is same as the one obtained by using the Pearson’s method. It may
deviate in some cases due to ties in the ranks. We notice that there is a strong
positive association between X and Y in the sense that an increase in the score by
one method is associated with increase in the score of the other method of mea-
suring the severity of the disease.

9.4 Regression Analysis

In this section, the basic concepts of regression analysis are introduced. We intro-
duce the simple linear regression model first. The usual purpose of regression
analysis is to explain and predict the change in the magnitude of an outcome variable
in terms of change in magnitude of an explanatory variable in case of a simple
regression model. The variable to be explained is called the dependent variable,
outcome variable, or response variable, usually denoted by Y, and the remaining
variable for which change in outcome variable is studied is known as the indepen-
dent, predictor, or explanatory variable, usually denoted by X. For instance, Y may
denote the weight of an individual and X may represent associated height or daily
calorie intake. Generally, one does not predict the exact value of the occurrence.
We are usually satisfied if the predictions are, on the average, reasonably close.

Table 9.3 Table for computation of rank correlation using the Spearman’s method

x y v w d d2

54 50 5 4 1 1
35 45 2 3 -1 1

72 65 9 6 3 9
67 73 7 8 -1 1
38 44 3 2 1 1
81 80 10 10 0 0
66 66 6 7 -1 1
48 52 4 5 -1 1
69 77 8 9 -1 1
15 20 1 1 0 0P

vi ¼ 55
P

wi ¼ 55
P

di ¼ 0
P

d2i ¼ 16
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The statistician usually wants to find the equation of the curve of best fit to express
the relationship of the variables.

The regression analysis deals with studying the form of the relationship between
the variables in order to find a mathematical equation relating the outcome variables
with explanatory variables. Once the mathematical form of the relationship is
determined, we can utilize it to predict the value of the response (dependent)
variable (Y) by knowing the value of the predictor (independent) variable (X). In
other words, the objective of regression analysis is to estimate the mean of response
variable (Y) by using the value of the predictor variable (X). For instance, we might
be interested in predicting the blood pressure level of a person by using his weight,
or predicting the height of an adult male by using the height of his father.

9.4.1 Simple Linear Regression Model

The first step in regression analysis is to estimate the model or the form of the
relationship relating the response variable (Y) with the predictor or explanatory
variable (X). One of the most useful relationships which has a lot of applications is
the linear relationship between response and predictor variables. The following
figure presents some examples for linear and nonlinear relationships.

(a) linear relationship (b) linear relationship

(c) non-linear relationship (d) non-linear relationship
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If the relationship between Y and X is linear, then it can be represented by a line
called the regression line. In this case, it is possible to fit a line on the scatter
diagram that describes this relationship. To introduce the simple linear regression
model, suppose that the random sample of paired variables are

ðX1; Y1Þ; ðX2; Y2Þ; . . .; ðXn; YnÞ:

We may state that the expectation of Y given X, EðY XÞj , is a linear regression
model or a regression function of Y upon X if it can be expressed as

EðY XÞj ¼ b0 þ b1X:

This model is called a simple regression model because it takes into account a
single independent variable X to explain the dependent variable, Y. There are two
regression parameters in this model which are unknown constants, b0 is an intercept
and b1 is a slope known as the regression coefficient of the independent variable, X.
Let us consider the relationship between the independent and dependent variables
for a random sample, ðXi; YiÞ; i ¼ 1; . . .; n. The linear regression model for each pair
of independent and dependent variables for the ith subject can be shown in the
following form

EðYi XiÞj ¼ b0 þ b1Xi; i ¼ 1; . . .; n:

Now, we can rewrite the model for each value of the outcome variable for a
corresponding given value of Xi as follows

Yi ¼ b0 þ b1Xi þ ei; i ¼ 1; . . .; n

where the ei are the experimental errors and are distributed such that EðeiÞ ¼ 0 and
VarðeiÞ ¼ r2, i = 1, …, n.

The above model includes an additional term because this is not a model for the
population mean based on given value of the independent variable, rather this
model may contain error due to its deviation from the population mean which is
shown in the following expression of the model

Yi ¼ E Yi Xijð Þþ ei;

where EðYi XiÞj ¼ b0 þ b1Xi; i ¼ 1; . . .; n: A comparison between the model for the
population mean for given values of independent variable and the relationship
between independent and dependent variables needs to be understood clearly in
order to interpret the results without any ambiguity.

The following assumptions are necessary for estimating the parameters of the
regression model:
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(i) The expected value of the error variable is zero, i.e., EðeiÞ ¼ 0 for all i;
(ii) The variance of the error variable is VarðeiÞ ¼ r2 for all i;
(iii) The error variables are independent, i.e., ei and ej are independent for any

i and j (i 6¼ j), and
(iv) The independent variables and the error variables are independent, i.e.,

Xj and ei are independent for all i and j.

Under these assumptions, it can be shown that the least squares estimators of
b0 and b1 are minimum variance unbiased estimators (Best Linear Unbiased
Estimators). The least squares estimation procedure will be introduced in the next
section.

A fifth assumption, the assumption that the residuals ej are normally distributed,
though not needed for the least squares estimation but is needed to make confidence
interval statements and to apply tests of significance:

(v) Normality: In conjunction with assumptions (i)–(iv), this assumption implies
that ei �Nð0; r2Þ.

9.4.2 Estimation of b0 and b1

The parameters of the regression model, b0 and b1, are unknown population values.
We have to estimate these parameters using the sample data. We have discussed
about estimation procedures in Chap. 7 and two methods of estimating parameters
are highlighted there, one is the method of moments and the other one is the method
of maximum likelihood. For estimating the parameters of a regression model, we
generally use a third method known as the method of least squares. The method of
least squares is preferred for estimating parameters of a linear regression model
because of its good properties for the linear regression models, some of which will
be highlighted in this chapter. The most important criterion for employing the least
squares method for estimating the parameters of a linear regression model is the fact
that the error in fitting a linear regression model to the sample data is kept minimum
that provides the model fit a desirable acceptance to the users who prefer appli-
cations to data with strong measurable properties.

The error term in the regression model is the deviation between the observed
value of the dependent variable and the expected value of the dependent variable for
given value of the independent variable which is

e ¼ Y � b0 þ b1Xð Þ:

Here, e represents the distance between the observed values of Y to the line
represented by EðY XÞj ¼ b0 þ b1X which shows the error in representing the
observed values of Y by the regression line. We want to minimize

Pn
i¼1 e

2
i such that

the estimates of the parameters confirm the minimum errors. For convenience, we
define
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Q ¼
Xn
i¼1

e2i ¼
Xn
i¼1

Yi � b0 � b1Xið Þ2

where n denotes the number of observations in the sample. To minimize Q, we take
the partial derivative of Q with respect to each of the two parameters that we are
estimating and set the resulting expressions equal to zero. Thus,

@Q
@b0

¼ 2
Xn
i¼1

Yi � b0 � b1Xið Þ �1ð Þ ¼ 0

and

@Q
@b1

¼ 2
Xn
i¼1

Yi � b0 � b1Xið Þ �Xið Þ ¼ 0

Dropping 2 and −1 from the estimating equations, the solutions for b0 and b1 are
obtained by solving the equations which are generally called normal equations

Xn
i¼1

Yi � b0 � b1Xið Þ ¼ 0

Xn
i¼1

XiYi � b0Xi � b1X
2
i

� � ¼ 0

Solving the first normal equation and replacing b0 by b̂0 and b1 by b̂1, we obtain

nb̂0 ¼
Xn
i¼1

Yi � b̂1
Xn
i¼1

Xi

and the estimator of b0

b̂0 ¼ Y � b̂1X:

Similarly, the equation for b1 can be solved by expressing the equation in the
following form and replacing b0 by b̂0 and b1 by b̂1, we obtain

b̂1
Xn
i¼1

X2
i ¼ �b̂0

Xn
i¼1

Xi þ
Xn
i¼1

XiYi
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and using b̂0 ¼ Y � b̂1X and replacing b̂0 by Y � b̂1X, it is seen that

b̂1
Xn
i¼1

X2
i ¼ �ðY � b̂1XÞ

Xn
i¼1

Xi þ
Xn
i¼1

XiYi

and we rewrite the equation

b̂1
Xn
i¼1

X2
i � nb̂1X

2 ¼
Xn
i¼1

XiYi � nX Y

and solving for b1, we obtain the estimator

b̂1 ¼
Pn

i¼1 XiYi � nX YPn
i¼1 X

2
i � nb̂1X

2 ¼
Pn

i¼1 ðXi � XÞðYi � YÞPn
i¼1 ðXi � XÞ2 ¼ SXY

SXX
:

The estimated model is

Ŷi ¼ b̂0 þ b̂1Xi

and the model for observed Y is

Yi ¼ b̂0 þ b̂1Xi þ ei

where the estimated residuals are

ei ¼ Yi � ðb̂0 þ b̂1XiÞ; i ¼ 1; . . .; n:

The residual sum of squares is defined by

Residual SS ¼ RSS ¼
Xn
i¼1

Yi � bYi

� 	2
¼
Xn
i¼1

Yi � b̂0 � b̂Xi

� 	2
and the regression sum of squares (Reg SS) isXn

i¼1

bYi � Y
� 	2

¼
Xn
i¼1

b̂0 þ b̂1Xi � b0 � b̂1X
� 	2

¼ b̂21
Xn
i¼1

Xi � X
� �2

¼ SXY
SXX

� �2

SXX

¼ S2XY
SXX

where Y ¼ b̂0 þ b̂1X.
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The total sum of squares is

Total SS ¼
Xn
i¼1

Yi � Y
� �2

which can be rewritten and expanded in the following form

Xn
i¼1

Yi � Y
� �2 ¼Xn

i¼1

Yi � bYi þ bYi � Y
� 	2

¼
Xn
i¼1

Yi � bYi

� 	2
þ
Xn
i¼1

bYi � Y
� 	2

þ 2
Xn
i¼1

Yi � Ŷi
� � bYi � Y

� 	
:

In the product term, Yi � Ŷi ¼ ei and bYi � Y ¼ b̂1ðXi � XÞ. It can be shown that
the product term is zero. Hence, the total sum of squares of the dependent variable,
Y, can be partitioned into two components

Total SS ¼ SYY ¼
Xn
i¼1

Yi � Y
� �2¼Xn

i¼1

Yi � bYi

� 	2
þ
Xn
i¼1

bYi � Y
� 	2

;

which can be rewritten as

SYY ¼ RSSþ S2XY
SXX

and the residual sum of squares can be obtained from

RSS ¼ SYY � S2XY
SXX

¼ SYY 1� S2XY
SXXSYY

� �
¼ SYY 1� r2XY

� �
where the measure of Pearson’s correlation coefficient from the sample data is
rXY ¼ SXY

SXXSYY
that shows the strength of linear relationship between variables X and Y.

It has been shown here that

Total SS ¼ Residual SSþRegression SS

which provides the important logical background for testing of hypotheses
including the measure of goodness of fit of a regression model.
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9.4.3 Interpretations of the Parameters of the Regression
Line

The parameters of the population regression model, Y ¼ bo þ b1Xþ e, are b0 and
b1. The first parameter, b0, is the intercept of the line; it is the value of Y when
X = 0. The second parameter, b1, is the slope of the regression line; it is the amount
of change in the value of Y, on average, when the value of X is increased by one
unit. In particular, the value of b1 determines the nature of the linear relationship
between X and Y. If there is no linear relationship between X and Y, then b1 ¼ 0; if
there is a positive linear relationship, then b1 [ 0; if there is a negative linear
relationship, then b1\0. The estimated regression model is bY ¼ b̂0 þ b̂1X and the
observed value of the dependent variable can be shown as Y ¼ b̂0 þ b̂1Xþ e ¼
Ŷ þ e, where e is the estimated error from the sample data.

The estimates of b0 and b1 that minimize the differences between the observed
values of the dependent variable and the regression line are called the least squares
estimates. The vertical differences between the scatter points and the regression line
are illustrated in the following figure

9.4.4 Properties of the Least Squares Estimators
and the Fitted Regression Model

The least squares estimators b̂0 and b̂1 have several important properties. Some of
the properties are discussed here. Let us consider the least squares estimators

b̂0 ¼ Y � b̂1X;

and

b̂1 ¼
Pn

i¼1 Xi � X
� �

Yi � Y
� �Pn

i¼1 Xi � X
� �2 :

The above estimators are linear combinations of the observations, Yi. For
example
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b̂1 ¼
Pn

i¼1 Xi � X
� �

Yi � Y
� �Pn

i¼1 Xi � X
� �2

¼
Pn

i¼1 Xi � X
� �

YiPn
i¼1 Xi � X
� �2

¼
Xn
i¼1

CiYi

where
Xi�Xð ÞPn

i¼1
Xi�Xð Þ2 ¼ Ci and

Pn
i¼1 Xi � X
� �

X ¼ 0:

(i) The least squares estimators b̂0 and b̂1 are unbiased estimators of model
parameters b0 and b1. To show this for b̂1, let us consider

E b̂1
� 	

¼ E
Xn
i¼1

CiYi

 !

¼
Xn
i¼1

CiEðYiÞ

¼
Xn
i¼1

Ciðb0 þ b1XiÞ

¼ b0
Xn
i¼1

Ci þ b1
Xn
i¼1

CiXi:

It can be shown from the linear function that
Pn

i¼1 Ci ¼ 0 and
Pn

i¼1 CiXi ¼ 1,
and using these results we prove the following property of the least squares
estimator

E b̂1
� 	

¼ b0 � 0þ b1 � 1 ¼ b1

which proves that b̂1 is an unbiased estimator of b1.

(ii) The estimator b̂0 is an unbiased estimator of b0 .

We know that b̂0 ¼ Y � b̂1X .
The expected value of b̂0 is

Eðb̂0Þ ¼ EðYÞ � XEðb̂1Þ
¼ b0 þ b1X � b1X

¼ b0

confirming that b̂0 is an unbiased estimator of b0.
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(iii) The variance of b̂1 can be obtained as

Var b̂1
� 	

¼ Var
Xn
i¼1

CiYi

 !

¼
Xn
i¼1

C2
i VarðYiÞ

¼ r2
Xn
i¼1

C2
i

where
Pn

i¼1 C
2
i ¼

Pn

i¼1
Xi�Xð Þ2Pn

i¼1
Xi�Xð Þ2

� �2 ¼ 1Pn

i¼1
Xi�Xð Þ2 : Hence,

Var b̂1
� 	

¼ r2Pn
i¼1 Xi � X
� �2 :

(iv) The variance of b̂0 is

Var b̂0
� 	

¼ Var Y � b̂1X
� 	

¼ Var Y
� �þX

2
Var b̂1
� 	

� 2XCov Y ; b̂1
� 	

¼ r2
1
n
þ X

2Pn
i¼1 Xi � X
� �2

 !

where Cov Y ; b̂1
� 	

¼ 0.

(v) The covariance between b̂0 and b̂1 is

Cov b̂0; b̂1
� 	

¼ �X
r2Pn

i¼1 Xi � X
� �2 :

(vi) The mean square residual is an unbiased estimator of r2. It can be shown that

E
Pn

i¼1
e2i

ðn�2Þ

� �
¼ r2 and r̂2 ¼

Pn

i¼1
e2i

ðn�2Þ = residual mean square = MSRes.
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From the above equation, it can be shown that the expected value of the error
mean square is the variance

E

Pn
i¼1 e

2
i

n� 2

� �
¼ r2

which implies that the error mean square is an unbiased estimator of the variance.

Example 9.4
The data set we have used for computing the Pearson’s correlation coefficient is
employed, here, for showing the estimation and tests for the simple regression
model introduced in this section. We have considered weight (kg) and height
(cm) of 12 children under 5 years of age drawn randomly. The estimation and tests
for simple regression model for variables height (X) and weight (Y) of children
under 5 years of age are shown here.

Table 9.4 shows the computations necessary for estimating parameters of the
regression model

Yi ¼ b0 þ b1Xi þ ei; i ¼ 1; . . .; 12:

The least squares estimators of b0 and b1 are

b̂0 ¼ Y � b̂1X;

Table 9.4 Height (x) and weight (y) of 12 children under 5 years of age and calculations
necessary for estimating the parameters of a simple regression model

x
Height (cm)

y
Weight (kg)

xy x2 y2

72.1 7.4 533.54 5198.41 54.76

93.5 11.3 1056.55 8742.25 127.69

78.9 9.8 773.22 6225.21 96.04

85.2 12.1 1030.92 7259.04 146.41

89.1 11.6 1033.56 7938.81 134.56

100.3 13.2 1323.96 10060.09 174.24

92.5 11.5 1063.75 8556.25 132.25

93.5 12.2 1140.70 8742.25 148.84

97.7 12.3 1201.71 9545.29 151.29

79.9 10.5 838.95 6384.01 110.25

83.2 9.3 773.76 6922.24 86.49

68.8 6.6 454.08 4733.44 43.56P
x ¼ 1034:7

P
y ¼ 127:8

P
xy ¼ 11224:7

P
x2 ¼ 90307:29

P
y2 ¼ 1406:38
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and

b̂1 ¼
Pn

i¼1 XiYi � nX YPn
i¼1 X

2
i � nb̂1X

2 ¼
Pn

i¼1 ðXi � XÞðYi � YÞPn
i¼1 ðXi � XÞ2 ¼ SXY

SXX
:

The estimated model is

bYi ¼ b̂0 þ b̂1Xi

and the model for observed Y is

Yi ¼ b̂0 þ b̂1Xi þ ei:

We need the estimated means, sum of products, and sum of squares as shown
below

�x ¼
P12

i¼1 xi
12

¼ 1034:7
12

¼ 86:225

�y ¼
P12

i¼1 yi
12

¼ 127:8
12

¼ 10:65;

sxy ¼
Xn
i¼1

ðxi � �xÞðyi � �yÞ

¼
Xn
i¼1

xiyi � n�x�y

¼ 11224:7� 12� 86:225� 10:65

¼ 205:14;

and

sxx ¼
X12
i¼1

ðxi � �xÞ2

¼
X12
i¼1

x2i � n�x2

¼ 90307:29� 12� ð86:225Þ2
¼ 1090:28:
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The estimates of regression parameters are

b̂1 ¼
Pn

i¼1 xiyi � n�x�yPn
i¼1 x

2
i � n�x2

¼ 205:14
1090:28

¼ 0:1882

b̂0 ¼ �y� b̂1�x

¼ 10:65� 0:1882� 86:225

¼ �5:5775:

The fitted model is

bYi ¼ b̂0 þ b̂1Xi

¼ �5:5775þ 0:1882Xi

and the model for observed Y is

Yi ¼ b̂0 þ b̂1Xi þ ei
¼ �5:5775þ 0:1882Xi þ ei:

The estimated error can be obtained as

ei ¼ Yi � ð�5:5775þ 0:1882XiÞ:

We know that the unbiased estimator of the population variance r2 is the mean
square error s2 from the sample data. The mean square error computed from the
sample data is shown in below (Table 9.5)

s2 ¼
Pn
i¼1

ðyi � ŷiÞ2

n� 2
¼ 6:7104

10
¼ 0:67104:

9.4.5 Hypothesis Testing on the Slope and Intercept

We are often interested in testing hypotheses and constructing confidence intervals
about the model parameters. These procedures require that we make the additional
assumption that the model errors ei are normally distributed. Thus, we add to
complete the assumptions by stating that the errors are normally and independently
distributed with mean 0 and variance r2, abbreviated NIDð0; r2Þ.
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Tests for the Parameters

Suppose that we wish to test the hypothesis that the slope equals a constant, say b10.
The appropriate hypotheses are

H0: b1 ¼ b10

H1: b1 6¼ b10
where a two-sided alternative is specified. Since the errors ei are NIDð0; r2Þ, the

observations Yi are NIDðb0 þ b1Xi; r2Þ. Now b̂1 is a linear combination of the
observations, so b̂1 is normally distributed with mean b1 and variance r2=SXX using
the mean and variance of b̂1 as shown earlier. Therefore, the statistic

Z ¼ b̂1 � b10ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=SXX

p
is distributed Nð0; 1Þ if the null hypothesis is true. If r2 were known, we could use
Z to test the null hypothesis. Generally, r2 is unknown. We have already seen that
MSRes is an unbiased estimator of r2. It can be shown that ðn� 2ÞMSRes=r2 follows
a v2n�2 distribution and that MSRes and b̂1 are independent. By the definition of a
t statistic,

Table 9.5 Height (x) and weight (y) of 12 children under 5 years of age and calculations
necessary for estimating the variance

x
Height (cm)

y
Weight (kg)

ŷ ei e2i

72.1 7.4 7.99172 −0.59172 0.350133

93.5 11.3 12.0192 −0.7192 0.517249

78.9 9.8 9.27148 0.52852 0.279333

85.2 12.1 10.45714 1.64286 2.698989

89.1 11.6 11.19112 0.40888 0.167183

100.3 13.2 13.29896 -0.09896 0.009793

92.5 11.5 11.831 −0.331 0.109561

93.5 12.2 12.0192 0.1808 0.032689

97.7 12.3 12.80964 −0.50964 0.259733

79.9 10.5 9.45968 1.04032 1.082266

83.2 9.3 10.08074 −0.78074 0.609555

68.8 6.6 7.37066 −0.77066 0.593917P
x ¼ 1034:7

P
y ¼ 127:8 127.8005 6.7104

308 9 Correlation and Regression



T ¼ b̂1 � b10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes=SXX

p
follows a tn�2 distribution if the null hypothesis is true. The degree of freedom
associated with t is the degree of freedom associated with MSRes. The null
hypothesis is rejected if

tj j[ tðn�2Þ;1�a=2:

The denominator of this test statistic, t, is often called the estimated standard
error or simply, the standard error of the slope. That is,

seðb̂1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MSRes
SXX

r
:

Therefore, we often see T written as

T ¼ b̂1 � b10
seðb̂1Þ

:

A similar procedure can be used to test hypothesis about the intercept. To test

H0: b0 ¼ b00

H1: b0 6¼ b00

we would use the following test statistic:

T ¼ b̂0 � b00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes 1

n þ X
2

SXX

� 	r ¼ b̂0 � b00
seðb̂0Þ

where seðb̂0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSResð1=nþX

2
=SXXÞ

q
is the standard error of the intercept. We

may reject the null hypothesis if

tj j[ tðn�2Þ;1�a=2:
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9.4.6 Testing Significance of Regression

A very important special case of the hypothesis is

H0: b1 ¼ 0

H1: b1 6¼ 0

These hypotheses relate to the significance of regression. Failing to reject
H0: b1 ¼ 0 implies that there is no linear relationship between X and Y. This may
imply either of the following:

(i) X is of little value in explaining the variation in Y and that the best estimator of
Y for any X is bY ¼ Y ;

(ii) The true relationship between X and Y is not linear. Therefore, failing to reject
H0: b1 ¼ 0 is equivalent to saying that there is no linear relationship between
X and Y.

Alternatively if H0: b1 ¼ 0 is rejected, this implies that X is of value in
explaining the variability in Y. However, rejecting H0: b1 ¼ 0 could mean either of
the following:

(i) that the straight-line model is adequate;
(ii) better results could be obtained with the addition of higher order polynomial

terms in X.

The test procedure for H0: b1 ¼ 0 is as follows:

T ¼ b̂1
seðb̂1Þ

:

The hypothesis of significance of regression would be neglected if

tj j[ tðn�2Þ;1�a=2:

9.4.7 Analysis of Variance

We may also use an analysis of variance approach to test the significance of a
regression. The analysis of variance is based on a partitioning of total variability in
the response variable Y. To obtain this partitioning, let us begin with

Yi � Y ¼ ðbYi � YÞþ ðYi � bYiÞ:
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Squaring both sides of the above equation and summing over all n observations
produces

Xn
i¼1

ðYi � YÞ2 ¼
Xn
i¼1

ðbYi � YÞ2 þ
Xn
i¼1

ðYi � bYiÞ2 þ 2
Xn
i¼1

ðbYi � YÞðYi � bYiÞ:

The product term can be rewritten as

2
Xn
i¼1

ðbYi � YÞðYi � bYiÞ ¼ 2
Xn
i¼1

bYiðYi � bYiÞ � 2Y
Xn
i¼1

ðYi � bYiÞ

¼ 2
Xn
i¼1

bYiei � 2Y
Xn
i¼1

ei ¼ 0

where
Pn

i¼1 ei ¼ 0 and
Pn

i¼1
bYiei ¼ 0.

Therefore,

Xn
i¼1

ðYi � YÞ2 ¼
Xn
i¼1

ðbYi � YÞ2 þ
Xn
i¼1

ðYi � bYiÞ2:

This equation is the fundamental analysis of variance identity for a regression
model. Symbolically, we usually write

SSTotal ¼ SSReg þ SSRes:

The total sum of squares, SSTotal, has dfT ¼ n� 1 degrees of freedom due to
reduction of one degree of freedom resulting from the constraint

Pn
i¼1 ðYi � YÞ on

the deviations Yi � Y . There are two components in the analysis of variance,
regression, and residual. It has been shown that SSReg is completely determined by

one parameter, namely, b̂1, and SSReg ¼ b̂1SXY , hence dfReg ¼ 1 degree of freedom.

The component of residual sum of squares is obtained from the deviations Yi � bYi,
where bYi depends on estimates b̂0 and b̂1 . The number of parameters estimated for
computing SSRes causes reduction in the degrees of freedom and dfRes ¼ n� 2.
Hence, it is shown that

dfTotal ¼ dfReg þ dfRes
ðn� 1Þ ¼ 1þðn� 2Þ:

We can use the usual analysis of variance F test to test the hypothesis
H0: b1 ¼ 0. By definition

9.4 Regression Analysis 311



F ¼ SSReg=dfReg
SSRes=dfRes

¼ SSReg=1
SSRes=ðn� 2Þ ¼

MSReg
MSRes

follows the F1;ðn�2Þ distribution. Therefore, to test the hypothesis H0: b1 ¼ 0, test
statistic is computed and the null hypothesis is rejected if

F[Fa;1;ðn�2Þ:

The test procedure is summarized in Table 9.6
The t statistic as defined earlier is

T ¼ b̂1
seðb̂1Þ

¼ b̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes=SSX

p
could be used for testing for significance of regression. However, squaring both
sides, we obtain

T2 ¼ b̂21SSX
MSRes

¼ b̂1SXY
MSRes

¼ MSReg
MSRes

:

Thus, T2 is identical to F of the analysis of variance approach for the special case
where the square of a T variable with (n − 2) degrees of freedom is equivalent to an
F variable with 1 and (n − 2) degrees of freedom. For testing the null hypothesis
H0: b1 ¼ 0 in a simple regression problem, the t-test has advantages because
one-sided alternatives such as H1: b1\0 or H1: b1 [ 0 can also be performed
using the t-test.

9.4.8 Interval Estimation in Simple Linear Regression

Under the assumption that ei �NIDð0; r2Þ, it can be shown that

(i) b̂0 has a normal distribution with mean b0 and variance

Table 9.6 The analysis of variance table for a simple regression model

Source of
variation

Sum of square df Mean squares F

Regression SSReg ¼ b̂1SXY � nY
2 1 SSReg=1 F ¼ MSReg=MSRes

Residual SSRes ¼ SSTotal � b̂1SXy n − 2 SSRes=ðn� 2Þ
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Varðb̂0Þ ¼ r2
1
n
þ X

2

SXX

 !
:

(ii) b̂1 has a normal distribution with mean b1 and variance Varðb̂1Þ ¼ r2=SXX .
(iii) Covðb̂0; b̂1Þ ¼ r2ð�X=SXXÞ.
(iv) Residual SS, RSS ¼ SYY � ðS2XY=SXXÞ; then RSS=r2 has a v2 distribution with

ðn� 2Þ df and r̂2 ¼ RSS=ðn� 2Þ is an unbiased estimator for r2.
(v) If we substitute r̂2 for r2 in Vðb̂0Þ and Vðb̂1Þ given in (i) and (ii), we obtain

the estimated variances

V̂arðb̂0Þ ¼ r̂2
1
n
þ X

2

SXX

 !
;

and

V̂arðb̂1Þ ¼
r̂2

SXX

where r̂2 ¼
Pn

i¼1
e2i

ðn�2Þ is the mean square residual denoted by s2 ¼
Pn

i¼1
Yi�bYi

� �2
ðn�2Þ ,

which is an unbiased estimator of r2.
Test statistics for the regression parameters are

T ¼ b̂0 � b0
seðb̂0Þ

� tn�2

T ¼ b̂1 � b1
seðb̂1Þ

� tn�2:

Therefore, a 100ð1� aÞ% confidence interval on the slope b1 is given by

b̂1 � tðn�2Þ;1�a=2seðb̂1Þ� b1 � b̂1 þ tðn�2Þ;1�a=2seðb̂1Þ:

Similarly, a 100ð1� aÞ% confidence interval on the intercept b0 is given by

b̂0 � tðn�2Þ;1�a=2seðb̂0Þ� b0 � b̂0 þ tðn�2Þ;1�a=2seðb̂0Þ:

The interpretation of confidence interval for parameters b1 and b0: If we repeat
taking samples of size n from the same population very large number of times and if
we construct confidence interval for each parameter from each sample then the
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proportion of those intervals that will include the true population value (b1 in the
first confidence interval and b0 in the second interval) is 1� a.

