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   Foreword   

 This book is based on one of the most consequential emergent results of the ongoing 
computer revolution, namely, that computers can be trained – under the right condi-
tions – to reliably classify new data, such as patient data. This capability, called 
machine learning (or statistical learning), has been deployed in many areas of tech-
nology, commerce, and medicine. Data mining and statistical prediction models 
have already crept into many areas of modern life, including advertising, banking, 
sports, weather prediction, politics, science generally, and medicine in particular. 
The ability of computers to increasingly communicate with people in a natural way 
(understanding language and speaking to us), such as the famed IBM “Watson” 
appearance on Jeopardy, or “Siri” on iPhones, portends an accelerating role of 
sophisticated computer models that predict and respond to our requests. 
Fundamentally, these developments rely on the ability of statistical computer meth-
ods to pull (as Nate Silver puts it) “signal from the noise.” While traditional statisti-
cal methods typically attempt to ascertain the role of particular variables in 
determining an outcome of interest (hence, needing many data points for every vari-
able included in the prediction model), machine learning represents a different goal, 
to reliably predict an outcome, for example that an imaging abnormality is benign 
with a high degree of certainty. The statisticians and computer scientists working in 
this emerging area are often happy to use large numbers of variables (or previous 
data instances) that essentially vote together in a nonlinear fashion. Simplicity is 
happily traded for an improved ability to predict. 

 The chapters in this book comprehensively review machine learning and related 
modeling methods previously used in many areas of radiation oncology and diag-
nostic radiology. The editors and authors are explorers in this new territory, and 
have performed a great service by surveying and mapping the many achievements 
to date and outline many areas of potential application. Early chapters review the 
fundamental characteristics, and varieties, of machine learning methods, including 
diffi cult issues regarding evaluation of predictive model performance. The most 
well-developed use of machine learning reviewed is the creation of computer aided 
diagnosis (CAD) models to provide a reliable “second opinion” for radiologists 
reading mammograms to detect breast cancer. The increasing use of a wider range 
of imaging features referred to as “radiomics,” in analogy to “genomics,” presented 
in radiomics for disease detection, and radiomics for diagnosis, or “theragnostic” 
[ 1 ] chapters, which are devoted to details of image-based informatics formats and 
database systems, including tools to share and learn from institutional databases. 
Machine learning approaches to aid in the planning, delivery, and quality assurance 
of radiation therapy are reviewed. Efforts to predict response to radiation therapy 
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are also reviewed in useful detail. Obtaining enough data of suffi cient quality and 
diversity is the biggest challenge in predictive modeling. This is only possible if 
data are shared across institutional and national borders, both academic and com-
munity health-care systems [ 2 ]. 

 Machine learning – coupled with computer vision and imaging processing tech-
niques – has been demonstrated to be useful in diagnosis, treatment planning, and 
outcome prediction in radiation oncology and radiology. This is of particular 
 importance since we know that doctors have increasing diffi culties to predict the 
outcome of modernized complex patient treatments [ 3 ]. This book provides a won-
derful summary of past achievements, current challenges, and emerging approaches 
in this important area of medicine. Unlike many other approaches to improving 
medicine, the use of improved and continuously updated prediction models put 
together in “Decision Support Systems” holds the potential of improved clinical 
decision making with minimal costs to patients [ 4 ]. An intuitively attractive charac-
teristic of this approach is the user of  all  the data available (rather than using only 
one type of data such as dose or gene profi le). We anticipate that predictive models-
based Decisions Support Systems will ease the implementation of personalized (or 
precision) medicine. 

 Despite investment in efforts to improve the skills of clinicians, patients continue 
to report low levels of involvement [ 5 ]. There is indeed evidence level 1 from a 
Cochrane systematic review evaluating 86 studies involving 20,209 participants 
included in published randomized controlled trials demonstrating that decision aids 
increase people’s involvement, support informed values-based choices in patient-
practitioner communication, and improve knowledge and realistic perception of 
outcomes. We therefore believe the next step will be to integrate, whenever possi-
ble, Shared Decision Making approaches (see, e.g.,   www.treatmentchoice.info    ; 
  www.optiongrid.org    ) to include the patient perspective on the best treatment of 
choice [ 6 ]. 

 We are sincerely convinced that this book will continue to advance precision 
medicine in oncology. 
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  Pref ace   

 Radiotherapy is a major treatment modality for cancer and is currently the main 
option for treating local disease at advanced stages. More than half of all cancer 
patients receive irradiation as part of their treatment, with curative or palliative 
intent to eradicate cancer or reduce pain, respectively, while sparing uninvolved 
normal tissue from detrimental side effects. Despite signifi cant technological 
advances in treatment planning and delivery using image-guided techniques, the 
complex nature of radiotherapy processes and the massive amount of structured and 
unstructured heterogeneous data generated during radiotherapy from early patient 
consultation to patient simulation, to treatment planning and delivery, to monitoring 
response, to follow-up visits, invite the application of more advanced computational 
methods that can mimic human cognition and intelligent decision making to ensure 
safe and effective treatment. In addition, these computational methods need to com-
pensate for human limitations in handling a large amount of fl owing information in 
an effi cient manner, in which simple errors can make the difference between life and 
death. 

 Machine learning is a technology that aims to develop computer algorithms that 
are able to emulate human intelligence by incorporating ideas from neuroscience, 
probability and statistics, computer science, information theory, psychology, con-
trol theory, and philosophy with successful applications in computer vision, robot-
ics, entertainment, ecology, biology, and medicine. The essence of this technology 
is to  humanize computers  by learning from the surrounding environment and previ-
ous experiences, with or without a teacher. The development and application of 
machine learning has undergone a signifi cant surge in recent years due to the expo-
nential growth and availability of “big data” with machine learning techniques 
occupying the driver’s seat to steer the understanding of such data in many fi elds, 
including radiation oncology. 

 The growing interest in applying machine learning algorithms to radiotherapy 
has been highlighted by special sessions at the annual meeting of the American 
Association of Physicists in Medicine (AAPM) and at the International Conference 
on Machine Learning and Applications (ICMLA). Ensuing discussions of compil-
ing these disparate applications of machine learning in radiotherapy into a single 
succinct monograph led to the idea of this book. The goal is to provide interested 
readers with a comprehensive and accessible text on the subject to fi ll in an impor-
tant existing void in radiotherapy and machine learning literature. Even as these 
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discussions were taking place, the subject of machine learning in radiotherapy con-
tinued its growth from a peripheral subfi eld in radiotherapy into widespread appli-
cations that touch almost every area in radiotherapy from treatment planning, 
quality assurance, image guidance, and respiratory motion management to treat-
ment response modeling and outcomes prediction. This rapid growth has driven the 
compilation of this textbook. 

 The textbook is intended to be an introductory learning guide for students and 
residents in medical physics and radiation oncology who are interested in exploring 
this new fi eld of machine learning for their own curiosity or their research projects. 
In addition, the book is intended to be a useful and informative resource for more 
experienced practitioners, researchers, and members of both radiotherapy and 
applied machine learning as a two-way bridge between these communities. This is 
manifested by the fact that the book has been written by experts from both the radio-
therapy and machine learning domains. 

 The book is structured into fi ve sections:

•    The fi rst section provides an introduction to machine learning and is a must-read 
for individuals who are new to the fi eld. It begins with a machine learning defi ni-
tion (Chap.   1    ), followed by discussion of the main computational learning prin-
ciples using PAC or VC theories (Chap.   2    ), presentation of the most commonly 
used supervised and unsupervised learning algorithms with demonstrative appli-
cations drawn from the radiotherapy fi eld (Chap.   3    ), and descriptions of different 
methods and techniques used for evaluating the performance of learning meth-
ods (Chap.   4    ). The ever-growing role of informatics infrastructure in radiother-
apy and its application to machine learning are presented in Chap.   5    . Finally, 
given the realistic challenges related to data sharing from a global radiotherapy 
network, this section concludes with a discussion of how machine learning could 
be extended to a distributed multicenter rapid learning framework.  

•   The second section summarizes years of successful application of machine learn-
ing in radiological sciences – a sister fi eld to radiotherapy – as a computational 
tool for computer-aided detection (Chap.   7    ) and computer-aided diagnosis 
(Chap.   8    ).  

•   The third section presents applications of machine learning in radiotherapy treat-
ment planning as a tool for image-guided radiotherapy (Chap.   9    ) and a computa-
tional vehicle for knowledge-based planning (Chap.   10    ).  

•   The fourth section demonstrates the application of machine learning to respira-
tory motion management – a rather challenging problem for accurate delivery of 
irradiation to a moving target – by discussing predictive respiratory models 
(Chap.   11    ) and image-based compensation techniques (Chap.   12    ).  

•   Quality assurance is at the heart of safe delivery of radiotherapy and is a major 
part of a medical physicist’s job. Examples for application of machine learning 
to QA for detection and prediction of radiotherapy errors (Chap.   13    ), for treat-
ment planning (Chap.   14    ), and for delivery (Chap.   15    ) validation are presented 
and discussed.  
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•   In the era of personalized evidence-based medicine, machine learning predictive 
analytics can play an important role in the understanding of radiotherapy 
response (Chap.   16    ). Examples of successful machine learning applications to 
normal tissue complication probability (Chap.   17    ) and tumor control probability 
(Chap.   18    ) highlight the inherent power of this technology in deciphering com-
plex radiobiological response.    

 This book is the product of a coordinated effort by the editors, authors, and pub-
lishing team to present the principles and applications of machine learning to a new 
generation of practitioners in radiation therapy and to present the present-day chal-
lenges of radiotherapy to the computer science community, with the hope of driving 
advancements in both fi elds.  

   Montreal ,  Canada      Issam      El   Naqa   
  Stanford ,  CA ,  USA      Ruijiang     Li   
   Richmond ,  VA ,  USA      Martin     J.     Murphy       
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  1      What Is Machine Learning? 

             Issam     El     Naqa      and     Martin     J.     Murphy    

    Abstract  
  Machine learning is an evolving branch of computational algorithms that are 
designed to emulate human intelligence by learning from the surrounding 
 environment. They are considered the working horse in the new era of the  so-called 
big data. Techniques based on machine learning have been applied  successfully in 
diverse fi elds ranging from pattern recognition, computer vision, spacecraft engi-
neering, fi nance, entertainment, and computational biology to biomedical and medi-
cal applications. More than half of the patients with cancer receive ionizing radiation 
(radiotherapy) as part of their treatment, and it is the main treatment modality at 
advanced stages of local disease. Radiotherapy involves a large set of processes that 
not only span the period from consultation to treatment but also extend beyond that 
to ensure that the patients have received the prescribed radiation dose and are 
responding well. The degrees of the complexity of these processes can vary and may 
involve several stages of sophisticated human-machine interactions and decision 
making, which would naturally invite the use of machine learning algorithms into 
optimizing and automating these processes including but not limited to radiation 
physics quality assurance, contouring and treatment planning, image-guided radio-
therapy, respiratory motion management, treatment response modeling, and out-
comes prediction. The ability of machine learning algorithms to learn from current 
context and generalize into unseen tasks would allow improvements in both the 
safety and effi cacy of  radiotherapy practice leading to better outcomes.  

mailto:issam.elnaqa@mcgill.ca
mailto:ielnaqa@med.umich.edu
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1.1          Overview 

 A machine learning algorithm is a computational process that uses input data to 
achieve a desired task without being literally programmed (i.e., “hard coded”) to 
produce a particular outcome. These algorithms are in a sense “soft coded” in that 
they automatically alter or adapt their architecture through repetition (i.e., experi-
ence) so that they become better and better at achieving the desired task. The pro-
cess of adaptation is called training, in which samples of input data are provided 
along with desired outcomes. The algorithm then optimally confi gures itself so that 
it can not only produce the desired outcome when presented with the training inputs, 
but can generalize to produce the desired outcome from new, previously unseen 
data. This training is the “learning” part of machine learning. The training does not 
have to be limited to an initial adaptation during a fi nite interval. As with humans, a 
good algorithm can practice “lifelong” learning as it processes new data and learns 
from its mistakes. 

 There are many ways that a computational algorithm can adapt itself in response 
to training. The input data can be selected and weighted to provide the most decisive 
outcomes. The algorithm can have variable numerical parameters that are adjusted 
through iterative optimization. It can have a network of possible computational 
pathways that it arranges for optimal results. It can determine probability distribu-
tions from the input data and use them to predict outcomes. 

 The ideal of machine learning is to emulate the way that human beings (and other 
sentient creatures) learn to process sensory (input) signals in order to accomplish a 
goal. This goal could be a task in pattern recognition, in which the learner wants to 
distinguish apples from oranges. Every apple and orange is unique, but we are still 
able (usually) to tell one from the other. Rather than hard code a machine with 
many, many exact representations of apples and oranges, it can be programmed to 
learn to distinguish them through repeated experience with actual apples and 
oranges. This is a good example of  supervised learning , in which each training 
example of input data (color, shape, odor, etc.) is paired with its known classifi ca-
tion label (apple or orange). It allows the learner to deal with similarities and differ-
ences when the objects to be classifi ed have many variable properties within their 
own classes but still have fundamental qualities that identify them. Most impor-
tantly, the successful learner should be able to recognize an apple or an orange that 
it has never seen before. 

 A second type of machine learning is the so-called  unsupervised algorithm . This 
might have the objective of trying to throw a dart at a bull’s-eye. The device (or 
human) has a variety of degrees of freedom in the mechanism that controls the path 
of the dart. Rather than try to exactly program the kinematics a priori, the learner 
practices throwing the dart. For each trial, the kinematic degrees of freedom are 
adjusted so that the dart gets closer and closer to the bull’s-eye. This is unsupervised 
in the sense that the training doesn’t associate a particular kinematic input confi gu-
ration with a particular outcome. The algorithm fi nds its own way from the training 
input data. Ideally, the trained dart thrower will be able to adjust the learned kine-
matics to accommodate, for instance, a change in the position of the target. 

I. El Naqa and M.J. Murphy
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 A third type of machine learning is  semi-supervised learning , where part of the 
data is labeled and other parts are unlabeled. In such a scenario, the labeled part can 
be used to aid the learning of the unlabeled part. This kind of scenario lends itself to 
most processes in nature and more closely emulates how humans develop their 
skills. 

 There are two particularly important advantages to a successful algorithm. First, 
it can substitute for laborious and repetitive human effort. Second, and more signifi -
cantly, it can potentially learn more complicated and subtle patterns in the input data 
than the average human observer is able to do. Both of these advantages are impor-
tant to radiation therapy. For example, the daily contouring of tumors and organs at 
risk during treatment planning is a time-consuming process of pattern recognition 
that is based on the observer’s familiarity and experience with the appearance of 
anatomy in diagnostic images. That familiarity, though, has its limits, and conse-
quently, there are uncertainty and interobserver variability in the resulting contours. 
It is possible that an algorithm for contouring can pick up subtleties of texture or 
shape in one image or simultaneously incorporate data from multiple sources or 
blend the experience of numerous observers and thus reduce the uncertainty in the 
contour. 

 More than half of the patients with cancer receive ionizing radiation (radiother-
apy) as part of their treatment, and it is the main treatment modality at advanced 
stages of disease. Radiotherapy involves a large set of processes that not only span 
the period from consultation to treatment but also extend beyond, to ensure that the 
patients have received the prescribed radiation dose and are responding well. The 
complexity of these processes can vary and may involve several stages of sophisti-
cated human-machine interactions and decision making, which would naturally 
invite the use of machine learning algorithms to optimize and automate these pro-
cesses, including but not limited to radiation physics quality assurance, contouring 
and treatment planning, image-guided radiotherapy, respiratory motion manage-
ment, treatment response modeling, and outcomes prediction.  

1.2     Background 

 Machine learning is the technology of developing computer algorithms that are able 
to emulate human intelligence. It draws on ideas from different disciplines such as 
artifi cial intelligence, probability and statistics, computer science, information the-
ory, psychology, control theory, and philosophy [ 1 – 3 ]. This technology has been 
applied in such diverse fi elds as pattern recognition [ 3 ], computer vision [ 4 ], space-
craft engineering [ 5 ], fi nance [ 6 ], entertainment [ 7 ,  8 ], ecology [ 9 ], computational 
biology [ 10 ,  11 ], and biomedical and medical applications [ 12 ,  13 ]. The most 
important property of these algorithms is their distinctive ability to learn the sur-
rounding environment from input data with or without a teacher [ 1 ,  2 ]. 

 Historically, the inception of machine learning can be traced to the seventeenth 
century and the development of machines that can emulate human ability to add and 
subtract by Pascal and Leibniz [ 14 ]. In modern history, Arthur Samuel from IBM 

1 What Is Machine Learning?
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coined the term “machine learning” and demonstrated that computers could be 
 programmed to learn to play checkers [ 15 ]. This was followed by the development 
of the perceptron by Rosenblatt as one of the early neural network architectures in 
1958 [ 16 ]. However, early enthusiasm about the perceptron was dampened by the 
observation made by Minsky that the perceptron classifi cation ability is limited to 
linearly separable problems and not common nonlinear problems such as a simple 
XOR logic [ 17 ]. A breakthrough was achieved in 1975 by the development of the 
multilayer perceptron (MLP) by Werbos [ 18 ]. This was followed by the develop-
ment of decision trees by Quinlan in 1986 [ 19 ] and support vector machines by 
Cortes and Vapnik [ 20 ]. Ensemble machine learning algorithms, which combine 
multiple learners, were subsequently proposed, including Adaboost [ 21 ] and ran-
dom forests [ 22 ]. More recently, distributed multilayered learning algorithms have 
emerged under the notion of deep learning [ 23 ]. These algorithms are able to learn 
good representations of the data that make it easier to extract useful information 
when building classifi ers or other predictors [ 24 ].  

1.3     Machine Learning Definition 

 The fi eld of machine learning has received several formal defi nitions in the litera-
ture. Arthur Samuel in his seminal work defi ned machine learning as “a fi eld of 
study that gives computers the ability to learn without being explicitly programmed” 
[ 15 ]. Using a computer science lexicon, Tom Mitchell presented it as “A computer 
program is said to learn from experience ( E ) with respect to some class of tasks ( T ) 
and performance measure ( P ), if its performance at tasks in  T , as measured by  P , 
improves with experience  E ” [ 1 ]. Ethem Alpaydin in his textbook defi ned machine 
learning as the fi eld of “Programming computers to optimize a performance crite-
rion using example data or past experience” [ 2 ]. These various defi nitions share the 
notion of coaching computers to intelligently perform tasks beyond traditional num-
ber crunching by learning the surrounding environment through repeated 
examples.  

1.4     Learning from Data 

 The ability to learn through input from the surrounding environment, whether it is 
playing checkers or chess games, or recognizing written patterns, or solving the 
daunting problems in radiation oncology, is the main key to developing a successful 
machine learning application. Learning is defi ned in this context as estimating 
dependencies from data [ 25 ]. 

 The fi elds of data mining and machine learning are intertwined. Data mining 
utilizes machine learning algorithms to interrogate large databases and discover hid-
den knowledge in the data, while many machine learning algorithms employ data 
mining methods to preprocess the data before learning the desired tasks [ 26 ]. 
However, it should be noted that machine learning is not limited to solving 
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database-like problems but also extends into solving complex artifi cial intelligence 
challenges by learning and adapting to a dynamically changing situation, as is 
encountered in a busy radiation oncology practice, for instance. 

 Machine learning has both engineering science aspects such as data structures, 
algorithms, probability and statistics, and information and control theory and social 
science aspects by drawing in ideas from psychology and philosophy.  

1.5     Overview of Machine Learning Approaches 

 Machine learning can be divided according to the nature of the data labeling into 
supervised, unsupervised, and semi-supervised as shown in Fig.  1.1 . Supervised 
learning is used to estimate an unknown (input, output) mapping from known (input, 
output) samples, where the output is labeled (e.g., classifi cation and regression). 
In unsupervised learning, only input samples are given to the learning system 
(e.g., clustering and estimation of probability density function). Semi-supervised 
learning is a combination of both supervised and unsupervised where part of the 
data is partially labeled and the labeled part is used to infer the unlabeled portion 
(e.g., text/image retrieval systems).  

 From a concept learning perspective, machine learning can be categorized into 
transductive and inductive learning [ 27 ]. Transductive learning involves the infer-
ence from specifi c training cases to specifi c testing cases using discrete labels as in 
clustering or using continuous labels as in manifold learning. On the other hand, 
inductive learning aims to predict outputs from inputs that the learner has not 
encountered before. Along these lines, Mitchell argues for the necessity of an 
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  Fig. 1.1    Categories of machine learning algorithms according to training data nature       
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inductive bias in the training process to allow for a machine learning algorithm to 
generalize beyond unseen observation [ 28 ]. 

 From a probabilistic perspective, machine learning algorithms can be divided 
into discriminant or generative models. A discriminant model measures the condi-
tional probability of an output given typically deterministic inputs, such as neural 
networks or a support vector machine. A generative model is fully probabilistic 
whether it is using a graph modeling technique such as Bayesian networks, or not as 
in the case of naïve Bayes. 

 Another interesting class of machine learning algorithms that attempts to control 
learning by accommodating a feedback system is reinforcement learning, in which 
an agent attempts to take a sequence of actions that may maximize a cumulative 
reward such as winning a game of checkers, for instance [ 29 ]. This kind of approach 
is particularly useful for online learning applications.  

1.6     Application in Biomedicine 

 Machine learning algorithms have witnessed increased use in biomedicine, starting 
naturally in neuroscience and cognitive psychology through the seminal work of 
Donald Hebb in his 1949 book [ 30 ] developing the principles of associative or 
Hebbian learning as a mechanism of neuron adaptation and the work of Frank 
Rosenblatt developing the perceptron in 1958 as an intelligent agent [ 16 ]. More 
recently, machine learning algorithms have been widely applied in breast cancer 
detection and diagnosis [ 31 – 33 ]. Reviews of the application of machine learning in 
biomedicine and medicine can be found in [ 12 ,  13 ].  

1.7     Application in Medical Physics and Radiation Oncology 

 Early applications of machine learning in radiation oncology focused on predicting 
normal tissue toxicity [ 34 – 36 ], but its application has since branched into almost 
every part of the fi eld, including tumor response modeling, radiation physics quality 
assurance, contouring and treatment planning, image-guided radiotherapy, respira-
tory motion management, as seen from the examples presented in this book.  

1.8     Steps to Machine Learning Heaven 

 For the successful application of machine learning in general and in medical physics 
and radiation oncology in particular, one fi rst needs to properly characterize the 
nature of problem, in terms of the input data and the desired outputs. Secondly, 
despite the robustness of machine learning to noise, a good model cannot substitute 
for bad data, keeping in mind that models are primarily built on approximations, 
and it has been stated that “All models are wrong; some models are useful (George 
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Box).” Additionally, this has been stated as the GIGO principle, garbage in garbage 
out as shown in Fig.  1.2  [ 37 ].  

 Thirdly, the model needs to generalize beyond the observed data into unseen data, 
as indicated by the inductive bias mentioned earlier. To achieve this goal, the model 
needs to be kept as simple as possible but not simpler, a property known as parsimony, 
which follows from Occam’s razor that “Among competing hypotheses, the hypoth-
esis with the fewest assumptions should be selected.” Analytically, the complexity of 
a model could be derived using different metrics such as Vapnik–Chervonenkis (VC) 
dimension discussed in chapter 2. for instance [ 25 ]. Finally, a major limitation in the 
acceptance of machine learning by the larger medical community is the “black box” 
stigma and the inability to provide an intuitive interpretation of the learned process 
that could help clinical practitioners better understand their data and trust the model 
predictions. This is an active and necessary area of research that requires special 
attention from the machine learning community working in biomedicine.  

    Conclusions 
 Machine learning presents computer algorithms that are able to learn from the 
surrounding environment to optimize the solution for the task at hand. It builds 
on expertise from diverse fi elds such as artifi cial intelligence, probability and 
statistics, computer science, information theory, and cognitive neuropsychology. 
Machine learning algorithms can be categorized into different classes according 
to the nature of the data, the learning process, and the model type. Machine 
learning has a long history in biomedicine, but its application in medical physics 
and radiation oncology is in its infancy, with high potential and promising future 
to improve the safety and effi cacy of radiotherapy practice.     

Input data Model Output results

Bad

Good Good Good

Bad

Bad

  Fig.1.2    GIGO paradigm. Learners cannot be better than the data       
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2Computational Learning Theory

Issam El Naqa

Abstract
The conditions for learnability of a task by a computer algorithm provide guidance 
for understanding their performance and guidance for selecting the appropriate 
learning algorithm for a particular task. In this chapter, we present the two main 
theoretical frameworks—probably approximately correct (PAC) and Vapnik–
Chervonenkis (VC) dimension—which allow us to answer questions such as 
which learning process we should select, what is the learning capacity of the 
algorithm selected, and under which conditions is successful learning possible or 
impossible. Practical methods for selecting proper model complexity are pre-
sented using techniques based on information theory and statistical resampling.

2.1	 �Introduction

In many computational learning problems, we are given a relatively small number 
of observed data samples from the general population and asked to understand the 
functional dependencies and make decisions or perform tasks based on the data 
accordingly. In standard statistics introduced by Ronald Fisher in the 1920–1930s in 
his classical textbooks [1, 2], learning dependencies are based on the concepts of 
sufficiency and ancillary statistics, which requires representing dependencies by a 
finite set of parameters and then estimating these using maximum likelihood or 
Bayesian techniques. However, a paradigm shift in learning theory was introduced 
in the 1960s by Vladimir Vapnik and colleagues in which the parameter estimation 
restrictions imposed by Fisher’s paradigm are replaced by knowledge of some 
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general properties of the set of functions to which the unknown dependencies 
belong. The determination of the general conditions for estimating the unknown 
data dependency, description of the inductive learning of relationships, and the 
development of algorithms to implement these principles are the subjects of the 
modern computational learning theory [3].

In this framework of learning theory, the focus is on small sample size statistics, 
in which a machine-learning algorithm is trained on a subset of the data (training 
data) that is used to identify the learning function to achieve the desired response of 
the task at hand and is built with the goal of predicting response to unseen data (out-
of-sample or testing data). This is a challenging task that poses several questions 
regarding which learning process we should select, what is the learning capacity of 
the algorithm selected, what are the expected errors or their bounds, under what 
conditions is successful learning possible and impossible, and under what condi-
tions is a particular learning algorithm assured of learning successfully [3, 4]. In this 
chapter, we will start by highlighting the differences between statistical analysis and 
statistical modeling. We will present the theoretical background for computational 
learning. Specifically, two specific frameworks for analyzing learning algorithms, 
namely, the probably approximately correct (PAC) and Vapnik–Chervonenkis (VC) 
theory, will be discussed. Finally, practical methods for estimating learning gener-
alization ability and model complexity will be presented.

2.2	 �Computational Modeling Versus Statistics

There is a common mix-up between statistical analysis and computational modeling 
of data. The objective of statistical analysis is to use statistics to describe data and 
make inferences on the population for hypothesis testing purposes; for instance, 
variable x is significant while variable y is not in explaining the observed clinical 
endpoint of interest. In the case of computational modeling, the objective is to pro-
vide an adequate description of data dependencies and summarize its features for 
hypothesis generation as summarized in Fig. 2.1 [5].

Population

Sample

Hypothesis generation

Hypothesis testing

Inference

Feature extraction

control
group
mean

treatment
group
mean

Fig. 2.1  Computational modeling vs. statistical analysis (Adapted from [5])
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Machine learning is a branch of computational modeling that inherited many 
of its properties and utilizes statistical modeling techniques as part of its arsenal. 
For instance, machine-learning models of quality assurance (QA) in radiother-
apy can capture many salient features in the data that may impact quality of 
delivered treatment and their possible interdependencies, which could be further 
tested for varying hypotheses for their severity and possible action levels to 
mitigate their effect. However, development of computational modeling tech-
niques could be achieved using both deterministic and statistical 
methodologies.

2.3	 �Learning Capacity

Learning capacity or “learnability” defines the ability of a machine-learning 
algorithm to learn the task at hand in terms of model complexity and the number 
of training samples required to optimize a performance criteria. Using formal 
statistical learning taxonomy [6], assuming a training set Ξ of n-dimensional vec-
tors, x mii

n, = 1: , each labeled (by 1 or 0) according to a target function, f, which 
is unknown to the learner and called the target concept and is denoted by c, which 
belongs to the set of functions, C, the space of target functions as illustrated in 
Fig. 2.2. The probability of any given vector X being presented in Ξ is P(X). The 
goal of the training is to guess a function, h(X) based on the labeled samples in 
Ξ, called the hypothesis. We assume that the target function is an element of a set, 
H, the space of hypotheses. For instance, in our QA example, if we are interested 
in developing a treatment plan quality metric, we would have a list of input fea-
tures X (e.g., energies, beam arrangements, monitor units, etc.) that is governed 
in our pool of treatment plans with a certain joint probability density function P. 
Based on clinical experience, a set of these plans are considered to be good while 
others are bad, which would constitute the target concept (c) of interest with an 
unknown functional form f that we aim to estimate. During the training process, 
we attempt to identify a hypothesis function h(X) that would approximate the 
mapping to c using varying possible machine-learning algorithms, and the higher 
the overlap between our hypothesized mapping function and the target quality 
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Fig. 2.2  Illustration of learning concepts (From Nilsson and Nilsson [6])
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metric concept, the more successful the learning process is as indicated in the 
Venn diagram of Fig. 2.2.

There are two main theories that attempt to characterize the learnability of 
machine-learning algorithms: the PAC and the VC theories as discussed below.

2.4	 �PAC Learning

One method to characterize the learnability of a machine-learning algorithm is by 
number of training examples needed to learn a hypothesis h(X) as mentioned earlier. 
This could be measured by the probability of learning a hypothesis that is 
approximately correct (PAC). Formally, this could be defined as follows. Consider 
the concept class C defined over a set of instances X of length m and a learner L 
using hypothesis space H. C is PAC learnable by L using H.

If for all c ∈ C, distributions D over X, ε such that 0 < ε < 1/2 and δ such that 
0 < δ < 1/2, there is a learner L with probability at least (1 – δ) that will output a 
hypothesis h ∈ H such that error D(h) ≤ ε, in time that is polynomial in 1/ε, 1/δ, n, 
and size (c) [4]. For a finite hypothesis space H, the number of training examples 
(m) required to reduce the probability of error below a desired level δ is given by 
assuming a zero training error:

	
m H≥ + ( )( )1

1
e

dln ln /
	

(2.1)

This estimated number of training examples is sufficient to ensure that any consis-
tent hypothesis will be probably (with probability (1 – δ)) approximately (within 
error ε) correct. In the case the training error is not necessarily zero, the number of 
required training examples becomes:

	
m H≥ + ( )( )1

2
1

2e
dln ln /

	
(2.2)

It is recognized that such estimate could be in practice an overestimate [4]. Another 
problem in PAC is that it includes the size of the hypothesis space H, which in 
practice could be infinite.

2.5	 �VC Dimension

An alternative approach to measure learnability that overcomes the limitations of 
PAC is to use Vapnik–Chervonenkis (VC) dimension. The VC dimension measures 
the complexity of the hypothesis space H, not by the number of distinct hypotheses 
H as in PAC but rather by the number of distinct instances from X that can be com-
pletely discriminated using H. VC(H), of hypothesis space H defined over instance 
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space X, is the size of the largest finite subset of X shattered by H. If arbitrarily large 
finite sets of X can be shattered by H, then VC(H) = ∞. This is noted that for any 
finite H, VC(H) ≤ log 2|H|. To see this, suppose that VC(H) = d. Then, H will require 
2d distinct hypotheses to shatter d instances. Hence, 2d ≤ log 2|H|, and d = ≤ log 2|H|. 
This is illustrated in Fig. 2.2.

2.6	 �Model Complexity Analysis in Practice

Any multivariate analysis often involves a large number of variables or features 
in the data samples [7]. The complexity of a learning model increases with the 
number of input features (i.e., the dimensionality of the input feature vector); 
therefore, it is desirable to focus on the most important features that character-
ize the observations. These are usually unknown. Therefore, practical dimen-
sionality reduction or subset selection aims to find the “significant” set of 
features. Finding the best subset of features is definitely challenging, especially 
in the case of nonlinear models. The objective is to reduce the model complex-
ity, decrease the computational burden, and improve the generalizability on 
unseen data as explained earlier. A straightforward approach is to make an edu-
cated guess based on experience and domain knowledge and then apply feature 
transformation (e.g., principal component analysis (PCA)) [8–10] or sensitivity 
analysis by using organized searches such as sequential forward selection or 
sequential backward selection or combination of both [9]. A recursive elimina-
tion technique that is based on machine learning has been also suggested [11]. 
In this technique, the data set is initialized to contain the whole set, train the 
predictor (e.g., SVM classifier) on the data, rank the features according to a 
certain criteria (e.g., ‖W‖), and keep iterating by eliminating the lowest ranked 
one. It should be noted that the specific definition of model order changes 
depending on the functional form. It could be identified by the number of param-
eters in logistic regression, or by the number of neurons and layers in the case 
of neural networks (cf. Fig. 2.3), etc. However, in any of these forms, the model 
order creates a balance between complexity (increased model order) and the 
model ability to generalize to unseen data. Finding this balance is referred to in 
statistical learning theory as the bias–variance dilemma (see Fig.  2.4), in  
which an oversimple model is expected to underfit the data (large bias and small 
variance), whereas a too complex model is expected to overfit data (small bias 
and large variance) [12]. Hence, the objective is to achieve an optimally 
parsimonious model, i.e., a model with the correct degree of complexity  
to fit the data and also a maximum ability to generalize to new, unseen, data sets, 
in other words to derive its VC dimension from the data itself. Practical 
approaches utilize information theoretic methods or statistical resampling as  
discussed below.
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2.6.1	 �Model Order Based on Information Theory

Information theory provides intuitive measures of model order optimality; among 
the most commonly used are Akaike information criteria (AIC) and the Bayesian 
information criteria (BIC) [14]. AIC is an estimate of predictive power of a model, 
which includes both the maximum likelihood principle and a model complexity 
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bias (average error) and prediction variance (square error). As model complexity increases, the 
average prediction error (bias) tends to decrease while the average square error tends to decrease. 
The point of optimal complexity tends to be near the point when average and square errors are of 
similar magnitude (Reproduced with permission from Deasy and El Naqa [13])
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term that penalizes models with an increasing number of parameters (to avoid over-
fitting the data). BIC is derived from Bayesian theory, which results in a penalty 
term that increases linearly with the number of parameters.

2.6.2	 �Model Order Based on Resampling Methods

Resampling techniques are used for model selection and performance comparison 
purposes to provide statistically sound results when the available data set is lim-
ited (which is almost always the case in radiotherapy). We use two types of fit-
then-validate methods: cross-validation methods and bootstrap resampling 
techniques. Cross-validation [9] uses some of the data to train the model and some 
of the data to test the model validity. The type we most often use is the “leave-one-
out” cross-validation (LOO-CV) procedure (also known as the “jackknife”). In 
each LOO-CV iteration, all the data are used for training/fitting except for one 
data point left out for testing, and this is repeated so that each data point is left out 
exactly once. The overall success of predicting the left-out data is a quantitative 
estimate of model performance on new data sets. Bootstrapping [15] is an inher-
ently computationally intensive procedure but generates more realistic results. 
Typically, a bootstrap pseudo-data set is generated by making copies of original 
data points and randomly selected with a probability of inclusion of 63 %. The 
bootstrap often works acceptably well even when data sets are small or unevenly 
distributed. To achieve valid results, this process must be repeated many times, 
typically several hundred or thousand times. Examples of applying these methods 
to outcomes modeling in radiotherapy could be found in our previous work [16] 
and are discussed in details in [13].

�Conclusions
In this chapter, we discussed some of the guiding principles of computational 
learning. Within the probably approximately correct (PAC) framework, we iden-
tify classes of hypotheses that can and cannot be learned from a polynomial 
number of training examples and we define a natural measure of complexity for 
hypothesis spaces that allows bounding the number of training examples 
required for inductive learning. Within the mistake-bound framework, we exam-
ine the number of training errors that will be made by a learner before it deter-
mines the correct hypothesis [4]. The VC dimension offers an alternative 
approach for measuring learnability by estimating the number of instances nec-
essarily to discriminate among hypotheses. Beside the theoretical approaches, 
we also presented practical methods based on information theory and statistical 
resampling for estimating model complexity. Resampling techniques such as 
cross-validation and bootstrapping arm among the most used methods in the 
literature and will be further discussed in the context of performance evaluation 
in chapter 4.
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3Machine Learning Methodology

Sangkyu Lee and Issam El Naqa

Abstract
There is a variety of patterns we desire to learn from radiation oncologic data. 
The previous chapters described how these various learning objectives can com-
monly be formulated in theoretical nomenclatures. This chapter introduces dif-
ferent machine learning algorithms that could cater to readers’ specific learning 
goals. We intend to provide conceptual outlines of some of the widely used algo-
rithms with minimal mathematical conundrum and examples drawn from the 
radiotherapy literature. In this chapter we classify the algorithms into three types, 
based on the availability of information: unsupervised, supervised, and rein-
forcement learning. The methods illustrated in this chapter include principal 
component analysis and clustering (unsupervised), logistic regression, neural 
network, support vector machine, decision tree, Bayesian networks, and naive 
Bayes (supervised) in addition to reinforcement learning.

3.1	 �Introduction

Learning is defined in this context as estimating dependencies from data. There are 
two common types of learning: supervised and unsupervised. Supervised learning 
is used to estimate an unknown (input, output) mapping from known (input, output) 
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samples (e.g., classification and regression). In unsupervised learning, only input 
samples are given to the learning system (e.g., clustering and estimation of probabil-
ity density function) [19]. In this study, we focus mainly on supervised learning 
where a teacher provides the output samples.

3.2	 �Unsupervised Learning

3.2.1	 �Linear Principal Component Analysis

Suppose we have treatment data for a group of patients, some of whom developed a 
late complication and others who did not. The data might include patient age and 
weight, diagnostic factors such as Gleason score, dose delivered to the PTV, dose to 
one or more critical structures, etc. We would like to know if there are patterns in 
these data that can predict for the complication. The first step is to reduce the data 
set to its most informative elements. Often there will be more than one datum that 
measures more or less the same thing. We would like to reduce the data vector to a 
smaller dimension containing only components that are clearly distinctive (i.e., 
uncorrelated with one another). To do this, we arrange the patient data in a matrix X 
so that each row and column represent one patient and a variable, respectively. As a 
pre-processing step, each column in the matrix X is normalized to zero mean and 
unity variance (z-score). Principal component analysis (PCA) is then applied to the 
normalized X to identify a set of principal components (PCs) which are given by:

	 PC T T= =U VX S 	 (3.1)

where UΣVT is the singular value decomposition of X. This is equivalent to transforma-
tion into a new coordinate system such that the greatest variance by any projection of 
the data would lie on the first coordinate (first PC), the second greatest variance on the 
second coordinate (second PC), and so on. For visualization purposes with the PCA, 
the heterogeneous variables are typically normalized using z-scoring (zero mean and 
unity variance). The term variance explained, used in PCA plots (Fig. 3.1), refers to the 
variance of the data model about the mean prognostic input factor values. The data 
model is formed as a linear combination of its principal components. Thus, if the PC 
representation of the data explains the spread (variance) of the data about the full data 
mean, it would be expected that this PC representation capture enough information for 
modeling. Moreover, PCA analysis can provide an indication about class separability; 
however, it should be cautioned that PCA is an indicator and is not necessarily opti-
mized for this purpose as supervised linear discriminant analysis, for instance [16].

Figure 3.1 shows three examples of PCA applied to patient data for three differ-
ent prognostic challenges: prediction of xerostomia, esophagitis, and pneumonitis. 
The main purpose of PCA in this case is to visualize a degree of separation between 
patients with and without complications. For the case of xerostomia, PCA revealed 
several significant principal modes in the prognostic data, the first two of which 
accounted for only 60 % of the total varianc among the data components. However, 
the first two principal components already show a fairly clear distinction between 
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the cases with and without xerostomia, meaning that the rest of the variance may not 
be relevant to the complication. In contrast, PCA reveals only one strong principal 
mode for esophagitis and pneumonitis, i.e., the original data components are so 
highly correlated that PCA reduces them to a single principal component. The pro-
jected data do not demonstrate clear separation among cases, which calls for a non-
linear modeling approach such as kernel methods (see Sect. 3.3.4).
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Fig. 3.1  Projection of prognostic factors for xerostomia (top), esophagitis (middle), and radiation 
pneumonitis (bottom) into a two-dimensional space consisting of the first and second principal com-
ponents (the right column). The left column shows variation explanation versus principle component 
index. Linear separation in the xerostomia dataset is well demonstrated but not as much for the pneu-
monitis case (as seen from a wide class overlap) (Reproduced from El Naqa et al. [16])
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3.2.2	 �Kernel Principal Component Analysis

Kernel PCA is a nonlinear form of the principal component analysis by use of a 
kernel technique (see the upcoming section on support vector machine). It is useful 
for detecting nonlinear behaviors in data that cannot be represented in terms of lin-
ear combination of the existing variables. The kernel trick effectively transforms an 
input space into a higher-dimensional feature space in which nonlinear patterns can 
be discoverable in a linear fashion (Fig. 3.2). However, the input space transforma-
tion does not need to be defined explicitly, as the PCA only requires the knowledge 
of a covariance matrix in the transformed space. The (i,j)-th component of a 
covariance matrix for the data x1, x2,..., xn can be computed directly from the kernel 
function k × ×( ), :

	
K x x k x xij i j i j= ( ) ( ) = ( )Φ Φ, , 	 (3.2)

where Φ(x) denotes the input space transformation. K is then diagonalized to extract 
a set of principal components and corresponding eigenvalues. Kernel PCA becomes 
more computationally expensive than linear PCA when the number of samples 
exceeds input dimension. Nevertheless, when applied to problems containing non-
linear patterns (e.g., handwriting), a nonlinear PCA could be more suitable than the 
linear one for reducing data dimension prior to a classification task [42].

3.2.3	 �Clustering

Cluster analysis refers to detection of collective patterns in data based on similarity 
criteria. It can be performed either in a supervised or unsupervised fashion. Grouping 
data points into clusters is useful in several ways. First, it can provide intuitive and 
succinct representation of the nature of data prior to major investigation. Secondly, 
clustering can be applied to compressing complex data distribution into a group of 
vectors corresponding to cluster centroids (vector quantization).

linear PCA

F

Φ

Kernel PCA

R2 R2

k(x,y) = (x·y) k(x,y) = (x·y)d

Fig. 3.2  A cartoon describing the utility of kernel PCA in linearizing a nonlinear pattern by fea-
ture transformation Φ via a polynomial kernel. The dotted lines are contour lines of the same value 
of projection to the first principal component (Reproduced from Scholkopf et al. [42])
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The K-means clustering is one of the most popular clustering methods. It begins 
with randomized partitions with the given number (K) of clusters. The partitions 
are then iteratively refined by the following steps: (1) an assignment step (reassign-
ment of the cluster membership of each data point based on a distance to cluster 
centroids) and (2) an update step (recalculation of cluster centroids as a geometric 
mean of the updated membership). The Minkowski distance between the 
d-dimensional vectors a and b, also known as a Lp norm, is used as a measure of 
proximity:
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d
k

a b a bi i,
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( ) = −
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
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

=
∑

1

k

	
(3.3)

The widely used Euclidean and Manhattan distance refer to the Minkowski distance 
at p = 2 and p = 1, respectively.

The K-means gained popularity thanks to its simplicity and fast convergence [25]. 
One of the drawbacks of this algorithm is its tendency to converge to local minima 
when initial partitions are not carefully chosen [25]. This can be partially overcome 
by introducing seeding heuristis such as the K++ means algorithm by Arthur and 
Vassilvitskii [1]. Furthermore, the original K-means requires the number of clusters 
(K) to be given a priori. The choice can either be made based on domain knowledge 
or optimized in data in a cross-validated fashion. The optimization method employs 
for an objective function the Bayesian information criteria (BIC) [38] or the mini-
mum description length (MDL) [2] that penalizes the larger number of clusters.

Another clustering algorithm gaining popularity is a neural network-derived 
method called a self-organizing map (SOM) or a Kohonen map [30]. In a SOM, 
distinct patterns in input data are represented by nodes which are typically arranged 
in a two-dimensional hexagonal or rectangular grid for better visualization. Each 
node is assigned with its location in the grid and a vector of weights on input vari-
ables. The learning algorithm begins with randomizing node weights. Then, one 
training example is sampled from the training set and the node at the closest dis-
tance from it (Minkowski metrics can be used) is identified as a best matching unit 
(BMU). The weight vectors for the BMU and the nodes in its vicinity are adjusted 
to decrease the distance to the training example according to the following update 
formula:

	
w w w w x wv v v i vt t t t t t+( ) = ( ) + ( ) ( ) − ( )( ) − ( )( )1 a Λ BMU 	 (3.4)

where wv(t) is a weight vector for a node v at iteration t and xi is the i-th input 
sample. The magnitude of the update is determined by the factors that depend on the 
distance from the BMU w wBMU vt - t( ) ( )  and the number of iteration (t). A win-
dow function (Λ) is the highest when v = BMU  and tapers off to zero as a node 
goes farther away from the BMU. It ensures the nodes will be topologically ordered 
(neighboring nodes have similar weight patterns). The learning rate, α(t), typically 
decreases with iterations to ensure convergence. After the learning is repeated 
through all the training samples, the nodes tend to clump toward the weights that 
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appears in input patterns frequently (topological ordering). A SOM has been shown 
useful in some areas such as speech recognition, linguistics, and robot control 
(Fig. 3.3).

Many challenges in bioinformatics are framed as a clustering problem, such as 
identifying a group of genes showing similar patterns of expression under certain 
conditions or diseases. A work by Svensson et  al. [48] is a good example from 
radiotherapy toxicity modeling. They grouped 1,182 candidate late toxicity marker 
genes into two groups using their expression patterns in lymphocytes after radia-
tion, although the grouping did not correlate with toxicity status. In contrast, a SOM 
of radiation pneumonitis risk factors built by Chen et al. [8] showed that grouping 
patterns among the factors can be exploited for predicting the toxicity with decent 
accuracy (AUC = 0.73).

3.3	 �Supervised Learning

3.3.1	 �Logistic Regression

In radiation outcomes modeling, the response will usually follow an S-shaped curve. 
This suggests that models with sigmoidal shape are more appropriate to use [3–5, 21, 
23, 24, 34, 49]. A commonly used sigmoidal form is the logistic model, which also 
has nice numerical stability properties. The logistic model is given by [22, 51]:
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(3.5)

Fig. 3.3  Self-organizing map learned from natural Finnish speech analysis by Kohonen [30]. 
Each node represents one acoustic unit of speech called a phoneme
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where n is the number of cases (patients) and x is a vector of the input variable val-
ues used to predict f(xi) for the outcome yi of the ith patient. The f ⋅( )  is referred to 
as the logic transformation. The “x-axis” summation g(xi) is given by:

	
g x i n j si

j

S

j ijx( ) = + = =
=
∑b b0

1

1 1, ,..., , ,...,
	

(3.6)

where s is the number of model variables and the β’s are the set of model coeffi-
cients that are determined by maximizing the probability that the data gave rise to 
the observations (i.e., the likelihood function). Many commercially available soft-
ware packages, such as SAS, SPSS, and Stata, provide estimates of the logistic 
regression model coefficients and their statistical significance. The results of this 
type of approach are not expressed in closed form as above, but instead, the model 
parameters are chosen in a stepwise fashion to define the abscissa of a regression 
model as shown in Fig. 3.4 However, it is the analyst’s responsibility to test for 
interaction effects on the estimated response, which can potentially be corrected by 
adding cross terms to Eq. 3.6. However, this transformation suffers from limited 
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learning capacity. In such a model, it is the user’s responsibility to determine 
whether interaction terms or higher order terms should be added. A solution to ame-
liorate this problem is offered by applying artificial intelligence methods.

3.3.2	 �Feed-Forward Neural Networks (FFNN)

Neural networks are described as adaptive massively parallel-distributed computa-
tional models that consist of many nonlinear elements arranged in patterns similar 
to a simplistic biological neuron network. A typical neural network architecture is 
shown in Fig. 3.5.

Neural networks have been applied successfully to model many different types 
of complicated nonlinear processes, including many pattern recognition problems 
[41]. A three-layer FFNN network would have the following model for the approxi-
mated functional:

	
f bx y w( ) = +( ) ( )T 2 2

	 (3.7)

where v is a vector, the elements of which are the output of the hidden neurons, i.e.,

	
v s bi= +( )( ) ( )x wT 1 1

	 (3.8)

where x is the input vector and w(j) and b(j) are the interconnect weight vector and 
the bias of layer j, respectively, j = 1,2. In the FFNN, the activation function s ×( )  is 
usually a sigmoid, but radial basis functions were also used [46]. The FFNN could 
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Fig. 3.5  Neural network 
architecture consisting of an 
input layer, middle (hidden) 
layer(s), and an output layer. 
The synapses of the network 
consist of neurons that fire 
depending on their chosen 
activation functions

S. Lee and I. El Naqa



29

be trained in two ways: batch mode or sequential mode. In the batch mode, all the 
training examples are used at once; in sequential mode, the training examples are 
presented on a pattern basis, in the order that is randomized from one epoch (cycle) 
to another. The number of neurons is a user-defined parameter that determines the 
complexity of the network; the larger the number of neurons, the more complex the 
network would be. The number is determined during the training phase.

3.3.3	 �General Regression Neural Networks (GRNN)

The GRNN [44] is a probabilistic regression model based on neural network archi-
tecture. It is characterized as non-parametric, which means that it does not require 
any pre-determined functional form (e.g., polynomials). Instead, it estimates the 
joint density of input variables x and a target y from training data. The regression 
output using the GRNN is obtained by taking the expectation value of y for a given 
observation X and the joint density g(x, y):
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The joint density g(x, y) is estimated from training examples Xi and yi via the Parzen 
estimator where the density is regarded as the superposition of Gaussian kernels 
centered at the observation points with a spread σ. The resulting form of the regres-
sion function is:
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where Di
2 = -( ) -( )X X X Xi i

T , denoting the Euclidean distance between the 
testing data X and the i-th training data Xi.

The GRNN is fairly simple to train, with only the Gaussian width σ to be 
tuned. Thus, implementation of the GRNN does not require an optimization 
solver to obtain the weights, as in the case of FFNN.  However, the output is 
obtained as a weighted sum of all the training samples, which could make it less 
efficient during running time. This could be improved by performing cluster 
analysis on training data (see Sect. 3.2.3) to compress it into a few cluster centers 
so that the metric Di can be computed only between those center points and a 
testing example. The computational speed can also benefit from parallelized neu-
ral network implementation since each summation can be performed indepen-
dently using synapses and an exponential activation function. In our previous 
work, we demonstrated that GRNN can outperform traditional FFNN in radio-
therapy outcomes prediction [15].
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3.3.4	 �Kernel-Based Methods

Kernel-based methods and its most prominent member, support vector machines 
(SVMs), are universal constructive learning procedures based on the statistical 
learning theory [50]. For discrimination between patients who are at low risk versus 
patients who are at high risk of radiation therapy, the main idea of the kernel-based 
technique would be to separate these two classes with hyper-planes that maximizes 
the margin between them in the nonlinear feature space defined by implicit kernel 
mapping. The optimization problem is formulated as minimizing the following cost 
function:

	
L , =

1

2
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x w wξ ξ( ) ∑
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i 	
(3.11)

subject to the constraints:
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where w is a weighting vector and Φ ⋅( )  is a nonlinear mapping function. The ζi 
represents the tolerance error allowed for each sample being on the wrong side of 
the margin. Note that minimization of the first term in Eq. 3.11 increases the separa-
tion (improves generalizability) between the two classes, whereas minimization of 
the second term (penalty term) improves fitting accuracy. The trade-off between 
complexity and fitting error is controlled by the regularization parameter C. 
However, such nonlinear formulation would suffer from the curse of dimensionality 
(i.e., the dimension of the problem becomes too large to solve) [19, 20]. However, 
computational efficiency is achieved from solving the dual optimization problem 
instead of the equation which is convex with a complexity that is dependent only on 
the number of samples [50]. The prediction function in this case is characterized 
only by a subset of the training data known as support vectors si:
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where ns is the number of support vectors, α s are the dual coefficients determined 
by quadratic programming, and K × ×( ),  is the kernel function as discussed next. 
Typically, used nonlinear kernels include:
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where c is a constant, q is the order of the polynomial, and σ is the width of the 
radial basis functions. The kernel-based approach is very flexible, which allows for 
constructing a neural network by using combination of sigmoidal kernels or chooses 
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a logistic regression equivalent kernel by replacing the hinge loss with a binomial 
deviance [19].

SVM has been widely used for many radiotherapy outcome prediction cases 
where complex relationships between risk factors are expected. Examples include 
lung cancer prognosis [12, 26, 29], radiation pneumonitis [7, 45], and GI/genitouri-
nary toxicity [37].

