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Preface

Modeling based on finite mixture distributions is a rapidly developing area with
an exploding range of applications. Finite mixture models are nowadays applied
in such diverse areas as biology, biometrics, genetics, medicine, and marketing,
among others. The main objective of this book is to present recent results in this
area of research, which intended to prepare the readers to undertake mixture models
using scale mixtures of skew-normal (SMSN) distributions. We consider maximum
likelihood estimation for univariate and multivariate finite mixtures where compo-
nents are members of the flexible class of SMSN distributions proposed by Lachos
et al. (2010), which is a subclass of the skew-elliptical class proposed by Branco
and Dey (2001). This subclass contains the entire family of normal independent
distributions, also known as scale mixtures of normal distributions (SMN) (Lange
and Sinsheimer 1993). In addition, the skew-normal and skewed versions of some
other classical symmetric distributions are SMSN members: the skew-t (ST), the
skew-slash (SSL), and the skew-contaminated normal (SCN), for example. These
distributions have heavier tails than the typical normal one, and thus they seem to
be a reasonable choice for robust inference. The proposed EM-type algorithm and
methods are implemented in the R package mixsmsn.

In Chap. 1, we present a motivating example, where it seems that a better
degree of explanation is obtained using mixtures of SMSN distributions than using
symmetric components.

In Chap. 2, we present background material on mixture models and the EM
algorithm for maximum likelihood estimation. This is followed by the derivation
of the observed information matrix to obtain the standard errors.

In Chap. 3, for the sake of completeness, we define the multivariate SMSN dis-
tributions and study some of its important properties, viz., moments, kurtosis, linear
transformations, marginal and conditional distributions, among others. Further, the
EM algorithm for performing maximum likelihood estimation is presented.

In Chap. 4, we propose a finite mixture of univariate SMSN distributions
(FM-SMSN) and an EM-type algorithm for maximum likelihood estimation. The
associated observed information matrix is obtained analytically. The methodology

vii



viii Preface

proposed is illustrated considering the analysis of a real data set and simulation
studies.

In Chap. 5, we consider a flexible class of models, with elements that are
finite mixtures of multivariate SMSN distributions. A general EM-type algorithm
is employed for iteratively computing parameter estimates and this is discussed
with emphasis on finite mixtures of skew-normal, skew-t, skew-slash, and skew-
contaminated normal distributions. Further, a general information-based method for
approximating the asymptotic covariance matrix of the estimates is also presented.

Finally in Chap. 6, we present a proposal to deal with mixtures of regression
models by assuming that the random errors follow scale mixtures of skew-normal
distributions. This approach allows us to model data with great flexibility, accom-
modating skewness and heavy tails at the same time. A simple EM-type algorithm
to perform maximum likelihood inference of the parameters of the proposed model
is derived. A real data set is analyzed, illustrating the usefulness of the proposed
method.

We hope that the publication of this text will enhance the spread of ideas
that are currently trickling thought the literature of mixture models. The skew
models and methods developed recently in this field have yet to reach their largest
possible audience, partly because the results are scattered in various journals.
Please send any comments to us at hlachos@uconn.edu, celsoromulo@gmail.com,
or camila.zeller@ice.ufjf.br. Víctor H. Lachos was supported by CNPq-Brazil
(BPPesq) and São Paulo State Research Foundation (FAPESP). Celso Rômulo
Barbosa Cabral was supported by CNPq (BPPesq) and Amazonas State Research
Foundation (FAPEAM, Universal project). Camila Borelli Zeller was supported by
CNPq (BPPesq and Universal project) and Minas Gerais State Research Foundation
(FAPEMIG, Universal project).

Storrs, USA Víctor Hugo Lachos Dávila
Manaus, Brazil Celso Rômulo Barbosa Cabral
Juiz de Fora, Brazil Camila Borelli Zeller
January 2018

hlachos@uconn.edu
celsoromulo@gmail.com
camila.zeller@ice.ufjf.br.
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Chapter 1
Motivation

Modeling based on finite mixture distributions is a rapidly developing area with
an exploding range of applications. Finite mixture models are nowadays applied
in such diverse areas as biology, biometrics, genetics, medicine, and marketing,
among others. There are various features of finite mixture distributions that make
them useful in statistical modeling. For instance, statistical models which are based
on finite mixture distributions capture many specific properties of real data such as
multimodality, skewness, kurtosis, and unobserved heterogeneity. The importance
of mixtures can be noted from the large number of books on the subject, like
Lindsay (1995), Böhning (2000), McLachlan and Peel (2000), Frühwirth-Schnatter
(2006), and Mengersen et al. (2011). See also the special edition of the journal
Computational Statistics & Data Analysis (Böhning et al. 2014).

Formally speaking, given densities gj (·) and weights pj ≥ 0, j = 1, . . . ,G,
such that

∑G
j=1 pj = 1, a finite mixture of densities is the density

f (y) =
G∑

j=1

pjgj (y), y ∈ R
q . (1.1)

The density gj (·) is named the j th component of the mixture.
Finite mixtures are useful to model population heterogeneity, when we know

that observations belong to G distinct subpopulations, but we do not know how
to discriminate between them. As an example of unobserved heterogeneity in a
population, consider the famous fishery data, which is freely available through the R
package bayesmix (Gruen 2015). This data set has been analyzed by many authors
see, for example, Titterington et al. (1985) and Frühwirth-Schnatter (2006). The
data consists of 256 observations of fish lengths. Figure 1.1 presents the histogram
of the data, and we can visualize several modes. Specialists agree that the source
of the latent heterogeneity can be the age groups, which is a variable very hard to
observe directly.

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018
V. H. Lachos Dávila et al., Finite Mixture of Skewed Distributions,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-98029-4_1
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Finite mixtures is also an extremely flexible class of distributions. To have a
little idea of their capabilities, see Fig. 1.2, where we are considering mixtures of
univariate normal distributions, given by f (y) = ∑G

j=1 pjφ(y|μj , σ
2
j ), where

φ(·|μj , σ
2
j ) denotes the N(μj , σ

2
j ) density.

There is a formal mathematical motivation for using mixtures as such class
of flexible probability models. The following theorem shows that any continuous
density can be approximated by a proper finite mixture of any (not necessarily
normal) continuous densities. See DasGupta (2008, Theorem 33.2) for more
details.

Theorem 1.1 Let f (·) and g(·) be continuous densities on R
q . Given ε > 0

and a compact set C ⊂ R
q , there exists a finite mixture of the form h(x) =∑G

j=1 pjσ
−q
j g

(
(x − μj )/σj

)
such that supx∈C |f (x) − h(x)| < ε.
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Observe that the theorem does not specify how many components G are
necessary to approximate the density f (·).

Although mixtures of normal distributions have been applied during many years
in several areas of knowledge to model data with a distribution having a complex
structure, deviations from the normal assumption among the subpopulations, like
strong asymmetry or heavy tails, are not uncommon. Sometimes these departures
are not well captured by a finite mixture of normal distributions, or even by a
finite mixture of a more robust symmetric distribution, like the Student-t. The main
proposal of this book is to consider finite mixtures of distributions which belong
to a family much more flexible than the normal or Student-t ones, allowing us
to accommodate at the same time skewness, outliers and multimodality, besides
achieving a more parsimonious model, because we expect that fewer components
would be necessary to obtain the same degree of explanation obtained using normal,
Student t, or other symmetric components.

As an example, consider the Body Mass Index (BMI) Data, which is freely
available through the R package mixsmsn (Prates et al. 2013). Figure 1.3 shows
a histogram of the data. We fitted some finite mixtures of normal and Student-t
distributions to these data, with 2 and 3 components. To do so, we used the package
mixsmsn. More details about the estimation process will be discussed in Chaps. 2
and 3.

Table 1.1 shows the values of the AIC (Akaike 1974) and BIC (Schwarz 1978)
model selection criteria. When comparing several models, a specific criterion favors
the model with the smallest criterion value. Besides the normal and Student-t
models, we used as components some extensions of these distributions, namely
the skew-normal and the skew-t ones. These distributions extend theirs, symmetric
counterparts by the introduction of an additional parameter regulating skewness.
More details about these models will be given in Chap. 3. From Table 1.1 we can
see that the two criteria chose the models in the following order, from the best to
the poorest: skew-t (2), normal (3), Student-t (3), Skew-normal (2), Student-t (2),

Fig. 1.3 Histogram of the
BMI data

bmi (kg m2)

D
en

si
ty

20 30 40 50 60

0.
00

0.
02

0.
04

0.
06



4 1 Motivation

Table 1.1 BMI data Model BIC AIC

Normal (2) 13,861.78 13,833.51

Normal (3) 13,787.05 13,741.83

Student-t (2) 13,814.37 13,786.10

Student-t (3) 13,787.51 13,742.29

Skew-normal (2) 13,803.36 13,763.79

Skew-t (2) 13,777.13 13,737.56

BIC criterion for several mixture models. The
number in parenthesis denotes the number of
components

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

40

x

y

outliers Distribution

Normal
Disturbed Normal
Skew−T

Fig. 1.4 Contaminated normal mixture regression model. Normal and Student-t mixture regres-
sion models fit

and normal (2)—the number in parenthesis denotes the number of components.
From these results, it seems that a better degree of explanation is obtained using
two skew-t components than using two or three normal or Student-t components.

We can also consider finite mixtures of regression models. In the univariate
normal case it is defined as

f (y|θ) =
G∑

j=1

pjφ
(
y|x�βj , σ

2
j

)
, (1.2)
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where x is a vector of covariates or explanatory variables and βj is a vector of
component-specific unknown regression coefficients. In Fig. 1.4, we depict a sample
yi, i = 1, . . . , 500, from a finite mixture of normal regression models with G = 2,
x�
i = (1, xi), such that xi ∼ U(0, 1), with the following setup: β1 = (β01, β11)

� =
(5,−10)�, β2 = (β02, β12)

� = (−3, 10)�, σ 2
1 = σ 2

2 = 1 and p1 = 0.8. Then we
fitted the correct model, which corresponds to the red lines in the figure. After this,
we contaminated the sample, by replacing the observations y50, y150, y250, and y350
with the contaminated values y∗

50 = y50 + 25, y∗
150 = y150 + 15, y∗

250 = y250 + 35
and y∗

350 = y350 + 15. Then we fitted the model again. This new fit is identified as
the disturbed model in the figure (blue lines). Finally, we fitted a model where the
normal distribution in (1.2) is replaced by the skew-t distribution (green lines). We
can see that after contamination, the normal fit is strongly affected by the presence
of outliers, which does not occur with the skew-t model.



Chapter 2
Maximum Likelihood Estimation
in Normal Mixtures

At the beginning, the research on estimation of the parameters in finite mixture
models was more focused in the normal components case. The first papers were
published more than 100 years ago, as one of the first works in finite mixtures that
come to our notice is Pearson (1894), who used the method of moments to fit a
mixture of two normal components to the crabs data (Weldon 1893). Several works
based on the method of moments followed the Pearson’s one. Among them, Charlier
and Wicksell (1924), Doetsch (1928) and Strömgren (1934). Rao (1948) was the first
author to propose maximum likelihood (ML) estimation in finite mixtures of normal
distributions, although his solution was restricted to the two components case. In the
multivariate case, Wolfe (1965, 1967) also proposed ML estimation, and extended
his results to cluster analysis. ML estimation in the case of a finite mixture of G

components with equal variances was explored by Hasselblad (1966), who extended
his results to exponential families in Hasselblad (1969). But the major breakthrough
concerned with ML estimation in finite mixtures was the paper of Dempster et al.
(1977), which established the theoretical basis of a whole line of research using the
EM algorithm. After this, the research in finite mixtures exploded and it is almost
impossible to provide an exhaustive list of references. The book of McLachlan and
Peel (2000) provides a good review of the work in this area up to its publication.
Important references also are the special volumes Böhning and Seidel (2003), and
Böhning et al. (2007, 2014).

In this chapter we review the general theory of ML estimation in finite mixture
models using the EM algorithm, with application in the model with multivariate
normal components.

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018
V. H. Lachos Dávila et al., Finite Mixture of Skewed Distributions,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-98029-4_2
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8 2 Maximum Likelihood Estimation in Normal Mixtures

2.1 EM Algorithm for Finite Mixtures

In what follows we consider a random sample Y1, . . . , Yn from the mixture
model (1.1). Hereafter, we assume that gj (·) = g(·|θ j ), j = 1, . . . , G. That is,
the densities gj (·) belong to the same parametric family.

A useful interpretation of the finite mixture model is consequence of the
following representation: let Zi = (Zi1, . . . , ZiG), such that

P(Zij = 1) = pj , and Yi |Zij = 1 ∼ g(·|θ j ). (2.1)

If Zij = 1, then Zik = 0 for k �= j . Zi is known as the allocation vector. Zi has
only one element different from zero. If this element is in the j th position of the
vector Zi , then Yi is allocated to subpopulation j . The distribution of the vector Zi

is multinomial with one trial and probabilities p1, . . . , pG, and we use the notation
Zi ∼ Multinomial(1;p1, . . . , pG). It is straightforward to prove that marginally Yi

has density (1.1), to be more specific,

f (yi |θ) =
G∑

j=1

pjg(yi |θ j ), yi ∈ R
q

where θ = (θ�
1 , . . . , θ�

G, p1, . . . , pG)� is the vector with all parameters in the
model. Using lowercase letters to denote observed values, the likelihood function
associated with the sample y = (y�

1 , . . . , y�
n )� is given by

L(θ |y) =
n∏

i=1

G∑

j=1

pjg(yi |θ j ).

Direct maximization of L(·|y) can lead to a difficult and unstable numerical
problem. Instead, the best option is to use the EM algorithm of Dempster et al.
(1977).

To develop the algorithm, we use a data augmentation framework based on
representation (2.1). Let z = (z�

1 , . . . , z�
n )�. The complete-data likelihood is the

likelihood function obtained as if (y�, z�)� were observable, that is,

�c(θ |y, z) =
n∏

i=1

π(y|z)π(z) =
n∏

i=1

G∏

j=1

g(yi |θ j )
zij p

zij

j , (2.2)

where π(z) denotes the density of Z and π(y|z) denotes the conditional density of
Y|Z = z.

Now we proceed by implementing the two steps of the EM algorithm: the E-step
(expectation) and the M-step (maximization). For more details about the algorithm
and its applications in mixture models, see McLachlan and Krishnan (2008). In what
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follows θ̂
(k)

indicates the estimate of θ at stage k of the algorithm. The E-step
consists in taking the conditional expectation

Q
(
θ |̂θ (k)

)
= E

[
log �c(θ |y, z)|y, θ̂

(k)
]
,

where the expectation is being affected using θ̂
(k)

for θ—this is the so-called Q-
function. Now, observe that

E
[
log �c(θ |y, z)|y, θ̂

(k)
]

= E

⎧
⎨

⎩

n∑

i=1

G∑

j=1

Zij

[
log g(yi |θ j ) + log pj

] |y, θ̂
(k)

⎫
⎬

⎭

(2.3)

=
n∑

i=1

G∑

j=1

E
(
Zij |y, θ̂

(k)
) [

log g(yi |θ j ) + log pj

]
.

(2.4)

Observe that it is easy to compute E(Zij |y, θ̂
(k)

), because the distribution of Zij is
Bernoulli with probability of success pj . Then,

ẑ
(k+1)
ij ≡ E

(
Zij |y, θ̂

(k)
)

= P
(
Zij = 1|y, θ̂

(k)
)

∝ g
(

yi |̂θ (k)

j

)
p̂

(k)
j ,

implying that

z
(k+1)
ij =

g
(

yi |̂θ (k)

j

)
p̂

(k)
j

∑G
m=1 g

(
yi |̂θ (k)

m

)
p̂

(k)
m

, j = 1, . . . , G.

The M-step consists in to maximize the Q-function (2.4). Regarding the param-
eters pj , j = 1, . . . ,G, this is equivalent to maximize the function

n∑

i=1

G∑

j=1

ẑ
(k+1)
ij log pj

with respect to pj , j = 1, . . . ,G. Then, it is straightforward to prove that

p̂
(k+1)
j = 1

n

n∑

i=1

ẑ
(k+1)
ij .

Until now we have not considered as components a specific parametric family of
distributions. To illustrate the theory, let us assume that we have a mixture density
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with a normal q-variate j th component Nq(μj ,�j ) with weight pj , where μj and
�j are the mean vector and the covariance matrix, respectively, j = 1, . . . ,G.
Then, we can see that the M-step is equivalent to maximize the function

n∑

i=1

G∑

j=1

ẑ
(k+1)
ij log φq(yi |μj ,�j )

with respect to μj and �j , where φq(yi |μj ,�j ) is the Nq(μj ,�j ) density. But, for
fixed j , this is equivalent to maximize the normal weighted log-likelihood function

n∑

i=1

ẑ
(k+1)
ij log φq(yi |μj ,�j ).

This problem has a well-known solution given by

μ̂
(k+1)
j =

∑n
i=1 ẑ

(k+1)
ij yi

∑n
i=1 ẑ

(k+1)
ij

, and

�̂
(k+1)
j =

∑n
i=1 ẑ

(k+1)
ij

(
yi − μ̂

(k+1)
i

)(
yi − μ̂

(k+1)
i

)�

∑n
i=1 ẑ

(k)
ij

, j = 1, . . . ,G.

2.2 Standard Errors

In this section we explain how to obtain standard errors estimates for the EM
estimators. First, we review some basic concepts. For more details, see Lehmann
(1999, Sec 7.5). Let Y = (Y�

1 , . . . , Y�
n )� be a random sample from f (·|θ). For

regular models, the expected information matrix is defined as

I (θ) = E

[
∂ log f (Y1|θ)

∂θ

(
∂ log f (Y1|θ)

∂θ

)� ∣
∣θ

]

. (2.5)

Under suitable regularity conditions, it is possible to prove that

I (θ) = −E

[
∂2 log f (Y1|θ)

∂θ∂θ�
∣
∣θ

]

,

that is, the negative of expectation of the hessian matrix.
Let θ̂ be the maximum likelihood estimator (MLE) of θ . Under regularity

conditions, the asymptotic covariance matrix of θ̂ is I (θ)−1/n. This matrix depends
on the unknown parameter θ , and is useless for inference. But, under suitable
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conditions, the MLE is consistent and, in general, I ( θ̂)−1 is a consistent estimator
of I (θ)−1.

In practice, for complex models, it is not possible, or it is very difficult, to obtain
the expected information matrix. An alternative is to approximate it using the so-
called observed information matrix, which is defined to be

Jo

(
θ̂ |Y) = −1

n

n∑

i=1

∂2 log f (Yi |θ)

∂θ∂θ�
∣
∣
θ=θ̂ .

By the strong law of large numbers,

Jo

(
θ̂ |Y)→ I (θ)

when n → ∞, almost surely. So, for large n, it is reasonable to use

Jo

(
θ̂ |Y)−1

n
=
(

−
n∑

i=1

∂2 log f (Yi |θ)

∂θ∂θ�
∣
∣
θ=θ̂

)−1

(2.6)

as an approximation of the asymptotic covariance matrix of θ̂ .
An alternative is the following. By (2.5) and the strong law of large numbers,

1

n

n∑

i=1

∂ log f (Yi |θ)

∂θ

(
∂ log f (Yi |θ)

∂θ

)� ∣
∣
θ=θ̂ → I (θ)

when n → ∞, almost surely. That is, the asymptotic covariance matrix of θ̂ can be
approximated by

[
n∑

i=1

∂ log f (Yi |θ)

∂θ

(
∂ log f (Yi |θ)

∂θ

)� ∣
∣
θ=θ̂

]−1

. (2.7)

Consider the complete-data likelihood given in (2.2). It is possible to show, see
McLachlan and Peel (2000, p. 66), that

∂ log f (yi |θ)

∂θ
= E

[
∂ log �c(θ |yi , zi )

∂θ
|y, θ

]

, (2.8)

where �c(θ |yi , zi ) is the complete-data likelihood formed from the single “obser-
vation” (yi , zi ), i = 1, . . . , n. Formulas (2.7) and (2.8) imply that the asymptotic
covariance matrix of θ̂ can be approximated by
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{
n∑

i=1

E

[
∂ log �c(θ |yi , zi )

∂θ
|y, θ

]
∣
∣
θ=θ̂ E

[
∂ log �c(θ |yi , zi )

∂θ
|y, θ

]� ∣
∣
θ=θ̂

}−1

.

For finite mixture models we have, from (2.2),

log �c(θ |yi , zi ) =
G∑

j=1

zij [log f (yi |θ j ) + log pj ].

Then,

E

[
∂ log �c(θ |yi , zi )

∂θ
|y, θ

]

= E

⎧
⎨

⎩

G∑

j=1

Zij

[
∂(log f (yi |θ j ) + log pj )

∂θ

]

|y, θ

⎫
⎬

⎭

=
G∑

j=1

E(Zij |y, θ)

[
∂(log f (yi |θ j ) + log pj )

∂θ

]

.

As an example, let us consider the normal mixture case, in which the j th
component is Nq(μj ,�j ), j = 1, . . . ,G. Let us define p = (p1, . . . , pG−1)

�
and ωj a vector containing the q(1 + q)/2 distinct elements of �j , j = 1, . . . ,G.
Then, the vector with all parameters in the model can be written as

θ =
(

p�,μ�
1 , . . . ,μ�

G,ω�
1 , . . . ,ω�

G

)�
,

and partitioning accordingly

G∑

j=1

ẑij

∂(log φq(yi |μj ,�j ) + log pj )

∂θ

∣
∣
θ=θ̂ ≡

(
ŝ�

pi
, ŝ�

μ1i
, . . . , ŝ�

μGi
, ŝ�

ω1i
, . . . , ŝ�

ωGi

)�
,

where ẑij is E(Zij |y, θ) evaluated at θ̂ , that is,

ẑij = φq

(
yi |μ̂j , �̂j

)
p̂j

∑G
m=1 φq

(
yi |μ̂m, �̂m

)
p̂m

and

ŝpi
=

G∑

j=1

ẑij

∂(log φq(yi |μj ,�j ) + log pj )

∂p

∣
∣
θ=θ̂

ŝμji
= ẑij

∂(log φq(yi |μj ,�j ) + log pj )

∂μj

∣
∣
θ=θ̂
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ŝωji
= ẑij

∂(log φq(yi |μj ,�j ) + log pj )

∂ωj

∣
∣
θ=θ̂ , i = 1, . . . , n.