If the errors are normally and independently distributed then the sampling dis-
tribution of

ðn� 2ÞMSRes
r2

� v2n�2:

Thus,

P½v2ðn�2Þ;a=2 � ðn�2ÞMSRes
r2 � v2ðn�2Þ;1�a=2� ¼ 1� a: and consequently a 100ð1�

aÞ% confidence interval on r2 is

P
ðn� 2ÞMSRes
v2ðn�2Þ;1�a=2

� r2 � ðn� 2ÞMSRes
v2ðn�2Þ;a=2

" #
¼ 1� a:

9.4.9 Interval Estimation of Mean Response

In many situations of applications of regression models, the estimation of mean
response is of major concern. This problem involves estimation of the mean
response, EðYÞ, for a given value of the independent variable, X. For example, let
X0 be the given value of X for which we wish to estimate the mean response, say
EðY jX0Þ. Let us assume that X0 is any value within the range of the sample data on
the independent variable, X. The expected value, EðY jX0Þ, is

bEðY X0j Þ ¼ b̂0 þ b̂1X0:

To obtain a 100ð1� aÞ% confidence interval of EðY jX0Þ, we need to find the
sampling distribution of bEðY jX0Þ. It can be shown that

EðY X0j Þ ¼ b0 þ b1X0

and the variance of bEðY jX0Þ is

Var½bEðY jX0Þ� ¼ Var½Y þ b̂1ðX0 � XÞ�

¼ r2

n
þ r2ðX0 � XÞ2

SSX

¼ r2
1
n
þ ðX0 � XÞ2

SSX

" #
:
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Then, it follows that

bEðY X0j Þ ¼ b̂0 þ b̂1X0 �N b0 þ b1X0; r
2 1
n
þ ðX0 � XÞ2

SSX

" # !
:

It can be shown that covðY ; b̂1Þ ¼ 0. Thus, the sampling distribution of

T ¼
bEðY=X0Þ � EðY=X0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes 1

n þ ðX0�XÞ2
SSX

� 	r
is t with n − 2 degrees of freedom. Consequently, a 100ð1� aÞ% confidence
interval on the mean response at the point X ¼ X0 is

bEðY=X0Þ � tðn�2Þ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes

1
n
þ ðX0 � XÞ2

SSX

 !vuut �EðY=X0Þ

� bEðY=X0Þþ tðn�2Þ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes

1
n
þ ðX0 � XÞ2

SSX

 !vuut :

Interval Estimation of Prediction

Let the regression equation be

bY ¼ b̂0 þ b̂1X

is used for predicting Y for given values of X.
Let XF be a future value of X. Then, we predict the corresponding value of Y by

bYF ¼ b̂0 þ b̂1XF :

The true value of YF is

YF ¼ b0 þ b1XF þ eF :

Hence, the prediction error is

bYF � YF ¼ ðb̂0 � b0Þþ ðb̂1 � b1ÞXF � eF
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and

EðbYF � YFÞ ¼ Eðb̂0 � b0ÞþEðb̂1 � b1ÞXF � EðeFÞ ¼ 0:

Then, the variance is

VarðbYF � YFÞ ¼ Varðb̂0 � b0ÞþX2
FVarðb̂1 � b1Þ

þ 2XFCovðb̂0 � b0; b̂1 � b1ÞþVarðeFÞ

¼ r2
1
n
þ X

2

SXX

 !
þ r2:

X2
F

SXX
� 2XFr

2:
X
SXX

þ r2

¼ r2 1þ 1
n
þ ðXF � XÞ2

SXX

" #
:

The estimated variance is

VârðbYF � YFÞ ¼ MSRes 1þ 1
n
þ ðXF � XÞ2

SXX

" #
:

Consequently, a 100ð1� aÞ% prediction interval on a future observation at the
point X ¼ XF is

bYF � tðn�2Þ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes 1þ 1

n
þ ðXF � XÞ2

SSX

 !vuut � YF

� bYF þ tðn�2Þ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes 1þ 1

n
þ ðXF � XÞ2

SSX

 !vuut
The prediction interval widens with an increase in the distance between

XF and X and is minimum at X ¼ XF .

9.4.10 Coefficient of Determination of the Regression Model

The coefficient of determination is a quantitative measure used to evaluate the
appropriateness and the adequacy of fitting the assumed regression model to the
sample data in terms of the performance of the model in explaining the variation in Y.

The coefficient of determination is denoted by R2. It measures the proportion of
variation in the values of Y that can be explained by the regression model. The total
variation in the values of Y is measured by the quantity

Pn
i¼1 ðYi � YÞ2.
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The coefficient of determination is defined by

R2 ¼
Pn

i¼1 ðŶi � �YÞ2Pn
i¼1 ðYi � �YÞ2 ¼

SSReg
SSTotal

where

bY i ¼ b̂0 þ b̂1Xi; i ¼ 1; 2; . . .; n:

Alternatively,

R2 ¼ 1�
Pn

i¼1 ðYi � ŶiÞ2Pn
i¼1 ðYi � �YÞ2 ¼ 1� SSRes

SSTotal
:

The coefficient of determination, R2, can be shown as the squared correlation
between Y and bY and it measures the proportion of total variation about the mean Y
explained by the regression model. If we multiply the coefficient of multiple
determination by 100 then it interprets percentage of total variation about the mean
explained by the regression model. The coefficient of determination ranges between
0 and 1, a value near zero indicates that the regression model either fails or performs
poorly to explain the total variation and a value near 1 indicates that the regression
model explains the total variation either with near perfection or performs very well.
A large value of R2 shows that the regression model performs strongly in explaining
the variation of the response variable by the explanatory variable included in the
model.

Some important characteristics of R2 are summarized below.

1. The value of R2 is between zero and one, both inclusive, i.e., 0�R2 � 1.
2. The larger the value of R2 the better the regression model explains the variation

of Y.
3. Large values of R2 indicate that the regression model fits the observation very

well. Small values of R2 indicate that the regression model does not fit the
observation well.

4. If R2 ¼ 1, then the regression model explains all variations of Y, which means
that all observations lie on the regression line, i.e., there is a perfect correlation
between Y and X.

5. If R2 ¼ 0, then the regression model cannot explain the variation of Y at all,
which means there is no linear relationship between Y and X.

6. We can show that

R2 ¼ 1�
Pn

i¼1 ðYi � bYiÞ2Pn
i¼1 ðYi � YÞ2
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which implies that if the residual sum of squares decreases then R2 increases and if
the residual sum of squares increases then R2 decreases. This provides the funda-
mental measure of the fit of a regression model to the sample data.

Example 9.5
For the data in the previous example, let us illustrate the interval estimation of
parameters and tests for the model and parameters. The following results are
summarized from the previous example:

�x ¼ 86:225; �y ¼ 10:65; sxy ¼ 205:14; sxx ¼ 1090:28:

We can also compute the total sum of squares of the dependent variable Y from
the sample data as

syy ¼
Xn
i¼1

ðyi � �yÞ2

¼
Xn
i¼1

y2i � n�y2

¼ 45:309:

The estimates of regression parameters are b̂0 ¼ �5:5775 and b̂1 ¼ 0:1882. The
fitted model is

bYi ¼ �5:5775þ 0:1882Xi

and the model for observed Y is

Yi ¼ b̂0 þ b̂1Xi þ ei
¼ �5:5775þ 0:1882Xi þ ei:

The estimated error can be obtained as

ei ¼ Yi � ð�5:5775þ 0:1882XiÞ:

Table 9.7 provides necessary calculations for estimating the variance.
We know that the unbiased estimator of the population variance r2 is the mean

square error s2 from the sample data. The mean square error computed from the
sample data is shown below

s2 ¼
Pn

i¼1 ðyi � ŷiÞ2
n� 2

¼ 6:7104
10

¼ 0:67104:

The error sum of squares is 6.7104.
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Subtracting the error sum of squares from the total sum of squares of Y, we
obtain the regression sum of squares for the model which is

the regression sum of squares =
Pn

i¼1 ðŷi � yÞ2
= syy − error sum of squares
= 45.309 − 6.710 = 38.599.
A 95% confidence interval for b1 using the sample data is obtained by

computing

b̂1 � tðn�2Þ;1�a=2

ffiffiffiffiffiffiffi
s2

sXX

s

which is

0:1882� t10;0:975

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:67104
1090:28

r
¼ 0:1882� 2:228� 0:0248

¼ 0:1882� 0:0553:

The 95% confidence interval for b1 is (0.1329, 0.2453) and notice that the
interval does not include the null value.

(ii) Calculating the coefficient of determination (R2)

(a) First method: using the formula R2 ¼Pn
i¼1 ðbYi � YÞ2=Pn

i¼1 ðYi � YÞ2:

Table 9.7 Height (X) and Weight (Y) of 12 children under 5 years of age and calculations
necessary for estimating the variance

x
Height (cm)

y
Weight (kg)

ŷ ei e2i

72.1 7.4 7.99172 −0.59172 0.350133

93.5 11.3 12.0192 −0.7192 0.517249

78.9 9.8 9.27148 0.52852 0.279333

85.2 12.1 10.45714 1.64286 2.698989

89.1 11.6 11.19112 0.40888 0.167183

100.3 13.2 13.29896 −0.09896 0.009793

92.5 11.5 11.831 −0.331 0.109561

93.5 12.2 12.0192 0.1808 0.032689

97.7 12.3 12.80964 -0.50964 0.259733

79.9 10.5 9.45968 1.04032 1.082266

83.2 9.3 10.08074 −0.78074 0.609555

68.8 6.6 7.37066 −0.77066 0.593917P
x ¼ 1034:7

P
y ¼ 127:8

P
ŷi ¼ 127:08 6.7104
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R2 ¼
Pn

i¼1 ðbYi � YÞ2Pn
i¼1 ðYi � YÞ2 ¼ 38:599

45:309
¼ 0:8519:

The positive square root of the coefficient of determination is

R ¼ 0:9229:

Since the value of coefficient of determination is R2 ¼ 0:8519, we conclude that
85% of the total variation in the values of Y can be explained by the regression
model.

(b) Second method: using the formula R2 ¼ r2:

In a previous example, we have found that the Pearson’s coefficient of corre-
lation is r ¼ þ 0:9229. Therefore, the coefficient of determination is

R2 ¼ r2 ¼ ðþ 0:9229Þ2 ¼ 0:8519:

9.4.11 Tests for the Parameters

The tests for the regression parameters are illustrated using the sample data. The
null and alternative hypotheses for b1 are

H0: b1 ¼ 0

H1: b1 6¼ 0

where a two-sided alternative is specified. Here the error ei is NIDð0;r2Þ, the
random variables Yi is NIDðb0 þ b1Xi; r2Þ. The test statistic is

Z ¼ b̂1 � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=SXX

p
if r2 is known. However, as r2 is unknown and we know that MSRes ¼ s2 is an
unbiased estimator of r2, the test statistic for unknown variance is

T ¼ b̂1 � b10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes=SXX

p
which follows a tn�2 distribution if the null hypothesis is true. The degree of
freedom associated with t is the degree of freedom associated with MSRes. We may
reject the null hypothesis if
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tj j[ tðn�2Þ;1�a=2:

Therefore, the value of t statistic from the sample data is

t ¼ b̂1 � 0

seðb̂1Þ

¼ b̂1ffiffiffiffiffiffiffiffiffiffiffiffi
s2=sxx

p
¼ 0:1882ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:6710=1090:28
p

¼ 7:5862

and the critical values are t10;0:025 ¼ �2:228 and t10;0:975 ¼ 2:228. The test statistic
value falls in the critical region so the null hypothesis of no relationship between
height and weight of children under 5 years of age may be rejected.

Similarly, to test hypothesis about the intercept

H0: b0 ¼ 0

H1: b0 6¼ 0

we can use the test statistic

T ¼ b̂0 � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes 1

n þ X
2

SXX

� 	r ¼ b̂0
sêðb̂0Þ

where sêðb̂0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSResð1=nþX

2
=SXXÞ

q
is the standard error of the intercept. We

may reject the null hypothesis if

tj j[ tðn�2Þ;1�a=2:

We can compute the value of the test statistic using the sample data

t ¼ b̂0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSRes 1

n þ �x2
sxx

� 	r
¼ �5:5775ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:6710 1
12 þ ð86:225Þ2

1090:28

� 	r
¼ �2:5917
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and we have shown that the critical values are t10;0:025 ¼ �2:228 and
t10;0:975 ¼ 2:228. This test also shows that the null hypothesis may be rejected
because the test statistic value from the sample data falls in the critical at 5% level
of significance.

9.4.12 Testing Significance of Regression

The test for model, in case of the simple regression is similar to testing the t-test
performed for the regression parameter, b1. The null and alternative hypotheses are

H0: b1 ¼ 0

H1: b1 6¼ 0:

These hypotheses relate to the significance of regression. Failing to reject
H0: b1 ¼ 0 implies that there is no linear relationship between X and Y.

The test procedure for H0: b1 ¼ 0 is shown for the sample data already. This is a
special case for simple regression model only. To generalize the procedure for
multiple regression model, we need to use the analysis of variance procedure which
is illustrated below.

Analysis of Variance
The analysis of variance procedure is based on the components of variance from the
fact that

Total SS = Regression SS + Error SS., which is expressed previously as

SSTotal ¼ SSReg þ SSRes:

The test procedure is summarized in Table 9.8.
The test statistic for testing H0: b1 ¼ 0 is

F ¼ MSReg
MSRes

¼ 38:599
0:671

¼ 57:525

follows the F1;10 distribution. The critical region is defined by

F[F0:05;1;10

where F0:05;1;10 ¼ 4:96. The test statistic value from the sample data is 57.525 that
falls in the critical region, hence, we may reject the null hypothesis that there is no
linear relationship between height and weight. It may be shown that
F0:05;1;10 ¼ t2

0:025;10
¼ ð2:228Þ2 ¼ 4:96.
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9.5 Multiple Linear Regression

A regression model that involves more than one regressor variable is called a
multiple regression model. The simple regression model is introduced in previous
sections and we extend the simple regression for several independent variables in
this section, so that the regression model for an outcome variable can be expressed
as a linear function of several explanatory variables. In many instances the outcome
or response variable cannot be explained adequately by a single independent
variable rather there may multiple factors that may cause change in the outcome
variable. A multiple regression model that might describe this relationship is

E Y X1;X2;X3jð Þ ¼ b0 þ b1X1 þ b2X2 þ b3X3

which can also be expressed in the following form for the random sample of
variables Y ;X1;X2 and X3

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ e

where Y denotes the response variable, X1, X2 and X3 denote the explanatory or
independent variables 1, 2, and 3. This is the multiple linear regression model with
three regressor variables. The term linear is used because the above equation is a
linear function of the unknown parameters b0; b1 and b2.

In general, the response Y may be related to k regressor or predictor variables.
The model

Y ¼ b0 þ b1X1 þ 	 	 	 þ bkXk þ e

is called a multiple linear regression model with k regressors. The parameters
bj; j ¼ 0; 1; 2; . . .; k are called the regression coefficients. It is interesting to note as
we have seen in case of a single regression model that the parameter bj measures the
expected change in the outcome Y per unit change in Xj keeping the remaining
regressor variables Xj0 ðj0 6¼ jÞ constant. Sometimes, we call these regression coef-
ficients as partial coefficients.

A multiple linear regression model may be considered as an empirical function
too, which is employed to approximate the true underlying relationships. Although
the true functional relationship between X1;X2; . . .;Xk and Y is unknown the linear

Table 9.8 The analysis of variance table for a simple regression model on height and weight of
children under 5 years of age

Source of variation Sum of square df Mean squares F

Regression 38.599 1 38.599 57.525

Residual 6.710 10 0.671

Total 45.309
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regression model can provide an adequate representation of the underlying linear
relationship.

Models that are more complex in structure may often still be analyzed by multiple
linear regression techniques. For example, consider the cubic polynomial model

Y ¼ b0 þ b1X þ b2X
2 þ b3X

3 þ e:

If we let X1 ¼ X;X2 ¼ X2; and X3 ¼ X3, then the equation can be rewritten as

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ e

which is a multiple linear regression model with three regressor variables.
Models that include interaction effects may also be analyzed by multiple linear

regression methods. For example, suppose that the model is

Y ¼ b0 þ b1X1 þ b2X2 þ b12X1X2 þ e:

If we let X3 ¼ X1X2 and b3 ¼ b12, then the equation can be rewritten as

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ e

which is a linear regression model.

9.5.1 Estimation of the Model Parameters

The method of least squares can be used to estimate the regression coefficients .
Suppose that n > k observations are available, and let Yi denote the ith observed
response and Xij denote the ith observation or level of regressor Xj. Let us assume
that the error term e in the model has EðeÞ ¼ 0 and VarðeÞ ¼ r2 and that the errors
are uncorrelated.

Further, we assume that the regressor variables X1;X2; . . .;Xk are fixed variables.
In representing a regression model, we consider the model as a conditional model as
follows:

E Y X1; . . .;Xkjð Þ ¼ b0 þ b1X1 þ . . .þ bkXk

where the model assumes that the values of X1;X2; . . .;Xk are supposed to be given.
This model provides a relationship for average outcome for given values of the
explanatory variables. In other words, the population model for showing the rela-
tionship between outcome and explanatory variables assume an average relation-
ship between average outcome and fixed values of explanatory variables. The tests
of hypotheses and construction of confidence intervals will require to assume that
the conditional distribution of Y-given X1;X2; . . .;Xk be normal with mean
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b0 þ b1X1 þ 	 	 	 þ bkXk and variance r2.
We may write the regression model for the ith individual as

Yi ¼ b0 þ b1Xi1 þ 	 	 	 þ bkXik þ ei; i ¼ 1; . . .; n

¼ b0 þ
Xk
j¼1

bjXij þ ei; i ¼ 1; 2; . . .. . .:; n:

The least squares function is

Qðb0; b1; . . .; bkÞ ¼
Xn
i¼1

e2i

¼
Xn
i¼1

Yi � b0 �
Xk
j¼1

bjXij

 !2

The function Q must be minimized with respect to b0; b1; . . .; bk . The least
squares estimators of b0; b1; . . .; bk must satisfy

@Q
@b0

����
b̂0;b̂1;...;b̂k

¼ �2
Xn
i¼1

Yi � b̂0 �
Xk
j¼1

b̂jXij

 !
¼ 0

and

@Q
@bj

�����
b̂0;b̂1;...;b̂k

¼ �2
Xn
i¼1

Yi � b̂0 �
Xk
j¼1

b̂jXij

 !
Xij ¼ 0; j ¼ 1; 2; . . .:; k:

Simplifying the above equations, we obtain the least squares normal equations

nb̂0 þ b̂1
Xn
i¼1

Xi1 þ b̂2
Xn
i¼1

Xi2 þ 	 	 	 þ b̂k
Xn
i¼1

Xik ¼
Xn
i¼1

Yi;

b̂0
Xn
i¼1

Xi1 þ b̂1
Xn
i¼1

X2
i1 þ b̂2

Xn
i¼1

Xi1Xi2 þ 	 	 	 þ b̂k
Xn
i¼1

Xi1Xik ¼
Xn
i¼1

Xi1Yi;

	
	
	

b̂0
Xn
i¼1

Xik þ b̂1
Xn
i¼1

XikXi1 þ b̂2
Xn
i¼1

XikXi2 þ 	 	 	 þ b̂k
Xn
i¼1

X2
ik ¼

Xn
i¼1

XikYi:

9.5 Multiple Linear Regression 325



Note that there are p = k + 1 normal equations, one for each of the unknown
regression coefficients. The solution to the normal equations will be the least
squares estimators b̂0; b̂1; . . .; b̂k .

In matrix notation, the model is

Y ¼ Xbþ e

where

Y ¼

Y1
Y2
:

:

:

Yn

26666666664

37777777775
;

X ¼
1 X11 X12 . . . X1k

1 X21 X22 . . . X2k

..

.

1 Xn1 Xn2 . . . Xnk

26664
37775;

b ¼

b0
b1
:

:

:

bk

26666666664

37777777775
; e ¼

e1
e2
:

:

:

en

26666666664

37777777775
:

In general, Y is an n � 1 vector of the observations, X is an n � p matrix of the
levels of the regressor variables, b is a p � 1 vector of the regression coefficients,
and e is an n � 1 vector of random errors.

We wish to find the vector of least squares estimators, b̂, that minimizes

QðbÞ ¼
Xn
i¼1

e2i ¼ e0e ¼ ðY � XbÞ0ðY � XbÞ:
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Note that QðbÞ may be expressed as

QðbÞ ¼ Y 0Y � b0X 0Y � Y 0Xbþ b0X 0Xb
¼ Y 0Y � 2b0X 0Y þ b0X 0Xb

since b0X 0Y ¼ Y 0Xb because these are scalars.
The least squares estimators must satisfy the following equations:

@S
@b

����
b̂

¼ �2X 0Y þ 2X 0Xb ¼ 0

which simplifies to

X 0Xb ¼ X 0Y :

These equations are called the least squares normal equations. They are matrix
analogue of the scalar presentations shown for simple regression model.

The matrix form of the normal equations are

n
Pn
i¼1

Xi1
Pn
i¼1

Xi2 . . .
Pn
i¼1

XikPn
i¼1

Xi1
Pn
i¼1

X2
i1

Pn
i¼1

Xi1Xi2 . . .
Pn
i¼1

Xi1Xik

..

.Pn
i¼1

Xik
Pn
i¼1

XikXi1
Pn
i¼1

XikXi2 . . .
Pn
i¼1

X2
ik

26666666664

37777777775
b̂0
b̂1
..
.

b̂k

26664
37775 ¼

Pn
i¼1

YiPn
i¼1

Xi1Yi

..

.Pn
i¼1

XikYi

26666666664

37777777775
To solve the normal equations, let us multiply both sides by the inverse of X 0X.

Thus, the least squares estimator of b are

b̂ ¼ ðX 0XÞ�1ðX 0YÞ

provided that the inverse matrix ðX 0XÞ�1 exists. The ðX 0XÞ�1 matrix will always
exist if the regressors are linearly independent, that is, if no column of the X matrix
is a linear combination of the other columns.

The fitted regression model corresponding to the levels of the regressor variables

X 0
i ¼ ½1;Xi1; . . .;Xik�

is

bYi ¼ Xib̂ ¼ b̂0 þ
Xk
j¼1

b̂jXij:
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By definition,

ei ¼ Yi � bYi:

Then, the n residuals may be conveniently written in matrix notation as

e ¼
e1
e2
..
.

en

26664
37775 ¼

Y1 � Ŷ1
Y2 � Ŷ2

..

.

Yn � Ŷn

26664
37775:

9.5.2 Properties the Least Squares Estimators

The statistical properties of the least squares estimator b̂ may be easily
demonstrated.

Unbiasedness

Eðb̂Þ ¼ E½ðX 0XÞ�1X 0Y �
¼ E½ðX 0XÞ�1X 0ðXbþ eÞ�
¼ E½ðX 0XÞ�1X 0XbþðX 0XÞ�1X 0e� ¼ b

since EðeÞ ¼ 0 and ðX 0XÞ�1X 0X ¼ I. Thus b̂ is an unbiased estimator of b.

Variance–Covariance

The covariance matrix of b̂ is expressed by

Covðb̂Þ ¼ E½b̂� Eðb̂Þ�½b̂� Eðb̂Þ�0

¼ ðX 0XÞ�1r2:

Example 9.6
Using the matrix ðX 0XÞ�1, we obtain variances and covariances for the simple linear
regression as follows:
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cov b
_
� 	

¼ cov
b
_

0

b
_

1

0@ 1A ¼
var b

_

0

� 	
cov b

_

0; b
_

1

� 	
cov b

_

0; b
_

1

� 	
var b

_

1

� 	
0B@

1CA
¼ r2ðX 0XÞ�1

¼ r2

n
Pn

i¼1 X
2
i �

Pn
i¼1 Xi

� �2
Pn
i¼1

X2
i �Pn

i¼1
Xi

�Pn
i¼1

Xi n

0BB@
1CCA

¼ r2

n
Pn

i¼1 ðXi � XÞ2
Pn

i¼1 X
2
i =n �X

�X 1

 !
:

Hence,

var b
_

0

� 	
¼ r2

Pn
i¼1 X

2
i =nPn

i¼1 ðXi � XÞ2 ;

var b
_

1

� 	
¼ r2Pn

i¼1 ðXi � XÞ2 ;

cov b
_

0; b
_

1

� 	
¼ �r2XPn

i¼1 ðXi � XÞ2 :

The least squares estimator b̂ is the best linear unbiased estimator of b. If we
further assume that the errors ei are normally distributed, then b̂ is also the maxi-
mum likelihood estimator of b. The maximum likelihood estimator is minimum
variance unbiased estimator of b.

As in simple linear regression, we may show that residual mean square is an
unbiased estimator of r2.

Let us define the sum of squares of residual as

SSRes ¼
Xn
i¼1

ðYi � bYiÞ2

¼
Xn
i¼1

e2i ¼ e0e:

Then it can be shown that

EðSSResÞ ¼ ðn� pÞr2:
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So

EðMSResÞ ¼ E
SSRes
n� p

� �
¼ r2:

The unbiased estimator of the variance is

r̂2 ¼ MSRes ¼ SSRes
ðn� pÞ :

9.5.3 The Coefficient of Multiple Determination

The coefficient of multiple determination is introduced in the coefficient of deter-
mination and is defined by

R2 ¼
Pn

i¼1 ðŶi � �YÞ2Pn
i¼1 ðYi � �YÞ2 ¼

SSReg
SSTotal

where bYi ¼ b̂0 þ b̂1Xi1 þ 	 	 	 þ b̂kXik; i ¼ 1; 2; . . .; n.
As we have seen earlier for a simple regression model, alternatively, R2 can be

expressed as

R2 ¼ 1�
Pn

i¼1 ðYi � ŶiÞ2Pn
i¼1 ðYi � �YÞ2 ¼ 1� SSRes

SSTotal
:

The R2 measures the proportion of total variation about the mean Y explained by
the fitted regression model bYi ¼ b̂0 þ b̂1Xi1 þ 	 	 	 þ b̂kXik; i ¼ 1; 2; . . .; n. The
regression sum of squares is b̂0X 0Y due to coefficients b0 and b1 and if we consider
the sum of squares for regression model given b0, the regression sum of squares can

be shown as b̂0X 0Y � nY
2
and the corrected total sum of squares is Y 0Y � nY

2
.

Using these notations, the coefficient of multiple determination is

R2 ¼ b
_0
X 0Y � nY

2

Y 0Y � nY
2 :

Some Properties of
R2 and R

1. The range of R2 is 0�R2 � 1.
2. R ¼ r

YY
_; that is, the multiple correlation is equal to the simple correlation

between observed Y and bY .
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3. By including an additional variable to the regression model the value of R2 can
be increased.

4. If the explanatory variables are mutually orthogonal, then R2 can be partitioned
into k components.

5. R2 is invariant to linear transformations on X and scale change on Y.

9.5.4 Tests for Significance of Regression

The test for significance of regression is a test to determine if there is a linear
relationship between the response Y and any of the regressors X1;X2; . . .;Xk. This
procedure is often thought of as an overall or global test of model adequacy. The
appropriate hypotheses are

H0: b1 ¼ b2 ¼ 	 	 	 ¼ bk ¼ 0

H1: bj 6¼ 0 for at least one j:

Rejection of the null hypothesis implies that at least one of the regressors
X1;X2; . . .;Xk contributes significantly to the model.