3.3.5	 �Decision Tree

A decision tree is suitable for generating the hypotheses that consist of multiple 
Boolean conditions on attributes (disjunctive hypotheses). Although it can also per-
form regression, we will limit the discussion to its application to classification. 
A decision tree divides an input space into several disjoint subregions. A testing 
instance falls into one of the subregions after successive tests on its attribute values. 
Then, the instance is given for its classification result the value that is assigned to the 
subregion. The tests are organized in the order specified by a tree structure (Fig. 3.6). 
A tree consists of nodes, branches, and leaves, each representing the following:

• Node: the attribute to be tested
• Branch: the outcome of the test, for example, is the body temperature of a patient 

higher than 37° (continuous attribute) or is the patient taking aspirin (categorical 
attribute)?

• Leaf node: the node located at the terminus of a tree representing a subset of data 
and a class label assigned to the subset

The tree and its parameters are learned from training data in a supervised 
fashion. The learning process can be thought of as dividing training instances 
into subgroups (corresponding to nodes) in a way that class labels in the 

Outlook

Humidity Wind

Sunny RainOvercast

Yes

No Yes

High Normal

No Yes

Strong Weak

Fig. 3.6  An example 
decision tree that classifies 
whether to go play tennis or 
not (written in bold) based 
on three attributes (outlook, 
humidity, wind) shown in 
box nodes. Values of the 
three attributes are written  
on the corresponding 
branches (Reproduced from 
Mitchell [35])
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subgroups are made as homogeneous as possible. The major questions in deci-
sion tree learning are (1) in which order the attributes be tested, (2) what level of 
purity the partition class labels is desired as a result of a single test, and (3) how 
many nodes are needed.

The ID3 (iterative dichotomizer 3) algorithm is a primitive form of the decision 
tree learning algorithm that aims to arrive at an optimal decision tree via a greedy 
search [39]. The ID3 algorithm is initiated by identifying the first attribute (root 
node) to create the first set of partitions, and the tree is further branched by applying 
the same procedure to the resulting subsets and the remaining attributes. At each 
round of partitioning, the attribute to split is chosen based on how well it can predict 
a target class by itself. In the context of decision tree learning, the predictive value 
of an attribute A with respect to a class C is measured by its information gain, which 
is defined as:

	
gain A H A H A C( ) = ( ) - ( )| 	 (3.13)

where H, entropy, is a measure of information conveyed by a probability distribu-
tion. For a variable A with the distribution of c discrete states and corresponding 
probabilities p1, p2,..., pc, the entropy is:
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(3.14)

In the case of continuous attributes, a threshold (Ath) is set to split the data into two 
subsets with proportions p1 and p2 where p p A A1 = <( )th  and p p A A2 = >( )th . 
The value of Ath is chosen so that the resulting information gain is the largest.

A branch of the tree stops growing when all the attributes have been used or all the 
partitions of the branch are purified to one class. However, when no regulatory mea-
sures are taken, a tree can easily overfit the data by adding more branches until every 
training instance is correctly classified. A number of preventive methods have been 
proposed to improve the generalizability of a tree. Reduced-error pruning [40] 
reduces the size of a tree after it was learned by applying iterative pruning to branches. 
The branches closer to leaves are removed first and the pruning propagates upstream 
until the validation performance of the pruned tree begins to decrease.

Overfitting can also be alleviated by a meta-algorithm called ensemble learning. 
The idea is to train a group of classifiers with a given dataset and combine their 
output in order to compensate for the high variance of an individual model. Breiman [6] 
applied this concept to tree learning, which is dubbed as the random forest. In creat-
ing a bag of models, the random forest algorithm introduces two levels of random-
ization: First, it randomizes training samples by resampling with replacements 
(bootstrapping). Second, at each branching step it chooses an attribute to split 
among a randomly selected subset of attributes. After a bag of trees is trained, pre-
diction is made for all the individual trees and the most frequent class selected by 
the trees is taken as a final result. Boosting is another ensemble meta-algorithm that 
is often used in conjunction with decision tree. In this setting, trees are learned 
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sequentially in the following way: after a tree is learned, the incorrectly classified 
training examples are assigned with larger weights and the subsequent tree is learned 
with the reweighed training set. The final classification result is taken as an average 
output of the group of trees. Detailed algorithm can be consulted in a paper by 
Freund and Schapire [17]

Decision trees have been a popular choice for many decision support systems, 
especially in the field of medicine, because their representation of hypotheses as 
sequential “if-then” clauses is easy to interpret and somewhat resembles human rea-
soning. For example, Delaney et al. [13] conducted a literature survey to construct a 
tree to determine recommendation for radiotherapy to melanoma patients based on 
several clinical attributes (Fig. 3.7). Das et al. [11] trained an ensemble of trees that 
combined dosimetric and non-dosimetric risk factors for radiation pneumonitis and 
showed that the prediction can be improved by combining a larger number of trees.

3.3.6	 �Bayesian Network

Bayesian belief network, or Bayesian network, is designed to model probabilistic 
relationships among a set of random variables. A key feature of Bayesian network 
is graphical representation of the relationships via a directed acyclic graph (DAG) 
which encodes the presence and direction of influence between variables. In a DAG, 
each variable is assigned to a node and connected to each other via an edge (vertex) 
which originates from a variable (parent) that influences the probability of the vari-
able it is connected to (child). Thus, probability of a random variable is set to be 
conditional upon its parent variable(s). The connectivity information in a DAG 
derives conditional independence relationships that can be stated as random 
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Fig. 3.7  A tree representing decision rules that determine whether radiotherapy should be used for 
melanoma patients based on characteristics of the disease. RT radiotherapy, LN lymph node 
(Reproduced from Delaney et al. [13])
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variables X and Y are conditionally independent given another variable set Z1, Z2,..., Zn 
if and only if:

	
P ,Z ,Z , , Z = P Z ,Z , , Z1 2 1 2X Y Xn n… …( ) ( ) 	 (3.15)

A set of conditional independence relationships specified in a DAG greatly simpli-
fies computation of probability distributions by use of this convenient property: 
joint probability distribution between the entire variable set, X = X ,X , ,Xn1 2 … ,  can 
be obtained by taking the product of all the conditional probabilities for each 
parents-child set (the chain rule for Bayesian networks [31]). Figure 3.8 demon-
strates a network of local control of non-small-cell lung cancer (LC) in relation to 
the following clinical and dosimetric variables: age (A), GTV volume (G), PTV 
coverage (V75, V60), and pre-treatment chemo (P) [36]. Using the chain rule, a 
joint probability can be factorized into:

	
P , , , 75, 60, LC A G V V C( ) 	

	
= P P P 75 P | , P 60 | P | , , , 75, 60A G V C A G V G LC A G C V V( ) ( ) ( ) ( ) ( ) ( ) 	

Conditional probability values are often referred to as the “parameters” of 
Bayesian network. The parameters can be trained from data as a maximum likeli-
hood estimate or maximum a posteriori (MAP) which incorporates a prior probabil-
ity with the likelihood obtained from observations.

age GTV

V60V75

Local Control

PreTxChemo

Fig. 3.8  A Bayesian network DAG for predicting local control of NSCLC using radiotherapy and 
clinical variables. The DAG was trained from clinical data by Oh et al. [36]
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A DAG can be constructed using prior knowledge on the study domain. When 
the domain knowledge is not sufficient, observational data can be used to search 
for the DAG that can best describe the data. DAG searching can be solved as an 
optimization problem where a predefined a scoring function is maximized over a 
space of possible DAG configurations. Searching algorithms can vary according 
to a choice of the scoring function and searching procedures. Widely used scor-
ing functions include a marginal likelihood (Bayesian) score and a Bayesian 
information criteria (BIC) score. Both scores aim at achieving a balance between 
the fitness to data (an edge is more likely to be formed between the variables with 
stronger correlation in data) and complexity of a graph (quantified by the number 
of edges or parameters), although difference exists in a degree to which complex-
ity is penalized. Mathematical details can be consulted in a primer by Koller and 
Friedman [31].

Since the number of possible DAGs grows super-exponentially with the number 
of variables, it is impractical to search exhaustively over the entire graph space for 
the highest-scoring DAG.  Various heuristic approaches have been suggested to 
reduce a computational cost. For example, a greedy search algorithm begins with 
the empty graph and keeps adding on edges only when it leads to a higher graph 
score. Also, constraints on graph topology can be imposed to the search algorithm 
in order to confine a search domain. For example, the search can be restricted to 
treelike structures (Chow-Liu trees) [9] or a certain variable ordering that permits 
only the edges between the variables in descending order (K2 algorithm) [10]. 
High-scoring DAGs can be discovered by a sampling method such as the Markov 
Chain Monte Carlo (MCMC) [33]. The MCMC algorithm generates samples of 
DAGs encountered during a random walk over the graph space (Markov chain), 
which can be approximated as a posterior distribution of DAGs upon convergence 
of a chain.

The probabilistic approach of BN makes it suitable for handling uncertainties. 
Especially in a medical domain, missing records or test results could have a negative 
impact on prediction performance. Bayesian network does not require the full 
observation on its features for prediction, as it is capable of building and marginal-
izing joint probability using the conditional dependence relationships between the 
features. This advantage, in comparison to non-probabilistic classifiers such as 
SVM, was shown in survival prediction of lung cancer patients by Jayasurya et al. 
[26]. Other applications of the BN in radiation oncology include a prognostic net-
work for prostate cancer [43] and lung cancer [36].

3.3.7	 �Naive Bayes

Naive Bayes is a simplified derivative of Bayesian network that is used solely for 
classification. This method makes an assumption that feature variables are consid-
ered independent given a class variable. This so-called naive independence 
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assumption can be graphically represented by the Bayesian DAG as shown in 
Fig. 3.9. Inference of the most probable state for a class, CMAP, is derived from the 
maximum a posteriori (MAP) rule, using the independence assumption:
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Naive Bayes is effective for classification in a high-dimensional space where esti-
mating joint probability of a full variable set is challenging. Its theoretical property is 
shown to be less sensitive to noisy variation in input, which contributes to its robust 
performance [18]. However, naive Bayes is not suitable for direct estimation of class 
posterior as the unrealistic independence assumption results in inaccurate probability 
estimate. Nevertheless, it has been applied to many medical prognostic problems 
where classification of a disease state is the only interest. For example, Kazmierska 
and Malicki predicted brain tumor relapse from a set of 96 features with naive Bayes 
which accuracy surpassed Bayesian network and decision tree algorithms [27].

3.4	 �Other Methods

3.4.1	 �Reinforcement Learning

Reinforcement learning (RL) is a class of machine learning algorithms in which a 
learner or software agent attempts to take a sequence of actions that would maxi-
mize a cumulative reward such as winning a game of checker or chess, for instance [47]. 

A1
A2 An

C

Fig. 3.9  Directed graph 
representation of the naive 
Bayes model for a class C 
and features A1, A2,, An
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To an extent RL mimics the way human learns by combining the fields of Markov 
decision processes (e.g., dynamic programming) with supervised learning. An RL 
could be depicted as shown in Fig. 3.10 [32], in which at any time point (t) actions 
(at) taken by the agent lead to rewards rt+1( ) from the current environment state (st). 
The objective is to maximize expected discounted returns value (V) at particular 
state to a given policy (π):

	
V s E R st t

π π( ) { }= / , 	 (3.16)

where R is the return function R E r rt
t

t
t= { } =+

=

¥

+åg g1
0

1  and 0 1£ £g  are dis-

counted return rates. An example of applying RL to radiotherapy is presented by 
Kim et al. [28], where they showed numerical examples of modifying dose frac-
tionation schedules using a Markov decision process for adaptive radiotherapy 
applications.
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4Performance Evaluation in Machine 
Learning

Nathalie Japkowicz and Mohak Shah

Abstract
Performance evaluation is an important aspect of the machine learning pro-
cess. However, it is a complex task. It, therefore, needs to be conducted care-
fully in order for the application of machine learning to radiation oncology or 
other domains to be reliable. This chapter introduces the issue and discusses 
some of the most commonly used techniques that have been applied to it. The 
focus is on the three main subtasks of evaluation: measuring performance, 
resampling the data, and assessing the statistical significance of the results. In 
the context of the first subtask, the chapter discusses some of the confusion 
matrix-based measures (accuracy, precision, recall or sensitivity, and false 
alarm rate) as well as receiver operating characteristic (ROC) analysis; several 
error estimation or resampling techniques belonging to the cross-validation 
family as well as bootstrapping are involved in the context of the second sub-
task. Finally, a number of nonparametric statistical tests including McNemar’s 
test, Wilcoxon’s signed-rank test, and Friedman’s test are covered in the con-
text of the third subtask. The chapter concludes with a discussion of the limi-
tations of the evaluation process.
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4.1	 �Introduction

While developing and applying machine learning tools to problems in radiation 
oncology or other domains are what will allow new advances to be made in these 
domains, it is important to realize that without proper means of evaluating the new 
methods, there is no way to know whether or not they are effective. While research-
ers and practitioners of machine learning have long known that and used general 
evaluation methods to judge the effectiveness of their algorithms, until recently, 
very little attention has been paid to the details of how this evaluation should be car-
ried out. Instead, a uniform methodology was consistently applied without any con-
cern regarding the appropriateness of that methodology for the particular cases 
considered. In this chapter, we begin by giving an overview of machine learning 
evaluation, pointing to some issues that may creep in if it is not conducted appropri-
ately. We then follow with a discussion of evaluation metrics, resampling methods, 
and statistical testing. We conclude the chapter with a consideration of the limita-
tions of the evaluation process. The discussion in this chapter is based on [1], which 
gives much more detail about the issue and its solution.

4.2	 �An Overview of Machine Learning Evaluation

While not as exciting a process as the design of machine learning algorithms or its 
application to difficult problems, the issue of machine learning evaluation needs to 
be considered very carefully. Indeed, there exist many approaches to evaluation and 
it remains unclear when or why certain approaches are more appropriate than oth-
ers. In this chapter, we clarify these questions in at least a few cases that may be of 
interest to the radiation oncology research community.

To begin with, Fig. 4.1 presents the various steps of classifier evaluation along with 
the interaction between these steps. At each of these steps, choices must be made. In 
particular, the researcher must decide on which algorithms will be used in the study, 
which data sets they will be applied, and what performance measure, resampling tech-
nique, and statistical tests will be used. Each of these questions is quite complex 
because the choices made at one step may impact on the other steps. For example, if 
the data set on which the evaluation will be based contains very few instances of 
X-rays with malignant tumors and many instances of X-rays with benign tumors, then 
the performance measure (or metric) to be used cannot be the same as if there were as 
many instances of each cases. In addition, the choices to be made at each step depend 
on the purpose of the evaluation. Here are four common scenarios:

• Comparison of a new algorithm to other (may be generic or application-specific) 
classifiers on a specific domain (e.g., when proposing a novel learning 
algorithm)

• Comparison of a new generic algorithm to other generic ones on a set of bench-
mark domains (e.g., to demonstrate general effectiveness of the new approach 
against other approaches)
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• Characterization of generic classifiers on benchmarks domains (e.g., to study the 
algorithms’ behavior on general domains for subsequent use)

• Comparison of multiple classifiers on a specific domain (e.g., to find the best 
algorithm for a given application task)

To better illustrate the difficulties of making the appropriate choices at each step, 
we look at an example involving the choice of an appropriate performance measure. 
Table 4.1 shows the performance obtained by eight different classifiers (naive Bayes 
[NB], C4.5, three-nearest neighbor [3NN], ripper [Rip], support vector machines 

The Classifier Evaluation Framework

Choice of Learning Algorithm(s)

Datasets Selection

Performance Measure
of Interest

Error-Estimation/
Sampling Method

Statistical Test

Perform Evaluation

2 : feedback from 1 should be used to adjust 2

2 : knowledge of 1 is necessary for 21

1

Fig. 4.1  The main steps of evaluation

Table 4.1  The performance of eight different classifiers according to nine different performance 
measures. There is clear disagreement among the evaluation measures

Algo Acc RMSE TPR FPR Prec Rec F AUC Info S

NB 71.7 .4534 .44 .16 .53 .44 .48 .7 48.11

C4.5 75.5 .4324 .27 .04 .74 .27 .4 .59 34.28

3NN 72.4 .5101 .32 .1 .56 .32 .41 .63 43.37

Ripp 71 .4494 .37 .14 .52 .37 .43 .6 22.34

SVM 69.6 .5515 .33 .15 .48 .33 .39 .59 54.89

Bagg 67.8 .4518 .17 .1 .4 .17 .23 .63 11.30

Boost 70.3 .4329 .42 .18 .5 .42 .46 .7 34.48

RanF 69.23 .47 .33 .15 .48 .33 .39 .63 20.78
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[SVM], bagging [Bagg], boosting [Boost], random forest [RF]) on a given data set 
(the UCI breast cancer data set [2]) using nine different performance measures 
(accuracy [Acc], root-mean-square error [RMSE], true positive rate [TPR], false 
positive rate [FPR], precision [Prec], recall [Rec], F-measure [F], area under the 
ROC curve [AUC], information score [Info S]). As can be seen from the table, each 
measure tells a different story. For example, accuracy ranks C4.5 as the best classi-
fier for this domain, while according to the AUC, C4.5 is the worst classifier (along 
with SVM, which accuracy did not rank highly either). Similarly, the F-measure 
ranks naive Bayes in the first place, whereas it only reaches the 5th place as far as 
RMSE is concerned. This suggests that one may obtain very different conclusions 
depending on what performance measure is used. Generally speaking, this example 
points to the fact that classifier evaluation is not an easy task and that not taking it 
seriously may yield grave consequences.

The next section looks at performance measures in more detail, while the next 
two sections will discuss resampling and statistical testing.

4.3	 �Performance Measures

Figure 4.2 presents an overview of the various performance measures commonly 
used in machine learning. This overview is not comprehensive, but touches upon the 
main measures. In the figure, the first line, below the “all measures” box indicates 
the kind of information used by the performance measure to calculate the value. All 
measures use the confusion matrix, which will be presented next, but some add 
additional information such as the classifier’s uncertainty or the cost ratio of the data 
set, while others also use other information such as how comprehensible the result 
of the classifier is or how generalizable it is, and so on. The next line in the figure 
indicates what kind of classifier the measure applies to deterministic classifiers, 
scoring classifiers, or continuous and probabilistic classifiers. Below this line comes 
information about the focus (e.g., multiclass with chance correction), format (e.g., 
summary statistics), and methodological basis (e.g., information theory) of the mea-
sures. The leaves of the tree list the measures themselves.

As just mentioned, all the measures of Fig. 4.2 are based on the confusion matrix. 
The template for a confusion matrix is given in Table 4.2:

TP, FP, FN, and TN stand for true positive, false positive, false negative, and true 
negative, respectively. Some common performance measures calculated directly 
from the confusion matrix are:

• Accuracy = (TP + TN)/(P + N)
• Precision = TP/(TP + FP)
• Recall, sensitivity, or true positive rate = TP/P
• False alarm rate or false positive rate = FP/N

For a more comprehensive list of measures including sensitivity, specificity, like-
lihood ratios, positive and negative predictive values, and so on, please refer to [1].
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We now illustrate some of the problems encountered with accuracy, precision, 
and recall since they represent important problems in evaluation. Consider the con-
fusion matrices of Table 4.3. The accuracy for both matrices is 60 %. However, the 
two matrices t classifiers with the same accuracy account for two very different 
classifier behaviors. On the left, the classifier exhibits a weak positive recognition 
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measures

Confusion Matrix Additional info
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Fig. 4.2  An overview of performance measures

Table 4.2  A generic 
confusion matrix

True class → hypothesized|class V Pos Neg

Yes TP FP

No FN TN

P = TP + FN N = FP + TN

True class Pos Neg

Yes 200 100

No 300 400

P=500 N=500

True class Pos Neg

Yes 400 300

No 100 200

P=500 N=500

Table 4.3  The confusion matrices of two very different classifiers with the same accuracy

4  Performance Evaluation in Machine Learning



46

rate and a strong negative recognition rate. On the right, the classifier exhibits a 
strong positive recognition rate and a weak negative recognition rate. In fact, accu-
racy, while generally a good and robust measure, is extremely inappropriate in the 
case of class imbalance data, such as the example, mentioned in Sect. 4.2 where 
there were only very few instances of X-rays containing malignant tumors and 
many instances containing benign ones. For example, in the extreme case where, 
say, 99.9 % of all the images would not contain any malignant tumors and only 
0.1  % would, the rough classifier consisting of predicting “benign” in all cases 
would produce an excellent accuracy rate of 99.9 %. Obviously, this is not represen-
tative of what the classifier is really doing because, as suggested by its 0 % recall, it 
is not an effective classifier at all, specifically if what it is trying to achieve is the 
recognition of rare, but potentially important, events. The problem of classifier eval-
uation in the case of class imbalance data is discussed in [3].

Table 4.4 illustrates the problem with precision and recall. Both classifiers repre-
sented by the table on the left and the table on the right obtain the same precision 
and recall values of 66.7 and 40 %. Yet, they exhibit very different behaviors: while 
they do show the same positive recognition rate, they show extremely different neg-
ative recognition rates; in the left confusion matrix, the negative recognition rate is 
strong, while in the right confusion matrix, it is nil! This certainly is information 
that is important to convey to a user, yet, precision and recall do not focus on this 
kind of information. Note, by the way, that accuracy which has a multiclass rather 
than a single-class focus has no problem catching this kind of behavior: the accu-
racy of the confusion matrix on the left is 60 %, while that of the confusion matrix 
on the right is 33 %!

Because the class imbalance problem is very pervasive in machine learning, 
ROC analysis and its summary measure and the area under the ROC curve (AUC), 
which do not suffer from the problems encountered by accuracy, have become cen-
tral to the issue of classifier evaluation. We now give a brief description of that 
approach. In the context of the class imbalance problem, the concept of ROC analy-
sis can be interpreted as follows. Imagine that instead of training a classifier f only 
at a given class imbalance level, that classifier is trained at all possible imbalance 
levels. For each of these levels, two measurements are taken as a pair, the true posi-
tive rate (or sensitivity) and the false positive rate (FPR) (or false alarm rate). Many 
situations may yield the same measurement pairs, but that does not matter since 

True class Pos Neg

Yes 200 100

No 300 400

P=500 N=500

True class Pos Neg

Yes 200 100

No 300 0

P=500 N=100

Table 4.4  The confusion matrices of two very different classifiers with the same precision and 
recall
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duplicates are ignored. Once all the measurements have been made, the points rep-
resented by all the obtained pairs are plotted in what is called the ROC space, a 
graph that plots the true positive rate as a function of the false positive rate. The 
points are then joined in a smooth curve, which represents the ROC curve for that 
classifier. Figure 4.3 shows two ROC curves representing the performance of two 
classifiers f1 and f2 across all possible operating ranges.

The closer a curve representing a classifier f is from the top-left corner of the 
ROC space (small false positive rate, large true positive rate), the better the per-
formance of that classifier. For example, f 1 performs better than f 2 in the graph 
of Fig. 4.3. However, the ideal situation of Fig. 4.3 rarely occurs in practice. 
More often than not, one is faced with a situation such as that of Fig. 4.4, where 
one classifier dominates the other in some parts of the ROC space, but not in 
others.

The reason why ROC analysis is well suited to the study of class imbalance 
domains is twofold. First, as in the case of the single-class focus metrics of the pre-
vious section, rather than being combined together into a single multiclass focus 
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Fig. 4.3  The ROC curves of two classifiers f1 and f2. f1 performs better than f2 in all parts of the 
ROC space
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metric, performance on each class is decomposed into two distinct measures. 
Second, the imbalance ratio that truly applies in a domain is rarely precisely known. 
ROC analysis gives an evaluation of what may happen in diverse situations.

We now move on to discussing the question of data resampling.

4.3.1	 �Resampling

What is the purpose of resampling? Ideally, we would have access to the entire 
population or a lot of representative data from it. This, unfortunately, is usually not 
the case, and the limited data available has to be reused in clever ways in order to be 
able to estimate the error of our classifiers as reliably as possible. Resampling is 
divided into two categories: simple resampling (where each data point is used for 
testing only once) and multiple resampling (which allows the use of the same data 
point more than once for testing). In addition to discussing a few resampling 
approaches, this section will underline the issues that may arise when applying 
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Fig. 4.4  The ROC curves of two classifiers f1 and f2. f2 performs better than f1 on the left side of 
the ROC space. After the two curves, cross f1 performs better than f1
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them. Figure 4.5 gives an overview of various resampling regimens. We will discuss 
a few of them. For a more detailed presentation, please see [1].

When the data set is very large and all cases are well represented, then no resam-
pling method is needed, and it is possible to use the holdout method where a portion 
of the data set is reserved for training while the rest of the data set is used for testing. 
Please note that the practice of training and testing on the same data set (re-
substitution) is unacceptable when the goal of the study is to test the predictive 
capability of the learning tool. Such a practice gives an optimistic assessment of the 
tool’s capability. In general, the classifier will overfit the data it was trained on, 
which means that it will perform very well on that data and obtain much poorer 
results on data it has never seen before. To a certain extent and for many algorithms, 
the better the classifier performs on the known data, the worse it will perform on 
unknown data.

In most cases, there is not enough data to use the holdout method. The most com-
monly used resampling method then is k-fold cross validation and its variants, strat-
ified k-fold cross validation, and leave-one-out, also known as the jackknife. 
10 × 10-fold cross validation has also become quite common and the 0.632 boot-
strap is sometimes used as well. We will present each of these schemes in turn and 
discuss the situations in which each scheme is believed to be most appropriate.

Figure 4.6 illustrates the k-fold cross-validation process in the following ways: 
each line of the graph symbolizes the entire data set. It is randomly divided into k 
subsets (on the graph, k = 10) as symbolized by the k = 10 rectangles that compose 
each line. The first line corresponds to Fold 1, the second to Fold 2, and so on. In 
Fold 1, the first rectangle is shaded differently from the others. This signifies that in 
this fold, the data represented by the first rectangle will be used as testing data while 
the data represented by the other k-1 rectangles will be used as training data. In Fold 
2, it is the data of the second rectangle that is used as the testing set, while the data 
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Fig. 4.5  Overview of resampling methods

4  Performance Evaluation in Machine Learning



50

represented by the other rectangles are used as the training set. This goes on k times 
so that each of the rectangles is used as a testing set. This is an interesting scheme 
which guarantees that (1) at each fold, the training and the testing set are separate; 
(2) once the entire scheme has been executed, every data point has been used as a 
testing point; (3) no data point has been used more than once as a testing point; and 
(4) every data point has been used k-1 times as a training point. So in summary, 
there is no overlap in the testing sets, but there is overlap in the training set. The 
facts that there is no overlap in the testing set, that this scheme is very simple to 
implement, and that it is not very computer intensive make it a very popular approach 
believed to yield a good error estimate. Because of the high overlap in the training 
set, however, the method can yield a bias in the error estimate, but this is mitigated 
in the case of moderate to large data sets.

When the data set is imbalanced, k-fold cross validation as just described can 
yield problems. In particular, the random division of the data into k subsets may 
yield situations where the data of the minority class is not at all represented in the 
subset. The performance of the classifier on such a data set would be misleading as 
it would be overly optimistic. Similarly, if the training data contained an even 
smaller proportion of minority examples than the actual data set, the classifier’s 
performance would be overly pessimistic. In order to avoid both problems, a pro-
cess called stratified k-fold cross validation is used to ensure that the distribution is 
respected in the training and testing sets created at every fold. This would not neces-
sarily be the case if a pure random process were used.

Another issue arises when the data set is quite small. In such cases, k-fold cross 
validation may cause the training portion of the data at each fold to be too small 
for effective learning to take place. In such cases, it is common to set k to the size 
of the data set, meaning that (1) there are as many folds as there are data points 

Fold 1   

Fold 2
…

Fold k -1

Fold k

Fig. 4.6  The k-fold cross-validation process
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and, at each fold, (2) the testing set includes a single data point and (3) the classi-
fier is trained on all the data but this particular point. This process is commonly 
called leave-one-out or the jackknife. It has the advantage of yielding a relatively 
unbiased classifier (since virtually all the data is used for training at each fold, 
although since the data set is small to begin with, the classifier is probably not 
unbiased); however, the error estimate is likely to show high variance since only 
one example is tested at every fold, resulting in a 0 or 100 % accuracy rate for 
each fold. In addition, it is a very time-consuming process since the number of 
folds equals the size of the data set.

A further issue with the family of k-fold cross-validation approaches just dis-
cussed concerns the stability of the estimate it produces. In order to improve the 
stability of that estimate, it has become commonplace to run the k-fold cross-
validation process multiple times, each with different random partitions of the data 
into k-folds. The most common combination is the 10 × 10-fold cross validation [4], 
though 5 × 2-fold cross validation [5] had also been proposed early on as an alterna-
tive to tenfold cross validation.

We conclude this discussion with a presentation of bootstrapping, an alternative 
to the k-fold cross-validation schemes. Bootstrapping assumes that the available 
sample is representative and creates a large number of new samples by drawing 
from replacement from the available sample. Bootstrapping is useful in practice 
when the sample is too small for cross-validation or leave-one-out approaches to 
yield a good estimate. There are two bootstrap estimates that are useful in the con-
text of classification: the Є0 and the e632 bootstraps. The Є0 bootstrap tends to be 
pessimistic because it is only trained on 63.2 % of the data in each run. The e632 
attempts to correct for this. The listing below is an informal description of the algo-
rithms for the Є0 and e632 bootstraps.

• Given a data set D of size m, we create k bootstrap samples Bi of size m, by sam-
pling from D with replacement (k is typically ≥ 200).

• At each run, each of the k bootstraps represent the training set while the testing 
set is made up of a single copy of the examples from D that did not make it to Bi.

• At each run, a classifier is trained and tested and Єoi represents the performance 
of the classifier at that run.

• Єo represents the average of all the Єoi’s.

e632 = 0.632 x Єo + 0.368 x err (f)

Where err(f) is the optimistically biased re-substitution error (error rate obtained 
when training and testing on D)

As previously mentioned, bootstrapping is a good estimator when the data set is 
too small to run k-fold cross validation or leave-one-out. In particular, it was shown 
to have low variance in such cases. On the other hand, bootstrapping is not a useful 
estimator in the case of classifiers that do not benefit from the presence of duplicate 
instances such as k-nearest neighbors.
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4.4	 �Significance Testing

The performance metrics discussed in Sect. 4.2 allow us to make observations about 
different classifiers, and the resampling approaches discussed in Sect. 4.3 allow us 
to reuse the available data in order to obtain results believed to be more reliable. The 
question we ask in this section is related to the issue raised by resampling in 
Sect. 4.3. In particular, we ask to what extent the observed results are, indeed, reli-
able. More specifically, can the observed results be attributed to the real character-
istics of the classifiers under scrutiny or are they observed by chance? The purpose 
of statistical significance testing is to help us gather evidence of the extent to which 
the results returned by an evaluation metric on the resampled data sets are represen-
tative of the general behavior of our classifiers.

Although some researchers have argued against the use of statistical tests mainly 
because it is often difficult to perform properly and its results are often overvalued 
and limit the search for new ideas [6, 7], statistical testing remains the norm in most 
experimental settings. Nonetheless, in line with the critics, it is important to conduct 
and interpret such tests properly. We will discuss basic aspects of the practice in 
what follows. In particular two issues arise:

	1.	 Do we have enough information about the underlying distributions of the classi-
fiers’ results to apply a parametric test?

	2.	 What kind of problem are we considering?
• The comparison of two algorithms on a single domain
• The comparison of two algorithms on several domains
• The comparison of multiple algorithms on multiple domains

Figure 4.7 overviews the various statistical tests in relation to these two problems. 
The first line in the figure differentiates between the kinds of problems considered. 
The next line lists the different statistical tests available in each situation. The tests in 
red boxes are parametric tests while those in green boxes represent nonparamet-
ric tests. Parametric tests have the advantage of being more powerful than nonpara-
metric ones, but they apply in a more limited number of situations than the 
nonparametric ones since they require knowledge of the underlying distribution. 
Nonparametric tests are more flexible than the parametric ones since they do not take 
into account the underlying distribution. Instead, they use ranking information.

A comprehensive discussion of all these tests can be found in [1]. In this chapter, 
we will focus on three versatile nonparametric tests: McNemar’s test, Wilcoxon’s 
signed-rank test for matched pairs, and Friedman’s test (followed by Nemenyi’s test). 
McNemar’s test applies in the case of two algorithms and one domain; Wilcoxon’s 
test applies in the case of two algorithms tested on multiple domains and Friedman’s 
test applies to the case of multiple algorithms executed over multiple domains.

McNemar’s test calculates four variables:

• The number of instances misclassified by both classifiers (C00)
• The number of instances misclassified by the first classifier but correctly classi-

fied by the second (C01)
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• The number of instances misclassified by the second classifier but correctly clas-
sified by the first (C10)

• The number of instances correctly classified by both classifiers (C11)

McNemar’s χ2 statistics is given by

	
c 2

01 10

2

01 101MC C C C C= ( ) +( )– – / 	

If C01 + C10 < 20, then the test cannot be used.
Otherwise, the χ2

MC statistics is compared to the χ2 statistics. If χ2
MC exceeds the 

χ2
1, 1-α statistic, then we can reject the null hypothesis that assumes that the first and 

second classifiers perform equally well with 1–α confidence.
Wilcoxon’s signed-rank test deals with two classifiers on multiple domains. It is 

also nonparametric. Here is its description:

• For each domain, we calculate the difference in the performance of the two 
classifiers.

• We rank the absolute values of these differences and graft the signs in front of the 
ranks.

• We calculate the sum of positive and negative ranks, respectively (WS1 and WS2).
• We compute TWilcox such that TWilcox = min (WS1,WS2).
• We compare TWilcox to critical value Vα. If Vα ≥TWilcox, we reject the null hypothesis 

that the performance of the two classifiers is the same at the α confidence level.

Wilcoxon’s signed-rank test is illustrated in Table 4.5 and in the discussion below 
the table. In this example, NB and SVM are compared on ten different domains.
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Fig. 4.7  Overview of statistical tests
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From the table, we find that WS1 = 17 and WS2 = 28, which means that TWilcox = min 
(17, 28) = 17. For n = 10–1 degrees of freedom and α = 0.005, V = 8 (see Table 4.5 in 
Appendix A of [1]) for the 1-sided test. V must be larger than TWilcox in order to reject 
the hypothesis. Since 17 >8, we cannot reject the hypothesis that NB’s performance 
is equal to that of SVM at the 0.005 level.

In the case where multiple algorithms are to be compared on multiple domains, 
Friedman’s test is a simple and good alternative. It is conducted as follows:

• All the classifiers are ranked on each domain separately. Ties are broken by add-
ing the ranks of the tied algorithms and dividing them by the number of algo-
rithms involved in the tie. The result is assigned to each of the algorithms involved 
in the tie.

• For each classifier, the sum of ranks obtained on all domains is calculated and 
labeled R.j

2 where j symbolizes the classifier.
• Friedman’s statistics is then calculated as follows:
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where n represents the number of domains and k the number of classifiers
Table 4.6 illustrates Friedman’s test on a synthetic example. The table on the 

left lists the accuracies obtained by classifiers fA, fB, and fC on domains 1, 2, … 
10. The table on the left calculates the rank of each classifier on each domain. 
These ranks in each column are then added yielding the R.j’s. Applying the for-
mula, we find that χF

2 = 15.05. From Table 7 in Appendix A of [1], we find that for 
a 2-tailed test at the 0.05 level of significance, the critical value is 7.8. Since  
χF

2 >7.8, we can reject the null hypothesis that all three algorithms perform equally 
well.

Note that while Friedman’s test shows that there is a significant difference among 
the algorithms being tested, it does not say where that difference is. In such cases, 

Table 4.5  Wilcoxon’s signed-rank test for NB and SVM on 10 different domains

Data NB SVM NB-SVM |NB-SVM| Ranks +/− ranks

1 .9643 .9944 −0.0301 0.0301 3 −3

2 .7342 .8134 −0.0792 0.0792 6 −6

3 .7230 .9151 −0.1921 0.1921 8 −8

4 .7170 .6616 +0.0554 0.0554 5 +5

5 .7167 .7167 0 0 Remove Remove

6 .7436 .7708 −0.0272 0.0272 2 −2

7 .7063 .6221 +0.0842 0.0842 7 +7

8 .8321 .8063 +0.0258 0.0258 1 +1

9 .9822 .9358 +0.0464 0.0464 4 +4

10 .6962 .9990 −0.3028 0.3028 9 −9
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Nemenyi’s test (or other post hoc tests) can be used to pinpoint where that differ-
ence lies. Here is how Nemenyi’s test works.

• Let Rij be the rank of classifier fj on data set Si; we compute the mean rank of 
classifier fj on all data sets as

	
R

n
Rj

i

n

ij. =
=
∑1

1 	

• Let qyz be the statistic between classifier fy and fz. The formula is

	

q
R R

k k
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−
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6 	

(n is the number of domains and k the number of classifiers).
• Nemenyi’s test proceeds by calculating all the qyz statistics. Then, those that 

exceed a critical value qα are said to indicate a significant difference between 
classifiers fy and fz at the α significance level.

To illustrate Nemenyi’s test, we calculate the following values from Friedman’s 
test we just ran1:

	 R A. . , . , . .= = =1 55 3 1 45R andRB C 	

1 Please note that there is an error in the textbook. We present, herein, the corrected solution.

Domain fA fB fC

1 85.83 75.86 84.19

2 85.91 73.18 85.90

3 86.12 69.08 83.83

4 85.82 74.05 85.11

5 86.28 74.71 86.38

6 86.42 65.90 81.20

7 85.91 76.25 86.38

8 86.10 75.10 86.75

9 85.95 70.50 88.03

10 86.12 73.95 87.18

Domain fA fB fC

1 1 3 2

2 1.5 3 1.5

3 1 3 2

4 1 3 2

5 2 3 1

6 1 3 2

7 2 3 1

8 2 3 1

9 2 3 1

10 2 3 1

R 15.5 30 14.5.j

Table 4.6  Friedman’s test applied to three classifiers fA, fB, and fC on ten different domains
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• Replacing R.y and R.Z by the above values in

	

q
R y R z

k k

n

yz =
−
+( )

. .

1

6 	

we obtain qAB = −3.22, qAC = .222, and qBC = 3.44.

• qα = 2.55 for α = 0.05 [see [1]) (qα must be larger than qyz for the hypothesis that y 
and z perform equally to be rejected).

• Therefore, we reject the null hypothesis in the case of classifiers A and B and B 
and C (please note that we consider the absolute value of the qxy quantity), but not 
in the case of A and C.

�Conclusion
This chapter presented the most common methods of evaluating the performance 
of classifiers on applied domains. Unfortunately, there is no preexisting recipe 
that satisfies every situation. In most cases, the user must reflect about what he or 
she is trying to verify, understand the restrictions of the experimental setting 
(e.g., too little data, data skews (or imbalances), and so on), and apply the best 
combination of evaluation methods that is available in these conditions. It is 
important to note that due to the fact that there is a lot of unknown in the data, 
certain assumptions about the data may end up being violated. It remains 
unknown to what extent this will invalidate the results. Last but not least, it is 
important to understand how to interpret the results one observes. These results 
should be thought of as support for a hypothesis or evidence about certain effects. 
They do not prove that a hypothesis is correct. Classifier evaluation thus remains 
an art rather than a perfect science.

Bibliography

	1.	 Japkowicz N, Shah M. Evaluating learning algorithms: a classification perspective. Cambridge/
New York: Cambridge University Press; 2011.

	2.	 Lichman M. UCI machine learning repository [http://archive.ics.uci.edu/ml]. Irvine: University 
of California, School of Information and Computer Science; 2013.

	3.	 Japkowicz N. Assessment metrics for imbalanced learning. In: Haibo He, Yunqian Ma, editors. 
Imbalanced learning: foundations, algorithms, and applications. 1st ed. Hoboken: Wiley; 2013.

	4.	 Bouckaert R. Choosing between two learning algorithms based on calibrated tests. In: Proceedings 
of the 20th international conference on machine learning (ICML-03). Washington, DC; 2003. 
p. 51–58.

	5.	 Thomas D. Approximate statistical tests for comparing supervised classification learning algo-
rithms. Neural Comput. 1998;10(7):1895–923.

	6.	 Drummond C. Machine learning as an experimental science (revisited). In: Proceedings of the 
twenty-first national conference on artificial intelligence: workshop on evaluation methods for 
machine learning. AAAI Press technical report WS-06-06. 2006. p. 1–5.

	7.	 Demšar J. On the appropriateness of statistical tests in machine learning. In: Proceedings of the 
25th international conference on machine learning: workshop on evaluation methods for 
machine learning. Helsinki, Finland; 2008.

N. Japkowicz and M. Shah

http://archive.ics.uci.edu/ml


57© Springer International Publishing Switzerland 2015
I. El Naqa et al. (eds.), Machine Learning in Radiation Oncology: 
Theory and Applications, DOI 10.1007/978-3-319-18305-3_5

        P.  M.   Putora ,  MD, PhD, MA      (*) •    S.   Peters    
  Department of Radiation Oncology ,  Kantonsspital St. Gallen , 
  St. Gallen ,  Switzerland   
 e-mail: paul.putora@kssg.ch   

    M.   Bovet ,  PhD      
  Direktion ICT, Radiotherapy Applications ,  Zürich University Hospital, Zürich University , 
  Zürich ,  Switzerland   
 e-mail: marc.bovet@usz.ch  

  5      Informatics in Radiation Oncology 

             Paul     Martin     Putora      ,     Samuel     Peters    , and     Marc     Bovet    

    Abstract  
  Radiation oncology informatics includes informatics from the perspectives of 
every discipline involved in radiation oncology. As there are many open ques-
tions and an abundance of data, machine learning technologies can be valuable. 
Available data includes handwritten notes on paper, imaging data available in 
digital formats, radiation treatment plan details, fi nancial data, and multilevel 
multicenter databases, to name a few. Tools of various complexity for various 
goals are available. The following chapter aims to portray this domain and pres-
ent a selection of available tools.  

5.1         Introduction 

 Radiation oncology (RO) is the discipline dealing with the treatment of cancer with 
ionizing radiation (radiation therapy) for cure or palliation. Radiation therapy is 
often applied in combination with other treatment modalities (chemotherapy, sur-
gery, hormonal therapy, etc.). Radiation therapy is typically delivered with linear 
accelerators (linacs); although other modalities and devices exist, linac-based treat-
ments represent the vast majority of radiotherapy treatments in modern radiation 
oncology units. 
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 Radiation oncology informatics includes informatics from the perspectives of 
every discipline involved in radiation oncology. This may range from data adminis-
tration to radiobiology, from clinical to dosimetry issues.  

5.2     Radiation Oncology Process: How Data Surrounds 
the Patient 

 Before treatment can be delivered, several steps take place in preparation. Initially, 
diagnosis and staging of the cancer take place. This includes the defi nition of the 
tumor type and extent of disease (tumor staging) [ 1 ]. Multidisciplinary cancer con-
ferences, often including radiation oncologists, medical oncologists, surgeons, and 
other disciplines, lead to a treatment recommendation [ 2 ]. When radiation therapy 
is indicated and the patient has given his/her consent, the patient will enter into the 
process of radiotherapy treatment preparation. 

 The patient is accompanied by information regarding his/her disease, history, 
and general information (age, sex, address) when entering a radiation oncology 
department. Often, standardized questionnaires may be used to quantify symptoms, 
side effects [ 3 ], or general well-being [ 4 ]. Any healthcare process can produce vast 
quantities of data [ 5 ]; this is even more so in radiation oncology with large amounts 
of imaging and radiotherapy planning data being generated. Somewhat like a snow-
ball rolling down a hill, more and more information is associated with the patient as 
he proceeds along this process (see Fig.  5.1 ). Planning computed tomography (CT) 
will be performed to provide the basis for further planning. Depending on the pro-
posed treatment, the patient will be required to be in a specifi c position (e.g., arms 
over head, supine, prone). This imaging modality produces images which provide 
the basis for dose calculations in the correct treatment position.  

 The imaging data, accompanied by identifi ers, is then transferred to a treatment 
planning system (TPS) in which the treatment target and normal organs – organs at 
risk (OARs) – are defi ned. Based on the prescribed dose and fractionation (e.g. 
50 Gy (Gray) in 2 Gy fractions fi ve times per week for 5 weeks), a treatment plan is 
generated. After verifi cation of the dose, which is a double check of the performed 
calculations, the treatment plan is transferred to the linac where the patient is treated, 
typically by delivering daily doses (fractionated treatment) over several days to 
weeks. During treatment, to verify correct positioning, it is common practice to 
obtain 2D, 3D, or even 4D (e.g., breathing-dependent 3D) imaging, adding to the 
already signifi cant amount of data associated with the patient. Additional informa-
tion on side effects, symptoms, and further imaging is collected during follow-up. 

P P P P P

Follow-upTreatment
delivery

Treatment
planningDiagnosis

  Fig. 5.1    With each step 
along the process, more 
information is created and 
collected which is 
associated with the patient       
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 Due to the typical processes involved, a patient undergoing radiotherapy will 
have collected a signifi cant amount of information associated with him. This infor-
mation is present in multiple formats from handwritten notes on paper and fi lled-out 
questionnaires to three-dimensional imaging data and complex treatment plan 
information.  

5.3     Where Is This Data? 

 In radiation oncology, probably more than in other medical specialties, the design 
and implementation of electronic information systems occur due to the need to 
reduce and eliminate human error in treatment – such as during the transfer of infor-
mation from treatment planning to treatment delivery [ 6 ]. Although there is cer-
tainly a trend toward paperless or paper-light departmental organization, this is still 
work in progress in most units: digitalization touches several issues from legal, 
practical to know-how. While it has been demonstrated that a purely digital work-
fl ow is possible [ 7 ], this is not the case in many centers. The level of digital informa-
tion available varies, heavily dependent on department-specifi c confi gurations. 
Costs and logistical and technical issues have been perceived as barriers in the 
implementation of a purely digital workfl ow [ 8 ]. Simply reproducing previous 
paper-based workfl ows can lead to unsafe processes and ineffi cient information 
fl ow [ 9 ]. On the other hand, key data in radiation oncology (e.g., treatment plans, 
3D imaging) is not replaceable with paper so a transfer from a hybrid to a paperless 
system seems intuitive. 

 Similar to the level of digitalization, integration can be implemented to various 
extents. The purpose has been clear for decades now, to capture and store data con-
sistently in order to rearrange and display the data as needed [ 10 ]. From a machine 
learning point of view, a strong fragmentation with redundancies may be present 
within an RO department or hospital. Heterogeneity of computer systems is ubiqui-
tous and has multiple healthcare domain-specifi c causes [ 11 ]: departmental organi-
zation within a hospital, medical devices with infl exible built-in software, either 
general or niche vendors, selecting the “best” software for each specifi c purpose 
ignoring the big picture, as well as legacy applications [ 12 ,  13 ]. Often, third-party 
providers supply picture archiving and communication systems (PACS) or systems 
specifi c for laboratories or, for example, pathology reports. 

 These issues have been recognized a long time ago and have not been resolved to 
date. Radiation oncology units are typically embedded in, or at least associated with 
a broader healthcare system. Often, some information is associated and stored in a 
hospital information system (HIS) before the patient reaches a radiation oncology 
unit. This would include general demographics and patient identifi ers (date of birth, 
gender, etc.), whose uniqueness is decisive for assuring the consistency between 
databases. 

 Integration is not only an issue between a radiation oncology unit and the hospi-
tal. It is nontrivial among different suppliers within a radiation oncology unit. 
IHE-RO stands for  I ntegrating the  H ealthcare  E nterprise- R adiation  O ncology 
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(IHE-RO) and is an ASTRO-sponsored initiative for improving the functionality of 
the radiation oncology clinic. The IHE-RO task force develops IHE integration pro-
fi les, which specify how industry standards are to be used to address specifi c clinical 
problems and ambiguities [ 14 ]. This process has succeeded in defi ning standards 
that have helped advance radiation oncology-specifi c integration [ 15 ]. 

 Problems with integration are complicated by patient data confi dentiality and 
security [ 16 ,  17 ]. A universal database where all relevant information is well struc-
tured and available is hardly to be expected. There are however attempts to central-
ize and integrate most relevant information by several vendors. Patient management 
systems, designed around the requirements of a radiation oncology unit, are avail-
able such as ARIA [ 18 ] by Varian and MOSAIQ [ 19 ] by Elekta. In theory, integra-
tion with third-party applications is not a problem; in practice, we see this is not 
always the case. Unfortunately, a vendor-independent radiation oncology-specifi c 
data model, i.e., xml standard or similar, is still not established. 

 Some departments are involved in developing their own models and systems, 
these with various capabilities, ranging from patient management to radiation 
delivery.  

5.4     Accessing and Analyzing 

 Innumerable levels and forms of information are present in radiation oncology and may 
be approachable with data mining, operations research, and machine learning [ 20 ]. 
These range from nonstructured free-text in writing (physician notes) to highly struc-
tured digital information (e.g., imaging and radiation dose distribution)    (Fig.  5.2 ) [ 15 ].  

 A modern radiation oncology unit has been described to have three distinct com-
puter systems: clinical medical electronic record, a computerized treatment plan-
ning system, and a record and verify system (R&V) [ 21 ]. Possibly to a lesser extent, 
but one should mention the quality assurance applications too. The electronic 

Digital follow-
up data

m
an

ua
l –

 e
le

ct
ro

ni
ca

l DICOM-RT

Physician’s
written entry

Individual – standardized

Standardized
questionnaire

  Fig. 5.2    Data and 
information are available in 
various forms in radiation 
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medical record may be integrated into a broader patient management system (PMS). 
Most of the time, the clinical medical records are distributed in the hospital PMS 
and the RO expert system, i.e., the R&V system. The information structure may 
vary from one system to another one. For example, an R&V system can have for 
historical reasons two SQL [ 22 ] database parts, at which the imaging part is still 
organized in a folder tree structure.  

5.5     Treatment Planning System/DICOM-RT 

 At this stage, the process of diagnosis and staging as well as the treatment prescrip-
tion should be concluded and defi ned. The treatment prescription includes the 
description of the target volume as well as dose, including fractionation. Additionally, 
criteria for organs at risk are defi ned to enable the treatment planning process to 
commence. Images from the CT scanner, together with defi ned targets and organs at 
risk, provide the basis for treatment planning. 

5.5.1     CT Scanner 

 A CT scanner is a device that uses the X-ray computed tomography (X-ray CT) 
technology to produce tomographic images (virtual “slices”) of a patient by 
computer- processed X-rays. Generally, almost all patients being treated in a radio- 
oncology department receive a CT scan before treatment. These images are used to 
exactly localize the tumor region and the surrounding healthy organs (organs at 
risk). Planning CTs are then used in the treatment planning system (TPS) to calcu-
late the treatment dose of radiation (Fig.  5.3 ).  

 Usually, CT scanners use a DICOM modality worklist (MWL). A DICOM 
modality worklist can be considered as a task manager. This enables the CT scanner 

  Fig. 5.3    Planning CT with 
elements for patient 
positioning on the CT couch       
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to obtain details of patients (name, date of birth, etc.) and scheduled examinations 
electronically, avoiding the need to reenter such information and possibly causing 
mistakes. The DICOM images that the CT scanner creates will use the attributes 
received from the MWL. These images will be sent via a DICOM node to a PACS, 
an RO archive, a TPS, or a contouring workstation. This can be done automatically 
or manually, depending to the workfl ow procedure used in the department.  

5.5.2     Treatment Planning System 

 The treatment planning system (TPS) has become a key element in the radiotherapy 
process. Regarding patient safety and success of therapy, its accurate and stable 
functioning is an issue of highest importance. These systems provide the process in 
which radiation oncologists, radiation therapist, medical physicists, and medical 
dosimetrists create radiotherapy treatment plans. 

 Today, treatment planning is almost entirely computer based using patient- 
computed tomography (CT) data sets (possibly in combination with magnetic reso-
nance imaging and positron emission tomography). Tools providing multimodality 
image matching (co-registration or image fusion) are part of modern TPSs. Based 
on images, a virtual patient is generated to create a simulation of the treatment plan 
using the anatomical, geometrical, radiological, and dosimetric aspects of therapy. 
Evaluation of the treatment plan is often done by analyzing dose distribution over-
laid on the patients’ data set. Dose-volume histograms (DVH) provide clinicians 
with information of the uniformity of the dose in the target volume as well as distri-
bution of dose in organs at risk.  

5.5.3     DICOM-RT 

 The Digital Imaging and Communications in Medicine (DICOM) standard is now 
widely implemented in radiology as the standard for diagnostic imaging. It has also 
been extended for use in various subspecialties. One of the fi rst extensions was 
implemented in radiation therapy and is known as DICOM-RT. In addition to the 
protocol used in the DICOM standard, seven DICOM-RT objects, namely – RT 
Image, RT Structure Set, RT Plan, RT Dose, RT Beams Treatment Record, RT 
Brachy Treatment Record, and RT Treatment Summary Record – have been cre-
ated, each with a data model. The data models set the standard for integration of 
radiation therapy information for an electronic patient record and allow for an 
exchange between different systems [ 15 ]. The radiotherapy objects supplement to 
the DICOM standard can be downloaded from the NEMA.org website [ 23 ]. When 
compared to DICOM tools, the selection of tools compatible with DICOM-RT data 
is narrower, yet multiple solutions exist, many of which are open source [ 24 ]. 