For fixed i, it is straightforward to show that the j th element of the vector ŝpi
is

given by

(
ŝpi

)
j

= ẑij

pj

− ẑiG

pG

, j = 1, . . . ,G − 1.

Using matrix differentiation, we can prove that

ŝμji
= ẑij �̂

−1
j

(
yi − μ̂j

)
, j = 1, . . . , G,

and

(
ŝωji

)
h

= 1

2
ẑij (2 − δrs)

[
−
(
�̂

−1
j

)

rs
+ (yi − μ̂j

)�
σ̂

(r)
j

(
yi − μ̂j

)�
σ̂

(s)
j

]
,

where δrs is the Kronecker delta, the hth element of ŝωji
corresponds to the (r, s)th

element of �j and where σ̂
(r)
j is the rth column of �̂

−1
j , j = 1, . . . ,G. See

McLachlan and Basford (1988, p. 48) for more details.



Chapter 3
Scale Mixtures of Skew-Normal
Distributions

Andrews and Mallows (1974) discussed a class of robust distributions as scale
mixtures of normal (SMN) distributions, which contains a group of thick-tailed
distributions. Their work was extended by Branco and Dey (2001), introducing
the class of scale mixtures of skew-normal (SMSN) distributions, which includes
the former class by the introduction of a parameter regulating skewness. In this
chapter, we discuss some properties of the SMSN distributions in the multivariate
setting. The main virtue of the members of this family is that they are easy to
simulate from and they also lend themselves to an EM-type algorithm for maximum
likelihood estimation. Results obtained from simulated and a real data set are
reported illustrating the usefulness of the proposed distributions.

3.1 Introduction

A normal distribution is a routine assumption for analyzing real data, but it
may be unrealistic, specially for data with strong skewness and heavy tails. In
practice, there are a great number of skewed or heavy-tailed data, for instance,
data on family income, CD4 count data from AIDS studies, etc. Thus, one need
to develop a flexible class of models that can readily adapt to the non-normality
behavior of the data. Flexible models that include several known distributions,
including the normal distribution are of particular importance, since such models
can adapt to distributions that are in the neighborhood of the normal model. Andrews
and Mallows (1974) developed the class of scale mixtures of normal (SMN)
distributions, which contains a group of thick-tailed distributions that are often used
for robust inference of symmetrical data. In this chapter, we further generalize the
SMN class of distributions and combine skewness with heavy tails. This class of
distributions is attractive as it simultaneously models skewness and heavy tails, it

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018
V. H. Lachos Dávila et al., Finite Mixture of Skewed Distributions,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-98029-4_3
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has a stochastic representation for easy implementation of the EM algorithm, and
also facilitates the study of many useful properties.

The skew-normal (SN) distribution extends the normal one by allowing a shape
parameter to account for skewness. Azzalini (1985) proposed a univariate form,
which was generalized to the multivariate case by Azzalini and Dalla-Valle (1996).
According to their definition, we say that a p-dimensional random vector Y has
a skew-normal distribution with location vector μ, scale matrix �, and shape
parameter vector λ when it has probability density function (pdf)

f (y) = 2φp(y|μ,�)

(
λ�σ−1 (y − μ)

)
, y ∈ R

p, (3.1)

where 
(·) is the cumulative distribution function (cdf) of the standard normal
distribution, σ is a diagonal matrix formed by the standard deviations of a
covariance matrix �, such that � = σ�σ , where � is a correlation matrix. When
λ = 0, the SN distribution reduces to the normal distribution.

The SN distribution has the following alternative representation: consider the
random vector

(
To

T1

)

∼ N1+p

[

0,

(
1 δ�
δ �

)]

, (3.2)

where δ = �λ/(1 + λ��λ)1/2. Then, it is straightforward to show that the
distribution of Z = (T1|T0 > 0) is f (z) = 2φp(z|0,�)
(λ�z). To incorporate
a location μ ∈ R

p and a positive definite scale matrix �, we define Y = μ + σZ.
Then, Y has the distribution defined in (3.1).

Hereafter we consider a variant form of the SN distribution of Azzalini and Dalla-
Valle (1996). First, we replace the correlation matrix � in (3.2) with the identity
matrix Ip. Then, the SN is defined as the distribution of the vector Y = μ + �1/2Z,
where Z = (T1|T0 > 0) and �1/2 is a square root of a positive definite matrix. This
square root can be defined using the spectral decomposition of �, see Gentle (2007,
Sec. 3.8.8), for example. The resulting pdf is

f (y) = 2φp(y|μ,�)

(
λ��−1/2 (y − μ)

)
, y ∈ R

p.

We use the notation Y ∼ SNp(μ,�,λ).
Let Z = (T1|T0 > 0) having an SN distribution, where T0 and T1 are defined

in (3.2) with � = Ip. We can write

(
To

T1

)
d=
(

X0

δX0 + (Ip − δδ�)1/2X1

)

,

where X0 ∼ N(0, 1) and X1 ∼ Np(0, I) are independent and “
d=” means that

the random vectors have the same distribution. Using this fact and Theorem 3.1
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of Arellano-Valle et al. (2002), we have that Z d= δ|X0| + (Ip − δδ�)1/2X1. Thus, a
stochastic representation of Y ∼ SNp(μ,�,λ), which can be used to derive several
of its properties, is given by

Y d= μ + �1/2(δ|X0| + (Ip − δδ�)1/2X1
)
, with δ = λ

√
1 + λ�λ

. (3.3)

Using the result above and the fact that |X0| follows a half-normal distribution with
expectation (2/π)1/2 and variance 1 − 2/π , we have that the expectation and the
covariance matrix of Y are given, respectively, by

E[Y] = μ +
√

2

π
�1/2δ and Var[Y] = � − 2

π
�1/2δδ��1/2.

The moment generating function (mgf) of Y ∼ SNp(μ,�,λ) can be obtained
with a small modification of the argument in Azzalini and Dalla-Valle (1996,
eqn. 2.13). We find

My(s) = 2es�μ+ 1
2 s��s


(
δ��1/2s

)
. (3.4)

Several extensions of the above model have been proposed, viz., the skew-t
distribution (Branco and Dey 2001; Azzalini and Capitanio 2003; Gupta 2003),
skew-Cauchy distribution, skew-slash distribution (Wang and Genton 2006), and
the skew-slash-t distribution (Punathumparambath 2012), for example. In this
chapter, we present a unified family of asymmetric distributions that offers extreme
flexibility by combining both skewness with heavy tails. This family contains,
as a special case, the multivariate skew-normal distribution defined by Azzalini
and Dalla-Valle (1996), the multivariate skew-slash distribution defined by Wang
and Genton (2006), the multivariate skew-t distribution defined by Azzalini and
Capitanio (2003), and all the distributions studied by Lange and Sinsheimer (1993)
in a symmetric context.

3.2 SMN Distributions

The symmetric family of SMN distributions has attracted much attention in the
last few years, mainly because they include distributions such as the Student-t, the
slash, the power exponential, and the contaminated normal distributions. All these
distributions have heavier tails than the normal. We say that a p-dimensional vector
Y has an SMN distribution (Andrews and Mallows 1974; Lange and Sinsheimer
1993) with location parameter μ and a positive definite scale matrix �, if its pdf
assumes the form
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f (y) =
∫ ∞

0
φp

(
y|μ, u−1�

)
dH(u; ν), (3.5)

where H(u; ν) is a cdf of a unidimensional positive random variable U indexed by
a parameter vector ν. The random variable U is called the scale factor and H(u; ν)

is the mixture distribution. For a random vector with a pdf as in (3.5), we use the
notation Y ∼ SMNp(μ,�;H). When μ = 0 and � = Ip, we get a standard SMN
distribution and use the notation Y ∼ SMNp(H). A stochastic representation is
given by

Y = μ + U−1/2Z, (3.6)

where Z ∼ Np(0,�) and U is a positive random variable, independent of Z, with
cdf H . Examples of SMN distributions are described subsequently, as well as the
distributional properties of the squared Mahalanobis distance d = (y−μ)��−1(y−
μ), which is extremely useful in testing the goodness of fit and detecting outliers.

3.2.1 Examples of SMN Distributions

• The Student-t distribution with ν > 0 degrees of freedom, Y ∼ tp(μ,�, ν).
The use of the t-distribution as an alternative to the normal distribution has
frequently been suggested in the literature; Little (1988) and Lange et al. (1989),
for example, used the Student-t distribution for robust modeling. The density of
Y is given by

f (y) = �
(p+ν

2

)

�
(

ν
2

)
πp/2

ν−p/2|�|−1/2
(

1 + d

ν

)−
(

p+ν
2

)

. (3.7)

In this case, we have that U ∼ Gamma(ν/2, ν/2), where H(u; ν) has density

h(u; ν) = (ν/2)ν/2uν/2−1

�(ν/2)
exp
(
−ν

2
u
)

,

with finite reciprocal moments E[U−m] = (ν/2)m�(ν/2 − m)

�(ν/2)
, for m < ν/2.

From Lange and Sinsheimer (1993), it also follows that d ∼ pF(p, ν), where
F(p, ν) denotes the F distribution with parameters p and ν.

• The slash distribution, Y ∼ SLp(μ,�, ν), with shape parameter ν > 0 (Rogers
and Tukey 1972).

This distribution has heavier tails than those of the normal distribution and it
includes the normal case when ν ↑ ∞. Its pdf is given by
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f (y) = ν

∫ 1

0
uν−1φp

(
y|μ, u−1�

)
du.

Here U has a Beta distribution with parameters ν and 1, with density

h(u; ν) = νuν−1
I(0,1)(u), (3.8)

where IA(·) is the indicator function of the set A, with reciprocal moments

E[U−m] = ν

ν − m
, for m < ν. The distribution of d is given by

Pr(d ≤ r) = Pr
(
χ2

p ≤ r
)

− 2ν�(p/2 + ν)

rν�(p/2)
P r
(
χ2

p+2ν ≤ r
)

,

where χ2
p denotes a random variable with chi-square distribution with p degrees

of freedom.
• The contaminated normal distribution, Y ∼ CNp(μ,�, ν, γ ), 0 < ν < 1,

0 < γ < 1 (Aitkin and Wilson 1980). This distribution may also be applied for
modeling symmetric data with outlying observations. The parameter ν represents
the percentage of outliers, while γ is a scale factor. Its pdf is given by

f (y) = νφp

(

y|μ,
�

γ

)

+ (1 − ν)φp(y|μ,�).

In this case U is a discrete random variable with probability function

h(u; ν) = νI{γ }(u) + (1 − ν)I{1}(1), ν = (ν, γ )�. (3.9)

We have E[U−m] = ν/γ m + 1 − ν, and

Pr(d ≤ r) = νPr
(
χ2

p ≤ γ r
)

+ (1 − ν)Pr
(
χ2

p ≤ r
)

.

3.3 Multivariate SMSN Distributions and Main Results

In this section, we define the multivariate SMSN distributions and study some of its
important properties, viz., moments, kurtosis, linear transformations, and marginal
and conditional distributions.

Definition 3.1 A p-dimensional random vector Y follows an SMSN distribution
with location parameter μ positive definite scale matrix and shape parameter λ if its
pdf is given by
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f (y) = 2
∫ ∞

0
φp

(
y|μ, u−1�

)


(
u1/2λ��−1/2(y − μ)

)
dH(u; ν), (3.10)

where H(u; ν) is a cdf of a unidimensional positive random variable U indexed by
a parameter vector ν.

If Y has a pdf as in (3.10), we use the notation Y ∼ SMSNp(μ,�,λ;H).
When μ = 0 and � = Ip we get a standard SMSN distribution and denote it
by SMSNp(λ;H). When λ = 0 we get back the SMN class of distributions defined
in (3.5). If we suppose that ν∞ is such that ν ↑ ν∞, and H(u; ν) converges weakly
to the distribution function H∞(u) = H(u; ν∞) of the unit point mass at 1, then
the density function in (3.10) converges to the density function of a random vector
having a skew-normal distribution. The proof of this result is similar to that of Lange
and Sinsheimer (1993) for the SMN case.

For an SMSN random vector, the stochastic representation given below can be
used to simulate pseudorealizations of Y and also to study many of its properties.

Proposition 3.1 Let Y ∼ SMSNp(μ,�,λ;H). Then

Y d= μ + U−1/2Z, (3.11)

where Z ∼ SNp(0,�,λ) and U is a positive random variable with cdf H

independent of Z.

Proof The proof follows from the fact that Y|U = u ∼ SNp(μ, u−1�,λ). ��
Notice that the stochastic representation given in (3.6) for the SMN case is a
special case of (3.11) when λ = 0. Hence, we have extended the family of SMN
distributions for the skewed case. Besides, from (3.3) it follows that (3.11) can be
written as

Y d= μ + 1

U1/2
�1/2

{
δ|X0| + (Ip − δδT

)1/2X1

}
, (3.12)

where δ = λ/
√

1 + λ�λ, and U , X0 ∼ N(0, 1) and X1 ∼ Np(0, Ip) are
all independent. The marginal stochastic representation given in (3.12) is very
important since it allows to implement the EM algorithm for a wide variety of linear
models similar to those presented in Lachos et al. (2010).

In the next proposition, we derive a general expression for the moment genera-
ting function (mgf) of an SMSN random vector.

Proposition 3.2 Let Y ∼ SMSNp(μ,�,λ;H). Then

MY(s) = E[es�Y] =
∫ ∞

0
2es�μ+ 1

2 u−1s��s

(
u−1/2δ��1/2s

)
dH(u), s ∈ R

p.
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Proof From Proposition 3.1, we have that Y|U = u ∼ SNp(μ, u−1�,λ).

From known properties of conditional expectation, it follows that My(s) =
EU [E[es�Y|U ]], where EU denotes expectation with respect to the distribution of U .

From (3.4), we have that E[es�Y|U = u] = 2eu−1s�μ+ 1
2 s��s
(u−1/2δ��1/2s). ��

In the next proposition we show that the SMSN family is closed under affine
transformations. In particular, marginal distributions are still SMSN.

Proposition 3.3 Let Y ∼ SMSNp(μ,�,λ;H). Then for any fixed vector b ∈ R
m

and matrix A : m × p of full row rank matrix,

b + AY ∼ SMSNp

(
b + Aμ, A�A�,λ∗;H

)
,

where λ∗ = δ∗/
(
1 − δ∗�δ∗)1/2

, with δ∗ = (A�A�)−1/2A�1/2δ.

Proof Let 
 = A�A�. From Proposition 3.2, we have that

Mb+AY(s) = es�bMY
(
A�s

)

=
∫ ∞

0
2es�(b+Aμ)+ 1

2 u−1s�
s

(
u−1/2δ��1/2A�
−1/2
1/2s

)
dH(u),

proving the assertion. ��
By using Proposition 3.3, with A = [Ip1, 0p2 ], p1 +p2 = p, we obtain the marginal
distribution of an SMSN random vector.

Corollary 3.1 Let Y ∼ SMSNp(μ,�,λ;H) Y be partitioned as Y� =
(Y�

1 , Y�
2 )� of dimensions p1 and p2 (p1 + p2 = p), respectively; let

� =
(

�11 �12

�21 �22

)

, μ = (μ�
1 ,μ�

2

)�

be the corresponding partitions of � and μ. Then, the marginal distribution of Y1

is SMSNp1(μ1,�11,�
1/2
11 υ̃;H), where

υ̃ = υ1 + �−1
11 �12υ2

√
1 + υ�

2 �22.1υ2

.

with �22.1 = �22 − �21�
−1
11 �12, υ = �−1/2λ = (υ�

1 ,υ�
2

)�
.

Lemma 3.1 Let Y ∈ R
p a random vector with the following pdf

f (y|u) = k−1(u)φp(y|μ, u−1�)

(
u1/2A + u1/2B�y

)
,
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where u is a positive constant, A ∈ R, B any fixed p-dimensional vector and k(u) =



(

u1/2 A + B�μ√
1 + B��B

)

is a standardized constant. Then,

E[Y|u] = μ + u−1/2 �B√
1 + B��B

W


(

u1/2 A + B�μ√
1 + B��B

)

,

where W
(x) = φ(x)/
(x).

Proof First note, by using Lemma 2 from Arellano-Valle et al. (2005), that

E[Y|u] = k−1(u)

∫

R

∫ ∞

0
yφ1
(
t |u1/2A + u1/2B�y, 1

)
φ
(
y|μ, u−1�

)
dtdy

= k−1(u)

∫ ∞

0
φ1
(
t |u1/2A + u1/2B�μ, 1 + B��B

)
EY|t [Y]dt,

where Y|t ∼ Np(μ − �B(A + B�μ) + u−1/2�Bt, u−1�), with � = (�−1 +
BB�)−1, and the proof follows by using known properties of the truncated normal
distribution. ��
Proposition 3.4 Under the notation of Corollary 3.1, if Y ∼ SMSNp(μ,�,λ;H)

then the distribution of Y2 conditionally on Y1 = y1 and U = u has density given
by

f (y2|y1, u) = φp2

(
y2|μ2.1, u

−1�22.1
) 


(
u1/2υ�(y − μ)

)



(
u1/2υ̃�(y1 − μ1

)) , (3.13)

with μ2.1 = μ2 + �21�
−1
11 (y1 − μ1). Furthermore,

E[Y2|y1, u] = μ2.1 + u−1/2 φ
(
u1/2υ̃�(y1 − μ1)

)



(
u1/2υ̃�(y1 − μ1)

)
�22.1υ2

√
1 + υ�

2 �22.1υ2

. (3.14)

Proof In fact, the density of f (y2|y1, u) = f (y|u)/f (y1|u), and (3.13) fol-
lows by noting that Y|U = u ∼ SNp(μ, u−1�,λ) and Y1|U = u ∼
SN(μ1, u

−1�11,�
1/2
11 υ̃). Result (3.14) follows from Lemma 3.1, with A =

υ�
1 (y1 − μ1) − υ�

2 μ2, B = υ2, μ = μ2.1 and � = �22.1, which concludes the
proof. ��

Note that given u, when �21 = 0 and λ2 = 0, is possible to obtain independence
for the components Y1 and Y2 of an SMSN random vector Y. The following corol-
lary is a by-product of Proposition 3.4, since E[Y2|y1] = EU [E[Y2|y1, U ]|y1].



3.3 Multivariate SMSN Distributions and Main Results 23

Proposition 3.5 Consider the notation of Corollary 3.1. If Y ∼ SMSNp(μ,�,

λ;H), then the first moment of Y2 conditionally on Y1 = y1 is given by

E[Y2|y1] = μ2.1 + �22.1υ2
√

1 + υ�
2 �22.1υ2

E

[

U−1/2 φ1
(
U1/2υ̃�(y1 − μ1)

)


1
(
U1/2υ̃�(y1 − μ1)

) |y1

]

,

with μ2.1 = μ2 + �21�
−1
11 (y1 − μ1).

In Sect. 3.3.1, we give additional results for some elements of this family of
distributions based on Proposition 3.5. The next result can be useful in applications
to linear models. For instance, when the linear model depends on a vector of
unobservable random effects and a vector of random errors (linear mixed model), in
which the random effects is assumed to have an SMSN distribution and the errors
are assumed to have an SMN distribution (see, for instance, Lachos et al. 2010).

Proposition 3.6 Let X ∼ SMSNm(μ1,�1,λ,H) and Y ∼ SMNp(μ2,�2,H),

where for a positive random variable U with cdf H, we can write X d= μ1 +U−1/2Z

and Y d= μ2 + U−1/2W, with Z ∼ SNm(0,�1,λ) independent of W ∼ Np(0,�2),
then for any matrix A of dimension p × m,

AX + Y ∼ SMSNm

(
Aμ1 + μ2, A�1A� + �2,λ∗;H

)
,

where λ∗ = δ∗/
√

1 − δ�∗ δ∗, with δ∗ = (A�1A� + �2
)−1/2A�

1/2
1 δ.

Proof The proof is based on the result of Proposition 3.2. Note first that given U; X
and Y are independent, so that letting V = AX + Y, we have that

MV(s) = EU

(
E
[
es�AX|U

]
E
[
es�Y|U

])

=
∫ ∞

0
2e

s�Aμ1+
1

2u
s�A�1A�s




(
δ��

1/2
1 A�s√
u

)

e
s�μ2+

1

2u
s��2s

dH(u)

=
∫ ∞

0
2e

s�(Aμ1+μ2)+
1

2u
s�(A�1A� + �2

)
s



(
δ��

1/2
1 A�s√
u

)

dH(u)

=
∫ ∞

0
2e

t�(Aμ1+μ2)+
1

2u
s�(A�1A� + �2

)
s



(
δ�∗ 1/2s√

u

)

dH(u),

where  = A�1A� + �2 and where δ∗ = −1/2A�
1/2
1 δ, and the proof follows

from Proposition 3.2. ��



24 3 Scale Mixtures of Skew-Normal Distributions

In the following proposition we derive the mean vector and the covariance matrix
of an SMSN random vector. Moreover, we present the multidimensional kurtosis
coefficient for a random vector SMSN, which represents an extension of the kurtosis
coefficient proposed by Azzalini and Capitanio (1999). Before we give the following
Lemma:

Lemma 3.2 Let Y ∼ SNp(λ). Then for any fixed p-dimensional vector b and p×p

matrix A,

E
[
Y�AYb�Y

] = −
√

2

π

[(
δ�Aδ + tr(A)

)
b�δ + 2δ�Ab

]
,

where δ is as in (3.12).