The test procedure is a generalization of the analysis of variance used in simple
linear regression. The total SS is partitioned into two components:

SST ¼ SSReg þ SSRes:

If the null hypothesis is true then

SSReg
r2


 v2k

and

SSRes
r2


 v2n�k�1:

Hence,

F ¼ SSReg=k
SSRes=ðn� k � 1Þ ¼

MSReg
MSRes


 Fk;n�k�1:

The partitioning of total variation is shown in the analysis of variance table for
total variation about mean or the corrected total sum of squares (Table 9.9)

SST ¼ SSReg þ SSRes
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where

SSTotal ¼ Y 0Y � ðP YiÞ2
n

;

SSReg ¼ b̂0X 0Y � ðP YiÞ2
n

;

and

SSRes ¼ Y 0Y � b̂0X 0Y :

9.5.5 Tests on Regression Coefficients

Once we reject the null hypothesis H0: b1 ¼ b2 ¼ 	 	 	 ¼ bk ¼ 0 then it is logical to
perform tests on every regression coefficient in the regression model to identify the
explanatory variables having statistically significant relationship with the response
variable. It is important to keep in mind that with inclusion of an additional variable
the regression sum of squares always increases and residual sum of squares
decreases. However, a good model needs to satisfy an important criterion of
modeling the data which is: if with a minimum number of variables in a model that
provides the explanatory power equal to or close to the models with additional
variables that indicates that the additional variables would not increase the
explanatory power of the model significantly rather will result in increase in the
variance of the fitted value and also the residual mean square. Hence, it is needed to
test for the significance of each regression coefficient in the model to identify the
variables which contribute significantly and which do not.

The hypotheses for testing the significance of any individual regression coeffi-
cient are

H0: bj ¼ 0 and H1: bj 6¼ 0:

Table 9.9 Analysis of variance table for the regression model

Source of
variation

Sum of squares df Mean squares F

Regression SSReg ¼ b̂0SXY � nY
2 k SSReg=k MSReg=MSRes

Residual SSRes ¼ SST � b̂0SXy n – k − 1 SSRes=ðn� k � 1Þ
Total SST ¼ Y 0Y � nY

2 n − 1
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The test statistic for this hypothesis is

T ¼ b̂j � bj

seðb̂jÞ

 tn�k�1

which can be expressed under the null hypothesis as

T ¼ b̂jffiffiffiffiffiffiffiffiffiffi
r̂2Cjj

p ¼ b̂j

seðb̂jÞ

where Cjj is the diagonal element of ðX 0XÞ�1 corresponding to b̂j. The null
hypothesis H0: bj ¼ 0 is rejected if tj j[ tðn�k�1Þ;1�a=2. Therefore, a 100(1 − a)%
confidence interval on regression coefficient bj is given by

b̂j � ta=2;n�2seðb̂jÞ� bj � b̂j þ ta=2;n�2seðb̂jÞ:

9.5.6 Confidence Interval for Mean Response

We may construct a confidence interval on the mean response at a particular point,
such as X01;X02; . . .;X0k where the values of variables are within the range of the
values in the sample data. Let us define the vector X0 as

X0 ¼

1
X01

X02

..

.

X0k

2666664

3777775
The fitted value at this point is

bY0 ¼ bX0b̂:

This is an unbiased estimator of EðY=X0Þ; since EðbY0Þ ¼ X 0
0b ¼ EðY X0j Þ, and

the variance of bY0 is

VarðbY0Þ ¼ r2X 0
0ðX 0XÞ�1X0:

Therefore, a 100(1 − a) percent confidence interval on the mean response at the
point X01;X02; . . .;X0k is

bY0 � ta=2;n�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2X 0

0ðX 0XÞ�1X0 �
q

EðY=X0Þ� bY0 þ ta=2;n�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2X 0

0ðX 0XÞ�1X0

q
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9.5.7 Prediction of New Observations

The regression model can be used to predict future observations on Y corresponding
to particular values of the regressor variables, for example, XF1;XF2; . . .. . .;XFk. If
X 0
F ¼ ½1;XF1;XF2; . . .. . .;XFk�, then a point estimate of the future observation YF at

the point XF1;XF2; . . .. . .;XFk is

bYF ¼ X 0
F b̂:

A 100(1 − a) percent confidence interval for this future observation at the point
XF1;XF2; . . .;XFk is

bYF � tðn�k�1Þ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2ð1þX 0

FðX 0XÞ�1XFÞ
q

� YFÞ

� bYF þ tðn�k�1Þ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2ð1þX 0

FðX 0XÞ�1XFÞ
q

Example 9.7
The data set used for this application is 5% random sample from the first wave of
the Health and Retirement Study (HRS 2010). The outcome variable is weight (in
kg) of the respondents and the independent variables are height (in cm), gender
(male = 1, female = 0), sum of conditions (0, …, 5) ever had. The selected sample
size is 301.

In this example, a multiple linear regression model is fitted. The study was
conducted on elderly people. The outcome variable is weight (Y) and the
explanatory variables are height (X1), gender (X2, 1 for male and 0 for female), and
number of health conditions ever had (X3). The regression model is

EðY X1;X2;X3Þ ¼ b0 þ b1X1 þ b2X2 þ b3X3j :

This model can be expressed in the following form too

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ e:

The least squares estimates of the parameters are

b̂0 ¼ �50:127; b̂1 ¼ 0:751; b̂2 ¼ �4:309 and b̂3 ¼ 1:123:

To test for the regression model, the null hypothesis is

H0: b1 ¼ b2 ¼ b3 ¼ 0
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and the alternative hypothesis can be stated as at least one of the regression coef-
ficients is not zero. The analysis of variance table shows that the null hypothesis can
be rejected and there is evidence that one or more of the explanatory variables are
significantly associated with weight of elderly people. The value of the test statistic,
F, from the sample data is 49.357 (p-value < 0.001). The value of R2 is 0.333
which implies that 33% of the total variation in the outcome variable can be
explained by the regression model considered in this example. Alternatively, it can
be said that two-thirds of the variation remains unexplained although the model
appears to be a statistically significant one. The search for the best possible model
needs to be in the list of priorities to delineate possible strategies by a researcher.

As the overall model appears to be significant, we need to find the variables that
are significantly associated with weight of elderly people. The null and alternative
hypotheses for testing the significance of three regression coefficients are
(Table 9.10)

H01: b1 ¼ 0; H11: b1 6¼ 0;

H02: b2 ¼ 0; H12: b2 6¼ 0;

H03: b3 ¼ 0; H13 : b3 6¼ 0:

From the analysis of variance table, we observe that height is significantly and
positively associated (p-value < 0.001) with weight. Gender appears to have a
negative association with weight, males demonstrate lower weight compared to

Table 9.10 Estimation and tests on the fit of multiple regression model for weight of elderly
people

A. Coefficient of multiple determination

R R square Adjusted R square Std. error of the estimate Durbin–Watson

0.577 0.333 0.326 13.351 2.131

B. ANOVA table

Model Sum of squares df Mean square F Sig.

Regression 26393.106 3 8797.702 49.357 0.000

Residual 52938.618 297 178.245

Total 79331.724 300

C. Parameter estimates of multiple regression model

Model b̂ t-value p-
value

95.0% confidence
interval for b̂

B Std.
error

Lower
bound

Upper
bound

Intercept −50.127 20.551 −2.439 0.015 −90.571 −9.683

Height 0.751 0.116 6.486 0.000 0.523 0.979

Gender −4.309 2.312 −1.864 0.063 −8.858 0.240

Number of conditions
ever had

1.123 0.730 1.540 0.125 −0.313 2.559
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females at older age (p-value = 0.063) but null hypothesis that there is no associ-
ation between number of conditions ever had and weight may not be rejected. The
95% confidence intervals are also included in the table.

9.6 Summary

The concepts of correlation and regression are introduced in this chapter. The
measures of correlation are discussed for both Pearson’s product moment and
Spearman’s rank correlation and the important properties of correlation coefficient
are discussed with examples. The estimation and test procedures for population
correlation coefficient are illustrated. Both the simple and multiple regression
models are also introduced with necessary theoretical background with examples.
The method of least squares is demonstrated for estimating regression parameters.
The variances are obtained and unbiased estimator of the variance are shown. The
properties of estimators of regression parameters are also highlighted. The coeffi-
cient of multiple determination, the F tests for a regression model and Wald tests for
testing the significance of regression parameters are illustrated. The analysis of
variance and the components of variance are shown too. The extra sum of squares
principle is also introduced in this chapter. The procedures of constructing the
confidence intervals of the regression parameters are included in this chapter. This
is a self-explanatory chapter on the concepts and techniques of correlation and
regression with many illustrations.

Exercises

9:1 (i) Define the coefficient of correlation with an example.
(ii) Consider the following data on weight of women in kg (Y) and height in
cm (X).
The sample size is 20.
(iii) Find the correlation between X and Y and interpret your result.
(iv) Test for the null and alternative hypotheses: H0: q ¼ 0:5;H1: q 6¼ 0:5:
(v) Construct the 95% confidence interval of the population correlation
coefficient.

X Y

148.1 46.4

158.1 53.2

158.1 52.8

151.4 42.0

152.9 50.8

159.1 43.0

151.0 51.9

158.2 59.2
(continued)
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(continued)

X Y

148.2 55.1

147.3 38.9

145.6 49.7

155.1 49.9

155.2 43.1

149.7 42.2

147.0 52.7

152.2 49.8

149.1 50.7

145.2 44.8

145.9 49.2

149.7 47.7

9:2 (i) Define a simple regression model. What are the assumptions?
(ii) Obtain the least squares estimators of the parameters of the simple
regression model.
(iii) Obtain the least squares estimates of the parameters of a simple
regression model using data in 9.1(ii). Consider Y as the dependent and X as
the independent variable. Interpret your results.

9:3 (i) Define the Pearson’s coefficient of correlation and show that it does not
depend on the change in origin and scale.
(ii) Find the Pearson’s coefficient from the following data and comment on
the relationship between X and Y:

X Y

1 3

2 4

3 6

2 5

1 2

9:4 (i) Write the population and estimated simple regression model. What are the
underlying assumptions?
(ii) Find the least squares estimates of the parameters of a simple regression
model.
(iii) Fit the regression model using data in 3 (ii) and interpret the nature of
relationship between X and Y.
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9:5 (i) Define correlation coefficient and demonstrate how can you interpret +ve
and −ve correlations.
(ii) Show that the correlation coefficient lies between −1 and +1.
(iii) Show that coefficient of correlation between two variables is indepen-
dent of origin and scale of measurement.

9:6 (i) Define the simple regression model indicating the underlying
assumptions.
(ii) Show that the Total SS = Regression SS + Residual SS.
(iii) Obtain the least squares estimates of the parameters of the simple
regression model.

9:7 (i) Write the population and estimated regression models. What are the
assumptions of a regression model?
(ii) Obtain the least squares estimators of the parameters of a simple
regression model, Y ¼ b0 þ b1X þ e.
(iii) Find the variance of b̂0 and b̂1.

9:8 (i) Define the correlation coefficient and graphically show: (i) no correlation,
(ii) positive correlation, and (iii) negative correlation.
(ii) Show that �1� r� 1.
(iii) Compute the correlation coefficient using the following data and inter-
pret your result:

X Y

5 2

4 4

3 5

5 1

1 2

4 3

7 7

5 3

8 6

7 5

9 7

6 3

3 2

8 5

9 8

4 3
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9:9 (a) Consider a regression model Y ¼ b0 þ b1X þ e. What are the assumptions
of a regression model? Show that Varðb̂1Þ ¼ r2=

Pn
i¼1 ðXi � XÞ2.

(b) Show that the coefficient of regression is independent of origin, but in
general, depends on the scale of measurement.
(c) Using the data in 8 (iii) find the following:

(i) b̂0 and b̂1;
(ii) Estimated regression model;
(iii) Residual sum of squares, total sum of squares, regression sum of

squares;
(iv) Estimate the variance of b̂0 and b̂1;
(vi) R2 and it is interpretation.
(v) Construct the analysis of variance table.
(vi) Perform the tests on regression parameters stating the null and

alternative hypotheses.
(vii) Construct the 95% confidence interval for b0 and b1.
(viii) Comment on the fit of the regression model.

9:10 (i) Define the Spearman’s rank correlation.
(ii) How can you measure the rank correlation coefficient for a group of n
individuals with two characteristics A and B?
(iii) Following data shows the ranks given by two judges in an essay com-
petition for students in a college participated by 10 students:

Student Judge 1 Judge 2

1 3 2

2 1 1

3 2 3

4 5 5

5 4 4

6 6 6

7 9 7

8 10 9

9 7 8

10 8 10

Find the Spearman’s rank correlation and interpret your result.

9:11 (a) Define the simple regression model indicating the underlying assump-
tions. Show that the Total SS = Regression SS + Residual SS.
(b) Obtain the least squares estimates of the parameters of the simple
regression model.

(c) Show that E
Pn

i¼1
e2i

n�2

� �
¼ r2 for a simple regression model.
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9:12 Show that b̂0 and b̂1 are unbiased estimators of b0 and b1 in a simple
regression model. Also, find the variances of b̂0 and b̂1.

9:13 Let there be n pairs of observations ðx1; y1Þ; . . .; ðxn; ynÞ
(i) Write the population regression model;
(ii) What are the assumptions for a regression model?
(iii) Show equations for estimating the parameters of a regression model

using the least squares method.

9:14 Using the following data, estimate the parameter of a regression model and
interpret your estimates.

X: 2 1 3 2 5

Y: 4 3 5 3 6

9:15 Let there be 5 pairs of observations given below:

X Y X2 Y2 XY

0 2

1 3

1 2

2 4

3 5P5
i¼1

Xi =
P5
i¼1

Yi =
P5
i¼1

X
2

i =
P5
i¼1

Y2
i =

P5
i¼1

XiYi =

(a) Compute the following from the above table:

X ¼

Y ¼

X5
i¼1

ðXi � XÞ2 ¼
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X5
i¼1

ðYi � YÞ2 ¼

X5
i¼1

ðXi � XÞðYi � YÞ ¼

(b) Calculate the Pearson’s correlation coefficient;
(c) Interpret the correlation coefficient obtained in (a);
(d) Is the correlation coefficient independent of

(i) change in origin?:
(ii) change in scale?:

(e) Write the population regression model considering Y as the outcome variable
and X as the explanatory variable;

(f) Write the estimated regression model;
(g) Find the regression sum of squares and residual sum of squares.
(h) Construct the analysis of variance table.
(i) Perform tests on the parameters of the regression model.
(j) Comment on your findings.

9:16 (a) For a regression model, Y ¼ Xbþ e, where X is ðn� ðkþ 1ÞÞ and b is
ðkþ 1Þ � 1 vector of parameters, then find the estimators of b.
(b) Show that Covðb̂Þ ¼ ðX 0XÞ�1r2 for the above model.

9:17 Let us consider a model with k regressors, Y ¼ Xbþ e, where Y is n� 1, X is
n� p, b is p� 1, and p = k + 1. If we partition b ¼ array�20lb1 � b2½ �,
where b1 is ðp� rÞ � 1 and b2 is r � 1, then illustrate the test procedure for
H0: b2 ¼ 0.

9:18 Briefly discuss the role of R2, adjusted R2, and residual mean square in
selecting the best regression model.

9:19 Let us consider the following data on height (in cm), age (in months) and
weight (in kg) of 25 children as shown below:

Age (X1) Height (X2) Weight (Y)

10 72.1 7.4

55 93.5 11.3

15 78.9 9.8

20 85.2 12.1

31 89.1 11.6
(continued)
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(continued)

Age (X1) Height (X2) Weight (Y)

56 100.3 13.2

43 92.5 11.5

40 93.5 12.2

46 97.7 12,3

28 79.9 10.5

33 83.2 9.3

16 68.8 6.6

42 111.0 17.3

46 89.6 13.7

32 93.7 13.7

23 82.2 10.2

51 95.0 12.5

50 104.6 14.5

27 87.1 11.0

28 80.9 10.6

19 79.0 9.0

15 76.2 7.1

54 98.3 11.8

58 101.5 13.0

7 71.9 8.2

Answer the following questions using the output given below:

(a) Fit the linear regression model: Y ¼ Xbþ e:
(b) Find the R2 and interpret.
(c) Test for the overall regression hypothesis: H0: b1 ¼ b2 ¼ 0.
(d) Test for H0: bj ¼ 0, j = 1, 2.
(e) Construct the 99% confidence intervals of the parameters of regression model.

9:20 Consider a regression model: Y ¼ Xbþ e where Y is n � 1 vector of ob-
servations, X is n � p matrix of regressor variables, b is a p � 1 vector of
regression coefficients and e is an n � 1 vector of random errors.

(i) What are the assumptions need to be stated for this model?
(ii) Obtain the least squares estimators of b.
(iii) Show that Eðb̂Þ ¼ b.
(iv) Show that Covðb̂Þ ¼ ðX 0XÞ�1r2.
(v) Briefly show that Eðs2Þ ¼ r2:
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9:21 Show the analysis of variance table for the model in Question 9.19 and write
the steps for testing the following hypotheses specifying the alternative
hypotheses, test statistics and comments based on the values of test statistics:

(i) H0: b1 ¼ 	 	 	 ¼ bk ¼ 0;
and

(ii) H0: bj ¼ 0; j ¼ 1; 2; . . .; k.

9:22 Consider a regression model: Y ¼ Xbþ e, where Y is n � 1 vector of
observations, X is n � p matrix, b is a p � 1 vector of regression coefficients
and e is an n � 1 vector of random errors.

(a) Write the expression for residual sum of squares.
(b) Write the expression for mean square residual.
(c) Construct the ANOVA table for n = 40 and k = 3:
(d) From the ANOVA table in (c), show the test for

H0: b1 ¼ b2 ¼ b3 ¼ 0.
(e) How can you comment from (d)?
(f) Construct the 95% confidence interval for bj; j ¼ 1; 2; 3.
(g) What is the extra sum of squares principle? Comment on the null

hypothesis H0: b3 ¼ 0 using the extra sum of squares principle.

Reference

HRS (Health And Retirement Study) (2014). Public use dataset. Produced and distributed by the
University of Michigan with funding from the National Institute on Aging (grant number
NIAU01AG09740). Ann Arbor, MI.
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Chapter 10
Analysis of Variance

10.1 Introduction

The technique of analysis of variance (ANOVA) is used to compare several means
of several populations. It can be considered as a generalization of the t-test that is
used for comparing two means from two populations.

For example, suppose that a researcher conducted a study to compare the effects
of four different types of medical training programs T1; T2; T3; and T4ð Þ on the
attainment of students. In order to compare these training programs, the researcher
selected 24 medical students in the same level of study and who obtained the same
grade in a placement test. Then, the researcher randomly divided these students into
four groups each with six students. After that, the researcher randomly applied each
training program on one of the four groups of students. In the end of the program,
the researcher obtained the marks of the students (out of 15) which are summarized
in the following table:

Observations (marks)

Treatments Program T1ð Þ 11.6 7.3 11.4 11.0 8.6 9.2

Program T2ð Þ 6.2 8.1 9.8 5.1 7.0 8.6

Program T3ð Þ 11.9 8.1 12.6 14.2 10.7 11.4

Program T4ð Þ 10.5 15.0 11.8 13.7 14.7 12.8

One of the goals that the researcher wants to accomplish is to know whether real
(or significant) differences exist between the means of the students’ marks for the
different programs. In other words, the researcher wants to know whether the type
of training program has an effect on the educational attainment measured by the
marks of the students. In this example, and based on the ANOVA methodology, the
type of the training program is called the treatment factor (or independent variable),
and the mark is called the response (or dependent variable) which is that quantity
measured on the experimental units. The different training programs

© Springer Nature Singapore Pte Ltd. 2018
M. A. Islam and A. Al-Shiha, Foundations of Biostatistics,
https://doi.org/10.1007/978-981-10-8627-4_10

345

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8627-4_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8627-4_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8627-4_10&amp;domain=pdf


T1; T2; T3; and T4ð Þ are called the treatments or the levels of the factor, whereas a
student who receives one of the treatments and on which we measure the response
is called an experimental unit. The design of this kind of experiment is called the
completely randomized design.

The existence of real differences between the means of marks for the different
training program indicates that the type of the training program has an effect on the
educational attainment of the students.

10.2 Completely Randomized Design: One-Way
Classification

The completely randomized design (CRD) is one of the simplest and useful designs.
In this design, we have one factor of interest that might have an effect on the
response of interest. The response variable is denoted by Y. Suppose that the
treatment factor has a levels (or a treatments). Each level of the factor corresponds
to a population. We select independent random samples of size n from the a pop-
ulations; a sample from each population. Each population represents a level of the
factor; that is, each population represents a treatment.

The goal is to answer the following questions: Are all population means equal?
Are some of them different? In other words, we need to answer the following
question: Does the factor significantly affect the response?

Statistically speaking, we need to test the following null and alternative
hypotheses:

H0: l1 ¼ l2 ¼ � � � ¼ la
H1: li 6¼ lj for some i and j;

where li is the mean of the ith population ði ¼ 1; 2; . . .; aÞ.
Rejecting H0: l1 ¼ l2 ¼ � � � ¼ la indicates that there exist significant differ-

ences between the populations’ means, which means that there is a significant effect
of the factor on the response. In this case, we wish to know which means are
different and to estimate the difference between the means.

10.2.1 Analysis of Variance Technique

The analysis of variance technique is based on partitioning the total variation in the
observations of the response variable into several components; each component
measures some source of variation.
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Suppose that we have a treatments, and there are n observations for each
treatment, and let yij be the jth observation of the ith treatment, where ði ¼
1; 2; . . .; aÞ and ðj ¼ 1; 2; . . .; nÞ. The total variation in the observations of the
response variable (Y) can be measured by the quantity

Pa
i¼1

Pn
j¼1 ðyij � �y��Þ2, where

�y�� is the grand average of all observations. The observations can be arranged in the
following layout:

Treatments Grand

1 2 … a

Observations y11 y21 … ya1 –

y12 y22 … ya2 –

..

. ..
. ..

. ..
. –

y1n y2n … yan –

Total y1� y2� … ya� y��
Mean �y1� �y2� … �ya� �y��

We define the total number of observations by

N ¼ an:

We define the total and the average of the observations of the ith treatment,
respectively, by

yi� ¼
Xn
j¼1

yij

�yi� ¼ yi�
n
¼

Pn
j¼1 yij
n

:

We also define the grand total and the grand average of all observations,
respectively, by

y�� ¼
Xa
i¼1

Xn
j¼1

yij ¼
Xa
i¼1

yi�

�y�� ¼ y��
an

¼
Pa

i¼1

Pn
j¼1 yij

N
¼

Pa
i¼1 yi�
N

:

The ultimate goals of the ANOVA are as follows:

(1) Testing the equality of the treatments’ means H0: l1 ¼ l2 ¼ � � � ¼ lað Þ.
(2) Estimating the differences between the treatments’ means li � lj

� �
, and

determining which the different means are.
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10.2.2 Decomposition of the Total Sum of Squares

As we mentioned earlier, the total variation in the observations as a whole can be
measured by the corrected total sum of squares which is defined by

SSTOT ¼
Xa
i¼1

Xn
j¼1

ðyij � �y��Þ2:

The degrees of freedom associated with this sum of squares is

dfTOT ¼ an� 1 ¼ N � 1:

If we divide the corrected total sum of squares by its degrees of freedom, we
obtain the ordinary sample variance of all observations, that is,

S2 ¼ SSTOT
dfTOT

¼ SSTOT
N � 1

¼
Pa

i¼1

Pn
j¼1 ðyij � �y��Þ2
N � 1

:

This quantity is a measure of the total variation in all observations.
There are two sources of the total variation which are as follows:

(1) The first kind of variation is due to the differences between the treatments.
(2) The second kind of variation is due to the random error.

According to these two sources of variation, we can partition the total sum of
squares SSTOT ¼ Pa

i¼1

Pn
j¼1 ðyij � �y��Þ2 into two components which are as

follows:

(1) The treatment sum of squares (SSTRT):

This quantity measures the differences between the treatment means and defined
by

SSTRT ¼ n
Xa
i¼1

ð�yi� � �y��Þ2:

The degrees of freedom associated with this sum of squares are

dfTRT ¼ a� 1:

Notice that the treatment sum of squares, SSTRT ¼ n
Pa

i¼1 ð�yi� � �y��Þ2, measures
the sum of squares of the differences between the treatment averages �yi�ð Þ and the
grand average of the observations �y��ð Þ. A large value of SSTRT indicates the
existence of differences between the treatment’ means, consequently, we reject the

348 10 Analysis of Variance



hypothesis of the equality of the treatments’ means H0: l1 ¼ l2 ¼ � � � ¼ lað Þ for
large values of SSTRT.

(2) The error sum of squares (SSE):

This quantity measures the differences between the observations within treat-
ments and is defined by

SSE ¼
Xa
i¼1

Xn
j¼1

ðyij � �yi�Þ2

The degrees of freedom associated with this sum of squares are

dfE ¼ N � a:

Notice that the error sum of squares, SSE ¼ Pa
i¼1

Pn
j¼1 ðyij � �yi�Þ2, measures the

sum of squares of the differences between the observations yij
� �

and their average
�yi�ð Þ within treatments.
Algebraically, it can be shown that the total sum of squares,

SSTOT ¼ Pa
i¼1

Pn
j¼1 ðyij � �y��Þ2, is the sum of two components; the first compo-

nent is (SSTRT) and the second component is (SSE). That is,

SSTOT ¼ SSTRTþ SSE

and equivalently, we may write

Xa
i¼1

Xn
j¼1

ðyij � �y��Þ2 ¼ n
Xa
i¼1

ð�yi� � �y��Þ2 þ
Xa
i¼1

Xn
j¼1

ðyij � �yi�Þ2:

Similarly, we can partition the degrees of freedom associated with the total sum
of squares dfTOT ¼ N � 1ð Þ into two components as follows:

dfTOT ¼ dfTRT þ dfE

and equivalently, we may write

N � 1 ¼ ða� 1Þþ ðN � aÞ:

10.2.3 Pooled Estimate of the Variance

Suppose that the observations of the ith treatment are

yi1; yi2; . . .; yin:
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The sample variance of the observations of the ith treatment is

S2i ¼
Pn

j¼1 ðyij � �yi�Þ2
n� 1

:

This variance is associated with ðn� 1Þ degrees of freedoms. The pooled esti-
mate of the variance using the sample variances of all treatments is

S2p ¼
ðn� 1ÞS21 þðn� 1ÞS22 þ � � � þ ðn� 1ÞS2a

ðn� 1Þþ ðn� 1Þþ � � � þ ðn� 1Þ
¼

Pa
i¼1 ðn� 1ÞS2iPa
i¼1 ðn� 1Þ

¼
Pa

i¼1

Pn
j¼1 ðyij � �yi�Þ2Pa

i¼1 ðn� 1Þ
¼ SSE

N � a
:

This quantity is called the mean square error (MSE).

Mean Squares
When we divide the sum of squares (SS) by its degrees of freedom (df), we obtain
what is called mean square (MS), i.e.,

MS ¼ SS
df

:

We will define the following means of squares:

(1) The treatment mean square (MSTRT):
This mean square is defined as follows:

MSTRT ¼ SSTRT
dfTRT

¼ SSTRT
a� 1

:

(2) The error mean square (MSE):
This mean square is defined as follows:

MSE ¼ SSE
dfE

¼ SSE
N � a

:

As we mentioned earlier, the error mean square (MSE) is nothing but the
pooled estimate of the variance, i.e., MSE ¼ S2p.
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10.2.4 Testing the Equality of Treatments’ Means

We summarize the procedure of testing the equality of treatments’ means
H0: l1 ¼ l2 ¼ � � � ¼ lað Þ by the following steps:

(1) Determining the hypotheses:
As we mentioned earlier, ANOVA is concerned with testing the following null
hypothesis:

H0:l1 ¼ l2 ¼ � � � ¼ la ðno difference between meansÞ

against the following alternative hypothesis:

H1: li 6¼ lj for some i and j ðthere are some differencesÞ:

(2) Determining the level of significance ðaÞ:
We select one of the common values of the significance level ðaÞ which are 0.1,
0.05, 0.025, or 0.01.

(3) Determining the test statistic:
The test statistic used to test the equality of treatments’ means is

F0 ¼ MSTRT
MSE

:

Under H0 (i.e., when H0 is correct), the test statistic F0 ¼ MSTRT
MSE has an

F-distribution with the following degrees of freedoms:

df1 ¼ dfTRT ¼ a� 1

df2 ¼ dfE ¼ N � a

that is F0 �Fða� 1;N � aÞ.
(4) Determining the rejection region (RR) of H0:

The rejection region consists of the values of F0 which are greater than the
critical value Faða� 1;N � aÞ. The following figure shows the rejection region
(RR) and non-rejection region of H0:
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(5) Determining the decision rule:
We reject H0: l1 ¼ l2 ¼ � � � ¼ la at the significant level a if

F0 [ Faða� 1;N � aÞ:

ANOVA Table
The information needed to perform the ANOVA procedure is usually summarized
in so-called ANOVA table as follows:

Source of
variation

Sum of squares Degrees
of
freedom

Mean squares F-ratio F0ð Þ

Treatments
(between
treatments)

SSTRT ¼ n
Pa

i¼1 ð�yi� � �y��Þ2 a� 1 MSTRT ¼ SSTRT
a�1 F0 ¼ MSTRT

MSE

Error (within
treatments)

SSE ¼
Xa

i¼1

Xn

j¼1
ðyij � �yi�Þ2

¼ SSTOT� SST

N � a MSE ¼ SSE
N�a

Total SSTOT ¼ Pa
i¼1

Pn
j¼1 ðyij � �y��Þ2 N � 1

Computational Formulas
In order to simplify calculating the sum of squares used in ANOVA table, we may
use the following equivalent formulas:

SSTOT ¼
Xa
i¼1

Xn
j¼1

y2ij �
y2��
N

SSTRT ¼ 1
n

Xa
i¼1

y2i� �
y2��
N

SSE ¼ SSTOT� SSTRT ðby subtractionÞ:
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The quantity y2��
N is called the correction factor.