 For analysis of DICOM-RT data plugins/expansions for widely used statistics, 
suites such as MATLAB [ 15 ] or R [ 25 ] are readily available. Dicompyler is an 
extensible radiation therapy research platform and viewer for DICOM and 
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DICOM-RT [ 26 ]. A software toolkit that is available for 3D Slicer [ 27 ] enables the 
import of treatment plans from various sources for visualization, analysis, compari-
son, and processing [ 28 ]. Another problematic issue to be aware of when accessing 
data on structure sets is that standardized nomenclature is not always used [ 29 ,  30 ]. 

 The Computational Environment for Radiotherapy Research (CERR) [ 31 ] is 
written in MATLAB [ 32 ] language. CERR can be used to import and review [ 33 ] 
treatment plans and is compatible with multiple treatment planning systems. CERR 
is available online [ 34 ]. Another tool, RT_Image, which is available online [ 35 ], 
was initially developed for target volume generation based on PET data. In the 
meantime [ 15 ], it has developed making other DICOM-RT structure manipulations 
possible. DICOMan is a software system that handles DICOM-RT and includes an 
editor, retriever, and format convertor, among others [ 36 ,  37 ].  

5.5.4     Record and Verify System (R&V System), 
Linear Accelerators 

 Medical linear accelerators (linacs) generate X-rays and high-energy electrons to 
treat cancer. Tumor inside the body of the patients. They are mounted on a gantry 
which allows rotation around the patient and are equipped with a multileaf collima-
tor (MLC) to allow a conformal dose application to the tumor. Additionally, modern 
digitalized linacs may be equipped with a built-in CT scanner, imaging may be used 
before or during the irradiation of the patient to ensure the patient is in the correct 
position. Based on quality assurance requirements, often required by law, the R&V 
system has the role of guaranteeing the correct transfer of all geometrical und radio-
logical data from the TPS to the linac (Fig.  5.4 ).  

 With advancing technology and complex treatment delivery, the need arose for 
more accurate monitoring and recording of daily treatment delivery [ 38 ]. 
Computerized systems for this purpose have fi rst been described in the late 1970s 
[ 39 ]. As these systems were developed around a specifi c technical task in radiation 

  Fig. 5.4    Medical linear 
accelerator       
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oncology, they typically contained only limited patient data, such as basic demo-
graphics and scheduling [ 38 ]. The formerly limited scope was signifi cantly 
improved, among others with automated charge billing. 

 The R&V systems are the link between the TPS and the linac: all parameters such 
as number of treatment fi elds, gantry and collimator angle, MLC positions, table posi-
tion, dose and dose rate, beam quality, and number of treatment sessions are transferred 
from the TPS to the R&V system. This is done using DICOM-RT (mainly DICOM-RT 
Plan). R&V systems have a scheduler or a worklist on a daily basis to allow only treat-
ments for a patient that is meant to be irradiated on a certain day. Once a treatment plan 
has been selected, all details of the treatment fi eld and session will be transferred to the 
linac. Once irradiated, the completed irradiation is reported back to the R&V system 
including precise machine parameters (which can be different from the ones calculated 
in the TPS within a strictly defi ned tolerance). This is very crucial. If the irradiation is 
not stored correctly, a certain fi eld or the whole session could be irradiated a second 
time with potential harm to the patient. This data stored in the database of the R&V 
system is accessible to analyses (patient, machine, and procedure related). 

 Reporting tools have traditionally been provided by vendors to enable users to 
create queries within a simplifi ed layout. Older versions of MOSAIQ (termed 
Multi-Access) were delivered with Crystal Reports [ 40 ]; InfoMaker [ 41 ,  42 ] is still 
the tool which comes with Aria ver. 11. The migration of both Multi-Access 
(Pervasive SQL) and Aria (Sybase SQL) to Microsoft SQL (Server 2008 [ 43 ]) stan-
dard has provided the vendor and the client new possibilities: one can now think 
about using established functions of business intelligence technologies.  

 Elekta offers ANALYTIQ and Varian brings InSightive™ Analytics with Aria 
ver. 13. The underlying computer-based technique of creating multidimensional 
data cubes can also be implemented by the user within the services of Microsoft 
SQL Server (Analysis, Reporting) – by using a mirrored nonproductive database. 
From a technical point of view, it is also reasonable to think about the connection 
with Microsoft Amalga Unifi ed Intelligence System [ 44 ], a unifi ed health platform 
based on SQL Server 2008. The next generation is now represented by the Caradigm 
Intelligence Platform [ 45 ], based on SQL Server 2012. 

 Billing systems delivered with the R&V systems may have been developed, e.g., 
for Aria and the US market; regional adaptation may be required. Depending on the 
question, these represent databases worth exploring.   

5.6     Radiation Oncology Patient Management System (PMS) 

 Practically, all hospitals have some form of centralized patient management system, 
the extent of which may vary signifi cantly among institutions. Several vendors pro-
vide systems; these include solutions by Siemens, SAP, and many others. 

 A few vendors have specialized in integrating electronic medical records into a 
patient management system within a radiation oncology setting. The two most 
prominent providers are Varian with their product ARIA [ 18 ] and Elekta with their 
product MOSAIQ [ 19 ].  
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5.7     Applications for Quality Assurance (QA) 

 Besides the three main components of an RO computer system, applications and 
tools for quality assurance are an important part of a radiation oncology department. 
QA programs are often regulated by law or specifi c professional associations and 
are performed to assure the correctness of the calculation of the radiological patient 
dose and the mechanical and radiological reliability of the linac and CT scanner. 

 Concerning the patient dose, two different kinds of applications exist; both 
retrieve the corresponding data directly from the database of the TPS via 
DICOM-RT. Some recalculate the patient dose using an alternative dose algorithm 
(e.g., RadCalc [ 46 ], DIAMOND [ 47 ], Mobius3D [ 48 ]); others use a dose measure-
ment on the linac and compare it to the original dose distribution from the TPS (e.g., 
Delta4 [ 49 ], ArcCHECK [ 50 ], OCTAVIUS [ 51 ]). 

 Linac QA is very comprehensive and produces large amounts of data. To per-
form all required QA tests, many different tools and applications exist which will 
not be listed and explained here. In order to report at any time the state of the linac 
QA management systems (e.g., QUALimagiQ [ 52 ], AQUILAB [ 53 ], PIPSpro [ 54 ]) 
exist, which collect all available QA data in a single database (entered manually or 
automatically using DICOM or DICOM-RT data).  

5.8     Nonspecific Elements 

5.8.1     Database/SQL 

 Not specifi c to radiation oncology, or even to healthcare, databases typically use 
standard interfaces. Structured Query Language (SQL) [ 22 ] is the most commonly 
used database language. Depending on the software provider, harvesting informa-
tion stored in databases may be occluded by limited access granted by the software 
providers (especially for built-in systems). Furthermore, databases may be accessi-
ble, but their table structure is not transparent or evident making reliable analysis 
diffi cult.  

5.8.2     Hospital Information System (HIS)/HL7 

 Many radiation oncology departments are integrated within a hospital or other form 
of collaboration. The minimum information transferred are patient identifi ers. The 
typical data exchange format for such communication is the standard HL7 [ 55 ]. It 
was developed by Health Level Seven, which is a nonprofi t organization. It provides 
a framework for the exchange, integration, sharing, and retrieval of electronic health 
information. Although versions 3.x exist, the 2.x versions of the standard, which 
support clinical practice and the management, delivery, and evaluation of health 
services, are currently the most commonly used [ 56 ].  
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5.8.3     Picture Archiving and Communication System 
(PACS)/DICOM 

 PACSs are used to store and recall images; in the typical setting, the main PACS in 
a hospital would be associated with diagnostic images from the radiology depart-
ment. Imaging that is relevant to radiation oncology such as magnetic resonance 
imaging (MRI) or positron emission tomography (PET) would also be stored there. 
Of note, many PACS systems implemented in hospitals do not support DICOM-RT 
objects. The standardized format in which this takes place is the Digital Imaging 
and Communications in Medicine (DICOM) format, which is a standard for han-
dling, storing, printing, and transmitting information in medical imaging. It includes 
a fi le format defi nition and a network communications protocol. The DICOM stan-
dard was developed by the members of the National Electrical Manufacturers 
Association (NEMA) [ 57 ]. 

 An introduction and a list of multiple DICOM tools can be found at the website 
of the Center for Advanced Brain Imaging [ 58 ]. Some freeware/open source popu-
lar tools available for viewing and manipulating DICOM images include OsiriX 
[ 15 ] and 3D Slicer [ 27 ].   

5.9     Data Not Specific to Radiation Oncology 

5.9.1     Peripheral Sources/Billing Data 

 Reimbursement for radiation oncology services is based on patient parameters and 
activities performed. Often, for billing purposes, this information is automatically 
collected, coded, and transferred to the responsible department. Some departments 
may have limited interest in collecting data for scientifi c evaluations, but all depart-
ments are interested in getting reimbursed for their work. Billing data may provide 
information on the number of patients per diagnosis, the type of treatment used, as 
well as information on the frequency of imaging. Although billing data is derived 
from regular, core activities of a radiation oncology department, it may be more 
complete and better structured than other sources. Depending on the organization of 
a department, information on prescribed medication, data from a radio-oncology 
ward, and similar sources may also provide valuable data.  

5.9.2     High Level/External Sources 

 Subsets of data produced in a radiation oncology department are often pooled with 
other sources and collected in national cancer registries [ 59 ], such as the Surveillance, 
Epidemiology and End Results (SEER) program of the National Cancer Institute 
(NCI) in the United States. Data collected includes information on over 25 cancer 
entities as well as patient characteristics such as age, sex or ethnicity. SEER data has 
been used in numerous analysis, although retrospective, for several investigations, 
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this has proven to be very valuable [ 15 ]. Virnig et al. used SEER data to analyze 
radiotherapy use and concluded that SEER data should be combined with Medicare 
data to obtain the most complete data [ 60 ]. The NCI provides several analytical 
tools on its website, such as the Cansurv software [ 61 ]. 

 Vendors are also starting to incorporate crowd wisdom into their products. Based 
on MOSAIQ (Oncology Electronic Medical Record) and METRIQ (Integrated 
Oncology Data Management System), Elekta has launched what it calls Data 
Alliances. These include the NODA (National Oncology Data Alliance), ODA 
(Oncology Data Alliance), and RODA (Radiation Oncology Data Alliance). They 
represent “data aggregation and analysis programs.” These programs can provide 
benchmarking reports, based on information from multiple users. 

 Several centers have taken up the legal, ethical, and administrative challenges 
[ 62 ] of sharing data and initiated projects aimed at making clinical data machine 
readable and exchangeable. An example of such an initiative is the EUROCAT proj-
ect including radiation oncology sites in the Netherlands, Belgium, and Germany 
[ 63 ,  64 ]. By implementing distributed learning models, some problems of data shar-
ing could be reduced while allowing multilevel data exchange across centers. 

 At John Hopkins University, Oncospace [ 65 ] has developed a radiation oncology 
database, to enable analysis of patient data and exchange. The system was designed to 
provide data exchange as well as decision support and analysis for multiple issues. 

 A tool has been developed to allow collaboration in radiotherapy based on the 
DICOM format [ 66 ]. 

 Histogram Analysis in Radiation Therapy (HART) is a MATLAB [ 32 ]-based 
program designed to analyze large quantities of radiotherapy data [ 67 ].  

5.9.3     Guidelines/Recommendations 

 On a more abstract level, information on standard operating procedures or depart-
mental guidelines may be available. Although this information is often not complete 
nor readily machine readable and only implicitly available, with appropriate repre-
sentation [ 68 ], this information may be transformed into formats that allow for its 
analysis and comparison with other guidelines/treatment algorithms. When high- 
level evidence from trials is missing and experience does not suffi ce to answer clini-
cal questions, crowd wisdom (swarm-based medicine) may fi ll these gaps [ 69 ]. 
Patterns of care investigations and analyses of decision trees may provide valuable 
information [ 70 ].   

5.10     Conclusion and Outlook 

 The most commonly used sources for machine learning in radiation oncology are 
probably data available in DICOM-RT format and the database of the PMS in use. 
Mostly, this data is of well-described structure and available digitally. There is room 
for improvement; standardization in nomenclature within the DICOM-RT format 
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and an improved integration of the radiation oncology PMS with other sources will 
enrich our analytical capabilities. Besides these typical sources information from 
dosimetry, billing and cancer registries provide essential information that can 
enhance core databases.     
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6Application of Machine Learning 
for Multicenter Learning

Johan P.A. van Soest, Andre L.A.J. Dekker, Erik Roelofs, 
and Georgi Nalbantov

Abstract
Advancements in radiation oncology are driving more specific, and thus
improved, treatment opportunities. This creates challenges on the assessment of
treatment options, as more information is needed to make an informed decision.
One of the methods is to use machine-learning techniques to develop predictive
models. Although prediction models, embedded in clinical decision support sys-
tems (CDSSs), are the foreseen solution, developing/training such prediction
models requires large amounts of detailed patient information to reach decisive
power. The amount of patients needed to train a reliable prediction model rapidly
outgrows the numbers available in a single institution, hence the need for multi-
center machinelearning. To be able to learn over multiple centers, several infra-
structural prerequisites need to be addressed. First, data needs to be extracted
from multiple source systems and represented using standardized terminologies,
preferably including the semantics (the actual description) of the represented
data. For research and model training purposes, this means that value representa-
tions (e.g. “m” or “f” indicating gender) need to be converted into standardized
terms (the NCI Thesaurus codes C20197 or C16576, respectively), and that
patient-identifiable information (e.g. name, institutional ID, address, etc.) needs
to be removed or changed in a non-identifiable way. If datasets from different
institutions use the same standardized terminology and data structure, data can
be merged. Finally, after merging, prediction models can be learned on the com-
plete dataset, in this chapter known as centralized learning.

mailto:johan.vansoest@maastro.nl
mailto:andre.dekker@maastro.nl
mailto:erik.roelofs@maastro.nl
mailto:georgi.nalbantov@maastro.nl


72

6.1	 �Introduction

Technical advancements in the fields of physics, radiobiology, and engineering (and
indirectly chemistry) are the main drivers for better, and thus more specific, treat-
ment opportunities in radiation oncology. These advancements largely influence
treatment methods, especially in regard to treatment planning (IGRT, IMRT,VMAT)
and radiation techniques used.
In the current era of evidence-based medicine (EBM), all of these advancements

need to be validated to be sure whether a specific treatment (plan) is better than the
current standard (e.g., in regard to possible patient outcome). However, we also
observe that new treatment options do not necessarily improve the outcome for an
entire population but might only work for specific groups of patients. The standard-
ized treatment (according to the current guidelines) might be too intense for specific
groups of patients (resulting into higher toxicities and/or other radiation-induced
complications) or could result in undertreatment of patients.At this point, it becomes
interesting to apply machine learning to retrospectively identify prognostic factors
(e.g., risk factors) and to develop predictive models to classify patients in distinct
groups [17]. These groups can then be used to alter treatment options, e.g., to inten-
sify or temper treatment.
The more subgroups we can identify, the better we can optimize treatment for

individual patients, leading towards the next era, called individualized medicine 
(IM). This also imposes challenges on patient subgroup discovery and development
of prognostic models as done for many years. Only several large institutions (in
terms of patient turnover per year) can perform fine-grained subgroup analysis, as
we need a fair number of patients with and without a specific outcome to test
hypotheses regarding new treatment options for specific subgroups. Only with these
large numbers of patients can we translate results of individualized medicine [1] into
clinical practice by means of clinical decision support systems (CDSS) [16]. 
Therefore, we need to collaborate in radiation oncology research and share data to
perform machine learning on larger, multicenter datasets.
In this chapter, we will explain the current possibilities of machine learning in a

multicenter setting. We will start with the prerequisites and infrastructure funda-
mentally needed for multicenter machine learning (Sect. 6.2). Afterwards, we will
describe the concept of centralized and distributed machine learning, including the
benefits and challenges (Sect. 6.3). Finally we will describe several applications/
initiatives related to multicenter machine learning (Sect. 6.4) and conclude with a
summary of this chapter (Sect. 6.5).

6.2	 �Prerequisites

When performing multicenter machine learning, several prerequisites are needed to
be addressed before actually starting the machine learning process. In this para-
graph, we will describe the topics of data extraction (Sect. 6.2.1) and representation
(Sect. 6.2.2), network infrastructures (Sect. 6.2.3), and privacy preservation
(Sect. 6.2.4).
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6.2.1	 �Data Extraction

Within radiation oncology, data extraction for machine learning is a labor-intensive
task, as many data silos exist where data resides. In general, we need to connect to
different data sources, extract data from these sources using local querying dialects,
and afterwards store the extracted data in a central storage. These steps need to be
performed for different information systems used in radiation oncology. We will
describe the most common systems in this paragraph. First, we need to include the
electronic medical record (EMR), where general patient characteristics are stored
(e.g., age, gender, and diagnostic, geographical, and follow-up information such as
complication and quality of life scores). Second, medical images (for diagnostic,
treatment, and validation purposes) are stored in a picture archiving and communi-
cation system (PACS).Although images cannot be used directly in predictive model
training, extracted information from these images can be used (Sect. 6.2.1.2). Third,
treatment planning-related information (e.g., radiation plan information regarding
beams and dose) needs to be incorporated, as the treatment planning system (TPS)
stores information in its own database, as well as in the PACS. Fourth, the record
and verify system (R&V) holds information regarding the planned treatment (e.g.,
dose, fractionation, beams) and the actual delivery. This information is also needed
during machine learning, e.g. to determine structural differences in the planned and
delivered treatment.
Other systems (e.g., sources containing biological data) may apply in specific or

future settings; however, we’ve specified only the general sources of information
used for machine learning. In regard to multicenter machine learning, this data
extraction leads to the first challenge as different institutions have different systems
(in terms of manufacturers and products) in place. All of these systems may store
data differently, which requires a customized approach for data extraction for every
participating institution.

6.2.1.1	 �ETL Tooling and Data Warehousing
To (continuously) extract data and store it in a central location, one could consider
the use of extraction, transformation, and load (ETL) tooling. This tooling can
extract data from different sources (different systems), reconcile data belonging to
one patient (transformation), and store the data in a central database: the data ware-
house (DWH). This could be useful for large-scale machine learning and research
institutions with many smaller-sized trials. As shown by Roelofs et al. [27], imple-
menting a data warehouse can significantly reduce the data collection time, in com-
parison to manual data extraction and collection. In regard to multicentered settings,
this also reduces the number of systems/databases a user/researcher has to include
in the data request/retrieval process, thus reducing the time to merge all different
datasets. Furthermore, as data are extracted and inserted into the DWH, it should be
known what the data represents. The ETL process should therefore be well docu-
mented regarding queries, transformations, and the meaning of the stored data in the
DWH. In comparison to the DWH, directly querying the source system for research
purposes has several disadvantages. These disadvantages are mainly on the topics of
query and data validity and query load on production/source systems.When a DWH
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is in place, query validity should not be an issue (as the data is checked before being
incorporated in the DWH). Furthermore, query load issues should be mitigated, as
the DWH should run on a different database/server as the production/source sys-
tems, and therefore cannot affect clinical operations.

6.2.1.2	 �Image Biomarker Extraction
As stated in Sect. 6.2.1, the intrinsic information of images (not just the readily
available metadata) needs to be extracted from the actual image slices. Extraction of
image “features” is not a standard functionality of a PACS; however, features may
sporadically be available as TPS systems may store additional information in the
metadata of the DICOM images. If features are stored in the metadata, these values
are needed to be validated, especially in a multicenter setting where different sites
may use different TPS systems, which could implement different algorithms to cal-
culate these features.
When there are no (or only a small number of) features already available, every

site in the multicenter setting needs to implement a feature extraction pipeline which
calculates variables based on the images available in the local PACS. As the local
PACS stores CT and/or PET images, delineated contours (RTSTRUCT), planned
(RTPLAN), and delivered (RTDOSE) dose information, the number of features to
extract becomes larger. For example, we can extract information regarding the
tumor volume, maximum diameter, specific points of the dose-volume histogram
(DVH) for target volumes or organs at risk, tumor activity/metabolism, and differ-
ences between planned versus delivered dose. Furthermore, radiomic analysis on
these images produces more than 200 features, based on more advanced image pro-
cessing algorithms (by calculating intensity distribution metrics based on, e.g.,
Fourier transformations and wavelets) [15]. Several of these features are potential
imaging biomarkers: features which have prognostic and predictive value in terms
of to patient outcome or tumor response.
Preferably, this feature extraction pipeline should use common communication

protocols, such as DICOM (to receive images) and SQL (to send extracted features
to a local database). This increases the possibility to reuse this pipeline in all sub-
mitting centers and increases the homogeneity of applications and calculation algo-
rithms used by different centers. Eventually, using equal feature extraction pipelines
should result in easier comparison of features/variables between centers. Although
we can generalize the applications and algorithms used, including scanning and
reconstruction parameters, there is still a large variability at the input of this feature
extraction pipeline: differences between delineations of different centers. As shown
in literature, differences in delineations may occur between individuals, even within
one center [18]. These differences in delineations could result in different outcomes
after feature extraction. Especially when two different structures (e.g., rectum and
bladder) are close to each other, for example, it might be possible that the delineat-
ing individual accidentally delineates the bladder wall as part of the rectum. This
results in a higher SUV-mean/max and therefore could compromise the prognostic
value of the extracted features.
Based on the examples of delineation differences and calculation applications/

algorithms used, it is important to specify the provenance of a specific variable: how
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did we acquire/extract this information (and which algorithms did we use)? And
what are the sources used to extract the information? We will elaborate on these
questions in the next paragraph (Sect. 6.2.2).

6.2.2	 �Data Representation and Semantic Interoperability

To be able to exchange data between participating sites, all sites need to be syntacti-
cally interoperable. This means that they have to agree which (technical) protocol
they use to transfer data; implying that data representation should be equal among
participating sites.
Next to standardization of syntactical interoperability, semantic interoperability 

needs to be in place. We will use the definition of Valentini et al. [29] to describe
semantic interoperability: “The ability of any communicating entity (not only com-
puters) to share unambiguous meaning. For computers, this is the ability to exchange
information and have that information properly interpreted by the receiving system
in the same sense as intended by the transmitting system.” In general, this means
that the receiver cannot interpret information differently, as the sender uses unam-
biguous terms to describe that information. Therefore, we need to use terminologi-
cal systems which are known by both sender and receiver. As defined by De Keijzer
et al. [7], a terminological system can be a thesaurus, classification, vocabulary,
nomenclature, or coding system. A terminological system may pertain to more than
one of these systems. For example, ICD-10 [33] is a coding system and vocabulary
(as the term is accompanied by a definition); another example is the National Cancer
Institute’s Thesaurus (NCIT) [28], which (in addition to a vocabulary) also contains
a list of synonyms or other relationships. Finally, multiple terminological systems
can be embedded in an ontology, where concepts from terminological systems are
reused and relations of concepts in a specific domain are described. Furthermore, an
ontology can be used as a consensus model to represent data within a specific
domain (e.g., radiation oncology) between different participating sites [7].

6.2.2.1	 �Relational Databases and Ontologies
In regard to multicenter learning, we need to make sure every participating center
uses the same database structure to be able to uniformly query (or federate) the data
warehouse (DWH) database (Sect. 6.2.1.1). This database structure can be derived
by creating a so-called entity-relationship (ER) model, based on the ontology; how-
ever, it needs to be adhered by all centers. An example to derive this ER model is the
normalized universal approach described by Gali et al. [11]. Next to this database
structure, it is important to use the same database system, as different database sys-
tems/vendors have different dialects. To mitigate differences in database systems/
vendors, it is also possible to use automatic conversion libraries such as Hibernate
(http://hibernate.org/), although these systems add another layer of complexity
when performing queries and/or data federation.
When adhering to an ontology, values from local systems need to be replaced

with standardized values from terminological systems as defined in the ontology.
For example, the property biological sex containing the text “male” or “female”
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needs to be replaced by NCI Thesaurus code C20197 or C16576, respectively.
Another participating center may use 0 and 1 or “m” and “f”; however, within the
DWH database, all sites should use the NCI Thesaurus codes for semantic interop-
erability. This conversion of values is typically done in the transform step of the
ETL process. Therefore, the ETL process needs to be tailored per participating
center.
Although data representation is possible within relational databases, it is cum-

bersome to maintain in a multicenter machine learning setting. As new results give
new insights into biological concepts and relationships, the need for extra variables
is rapidly growing. Given this fact, it is inevitable that a multicenter network for
machine learning will have substantial downtime. For example, when a new concept
is added to the ontology, every participating center needs to update their ETL sys-
tem and DWH database structure, to become up to date with the new ontology ver-
sion. This may take some time, as administrators of the ETL and DWH system need
to validate whether this change is valid, and does not compromise patient de-
identification. If one of the queried columns is not available, the Relational Database
Management System (RDBMS) will result an error rather than an empty result set.
Therefore, it might be that the whole federation/distributed querying system may
not work (if proper error handling is not in place). In this example, we used the addi-
tion of a column, a relatively easy task which occurs frequently. However, the more
complex the changes in the ontology and database structure, the more time and
effort it will take to get the network up and running again.

6.2.2.2	 �Semantic Web, RDF, and Linked Data
One of the solutions to cope with rapidly changing ontologies in a multicenter set-
ting is to move from relational databases to Semantic Web technologies [2, 3]. In
this paragraph, we will only discuss the Resource Description Framework (RDF),
linked data, and the SPARQL protocol and RDF query language (SPARQL) as a
subset of Semantic Web technologies.

Resource Description Framework
RDF is a standard, recommended by the World Wide Web Consortium (W3C) [6],
and can be seen as a flexible alternative for the relational database. Where “tradi-
tional” relational databases store their data in a structure of tables and columns, the
RDF specifies only one table with three columns named subject, predicate, and
object. Each row in this single table repository is called a triple, as it only has three
cells. Due to this basic difference in structure, the concept of data representation is
also different. Because of this fixed table structure, the ontology becomes more
important and serves as a data model consensus between centers.
As an example, we have an ontology describing patients and their first name, last

name, biological sex, and age. Figure 6.1 shows the visual representation of this
ontology. The RDF triples based on this ontology are represented in Table 6.1.

Unique Resource Identifiers and Linked Data
To assure semantic interoperability, we will use the concept of unique resource
identifiers (URIs), which is incorporated in the RDF specification. The RDF
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specification states that all resources (concepts and predicates) need to have a
URI, which can be a unique resource locator (URL; e.g., http://www.mydo-
main.org/ontology#hasFirstName) or a unique resource name (URN; e.g.,
myOntology:hasFirstName). This means that someone needs to own a domain
name (e.g., mydomain.org) and is administrator of this domain. If this is the case,
he or she can make unique URLs for this domain, for example, to create a unique
URI for patient 1001 (e.g., http://www.mydomain.org/rdf#patient1001). If the
domain administrator assigns a specific sub-path of the domain to a dataset (called
a namespace), for example, http://www.mydomain.org/rdf#, then this sub-path can
also be substituted by a prefix, for example, “mySet”. This namespace can then
be used to shorten the notation of a unique patient, as shown in Table 6.1. This
concept of unique resources also holds for ontologies, where in Table 6.1 the pre-
fix “myOntology” can be used to define the namespace http://www.mydomain.org/
ontology# and the prefix “ncit” refers to the unique location of the NCI thesaurus.
As everyone should use the same, unique namespaces, the use of URIs enforces
semantic interoperability. Therefore, semantic interoperability is enforced within
the Resource Description Framework.
Next to the enforcement of semantic interoperability, the use of URIs has a

second benefit, namely, the possibility of linked data. As every resource has its
unique URI, an RDF store at site A may point to a resource at site B by using the
URI of the resource at point B [4]. For example, if a patient underwent a

Patient hasBiologicalSex

hasFirstName

hasAge

hasLastName

xsd:string

xsd:integer

xsd:string

ncit:C20197
or

ncit:C16576

Fig. 6.1 Visual
representation of the sample
ontology

Table 6.1 RDF representation of a patient based on the ontology of Fig. 6.1

Subject Predicate Object

mySet:patient1001 rdf:type ncit:C16960

mySet:patient1001 myOntology:hasFirstName “John”^xsd:string

mySet:patient1001 myOntology:hasLastName “Doe”^xsd:string

mySet:patient1001 myOntology:hasBiologicalSex ncit:C20197

mySet:patient1001 myOntology:hasAge 67^^xsd:integer
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diagnostic scan at hospital A and was treated in clinic B, then clinic B can specify
the treatment and link it to the patient resource with the unique URI used in 
hospital A.

Querying Using SPARQL
We have described how data can be represented in RDF, and how URIs enforce
semantic interoperability and linked data. But how can we retrieve this data from
an RDF store? To query these RDF stores, the W3C has adopted the SPARQL pro-
tocol and RDF query language (SPARQL) [24]. Most RDF stores have integrated
a SPARQL endpoint in their RDF store. A SPARQL endpoint is the public inter-
face to receive SPARQL queries and return a result table, all using the HTTP pro-
tocol. In contrast to SQL queries, SPARQL queries do not search tables due to the
underlying RDF store structure. SPARQL queries perform pattern matching on the
triples in the triple store, where variables can be used to retrieve unknown values
or to dynamically link values. For example, the query in Listing 6.1 will try to
retrieve the first name, last name, and age for all patients. We will shortly describe
the lines in this query example.
On line 1–3, the shorthand (prefix) notations for URL locations are defined. Line 5

defines the variables retrieved from the pattern matching; these variables have to start
with a question mark. Lines 6–11 define the actual pattern searched for. As shown in
Listing 6.1, our basic pattern is to retrieve all patient resources which have a predicate
called “rdf:type,” which refers to the terminological code of a patient, defined in the
NCI Thesaurus (using the prefix “ncit:,” which is replaced by the full URL at line 3).
Afterwards, we extend our pattern match by including extra properties for every
resource linked to the patient resource. If the linked resources of the patient variable
have a predicate matching to our specified property (in our ontology), then the vari-
able firstName, lastName, or age will be filled with the found value. If not found, then
the query will return the patient resource URI; however, the variables firstName, last-
Name, or age are not filled in (due to the “OPTIONAL” keyword).
Next to querying one RDF store, a SPARQL query can also be federated to mul-

tiple stores. This is an advantage in regard to multicenter learning, as a single query
can retrieve data from multiple sources. Due to the structure of RDF stores, data
residing in geographically separated RDF stores can easily be merged, as the data

Listing 6.1 Basic SPARQL query retrieving patient resources, related first and last names, and
age of patient data stored in an RDF store, based on the ontology defined in Fig. 6.1
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structure is the same for all stores (1 table; 3 columns) and all RDF stores should use
URIs. Federation can be done both horizontally (different patients in different RDF
stores) or vertically (information of a single patient stored in multiple RDF stores).
An application of horizontal federation in SPARQL queries is shown in Listing 6.2; 
an application of vertical federation is shown in Listing 6.3. In these examples, we
will use the “SERVICE” command of SPARQL to identify the execution of a

Listing 6.2 An example of horizontal federation in a SPARQL query

Listing 6.3 An example of vertical federation in a SPARQL query

6  Application of Machine Learning for Multicenter Learning
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subquery (or pattern match) on a different SPARQL endpoint. In Listing 6.3, we used
the exact same pattern query in both services/subqueries (line 7–19). Both subque-
ries are sent to the respective endpoints, and the subquery results are merged at the
federation endpoint. Finally, the requested variables are returned to the requesting
application or user. In Listing 6.3, both services have different patterns to match. The
first service (line 7–11) searches for all patients and their first/last name on SPARQL
endpoint 1. The second service (line 13–15) will reuse the patient resources found in
endpoint 1 and tries to find patterns matching the hasAge predicate for these given
patient resources. When found, it will use the object linked to the hasAge predicate
(in this case a literal of type integer) and store it in the variable “?age”. Finally, the
query engine will return the output as one table (using the variables of line 5 as col-
umns), including information retrieved from both endpoints.
In this paragraph, we have presented an alternative to the widely known rela-

tional databases to represent and retrieve data. The use of Semantic Web technol-
ogy, and especially RDF, has several advantages over relational databases. Especially
the meta-structure of RDF (independent of the modeled domain) and the use of
URIs are useful with regard to a flexible storage solution while inherently adopting
semantic interoperability and linked data.
On the other hand, using Semantic Web technology has some downsides when

used in multicenter machine learning. The main downside is that local institute staff
needs to be introduced to SemanticWeb technologies, in order to maintain these data
repositories and endpoints. Furthermore, development in the field of RDF stores/
repositories is an ongoing process and is not yet comparable to relational databases
in terms of reliability and performance, especially in daily clinical practice. On the
contrary, for research projects (where uptime is less critical), the Semantic Web is
more favorable because of its flexibility in storage and data structures.

6.2.3	 �Network Infrastructure

Up until now, we only described how to extract information from multiple sources
(databases, image archives) and to apply standardized terminological systems on
the data extracted from these sources. Furthermore, we have described how to rep-
resent data using the relational database and semantic web technology. In this para-
graph, we will combine the topics of the previous paragraphs (Sects. 6.2.1 and
6.2.2) and explain how we can use them together. First, we will describe the institu-
tional infrastructure, after which we will describe the multicenter infrastructure.

6.2.3.1	 �Institutional Infrastructure
In this paragraph, we will describe several approaches to represent a single point of
access for the outside world (e.g., participating sites in the multicenter machine
learning setting). We will discuss five different approaches, namely:

• Traditional ETL and DWH
• Traditional ETL and DWH with an RDF store
• Traditional ETL and DWH with a virtual RDF store
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• Virtual RDF store per institute
• Virtual RDF store per source and institute

Traditional ETL and DWH
In the approach using relational databases (Sect. 6.2.2.1), records from different
source systems (e.g., EMR, PACS, TPS, and R&V) are merged using an ETL tool
(Sect. 6.2.1.1) and converted into the requested data formats following standards
used by all collaborating sites (Fig. 6.2). The merged and transformed data are being
saved in the DWH database. This database will afterwards be queried when request-
ing data for machine learning purposes. Therefore, this database needs to be compli-
ant to the ontological structure (among all participating centers).When the ontology
is altered, all participating centers need to update the DWH database structure, as
well as the transform and/or storage scripts in the ETL tooling.

Traditional ETL and DWH with an RDF Store
This approach uses an RDF store on top of the traditional ETL and DWH approach
(Fig. 6.3). It enables the possibility to create an institutional DWH instead of a
DWH dedicated for the study.Afterwards, the “Database to RDF” conversion appli-
cation reads the DWH database and transforms the data it into triples, taking into
account a given ontology. This RDF store will afterwards be queried when request-
ing data for machine learning purposes. Only the “Database to RDF” application
needs to follow the rules and data structure defined in the ontology.When the ontol-
ogy is altered (e.g., adding an extra data element), only this database-to-RDF appli-
cation needs to be altered (when the information is already available in the DWH).
Updating the RDF store is done by clearing and repopulation and is performed at
specific time intervals.

Traditional ETL and DWH with a Virtual RDF Store
This approach uses only the database-to-RDF conversion application on top of the
traditional ETL and DWH approach (Fig. 6.4). This approach is almost equal to the

SQL
query

DWHETL tooling

EMR

PACS

R&V

TPS

Fig. 6.2 Infrastructure
of the traditional ETL
and DWH approach
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physical RDF store approach (Fig. 6.3); however, it has one difference in converting
data from relational databases to RDF.
In this case, the “Database to RDF” application acts as a SPARQL endpoint,

accepting SPARQL queries and returning the result of these queries. There is no
data stored, as there is no RDF store, only a SPARQL endpoint. When performing
a SPARQL query, the database-to-RDF application will transform SPARQL queries
into SQL queries and executes these SQL queries on the DWH. In regard to main-
tenance, this option holds the same requirements as using the physical RDF store.
The only difference is the absence of an intermediate RDF store, resulting in real-
time results of the data available in the DWH.

Virtual RDF Store per Institute
As the DWH usually is not a real-time representation of the clinically available data,
this approach removes the DWH and directly queries the source systems. In this

SPARQL
query

Database to
RDFDWHETL tooling

EMR

PACS

R&V

TPS

Fig. 6.4 Infrastructure  
of the approach using a
traditional ETL and DWH
with a virtual RDF store

SPARQL
query

RDF
store

Database to
RDFDWHETL tooling

EMR

PACS

R&V

TPS

Fig. 6.3 Infrastructure of the approach using a traditional ETL and DWH with an RDF store
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EMR
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TPS

Database to
RDF

SPARQL
query

Fig. 6.5 Infrastructure using
only a virtual RDF store

approach, the database-to-RDF application is functioning as a SPARQL endpoint
without an RDF store and converts SPARQL queries into SQL queries for the differ-
ent source systems (Fig. 6.5). It therefore creates challenges for the database-to-RDF
application, as it needs to transformation data (to convert local terms to standardized
terms), which was previously done by the ETL tooling. If multiple source systems
are involved, the database-to-RDF application merges the results from all sources
and presents them as a SPARQL query result. The main benefit of this approach is
that we can query for real-time data, rather than have to wait before the data is added
to the DWH. Furthermore, data redundancy of the intermediate storage (the DWH)
is not needed, reducing the need for storage resources. However, the main disadvan-
tage is with regard to performance, as data and queries are transformed on the fly.

Virtual RDF Store per Source and Institute
This approach is almost similar to the “Virtual RDF store per institute” approach,
however, with differences in data transformation and federation (Fig. 6.6). First,
every local data source will get a SPARQL endpoint, using, for example, the
database-to-RDF application. This application will convert the data from the source
system into RDF, compliant with the ontology used in the multicenter setting.
Afterwards, the central federation endpoint will be used to merge all triples from all
database-to-RDF applications/sources (vertical federation). In this setting, one
SPARQL query will be sent to the federation endpoint. This federation endpoint
will split the SPARQL query into several sub-SPARQL queries and execute these
SPARQL queries on the SPARQL endpoints placed on top of the data sources.
Afterwards, the federation endpoint will merge the results and return the merged
result set to the application/user performing the query. The benefit of this approach
is the distribution of computational resources to reduce the query execution time.
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The drawback is that n +1 applications (where n is the number of database-to-RDF
applications) are need to be maintained and updated when the ontology changes.

6.2.3.2	 �Multicenter Infrastructure
In the previous paragraph (Sect. 6.2.3.1), we described the institutional infrastructure
options to create one façade or data query endpoint for every center. It depends on
whether we are using centralized or distributed machine learning (Sect. 6.3) and
whether we need an additional computation unit (e.g., a dedicated or virtual server) in
each center. Both distributed and centralized approaches can be implemented using
relational databases or Semantic Web technology; however, the decision regarding
data representation techniques needs to be made upfront and accepted by all partici-
pating centers. In this paragraph, we will first describe the centralized machine learn-
ing infrastructure and afterwards move towards the distributed infrastructure.

Centralized Multicenter Infrastructure
The general overview for the centralized multicenter infrastructure is shown in
Fig. 6.7. The participating sites are displayed as a data store, as we do not need to
know what the institutional infrastructure looks like. This approach gives participat-
ing centers the opportunity to establish the institutional infrastructure according to
local policies. Additional to all institutional entry points, a central machine learning
server (performing the computations) and a central federation point need to be set
up. The central federation point will perform the horizontal federation between par-
ticipating centers. To ensure privacy (Sect. 6.2.4), the data stores of the participating

SPARQL

query

Federation
endpoint

Database to
RDF

Database to
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RDF

Database to
RDF

TPS

EMR
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R&V

Fig. 6.6 Infrastructure using a virtual RDF store per source and institute
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centers may limit external access by only allowing access from the central federa-
tion point. The central machine learning server will accept and execute algorithms
(including queries to execute on the central federation point). After the algorithm
has finished, it will return the outcome of the computation to the external source
which sent the job (algorithm+query).

Distributed Multicenter Infrastructure
The distributed multicenter infrastructure is different from the centralized version
with respect to computational locations. As shown in Fig. 6.8, the central federation

Algorithm
(incl. query)

Central machine
learning server
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federation point

Participating
site A

Participating
site B

Participating
site C

Participating
site D

Fig. 6.7 Centralized
multicenter infrastructure
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Fig. 6.8 Distributed
multicenter infrastructure
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point has been removed, and local computation units (machine learning slaves/
agents) have been introduced. In this infrastructural setting, the central machine
learning server (master server) is a coordinating server. When a job (algo-
rithm+query) is submitted to the central ML master, the algorithm is being split
into smaller sub-algorithms. These sub-algorithms and queries are packed into sub-
jobs and sent towards the local computation units. They will query the local end-
point and execute the sub-algorithm. After finishing the sub-algorithm, the results
are sent back to the central ML master, which gathers the results from all local
endpoints. The central master will then determine whether it will perform a new
sub-job on all endpoints or aggregate values and sends the final (aggregated) result
back to the job-submitter. More information regarding the actual execution of the
algorithm in a distributed setting can be found in Sect. 6.3.2.

6.2.4	 �Privacy Preservation

For both distributed and centralized multicenter infrastructures, privacy preserva-
tion is a major topic to take into account. If correctly implemented, the distributed
multicenter infrastructure is generally more secure as the results of the algorithm
(e.g., a predictive model) are transferred instead of the source data. However, this
does not mean that the issues concerning privacy preservation are solved. For exam-
ple, it is still possible to retrieve metadata about a dataset of one patient. In this
section, we will address several options for privacy preservation, ranging from
pseudonymization to irreversibly modifying the original datasets. Despite of all the
options described below, we have to state that, in our opinion, there is no standard
method to ensure privacy preservation. The researcher/designer of the infrastructure
will always have to find a balance between the loss of information and the anonym-
ity of participating patients.

Pseudonymization
The first option for privacy preservation is bidirectional pseudonymization of patient
identifiers, for example, replacing patient names and hospital’s patient identification
numbers by study-specific alternatives. This can be achieved by maintaining a two-
column table, where one column contains the patients identification number and the
second column contains the study identification number for this patient. Variations to
this concept may apply, for example, using an extra column to maintain the study
where this mapping applies to. Typically, the pseudonymization of hospital to study
identification numbers is done during the transform part of the ETL process. Other
patient identifying information (e.g., first and last names) can be replaced by the same
study ID or may not be incorporated and thus removed during the ETL process.
The second option is to use an unidirectional pseudonymization algorithm, for

example, by hashing patient identifiers (e.g., using an SHA-{1–3} algorithm). This
hash should be unidirectional, meaning that the pseudonymized patient identifiers
cannot be reversed to the original identifiers. Unidirectional pseudonymization
might be more appropriate than bidirectional pseudonymization, however might
introduce problems when study data are needed to be linked to the actual patients.
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For example, when study results show a worse outcome for specific patients and
when it is immoral to withhold this information to these patients.

Data Obfuscation
When using strict inclusion criteria with rare variables, it might be that the resulting
dataset is very small and patients might become identifiable by combination. For
example, if only two patients match some inclusion criteria and the biological sex
(which is a requested variable) is different in both patients, we can identify these
patients when querying local source systems. This issue holds for both the centralized
and distributed multicenter infrastructures. To reduce the chance of compromising the
anonymity of patients, Murphy and Chueh [21] introduced a method for data obfusca-
tion where (especially in the case of a small number of events/patients) results are
obfuscated by returning a random value within a specific range based on the actual
value. This method does not circumvent the problem completely, as someone with
bad intentions is able to approximate the original value by sending the same request
multiple times. To circumvent these actions, Murphy and Chueh proposed to imple-
ment an audit system, where performing the same query multiple times within a spe-
cific time span will result in a request denial. In this way, the system returns a value
not completely representing the actual value however returns a value within a tolera-
ble margin (when not exceeding the maximum number of requests).

Data Perturbation
The downside on obfuscation is that it does change the distance (e.g., Euclidian dis-
tance) between points (e.g., patients or observations) in a k-dimensional space, where
every dimension may be a specific variable in the dataset. As the distance changes, it
may influence the prediction model training algorithm and train a model that does
not represent the actual data and values. This can lead to problems during validation,
especially when the validation data is obfuscated, however in another way (due to the
randomness in the obfuscation algorithm). Therefore, transformation of data might
be a solution, as the whole dataset is transformed while maintaining the distance
between points. As shown by Liu et al. [19], this transformation is still not good
enough for privacy preservation, as the original data can be derived using indepen-
dent component analysis (ICA) or overcomplete ICA. To overcome this issue, Liu
et al. advise to use their random projection-based multiplicative perturbation
(RPBMP) method, which reduces the number of dimensions and transforms the
dataset while maintaining statistical information regarding the distance between
variables. Using this method, it should not be possible to retrieve the original values
and would therefore obstruct the possibility to match variables to individual patients.
This RPBMP method is afterwards reused byYu et al. [35], where they explored dif-
ferences in dimension reduction options and applied it to a non-small cell lung can-
cer (NSCLC) dataset. Data perturbation and dimension reduction are potential
solutions to preserve privacy in a multicenter setting, although they could lead to
issues when performing a risk analysis (identifying variables which influence a spe-
cific outcome). The risk analysis then can only determine which compressed dimen-
sions are of influence; however, it cannot determine which biological (or source)
variables/features are responsible for this influence in patient outcome.
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6.3	 �Centralized and Distributed Machine Learning

When the prerequisites regarding semantic interoperability, data structure, infrastruc-
ture, and privacy preservation are in place (Sect. 6.2), we can actually start performing
machine learning. In this section, we merely touch upon centralized machine learning
(Sect. 6.3.1) in favor of describing distributed machine learning approaches in full
(Sect. 6.3.2), which are considered superior for future, large-scope implementations.

6.3.1	 �Centralized Machine Learning

As described in Sect. 6.2.3.2, the centralized approach only needs one machine learn-
ing unit (Fig. 6.7). In this case, themachine learning systemwill query and retrieve data
from the federation data store, irrespectively of knowing where the actual data comes
from (except when provenance variables are included in this dataset). As the retrieved
dataset is not different in comparison to traditional machine learning approaches, we
can use standard machine learning toolboxes such as Weka [12], RapidMiner [13] or
others [25]. The disadvantage is that data, with/without privacy preservation in place,
is transferred to a central location at time of machine learning algorithm execution.
This might contradict the policy of centers with regard to data sharing.

6.3.2	 �Distributed Machine Learning

The major difference between distributed and centralized machine learning is the
transfer of data versus the transfer of training models. In the centralized approach, data
is transferred to the machine learning system, whereas in the distributed approach the
data stayswithin the institute. Rather than requesting a dataset, the distributed approach
dispatches a sub-process of the machine learning algorithm towards the institutional
machine learning unit and returns the result of this sub-process. In this setting, the
amount of data per transfer diminishes; however, the data transfer frequency increases.
A thorough explanation how distributed machine learning algorithms work is given by
Boyd et al. [5] and Wu et al. [34]. From this work of Boyd et al., we reused the
MapReduce concept, developed by Dean and Ghemawat [8], to implement the distrib-
uted machine learning concept. This is equal to the rationale used byWu et al.

6.3.2.1	 Linear Regression Implementation
The MapReduce concept can be explained by using the linear regression algorithm.
Before we explain the MapReduce concept, we will first explain the intuition of the
linear regression algorithm, using the nonstandard gradient descent approach. This
approach is different from the closed-form solution; however, it enables the possi-
bility for distributed multicenter learning, as we will show afterwards. A trained
univariate linear regression classifier can be expressed using the function:

	
f x x( ) = +a b

	 (6.1)

To learn the α and β parameters of this model, the linear regression training algo-
rithm can be described as shown in Algorithm 6.1.
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Algorithm 6.1. Linear Regression Training 

1: procedure trainLinearRegression (x,y)
2: a = random()
3: b = random()
4: J cost x= a b, , , y( )
5: J costDerivativeAlpha x ya a b′ = ( ), , ,
6: J costDerivativeBetab a b′ = ( ), , ,x y
7: while J ′ ≤ 0  do
8: a a a= ( )updateVariable J, ′

9: b b b= ( )updateVariable J, ′

10: J cost x y= ( )a b, , ,
11: J costDerivativeAlpha x, ya a b′ ,= ( ),
12: J costDerivativeBeta x yb a b′ = ( ), , ,
13: end while
14: return α,β
15: end procedure

The input parameters forAlgorithm 6.1 are x and y, respectively, determining the
prediction values and outcomes for which we are training this univariate linear
model. On line 2 and 3, initial α and β values are randomly chosen. Afterwards 
(line 4), the cost (a measure of distance between the calculated outcome, and the
actual outcome) for the randomly chosen α and β is calculated using the following
function:
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(6.2)

In this function, the variable n represents the number of observations used for train-
ing. For every observation, both x and y need to be available.
After calculating the cost, we also need the partial derivatives of the cost func-

tion. We can write both partial derivatives as
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After calculation of these parameters, we can enter the main loop of Algorithm
6.1. In this loop, we’ll first update the α and β variables (line 8 and 9) using the fol-
lowing functions:

	 a a a= * *c J ′ (6.5)

	
b b b= * *c J ′ 	 (6.6)

In these functions, the variable c determines the gradient descent rate. After cal-
culating the new α and β, the algorithm continues by calculating the cost function
and the partial derivatives of the cost function again (lines 10–12). Afterwards, it
will start a new iteration of this loop (line 7), calculating the new α and β, calculat-
ing the cost, and calculating the partial derivatives (lines 8–12). This process is
repeated until the algorithm reaches one of several termination criteria. Most prefer-
ably, the partial derivatives should converge close to 0, as this would indicate that an
optimum has been reached. Alternative termination criteria are the number of itera-
tions (as the algorithm does not converge, e.g., due to a large gradient descent rate
c) or no significant changes in the calculated cost of the last m iterations. Finally, the
algorithm will return both α and β as the outcome of the training algorithm.

6.3.2.2	 Cost Function and MapReduce
As shown in Algorithm 6.1, the calculation of the cost and/or the partial derivatives
is the only function in the algorithm where the original data is needed. These func-
tions also consume the most of the computational resources and are positively cor-
related to the number of observations and variables incorporated in the regression
model. To reduce the computation time, we can split the original data and refactor
the cost and partial derivative functions to multiple machines and/or processing
units. When reducing the number of summations (see Eqs. 6.2, 6.3, and 6.4) for
every processing unit, we can reduce the overall time to calculate the cost and/or
partial derivatives.
This distribution of processing power can be achieved using the MapReduce

concept. In the previous example, we can implement the MapReduce concept as
shown in Algorithm 6.2.

Algorithm 6.2. MapRedue Implementation of Cost Function 

1: procedure calculateMapReduceCost (α,β,x,y)
2: for processing unit u in processingUnits do
3: u. startCalculatingSquaredDistance(α,β,x,y)
4: end for
5:
6: wait()
7:
8: distanceSq = 0
9: m = 0
10: for processing unit u in processingUnits do
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11: result u.retrieveSquaredDistances x y← a b, , ,( )
12: distanceSq distanceSq result= + [ ]0
13: m m result= + [ ]1
14: end for
15: return calculateCost(distanceSq,m)
16: end procedure

This algorithm first starts with the “Map” part and subsequently performs the
“Reduce” part of the MapReduce concept. At first, all registered processing units
are invoked to start the following summation calculation (line 2–4):

	
D x y

i s

n
i i= +( ) −( )∑ ( ) ( )

=

a b
2

	
(6.7)

Note that this summation calculation only calculates the summation over a spe-
cific subset (from observation s to n). The result of this squared difference summa-
tion is afterwards temporarily stored or directly returned to the initiator.
After the initiator has waited until all processing units have finished their calcula-

tion, the “Reduce” part of the algorithm comes in. The initiator (and therefore also
the “Reducer”) sums all squared distances and the number of individuals processed
used for this calculation (line 8–14). Afterwards, the initiator calculates the total
cost using the equation:

	
J

m
D= 1

2
*

	
(6.8)

In this equation, we use the summed squared distances from all processing units
(variable D) and the number of observations from all processing units (variable m),
resulting in a result equal to Eq. 6.2 (the non-parallelized cost function).
To calculate the partial derivatives of the cost function, we could reuseAlgorithm

6.2 and modify Eqs. 6.7 and 6.8 to use the summed squared distances and numbers
of observations.

6.3.2.3	 MapReduce, Distributed, and Multicenter Machine Learning
As shown above, we are able to distribute the resource-intensive part of the linear
regression training algorithm over multiple processing units. As previously stated,
processing units can be multiple CPUs or multiple computers. In the latter situation,
we need to include the data in the invocation of the summed squared distances cal-
culation or have the data already available at all processing computers (e.g., by
mirroring files/databases and/or using network drives). This concept of distributing
the computation over multiple machines and mirroring the data is typically done in
grid computing. To reduce the data needed to be mirrored, one can consider to split
the original data over the involved computers. As the squared difference summation
is aggregated during the “Reduce” part of the algorithm, there is no need to have the
complete dataset on all computers.
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The absence of complete datasets on all involved machines creates the opportunity
for distributed multicenter machine learning.When implemented as inAlgorithm 6.2,
the “Reducer” does not need to know the size of the complete dataset at forehand
(variablem).All processing units send back two variables to the Reducer: the summa-
tion of the squared distance and the number of observations. This preserves privacy by
not sending over the actual patient information, only the aggregated results, while still
being able to perform machine learning over large datasets in different institutes. This
aligns with the distributed multicenter infrastructure described in Sect. 6.2.3.2. 
Therefore, we can perform distributed multicenter learning using the MapReduce
concept, where the original data does not leave the centers.