Proof The proof follows by using the stochastic representation of Y given in (3.3)
and of the moments E[|X0|] and E[|X0|3], where X0 ∼ N(0, 1). ��
Proposition 3.7 Suppose that Y ∼ SMSNp(μ,�,λ;H). Then,

a) If E[U−1/2] < ∞, then E[Y] = μ +
√

2
π
E[U−1/2]�1/2δ;

b) If E[U−1] < ∞, then V ar[Y] = �y = E[U−1]�− 2
π
E2[U−1/2]�1/2δδ��1/2;

c) If E[U−2] < ∞, then the multidimensional kurtosis coefficient is

γ2(Y) = E
[
U−2

]

E2
[
U−1

]a1y − 4
E
[
U−3/2

]

E2
[
U−1

] a2y + a3y − p(p + 2),

where a1y = p(p + 2) + 2(p + 2)μ�
y �−1

y μy + 3(μ�
y �−1

y μy)
2, a2y =

(
p + 2

E[U−1/2]
)

μ�
y �−1

y μy +
(

1 + 2
E[U−1/2] − π

2
E[U−1]

E2[U−1/2]
)

(μ�
y �−1

y μy)
2, and

a3y = 2(p + 2)μ�
y �−1

y μy + 3(μ�
y �−1

y μy)
2, with μy = E[Y − μ] =

√
2
π
E[U−1/2]�1/2δ.

Proof The proof of a) and b) follows from Proposition 3.1. To obtain the expression
in c), we use the definition of the multivariate kurtosis introduced by Mardia (1970).
Without loss of generality, we consider that μ = 0, so that μy = E[Y] =
√

2
π
E[U−1/2]�1/2δ. Note first that the kurtosis is defined by γ2(Y) = E[{(Y −

μy)
��−1

y (Y − μy)}2]. Now, by using the stochastic representation of Y given
in (3.6), we have that

(Y − μy)
��−1

y (Y − μy)
d= U−1Z��−1

y Z − 2U−1/2Z��−1
y μy + μ�

y �−1
y μy,

where Z ∼ SNp(0,�,λ). According to definition of γ2(Y) and after some algebraic
manipulations, the proof follows by using of the first two moments of a quadratic
form (see Genton et al. 2001) along with Lemma 3.2. ��
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Notice that under the skew-normal distribution, i.e., when U = 1, the multidi-
mensional kurtosis coefficient reduces to γ2(Y) = 2(π − 3)(μ�

y �−1
y μy)

2, which is
the kurtosis coefficient for a skew-normal random vector (see, for instance, Azzalini
and Capitanio 1999).

Proposition 3.8 If Y ∼ SMSNp(μ,�,λ;H), then for any even function g, the
distribution of g(Y − μ) does not depend on λ and has the same distribution that
g(X − μ), where X ∼ SMNp(μ,�;H). In a particular case, if A is a p × p

symmetric matrix, then (Y − μ)�A(Y − μ) and (X − μ)�A(X − μ) are identically
distributed.

Proof The proof follows by using Proposition 3.2 and a similar procedure to found
in Wang et al. (2004). ��
As a by-product of Proposition 3.8, we have the following: interesting result

Corollary 3.2 Let Y ∼ SMSNp(μ,�,λ;H). Then the quadratic form

d = (Y − μ)��−1(Y − μ)

has the same distribution as d∗ = (X − μ)��−1(X − μ), where X ∼
SMNp(μ,�;H).

The result of Corollary 3.2 is interesting because it allows us to check models in
practice. On the other hand, Corollary 3.2 together with the result found in Lange
and Sinsheimer (1993) allows us to obtain the mth moment of dλ.

Corollary 3.3 Let Y ∼ SMSNp(μ,�,λ;H). Then for any m > 0

E
[
dm
λ

] = 2m�(m + p/2)

�(p/2)
E[U−m].

3.3.1 Examples of SMSN Distributions

Some examples of SMSN distributions include

• The skew-t distribution, with ν degrees of freedom, STp(μ,�,λ, ν). Considering
U ∼ Gamma(ν/2, ν/2), similar procedures found in Gupta (2003, Section 2)
lead to the following density function:

f (y) = 2tp(y|μ,�, ν)T1

(√
v + pλ��−1/2(y − μ)√

d + ν
|0, 1, ν + p

)

, y ∈ R
p,

(3.15)
where tp(·|μ,�, ν) and Tp(·|μ,�, ν) denote, respectively, the pdf and cdf of
the Student-t distribution, tp(μ,�, ν), defined in (3.7). A particular case of the
skew-t distribution is the skew-Cauchy distribution, when ν = 1. Also, when
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ν ↑ ∞, we get the skew-normal distribution as the limiting case. See Gupta
(2003) for further details. In this case, from Proposition 3.7, the mean and
covariance matrix of Y ∼ STp(μ,�,λ, ν) are given by

E[Y] = μ +
√

ν

π

�
(

ν−1
2

)

�
(

ν
2

) �1/2δ, ν > 1 and

Var[Y] = ν

ν − 2
� − ν

π

(
�
(

ν−1
2

)

�
(

ν
2

)

)2

�1/2δδ��1/2, ν > 2.

In what follows, we give an important result which will be used in the
implementation of the EM algorithm for mixture models and to find closed form
expressions of the first conditional moment given in Proposition 3.5.

Proposition 3.9 If Y ∼ STp(μ,�,λ, ν), then

E[Ur |y] = 2r+1νν/2�
(p+ν+2r

2

)
(d + ν)−

p+ν+2r
2

f (y)�(ν/2)
√

πp|�|1/2

T1

(√
p + ν + 2r

d + ν
A|0, 1, p + ν + 2r

)

and

E[UrW
1(U
1/2A)|y] = 2r+1/2νν/2�

(p+ν+2r
2

)(
d + ν + A2

)− p+ν+2r
2

f (y)�(ν/2)
√

π
p+1|�|1/2

.

where A = λ��−1/2(y − μ).

Proof The proof follows from Lemma 1 given Azzalini and Capitanio (2003),
since f (u|y) = f (y, u)/f (y) and

E[Ur |y] = 2

f (y)

∫ ∞

0
urφp

(
y|μ, u−1�

)

1
(
u1/2A

)
Gu(ν/2, ν/2)du,

and

E[UrW
1

(
U1/2A

)|y] = 2

f (y)

∫ ∞

0
urφp

(
y|μ, u−1�

)
φ1
(
u1/2A

)
Gu(ν/2, ν/2)du,

where Gu(ν/2, ν/2) denotes the pdf of the Gamma( ν
2 , ν

2 ) distribution. ��
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For a skew-t random vector Y, partitioned as Y� = (Y�
1 , Y�

2 )�, we have from

Corollary 1 that Y1 ∼ STp1(μ1,�11,�
1/2
11 υ̃, ν). Thus, from Proposition 3.5 we

have the following result:

Corollary 3.4 Under the notation of Proposition 3.5, if Y ∼ STp(μ,�,

λ, ν), then

E[Y2|y1] = μ2.1 + �22.1υ2
√

1 + υ�
2 �22.1υ2

× 1

f (y1)

νν/2�
( ν+p1−1

2

)

�(ν/2)
√

π
(p1+1)|�11|1/2

(
ν + dy1 + (υ̃�(y1 − μ1))

2)− ν+p1−1
2

where dy1 = (y1 − μ1)
��−1

11 (y1 − μ1).

• The skew-slash distribution, with the shape parameter ν > 0, SSLp(μ,�,λ, ν).
With h(u; ν) as in (3.8), from the Proposition 3.1, can be easily seen that

f (y) = 2ν

∫ 1

0
uν−1φp

(

y|μ,
�

u

)


1
(
u1/2λ��−1/2(y − μ)

)
, y ∈ R

p,

(3.16)
The skew-slash distribution reduces to the skew-normal distribution when ν ↑
∞. See Wang and Genton (2006) for further details. In this case, from Proposi-
tion 3.7

E[Y] = μ +
√

2

π

2ν

2ν − 1
�1/2δ, ν > 1/2, and

V ar[Y] = ν

ν − 1
� − 2

π

(
2ν

2ν − 1

)2

�1/2δδ��1/2, ν > 1.

As in the skew-t case we have the following results:

Proposition 3.10 If Y ∼ SSLp(μ,�,λ, ν), then

E[Ur |y] =
2ν+r+1ν�

(p+2ν+2r
2

)
P1

(
p + 2ν + 2r

2
,
d

2

)

d− p+2ν+2r
2

f (y)
√

πp|�|1/2
E[
(S1/2A)],

where Si ∼ Gamma

(
p + 2ν + 2r

2
,
d

2

)

I(0,1) and
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E[UrW
1(U
1/2A)|y]

= 2ν+r+1/2ν�
( 2ν+p+2r

2

)

f (y)
√

π
p+1|�|1/2

(d + A2)−
2ν+p+2r

2 P1

(
2ν + p + 2r

2
,
d + A2

2

)

where Px(a, b) denotes the cdf of the Gamma(a, b) distribution evaluated at x.

Corollary 3.5 Under the notation of Proposition 3.5, if Y ∼ SSLp(μ,�,λ, ν),
then

E[Y2|y1] = μ2.1 + �22.1υ2
√

1 + υ�
2 �22.1υ2

× 2νν

f (y1)

�

(
p1+2ν−1

)

2

(
dy1 + (υ̃�(y1 − μ1)

)2
)− p1+2ν−1

2

√
π

(p1+1)|�11|1/2

×P1

(
p1 + 2ν − 1

2
,
dy1 + (υ̃�(y1 − μ1)

)2

2

)

,

where dy1 = (y1 − μ1)
��−1

11 (y1 − μ1).

• The skew-contaminated normal distribution, SCNp(μ,�,λ, ν, γ ), 0 < ν < 1,
0 < γ < 1. Taking h(u; ν) as in (3.9), it follows straightforwardly that

f (y) = 2

{

νφp

(

y|μ,
�

γ

)


1
(
γ 1/2λ��−1/2(y − μ)

)

+(1 − ν)φp(y|μ,�)
1
(
λ��−1/2(y − μ)

)}
, (3.17)

in this case, the skew-contaminated normal distribution reduces to the skew-
normal distribution when γ = 1. Hence, the mean vector and the covariance
matrix are given, respectively, by

E[Y] = μ +
√

2

π

(
ν

γ 1/2 + 1 − ν

)

�1/2δ, and

V ar[Y] =
(

ν

γ
+ 1 − ν

)

� − 2

π

(
ν

γ 1/2
+ 1 − ν

)2

�1/2δδ��1/2.

From (3.17) it follows the following results
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Proposition 3.11 If Y ∼ SCNp(μ,�,λ, ν, γ ), then

E[Ur |y] = 2

f (y)

[
νγ rφp

(
y|μ, γ −1�

)

1
(
γ 1/2A

)+ (1 − ν)φp(y|μ,�)
1(A)
]

and

E[UrW
1

(
U1/2A

)|y] = 2

f (y)

[
νγ rφp

(
y|μ, γ −1�

)
φ1
(
γ 1/2A

)

+(1 − ν)φp(y|μ,�)φ1(A)
]
.

Corollary 3.6 Under the notation of Proposition 3.5, if Y ∼ SCNp(μ,�,

λ, ν, γ ), then

E[Y2|y1] = μ2.1 + 2�22.1υ2

f (y1)

√
1 + υ�

2 �22.1υ2

×
[
νγ −1/2φp1

(
y1|μ1, γ

−1�11
)
φ1
(
γ 1/2υ̃�(y1 − μ1)

)

+ (1 − ν)φp1(y1|μ1,�11)φ1
(
υ̃�(y1 − μ1)

)]
,

where dy1 = (y1 − μ1)
��−1

11 (y1 − μ1).

In Fig. 3.1, we depict the density of the standard distribution SN1(3) together
with the standard densities of the distributions ST1(3, 2), SSL1(3, 1), and
SNC1(3, 0.5, 0.5). They are rescaled so that they have the same value at the
origin. Note that the four densities are positively skewed, and that the skew-
slash and the skew-t distributions have much heavier tails than the skew-normal
distribution. Figure 3.2 depicts some contours of the densities associated with
the standard bivariate skew-normal distribution SN2(λ), the standard bivariate
skew-t distribution ST2(λ, 2), the standard bivariate skew-slash distribution
SSL2(λ, 1), and the standard bivariate skew-contaminated normal distribution
SCN2(λ, 0.5, 0.5), with λ = (2, 1)� for all the distributions. Note that these
contours are not elliptical and they can be strongly asymmetric depending on the
choice of the parameters.

3.3.2 A Simulation Study

To illustrate the usefulness of the SMSN distribution, we perform a small simulation
to study the behavior of two location estimators, the sample mean and the sample
median, under four different standard univariate settings. In particular, we consider
a standard skew-normal SN1(3), a skew-t ST1(3, 2), a skew-slash SSL1(3, 1),
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Fig. 3.1 Densities curves of the univariate skew-normal, skew-t, skew-slash, and skew-
contaminated normal distributions

and a skew-contaminated normal SCN1(3, 0.9, 0.1). The mean of all asymmetric
distributions is adjusted to zero, so that all four distributions are comparable. Thus,
this setting represents four distributions with the same mean, but with different
tail behaviors and skewness. Note that the skew-slash and skew-t will have infinite
variance when ν = 1 and 2, respectively. We simulate 500 samples of size n = 100
from each of these four distributions. For each sample, we compute the sample
mean and the sample median and report the boxplot for each distribution in Fig. 3.3.
In the left panel, we observe that all boxplots of the estimated means are centered
around zero but have larger variability for the heavy-tailed distributions (skew-t and
skew-slash). In the right panel, we see that the boxplots of the estimated medians
has a slightly larger variability for the skew-normal and skew-contaminated normal
and has a much smaller variability for skew-t and skew-slash distributions. This
indicates that the median is a robust estimator of location at asymmetric light tailed
distributions. On the other hand, the median estimator becomes biased as soon as
unexpected skewness and heavy-tailed arise in the underlying distribution.
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Fig. 3.2 Contour plot of some elements of the standard bivariate SMSN family. (a) SN2(λ), (b)
ST2(λ, 2), (c) SCN2(λ, 0.5, 0.5), (d) SSL2(λ, 1), where λ = (2, 1)�

3.4 Maximum Likelihood Estimation

This section presents an EM algorithm for performing maximum likelihood esti-
mation for multivariate SMSN responses. EM algorithms for particular cases of the
skew-normal and skew-t distributions were considered in Lin (2009, 2010) (see also
Lachos et al. 2007), respectively.

Suppose that we have observations on n independent subjects, Y1, . . . , Yn,

where Yi ∼ SMSNp(μ,�,λ;H), i = 1, . . . , n. The parameter vector is defined
to be θ = (μ�,α�,λ�)�, where α denotes a minimal set of parameters such that
�(α) is well defined (e.g., the upper triangular elements of � in the unstructured
case).

In what follows, we illustrate the implementation of likelihood inference for the
multivariate SMSN via the EM algorithm. Notice that, by using (3.12), the set-up
defined above can be written as

Yi |Ti = ti , Ui = ui,
ind∼ Np

(
μ + ti�

1/2δ, u−1
i �1/2(Ip − δδ�)�1/2), (3.18)
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Fig. 3.3 Boxplots of the sample mean (left panel) and sample median (right panel) on 500 samples
of size n = 100 from the four standardized distributions: SN1(3); ST1(3, 2); SSL1(3, 1), and
SNC1(3, 0.9, 0.1). The respective means are adjusted to zero

Ti |Ui = ui
iid∼ HN

(
0, u−1

i

)
(3.19)

Ui
ind∼ h(ui; ν), (3.20)

i = 1, . . . , n, all independent, where HN(0, 1) denotes the univariate standard half-
normal distribution. We assume that the parameter vector ν is known. In applications
the optimum value of ν can be determined using the profile likelihood and the
Schwarz information criterion (see Lange and Sinsheimer 1993).

Let y = (y�
1 , . . . , y�

n )� u = (u1, . . . , un)
� and t = (t1, . . . , tn)

�. Then,
under the hierarchical representation (3.18)–(3.20), with � = �1/2δ and � =
� − ���, it follows that the complete log-likelihood function associated with
yc = (y�, u�, t�)� is

�c(θ |yc)

= c − n

2
log |�| − 1

2

n∑

i=1

ui(yi − μ − �ti )
��−1(yi − μ − �ti ) (3.21)
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where c is a constant that is independent of the parameter vector θ . Letting ûi =
E[Ui |θ = θ̂ , yi], ût i = E[UiTi |θ = θ̂ , yi] , ût2

i = E[UiT
2
i |θ = θ̂, yi] and using

known properties of conditional expectation we obtain

ûti = ûi μ̂T i + M̂Ti
η̂i (3.22)

ût2
i = ûi μ̂

2
Ti

+ M̂2
Ti

+ M̂Ti
μ̂Ti

η̂i , (3.23)

where η̂i = E

[

U
1/2
i W
1

(
U

1/2
i μ̂Ti

M̂Ti

)

|̂θ , yi

]

, W
1(x) = φ1(x)/
1(x), M̂2
T =

1/(1 + �̂
�
�̂

−1
�̂) and μ̂Ti

= M̂2
Ti

�̂
�
�̂

−1
(yi − μ), i = 1, . . . , n.

Since
μTi

MTi

= λ��−1/2(yi − μ), the conditional expectations given in (3.22)

and (3.23), specifically ûi and η̂i , can be easily derived from the results given in
Sect. 3.3.1. Thus, at least for the skew-t and skew-contaminated normal distributions
of the SMSN class we have closed form expressions for the quantities ûi and η̂i . For
the skew-slash case, Monte Carlo integration may be employed, which yields the
so-called MC-EM algorithm.

It follows, after some simple algebra and using (3.22)–(3.23), that the conditional
expectation of the complete log-likelihood function has the form

Q
(
θ |̂θ) = E

[
�c(θ |yc)|y, θ̂

] = c − n

2
log |�| − 1

2

n∑

i=1

ûi (yi − μ)��−1(yi − μ)

+
n∑

i=1

ûti (yi − μ)��−1� − 1

2

n∑

i=1

ût2
i�

��−1�.

Then, we have the following EM-type algorithm:

E-Step Given θ = θ̂ , compute ût2
i , ûti and ûi , for i = 1, . . . , n, using (3.22)

and (3.23).

M-Step Update θ̂ by maximizing Q(θ |̂θ) over θ , which leads to the following
closed form expressions

μ̂ =
n∑

i=1

(
ûiyi − ûti�

)
/

(
n∑

i=1

ûi

)

, (3.24)

�̂ = 1

n

n∑

i=1

[
ûi (yi − μ)(yi − μ)� − 2ût i�(yi − μ)� + ût2

i���] ,

�̂ =
∑n

i=1 ût i (yi − μ)
∑n

i=1 ût2
i

.
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The skewness parameter vector and the unstructured scale matrix can be esti-

mated by noting that �̂ = �̂+�̂�̂
T

and λ̂ = �̂
−1/2

�̂/(1−�̂
�
�̂

−1
�̂)1/2. It is clear

that when λ = 0 (or � = 0) the M-step equations reduce to the equations obtained
assuming an SMN distribution. Note also that this algorithm clearly generalized the
results found in Lachos et al. (2007, Section 2) by taking Ui = 1, i = 1, . . . , n.
Useful starting values required to implement this algorithm are those obtained under
the normality assumption, with the starting values for the skewness parameter vector
set equal to 0. However, in order to ensure that the true ML estimate is identified,
we recommend running the EM algorithm using a range of different starting values.
The log-likelihood function for θ = (μ�,α�,λ�)�, given the observed sample
y = (y�

1 , . . . , y�
n )� is of the form

�(θ) =
n∑

i=1

�i(θ), (3.25)

where �i(θ) = log 2 − p

2
log2π − 1

2
log |�| + log Ki , with

Ki = Ki(θ) =
∫ ∞

0
u

p/2
i exp

{

−1

2
uidi

}


1

(
u

1/2
i Ai

)
dH(ui),

where di = (yi − μ)��−1(yi − μ) and Ai = λ��−1(yi − μ).

3.5 The Observed Information Matrix

In this section we develop the observed information matrix in a general form.
Suppose that we have observations on n independent individuals, Y1, . . . , Yn,

where Yi ∼ SMSNp(μ,�,λ;H), i = 1, . . . , n. Then, the log-likelihood function
for θ = (μ�,α�,λ�)� ∈ R

q , given the observed sample y = (y�
1 , . . . , y�

n )�, is of
the form

�(θ) =
n∑

i=1

�i(θ), (3.26)

where �i(θ) = log 2 − ni

2
log 2π − 1

2
log |�| + log Ki , with

Ki = Ki(θ) =
∫ ∞

0
u

ni/2
i exp

{

−1

2
uidi

}


1(u
1/2
i Ai)dH(ui),

and di = (yi − μ)��−1(yi − μ), Ai = λ�
i �−1(yi − μ). Using the notation
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I

i (w) =

∫ ∞

0
uw

i exp

{

−1

2
uidi

}


1
(
u

1/2
i Ai

)
dH(ui),

I
φ
i (w) =

∫ ∞

0
uw

i exp

{

−1

2
uidi

}

φ1
(
u

1/2
i Ai |0, 1

)
dH(ui),

so that Ki(θ) can be expressed as Ki(θ) = I

i (

ni

2 ), i = 1, . . . , n, it follows that the
matrix of second derivatives with respect to θ is given by

L =
n∑

i=1

∂2�i(θ)

∂θ∂θ� = −1

2

n∑

i=1

∂2 log |�i |
∂θ∂θ� −

n∑

i=1

1

K2
i

∂Ki

∂θ

∂Ki

∂θ� +
n∑

i=1

1

Ki

∂2Ki

∂θ∂θ� ,

(3.27)
where

∂Ki

∂θ
= I

φ
i

(
ni + 1

2

)
∂Ai

∂θ
− 1

2
I

i

(
ni + 2

2

)
∂di

∂θ

and

∂2Ki

∂θ∂θ� = 1

4
I

i

(
ni + 4

2

)
∂di

∂θ

∂di

∂θ� − 1

2
I

i

(
ni + 2

2

)
∂2di

∂θ∂θ� (3.28)

−1

2
I

φ
i

(
ni + 3

2

)(
∂Ai

∂θ

∂di

∂θ� + ∂di

∂θ

∂Ai

∂θ�

)

− I
φ
i

(
ni + 3

2

)

Ai

∂Ai

∂θ

∂Ai

∂θ�

+I

i

(
ni + 1

2

)
∂2Ai

∂θ∂θ� .

From Propositions 3.8–3.10 we have that, for each distribution considered in this
work, the integrals above can be written as

• Skew-t.