Example 10.1 A researcher wanted to compare the efficiency of four different types
of medical training programs T1; T2; T3; and T4ð Þ. In order to compare the effi-
ciency of these training programs, the researcher selected 24 medical students in the
same level and who obtained the same grade in a placement test. Then, the
researcher randomly divided these students into four groups each with six students.
After that, the researcher randomly applied each program on one of the four groups
of students. In the end of program, the researcher obtained the marks of the students
(out of 15), which are summarized in the following table:

Observations (marks)

Treatments Program T1ð Þ 11.6 7.3 11.4 11.0 8.6 9.2

Program T2ð Þ 6.2 8.1 9.8 5.1 7.0 8.6

Program T3ð Þ 11.9 8.1 12.6 14.2 10.7 11.4

Program T4ð Þ 10.5 15.0 11.8 13.7 14.7 12.8

Do these data provide us with a sufficient evidence to conclude that there are
significant differences among the training programs? In other words, does the type
of training program significantly affect the student attainment? Use a ¼ 0:05.

Solution
We want to test H0: l1 ¼ l2 ¼ l3 ¼ l4ð Þ against H1: li 6¼ lj for some i and j

� �
at

a ¼ 0:05.
There are four treatments (programs): a ¼ 4.
There are six observations in each sample: n ¼ 6.
The total number of observation is N ¼ an ¼ 24.
The following table summarizes the totals and the averages:

Treatments (programs) Grand

T1 T2 T3 T4
Observations yij 11.6

7.3
11.4
11.0
8.6
9.2

6.2
8.1
9.8
5.1
7.0
8.6

11.9
8.1
12.6
14.2
10.7
11.4

10.5
15.0
11.8
13.7
14.7
12.8

–

–

–

–

–

Total yi�ð Þ 59.1 44.8 68.9 78.5 y�� ¼ 251:3

Average �yi�ð Þ 9.850 7.467 11.483 13.083 �y�� ¼ 10:471
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In order to calculate the sums of squares, we first calculate the following
quantities:

y2��
N

¼ ð251:3Þ2
24

¼ 2631:3204

Xa
i¼1

Xn
j¼1

y2ij ¼ ð11:6Þ2 þ � � � þ ð12:8Þ2 ¼ 2800:65

Xa
i¼1

y2i� ¼ ð59:1Þ2 þð44:8Þ2 þð68:9Þ2 þð78:5Þ2 ¼ 16409:31:

Calculate the sums of squares (SS) using the calculating formulas:

SSTOT ¼
Xa
i¼1

Xn
j¼1

y2ij �
y2��
N

¼ 2800:65� 2631:3204 ¼ 169:3296

SSTRT ¼ 1
n

Xa
i¼1

y2i� �
y2��
N

¼ 1
6
ð16409:31Þ � 2631:3204 ¼ 103:5646

SSE ¼ SSTOT� SSTRT ¼ 169:3296� 103:5646 ¼ 65:765:

Calculate the degrees of freedoms (df):

dfTRT ¼ a� 1 ¼ 4� 1 ¼ 3

dfE ¼ N � a ¼ 24� 4 ¼ 20

dfTOT ¼ N � 1 ¼ 24� 1 ¼ 23:

Calculate the means of squares (MS):

MSTRT ¼ SSTRT
a� 1

¼ 103:5646
4� 1

¼ 34:5215

MSE ¼ SSE
N � a

¼ 65:765
24� 4

¼ 3:2883:

We notice that the value of the treatment mean squares (MSTRT) is more than
ten times as the value of the error mean squares (MSE), and this indicates that the
treatment means are likely to be different.
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Calculate the value of the test statistics F0ð Þ:

F0 ¼ MSTRT
MSE

¼ 34:5215
3:2883

¼ 10:498:

Finding the critical Value Faða� 1;N � aÞð Þ:

F0:05ð3; 20Þ ¼ 3:10:

ANOVA Table
We summarize the above calculations in the following ANOVA table:

Source of variation Sum of
squares

Degrees of
freedom

Mean
squares

F-ratio
F0ð Þ

Treatments (between
treatments)

103.5646 3 34.5215 10.498

Error (within treatments) 65.765 20 3.2883

Total 169.3296 23

Decision
Since F0 [F0:05ð3; 20Þ, we reject H0: l1 ¼ l2 ¼ l3 at the significance level
a ¼ 0:05, and we conclude that the treatments’ means are significantly different,
which mean that the type of the training program has an effect on the student
attainment.
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10.2.5 Estimation of the Differences Between the Treatment
Means l1 � l2ð Þ

A point estimate and a ð1� aÞ100% confidence interval of the mean of the ith
treatment lið Þ are, respectively, as follows:

l̂i ¼ �yi�
�yi� � ta=2ðN � aÞ

ffiffiffiffiffiffiffiffiffiffi
MSE

n

q
\li\�yi� þ ta=2ðN � aÞ

ffiffiffiffiffiffiffiffiffiffi
MSE

n

q
;

where i ¼ 1; 2; . . .; a, and ta=2;N�a is the critical value of t-distribution, with degrees
of freedom df = N−a, that leaves an equal a=2 to the left.

A point estimate and a ð1� aÞ100% confidence interval of the difference
between the mean of the ith treatment and the mean of the jth treatment li � lj

� �
are, respectively, as follows:

l̂i � l̂j ¼ �yi� � �yj�

ð�yi� � �yi�Þ � ta=2ðN � aÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

n

q
\li � lj\ð�yi� � �yi�Þ þ ta=2ðN � aÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

n

q
;

where i; j ¼ 1; 2; . . .; a.

Separation of Means and Pairwise Comparisons
As we mentioned earlier, if the hypothesis of the equality of the treatment means
H0: l1 ¼ l2 ¼ � � � ¼ lað Þ is rejected, we conclude that there are some differences
between the treatment means. In this case, we wish to know which means are
different, and we wish to estimate the differences between the different means. We
usually make comparisons between the means in order to find where the differences
are. These comparisons are done by testing some hypotheses about the differences
between all possible pairs of means of the form li � lj

� �
. The number of all

possible pairs of means is ða2Þ ¼ aða� 1Þ=2.
Fisher’s Least Significant Difference Method
We will compare all possible pairs of means (pairwise comparison) using the
Fisher’s Least Significant Difference Method:

In this procedure, we are interested in testing all hypotheses of the following
form:

Hij
o : li � lj ¼ 0

Hij
1 : li � lj 6¼ 0

for all values i; j ¼ 1; 2; . . .; a where i 6¼ j. The test statistic used in this method is
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to ¼ �yi� � �yj�ffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

n

q :

We reject Hij
o : li ¼ lj if

toj j ¼ j �yi� � �yj�ffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

n

q j [ ta
2
ðN � aÞ

which implies that

�yi� � �yj�
�� ��[ ta

2
ðN � aÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

n

r
:

The quantity on the right-hand side of the last inequality is called the least
significant difference (LSD), i.e.,

LSD ¼ ta
2
ðN � aÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

n

r
:

Therefore, we reject Hij
o : li ¼ lj if

�yi� � �yj�
�� ��[LSD:

Example 10.2 Consider the data in the previous example.

(1) Compare all possible pairs of means using a ¼ 0:05.
(2) Construct 95% confidence intervals for the differences between all pairs of

means li � lj
� �

.

Solution

(1) There are ða2Þ ¼ ð42Þ ¼ 6 possible pairs of means. The least significant difference
(LSD) is

LSD ¼ ta
2
ðN � aÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

n

r

¼ t0:025ð20Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3:2883

6

r

¼ 2:086� 1:0469

¼ 2:1839:
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For any pair of means li; lj
� �

, if �yi� � �yj�
�� ��[ 2:1839, we conclude that the

means li and lj are significantly different (i.e., we reject Hij
o : li ¼ lj).

We summarize the calculations in the following table:

Pair of means
li;lj
� � Absolute difference of the corresponding

averages �yi� � �yj�
�� �� Conclusion

l1;l2ð Þ �y1� � �y2�j j ¼ 9:85� 7:467j j ¼ 2:383 �y1� � �y2�j j[LSD
(Significant)

l1;l3ð Þ �y1� � �y3�j j ¼ 9:85� 11:483j j ¼ 1:633 �y1� � �y3�j j\LSD

l1;l4ð Þ �y1� � �y4�j j ¼ 9:85� 13:083j j ¼ 3:233 �y1� � �y4�j j[LSD
(Significant)

l2;l3ð Þ �y2� � �y3�j j ¼ 7467� 11:483j j ¼ 4:016 �y2� � �y3�j j[LSD
(Significant)

l2;l4ð Þ �y2� � �y4�j j ¼ 7:467� 13:083j j ¼ 5:616 �y2� � �y4�j j[LSD
(Significant)

ðl3;l4Þ �y3� � �y4�j j ¼ 11:483� 13:083j j ¼ 1:6 �y3� � �y4�j j\LSD

From this table, we notice that the mean of the second treatments l2ð Þ is sig-
nificantly different from all other means.

(2) A 95% confidence interval for the difference li � lj
� �

is

ð�yi� � �yi�Þ � ta=2ðN � aÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r

ð�yi� � �yi�Þ � t0:025ð20Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3:2883

6

r

ð�yi� � �yi�Þ � 2:086� 1:0469

ð�yi� � �yi�Þ � 2:1839:

We summarize the calculations in the following table:

Difference:
li � lj

Point estimate:
�yi� � �yi�

ð1� aÞ100% C.I. for li � lj
� �

:
ð�yi� � �yi�Þ � 2:1839

l1 � l2 2.383 0:199\l1 � l2\4:567

l1 � l3 −1.633 �3:817\l1 � l3\0:551

l1 � l4 −3.233 �5:417\l1 � l4\� 1:049

l2 � l3 −4.016 �6:200\l2 � l3\� 1:832

l2 � l4 −5.616 �7:800\l2 � l4\� 3:432

l3 � l4 −1.600 �3:784\l3 � l4\0:584

We noticed that all 95% confidence intervals involving the observations of the
response variable into three componentsmean of the second treatment l2ð Þ do not
contain zero. Therefore, we conclude that l2 is different of all other means.
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10.3 Randomized Completely Block Design

The randomized completely block design (RCBD) is one of the most important
designs, and it is used in many applications. It can be considered as a generalization
of the paired t-test that used in comparing the means of two related populations.

It is used when the researcher wants to eliminate the effect of some controlled
extraneous source of variation (called nuisance factor) from the comparisons of the
treatment means.

As we have seen, the completely randomized design is useful when the exper-
imental units are homogenous. However, in many situations, it might be difficult to
find homogenous experimental units due to many practical reasons. In his case, we
may use the randomized completely block design in order to increase the precision
of the comparisons of the treatment means.

To show the usefulness of RCBD, suppose that in the previous example
demonstrated in the last section, where the researcher wanted to compare the effi-
ciency of four medical training programs, the students in the first and second groups
(who received T1 and T2) were females, and the students in the third and fourth
groups (who received T3 and T4) were males. In this case, two factors are involved
in the design; the first factor is the type of program, whereas the second factor is the
gender. The result of the ANOVA procedure of the CRD in the example showed
that there are significant differences between treatment means. Since there are two
factors involved, it is not clear in this situation which factor causes the differences.
Indeed, the factor of interest is the type of program, whereas the gender is a
nuisance factor whose effect must be eliminated. The CRD fails to remove the effect
of the gender on the treatment comparisons, since it affects the response (student
attainment) besides the factor of interest which is the type of program.

Another candidate nuisance factor in the previous example might be the study’s
level of the student. Suppose that students in the first group who received treatment
T1 were students at the bachelors’ level B1ð Þ, the students in the second group who
received treatment T2 were at the masters’ level B2ð Þ, the students in the third group
who received treatment T3 were doctoral students B3ð Þ, and the students in the
fourth group who received treatment T4 were postdoctoral students B4ð Þ, In this
case, two factors are involved in the design; the first factor is the type of program,
whereas the second factor is the level of study. The result of ANOVA procedure of
the CRD in the example showed that there are significant differences between
treatment means. Since there are two factors involved, it is not clear in this situation
which factor causes the differences. Indeed, the factor of interest is the type of
program, whereas the level of study is a nuisance factor whose effect must be
eliminated. The CRD fails to remove the effect of the level of study on the treatment
comparisons, since it affects the response (student attainment) besides the factor of
interest which is the type of program.
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10.3.1 The Model and the Estimates of Parameters

An alternative design used when we want to remove the effect of a controlled
nuisance factor is the RCBD.

The RCBD is characterized by the following features:

1. We partition the experimental units into several blocks.
2. The number of blocks must be equal to the number of different levels of the

nuisance factor. The nuisance factor is that factor we wish to eliminate its effect
from the treatment comparisons.

3. Each block should contain homogenous experimental units.
4. The number of experimental units in each block must be equal to the number of

treatments (number of different levels of the factor of interest).
5. After forming the blocks, each treatment is randomly applied once and only

once in each block.
6. Each treatment must appear in each block only one time.

The following figure illustrates the layout of the RCBD for the case in which we
have a treatments T1; T2; . . .; Tað Þ, and b blocks B1;B2; . . .;Bbð Þ:

It should be noticed that (1) the assignment of the treatments T1; T2; . . .; Tað Þ to
the experimental units inside each block must be done at random, and (2) each
treatment must appear in each block only one time.

The analysis of variance in the RCBD is based on partitioning the total variation
in the observations of the response variable into three components; each component
measures some source of variation.

Suppose that we have a treatments and b blocks, and let yij be the observation of
the ith treatment in the jth block, where ði ¼ 1; 2; . . .; aÞ and ðj ¼ 1; 2; . . .; bÞ. The
total variation in the observations of the response variable (Y) can be measured by
the quantity SSTOT ¼ Pa

i¼1

Pb
j¼1 ðyij � �y��Þ2, where �y�� is the grand average of all
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observations. The degrees of freedoms associated with this sum of squares is
dfTOT ¼ ab� 1 ¼ N � 1.

The observations can be arranged in the following layout:

Blocks Treatment total Treatment average

1 2 … b

Treatments 1 y11 y12 … y1b y1� �y1�
2 y21 y22 … y2b y2� �y2�

..

. ..
. ..

. ..
. ..

. ..
. ..

.

A ya1 ya2 … yab ya� �ya�
Block total y�1 y�2 … y�b Grand Total ¼ y��
Block average �y�1 �y�2 … �y�b Grand Average ¼ �y��

We define the total and the average of the observations of the ith treatment,
respectively, by

yi� ¼
Xb
j¼1

yij

�yi� ¼ yi�
b
¼

Pb
j¼1 yij
b

We define the total and the average of the observations of the jth block,
respectively, by

y�j ¼
Xa
i¼1

yij

�y�j ¼ y�j
a
¼

Pa
i¼1 yij
a

:

We define the grand total and the grand average of all observations, respectively,
by

y�� ¼
Xa
i¼1

Xb
j¼1

yij ¼
Xa
i¼1

yi� ¼
Xb
j¼1

y�j

�y�� ¼ y��
ab

¼
Pa

i¼1

Pb
j¼1 yij

N
¼

Pa
i¼1 yi�
N

¼
Pb

j¼1 y�j
N

:

We define the total number of observations by
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N ¼ ab:

The goal of ANOVA in the RCBD is to test the equality of the treatments’
means H0: l1 ¼ l2 ¼ � � � ¼ lað Þ after eliminating the effect of the nuisance factor.

In the RCBD, there are three sources of the total variation which are as follows:

(1) The first kind of variation is due to the differences between the treatments.
(2) The second kind of variation is due to the differences between the blocks.
(3) The third kind of variation is due to the random error.

According to these three sources of variation, we can partition the total sum of
squares, SSTOT ¼ Pa

i¼1

Pb
j¼1 ðyij � �y��Þ2, into three components which are as

follows:

(1) The treatment sum of squares (SSTRT):

SSTRT ¼ b
Xa
i¼1

ð�yi� � �y��Þ2

The degrees of freedom associated with this sum of squares are

dfTRT ¼ a� 1:

(2) The block sum of squares (SSBLK):

SSBLK ¼ a
Xb
j¼1

ð�y�j � �y��Þ2:

The degrees of freedom associated with this sum of squares are

dfBLK ¼ b� 1:

(3) The error sum of squares (SSE):

SSE ¼
Xa
i¼1

Xb
j¼1

ðyij � �yi� � �y�j þ�y��Þ2:

The degrees of freedom associated with this sum of squares are

dfE ¼ ða� 1Þðb� 1Þ:

Algebraically, it can be shown that the total sum of squares, SSTOT ¼Pa
i¼1

Pb
j¼1 ðyij � �y��Þ2 can be portioned into the sum of three components as

follows:
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SSTOT ¼ SSTRTþ SSBLKþ SSE

and equivalently, we may write

Xa
i¼1

Xb
j¼1

ðyij � �y��Þ2 ¼ b
Xa
i¼1

ð�yi� � �y��Þ2 þ a
Xb
j¼1

ð�y�j � �y��Þ2

þ
Xa
i¼1

Xb
j¼1

ðyij � �yi� � �y�j þ�y��Þ2:

Similarly, we can partition the degrees of freedom associated with the total sum
of squares dfTOT ¼ ab� 1 ¼ N � 1ð Þ into three components as follows:

dfTOT ¼ dfTRT þ dfBLK þ dfE

and equivalently, we may write

ab� 1 ¼ ða� 1Þþ ðb� 1Þþ ða� 1Þðb� 1Þ:

For the RCBD, the relevant mean of squares is as follows:

(1) The treatment mean square (MSTRT) is

MSTRT ¼ SSTRT
dfTRT

¼ SSTRT
a� 1

:

(2) The block mean square (MSBLK) is

MSBLK ¼ SSBLK
dfBLK

¼ SSBLK
b� 1

:

(3) The error mean square (MSE) is

MSE ¼ SSE
dfE

¼ SSE
ða� 1Þðb� 1Þ :

10.3.2 Testing the Equality of Treatment Means

The test statistic used to test the equality of treatments’ means H0: l1 ¼ l2 ¼
� � � ¼ la is
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F0 ¼ MSTRT
MSE

:

Under H0 (i.e., when H0 is correct), the test statistic F0 ¼ MSTRT
MSE has an F-

distribution with the following degrees of freedoms:

df1 ¼ dfTRT ¼ a� 1

df2 ¼ dfE ¼ ða� 1Þðb� 1Þ:

That is F0 �Fða� 1; ða� 1Þðb� 1ÞÞ. We reject H0: l1 ¼ l2 ¼ � � � ¼ la at the
significant level a if:

F0 [ Faða� 1; ða� 1Þðb� 1ÞÞ:

ANOVA Table
The information needed to perform the ANOVA procedure for the RCBD is usually
summarized in the following ANOVA table:

Source of
variation

Sum of squares Degrees of
freedom

Mean squares F-ratio F0ð Þ

Treatments SSTRT a� 1 MSTRT ¼ SSTRT
a�1 F0 ¼ MSTRT

MSE
Blocks SSBLK b� 1 MSBLK ¼ SSBLK

b�1

Errors SSE (by
subtraction)

ða� 1Þðb� 1Þ MSE ¼ SSE
ða�1Þðb�1Þ

Total SSTOT ab� 1

Computational Formulas
In order to simplify calculating the sum of squares used in ANOVA table, we may
use the following equivalent formulas:

SSTOT ¼
Xa
i¼1

Xb
j¼1

y2ij �
y2��
N

SSTRT ¼ 1
b

Xa
i¼1

y2i� �
y2��
N

SSBLK ¼ 1
a

Xb
j¼1

y2�j �
y2��
N

SSE ¼ SSTOT� SSTRT � SSBLK
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Example 10.3 An experiment was conducted to compare the effects of four dif-
ferent medical training programs T1; T2; T3; T4ð Þ on the students attainment. In
order to compare the efficiency of these training programs, the researcher selected
twenty medical students; four of them were in the first year of study B1ð Þ, four of
them were in the second year of study B2ð Þ, four of them were in the third year of
study B3ð Þ, four of them were in the fourth year of study B4ð Þ, and four of them
were in the fifth year of study B5ð Þ. Considering the level of study as the blocking
factor (nuisance factor), an RCBD was used by randomly applying each training
program Ti; i ¼ 1; 2; 3; 4ð Þ once in each block Bj; j ¼ 1; 2; 3; 4; 5

� �
.

In the end of the training program, the researcher obtained the marks of the
students (out of 15), which are summarized in the following table:

Blocks (level of study)

B1 B2 B3 B4 B5

Treatments (training program) T1 12.1 13.9 12.2 14.5 15.0

T2 12.3 15.0 12.3 14.8 15.0

T3 6.7 9.9 11.1 10.3 10.7

T4 9.9 11.9 11.9 11.4 14.4

Are there significant differences between the treatment means? In other words,
does the program type affect the students’ attainment? Use a ¼ 0:05.

Solution
We want to test:

H0: l1 ¼ l2 ¼ l3 ¼ l4 (no differences between the treatment means)

H1: li 6¼ lj for some i and j

a ¼ 0:05.
There are four treatments (programs): a ¼ 4.
There are five blocks (levels of study): b ¼ 5.
The total number of observation is N ¼ an ¼ 20.
The following table summarizes the totals and the averages:
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In order to calculate the sums of squares, we first calculate the following
quantities:

y2��
N

¼ ð245:3Þ2
20

¼ 3008:6045

Xa
i¼1

Xb
j¼1

y2ij ¼ ð12:1Þ2 þ � � � þ ð14:4Þ2 ¼ 3100:57

Xa
i¼1

y2i� ¼ ð67:7Þ2 þð69:4Þ2 þð48:7Þ2 þð59:5Þ2 ¼ 15311:59

Xb
j¼1

y2�j ¼ ð41:0Þ2 þð50:7Þ2 þð47:5Þ2 þð51:0Þ2 þð55:1Þ2 ¼ 12144:75:

Calculate the sums of squares (SS) using the calculating formulas:

SSTOT ¼
Xa
i¼1

Xb
j¼1

y2ij �
y2��
N

¼ 3100:57� 3008:6045 ¼ 91:9655

SSTRT ¼ 1
b

Xa
i¼1

y2i� �
y2��
N

¼ 1
5
ð15311:59Þ � 3008:6045 ¼ 53:7135

SSBLK ¼ 1
a

Xb
j¼1

y2�j �
y2��
N

¼ 1
4
ð12144:75Þ � 3008:6045 ¼ 27:583

SSE ¼ SSTOT� SSTRT� SSBLK ¼ 91:9655� 53:7135� 27:583 ¼ 10:669:

Calculate the degrees of freedom (df):

dfTRT ¼ a� 1 ¼ 4� 1 ¼ 3

dfBLK ¼ b� 1 ¼ 5� 1 ¼ 4

dfE ¼ ða� 1Þðb� 1Þ ¼ 3� 4 ¼ 12

dfTOT ¼ N � 1 ¼ 20� 1 ¼ 19:

Calculate the means of squares (MS):

MSTRT ¼ SSTRT
a� 1

¼ 53:7135
4� 1

¼ 17:9045

MSBLK ¼ SSBLK
a� 1

¼ 27:583
5� 1

¼ 6:8958

MSE ¼ SSE
ða� 1Þðb� 1Þ ¼

10:669
12

¼ 0:8891:

We notice that the value of the treatment mean squares (MSTRT) is much higher
than the value of the error mean squares (MSE), and this indicates that the treatment
means are likely to be different.
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Calculate the value of the test statistics F0ð Þ:

F0 ¼ MSTRT
MSE

¼ 17:9045
0:8891

¼ 20:1378:

Finding the critical value Faða� 1; ða� 1Þðb� 1ÞÞð Þ:

F0:05ð3; 12Þ ¼ 3:49:

ANOVA Table
We summarize the above calculations in the following ANOVA table

Source of
variation

Sum of
squares

Degrees of
freedom

Mean
squares

F-ratio
F0ð Þ

Treatments 53.7135 3 17.9045 20.1378

Blocks 27.583 4 6.8958

Error 10.669 12 0.8891

Total 91.9655 19

Decision
Since F0 [F0:05ð3; 12Þ, we reject H0: l1 ¼ l2 ¼ l3 ¼ l4 at the significance level
a ¼ 0:05, and we conclude that the treatments’ means are significantly different,
which mean that the type of the training program has an effect on the student
attainment.

10.4 Summary

The basic concepts and models of analysis of variance are introduced in this
chapter. This chapter includes self-explanatory discussion on both one-way and
two-way classifications. For both one-way and two-way analysis of variance, the
models and assumptions, the analysis of variance techniques, decomposition of
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total sum of squares, pooled estimate of variance, mean squares, and test for the
equality of treatment means are discussed elaborately. The analysis of variance
tables is shown. The computational techniques are illustrated with examples. The
estimation of the differences between the treatment means, separation of means, and
pairwise comparisons are also illustrated in this chapter. The Fisher’s least signif-
icant difference method is shown with example.

Exercises

10:1 The following hypothetical data represent the outcome of an experiment
(temperature in degree Fahrenheit) with two different dose types of
medicines (types A and B), and third type is a placebo (C) administered
randomly to patients with high fever.Type of dose

A B C

100.2 101.5 102.3

101.3 100.3 103.1

100.4 99.8 102.6

102.5 102.3 102.4

101.5 101.5

102.7

(a) Write a suitable model that describes the variation in temperature
attributable to three different dose types of medicine. What are the
assumptions?

(b) Perform the analysis of data and display the analysis of variance table.
(c) Perform an appropriate test to determine whether there is variation in

body temperature due to three dose types of medicines.
(d) Construct 95% one-sided and two-sided confidence intervals for the

difference between all pairs of mean temperatures.

10:2 In a study let us consider that four different procedures (A, B, C, and D) are
applied to randomly selected Type 2 diabetic subjects to find whether there is
difference in the mean performance in controlling their preprandial blood
glucose level (mmol/l).

A B C D

7.4 8.2 7.5 8.1

5.8 7.2 6.8 7.6

6.2 7.0 7.1 8.4

7.5 8.9 9.3 9.6

7.8 6.4 8.1 9.3

(a) Write a suitable analysis of variance model that describes the variation
in blood glucose level due to different procedures. What are the
assumptions?
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(b) Analyze the data and summarize the results in an analysis of variance
table.

(c) Is there evidence in support of variation in preprandial blood glucose
level? Perform an appropriate test and comment.

(d) Construct 95% two-sided confidence intervals for the difference
between all pairs of mean blood glucose levels using a suitable least
significant difference method.

10:3 Consider that a study is performed on borderline high total cholesterol level
patients (200–239 mg/dL) and three different treatment options are applied to
patients living in three different communities.

City Treatment options

T1 T2 T3

City 1 204 223 227

203 212 228

190 212 207

City 2 215 214 215

178 203 206

200 204 204

City 3 213 213 217

178 193 207

190 194 206

(a) Write the appropriate analysis of variance model and indicate the
underlying assumptions.

(b) Find the treatment sum of squares, block sum of squares, and error sum
of squares. What are the corresponding mean squares?

(c) How can you test the equality of treatment means? What is your
decision?

(d) How can you test the equality of block means? What is your comment?
(e) Interpret your overall findings.

10:4 The following data show outcomes of a study on seven different treatments
applied to three different groups (blocks) of people. In each group, treatments
were assigned randomly. The outcomes, on a scale from 0 to 100, are dis-
played below:
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Group Treatments

T1 T2 T3 T4 T5 T6 T7
G1 75 77 68 69 93 74 43

82 80 70 73 81 78 53

77 81 72 75 88 76 62

G2 83 73 78 57 79 65 71

76 72 78 67 87 68 64

80 75 72 69 78 76 62

G3 87 77 78 63 86 75 64

78 73 75 67 79 71 65

81 77 69 79 82 70 55

(a) Write the appropriate analysis of variance model and indicate the
underlying assumptions.

(b) Find the treatment sum of squares, block sum of squares, and error sum
of squares.