6.3.2.4	 Training, Testing, and Validation
Now we defined a concept of distributed multicenter machine learning (for training
purposes), we can perform testing and validation on this infrastructure. To perform
testing and/or validation, the easiest approach is to use one participating institute as
the testing dataset and one participating institutes’ dataset as the validation dataset.
For example, if we have five participating institutes I i∈ 1 5− , we can use the first
three institutes ( i1 3− ) to execute the distributed training.Afterwards, the master node
can send the trained model to i4 for testing purposes, resulting in performance metrics of
the prediction model, for example, determining discriminative and/or accuracy (e.g.,
c-index, Brier score, Hosmer-Lemeshow test) of the trained model. After model devel-
opment has finished, an external validation can be performed by sending the model to i5,
which calculates and returns the performance of the trained prediction model.
A second, more elaborate, option is to distribute the testing and validation steps

over all participating institutes I. In this case, training would be done on 60 % of all
subjects and testing and validation on, respectively, 20 and 20 % of all remaining
subjects. If done correctly, assignment into the training, test, or validation set should
be determined before starting the model training; however, it should be remembered
during the whole process. This adds extra complexity to the computation units
within the institutes. These units have to remember for which distributed learning
algorithm the computational instruction is and determine which dataset to use. For
the testing phase, this approach might be better, as the training and testing datasets
are homogeneous. For external validation, it raises the discussion whether an exter-
nal validation set should be from a completely different center.
Finally, we can perform a k-fold cross-validation, where the number of participating

centers can determine the number of folds,wherewewould use I Ilearn ⊂ , with i In ∉ learn  
as the training dataset. In this case, inwill be the validation set for a specific fold.

6.4	 �Applications

In the previous paragraphs, we defined the prerequisites and described how to per-
form distributed machine learning. In this paragraph, we will discuss several initia-
tives and applications ofmulticenter learning. It is notmandatory that all applications
use the complete set of prerequisites described previously in this chapter.
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I2B2
The Informatics for Integrating Biology and the Bedside (I2B2; http://www.i2b2.
org) project aims at integrating data from different biomedical disciplines and deliv-
ering this data to researchers. The project delivers tools to translate genomic and
biologic findings to clinical findings (e.g., diseases or disorders). To be able to
achieve this translational medicine approach, institutional data sources are federated
in the I2B2 DWH using ETL tooling (Sect. 6.2.3.1). The DWH database structure,
called the Clinical Research Chart (CRC), is generic for medical purposes, as it does
not define specific data fields. The database structure is basically a “star schema”
where only patient information and observations are stored [22]. To describe all
information in an observation-centered storage, local terminologies, or standardized
terminological systems (Sect. 6.2.2), are needed to define different types of observa-
tions. Afterwards, researchers can query/request data. When a specific dataset has
been queried, this dataset can be stored in a separate database, using the same CRC
database structure. In this separate database, researchers can clean/modify the data-
set to their needs and execute machine learning algorithms on this dataset.
In regard to multicenter machine learning, I2B2 supports merging multiple

research databases using the Shared Health Research Information Network
(SHRINE) tool [31], resulting in a federated research database of multiple institute
research databases. Therefore, it enables the opportunity for centralized multicenter
learning. In this approach, the terminology to define observations can be aligned
when merging databases or can be kept separate [23]. In the latter approach, the
researcher has to put in more effort in data alignment during the analysis, which is
not favorable as it is prone to causing mistakes in the analysis.

EuroCAT
The Euregional Computer-Aided Theragnostics (EuroCAT; http://www.eurocat.info) 
project aims at reuse of clinical data for research purposes and to improve the speed
and quality of clinical research. The project uses a distributed learning approach as
described in Sect. 6.3.2, targeted at prediction models for lung cancer. To be able to
perform this distributed learning approach, a so-called umbrella protocol was devel-
oped by the participating partners. This protocol describes the standardized data collec-
tion, including the variables to record (and terminological systems to use),
questionnaires, and informed consent document templates. The first version of the
EuroCAT system used a DWH and ETL infrastructure at the local institutes, as
described in Sect. 6.2.3.1. Afterwards, the DWH was replaced by an RDF store. The
EuroCAT system has shown that distributed multicenter machine learning works and
produces the same results as centralized learning when implemented correctly [32]. 
Furthermore, the project has shown that distributed multicenter learning does improve
the robustness of prediction models when validating on an external dataset [9].

VATE
The VATE (“VAlidation of High TEchnology based on large database analysis by
learning machine”) project shares the aim of the EuroCAT project. The major differ-
ence is that this project is based on open standards (in regard to IT infrastructure) and
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uses Semantic Web technologies (e.g., RDF and ontologies) as a basis for data rep-
resentation. Prior to this project, the involved institutes had developed a data infra-
structure for research purposes using open standards [26]. Equal to the EuroCAT
project, theVATE project has developed an umbrella protocol for rectal cancer [20]. 
Different from the EuroCAT project, the variables to record are classified into sev-
eral levels regarding the completeness of datasets and are maintained in a publically
available ontology (http://webprotege.stanford.edu/#Edit:projectId=37ecb757-
c801-4309-aa9b-3dbbc7f9f7c3). The rationale behind these rankings and this public
umbrella protocol is that everyone who has data regarding rectal cancer patients can
join this linked data network when the data is specified according to the ontological
rules, irrespective to the number of available variables. Due to the chosen aim of
training a Bayesian Network for rectal cancer on the VATE infrastructure, missing
data could be imputed or ignored during training, as shown by Jayasurya et al. [14].

PCORnet
The Patient-Centered Outcomes Research Network (PCORnet) is a program aiming
at building a national research network linking datasets from clinical production sys-
tems from multiple centers, using a standardized data platform [30]. The program
comprises 11 clinical data research networks (CDRN) and 18 patient-powered
research networks (PPRN). The aim of the CDRNs is comparable to the previously
described EuroCAT andVATE projects. The PPRN projects aim at the empowerment
of patients. In these PPRNs, patients would supply the data instead of retrieving data
from clinical systems. Therefore, the gathered data and research questions addressed
by these projects are different from the CDRN projects [10]. The first (short-term)
aims for the program are to build and implement the network in all the CDRNs and
PPRNs and include one million patients in 18 months after the start of the project.
Long-term aims are to perform (distributed) machine learning on the network.

6.5	 �Summary

In this chapter, we have seen that multicenter machine learning is possible for both a
centralized and distributed approach. To be able to set up a multicenter machine
learning environment, several biomedical informatics-related issues need to be
addressed. The most important issue is semantic interoperability among participating
centers. If the participating centers cannot agree on definitions, how do we know
whether all data are equally formatted? Second, the infrastructure (both institutional
and central) needs to be implemented, together with the chosen data representation.
The choice for an infrastructure comes with the choice of a centralized or distributed
approach (Sect. 6.2.3.2). Third, privacy preservation needs to be addressed and may
influence the choice for a centralized or distributed approach and the preservation
measures implemented (e.g., uni- versus bidirectional pseudonymization or data per-
turbation versus transformation). When all prerequisites are met, the actual machine
learning can be performed. In this part, a centralized approach should not be different
from traditional machine learning. The distributed machine learning approach
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(Sect. 6.3.2) needs some modifications to traditional machine learning algorithms, as
local outcomes need to be aggregated and combined at a central location. Therefore,
in distributed machine learning, traditional algorithms need to be split into two parts:
a central node performing the general algorithm and institutional nodes performing
delegated tasks requested by the central node. Finally, we have shown that distributed
machine learning is possible in practice. Showing several projects and/or initiatives
where data from different locations are used to develop prediction models.
In general, we have shown that distributed machine learning is not only a task for

the “traditional” machine learning expert (which is already not the case in health-
care and radiation oncology); however, it also needs other disciplines, such as
expertise from the fields of terminology/ontology development, network/infrastruc-
ture, and security/privacy.
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7Computerized Detection of Lesions 
in Diagnostic Images
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Abstract
Computer-aided detection (CADe) has been an active research area in medical 
imaging. As imaging technologies advance, a large number of medical images are 
produced which physicians/radiologists must read. They may overlook lesions 
from such a large number of medical images. Consequently, CADe that provides 
suspicious lesions with radiologists/physicians is developed and becoming indis-
pensable in their decision making to prevent them from overlooking lesions. 
Machine learning (ML) plays an essential role in CADe, because lesions and 
organs in medical images may be too complex to be represented accurately by a 
simple equation; modeling of such complex objects often requires a number of 
parameters that have to be determined by data. In this chapter, ML techniques 
used in CADe schemes for lung nodules in chest radiography and thoracic CT and 
those for the detection of polyps in CT colonography (CTC) are described, which 
include patch-/pixel-based ML and feature-based (segmented-object-based) ML.

7.1	 �Introduction

Computer-aided detection and diagnosis (CAD) [26, 27, 39, 41] has been an active 
research area in medical imaging. CAD is defined as detection/diagnosis made by a 
physician/radiologist who takes into account the computer output as a “second 
opinion” [26]. CAD is often categorized into two major groups, computer-aided 
detection (CADe) and computer-aided diagnosis (CADx). CADe focuses on a 
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detection task, namely, localization of lesions in medical images. CADx focuses on 
a diagnosis (characterization) task, for example, distinction between benign and 
malignant lesions. As imaging technologies advance, a large number of medical 
images are produced which physicians/radiologists must read. They may overlook 
lesions from such a large number of medical images. Thus, CAD is becoming indis-
pensable in physicians’ decision making. Evidence suggests that CAD can help 
improve the diagnostic performance of physicians/radiologists [16, 24, 25, 64, 65, 
92, 124]. Consequently, many investigators have developed CAD schemes such as 
those for the detection of lung nodules in chest radiographs [40, 135, 144] and in 
thoracic CT [3, 7, 121], those for the detection of microcalcifications/masses in 
mammography [15], breast MRI [42], and breast ultrasound (US) [29] and those for 
the detection of polyps in CT colonography (CTC) [107, 139, 140].

Machine learning (ML) plays an essential role in CAD, because objects such as 
lesions and organs in medical images may be too complex to be represented accu-
rately by a simple equation; modeling of such complex objects often requires a 
number of parameters that have to be determined by data [114, 116, 117]. For exam-
ple, a lung nodule is generally modeled as a solid sphere, but there are spiculated 
nodules and ground-glass nodules [66]. Although a polyp in the colon is modeled as 
a bulbous object, there are polyps that exhibit a flat shape [77, 104]. Thus, diagnos-
tic tasks in medical images essentially require “learning from examples (or data)” to 
determine a number of parameters in a complex model. Because of its importance 
and significance, the field of ML in medical imaging became very active. The spe-
cial issues on ML in medical imaging were published in various journals [102, 112, 
113, 138, 161]; a series of international workshops on this topic was held from 2010 
[136, 147, 148, 156].

One of the most popular uses of ML in CAD is the classification of lesion candi-
dates into certain classes (e.g., abnormal or normal, lesions or nonlesions, and 
malignant or benign) based on input features (e.g., area, contrast, and circularity) 
obtained from segmented candidates (this class of ML is referred to as feature-based 
ML or segmented-object-based ML). The task of ML is to determine “optimal” 
boundaries for separating classes in the multidimensional feature space which is 
formed by the input features [30]. The ML algorithms for classification include 
linear discriminant analysis [34], quadratic discriminant analysis [34], multilayer 
perceptron [97, 98], and support vector machines [145, 146]. Such ML algorithms 
were applied to lung nodule detection in chest radiography [20, 22, 47, 103] and 
thoracic CT [3, 5, 152, 163], detection of microcalcifications in mammography [31, 
35, 157, 169], detection of masses in mammography [158], polyp detection in CT 
colonography [59, 150, 167], determining subjective similarity measure of mam-
mographic images [82–84], and detection of aneurysms in brain MRI [4].

Recently, as available computational power increased dramatically, patch-/pixel-
based ML (PML) [115, 121] emerged in medical image processing/analysis which 
uses values in image patches (direct pixel values and/or features calculated from the 
values in the image patches) instead of features calculated from segmented regions 
as input information; thus, segmentation is not required. Because the PML can 
avoid errors caused by inaccurate segmentation that often occur for subtle or 
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complex objects, the performance of the PML can potentially be higher for such 
objects than that of common classifiers (i.e., feature-based MLs).

In this chapter, ML techniques used in CADe schemes of the thorax and colon 
are described, including CADe schemes for lung nodules in chest radiography and 
thoracic CT, and those for the detection of polyps in CTC.

7.2	 �Overview of Architecture of a CADe Scheme

A flowchart for a generic CADe scheme of lesions in diagnostic images is shown in 
Fig. 7.1. A CADe scheme generally consists of four core steps and two optional 
steps: (1) segmentation of the organ of interest, (3) detection of lesion candidates in 
the segmented organ, (4) segmentation and feature analysis of the detected lesion 
candidates, (5) classification of the lesion candidates by the use of a classifier with 
features (feature-based ML); optionally (2) enhancement of lesions between steps 1 
and 3, and (6) reduction of false-positive (FP) detections after step 5. Segmentation 
of the organ of interest is the first necessary step that aims to make the rest of the 
steps focus on that organ. The development of the detection of lesion candidates 

Diagnostic images

Organ segmentation

Lesion enhancement

Lesion candidates detection

Segmentation and feature analysis

Feature-based classification

False-positive reduction

Lesion detection

Fig. 7.1  Flowchart for a generic CADe scheme for the detection of lesions in diagnostic images. 
Boxes with solid lines indicate four core steps in the CADe scheme, and those with dashed lines 
indicate optional, yet important steps
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generally aims to obtain a high sensitivity level, because the sensitivity lost in this 
step cannot be recovered in the later steps. In the next step, the detected (or localized) 
lesion candidates are segmented, and connected-component labeling [49, 50, 127] is 
performed to identify each segmented candidate as an individual isolated object. 
Pattern features such as gray-level-based features, texture features, and morpho-
logic features are extracted from the segmented candidates. Finally, the detected 
lesion candidates are classified into lesions or nonlesions by the use of a classifier 
(or feature-based ML). This final step is very important, because it determines the 
final performance of a CADe scheme when the additional step of FP reduction is not 
employed. The development of the classification step aims to remove as many non-
lesions (i.e., FPs) as possible while minimizing the removal of lesions (i.e., true-
positive detections). The optional steps 3 and 6 are described below.

To improve the performance of CADe schemes, researchers sometimes adopt an 
additional step that is enhancement of lesions after step 1 of the segmentation of the 
organ of interest. This additional step aims to improve the sensitivity for the detec-
tion of lesion candidates in the subsequent step. It also often helps improve the 
specificity. Researchers also often adopt an additional step of reduction of FPs at the 
end of the steps. The FP reduction step aims to improve the specificity of the CADe 
scheme. Reduction of FPs is very important, because a large number of FPs could 
adversely affect the clinical application of CADe. A large number of FPs is likely to 
confound the radiologist’s task of image interpretation and thus lower his/her effi-
ciency. In addition, radiologists may lose their confidence in CADe as a useful tool.

After the development of a CADe scheme, the evaluation of the stand-alone per-
formance of the developed scheme is the last step in CADe development. CADe 
research does not end by this step: the evaluation of radiologists’ performance with 
the use of the developed CADe scheme is the important last step in CADe research.

7.3	 �Machine Learning (ML) in CADe

7.3.1	 �Feature-Based (Segmented-Object-Based) ML (Classifiers)

An ML technique is generally used in the step of classification of lesion candidates. 
The ML technique is trained with sets of input features and correct class labels. This 
class of ML is referred to as feature-based ML, segmented-object-based ML, or 
simply as a classifier. Because classifiers (or feature-based ML) are described in 
detail in many pattern-recognition and computer-vision textbooks, this chapter does 
not repeat the details of the techniques. Please refer to such textbooks, e.g., [30], 
[12, 34, 48, 145, 146], for details. The task of ML here is to determine “optimal” 
boundaries for separating classes in the multidimensional feature space which is 
formed by input features [30]. A standard classification approach is illustrated in 
Fig. 7.2. First, lesions (lesion candidates) are segmented by the use of a segmenta-
tion method. Next, features are extracted from the segmented lesions. Features may 
include shape-based (morphologic) features, gray-level-based features (including 
histogram-based features), and texture features. Some researchers consider texture 
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features in the category of the gray-level-based features. Then, extracted features 
are entered as input to an ML model such as linear discriminant analysis [34], qua-
dratic discriminant analysis [34], a multilayer perceptron (or artificial neural net-
work) [97, 98], and a support-vector machine [145, 146]. When an artificial neural 
network is used as a classifier, the structure of the artificial neural network may be 
designed by the use of an automated design method such as sensitivity analysis 
[110, 125]. The ML model is trained with sets of input features and correct class 
labels. A class label of 1 is assigned to the corresponding output unit when a train-
ing sample belongs to a certain class (e.g., class A), and 0 is assigned to the other 
output units (e.g., classes B, C, etc.). In the case of two-class classification, one 
output unit instead of two output units is often used with the output value 0 being 
class A, and 1 being class B. After training, the class of the unit with the maximum 
value is determined to be the corresponding class to which an unknown sample 
belongs.

Feature selection has long been an active research topic in machine learning, 
because it is one of the main factors that determine the performance of a classifier. 
In general, multiple or often many features are extracted from segmented lesions as 
the classifier input. Not all of the features, however, would be useful for a classifier 
to distinguish between lesions and nonlesions, because some of them might be 
highly correlated with each other or redundant; some of them may not be strongly 
associated with the given classification task. For designing a classifier with high 
performance, it is crucial to select “effective” features. Therefore, feature selection 
is often used to select “effective” features for a given task. One of the most recent, 
promising feature selection methods is feature selection under the criterion of the 
maximal area under the receiver-operating-characteristic curve [160].

7.3.2	 �Patch-/Pixel-Based Machine Learning (PML)

7.3.2.1	 �Overview
Recently, as available computational power has increased dramatically, patch-/
pixel-based machine learning (PML) [114] emerged in medical image processing/
analysis which uses values in image patches (i.e., pixel values and/or features 
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calculated from the image patches), instead of features calculated from segmented 
regions, as input information; thus, segmentation is not required. PML has been 
used in the classification of the detected lesion candidates in CADe schemes. 
Recently in the computer-vision field, deep learning and deep neural networks 
[11, 54] have been attracting researchers’ attentions as a breakthrough technology 
in computer vision. Deep learning and deep neural networks use PML 
architecture.

PMLs were first developed for tasks in medical image processing/analysis and 
computer vision. There are three classes of PMLs: (1) neural filters [126, 129] 
including neural edge enhancers [128, 130], (2) convolution neural networks (NNs) 
[62, 68, 69, 71, 73, 88, 100] including shift-invariant NNs [153, 171, 172], and (3) 
massive-training artificial neural networks (MTANNs) [89, 111, 120, 121, 140] 
including multiple MTANNs [3, 121, 126, 129, 131, 134], a mixture of expert 
MTANNs [132, 139], a multiresolution MTANN [120], a Laplacian eigenfunction 
MTANN (LAP-MTANN) [141], and a massive-training support vector regression 
(MTSVR) [159]. The class of neural filters was used for image-processing tasks 
such as edge-preserving noise reduction in fluoroscopy, radiographs and other digi-
tal pictures [126, 129], edge enhancement from noisy images [128], and enhance-
ment of subjective edges traced by a physician in cardiac images [130]. The class 
of convolution NNs was applied to classification tasks such as false-positive (FP) 
reduction in CAD schemes for the detection of lung nodules in chest radiographs 
(CXRs) [68, 69, 73], FP reduction in CAD schemes for the detection of microcal-
cifications [71] and masses [100] in mammography, face recognition [62], and 
character recognition [88]. The class of MTANNs was used for classification, such 
as FP reduction in CAD schemes for the detection of lung nodules in CXR [134] 
and thoracic CT [3, 65, 121], distinction between benign and malignant lung nod-
ules in CT [131], and FP reduction in a CAD scheme for polyp detection in CT 
colonography [132, 139–141, 159]. The MTANNs were also applied to pattern 
enhancement and suppression such as separation of bones from soft tissue in CXR 
[19, 89, 120], and enhancement of lung nodules in CT [111]. There are other PML 
approaches in the literature. An iterative, pixel-based, supervised, statistical clas-
sification method called iterated contextual pixel classification has been proposed 
for segmenting posterior ribs in CXR [74]. A pixel-based, supervised regression 
filtering technique called filter learning has been proposed for separation ribs from 
soft tissue in CXR [75].

7.3.2.2	 �Massive-Training Artificial Neural Network (MTANN)
An MTANN was developed by extension of neural filters to accommodate various 
pattern-recognition tasks [121]. A two-dimensional (2D) MTANN was first devel-
oped for distinguishing a specific opacity from other opacities in 2D images [121]. 
The 2D MTANN was applied to reduction of FPs in computerized detection of lung 
nodules on 2D CT images in a slice-by-slice way [3, 65, 121] and in CXR [134], the 
separation of ribs from soft tissue in CXR [89, 119, 120], and the distinction between 
benign and malignant lung nodules on 2D CT slices [131]. For processing of three-
dimensional (3D) volume data, a 3D MTANN was developed by extending the 
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structure of the 2D MTANN, and it was applied to 3D CT colonography data [132, 
139–141, 159] in CADe of polyps.

The generalized architecture of an MTANN is shown in Fig. 7.3. An MTANN 
consists of an ML model (typically a regression model) such as a linear-output 
ANN regression model [128] and a support vector regression model [159], which is 
capable of operating on pixel/voxel data directly [128]. The linear-output ANN 
regression model uses a linear function instead of a sigmoid function as the activa-
tion function of the output-layer unit because the characteristics of an ANN were 
improved significantly with a linear function when applied to the continuous map-
ping of values in image processing [128]. Note that the activation functions of the 
hidden layer units are a sigmoid function for nonlinear processing, and those of the 
input layer units an identity function, as usual. The pixel/voxel values of the input 
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Fig. 7.3  Architecture of an MTANN which is a class of PML
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images/volumes may be normalized from 0 to 1. The input to the MTANN consists 
of pixel/voxel values in a subregion/subvolume (image patch or local window), R, 
extracted from an input image/volume. The output of the MTANN is a continuous 
scalar value, which is generally associated with the center voxel in the subregion 
(image patch), and is represented by

	
O x y z t I x i y j z k t k i j k R, , , , | , ,or ML or ,( ) = - - - -( ) ( )Î{ } 	 (7.1)

where x, y, and z or t are the coordinate indices, ML(·) is the output of the ML 
model, and I(x, y, z or t) is a pixel/voxel value of the input image/volume. A three-
layer structure may be selected as the structure of the ANN, because it has been 
proved that any continuous mapping can be approximated by a three-layer ANN 
[10, 55]. More layers can be used for efficient solving of a complicated problem. 
The structure of input units and the number of hidden units in the ANN may be 
designed by the use of sensitivity-based unit-pruning methods [110, 125]. Other 
ML models such as support vector regression [145, 146] can be used as a core part 
of the MTANN. ML regression models rather than ML classification models would 
be suited for the MTANN framework, because the output of the MTANN are con-
tinuous scalar values (as opposed to nominal categories or classes, e.g., 0 or 1). 
The entire output image/volume is obtained by scanning with the input subvolume 
(local window) of the MTANN on the entire input image/volume. The input sub-
region/subvolume and the scanning with the MTANN can be analogous to the 
kernel of a convolution filter and the convolutional operation of the filter, 
respectively.

The MTANN is trained with input images/volumes and the corresponding 
“teaching” (designed) images/volumes for enhancement of a specific pattern and 
suppression of other patterns in images/volumes. The “teaching” images/volumes 
are ideal or desired images for the corresponding input images/volumes. For 
enhancement of lesions and suppression of nonlesions, the teaching volume con-
tains a map for the “likelihood of being lesions,” represented by

	
T x y z t, , or

a certain distribution for a lesion

otherwise.
( ) = ì

í
î0 	

(7.2)

To enrich the training samples, a training region, RT, extracted from the input images 
is divided pixel by pixel into a large number of overlapping subregions. Single pix-
els are extracted from the corresponding teaching images as teaching values. The 
MTANN is massively trained by the use of each of a large number of input subre-
gions (image patches) together with each of the corresponding teaching single pix-
els, hence the term “massive-training ANN.” The error to be minimized by training 
of the MTANN is represented by
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where c is a training case number, Oc is the output of the MTANN for the cth case, 
Tc is the teaching value for the MTANN for the cth case, and P is the number of total 
training voxels in the training region for the MTANN, RT. The expert 3D MTANN 
is trained by a linear-output back-propagation (BP) algorithm [128] which was 
derived for the linear-output ANN model by the use of the generalized delta rule 
[98]. After training, the MTANN is expected to output the highest value when a 
lesion is located at the center of the subregion of the MTANN, a lower value as the 
distance from the subregion center increases, and zero when the input subregion 
contains a nonlesion.

7.3.3	 �Difference Between PML and Feature-Based ML 
(Classifiers)

One of the two major differences between PMLs and ordinary classifiers (i.e., 
feature-based ML or segmented-object-based ML) is the input information. Ordinary 
classifiers use features extracted from a segmented object in a given image, whereas 
PMLs use pixel values in an image patch in a given image as the input information. 
Although the input information to PMLs can be features (see addition of features to 
the input information to neural filters in [129], for example), these features are 
obtained from an image patch pixel by pixel (as opposed to ones from a segmented 
object or by object). In other words, features for PMLs are features at each pixel in a 
given image, whereas features for ordinary classifiers are features from a segmented 
object. In that sense, feature-based classifiers can be referred to as segmented-object-
based classifiers. Because PMLs use pixel/voxel values in image patches in images 
directly instead of features calculated from segmented objects as the input informa-
tion, segmentation or feature extraction from the segmentation results is not required. 
Although the development of segmentation techniques has been studied for a long 
time, segmentation of objects is still challenging, especially for complicated objects, 
subtle objects, and objects in a complex background. Thus, segmentation errors may 
occur for such complicated objects. Because with PMLs, errors caused by inaccurate 
segmentation and inaccurate feature calculation from the segmentation results can be 
avoided, the performance of PMLs can be higher than that of ordinary classifiers for 
some cases, such as complicated objects.

The other major difference between PMLs and ordinary classifiers is the output 
information. The output information from ordinary classifiers, convolution NNs, 
and the perceptron used for character recognition is nominal class labels such as 
normal or abnormal (e.g., 0 or 1), whereas that from neural filters, MTANNs, and 
shift-invariant NNs is pixels or images, namely, continuous values. With the scoring 
method in MTANNs, output images of the MTANNs are converted to likelihood 
scores for distinguishing among classes, which allow MTANNs to do classification. 
In addition to classification, MTANNs can perform pattern enhancement and sup-
pression as well as object detection, whereas the other PMLs cannot.
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7.4	 �CADe in Thoracic Imaging

7.4.1	 �Thoracic Imaging for Lung Cancer Detection

Lung cancer continues to rank as the leading cause of cancer deaths in the United 
States and in other countries such as Japan. Because CT is more sensitive than chest 
radiography in the detection of small nodules and of lung carcinoma at an early 
stage [52, 60, 81, 105], lung cancer screening programs are being investigated in the 
United States [53, 142], Japan [60, 105], and other countries with low-dose (LD) 
CT as the screening modality. Evidence suggests that early detection of lung cancer 
may allow more timely therapeutic intervention for patients [51, 105]. Helical CT, 
however, generates a large number of images that must be interpreted by radiolo-
gists/physicians. This may lead to “information overload” for the radiologists/phy-
sicians. Furthermore, they may miss some cancers during their interpretation of CT 
images [46, 66]. Therefore, a CADe scheme for the detection of lung nodules in CT 
images has been investigated as a tool for lung cancer screening.

7.4.2	 �CADe of Lung Nodules in Thoracic CT

7.4.2.1	 �Overview
In 1994, Giger et al. [38] developed a CADe scheme for the detection of lung nodules 
in CT based on comparison of geometric features. They applied their CADe scheme 
to a database of thick-slice diagnostic CT scans. In 1999, Armato et al. [5, 6] extended 
the method to include 3D feature analysis, a rule-based scheme, and LDA for clas-
sification. They tested their CADe scheme with a database of thick-slice (10 mm) 
diagnostic CT scans. They achieved a sensitivity of 70 % with 42.2 FPs per case in a 
leave-one-out cross-validation test. Gurcan et al. [45] employed a similar approach, 
i.e., a rule-based scheme based on 2D and 3D features, followed by LDA for classi-
fication. They achieved a sensitivity of 84 % with 74.4 FPs per case for a database of 
thick-slice (2.5–5 mm, mostly 5 mm) diagnostic CT scans in a leave-one-out test. 
Lee et al. [63] employed a simpler approach which is a rule-based scheme based on 
13 features for classification. They achieved a sensitivity of 72 % with 30.6 FPs per 
case for a database of thick-slice (10 mm) diagnostic CT scans.

Suzuki et al. [121] developed a PML technique called an MTANN for reduc-
tion of a single source of FPs and a multiple MTANN scheme for reduction of 
multiple sources of FPs that had not been removed by LDA. They achieved a 
sensitivity of 80.3 % with 4.8 FPs per case for a database of thick-slice (10 mm) 
screening LDCT scans of 63 patients with 71 nodules with solid, part-solid, and 
nonsolid patterns, including 66 cancers in a validation test. This MTANN approach 
did not require a large number of training cases: the MTANN was able to be 
trained with ten positive and ten negative cases [17, 99, 123], whereas feature-
based classifiers generally require 400–800 training cases [17, 99, 123]. Arimura 
et  al. [3] employed a rule-based scheme followed by LDA or by the MTANN 
[121] for classification. They tested their scheme with a database of 106 
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thick-slice (10 mm) screening LDCT scans of 73 patients with 109 cancers, and 
they achieved a sensitivity of 83 % with 5.8 FPs per case in a validation test (or a 
leave-one-patient-out test for LDA). Farag et al. [32] developed a template-mod-
eling approach that uses level sets for classification. They achieved a sensitivity of 
93.3 % with an FP rate of 3.4 % for a database of thin-slice screening LDCT scans 
of 16 patients with 119 nodules and 34 normal patients. Ge et al. [36] incorporated 
3D-gradient field descriptors and ellipsoid features in LDA for classification. 
They employed Wilks’ lambda stepwise feature selection for selecting features 
before the LDA classification. They achieved a sensitivity of 80 % with 14.7 FPs 
per case for a database of 82 thin-slice CT scans of 56 patients with 116 solid 
nodules in a leave-one-patient-out test. Matsumoto et al. [79] employed LDA with 
eight features for classification. They achieved a sensitivity of 90 % with 64.1 FPs 
per case for a database of thick-slice diagnostic CT scans of five patients with 50 
nodules in a leave-one-out test.

Yuan et al. [170] tested a commercially available CADe system (ImageChecker 
CT, LN-1000, by R2 Technology, Sunnyvale, CA; Hologic now). They achieved a 
sensitivity of 73 % with 3.2 FPs per case for a database of thin-slice (1.25 mm) CT 
scans of 150 patients with 628 nodules in an independent test. Pu et al. [93] devel-
oped a scoring method based on the similarity distance of medial axis-like shapes 
for classification. They achieved a sensitivity of 81.5 % with 6.5 FPs per case for a 
database of thin-slice screening CT scans of 52 patients with 184 nodules, including 
16 nonsolid nodules. Retico et al. [94] used a voxel-based neural approach (i.e., a 
class of the MTANN approach) with pixel values in a subvolume as input for clas-
sification. They obtained sensitivities of 80–85 % with 10–13 FPs per case for a 
database of thin-slice screening CT scans of 39 patients with 102 nodules. Ye et al. 
[163] used a rule-based scheme followed by a weighted SVM for classification. 
They achieved a sensitivity of 90.2 % with 8.2 FPs per case for a database of thin-
slice screening CT scans of 54 patients with 118 nodules including 17 nonsolid 
nodules in an independent test. Golosio et al. [44] used a fixed-topology ANN for 
classification, and they evaluated their CADe scheme with a publicly available data-
base from the Lung Image Database Consortium (LIDC) [8]. They achieved a sen-
sitivity of 79 % with four FPs per case for a database of thin-slice CT scans of 83 
patients with 148 nodules that one radiologist detected from an LIDC database in an 
independent test.

Murphy et  al. [86] used a k-nearest-neighbor classifier with features selected 
from 135 features for classification. They achieved a sensitivity of 80 with 4.2 FPs 
per case for a large database of thin-slice screening CT scans of 813 patients with 
1,525 nodules in an independent test. Tan et al. [143] developed a feature-selective 
classifier based on a genetic algorithm and ANNs for classification. They achieved 
a sensitivity of 87.5 % with four FPs per case for a database of thin-slice CT scans 
of 125 patients with 80 nodules that four radiologists agreed from the LIDC data-
base in an independent test. Messay et al. [80] developed a sequential forward selec-
tion process for selecting the optimum features for LDA and quadratic discriminant 
analysis (QDA). They obtained a sensitivity of 83 % with three FPs per case for a 
database of thin-slice CT scans of 84 patients with 143 nodules from the LIDC 
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database in a sevenfold cross-validation test. Riccardi et al. [95] used a heuristic 
approach based on geometric features, followed by an SVM for classification. They 
achieved a sensitivity of 71 % with 6.5 FPs per case for a database of thin-slice CT 
scans of 154 patients with 117 nodules that four radiologists agreed on from the 
LIDC database in a twofold cross-validation test.

Thus, various approaches have been proposed for CADe schemes for lung 
nodules in CT. Sensitivities for the detection of lung nodules in CT range from 
70 to 95 %, with from a few to 70 FPs per case. Major sources of FPs are various-
sized lung vessels. Major sources of false negatives are ground-glass nodules, 
nodules attached to vessels, and nodules attached to the lung wall (i.e., juxtapleu-
ral nodules). Ground-glass nodules are difficult to detect, because they are subtle, 
are of low contrast, and have ill-defined boundaries. The MTANN approach was 
able to enhance and thus detect ground-glass nodules [121]. The cause of false 
negatives due to vessel-attached nodules and juxtapleural nodules is mis-seg-
mentation and thus inaccurate feature calculation. Because the MTANN approach 
does not require segmentation or feature calculation, it was able to detect such 
nodules [121].

a

b

Fig. 7.4  (a) Axial slice of a 
CT scan of the lungs with a 
lung cancer (indicated by an 
arrow) and (b) a lung 
segmentation result
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7.4.2.2	 �Illustration of a CADe Scheme
Figure 7.4a illustrates an axial slice of a CT scan of the lungs with a lung cancer. The 
lung cancer on the CT image is the target that we want to detect with a CADe scheme. 
As shown in the flowchart in Fig. 7.1, the first step in a CADe scheme is segmenta-
tion of the organ of interest, in this case, the lungs. For a high-contrast image with a 
stable gray scale over different patients like the lung CT image, thresholding often 
works. To avoid missing nodules attached to the lung walls, mathematical morphol-
ogy operations are often performed. Figure  7.4b illustrates lung segmentation by 
simple thresholding followed by mathematical morphology filtering.

To improve the performance of CADe schemes, an optional step of enhancement 
of lesions is sometimes employed. Suzuki [111] developed a supervised “lesion 
enhancement” filter based on an MTANN for enhancing lesions and suppressing 
nonlesions in medical images. Figure 7.5b illustrates the enhancement of a lung 
nodule in a CT image by means of a trained MTANN lesion-enhancement filter for 
the original axial CT slice shown in Fig. 7.5a. In the output image, the lung nodule 

a b c

Fig. 7.5  Lesion enhancement by means of a supervised MTANN lesion-enhancement filter. (a) 
Original axial CT slice with a lung nodule. (b) Output image of the trained MTANN nodule-
enhancement filter. In the output image (b), the lung nodule in the original CT image (a) is enhanced, 
whereas normal structures such as lung vessels are suppressed substantially. (c) Detection and seg-
mentation of the nodule by using thresholding followed by removal of small regions
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in the original CT image is enhanced, while normal structures such as lung vessels 
are suppressed substantially. Figure  7.5c shows the detection and segmentation 
result for the lung nodule by using simple thresholding followed by removal of 
small regions. After thresholding, connected-component labeling [49, 50, 127] was 
performed to calculate the area of each isolated region (i.e., connected component). 
By removing small regions, the lung nodule was detected correctly with no FP 
detection. By the use of the MTANN lesion-enhancement filter, the performance of 
the initial nodule candidate detection step was substantially improved from a 96 % 
sensitivity with 19.3 FPs per section to a 97 % sensitivity with 6.7 FPs per section.

Morphologic and gray-level-based features such as contract, area, and circularity 
were calculated from the segmented nodule candidates. The extracted features were 
then inputted to a classifier (feature-based ML) to classify the candidates into nod-
ules or non-nodules. At this stage, there were a lot of FPs (non-nodules) that the 
classifier had not been able to distinguish from nodules.

To reduce remaining FPs, Suzuki et  al. developed an FP reduction technique 
based on MTANNs [121]. The architecture of the MTANN for FP reduction is 
shown in Fig. 7.6. For enhancement of nodules (i.e., true positives) and suppression 
of non-nodules (i.e., FPs) on CT images, the teaching image contains a distribution 
of values that represent the “likelihood of being a nodule.” For example, the teach-
ing volume contains a 3D Gaussian distribution with standard deviation σT for a 
lesion and zero (i.e., completely dark) for nonlesions, as illustrated in Fig. 7.6. This 
distribution represents the “likelihood of being a lesion”:

Lesion
(e.g., nodule)

Non-lesion
(e.g., vessel)

Patch/
pixel-based

Machine
learning

(MTANN)

Distribution for a
likelihood of being

a lesion

Teaching image
for a lesion

Teaching image for
a non-lesion

Fig. 7.6  Architecture of an MTANN for FP reduction. The teaching image for a lesion contains a 
Gaussian distribution; that for a nonlesion contains zero (completely dark). After the training, the 
MTANN expects to enhance lesions and suppress nonlesions
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A scoring method is used for combining of output voxels from the trained 
MTANNs, as illustrated in Fig. 7.7. A score for a given region-of-interest (ROI) 
from the MTANN is defined as
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is a 3D Gaussian weighting function with standard deviation σ, and with its center 
corresponding to the center of the volume for evaluation, RE, and O is the output 
image of the trained MTANN, where its center corresponds to the center of RE. The 
use of the 3D Gaussian weighting function allows us to combine the responses (out-
puts) of a trained MTANN as a 3D distribution. A 3D Gaussian function is used for 
scoring, because the output of a trained MTANN is expected to be similar to the 3D 
Gaussian distribution used in the teaching images. This score represents the 
weighted sum of the estimates for the likelihood that the ROI (lesion candidate) 
contains a lesion near the center, i.e., a higher score would indicate a lesion, and a 

Output image

Lesion
(e.g., nodule)

Non-Lesion
(e.g., vessel)

2D/3D weighting
function (e.g.,

Gaussian function)

Single score for
each candidate

Fig. 7.7  Scoring method for 
combining pixel-based output 
responses from the trained 
MTANN into a single score 
for each ROI
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Input images
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Solid
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some opacities

Output images

Fig. 7.8  Enhancement of lung nodules and suppression of FPs (i.e., lung vessels) by the use of 
MTANNs for FP reduction. Once lung nodules are enhanced, and FPs are suppressed, FPs can be 
distinguished from lung nodules by the use of scores obtained from the output images
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lower score would indicate a nonlesion. Thresholding is then performed on the 
scores for distinction between lesions and nonlesions.

The MTANNs were trained to enhance lung nodules and suppress various types 
of FPs (i.e., non-nodules) such as lung vessels. Figure 7.8 shows the results of the 
enhancement of various lung nodules such as nonsolid (ground-glass), part-solid 
(mixed-ground-glass), and solid nodules (a) and those of the suppression of various-
sized lung vessels (b). Figure 7.9 shows a free-response receiver operating charac-
teristic (FROC) curve [13] indicating the performance of the trained MTANNs in 
the CADe scheme. With the MTANNs, the specificity of the CADe scheme was 
improved from 0.98 to 0.18 FPs per case without sacrificing the original sensitivity 
of 80.3 %.

Figure 7.10 shows an example of CADe outputs on a CT image of the lungs.  
A CADe scheme detected a lung nodule correctly with one FP which was a branch 
of the lung vessels.

7.4.3	 �CADe of Lung Nodules in CXR

Chest radiographs (CXRs) is the most commonly used imaging examination for 
chest diseases because they are the most cost-effective, routinely available, and 
dose-effective diagnostic examination [85, 173]. Because CXRs are widely used, 
improvements in the detection of lung nodules in CXRs could have a significant 
impact on early detection of lung cancer. Studies have shown that, however, 30 % of 
nodules in CXRs were missed by radiologists in which nodules were visible in ret-
rospect. Therefore, CADe schemes [40, 144] for nodules in CXRs have been inves-
tigated for assisting radiologists in improving their sensitivity. A wide variety of 
approaches in CADe schemes for nodule detection in CXRs have been developed. 
Giger et al. developed a difference-image technique to reduce complex anatomic 
background structures while enhancing nodule-like structures for initial nodule 

Fig. 7.10  CADe outputs 
(indicated by circles) on an 
axial CT slice of the lungs. 
A lung nodule (indicated by 
an arrow) was detected 
correctly by a CADe 
scheme with one FP 
detection (branch of lung 
vessels) on the right
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candidate detection [37, 40]. Lo et al. used a technique similar to the difference-
image technique to create nodule-enhanced images, which were then processed by 
a feature-extraction technique based on edge detection, gray-level thresholding, and 
sphere profile matching [70, 72]. Then a convolution neural network was employed 
in the classification step. Penedo et al. then improved the performance of the scheme 
by incorporating two-level ANNs that employed cross-correlation teaching images 
and input images in the curvature peak space [91]. Coppini et al. developed a CADe 
scheme based on biologically inspired ANNs with fuzzy coding [22]. Shiraishi 
et al. incorporated a localized searching method based on anatomical classification 
and automated techniques for the parameter setting of three types of ANNs into a 
CADe scheme [103].

Studies showed that 82–95 % of the missed lung cancers in CXR were partly 
obscured by overlying bones such as ribs and/or a clavicle [9, 101]. To address this 
issue, Suzuki et al. [118, 120] developed a multiresolution MTANN for separation 
of bones such as ribs and clavicles from soft tissue in CXRs. They employed multi-
resolution decomposition/composition techniques [2, 106] to decompose an origi-
nal high-resolution image into different-resolution images. First, one obtains a 
medium-resolution image gM(x, y) from an original high-resolution image gH(x, y) 
by performing downsampling with averaging, i.e., four pixels in the original image 
are replaced by a pixel having the mean value for the four pixel values, 
represented by
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where R22 is a 2-by-2-pixel region. The medium-resolution image is enlarged by 
upsampling with pixel substitution, i.e., a pixel in the medium-resolution image is 
replaced by four pixels with the same pixel value, as follows:

	
g x y g x yM
U

M, / , /( ) = ( )2 2 . 	 (7.8)

Then, a high-resolution difference image dH(x, y) is obtained by subtraction of the 
enlarged medium-resolution image from the high-resolution image, represented by

	
d x y g x y g x yH H M

U, , ,( ) = ( ) - ( ). 	 (7.9)

These procedures are performed repeatedly, producing further lower-resolution 
images. Thus, multiresolution images having various frequencies are obtained by 
the use of the multiresolution decomposition technique.

An important property of this technique is that exactly the same original-
resolution image gH(x, y) can be obtained from the multiresolution images, dH(x, y) 
and gM(x, y), by performing the inverse procedures, called a multiresolution compo-
sition technique, as follows:

	
g x y g x y d x yH M H, / , / ,( ) = ( ) + ( )2 2 . 	 (7.10)

Therefore, we can process multiresolution images independently instead of process-
ing original high-resolution images directly; i.e., with these techniques, the 
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processed original high-resolution image can be obtained by composing of the pro-
cessed multiresolution images. Each of multiple MTANNs only needs to support a 
limited spatial frequency rage in each resolution image instead of the entire spatial 
frequencies in the original image.

First, input CXRs and the corresponding teaching bone images are decomposed 
into sets of different-resolution images, and then these sets of images are used for 
training three MTANNs in the multiresolution MTANN. Each MTANN is an expert 
for a certain resolution, i.e., a low-resolution MTANN is in charge of low-frequency 
components of ribs, a medium-resolution MTANN is for medium-frequency com-
ponents, and a high-resolution MTANN for high-frequency components. Each reso-
lution MTANN is trained independently with the corresponding resolution images. 
After training, the MTANNs produce different-resolution images, and then these 
images are composed to provide a complete high-resolution image by the use of the 
multiresolution composition technique. The complete high-resolution image is 
expected to be similar to the teaching bone image; therefore, the multiresolution 
MTANN would provide a “bone-image-like” image in which ribs and clavicles are 
separated from soft tissues. Chen and Suzuki [19] improved the performance of the 
MTANN “virtual” dual-energy chest radiography by means of anatomically specific 
multiple MTANNs. Figure 7.11 illustrates suppression of bones from soft tissue in 
CXR by using the MTANNs [19].

Suzuki et al. developed an FP reduction technique based on MTANNs in a CADe 
scheme of nodules in CXR. They removed 68 % of the FPs that had not removed by 
feature-based ML, and the performance of the CADe scheme was substantially improved 
from 4.5 to 1.4 FPs per image, while maintaining the original sensitivity of 81.3 %.

Chen et al. developed a CADe scheme of lung nodules in CXRs based on feature-
based SVM [21]. They improved the performance by using the MTANN virtual 
dual-energy imaging [18]. They improved the performance substantially from the 
original sensitivity of 79 % with five FPs per image to a sensitivity of 85 % with the 

a b

Fig. 7.11  Suppression of bones such as ribs and clavicles from soft tissue in CXR. (a) Original 
CXR with a lung nodule (indicated by an arrow). (b) Bone suppression imaging (or “virtual” dual-
energy radiography) result by means of a multiresolution MTANN
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same FP rate. Figure 7.12 illustrates computer outputs from their CADe scheme 
without and with the MTANN virtual dual-energy imaging [18].

They compared the performance of their CADe scheme with that of an FDA-
approved CADe product with the same database. Their CADe scheme achieved a 
sensitivity of 81 % with 2.0 FPs per image, whereas the FDA-approved product 
achieved a substantially inferior performance that was a sensitivity of 67 % at the 
same FP rate. They also compared the performance with other CADe schemes in 
literature by using the same publicly available database of the JSRT [154]. Wei et al. 
reported that their CAD scheme achieved a sensitivity of 80 % with 5.4 FPs per 
image. Hardie et al. reported that their scheme marked 80 % of nodules with five 
FPs per image [47]. The performance of Chen Suzuki CADe scheme was substan-
tially higher than that of Hardie’s CADe scheme, i.e., it achieved a sensitivity of 
78 % at an FP rate of 2.0 per image, whereas Hardie’s CADe scheme achieved a 
sensitivity of 63 % at the FP rate.

7.5	 �CADe in Colonic Imaging

7.5.1	 �Colonic Imaging for Colorectal Cancer Detection

Colorectal cancer is the second leading cause of cancer deaths in the United States [56]. 
Evidence suggests that early detection and removal of polyps (i.e., precursors of 
colorectal cancer) can reduce the incidence of colorectal cancer [23, 155]. Consequently, 
the American Cancer Society (ACS) recommends that an individual who is at average 
risk for developing colorectal cancer, beginning at age 50, should have colorectal can-
cer screening with examinations including optical colonoscopy and CTC. CTC (or 

a b

Fig. 7.12  Illustration of the improvement in nodule detection by CADe scheme with our VDE 
technology. CADe marks are indicated by circles. (a) False negatives (arrow) and false positives 
of the original CADe scheme. (b) True positives (arrow) and false positives of the VDE-based 
CADe scheme with the VDE technology
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virtual colonoscopy) is a technique for detecting colorectal neoplasms by the use of CT 
scans of the colon [78]. The diagnostic performance of CTC in detecting polyps, how-
ever, varies by experience of radiologists, hospitals, and protocols [33]. Therefore, 
CADe of polyps has been investigated to address this issue with CTC [122, 164, 165].

7.5.2	 �Overview of CADe of Polyps in CTC

CADe has the potential to (a) increase radiologists’ sensitivity in the detection of 
polyps, (b) decrease reader variability, and (c) reduce radiologists’ reading time 
when CADe is used during the primary read [164, 165]. A number of researchers 
have developed CADe schemes for the detection of polyps in CTC [61, 90, 108, 
109, 166–168]. Figure 7.13 shows an example of a CADe output for the detection 
of polyps in CTC. A CADe scheme detected the polyp correctly.

In 2000, Summers et al. [107] developed a CADe scheme for the detection of 
polyps in CTC based on curvature analysis. In 2001, Yoshida and Nappi [167] 
developed a CADe scheme based on curvature analysis called a shape index. In 
2001, Gokturk et al. [43] employed an SVM with histogram input that is used as a 
shape signature for classification. Näppi and Yoshida [87] developed a CADe 
scheme based on LDA or QDA with 54 volumetric features (nine statistics of six 
features). Acar et al. [1] used edge-displacement fields and QDA for classification. 
Jerebko et al. [59] used a multilayer perceptron to classify polyp candidates in their 
CADe scheme and improved the performance by incorporating a committee of mul-
tilayer perceptrons [57] and a committee of SVMs [58]. Wang et al. [151] developed 
a classification method based on LDA with internal features (geometric, morpho-
logic, and textural) of polyps.

Suzuki et al. [140] developed a PML technique called a 3D MTANN by extend-
ing the structure of a 2D MTANN [121] to process 3D volume data in CTC. Their 
CADe scheme was based on a Bayesian ANN with texture and geometric features, 
followed by 3D MTANNs. They removed FPs due to rectal tubes by using a single 

Axial slice Endoluminal view Colon view

Fig. 7.13  CADe output (indicated by an arrow) for the detection of polyps in an axial slice, an 
endoluminal view, and a 3D colon view in CTC. A polyp (indicated by an arrow) was detected 
correctly by a CADe scheme
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3D MTANN [140] and multiple sources of FPs by developing and using a mixture 
of expert 3D MTANNs [139].

Li et al. [67] developed a classification method based on an SVM classifier with 
wavelet-based features. Wang et al. [150] improved the SVM performance by using 
nonlinear dimensionality reduction (i.e., a diffusion map and locally linear embed-
ding). Yao et al. [162] employed a topographic height map for calculating features 
for an SVM classifier.

Suzuki et  al. [132] tested a CADe scheme based on a Bayesian ANN and 
MTANNs. They used CTC data of 24 patients, including 23 polyps (6–25 mm) and 
a mass (35 mm), that had been “missed” by radiologists [28] in a multicenter clini-
cal trial [96]. They achieved a by-polyp (by-patient) sensitivity of 96.4 % (100 %) 
with 1.1 FPs/patient in a leave-one-lesion-out cross-validation test of the classifica-
tion part. Suzuki et  al. [137, 141] also improved the efficiency of the MTANN 
approach by incorporating principal-component analysis-based and Laplacian 
eigenmap-based dimension reduction techniques. Xu and Suzuki [159] showed that 
other nonlinear regression models such as support vector and nonlinear Gaussian 
process regression models instead of the ANN regression model could be used as 
the core model in the MTANN framework.

Zhou et al. [174] developed projection features for an SVM classifier. Wang et al. 
[149] improved the performance of a CAD scheme by adding statistical curvature 
features in multiple-kernel learning. They obtained a sensitivity of 83 % with five 
FPs/patient in a leave-one-out cross-validation test of the classification part.

Thus, various ML approaches have been proposed in CADe schemes for polyps 
in CTC, which include LDA, QDA, an SVM, ANNs, and a Bayesian ANN.

Existing CADe schemes tend to miss superficially elevated neoplasms (often 
called flat lesions) [76, 77]. Suzuki et al. developed a CADe scheme for the detec-
tion of superficially elevated neoplasms [133]. Detection of superficially elevated 
neoplasms is very important, because they are histologically aggressive and because 
they are often missed by radiologists in CTC as well as by gastroenterologists in 
optical colonoscopy.

7.6	 �Summary

In this chapter, ML techniques used in CADe schemes for the detection of lung 
nodules in CXR and thoracic CT and those for the detection of polyps in CTC are 
described. There are two classes of ML techniques: (1) feature-based (segmented-
object-based) ML (classifiers) and (2) patch-/pixel-based ML.  Feature-based 
ML, including LDA, QDA, an ANN, a Bayesian ANN, and an SVM, are mainly 
used in the 5th step of classification of lesion candidates and the 6th step of FP 
reduction in a CADe scheme, whereas PML is used mainly in the 6th step of 
FP reduction, but it can be used in the 1st step of organ segmentation [14] and the 
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2nd step of lesion enhancement [111]. Thus, ML techniques are indispensable 
steps in CADe schemes.
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8Classification of Malignant and Benign 
Tumors

Juan Wang, Issam El Naqa, and Yongyi Yang

Abstract
Machine learning has a long-standing history of application for computer-aided 
diagnosis (CADx) purposes and discriminating between different types of benign
and malignant lesions. In this chapter, we explain the application of machine
learning algorithms for development of classifiers of tumors using features 
extracted from diagnostic imaging. Examples from our work on mammography
using conventional classification approaches and more advanced methods based 
on content-based image retrieval will be presented and discussed.