I

i (w) = 2wνν/2�(w + ν/2)

�(ν/2)(ν + di)ν/2+w
T1

(
Ai

(di + ν)1/2

√
2w + ν|0, 1, 2w + ν

)

and

I
φ
i (w) = 2wνν/2

√
2π�(ν/2)

(
1

di + A2
i + ν

) ν+2w
2

�

(
ν + 2w

2

)

.

• Skew-slash.

I

i (w) = 2w+ν�(w + ν)

dw+ν
i

P1

(

w + ν,
di

2

)

E
[


(
S

1/2
i Ai

)]
and



36 3 Scale Mixtures of Skew-Normal Distributions

I
φ
i (w) = ν2w+ν�(w + ν)√

2π
(
di + A2

i

)w+ν
P1

(

w + ν,
di + A2

i

2

)

,

where Si ∼ Gamma(w + ν,
di

2 )I(0,1).
• Skew-contaminated normal.

I

i (w) = √

2π

{

νγ w−1/2φ1

(

di |0,
1

γ

)



(
γ 1/2Ai

)+ (1 − ν)φ1(di |0, 1)
(Ai)

}

and

I
φ
i (w) = νγ w−1/2φ1

(

di + A2
i |0,

1

γ

)

+ (1 − ν)φ1
(
di + A2

i

)
.

The derivatives of log �i , di , and Ai are direct and are not given here. Asymptotic
confidence intervals and tests on the ML estimates can be obtained using this matrix.
Thus, if J = −L denotes the observed information matrix for the marginal log-
likelihood �(θ), then asymptotic confidence intervals and hypotheses tests for the
parameter θ ∈ R

q are obtained assuming that the MLE θ̂ has approximately an
Nq(θ , J−1) distribution. In practice, J is usually unknown and has to be replaced
by the MLE Ĵ, that is, the matrix Ĵ evaluated at the MLE θ̂ (see Sect. 2.2). More
generally speaking, for models as those in Proposition 3.5, the observed information
matrix can be derived from the results given here.



Chapter 4
Univariate Mixture Modeling Using
SMSN Distributions

In this chapter we consider a flexible class of probability distributions, convenient
for modeling data with skewness behavior, discrepant observations, and population
heterogeneity. The elements of this family are convex linear combinations of densi-
ties that are scale mixtures of skew-normal distributions. An EM-type algorithm
for maximum likelihood estimation is developed and the observed information
matrix is obtained. These procedures are discussed with emphasis on finite mixtures
of skew-normal, skew-t, skew-slash, and skew-contaminated normal distributions.
Essentially, the work is based on Basso et al. (2010), which is an extension of Lin
et al. (2007a,b). The proposed EM-type algorithm and methods are implemented in
the R package mixsmsn (Prates et al. 2013).

4.1 Introduction

The literature on maximum likelihood estimation of the parameters of the normal
and Student-t mixture models—hereafter the FM-NOR and the FM-T models,
respectively—is very extensive, see McLachlan and Peel (2000) and the references
herein, Peel and McLachlan (2000), Nityasuddhi and Böhning (2003), Biernacki
and Govaert (2003), and Dias and Wedel (2004), for example. The standard
algorithm in this case is the so-called EM (Expectation-Maximization) of Dempster
et al. (1977), or maybe some extension like the ECM (Meng and Rubin 1993) or the
ECME (Liu and Rubin 1994) algorithms. For a good review, including applications
in finite mixture models, see McLachlan and Krishnan (2008).

It is well known that robustness is achieved by modeling the outlier using the
Student-t distribution. Finite mixtures of these distributions are useful when there is,
besides discrepant observations, unobserved heterogeneity. Here, we suggest a class
of models to deal with extra skewness, extending the work of Lin et al. (2007b)
and (2007a), where finite mixtures of skew-normal and skew-t distributions are

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018
V. H. Lachos Dávila et al., Finite Mixture of Skewed Distributions,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-98029-4_4
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investigated, respectively. The mixture components distributions are assumed to
belong to the SMSN family. As commented in Chap. 3, this class contains the entire
family of SMN distributions. In addition, the skew-normal and skewed versions of
some other classical symmetric distributions are SMSN members: the skew-t, the
skew-slash (SSL), and the skew-contaminated normal (SCN), for example. These
distributions have heavier tails than the skew-normal (and the normal) one, and thus
they seem to be a reasonable choice for robust inference.

The remainder of the chapter is organized as follows. In Sect. 4.2 we propose a
finite mixture of scale mixtures of skew-normal distributions (FM-SMSN) and an
EM-type algorithm for maximum likelihood estimation. The associated observed
information matrix is obtained analytically in Sect. 4.3. In Sect. 4.4 we present a
simulation study to show that the proposed models are robust in terms of clustering
heterogeneous data and that the maximum likelihood estimates based on the EM-
type algorithm do provide good asymptotic properties. Additionally, we report some
model selection criteria via simulation. The methodology proposed is illustrated in
Sect. 4.5, considering the analysis of a real data set.

4.2 The Proposed Model

The finite mixture of SMSN distributions model (FM-SMSN) is defined by con-
sidering a random sample Y = (Y1, . . . , Yn)

� from a G-component mixture of
univariate SMSN densities given by

f (yi |θ) =
G∑

j=1

pjg(yi |θ j ), pj ≥ 0,

G∑

j=1

pj = 1, i = 1, . . . , n, j = 1, . . . ,G,

(4.1)
where θ j = (μj , σ

2
j , λj , ν

�
j )� is the specific vector of parameters for the compo-

nent j , g(·|θ j ) is the SMSN(θ j ) density, p1, . . . , pG are the mixing probabilities
and θ = ((p1, . . . , pG)�, θ�

1 , . . . , θ�
G)� is the vector with all parameters. Concern-

ing the parameter νj of the mixing distribution H(.), for j = 1, . . . ,G, it is worth
noting that it can be a vector of parameters, e.g. the skew-contaminated normal
distribution. For computational convenience we assume that ν1 = . . . = νG = ν.
This strategy works very well in the empirical studies that we have conducted and
greatly simplify the optimization problem.

As in (2.1), for each i and j , consider the latent indicator variable Zij such that

P(Zij = 1) = 1 − P(Zij = 0) = pj ,

G∑

j=1

Zij = 1 and

Yi |Zij = 1 ∼ SMSN(θ j ). (4.2)
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Note that integrating out Zi = (Zi1, . . . , ZiG)� we obtain the marginal
density (4.1). Z1, . . . , Zn are independent random vectors, with Zi ∼
Multinomial(1;p1 . . . , pG).

These latent vectors appear in the hierarchical representation given next, which
is used to build the ECME algorithm. From (4.2) along with (3.18)–(3.20), it can be
written as

Yi |Ui = ui, Ti = ti , Zij = 1 ∼ N
(
μj + �j ti, u

−1
i �j

)
, (4.3)

Ti |Ui = ui, Zij = 1 ∼ HN
(
0, u−1

i

)
, (4.4)

Ui |Zij = 1 ∼ H(ui; ν) (4.5)

and

Zi ∼ Multinomial(1;p1 . . . , pG), (4.6)

with i = 1, . . . , n and j = 1, . . . ,G, where

�j =
(

1 − δ2
j

)
σ 2

j , �j = σj δj , and δj = λj
√

1 + λ2
j

. (4.7)

4.2.1 Maximum Likelihood Estimation via EM Algorithm

In this subsection we show how to implement the EM algorithm for maximum
likelihood estimation of the parameters of an FM-SMSN distribution.

By using (4.3)–(4.6), we have that the complete-data log-likelihood function is

�c(θ) = c +
n∑

i=1

G∑

j=1

zij

(
log(pj ) − 1

2
log |�j | − ui

2�j

(yi − μj − �j ti)
2

+ log(h(ui; ν))
)
,

where c is a constant that is independent of the parameter vector θ and h(·; ν) is the
density of Ui . Defining the following quantities

ẑij = E
[
Zij |̂θ , yi

]
, ẑuij = E

[
ZijUi |̂θ, yi

]
, ẑut ij = E

[
ZijUiTi |̂θ, yi

]
,

ẑut2
ij = E

[
ZijUiT

2
i |̂θ , yi

]
,

and using known properties of conditional expectation, we obtain
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ẑij = p̂j g
(
yi |̂θ j

)

∑G
j=1 p̂j g

(
yi |̂θ j

) , (4.8)

ẑuij = ẑij ûij , ẑut ij = ẑij

(
ûij m̂ij + M̂j η̂ij

)
,

ẑut2
ij = ẑij

(
ûij m̂

2
ij + M̂2

j + M̂j m̂ij η̂ij

)
,

where

η̂ij = E

[

U
1/2
i W
1

(
U

1/2
i m̂ij

M̂j

)

| θ̂, yi, Zij = 1

]

,

M̂2
j = �̂j

�̂j + �̂2
j

, m̂ij = �̂j

�̂j + �̂2
j

(
yi − μ̂j

)

and

ûij = E
[
Ui |̂θ, yi, Zij = 1

]
, i = 1, . . . , n, j = 1, . . . , G.

Once again, in each step, the conditional expectations ûij and η̂ij can be easily
derived from the results given in Sect. 3.3.1. Thus, the Q-function is given by

Q(θ |̂θ (k)
) = c +

n∑

i=1

G∑

j=1

(

ẑ
(k+1)
ij

(

log(pj ) − 1

2
log |�j |

)

− 1

2�j

(
û

(k+1)
ij (yi − μj )

2

−2(yi − μj )�j ẑut
(k+1)
ij + �2

j ẑut2(k+1)

ij

)

+E
[
Zij log(h(Ui; ν))|̂θ (k)

, yi

])
.

When the M-step turns out to be analytically intractable, it can be replaced with
a sequence of conditional maximization (CM) steps. The resulting procedure is
known as the ECM algorithm. The ECME algorithm, a faster extension of EM and
ECM, is obtained by maximizing the constrained Q-function with some CM-steps
that maximize the corresponding constrained actual marginal likelihood function,
called CML-steps. Next, we describe this EM-type algorithm (ECME) for maximum
likelihood estimation of the parameters of the FM-SMSN.

E-Step Given a current estimate θ̂
(k)

, compute ẑij , ẑuij , ẑut ij , ẑut2
ij , for i =

1, . . . , n and j = 1, . . . ,G.

CM-Steps Update θ̂
(k)

by maximizing Q(θ |̂θ (k)
) = E[�c(θ)|y, θ̂

(k)] over θ , which
leads to the following closed form expressions:



4.2 The Proposed Model 41

p̂
(k+1)
j

= n−1
n∑

i=1

ẑ
(k+1)
ij

,

μ̂
(k+1)
j

=
n∑

i=1

(
ẑu

(k+1)
ij

yi − �̂
(k)
j

ẑut
(k+1)
ij

)/ n∑

i=1

ẑu
(k+1)
ij

,

�̂
(k+1)
j

=
n∑

i=1

(
yi − μ̂

(k+1)
j

)
ẑut

(k+1)
ij

/ n∑

i=1

ẑut2(k+1)

ij , and

�̂
(k+1)
j

=
∑n

i=1

(

ẑu
(k+1)
ij

(
yi − μ̂

(k+1)
j

)2 − 2
(
yi − μ̂

(k+1)
j

)
�̂

(k+1)
j

ẑut
(k+1)
ij

+
(
�̂2

j

)(k+1)
ẑut2(k+1)

ij

)

∑n
i=1 ẑ

(k+1)
ij

.

CML-Step Update ν̂(k) by maximizing the actual marginal log-likelihood function,
obtaining

ν̂(k+1) = argmaxν

n∑

i=1

log

⎛

⎝
G∑

j=1

p̂
(k+1)
j g

(
yi |μ̂(k+1)

j , σ̂
2(k+1)
j , λ̂

(k+1)
j , ν

)
⎞

⎠ .

(4.9)
This process is iterated until a suitable convergence rule is satisfied, e.g. if

||̂θ (k+1) − θ̂
(k)|| is sufficiently small, or until some distance involving two suc-

cessive evaluations of the actual log-likelihood �(θ), like ||�(̂θ (k+1)
) − �(̂θ

(k)
)||

or ||�(̂θ (k+1)
)/�(̂θ

(k)
) − 1||, is small enough. See Dias and Wedel (2004) for a

discussion in the context of mixtures of univariate normal distributions.
An important feature of this algorithm is that, for skew-normal data, that is, Ui =

1, for i, . . . , n, we have explicit solutions for the M-step—see the CM-steps above.
Also, for general Ui , numerical methods, like the Newton’s Method, are needed for
solving Eq. (4.9). On the other hand, the algorithms proposed by Lin et al. (2007b)
(skew-normal case) and Lin et al. (2007a) (skew-t case) do not produce closed
form expressions to obtain current estimates for the skewness parameter. In our
case, parameterization (4.7) allows us to circumvent this problem easily.

An usual criticism is that EM-type procedures tend to get stuck in local modes.
A convenient way to avoid such limitations is to try several EM iterations with a
variety of starting values. If there exist several modes, one can find the global mode
by comparing their relative masses and log-likelihood values.
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4.2.2 Notes on Implementation

It is well known that mixture models may provide a multimodal log-likelihood
function. In this sense, the method of maximum likelihood estimation through EM
algorithm may not give maximum global solutions if the starting values are far from
the real parameter values. Thus, the choice of starting values for the EM algorithm
in the mixture context plays a big role in parameter estimation. In our examples and
simulation studies we consider the following procedure for the FM-SMSN model

• Partition the sample into G groups using the K-means clustering algorithm
(Hartigan and Wong 1979);

• Compute the proportion of data points belonging to the same cluster j , say p̂
(0)
j ,

j = 1, . . . ,G. This is the initial value for pj ;

• For each group j , compute the initial values μ̂
(0)
j , σ̂

2(0)
j , and λ̂

(0)
j using the

following method of moments (see Proposition 3.7). First, we consider ν fixed.
Let us denote the method of moments estimator of θ = (μ, σ 2, δ)� by θ̃ =
(μ̃, σ̃ 2, δ̃)�, where δ = λ/

√
1 + λ2. The estimator is given by

M3

(

k2 − 2

π
k2

1 δ̃2
)3/2

= (M2)
3/2(a1 + a2δ̃

2)δ̃,

σ̃ 2 = M2
(
k2 − 2

π
k2

1 δ̃2
)

and

μ̃ = M1 − k1

√
2

π
σ̃ δ̃,

where M1 = 1
n

∑n
i=1 yi , M2 = 1

n

∑n
i=1(yi − y)2, M3 = 1

n

∑n
i=1(yi − y)3,

km = E(U−m/2), a1 = 3(2/π)1/2(k3 − k1k2), a2 = 2(2/π)3/2k3
1 − (2/π)k3 and

U is the scale factor of Y ∼ SMSNp(μ, σ 2, λ;H). Although we do not have a
closed form expression for δ̃, we can apply some computational procedures (such
as the Newton-Raphson method) to obtain numerical solutions. However, when
U = 1, the equations above reduce to the equations obtained by Arnold et al.
(1993); see also Lin et al. (2007b).

The range for the skewness coefficient γ1 of the SN distribution is approximately
(−0.9953, 0.9953) (Azzalini 2005). But the method of moments can produce an
initial value γ̂

(0)
1 that is not in this interval. In this case, we use as starting points the

values −0.99 (if γ̂
(0)
1 ≤ −0.9953) or 0.99 (if γ̂

(0)
1 ≥ 0.9953).

When modeling using the FM-ST, FM-SCN or the FM-SSL models we adopt the
following strategy:

• Obtain initial values via method of moments for the FM-SN model, as described
above;
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• Perform maximum likelihood estimation of the parameters of the FM-SN model
via ECME algorithm;

• Use the ECME estimates of the location, scale, and skewness parameters of
the FM-SN model as initial values for the corresponding FM-ST and FM-SCN
parameters;

• The starting values for ν are taken close to 10 in the FM-ST case and ν =
(0.5, 0.5)� in the FM-SCN case. For the FM-SSL model, the starting value was
fixed as the ECME estimate of ν for the FM-ST model.

4.3 The Observed Information Matrix

It is well known that, under some regularity conditions, the covariance matrix of
the maximum likelihood estimates θ̂ can be approximated by Jo(̂θ |Y)−1/n, where
Jo(̂θ |Y)−1 is the inverse of observed information matrix, see (2.6). By (2.7), we
evaluate

Jo

(
θ̂ |Y) =

n∑

i=1

ŝîs�
i , (4.10)

where

ŝi =
∂
(

log
∑G

j=1 pjg(yi |θ j )
)

∂θ

∣
∣
θ=θ̂ .

We consider now the vector ŝi which is partitioned into components correspond-
ing to all the parameters in θ as

ŝi = (ŝi,p1 , . . . , ŝi,pG−1 , ŝi,μ1 , . . . , ŝi,μG
, ŝi,σ 2

1
, . . . , ŝi,σ 2

G
, ŝi,λ1 , . . . , ŝi,λG

, ŝi,ν
)�

,

where the coordinate elements in ŝi are given by

ŝi,pr = g(yi |θ r ) − g(yi |θG)

f (yi |θ)
, ŝi,μr = prDμr (g(yi |θ r ))

f (yi |θ)
,

ŝi,σ 2
r

= prDσ 2
r
(g(yi |θ r ))

f (yi |θ)
, ŝi,λr = prDλr (g(yi |θ r ))

f (yi |θ)

and

ŝi,ν =
∑G

j=1 pjDν(g(yi |θ r ))

f (yi |θ)
,
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where

Dμr (g(yi |θ r )) = ∂

∂μr

(g(yi |θ r ))

and Dσ 2
r
, Dλr , and Dν are defined by analogy, r = 1, . . . , G. Note that Dν(g(yi |θ r ))

must be obtained for each particular case (i.e., ST, SSL, and SCN). Let us define

I

ir (w) =

∫ ∞

0
uw

i exp

{

−1

2
uidir

}



(
u

1/2
i Air

)
dH(ui)

and

I
φ
ir (w) =

∫ ∞

0
uw

i exp

{

−1

2
uidir

}

φ
(
u

1/2
i (Air )

1/2
)

dH(ui),

where

dir = (yi − μr)
2

σ 2
r

and Air = λr

(yi − μr)

σr

, i = 1, . . . , n, r = 1, . . . , G.

After some algebraic manipulation, we obtain

Dμr (g(yi |θ r )) = 2
√

2πσ 2
r

[

−σ−1
r λrI

φ
ir (1) + (yi − μr)

σ 2
r

I

ir (3/2)

]

,

Dσ 2
r
(g(yi |θ r )) = 2√

2π

[

−1

2
σ−3

r I

ir (1/2) + (yi − μr)

2σ−4
r I


ir (3/2)

−λrσ
−3
r (yi − μr)I

φ
ir (1)

]
,

and

Dλr (g(yi |θ r )) = 2
√

2πσ 2
r

σ−1
r (yi − μr)I

φ
ir (1).

Lachos et al. (2010) have shown that, for each distribution considered in this
work, we have closed form expressions for the quantities I


ir (w), I
φ
ir (w) and

Dν(g(yi |θ r )), i = 1, . . . , n, r = 1, . . . ,G, as follows:
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4.3.1 The Skew-t Distribution

I

ir (w) = 2wνν/2�(w + ν/2)√

2π�(ν/2)(ν + dir )ν/2+w
T

(
Air

(dir + ν)1/2

√
2w + ν; 2w + ν

)

,

I
φ
ir (w) = 2wνν/2

√
2π�(ν/2)

(
1

dir + A2
ir + ν

) ν+2w
2

�

(
ν + 2w

2

)

,

and

Dν(g(yi |θ r )) = 1
√

2πσ 2
r

[
(log(ν/2) + 1 + DG(ν/2)I


ir (1/2) − I

ir (3/2)

+
∫ ∞

0
u1/2 log(u) exp(−u dir/2)
(u1/2Air)h(u; ν)du

]

.

4.3.2 The Skew-Slash Distribution

I

ir (w) = 22+ν�(w + ν)

dw+ν
ir

P1(w + ν, dir/2)E
[


(
S

1/2
ir

)
Air

]
,

I
φ
ir (w) = ν2w+ν�(w + ν)√

2π(dir + A2
ir )

w+ν
P1

(

w + ν,
dir + A2

ir

2

)

,

where Sir ∼ Gamma(w + ν, dir/2)I(0,1) and

Dν(g(yi |θ r )) = 2
∫ 1

0
uν−1[1 + ν log(ui)]φ

(
yi;μr, u

−1σ 2
r

)


(
u1/2Air

)
dui.

4.3.3 The Skew-Contaminated Normal Distribution

I

ir (w) = √

2π
{
νγ w−1/2φ

(√
dir ; 0,

1

γ

)


(
γ 1/2Air

)

+(1 − ν)φ(
√

dir )
(Air )
}
,

I
φ
ir (w) = νγ w−1/2φ

(

(dir + A2
ir )

1/2; 0,
1

γ

)
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+(1 − ν)φ
((

dir + A2
ir

)1/2; 0, 1
)

,

Dν(g(yi; θ r )) = 2
(
φ
(
yi;μr, γ

−1σ 2
r

)


(
γ 1/2Air

)− g
(
yi |μr, σ

2
r

)

(Air)

)

and

Dγ (g(yi |θ r )) = ν√
2πσ 2

γ 1/2 exp(−γ dir/2)
[
γ −1


(
γ 1/2Air

)

+φ
(
γ −1/2Air

)
Airγ

−1/2

−
(γ 1/2Air)dir

]
.

The information-based approximation (4.10) is asymptotically applicable. How-
ever, it may not be reliable unless the sample size is large. In practice, it is
common to perform the bootstrap approach (Efron and Tibshirani 1986) to obtain
an alternative estimate of the covariance matrix of θ̂ . The bootstrap method may
provide more accurate standard error estimates than (4.10). However, it requires an
enormous amount of computation.

4.4 Simulation Studies

In order to examine the performance of the proposed method, we present some
simulation studies. The first simulation study shows that the underlying FM-
SMSN models are robust in the ability to cluster heterogeneous data. The second
simulation study shows that our proposed ECME algorithm estimates do provide
good asymptotic properties. In the third study we compare some model selection
criteria.