(c) How can you test the equality of treatment means? What is the test
statistic? Comment on the findings of the treatments from the study.

(d) How can you test the equality of block means? What is the test statistic?
What is your comment?

(e) Interpret your overall findings.
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Chapter 11
Survival Analysis

11.1 Introduction

In this chapter, some important survival analysis techniques are introduced. Survival
analysis deals with the time until occurrence of event of interest. We consider
situations in which the analysis of times to the occurrence of events such as death
attributable to a certain cause, recovery from a disease, duration in disease-free state
before recurrence of a disease, etc. are of interest. The time to the occurrence of an
event varies depending on the underlying risk or prognostic factors of the subjects
included in the study. Mathematically, one can think of time to event as merely
meaning a nonnegative valued variable. Although the term time to event is used for
general reference, other terms such as survival time and failure time will also be
frequently used. The time to event refers to beginning to end (or the length or
duration) prior to occurrence of an event. This requires a very well defined event
along with the understanding through which that event may occur. To define the
recurrence of a disease, for instance, we need to confirm the time of initiation of the
disease, duration of suffering from the disease before recovery at the first instance,
duration of disease-free spell since recovery from the first spell before recurrence of
the disease. In this case, the time to recurrence of disease is of interest. The starting
time is the time at recovery from the disease after first spell of the disease and the end
point refers to the time at relapse of the disease indicating end of disease-free spell.

For collecting survival data, we may use the following basic study designs:

(a) Cohort Study,
(b) Case-Control Study, and
(c) Cross-sectional Study.

The first two types, cohort or follow-up and case-control or retrospective, are
known as longitudinal study designs. In a cohort/follow-up/prospective study, the
individuals are followed over time to observe incidence of disease as well as to
observe the changes in the status of disease. Here, the sampling is conducted on the
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basis of exposure status, and the incidence of the disease is observed at a subse-
quent time for both the groups with or without exposure. This study design makes it
easier to study the natural history of a disease. On the other hand, if the association
between a factor and disease is based on information in the past, then the study
design is called a case-control study design. In this design, the sampling is per-
formed on the basis of disease status, instead of exposure status, and data on
exposure status are collected from the past information provided by the respondents
for both the groups with disease or without disease. The cross-sectional study
designs are easier to conduct practically both in terms of cost and time because the
data on both exposure and disease status are collected at a particular point in time.
However, it becomes difficult to assess whether there exists a time-dependent
incidence of the disease as an effect of the hypothesized exposure from the data
collected by using a cross-sectional study design.

The survival analysis deals with human as the host and the forces within host
and environment that cause the events related to change in health conditions. One of
our major objectives is to explore the relationships between the host and envi-
ronmental factors with state of health in a cause–effect framework. However, in
most of the cases, even if there is cause–effect relationship for certain events, the
presence of multiple causes and their interactive processes make it difficult to
establish the relationships using the data collected from various studies. The host
factors include various personal traits termed as intrinsic factors. On the other hand,
the environmental factors, classified by biological, social, and physical character-
istics, are termed as extrinsic factors (Mausner and Kramer 1985). It is also note-
worthy that the interrelations between host, agent, and environment, which may be
in a broader sense considered as the interaction between host and environment due
to the presence of multiplicity of causes, need to be conceptualized in the studies of
survival analysis.

In a survival analysis study, the events are usually observed over time implying
that some of the individuals may experience the event during the study period but
others may experience it later beyond the scope of the study resulting in incomplete
observations. These incomplete observations are called censoring. If we fix a pre-
determined time to end the study, then an individual’s lifetime will be known
exactly only if it is less than some predetermined value. In such situations, the data
are said to be Type I (or time) censored. A Type II censored sample is one for which
only the r smallest observations in a random sample of n items or subjects are
observed (1� r� n). Experiments involving Type II censoring are often used, for
example, in life testing; a total of n items is placed on test, but instead of continuing
until all n items have failed, the test is terminated at the time of the rth item failure.
Such tests can save time and money, since it could take a very long time for all
items to fail in some instances. If both event time and censoring time occur ran-
domly, then it is called random censoring.
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11.2 Some Measures of Association

One of the major concerns in a survival analysis study is to measure the extent and
nature of association between the risk factor or exposure (E) and the disease (D).
The measure of association usually involves a direct association between outcome
and exposure or study factor as well as a comparison between outcome and
exposure with respect to a reference group which may not be considered as an
exposure. That is why it becomes a challenge in many instances to measure the
association with adequate epidemiologic reasoning. Let us consider that D denotes
the occurrence of disease and �D denotes nonoccurrence of the event. Similarly, let
us denote E for presence of exposure and �E for absence of exposure. Then, we can
display the bivariate frequency distribution for presence or absence of exposure and
occurrence or nonoccurrence of disease under three basic study designs:
(i) prospective or cohort, (ii) retrospective or case-control, and (iii) cross-sectional
study design.

(i) Prospective Study: Under the prospective or cohort study designs, the incidence
of a disease can be measured for selected level of exposure or presence and
absence of the exposure over the study period. In this design, the role of
exposure level or presence and absence of exposure can be studied very
carefully, and the measure of association provided on the basis of a prospective
study may be considered as ideal for estimating measure of association. In a
prospective study design, the fundamental condition of cause–effect is taken
into consideration, may not be in a very strict sense due to likely presence of
multiple causes for an effect, but still provides a more specific measure of
association under given conditions in a relative sense. Mausner and Kramer
(1985) observed that it is necessary to follow prospectively a defined group of
people and determine the rate at which new cases of disease occur to determine
incidence.
In Table 11.1, we follow up two groups with or without exposure and subse-
quently note the disease status among the subjects belonging to exposed and
nonexposed groups.

(ii) Case-Control Study: The prospective or cohort studies are always pre-
ferred for studying the role of a specific exposure. However, it may not be
a very practical study design if time and cost factors are involved. For a
prospective study more time and costs are necessary and it is even more
difficult if the event of concern or the disease under study is rare. In that

Table 11.1 Table for
displaying exposure and
disease status from a
prospective study disease
status

Disease status

Exposure D �D Total

E a b a + b
�E c d c + d

Total a + c b + d n
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case, the study needs to consider a very large number of subjects for a
meaningful decision-making. Another important point is that for a
prospective study, the setting up of specific hypothesis is of prime concern
because the study is based on exposure status to determine its role in
disease status. In addition, multiplicity of cause in explaining a disease
status makes the prospective study constrained. In case of the case-control
studies, the cases and controls are selected on the basis of disease status
and the status regarding factors that might be considered as exposures are
looked for past exposures to factors. Then, Table 11.2 displays the
exposure and disease status frequencies.

In Table 11.2 for case-control studies, the cases and controls are selected first and
the exposures are looked for retrospectively. In prospective study, the disease status
is observed longitudinally as outcomes of follow-up of exposed and nonexposed
groups of subjects. On the other hand, the approach is opposite in direction in
respect of time for a case-control study where cases and controls are selected as
disease status and their status in respect of exposures to factors are noted retro-
spectively. It may be noted here that there may be ambiguity in the data from
retrospective studies about past events which may either be unavailable or may be
misreported.

For a matched case-control study, the frequencies are presented in the format
where matched pairs are considered (Table 11.3).

(iii) Cross-sectional Study: In a cross-sectional study, both risk factor or
exposure and disease status are observed at the same time. These data are
collected generally by surveys. Although the cross-sectional studies are
easy to conduct and also less costly, the temporal sequence of events,
necessary to establish a causal relationship, cannot be established due to
lack of adequate information on occurrence of the disease and exposure
to factors over time. The data from a cross-sectional study may only
represent a snapshot view that represents the current status of both

Table 11.2 Table for
displaying exposure and
disease status from a
case-control study disease
status

Disease status

Exposure Case Control Total

E a b a + b
�E c d c + d

Total a + c b + d n

Table 11.3 Table for
displaying exposure and
disease status from a matched
case-control study cases

Cases

Controls E �E Total

E a b a + b
�E c d c + d

Total a + c b + d n
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disease and exposure without providing any clue regarding the causal
inference. However, these studies can be used to explore potential risk
factors.

Table 11.4 looks similar as the one for the prospective study but it has to be
remembered that in case of a prospective study, the disease status is observed by a
follow-up study for exposed and nonexposed groups. In a cross section study, we
know about disease and exposure to factors at the same time.

We can estimate the association between exposure and disease status using the
following measures referring the tables displayed above.

1. Relative Risk (RR) for Prospective Study: Relative risk shows the ratio of risk
of incidence in the exposed group as compared to the risk of incidence in the
nonexposed group. Here, the risks of incidence in the exposed and nonexposed
groups can be defined as follows:

Estimated risk of incidence for the exposed group = P̂ðD Ej Þ ¼ a
aþ b.

Estimated risk of incidence for the nonexposed group = P̂ðD �Ej Þ ¼ c
cþ d.

The estimated relative risk is

RR̂ ¼ risk for exposed group
risk for non-exposed group

¼ P̂ðD Ej Þ
P̂ðD �EÞj

¼ a=ðaþ bÞ
c=ðcþ dÞ :

This measure is based on prospective study data. We cannot express the risks for
incidence of disease from case-control or retrospective data.

Interpretation: If the relative risk,

(i) RR = 1, or ln RR = 0, then there is no association between exposure and
disease;

(ii) RR > 1, or ln RR > 0, then there is positive association between exposure
and disease indicating higher risk of incidence for the exposed group as
compared to that of the nonexposed group;

(iii) RR < 1, or ln RR < 0, then there is protective association indicating lower
risk of incidence in the exposed group as compared to that of the nonexposed
group.

Table 11.4 Table for
displaying exposure and
disease status from a
cross-sectional study

Disease status

Exposure D �D Total

E a b a + b
�E c d c + d

Total a + c b + d n
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Confidence Interval and Test for RR
We know that RR = 1 indicates no association between the exposure and disease
which is equivalent to testing for ln RR = 0. Let us show the test for the null
hypothesis H0: ln RR ¼ 0.

RR̂ ¼ a=ðaþ bÞ
c=ðcþ dÞ and ln RR̂ ¼ ln a

aþ b

� �
� ln c

cþ d

� �
.

It can be shown that the Varðln RR̂Þ ¼ b=ðaþ bÞ
a þ d=ðcþ dÞ

c .

Similarly, the sêðln RR̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ðaþ bÞ

a þ d=ðcþ dÞ
c

q
.

Assuming asymptotic normality, we can use the following test statistic

Z ¼ ln RR̂

sêðln RR̂Þ ¼
ln RR̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b=ðaþ bÞ
a þ d=ðcþ dÞ

c

q �Nð0; 1Þ:

Acceptance of the null hypothesis indicates that the evidence from the sample
data is not sufficient to reject the null hypothesis of no association between
exposure and disease, and rejection indicates a possible association.

For moderate or large sample, assuming normality, we can show that the 95%
confidence limits for lnRR are

ln RR̂� 1:96 se ðln RR̂Þ;

which are ln RR̂� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ðaþ bÞ

a þ d=ðcþ dÞ
c

q
:

The 95% confidence limits for RR can be shown as

Lower Limit: RR̂ e�1:96seðln RR̂Þ ¼ RR̂ e�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ðaþ bÞ

a þ d=ðcþ dÞ
c

p
.

Upper Limit: RR̂ e1:96seðln RR̂Þ ¼ RR̂ e1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ðaþ bÞ

a þ d=ðcþ dÞ
c

p
.

2. Risk Odds Ratio (ROR): A more convenient and popular measure for mea-
suring the association between occurrence of disease in the exposed and non-
exposed groups is the odds ratio. The odds ratio summarizes the ratio of odds of
incidence of disease to non-disease in the exposed group with that of the
nonexposed group. The risk odds ratio is defined as

ROR ¼ PðD Ej Þ=½1� PðD EÞ�j
PðD �EÞ=½1� PðD �EÞ�jj ;

where the odds of disease in the exposed group are in the numerator and the odds of
disease in the nonexposed group are in the denominator. This is popularly known as
the odds ratio or OR. For two independent groups by exposure status, the condi-
tional probabilities represent the probabilities of number of incidence cases in the
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exposed and nonexposed groups. The probability distributions of number of cases
in the exposed and nonexposed groups are binomial distributions with parameters
aþ b;PðD EÞjð Þ and cþ d;PðD �EÞjð Þ, respectively.
The estimates of PðD Ej Þ and PðD �Ej Þ are

P̂ðD Ej Þ ¼ a
aþ b

and P̂ðD �Ej Þ ¼ c
cþ d

:

We can also show that

1� P̂ðD Ej Þ ¼ 1� a
aþ b

¼ b
aþ b

and 1� P̂ðD �Ej Þ ¼ 1� c
cþ d

¼ d
cþ d

:

Hence, the estimator of the OR can be shown as

OR̂ ¼ P̂ðD Ej Þ=½1� P̂ðD EÞ�j
P̂ðD �EÞ=½1� P̂ðD �EÞ�j�� :

The variances of P̂ðD Ej Þ and P̂ðD �Ej Þ are

Var ½P̂ðD EÞ�j ¼ ½PðD EÞ�j ½1� PðD EÞ�j
ðaþ cÞ ; and

Var ½PðD �EÞ�j ¼ ½PðD �EÞ�j ½1� PðD �EÞ�j
ðbþ dÞ :

Then taking logarithm of OR̂, we find

lnOR̂ ¼ ln P̂ðD Ej Þ=½1� P̂ðD EÞ�j� �� ln P̂ðD �Ej Þ=½1� P̂ðD �EÞ�j� �
;

where the first term is a function of the proportion of disease cases in the exposed
group which is the familiar odds for the exposed group, and the second term is a
function of the proportion of disease cases in the nonexposed group which is the
odds for the nonexposed group. We can obtain the variance of the odds for both the
exposed and nonexposed groups using the delta method as shown below:
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Var lnOR̂
� � ¼ Var ln P̂ðD Ej Þ=½1� P̂ðD EÞ�j� 	� �þVar ln P̂ðD �Ej Þ=½1� P̂ðD �EÞ�j� 	� �

¼ 1
PðD Ej Þ þ

1
½1� PðD EÞ�j


 �2
Var P̂ðD Ej Þ� �

þ 1
PðD �Ej Þ þ

1
½1� PðD �EÞ�j


 �2
Var P̂ðD �Ej Þ� �

¼ 1
PðD Ej Þ þ

1
½1� PðD EÞ�j


 �2PðD Ej Þ½1� PðD Ej Þ�
ðaþ bÞ

þ 1
PðD �Ej Þ þ

1
½1� PðD �EÞ�j


 �2PðD �Ej Þ½1� PðD �Ej Þ�
ðcþ dÞ

¼ 1
ðaþ bÞ PðD Ej Þ=½1� PðD EÞ�jf g þ 1

ðcþ dÞ PðD �Ej Þ=½1� PðD �EÞ�jf g :

The estimate of the variance of lnOR̂ is

Vâr ln OR̂
� � ¼ 1

ðaþ bÞ P̂ðD Ej Þ=½1� P̂ðD EÞ�j� 	 þ 1

ðcþ dÞ P̂ðD �Ej Þ=½1� P̂ðD �EÞ�j� 	 :
This can be rewritten as

Vâr ln OR̂
� � ¼ 1

ðaþ bÞ a
ðaþ bÞ � b

ðaþ bÞ
n o þ 1

ðcþ dÞ c
ðcþ dÞ � b

ðcþ dÞ
n o

¼ 1
a
þ 1

b
þ 1

c
þ 1

d
:

We can now obtain the estimate of the variance of OR̂

Vâr OR̂
� � ¼ OR̂

2 1
a
þ 1

b
þ 1

c
þ 1

d

� 
:

The estimate of the standard error of OR̂ is

sê OR̂
� � ¼ OR̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a
þ 1

b
þ 1

c
þ 1

d

� s
:

Interpretation: The interpretation of an odds ratio is similar to that of the relative
risk as stated below:

(i) OR = 1 or ln OR = 0 shows that there is no association between exposure
and disease;
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(ii) OR > 1, or ln OR > 0 shows that there is positive association between
exposure and disease indicating higher risk of incidence for the exposed
group as compared to that of the nonexposed group;

(iii) OR < 1, or ln OR < 0 shows that there is protective association indicating
lower risk of incidence in the exposed group as compared to that of the
nonexposed group.

Confidence Interval and Test for OR
We know that OR = 1 indicates no association between the exposure and disease
which is equivalent to testing for ln OR = 0. Let us show the test for the null
hypothesis H0: ln OR ¼ 0.

OR̂ ¼ ad
bc and lnOR̂ ¼ ln að Þ � ln bð Þ � ln cð Þþ lnðdÞ:

It can be shown that the Vârðln OR̂Þ ¼ 1
a þ 1

b þ 1
c þ 1

d :

Similarly, the sêðln OR̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a þ 1

b þ 1
c þ 1

d

q
.

Assuming asymptotic normality for large sample size, we can use the following
test statistic:

Z ¼ ln OR̂

sêðln OR̂Þ ¼
ln OR̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a þ 1

b þ 1
c þ 1

d

q �Nð0; 1Þ:

Non-rejection of null hypothesis indicates that there is not sufficient evidence
from the sample data in favor of rejecting the null hypothesis of no association
between exposure and disease and rejection indicates possible association.

For moderate or large sample, assuming normality, we can show that the 95%
confidence limits for lnOR are

lnOR̂� 1:96 sêðln OR̂Þ;

which are lnOR̂� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a þ 1

b þ 1
c þ 1

d

q
:

The 95% confidence limits for OR can be shown as

Lower Limit: OR̂ e�1:96seðln OR̂Þ ¼ OR̂ e�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ 1

bþ 1
cþ 1

d

p
.

Upper Limit: OR̂ e1:96seðlnOR̂Þ ¼ OR̂ e1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ 1

bþ 1
cþ 1

d

p
.

3. Risk Ratio for Case-Control Study

The case-control study is retrospective over time and the study is conducted
among cases and controls to find the exposure to factor in the past which might
have caused the disease. Two essential risks or probabilities for obtaining risk ratio,
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PðD EÞ and PðD �EÞjj , cannot be defined from the case-control study design.
However, an approximation can be obtained for case-control study as shown below.

Let the risk ratio RR ¼ PðD EÞj
PðD �EÞj ; where the risks can be expressed alternatively as

PðD Ej Þ ¼ PðDÞ � PðE DÞj
PðDÞ � PðE DÞþPð�DÞ � PðE �DÞjj ; and

PðD �Ej Þ ¼ PðDÞ � Pð�E DÞj
PðDÞ � Pð�E DÞþPð�DÞ � Pð�E �DÞjj :

Replacing these expressions in the risk ratio, we obtain

RR ¼ PðD EÞj
PðD �EÞj ¼ PðE DÞj

Pð�E DÞj � PðDÞ � Pð�E DÞþPð�DÞ � Pð�E �DÞjj
PðDÞ � PðE DÞþPð�DÞ � PðE �DÞjj :

For rare diseases, PðDÞ ’ 0 and Pð�DÞ ’ 1 and the risk ratio is approximately

RR ’ PðE DÞj
Pð�E DÞj � Pð�E �DÞj

PðE �DÞj :

The following form resembles the risk ratio for exposure:

RR ’ PðE DÞ=j Pð�E DÞj
PðE �DÞ=Pð�E �DÞjj :

This can be estimated as

RR̂ ’ ½a=ðaþ cÞ�=½c=ðaþ cÞ�
½b=ðbþ dÞ�=½d=ðbþ dÞ� ¼

ad
bc

¼ OR̂:

This approximation is called the exposure odds ratio (EOR).

The Confidence Interval and Test for Exposure Odds Ratio
We know that OR = 1 indicates no association between the exposure and disease
which is equivalent to testing for ln OR = 0. Let us show the test for the null
hypothesis H0: ln OR ¼ 0.

OR̂ ¼ ad
bc and lnOR̂ ¼ ln að Þ � ln bð Þ � ln cð Þþ lnðdÞ.

It can be shown that the variance is Vârðln OR̂Þ ¼ 1
a þ 1

b þ 1
c þ 1

d.

Similarly, the estimate of the standard error is sêðln OR̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a þ 1

b þ 1
c þ 1

d

q
.

Assuming asymptotic normality for large sample size, we can use the following
test statistic
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Z ¼ ln OR̂

sêðln OR̂Þ ¼
ln OR̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a þ 1

b þ 1
c þ 1

d

q �Nð0; 1Þ:

Non-rejection of null hypothesis indicates that there is not sufficient evidence
from the sample data in favor of rejecting the null hypothesis of no association
between exposure and disease and rejection indicates possible association between
exposure and disease status.

For moderate or large sample, assuming normality, we can show that the 95%
confidence limits for ln OR are

lnOR̂� 1:96 se ðln OR̂Þ;

which are lnOR̂� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a þ 1

b þ 1
c þ 1

d

q
:

The 95% confidence limits for OR can be shown as

Lower Limit: OR̂ e�1:96seðln OR̂Þ ¼ OR̂ e�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ 1

bþ 1
cþ 1

d

p
.

Upper Limit: OR̂ e1:96seðlnOR̂Þ ¼ OR̂ e1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ 1

bþ 1
cþ 1

d

p
.

4. Odds Ratio from Cross-Sectional Data

Despite serious limitations of the odds ratio from a cross-sectional study design,
we still use it as a measure of prevalence odds ratio. These limitations are well
documented in the literature but still, the need for cross-sectional study designs is
sometimes necessary to provide quick understanding about the potential relation-
ships between exposure and disease. A careful attention is to be given to the
limitations of such findings though.

The estimated probabilities can be obtained from cross-sectional cell frequencies
for exposure status and disease status. The estimated probabilities, using the cell
frequencies shown in Table 11.4, are presented.

The estimated probabilities are (Table 11.5)

p11 ¼ a
n
; p10 ¼ b

n
; p01 ¼ c

n
; p10 ¼ d

n
:

Table 11.5 Probabilities of
exposure and disease status
from a cross-sectional study

Exposure status Disease status

D �D Total

E p11 p10 p1:
�E p01 p00 p0:
Total p:1 p:0 1
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Similarly, the marginal probabilities for exposure status are
p1: ¼ aþ b

n and p0: ¼ cþ d
n :

The odds for presence or absence of exposure may be defined as

ÔE ¼ P̂ðD EÞj
P̂ð�D EÞj ¼ p11=p1:

p10=p1:
¼ a

b
;

and

Ô�E ¼ P̂ðD �EÞj
P̂ð�D �EÞj ¼ p01=p0:

p00=p0:
¼ c

d
:

The odds ratio is

OR̂ ¼ ÔE

Ô�E

¼ a=b
c=d

¼ ad
bc

:

The variance of the estimator of odds ratio can be shown by using the multi-
nomial distribution and using the delta method it can be shown that

Vâr ln OR̂
� � ¼ 1

a
þ 1

b
þ 1

c
þ 1

d
:

Confidence Interval and Test for OR
The null hypothesis is H0: ln OR ¼ 0.

Assuming asymptotic normality for large sample size, we can use the following
test statistic:

Z ¼ ln OR̂

sêðln OR̂Þ ¼
ln OR̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a þ 1

b þ 1
c þ 1

d

q �Nð0; 1Þ:

The 95% confidence limits for lnOR are

lnOR̂� 1:96 sêðln OR̂Þ;

which are lnOR̂� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a þ 1

b þ 1
c þ 1

d

q
.

It can also be shown that 95% confidence limits for OR can be shown as

Lower Limit: OR̂ e�1:96seðln OR̂Þ ¼ OR̂ e�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ 1

bþ 1
cþ 1

d

p
:

Upper Limit: OR̂ e1:96seðlnOR̂Þ ¼ OR̂ e1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ 1

bþ 1
cþ 1

d

p
:

Example 11.1 Let us consider a hypothetical example on incidence of a disease
among the infants with low and normal birth weight from a prospective study
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continued for one year on the newly born babies in a community. The data are
presented in Table 11.6.

In this example, low birth weight is an exposure and normal birth weight is
considered as nonexposed for the incidence of disease being studied. The estimate
of relative risk is obtained from the ratio of the risks for the exposed and nonex-
posed groups as follows:

Estimate of risk for the low birthweight group ¼ a
aþ b

¼ 60
600

¼ 0:1000; and

Estimate of risk for the normal group ¼ c
cþ d

¼ 50
1950

¼ 0:0256:

The estimate of the relative risk is

RR̂ ¼ RE

R�E
¼ 0:1

0:0256
¼ 3:9062:

The estimate of the relative risk shows that the risk of disease for low birth
weight babies is about 3.91 times higher than the risk for normal birth weight
babies.

To test for the statistical significance of no association between birth weight and
the disease, the null hypothesis is H0: ln RR ¼ 0.

The estimate of log relative risk is

ln RR̂ ¼ ln
a

aþ b

� 
� ln

c
cþ d

� 
¼ �2:3026� ð�3:6652Þ ¼ 1:3626:

The estimate of the standard error of the log relative risk is

sêðln RR̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
540=600

60 þ 1950=2000
50

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:015þ 0:0195
p ¼ 0:1857:

The test statistic for large sample size is

Z ¼ ln RR̂

sêðln RR̂Þ ¼
ln RR̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b=ðaþ bÞ
a þ d=ðcþ dÞ

c

q �Nð0; 1Þ

and for the sample data, the test statistic value can be computed

Table 11.6 Table for
displaying hypothetical data
on birth weight and disease
status from a prospective
study

Disease status

Birth weight D �D Total

Low 60 540 600

Normal 50 1950 2000

Total 110 2490 2600
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z ¼ ln RR̂

sêðln RR̂Þ ¼
1:3626
0:1857

¼ 7:3376:

The null hypothesis of no association is rejected (p-value < 0.01).
The 95% confidence limits for ln RR are

ln RR̂� 1:96 se ðln RR̂Þ:

Using the sample data, we obtain

1:3626� 1:96� 0:1857

and the lower and upper limits are (0.9986,1.7265).
The 95% confidence limits for RR can be shown as

Lower Limit: RR̂ e�1:96seðln RR̂Þ ¼ 3:9062� e�1:96�1:3626 ¼ 2:7145.

Upper Limit: RR̂ e1:96seðln RR̂Þ ¼ 3:9062� e1:96�1:3626 ¼ 5:6212:

The null hypothesis for no association using the prospective data is
H0: ln OR ¼ 0.

The estimate of the odds ratio is

OR̂ ¼ ad
bc ¼ 60�1950

540�50 ¼ 4:33 and lnOR̂ ¼ 1:4656.

It can be shown that the

Vâr ðln OR̂Þ ¼ 1
a
þ 1

b
þ 1

c
þ 1

d
¼ 1

60
þ 1

540
þ 1

50
þ 1

1950
¼ 0:0390

and taking positive square root, we obtain the estimate of the standard error

sêðln OR̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a þ 1

b þ 1
c þ 1

d

q
¼ 0:1975:

The test statistic is

Z ¼ ln OR̂

sêðln OR̂Þ ¼
ln OR̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a þ 1

b þ 1
c þ 1

d

q

and using the sample data, we obtain

z ¼ ln OR̂

sêðln OR̂Þ ¼
1:4656
0:1975

¼ 7:4207:

Like the test for the relative risk, in this case also, we reject the null hypothesis
of no association between birth weight and the disease under study. In other words,

386 11 Survival Analysis



there is evidence in support of rejection of the null hypothesis of no association
between birth weight of babies and disease status.

The 95% confidence limits for ln OR are

lnOR̂� 1:96 se ðln OR̂Þ

and using the sample data, we obtain the lower and upper limits from

1:4656� 1:96� 0:1975

which are (1.0785, 1.8527).
We can construct the 95% confidence limits for OR can be shown as

Lower Limit: OR̂ e�1:96seðln OR̂Þ ¼ 4:33� e�1:96�0:1975 ¼ 2:9402.

Upper Limit: OR̂ e1:96seðlnOR̂Þ ¼ 4:33� e1:96�0:1975 ¼ 6:3768:

11.3 Nonparametric Estimation

There are two different types of nonparametric methods extensively used for
nonparametric estimation of survival function, S(t). These are (i) the actuarial
method and (ii) the product-limit or Kaplan–Meier method. First one is used mostly
in actuarial science and the second method in both epidemiology and survival
analysis in addition to extensive use in other fields as well. In this section, the
actuarial method of constructing a life table and the product-limit method are
discussed.

The Actuarial Method
Let time be partitioned into a fixed sequence of intervals I1, I2, …kIk. These
intervals may or may not be of equal lengths, although mostly they are of equal
lengths. We can show the intervals as follows:

1 I 2

I k

0 t1 t 2 …………….. t 1−k t k

For a life table let us define the following:

ni = number alive at the beginning of Ii,
di = number of deaths during Ii,
li = number lost to follow-up during Ii,
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wi = number withdrew during Ii, and
pi = P (surviving through Iij alive at beginning of Ii), and
qi ¼ 1� pi.