8.1	 �Introduction

In recent years, there have been significant interests and efforts in development of 
computerized methods for automatically classifying a tumor or lesion being malig-
nant or benign. These methods are collectively known as computer-aided diagnosis
(CADx), the purpose of which is to provide a second opinion to assist the radiolo-
gists in their diagnosis of detected tumors. Indeed, in the literature, CADx tech-
niques have been studied both for various disease types and for different imaging 
modalities, ranging from CT in oncology, MRI for brain tumors, mammography for 
breast cancer, and many others. For instance, the application of CT to early lung 
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cancer has been controversial. In a recent randomized clinical trial referred to as the 
NELSON trial with 15,822 enrolled participants, it was shown that low-dose CT 
screening can improve the sensitivity and specificity of lung cancer detection [1]. 
However, this situation has been more challenging in cases of head and neck cancer,
where luckily the combination with positron emission tomography (PET) has over-
come shortages of CT and revolutionized the management of this cancer [2]. On the 
other hand, magnetic resonance imaging (MRI), which is more financially expen-
sive but with better soft tissue discrimination and sparing from exposure to ionizing
radiation, has risen in recent years in the diagnosis of difficult cases such as prostate 
[3], brain [4, 5], and breast cancers [6].

In mammography, many CADx techniques have been developed for classifica-
tion of suspicious breast tumors in mammogram images, including both masses and 
clustered microcalcifications (MCs). For example, in the early work [7], a three-
layer, feed-forward neural network was trained with a back-propagation algorithm
for mammographic lesion (including MCs and masses) interpretation. Subsequently,
various supervised learning techniques were studied for diagnosis of MC lesions 
(e.g., [8–13]) and mass lesions (e.g., [14–17]). There also exist several laboratory
studies which demonstrate that CADx techniques can either be more accurate than
the human readers or help improve their diagnosis accuracy [10, 18–21].

In the rest of this chapter, we will first provide an overview of the major compo-
nents involved in the development of a CADx framework for tumor classification
(Sect. 8.2). Afterward, we will illustrate this framework with some examples of
CADx techniques for breast lesions in mammograms (Sect. 8.3). In addition, we 
will also introduce the use of a visualization tool – based on the technique of multi-
dimensional scaling (MDS) – for exploring the similarity among a set of tumors
(Sect. 8.4). Such a tool potentially can be useful for one to compare a case under 
consideration against some similar, known cases in a reference library. We will also
discuss some issues and challenges in the development and application of CADx
techniques (Sect. 8.5).

8.2	 �Overview of Classification Framework

When in operation, a CADx framework for tumor classification functions as fol-
lows: For a given tumor under consideration, a set of so-called features is first com-
puted from the tumor to quantify its underlying characteristics. These features are 
typically represented by a vector x in an n-dimensional space Rn. Afterward, a math-
ematical function f(x) is applied to the feature vector x, the value of which is used 
to reflect the likelihood that the tumor is either malignant or benign. The function
f(x) is called the decision function or classifier function.

The development of a CADx framework involves the following key components:
(1) determine what features x to use that are relevant for classification of the tumor, 
(2) design the classifier function f(x) that is appropriate for the task, and (3) evaluate
the accuracy level (i.e., performance) of the classifier output, which is key to the
confidence level on the “second opinion.”
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8.2.1	 �Perception Modeling

There have been significant improvements over the past decades with respect to 
developing image quantitative imaging measures, objective image interpretations, 
feature extraction, and semantic descriptors [22, 23]. However, some major difficul-
ties still remain pertaining to CADx applications. First, it is understood that quanti-
tative measures can vary with the different aspects of perceptual similarity by 
radiologists of images; the selection of an appropriate similarity measure thus 
becomes problem dependent. Second, the relation between the low-level visual fea-
tures and the high-level expert human interpretation of similarity is not well defined
when comparing two images; it is thus not exactly clear what features or combina-
tion of them are relevant for such judgment [24, 25]. We have been developing 
perceptual similarity metrics for application in content-based image retrieval 
(CBIR) of mammogram images [25]. In this approach, the notion of similarity is 
modeled as a nonlinear function of the image features in a pair of mammogram 
images containing lesions of interest, e.g., microcalcification clusters (MCCs). If
we let vectors u and v denote the features of two MCCs at issue, the following 
regression model could be used to determine their similarity coefficient (SC):

	
SC , , ,u v u v( ) = ( ) +f z 	 (8.1)

where f(u, v) is a function determined using a machine learning approach, which we 
choose to be support vector machine (SVM) learning [26], and ζ is the modeling 
error. The similarity function f(u, v) in Eq. (8.1) is trained using data samples col-
lected in an observer study.

8.2.2	 �Feature Extraction for Tumor Quantification

The purpose of feature extraction is to describe the content of a tumor under consid-
eration by a set of quantitative descriptors, called features, denoted by vector x. 
Conceptually, these features should be relevant to the disease condition of the tumor. 
For example, they may be used to quantify the size of the tumor, the geometric
shape of the tumor, the density of the tissue, etc., depending on the tumor type and 
specific application.

In the literature, there have been many types of features studied for classification 
of benign and malignant tumors. For example, in [27], effective thickness and effec-
tive volume were defined on the physical properties of MCs in mammogram images 
and were demonstrated to be useful for diagnosis. In [28], image intensity and tex-
ture features were extracted from post-contrast T1-weighted MR images and were
shown to be helpful for brain tumor classification. In [29], wavelet features were 
compared with Haralick features [30] for MC classification.

While the reported features are many, they can be divided into two broad 
categories: (1) boundary-based features and (2) region-based features.
Boundary-based features are used to describe the properties of the geometric
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boundary of a tumor. They include, for example, the perimeter, Fourier descrip-
tors, and boundary moments [31]. In contrast, region-based features are derived 
from within a tumor region, which include the shape, texture, or the frequency
domain information of the tumor. Some examples of region-based features are
the tumor size, image moment features [31], wavelet-based features [29], and 
texture features [28].

To ensure good classification performance, the features extracted from a tumor
are desired to have certain properties pertinent to the application. For example, a
common requirement is that the features should be invariant to any translation or 
rotation in a tumor image. Other considerations in extracting or designing quantita-
tive features include the effects of the image resolution and gray-level quantization 
used for the image. The image resolution can affect those features related to the size 
of a tumor, such as its area and perimeter. The quantization level in an image can 
affect those features related to the image intensity, such as image moments and 
features derived from the gray-level co-occurrence matrix (GLCM) [28]. Therefore, 
prior to feature extraction, the tumor images need to be preprocessed properly in
order to avoid any discrepancy in resolution and quantization.

With a great number of features available, as described above, an important task
in a CADx framework is how to determine a set of discriminative features in a
tumor classification problem. These features are desired to have good differentiat-
ing power between benign and malignant tumors. One approach is to exploit the
working knowledge of the clinicians and select those features that are closely asso-
ciated with what the clinicians use in their diagnosis of the lesions [10]. For exam-
ple, for MC lesions, the size and shape of the MCs and their spatial distribution are 
all known to be important, because the MCs tend to be more irregular and have a
bigger cluster in a malignant lesion [13]. Alternatively, to determine the most salient 
features for use in the classification, one may employ a systematic feature selection 
procedure during the training stage of the classifier. The commonly used feature 
selection procedures in the literature include the filter algorithm [32], wrapper algo-
rithm [33], and embedded algorithm [34].

8.2.3	 �Design of Decision Function Using Machine Learning

The problem of classifying benign or malignant tumors is a classical two-class clas-
sification problem, with benign tumors being one class and malignant ones being 
the other. For a given tumor characterized by its feature vector x, a decision function 
f(x) is designed to determine which class, malignant or benign, x belongs to. 
Naturally, a fundamental problem is how to design the decision function for a given 
tumor type. A common approach to this problem is to apply supervised learning, in 
which a pattern classifier is first trained on a set of known cases, denoted as
xi i i N,y , = 1, ,( ){ }… , where a training sample is described by its feature vector xi, 

and yi is its known class-label (1 for malignant tumor and −1 for benign tumor).
Once trained, the classifier is applied subsequently to classify other cases (unseen
during training).
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Broadly speaking, depending on its mathematical form, the decision function
f(x) is categorized into linear and nonlinear classifiers. A linear classifier is repre-
sented as

	 f bTx w x( ) = + 	 (8.2)

where w is the discriminant vector and b is the bias, which are parameters deter-
mined from the training samples. In contrast, a nonlinear classifier f(x) has a more 
complex mathematical form and is no longer a linear function in terms of the feature
variables x. One such example is the feed-forward neural network, in which (non-
linear) sigmoid activation functions are used at the individual nodes within the 
network.

Because of their simpler form, linear classifiers are easier to train and less prone
to over-fitting compared to their nonlinear counterpart. Moreover, it is often easier 
to examine and interpret the relationship between the classifier output and the indi-
vidual feature variables in a linear classifier than that in a nonlinear one. Thus, linear 
classifiers can be favored for certain applications. On the other hand, because of 
their more complex form, nonlinear classifiers can be more versatile and achieve
better performance than linear ones when the underlying decision surface between 
the two classes is inherently nonlinear in a given problem.

Regardless of their specific form, the classifier functions typically involve a num-
ber of parameters, which need to be determined before they can be applied to clas-
sifying an unknown case. There have been many different algorithms designed for
determining these parameters from a set of training samples, which are collectively 
known as supervised machine learning algorithms.

Consider, for example, the case of linear classifiers in Eq. (8.2). The parameters 
w and b can be determined according to the following different optimum principles: 
(1) logistic regression [35], in which the log-likelihood function of the training data
samples is maximized under a logistic probability model; (2) linear discriminant
analysis (LDA) [36], in which the optimal decision boundary is determined under 
the assumption of multivariate Gaussian distributions for the data samples from the 
two classes; and (3) support vector machine (SVM) [37], in which the parameters 
are designed to achieve the maximum separation margin between the two classes
(among the training samples).

Similarly, there also exist many methods for designing nonlinear classifiers.
One popular type of nonlinear classifiers is the kernel-based methods [38]. In a 
kernel-based method, the so-called kernel trick is used to first map the input vec-
tor x into a higher-dimensional space via a nonlinear mapping; afterward, a linear 
classifier is applied in this mapped space, which in the end is a nonlinear classifier 
in the original feature space. One such example is the popular nonlinear SVM
classifier. Other kernel-based methods include kernel Fisher discriminant (KFD),
kernel principle component analysis (KPCA), and relevance vector machine
(RVM) [39].

Another type of commonly used nonlinear CADx classifiers is the committee-
based methods. These methods are based on the idea of systematically aggregating 
the output of a series of individual weak classifiers to form a (more powerful)
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decision function. Adaboost [40] and random forests [41] are well-known examples
of such committee-based methods. For example, in Adaboost, the training set is
modified successively to obtain a sequence of weak classifiers; the output of each
weak classifier is adjusted by a weight factor according to its classification error on
the training set to form an aggregated decision function [40].

8.2.4	 �CADx Classifier Training and Performance Evaluation

In concept, a CADx classifier should be trained and evaluated by using the follow-
ing three sets of data samples: a training set, a validation set, and a testing set. The 
training set is used to obtain the model parameters of a classifier (such as w and b in 
the linear classifier in Eq. (8.2)). The validation set is usually independent from the 
training set and is used to determine the tuning parameters of a classifier if it has 
any. For example, in kernel SVM, one may need to decide the type of the kernel
function to use. Finally, the testing set is used to evaluate the performance of the 
resulting classifier. It must be independent from both the training and validation sets 
in order to avoid any potential bias.

Ideally, when the number of available data samples is large enough, the training, 
validation, and testing sets in the above should be kept to be mutually exclusive.
However, in practice, the data samples are often scarce, making it impossible to
obtain independent training, validation, and testing sets, which is often true when 
clinical cases are used. To deal with this difficulty, a k-fold cross-validation proce-
dure is often used instead. The procedure works as following: first, the available n 
data samples are divided randomly into k roughly equal-sized subsets; subsequently, 
each of the k subsets is held out in turn for testing while the rest k -( )1  subsets are 
used together for training. In the end, the performance is averaged over the k held-
out testing subsets to obtain the overall performance. A special case of the k-fold 
cross-validation procedure is when k n= , which is also called a leave-one-out pro-
cedure (LOO). It is known that a smaller k yields a lower variance but also a larger 
bias in the estimated performance. In practice, k = 5  or 10 is often used as a good 
compromise in cross validation [42, 43].

When there are parameters needed to be tuned in a classifier model, a double 
loop cross-validation procedure [44] can be applied to avoid any potential bias. 
A double loop cross-validation procedure has a nested structure of two loops (the
inner and outer loops). The outer loop is the same as the standard k-fold cross vali-
dation above, which is used to evaluate the performance of the classifier. The inner 
loop is to further perform a standard k′-fold cross validation using only the training 
set of samples in each iteration of the outer loop, which is used to select the tuning 
parameters.

For evaluating the performance of a CADx classifier, a receiver-operating char-
acteristic (ROC) analysis is now routinely used. An ROC curve is a plot of the clas-
sification sensitivity (i.e., true-positive fraction) as the ordinate versus the specificity
(i.e., false-positive fraction) as the abscissa. For a given classifier, an ROC curve is
obtained by continuously varying the threshold associated with its decision function 
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over its operating range. As a summary measure of overall diagnostic performance, 
the area under an ROC curve (denoted by AUC) is often used. A larger AUC value
means better classification performance.

8.3	 �Application Examples in Mammography

8.3.1	 �Mammography

Mammography is an imaging procedure in which low-energy X-ray images of the 
breast are taken. Typically, they are in the order of 0.7 mSv. A mammogram can
detect a cancerous or precancerous tumor in the breast even before the tumor is 
large enough to feel. Despite advances in imaging technology, mammography 
remains the most cost-effective strategy for early detection of breast cancer in clini-
cal practice. The sensitivity of mammography could be up to approximately 90 %
for patients without symptoms [45]. However, this sensitivity is highly dependent 
on the patient’s age, the size and conspicuity of the lesion, the hormone status of the 
tumor, the density of a woman’s breasts, the overall image quality, and the interpre-
tative skills of the radiologist [46]. Therefore, the overall sensitivity of mammogra-
phy could vary from 90 to 70 % only [47]. Moreover, it is very difficult to distinguish 
mammographically benign lesions from malignant ones. It has been estimated that 
one third of regularly screened women experience at least one false-positive (benign
lesions being biopsied) screening mammogram over a period of 10 years [48]. 
A population-based study included about 27,394 screening mammograms that were 
interpreted by 1,067 radiologists showed that the radiologists had substantial varia-
tions in the false-positive rates ranging from 1.5 to 24.1 % [49]. Unnecessary biopsy 
is often cited as one of the “risks” of screening mammography. Surgical, needle-
core, and fine-needle aspiration biopsies are expensive, invasive, and traumatic for
the patient.

8.3.2	 �Computer-Aided Diagnosis (CADx) of Microcalcification 
Lesions in Mammograms

Clustered microcalcifications (MCs) can be an important early sign of breast cancer
in women. They are found in 30–50 % of mammographically diagnosed cases. MCs
are calcium deposits of very small dimension and appear as a group of granular 
bright spots in a mammogram (e.g., Fig. 8.1). Because of their subtlety in appear-
ance in mammogram images, accurate diagnosis of MC lesions as benign or malig-
nant is a very challenging problem for radiologists. Studies show that a false-positive 
diagnostic imaging study leads to unnecessary biopsy of benign lesions, yielding a 
positive predictive value of only 20–40 % [50].

Because of their importance in cancer diagnosis, there has been intensive
research in the development of CADx techniques for clustered MCs, of which
the purpose is to provide a second opinion to radiologists in their diagnosis to 
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improve the performance and efficiency [18]. In the literature, various machine 
learning methods such as LDA, logistic regression, ANN, and SVM have been
used in the development of CADx classifiers for clustered MCs. For example, in
[51], an LDA classifier was used for classification of benign and malignant MCs 
based on their visibility and shape features. This approach was subsequently 
extended to morphology and texture features in [52]. In [53], it was demonstrated 
an ANN-based approach could improve the diagnosis performance of radiolo-
gists for MCs. In [13], FKD, ANN, SVM, RVM, and committee machines were
explored in a comparison study, wherein the SVM was shown to yield improved
performance over the others. Collectively, the reported research results demon-
strate that CADx has the potential to improve the radiologists’ performance in
breast cancer diagnosis [54].

In the development of CADx techniques in the literature, various types of fea-
tures have been investigated for characterizing MC lesions [9, 16, 55–58]. These 
features are defined to characterize the gray-level properties (e.g., the brightness,
contrast, and gradient of individual MCs and the texture in the lesion region) or
geometric properties of the MC lesions (e.g., the size and shape of the individual
MCs, the number of MCs, the area, shape, and spatial distribution of a cluster). 
They are extracted either from the individual MCs or the entire lesion region. The
features from individual MCs are often summarized using statistics to characterize 
an MC cluster.

Fig. 8.1 A mammogram image (left) and its magnified view (right), where MCs are visible as 
granular bright spots
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CADx Example: Machine Learning Methods for MC Classification  In this 
section, we demonstrate the use of two CADx classifiers for clustered MCs, one is a
linear classifier based on logistic regression, and the other is a nonlinear SVM classi-
fier with a RBF kernel [13]. In logistic regression, the parameters w and b in Eq. (8.2) 
are determined through maximization of the following log-likelihood function:
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For the nonlinear SVM classifier, it can be represented as

	
f = bTx w x( ) ( )Φ + 	 (8.5)

where w is the discriminant vector, b is the bias, and Φ(x) is a nonlinear mapping 
function which is implicitly defined by a kernel function (RBF in our case).

Based on the maximum marginal criterion, the parameters w and b in (8.5) are 
determined as following:
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For testing these classifiers, we used a dataset of 104 cases (46 malignant, 58
benign), all containing clustered MCs. This dataset was collected at the University 
of Chicago. It contains some cases that are difficult to classify; the average classifi-
cation performance by a group of five attending radiologists on this dataset yielded 
a value of only 0.62 in the area under the ROC curve [10]. The MCs in these mam-
mograms were marked by a group of expert readers.

For this dataset, a set of eight features were extracted to characterize MC clusters
[10]: (1) the number of MCs in the cluster, (2) the mean effective volume (area
times effective thickness) of individual MCs, (3) the area of the cluster, (4) the cir-
cularity of the cluster, (5) the relative standard deviation of the effective thickness,
(6) the relative standard deviation of the effective volume, (7) the mean area of
MCs, and (8) the second highest shape-irregularity measure. These features were
selected such that they have meanings that are closely associated with features used 
by radiologists in clinical diagnosis of MC lesions.

To evaluate the classifiers, a leave-one-out (LOO) procedure was applied to the
104 cases, and the ROCKIT software was used to calculate the performance
AUC.  The logistic regression classifier achieved AUC = 0.7174. In contrast, the 
SVM achieved AUC=0.7373. These results indicate that the classification perfor-
mance of the classifiers is far from being perfect, which illustrates the difficulty in 
diagnosis of MC lesions in mammograms.
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8.3.3	 �Adaptive CADx Boosted with Content-Based Image 
Retrieval (CBIR)

In recent years, CBIR has been studied as a diagnostic aid in tumor classification
[59, 60], of which the goal is to provide radiologists with examples of lesions with
known pathology that are similar to the lesion being evaluated. A CBIR system can
be viewed as a CADx tool to provide evidence for case-based reasoning. With
CBIR, the system first retrieves a set of cases similar to a query, which can be used
to assist a decision for the query [61]. For example, in [62, 63], the ratio of malig-
nant cases among all retrieved cases was used as a prediction for the query. In [64], 
the similarity levels between the query and retrieval cases were used as weighting 
factors for prediction.

We have been investigating an approach of using retrieved images to boost the 
classification of a CADx classifier [65–67]. In conventional CADx, a pattern classi-
fier was first trained on a set of training cases and then applied to subsequent testing 
cases. Deviating from approach, for a given case to be classified (i.e., query), we
first obtain a set of known cases with similar features to that of the query case from
a reference database and use these retrieved cases to adapt the CADx classifier so as
to improve its classification accuracy on the query case. Below, we illustrate this
approach using a linear classifier with logistic regression [65].

Assume that a baseline classifier f(x) in the form of Eq. (8.2) has been trained 
with logistic regression as in Eq. (8.2) on a set of training samples: 
xi i,y ,i = , ,N( ){ }1… .  Now, consider a query lesion x to be classified. Let 
x i

r
i
r

ry i N( ) ( )( ) = ¼{ }, , , ,1  be a set of Nr retrieved cases which are similar to x. In our 
case-adaptive approach, we use the retrieved samples x i
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adapt the classifier f(x). Specifically, the objective function in (8.3) is modified as

	
L b p y b p y b

i

N

i i
i

N

i i
r

i
r

r

w x w x w, log , ; , log , ; ,( ) = ( ) + ( )
= =

( ) ( )å å
1 1

b
	

(8.7)

In (8.7), the weighting factors βi are adjusted according to the similarity of xi
(r) to the 

query x. The idea is to put more emphasis on those retrieved samples that are more 
similar to the query, with the goal of refining the decision boundary of the classifier in 
the neighborhood of the query. Indeed, the first term in (8.7) simply corresponds to the 
log-likelihood function in (8.3), while the second term can be viewed as a weighted 
likelihood of those retrieved similar samples. Intuitively, the retrieved samples are
used to steer the pretrained classifier from (8.3) to achieve more emphasis in the 
neighborhood of the query x. Note that the objective function in (8.7) has the same 
mathematical form as that in the original optimization problem in (8.3), which can be 
solved efficiently by the method of iteratively reweighted least square (IRLS) [35].

In our study, we implemented the following strategy for adjusting βi according to 
the similarity level of a retrieved sample xi

(r) to the query x:
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where αi denotes the similarity measure between xi
(r) and x, and k > 0  is a param-

eter used to control the degree of emphasis on the retrieved samples relative to other 
training samples. The choice of the form in Eq. (8.8) is such that the weighting fac-
tor increases linearly with the similarity level of a retrieved case to x, with the most 
similar case among the retrieved receiving maximum weight 1+ k , which corre-
sponds to k times more influence than the existing training samples in the objective
function in Eq. (8.8).

As a similarity measure for retrieved cases, we used the Gaussian RBF kernel
function

	
α = − − γ = … ,i i

r
ri Nexp / , 1,  

2 2x x( )( ) 	 (8.9)

where γ is a scaling factor controlling the sensitivity of αi with respect to the dis-
tance between the query and a retrieved case. In our experiments, the parameter γ 
was set to the 10th percentile of the distance between every possible image pairs in 
the training set. Such a choice is out of the consideration that most of the cases in a 
database are typically not similar to each other. Those cases with a large distance 
away from query x will receive a low similarity measure consequently.

To demonstrate this approach, a set of 589 cases (331 benign, 258 malignant), all
containing MC lesions, were extracted from the benign and cancer volumes in the
DDSM database maintained at the University of South Florida [68]. The extracted
mammogram images were adjusted to correspond to the same optical density and to 
have a uniform resolution of 0.05 mm/pixel. To quantify the MC lesions in these
mammogram images, we first applied an MC detection algorithm using an SVM
classifier [25] to automatically locate the MCs in each lesion region provided by the 
dataset. To help suppress the false positives in the detection, the images were first 
processed with the isotropic normalization technique prior to the detection [69]. 
The detected MCs were grouped into clusters.

Afterward, a set of descriptive features was computed for the clustered MCs in 
the dataset; the following nine features were used [65]: (1) area of the cluster, (2)
compactness of the cluster, (3) density of the cluster represented by the number of
MCs in a unit area, (4) standard deviation of the inter-distance between neighboring
MCs, (5) number of MCs in the cluster, (6) sum of the size of all MC objects in the
cluster, (7) mean of the average brightness in each MC object, (8) mean of the inten-
sity standard deviation in each MC object, and (9) the compactness of the 2nd most
irregular MC object in the cluster. These features were used to form a vector x for 
each lesion in the dataset.

To evaluate the classification performance, a subset of 120 cases (70 benign, 50
malignant) was randomly selected from the dataset for training the baseline classi-
fier, and the remaining 469 cases were used for testing the adaptive classifier. An 
LOO procedure was applied for each testing case, for which all the remaining cases 
were used for retrieval. In Fig. 8.2, we show the performance results achieved by the 
case-adaptive classifier and the baseline classifier; for the adaptive classifier, the 
AUC value is shown with different numbers of retrieved cases Nr. From Fig. 8.2, it 
can be seen that the best performance (AUC=0.7755) was obtained by the adaptive
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classifier when Nr = 20 , compared to AUC = 0.6848 for the baseline classifier 
(p-value < 0.0001). The performance is also noted to deteriorate somewhat with 
increased Nr. This is because the number of similar cases for a given query is typi-
cally small due to the limited number of cases in the reference library. With large Nr, 
some of the retrieved cases will become less similar to the query and will not help 
the classification on the query.

8.4	 �MDS as a Visualization Tool of Example Lesions

As an alternative approach to CADx, retrieving a set of known lesion similar to the
one being evaluated might be of value in assisting radiologists in their diagnosis. In 
recent years, such an approach has been studied by researchers and applied for dif-
ferent lesion types and imaging modalities [25, 64, 66, 70–73]. For this purpose, we 
have been studying the use of multidimensional scaling (MDS) for representation
and analysis of similar lesions in a large dataset. In a retrieval framework, MDS can
be used to study how a query tumor might be related to a set of similar images 
retrieved from a reference library [66]. When used as a visualization tool, MDS 
allows one to browse and explore intuitively the distribution of benign and malig-
nant MC lesions in a dataset and to examine how this distribution might be related
to the features of the tumors [12, 13, 71, 74].

Baseline classifier
Adaptive classifier

101 102

Nr

0.8

0.75

0.7

A
U
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0.65

0.6

0.55

0.5

Fig. 8.2 Classification performance (AUC) achieved by the case-adaptive linear classifier. The
number of retrieved cases Nr was varied from 10 to 200. For comparison, results are also shown 
for the baseline classifier
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8.4.1	 �Multidimensional Scaling (MDS) Technique

MDS is a data embedding technique for representation and analysis of a set of objects 
based on their mutual similarity (or dissimilarity) measurements [75]. The basic idea 
of MDS is to represent the objects of interest as points in a low-dimensional (typi-
cally 2D or 3D) space such that the geometric distances between the points in this 
space are in accordance with the similarity measurements between the corresponding 
objects. The resulting representation in this lower-dimensional space enables one to 
visualize the relationship among the objects in a rather intuitive manner.

Specifically, consider a set of N objects. The MDS seeks to embed these objects
in a lower-dimensional space (R2 or R3) as a set of data points xi and i N= 1, , , 
such that the Euclidean distance d(xi, xj) between a pair of points xi and xj is propor-
tional to their pairwise proximity measure δij. This is accomplished by minimizing 
the following objective function:
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where wij are weight factors (specified by users). The quantity σ is known as Stress-1,
which measures the goodness of fit of the MDS model.

In our application, we use MDS to represent tumors from mammogram images 
as points in a 2D plane, wherein the similarity between a pair of tumor images is 
defined according to their perceptual similarity. Thus, tumors that are in close vicin-
ity of each other in the MDS plot correspond to those that are perceptually similar.

8.4.2	 �Exploring Similar MC Lesions with MDS

In order to explore how perceptually similar cases with clustered MCs may relate to
one another in terms of their underlying characteristics (from disease condition to
image features), we conducted an observer study to collect similarity scores from a 
group of readers on a set of 2,000 image pairs, which were selected from 222 cases 
based on their image features. Afterward, we applied MDS to embed all the cases in 
a 2D plot, in which the potential relationship among the different cases is exhibited
according to their similarity ratings. Such a plot allows one to study how neighbor-
ing cases (i.e., cases similar to each other) may relate to one another. In particular,
we will examine the relationships among the cases in several aspects, including (1)
case pathology, (2) spatial distribution patterns of their clustered MCs, and (3)
image pairs of clustered MCs that are highly similar.

Dataset  The dataset used in this study was collected by the Department of 
Radiology at the University of Chicago. It consists of 365 mammogram images 
from 222 cases (110 malignant, 112 malignant), of which all have been proven by
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biopsy containing lesions with MCs. These images are of dimension 1,024 × 1,024 
or 512 × 512 pixels, digitized with a spatial resolution of 0.1 mm/pixel. Among
the 222 cases, 143 have images in both craniocaudal (CC) and mediolateral-
oblique (MLO) views. The MCs in each mammogram were manually identified
by a group of experienced radiologists. These MCs were used as ground truth in
our study.

Since we are mainly interested in the pairs of images that are similar, we first 
apply a selection procedure based on the image features of the MCs in these cases 
to identify those potentially similar image pairs for reader scoring. For this purpose, 
a set of nine image features [10, 76] is used for quantifying the MCs; these features 
are commonly used for classification of MC lesions in computer-aided diagnosis 
(CADx). Specifically, they are (1) image features describing individual MCs,
including the standard deviation of the image contrast values of MCs and the maxi-
mum and the standard deviation of the sizes of MCs; (2) spatial clustering features
of MCs, including the number of MCs in a cluster, the area of the cluster, and the 
compactness of the cluster; and (3) texture-based features, including the energy,
contrast, and correlation derived from the gray-level co-occurrence matrices. The 
cases in the dataset are then selected for pairing based on the feature values 
(Euclidean distance) of their MCs. In the end, a total of 2,000 image pairs were
selected.

Subsequently, based on the similarity scores collected on the 2,000 image pairs 
(described below), we further select a subset of 1,000 image pairs from them, the
purpose being to refine the set of potentially similar pairs for further reader scoring. 
These pairs are selected based on both the similarity scores from the readers and the 
Euclidean distances of all nine features.

Reader Study  The reader study was carried out by a group of five radiologists for 
the 1,000 image pairs, based on their perceptual similarity, using a discrete scale 
from 0 (most dissimilar) to 10 (most similar). These five radiologists are MQSA-
qualified breast imagers with between 2 and 20 years of experience. To reduce the
effects of reader fatigue, the set of image pairs is randomly divided into four sepa-
rate scoring sessions. Similarly, a separate reader study was carried out by a group 
of five non-radiologists for the 2,000 image pairs (which were used for further pair
selection as described above). These readers were researchers in breast imaging 
with a minimum of 5 years of experience. A total of ten separate sessions were used
in scoring.

Because of the subjective nature in interpretation of clustered MCs in mammo-
gram images, readers can vary in their similarity scores. To suppress such apparent 
differences, we first transformed the similarity scores from individual readers into 
z-scores. Afterward, the scores were averaged among the readers for the set of 1,000 
image pairs (denoted by S1), which were scored by both radiologists and non-
radiologists, and similarly for the other set of 1,000 image pairs (denoted by S2), 
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which were scored by only non-radiologists. The average scores are further trans-
formed into z-scores.

MDS Plot  To explore how perceptually similar cases with clustered MCs relate to
each other, we apply the MDS technique to embed the different cases in the dataset 
in a 2D plot based on their similarity scores.

Consider a pair of cases i and j with similarity score SCij. In the MDS placement, 
they will be separated by proximity
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ij
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where a constant offset 3.75 (over three standard deviations) is added to ensure that
dij is positive.

Due to the fact that similarity scores are available for only those image pairs 
scored by the readers, the weighted MDS technique is used, in which those image 
pairs not scored are assigned a weight of 0; for the scored image pairs, the weight is 
adjusted according to the level of similarity and the readers for scoring as follows: 
for image pair p consisting of cases i and j,
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The rationale for such a choice is to assign a higher weight value to pairs that are 
more similar and scored by more readers.

In Fig. 8.3, we show the MDS embedding all the 222 cases in the dataset accord-
ing to their similar scores. While at the first sight there is no apparent separation 
between cancer and benign cases, it is evident that there are more cancer cases (and
fewer benign cases) in the right half of the plot than in the left half. More impor-
tantly, cases of same disease tend to be clustered together locally. For example,
while cancer cases are scattered in different regions throughout the plot, they are 
also distributed in small clusters in which a cancer case is closely surrounded by 
other cancer cases; the same is true for benign cases.

Furthermore, to explore how the readers’ notion of similarity may relate to the
image features of the clustered MCs, we also show in Fig. 8.3 the spatial distribu-
tion patterns of the clustered MCs for some sample cases, where the spatial loca-
tions of the individual MCs are indicated by “+” signs. It can be seen that the 
neighboring cases tend to have MC clusters similar in size and shape and that the 
MC clusters in the right half of the plot tend to be larger and irregular.
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8.5	 �Issues and Recommendations

Despite that there have been many great computerized methods developed for use 
in CADx schemes as a diagnostic aid to improving radiologists’ diagnostic accu-
racy, some significant, challenging issues still remain to be addressed. Below, we
discuss a few of them, which are by no means meant to be complete.

Thanks to intense research and development efforts, multiple laboratory observer
studies have shown that CADx schemes can help improve the diagnostic accuracy
in differentiating between benign and malignant tumors. For example, in mammog-
raphy, radiologists with CADx can improve their biopsy recommendation by send-
ing more cancer cases and fewer benign cases to biopsy [17–19, 54, 77]. However, 
so far, CADx schemes have not yet been introduced clinically.

In CADx, the computer predicts the likelihood that a lesion is malignant, which
is presented to the radiologist as a second opinion. One difficulty in implementing 
CADx clinically is that a CADx classifier is often criticized for being a “black
box” approach in its decision. When presented with a numerical value, such as the
likelihood of malignancy, but without additional supporting evidence, it may be

Fig. 8.3  MDS embedding of perceptually similar cases in the dataset, wherein cancer cases are 
denoted by “red dots” and benign cases are represented by “blue squares.” The spatial distribution 
patterns of clustered MCs are shown for some sample cases, where the spatial MC locations are 
indicated by the “green plus” signs
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difficult for a radiologist to incorporate optimally this number into his or her deci-
sion. As an alternative aid, image retrieval has been studied as a CADx tool in
recent years. We conjecture that by integrating a retrieval system with the CADx
classifier, the retrieved images could serve as supporting evidence to the CADx
classifier, which may facilitate the interpretation of the likelihood of malignancy
by the radiologists.

In the literature, the CADx schemes are often, if not always, developed with dif-
ferent datasets which are limited by the number of cases available. The heterogene-
ity among the different datasets will inevitably lead to variability when evaluating 
the performance of a CADx scheme. Thus, it is desirable to establish common
benchmark databases which are large enough to be representative of a disease popu-
lation. In practice, this can be an expensive process. It will ensure that a CADx
scheme can be optimized and tested without any bias so that it can generalize well 
when applied to cases outside the database.

Finally, while research and development has led to improvement in CADx per-
formance, as a diagnostic aid, the accuracy level achieved by CADx classifiers is
rather moderate for certain tumor types due to the inherent difficulty of the problem 
(e.g., MC lesions). There is still need for development of more salient features and
CADx algorithms in order to improve the classification accuracy. This may include
the use of additional features acquired from multimodality imaging.

�Conclusions
In this chapter, we presented the application of machine learning algorithms in 
CADx systems. Particularly, we presented examples of its application in mam-
mography to differentiate benign and malignant cases. A main critique of tradi-
tional CADx approaches when implemented clinically is that a CADx classifier
could be perceived as a “black box” approach in its decision. As an alternative
aid, CBIR has been studied as a CADx tool in recent years. We conjecture that
with the integration of a retrieval system and a CADx classifier, the retrieved
images could serve as supporting evidence to the CADx classifier, which may
facilitate the interpretation of the likelihood of malignancy by the radiologists
in clinical practice. In this chapter, we presented the process of developing and 
validating such system exploiting both supervised and unsupervised machine
learning algorithms.
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Jun Lian, and Dinggang Shen

Abstract
In the past decades, many machine learning techniques have been successfully
developed and applied to the field of image-guided radiotherapy (IGRT). In this
chapter, we will present some latest developments in the application of machine
learning techniques to this field. In particular, we focus on the recently developed
machine learning methods for delineating male pelvic structures for the treat-
ment of prostate cancer. In the first few sections, we will present and discuss
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automatic and semiautomatic methods for CT prostate segmentation in the IGRT
workflow. In the last section, we will present our extension of some recently
developed machine learning approaches to segment the prostate in MR images.

9.1	 �Background

IGRT aims to deliver therapeutic doses to cancerous tissues based on imaging of
patient. It involves multiple complicated procedures including image acquisition,
tumor/normal structure delineation, dose optimization, quality assurance, and treat-
ment delivery. In such a long and complicated workflow, potential mistakes at one
or more of these steps can compromise the expected treatment outcome and even
harm the patients. In particular, the uncertainty of normal and tumor tissue segmen-
tation is most likely to alter radiation therapy and its outcome [1]. The quality of
manual contouring results highly depend on the expertise of the clinician. However,
this task is prone to errors and often associated with large inter-operator variation
[2]. Furthermore, manual segmentation is time consuming and can also be a hard
task for a clinician to distinguish between different complex anatomies with poor
imaging contrast, using the naked eyes. Large variation in tumor or normal struc-
ture anatomy during the course of fractional radiation therapy necessitates the re-
optimization of the original treatment plans accordingly. Treatment methods
developed for IGRT target accurate radiation of the tumor tissue while sparing the
neighboring normal tissues. However, the adaption stage demands the repetition of
multiple steps in the pipeline of radiation therapy, including manual segmentation.
When adaptive planning is based on the in-room setup CT of the patient on the
treatment day, the segmentation task becomes even more challenging and time con-
suming since the in-room imaging device, such as cone-beam CT (CBCT), gener-
ates inferior image quality to regular planning CT, which is often used for the initial
scanning of the patient treatment design. This may be an obstacle for IGRT being
widely employed in clinical settings. However, devising sophisticated segmentation
methods may overcome this grand challenge and, thereby, improve tumor
treatment.
In the last two decades, many improvements from the sophisticated dose optimi-

zation algorithm to the advanced linear accelerator targeted a more accurate, effi-
cient, and safer radiation treatment. Computer-aided segmentation is believed to
provide a solution to ease the load and the difficulty of tumor and normal tissue
segmentation. However, this seems to be a difficult mathematical and image pro-
cessing problem because of limited image quality, scanning protocol-dependent
structure appearance, intersubject variation, and deformation of anatomical bound-
aries of organs. CT is routinely used for the treatment planning of prostate radio-
therapy; however, low soft tissue contrast makes the differentiation between the
prostate and the rectum/bladder very difficult. Meanwhile, MR imaging is becom-
ing more widely used in radiotherapy because it is radiation free and provides a
better image contrast than CT. However, the appearance of structure is subject to
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variability across different acquisition techniques. The image segmentation algo-
rithm that works well for an MR image of a particular acquisition protocol may
perform poorly on another image acquired with a different protocol.
The methods used in auto-segmentation of radiation therapy can be categorized

into three main categories according to whether prior knowledge is used [3]. The
first category of methods does not utilize information from the previously acquired
images and simply uses the voxel intensity and image gradient for structure delinea-
tion. The second category of methods, powered by prior knowledge, morphology, or
the appearance of organs in previous images, is proved to be more robust and accu-
rate than the first category of methods. The third category of methods (also called
hybrid approaches) combines different segmentation algorithms to achieve better
performance.
It is a challenging problem on how to retrieve and use prior knowledge effec-

tively. In the literature, three types of knowledge-based segmentation algorithms
have been reported, including atlas-based, statistical model-based, and machine
learning-based methods [3]. In the atlas-based segmentation, an average image and
also the delineated structures are used as a reference or an atlas. The contours on the
new image were obtained by transforming the reference image to the new image [4]. 
Model-based algorithms need to build a statistical shape model or a statistical
appearance model that provides an anatomically plausible surface. The characteris-
tics of the model are trained from a set of images with a correct delineation of
structures [5]. Machine learning techniques have been employed for classifying dif-
ferent structures and learning image content and tissue appearance from the prior
images. In general, the model, trained by features of voxel neighborhood, is more
flexible and universal than the other two kinds of segmentation methods [6–8]. In
the next section, we will introduce some previous CT prostate segmentation meth-
ods and their limitations.

9.2	 �Previous Methods

Despite of the importance of organ segmentation in IGRT, it remains quite challeng-
ing. For example, in the CT-guided prostate radiation therapy, the CT prostate seg-
mentation is still a difficult problem due to the following three reasons: First, unlike
the planning CT image, the treatment CT images are of lower quality because they
are typically acquired with non-diagnostic CT scanner. As a result, the image con-
trast of a treatment CT is relatively lower, compared to a regular CT. Figure 9.1 
shows several typical treatment CTs and their prostate contours (red). Second, due
to existence of bowel gas and filling (as indicated by red arrows in Fig. 9.1), the
image appearance of treatment CTs can change drastically. Third, the unpredicted
daily prostate motion [9] further complicates the precise prostate segmentation.
Many methods have been proposed to address this paramount yet compelling

segmentation problem. For example, Freedman et al. [10] proposed to segment the
prostate in CT images by matching the probability distributions of photometric vari-
ables (e.g., voxel intensity). Costa et al. [11] proposed the coupled 3D deformable
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models by considering the nonoverlapping constraint from the bladder. Foskey et al.
[12] proposed a deflation method to explicitly eliminate bowel gas before 3D
deformable registration. Chen et al. [13] incorporated the anatomical constraints
from the rectum to assist the deformable segmentation of the prostate. Haas et al.
[14] used 2D flood fill with the shape guidance to localize the prostate in CT images.
Ghosh et al. [15] proposed a genetic algorithm with prior knowledge in the form of
texture and shape. Although these methods have shown the effectiveness in CT
prostate segmentation, their segmentation accuracy is very limited (usually with the
overlap ratio (Dice similarity coefficient (DSC)) around 0.8), which can be explained
by two factors. First, most of these methods rely only on the image intensity/gradi-
ent information to localize the prostate boundary. As shown in Fig. 9.1, due to the
indistinct prostate boundary in CT images, simple intensity features are neither reli-
able nor sufficient to accurately localize the prostate. While several deformable seg-
mentation methods [11, 13] utilized the spatial relationship of the prostate to its
nearby organs (e.g., the rectum and bladder) to prevent the over-segmentation of the
prostate, these strategies improve only the robustness, not the accuracy of the seg-
mentation. Second, the majority of these methods overlook the information that is
inherent in the IGRT workflow. In fact, at each treatment day, several CT scans of
the same patient have already been acquired and segmented in the planning day and
the previous treatment days. These valuable patient-specific images can be exploited
to largely improve patient-specific prostate segmentation.
In the following sections, we will first introduce four recently developed machine

learning methods to address the aforementioned challenges by automatically

Planning Stage Daily Treatment Stage

Previous Treatment Stage

Offline Patient-Specific
Appearance Learning

The Planning Image Manual Delineation of Treatment Planning Daily Radiotherapy

Current Treatment Image

Prostate Localization

prostate and nearby organs

Image Acquisition

Day 2Day 1 Day N

Fig. 9.1 Illustration of image-guided radiotherapy. Red contours indicate the prostates
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learning the effective features from the previously acquired data of the same patient
for accurate prostate localization in CT images. Then, an extension to segmentation
of MR prostate images is further presented.

9.3	 �Learning-Based Prostate Segmentation in CT and MR 
Images

9.3.1	 �Learning-Based Landmark Detection for Fast Prostate 
Localization in Daily Treatment CTs

In this section, we will introduce an application of boosting techniques in automatic
landmark detection for fast prostate localization. Moreover, we will show how the
accuracy of landmark detection and prostate localization can be further improved
within the IGRT setting by adopting a novel method – namely, incremental learning
with selective memory (ILSM) – to gradually incorporate the patient-specific infor-
mation into the general population-based landmark detectors during the treatment
course.
In the machine learning field, boosting refers to a technique which sequentially

trains a list of weak classifiers to form a strong classifier [16]. One of the most suc-
cessful applications of boosting is the robust real-time face detection method devel-
oped by Paul Viola and Michael J. Jones [16]. In their method, they combined Haar
features with the boosting algorithm to learn a cascade of classifiers for efficient
face detection. This idea can also be used to detect the anatomical landmark in
medical images, which we call learning-based landmark detection. In such meth-
ods, the landmark detection is formulated as a classification problem. Specifically,
for each image, voxels close to the specific landmark are positive and all others are
negatives. In the training stage, the cascade learning framework is applied to learn a
sequence of classifiers for gradually separating negatives from positives (Fig. 9.2).
Compared to learning a single classifier, cascade learning has shown better classifi-
cation accuracy and runtime efficiency [17, 18]. Mathematically, cascade learning
can be formulated as:

Input: Positive voxel set XP, negative voxel set XN, and label set L = + −1, 1{ } .
Classifier: C x x L( ) ( ): → , where  x( ) denotes the appearance features of a
voxel x.

Initial set: X X XP N0 = 

.
Objective: Optimize Ck, k K=1,2,…, , such that

X0 C1 X1

C2

X1\ X2X0\ X1

X2 Xk-1
CK CKXk Xk-1

Xk-1\ XkXk-1\ Xk

Xk

Negative Class Negative Class Negative Class Negative Class

Positive Class

Fig. 9.2 Illustration of cascade learning
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X X X Xk k0 1⊇ ⊇ ⊇ ⊇ ⊇  , X XPK ⊇ , and X X XK N P ≤ τ

where X x x X C xk k k= | and 11∈ = +− ( ){ } and τ controls the tolerance ratio of false
positives.

Here, the cascade classifiers Ck, k K=1,2, , , are optimized sequentially. As
shown in Eq. (9.1), Ck is optimized to minimize the false positives left over by the
previous k −1 classifiers:

C x x X X C x s.t. x X C xk
C

k N P= ∈ ( ) = +{ } ∈ ( ) = +−argmin and| , ,1 1 1 ∀
	
(9.1)

where . denotes the cardinality of a set. It is worth noting that the constraint in Eq.
(9.1) can be simply satisfied by adjusting the threshold of classifier Ck to make sure
that all positive training samples are correctly classified. This cascade learning
framework is general to any image feature and classifier. In the conventional cases,
extendedHaar wavelets [18–20] andAdaBoost classifier [16] are typically employed.
Once the cascade classifiers {Ck(x)} are learned, they have captured the appear-

ance characteristics of the specific anatomical landmark. Given a testing image,
the learned cascade is applied to each voxel. The voxel with the highest classifica-
tion score after going through the entire cascade is selected as the detected land-
mark. To increase the efficiency and robustness of the detection procedure, a
multiscale scheme is further adopted. Specifically, the detected landmark in the
coarse resolution serves as the initialization for landmark detection in a following
finer resolution, in which the landmark is only searched within a local neighbor-
hood centered by the initialization. In this way, in the fine resolution, the search
space is limited to a small neighborhood around the coarse-level detection, instead
of the entire image domain, thus, making the detection procedure more robust to
local minima.
We can adopt the learning-based landmark detection method to detect seven key

landmarks of the prostate (Fig. 9.3), which are the prostate centroid, the apex center,
the base center, and four extreme points in the middle slice, respectively.
After seven landmarks are automatically detected in the new treatment image,

we can use them to align the patient-specific prostate shapes delineated in the previ-
ous planning and treatment days onto the current treatment image for fast localiza-
tion. Specifically, a rigid transform is estimated between the detected landmarks in

Fig. 9.3 Seven prostate landmarks: prostate center (PC), right lateral point (RT), left lateral point
(LF), posterior point (PT), anterior point (AT), base center (BS), and apex center (AP)
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the current treatment image and the corresponding ones in the previous planning or
treatment image for shape alignment. By aligning all previous patient-specific pros-
tate shapes onto the current treatment image, a simple label fusion technique like
majority voting can be used for fusing different labeling results to derive a final
segmentation of the prostate. To take into account those wrongly detected land-
marks, the RANSAC point-set matching algorithm can also be combined with
multi-atlas segmentation to improve the robustness (for details, please refer to [21]).
This landmark-based prostate localization strategy is very fast and takes only a few
seconds to localize the whole prostate in a new treatment image.
Using cascade learning, one can learn anatomy detectors from the training

images of different patients (population-based learning). However, since intra-
patient anatomy variations are much less noticeable than inter-patient variations,
patient-specific appearance information available in the IGRT workflow should be
exploited in order to improve the detection accuracy for an individual patient.
Unfortunately, the number of patient-specific images is often very limited, espe-
cially at the beginning of IGRT. To overcome this problem, one may apply random
spatial/intensity transformations to produce more “synthetic” training samples
with larger variability. However, these artificially created transformations may not
capture the real intra-patient variations, e.g., the uncertainty of bowel gas and fill-
ing (Fig. 9.4). As a result, cascade learning, using only patient-specific data (pure 
patient-specific learning), often suffers from overfitting. One can also mix popula-
tion and patient-specific images for training (mixture learning). However, since
patient-specific images are the “minority” in the training samples, detectors trained
by mixed samples might not capture patient-specific characteristics very well.

9.3.1.1	 �Incremental Learning with Selective Memory (ILSM)
To address the above problem, a novel learning scheme, namely, incremental learn-
ing with selective memory (ILSM), is proposed to combine the general information
in the population images with the individual information in the patient-specific
images. Specifically, population-based landmark detectors serve as an initial appear-
ance model and are subsequently “personalized” by the limited patient-specific
data. ILSM consists of backward pruning to discard obsolete population appearance
information and forward learning to incorporate the online-learned patient-specific
appearance characteristics.
Notation  Denote D C k Kk

pop pop pop, 1, 2, ,= = { } as the population-based land-
mark detector learned by using the cascade learning framework. XP

pat and XN
pat are

positives and negatives from the patient-specific training images (i.e., previous
planning or treatment images), respectively. D(x) denotes the class label (landmark
vs non-landmark) of voxel x predicted by landmark detector D.
Backward Pruning  The general appearance model learned from the population is not
necessarily applicable to the specific patient.More specifically, the anatomical landmarks
in the patient-specific images (positives)may be classified as negatives by the population-
based anatomy detectors, i.e., ∃ ∈{ } ∃ ∈ ( )k K x X C xP k1,2, , , , 1pop pat pop

 = − .  
In order to discard these parts of the population appearance model that do not fit the
patient-specific characteristics, we propose backward pruning to tailor the population-
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based detector. As shown in Algorithm 9.1, in backward pruning, the cascade is pruned
from the last level until all patient-specific positives successfully pass through the cas-
cade. This is equivalent to searching for the maximum number of cascade levels that
could be preserved from the population-based anatomy detector (Eq. 9.2):

	
K k C x i k x Xi P

bk pop pat= ( ) = + ∀ ≤ ∀ ∈{ }max | , ,1
�

(9.2)

Algorithm 9.1. Backward Pruning Algorithm   
Input: D C k Kk

pop pop pop, 1, 2, ,= = { }
– the population-based detector

    XP
pat – patient-specific positive samples

Output: Dbk – the tailored population-based detector
Init: k K= pop, D Dbk pop= .
while ∃ ∈ ( )x X D xP

pat bk: 1= −  do

Fig. 9.4 Inter- and intra-patient prostate shape and appearance variations. Red points denote the
prostate center. Each row represents prostate shapes and images for the same patient
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    D D C k kk
bk bk pop= \ ; 1= −

end while
K kbk =
return D C k Kk

bk pop bk, 1, 2, ,= = { }
Forward Learning  Once the population cascade has been tailored, the remaining
cascade of classifiers encodes the population appearance information that is consistent
with the patient-specific characteristics. Yet, until now no real patient-specific infor-
mation has been incorporated into the cascade.More specifically, false positives might
exist in the patient-specific samples, i.e., ∃x XN∈ pat , ∀ ≤k K bk , C xk

pop 1( ) = + . In the
forward learning stage, we use the remaining cascade from the backward pruning
algorithm as an initialization, and re-apply the cascade learning to eliminate the
patient-specific false positives left over by the previously inherited population classi-
fiers. As shown in Algorithm 9.2, a greedy strategy is adopted to sequentially opti-
mize a set of additional patient-specific classifiers C k Kk

pat pat, 1, 2, ,= { } .

Algorithm 9.2. Forward Learning Algorithm 

Input: D C k Kk
bk pop bk, 1, 2, ,= = { }
– the tailored population-based detector

    XP
pat – patient-specific positive samples

    XN
pat – patient-specific negative samples

Output: Dpat – patient-specific detector
Init: k =1 , D Dpat bk=
  	   X = x x X X ,D xN P0

pat pat bk 1∈ = +


( ){ }
while X X > Xk N P− τ1

pat pat   do

Train the classifier by minimizing Eq. 9.3 below

	C x x X X C x x X C xk c k N P
pat pat patargmin s t= ∈ ( ) = +{ } ∀ ∈ ( ) = +−| , . . ,1 1 1   (9.3)

X x x X C xk k k= ∈ = +−| , 11
pat ( ){ }

D D Ck
pat pat pat = 

; k k= +1
end while
K kpat 1= −
return D C k K C k Kk k

pat pop bk pat pat, 1, 2, , , 1, 2, ,= = =� �{ } { }∪

.  denotes the cardinality of a set. τ is the parameter controlling the tolerance of 
false positives.