4.4.1 Study 1: Clustering

First, we investigate the ability of the FM-SMSN models in clustering observations,
that is, allocate them into groups of observations that are similar in some sense. We
know that each data point belongs to one of G heterogeneous populations, but we do
not know how to discriminate between them. Modeling by mixture models allows
clustering of the data in terms of the estimated (posterior) probability that a single
point belongs to a given group.

A lot of work in model-based clustering has been done using finite mixtures
of normal distributions. As the posterior probabilities ẑij —see (4.8)—can be highly
influenced by atypical observations, there were efforts to develop robust alternatives,
like mixtures of Student-t distributions (see McLachlan and Peel (1998) and the
references herein). Our idea is to extend the flexibility of these models, by including
possible skewness of the related components.
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We generated 500 samples from a mixture of two SMSN densities and, for each
sample, proceeded clustering ignoring the known true classification. The FM-SMSN
models were fitted using the algorithm described in Sect. 4.2.1, in order to obtain
the estimate of the posterior probability that an observation yi belongs to the j th
component of the mixture, ẑij . Then, the threshold value 0.5 was used to allocate the
observation to some specific component. For sample l, l = 1, . . . , 500, we compute
the rate rl , the number of correct allocations divided by the sample size n. When
fitting the FM-SSL model, the parameter ν was considered known and we fixed
ν = 2. We have not considered modeling using the FM-SSL model with unknown
ν because, in this case, the algorithm is very time-consuming.

We fixed the parameter values at μ1 = 15, μ2 = 20, σ 2
1 = 20, σ 2

2 = 16, λ1 = 6,
λ2 = −4, p1 = 0.8, and ν = 3. For the SCN case we fixed (ν1, γ1) = (ν2, γ2) =
(0.2, 0.2). The sample sizes considered were n = 100, 500, 1000.

In Fig. 4.1a we plot a histogram of one sample taken from an FM-ST population
with n = 500. It shows a mixture of skew-t observations that overlap largely,
meaning that the data in the components are poorly separated. Note that, although
we have a two-component mixture, the histogram need not to be bimodal.
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Fig. 4.1 Artificial FM-ST data (n = 500) with two components: (a) poorly separated components;
(b) well-separated components
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Table 4.1 Mean right allocations rates for fitted FM-SMSN models

Fitted model

True model Sample size FM-NOR FM-SN FM-ST FM-SCN FM-SSL

FM-ST 100 0.4102 0.6825 0.7872 0.7879 0.7705

500 0.3067 0.7521 0.8369 0.8340 0.8329

1000 0.2942 0.7834 0.8381 0.8375 0.8361

FM-SCN 100 0.5601 0.6967 0.7783 0.7778 0.7686

500 0.6072 0.7904 0.8324 0.8340 0.8323

1000 0.6406 0.8139 0.8349 0.8346 0.8358

FM-SSL 100 0.5765 0.7602 0.7755 0.7669 0.7562

500 0.6162 0.8216 0.8336 0.8341 0.8324

1000 0.6287 0.8340 0.8336 0.8327 0.8341

Table 4.1 shows the mean value of the correct allocations rates, that is,
(1/500)

∑500
l=1 rl . Comparing with the results for the FM-NOR model, we see that

modeling using the FM-SN, FM-ST, FM-SCN, or FM-SSL distributions represents
a substantial improvement in the outright clustering. Also, the FM-ST, FM-SCN
and FM-SSL models have a better performance when the true model is FM-ST or
FM-SCN, showing their robustness to discrepant observations.

4.4.2 Study 2: Asymptotic Properties

We now investigate some asymptotic properties of the estimates obtained using the
suggested ECME algorithm. The main focus of our interest are on the evaluations
of bias and mean square error. Here we consider only the FM-ST model and the
following sets of true parameter values:

1. The same set used in the previous section, corresponding to poorly separated
components;

2. Changing the true values of the scale and mixing proportion parameters, now
using σ1 = σ2 = 1 and p1 = 0.4, corresponding to well-separated components.
Values for the remaining parameters are the same as before. In Fig. 4.1b we have
a histogram of a sample from this distribution with n = 500.

Sample sizes were fixed as n =100, 500, 1000, 5000, and 10,000. For each
combination of parameters and sample size, 500 samples from the FM-ST model
were artificially generated. Then we compute the bias and mean squared error
(MSE) over all samples. For μj , j = 1, 2, they are defined as

bias = 1

500

500∑

i=1

μ̂
(i)
j − μj and MSE = 1

500

500∑

i=1

(
μ̂

(i)
j − μj

)2
,
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respectively, where μ̂
(i)
j is the ECME estimate of μj when the data is sample i.

Definitions for the other parameters are obtained by analogy.
Tables 4.2 and 4.3 present the results for the poorly (PS) and well-separated

(WS) cases, respectively, with ν = 3 as a reference value, meanwhile Figs. 4.2
and 4.3 show a graphical representation only for the bias in the PS and WS case,
respectively. We can see the following patterns of convergence to zero

1. The WS case. With a sample size greater than 100, the MSE of location
parameters has value less than 0.007, the MSE of scales is less than 0.1, and the
MSE of proportions is less than 0.004. When the sample size is greater than 500,
the MSE for degrees of freedom is less than 0.4. These results are satisfactory,
from our point of view. The worst case scenario seems to happen while estimating
the skewness parameters, perhaps due to the well-known inferential problems
related to the skewness parameter in skew-normal models; see DiCiccio and
Monti (2004), or maybe a sample size greater than 1000 is needed to obtain a
reasonably pattern of convergence.

2. The PS case. Here, reasonably small bias and MSE in mean and mixing
proportions seem to occur for the sample size greater than 500. For the skewness,
scale and degrees of freedom parameters, convergence to zero seems to be slower,
and satisfactory values of MSE seem to occur when n is greater than 1000.

As a general rule, we can say that bias and MSE tend to approach to zero
when the sample size is increasing. These results agree with the remarks made
by Nityasuddhi and Böhning (2003), when studying the asymptotic properties of
the EM estimates for the FM-NOR model.

We have also considered several values for the degrees of freedom parameter ν

(equal to 3, 6, 10, 15, 20, 30, and 50), in order to evaluate the effect of ν on the
estimation of other parameters, notably the scale parameter σ 2

j and the skewness
parameter λj . We did not find any influence of ν parameter, at least for the set of
parameters used in our simulation study. The bias and MSE values were close to
each other, suggesting that they are independent of the value of ν.

4.4.3 Study 3: Model Selection

Here we compare the ability of some classical procedures in choosing between
the underlying FM-SMSN models. We fixed the number of components (G = 2),
sample size (n = 1000), and parameter values (μ1 = 20, μ2 = 30, σ 2

1 = 15,
σ 2

2 = 40, λ1 = 2, λ2 = 10 and p1 = 0.6). Several values for the degrees
of freedom parameter ν (equal to 3, 6, 10, 15 and 30) were taken into account.
Then, for each combination value of the parameters, 500 samples from a mixture
of skew-t densities were artificially generated and, for each sample, we fitted the
FM-SN and the FM-ST models. For each fitted model, we computed the Akaike
Information Criterion (AIC) (Akaike 1974), the Bayesian Information Criterion
(BIC) (Schwarz 1978), the Efficient Determination Criterion (EDC) (Bai et al.
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Fig. 4.2 Bias in ECME estimates—poorly separated components

1989), and the Integrated Completed Likelihood Criterion (ICL) (Biernacki et al.
2000). AIC, BIC, and EDC have the form

− 2�
(
θ̂
)+ γ cn, (4.11)

where �(·) is the actual log-likelihood, γ is the number of free parameters that have
to be estimated under the model, and the penalty term cn is a convenient sequence
of positive numbers. We have cn = 2 for AIC and cn = log(n) for BIC. For
the EDC criterion, cn is chosen so that it satisfies the conditions cn/n → 0 and
cn/(log log n) → 0 when n → ∞. Here we use cn = 0.2

√
n, a proposal that was

considered in Bai et al. (1989). The ICL is defined as

−2�∗(θ̂
)+ γ log(n),

where �∗(·) is the integrated log-likelihood of the sample and the indicator latent
variables—see (4.2), given by
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Fig. 4.3 Bias in ECME estimates—well-separated components

Table 4.4 Number of times
(out of 500) the true model is
chosen using different criteria

Degrees of freedom

Criterion 3 6 10 15 30

AIC 500 488 424 330 139

BIC 500 469 279 135 22

EDC 500 475 296 145 33

ICL 438 93 7 1 0

�∗(θ̂
) =

g∑

i=1

∑

j∈Ci

log
(
p̂ig
(
yj |̂θ i

))
,

where Ci is a set of indexes defined as: j belongs to Ci if, and only if, the observation
yj is allocated to component i by the clustering method presented in Sect. 4.4.1.

Table 4.4 shows the number of times the true model is chosen for each
combination of criterion and degrees of freedom. When ν is 3 or 6, all the criteria
have a satisfactory behavior except ICL, which has maintained a low performance
for all remaining values of ν. For ν = 10, 15, and 30, AIC has the best behavior.
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It is known that the ICL criterion penalizes model complexity in the model (like
AIC and BIC) and the inability of the fitted mixture model to provide a reasonable
partition of the data. It is possible to show that the ICL criterion is essentially the
ordinary BIC penalized by the substraction of the estimated mean entropy, which is
a measure of inability—see Biernacki et al. (2000) and McLachlan and Peel (2000,
pp. 216) for details. When choosing between the FM-SN and the FM-ST models
with two components, our simulation results for the PS case have shown that this
measure is often larger for the FM-ST model.

4.5 Application with Real Data

As an application of the methodology proposed in this work, we consider the body
mass index for men aged between 18 and 80 years. The data set comes from the
National Health and Nutrition Examination Survey, made by the National Center
for Health Statistics (NCHS) of the Center for Disease Control (CDC) in the USA.
The problem of obesity has attracted attention in the last few years due to its
strong relationship with many chronic diseases. Body mass index (BMI, kg/m2)
has become the standard measure for overweight and obesity. BMI is defined as the
ratio of body weight in kilograms and body height in meters squared.

This data set was analyzed by Lin et al. (2007a), who considered the reports
made in 1999–2000 and 2001–2002. Originally, the set had 4579 participants with
BMI records. However, to explore the pattern of mixture, they considered only
those participants who have their weights within [39.50 kg, 70.00 kg] and [95.01 kg,
196.80 kg]. The remaining data set consists of 1069 participants in the first subgroup
and 1054 in the second subgroup. The models FM-NOR, FM-T, FM-SN, and FM-
ST, always with two components, were fitted by Lin et al. (2007a). In this paper,
we revisit the BMI data with the aim of providing additional insight by using FM-
SMSN models.

Table 4.5 contains the maximum likelihood estimates (MLE) of the parameters of
the five models: FM-NOR, FM-SN, FM-ST, FM-SCN, and FM-SSL, besides their
corresponding standard errors (SE), computed via the information-based method
presented in Sect. 4.3. For model comparison, we also computed the AIC, BIC,
EDC, and ICL criteria. The criteria values, except ICL, indicate that the FM-SMSN
models with heavy tails (FM-ST, FM-SCN, and FM-SSL) have a significantly better
fit than the FM-NOR and FM-SN models. According to these criteria, contrary to
Lin et al. (2007a), the FM-SSL model has the best fitting result. In Fig. 4.4, we plot
the profile log-likelihood of the parameter ν for the FM-SSL and FM-ST models. It
shows once again that the FM-SN model is not favorable for this data set since, in
both cases, the profile log-likelihood has a significant drop for small values of ν.

Now we compare the FM-NOR, FM-SSL, and FM-ST models when they are
applied to density estimation. We display the fitting results superimposed on a single
set of coordinate axes in Fig. 4.5. Based on the graphical visualization, it appears
that the FM-SSL and the FM-ST models have quite reasonable and better fit than
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the FM-NOR model. It is also important to emphasize that the fitted FM-ST and
FM-SSL densities practically coincide. This is the case also with the log-likelihood
values (log-lik) given in Table 4.5.



Chapter 5
Multivariate Mixture Modeling Using
SMSN Distributions

In this chapter we consider a flexible class of models, with elements that are finite
mixtures of multivariate scale mixtures of skew-normal distributions. A general EM-
type algorithm is employed for iteratively computing parameter estimates and this
is discussed with emphasis on finite mixtures of skew-normal, skew-t, skew-slash,
and skew-contaminated normal distributions. Further, a general information-based
method for approximating the asymptotic covariance matrix of the estimates is
also presented. This part of the theory is based on Cabral et al. (2012), extending
results of Lin (2009) and 2010. The proposed EM-type algorithm and methods are
implemented in the R package mixsmsn (Prates et al. 2013). For a comprehensive
survey on alternative definitions of skew-t and skew-normal distributions and its
applications in the context of mixture models, we refer to Lee and McLachlan (2013,
2014, 2016), and Lin et al. (2018).

5.1 Introduction

For continuous multivariate data, both in the applied and methodological contexts,
much attention has been focussed on the use of normal or Student-t mixture
components, hereafter FM-NOR and FM-T models, respectively. They can be easily
fitted iteratively by parameter estimation via the expectation maximization (EM)
algorithm of Dempster et al. (1977); see also McLachlan and Krishnan (2008). The
FM-T model has an extra attractiveness because the Student-t distribution involves
an additional tuning parameter (the degrees of freedom) which is useful for outlier
accommodation. Developments about the FM-T model include McLachlan and Peel
(2000), Shoham (2002), Shoham et al. (2003), Lin et al. (2004), Wang et al. (2004),
Yu et al. (2006), and Sfikas et al. (2007).

Although these models are attractive, there is a need to check the distributional
assumptions of the mixture components, because the data can present skewness

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018
V. H. Lachos Dávila et al., Finite Mixture of Skewed Distributions,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-98029-4_5
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or heavy-tailed behavior. As an alternative to univariate symmetrical mixtures,
Lin et al. (2007b) proposed a mixture framework based on the skew-normal
(SN) distribution (Azzalini 1985), in order to efficiently deal with population
heterogeneity and skewness. This work was extended by Lin et al. (2007a),
where they also considered robustness to discrepant observations, using mixtures
of the Student-t skewed (ST) distributions defined in Azzalini and Capitanio (2003).
Statistical mixture modeling based on normal, Student-t, and SN distributions can
be viewed as a special case of the ST mixture modeling. See also Cabral et al. (2008)
for an alternative point of view using a Bayesian approach.

Basso et al. (2010) considered estimation for univariate finite mixtures where
components are members of the flexible class of scale mixtures of skew-normal
distributions (SMSN) (Lachos et al. 2010), which is a subclass of the skew-
elliptical class proposed by Branco and Dey (2001). As commented in Chap. 2, this
subclass contains the entire family of normal independent distributions (Lange and
Sinsheimer 1993).

Lin (2009) has proposed multivariate SN mixture models, and Pyne et al. (2009)
and Lin (2010) have proposed multivariate ST mixture models, using the skew
elliptical class introduced by Sahu et al. (2003). In this chapter we present mixture
models where components are members of the SMSN class, as proposed in Cabral
et al. (2012) and Prates et al. (2013). The multivariate SMSN distributions used are
developed primarily from the multivariate SN distribution proposed in Azzalini and
Dalla-Valle (1996). In contrast with previous developments, the version used here
allows us to develop a very simple EM-type algorithm, eliminating some difficulties
like Monte Carlo integration when dealing with SN, ST, or SCN components, which
has as a consequence a considerably reduction of the computational time. Moreover,
our proposal extends (Basso et al. 2010) and the Lin’s papers also, in the sense
that, by definition, the SMSN class contains as proper elements univariate and
multivariate versions of some known scale mixtures of the SN distributions.

The main advances introduced here are: (1) a unified framework for maximum
likelihood estimation through an EM-type algorithm with closed form expressions
for the E-step in most of the cases considered; (2) a unified methodology to approx-
imate the asymptotic covariance matrix of estimates; (3) an extensive simulation
study of properties of the estimates, including consistency, model fit analysis and
ability in clustering observations; (4) A R package mixsmsn (Prates et al. 2013),
available on CRAN, where the proposed methods have been implemented.

The remainder of this chapter is organized as follows. In Sect. 5.2 we propose the
finite mixture of SMSN distributions (FM-SMSN) and the corresponding EM-type
algorithm. Further, some comments about the existence of the maximum likelihood
estimator for FM-SMSN models are given. The related observed information matrix
is derived analytically in Sect. 5.3. The methodology proposed for the FM-SMSN
models is illustrated in Sect. 5.4, where we proceed a simulation study and an
analysis of a real data set. In these examples, besides model fit, we focus on the
clustering of observations, since currently most of the existing model-based cluster
analysis are based on normal or Student-t mixtures. We show that the FM-SMSN
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is a relevant alternative to these families, giving practitioners a more flexible choice
when estimating the cluster structure for their data at hand.

5.2 The Proposed Model

In this section, we define the multivariate finite mixture of SMSN distributions (FM-
SMSN model). Consider a set of independent data vectors Yi , for i = 1, . . . , n,
taken from a G-component mixture of SMSN densities given as

f (y|θ) =
G∑

j=1

pjg(y|μj ,�j ,λj , νj ), pj ≥ 0,

G∑

j=1

pj = 1, (5.1)

where θ = ((θ�
1 , p1), . . . , (θ

�
g , pG))�, with θ j = (μ�

j ,α�
j ,λ�

j , ν�
j )�, j =

1, . . . ,G, being the component specific vector of parameters, g(·|θ j ) is the
SMSNp(θ j ) density and pj

′s are the mixing probabilities. Recalling that αj

denotes a vector with the elements of the upper triangular matrix of �j . We assume
that the distributions of the mixing scale factors are identical to H(·; ν) and thus
θ j = (μ�

j ,α�
j ,λ�

j , ν�)�, for j = 1, . . . ,G.
As usual in the EM framework for mixtures (McLachlan and Peel 2000,

Sec 2.8.2), we introduce a set of latent component indicators Zi = (Zi1, . . . , ZiG)�,
i = 1, . . . , n, where the coordinate j is a binary random variable defined as

Zij =
{

1, if Yi belongs to group j,

0, otherwise
(5.2)

and
∑G

j=1 Zij = 1. That is,

Yi |Zij = 1 ∼ SMSNp(μj ,�j ,λj , ν). (5.3)

The indicators Z1, . . . , Zn are independent, each one with multinomial distribution,
i.e., Zi ∼ Multinomial(1;p1 . . . , pG).

From (5.3) along with (3.18)–(3.20), it follows that the hierarchical representa-
tion for the FM-SMSN model can be written as

Yi |Ui = ui, Ti = ti , Zij = 1 ∼ Np(μj + �j ti , u
−1
i �j ),

Ti |Ui = ui, Zij = 1 ∼ HN(0, u−1
i ),

Ui |Zij = 1 ∼ H(ui |ν), (5.4)

Zi ∼ Multinomial(1;p1 . . . , pg),

i = 1, . . . , n, j = 1, . . . ,G, where
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�j = �
1/2
j δj , δj = λj

√
1 + λ�

j λj

, �j = �j − �j�
�
j .

If Ui = 1 (that is, the skew-normal case) the model is named FM-SN, if Ui ∼
Gamma(ν/2, ν/2) (the skew-t case) it is named FM-ST and so on.

5.2.1 Maximum Likelihood Estimation via EM Algorithm

In this subsection, we implement the EM-type algorithm for the estimation of the
parameters of the FM-SMSN model. Before we start, let us make some comments
about the existence of the maximum likelihood estimator for finite mixture models.

It is well known that the likelihood associated with the FM-NOR model may be
unbounded—see Frühwirth-Schnatter (2006, Chapter 6), for example. FM-SMSN
models also have this feature: for instance, let yi , i = 1, . . . , n, be a random sample
from a mixture of two SMSN densities, SMSNq(·|μ,�1,λ1, ν) with weight p ∈
(0, 1) and SMSNq(·|μ,�2,λ2, ν). Fixing p, �1, λ1, λ2, and ν, we have that the
likelihood function L(·) evaluated at μ = y1 satisfies

L(y1,�2) = g(�2)

n∏

i=2

(ci + hi(�2)) > g(�2)

n∏

i=2

ci,

where

g(�2) =
(
p(2π)−q/2|�1|−1/2 + (1 − p)(2π)−q/2|�2|−1/2

) ∫ ∞

0
κ(u)−q/2dH(u),

ci = pSMSNq(yi |y1,�1,λ1, ν),

hi(�2) = (1 − p)SMSNq(yi |y1,�2,λ2, ν), i = 2, . . . , n

and | · | denotes the determinant of a matrix—the inequality is valid because ci and
hi(�2) are positive. Now, we can choose a sequence of positive definite matrixes
(�

(m)
2 ), m ∈ N, such that limm→∞ |�(m)

2 | = 0. Then, because
∏n

i=2 ci > 0 and

limm→∞ g(�
(m)
2 ) = +∞, we have that limm→∞ L(y1,�

(m)
2 ) = +∞.

Thus, our choice is to follow Nityasuddhi and Böhning (2003). Quoting them:
“it is only fair not to speak about maximum-likelihood estimates, but rather about
the estimates which the EM algorithm provides (some sort of solution of the score
equation) and call them EM algorithm estimates.”

Having done these remarks, let us present the algorithm. We have that, from
representation (5.4), the complete log-likelihood function is
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�c(θ |y, t, u, z) = c +
n∑

i=1

G∑

j=1

Zij

[

log(pj ) − 1

2
log |�j |

−ui

2
(yi − μj − �j ti)

��−1
j (yi − μj − �j ti) + log(h(ui; ν))

]
,

where c is a constant and z = (z�
1 , . . . , z�

n )�. The conditional expectations involved

in the E-step, that is, the computation of Q(θ |̂θ (k)
) = E[�c(θ |y, t, u, z)|y, θ̂

(k)], are

ẑ
(k)
ij = E[Zij |yi , θ̂

(k)], ẑu
(k)
ij = E[ZijUi |yi , θ̂

(k)], ẑut
(k)
ij = E[ZijUiTi |yi , θ̂

(k)],

and ẑut2(k)

ij = E[ZijUiT
2
i |yi , θ̂

(k)].

The expression for ẑu
(k)
ij can be obtained using the relation

E[ZijUi |Yi] = E[ZijE[Ui |Yi , Zij ]|Yi].