To estimate a survival function, we can use the actuarial method.
By definition, the survival probability, SðtkÞ, is the probability that an individual

will survive greater than time tk

SðtkÞ ¼ P ð t[ tkÞ

which can be expressed as product of probabilities of surviving through intervals
until tk as shown below:

SðtkÞ ¼ PðT [ t1Þ � PðT [ t2 T [ t1j Þ. . .PðT [ tk T[ tk�1j Þ
¼ p1 � p2. . .pk

¼
Yk
i¼1

pi;

where pi ¼ PðT [ ti T [ ti�1j Þ; i ¼ 1; . . .; k:
For estimating pi, we assume that the individuals who are lost or withdrawn

during Ii are at risk for half the interval. Hence, we need to define the effective
sample size

n0i ¼ ni � 1=2ðli þ wiÞ:

The estimates for pi and qi are

q_i ¼
di
n0i
;

and p_i ¼ 1� q_i.
The actuarial estimate of survivor function is

S
_ðtkÞ ¼

Yk
i¼1

p_i:

Variance of S
_ðtkÞ

We know that

S
_ðtkÞ ¼

Yk
i¼1

p_i:

The variance of the survivor function can be shown as
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Var_ S
_ðtkÞ

� �
¼ S

_ðtkÞ
� �2

�
Xk
i¼1

q_i

n0ip
_

i

which can be further simplified as shown below:

Var_ S
_ðtkÞ

� �
¼ S

_ðtkÞ
� �2

�
Xk
i¼1

di
n0iðn0i � diÞ:

This is called the Greenwood’s formula.

The Product-Limit Method
The most extensively used technique in survival analysis for estimating survival
function for censored data is the product-limit (P-L) method developed by Kaplan
and Meier in 1958. This is known as Kaplan–Meier (K-M) method too. The
product-limit method is similar to the actuarial estimator except that the length of
the interval Ii is a variable. In addition, the actuarial method is obtained for grouped
data but the product-limit method is employed for ungrouped data, with exceptions
for ties.

Let us consider ti be the right endpoint of Ii which is the ith ordered censored or
uncensored observation.

Let us consider that Tð1Þ\Tð2Þ\ � � �\TðnÞ be the order statistics of T1; . . .; Tn
where Ti is the variable for the ith time, censored or uncensored. The corresponding
censored or uncensored values are tð1Þ\tð2Þ\ � � �\tðnÞ. Let r be the total number of
uncensored cases then (n − r) is the number of censored cases in the lifetime data
being considered in the experiment. Let us also consider that

dðiÞ ¼ 1 if TðiÞ is uncensored, and

¼ 0 if TðiÞ is censored.
Then, we observe the pairs ðT1; d1Þ; ðT2; d2Þ; . . .; ðTn; dnÞ. For simplicity, let us

consider the case of no ties first.
Let us assume that all the Ti’s are distinct, and there is no tie. Hence, the ordered

survival times Tð1Þ\Tð2Þ\ � � �\TðnÞ are associated with corresponding values of
censoring indicators. Let R(t) denote the risk set at time t, which is the set of
subjects still surviving at time t–, and let

ni ¼ risk set RðtðiÞÞ ¼ number of subjects still surviving at time tðiÞ�;

di ¼ number of items failed at time tðiÞ;

pi ¼ Pðsurviving through Iij alive at beginning of IiÞ;
¼ PðT [ tðiÞ T [ tði�1Þ

�� ÞÞ; and

qi ¼ 1� pi:

The estimates under the assumption of no ties are
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q_i ¼
1
ni
;

p_i ¼ 1� q_i ¼ 1� 1
ni

if dðiÞ ¼ 1 ðuncensoredÞ
¼ 1 if dðiÞ ¼ 0 ðcensored.Þ

Then, the estimate for the survival function, S(t), under the assumption of no ties
is

ŜðtÞ ¼
Y
tðiÞ � t

p̂i ¼
Y
tðiÞ � t

1� 1
ni

� dðiÞ

¼
Y
tðiÞ � t

1� 1
n� iþ 1

� dðiÞ
¼

Y
tðiÞ � t

n� i
n� iþ 1

� dðiÞ
:

If censored and uncensored observations are tied, let us consider that uncensored
observations occurred just before the censored observations.

Now let us consider that there are r distinct survival times that can be arranged as
order statistics as follows:

t0ð1Þ\t0ð2Þ\ � � �\t0ðrÞ:

Then, let us define the following:

dðiÞ ¼ 1 if the observations at time t0ðiÞ are uncensored,

¼ 0; if censored,

ni ¼ number of subjects at risk in Rðt0ðiÞÞ;
di ¼ number of failures at t0ðiÞ:

Then, the PL estimate for survival function can be obtained as follows for ties:

S
_ðtÞ ¼

Y
t0i � t

1� di
ni

� dðiÞ
:

Variance of S
_ðtÞ

We know that

S
_ðtÞ ¼

Y
t0ðiÞ � t

1� di
ni

� dðiÞ
:
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Taking loge, we obtain

lnS
_ðtÞ ¼

X
tðiÞ � t

dðiÞ ln 1� di
ni

� 
:

The estimate of the variance of survivor function can be shown as

Var_ðS_ðtÞÞ ¼ S
_ðtÞ
h i2

:
X
tðiÞ � t

dðiÞq
_

i

nip
_

i

which can be further simplified as shown below:

Var_ðS_ðtÞÞ ¼ S
_ðtÞ
h i2

:
X
tðiÞ � t

dðiÞdi
niðni � diÞ :

This is the same Greenwood’s formula for estimating variance of survival
function displayed for the actuarial method.

Example 11.2 Suppose that a test has been carried out on a sample of 16 items, and
the observed lifetimes are (given in months)

5; 7; 9þ ; 14; 17; 19þ ; 20; 26; 30þ ; 40; 45; 46; 49þ ; 55; 61þ ; 69

where + indicates a censoring.
The computation of P-L estimates is shown below for time of survival. The

censoring indicator 1 denotes uncensored and 0 denotes censored times
(Table 11.7; Fig. 11.1).

Log-Rank Test
We know that

S
_ðtÞ ¼

Y
t0ðiÞ � t

1� di
ni

� dðiÞ
:

If we want to compare survivor functions of two groups, such as treatment is
group 1 and placebo is group 2, then we can use the log-rank test which is
essentially a large sample chi-square test.

Let us consider that the combined set is ordered and the distinct times are
denoted by ti. Then

n1i = number of subjects in group 1 at risk at time ti,
n2i = number of subjects in group 2 at risk at time ti,
d1i = number of failures in group 1 at time ti,
d2i = number of failures in group 2 at time ti,
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d1i = 1, if ti is uncensored for failures in group 1; 0, otherwise, and
d2i = 1, if ti is uncensored for failures in group 2; 0, otherwise.

Let the survivor functions for groups 1 and 2 at time tj, where j = 1, 2,…, n0 then

S
_

1ðtjÞ ¼
Q

t0ðiÞ � tj

1� d1i
n1i

� �dð1iÞ
, for group 1

S
_

2ðtjÞ ¼
Q

t0ðiÞ � tj

1� d2i
n2i

� �dð2iÞ
, for group 2.

The expected number of failures in two groups is

e1i ¼ n1i
n1i þ n2i

� 
� ðd1i þ d2iÞ

e2i ¼ n2i
n1i þ n2i

� 
� ðd1i þ d2iÞ:

Table 11.7 Computation of the P-L estimates of survival function

Time
(months)

Censoring
indicator

Estimate of
survival function
and standard error

Number of
cumulative
events

Number of
remaining
cases

Estimate Std.
error

1 5 1 0.938 0.061 1 15

2 7 1 0.875 0.083 2 14

3 9 0 2 13

4 14 1 0.808 0.100 3 12

5 17 1 0.740 0.112 4 11

6 19 0 4 10

7 20 1 0.666 0.123 5 9

8 26 1 0.592 0.130 6 8

9 30 0 6 7

10 40 1 0.508 0.136 7 6

11 45 1 0.423 0.137 8 5

12 46 1 0.338 0.133 9 4

13 49 0 9 3

14 55 1 0.226 0.128 10 2

15 61 0 10 1

16 69 1 0.000 0.000 11 0
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Then, the (observed − expected) deaths in group 1 is

O1 � E1 ¼
Xn
i¼1

d1i � e1ið Þ

and for group 2 is

O2 � E2 ¼
Xn
i¼1

d2i � e2ið Þ:

Then, the log-rank statistic is defined as

v2 ¼ O2 � E2ð Þ2
Var ðO2 � E2Þ

¼ O2 � E2ð Þ2Pn
i¼1

n1in2iðd1i þ d2iÞðn1i þ n2i�d1i�d2iÞ
ðn1i þ n2iÞ2ðn1i þ n2i�1Þ

which is chi-square with 1 df under H0.

Fig. 11.1 Survival curve for the observed lifetimes of a sample of 16 subjects in a test
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11.4 Logistic Regression Model

In this section, the logistic regression model is introduced where the outcome
variables are dichotomous. Let Y = 1, if an event occurs during a defined study
period, Y = 0, otherwise. There are two primary reasons for choosing the logistic
function in analyzing binary outcome data, from a mathematical point of view, it is
an extremely flexible and easily used function, and it lends itself to biologically
meaningful interpretation.

Let pðXÞ ¼ PðY ¼ 1 Xj Þ ¼ eb0 þ b1X

1þeb0 þ b1X

and 1� pðXÞ ¼ PðY ¼ 0 Xj Þ ¼ 1� eb0 þ b1X

1þeb0 þb1X
¼ 1

1þeb0 þ b1X
.

The log odds as a function of X is known as the logit transformation of pðXÞ that
can be defined as follows:

gðXÞ ¼ ln
pðXÞ

1� pðXÞ

 �

¼ ln
eb0 þb1X=ð1þ eb0 þb1XÞ

1=ð1þ eb0 þb1XÞ

 �

¼ ln eb0 þb1X
� � ¼ b0 þ b1X:

This is a linear function and the logit function provides a linear logistic
regression model.

Suppose we have a random sample of n pairs of observations (Xi; Yi), i = 1, 2,…,
n. The outcome variable, Y, is a binary variable and X is the explanatory variable.
The binary outcome variable represents presence or absence of the characteristic.
The outcome variable can be represented by a Bernoulli distribution with parameter
pðXÞ and the likelihood function is

LðbÞ ¼
Yn
i¼1

LiðXiÞ ¼
Yn
i¼1

pðXiÞ½ �Yi 1� pðXiÞ½ �1�Yi

¼
Yn
i¼1

eb0 þb1Xi

1þ eb0 þ b1Xi


 �Yi 1
1þ eb0 þb1Xi


 �1�Yi

:

Taking log and differentiating with respect to the regression parameters, we
obtain the estimating equations

Xn
i¼1

½Yi � pðXiÞ� ¼ 0; and

Xn
i¼1

Xi½Yi � pðXiÞ� ¼ 0:

Solving the above equations, we obtain the estimates for b0 and b1.
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To test the hypothesis that H0:b1 ¼ 0, a likelihood ratio test can be used. The
statistic v2 ¼ �2½ln Lðb̂0Þ � ln Lðb̂0; b̂1Þ� is distributed as chi-square with one
degree of freedom under the hypothesis that b1 is equal to zero.

An alternative test for the significance of the coefficients is the Wald test which
uses the following test statistic:

W ¼ b̂1

se b̂1
� �

which follows the standard normal distribution asymptotically under the null hy-
pothesis H0:b1 ¼ 0. Though the Wald test is used by many, it is less powerful than
the likelihood ratio test. The Wald test often misleads the user to conclude that the
coefficient (consequently the corresponding risk factor) is not significant when it
indeed is.

We can extend the above model for p covariates. Let X be a vector of p inde-
pendent variables

X ¼

1
X1

:
:
:
Xp

2
6666664

3
7777775
; and b ¼

b0
b1
:
:
:
bp

2
6666664

3
7777775

then

pðXÞ ¼ egðXÞ

1þ egðXÞ
;

where gðXÞ ¼ X 0b ¼ b0 þ b1X1 þ � � � þ bpXp.
Assume that we have a sample of n independent observations of the pair (Xi; Yi)

where

Xi ¼

Xi1

Xi2

:

:

:

Xip

2
666666664

3
777777775
= observations on the p independent variables for the ith individual.

Hence, the fitting of the model requires estimation of the vector of parameters
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b ¼

b0
b1
:
:
:
bp

2
6666664

3
7777775
:

The likelihood function is identical to that given for a single independent vari-
able, with the only change being that pðXÞ is defined in terms of a multivariate
logit. There are (p + 1) likelihood equations which are obtained by differentiating
the log-likelihood function with respect to the (p + 1) parameters b0; b1; . . .; bp.
The estimating equations are

Xn
i¼1

Yi � pðXiÞ½ � ¼ 0

Xn
i¼1

Xij Yi � pðXiÞ½ � ¼ 0; j ¼ 1; 2; . . .; p:

From the second derivatives, we obtain

I	ju ¼ �
Xn
i¼1

XijXiupið1� piÞ; j; u ¼ 0; 1; . . .; p

where pi ¼ pðXiÞ. The information matrix is defined by the (p + 1) � (p + 1)
matrix with (j, u)th element Iju ¼ ð�1Þ � I	ju. Then, the variance–covariance matrix
can be defined as the inverse of the information matrix

RðbÞ ¼ I�1ðbÞ;

where jth diagonal element is the variance of the estimator of bj; j ¼ 0; 1; . . .; p:
An approximate 100(1� a) percent confidence interval for bj can be obtained as

b̂j � z1�a=2

ffiffiffiffiffiffiffi
I�1
jj

q
;

where z1�a=2 is the 100(1� a=2) percentile of the standard normal distribution.
To test the hypothesis that some of the bj’s are zero, a likelihood ratio test can be

used. For testing the null hypothesis

H0:b1 ¼ b2 ¼ � � � ¼ bp ¼ 0

we can use the test statistic
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v2 ¼ �2 ln L b̂0
� �

� ln L b̂0; b̂1; . . .; b̂p
� �h i

which is asymptotically chi square with p degrees of freedom.

Example 11.3 Let us consider the following hypothetical data where the dependent
variable, Y, represents occurrence of a certain disease for Y = 1 and absence of
disease for Y = 0. Similarly, X is an exposure with X = 1 for presence of exposure
and X = 0 for absence of exposure.

Disease status

Exposure Y ¼ 1 Y ¼ 0 Total

X ¼ 1 17 30 47

X ¼ 0 2 20 22

Total 19 50 69

Here, the logistic regression model is

pðXÞ ¼ PðY ¼ 1 Xj Þ ¼ eb0 þ b1X

1þ eb0 þ b1X
:

The estimates of the parameters and corresponding standard errors are

b̂0 ¼ �2:4026 and b̂1 ¼ 1:7346; and

sê b̂0
� �

¼ 0:7416 and sê b̂1
� �

¼ 0:8013:

The point estimate of lnOR is b̂1 ¼ 1:7346 and the estimate for OR

eb̂1 ¼ e1:7346 ¼ 5:667:

The 95% confidence limits for OR are as follows: lower limit = 1.178 and upper
limit = 27.254.

The fitted regression model is

p̂ðXÞ ¼ P̂ðY ¼ 1 Xj Þ ¼ e�2:3026þ 1:7346X

1þ e�2:3026þ 1:7346X :

Using the likelihood ratio test for H0:b1 ¼ 0 against the alternative H1:b1 6¼ 0, we
obtain v2 ¼ �2½ln Lðb̂0Þ � ln Lðb̂0; b̂1Þ� = 81.216 − 74.917 = 6.2989 (p-value =
0.0121). Asymptotically, the distribution is chi-square with 1 degree of freedom in
this case. Here, the null hypothesis that there is no association between the exposure
and the disease may be rejected.

Alternatively, the Wald test which uses the following test statistic:
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W ¼ b̂1

se b̂1
� � ¼ 1:7346

0:8013
¼ 2:1647 ðp-value ¼ 0:0340Þ

confirms the result based on the likelihood ratio test.

Example 11.4 This example uses a five percent random sample data from the wave
five of the Health and Retirement Study (HRS). Three hundred one subjects
included in this sample after removing the missing values for outcomes and risk
factors. The outcome is the depression status (Y = 0, 1), dichotomized (0 no
depression, 1 depression) based on a score using the scale proposed by the Center
for Epidemiologic Studies of Depression (CESD). The explanatory variables con-
sidered are age (in years) denoted by X1, gender (male = 1, female = 0) denoted by
X2, marital status (MStatus) (married/partnered = 1, single/separated = 0) denoted
by X3, BMI is denoted by X4, white race (1 yes, 0 no) denoted by X5 (other race is
the reference category), black race (1 yes, 0 no) denoted by X6 (other race is the
reference category), drink (yes = 1, no = 0) denoted by X7, and number of con-
ditions ever had (NCond) denoted by X8.

The overall fit of the model appears to be significant that means we may reject
the null hypothesis

H0:b1 ¼ b2 ¼ � � � ¼ b8 ¼ 0:

The rejection of this null hypothesis implies that there is at least one logistic
regression variable significantly associated with depression status. The likelihood
ratio chi-square value is 61.5393 (p-value < 0.0001). The model fit statistics are
shown in Table 11.8.

Among the selected variables, it appears that age, gender, and BMI do not show
any statistically significant association with depression. However, the negative
association of depression status with marital status (p-value = 0.05), white race (p-
value < 0.01) compared to other races, black race (p-value = 0.06) compared to
other races, and drinking habit (p-value < 0.01) are observed. The number of
conditions shows a positive association with depression status (p-value < 0.001).

11.5 Models Based on Longitudinal Data

Survival analysis deals with events concerning survival status of subjects over time
longitudinally. The event status of the under consideration is observed repeatedly
over time. In contrast to longitudinal studies, cross-sectional studies provide single
outcome for each individual at a point in time. The major advantages of a longi-
tudinal study are that cohort and age effects can be studied in survival analysis using
longitudinal data. In addition, the period effect can also be taken into account. The
longitudinal data can be collected either prospectively, following subjects forward
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in time, or retrospectively, by extracting multiple measurements on each person
from historical records. The longitudinal data require special statistical methods
because the set of observations on one subject tends to be intercorrelated. This
correlation needs to be taken into account to draw valid scientific inferences.
Furthermore, the longitudinal data analysis involves the problem of censoring or
loss to follow-up. This problem requires special attention as well for any valid
scientific conclusion.

Some important terms usually found in survival analysis are defined below.

Lifetime
We consider situations in which the time to the occurrence of some event is of
interest for some population of individuals. The time to the occurrences of event is
termed as lifetime. Mathematically, one can think of lifetime as merely meaning
nonnegative valued variable. Although the term lifetime is used for general refer-
ence, other terms such as survival time and failure time are also frequently used.

Table 11.8 Model fit statistics, estimates, and tests on the logistic regression model for
depression status among elderly people

A. Model fit statistics

Criterion Intercept only Intercept and covariates

AIC 440.671 395.132

SC 444.443 429.075

−2 Log L 438.671 377.132

B. Testing global null hypothesis beta = 0

Test Chi-square DF Pr > ChiSq

Likelihood ratio 61.5393 8 <0.0001

Score 53.4166 8 <0.0001

Wald 44.8382 8 <0.0001

C. Estimates and tests of parameters of the logistic regression model

Covariate Estimate Standard
error

Wald
v2

p-value Odds ratio estimates

point
estimate

95% Wald
confidence
limits

Intercept 2.4501 2.8389 0.7449 0.3881

Age 0.00318 0.0401 0.0063 0.9369 1.003 0.927 1.085

Gender −0.0663 0.2631 0.0636 0.8010 0.936 0.559 1.567

MStatus −0.5893 0.3009 3.8348 0.0502 0.555 0.308 1.001

BMI 0.0158 0.0248 0.4058 0.5241 1.016 0.968 1.067

White −2.8780 1.0854 7.0304 0.0080 0.056 0.007 0.472

Black −2.1319 1.1340 3.5341 0.0601 0.119 0.013 1.095

Drink −0.7812 0.2561 9.3008 0.0023 0.458 0.277 0.756

NCond 0.4364 0.1109 15.475 <0.0001 1.547 1.245 1.923
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Survival Function
Survival function is defined as the probability that an individual is surviving till
time t and is defined by

SðtÞ ¼ P½T 
 t�; t
 0:

It is assumed that S(t) = 1 for t = 0.
A survival function is the complementary to cumulative distribution function

since S(t) = 1 − F(t) for continuous random variables, where F(t) = P [T < t] is the
cumulative distribution function. All survival functions must satisfy three condi-
tions: S(0) = 1, lim

t!1 S(t) = 0, and S(t) is nonincreasing.

The conditional survival function, ST T 
 aj ðtÞ, is the survival function of a ran-
domly chosen subject given that the subject is surviving at time a. The conditional
survival function can be shown as

ST T 
 aj ðtÞ ¼ PðT 
 t and T 
 aÞ
P ðT 
 aÞ ¼ P ðT 
 tÞ

P ðT 
 aÞ ¼ S ðtÞ
S ðaÞ ; t
 a:

Probability Density Function
The probability density function of lifetime is defined by

f ðtÞ ¼ dFðtÞ
dt

¼ � dSðtÞ
dt

because S(t) = 1 − F(t). The probability of failure between times a and b is cal-
culated by an integral

P ða� T � bÞ ¼
Zb

a

f ðtÞdt:

Hazard Function
The hazard function is used most extensively for its ability to provide a measure of
the amount of risk associated with a subject at time t and for making comparison of
the risks and possible change in the risks over time. The hazard function is known
as the hazard rate, failure rate, force of mortality, force of decrement, intensity
function, and age-specific death rate, and its reciprocal is known as Mill’s ratio in
economics.

The hazard function can be derived by using the conditional probability. Let us
consider the probability of failure between t and t + D t
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Pðt� T � tþDtÞ ¼
ZtþDt

t

f ðsÞds ¼ SðtÞ � SðtþDtÞ:

Conditioning on the event that the subject is surviving at time t and then fails
during t and t +Dt

Pðt� T � tþDt T 
 tj Þ ¼ Pðt� T � tþDtÞ
PðT 
 tÞ ¼ SðtÞ � SðtþDtÞ

SðtÞ :

The average rate of failure is obtained if we divide by Dt

SðtÞ � SðtþDtÞ
SðtÞDt :

As Dt! 0, this becomes the instantaneous failure rate, which is the hazard
function

hðtÞ ¼ lim
Dt!0

SðtÞ � SðtþDtÞ
SðtÞDt

¼ �S0ðtÞ
SðtÞ ¼ f ðtÞ

SðtÞ ; t
 0:

This shows that the hazard function is defined as the ratio of probability density
function and survival function at time t. All the hazard functions must satisfy the
following conditions:

Z/
0

hðtÞdt ¼/ and hðtÞ
 0 for all t
 0:

The hazard function is important because it has a direct physical interpretation,
and information about the nature of the function is useful in selecting an appropriate
model for lifetime.

Cumulative Hazard Function
The cumulative hazard function, H(t), is defined as

HðtÞ ¼
Z t

0

hðsÞds; t
 0:

The cumulative hazard function satisfies three conditions: H(0) = 0,
lim
t!1HðtÞ ¼ 1, and H(t) is nondecreasing.
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Mean Time to Failure (MTTF)
In survival analysis, the mean time to failure (MTTF) is often of interest. This is
defined by

EðTÞ ¼ l;

where

l ¼
Z1
0

t f ðtÞ dt;

which can be obtained equivalently from the following equation:

l ¼
Z1
0

SðtÞ dt:

Median Life
The pth quantile (also known as the 100 pth percentile) of the distribution of T is the
value tp so that F(tp) � p and S(tp) 
 1 − p. If T is a continuous random variable
then the pth quantile is found by solving the equation

SðtpÞ ¼ 1� p:

The median lifetime is the 50th percentile t0:5 so that Sðt0:5Þ ¼ 0:5:

Relationship between Survival Function and Hazard Function
It can be shown that the survival function and hazard function are associated in the
following form:

SðtÞ ¼ e�
R t

0
hðsÞds

;

and in terms of the cumulative hazard function, the survival function is

SðtÞ ¼ e�HðtÞ:

Using the definition of the hazard function, it is also evident that the probability
density function of failure time is

f ðtÞ ¼ hðtÞ � SðtÞ

and using the relationships between SðtÞ and cumulative hazard or hazard functions,
it can also be shown that
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f ðtÞ ¼ hðtÞ � e�HðtÞ ¼ hðtÞ � e�
R t

0
hðsÞds

:

11.6 Proportional Hazards Model

The logistic regression is introduced in Sect. 11.4. Although the logistic regression
model is considered as a very important model for analyzing survival status, it does
not address some of the important aspects necessary for understanding the survival
status adequately. In survival analysis, the lifetime or failure time is of core interest.
In addition, the problems of censoring and truncation need to be considered in
survival analysis. It is noteworthy that time to failure data needs special attention,
and modeling of survival data needs to consider censoring time along with failure
time of each subject in the sample. There is rarely any longitudinal data, particularly
in case of studies conducted for a longer duration for chronic diseases, where the
problem of censoring is not encountered. The dependence of failure times on risk or
prognostic factors are of prime concern in analyzing survival data. We have to
identify the factors associated with the failure time not only by analyzing the
survival status ignoring the time of event but by considering the time of event as the
response variable. To address such problems, the proportional hazards model
provides a regression model for analyzing failure time data that takes into account
partial censoring. The proportional hazards model is expressed as a function of two
components: one component depends on time only, and the other component
depends on risk or prognostic factors independent of time.

Let us represent the set of covariates by

Z ¼ ðZ1; Z2; . . .; ZpÞ

and the corresponding regression parameters are

b0 ¼ b1; b2; . . .; bp
� �

:

The failure time is T. The survivor function is defined as

Sðt; zÞ ¼ PðT 
 t Z ¼ zÞj :

The probability density function of survival or failure time is

f ðt; zÞ

and it can be obtained by differentiating the distribution function as follows:
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@Fðt; zÞ
@t

¼ f ðt; zÞ

where Fðt; zÞ ¼ 1� Sðt; zÞ which is the distribution function of the failure time, T.
In the proportional hazards model, proposed by Cox (1972), the combined effect

of the Z variables is to scale the hazard function up or down. The hazard function
satisfies

hðt; zÞ ¼ h0ðtÞ � gðzÞ;

where h0ðtÞ is the baseline hazard function. The regression model based on hazard
function as proposed by Cox is

hðt; zÞ ¼ h0ðtÞezb
¼ h0ðtÞeb1z1 þ ��� þ bpzp ;

where gðzÞ ¼ ezb:
The ratio of hazard functions at time t for two subjects with covariate values

z1 and z2 is

hðt; z1Þ
hðt; z2Þ ¼

h0ðtÞgðz1Þ
h0ðtÞgðz2Þ ¼

gðz1Þ
gðz2Þ

which is independent of time, t. The hazards at different z values are in constant
proportion over time. That is why the model is known as the proportional hazards
model. The function g zð Þ may take a variety of forms involving covariates z.

After taking natural log of the survival function, we obtain

ln Sðt; zÞ ¼ gðzÞ � ln S0ðtÞ:

It is known that

Sðt; zÞ ¼ e�
R t

0
hðs;zÞds

;

where hðt; zÞ ¼ h0ðtÞ � gðzÞ: Hence,

Sðt; zÞ ¼ ½S0ðtÞ�gðzÞ

that can be rewritten as

Sðt; zÞ ¼ ½S0ðtÞ�e
zb

:

The baseline survival function is defined as
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S0ðtÞ ¼ e�
R t

0
h ðsÞds

which is a function of time only, independent of covariates.
Simple graphical analysis of data follows by plotting lnð� ln Sðt; zÞÞ for different

z values against some function of t, typically t or log t. If the proportional hazards
assumption holds, the plots should be similar curves shifted in the y-axis direction
resulting in parallel lines.

The parameters are estimated by applying marginal or partial likelihood
approaches. We cannot use the likelihood method directly for estimating the
parameters of a proportional hazards model and the unknown arbitrary hazard
functions cannot be estimated directly as well. As the estimates of the regression
parameters do not depend on the arbitrary or baseline hazard functions, the method
of estimation for proportional hazards regression produces estimates of regression
parameters without complicating the estimation procedure with estimation of
baseline hazards at each time point.