After backward pruning and forward learning, the personalized anatomy detector
includes two groups of classifiers (Fig. 9.5). While C k Kk

pat pat, 1, 2, ,= { } encodes
patient-specific characteristics, C k Kk

pop bk, 1, 2, ,= { } contains population informa-
tion that is individualized to this specific patient. This population information effectively
remedies the limited variability from the small number of patient-specific training images.
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9.3.2	 �Experimental Results

Our experimental dataset was acquired from the University of North Carolina at
Chapel Hill. In total, we have 25 patients with 349 CT images. Each patient has one
planning scan and multiple treatment scans. The prostates and seven landmarks in
all CT images have been manually delineated by an expert to serve as the ground
truth. We use fivefold cross-validation to evaluate our method and compare it with
other methods. To emulate the real clinical setting, for prostate localization in the
treatment day N +1 , we use N previous treatment images and also the planning
image as patient-specific training data (Fig. 9.1). From our observations, we found
that, when N reaches 4, there was negligible accuracy gained from performing addi-
tional ILSMs. Therefore, after treatment day 4, we do not perform ILSM to further
refine the patient-specific landmark detectors; instead, we directly adopt the existing
detectors for prostate localization. The following reported performances of ILSM
are computed using up to 5 patient-specific training images (4 treatment images + 1
planning image). Details about the algorithm parameters can be found in [21].

9.3.3	 �Comparison with Traditional Learning-Based Approaches

To illustrate the effectiveness of our learning framework, we compared ILSM with
four different learning-based approaches. All of these methods localize the prostate
through learning-based anatomy detection with the same features, classifiers, and
cascade framework. Their differences lie in the training images and learning strate-
gies, which are shown in Table 9.1. Note that for all patient-specific training images,
artificial transformations are applied to increase the intersubject variability.

Negative Class Negative Class Negative Class Negative Class

Positive ClassCK pat
pat

CK bk
pop

C 1

pop
C1

patTesting
Samples

Population Classifiers Patient-specific Classifiers

Fig. 9.5 Incrementally learned landmark detector

Table 9.1 Difference between ILSM and four learning-based methods

POP PPAT MIX IL ILSM

Training images Population √ √ √ √
Patient specific √ √ √ √

Learning strategies Cascade learning √ √ √ √ √
Backward pruning √
Forward learning √ √

POP population-based learning, PPAT pure patient-specific learning,MIX population and patient-
specific mixture learning, IL incremental learning without backward pruning, ILSM proposed
incremental learning with selective memory
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Table 9.2 compares the four learning-based approaches with ILSM on landmark
detection errors. We can see that ILSM outperforms other four learning-based
approaches on all seven anatomical landmarks. Table 9.3 compares the four learning-
based approaches with ILSM on overlap ratios (DSC). To exclude the influence of
multi-atlas RANSAC, only a single shape atlas (i.e., the planning prostate shape) is
used for localization. Here, “acceptance rate” denotes the percentage of images
where an algorithm performs with higher accuracy than inter-operator variability
(DSC=0.81) [22]. According to our experienced clinician, these results can be
accepted with minimal manual editing (<20 %). We can see that ILSM achieves the
best localization accuracy among all methods. Not surprisingly, by utilizing patient-
specific information, all three methods (i.e., PPAT, MIX, and IL) outperform
POP. However, their performances are still inferior to ILSM, which shows the effec-
tiveness of ILSM in combining both population- and patient-specific characteristics.

9.3.4	 �Sparse Representation-Based Classification for Treatment 
Image Segmentation

Sparse representation as an emerging technique has become the focus of much recent
research in machine learning [23, 24], signal processing [25], and computer vision
[26, 27]. It has been successfully applied in many fields, such as compressive sensing
[28] and face recognition [29], and has achieved considerable improvements over
previous methods in those fields. In this section, we present a sparse representation-
based classification method to segment the prostate from treatment images.
Sparse representation models data with linear combinations of a few elements

from a learned dictionary. Like the traditional data representation methods 

Table 9.2 Quantitative comparison of landmark detection error (mm) between ILSM and four
learning-based methods

POP PPAT MIX IL ILSM

PC 6.69 3.65± 4.89 5.64± 6.03 3.03± 5.87 4.01± 4.73 2.69±
RT 7.85 8.44± 6.09 9.00± 5.72 4.04± 6.33 4.82± 3.76 2.80±
LF 6.89 4.63± 5.39 7.61± 5.61 3.63± 5.90 4.54± 3.69 2.69±
PT 7.04 5.04± 8.66 13.75± 6 18. ± 4.76 6 74 5 05. .± 4.78 4.90±
AT 6 60 4 97. .± 4 54 5 06. .± 5 38 4 55. .± 5 68 4 97. .± 3.54 2.19±
BS 6 12 2 97. .± 5 63 7 44. .± 6 63 3 98. .± 5 61 2 94. .± 4.68 2.71±
AP 10 42 6 03. .± 8 94 16 07. .± 8 77 5 00. .± 9 50 7 17. .± 6.28 4.60±
Average 7 37 5 52. .± 6 31 10 13. .± 6 33 4 32. .± 6 52 5 09. .± 4.49 3.49±

p-value < -10 5 < -10 5 < -10 5 < -10 5 n/a

The last row shows the p-values of two-sample t-test when comparing landmark errors of the four
learning-based methods with those of ILSM. The best performance of each measurement is shown
in bold lettering
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(e.g., wavelet and Fourier transform), the sparse representation method has a set of
basis elements, which column-wisely form a dictionary. These basis elements do
not need to be orthogonal or predefined, which largely differentiates them from the
traditional data representation methods. Therefore, the dictionary for sparse repre-
sentation is usually learned through a process called dictionary learning so that the
learned dictionary can be well tailored with respect to a specific task (e.g., recon-
struction and classification). Given a learned dictionary D∈ p N× , which has
N p-dimensional basis elements, the goal of sparse representation is to select a few
basis elements for best representing the input signal x∈ p. Mathematically, it can
be formulated as the following sparse coding problem:

	
a a a

a

 = − +argmin ,x D
2

2

1
l 	 (9.4)

where a  ∈N is called sparse representation or sparse code of x with respect to
the dictionary D,|| α ||1 is the L1 norm of α, and λ is a parameter that controls the
sparsity of a  or the number of nonzero entries in a . The larger λ is, the sparser
a  is and the fewer nonzero entries a  has.
Sparse representation-based classification (SRC) [29] was recently proposed and

has been widely used for face recognition. In SRC, to classify a new sample, all train-
ing samples from different classes are used to represent it in a competitive manner, and
the class label is determined by choosing the class that best reconstructs it. Specifically,
the training samples belonging to the same class are first column-wisely grouped into
sub-dictionaries, which are further combined to form a global dictionary D∈ p N× :

	
D D D D= [ ]1, , , ,i K 	 (9.5)

	
=  d d d d1 1 1 2, , ,, , , , , , i j K NK, 	 (9.6)

where Di is the sub-dictionary of class i, di,j is the jth training sample of class i, K is the

total number of classes, NK is the total number of training samples in class K, and N is

the total number of training samples equal to
i

K

iN
=1
∑ . To classify a new sample x∈ p,

its sparse code a  ∈N is first computed with respect to the global dictionary D 
according to Eq. (9.4). Then the residue with respect to each class is calculated:

	
r x Di i i i K= − ∈{ }a  , 1, , , 	 (9.7)

Table 9.3 Quantitative comparisons on prostate localization between ILSM and four learning-
based methods

POP (S) PPAT (S) MIX (S) IL (S) ILSM (S) ILSM (M)

Mean DSC 0.81±0.10 0.84±0.15 0.83±0.09 0.83±0.09 0.87±0.06 0.88 ± 0.06
Acceptance
rate (%)

66 85 74 77 90 91

S indicates the localization results obtained by using a single shape atlas from the planning image.
M indicates the localization results obtained by using all shape atlases from the previous planning
and treatment images. The best performance of each measurement is shown in bold lettering
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where ri
p∈ is the residue with respect to class i and a i

 carries entries of a   
corresponding to the indices of columns in D belonging to Di. Finally, the signal x 
is classified to the class with the minimum L2 residue norm.
To segment the prostate in daily treatment images, sparse representation-based

classification is used to enhance the prostate in CT images by pixel-wise classifica-
tion in order to overcome the poor contrast of the prostate images. Then, based on
the classification results, the previously segmented prostates of the same patient can
be aligned onto the current image for multi-atlas-based segmentation [21]. Since
our segmentation is guided by the classification, the segmentation accuracy highly
depends on the classification performance. However, the conventional SRC suffers
from two main limitations when applied to the pixel-wise classification. First, the
conventional SRC cannot be directly adapted to the large-scale problem where the
size of training samples is huge. Second, when training samples of different classes
are highly correlated, the classification performance of the conventional SRC is
limited. To overcome these limitations, especially for the purpose of segmentation,
we propose four extensions to the SRC, which are elaborated in the following para-
graphs one by one.

9.3.5	 �Discriminant Sub-dictionary Learning

In pixel-wise classification, it is common for different classes to have similar train-
ing samples. In such a case, the performance of SRC is limited. Discriminant sub-
dictionary learning aims to learn sub-dictionaries as distinct as possible. Here, we
propose to combine feature selection with the dictionary learning method as a way
to learn discriminant sub-dictionaries. First, a feature selection technique is used to
select discriminant features so that the output training samples of different classes
are as distinct as possible. A dictionary learning method is subsequently adopted to
learn a compact representation of these discriminant training samples in order to
make the size of the sub-dictionary feasible.
In the context of prostate segmentation, each voxel needs to be identified as pros-

tate or background. Considering that each training sample is represented by a fea-
ture vector, which can be intensity or image features, the selection of features
discriminant between prostate and background classes aims to best distinguish pros-
tate voxels from background voxels. In this work, feature ranking, based on the
Fisher separation criterion (FSC) [30], is adopted to select those discriminant fea-
tures. Specifically, for each feature f, we compute its FSC score as µ µ +1 2 1 2− / v v
, where μ1 and μ2, v1 and v2 are the sample means and variances of feature f in pros-
tate and background classes, respectively. Features with high FSC scores are con-
sidered discriminant and, thus, are selected while features with low FSC scores are
discarded in the final feature-based representation.
After feature selection, due to the large size of training samples in pixel-wise

classification, it is practically infeasible to directly use them to form sub-dictionaries.
For storage and computational efficiency, it is necessary to adopt a dictionary
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learning method to learn a compact representation of those discriminant training
samples for each class. In this work, we use the K-means clustering method that
preserves the discriminant characteristics of training samples.
Once sub-dictionaries of different classes are learned, their columns are first nor-

malized to the unit norm and then put together to form the global dictionary accord-
ing to Eq. (9.5) for classification.

9.3.6	 �Elastic Net

Due to the fuzziness of the prostate boundary in CT images, prostate and back-
ground voxels drawn near the prostate boundary can be quite similar, which inevi-
tably introduces highly correlated elements between sub-dictionaries. As the sparse
coding only selects one of the highly correlated elements due to its sparsity nature,
samples with similar features can have distinct sparse codes and, thus, be classified
into different classes because of small noises. As a result, the classification of pros-
tate boundary voxels in the new treatment image is instable, which causes a zigzag
and unclear boundary in the classification map (Fig. 9.6).
To address this problem, we replace the traditional L1-regularized sparse coding

with the elastic net [31], which compromises between sparsity and stability. Instead
of using only the L1 constraint to regularize the least squares problem, the elastic
net balances between the L1 constraint and the L2 constraint:

	
a a a a = − + +argmin

α
λ

λ
x D

2

2

1 1
2

2

2

2 	 (9.8)

As we know [31], the solution of the L2-regularized least squares problem is stable.
Thus, adding L2 regularization helps stabilize the sparse code. In this work, we
propose to use the elastic net to replace the traditional L1-regularized sparse coding
in pixel-wise classification where there exist highly correlated elements in

a b

Fig. 9.6 (a) Zigzag prostate boundary caused by the L1-regularized sparse coding and (b) smooth
prostate boundary by adopting the elastic net in SRC
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sub-dictionaries of different classes. Practically, we found that boundary-smoothing
effects can be achieved by stabilizing the sparse code. Figure 9.6 visually compares
the classification results of the L1-regularized sparse coding and the elastic net.

9.4	 �Residue-Based Linear Regression

In the traditional SRC, residue norms with respect to each class are compared, and the
new sample is classified to the class with the minimum residue norm. In such cases,
residues of different features are equally treated. While it is reasonable when features
are of the same type and importance, it is not desirable in other cases. Usually each
voxel is represented by the combination of different types of features; thus, the dis-
criminabilities of individual features are different and their contributions to classifica-
tion are also different. Therefore, equally weighting them in determining the class
label limits the classification performance. Besides, the traditional SRC is a hard clas-
sification method, which only assigns a class label to the new sample. In contrast, soft
classification provides more quantitative information, especially in the decision mar-
gin where the class membership is unclear. Based on these observations, we propose
to learn a linear regression model to predict the class probability based on the resi-
dues, which extends SRC from hard classification to soft classification. Specifically,
in the training stage, after the discriminant sub-dictionaries are learned, we can com-
pute the residue vectors of each training sample with respect to the prostate and back-
ground classes. These two residue vectors are then concatenated into a long vector,
which is used as features in the linear regression model to estimate the class probabil-
ity. In the testing stage, given a testing voxel, we first compute the two residue vectors,
and then use the learned linear regression model to estimate its class probability.
By incorporating the residue-based linear regression into SRC, full residual

information is used, instead of just using their norm. Besides, individual features are
weighted by their contributions in predicting the class probability. Compared with
the traditional SRC, we found the classification performance can be increased by
using residue-based linear regression.

9.5	 �Iterative SRC

Segmentation using classification methods which overlook spatial regularization is
often criticized because each pixel is independently processed and, thereby, can be
easily misclassified. Recently, Tu proposed the auto-context model [32], which uses
context information to iteratively refine the classification results. Specifically, at each
iteration, previous classification results at context locations are extracted as context
features to assist the classification in the current iteration. Each pixel can be repre-
sented by a feature vector that contains both its original features and the context fea-
tures, which are updated iteratively. As the classification iterates, these context features
become more discriminative and, thus, more helpful in the classification. As a result,
the classification probability map becomes clearer and clearer. Inspired by this idea,
we incorporate the context information into SRC and propose the iterative SRC.
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In the iterative SRC, initially we start with a uniform probability map since no
classification has been performed. Due to the lack of discriminability, these context
features are filtered out by discriminant sub-dictionary learning, which means the
context features are not included in the first classification iteration. In the later clas-
sification iterations, the context features are iteratively updated and start to encode
more and more accurate class probability information about its surrounding pixels,
which can be considered as effective high-level features. As a result, more context
features are identified as the topmost discriminant features in the discriminant sub-
dictionary learning and, thus, selected to guide the refinement of the classification
results. Figure 9.7 shows typical classification probability maps at different itera-
tions, which clearly justifies the effectiveness of the iterative SRC.

9.6	 �Experimental Results

The evaluation of this method is based on 330 CT images from 24 patients. Each
patient has more than 9 daily CT scans. The axial image size is 512 512× with voxel
size 1 1× mm. The inter-slice distance is 3 mm. The manual segmentation results
provided by a clinical expert are available for each CT image to serve as the ground
truth. The Dice similarity coefficient (DSC) [33], as a widely adopted segmentation
measure, is used again for evaluating our prostate segmentation method. To show the
effectiveness of our method, we evaluate each component independently.

a b c d

Fig. 9.7 (a–c) Show the classification results in the first, second, and third iteration, respectively.
Red points in (d) show the context locations of the center pixel in the image dictionary learning [25]
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Fig. 9.8 Quantitative comparison between discriminant sub-dictionary learning (DSL) and
K-SVD dictionary learning [25].
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Figure 9.8 quantitatively compares our discriminant sub-dictionary learning with
the K-SVD dictionary learning method [25] for learning the sub-dictionaries used
in the SRC. For fair comparison, we also adopted feature selection for K-SVD. To
exclude the influence from other components. Here, we did not use other exten-
sions, including elastic net, residue-based linear regression, and iterative
SRC. Clearly, we can see from Fig. 9.8 that our discriminant sub-dictionary learning
(DSL) performs better in terms of the segmentation accuracy.
Figure 9.9 compares the elastic net and the traditional L1 sparse coding in the SRC

using 12 images of one patient. The visual comparison of the respective classification
response maps is shown in Fig. 9.6. Both quantitative and qualitative results indicate
that the elastic net is better suited to this application than the traditional L1 sparse cod-
ing. Figure 9.10 gives the quantitative comparison between the residue-norm-based
hard classification and the proposed residue-based linear regression. By weighting all
features differently according to their contributions to the classification, residue-based
linear regression further boosts the classification performance, compared with the tra-
ditional residue-norm-based hard classification. Finally, we compared the effective-
ness of context features in our framework. Aswe can see in Fig. 9.11, the segmentation
accuracy is generally improved when using more iterations.
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Fig. 9.9 Quantitative comparison between L1 sparse coding and elastic net
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Fig. 9.10 Quantitative comparison between residue-norm-based classification (RN) and residue-
based linear regression (RBLR) with 1-iteration
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9.6.1	 �Sparse Label Propagation for Automatic Prostate 
Segmentation in Daily Treatment CTs

In this section, we will introduce a multi-atlas-based sparse label propagation
method for automatic prostate localization in daily treatment CT images. There are
two main challenges to segmenting the prostate in treatment CT images: (1) low
image contrast between the prostate and the surrounding tissues and (2) the prostate
motion and image appearance across different treatment days which can be large,
even for the same patient. These two challenges, illustrated in Fig. 9.12, will be
addressed by the sparse label propagation method.
In the field of medical image analysis, multi-atlas-based image segmentation is a

widely used method for automatic organ segmentation. Here, atlases usually denote
training images with segmentation ground truths. It mainly consists of two stages,
namely, the registration stage and the label fusion stage. In the registration stage, each
atlas is registered to the target image to be segmented using simple rigid and affine
transformations or complex diffeomorphic transformations. In the label fusion stage,
each registered atlas is aggregated to provide the final segmentation result of the target
image, the most straightforward aggregation scheme is majority voting. More
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Fig. 9.11 Quantitative comparison of auto-context scheme with 1 and 3 iterations

a b c

Fig. 9.12 (a) An image slice obtained from a patient on certain treatment day, with the prostate
boundary superimposed in (b). (c) An image slice obtained from the same patient on other treat-
ment day. Note the significant image appearance difference due to the existence of bowel gas
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advanced aggregation schemes are also derived, such as STAPLE [34] and nonlocal
mean-based label propagation [35, 36]. The proposed method is based on nonlocal
mean label propagation, which provides the following advantages over other label
fusion techniques: (1) The nonlocal mean searching strategy relaxes the degree of cor-
respondence accuracy requirement, such that linear registration algorithms can be
used during the registration step and avoid the computational intensive nonlinear reg-
istration process, and (2) it allows many-to-one correspondences to identify a set of
good candidate voxels in the atlases to use during the label fusion step.
The conventional label propagation method [35, 36] uses a 3D patch centered at

each voxel as the voxel’s anatomical features. Good candidate voxels are deter-
mined as voxels with high patch similarity to the to-be-labeled voxel in the target
image (we name it as reference voxel below). These candidate voxels are used to
vote for the label of the reference voxel. However, there are two major limitations in
the conventional label propagation framework when applied to the prostate CT
image segmentation. First, in [35, 36], the patch-based representation is constructed
by using only the voxel intensity information, which may not be able to effectively
distinguish voxels belonging to the prostate from non-prostate regions due to low
image contrast in the prostate CT images. Second, the weight of each candidate
voxel for label propagation is determined by directly comparing the similarity
between the patch-based representation of each candidate voxel with that of the
reference voxel in the target image, which may not be robust against outlier candi-
date voxels and, thus, increase the risk of misclassification.
The new method introduced in this section has the following advantages, compared

to the conventional label propagation method: (1) To deal with the low image contrast
problem in prostate CT images, a new patch-based representation is derived in the dis-
criminative feature space with logistic sparse Lasso. The derived patch-based represen-
tation can capture salient features to effectively distinguish prostate voxels from
non-prostate voxels and can, thus, serve as effective anatomical features for each voxel.
(2) For each reference voxel in the new prostate CT, its new patch-based features are
reconstructed by sparse representation of the patch-based features of candidate voxels in
the previous images (i.e., training images) of the same patient. The reconstruction
weights estimated by sparse representation are then used for label propagation. Due to
the robustness property of sparse representation against outliers, the segmentation accu-
racy can be further improved. (3) A hierarchical segmentation strategy is proposed for
first segmenting voxels with high segmentation confidence in the new treatment image,
and then using their segmentations to provide useful context information for aiding the
segmentation of other low-confidence voxels, which are more difficult to segment.

9.7	 �Patch-Based Representation in the Discriminative 
Feature Space

We propose a patch-based representation in the high-dimensional discriminative
feature space. We denote the current available M training images from the same
patient as I x I xM1 , ,( ) ( ) (i.e., including the planning image and previously
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segmented treatment images). As illustrated in Fig. 9.13, each previously segmented
treatment image is first rigidly aligned to the planning image, based on the pelvic
bone structures similar to [37], for removing the whole-body rigid motion. Each
training image I x i Mi ( )( )=1, , is convolved with a set of feature extraction ker-
nels ψ j x j = n( )( )1, , to produce different feature maps Fi

j(x):

	
F x I x x j ni

j
i

j( ) = ( ) ( ) = …( )* , ,ψ 1 , 	 (9.9)

where n denotes the number of kernels for extracting features. Here, 14 Haar wave-
let [38], 9 histogram-of-oriented-gradient (HOG) [39], and 30 local-binary-pattern
(LBP) [40] kernels are adopted to extract features. Based on the feature Fi

j(x) calcu-
lated by Eq. (9.9), we can obtain a patch-based representation of each voxel x. 
Suppose that a K K× patch is adopted, and then each voxel x has a K K n× ×  
dimensional anatomical features, denoted as f(x).
Then, feature selection is performed on f(x) in order to reduce the noise effect

and feature redundancy. Logistic regression serves as a good choice for performing
this task. Moreover, the aim of feature selection is to select a small subset of the
most informative features as anatomical features, which can be well accomplished
by enforcing the sparsity constraint during the logistic regression process:

	
J b L f x b

c
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cb b b,( ) = + − ( ) +( )( )( ) +
=
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1
1

1log exp λ
	

(9.10)

where β is the sparse coefficient vector, ⋅
1 is the L1 norm, b is the intercept scalar,

and λ is the regularization parameter. xc is a training sample drawn from the training
images c P=1, ,( ), with label Lc =1 if xc belongs to the prostate and Lc = −1  
otherwise. The optimal solution (βopt and bopt) to minimize Eq. (9.10) can be esti-
mated by the Nesterov’s method. The final selected features are those with nonzero
entries in βopt. Here we denote the final features of each voxel x as a(x) (Table 9.4).

Table 9.4 The average Fisher score calculated from 330 prostate images with different voxel
features: the higher the score, the better the discriminant power of the feature is

Features Intensity
Intensity
patch

Patch in feature
space

Patch in feature space + logistic
Lasso

Fisher score 2.15 5.83 8.89 12.14

a b c

Fig. 9.13 (a) A prostate CT image slice, with the reference voxel highlighted by the green cross 
and also the prostate boundary of the segmentation ground truth highlighted by the red contour. 
Note that the reference voxel is in the prostate region but close to the prostate boundary. (b) Graph
weights between the reference voxel (green cross) and candidate voxels from training images
estimated by pair-wise Euclidean distance. (c) The same graph weights as (b) estimated by the
proposed sparse label propagation strategy
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9.8	 �Hierarchical Prostate Segmentation in New Treatment 
Images with Sparse Label Propagation

The general nonlocal mean label propagation principle can be summarized by
Equation (9.11):
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(9.11)

where Ω denotes the image domain and SMA denotes the prostate probability map of
the target image Inew estimated by multi-atlas-based labeling. S yi ( ) =1 if y belongs
to the prostate region in Ii, and S yi ( ) = 0 otherwise. wi(x,y) is the graph weight
between voxel x and y in Ii. Typically, the searching range is spatially confined to the
neighborhood of voxel x, instead of the whole image domain Ω.We denote the
neighborhood of a voxel x in image Ii as Ni(x).
Therefore, the key for nonlocal mean-based label propagation is how to define

the graph weight wi(x,y). The most straightforward solution is to use the Euclidean
distance between the features of x and y. However, the graph weight defined in this
way may not be able to effectively identify the most representative candidate voxels
in atlases to estimate the prostate probability of a reference voxel, especially when
the reference voxel is located near the prostate boundary, which is the most difficult
region to segment correctly.
Figure 9.13a shows a prostate CT image slice with the reference voxel high-

lighted by the green cross (i.e., a voxel belonging to the prostate region but
close to the prostate boundary). The prostate boundary of the ground truth is
highlighted by the red contour. Figure 9.13b shows the graph weights associated
with the reference voxel and the candidate voxels from the training images,
estimated by the Euclidean distance. Without loss of generality, we use blue to
highlight the graph weights corresponding to the prostate sample voxels and red
to highlight the graph weights corresponding to the non-prostate sample
voxels.
It can be observed from Fig. 9.13b that, with the conventional label propagation

strategy, lots of non-prostate sample voxels are also assigned with large weights during
the label propagation step, which significantly increases the risk of misclassification.
Motivated by the superior discriminant power of sparse representation, we pro-

pose to enforce the sparsity constraint in the conventional label propagation frame-
work to resolve this issue. More specifically, we estimate the sparse graph weights
based on Lasso to reconstruct the patch-based features of each voxel x in Inew by
using the features of neighboring voxels in the training images. To do this, we first
organize all features a(y) of y in Ni(x) as columns in a matrix A, which is also called
a dictionary. Then, we can estimate the corresponding sparse coefficient vector θx of
a voxel x by minimizing Eq. (9.12):

	
J a xx I x xq q q( ) = ( ) − +

1

2 2

2

1new
,A* λ 	 (9.12)
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and the graph weight wi(x,y) can be set to the corresponding element in the optimal
solution of Eq. (9.12).
Figure 9.13c shows the resulting graph weights estimated by the proposed sparse

label propagation strategy. It can be observed from Fig. 9.13c that, by enforcing the
sparsity constraint, candidate voxels assigned with large graph weights are identi-
fied as prostate, while candidate voxels from non-prostate regions are mostly
assigned with zero or very small graph weights. These results show the advantage
of the proposed sparse label propagation strategy.
To improve the robustness of sparse label propagation, a hierarchical segmenta-

tion scheme is also used. Specifically, the prostate probability map is estimated in
an iterative manner using the results of the previous iteration to extract context
features for prostate segmentation.

9.9	 �Experimental Results

The segmentation accuracy of the proposed method is systematically evaluated
on a 3D prostate CT image database with 24 patients. Here, each patient has
more than 10 treatment images, and 24 patients totally have 330 images. Each
image is collected on a Siemens Somatom or a Primatom CT-on-rails scanner
with an in-plane image size of 512 512´ , a voxel size of 1 1 2× mm , and an inter-
slice thickness of 3 mm.
Figure 9.14 shows typical segmentation results with the proposed method. The

average Dice ratio obtained on 24 patients with different segmentation strategies
is also plotted in Fig. 9.15. It can be observed that the new method introduced in
this section achieves the highest segmentation accuracy among the other methods
under comparison, which illustrates the robustness and effectiveness of the new
method [8].

Fig. 9.14 Typical segmentation performance of the proposed method on two patients. Each row 
represents a patient
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9.9.1	 �Prostate Segmentation in CT Images via Spatial-
Constrained Multitask Feature Selection

In this section, we will introduce an application of the spatial-constrained multitask
feature selection technique for prostate segmentation in CT images. Previous
learning-based methods [7, 37] first collect the voxels from certain slices and then
conduct both the feature selection and the subsequent prostate-likelihood estimation
for all voxels in those selected slices jointly. However, different local regions usu-
ally prefer choosing different features to better discriminate between their prostate
and non-prostate voxels, as indicated by a typical example in Fig. 9.16. In this
example, we extracted features (i.e., Haar wavelet, HoG, LBP) for three different
local regions and then applied Lasso (a supervised feature selection technique as
introduced in [41]) for the respective features’ selection. From the results shown in
Fig. 9.16, we can see that the selected features from three local regions are com-
pletely different, demonstrating the necessity of selecting the respective features for
each local region.
Here, we present a novel local learning strategy: Partition each 2D slice into

several nonoverlapping local blocks, and then select their respective local features
to predict the prostate likelihood for each local block. This will be achieved by our
proposed Spatial-COnstrained Transductive Lasso (SCOTO) and support vector
regression (SVR), respectively, which will be detailed below. The major difference
between the previous learning-based methods and our method is explained in
Fig. 9.17.
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Fig. 9.15 Average Dice ratios obtained from 24 patients with different segmentation strategies
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Note that, before segmentation on the current treatment image, the physician
only needs to spend a few seconds to specify just the first and last slices of the
prostate region in the CT image. With this minimal user interaction, the segmenta-
tion results can be significantly improved, compared with the fully automatic
methods [7, 37].
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Fig. 9.16 A typical example showing the importance of selecting different features for different
local regions (i.e., three yellow rectangles)
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Fig. 9.17 The difference between the previous learning-based methods and our proposed method.
Specifically, our method adopts a local feature selection and prostate-likelihood estimation
strategy
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9.10	 �Implementation

Our proposed method is mainly composed of two steps: (1) the prostate-likeli-
hood estimation step and (2) the multi-atlas-based label fusion step. In the pros-
tate-likelihood estimation step: First, all previous and current treatment images
are rigidly aligned to the planning image based on the pelvic bone structures.
Then, we extract the ROI regions according to the prostate center in the planning
image. Second, for the current treatment image, a physician is required to specify
the first and last slices of the prostate in the CT images. By combining the voxels
in the specified slices with the voxels sampled from the planning and previous
treatment images according to the previous segmentation results, we can extract
2D low-level features (LBP [40], HoG [39], and Haar wavelets [38]) for all of
these voxels separately from their original CT images. Then, each 2D slice will be
partitioned into several nonoverlapping blocks. The proposed SCOTO is applied
for joint feature selection for all blocks, and SVR is further adopted to predict the
2D prostate-likelihood map for all the voxels in the current slice. Finally, the pre-
dicted 2D prostate-likelihood map of each individual slice will be merged into a
3D prostate-likelihood map.
In the multi-atlas-based label fusion step, to make full use of the prostate shape

information, all manually segmented prostate regions in both the planning and pre-
vious treatment images of the same patient will be rigidly aligned to the estimated
3D prostate-likelihood map of the current treatment image. Then, majority voting
will be applied to fuse the labels from all different aligned images and obtain the
final segmentation result.

9.11	 �Prostate-Likelihood Estimation via SCOTO

The planning image and its corresponding manual segmentation result are denoted
as Ip and Gp, respectively. The nth treatment image, which is the current treatment
image, is denoted as In. The previous treatment images and their corresponding
manual segmentation results are denoted as I I1 1, , n− and G G1 1, , n− , respec-
tively. Also, the final 3D prostate-likelihood map and its segmentation result for the
current treatment image In by adopting the proposed method are denoted asMn and
Sn, respectively.
For each slice, we first partition the slice into nonoverlapping N Nx y× blocks as

shown in Fig. 9.17. Then, for the ith block, we use li ∈ and ui ∈ to denote the
numbers of training voxels and testing voxels, respectively. N N N Nx y∈ = ×( )  

denotes the total number of blocks in the current slice. yi
l ui i∈ + and Fi

l u di i∈ ( ) + ×  
denote the ground-truth label and feature matrix for all the training and testing voxels,
respectively. Without loss of generality, all the training voxels are listed before the
testing voxels in both yi and Fi. d denotes the number of features. It is noteworthy that
the labels of testing voxels in yi are set to 0. Also, in yi, the labels of training voxels are
set to 1 if they belong to the prostate, and set to 0 if they belong to the background.
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Mathematically, the objective function of SCOTO can be formulated as
follows:
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(9.13)

where b b b1,, N i
d∈( ) are the parameters to learn, which indicates the weights

of individual features for each block. λ λ λS L E, , ∈ are the parameters to control the
corresponding terms. J i

l u l ui i i i∈ ( ) ( ) + × + , which is used to indicate the training voxels,

is a diagonal matrix defined as J i i i

l u

l l
i i

=












diag 1 1 0 0/ , , / , , ,�
� �� ��

�
���

. i
l u l ui i i i∈ ( ) ( ) + × + is

the graph Laplacian with the same definition as that in [42]. H(i) denotes the neigh-

bors of the ith block, and |H(i)| is the cardinality of H(i).
In Eq. (9.13), the first term with three subterms focuses on each individual

block: The 1st subterm indicates the reconstruction error, the 2nd subterm imposes
the sparsity constraint with the L1 norm, and the 3rd subterm is the graph Laplacian
imposing the manifold constraint on both the training and testing voxels since a
large amount of testing voxels can be well used for training. The second term is
the smoothness term on the neighboring blocks, so that the neighboring blocks are
encouraged to choose similar features since they usually have similar
appearance.
After using SCOTO for feature selection, for the ith block, the features, which

correspond to the entries in βi that are larger than 0, will be selected. So we can
finally obtain the new feature matrices Fi i N′ = 1, ,( ) by selecting the columns in
Fi corresponding to the selected features.

9.12	 �Prostate-Likelihood Estimation

With the obtained new feature matrices Fi i N′ = 1, ,( ), we can estimate the prostate
likelihood for each block. For each individual block, we apply SVR, which is a con-
ventional regression method, to predict the prostate likelihood for all the voxels in
each block. Specifically, the SVR model is first trained by voxels in Fi

' as well as
available labels in yi and then tested on the ui testing voxels in the ith block for pros-
tate prediction. All the predicted likelihood will be finally normalized into [0,1].

9.13	 �Experimental Results

Here, we use three common evaluation metrics: the Dice ratio, the true-positive
fraction (TPF), and the centroid distance (CD) for evaluation.
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We introduce several related feature selection methods for comparison, which
include LassoS and tLassoS (by applying Lasso [41] and tLasso [43] on slice-level
feature selection, respectively), LassoB and tLassoB (by applying Lasso and tLasso
on block-level feature selection, respectively), mRMR [19], and fused Lasso [44].
Table 9.5 lists the segmentation accuracies obtained by the different feature

selection schemes, and the best results are marked by the bold fonts. We found that
SCOTO can achieve superior performance over the related methods. Specifically,
we also found that (1) the block-level methods are better than the slice-level ones,
which validates our assumption that different local regions prefer choosing different
features; (2) manifold constraint is useful for improving the results (by comparing
tLassoS with LassoS, and tLassoB with LassoB); and (3) the spatial-constraint
smoothness term leads to better results (by comparing SCOTO with tLassoB).
To further evaluate the performance of the proposed method, the results of sev-

eral state-of-the-art methods are illustrated for comparison (see Table 9.6), which
include deformable-model-based methods [13, 45], registration-based methods
[22, 37], and learning-based methods [7, 43]. From the results listed in Table 9.6,
we can find that the proposed method outperforms the related methods in terms of
higher mean Dice ratio and median TPF. Also, we illustrate in Fig. 9.18 several
typical segmented examples as well as a prostate-likelihood map, with the red
curves denoting the manual segmentation results by the physician and the yellow
curves denoting the segmentation results by the proposed method.

Table 9.5 Comparison of experimental results among different feature selection methods, with
the best results marked by bold font

Level Methods
Dice (mean ±
std)

TPF (mean ±
std) CD (mean ± std) (x/y/z) (mm)

Image-level
feature
selection

LassoS 0.874±0.083 0.869±0.107 0.71±0.56/0.80±0.61/0.67±0.53

tLassoS 0.917±0.053 0.899±0.084 0.54±0.37/0.50±0.38/0.40±0.33

Block-level
feature
selection

mRMR 0.893±0.033 0.912±0.047 0.50±0.34/0.72±0.41/0.36±0.33

LassoB 0.922±0.039 0.909±0.042 0.47±0.39/0.47±0.37/0.33±0.34

tLassoB 0.932±0.036 0.919±0.040 0.37±0.17/0.41±0.35/0.32±0.33
Fused
Lasso

0.928±0.047 0.906±0.043 0.34±0.37/0.42±0.38/0.34±0.51

SCOTO 0.941±0.030 0.924±0.037 0.25±0.18/0.30±0.22/0.27±0.29

Table 9.6 The results of mean Dice ratio and median TPF, compared with the related methods,
with the best results marked by bold font

Patient no. Image no. Method Mean DSC Median TPF

Other datasets 3 40 Davis et al. [22] 0.820 N/A

13 185 Chen et al. [13] N/A 0.840

Same dataset 24 330 Feng et al. [45] 0.893 N/A

Liao et al. [37] 0.899 N/A

Shi et al. [43] 0.920 0.901

Our method 0.941 0.932
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9.13.1	 �Distributed Discriminant Dictionary (DDD) Learning 
for MR Prostate Segmentation

As introduced in the previous sections, the sparse representation technique has been
successfully employed for prostate segmentation in CT images. In this section, its
capability of segmenting prostate MR images, which is important for biopsy and the
optimization of the radiotherapy dose [9, 17, 18], is further investigated. Specifically,
both image appearance and organ shape are proposed to be modeled by sparse rep-
resentation and then integrated into the deformable segmentation framework for
prostate segmentation, as shown schematically in Fig. 9.19. Note that, instead of
imposing Gaussian distribution on the appearance and shape distribution, a diction-
ary learning method is employed here for building appearance and shape models in
a nonparametric fashion. Specifically, a distributed discriminative dictionary
(DDD) learning-based appearance model and ensemble learning of classifiers is
first built to attract the deformable model toward the object boundary. Then, a sparse
shape constraint (SSC)-based shape model [20] is adopted to ensure the shape regu-
larity of the deformed model.

a

b

c

Fig. 9.18 Typical segmentation results and prostate-likelihood maps by the proposed method. (a)
Typical results of the 14th image of patient 3, with Dice ratio of 0.898. (b) Typical results of the
10th image of patient 11, with Dice ratio of 0.929. (c) Typical results of the 8th image of patient
24, with Dice ratio of 0.924. Red and yellow contours indicate the manual and automatic segmenta-
tions, respectively
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9.14	 �Distributed Discriminative Dictionary (DDD) Learning-
Based Appearance Model

In the sparse representation theory, data is modeled by a linear combination of a few
elements, called atoms. Each atom is selected from an over-complete dictionary, in
which the number of atoms usually exceeds the dimension of the data space. Given
a dictionary D∈M Q× , which has Q atoms (each with M dimensions), the goal of
sparse representation for a testing sample f ∈M is to select a small number of
atoms fromD to best represent f. Mathematically, the sparse representation problem
can be formulated as the following minimization problem:

	
a a aa= − +argmin f D

2

2

0 1
b (9.14)

Here, a ∈Q is a coefficient vector including the linear coefficients for the atoms
in the dictionary D. ‖a‖1 is an l1 norm on α for guaranteeing the sparsity of α. β0 is
the parameter that controls the number of nonzero elements (or sparsity) in α. The
number of nonzero elements in α decreases with the increase of the value of β0. By
solving Eq. (9.14), the testing sample f can be reconstructed by Dα.
For sparse representation-based classification (SRC), the prostate and non-

prostate sub-dictionaries {DPR,DNPR} are jointly used to represent a new testing
sample f ∈M . This sample is labeled as the class that best reconstructs it through
sparse representation. By combining the sub-dictionaries to form a single global

dictionary D D D= × +
PR NPR, PR NPR[ ]∈ ( )M Q Q , the sparse code of the new sample f can

be solved as α +∈Q QPR NPR , according to Eq. (9.14). Here a a a= PR
T

NPR
T T

,  , where

DDD Learning based
Appearance Model

SSC based Shape Model
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Application Stage
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Segmentation

Ensemble Learning

Model Deformation

Training Images and
Manual Segmented 

Images

Fig. 9.19 The schematic description of proposed deformable segmentation framework
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{αPR,αNPR} carries the elements of α, corresponding to the indices of the columns
belonging to {DPR,DNPR} in D. To boost the discriminative power of the above dic-
tionary pair, a novel learning scheme, namely, distributed discriminative dictionary
(DDD) learning, is proposed, which involves three novel strategies: (1) sparse dic-
tionary learning with feature selection, (2) discriminative integration of representa-
tion residuals by LDA learning, and (3) a distributed learning strategy for local
subsurfaces with consistent appearance.
First, the minimal-redundancy-maximal-relevance algorithm [19] is employed to

build a discriminative feature space. Compared to other feature selection methods
[46] that only select individual features with the highest discrimination, mRMR
minimizes the redundancy of the selected features as well. Thus, the selected fea-
tures span a discriminative and compact subspace in which prostate and non-prostate
tissues are well separated. After mRMR feature selection, the feature vector
f ∈M of each training sample is now represented by a reduced feature vector
f̆ ∈ ′M , which includes only the set of selected features. Since the dictionary
learning is constrained in a discriminative space, the learned sub-dictionaries will
contain discriminative information. Consequently, D



PR ∈ ′M Q× PR and

D


NPR
NPR∈ ′M Q× encode distinctive appearance characteristics, which can be used

to classify prostate and non-prostate tissues. By solving the sparse representation
problem of Eq. (9.14) using the combined dictionary D D D  = 



PR NPR, , the recon-

struction residual r
  = 





r rPR
T

PR
T

T

, can be computed from the sparse coefficients

a PR and a NPR as r f D� � � �PR PR PR= − a and r f D� � � �NPR NPR NPR= − a .

Second, a linear classifier in the above residual space is learned by Fisher-
LDA. Thus, by combining the discriminative dictionary learning and Fisher-LDA
residual integration, the prostate-likelihood map for the proposed deformable model

can be reformulated as hi =



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d , where sigmoid ⋅( ) denotes

the sigmoid function. The parameters of the classifier, w ∈ ′2M and δ, are calcu-
lated as w w w
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T

B
T

W

Γ
Γ
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m m
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2 0.
, where ΓB and ΓW are the

interclass and the intra-class scatter matrices in the residual space r . μPR and μNPR 
denote average prostate residuals r PR and average non-prostate residuals r NPR ,

respectively. In this way, elements in the residual vectors r

r





PR

NPR










are assigned with

different weights (by the corresponding elements in ω) for optimally separating the
prostate from non-prostate tissues, which further improves the discriminative power
of standard dictionary learning.
Third, a “divide-and-conquer” learning strategy is designed, in which the global

surface is partitioned into a set of subsurfaces with consistent appearance.
Discriminant dictionary learning is applied on these distributed subsurfaces to
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further improve the performance of tissue differentiation. Specifically, the deform-
able model is divided into L subsurfaces corresponding to L local regions along the
prostate boundary. Each subsurface l L∈ …{ }1, , can be attached by a pair of distrib-

uted sub-dictionaries, D PR

l
and D NPR

l
, learned from samples extracted around the

lth subsurface. Then, based on the sparse coefficients, a PR
l
and a NPR

l
, the recon-

struction residual r r r  

l l l
= ( ) ( )





PR

T

NPR

T

,
T

for a testing sample f , can be com-

puted by the mapping functions r f D� � � �
PR

l l l
= − PR PRa and r f D� � � �

NPR

l l l
= − NPR NPRa . 

Thus, the prostate likelihood of the ith vertex, estimated by distributed dictionaries
at the lth subsurface, can be formulated as:
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(9.15)

These local tissue scores hi
l

l

L{ }
=1
are used as appearance cues to guide subsurfaces

of the deformable model onto the prostate boundary during deformable segmenta-
tion. For overlapping regions between two neighboring subsurfaces, the tissue
scores are estimated by the minimum distance criteria: each voxel is labeled by the
subsurface with the closest central point.
According to the above DDD learning method, one dictionary for each subsur-

face can be learned. During this training stage, typically a subset of voxels is ran-
domly selected to serve as training data, due to the large number of voxels around
each subsurface. However, this approach may lead to a low-accuracy classifier if the
sampled voxels are not representative. To relieve this phenomenon and increase the
robustness of sparse representation-based classification, the idea of bagging [47] is
further adopted in the DDD learning.

9.15	 �Sparse Shape Constraint (SSC)-Based Shape Model

To build the shape prior in the deformable model by sparse learning techniques, a
recently proposed method, called the sparse shape composition method [48], is
employed. Specifically, by denoting Ds as a large shape repository that includes the
shape instances of training subjects, the approximation of an input shape vector v by
Ds is formulated as the following optimization problem in the SSC method:

	
a a as

opt opt opt
s s s, , argmin

s
y y b be v D e ee( ) = ( ) − − + +α ψ, ,

2

1 1 2 1 	 (9.16)

Here, ψ is an affine transformation matrix, which aligns surface vector v to the mean
shape vector. αs denotes the sparsity coefficient for linear combination, and e com-
pensates the large residual errors caused by a few mispositioned vertices.
Minimization of Eq. (9.16) is a two-step iteration scheme. At each iteration, the
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affine transformation ψ is first estimated. Then, based on the current estimated ψ,
Eq. (9.16) can be solved as a sparse representation problem. These two steps are
iteratively performed until convergence.
With the help of SSC, the current surface vector v can be easily represented by

inverse affine transformation of its sparse linear representation ψ −opt 1
s s

optD a( ) ,
which can be regarded as the shape prior regularization. Finally, the deformable
model can be evolved to the object boundary iteratively, under the appearance
model based on the DDD learning, the nonparametric shape model based on the
SSC learning, as well as the smooth constraint [49].

9.16	 �Experimental Results

The proposed method was evaluated on both internal and public datasets. The internal
dataset contains 75 T2-weighted MR images with ground-truth segmentations pro-
vided by a clinical collaborator. The public dataset “the MICCAI 2012 challenge data”
contains 50 T2-weighted MR images with corresponding ground-truth segmentations.
For the internal dataset, three other state-of-the-art prostate segmentation meth-

ods are compared to demonstrate the effectiveness of the proposed deformable
model in T2-weighted MR prostate segmentation, including ASM and two multi-
atlas-based methods [50]. Table 9.7 reports the mean and standard deviation of
DSC, sensitivity, PPV, and ASD between automatic segmentations and manual seg-
mentations for the proposed method and the three other methods. It should be noted
that the proposed 75 images include 30 images used in Liao’s method [51] and 66
images used in [50]. According to Table 9.7, the proposed method achieves the best
performance among all methods under comparison.
To validate the performance of the proposed method on segmenting different

zones of the prostate, Fig. 9.20 shows the segmentation results of the apex, base, and
central slices, with comparison to segmentation via the ASM method. As can be
seen, even though the appearance and shape is much more complicated on the base
and apex regions than in the central region, the proposed method still achieves more
accurate classification results. The average DSC of the proposed segmentation
method for the apex, central, and base regions of the prostate is 84.9 %, 93.6 %, and
81.8 %, respectively, compared to 59.2 %, 83.3 %, and 58.7 % obtained by the ASM
method. Besides, the proposed prostate segmentation method achieves a median

Table 9.7 Mean value and standard deviation (std) of DSC, sensitivity, PPV, and ASD between
automatic segmentations and manual segmentations for the proposed method and three other
methods on the internal dataset

Method Image no. DSC (in %) Sensitivity (in %) PPV (in %) ASD (in mm)

ASM 75 74.5±11.3 75.7±18.3 79.1±11.8 4.16±3.64

Liao et al. [51] 30 86.7±2.2 NA NA 1.90±1.60

Liao et al. [50] 66 88.3±2.6 NA NA 1.8±0.9

Proposed 75 89.1±3.6 89.9±7.0 89.0±6.2 1.67±0.61

NA in the table denotes that the corresponding measurement was not reported in the literature. The
best performance of each measurement is shown in bold lettering
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DSC of 86.7 %, 94.2 %, and 84.2 % on the apex, central, and base regions of the
prostate, respectively, which are much higher than the median scores obtained by
the ASM method (67.5 %, 86.6 %, and 65.5 %, respectively).
Next, the proposed deformable model with DDD learning is further evaluated on the

public MICCAI 2012 challenge database. Comparing with four other state-of-the-art
prostate segmentationmethods [52–55], Table 9.8 reports themeans and standard devia-
tions of DSC, sensitivity, PPV, and ASD between automatic segmentations and manual
segmentations for the proposed method. Since all mentioned methods in Table 9.8 were
evaluated on the same dataset, the comparisons are informative to show that the pro-
posed method achieves the best performance among all methods under comparison.

9.17	 �Summary

In this chapter, we have discussed several recent machine learning methods for
assisting radiation treatment of prostate cancer, including (1) boosting-based land-
mark detection method for fast prostate localization, (2) sparse representation-based
classification methods for CT and MR prostate segmentation, (3) sparse label

Base

ASM

Our
method

Central Apex
a

b

Fig. 9.20 Typical segmentation results for prostate base, central, and apex regions of two patients
produced by (a) ASM and (b) the proposed deformable model. (a) demonstrates the segmentation
results for ASM, and (b) demonstrates the segmentation results for proposed deformable model.
The three main columns show the segmentation results for the apex, central, and base regions of
the two patients, respectively. Red contours indicate the manual segmentations, and blue contours 
indicate the automatic segmentations

Table 9.8 Mean value and standard deviation (std) of DSC, sensitivity, PPV, and ASD between
automatic segmentations and manual segmentations for the proposed method and four other meth-
ods on the public dataset

Method Image no.
DSC  
(in %)

Sensitivity  
(in %)

PPV  
(in %)

ASD  
(in mm)

PASM [52] 50 77.0±23.0 NA NA 4.10±7.81

AAM [53] 50 81.0±12.0 NA NA NA

Martin et al. [54] 50 84.0±NA 87.0±NA 84.0±NA 2.41±NA

Birkbeck et al. [55] 50 86.0±NA NA NA 1.91±NA
Proposed 50 87.4±3.8 82.6±7.2 93.3±3.5 1.92±0.90

NA in the table means that the corresponding measurement was not reported in the literature. The
best performance of each measurement is shown in bold lettering
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propagation for CT prostate localization, and (4) a semiautomatic prostate segmen-
tation method that uses group sparsity for joint feature selection in neighboring
local regions. Evaluated on both internal large datasets and a public dataset, the
recently developed machine learning approaches have shown better robustness and
accuracy, compared with the traditional intensity-based segmentation methods.
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  10      Knowledge-Based Treatment Planning 

             Issam     El     Naqa    

    Abstract  
  Prior information about patient status and previously archived treatment plans, 
particularly if performed by expert clinicians, could be used to inform the treat-
ing team of a current pending case. This notion of using prior treatment planning 
information constitutes the underlying principle of the so-called knowledge- 
based treatment planning (KBTP). In this chapter, we will discuss KBTP and 
provide some examples highlighting its current status, the role of machine learn-
ing, and its potential for decision support in radiotherapy.  

10.1          Introduction 

 Radiotherapy planning is a laborious computer-aided process that aims to provide a 
blueprint for the treatment that would be followed meticulously and precisely over 
several weeks. It involves the determination of treatment parameters that would be 
considered optimal in the management of a patient’s cancer. These parameters 
include target volume, dose-limiting normal tissue structures, treatment volume, 
dose prescription, dose fractionation, dose distribution, positioning of the patient, 
treatment machine settings, and adjuvant therapies [ 1 ,  2 ]. 

 Conventionally, this process would involve acquiring patient image data by CT/PET/
MR scans (most typically fully 3D computed tomography (CT) scans). Then, the physi-
cian outlines the tumor and important normal structures on a computer (contouring), 
based on the CT scan using a specifi c set of guidelines such as the International 
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Commission on Radiation Units and Measurements (ICRU) Reports 50, 62, 71, and 83 
[ 3 ]. Afterwards, the dosimetrist sometimes with the aid of a physicist would come up 
with proper beam arrangements and weighting to meet the requirements of attending 
physician using forward (3D conformal radiotherapy (3D-CRT)) or inverse planning 
(intensity-modulated radiotherapy (IMRT)) strategies. The planning is verifi ed prior to 
delivery by estimating the treatment dose distributions with prescribed doses in the treat-
ment planning system (TPS) using dose calculation algorithms as shown in Fig.  10.1 .  

 More recently, there has been interest in using prior treatment planning informa-
tion, referred to as knowledge-based treatment planning (KBTP), possibly gener-
ated by experts to aid daily practice. The motivation for such an approach lies in 
reducing current complexity and time spent on generating a new treatment plan 
from each incoming patient. Clinicians typically have their own set of manual tem-
plates that they often use, which may give rise to inconsistency and increased patient 
risk [ 4 – 6 ]. It is believed that such a standardization process based on KBTP can 
help enhance consistency, effi ciency, and plan quality.  

10.2     Framework for Knowledge-Based Treatment Planning 

 The development of a framework for KBTP would require accumulation of infor-
mation from past experiences related to patient, disease, imaging, treatment setup, 
dose, etc. A depiction of such system is shown in Fig.  10.2 , in which a retrieval 

  Fig. 10.1    Summary of a typical treatment planning process (The image is courtesy M. Lewis 
from imPACT)       
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system allows the user to query “similar” cases from their archive and propagate 
such information to optimize the current plan at hand.   

10.3     Clinical Applications 

 The implementation of knowledge-based approaches has taken several interesting 
directions as quality control of treatment and as a process to generate new IMRT 
plans as briefl y discussed in the following. 