For each fixed yi , the distribution of q(Yi , Zij ) = ZijE[Ui |Yi , Zij ] given Yi = yi

is binary, assuming the value q(yi , 1) = E[Ui |Yi = yi , Zij = 1] with probability

P(Zij = 1|Yi = yi ) = ẑ
(k)
ij and zero with probability P(Zij = 0|Yi = yi ). It is

straightforward to show that

ẑ
(k)
ij = p̂

(k)
j g(yi |̂θ (k)

j )

∑G
j=1 p̂

(k)
j g(yi |̂θ (k)

j )
(5.5)

and that the distribution of Ui |Yi = yi , Zij = 1 is the distribution of Ui |Y0 =
yi when Y0 ∼ SMSN(̂θ

(k)

j ). Using similar arguments in order to obtain the other
conditional expectations, we have

ẑu
(k)
ij = ẑ

(k)
ij û

(k)
ij , ẑut

(k)
ij = ẑ

(k)
ij ût

(k)
ij and ẑut2(k)

ij = ẑ
(k)
ij ût2(k)

ij . (5.6)

These expressions can be evaluated using their counterparts for the one-component
case, given in Sect. 3.3.1.

We have adopted the same strategy, used in Chap. 3, to obtain ν̂(k+1), by direct
maximization of the actual marginal log-likelihood (ECME algorithm), avoiding
then the process of computing E[Zij log(h(ui; ν))|yi , θ̂ ]. It can be summarized as
follows:
E-step: Given θ = θ (k), compute ẑ

(k)
ij , ẑu

(k)
ij , ẑut

(k)
ij and ẑut2(k)

ij , for i = 1, . . . , n

and j = 1, . . . ,G.
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M-step:

1. For j = 1, . . . , G, update p̂
(k)
j , μ̂

(k)
j , �̂

(k)
j and �̂

(k)

j using the following closed
form expressions

p̂
(k+1)
j = n−1

n∑

i=1

ẑ
(k)
ij ;

μ̂
(k+1)
j =

n∑

i=1

(ẑu
(k)
ij yi − ẑut

(k)
ij �

(k)
j )/

n∑

i=1

ẑu
(k)
ij ;

�̂
(k+1)

j =
[

n∑

i=1

ẑut
(k)
ij (yi − μ̂

(k+1)
j )

]

/

n∑

i=1

ẑut2(k)

ij ;

�̂
(k+1)
j =

(
n∑

i=1

ẑ
(k)
ij

)−1 n∑

i=1

(
ẑu

(k)
ij (yi − μ̂

(k+1)
j )(yi − μ̂

(k+1)
j )�

−
[
(yi − μ̂

(k+1)
j )(�̂

(k+1)

j )� + �̂
(k+1)

j (yi − μ̂
(k+1)
j )�

]
ẑut

(k)
ij

+�̂
(k+1)

j (�̂
(k+1)

j )�ẑut2(k)

ij

)
;

2. Update ν(k) by maximizing the actual marginal log-likelihood function, obtaining

ν̂(k+1) = arg max
ν

n∑

i=1

log

⎛

⎝
G∑

j=1

pjg
(

yi |μ̂(k+1)
j , �̂

(k+1)
j , λ̂

(k+1)
j , ν

)
⎞

⎠ .

A more parsimonious model is achieved by supposing �1 = . . . = �g = �,
which can be seen as an extension of the FM-NOR model with restricted variance–
covariance components. In this case, the updates for p̂

(k)
j , μ̂

(k)
j , and �̂

(k)

j remain the

same, and the update for �̂
(k)

is given as

�̂
(k+1) = 1

n

n∑

i=1

G∑

j=1

ẑ
(k)
ij �̂

(k+1)
j .

The iterations are repeated until a suitable convergence rule is satisfied, e.g.,
if ||θ (k+1) − θ (k)|| is sufficiently small or until some distance involving two
successive evaluations of the actual log-likelihood �(θ), like ||�(θ (k+1)) − �(θ (k))||
or ||�(θ (k+1))/�(θ (k)) − 1||, is small enough. See Dias and Wedel (2004) for a
discussion in the context of mixtures of univariate normal distributions.
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For some distributions, like SN, ST, and SCN, we can see from the results above
that the updating expressions for the location, scale, and skewness parameters are
written in a closed form. But the same is not true when dealing with finite mixtures
of the skew-t defined by Lin (2010). In this sense, our work differs from Lin’s works,
where in the E-step Monte Carlo integration is used (see eq. 22 in Lin 2010) or the
moments or the truncated multinormal distribution are computed (see Theorem 1
in Lin 2009). Thus, our models and algorithms deal with these issues in a more
friendly way, implying in a substantial computing time reduction.

In a related recent paper, Karlis and Santourian (2009) proposed to fit skewed
heavy-tailed components using finite mixtures of normal inverse Gaussian (NIG)
components. They argue that an advantage of this approach when comparing with
Lin’s works is the lower computational cost, being the most complicated part of the
evaluation of the Bessel function, which is easily available in statistical packages.
This property is also shared by the FM-SMSN models considered here, because
all we need is to evaluate, in the E-step, the normal and the Student-t distributions
functions. In the SSL case, the evaluation of some integrals through the routine
integrate is also required.

5.3 The Observed Information Matrix

We again use the alternative method suggested by Basford et al. (1997), which
consists in approximating the inverse of the asymptotic covariance matrix of θ̂ by
Jo(̂θ |Yj ), where

Jo(θ |Yj ) =
n∑

i=1

sis�
i , with si = ∂

∂θ
log f (yi |θ), (5.7)

where f (·|θ) is the FM-SMSN density in (5.1) (with ν1 = . . . = νg = ν). That is,
si is the score vector associated with yi . To simplify the notation, let us define

Sj (yi ) = g(yi |θ j ), si,μr
= ∂

∂μr

log f (yi |θ) and Dμr
(Sr (yi )) = ∂Sr (yi )

∂μr

.

Partial derivatives with respect to the other component specific parameters are
denoted in an analogous way. Then, we have

si,pr = Sr (yi ) − Sg(yi )

f (yi |θ)
, i = 1, . . . , n, r = 1, . . . , G − 1,

si,μr
= prDμr

(Sr (yi ))

f (yi |θ)
, si,αrk

= prDαrk
(Sr (yi ))

f (yi |θ)
,
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si,λr = prDλr (Sr (yi ))

f (yi |θ)
, si,ν =

∑G
j=1 pjDν(Sj (yi ))

f (yi |θ)
,

i = 1, . . . , n, r = 1, . . . ,G,

where αrk denotes the kth element of αr . Note that Dν(Sj (yi )) must be obtained
for each particular case mentioned in Sect. 3.5 (i.e., ST, SSL, and SCN). After some
algebraic manipulation and using the notation

I
ir (w) =
∫ ∞

0
uw

i exp

{

−1

2
uidir

}


(u
1/2
i Air )dH(ui; ν),

Iφir (w) =
∫ ∞

0
uw

i exp

{

−1

2
uidir

}

φ(u
1/2
i Air )dH(ui; ν),

where dir = d�r (yi ,μr ) and Air = λ�
r �

−1/2
r (yi − μr ), one can show that

Dμr
(Sr (yi )) = 2|�r |−1/2

(2π)p/2

[(
∂Air

∂μr

)

Iφ
ir

(
p + 1

2

)

− 1

2

(
∂dir

∂μr

)

I
ir

(p

2
+ 1
)]

,

Dαrk (Sr (yi )) = 2

(2π)p/2

[(
∂|�r |−1/2

∂αrk

)

I
ir

(p

2

)
− 1

2

(
∂dir

∂αrk

)

|�r |−1/2I
ir

(p

2
+ 1
)

+ |�r |−1/2
(

∂Air

∂αrk

)

Iφ
ir

(
p + 1

2

)]

,

Dλr (Sr (yi )) = 2|�r |−1/2

(2π)p/2

(
∂Air

∂λr

)

Iφ
ir

(
p + 1

2

)

.

Expressions for the derivatives are standard and are not given here. Direct
substitution of H(·; ν) in the integrals above yields the following results for each
distribution considered in this work, namely

5.3.1 The Skew-Normal Distribution

I
ir (w) = exp{−dir /2}
(Air ), Iφir (w) = exp{−dir /2}φ(Air ).
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5.3.2 The Skew-t Distribution

I
ir (w) = 2wνν/2�(w + ν/2)√
2π�(ν/2)(ν + dir )ν/2+w

T

(
Air

(dir + ν)1/2

√
2w + ν|2w + ν

)

,

Iφir (w) = 2wνν/2

√
2π�(ν/2)

(
1

dir + A2
ir + ν

) ν+2w
2

�

(
ν + 2w

2

)

,

Dν(Sj (yi )) = (2π)−p/2|�j |−1/2
(

I
ij (p/2)(1 + log(ν/2) − ψ(ν/2)) − I
ij (1 + p/2)

+
∫ ∞

0
u

p/2
i log(ui) exp{−uidij /2} × 
(u

1/2
i Aij )h(ui |ν)dui

)

,

where ψ(·) denotes the digamma function and h(·|ν) is the gamma density with
both parameters ν/2.

5.3.3 The Skew-Slash Distribution

I
ir (w) = 22+ν�(w + ν)

dw+ν
ir

P1(w + ν, dir /2)E[
(V
1/2
ir )Air ],

Iφir (w) = ν2w+ν�(w + ν)√
2π(dir + A2

ir )
w+ν

P1

(

w + ν,
dir + A2

ir

2

)

,

where Vir ∼ TG(w + ν, dir /2, (0, 1)) and

Dν(Sj (yi )) = 2(2π)−p/2|�j |−1/2
{

I
ij (p/2 + ν − 1)

+ν

∫ 1

0
u

p
2 +ν−1
i log(ui) exp{−uidij /2}
(u

1/2
i Aij )dui

}

.

5.3.4 The Skew-Contaminated Normal Distribution

I
ir (w) = √
2π{ν1ν

w−1/2
2 φ(dir |0, 1/ν2)
(ν

1/2
2 Air ) + (1 − ν1)φ(dir )
(Air )},

Iφir (w) = {ν1ν
w−1/2
2 φ(dir + A2

ir |0, 1/ν2) + (1 − ν1)φ(dir + A2
ir )},

Dν1(Sj (yi )) = 2{φp(yi |μj , ν
−1
2 �j )
(ν

1/2
2 Aij ) − φp(yi |μj ,�j )
(Aij )},

Dν2(Sj (yi )) = ν1φp(μj , ν
−1
2 �j ){Aij ν

−1/2
2 φ(ν

1/2
2 Aij ) + 
(ν

1/2
2 Aij )(pν−1

2 − dij )}.

In the next section we perform simulation experiments which show evidence that,
at least asymptotically, this is a reliable method to provide standard errors estimates
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in the FM-SNI context. Maybe more accurate estimates could be obtained by using
the bootstrap approach (Efron and Tibshirani 1986), but this gain is achieved with
the price of an enormous computing time.

5.4 Applications with Simulated and Real Data

In this section we investigate some properties of the SMSN model fit and of the
proposed EM-type algorithm by analyzing some artificial and real data sets. The
computations were made using the R package mixsmsn (Prates et al. 2013),
available on CRAN.

5.4.1 Consistency

First, we considered artificial samples generated from a two-component FM-ST
model with parameters values μ1 = (2, 2)�, μ2 = (−2,−1)�, p = 0.6, ν = 4
and

λ1 = λ2 = (−5, 10)�,�1 = �2 =
(

1.5 0
0 1.5

)

. (5.8)

The data sets considered are 500 samples of size n = 500, 1000, 2000. Figure 5.1
shows one of these samples (n = 1000), with the respective plug-in density
contours resulting from fitting the two-component FM-ST model. Different colors
discriminate the heterogeneous groups. Also, for comparison purposes, the contours
of the FM-NOR model fit are presented.

For each data set was fitted the two-component FM-ST model. The following
starting values were fixed: μ1 = μ2 = 0, λ1 = λ2 = (−1, 5), �1 = �2 = I2,
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Fig. 5.1 Simulated sample (n = 1000) from an FM-ST population and the respective density
contours: (a) FM-ST fit, (b) FM-NOR fit
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ν = 10 and p1 = 0.5. We used the convergence rule

||�(θ (k+1))/�(θ (k)) − 1|| < 10−6, (5.9)

see Sect. 5.2.1. The average values and the corresponding standard deviations of the
EM estimates across all samples were computed. Also were computed the average
values of the approximate standard deviations of the EM estimates obtained through
the information based method described in Sect. 5.3 (IM SD). The results are very
satisfactory and are showed in Table 5.1.

We conducted the experiment again, considering now 500 samples generated
from a mixture of two SCN distributions with parameters μ1 = (2, 2)�, μ2 =
(−4,−3)�, ν = (0.4, 0.2) and the other parameters as in (5.8). The starting value
for ν is (0.5, 0.5) and, for the remaining parameters, we used the same values of the
previous analysis. From these results we can note evidences that the EM estimates
have good asymptotic properties.

Results for the FM-SN had a similar pattern than those shown in Tables 5.2
and 5.3, and we omit them. Because of the computationally expensive nature of
the procedure in the FM-SSL case, we did not consider it.

5.4.2 Standard Deviation

As mention in Sect. 5.3, it is natural to use the inverse of the observed information
matrix evaluated at θ̂ to approximate the asymptotic covariance matrix for EM
algorithms. However such calculation is not simple and require enormous alge-
braical and/or computational effort. We propose to use the method suggested by
Basford et al. (1997) to approximate the asymptotic covariance matrix. To study the
performance of the proposed method we present a simulation with the following
setup:

1. A mixture of two univariate SN distributions. The first component is an
SN(2, 4, 2) distribution with weight 0.2 and the second component is an
SN(20, 9,−1) distribution;

2. A mixture of two univariate ST distributions. The first component is an
ST(2, 4, 2, 5) distribution with weight 0.2 and the second component is an
ST(20, 9,−1, 5) distribution.

For each setup, we generated 1000 samples of size n = 500, 1000, 2000 and 5000
and we obtained the average values across all samples in three situations: (1) of
the approximate standard deviations of the ML estimates obtained through (5.7)
(gradient method), (2) of the approximate standard deviations of the ML estimates
obtained the inverse of the observed information matrix (Hessian method) and (3) of
the corresponding standard deviations of the EM estimates across all samples (SD).
The results are presented in Table 5.3
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Table 5.3 The estimated standard errors for EM parameters of the FM-SN and FM-ST distribu-
tions with the gradient (Grad.), Hessian (Hess.), and standard deviation of the sample estimates
(SD.) of 1000 samples of size 500, 1000, 2000, and 5000, respectively

Parameter

Dist. Method μ1 μ2 σ11 σ22 λ1 λ2 p

n = 500

FM-SN Grad. 0.4684 0.6224 1.2000 2.1514 1.0337 0.4419 0.0179

Hess. 0.5000 0.5702 1.2842 2.0084 1.0357 0.4768 0.0179

SD 0.4125 1.3914 0.9212 1.0888 0.8850 0.8282 0.0175

FM-ST Grad. 0.3826 0.7392 1.8571 1.5757 1.2713 0.4328 0.0193

Hess. 0.3937 0.6757 1.9153 1.7518 1.2960 0.4280 0.0197

SD 0.4190 0.9890 2.5511 2.0463 1.4508 0.5746 0.0192

n = 1000

FM-SN Grad. 0.2997 0.4348 0.8088 1.4946 0.6465 0.3285 0.0127

Hess. 0.3425 0.4063 0.9010 1.4203 0.6950 0.3101 0.0126

SD 0.2543 1.1872 0.7167 0.7943 0.5668 0.6909 0.0125

FM-ST Grad. 0.2595 0.5178 1.2541 1.0446 0.7926 0.2942 0.0136

Hess. 0.2655 0.5161 1.2413 1.1336 0.8139 0.3051 0.0137

SD 0.3078 0.7109 1.7824 1.5037 0.9615 0.4145 0.0138

n = 2000

FM-SN Grad. 0.2080 0.3006 0.5566 1.0412 0.4296 0.2267 0.0089

Hess. 0.2365 0.2885 0.6230 1.0141 0.4683 0.2194 0.0089

SD 0.1873 0.9303 0.5424 0.6130 0.4042 0.5357 0.0089

FM-ST Grad. 0.1778 0.3509 0.8972 0.7508 0.5543 0.1997 0.0097

Hess. 0.1891 0.4428 0.9470 0.9934 0.5710 0.2574 0.0100

SD 0.2289 0.4792 1.3408 1.0227 0.7237 0.2787 0.0104

n = 5000

FM-SN Grad. 0.1274 0.1808 0.3444 0.6411 0.2601 0.1382 0.0057

Hess. 0.1439 0.1817 0.3855 0.6482 0.2854 0.1393 0.0057

SD 0.1340 0.3204 0.3811 0.3483 0.2750 0.1864 0.0053

FM-ST Grad. 0.1089 0.2170 0.5628 0.4812 0.3404 0.1236 0.0061

Hess. 0.1139 0.2954 0.6121 0.6384 0.3510 0.1682 0.0063

SD 0.1639 0.2745 0.9043 0.5783 0.4831 0.1624 0.0066

As we can see in Table 5.3, the results returned by all methods are very similar
and improve as n increases. Such results reinforce our belief that the gradient
method provides a very good approximation to the asymptotic covariance matrix.
Moreover, the gradient method is computationally feasible and easily expandable to
the multi-dimensional setup.
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Number of Mixture Components

Someone can argue that an arbitrary multivariate density can always be approxi-
mated by a finite mixture of normal multivariate distributions, see McLachlan and
Peel (2000, Chapter 1), for example. Thus, an interesting comparison can be made
if we consider a sample from a two-component mixture of SMSN densities and use
some model choice criteria to compare this model with normal mixture models with
several number of components.

Here we consider 100 samples of size 2000 from an FM-ST model with two com-
ponents and parameter values given by (5.8). For model selection, we considered the
Akaike information criterion (AIC), the Bayesian information criterion (BIC) and
the efficient determination criterion (EDC), defined in Chap. 3.

We fit, besides the true model, the FM-NOR model with 2, 3, and 4 components.
Not surprisingly, for all samples, all criteria (see Fig. 5.2) favor the true model, that
is, the FM-ST with two components. It is important to emphasize that the FM-NOR
models with 3 and 4 components have 17 and 23 parameters, respectively, while the
FM-ST model with two components has 16 parameters. Figure 5.2 shows the BIC
criterion values for each sample and model. FM-NOR(j) denotes a model with j

components.

5.4.3 Model Fit and Clustering

Now we illustrate the ability of the FM-SMSN models in fitting data with a known
mixture structure not in the FM-SMSN family. Two data sets (FMNT and FMNIG)
with different distribution patterns are generated. The FMNT data set is a random
sample of size 1000 artificially generated from a mixture of an N2((2, 2)�, 4I2)

distribution (blue points in Fig. 5.3a) with a t2(0, 2I2, 2) distribution.
Several SMSN models were fitted and the resulting model selection criteria

values are shown in Table 5.4. EDC1 is the same EDC criterion of the previous
section. EDC2 is another version, with cn = log log n in Eq. (4.11). For each
model, the algorithm was run 100 times. For each run, the initial value for the
location parameter μji was generated from a uniform distribution on the interval
defined by the range of the observed data in the ith dimension and the initial
values for the dispersion matrixes and skewness vectors are fixed as I2 and 0,
respectively. A similar strategy was used before by Karlis and Santourian (2009).
The results correspond to the solution with the highest log-likelihood. Due to the
high computational cost, we considered in the FM-SSL case that ν is a known
parameter, fixed at the value 2.

We can see that, despite the symmetrical nature of the mixture components,
the normal mixture model poorly fits the data. The skew-normal mixture also has
a disappointing performance, because of the heavy-tailed behavior of the data.
The SMSN models FM-T and FM-CN show relatively satisfactory results, but is
interesting to note that the criteria do not favor them when comparing with their
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Fig. 5.2 BIC criterion values for 100 samples. Red line: FM-NOR(2), blue line: FM-NOR(3),
pink line: FM-NOR(4), black line: FM-ST(2)

asymmetrical counterparts, as one might expect. Also, two of the criteria favored
the FM-SCN model when comparing with the FM-T model, with close results
when comparing with the FM-ST model. This fact reveals some evidence of the
flexibility of the FM-SMSN family. To confirm the usefulness of the skew heavy-
tailed models, suppose that the likelihood ratio test is subject to the usual chi-square
approximation. Then, we can perform a test of the hypothesis λ1 = λ2 = 0 for the
FM-ST model, for example. In this case the p-value is 4.563e−06, strongly rejecting
it.

In the second experiment, the FMNIG data set is a random sample of size
500 artificially generated from a mixture of two normal inverse Gaussian (NIG)
distributions (Karlis and Santourian 2009), see Fig. 5.3b. The parameter values were
chosen in order to present a considerable proportion of outliers and skewness pattern
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Fig. 5.3 Artificial samples: (a) normal and Student-t components and (b) NIG components

Table 5.4 Model selection criteria for the FMNT data set

Criterion

Model
Number
of parameters Log-likelihood BIC EDC1 EDC2 AIC

FM-NOR 11 4345.043 8766.071 8759.656 8711.345 8712.086

FM-T 12 −4288.741 8660.376 8653.377 8600.740 8601.483

FM-SL 12 −4296.258 8675.410 8668.411 8615.708 8618.517

FM-CN 13 −4288.696 8667.192 8659.610 8602.516 8603.391

FM-SN 15 −4328.676 8760.968 8752.220 8686.342 8687.382

FM-ST 16 −4273.667 8657.857 8648.526 8578.255 8579.333
FM-SSL
(ν = 2)

16 −4277.553 8665.530 8656.300 8586.029 8587.106

FM-SCN 17 −4273.114 8663.660 8653.745 8579.083 8580.228

The bold values indicates the best fitting model

and to guarantee a homogeneous covariance structure for the components. The
initial values strategy is the random starts method suggested by McLachlan and
Peel (2000, Sec. 2.12.2).