If all the times are uncensored then the marginal likelihood is

LðbÞ ¼
Yn
i¼1

ezðiÞbP
l2RðtðiÞÞ e

ðzlbÞ

where RðtðiÞÞ is the risk set exposed to failure at ordered time tðiÞ, that is,

RðtðiÞÞ ¼ fðiÞ; ðiþ 1Þ; . . .; ðnÞg:

If there are censoring cases, then let us suppose that k distinct failure times are
denoted by the following order based on the rank of failure times as

1ð Þ; 2ð Þ; . . .:; kð Þ

where ordered failure times are

tð1Þ\tð2Þ\ � � �\tðkÞ

with corresponding covariates

zð1Þ; zð2Þ; . . .; zðkÞ

then the partial likelihood is

LðbÞ ¼
Yk
i¼1

ezðiÞbP
l2RðtðiÞÞ e

zlb
;
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where RðtðiÞÞ ¼ f½ðjÞ; j1; . . .; jcj �; j ¼ i; . . .. . .; kg is the risk set for a failure at time
tðiÞ and ci being number of censored cases during the interval ½tðiÞ; tðiþ 1ÞÞ. Similarly,
the likelihood for ties can also be shown.

The value that maximizes the likelihood function can be obtained by a Newton–
Raphson method. In the absence of ties, we can show that

b
_ � Nðb; I�1ðb_ÞÞ:

There may be asymptotic bias in the estimation of both regression parameters
and the variance–covariance of the estimators.

To test H0:b ¼ b0, the score statistic Uðb0Þ can be used where under H0

Uðb0Þ � Nð0; Iðb0ÞÞ
v2 � U0ðb0ÞI�1ðb0ÞUðb0Þ

can be shown approximately as v2 with p degrees of freedom.

Model Checking: Test for Proportionality
A simple test for proportionality assumption is introduced here. There are several
methods including graphical methods but in this section, a simple procedure is
introduced so that anyone may use the method without any further complexity in
the application of the proportional hazards model. Let us consider the proportional
hazards model

hðt; zÞ ¼ h0ðtÞeb1z1 þ ��� þbpzp

where T is the survival time and Z1; . . .; Zp are the covariates. Now for testing
whether the proportionality assumption is violated by Zp, let us introduce a new
variable.

Now for testing whether the proportionality assumption is violated by Zp, let us
introduce a new variable

Zpþ 1 ¼ Zp � uðtÞ

where uðtÞ is a function of time such as (Kleinbaum and Klein 2012, p. 184)

uðtÞ ¼ t;

uðtÞ ¼ log t; and

uðtÞ ¼ 1 if t
 t0
¼ 0 if t\t0:

Then, the extended proportional hazards model including the additional term as
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hðt; zÞ ¼ h0ðtÞeb1z1 þ ��� þ bpzp þ bpþ 1zpþ 1

and after fitting the model let us test for the null hypothesis H0:bpþ 1 ¼ 0 versus
H1:bpþ 1 6¼ 0.

The test statistic is

W ¼ b̂pþ 1

se b̂pþ 1

� � ;

where W is called a Wald test statistic and this can be shown as asymptotically N(0,
1).

If the null hypothesis is rejected, then there is sufficient evidence that the pro-
portionality assumption might be violated due to covariate Zp. In that case, either
we have to drop the covariate from the model and redo the estimation and test once
again to arrive at a model that performs better. Another alternative is to perform a
stratified analysis in modeling the sample data. This procedure can be repeated by
considering each variable as Zp and then continue the procedure until all the
covariates finally considered in the model are not causing violation of the pro-
portionality assumption.

Now an extended method of assessing r (r < p) predictors at a time,
Zpþ 1; . . .; Zpþ r, where these variables are defined by multiplying r selected
covariates by u (t). The extended hazards model is

hðt; zÞ ¼ h0ðtÞeb1z1 þ ��� þ bpzp þ bpþ 1zpþ 1 þ ��� þbpþ rzpþ r :

We can employ the Wald test for all the interaction terms between covariates and
time (or function of time) as shown for a single variable previously.

If the null hypothesis is rejected, then it may be concluded that there is sufficient
evidence in favor of violation of proportionality assumption by one or more of the
selected covariates.

Example 11.5 Let us consider the data from a prospective study on maternal
morbidity in Bangladesh conducted by the Bangladesh Institute of Research for
Promotion of Essential Reproductive Health and Technologies (BIRPERHT),
during November 1992 to December 1993 (Akhter et al. 1996). The study was
conducted to identify the risk factors of complications at antenatal, delivery and
postnatal stages. In this example, excessive hemorrhage is considered as the out-
come event. The outcome variable is defined as the time to excessive hemorrhage
during pregnancy. The women who did not experience any excessive hemorrhage
complication during pregnancy are considered as censored and the censoring time is
the duration of pregnancy. The total number of pregnant women followed up was
1020 out of which complete information was obtained on 993 pregnant women.
The potential risk factors are age at marriage (<15 years = 0, as reference cate-
gory, 15–19 years = 1, 20 + years = 2), desired pregnancy (No = 0, Yes = 1),
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education (no education as reference category, primary, secondary +), economic
status (low = 0, high = 1).

The mean and median survival times, the corresponding standard errors, and
95% confidence intervals are displayed. The mean survival time that is mean time
from the beginning of the pregnancy to the time of first occurrence of excessive
hemorrhage is 7.2 months with 95% confidence limits of 7.0 months to 7.4 months.
This is estimated by using the Kaplan–Meier or Product-Limit method of survival
function. Out of 993 subjects, 12.5% had excessive hemorrhage complication. It is
found from the results displayed in Table 11.9 that age at marriage is negatively
and economic status is positively associated with excessive hemorrhage during
pregnancy (p-value < 0.05). We can say with caution that there might be a lower
risk of excessive hemorrhage among pregnant women with higher level of edu-
cation (p-value = 0.07). The test for proportionality shows that both age at marriage
and economic status variables may be sources of violation of proportionality
assumption. Hence, a further examination of potential risk factors and outcome
variable is necessary. A careful investigation of the underlying relationships
between the outcome variable and the potential risk factors as well as among
potential risk factors may provide important insights in modeling the time to
excessive hemorrhage event during pregnancy (Table 11.10).

Table 11.9 Estimates of mean and median survival times and estimation and tests on the
proportional hazards model on time to pregnancy complication of excessive hemorrhage

A. Data summary

Total N No. of events Censored

N Percent

993 124 869 87.5

B. Means and medians for survival time

Meana Median

Estimate Std. error 95% C.I. Estimate Std. error 95% C.I.

Lower Upper Lower Upper

7.212 0.092 7.031 7.393 7.566 0.246 7.083 8.048

C. Estimation of parameters of proportional hazards model and tests

B SE Wald df Sig. Exp(B)

Age at marriage −0.430 0.185 5.387 1 0.020 0.651

Desired pregnancy −0.062 0.191 0.103 1 0.748 0.940

Education −0.346 0.192 3.273 1 0.070 0.707

Economic status 0.541 0.211 6.547 1 0.011 1.718

408 11 Survival Analysis



11.7 Summary

In this chapter, the basic concepts and techniques of analyzing survival data are
introduced. Different study designs for collecting survival data are discussed, and
the corresponding procedures for estimating association between exposure and
disease such as relative risk or odds ratio are discussed. Also, the procedures for
constructing confidence intervals as well as for testing the hypothesis concerning
any association between exposure and disease are highlighted for data from
prospective, case-control, and cross-sectional study designs. The nonparametric
methods of estimating survivor function are shown including the product-limit
method. The variance of the estimator of survivor function is also obtained and the
log-rank test for comparing two survivor functions are also introduced in this
chapter. One of the most widely used models in biostatistical data analysis is the
logistic regression model which is introduced in this chapter with examples. The
estimation and test procedures are discussed too. The basic concepts of longitudinal
data analysis are discussed and the proportional hazards model is introduced in this
chapter with example. A simple method of model checking is also shown.

Exercises

11:1 Suppose the following data on Type 2 diabetes show the post prandial blood
glucose levels (<8.5 mmol/L = �E and 
 8.5 mmol/L = E) and status of
certain complication (developed complication = D and did not develop
complication = �D) among the randomly selected subjects for groups E and �E
in a follow-up study.

Blood glucose level Developed complication or
not

D �D

E 20 80
�E 7 93

Table 11.10 Test for proportionality assumption

B SE Wald df Sig. Exp(B)

Age at marriage −0.353 0.739 0.228 1 0.633 0.703

Desired pregnancy 1.710 0.660 6.715 1 0.010 5.528

Education 0.563 0.807 0.487 1 0.485 1.756

Economic status 1.917 0.787 5.931 1 0.015 6.803

Age at marriage * time −0.256 0.093 7.512 1 0.006 0.775

Desired pregnancy * time −0.128 0.116 1.217 1 0.270 0.880

Education * time 0.006 0.105 0.003 1 0.956 1.006

Economic status * time −0.222 0.120 3.410 1 0.065 0.801

Model chi-square = 55.825, df = 8 (p-value < 0.001)
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(a) (i) Estimate the odds of developing complications in exposed and
nonexposed groups.

(ii) Estimate the odds ratio of developing complications and interpret.
(iii) Estimate the variance of the log odds ratio.
(iv) Estimate the variance of the odds ratio.
(v) Construct the 95% confidence intervals for the odds ratio.
(vi) Test for the null hypothesis of H0: ln OR ¼ 0 against the alter-

native H1: ln OR 6¼ 0.
(vii) What is your conclusion?

(b) (i) Estimate the risks of developing complications.
(ii) Estimate the relative risk and interpret.
(iii) Estimate the variance of the relative risk.
(iv) Construct the 95% confidence interval for the relative risk.
(v) Test for the null hypothesis of H0: ln RR ¼ 0 against the alter-

native H1: ln RR 6¼ 0.
(vi) Comment on the association between exposure and developing

complication for Type 2 diabetes mellitus.

11:2 Consider the following table from a retrospective study to find the associa-
tion between exposure (�E = not exposed and E = exposed) and occurrence
of disease (�D = case and D = control).

Disease status

Exposure status Case Control

E 25 30
�E 475 1900

(i) Estimate the odds of developing complications in exposed and non-
exposed groups.

(ii) Estimate the odds ratio of developing complications and interpret.
(iii) Estimate the variance of the log odds ratio.
(iv) Estimate the variance of the odds ratio.
(v) Construct the 95% confidence intervals for the odds ratio.
(vi) Test for the null hypothesis of H0: ln OR ¼ 0 against the alternative

H1: ln OR 6¼ 0.
(vii) What is your conclusion?
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11:3 In a cross-sectional study, the relationship between presence or absence of a
disease and presence or absence of an exposure is obtained as displayed in
the following table:

Disease status

Exposure status Present (D) Absent (�D)

Present (E) 30 50

Absent (�E) 970 2450

(i) Estimate the odds ratio of presence of disease in the randomly selected
population and interpret the value of the odds ratio.

(ii) Estimate the variance of the log odds ratio.
(iii) Estimate the variance of the odds ratio.
(iv) Construct the 95% confidence interval for the odds ratio.
(v) Test for the null hypothesis of H0: ln OR ¼ 0 against the alternative

H1: ln OR 6¼ 0.
(vi) What is your conclusion?

11:4 Consider the following data on time to event in months.

7; 10; 12; 15; 15þ ; 17þ ; 20; 22; 23þ ; 26; 35þ ; 39; 45; 54

(i) Estimate the survivor function using the product-limit method.
(ii) Find the variance of the estimated survivor functions.
(iii) Plot the product-limit estimates of the survivor function and interpret

the estimates of the survival function over time.

11:5 Consider the following hypothetical data show the remission times (in days)
from high fever of patients selected in groups 1 and 2. The censored times
are denoted by a + sign.

Group 1:1; 2; 2; 3; 3þ ; 5; 5; 5þ ; 7; 10; 11; 12; 14; 15; 16þ ; 17; 19

Group 2:3; 4; 7; 7þ ; 9; 10; 11; 11þ ; 15; 15; 16; 17; 18; 20; 21þ ; 22; 24

(i) Estimate the survivor function for both groups 1 and 2, using the
product-limit method.

(ii) Graphically plot the survivor functions, compare the survivor functions,
and comment on the survival probabilities.

(iii) Estimate the variance of the estimated survivor functions for both
groups 1 and 2.
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(iv) Is there any statistically significant difference between remission times
of patients in groups 1 and 2? Use the log-rank test to compare two
survivor functions and comment on your findings.

11:6 Following data set is a random sample of 120 subjects from the panel data
from the Health and Retirement Study (HRS), sponsored by the National
Institute of Aging (grant number NIA U01AG09740) and conducted by the
University of Michigan (2002). This set of panel data is from the first round
or wave for 1992. The high blood pressure (HBP) denotes the HRS diag-
nosed by doctors (yes = 1, no = 0). The potential risk factors considered in
this study are age of the respondent in years, gender (male = 1, female = 0),
marital status (Mstat: married/partnered = 1, single/widowed/divorced = 0),
white (yes = 1, no = 0), black (yes = 1, no = 0), other races which are
considered as reference category, BMI (kg/m2), smoking (yes = 1, no = 0),
felt sad (yes = 1, no = 0), and vigorous physical activity or exercise 3+ per
week (yes = 1, no = 0).

HBP Age Gender Mstat White Black BMI Smoking Felt sad Activity

0 57 0 0 1 0 18.5 1 0 0

0 59 0 0 1 0 32.3 0 0 1

1 53 0 0 0 1 31.3 0 1 0

0 51 1 1 1 0 28.1 0 0 1

1 61 1 1 1 0 30.3 0 0 0

0 56 0 1 0 1 25.1 1 0 0

1 60 1 1 0 1 30.7 0 0 0

0 54 1 1 1 0 26.1 0 0 0

0 54 0 0 1 0 20.8 0 1 0

0 59 1 1 1 0 25.1 1 1 0

1 61 0 1 1 0 32.1 0 0 0

0 51 0 1 1 0 21.9 1 0 0

0 55 0 1 1 0 24.8 1 0 1

0 55 0 1 1 0 22.4 0 1 0

0 54 0 0 0 1 31.8 0 0 1

1 51 0 1 1 0 27.8 0 1 0

0 59 0 1 1 0 25.5 0 1 0

1 61 0 0 1 0 28.5 1 0 0

0 55 0 1 1 0 23.3 0 0 0

0 60 0 1 1 0 29.6 0 0 0

0 50 0 1 1 0 31.9 0 1 0

0 53 1 1 1 0 22.2 1 0 0

0 61 0 0 1 0 21.8 0 0 1

0 55 1 1 0 0 26.2 0 0 1

0 59 0 1 1 0 22.3 0 0 0
(continued)
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(continued)

HBP Age Gender Mstat White Black BMI Smoking Felt sad Activity

0 55 0 1 1 0 23.4 0 0 0

0 59 1 1 1 0 29.4 0 0 0

1 61 1 1 1 0 24.7 0 0 1

0 57 0 0 1 0 20.2 0 1 0

0 58 0 1 1 0 25.7 0 0 1

0 51 1 1 1 0 25.8 0 1 0

0 61 1 1 1 0 27.3 0 0 0

1 52 1 1 1 0 28.4 0 0 1

0 51 1 1 1 0 27.6 1 1 0

0 57 0 1 1 0 28.2 0 0 0

0 51 1 0 1 0 23.7 0 0 1

1 60 1 1 1 0 38 0 0 0

1 53 0 1 0 1 32.3 0 0 0

0 56 0 1 1 0 27.1 1 1 0

0 56 0 1 1 0 27.9 0 1 1

0 58 0 1 1 0 25.8 0 1 0

0 52 1 1 1 0 21.6 1 0 0

0 56 0 0 1 0 24.1 0 1 0

0 55 1 1 1 0 30.4 1 0 0

0 60 0 1 1 0 32 0 1 0

1 59 0 1 1 0 25.5 0 1 0

1 56 1 1 1 0 35.3 0 0 0

1 51 0 0 1 0 23 1 1 1

1 51 0 0 1 0 29.3 0 1 0

1 60 0 1 0 1 24.8 1 1 1

0 52 1 1 1 0 23.6 0 1 0

0 56 0 1 1 0 21.3 0 1 0

0 55 0 1 1 0 23.8 0 0 1

0 55 1 1 1 0 31.7 0 0 1

0 56 0 1 1 0 23.5 0 0 0

0 52 1 1 1 0 29 0 0 0

0 61 1 1 1 0 23.7 0 0 1

1 60 0 1 1 0 34.3 0 1 1

1 54 0 1 1 0 31.3 0 0 0

1 54 1 1 0 0 27 0 1 0

0 61 0 1 1 0 20.3 0 0 0

0 52 1 0 1 0 24.4 0 1 1

0 59 1 1 1 0 26.9 0 0 0

0 53 1 1 1 0 24 1 0 0

1 52 0 1 1 0 35.4 0 0 0
(continued)
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(continued)

HBP Age Gender Mstat White Black BMI Smoking Felt sad Activity

0 58 0 1 1 0 32.9 0 1 1

1 55 0 1 1 0 25.6 1 0 1

0 60 1 1 1 0 25.7 0 1 1

0 58 1 1 1 0 32.8 0 0 0

1 59 1 1 1 0 29.6 0 0 0

0 55 1 1 1 0 29.4 0 0 0

0 55 0 1 1 0 25.2 0 1 0

1 54 0 1 1 0 23.4 0 1 0

1 56 1 1 1 0 28.5 0 0 0

1 51 0 0 1 0 24.5 1 0 0

1 52 0 1 1 0 31.9 1 1 0

0 55 1 1 1 0 22.7 0 0 0

0 57 0 0 1 0 24.6 0 0 1

0 58 1 1 0 1 20.8 1 1 0

1 54 0 0 0 0 35.4 0 0 0

1 57 0 0 0 1 26.2 0 0 0

1 61 0 1 0 1 27.3 0 0 1

1 56 1 1 0 1 28.1 1 1 0

1 54 0 1 0 1 32.1 0 0 1

1 53 0 0 1 0 31.3 0 1 0

0 56 1 1 1 0 27.3 0 1 0

0 52 0 1 1 0 27.8 0 1 0

1 55 0 0 1 0 20.5 0 0 0

0 53 1 1 1 0 32.1 0 0 0

0 61 0 0 1 0 20.6 0 1 0

1 60 1 0 1 0 28.8 0 0 0

0 57 1 1 1 0 23.1 0 0 0

0 57 1 0 0 1 27.3 1 0 0

0 54 1 1 0 1 27.3 0 0 0

0 51 1 1 1 0 24 0 0 0

0 56 0 1 1 0 24.2 0 0 0

0 56 0 1 1 0 23.5 0 1 0

0 53 0 1 1 0 19.9 0 1 0

0 58 1 1 1 0 27.3 0 1 0

0 54 1 1 1 0 25 1 0 0

0 51 0 1 1 0 22 0 1 0

0 53 1 1 1 0 45.3 0 1 0

1 52 0 1 1 0 33.7 0 1 1

0 59 1 1 1 0 27.7 0 0 0

1 57 0 1 1 0 26.6 0 0 0
(continued)

414 11 Survival Analysis



(continued)

HBP Age Gender Mstat White Black BMI Smoking Felt sad Activity

1 59 1 1 1 0 25.7 0 1 0

1 55 0 1 1 0 35.4 0 1 0

1 55 1 1 1 0 25.1 0 0 0

0 58 1 0 0 1 27.9 1 0 0

1 56 0 1 0 1 36.6 0 1 0

0 56 1 1 1 0 21.6 1 0 0

0 55 0 1 1 0 22.5 0 0 0

0 55 0 1 1 0 18.3 0 0 1

1 58 1 1 1 0 38.4 0 0 0

1 55 1 1 0 1 31 1 0 1

0 61 1 1 1 0 21.6 1 0 1

0 56 1 1 1 0 28 1 0 1

0 57 0 1 1 0 19.9 1 1 0

0 59 1 1 1 0 27.3 0 1 0

0 55 1 1 1 0 28.5 0 0 0

HRS (2017). Health and Retirement Study, University of Michigan, Ann Arbor, 1992–2014. The
authors gratefully acknowledge the support of HRS (Health and Retirement Study) which is
sponsored by the National Institute of Aging (grant number NIA U01AG09740) and conducted by
the University of Michigan for the data

(i) Conduct an exploratory analysis to find the association between high
blood pressure (HBP) and selected potential risk factors.

(ii) Fit a logistic regression model for high blood pressure to identify the
nature of relationship between potential risk factors and HBP.

(iii) Comment on the goodness of fit of the model.
(iv) Test for the significance of the parameters and comment on the

association between high blood pressure and potential risk factors.
(v) Estimate the odds ratios from the model and interpret.
(vi) Find the 95% confidence interval for the population odds ratios.

11:7 Following data set is a random sample of 155 subjects from the panel data
from the Health and Retirement Study (HRS), sponsored by the National
Institute of Aging (grant number NIA U01AG09740) and conducted by the
University of Michigan (2002). We have used the panel data from the second
to eleventh round or wave. The variable “Time” is time to event since the
entry to the study. The event of interest is the first time occurrence of heart
problem since the last interview. The event heart (yes = 1, no = 0) denotes
whether heart disease was diagnosed or not, yes indicating event and no for
censored cases. Covariates are age (in years), gender (male = 1, female = 0),
Hispanic (yes = 1, no = 0), drink (yes = 1, no = 0), smoking (yes = 1, no = 0),
body mass index (BMI), doctor diagnosed high blood pressure (Hibps)
(yes = 1, no = 0), and the number of previous conditions.
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Time Heart Age Gender Hispanic Drink BMI Number of prev.
condition

Hibps Smoke

17.9 0 61 0 1 1 25.2 0 0 0

23.0 0 70 1 0 1 31.3 4 0 0

16.9 0 72 1 0 1 29.1 4 0 0

24.7 1 53 0 0 0 26.6 5 0 1

21.9 1 67 0 0 0 21.0 3 0 0

23.0 1 74 1 0 1 27.1 2 0 0

25.0 0 77 0 0 0 32.4 3 1 0

23.0 1 60 0 0 0 28.1 2 0 1

18.0 0 72 1 0 0 29.1 3 0 0

29.0 0 71 0 0 0 31.9 3 0 0

19.0 0 81 0 0 1 27.4 4 0 0

22.0 0 65 0 0 0 25.6 2 1 0

25.9 1 67 0 0 0 30.9 6 0 0

20.7 1 56 1 0 0 24.5 2 0 1

17.9 0 74 0 0 0 28.2 3 0 0

21.9 0 65 0 0 0 23.6 5 0 0

20.0 0 79 0 0 0 31.4 3 0 0

24.5 0 55 0 0 1 24.5 1 0 0

13.0 0 72 1 1 1 23.6 2 0 1

21.7 1 62 1 0 0 25.1 3 0 0

26.0 0 72 1 0 0 28.9 3 0 0

24.2 0 55 1 0 0 27.1 2 0 0

25.9 0 69 1 0 1 27.5 2 0 0

25.0 0 75 1 0 0 27.1 2 0 0

22.0 0 79 0 0 1 22.3 1 0 0

19.0 0 75 1 0 0 29.3 1 0 0

23.0 0 76 0 0 1 25.2 3 0 0

24.9 0 55 0 0 0 32.7 2 0 0

23.1 0 57 0 0 0 20.4 3 0 0

21.0 1 65 1 0 0 29.8 2 0 0

21.0 0 69 1 0 0 29.7 3 1 1

22.0 1 64 0 0 0 36.8 4 0 0

21.0 0 73 0 0 1 25.1 4 0 0

25.9 1 63 0 0 1 30.2 6 0

21.0 0 68 0 0 1 22.1 4 0 1

26.0 0 74 0 1 1 23.7 3 0 0

26.0 0 75 0 0 0 35.7 2 0 0

24.9 0 73 0 0 0 27.5 4 0 0

19.0 0 71 0 0 1 19.4 1 0 0

20.5 0 52 0 0 1 29.5 0 0 0

28.0 0 77 1 0 0 31.0 4 0 0
(continued)
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(continued)

Time Heart Age Gender Hispanic Drink BMI Number of prev.
condition

Hibps Smoke

24.0 0 62 1 0 1 23.7 1 0 0

26.0 0 63 1 0 1 31.4 2 0 0

25.0 0 76 1 0 0 32.1 2 0 0

26.0 0 60 0 0 1 22.5 0 0 0

17.9 0 75 0 0 1 30.0 3 0 0

22.2 1 60 0 0 0 32.9 4 0 0

22.9 0 66 1 0 1 44.8 1 0 0

19.0 1 77 1 0 1 21.8 4 0 0

25.0 1 69 1 0 1 35.5 3 0 0

21.9 1 70 1 0 1 29.3 3 0 0

22.0 1 67 0 0 0 23.4 5 0 0

29.9 0 67 1 0 0 26.3 0 0 1

28.0 0 69 0 0 1 27.4 4 0 0

19.0 0 79 0 0 1 33.9 6 0 0

19.0 0 80 1 0 1 30.8 4 0 0

17.0 0 72 0 0 0 24.4 1 0 0

23.0 0 78 1 0 0 28.4 5 0 0

25.0 0 78 0 0 1 27.6 3 0 0

23.0 0 66 0 0 1 23.6 4 0 1

21.0 0 62 1 0 0 19.2 3 0 1

20.6 0 58 1 0 1 24.5 2 0 0

32.0 1 74 1 0 1 22.0 3 0 0

19.9 0 60 0 1 0 30.3 0 0 0

21.9 0 67 1 0 0 27.0 7 0 0

23.0 0 64 0 1 0 15.6 4 0 1

25.4 0 63 0 0 1 25.1 3 0 0

19.0 0 80 0 0 0 29.3 3 1 0

32.0 0 59 0 0 0 17.9 1 0 0

29.0 0 68 1 0 1 32.1 2 0 0

26.0 1 63 1 0 1 28.0 2 0 1

24.0 0 61 0 0 1 27.3 2 0 0

23.9 0 66 0 0 1 28.3 2 0 0

15.9 0 75 1 0 1 25.1 3 0 0

17.0 0 79 1 0 0 22.2 1 0 0

18.0 0 75 0 0 0 29.1 2 0 0

26.0 1 77 0 0 0 25.2 4 0 0

20.0 0 68 0 0 0 22.7 0 0 0

22.0 0 75 0 0 0 22.6 2 0 0

20.0 0 78 0 0 0 22.5 3 0 1

25.9 0 69 1 0 1 25.6 0 0 0
(continued)
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(continued)

Time Heart Age Gender Hispanic Drink BMI Number of prev.
condition

Hibps Smoke

27.0 0 73 0 0 0 20.2 2 0 1

20.9 0 73 1 0 0 31.4 4 0 0

26.6 0 61 1 0 0 23.8 3 0 1

23.9 0 56 1 0 1 28.7 0 0 0

19.0 0 73 0 0 0 21.6 3 0 0

23.9 0 71 1 0 0 21.7 3 0 0

25.0 1 59 0 0 0 22.4 3 0 0

25.8 1 63 0 0 0 39.2 4 0 0

24.0 0 73 1 0 1 27.0 2 0 0

28.0 1 70 1 0 1 22.2 2 0 0

21.0 0 73 1 0 0 25.8 3 0 0

19.0 0 79 1 0 1 24.3 1 0 0

19.0 0 81 0 0 0 32.9 1 0 0

23.0 0 71 0 0 1 40.9 2 0 0

19.9 0 74 0 0 1 28.9 1 0 0

17.0 0 77 0 0 0 20.4 1 0 1

21.0 0 75 1 0 1 30.7 2 0 0

24.5 1 54 1 1 0 25.8 2 1 0

24.9 0 73 1 0 0 25.8 0 0 0

17.9 0 76 0 0 0 32.0 1 0 0

23.0 1 57 0 0 0 26.5 2 0 0

31.0 0 59 1 0 0 19.7 2 0 1

25.9 1 78 1 0 0 29.0 5 0 0

19.9 0 57 1 1 1 25.4 0 0 0

16.9 0 71 0 0 0 21.8 1 0 0

19.5 0 56 1 0 1 28.1 0 0 1

24.0 0 76 1 0 0 26.9 3 0 0

29.0 0 61 0 0 0 26.6 0 0 0

19.9 0 79 0 0 0 26.8 4 0 0

20.9 1 57 1 0 0 33.7 3 0 0

23.0 1 65 0 0 0 23.1 4 0 1

21.9 1 66 0 0 0 34.8 5 0 0

29.9 0 72 0 0 0 31.6 3 0 0

23.9 0 68 0 0 1 20.5 1 0 1

31.9 0 69 1 0 1 31.9 1 0 0

31.0 1 74 1 0 0 22.9 6 0 0

22.0 0 74 1 1 0 28.7 3 0 1

21.0 0 78 0 1 0 24.8 3 0 0

25.5 0 65 1 0 0 25.8 1 0 1
(continued)
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(continued)

Time Heart Age Gender Hispanic Drink BMI Number of prev.
condition

Hibps Smoke

26.0 0 65 0 0 1 26.1 3 0 1

23.1 0 59 1 0 1 25.1 1 0 1

26.0 0 71 1 0 0 28.7 4 0 0

23.0 1 75 0 0 0 28.3 1 0 0

23.4 0 62 0 0 1 24.2 3 0

17.9 0 71 0 0 0 24.9 3 0 0

23.0 0 58 0 0 0 27.5 1 0 1

27.0 0 73 0 0 0 37.4 4 0 0

18.0 0 72 1 0 1 28.1 3 0 0

22.0 0 72 0 0 1 25.4 3 0 1

23.3 0 65 1 0 0 23.5 3 0 0

19.9 0 73 0 0 1 19.0 5 0 1

27.0 0 80 1 0 1 25.8 4 0 0

17.0 0 76 1 0 0 30.4 3 0 0

19.0 1 65 0 1 0 33.8 4 1 0

21.0 1 57 1 0 0 25.5 2 0 1

21.2 0 62 0 0 0 23.0 3 0 0

14.9 0 71 0 0 1 24.2 1 0 0

17.0 0 71 1 0 1 23.0 1 0 0

25.0 0 81 1 0 1 21.6 2 0 1

20.0 0 78 0 0 0 25.1 3 0 0

30.0 0 59 0 0 0 21.3 1 0 0

21.0 0 77 1 0 0 25.8 2 0 0

27.0 0 71 1 0 0 27.4 1 0 0

21.0 0 65 0 0 1 26.5 1 0 0

22.9 0 60 1 0 0 29.0 2 0 0

29.9 0 68 0 0 0 23.5 1 0 0

25.0 0 68 1 0 0 30.0 3 0 0

27.0 1 58 1 0 1 33.1 3 1 1

21.0 0 66 0 0 0 32.6 3 0 0

17.0 0 70 1 0 0 23.3 1 0 0

26.0 1 69 0 0 1 33.2 5 0 0

17.9 0 70 1 0 0 33.9 2 0 0

23.1 0 55 0 0 0 23.0 0 0 1

17.5 0 72 0 0 1 39.8 2 0 0

HRS ((Health And Retirement Study) 2017). Health and Retirement Study, University of
Michigan, Ann Arbor, 1992–2014. The authors gratefully acknowledge the support of HRS
(Health and Retirement Study) which is sponsored by the National Institute of Aging (grant
number NIA U01AG09740) and conducted by the University of Michigan for the data
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(i) Estimate the relative risk and odds ratio of the occurrence of heart
disease for each of the potential risk factors considered in this example.
Comment on your results.