10.3.1     Treatment Assessment Tools 

 Zhang et al. developed a machine learning approach for predicting normal tissue 
complications from dose-volume planning constraints without the need for explicit 
plan computation and demonstrated their method in cases of prostate and head and 
neck cancers [ 7 ]. Moore et al. developed and evaluated a model for predicting the 
organ-at-risk (OAR) dose from its overlap with the PTV and the prescription dose, 
and they demonstrated that the dose received by the parotid gland or the rectum 
could be indeed reduced using their model [ 5 ]. This work was extended to predict 
achievable dose-volume histograms (DVHs) using skewed Gaussian distributions 
from individual patient anatomy as shown in Fig.  10.3  [ 8 ].   

10.3.2     IMRT Planning 

 As a demonstration of the feasibility of applying KBTP to the generation of IMRT 
plans in prostate cancer, Chanyavanich et al. presented a semiautomated method 
based on mutual information to identify similar patient cases by matching 2D 
beam’s eye-view projections of contours [ 4 ]. This approach was further evaluated 
on a larger pool of patients, and reported reductions were signifi cantly lower for the 
rectum with 40 % of cases; the KBTP plan had better DVHs for rectum and bladder; 
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  Fig. 10.2    Schematic of a 
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the treatment plan (TP). The 
database returns a set of 
similar treatment plans that 
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  Fig. 10.3    Clinically approved DVHs compared to refi ned predicted DVHs and replanned DVHs 
for the ( a ,  b ) rectum and ( c ,  d ) bladder         
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in 54 % of cases, the comparison was equivocal; in 6 % of cases, it was inferior for 
both bladder and rectum as shown in Fig.  10.4  [ 6 ].    

10.4     Role of Machine Learning 

 The framework of KBTP in Fig.  10.2  represents an ideal scenario for applying tech-
niques of machine learning or expert systems. As an example of the latter, Petrovic 
et al. presented a method based on case-based reasoning (CBR) system to generate 
dose plans for prostate cancer patients. The proposed CBR system applied a modi-
fi ed Dempster-Shafer approach to fuse dose plans suggested by the most similar 
cases retrieved from the archive database [ 9 ]. The Dempster-Shafer theory (DST) 
allows for combining evidence information from different sources [ 10 ]. To mimic 
the continuous learning characteristic of oncologists, the weights corresponding of 
the features used in the retrieval process are updated after generating a new 
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treatment plan; a depiction of the system is shown in Fig.  10.5  [ 9 ]. Features related 
to clinical stage and geometry of prostate are used to retrieve the most similar cases 
from the archive. Similarity metric is based on using fuzzy sets and information is 
combined from these cases using a modifi ed DST rule.   

    Conclusions 
 In this chapter, we have presented the framework of knowledge-based treatment 
planning for radiotherapy, in which an archive is queried for “similar” cases and 
information is propagated to optimize a current treatment plan. We presented 
different applications of KBTP in radiotherapy from quality control/assurance, 
assessment tool, to generating complex IMRT plans. In addition, we presented a 
case of using expert systems to combine decision information. KBTP is a prom-
ising area in radiotherapy that lends itself naturally to machine learning applica-
tion with potential to improve decision support system.     
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11Artificial Neural Networks to Emulate 
and Compensate Breathing Motion 
During Radiation Therapy

Martin J. Murphy

Abstract
A number of treatment sites for external-beam radiation therapy, such as lung, 
breast, pancreatic, and liver cancers, move as the patient breathes, which com-
promises the precision of their irradiation. Modern radiation treatment modali-
ties attempt to deal with this by adapting the radiation delivery to the respiratory 
motion as it occurs. This requires system control processes that can detect and 
anticipate respiratory movement patterns on a patient-by-patient basis in real 
time. Because breathing can be very idiosyncratic, this problem is a good candi-
date for machine learning algorithms that can be trained to model individual 
breathing patterns. Neural networks have proven quite effective in this capacity. 
This chapter describes the nature of the motion-compensated treatment problem 
and the issues in using a neural network to handle it.

11.1	 �Background

A number of treatment sites for external-beam radiation therapy, such as lung, 
breast, pancreatic, and liver cancers, move as the patient breathes, which compro-
mises the precision of their irradiation. For the purpose of this chapter, we will use 
lung tumors as the paradigm to represent this motion problem.

To achieve the best likelihood of effective beam coverage for a treatment target 
that moves during respiration, there are four basic approaches: (1) inhibit the move-
ment via breath holding or physical restraints, (2) enlarge the therapy beam field so 
that the tumor never moves outside of it (the margin approach), (3) turn the beam on 
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only when the tumor is at or near the beam isocenter (the gating approach), and (4) 
move the beam or the patient synchronously with breathing so that the beam stays 
continuously aligned with the tumor (the tracking approach) [30]. In the tracking 
approach, the beam can be realigned by moving the linear accelerator (LINAC) itself 
[1, 5, 42, 43, 45] or shifting the multileaf collimator (MLC) aperture [7, 19, 24, 25, 
26, 27, 34, 39, 41, 48] or, in the case of a charged-particle beam, magnetically steer-
ing the beam [3]. Alternatively, the patient can be moved by shifting the couch, so 
that the tumor remains at a fixed beam isocenter [23, 36, 38, 46, 47]. Gating and 
tracking are the two approaches that call for adapting to tumor motion in real time.

There are two fundamental problems in adapting to tumor motion: (1) determin-
ing the precise tumor position at any given time and (2) making a synchronized 
adaptive response to maintain beam/tumor alignment. Tumor position can either be 
measured directly via imaging or other detection methods, or it can be inferred by 
measuring respiratory movement that is reliably correlated with the tumor move-
ment and can act as a surrogate for it [2, 10, 14, 15, 18, 20, 35, 50, 52–54]. In this 
chapter we are particularly interested in the problem of inferring the tumor move-
ment from some kind of surrogate respiratory signal.

No adaptive response to movement can occur instantaneously, so it is necessary 
to compensate for delays between localization of the tumor and adjustment of the 
beam timing or alignment. This comes down to predicting the future tumor position 
(or its surrogate respiratory signal) by an amount equal to the response delay time 
so that the adaptation is synchronized to the tumor’s actual position.

Figures 11.1 and 11.2 illustrate two representative patients’ breathing patterns, as 
measured by an optical marker placed on the chest. Figures 11.3 and 11.4 show how 
a sequence of measurements of surface breathing movement (via the marker) can be 
correlated with the tumor’s actual position, measured via X-ray fluoroscopic imag-
ing. These four figures combine to demonstrate the complications presented by the 
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breathing prediction and correlation problem. Although superficially regular (as in 
Fig. 11.1), normal breathing is not strictly periodic, but changes amplitude and period 
over time [22, 49]. In extreme cases, the breathing pattern can be highly irregular to 
the point of appearing chaotic (Fig. 11.2). The relationship between, e.g., tumor and 
chest movement can likewise range from stable, linear, and tightly correlated 
(Fig. 11.3) to unstable, nonlinear, or otherwise poorly correlated (Fig. 11.4) [35]. The 
tumor/surrogate correlation can vary over time (e.g., through changes in the relative 
amplitude and phase of the movements), so that a sequence of measurements of sur-
rogate and tumor positions appear to be uncorrelated (as in Fig. 11.4).

These characteristics of breathing and tumor movement make it exceedingly diffi-
cult to devise a mechanical model of breathing that can accurately and continuously 
describe the movement of the anatomy and enable its prediction. The problem is instead 
a good candidate for a machine learning approach, using general algorithms that can 
learn to imitate the movement patterns via training on examples of the patient’s actual 
breathing. The algorithms must furthermore be capable of continual adaptation to 
changes in the motion patterns, through methods of continuous retraining as the patient 
breathes. Many different prediction algorithms have been investigated (see, e.g., [6]). 
Among them, adaptive neural networks have been found to be an effective machine 
learning approach to this problem. They are the focus of this chapter.

11.2	 �Using an Artificial Neural Network (ANN) to Model 
and Predict Breathing Motion

The basic mechanism for maintaining beam alignment with a moving tumor is illus-
trated schematically in Figs. 11.5 and 11.6. Figure 11.5 is an “open loop” control 
architecture that is appropriate for either a gating or a beam tracking scheme. The 
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tumor moves solely under the influence of patient movement (e.g., breathing). 
Respiration and/or tumor position sensors provide the input to the loop. The correc-
tive signal propagates through various system components, each of which takes 
some time to react, resulting in a cumulative delay before the beam responds with 
the correction. Figure 11.6 is a “closed-loop” architecture in which the system’s 
response combines with the patient’s anatomical movement to influence the posi-
tion of the target relative to the beam isocenter and thus the input to the loop. This 
is required for an adaptive system that moves the couch and patient relative to the 
beam as the tumor moves, so as to keep the tumor at a fixed position (set point) in 
space. In this case, respiration and couch shifts combine to move the tumor. In both 
architectures, the tumor position can be established either by following a surrogate 
breathing signal that correlates with tumor motion or by directly observing the 
tumor’s position or both.

The subject of this chapter is the control loop element identified in Figs. 11.5 and 
11.6 as the “correlator/predictor”. This element receives as input some measure-
ment of breathing and provides the anticipated position of the tumor as input to the 
beam or couch controller. To allow for control loop delays, the “correlator/predic-
tor” must emulate the patient’s breathing in order to predict the future respiratory 
signal and/or tumor position.

An artificial neural network (ANN) is a trainable machine learning algorithm. 
One form that is very useful for predicting a signal amplitude has the basic archi-
tecture shown in Fig. 11.7. In this kind of application, we have some measured 
signal S(t) as input and a future instance of that signal S(t + n) as the output target. 
The job of the ANN is to make an estimate S’(t + n) of the future target signal 
from samples of the input signal. The input layer of the network is provided with 
discrete measurement samples from the past signal history, the hidden layers com-
pute weighted combinations of the input data, and the output layer delivers an 
estimate of the target signal at a future time. In Fig. 11.7 the target signal is a 
future sample of the input signal, in which case the network is trained to imitate 
the input signal so that it can predict its future behavior. When the target signal 
finally arrives at time t + n, the prediction S’(t + n) is compared to it, an error is 
computed, and this error is used to adjust the network weights so as to produce a 
more accurate prediction of the next sample. Figure 11.8 shows a configuration to 
use the input signal S(t) to predict a different signal P(t) that is correlated in some 
way with the input signal. In this case the network is trained to predict the corre-
lated target signal from the input. The target prediction might be for the present 
moment or some future time.

In our breathing prediction problem, we identify the input data with a sequence 
of discrete measurements of the patient’s breathing. This could be as simple as the 
time history of the amplitude of a single breathing signal, such as a moving marker 
[29] or spirometer signal [15, 54], or it could comprise simultaneous measure-
ments of multiple breathing signals [53]. If we are only interested in predicting 
breathing movement to compensate for a treatment system’s lag time, then the 
target signal would be a future instance of the patient’s measured breathing, and 
the network’s output would be an estimate of that future instance. If we are 
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interested in deducing the tumor position from the measured breathing signal, 
then the input signal would be a breathing surrogate measurement, and the target 
data would be a measurement of the tumor’s spatial position at some particular 
time. It could be the tumor position at the present time, in which case the ANN 
makes a spatial correlation between the tumor and breathing motions, or it could 
be the future position of the tumor, in which case the network performs both a 
correlation and a temporal prediction to arrive at a good estimate of the tumor 
location.

11.3	 �Neural Network Architectures for Correlation 
and Prediction

11.3.1	 �The Single Neuron, or Linear Filter

We can introduce the basic computational components of an artificial neural net-
work for correlation and prediction by considering a simple network configured to 
predict the future amplitude of a single breathing signal sampled at discrete time 
intervals. It begins with a single neuron, as shown in Fig. 11.9 (This has historically 
been known as a linear perceptron). The input is the amplitude history of the mea-
sured signal S(t), sampled at n intervals of τ seconds. For breathing, which has a 
period of a few seconds for most people, τ might be on the order of 100 ms. We take 
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Fig. 11.7  An artificial neural network architecture to predict a signal amplitude S(t)
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the N most recent samples. Each sample is multiplied by a weight wi and the N 
samples are summed:

	
S t w S t iN

i
i′ = −

=1
∑( ) ( )t

	
(11.1)

If we stop here, we have a simple linear filter, where S’(t) is the filter’s estimate of 
the signal amplitude at the present time, based on the previous N samples. S’(t) is 
compared to S(t) and the error is used to adjust the weights until the difference is 
minimized. If we want it to predict S at some future time t + Δt, rather than the pres-
ent, we wait Δt seconds for the actual signal to arrive, compare it to S’ to find the 
error, and adjust the weights accordingly.

The linear filter (i.e., a single neuron) in Fig. 11.9 and Eq. 11.1 can do a reason-
able job of predicting breathing, provided that the pattern isn’t too changeable or 
irregular [31]. It provides a starting point to introduce several basic elements in the 
development of ANNs for prediction and correlation.

The weights are initially optimized in the training stage. For a basic signal pre-
diction filter, this typically consists of presenting the filter with prerecorded signal 
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Fig. 11.8  An ANN configured to predict a different signal P(t + n) that is correlated with the input S(t)
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histories that are representative of the signal that one ultimately wants to predict. 
For example, if one wants a filter customized to emulate and predict a particular 
patient’s breathing, one begins by recording a segment of the patient’s breathing 
signal. This is presented to the filter incrementally via a sliding window that is N 
samples wide. The filter gets a set of N samples up to a time t at the inputs, makes a 
prediction for t + Δt, compares the prediction to its target (which is the recorded 
signal at t + Δt), adjusts the weights, steps forward one sample, and repeats the pro-
cess. This is an example of supervised sequential training. Sequential training has 
the advantage that, as the filter is presented with new breathing data that it hasn’t 
seen before, it can continue the process, retraining continuously to adapt to new 
breathing patterns.

The initial training process must be done in such a way that it doesn’t “see” 
future samples in the training stage before they would actually arrive in real 
time.

The simplest training algorithm for a linear neuron is the LMS (least mean 
square) method. Let Si be the vector of N input samples from the ith training signal 
history, let Wi be the vector of N weights assigned to the inputs, and let εi be the 
difference between the predicted and target signal sample. The updated weight 
vector is

	 W W Si i i i+ = +1 ae 	 (11.2)

where α is a parameter that determines the speed of convergence. In the case of 
sequential training, each training signal history Si is simply the previous signal his-
tory advanced by one sample.
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Fig. 11.9  A simple linear filter for prediction
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There are numerous other algorithms to update the weights. For a more compre-
hensive review of ANN training algorithms, see, for example, Haykin [13] or 
Haykin [12] or another introductory textbook on neural networks.

11.3.2	 �The Basic Feedforward Artificial Neural Network 
for Prediction

Soon after the single-neuron perceptron was proposed as a primitive machine learn-
ing algorithm for pattern recognition, Minsky proved that it, and any linear combi-
nation of neurons performing the function of Eq.  11.1, could only do linear 
discrimination and was incapable of performing even a simple exclusive-or function 
[28]. This led to the development of nonlinear networks of neurons for more com-
plex pattern recognition and signal processing. Figure 11.10 is a schematic of the 
simplest nonlinear neural network – a feedforward network with one hidden layer – 
for signal prediction. The inputs are distributed in parallel to two or more neurons 
like the one in Fig. 11.9 (the simple linear filter). These make up the “hidden” layer. 
(The layer is “hidden” because it can’t be reached directly from the outside.) 
The output x of each neuron is passed through a nonlinear “activation” function f(x) 
(the  sigmoid function in Eq.  11.3 is the most commonly used), weighted, and 
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Fig. 11.10  A basic feedforward network with one hidden layer of neurons and a single neuron in 
the output layer
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summed with the others in the output neuron, which delivers the final signal 
estimate.

	
y f x e x= = + −( ) ( )1/ 1 	 (11.3)

	
df dx y y/ 1= −( ) 	 (11.4)

The activation function must be nonlinear; otherwise, the network is reducible to a 
single linear neuron and nothing is gained.

11.3.3	 �Training the Feedforward Network

Each input to each neuron in the hidden and output layers in Fig. 11.10 has an inde-
pendently variable weight. However, the weights in the hidden layer are “blocked” 
from the output signal error by the nonlinear activation function. This prevents a 
simple linear generalization of the LMS algorithm in Eq.  11.2. The problem is 
solved by the method of error back propagation.

Although the basics of back propagation can be found in any textbook on neural 
networks (e.g., [12]), there is some advantage to providing them here, using the 
simple two-layer network in Fig. 11.10 as the architecture. Let layer 1 be the hidden 
layer and layer 2 be the output layer (in this case just one neuron). Let the index i 
apply to the data samples and j to the number of neurons in layer 1 (and also the 
equal number of input weights to layer 2). Let W1, j be the vector of weights for the 
jth neuron in layer 1 (with components w1, ji) and W2 be the weight vector for  
the output (layer 2) neuron (with components w2, j). The outputs of the layer 1 
neurons are x1, j before activation and y1, j after activation. The error in the predicted 
output signal is ε.

In the forward pass, the delta is calculated for layer 2:

	 D e2 .= 	

In the backward pass, the deltas for layer 1 propagate through the derivative of the 
transfer function:

	
D D1, j 1, j 1, j 2 2, jy 1 y w    .= −( )   	

The incremental changes to the weights in the two layers are then calculated (in this 
example via LMS):

	

d aD
d aD
w y

w S .
2, j 2 1,j

1,ji 1, j i

=
= 	

In addition to LMS, there are a number of other algorithms that can be used to 
update the weights [12, 13]. Regardless of which one is used, there are some general 
principles to be followed to get the best results. The first step is to initialize all of the 
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weights. The usual practice is to choose them randomly, because this gets the neu-
rons acting independently. However, there is always some chance that a random 
initialization will come up with an unfavorable filter that performs badly. This can 
be avoided by performing the random initialization and subsequent training multi-
ple times while testing each fully-trained filter on an independent validation signal. 
The set of weights that does the best job of predicting the validation signal becomes 
the optimal filter for application to test signals. The validation signal can be any part 
of the prerecorded signal that wasn’t used for training.

It is also generally the case that a single pass through the training data will not 
result in optimal convergence of the weights. It is therefore customary to run through 
the training data repeatedly, starting each subsequent training pass at the weights 
from the prior training pass. Each pass is called an epoch. However, there is the risk 
of overtraining the filter after too many epochs. In this case the filter becomes com-
pletely optimized to emulate the training data but cannot generalize effectively to 
signals it has not yet seen. This can be avoided by testing each epoch of trained filter 
on the validation data and terminating the training when the filter’s performance on 
the validation set is clearly worse than its performance on the training data.

The feedforward breathing prediction network in Fig. 11.10 can be generalized 
to perform temporal prediction and position correlation by comparing its output to 
some measure of tumor position, as in Fig. 11.8.

11.3.4	 �The Recurrent Network

A recurrent network is a closed-loop feedback architecture in which signals from 
the hidden and output layers are fed back to previous hidden layers and/or to the 
input layer. This architecture is inspired by the observation that the human brain is 
a recurrent network of neurons. In Fig. 11.11, a simple recurrent network for predic-
tion feeds the previous m − 1 predictions back to the input layer at each time step S(t) 
of the input signal. The output signals are held back by the prediction interval τ 
before they are supplied to the input, so that the error between S(t) and S’(t) can be 
computed and used to update the weights. The hoped-for advantage is that the raw 
input data from the (potentially noisy) measurements is supplemented by filtered 
data from the outputs that will smooth out the network’s response. A recurrent net-
work can be trained in the same way as a feedforward network, e.g., via back 
propagation.

11.3.5	 �Using a Kalman Filter to Predict/Correct as Part 
of the Training Loop

Consider a system that is being observed via periodic data samples. Suppose each 
data sample fluctuates randomly due to the behavior of the system itself (plant 
noise) and uncertainty in the measurements (measurement noise). If the system’s 
evolving state is governed by a linear function, then the best estimate of the next 
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sample is provided by the Kalman filter predictor, which is a continuously-updating 
algorithm that takes its present estimate of the system’s state, makes a prediction of 
the next signal sample, combines it with the next available data measurement, and 
calculates a correction to update the state of the system, which is then recirculated 
via a prediction/correction loop. Such a filter continuously adapts to the evolution of 
the system.

A breathing signal has variability that can be divided between two sources: 
irregularity in the actual breathing (plant noise) and errors in the observations 
(measurement noise). This has inspired studies to predict breathing with a Kalman 
filter. However, the breathing system is nonlinear, and consequently the Kalman 
filter must be generalized to an extended Kalman filter (EKF). The extended 
Kalman filter attempts to linearize the observations (typically via a Taylor expan-
sion) so that the basic Kalman prediction/correction algorithm can be used. 
Unfortunately, this has proved problematic, and the performance of an EKF for 
breathing has generally not been as favorable as other methods.

Looking back to Fig. 11.7, one sees that the weights are updated from the most 
recent error signal. These error signals also incorporate plant and measurement 
noise, which suggests that an extended Kalman filter can be used to train an ANN 
[51]. In this application it would be used to calculate (predict) each successive 
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Fig. 11.11  A basic recurrent network
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update to the weights, and thus the state of the ANN, rather than model and update 
the breathing state itself. This could combine the advantages of both the ANN and 
the EKF. Figure 11.12 illustrates the strategy. This breathing prediction architecture 
has been studied by, e.g., Lee et al. [21], who present the details for computing the 
EKF prediction/correction of the network weights.

A recurrent EKF-ANN with p outputs describes the system state with a vector of 
s neuron weights, which requires an error covariance matrix of size s2 and compu-
tational complexity of order O(ps2). This can become demanding when there are a 
large number of inputs to the network. However, it is possible to decouple the indi-
vidual weights in the EKF stage, so that the error covariance matrix becomes block 
diagonal and the computational complexity is reduced to order O(ps) [21, 37].

11.3.6	 �A Network with Multiple Breathing Signal Inputs

The discussion of ANNs for breathing prediction and correlation has so far used 
the simple case of a single one-dimensional breathing signal S(t) supplied as input. 
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Fig. 11.12  A recurrent network employing an extended Kalman filter to compute the updates to 
the weights
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In a clinical setting one can often have multiple sensors, each measuring up to three 
spatial degrees of freedom in movement. Figure 11.13 illustrates such a situation, in 
which the CyberKnife (Accuray Incorporated, Sunnyvale CA) utilizes an array of 
optically-tracked infrared emitters distributed on the patient’s chest and abdomen to 
record breathing. The breathing data are correlated with periodic X-ray measure-
ments of tumor position to provide a targeting signal to the linear accelerator, which 
makes compensating corrections to the treatment beam’s direction [42, 43]. This 
has the advantage of multiple redundant measurements to reduce the influence of 
measurement noise and the capacity to determine during training whether the patient 
is a chest or abdominal breather.

The most basic generalization to m breathing signal sources is simply to make up 
an input layer that provides n taps of each signal, for a total of nm input nodes. 
However, for a breathing patient, the m sets of input samples will be correlated with 
one another. In the EKF-ANN this correlation will be reflected in the error covari-
ances. This can be dealt with by coupling the Kalman filters for each signal channel 
(while keeping the weights decoupled, as above). This has been studied by Lee et al. 
[21]. Alternatively, one can make a principal component analysis (PCA) of the sig-
nals to obtain an input vector of maximally-uncorrelated data.

11.4	 �Performance of Neural Networks to Predict  
Tumor Motion

The problem of predicting breathing with an artificial neural network has been stud-
ied by a number of researchers (e.g., [4, 11, 16, 17, 21, 29, 32, 33, 40, 44]).

Fig. 11.13  An array of 
optically-tracked LED 
markers to measure breathing

11  Artificial Neural Networks to Emulate and Compensate Breathing Motion



218

11.4.1	 �Breathing Prediction Examples for a Simple  
Feedforward Network

A feedforward network can have more than one hidden layer, each of which can 
have multiple neurons. It can also have more than one neuron in the output 
layer (cf Fig. 11.14). The output of each hidden neuron is passed through the 
activation function before it is summed by the neurons in the next layer. It has 
been found, however, that a feedforward network with just one hidden layer of 
two neurons, and one output neuron, can predict breathing more or less as well 
as more complicated layered architectures [4, 16, 29]. We can therefore use 
such a simple network to learn some important things about basic breathing 
prediction. The following examples of feedforward ANN results for breathing 
prediction were all obtained with a single breathing amplitude (displacement 
of a chest marker) for the input signal, two neurons in the hidden layer, a sig-
moid activation function, and one output neuron (for the future signal ampli-
tude). After initial training via LMS, the network was updated (adapted) each 
time a new breathing data point became available. To quantify the accuracy of 
breathing prediction, the dimensionless quantity of normalized root-mean-
square error (Eq. 11.5) was used to compare the predicted (Pi) and actual (Di) 
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future amplitudes, for prediction horizons (i.e., lag times) ranging from 100 to 
500 ms.
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Here μ is the mean of all of the observations.
There are several parameters to determine when designing the feedforward neural 

network prediction filter – the length (in seconds) of the input signal history and the 
number of samples in that history (i.e., the sampling rate), the number of training 
epochs, and the training rate α in the LMS updating rule (Eq. 11.2). Without going 
into detail about the testing of the network, which is reported in detail in Murphy and 
Pokhrel [33], it suffices to say that the performance of the network in predicting a 
variety of different breathing examples was explored by varying each of these net-
work parameters, to find the values that provided the best results. One obvious ques-
tion to ask is whether a single network setup can do a reasonable job of predicting a 
wide range of breathing patterns or if the filter setup needs to be optimized to each 
individual patient. To answer this question, the filter setup was first optimized for 
each patient breathing history, and its accuracy was noted. Then a globally-optimal 
sampling length and rate, number of training epochs, and training rate were identified 
in the results and used to configure a standardized filter, which was then tested against 
all of the individual patient histories. Figure 11.15 shows the results [33].

Patients 1–14 were randomly selected from a cohort treated for lung cancer and 
displayed a wide range of breathing patterns; patients 15–27 were healthy volun-
teers coached to regularize their breathing via audiovisual feedback [8, 9]. The 

Fig. 11.15  Prediction accuracy of an ANN customized to each patient compared to the accuracy 
of an ANN with a fixed configuration [33]
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standardized filter did essentially as well as the personalized filter for the healthy 
coached patients and continued to do reasonably well even for the most erratic lung 
cancer patients. This offers encouragement that it is not necessary to go through an 
involved filter optimization process for each patient.

The accuracy of any predictive filter can be expected to diminish if the breathing 
pattern changes over time, simply because the filter must retrain itself to adapt to the 
changes, and that takes time. This can be demonstrated by calculating a breathing regu-
larity measure and then looking at prediction accuracy as a function of that measure.

For a finite length of continuous patient breathing signal S(t), the autocorrelation 
coefficient C(τ) is defined as the cross-correlation integral of S(t) with itself, at 
delay time τ:

	
C S t S t dtt t( ) ( ) ( )= −∫ 	 (11.6)

For a stationary periodic signal, the average value of C(τ) versus τ will be approxi-
mately constant, while for a nonstationary (time-changing) signal the average of C(τ) 
will become smaller with increasing τ. We can characterize the stability of the signal 
by the inverse of the rate at which the average correlation coefficient decays with τ. 
Call this the correlation decay time. To compute the decay time, a 60 s window was 
set at a point in the breathing time series, and C(τ) was computed for 0 < τ < 60 s. The 
peak values of the positive half cycle of the autocorrelation coefficient were plotted 
in a semilog scale as a function of τ. The inverse slope of the graph gave the decay 
time for that particular position of the breathing signal window. A rapidly changing 
signal will have a short decay time; a slowly changing signal will have a long decay 
time; a perfectly stationary signal will have an infinite decay time.

Figure 11.16 shows the prediction accuracy of the ANN filter as a function of the 
breathing signal’s decay time (from [33]). As expected, rapidly evolving breathing 
patterns are harder to predict, no matter how well the filter is designed.
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Fig. 11.16  The prediction accuracy of a neural network filter as a function of the stability of the 
breathing signal, as characterized by the decay time of its autocorrelation. Shorter decay times 
correspond to more rapidly changing breathing patterns (From [33])
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11.5	 �Summary

Adaptive breathing compensation during radiation therapy requires a means to 
predict tumor movement either directly from imaging data or indirectly from sur-
rogate breathing data. Although breathing appears superficially regular in most indi-
viduals, it is actually variable in period and amplitude. Furthermore, the relative 
movement of different parts of the anatomy under the influence of breathing can 
change over time, making it difficult to associate tumor movement with other sur-
rogate movements. Machine learning algorithms offer an attractive way to emulate 
these complicated behaviors without recourse to biomechanical modeling. They are 
intrinsically capable of conforming to individual breathing patterns and adapting in 
real time to changes in breathing behavior.

The artificial neural network is a simple machine learning algorithm that has 
been shown to be effective at predicting breathing behavior. It offers a clear advan-
tage over a basic linear adaptive filter without much additional computational bur-
den [31]. More usefully, it has been found by numerous researchers that an 
acceptable level of prediction accuracy can be achieved with a very simple network 
architecture and that adding feedback loops or more layers with more neurons often 
provides little or no further improvement [4, 16, 29]. Furthermore, it is not generally 
necessary to customize the network architecture to each individual patient [33]. 
This is most clearly the case when steps are taken to regularize an individual’s 
breathing through training and feedback [33].

While the latencies of various motion-adaptive therapy devices can be (and have 
been) systematically reduced, so that temporal prediction becomes less important in 
a tumor tracking system, the problem of tracking the tumor’s motion from surrogate 
breathing signals remains. This application of ANNs has not been studied as well as 
temporal prediction and invites further investigation.
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  12      Image-Based Motion Correction 

             Ruijiang     Li     

    Abstract  
  This chapter will discuss dedicated machine learning techniques for motion 
management using imaging information. We will cover a wide range of well- 
established machine learning techniques, including principal component analy-
sis, linear discriminant analysis, artifi cial neural networks, and support vector 
machine, etc. Motion management techniques including both respiratory gating 
and real-time tumor tracking will be discussed. In this chapter, we will demon-
strate how to utilize domain-specifi c knowledge and prior imaging information 
to achieve more accurate and robust motion management in radiotherapy. Finally, 
future research directions in the clinical applications of machine learning for 
motion management will be discussed.  

12.1          Introduction 

 Radiation therapy is a major modality for treating cancer patients. Studies have 
shown that an increased radiation dose to the tumor will lead to improved local 
control and survival rates [ 16 ,  18 ,  19 ,  24 ]. However, in many anatomic sites, e.g., 
lung, liver, and pancreas, the tumor can move signifi cantly with respiration, up to 
~2–3 cm [ 17 ,  21 ]. The respiratory tumor motion has been a major challenge in 
radiotherapy to deliver suffi cient radiation dose without causing secondary cancer 
or severe radiation damage to the surrounding healthy tissue. 

 Motion-adaptive radiotherapy explicitly accounts for the tumor motion during 
radiation dose delivery, in which respiratory gating and tumor tracking are two 

mailto:rli2@stanford.edu


226

promising approaches [ 6 ,  8 ]. Respiratory gating limits radiation exposure to a 
 portion of the breathing cycle when the tumor is in a predefi ned gating window [ 5 ]. 
Tumor tracking, on the other hand, allows continuous radiation dose delivery by 
dynamically adjusting the radiation beam so that it follows the tumor movement in 
real time [ 7 ]. For either technique to be effective, accurate measurement of the 
 respiration signal is required. 

 Conventional methods for respiration measurement are either invasive or 
unreliable. Methods based on fiducial markers require an invasive implantation 
procedure and involves serious medical risks to the patient, e.g., pneumothorax 
for lung cancer patients [ 4 ]. In addition, the fiducial markers may drift relative 
to the tumor, which will lead to erroneous results if only the markers are 
tracked. On the other hand, measurement of external respiration surrogates 
using infrared reflective marker, spirometer, pressure belt, etc. generally lacks 
sufficient accuracy to infer the tumor position, because the relations between 
internal tumor and external surrogate may change over time, either intra- or 
inter-fractionally [ 22 ,  23 ]. 

 Accurate, noninvasive methods that are based on direct measurement of 
internal patient anatomy and the tumor are critically needed, in order to realize 
the full potential of motion-adaptive radiotherapy. The onboard x-ray imaging 
system is widely available on modern linacs and provides effective means of 
imaging internal anatomy. However, this brings considerable challenges when 
fi ducial markers are not present in radiographic images, because it is often very 
diffi cult for humans to visualize the tumor directly in projection images. Various 
machine learning techniques have been applied to solve this challenging 
problem. 

 In this chapter, we will summarize the recent advances in the application of 
machine learning techniques for motion management in radiotherapy. Techniques 
developed for both respiratory gating and real-time tumor tracking will be dis-
cussed. We will demonstrate how to utilize domain-specifi c knowledge and prior 
imaging information to achieve more accurate and robust motion management in 
radiotherapy. Finally, we point out some future research directions that may further 
improve the accuracy of tumor localization.  

12.2     Respiratory Gating Based on Fluoroscopic Images 

 The initial efforts on image-based respiratory gating have been mainly focused on 
template matching [ 1 ,  3 ]. In this approach, a set of representative reference tem-
plates are fi rst generated which corresponds to the treatment positions of the target 
in the gating window using fl uoroscopic images acquired during the patient setup. 
The similarity scores between the reference templates and the incoming fl uoro-
scopic images acquired during treatment delivery are calculated and then converted 
into gating signals. Template matching does not fully utilize the information, in 
particular, those images outside the gating window. 
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 From a machine learning perspective, respiratory gating can be formulated as a 
binary classifi cation problem (Fig.  12.1 ), because the output of the gating system is 
binary, either beam on or beam off. The advantage of the machine learning approach 
over conventional template matching is that it utilizes both positive examples (inside 
the gating window) and negative examples (outside the gating window) in generat-
ing the gating signal.  

 One major issue with learning from images is the large dimensionality of the 
raw data. Even if a smaller region of interest (ROI) is used, each ROI image 
typically has a dimensionality of 10,000. In addition, high-dimensional data 
also requires increased computational cost, which creates problems for real-
time applications such as respiratory gating. Thus, it is crucial to apply dimen-
sionality reduction techniques to images before any learning procedure is 
performed. 

 Cui et al. [ 2 ] presented the fi rst study using machine learning approaches for 
respiratory gating. In their approach, the fl uoroscopic images acquired during 
patient setup are fi rst transformed into a lower dimensional space using principal 
component analysis (PCA) for training purposes. These samples with class label 
are used to train a classifi er based on support vector machine (SVM). After the 
optimal classifi er is determined, new images are acquired during treatment deliv-
ery, which are projected to the same PCA feature space, and passed to the SVM 
classifi er obtained in the training session. The output of the classifi er is the pre-
dicted label of the new image, which determines whether to turn the beam on or off 
at any given time. When tested on fi ve sequences of fl uoroscopic images from fi ve 
lung cancer patients, the SVM classifi er was found to be slightly more accurate on 
average (1–3 %) than the template matching method, and the average duty cycle is 
4–6 % longer. 
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  Fig. 12.1    Cast the gating problem ( a ) into a binary classifi cation problem ( b ) (Reprint from Cui 
et al. [ 2 ])       
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 In a follow-up study, Lin et al. [ 15 ] performed more comprehensive evalua-
tions of different combinations of dimensionality reduction and classifi cation 
techniques. They investigated four nonlinear dimensionality reduction techniques, 
including locally linear embedding (LLE), local tangent space alignment (LTSA), 
Laplacian eigenmap (LAP), and diffusion maps (DMAP). For classifi cation, 
a three-layer artifi cial neural network (ANN) was used in addition to 
SVM. Performance was evaluated on ten fl uoroscopic image sequences of nine 
lung cancer patients. It was found that among all combinations of dimensionality 
reduction techniques and classifi cation methods, PCA combined with either ANN 
or SVM achieved a better performance than the other nonlinear manifold learning 
methods. ANN when combined with PCA achieved a better performance than 
SVM, with 96 % classifi cation accuracy and 90 % recall rate, although the target 
coverage is similar at 98 % for the two classifi cation methods. Furthermore, the 
running time for both ANN and SVM with PCA is around 6.7 ms on a Dual Core 
CPU, within tolerance for real-time applications. Overall, ANN combined with 
PCA was found to be a better candidate than other combinations for real-time 
gated radiotherapy. 

 In the above previous works, PCA was used as a dimensionality reduction 
technique to preprocess the data. In [ 12 ] the generalized linear discriminant anal-
ysis (GLDA) was applied to the respiratory gating problem. The fundamental 
difference from conventional dimensionality reduction techniques is that GLDA 
explicitly takes into account the label information available in the training set 
and therefore is effi cient for discrimination among classes. On average, GLDA 
was demonstrated to perform similarly with PCA trained with SVM at high nom-
inal duty cycles and outperform PCA in terms of classifi cation accuracy (CA) 
and target coverage (TC) at lower nominal duty cycle (20 %). A major advantage 
of GLDA is its robustness, while CA and TC using PCA can be reduced by up to 
10 % depending on the data dimensionality. With only 1-dimensional feature 
vectors, GLDA is much more computationally effi cient than PCA. Therefore, 
GLDA is an effective and effi cient method for respiratory gating with markerless 
fl uoroscopic images.  

12.3     Real-Time Tumor Tracking Based 
on Fluoroscopic Images 

 Since the output of a real-time tumor tracking system is a continuous variable, it can 
be formulated as a regression problem from a machine learning perspective. Lin 
et al. [ 14 ] proposed to use learning algorithm for tumor tracking in fl uoroscopic 
images, based on the observation that the motion of some anatomic features in the 
images may be well correlated to the tumor motion (Fig.  12.2 ). The correlation 
between the tumor position and the motion pattern of surrogates can be captured 
by regression analysis techniques. The proposed algorithm consists of four main 
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steps: [ 1 ] selecting surrogate regions of interest (ROIs), [ 2 ] extracting spatiotempo-
ral patterns from the surrogate ROIs using PCA, [ 3 ] establishing regression between 
the tumor position and the spatiotemporal patterns, and [ 4 ] predicting the tumor 
location using the established regression model. In a clinical setting, the fi rst three 
steps would be performed using training image data before the treatment, while the 
fi nal step would be performed in real time using the image data acquired during 
treatment delivery.  

 They evaluated several regression techniques for tracking purposes, includ-
ing linear regression, second-order polynomial regression, ANN, and SVM. The 
experimental results based on fl uoroscopic sequences of 10 lung cancer patients 
demonstrate a mean tracking error of 1.1 mm and a maximum error at a 95 % 
 confi dence level of 2.3 mm for the proposed tracking algorithm. The results sug-
gest that the machine learning approaches are promising for real-time tumor 
tracking. However, these methods have to be fully validated before their clinical 
use. In particular, PCA is sensitive to the tumor size and position, so if the tumor 
changes size or relative position with respect to the chosen surrogates, the 
regression model needs to be re-evaluated. This suggests that a separate training 
data set may be required for each treatment fraction for the learning technique 
to work well. 
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  Fig. 12.2    3D embedding of the diaphragm ROI images using PCA. Representative images are 
shown next to circled points at different location in the 3D PCA space, representing different posi-
tions of the diaphragm (Reprint from Lin et al. [ 14 ])       
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 Li and Sharp [ 13 ] proposed a fl uoroscopic fi ducial tracking method that exploits 
the spatial relationship among the multiple implanted fi ducials. The spatial rela-
tionships between multiple implanted markers are modeled as Gaussian distribu-
tions of their pairwise distances over time. The means and standard deviations of 
these distances are learned from training sequences, and pairwise distances that 
deviate from these learned distributions are assigned a low spatial matching score. 
The spatial constraints are incorporated in two different algorithms: a stochastic 
tracking method and a detection-based method. In the stochastic method, hypoth-
eses of the “true” fi ducial position are sampled from a pre-trained respiration 
motion model. Each hypothesis is assigned an importance value based on image 
matching score and spatial matching score. Learning the parameters of the motion 
model is needed in addition to learning the distribution parameters of the pairwise 
distances in the proposed stochastic tracking approach. In the detection-based 
method, a set of possible marker locations are identifi ed by using a template 
matching-based fi ducial detector. The best location is obtained by optimizing the 
image matching score and spatial matching score through non-serial dynamic pro-
gramming. The proposed method was evaluated using a retrospective study of 16 
fl uoroscopic videos of liver cancer patients with implanted fi ducials. On the patient 
data sets, the detection- based method gave the smallest error (0.39 ± 0.19 mm). The 
stochastic method performed well (0.58 ± 0.39 mm) when the patient breathed con-
sistently; the average error increased to 1.55 mm when the patient breathed differ-
ently across sessions.  

12.4     Real-Time Tumor Tracking via Volumetric Imaging 
Based on a Single X-Ray Image 

 Li et al. [ 9 ] have recently made a breakthrough in reconstructing volumetric images 
and localizing lung tumors in real time using a single x-ray projection image. The 
method is based on an accurate patient-specifi c lung motion model and uses the CT 
images acquired during simulation as the reference anatomy. For lung cancer 
patients, a respiration-correlated 4DCT is typically acquired for treatment simula-
tion purposes. Deformable image registration (DIR) is performed between a refer-
ence CT image and all other CT images, and a set of displacement vector fi elds 
(DVFs) will be obtained, which basically tells how each voxel/point in the lung 
moves, or its 3D motion trajectory. Given the dense DVFs, a patient-specifi c lung 
motion model is built based on PCA. The PCA motion model is accurate, effi cient, 
and fl exible and imposes implicit regularization on its representation of the lung 
motion [ 11 ]. As a result, a few scalar variables (i.e., PCA coeffi cients) are suffi cient 
in order to accurately derive the dynamic lung motion for a given patient. Therefore, 
limited information, e.g., a single x-ray projection, can be used to reconstruct the 
volumetric image of the patient anatomy, in which the PCA coeffi cients are opti-
mized such that the projection of the reconstructed volumetric image corresponding 
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to the new DVF matches with the measured x-ray projection. Once the optimal DVF 
has been found, the 3D tumor location relative to the reference position defi ned in 
4DCT can be determined. The algorithm was implemented on graphic processing 
unit (GPU). The average computation time for image reconstruction and 3D tumor 
localization from an x-ray projection ranges between 0.2 and 0.3 s on the C1060 
GPU card. 

 The algorithm was evaluated on five lung cancer patients for tumor tracking 
accuracy [ 10 ]. The raw cone beam x-ray images during the CBCT scan for 
treatment setup purposes were used retrospectively to test the algorithm. For 
all patients in this study, there were no implanted fiducial makers. To evaluate 
the tracking accuracy, the tumor was manually marked by the clinician in the 
largest continuous set of projections in which the tumor was visible. All five 
patients had somewhat irregular breathing during the CBCT scans. Figure  12.3  
shows the localization results for two patients. The average tumor localization 
error is <2 mm for all five patients [ 20 ]. Figure  12.4  shows the raw x-ray pro-
jections and the coronal and sagittal views of the reconstructed images at two 
breathing phases. Overall, the algorithm gives realistic and consistent anatomy 
during respiration, including tumor, diaphragm, and bronchial and vascular 
structures.    

  Fig. 12.3    Tumor 
localization results ( dots ) for 
two patients with irregular 
breathing. The solid lines are 
ground truths. Only the 
direction with the largest 
motion (axial) is shown. The 
average error is 1.9 and 
0.9 mm for the two patients, 
respectively       
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12.5     Summary and Future Directions 

 A variety of well-established machine learning approaches have been applied to 
respiratory gating and real-time tumor tracking, such as PCA, LDA, ANN, SVM, 
etc. The application of machine learning in image-based motion management has 
been shown to be promising, with gating accuracy of above 95 % and tracking 
errors of ~2 mm. However, these results were achieved often in well-controlled, 
favorable conditions. For example, most analysis was done in the anterior- posterior 
direction, in which the tumor is more clearly visualized. Also, many require a sepa-
rate training data set on each treatment fraction in order to achieve an optimal 
performance, which may not be practical in clinical settings. These logistic issues 
need to be taken into account for their practical use. For these techniques to be 

  Fig. 12.4    Real-time image reconstruction and tumor localization results.  Left column : cone beam 
x-ray projection image ( top ) and the coronal and sagittal views of the reconstructed image at an 
EOE phase ( middle and bottom ).  Right column : same as left column, except at an EOI phase.  Red 
arrow  indicates the tumor       
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adopted in the clinic, much more validation needs to be conducted. In particular, 
methods that are more robust, reliable, and require minimum human input are 
 critically needed.     
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13Detection and Prediction 
of Radiotherapy Errors

Issam El Naqa

Abstract
In spite of rigorous regulations for radiotherapy cancer patients’ treatment, 
patient safety may be compromised by relatively rare but deadly errors that can 
occur during complex treatment planning and delivery of radiotherapy. Therefore, 
methods for automation of quality assurance (QA) procedures are desired. Here, 
we present a generic framework for QA using machine learning. Moreover, we 
demonstrate a new tool for detecting radiotherapy errors using advanced machine 
learning algorithms. The proposed approach utilizes anomaly detection based on 
one-class estimation to overcome computational challenges of detecting rare 
events encountered in currently existing techniques. The proposed anomaly 
detection approach captures regions in the input space of radiotherapy data where 
the safe class probability density lives and estimates errors as outliers that reside 
outside this support region. To model nonlinear support regions, we used a sup-
port vector machine (SVM) formalism, in which the QA data is mapped into 
higher dimensional space using kernel functions to achieve maximal separability 
and is denoted QA-SVM detector. We demonstrated our method using forty-
three treatment plans from patients who received stereotactic body radiation 
therapy (SBRT) for lung cancer. Our preliminary results indicate a training accu-
racy of 84 % on cross-validation and testing accuracy of 80 % with 100 % posi-
tive predictive value and 80 % negative predictive value.
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13.1	 �Introduction

Cancer patient treatment outcomes and their safety despite rigorous regulations may be 
compromised by rare but deadly errors that can occur during complex treatment plan-
ning and delivery of radiotherapy, as highlighted by recent editorials in national and 
international media reports [1]. Quality assurance (QA) in radiotherapy follows recom-
mendations of national and international bodies such as the American Association of 
Physicists in Medicine (AAPM) and its task group (TG) reports. For instance, TG-40 
report and its updated version TG-142 provide a comprehensive QA program for insti-
tutional radiation oncology practice accounting for potential risks during planning and 
delivery of high-energy irradiation and harmonizing the treatment of patients and 
accommodating advances in technology [2, 3]. The QA process is further complicated 
for credentialing institutions for multi-institutional clinical trials. A study by the 
Radiological Physics Center (RPC) anthropomorphic phantom has shown the failure 
rate could be as high as 28, 14, 9, and 25 % in sites of the head and neck, prostate, liver, 
and lung, respectively [4]. The Task Group 100 of the AAPM has taken a broad 
approach to these issues and has been developing a general framework based on failure 
mode and effect analysis (FMEA) for designing QA protocols [5]. An alternative 
approach that is better able to account for the complexities in radiotherapy processes 
and lack of well-defined physics in many cases of these failures could be based on 
machine learning classification methods. We conjecture that there is a need for such 
data-driven approaches in radiotherapy QA, which are able to detect such critical errors 
and mitigate their detrimental impact on patients undergoing radiotherapy. However, 
the fact that such errors are luckily rare events and do not have well-defined character-
istics would make the learning problem challenging and intractable mathematically for 
classical classification (supervised learning) or clustering (unsupervised learning). 
Therefore, we propose to pose the radiotherapy error detection/prediction problem as a 
statistical learning problem from one class (no events) and treat these rare error events 
as anomalies or outliers. This approach is referred to in machine learning as anomaly 
detection and would overcome the learning from severely imbalanced classes encoun-
tered in classical approaches of classification or clustering.

13.2	 �Anomaly Detection Using One-Class SVM

The one-class classifier recognizes that there is one class in the data (say, normal per-
formance), while everything else is considered an outlier or anomaly. In this approach, 
the one-class classifier would give the best functional estimate of dependencies in the 
radiotherapy system input data X (e.g., beam energy, arrangements, monitor units, 
dose-volume constraints, etc.) on their class label Y, a category variable that indicates 
the presence/absence of an anomaly (event error) through a mapping function (linear/
nonlinear) f(X). So, instead of solving the extremely hard problem of estimating the 
multivariate probability density function, which would allow us to solve whatever 
estimation problem by finding their corresponding marginal distribution, anomaly 
detection aims to capture domain regions in input space where the probability density 
lives (its domain support), i.e., a function such that most of the data will live in the 
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region where the function is nonzero and outside this support region would be consid-
ered an anomaly. Using a support vector machine (SVM) formulation as shown in 
Fig. 13.1, data are first mapped into a feature space using an appropriate kernel func-
tion (e.g., linear, polynomials, radial basis functions, etc.) and then maximally sepa-
rated from the origin using a proper hyperplane. The hyperplane parameters are 
determined by solving a quadratic programming problem [6]:

	
min
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(13.1)

subject to:

	
w x i l,i i i⋅Φ ≥ ρ− ξ , … ξ ≥( )( ) = 1,2,3, , 0 	 (13.2)

where w and ρ are hyperplane parameters, Φ is the map from input space to feature 
space, v is the asymptotic fraction of outliers (errors) allowed, l is the number of 
training instances, and ξi is a slack variable (penalizing misclassifications) as shown 
in Fig. 13.1. The decision function is given by:

	
f x w x( ) ( )( )= ⋅Φ −ρsgn 	 (13.3)

The training data could consist of examples of one class (safety class: f x( ) = +1 ), 
and the testing data could contain examples from safety and error classes. An 
f x( ) = −1  would indicate an anomaly (error event).

13.3	 �Application of Anomaly Detection to Radiotherapy QA

The application of machine learning to QA in radiotherapy involves multiple steps: 
data collection, extraction of relevant features for the safety endpoint of interest, 
grading of the safety endpoint, selection of appropriate learning algorithm, and 
defining the training/testing procedure. In Fig. 13.2, we show a corresponding flow-
chart for the example of the proposed error detection system using one-class SVM 

w

w

r x

w

Fig. 13.1  One-class 
SVM. The problem of 
anomaly detection becomes 
separating data from the 
origin using a hyperplane 
(adapted with permission)
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for QA of radiotherapy treatment planning. As shown, a one-class SVM anomaly 
detector is trained using extracted features from existing “safe” data. The extracted 
features could be treatment technique as well as cancer site dependent. Afterward, 
the trained anomaly detector is applied to new incoming treatment plans and a flag 
is turned on by the detector if an error is detected and the plan is sent back for review 
and this process is repeated till the plan is passed without any errors.

13.3.1	 �Dataset

To evaluate the proposed QA-SVM system for radiotherapy error detection, we con-
sidered a dataset of non-small cell lung cancer (NSCLC) patients who received 
stereotactic body radiation therapy (SBRT) as part of their treatment. The dataset 
consisted of 43 successfully treated SBRT patients who received 3 or 5 fractions 
with 6 or 18 MV beam energies on a linear accelerator (LINAC).

13.3.2	 �Feature Extraction

Features related to monitor units (MU), beam energies (MV), the number of beams, 
and the number of fractions, in addition to the percentage lung volume receiving 
20 Gy, were extracted from the DICOM files and were used to train the QA-SVM 
detector. Using principle component analysis (PCA), the top five features with high-
est explained variance were selected and used subsequently.

13.3.3	 �Evaluation Results

We used a combination of cases for testing that were considered “safe” and assigned 
class label “+1” and a set of randomly simulated cases, which were considered 

Archive of
radiotherapy

treatment planning
and delivery data

Feature extraction
(beam energies, MU,
dose-volume metrics,

etc)

Pre-processing
(normalization)

Train anomaly
SVM detector

Current
RT plan

Error
detected?

No

Accepted plan

Yes

Review
plan

Fig. 13.2  Flowchart for radiotherapy error detection using one-class SVM anomaly detection
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“unsafe” by adding different levels of white Gaussian noise to the data. These cases 
were assigned class label “−1.” A radial basis function (RBF) was used for kernel 
mapping, and the false-positive limit was set at 10 %.

As summarized in Table  13.1, the preliminary results indicate that a training 
accuracy on cross-validation of 84  % is attained, and a testing accuracy using 
5 original trained and 5 unsafe cases as described above was 80 % with 100 % true 
positive prediction value (PPV) and 80 % true negative prediction value (NPV). The 
false positives could be attributed to overlap with the positive class and represent 
border cases that need to be investigated on larger datasets.

�Conclusions
Quality assurance is an important part of safe radiotherapy planning and deliv-
ery. The complexity of radiotherapy processes suggests that data-driven learning 
approaches can provide robust solutions for detection and prediction of errors. 
In this work, we presented a new approach and tool based on machine learning 
to overcome the problem of direct modeling of QA errors and rare events in 
radiotherapy. The tool will be very valuable for automated QA and safety man-
agement for patients who undergo radiotherapy treatment.
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14Treatment Planning Validation

Ruijiang Li and Steve B. Jiang

Abstract
In this chapter, we will discuss the use of machine learning to detect errors in 
radiotherapy plans and charts. We will cover some general principles and estab-
lished techniques for detecting errors in radiotherapy. We will discuss the ratio-
nale for using machine learning to detect large errors or outliers in radiotherapy 
treatment plans. As a concrete example, an automated error detection system for 
radiation treatment plans will be described. The technique was based on unsu-
pervised machine learning, i.e., data clustering, and achieved over 90 % success 
rates in detecting outliers in over 1,000 treatment plans. Finally, future research 
directions in the clinical applications of machine learning for treatment planning 
validation will be briefly discussed.