Here we proceed an unsupervised classification of the points in two groups,
ignoring the known true classification, by computing ẑij , the estimated posterior
probability that observation i, (i = 1, . . . , 500) belongs to group j , (j = 1, 2),
which is (5.5) evaluated at the EM estimates. If ẑij > 1/2, then yi is classified into
group j . Obviously, one expects the best classification rate when modeling with
NIG components, but it is interesting to verify what happens when we use SMSN
components.

Table 5.5 shows the number of right allocations—the clustering performance is
measured by choosing among the two possible permutations of group labels the one
that yields the highest value. Also are reported the values for the ICL model choice



74 5 Multivariate Mixture Modeling Using SMSN Distributions

Table 5.5 Right allocations for the FMNIG data set

Model Number of parameters BIC ICL Number of right allocations

FM-NOR 11 2991.676 3020.310 292

FM-T 12 2483.423 2556.100 456

FM-CN 13 2671.739 2753.167 478

FM-SL
(ν = 0.7)

12 2538.134 2589.898 456

FM-SN 15 2776.672 2822.427 276

FM-ST 16 2223.219 2291.225 485
FM-SCN 17 2369.219 2425.413 480

FM-SSL
(ν = 0.7)

16 2257.574 2316.791 482

FM-SN
(�1 = �2)

12 2911.776 2976.092 276

FM-ST
(�1 = �2)

13 2207.395 2275.011 483

FM-SCN
(�1 = �2)

14 2357.845 2429.544 481

The bold values indicates the best fitting model

criterion (Biernacki et al. 2000; Basso et al. 2010). This is suitable for classification
purposes because it penalizes model complexity (like AIC, BIC, and EDC) and
the inability of the fitted mixture model to provide a reasonable partition of the
data. This inability is measured by the difference between ICL and BIC, which is
the estimated mean entropy. A curious fact, captured by this measure, is that when
comparing FM-SN with FM-NOR, the ICL favors the former but the number of
right allocations is greater for the latter.

Note also from Table 5.5 that the FM-ST model with equal dispersion matrixes
(�1 = �2) presents the best fit, which is not surprising because of the homogeneous
nature of the covariance structure.

We also have conducted similar experiments with dimensions and number of
components greater than two, but the results were similar to that already presented.
The choice of two dimensions has the advantage of giving us an appealing graphical
representation of the components, as depicted in Fig. 5.3.

5.4.4 The Pima Indians Diabetes Data

The Pima Indians Diabetes is a benchmark data set for binary classifications.
The main goal is to decide whether a subject has diabetes or not, based on eight
measured variables. Data can be freely downloaded from the UCI Machine Learning
Repository (Frank and Asuncion 2010). We removed subjects with missing values
and the variables triceps and insulin, which are missing for most subjects, resulting
in a reduced set with 724 individuals. The usual analysis of this data set is from the
supervised classification point of view, where classification of new subjects is made
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based on learning from a training data set. Similar to the analysis of the previous
section, here we consider, besides the model fit issue, only the (unsupervised)
clustering of the observations in two groups. All the subjects in this set have a correct
diagnostic, allowing us to count the number of right classifications.

The results of the estimation procedure for some FM-SMSN models (using the
random starts strategy) are presented in Table 5.6. All the criteria favors the models
with specific skewed/heavy-tailed components (FM-ST, FM-SSL, and FM-SCN)
when comparing with models with symmetric components (FM-NOR and FM-T)
or even with the FM-SN model. From the clustering point of view, in order to give
stronger evidence of the superiority of the method using the FM-SMSN family,
we proceeded a bootstrap experiment with 1500 replications. For each replication,
the right number of allocations was computed. The mean and sample deviance
values of these bootstrap replications are shown in Table 5.7. Also, we present the
associated 95% normal asymptotic confidence intervals. We can see that the means
are greater and the standard deviations are smaller for the skewed/heavy-tailed FM-
SMSN models (except for the case with equal dispersion matrixes), confirming our
expectations.

We emphasize that the clustering approach based on the FM-SMSN family
presented here can be seen as a starting point of a more detailed one, since more

Table 5.6 Model selection criteria for the Pima Indians Diabetes data set

Criterion

Model log-likelihood BIC EDC1 EDC2 AIC ICL

FM-NOR −13023.540 26409.240 26150.740 26343.060 26157.080 26483.970

FM-T −13009.800 26388.340 26125.140 26320.950 26131.590 26452.290

FM-SN −12838.900 26118.990 25804.090 26038.360 25811.810 26212.540

FM-ST −12824.840 26097.440 25777.840 26015.610 25785.680 26180.770

FM-SSL −12823.670 26095.110 25775.500 26013.280 25783.340 26197.670

FM-SCN −12820.080 26094.500 25770.200 26011.470 25778.150 26202.660
FM-ST
(�1 = �2)

−13074.200 26457.880 26236.980 26401.320 26242.390 26494.470

The bold values indicates the best fitting model

Table 5.7 Right allocations analysis through bootstrap procedure for the Pima Indians Diabetes
data set

Model
Mean of right allo-
cations

Standard deviation of
right allocations

95% confidence inter-
val for right allocations

FM-NOR 512.288 25.225 (462.846, 561.730)

FM-T 508.924 23.470 (462.922, 554.926)

FM-SN 520.461 18.529 (484.144, 556.777)

FM-ST 519.535 18.159 (483.944, 555.126)

FM-SSL 533.559 17.973 (498.333, 568.785)

FM-SCN 520.402 18.762 (483.628, 557.176)

FM-ST
(�1 = �2)

530.861 31.172 (469.763,591.958)
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elaborated methodologies can be developed using this framework. For example, it
would be interesting to explore a skew extension of the mixture of factor analyzers
model suggested by McLachlan et al. (2007).

5.5 Identifiability and Unboundedness

Modeling based on finite mixture models is a research area with several challenging
aspects. There are nontrivial issues, not considered in this work, which deserve a
more detailed investigation.

First, we comment about identifiability. The class of FM-SMSN models will be
identifiable if distinct component densities correspond to distinct mixtures. More
specifically, if we have two representations for the same mixture distribution, say

G∑

j=1

p′
j g(·|μ′

j ,�
′
j ,λ

′
j , ν) =

G∑

j=1

pjg(·|μj ,�j ,λj , ν),

then

p′
j = pρ(j), μ′

j = μρ(j), �′
j = �ρ(j), λ′

j = λρ(j)

for some permutation ρ of the indexes 1, . . . ,G (Titterington et al. 1985,
Chapter 3). Considering specific members of the FM-SMSN family, the FM-NOR
identifiability was first verified by Yakowitz and Spragins (1968), but previous
discussions in the related literature concerning the FM-T model—see references
in Sect. 5.1—do not present a formal proof of its identifiability.

Holzmann et al. (2006) have established the identifiability of finite mixtures of
elliptical distributions under conditions on the characteristic or density generators.
FM-NOR and FM-T models belong to this family. They also show conditions on the
mixing distribution H in order to guarantee identifiability of some members of finite
mixtures of SMN distributions. Obviously, it is of interest to extend these results to
the FM-SMSN family, mainly because the recent literature involving mixtures of
skew distributions—see Sect. 5.1 again—do not present formal discussions about
this theme.

The mixture likelihood is unbounded—see commentaries in Sect. 5.2.1—and
may present local spurious maxima and singularities. Thus, another topic of interest
is the constrained optimization of the likelihood. This was done for the univariate
FM-NOR model by Hathaway (1985), where conditions on the component variances
were imposed in order to obtain global maximization. The consistency of the
resulting estimator is also proved. This work had a considerable expansion in the
sequence of papers Ingrassia (2004), Ingrassia and Rocci (2007) and Greselin and
Ingrassia (2010), the first two dealing with the multivariate FM-NOR model and the
last with the multivariate FM-T model.



Chapter 6
Mixture Regression Modeling Based on
SMSN Distributions

The traditional estimation of mixture regression models is based on the assumption
of normality (symmetry) of component errors and thus is sensitive to outliers, heavy-
tailed errors and/or asymmetric errors. In this chapter we present a proposal to
deal with these issues simultaneously in the context of the mixture regression by
extending the classic normal model by assuming that the random errors follow a
scale mixtures of skew-normal distributions. This approach allows us to model data
with great flexibility, accommodating skewness and heavy tails. The main virtue
of considering the mixture regression models under the class of scale mixtures of
skew-normal distributions is that they have a nice hierarchical representation which
allows easy implementation of inference. We develop a simple EM-type algorithm
to perform maximum likelihood inference of the parameters of the proposed model.
The presentation is mainly based on Zeller et al. (2016), extending the works of
Yao et al. (2014), which is a mixture regression using the Student-t distribution, and
Liu and Lin (2014) who proposed a mixture regression by using the skew-normal
model.

6.1 Introduction

In applied statistics, a large number of applications deal with relating a random vari-
able Yi , which is observed on several occasions i = 1, . . . , n, to a set of explanatory
variables or covariates (xi1, . . . , xid−1) through a regression-type model, where the
conditional mean of Yi is assumed to depend on xi = (1 xi1 . . . xid−1)

� through
E[Yi |β, xi] = x�

i β, where β is a vector of unknown regression coefficients of
dimension d. In many circumstances, however, the assumption that the regression
coefficient is fixed over all possible realizations of Y1, . . . , Yn is inadequate, and
models where the regression coefficient changes are of great practical importance.
One way to capture such changes in the parameter of a regression model is

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018
V. H. Lachos Dávila et al., Finite Mixture of Skewed Distributions,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-98029-4_6
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to use finite mixtures of regression models (MRM). MRM are widely used to
investigate the relationship between variables coming from several unknown latent
homogeneous groups. They were first introduced by Quandt (1972) under the titles
switching regression or clusterwise linear regression (Späth 1979). Comprehensive
surveys are available in McLachlan and Peel (2000), and from a Bayesian point of
view, in Frühwirth-Schnatter (2006, chap. 8).

The literature on maximum likelihood estimation of the parameters of the
Gaussian MRM (hereafter N-MRM) is very extensive. Applications include mar-
keting (DeSarbo and Cron 1988; DeSarbo et al. 1992; Quandt and Ramsey 1978),
economics (Cosslett and Lee 1985; Hamilton 1989), agriculture (Turner 2000),
nutrition (Arellano-Valle et al. 2008), and psychometrics (Liu et al. 2011). The
standard algorithm in this case is the so-called EM (Expectation-Maximization) of
Dempster et al. (1977), or perhaps some extension like the ECM (Meng and Rubin
1993) or the ECME (Liu and Rubin 1994) algorithms. Many extensions of this
classic model have been proposed to broaden the applicability of linear regression
analysis to situations where the Gaussian error term assumption may be inadequate,
for example, because the datasets involve skewed or longer than normal tails errors.
Some such extensions rely on the use of the skew-normal (Azzalini 1985) and the
Student-t distributions, respectively. An MRM based on the Student-t model (T-
MRM) has been recently proposed by Yao et al. (2014) to estimate the mixture
regression parameters robustly. Liu and Lin (2014) proposed a robust version of the
MRM by using the skew-normal model (SN-MRM), which appears to be a more
theoretically compelling modeling tool for practitioners because it can investigate
differential effects of covariates and accommodate moderately asymmetrical errors.

In this chapter, we propose a unified robust mixture regression model based
on scale mixtures of skew-normal distributions by extending the mixture of scale
mixtures of skew-normal distributions proposed by Basso et al. (2010) to the
regression setting. As observed before, the class of SMSN distributions, proposed by
Branco and Dey (2001), is attractive since it simultaneously models skewness and
heavy tails. Besides this, it has a stochastic representation for easy implementation
of the EM algorithm and it also facilitates the study of many useful properties. This
extension results in a flexible class of models for robust estimation in MRM since
it contains distributions such as the skew-normal distribution and all the symmetric
class of scale mixtures of normal distributions defined by Andrews and Mallows
(1974). Moreover, the class of SMSN distributions is a rich class that contains
proper elements such as the skew-t (Azzalini and Capitanio 2003), skew-slash
(Wang and Genton 2006), and skew-contaminated normal distribution (Lachos et
al. 2010). Therefore they can be used in many types of models to infer robustness.
In addition, this rich class of distributions can naturally attribute different weights
to each observation and consequently control the influence of a single observation
on the parameter estimates. Thus, the objectives of this chapter are: (1) to propose
a mixture regression estimation method based on SMSN distributions, extending
the recent works of Yao et al. (2014) and Liu and Lin (2014) (see also Dog̈ru and
Arslan 2017); (2) to implement and evaluate the proposed method computationally;
and (3) to apply these results to the analysis of a real life dataset.
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The remainder of the chapter is organized as follows. In Sect. 6.2, we present
the SMSN-MRM, including the EM algorithm for maximum likelihood (ML)
estimation. In Sects. 6.3 and 6.4, numerical examples using both simulated and real
data are given to illustrate the performance of the proposed method.

6.2 The Proposed Model

In this section, we consider the mixture regression model where the random errors
follow a scale mixtures of skew-normal distributions (SMSN-MRM). In general, a
normal mixture regression model (N-MRM) is defined as: let Z be a latent class
variable such that given Z = j , the response Y depends on the p-dimensional
predictor x in a linear way

Y = x�βj + εj , j = 1, . . . , G, (6.1)

where G is the number of groups (also called components in mixture models) in
the population and εj ∼ N(0, σ 2

j ) is independent of x. Suppose that P(Z = j) =
pj and Z is independent of x, then the conditional density of Y given x, without
observing Z, is

f (y|x, θ) =
G∑

j=1

pjφ(y|x�βj , σ
2
j ), (6.2)

where θ = (θ�
1 , . . . , θ�

G)�, with θ j = (pj ,β
�
j , σ 2

j )�. The model (6.2) is the so-
called normal mixture of regression models. Following Yao et al. (2014) and Liu
and Lin (2014), we extend the N-MRM defined above by considering the linear
relationship in (6.1) with the following assumption:

εj ∼ SMSN(b�j , σ
2
j , λj , νj ), j = 1, . . . ,G, (6.3)

where �j = σj δj , δj = λj
√

1 + λ2
j

, b = −
√

2
π
K1, with Kr = E[U−r/2], r =

1, 2, . . . , which corresponds to the regression model where the error distribution
has mean zero and hence the regression parameters are all comparable.

The mixture regression model with scale mixtures of skew-normal distributions
defined above can be formulated in a similar way to the model defined in (6.2) as
follows:

f (y|x, θ) =
G∑

j=1

pjg(y|x, θ j ), (6.4)
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where g(·|x, θ j ) is the density function of SMSN(x�βj + b�j , σ
2
j , λj , νj ) and

θ j = (pj ,β
�
j , σ 2

j , λj , νj )
�. Concerning the parameter νj of the mixing distri-

bution H(; νj ), for j = 1, . . . , G , it can be a vector of parameters, e.g., the
contaminated normal distribution. For computational convenience we assume that
ν = ν1 = ν2 = . . . , νG. This strategy works very well in the empirical studies
that we have conducted and greatly simplifies the optimization problem. Observe
that the model considers that the regression coefficient and the error variance are
not homogeneous over all independent possible pairs (Yi, xi ), i = 1 . . . , n. In fact,
they change between subgroups of observations.

In the context of classic inference, the unknown parameter θ , given observations
(x1, y1), . . . , (xn, yn), is traditionally estimated by the maximum likelihood esti-
mate (MLE):

θ̂ = arg max
θ

n∑

i=1

log(f (yi |xi , θ)). (6.5)

Note that the maximizer of (6.5) does not have an explicit solution, so we propose
to use an EM-type algorithm (Dempster et al. 1977). For a gentle tutorial on the
EM algorithm and its applications to parameter estimation for mixture models, see
McLachlan and Peel (2000).

6.2.1 Maximum Likelihood Estimation via EM Algorithm

In this section, we present an EM algorithm for the ML estimation of the mixture
regression model with scale mixtures of skew-normal distributions. To explore the
EM algorithm we present the SMSN-MRM in an incomplete-data framework, using
the results presented in Chap. 2.

As in (2.1), in order to simplify notations, algebra, and future interpretations, it
is appropriate to deal with a random vector Zi = (Zi1, . . . , ZiG)� instead of the
random variable Zi , where

Zij =
{

1, if the ith observation is from the jth component;

0, otherwise.

Consequently, under this approach the random vector Zi
iid∼ Multinomial(1;p1, . . . , pg),

such that

Yi |Zij = 1
ind∼ SMSN(x�

i βj + b�j , σ
2
j , λj , νj ).

Observe that Zij = 1 if and only if Zi = j . Thus, the setup defined above, along
with (3.18)–(3.20), can be written hierarchically as
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Yi |Ti = ti , Ui = ui, Zij = 1
ind∼ N(x�

i βj + �j ti, u
−1
i �j ), (6.6)

Ti |Ui = ui, Zij = 1
iid∼ TN1(b, u−1

i ; (b,∞)), (6.7)

Ui |Zij = 1
ind∼ H(ui; ν), (6.8)

Zi
iid∼ Multinomial(1;p1, . . . , pg), (6.9)

for i = 1, . . . , n, all independent, where �j = σ 2
j − �2

j and TN1(r, s; (a, b))

denotes the univariate normal distribution (N(r, s)), truncated on the interval (a,
b). Let y = (y1, . . . , yn)

�, u = (u1, . . . , un)
�, t = (t1, . . . , tn)

�, and z =
(z�

1 , . . . , z�
n )�. Then, under the hierarchical representation (6.6)–(6.9), it follows

that the complete log-likelihood function associated with yc = (y�, u�, t�, z�)� is

�c(θ |yc) = c +
n∑

i=1

G∑

j=1

zij

[

log pj − 1

2
log �j

− 1

2�j

ui(yi − x�
i βj − �j ti)

2 + log(h(ui; ν))

]

,

where c is a constant that is independent of the parameter vector θ and h(·; ν) is the
density of Ui .

Let θ̂
(k)

j = (p̂
(k)
j , β̂

(k)�
j , σ̂ 2(k)

j , λ̂
(k)
j , ν(k))� be the estimates of θ at the k-th

iteration. It follows, after some simple algebra, that the conditional expectation of
the complete log-likelihood function has the form

Q(θ |̂θ (k)
) = c +

n∑

i=1

G∑

j=1

ẑ
(k)
ij log pj − 1

2

n∑

i=1

G∑

j=1

ẑ
(k)
ij log �j

−1

2

n∑

i=1

G∑

j=1

ẑu
(k)
ij

�j

(yi − x�
i βj )

2

+
n∑

i=1

G∑

j=1

ẑut
(k)
ij

�j

(yi − x�
i βj )�j − 1

2

n∑

i=1

G∑

j=1

ẑut2(k)

ij

�j

�2
j ,

where ẑ
(k)
ij = E[Zij |yi, θ̂

(k)], ẑu
(k)
ij = E[ZijUi |yi, θ̂

(k)],
ẑut

(k)
ij = E[ZijUiTi |yi, θ̂

(k)], and ẑut2(k)

ij = E[ZijUiT
2
i |yi, θ̂

(k)]. By using known
properties of conditional expectation, we obtain
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ẑ
(k)
ij = p̂

(k)
j g(yi |xi , θ̂

(k)

j )

∑G
j=1 p̂

(k)
j g(yi |xi , θ̂

(k)

j )
, (6.10)

ẑu
(k)
ij = ẑ

(k)
ij û

(k)
ij , ẑut

(k)
ij = ẑ

(k)
ij ût

(k)
ij and ẑut2(k)

ij = ẑ
(k)
ij ût2(k)

ij , with

ût
(k)
ij = û

(k)
ij (m̂

(k)
ij + b) + M̂

(k)
j η̂

(k)
ij , (6.11)

ût2(k)

ij = û
(k)
ij (m̂

(k)
ij + b)2 + M̂

2(k)
j + M̂

(k)
j (m̂

(k)
ij + 2b)̂η

(k)
ij , (6.12)

where M̂2
j = �̂j

�̂j + �̂2
j

and m̂ij = M̂2
j

�̂j

�̂j

(yi −x�
i β̂j −b�̂j ), i = 1, . . . , n, with all

these quantities evaluated at θ = θ̂
(k)

. Since aij = mij

Mij

= λjσj (yi −x�
i βj −b�j ),

the conditional expectations given in (6.11)–(6.12), specifically ûij and η̂ij , can be
easily derived from the result given in Sect. 3.3.1. Thus, at least for the ST and SCN
distributions, we have a closed-form expression for the quantities ûij and η̂ij , as can
be found in Zeller et al. (2011) and Basso et al. (2010). For the SSL, Monte Carlo
integration can be employed, which yields the so-called MC-EM algorithm; see Wei
and Tanner (1990), McLachlan and Krishnan (2008), and Zeller et al. (2011).

Also, we have adopted the same strategy used in Chaps. 3 and 4 to update the
estimate of ν, by direct maximization of the marginal log-likelihood.

Thus, the ECME algorithm for maximum likelihood estimation of θ is defined as
follows:
E-step: Given θ = θ̂

(k)
, compute ẑ

(k)
ij , ẑu

(k)
ij , ẑut

(k)
ij , and ẑut2(k)

ij , for i = 1, . . . , n,
using (6.11)–(6.12).

CM-step: Update θ̂
(k+1)

by maximizing Q(θ |̂θ (k)
) over θ , which leads to the

following closed form expressions:

p̂
(k+1)
j =

∑n
i=1 ẑ

(k)
ij

n
,

β̂
(k+1)

j = (

n∑

i=1

ẑu
(k)
ij xix�

i )−1
n∑

i=1

(ẑui
(k)yi − ẑut

(k)
ij �̂

(k)
j )xi ,

�̂
(k+1)
j =

∑n
i=1

[
ẑu

(k)
ij (yi − x�

i β̂
(k+1)

j )2 − 2ẑut
(k)
ij �̂

(k)
j (yi − x�

i β̂
(k+1)

j ) + ẑut2(k)

ij �̂
2(k)
j

]

∑n
i=1 ẑ

(k)
ij

,

�̂
(k+1)
j =

∑n
i=1 ẑut

(k)
ij (yi − x�

i β̂
(k+1)

j )

∑n
i=1 ẑut2(k)

ij

,

σ̂ 2(k+1)

j = �̂
(k+1)
j + �̂

2(k+1)
j , λ̂

(k+1)
j = �̂

(k+1)
j

√
�̂

(k+1)
j

, j = 1, . . . , G.
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CML-step: Update ν̂(k) by maximizing the actual marginal log-likelihood function,
obtaining

ν̂(k+1) = arg max
ν

n∑

i=1

log

⎛

⎝
G∑

j=1

p̂
(k)
j g(yi |xi , β̂

(k+1)

j , σ̂ 2(k+1)

j , λ̂
(k+1)
j , ν)

⎞

⎠ ,

where g(.|xi , θ j ) is defined in (6.4).
A more parsimonious model is achieved by supposing �1 = . . . = �G =

�, which can be seen as an extension of the N-MRM with restricted variance–
covariance components. In this case, the updates for p̂

(k)
j , β̂

(k)

j and �̂
(k)
j remain

the same, and the update for �̂
(k)
j is given by

�̂(k+1) = 1

n

n∑

i=1

G∑

j=1

ẑ
(k)
ij �̂

(k+1)
j .