(ii) Test for the association between exposure and occurrence of heart
disease from the data.

(iii) Propose a proportional hazards model for analyzing the time to
occurrence of heart disease.

(iv) Fit a proportional hazards model and comment on the overall fit as well
as significance of each variable included in the model.

(v) Check for the proportionality assumption for each covariate selected in
the model and summarize your comments.

(vi) Summarize your findings from (i) to (v) and comment on the suitability
of your model for analyzing the heart disease data.
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Appendix

Table A.1: Binomial Cumulative Distribution Function

The tabulated value is P X� � xð Þ, where X has the binomial distribution with
index n and parameter p, for a selection of values of n and p.
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Table A.2: Poisson Cumulative Distribution Function

The tabulated value is P X� � xð Þ, where X has the Poisson distribution with
parameter l for a selected values of l
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Table A.3: Normal Cumulative Distribution Function

For Z�N 0; 1ð Þ; the function tabulated is / zð Þ ¼ P Z� zð Þ ¼ 1
ffiffiffiffi

2p
p

R z
�1 e�

1
2t
2
dt:

Z U(z) z U(z) z U(z) z U(z) z U(z)

0.00 0.5000 0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.9772

0.01 0.5040 0.51 0.6950 1.01 0.8438 1.51 0.9345 2.02 0.9783

0.02 0.5080 0.52 0.6985 1.02 0.8461 1.52 0.9357 2.04 0.9793

0.03 0.5120 0.53 0.7019 1.03 0.8485 1.53 0.9370 2.06 0.9803

0.04 0.5160 0.54 0.7054 1.04 0.8508 1.54 0.9382 2.08 0.9812

0.05 0.5199 0.55 0.7088 1.05 0.8531 1.55 0.9394 2.10 0.9821

0.06 0.5239 0.56 0.7123 1.06 0.8554 1.56 0.9406 2.12 0.9830

0.07 0.5279 0.57 0.7157 1.07 0.8577 1.57 0.9418 2.14 0.9838

0.08 0.5319 0.58 0.7190 1.08 0.8599 1.58 0.9429 2.16 0.9846

0.09 0.5359 0.59 0.7224 1.09 0.8621 1.59 0.9441 2.18 0.9854

0.10 0.5398 0.60 0.7257 1.10 0.8643 1.60 0.9452 2.20 0.9861

0.11 0.5438 0.61 0.7291 1.11 0.8665 1.61 0.9463 2.22 0.9868

0.12 0.5478 0.62 0.7324 1.12 0.8686 1.62 0.9474 2.24 0.9875

0.13 0.5517 0.63 0.7357 1.13 0.8708 1.63 0.9484 2.26 0.9881

0.14 0.5557 0.64 0.7389 1.14 0.8729 1.64 0.9495 2.28 0.9887

0.15 0.5596 0.65 0.7422 1.15 0.8749 1.65 0.9505 2.30 0.9893

0.16 0.5636 0.66 0.7454 1.16 0.8770 1.66 0.9515 2.32 0.9898

0.17 0.5675 0.67 0.7486 1.17 0.8790 1.67 0.9525 2.34 0.9904

0.18 0.5714 0.68 0.7517 1.18 0.8810 1.68 0.9535 2.36 0.9909

0.19 0.5753 0.69 0.7549 1.19 0.8830 1.69 0.9545 2.38 0.9913

0.20 0.5793 0.70 0.7580 1.20 0.8849 1.70 0.9554 2.40 0.9918

0.21 0.5832 0.71 0.7611 1.21 0.8869 1.71 0.9564 2.42 0.9922

0.22 0.5871 0.72 0.7642 1.22 0.8888 1.72 0.9573 2.44 0.9927

0.23 0.5910 0.73 0.7673 1.23 0.8907 1.73 0.9582 2.46 0.9931

0.24 0.5948 0.74 0.7704 1.24 0.8925 1.74 0.9591 2.48 0.9934

0.25 0.5987 0.75 0.7734 1.25 0.8944 1.75 0.9599 2.50 0.9938

0.26 0.6026 0.76 0.7764 1.26 0.8962 1.76 0.9608 2.55 0.9946

0.27 0.6064 0.77 0.7794 1.27 0.8980 1.77 0.9616 2.60 0.9953
(continued)
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Table A.4: Percentage Points of the Normal Distribution

The values z in the table are those which the random variable Z * N(0, 1) exceeds
with probability p; that is, P(Z > z) = 1 − U(z) = p.

(continued)

Z U(z) z U(z) z U(z) z U(z) z U(z)

0.28 0.6103 0.78 0.7823 1.28 0.8997 1.78 0.9625 2.65 0.9960

0.29 0.6141 0.79 0.7852 1.29 0.9015 1.79 0.9633 2.70 0.9965

0.30 0.6179 0.80 0.7881 1.30 0.9032 1.80 0.9641 2.75 0.9970

0.31 0.6217 0.81 0.7910 1.31 0.9049 1.81 0.9649 2.80 0.9974

0.32 0.6255 0.82 0.7939 1.32 0.9066 1.82 0.9656 2.85 0.9978

0.33 0.6293 0.83 0.7967 1.33 0.9082 1.83 0.9664 2.90 0.9981

0.34 0.6331 0.84 0.7995 1.34 0.9099 1.84 0.9671 2.95 0.9984

0.35 0.6368 0.85 0.8023 1.35 0.9115 1.85 0.9678 3.00 0.9987

0.36 0.6406 0.86 0.8051 1.36 0.9131 1.86 0.9686 3.05 0.9989

0.37 0.6443 0.87 0.8078 1.37 0.9147 1.87 0.9693 3.10 0.9990

0.38 0.6480 0.88 0.8106 1.38 0.9162 1.88 0.9699 3.15 0.9992

0.39 0.6517 0.89 0.8133 1.39 0.9177 1.89 0.9706 3.20 0.9993

0.40 0.6554 0.90 0.8159 1.40 0.9192 1.90 0.9713 3.25 0.9994

0.41 0.6591 0.91 0.8186 1.41 0.9207 1.91 0.9719 3.30 0.9995

0.42 0.6628 0.92 0.8212 1.42 0.9222 1.92 0.9726 3.35 0.9996

0.43 0.6664 0.93 0.8238 1.43 0.9236 1.93 0.9732 3.40 0.9997

0.44 0.6700 0.94 0.8264 1.44 0.9251 1.94 0.9738 3.50 0.9998

0.45 0.6736 0.95 0.8289 1.45 0.9265 1.95 0.9744 3.60 0.9998

0.46 0.6772 0.96 0.8315 1.46 0.9279 1.96 0.9750 3.70 0.9999

0.47 0.6808 0.97 0.8340 1.47 0.9292 1.97 0.9756 3.80 0.9999

0.48 0.6844 0.98 0.8365 1.48 0.9306 1.98 0.9761 3.90 1.0000

0.49 0.6879 0.99 0.8389 1.49 0.9319 1.99 0.9767 4.00 1.0000

0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.9772

Acknowledged that the copyright belongs to the Royal Statistical Society and reproduced from the
Royal Statistical Society Tables, Royal Statistical Society, 2004 with permission from the Royal
Statistical Society.
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Table A.5: Percentage Points of E v2 Distribution

The values in the table are those which a random variable with the v2 distribution
on v degrees of freedom exceeds with the probability shown.

p z p z

0.5000 0.0000 0.0500 1.6449

0.4000 0.2533 0.0250 1.9600

0.3000 0.5244 0.0100 2.3263

0.2000 0.8416 0.0050 2.5758

0.1500 1.0364 0.0010 3.0902

0.1000 1.2816 0.0005 3.2905

Acknowledged that the copyright belongs to the Royal Statistical Society and reproduced from the
Royal Statistical Society Tables, Royal Statistical Society, 2004 with permission from the Royal
Statistical Society.
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Table A.6: Percentage Points of Student’s t-Distribution

The values in the table are those which a random variable with Student’s t-dis-
tribution on v degrees of freedom exceeds with the probability shown.

0.100 0.050 0.025 0.010 0.005 0.001 0.0005

1 3.078 6.314 12.706 31.821 63.657 318.309 636.619

2 1.886 2.920 4.303 6.965 9.925 22.327 31.599

3 1.638 2.353 3.182 4.541 5.841 10.215 12.924

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 1.415 1.895 2.365 2.998 3.499 4.785 5.408

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318

13 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015

17 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 1.330 1.734 2.101 2.552 2.878 3.610 3.922

19 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819

22 1.321 1.717 2.074 2.508 2.819 3.505 3.792

23 1.319 1.714 2.069 2.500 2.807 3.485 3.768

24 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707

27 1.314 1.703 2.052 2.473 2.771 3.421 3.690

28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
(continued)
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Table A.7: Percentage Points of the F-Distribution
(Upper 10% Points)

The values in the table are those which a random variable with the F-distribution on
v1 and v2 degrees of freedom exceeds with probability 0.10.

If an upper percentage point of the F-distribution on v1 and v2 degrees of
freedom is f, then the corresponding lower percentage point of the F-distribution on
v2 and v1 degrees of freedom is 1/f

(continued)

0.100 0.050 0.025 0.010 0.005 0.001 0.0005

29 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646

32 1.309 1.694 2.037 2.449 2.738 3.365 3.622

34 1.307 1.691 2.032 2.441 2.728 3.348 3.601

36 1.306 1.688 2.028 2.434 2.719 3.333 3.582

38 1.304 1.686 2.024 2.429 2.712 3.319 3.566

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551

45 1.301 1.679 2.014 2.412 2.690 3.281 3.520

50 1.299 1.676 2.009 2.403 2.678 3.261 3.496

55 1.297 1.673 2.004 2.396 2.668 3.245 3.476

60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

70 1.294 1.667 1.994 2.381 2.648 3.211 3.435

80 1.292 1.664 1.990 2.374 2.639 3.195 3.416

90 1.291 1.662 1.987 2.368 2.632 3.183 3.402

100 1.290 1.660 1.984 2.364 2.626 3.174 3.390

110 1.289 1.659 1.982 2.361 2.621 3.166 3.381

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373

∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291

Acknowledged that the copyright belongs to the Royal Statistical Society and reproduced from the
Royal Statistical Society Tables, Royal Statistical Society, 2004 with permission from the Royal
Statistical Society.

Appendix 433



v 2
v 1 1

2
3

4
5

6
7

8
9

10
12

18
24

∞

1
39

.8
6

49
.5
0

53
.5
9

55
.8
3

57
.2
4

58
.2
0

58
.9
1

59
.4
4

59
.8
6

60
.1
9

60
.7
1

61
.5
7

62
.0
0

63
.3
3

2
8.
53

9.
00

9.
16

9.
24

9.
29

9.
33

9.
35

9.
37

9.
38

9.
39

9.
41

9.
44

9.
45

9.
49

3
5.
54

5.
46

5.
39

5.
34

5.
31

5.
28

5.
27

5.
25

5.
24

5.
23

5.
22

5.
19

5.
18

5.
13

4
4.
54

4.
32

4.
19

4.
11

4.
05

4.
01

3.
98

3.
95

3.
94

3.
92

3.
90

3.
85

3.
83

3.
76

5
4.
06

3.
78

3.
62

3.
52

3.
45

3.
40

3.
37

3.
34

3.
32

3.
30

3.
27

3.
22

3.
19

3.
10

6
3.
78

3.
46

3.
29

3.
18

3.
11

3.
05

3.
01

2.
98

2.
96

2.
94

2.
90

2.
85

2.
82

2.
72

7
3.
59

3.
26

3.
07

2.
96

2.
88

2.
83

2.
78

2.
75

2.
72

2.
70

2.
67

2.
61

2.
58

2.
47

8
3.
46

3.
11

2.
92

2.
81

2.
73

2.
67

2.
62

2.
59

2.
56

2.
54

2.
50

2.
44

2.
40

2.
29

9
3.
36

3.
01

2.
81

2.
69

2.
61

2.
55

2.
51

2.
47

2.
44

2.
42

2.
38

2.
31

2.
28

2.
16

10
3.
29

2.
92

2.
73

2.
61

2.
52

2.
46

2.
41

2.
38

2.
35

2.
32

2.
28

2.
22

2.
18

2.
06

11
3.
23

2.
86

2.
66

2.
54

2.
45

2.
39

2.
34

2.
30

2.
27

2.
25

2.
21

2.
14

2.
10

1.
97

12
3.
18

2.
81

2.
61

2.
48

2.
39

2.
33

2.
28

2.
24

2.
21

2.
19

2.
15

2.
08

2.
04

1.
90

13
3.
14

2.
76

2.
56

2.
43

2.
35

2.
28

2.
23

2.
20

2.
16

2.
14

2.
10

2.
02

1.
98

1.
85

14
3.
10

2.
73

2.
52

2.
39

2.
31

2.
24

2.
19

2.
15

2.
12

2.
10

2.
05

1.
98

1.
94

1.
80

15
3.
07

2.
70

2.
49

2.
36

2.
27

2.
21

2.
16

2.
12

2.
09

2.
06

2.
02

1.
94

1.
90

1.
76

16
3.
05

2.
67

2.
46

2.
33

2.
24

2.
18

2.
13

2.
09

2.
06

2.
03

1.
99

1.
91

1.
87

1.
72

17
3.
03

2.
64

2.
44

2.
31

2.
22

2.
15

2.
10

2.
06

2.
03

2.
00

1.
96

1.
88

1.
84

1.
69

18
3.
01

2.
62

2.
42

2.
29

2.
20

2.
13

2.
08

2.
04

2.
00

1.
98

1.
93

1.
85

1.
81

1.
66

19
2.
99

2.
61

2.
40

2.
27

2.
18

2.
11

2.
06

2.
02

1.
98

1.
96

1.
91

1.
83

1.
79

1.
63

20
2.
97

2.
59

2.
38

2.
25

2.
16

2.
09

2.
04

2.
00

1.
96

1.
94

1.
89

1.
81

1.
77

1.
61

22
2.
95

2.
56

2.
35

2.
22

2.
13

2.
06

2.
01

1.
97

1.
93

1.
90

1.
86

1.
78

1.
73

1.
57

24
2.
93

2.
54

2.
33

2.
19

2.
10

2.
04

1.
98

1.
94

1.
91

1.
88

1.
83

1.
75

1.
70

1.
53

26
2.
91

2.
52

2.
31

2.
17

2.
08

2.
01

1.
96

1.
92

1.
88

1.
86

1.
81

1.
72

1.
68

1.
50

28
2.
89

2.
50

2.
29

2.
16

2.
06

2.
00

1.
94

1.
90

1.
87

1.
84

1.
79

1.
70

1.
66

1.
48

(c
on

tin
ue
d)

434 Appendix



(c
on

tin
ue
d)

v 2
v 1 1

2
3

4
5

6
7

8
9

10
12

18
24

∞

30
2.
88

2.
49

2.
28

2.
14

2.
05

1.
98

1.
93

1.
88

1.
85

1.
82

1.
77

1.
69

1.
64

1.
46

40
2.
84

2.
44

2.
23

2.
09

2.
00

1.
93

1.
87

1.
83

1.
79

1.
76

1.
71

1.
62

1.
57

1.
38

50
2.
81

2.
41

2.
20

2.
06

1.
97

1.
90

1.
84

1.
80

1.
76

1.
73

1.
68

1.
59

1.
54

1.
33

60
2.
79

2.
39

2.
18

2.
04

1.
95

1.
87

1.
82

1.
77

1.
74

1.
71

1.
66

1.
56

1.
51

1.
29

70
2.
78

2.
38

2.
16

2.
03

1.
93

1.
86

1.
80

1.
76

1.
72

1.
69

1.
64

1.
55

1.
49

1.
27

80
2.
77

2.
37

2.
15

2.
02

1.
92

1.
85

1.
79

1.
75

1.
71

1.
68

1.
63

1.
53

1.
48

1.
24

90
2.
76

2.
36

2.
15

2.
01

1.
91

1.
84

1.
78

1.
74

1.
70

1.
67

1.
62

1.
52

1.
47

1.
23

10
0

2.
76

2.
36

2.
14

2.
00

1.
91

1.
83

1.
78

1.
73

1.
69

1.
66

1.
61

1.
52

1.
46

1.
21

11
0

2.
75

2.
35

2.
13

2.
00

1.
90

1.
83

1.
77

1.
73

1.
69

1.
66

1.
61

1.
51

1.
45

1.
20

12
0

2.
75

2.
35

2.
13

1.
99

1.
90

1.
82

1.
77

1.
72

1.
68

1.
65

1.
60

1.
50

1.
45

1.
19

∞
2.
71

2.
30

2.
08

1.
94

1.
85

1.
77

1.
72

1.
67

1.
63

1.
60

1.
55

1.
44

1.
38

1.
00

A
ck
no

w
le
dg

ed
th
at
th
e
co
py

ri
gh

tb
el
on

gs
to

th
e
R
oy

al
St
at
is
tic
al
So

ci
et
y
an
d
re
pr
od

uc
ed

fr
om

th
e
R
oy

al
St
at
is
tic
al
So

ci
et
y
T
ab
le
s,
R
oy

al
St
at
is
tic
al
So

ci
et
y,

20
04

w
ith

pe
rm

is
si
on

fr
om

th
e
R
oy

al
St
at
is
tic
al

So
ci
et
y.

Appendix 435



Table A.7: Percentage Points of the F-Distribution
(Upper 5% Points)

The values in the table are those which a random variable with the F-distribution on
v1 and v2 degrees of freedom exceeds with probability 0.05.

If an upper percentage point of the F-distribution on v1 and v2 degrees of
freedom is f, then the corresponding lower percentage point of the F-distribution on
v2 and v1 degrees of freedom is 1/f
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Table A.7: Percentage Points of the F-Distribution
(Upper 2.5% Points)

The values in the table are those which a random variable with the F-distribution on
v1 and v2 degrees of freedom exceeds with probability 0.025.

If an upper percentage point of the F-distribution on v1 and v2 degrees of
freedom is f, then the corresponding lower percentage point of the F-distribution on
v2 and v1 degrees of freedom is 1/f
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Table A.7: Percentage Points of the F-Distribution
(Upper 1% Points)

The values in the table are those which a random variable with the F-distribution on
v1 and v2 degrees of freedom exceeds with probability 0.01.

If an upper percentage point of the F-distribution on v1 and v2 degrees of
freedom is f, then the corresponding lower percentage point of the F-distribution on
v2 and v1 degrees of freedom is 1/f
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Table A.7: Percentage Points of the F-Distribution
(Upper 0.5% Points)

The values in the table are those which a random variable with the F-distribution on
v1 and v2 degrees of freedom exceeds with probability 0.005.

If an upper percentage point of the F-distribution on v1 and v2 degrees of
freedom is f, then the corresponding lower percentage point of the F-distribution on
v2 and v1 degrees of freedom is 1/f
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Table A.7: Percentage Points of the F-Distribution
(Upper 0.1% Points)

The values in the table are those which a random variable with the F-distribution on
v1 and v2 degrees of freedom exceeds with probability 0.001.

Note: All percentage points in the row for v2 ¼ 1 must be multiplied by 100; for
example, the percentage point for F8,1 is 598100 (to 4 significant figures)

If an upper percentage point of the F-distribution on v1 and v2 degrees of
freedom is f, then the corresponding lower percentage point of the F-distribution on
v2 and v1 degrees of freedom is 1/f
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Table A.8: Critical Values for Correlation Coefficients

These tables concern tests of the hypothesis that a population correlation coefficient
q is 0. The values in the tables are the minimum values which need to be reached by
a sample correlation coefficient in order to be significant at the level shown, on a
one-tailed test.

Product moment coefficient Sample size Spearman’s coefficient

Level Level

0.10 0.05 0.025 0.01 0.005 0.05 0.025 0.01

0.8000 0.9000 0.9500 0.9800 0.9900 4 1.0000 – –

0.6870 0.8054 0.8783 0.9343 0.9587 5 0.9000 1.0000 1.0000

0.6084 0.7293 0.8114 0.8822 0.9172 6 0.8286 0.8857 0.9429

0.5509 0.6694 0.7545 0.8329 0.8745 7 0.7143 0.7857 0.8929

0.5067 0.6215 0.7067 0.7887 0.8343 8 0.6429 0.7381 0.8333

0.4716 0.5822 0.6664 0.7498 0.7977 9 0.6000 0.7000 0.7833

0.4428 0.5494 0.6319 0.7155 0.7646 10 0.5636 0.6485 0.7455

0.4187 0.5214 0.6021 0.6851 0.7348 11 0.5364 0.6182 0.7091

0.3981 0.4973 0.5760 0.6581 0.7079 12 0.5035 0.5874 0.6783

0.3802 0.4762 0.5529 0.6339 0.6835 13 0.4835 0.5604 0.6484

0.3646 0.4575 0.5324 0.6120 0.6614 14 0.4637 0.5385 0.6264

0.3507 0.4409 0.5140 0.5923 0.6411 15 0.4464 0.5214 0.6036

0.3383 0.4259 0.4973 0.5742 0.6226 16 0.4294 0.5029 0.5824

0.3271 0.4124 0.4821 0.5577 0.6055 17 0.4142 0.4877 0.5662

0.3170 0.4000 0.4683 0.5425 0.5897 18 0.4014 0.4716 0.5501

0.3077 0.3887 0.4555 0.5285 0.5751 19 0.3912 0.4596 0.5351

0.2992 0.3783 0.4438 0.5155 0.5614 20 0.3805 0.4466 0.5218

0.2914 0.3687 0.4329 0.5034 0.5487 21 0.3701 0.4364 0.5091

0.2841 0.3598 0.4227 0.4921 0.5368 22 0.3608 0.4252 0.4975

0.2774 0.3515 0.4133 0.4815 0.5256 23 0.3528 0.4160 0.4862

0.2711 0.3438 0.4044 0.4716 0.5151 24 0.3443 0.4070 0.4757

0.2653 0.3365 0.3961 0.4622 0.5052 25 0.3369 0.3977 0.4662

0.2598 0.3297 0.3882 0.4534 0.4958 26 0.3306 0.3901 0.4571

0.2546 0.3233 0.3809 0.4451 0.4869 27 0.3242 0.3828 0.4487

0.2497 0.3172 0.3739 0.4372 0.4785 28 0.3180 0.3755 0.4401

0.2451 0.3115 0.3673 0.4297 0.4705 29 0.3118 0.3685 0.4325
(continued)
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Table A.9: Random Digits

(continued)

Product moment coefficient Sample size Spearman’s coefficient

Level Level

0.10 0.05 0.025 0.01 0.005 0.05 0.025 0.01

0.2407 0.3061 0.3610 0.4226 0.4629 30 0.3063 0.3624 0.4251

0.2070 0.2638 0.3120 0.3665 0.4026 40 0.2640 0.3128 0.3681

0.1843 0.2353 0.2787 0.3281 0.3610 50 0.2353 0.2791 0.3293

0.1678 0.2144 0.2542 0.2997 0.3301 60 0.2144 0.2545 0.3005

0.1550 0.1982 0.2352 0.2776 0.3060 70 0.1982 0.2354 0.2782

0.1448 0.1852 0.2199 0.2597 0.2864 80 0.1852 0.2201 0.2602

0.1364 0.1745 0.2072 0.2449 0.2702 90 0.1745 0.2074 0.2453

0.1292 0.1654 0.1966 0.2324 0.2565 100 0.1654 0.1967 0.2327

Acknowledged that the copyright belongs to the Royal Statistical Society and reproduced from the
Royal Statistical Society Tables, Royal Statistical Society, 2004 with permission from the Royal
Statistical Society.

86 13 84 10 07 30 39 05 97 96 88 07 37 26 04 89 13 48 19 20

60 78 48 12 99 47 09 46 91 33 17 21 03 94 79 00 08 50 40 16

78 48 06 37 82 26 01 06 64 65 94 41 17 26 74 66 61 93 24 97

80 56 90 79 66 94 18 40 97 79 93 20 41 51 25 04 20 71 76 04

99 09 39 25 66 31 70 56 30 15 52 17 87 55 31 11 10 68 98 23

56 32 32 72 91 65 97 36 56 61 12 79 95 17 57 16 53 58 96 36

66 02 49 93 97 44 99 15 56 86 80 57 11 78 40 23 58 40 86 14

31 77 53 94 05 93 56 14 71 23 60 46 05 33 23 72 93 10 81 23

98 79 72 43 14 76 54 77 66 29 84 09 88 56 75 86 41 67 04 42

50 97 92 15 10 01 57 01 87 33 73 17 70 18 40 21 24 20 66 62

90 51 94 50 12 48 88 95 09 34 09 30 22 27 25 56 40 76 01 59

31 99 52 24 13 43 27 88 11 39 41 65 00 84 13 06 31 79 74 97

22 96 23 34 46 12 67 11 48 06 99 24 14 83 78 37 65 73 39 47

06 84 55 41 27 06 74 59 14 29 20 14 45 75 31 16 05 41 22 96

08 64 89 30 25 25 71 35 33 31 04 56 12 67 03 74 07 16 49 32

86 87 62 43 15 11 76 49 79 13 78 80 93 89 09 57 07 14 40 74

94 44 97 13 77 04 35 02 12 76 60 91 93 40 81 06 85 85 72 84

63 25 55 14 66 47 99 90 02 90 83 43 16 01 19 69 11 78 87 16

11 22 83 98 15 21 18 57 53 42 91 91 26 52 89 13 86 00 47 61

01 70 10 83 94 71 13 67 11 12 36 54 53 32 90 43 79 01 95 15

Acknowledged that the copyright belongs to the Royal Statistical Society and reproduced from the
Royal Statistical Society Tables, Royal Statistical Society, 2004 with permission from the Royal
Statistical Society.
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Table A.10: Cumulative Standardized Normal Distribution

A(z)

-4 -3 -2 -1 0 1 z 2 3 4

A(z) is the integral of the standardized normal distribution from −∞ to z (in other
words, the area under the curve to the left of z). It gives the probability of a normal
random variable not being more than z standard deviations above its mean. Values
of z of particular importance:

z A(z)

1.645 0.9500 Lower limit of right 5% tail

1.960 0.9750 Lower limit of right 2.5% tail

2.326 0.9900 Lower limit of right 1% tail

2.576 0.9950 Lower limit of right 0.5% tail

3.090 0.9990 Lower limit of right 0.1% tail

3.291 0.9995 Lower limit of right 0.05% tail
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