The iterations are repeated until a suitable convergence rule is satisfied, e.g.,

∣
∣
∣
∣
∣

�(̂θ
(k+1)

)

�(̂θ
(k)

)
− 1

∣
∣
∣
∣
∣
< 10−5. (6.13)

Useful starting values required to implement this algorithm are those obtained under
the normality assumption when λ̂

(0)
j = 3sign(ρ̂j ), where ρ̂j is the sample skewness

coefficient for group j , for j = 1, . . . ,G. However, in order to ensure that the
true maximum likelihood estimates are identified, we recommend running the EM
algorithm using a range of different starting values. Note that when λj = 0 (or
�j = 0) the M-step equations reduce to the equations obtained assuming SMN
distributions. Particularly, this algorithm clearly generalizes the results found in Yao
et al. (2014) by taking Ui ∼ Gamma(ν

2 , ν
2 ), i = 1, . . . , n.

6.2.2 Notes on Implementation

It is well known that mixture models may provide a multimodal log-likelihood
function. In this sense, the method of maximum likelihood estimation through EM
algorithm may not give maximum global solutions if the starting values are far from
the real parameter values. Thus, the choice of starting values for the EM algorithm
in the mixture context plays a big role in parameter estimation. In our examples and
simulation studies we consider the following procedure for the SMSN-MRM.

• Partition the sample into G groups using the K-means clustering algorithm
(Basso et al. 2010);
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• Compute the proportion of data points belonging to the same cluster j , say p
(0)
j ,

j = 1, . . . ,G. This is the initial value for pj ;

• For each group j , compute the initial values β
(0)
j using the method of least

squares. Then, use the residuals of each group to compute initial values (σ 2
j )(0),

λ
(0)
j and ν(0) by using the R package smsnmix() (Prates et al. 2013).

Because there is no universal criterion for mixture model selection, we chose four
criteria to compare the models in the SMSN family. The first three are the Akaike
information criterion (AIC), the Bayesian information criterion (BIC), and the
efficient determination criterion (EDC), defined in Sect. 4.4.3. We also considered
the values of ICL (Integrated Completed Likelihood) choice criterion (Basso et al.
2010) for the models. This is suitable for classification purposes because it penalizes
model complexity (like AIC, BIC, and EDC) and the inability of the fitted mixture
model to provide a reasonable partition of the data. This inability is measured by the
difference between ICL and BIC, which is the estimated mean entropy.

In the next sections, simulation studies and a real dataset are presented in order
to illustrate the performance of the proposed method.

6.3 Simulation Experiments

In this section, we consider three simulation experiments to show the applicability of
our proposed model. Our intention is to show that the SMSN-MRM can do exactly
what it is designed for, that is, satisfactorily model data that have a structure with
serious departures from the normal assumption.

6.3.1 Experiment 1: Parameter Recovery

In this section, we consider two scenarios for simulation in order to verify if we
can estimate the true parameter values accurately by using the proposed estimation
method. This is the first step to ensure that the estimation procedure works
satisfactorily. We fit the SMSN-MRM to data that were artificially generated from
the following SMSN-MRM:

{
Yi = x�

i β1 + ε1, Zi1 = 1,

Yi = x�
i β2 + ε2, Zi2 = 1,

where Zij is a component indicator of Yi with P(Zij = 1) = pj , j = 1, 2, x�
i =

(1, xi1, xi2), such that xi1 ∼ U(0, 1) and xi2 ∼ U(−1, 1), i = 1, . . . , n, and ε1
and ε2 follow a distribution in the family of SMSN distributions, as the assumption
given in (6.3).

We generated 500 random samples of size n = 500 from the SN, ST, and
the SSL models with the following parameter values: β1 = (β01, β11, β21)

� =
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(−1,−4,−3)�,β2 = (β02, β12, β22)
� = (3, 7, 2)�, p1 = 0.3 and ν = 3. In

addition, we consider the following scenarios: scenario 1 : σ 2
1 = 2, σ 2

2 = 1, λ1 = 2
and λ2 = 4, and scenario 2 : σ 2

1 = σ 2
2 = 2 and λ1 = λ2 = 2, i.e., �1 = �2. We

used the maximum likelihood estimation via EM algorithm for each sample, using
the stopping criterion (6.13). No existing program is available to estimate SMSN-
MRM directly. Therefore, ML estimation via the EM algorithm was implemented
using R.

In the mixture context, the likelihood is invariant under a permutation of the class
labels in parameter vectors. Therefore, a label switching problem can occur when
some labels of the mixture classes permute (McLachlan and Peel 2000). Although
the switching of class labels is not a concern in the general course of the maximum
likelihood estimation via the EM algorithm for studies with only one replication,
it was a serious problem in our simulation study because the same model was
estimated iteratively for 500 replications per cell. To solve this problem, we chose
the labels by minimizing the distance to the true parameter values. The average
values and the corresponding standard deviations (SD) of the EM estimates across
all samples were computed and the results are presented in Tables 6.1 and 6.2.
Note that all the point estimates are quite accurate in all the considered scenarios.
Thus, the results suggest that the proposed EM-type algorithm produced satisfactory
estimates.

6.3.2 Experiment 2: Classification

In this section, we illustrate the ability of the SMSN-MRM to fit data with a
mixture structure generated from a different family of skew distribution and we also

Table 6.1 Scenario 1: mean and standard deviations (SD) for EM estimates based on 500 samples
from the SMSN-MRM

SN ST SSL

Parameter Mean SD Mean SD Mean SD

β01(−1) −1.0008 0.1593 −1.0054 0.2358 −0.9902 0.1961

β11(−4) −4.0075 0.2640 −3.9835 0.3442 −4.0213 0.3144

β21(−3) −3.0036 0.1409 −3.0039 0.1697 −3.0117 0.1667

β02(3) 3.0017 0.0607 2.9863 0.0878 2.9925 0.0794

β12(7) 6.9975 0.0977 7.0080 0.1199 7.0008 0.1251

β22(2) 2.0013 0.0470 2.0037 0.0591 2.0016 0.0560

σ 2
1 (2) 1.9416 0.4546 1.9680 0.5810 1.9397 0.5642

σ 2
2 (1) 0.9820 0.1431 0.9517 0.1717 0.9589 0.1680

λ1(2) 2.1293 1.0379 2.1125 0.8213 2.0707 0.9563

λ2(4) 4.1458 1.2514 3.8421 1.0230 3.7720 1.0586

ν(3) – – 3.0142 0.4777 3.3427 1.2521

p1(0.3) 0.2998 0.0207 0.3002 0.0205 0.3008 0.0211

True values of parameters are in parentheses
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Table 6.2 Scenario 2: mean and standard deviations (SD) for EM estimates based on 500 samples
from the SMSN-MRM

SN (�1 = �2) ST (�1 = �2) SSL(�1 = �2)

Parameter Mean SD Mean SD Mean SD

β01(−1) −1.0091 0.1778 −1.0370 0.2346 −0.9973 0.2055

β11(−4) −3.9832 0.2958 −4.0005 0.3386 −4.0235 0.3355

β21(−3) −3.0051 0.1431 −3.0016 0.1707 −3.0057 0.1814

β02(3) 2.9882 0.1065 2.9836 0.1540 2.9915 0.1306

β12(7) 7.0193 0.1812 7.0125 0.2246 7.0082 0.2165

β22(2) 2.0093 0.0997 1.9978 0.1127 1.996 0.1100

σ 2
1 (2) 1.8959 0.4086 1.8088 0.5414 1.8030 0.5421

σ 2
2 (2) 1.9306 0.2674 1.9085 0.3992 1.8528 0.4462

λ1(2) 1.8414 0.5898 1.8268 0.5598 1.6561 0.6370

λ2(2) 1.8951 0.4690 1.9110 0.4608 1.7116 0.5301

ν(3) − − 3.0070 0.5075 3.5332 1.8907

p1(0.3) 0.2997 0.0216 0.2981 0.0219 0.3013 0.0204

True values of parameters are in parentheses

investigate the ability of the SMSN-MRM to cluster observations, that is, to allocate
them into groups of observations that are similar in some sense. We know that each
data point belongs to one of G heterogeneous populations, but we do not know how
to discriminate between them. Modeling by mixture models allows clustering of the
data in terms of the estimated (posterior) probability that a single point belongs to a
given group.

A lot of work in model-based clustering has been done using finite mixtures
of normal distributions. As the posterior probabilities ẑij , defined in (6.10), can
be highly influenced by atypical observations, have been efforts to develop robust
alternatives, like mixtures of t-Student distributions (see McLachlan and Peel 1998
and the references herein). Our idea is to extend the flexibility of these models, by
including possible skewness of the related components; see the work of Liu and Lin
(2014) based on the SN-MRM.

We generated 500 samples under the following scenarios: (a) scenario 1
(Fig. 6.1): a mixture of two skew-Birnbaum-Saunders regression models (see
Santana et al. 2011; Vilca et al. 2011); and (b) scenario 2 (Fig. 6.2): a mixture
of two skew-normal generalized hyperbolic models (see Vilca et al. 2014). The
parameter values were chosen to present a considerable proportion of outliers and
the skewness pattern. It can be seen from Figs. 6.1 and 6.2 that the groups are poorly
separated. Furthermore, note that although we have a two-component mixture, the
histogram need not be bimodal.

For each sample of size n = 500, we proceed with clustering ignoring the known
true classification. Following the method proposed by Liu and Lin (2014), to assess
the quality of the classification function of each mixture model, an index measure
was used in the current study, called correct classification rate (CCR), which is based
on the posterior probability assigned to each subject. The SMSN-MRM were fitted
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Fig. 6.1 Experiment 2. (a) The scatter plot and (b) histogram for one of the simulated samples—
scenario 1
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Fig. 6.2 Experiment 2. (a) The scatter plot and (b) histogram for one of the simulated samples—
scenario 2

using the algorithm described in Sect. 6.2.1 in order to obtain the estimate of the
posterior probability that an observation yi belongs to the j th component of the
mixture, i.e. ẑij . For sample l, l = 1, . . . , 500, we compute the number of correct

allocations (CCRs) divided by the sample size n, that is, ACCR = 1

500

500∑

l=1

CCRl .

Table 6.3 shows the mean value of the correct allocation rates, where larger values
indicate better classification results.

Obviously, one expects the best classification rate when modeling with true
components (scenarios 1 and 2), but it is interesting to verify what happens when
we use SMSN components. Comparing with the results for the normal model, we
see that modeling using the ST or SSL distribution represents an improvement in
the outright clustering and has a better performance, showing their robustness to
discrepant observations. Under scenario 1, the SN model showed better performance
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Table 6.3 Experiment 2.
Mean of right allocation rates
for fitted SMSN-MRM

ACCR

Fitted model Scenario 1 Scenario 2

Normal 0.5211 0.7391

SN 0.5432 0.6964

ST 0.5747 0.7674

SSL 0.5603 0.7634

Table 6.4 Experiment 2.
Percentages of preferred
models under five conditions
examined

AIC BIC EDC ICL

Condition examined Scenario 1

SN vs. normal 94 77 87 96

ST vs. normal 92 74 84 99

SSL vs. normal 73 43 57 99

ST vs. SN 62 62 62 99

SSL vs. SN 17 17 17 99

Scenario 2

SN vs. normal 79 21 41 51

ST vs. normal 93 65 77 81

SSL vs. normal 92 59 73 78

ST vs. SN 91 91 91 88

SSL vs. SN 88 88 88 85

compared to the normal model, but this did not occur in scenario 2. This fact can
be explained because the skew-normal distribution can still be affected by atypical
observations since it does not have heavy tails as is the case of the ST and SSL
models.

For each sample of size n = 500, we compare the ability of some classic
model selection criteria to select the appropriate model between the SMSN-
MRM. Table 6.4 presents the percentages of models selected according to the four
aforementioned criteria under five conditions, say, SN vs. Normal; ST vs. Normal;
SSL vs. Normal; ST vs. SN; SSL vs. SN.

Under scenario 1 (data generated from a mixture of two skew-Birnbaum-
Saunders regression models), comparing the asymmetric models SN, ST, and SSL
with the normal (symmetrical) model, note that all criteria favor the asymmetric
models (except the BIC when examining SSL vs. Normal). Moreover, note that
the ICL criterion has the highest percentage since in this scenario the asymmetric
models also performed better in classification (see Table 6.3). Comparing the
asymmetric models with heavy tails (ST and SSL) to the SN model, the ST model
was selected by all criteria.

Under scenario 2 (a mixture of two skew-normal generalized hyperbolic models),
comparing the asymmetric models SN, ST, and SSL with normal symmetrical
model, note that all criteria favor the asymmetric models (excluding BIC and EDC
criteria in condition when examining SN vs. Normal). Note that when comparing
SN vs. Normal, the ICL favors the SN model but the number of right allocations
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Fig. 6.3 Experiment 3. (a) The scatter plot and (b) histogram for one of the simulated samples

is greater for the normal model (see Table 6.3). Furthermore, for all criteria, the
asymmetric models with heavy tails (ST and SSL) fitted the data better than the SN
model.

6.3.3 Experiment 3: Classification

In this section, first we investigate the ability of the SMSN-MRM to cluster
observations and then we compare the ability of some classic procedures to choose
between the underlying SMSN-MRM. We fixed the number of components (G =
2), sample size (n = 500), and parameter values (β1 = (−1,−4)�,β2 =
(4,−6)�, σ 2

1 = σ 2
2 = 2, λ1 = λ2 = 2, i.e, �1 = �2, and p1 = 0.3), which is

a restriction suggested by Basso et al. (2010) and Yao et al. (2014). Then, without
loss of generality, we artificially generated 500 samples from a mixture regression
of skew-t (ν = 3) and, for each sample, we fitted the normal, SN, ST, and the SSL
models with homogeneous nature of the covariance structure. Figure 6.3 shows a
scatter plot and a histogram for one of these simulated samples.

From the clustering standpoint, in order to give stronger evidence of the
superiority of the method using the SMSN-MRM family, the right number of
allocations was computed for each sample. The mean and standard deviation (SD)
of right allocations of these samples are shown in Table 6.5. It can be seen that the
means are greater and the standard deviations are smaller for the skewed/heavy-
tailed SMSN-MRM, in particular to the true model, i.e., ST model (�1 = �2).
In addition, we present the mean value of the correct allocation rates (ACCR).

Compared with the results for the normal model, modeling using the SN, ST, or
SSL distribution represents a substantial improvement in the outright clustering.
Also, the ST model (true model) outperforms performance when compared with the
SN and the SSL models, as expected.
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Table 6.5 Experiment 3. Right allocation analysis for 500 samples artificially generated from the
ST model (�1 = �2)

Fitted model Mean of right allocations SD of right allocations CCR

Normal (�1 = �2) 412.3440 109.4916 0.8247

SN (�1 = �2) 442.2720 58.7987 0.8845

ST (�1 = �2) 464.9040 39.3982 0.9298

SSL (�1 = �2) 457.4340 53.9565 0.9149

Table 6.6 Experiment 3. Percentages that the true model is chosen using different criteria

Condition examined AIC BIC EDC ICL

ST (�1 = �2) vs normal (�1 = �2) 100 100 100 5

ST (�1 = �2) vs SN (�1 = �2) 99 99 99 60

ST (�1 = �2) vs SSL (�1 = �2) 99 99 99 86

For each fitted model, we computed the AIC, BIC, EDC, and the ICL criterion.
Table 6.6 shows the rates (percentages) at which the true model is chosen for each
criterion. Note that all the criteria have satisfactory behavior, in that, they favor
the true model, that is, the ST model with two components, except ICL which still
performs poorly. Figure 6.4 shows the AIC values for each sample and model.

This simulation study shows similar results to those reported in Basso et al.
(2010), in the context of mixture modeling based on scale mixtures of skew-normal
distributions. We believe that this topic about model selection deserves a more
detailed and extensive investigation, which is one of our purposes in order to extend
the present paper including a study about the choice of the (possibly) unknown
number of components, for example, and also treating the multivariate case. An
overview of selection criteria can be found in Depraetere and Vandebroek (2014),
in the context of mixture regression models based on the assumption of normality.

In addition, a real data set is analyzed, illustrating the usefulness of the proposed
method. Thus, in the following application, we use those criteria as a rough guide
for model choice.

6.4 Real Dataset

We illustrate our proposed methods with a dataset obtained from Cohen (1984),
representing the perception of musical tones by musicians. In this perception
experiment a pure fundamental tone with electronically generated overtones added
was played to a trained musician. The subjects were asked to tune an adjustable tone
to one octave above the fundamental tone and their perceived tone was recorded
versus the actual tone. The experiment recorded 150 trials from the same musician.
The overtones were determined by a stretching ratio, which is the ratio between
adjusted tone and the fundamental tone. Two separate trends clearly emerge, see
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Fig. 6.5 (a) The scatter plot and (b) histogram of the tone perception data

Fig. 6.5a, which relate to two hypotheses explored in Cohen (1984), called the
interval memory hypothesis and the partial matching hypothesis. Many articles have
analyzed this dataset using a mixture of linear regressions framework; see DeVeaux
(1989), Viele and Tong (2002), and Hunter and Young (2012). These data were
analyzed recently by Yao et al. (2014), leading them to propose a robust mixture
regression using the t-distribution. Now we revisit this dataset with the aim of
expanding the inferential results to the SMSN family. Specifically, we focus on the
SN, ST, and the SSL distributions. To verify the existence of skewness in the data,
Fig. 6.5b presents a histogram of the data, showing an apparent non-normal pattern.



92 6 Mixture Regression Modeling Based on SMSN Distributions

Table 6.7 Tone perception data

Normal (�1 = �2) SN (�1 = �2) ST (�1 = �2) SSL (�1 = �2)

Parameter Estimates SE Estimates SE Estimates SE Estimates SE

β01 1.8901 0.0399 1.9147 0.0236 1.9103 0.5490 1.9243 0.7695

β11 0.0572 0.0175 0.0433 0.0109 0.0354 0.2768 0.0383 0.0163

β02 −0.0442 0.0648 0.1594 0.0642 0.0019 0.5492 0.2061 0.0855

β12 1.0111 0.0290 0.9044 0.0298 0.9978 0.2770 0.8859 0.3541

σ 2
1 0.0070 0.0008 0.0023 0.0003 0.0029 0.0008 0.0022 0.0010

σ 2
2 0.0070 0.0008 0.0793 0.0114 0.0001 0.0008 0.0541 0.0215

λ1 – – −0.0128 0.0036 −8.0653 2.3243 −1.6120 0.6762

λ2 – – 5.7922 0.6347 −0.7363 2.1018 9.2738 3.8378

ν – – – – 2.0000 0.0439 2.0000 0.8752

p1 0.6765 0.0472 0.7310 0.0441 0.5496 0.0385 0.7251 0.2813

ML estimation results for fitting several mixture models. SE are the estimated standard errors based
on the bootstrap procedure

Table 6.8 Tone perception data

Information criteria Normal (�1 = �2) SN (�1 = �2) ST (�1 = �2) SSL (�1 = �2)

Log-likelihood 106.2549 134.0726 201.2834 135.5021

AIC −198.5097 −250.1451 −382.5667 −251.0041

BIC −174.4247 −220.0387 −352.4604 −220.8977

EDC −194.9138 −245.6502 −378.0718 −246.5092

ICL 4274.6590 6831.2690 1299.2110 1318.8930

Some information criteria. The bold values indicates the best fitted model

Table 6.7 presents the ML estimates of the parameters from the normal (�1 =
�2), SN (�1 = �2), ST (�1 = �2), and the SSL (�1 = �2) models, along with
their corresponding standard errors (SE) calculated via the bootstrap procedure (100
replications). As in Basso et al. (2010), we also compare the normal, SN, ST, and
the SSL models by inspecting some information selection criteria. Comparing the
models by looking at the values of the information criteria presented in Table 6.8,
we observe that the SN, ST, and the SSL models outperform the normal model,
indicating that asymmetric distributions with heavier tails provide a better fit than
the normal and the SN distributions. In addition, it appears that the ST model
presents a better fit than all other models.

For this dataset we also adjusted the normal, SN, ST, and the SSL models
without considering the homogeneous nature of the variance parameter, but the ST
(�1 = �2) model showed the best fit compared to other models. Thus, for brevity
we present only the results for the models with homogeneous nature of the scale
parameter.

From the clustering point of view, in order to give evidence of the superiority of
the method using the SMSN-MRM family, we carried out a bootstrap experiment
with 100 replications. For each replication, the right number of allocations was
computed. The mean and standard deviation (SD) of these bootstrap replications
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Table 6.9 Tone perception data

Fitted model Mean of RA SD of RA 95% IC for RA

Normal 130.9500 3.4275 [124.0095;137.8005]

SN 136.7900 6.8199 [123.1502;150.4298]

ST 141.4000 2.7303 [135.9394;146.8606]

SSL 138.6264 3.3071 [132.0122;145.2406]

Right allocation (RA) analysis through bootstrap procedure for the dataset
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Fig. 6.6 Tone perception data. The scatter plots of the dataset with the fitted models

are shown in Table 6.9. Also, we present the associated 95% normal asymptotic
confidence intervals (IC). It can be seen that the means are greater and the standard
deviations are smaller for the heavy-tailed SMSN-MRM. Figure 6.6 shows the
scatter plots of the data set with the fitted models.
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