14.1	 �Introduction

Adverse events and medical errors could happen in healthcare, resulting in signifi-
cant patient morbidity and mortality [1]. Such incidents are responsible for 44,000 to 
98,000 accidental deaths and over one million excess injuries each year [2, 3]. The 
severity of medical errors and adverse events in healthcare has made patient safety an 
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urgent and important issue [4]. Significant efforts have been made to improve patient 
safety in various aspects of healthcare and medical practices [5–8].

Cancer radiotherapy is unique from the point of view of radiation safety, since it 
is the only application of radiation sources in which very high doses are given delib-
erately to a part of a human body. When the radiation treatment is planned and 
delivered with a dose significantly different from the prescribed one, patient out-
come can be seriously compromised. For example, if the delivered dose is too low, 
tumor will not be controlled; if the dose is too high, acute and late complications 
(even death) can occur.

Incidents that compromise patient safety do happen occasionally, caused by 
either human error or equipment malfunction [9–13]. In the Panama incident [14], 
16 patients were severely overexposed to approximately twice the prescribed dose 
in the late 2000 and early 2001, resulting in eight treatment-related deaths. Another 
incident happened in early 2006, involving the death of a young female patient who 
received a radiation dose of 58  % higher than that intended while undergoing a 
course of radiotherapy [15]. Therefore, extreme caution is required for the safe and 
effective use of radiotherapy.

Complete avoidance of human errors is difficult, if not impossible, because 
radiotherapy is a very complex process, involving a large number of steps from 
the prescription of the treatment to the delivery of the radiation dose. Many 
records and communications are involved in those steps, between different pro-
fessionals and even with the patient. There is a combination of very different 
activities from manual to sophisticated computer-assisted techniques and high 
technology equipment.

Conventional approaches widely adopted in the radiotherapy community for 
reducing medical errors include independent calculation of monitor units (MU) and 
manual check of the data reported in the treatment chart. These approaches have 
been proven to be effective in reducing the occurrence of systematic errors before 
treatment delivery [11, 16, 17]. Other approaches include the use of portal imaging 
or in vivo dosimetry before or during the treatment to detect errors [12, 18]. Some 
efforts have been made to develop systematic approaches for collecting, processing, 
and reporting incidents [12, 13, 19–21].

14.2	 �Rationale of Using Machine Learning to Detect Errors

Machine learning techniques have recently been used to automatically detect and 
highlight potential errors in a radiotherapy treatment plan. Because there are hun-
dreds of parameters in a radiotherapy treatment plan and furthermore, the data 
structure is very complex; it is not feasible to develop an automated tool using rule-
based alert logic. Fortunately, most treatment parameters are well correlated due to 
the fact that in radiotherapy, there are only a limited number of well-established and 
accepted treatment guidelines presented in task groups’ reports. Patterns in the 
treatment plan parameters can be effectively learned from historical data from all 
previously treated patients.
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In radiotherapy, the treatment information system aggregates all treatment-
related patient data into a single, organized, radiotherapy-specific medical chart. It 
communicates with and controls the treatment machine, i.e., a medical linear accel-
erator. When a treatment plan is developed, all the treatment parameters are loaded 
to the information system. At that time, the error detection system will automati-
cally check the plan parameters before the treatment execution. When an outlier 
treatment parameter is detected, it will be highlighted for human intervention.

Given the relatively large natural variations in the clinical data (between different 
patients, treatment protocols, institutions), it is not realistic to try to detect small 
errors at the level of a few percent. We focus on the detection of large errors that 
may lead to catastrophic consequences, e.g., outliers, in radiotherapy treatment 
planning.

14.3	 �Machine Learning Applications for Outlier Detection

Here, we describe some recent applications of machine learning to detect large 
errors in a radiotherapy treatment plan. The basic idea was to cluster a large number 
of treatment plans for previously treated patients based on the plan parameters. 
Then, when checking a new treatment plan, the parameters of the plan will be tested 
to see whether or not they belong to the established clusters. If not, they will be 
considered as “outliers” and therefore highlighted to catch the attention of human 
experts in charge.

In a preliminary study, a simple treatment technique was used to demonstrate the 
principle [22]. Data for 1,650 prostate cancer patients treated with the “four-field 
box” technique were used. Both primary and boost treatments were included. 
A computer code was written to extract all the entries of a patient treatment plan 
from the IMPAC record and verification system (IMPAC Medical Systems, Inc., 
Sunnyvale, CA). In this study, to simplify the model, we only considered the most 
significant eight entries, which are the beam energies and monitor units (MUs) for 
the four radiation fields for each patient. Those eight entries were the so-called fea-
tures of a treatment plan in the terminology of computer clustering. They were 
referred to as EAP, EPA, ERL, ELL, MUAP, MUPA, MURL, and MULL for beam energies 
and MUs for anterior-posterior (AP), posterior-anterior (PA), right lateral (RL), and 
left lateral (LL) fields, respectively. The beam energies of the linear accelerators 
used for treating those patients were 6, 10, 18, and 23 MV. The monitor units ranged 
from about 50 to over 200. To provide equal weight for all the features, we normal-
ized them before clustering. All the features were normalized to have zero mean and 
unit standard deviation.

14.3.1	 �Clustering of Treatment Plan Data

Clustering is one of the most important data mining methods applied to uncover 
patterns and relations in complex medical datasets [23]. The goal of clustering is to 
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separate data into groups, called clusters, such that objects in the same cluster are 
similar to each other and dissimilar to objects in other clusters. The clustering 
method we used is K-means clustering [24, 25] (also known as Lloyd’s algorithm). 
K-means strives to minimize the sum-squared-error (SSE) criterion, which is the 
sum of the squared distance of each data point to its closest cluster center:
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1
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(14.1)

where Cj is the j -th cluster, μj is the center of the j -th cluster, and D stands for the 
distance between the two points. Each data point, x, is a vector described by the 
eight features (four beam energy values and four monitor units).

To select the number of clusters, we utilized the Bayesian Information Criterion 
(BIC) as follows [26]:
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where p X |q( )  is the likelihood of the data X = x xN1, ,…{ }  given the model 
parameters θ, M is the number of free parameters, N is the number of data points, and 
ln is the natural logarithm. To compute the likelihood, we assumed the following 
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points belonging to cluster j and θj as the parameters (mean and covariance) for 
cluster j. We set the means to be the k centroids in K-means. We estimate the covari-
ance matrix (Σ) of each cluster using the sample covariance matrix of the cluster 
found by K-means.
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where T is the matrix transpose operation. For the mixture weights, πj, we use the 
relative size of the cluster (the number of data points in the cluster divided by the 
total number of data points).

The formula for the log-likelihood is provided below:
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The point probability of each data point is calculated as:
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where d is the dimension (number of features) of the data. The number of free 

parameters, M, in our model is k kd k
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 is the number of parameters for the covariance matrices.
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K-means clustering may be trapped into a local optimum minimum. The quality 
of the final clustering solution depends on the initial selection of the k cluster cen-
ters. To avoid local minima, we used a modified version of PCA-Part [27]. PCA-
Part is a deterministic initialization method that has been shown to lead K-means to 
solutions that are close to optimum. PCA-Part is an initialization algorithm that 
hierarchically splits the data into two in the direction of the largest eigenvector (first 
principal axis) at each step until k clusters are obtained. K-means clustering aims to 
minimize the sum-squared-error criterion. The largest eigenvector with the largest 
eigenvalue is the direction, which contributes to the largest sum-squared-error. 
Hence, a good candidate direction to project a cluster for splitting is the direction of 
the cluster's largest eigenvector, which is the basis for PCA-Part initialization. Our 
modified algorithm integrates the K-means clustering algorithm into the PCA-Part 
initialization algorithm, in order to refine the results at each iteration. This modifica-
tion helps the partitions converge to final clusters with smaller SSE values.

14.3.2	 �Outlier Detection

Since there are a large number of patients involved, to avoid statistical bias, we 
randomly selected 1,000 patients as our training set and used the other 650 patients 
as testing set. The training set was used to build clusters, while the test set was used 
to test the model’s outlier detection capability.

We assumed that our training set comprises of normal (“correct”) treatments. We 
applied K-means clustering to extract similarity groups from these data. In K-means 
clustering, we assumed that each cluster came from a Gaussian distribution. Since 
our training data were examples of normal (“correct”) treatment, we tested a new 
treatment instance as correct or an outlier by testing whether it belongs to any of our 
Gaussian clusters.

We assigned a rule of classifying a test treatment instance as an outlier if its 
Euclidean distance from the closest cluster center is greater than a threshold. 
Because we had a probability distribution model for each cluster, we could set the 
threshold to assure us of the probability of making a type I error or false positive 
(i.e., of deciding a point as an outlier when in fact it is normal) is smaller than α. In 
our experiments, we set the threshold to be 2 sigma (where sigma is the standard 
deviation), which assures us of the probability of a type I error to be less than 5 %.

For each cluster built based on the training set, we first calculated the mean and 
standard deviation of all the features (in this study, we have eight features for each 
treatment plan). To check whether or not a new data point is an outlier, we find a 
cluster whose center is the closest to the data point using the Euclidean distance and 
then calculate the difference for each feature between the data point and the cluster 
center. If the difference is within a preset tolerance (e.g., two standard deviations of 
that cluster) for all the features, this data point is considered to belong to the cluster. 
Otherwise, we classified the data point as an outlier.

To measure the quality of the clustering results and how well they could be used 
to identify outliers, we purposely introduced errors to the test set and used the out-
lier detection algorithm described above to compute the outlier detection rate. The 
outlier detection rate is defined as the ratio of the number of data points that are 
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detected as outliers to the total number of data points tested. The outlier detection 
rates were computed at various error levels for MUs. The error level is defined as the 
deviation from the original value of an MU feature. For example, 10–20 % error 
level means that the introduced errors are 10–20 % of the original MU value.

We also introduced errors to the energy features. Unlike the MU features, the 
possible values of an energy feature are discrete. They can only be one of 6, 10, 18, 
and 23 MV. Similar to computing the outlier detection rate for MU features, we first 
randomly selected a patient from the test set and selected a feature out of four energy 
features (EAP, EPA, ERL, ELL). We then randomly set the value of the energy feature to 
one of the three values that are different from the original value. The outlier detec-
tion procedure was performed to compute the outlier detection rate for each of the 
four energy features and for all features combined.

We checked the clustering results by visualizing the data. One way to visualize 
data in dimensions greater than three is to project it to two dimensions and plot the 
data in that two-dimensional space. We applied principal component analysis 
(PCA) to reduce the dimensionality. To be able to visualize the clustering results, 
we projected the data set onto its first three principal components, as shown in 
Fig. 14.1a–c. By looking at all the three figures, the separation between the clus-
ters becomes quite clear. For example, from Fig. 14.1a, clusters 4 and 7 projected 
onto principal components 1 and 2 seem to be very close. However, it does not 
mean that they are actually one cluster. When we looked from Fig. 14.1b, c, where 
the data were projected onto principal components 1 and 3 and principal compo-
nents 2 and 3, respectively, clusters 4 and 7 are clearly separated. That means they 
are two separated clusters. Similar situations exist for clusters 5 and 8 and clusters 
1 and 6. Figure 14.1 also shows that indeed our clustering results (the different 

Fig. 14.1  The training data projected onto two-dimensional planes formed by two of its first three 
principal components: (a) principal components 1 and 2; (b) principal components 1 and 3; 
(c) principal components 2 and 3 (From Azmandian et al. [22])
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colors represent different clusters) make sense, and the cluster means (marked in 
black dots) are correct.

To find the optimal number of clusters, we ran K-means clustering on the training 
set for values of k between 2 and 25, scoring each result using the Bayesian 
Information Criterion (BIC). We found k = 8 to produce the best final clustering 
results. This means, for this group of prostate cancer patients treated using “four-
field box” technique, the beam energies and monitor units belong to eight distinct 
clusters. Again, Fig. 14.2 reveals that indeed there are eight clusters.

The testing results are shown in Fig. 14.2. A few observations can be made from 
Fig. 14.2: (1) even at the 0 % error level, the detection rate is still about 10 %. This 
is basically the false-positive rate. (2) The outlier detection rate for the anterior field 

Cluster 3

Cluster 1
Cluster 8 Cluster 7

Cluster 6

Cluster 4

Cluster 2

Cluster 5

c

P
rin

ci
pa

l C
om

po
ne

nt
 3

Principal Component 2

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0.0 1.00.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Cluster Centroid Cluster 1 Data Point Cluster 2 Data Point Cluster 3 Data Point Cluster 4 Data Point

Cluster 5 Data Point Cluster 6 Data Point Cluster 7 Data Point Cluster 8 Data Point

Cluster 3

Cluster 1
Cluster 8Cluster 7

Cluster 6

Cluster 4

Cluster 2

Cluster 5

b
P

rin
ci

pa
l C

om
po

ne
nt

 3

Principal Component 1

–3.5

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 –3.5 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Fig. 14.1  (continued)

14  Treatment Planning Validation



250

is about the same as that for all fields together. The detection rates for the right and 
left fields are very similar. The performance of the proposed algorithm decreases 
from the posterior field, to the anterior field, and to the right and left fields. This is 
likely due to the fact that the distribution of the monitor units for the posterior field 
is narrower around peaks than other fields. Also, in all of the clusters, the standard 
deviation of the posterior MUs is smaller than that of the other MU features. (3) The 
outlier detection rate as a function of error level is asymmetric, with higher values 
for negative errors than positive errors. To understand the better performance with 
negative errors, consider cluster 5 as a simple example. Adding +100 % errors to 
MUs in cluster 5 (and in essence, doubling their value) will cause the data points to 
appear to belong to cluster 6 and so they will not be detected as outliers. On the 
other hand, adding −100 % errors to MUs in clusters 5 (making their values equal 
to 0) will cause the points to be detected as outliers. As for cluster 6, adding either 
+100 % or -100 % errors will cause the points to be detected as outliers. Therefore, 
there is an overall higher outlier detection rate with negative errors.

As shown in Fig. 14.2, the outlier detection rate changes with the error level as one 
might expect. At ±100 % error level, the detection rate is about 100 %. At ± 50 % error 
level, the detection rate is about 80 %. It seems that the proposed algorithm has a good 
chance to detect errors at the levels of the Glasgow and Panama incidents [14, 15].

For energy features, the outlier detection rate is 100 % for EPA, ERL , and ELL, 
while for EAP, it is only 76.9  %, resulting in an overall outlier detection rate of 
94.2 % for all four energy features combined. This is because that, for the same 
cluster, EPA, ERL, and ELL always have the same value, and therefore, changing one 
will cause the data point to be detected as an outlier, while for EAP, this is not true.
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14.4	 �Summary and Conclusion

We have described some recent applications of machine learning techniques for 
quality assurance and validation of radiotherapy treatment planning. In particular, 
we reviewed an automated error detection system for radiation treatment plans 
based on data clustering. The system was focused on a simplified treatment model, 
i.e., the “four-field box” technique. The method was successful at detecting large 
errors in several important parameters in the treatment plans.

Going forward, there are two aspects in the error detection system that will 
benefit from future development. For many current treatment techniques, espe-
cially for intensity-modulated radiation therapy (IMRT) and volumetric-modu-
lated arc therapy (VMAT), there are many more treatment parameters, which 
makes the data become high dimensional and thus more scattered. For the error 
detection system to be useful under these more realistic clinical situations, it is 
expected that substantial algorithm improvements will be needed. Ideally, an 
error detection system should be self-learning and constantly evolving as more 
relevant treatment plan data are being collected. The more treatment data avail-
able, the more accurate the machine learning is expected to be. Methods that 
effectively leverage online data and are able to dynamical update itself will need 
to be developed.
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  15      Treatment Delivery Validation 

             Ruijiang     Li     

    Abstract  
  This chapter will discuss the application of machine learning techniques for 
quality assurance and validation of the radiotherapy delivery process. We will 
discuss issues related to quality assurance and quality control at both the 
machine- level and the patient-specifi c measurements. In this chapter, we will 
demonstrate how machine learning tools can be effectively used for automated 
treatment verifi cation (both geometrically and dosimetrically) in the context of 
image-guided and intensity-modulated radiotherapy.  

15.1          Introduction 

 Radiation therapy is a complex process involving multiple steps, including patient 
simulation and imaging, organ contouring, treatment planning (dose optimization 
and dose calculation), and treatment delivery. For radiotherapy to be effective, 
a comprehensive quality assurance (QA) program must be established throughout 
the radiation therapy process [ 10 ]. In particular, to ensure effective treatment, qual-
ity must be maintained in all aspects of the delivery process, including performance 
of the radiation delivery equipment such as linear accelerators, geometric accuracy 
of target positioning during delivery, and dosimetric agreement between delivered 
dose and planned dose. 

 The advent of image-guided intensity-modulated radiotherapy (IMRT) and 
volumetric- modulated arc therapy (VMAT) has brought their own challenges in 
terms of comprehensive QA for treatment delivery [ 5 ,  6 ]. These complex treatments 
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necessitate patient-specifi c dose measurements in phantoms prior to treating 
patients, as well as accurate target positioning during dose delivery [ 9 ,  20 ] as a part 
of quality control (QC) for individual treatment plans. In IMRT and VMAT, patient- 
specifi c QC typically quantifi es the difference between planned and measured doses 
at one or more locations in a phantom. This is distinct from QA, which is a system 
of planned and systematic actions necessary to provide adequate confi dence that 
given requirements for quality are satisfi ed. These requirements include safe execu-
tion of the treatment plan regarding dosage to targets and normal tissues, minimal 
staff exposure, and treatment monitoring. 

 Quality control (QC) consists of the measurement of process quality perfor-
mance, comparison of performance with existing standards, and the actions neces-
sary to keep or regain conformance with the standards; in the context of radiotherapy, 
this includes setting specifi cations, measuring performance, comparison with speci-
fi cations, and, as required, adjusting the process to meet specifi cations. Within the 
QA/QC processes, there are random and systematic sources of error. One goal of an 
optimal QA/QC procedure is to minimize the number and magnitude of systematic 
errors, by setting action thresholds in an objective and quantitative manner. 

 The conventional approach to setting action thresholds is to use the mean and stan-
dard deviation of a data set obtained by the QA process [ 4 ,  19 ]. Cozzi and Fogliata-
Cozzi [ 4 ] analyzed breast cancer treatments by in vivo diode measurements. 
Thresholds on treatment accuracy were set on the allowed difference between the 
planned dose and the measured dose from diode. Based on the measurements of 421 
breast cancer patients, the mean difference and standard deviation, σ of the difference 
were determined. Action thresholds based on the in vivo dosimetry deviations were 
set at 1.7 and 3.0 σ. A similar approach was used by Van Esch et al. [ 19 ] where 202 
cases of breast cancer treatment were used to collate treatment parameters such as 
medial and lateral gantry angle, fi eld width and length, vertical table position, total 
MU, etc. The mean and standard deviation of each parameter were calculated, and 
action thresholds were set at about two to three times the standard deviation depend-
ing on the parameter. These conventional approaches will be shown to be ineffective 
to detect changes in temporal data as acquired in a continual QA/QC process. 

 In this chapter, we will summarize the recent applications of machine learning 
tools for validation and verifi cation of the radiation delivery process. Techniques 
that are developed for both machine-level and patient-specifi c QA/QC will be dis-
cussed. We will demonstrate how machine learning can be used for geometric and 
dosimetric verifi cation in the context of image-guided and intensity-modulated 
radiotherapy.  

15.2     Validation of Radiation Delivery Parameters 

 Machine learning tools have been applied to the treatment delivery process to ensure 
a consistent high-level performance of radiation delivery equipment. Pawlicki et al. 
[ 11 ,  12 ] reported on the use of an online machine learning technique, e.g., statistical 
process control [ 15 ], for radiotherapy quality assurance of linear accelerators, using 
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both hypothetical and clinical data. They reported results for measurements of out-
put, fl atness, and symmetry for a 10 MV photon beam and demonstrated the utility 
of control charts for detecting changes in the operating point of the beam. 

 Control charts plot a time series of the data, overlaid with the mean, and upper 
and lower control limits. The upper and lower control limits correspond to the esti-
mated mean, plus a multiple of the estimated standard deviation of the measure-
ments (see Fig.  15.1 ). The multiplier of the standard deviation is chosen so that any 
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data falling outside the control line have a strong probability of being attributable to 
a cause, rather than due to random variation. For normally distributed data, three 
standard deviations correspond to a 0.00135 probability that the out-of-control vari-
ation is due to chance. Roughly speaking, 3 σ corresponds to a 1-in-1,000 probabil-
ity that the deviation is due to chance. For variations above and below the mean, a 
2-in-1,000 probability of incorrectly attributing an out-of-control deviation to 
chance is a risk that is commonly considered economical to manage.  

 The reason why a descriptive statistic, such as the standard deviation, is ineffec-
tive as a method to set action thresholds for quality assurance is that it tends to 
obscure the temporal structure of the data. It should be emphasized that clinical 
requirements will always have precedence over any method of setting action thresh-
olds. If the action thresholds on the process behavior charts are outside the clinical 
requirements, then the only course of action is to reengineer the process with better 
equipment and/or procedures. 

 As dynamic data are continuously generated from a QA process, it is often dif-
fi cult to identify when a single point displays highly nonrandom behavior and 
requires further investigation. Process behavior charts separate variation into two 
sources: variation due to systematic sources for which there is an assignable cause 
and variation due to random sources for which there is no readily assignable cause. 
One should search for an assignable cause when a data point exceeds an action 
threshold on the process behavior chart. After an assignable cause is found, mea-
sures can then be incorporated to reduce or eliminate it from the process. When the 
process is subject to only random variation, the process is predictable, and the limits 
on the process behavior chart describe the process potential.  

15.3     Geometric Verification of Treatment Delivery 

 Stereotactic body radiotherapy (SBRT) is being increasingly employed as an alter-
native modality for the treatment of primary and secondary cancers [ 17 ,  18 ]. SBRT 
has the important advantages of shortened treatment times while delivering higher 
biologically effective doses. However, normal tissues surrounding the tumors are 
also exposed to high-dose levels of radiation. Furthermore, cancerous tissue can 
occasionally move outside the irradiation fi eld, e.g., when the patient has irregular 
breathing or episodes of coughing. Under these circumstances, malignant tissue will 
be missed, and more normal tissue than planned will be irradiated. Consequently, 
the precision requirement of SBRT is high. It is absolutely critical to effectively 
monitor the target to ensure maximal irradiation of the tumor with minimal irradia-
tion of surrounding normal tissue [ 8 ]. 

 Compared with on-board kV imaging, EPID (electronic portal imaging device) 
acquisition in the cine mode provides a number of advantages for treatment verifi ca-
tion purposes: (1) it utilizes the MV treatment beam for imaging and does not involve 
any additional radiation dose to the patient, and (2) it shows what is actually being 
irradiated by giving the beam-eye-view of the patient anatomy. Berbeco et al. [ 1 ,  2 ] 
developed a matching technique for respiratory-gated liver radiotherapy treatment 
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verifi cation with an EPID in the cine mode. Implanted radiopaque fi ducial markers 
inside or near the target were required for this technique. Markerless techniques were 
also proposed [ 13 ,  14 ]. However, due to the degraded quality of MV images, it is 
often very challenging to visualize the tumor target in cine EPID images. 

 Tang et al. [ 16 ] recently proposed a novel approach for SBRT treatment verifi ca-
tion using cine EPID images based on a machine learning algorithm. They modeled 
the treatment verifi cation problem as a two-class classifi cation problem and applied 
an artifi cial neural network (ANN) to classify the cine EPID images acquired during 
the treatment into corresponding classes—with the tumor inside or outside of the 
beam aperture. Training samples were generated for the ANN using digitally recon-
structed radiographs (DRRs) with artifi cially added shifts in the tumor location—to 
simulate cine EPID images with different tumor locations (Fig.  15.2 ). Principal 
component analysis (PCA) was used to reduce the dimensionality of the training 
samples and cine EPID images acquired during the treatment. The proposed treat-
ment verifi cation algorithm was tested on fi ve lung SBRT patients in a retrospective 
fashion. On average, the machine learning algorithm achieved very high classifi ca-
tion accuracy, recall rate, and precision rate, all in the high 90 %. For its practical 
implementation, a comprehensive clinical validation remains to be performed in 
terms of different tumor volumes, location, and imaging angle. In addition, the algo-
rithm’s performance for cine MV images acquired with partial fi eld of view due to 
modulated treatments such as IMRT or VMAT needs to be evaluated.   

15.4     Dosimetric Verification of Treatment Delivery 

 Patient-specifi c measurements are typically used to validate the dosimetry of com-
plex treatments such as IMRT and VMAT. To evaluate the dosimetric performance 
over time of the treatment delivery process, Breen et al. [ 3 ] used statistical process 

  Fig. 15.2    An original DRR image ( left ) and cine EPID image ( right ) (Reprint from Tang et al. [ 16 ])       
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control (SPC) concepts to analyze the measurements from 330 head-and-neck 
(H&N) treatment plans. H&N IMRT cases were planned with the PINNACLE3 
treatment planning system (Philips Medical Systems, Madison, WI) and treated on 
Varian (Palo Alto, CA) or Elekta (Crawley, UK) linacs. As part of regular quality 
assurance, plans were recalculated on a 20-cm-diameter cylindrical phantom, and 
ion chamber measurements were made in high-dose volumes (the PTV with highest 
dose) and in low-dose volumes (spinal cord organ-at-risk, OR). Differences between 
the planned and measured doses were recorded as a percentage of the planned dose. 
It was demonstrated that head-and-neck IMRT plans could be delivered with a sys-
tematic error of 0.2 % in high-dose volumes and −1.0 % in low-dose volumes. 

 Statistical process control also provides a means to evaluate adjustments to the 
process (via beam models) in a robust manner. For IMRT dosimetric verifi cation, 
measurements in phantom are not the end of the QA process; rather, they are the 
data upon which a strong foundation of continuous quality improvement can be 
constructed. Analysis of this large series of H&N IMRT measurements demon-
strated that the IMRT dosimetry was stable over time and within accepted toler-
ances. These data provide useful information for assessing alterations to beam 
models in the planning system. IMRT is enhanced by the addition of statistical 
process control to traditional quality control procedures. 

 Gerard et al. [ 7 ] further investigated the use of two complementary machine 
learning tools—control charts and performance indices—to accurately analyze the 
dose delivery process in IMRT. Control charts aim at monitoring the process over 
time using statistical control limits, whereas performance indices aim at quantifying 
the ability of the process to produce data that are within the clinical specifi cation 
limits at a precise moment. They showed that three control charts—individual value, 
moving range, and exponentially weighted moving average (EWMA) control charts, 
chosen for their capacity of bringing complementary information—allowed an effi -
cient detection of the drifts that occurred in the IMRT dose delivery process for 
prostate and head-and-neck treatments (see Fig.  15.3 ). The dose delivery process 
for prostate treatments was both statistically in control and capable, i.e., its evolu-
tion can be predicted within the clinical specifi cation limits. For head-and-neck 
treatments, the dose delivery process was in control but not statistically capable, 
when using the current specifi cation limits set at 4 %. This implies that the evolution 
of the process can be predicted but not within the specifi cation limits. So, as shown 
by the process performance indices, actions should be undertaken to improve both 
the process centering and dispersion.  

 Control charts revealed that some patients’ data were outside the specifi cation 
limits, both for the ionization chamber dose response deviation and for the MLC 
deviations. Control charts also confi rmed that the MLC calibration has a large infl u-
ence on the dose delivery process, implying that mechanic and dosimetric quality 
controls of the MLC have to be carefully and regularly performed, in particular after 
a maintenance operation. Three performance indices, P p , P pk , and P pm , were shown 
to identify the reason why data are outside the specifi cation limits and to determine 
what kind of action should be undertaken. 

 It should be noted that the application of machine learning to IMRT dose verifi -
cation is not a replacement for patient-specifi c dosimetry. Rather, it supports our 
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current practices by allowing the observation of trends in the mean and dispersion 
of measurements and characterizes, through upper and lower control limits, the 
envelope in which the process operates. This, in turn, permits the correct interpreta-
tion of subsequent measurements, by answering the question, “Is the current mea-
surement under control?” The attribution of out-of-control measurements to specifi c 
causes that require attention enhances continuous quality improvement.  

15.5     Summary 

 We have reviewed the recent applications of machine learning techniques for qual-
ity assurance and validation of radiotherapy delivery. We discussed both machine- 
level and patient-specifi c measurements in the QA/QC process. We showed the 
promising applications of online machine learning tools to monitor dynamic and 
sequential data that are acquired during the continual QA/QC process. In addition, 
we demonstrated how machine learning can be effectively used for automated treat-
ment verifi cation (both geometrically and dosimetrically) in image-guided and 
intensity-modulated radiotherapy. As the technology of radiotherapy evolves in 
future, new challenges are expected to arise for QA/QC of radiation delivery, and 
machine learning will continue to play a key role in this process.     
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16Bioinformatics of Treatment Response

Issam El Naqa

Abstract
Radiotherapy treatment outcomes are determined by complex interactions 
among treatment, anatomical, and patient-related variables. A key component 
of radiation oncology research is to predict at the time of treatment planning, 
or during the course of fractionated radiation treatment, the probability of 
tumor eradication and normal tissue risks for the type of treatment being con-
sidered for that particular patient. Traditionally, these outcomes are modeled 
using information about the dose distribution and the fractionation. However, 
it is recognized that radiation response is multifactorial including clinical prog-
nostic factors and, more recently, inherited genetic variations have been sug-
gested as playing an important role in radiation response. Therefore, recent 
approaches have utilized increasingly data-driven models incorporating 
advanced bioinformatics and machine learning tools in which dose-volume 
metrics are mixed with other patient- or disease-based prognostic factors in 
order to improve outcomes prediction. Accurate prediction of treatment out-
comes would provide clinicians with better tools for informed decision-making 
about expected benefits versus anticipated risks. In this chapter, we provide an 
overview of the current status of data-driven outcome modeling techniques for 
patients who receive radiation treatment with special focus on its big data 
notion and the emerging role of machine learning approaches to improve out-
come modeling and response prediction.
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16.1	 �Introduction

Recent years have witnessed tremendous technological advances in radiotherapy 
treatment planning, image guidance, and treatment delivery [1, 2]. Moreover, clinical 
trials examining treatment intensification in patients with locally advanced cancer 
have shown incremental improvements in  local control and overall survival [3]. 
However, radiation-induced toxicities remain major dose-limiting factors [4, 5]. 
Therefore, there is a need for studies directed toward predicting treatment benefit 
versus risk of failure. Clinically, such predictors would allow for more individualiza-
tion of radiation treatment plans. In other words, physicians may prescribe a more or 
less intense radiation regimen for an individual based on model predictions of local 
control benefit and toxicity risk. Such an individualized regimen would aim toward an 
optimized radiation treatment response while keeping in mind that a more aggressive 
treatment with a promised improved tumor control will not translate into improved 
survival unless severe toxicities are accounted for and limited during treatment plan-
ning. Therefore, improved models for predicting both local control and normal tissue 
toxicity should be considered in the optimal treatment planning design process.

Radiotherapy outcomes are usually characterized by two metrics: the tumor con-
trol probability (TCP) and the normal tissue complication probability (NTCP) of 
surrounding normal tissues [2, 6]. TCP/NTCP models could be used during the 
consultation period as a guide for ranking treatment options [7, 8]. Alternatively, 
once a decision has been reached, these models could be included in an objective 
function, and the optimization problem driving the actual patient’s treatment plan 
can be formulated in terms relevant to maximizing tumor eradication benefit and 
minimizing complication risk [9–11]. Traditional models of TCP/NTCP models 
and their variations use information only about the dose distribution and fraction-
ation. However, it is well known that radiotherapy outcomes may also be affected 
by multiple clinical and biological prognostic factors such as stage, volume, tumor 
hypoxia, etc. [12, 13] as depicted in Fig. 16.1. Therefore, recent years have wit-
nessed the emergence of data-driven models utilizing informatics techniques, in 

Genetic
biomarkers

Clinical
factors

Physical
factors

Fig. 16.1  Radiotherapy 
treatment involves complex 
interaction of physical, 
biological, and clinical factors. 
The successful informatics 
approach should be able to 
resolve this interaction 
“puzzle” in the observed 
treatment outcome (e.g., local 
control or toxicity) for each 
individual patient [21]
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which dose-volume metrics are combined with other patient- or disease-based prog-
nostic factors [4, 5, 14–20].

In this chapter, we provide an overview of the current status of data-driven out-
come modeling techniques for predicting tumor response and normal tissue toxici-
ties for patients who receive radiation treatment with special focus on the emerging 
role of machine learning approaches to improve outcome modeling and response 
prediction. Then, we present examples of radiotherapy data and its big data notion. 
Finally, we discuss the potentials and challenging obstacles to applying bioinfor-
matics and machine learning strategies to radiotherapy outcome modeling.

16.2	 �Data-Driven Outcome Modeling

Radiotherapy outcome models could be divided according to the underlying prin-
ciple into (1) analytical models, which employ biophysical understanding of irra-
diation effects such as the linear quadratic (LQ) model, and (2) data-driven models, 
which are phenomenological models and depend on parameters available from the 
collected clinical and dosimetric data [20]. In the context of data-driven and multi-
variable modeling of outcomes, the observed treatment outcome (e.g., TCP or 
NTCP) is considered as the result of mathematical mapping of several dosimetric, 
clinical, or biological input variables [19]. Mathematically this is expressed as: 
f X Yx w; :∗ →( )  where RN (an input variable vector of N dimensions) is com-

posed of the input metrics (dose-volume metrics, patient disease specific prognostic 
factors, or biological markers). The expression y Yi ∈  is the corresponding observed 
treatment outcome scalar. The variable w* includes the optimal parameters of model 
f(·) obtained by optimizing a certain objective functional. Learning is defined in this 
context as estimating dependencies from data [22]. The two common types of learn-
ing could be applied: supervised and unsupervised. Supervised learning is used 
when the endpoints of the treatments such as tumor control or toxicity grade are 
known; these endpoints are provided by experienced oncologists following RTOG 
or NCI criteria, and it is the most commonly used learning method in outcome mod-
eling. Nevertheless, unsupervised methods such as principal component analysis 
(PCA) are also used to reduce dimensionality and to aid visualization of multivari-
ate data and selection of learning method parameters [23]. The selection of the 
functional form of the model f(·) is closely related to the prior knowledge of the 
problem. In analytical models, the shape of the functional form is selected based on 
the clinical or biological process at hand; however, in data-driven models, the objec-
tive is usually to find a functional form that fits the data [24].

16.3	 �Radiotherapy as a Big Data Resource

A typical radiotherapy treatment scenario can generate a large pool of “big data” 
that comprise but are not limited to patient demographics, volumetric dosimetric 
data about radiation exposure to the tumor and surrounding tissues, and 3D and 4D 
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anatomical and functional disease longitudinal imaging features (radiomics), in 
addition to genomics and proteomics data derived from peripheral blood and tissue 
specimens. Accordingly, big data in radiotherapy could be divided based on its 
nature into four categories: clinical, dosimetric, imaging, and biological. These four 
categories of radiotherapy big data are described in the following.

16.3.1	 �Clinical Data

Clinical data in radiotherapy typically refers to cancer diagnostic information (site, 
histology, stage, grade, etc.) and patient-related characteristics (age, gender, comor-
bidities, etc.). In some instances, other treatment modalities information (surgery, 
chemotherapy, hormonal treatment, etc.) would be also classified under this cate-
gory. The mining of such data could be challenging if the data is unstructured; 
however, there are good opportunities for natural language processing (NLP) tech-
niques to assist in the organization of data [25].

16.3.2	 �Dosimetric Data

This type of data is related to the treatment planning process in radiotherapy, which 
involves radiation dose simulation using computed tomography imaging, specifi-
cally dose-volume metrics derived from dose-volume histograms (DVHs) graphs. 
Dose-volume metrics have been extensively studied in the radiation oncology litera-
ture for outcome modeling [14–17, 26, 27]. These metrics are extracted from the 
DVH such as volume receiving certain dose (Vx); minimum dose to x% volume 
(Dx); mean, maximum, and minimum dose; etc. More details are in our review chap-
ter [20]. Moreover, we have developed a dedicated software tool called “Dose 
response explorer” (DREES) for deriving these metrics and modeling of radiother-
apy response [28].

16.3.3	 �Radiomics (Imaging Features)

kV x-ray computed tomography (kV-CT) has been historically considered the stan-
dard modality for treatment planning in radiotherapy because of its ability to pro-
vide electron density information for target definition, structures, and heterogeneous 
dose calculations [2, 29]. However, additional information from other imaging 
modalities could be used to improve treatment monitoring and prognosis in differ-
ent cancer types. For example, physiological information (tumor metabolism, pro-
liferation, necrosis, hypoxic regions, etc.) can be collected directly from nuclear 
imaging modalities such as SPECT and PET or indirectly from MRI [30, 31]. The 
complementary nature of these different imaging modalities has led to efforts 
toward combining information to achieve better treatment outcomes. For instance, 
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PET/CT has been utilized for staging, planning, and assessment of response to radi-
ation therapy [32, 33]. Similarly, MRI has been applied in tumor delineation and 
assessing toxicities in head and neck cancers [34, 35]. Moreover, quantitative infor-
mation from hybrid-imaging modalities could be related to biological and clinical 
endpoints, a new emerging field referred to as “radiomics” [36, 37]. In our previous 
work, we demonstrated the potential of this new field to monitor and predict 
response to radiotherapy in head and neck [38], cervix [38, 39], and lung [40] can-
cers, in turn allowing for adapting and individualizing treatment.

16.3.4	 �Biological Markers

A biomarker is defined as “a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, pathological processes, or 
pharmacological responses to a therapeutic intervention” [41]. Biomarkers can be 
categorized based on the biochemical source of the marker into exogenous or 
endogenous. Exogenous biomarkers are based on introducing a foreign substance 
into the patient’s body such as those used in molecular imaging as discussed above. 
Conversely, endogenous biomarkers can further be classified as (1) “expression 
biomarkers,” measuring changes in gene expression or protein levels, or (2) 
“genetic biomarkers,” based on variations, for tumors or normal tissues, in the 
underlying DNA genetic code. Measurements are typically based on tissue or fluid 
specimens, which are analyzed using molecular biology laboratory techniques 
[42]. Expression biomarkers are the result of gene expression changes in tissues or 
bodily fluids due to the disease or normal tissues’ response to treatment [43]. These 
biomarkers can be further divided into single parameter (e.g., prostate-specific 
antigen (PSA) levels in blood serum) versus bio-arrays. These can be based on 
disease pathophysiology or pharmacogenetic studies or they can be extracted from 
several methods, such as high-throughput gene expression (aka transcriptomics) 
[44–46], resulting protein expressions (aka proteomics) [47, 48], or metabolites 
(aka metabolomics) [49, 50]. On the other hand, the inherent genetic variability of 
the human genome is an emerging resource for studying disposition to cancer and 
the variability of patient responses to therapeutic agents. These variations in the 
DNA sequences of humans, in particular single-nucleotide polymorphisms (SNPs), 
have strong potential to elucidate complex disease onset and response in cancer 
[51]. Methods based on the candidate gene approach and high throughput (genome-
wide associations (GWAS) studies) are currently heavily investigated to analyze 
the functional effect of SNPs in predicting response to radiotherapy [52–54]. There 
are several ongoing SNP genotyping initiatives in radiation oncology, including 
the pan-European GENEPI project [55], the British RAPPER project [56], the 
Japanese RadGenomics project [57], and the US Gene-PARE project [58]. An 
international consortium has been also established to coordinate and lead efforts in 
this area [59]. Examples include the identification of SNPs related to radiation 
toxicity in prostate cancer treatment [60–62].
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16.4	 �Systems Radiobiology

To integrate heterogeneous big data in radiotherapy, engineering-inspired system 
approaches would have great potential to achieve this goal. Systems biology has 
emerged as a new field to apply systematic study of complex interactions to biologi-
cal systems [63], but its application to radiation oncology, despite this potential, has 
been unfortunately limited to date [64, 65]. Recently, Eschrich et al. presented sys-
tems biology approach for identifying biomarkers related to radiosensitivity in dif-
ferent cancer cell lines using linear regression to correlate gene expression with 
survival fraction measurements [66]. However, such a linear regression model may 
lack the ability to account for higher-order interactions among the different genes 
and neglect the expected hierarchal relationships in signaling transduction of highly 
complex radiation response. It has been noted in the literature that modeling of 
molecular interactions could be represented using graphs of network connections as 
in power line grids. In this case, radiobiological data can be represented as a graph 
(network) where the nodes represent genes or proteins and the edges may represent 
similarities or interactions between these nodes. We have utilized such approach 
based on Bayesian networks for modeling dosimetric radiation pneumonitis rela-
tionships [67] and more recently in predicting local control from biological and 
dosimetric data [68].

In the more general realm of bioinformatics, this systems approach could be 
represented as a part of a feedback treatment planning system as shown in Fig. 16.2, 
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Fig. 16.2  The bioinformatics understanding of heterogeneous variable interactions as a feedback 
into the treatment planning system to improve patient’s outcomes. A heterogeneous list of vari-
ables with their noisy characteristics are acquired from retrospective or prospective studies and fed 
into in a learning algorithm to derive estimates of TCP/NTCP, which is typically corrected based 
on feedback of newly tested patients or scientific and clinical findings
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in which bioinformatics understanding of heterogeneous variables interactions 
could be used as an adaptive learning process to improve outcome modeling and 
personalization of radiotherapy regimens.

16.5	 �Software Tools for Outcome Modeling

Many of the TCP/NTCP outcome modeling methods require dedicated software 
tools for implementation. Examples of such software tools in the literature are 
BIOPLAN and DREES. BIOPLAN (BIOlogical evaluation of treatment PLANs) 
uses several analytical models for evaluation of radiotherapy treatment plans [69], 
while DREES is an open-source software package developed by our group for 
dose-response modeling using analytical and data-driven methods [28] presented 
in Fig. 16.3. It should be mentioned that several commercial treatment planning 
systems have currently incorporated different TCP/NTCP models, mainly analyti-
cal ones that could be used for ranking and biological optimization purposes. A 
discussion of these models and their quality assurance guidelines is provided in 
TG-166 [11].

Fig. 16.3  DREES allows for TCP/NTCP analytical and multivariate modeling of outcomes data. 
The example is for lung injury. The components shown here are Main GUI, model order and 
parameter selection by resampling methods, and a nomogram of outcome as function of mean dose 
and location
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16.6	 �Discussion

16.6.1	 �Data Sharing

Successful outcome modeling requires large datasets to meet statistical require-
ments, and sharing data is necessary to achieve this purpose. However, data shar-
ing remains an issue for nontechnical issues [70]. Therefore, the Quantitative 
Analyses of Normal Tissue Effects in the Clinic (QUANTEC) consortium has 
suggested that cooperative groups adopt a policy of anonymizing clinical trial 
data and making these data publicly accessible after a reasonable delay. This 
delay would enable publication of all the investigator-driven, planned studies 
while encouraging the establishment of key databanks of linked treatment plan-
ning, imaging, and outcomes data [71]. An alternative approach is to apply rapid 
learning as suggested by the Maastro clinic group at Maastricht, in which innova-
tive information technologies are developed that support semantic interoperabil-
ity and enable distributed learning and data sharing without the need for the data 
to leave the hospital or the institution [72]. An example of multi-institutional 
data sharing is developed by the groups of Maastro clinic and the Policlinico 
Universitario Agostino Gemelli in Rome, Italy (Gemelli) [73].

16.6.2	 �Lack of Web Resources for Radiobiology

As of today, there are no dedicated web resources for bioinformatics studies in 
radiation oncology. Nevertheless, radiotherapy biological marker studies can 
still benefit from existing bioinformatics resources for pharmacogenomic stud-
ies that contain databases and tools for genomic, proteomic, and functional 
analysis as reviewed by Yan [74]. For example, the National Center for 
Biotechnology Information (NCBI) site hosts databases such as GenBank, 
dbSNP, Online Mendelian Inheritance in Man (OMIM), and genetic search tools 
such as BLAST.  In addition, the Protein Data Bank (PDB) and the program 
CPHmodels are useful for protein structure three-dimensional modeling. The 
Human Genome Variation Database (HGVbase) contains information on physi-
cal and functional relationships between sequence variations and neighboring 
genes. Pattern analysis using PROSITE and Pfam databases can help correlate 
sequence structures to functional motifs such as phosphorylation [74]. Biological 
pathway construction and analysis is an emerging field in computational biol-
ogy that aims to bridge the gap between biomarker findings in clinical studies 
with underlying biological processes. Several public databases and tools are 
being established for annotating and storing known pathways such as KEGG 
and Reactome projects or commercial ones such as the IPA or MetaCore [75]. 
Statistical tools are used to properly map data from gene/protein differential 
experiments into the different pathways such as mixed effect models [76] or 
enrichment analysis [77].
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16.6.3	 �Protecting the Confidentiality and Privacy of Clinical 
Phenotype Data

QUANTEC offered a solution to radiotherapy digital data (treatment planning, 
imaging, and outcomes data) accessibility by asking cooperative groups to adopt a 
policy of anonymizing clinical trial data and making the data publicly accessible 
after a reasonable delay [71]. With regard to blood or tissue samples, no recommen-
dation was made, however, by extending the same work and making any gene or 
protein expression assay measurements available under the same umbrella, while 
raw specimen data could be accessed from the biospecimen resource. For example, 
in the RTOG biospecimen standard operating procedure (SOP), it is highlighted that 
biospecimens received by the RTOG Biospecimen Resource are de-identified of all 
patient health identifiers and are enrolled in an approved RTOG study. Each patient 
being enrolled by an institution has to qualify and consent to be part of the study 
before being assigned a case and study ID by the RTOG Statistical Center. No infor-
mation containing specific patient health identifiers is maintained by the Resource 
Freezerworks database, which is primarily an inventory and tracking system. In 
addition, information related to medical identifiers and any code lists could be 
removed completely from the dataset after a certain period say 10 years or so. 
Moreover, it has been argued that current measures by the Health Insurance 
Portability and Accountability Act (HIPPA) of 18 data elements are not sufficient 
and techniques based on research in privacy-preserving data mining, disclosure risk 
assessment data de-identification, obfuscation, and protection may need to be 
adopted to achieve better protection of confidentiality [78].

16.7	 �Future Research Directions

The ability to maintain high-fidelity large-scale data for radiotherapy studies 
remains a major challenge despite the high volume of clinical generated data on 
almost daily basis. As discussed above there have been several ongoing institutional 
and multi-institutional initiatives such as the RTOG, radiogenomics consortium, 
and EuroCAT to develop such infrastructure; however, there is plenty of work to be 
done to overcome issues related to, data sharing hurdles, patient confidentiality 
issues lack of signaling pathways databases of radiation response, development of 
cost-effective multicenter communication systems that allows transmission, stor-
age, and query of large datasets such images, dosimetry, and biomarkers informa-
tion. The use of NLP techniques is a promising approach in organizing unstructured 
clinical data. Dosimetry and imaging data can benefit from existing infrastructure 
for Picture Archiving and Communication Systems (PACS) or other medical image 
databases. Methods based on the new emerging field of systems radiobiology will 
continue to grow on a rapid pace, but they could also benefit immensely from the 
development of specialized radiation response signaling pathway databases analo-
gous to the currently existing pharmacogenomics databases. Data sharing among 
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different institutions is a major hurdle, which could be solved through cooperative 
groups or distributed databases by developing in a cost-effective manner the necessary 
bioinformatics and communication infrastructure using open-access resources 
through partnership with industry.

�Conclusion

Recent evolution in radiotherapy imaging and biotechnology has generated enor-
mous amount of big data that spans clinical, dosimetric, imaging, and biological 
markers. This data provided new opportunities for reshaping our understanding 
of radiotherapy response and outcome modeling. However, the complexity of 
this data and the variability of tumor and normal tissue responses would render 
the utilization of advanced bioinformatics and machine learning methods as 
indispensible tools for better delineation of radiation complex interaction mecha-
nisms and basically a cornerstone to “making data dreams come true” [79]. 
However, it also posed new challenges for data aggregation, sharing, confidenti-
ality, and analysis. Moreover, radiotherapy data constitutes a unique interface 
between physics and biology that can benefit from the general advances in bio-
medical informatics research such as systems biology and available web 
resources while still requiring the development of its own technologies to address 
specific issues related to this interface. Successful application and development 
of advanced data communication and bioinformatics tools for radiation oncology 
big data so to speak is essential to better predicting radiotherapy response to 
accompany other aforementioned technologies and usher significant progress 
toward the goal of personalized treatment planning and improving the quality of 
life for radiotherapy cancer patients.
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Modelling of Normal Tissue 
Complication Probabilities (NTCP): 
Review of Application of Machine 
Learning in Predicting NTCP

Sarah Gulliford

Abstract
Predicting normal tissue toxicity following radiotherapy is a multidimensional 
challenge. The dose received by healthy tissue surrounding the tumour is 
described using a 3D dose distribution. In addition, patient- and treatment-related 
factors must also be considered in any predictive model of toxicity. Mixing these 
complex and disparate data types is a challenge that can be addressed with 
machine learning. This chapter introduces the concept of normal tissue compli-
cation probability (NTCP) and reviews literature related to the use of machine 
learning in this field.

17.1	 �NTCP Modelling

The response of normal tissue incidentally and unavoidably irradiated during 
radiotherapy is the main factor limiting the increase in prescription dose to the 
tumour. Optimising this trade-off, known as the therapeutic ratio, is the fundamen-
tal challenge in radiotherapy (Fig. 17.1). Although complimentary in approach, the 
complexity of predicting normal tissue response is a higher dimensional problem 
than predicting local control. The reasons for this are (1) there are usually more 
than one organ at risk irradiated and protecting all of these structures requires com-
promise, (2) each structure responds differently to radiotherapy due to the type of 
cells and the structural and functional organisation of the tissue, and (3) the dose 
distributions to the surrounding normal tissues are inhomogeneous with gradients 
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across the tissues commonly related to the proximity of the tumour (Fig. 17.2). 
This variability results in a large number of potential dose distributions to the 
structure. Consequently, the dose-volume relationship to toxicity is complex and 
not well understood.
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Fig. 17.1  As the dose delivered to a tumour increases, so does the probability of tumour control (TCP). 
However, the resultant increase in dose to surrounding healthy tissues increases the normal tissue com-
plication probability (NTCP). Balancing TCP against NTCP is known as the therapeutic ratio

Fig. 17.2  An axial slice 
from a radiotherapy treatment 
plan of a patient treated for 
head and neck cancer. The 
Primary PTV and nodal 
volume are contoured along 
with the spinal cord (red). 
The colour wash indicates the 
dose distribution
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Typically, the 3D dose distribution to each delineated structure is characterised using 
a dose-volume histogram (DVH). A differential dose-volume histogram reports the vol-
ume (absolute or relative) of a structure which receives a specific dose (Fig. 17.3 top). 
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Modern treatment planning systems usually calculate histograms with a bin width of 
≤ 0.1 Gy. More commonly, histograms are displayed as cumulative dose-volume histo-
grams where, for each dose level, the volume of the organ or structure receiving at least 
that dose is reported (Fig. 17.3, bottom). These values are commonly reported as Vx 
where x is the relevant dose, e.g. V60 is the volume of a structure receiving at least 
60 Gy.

Describing the dose distributions in order to model the response of the structure 
has been explored widely. The QUANTEC report published as a supplement in 
International Journal of Radiation Oncology, Biology and Physics [38] provided a 
comprehensive report summarising the published data on the dose-volume response 
for 16 organs at risk whilst considering the limitations of the data and providing 
recommendations on how to improve future data collection and analysis. Commonly, 
the dose measure is quantified as a metric such as maximum or mean dose or vol-
ume of the structure receiving a specified dose (V(x)). Once developed and vali-
dated, these metrics can be used prospectively as constraints during the treatment 
planning process. Each treatment plan is assessed prior to treatment in order to 
ensure safety and to evaluate the likely therapeutic success and risk of complication. 
In order to assess this risk, the concept of normal tissue complication probability 
(NTCP) has been developed. It is the probability that a given dose distribution to a 
defined tissue or structure will result in a quantifiable (unfavourable) response in the 
patient. The dose-response of tumours to radiation is characterised using a sigmoi-
dal response, and this shape of response is translated as the basis for NTCP models. 
However, whereas in the case of a tumour where the dose is (ideally) homogeneous, 
in the case of a normal tissue, the dose distribution is ideally inhomogeneous with 
as much tissue as possible being spared. The result of this is the challenge of which 
metric to plot on the abscissa.

17.1.1	 �NTCP Models

A range of NTCP models have been developed; the most widely known and perhaps 
the most regularly used is the Lyman-Kutcher-Burman (LKB) model. This model 
comprises an empirical model of dose-response as a function of irradiated volume 
[35], the reduction of a dose-volume histogram to a single metric [32] and parame-
ter fits for individual organs at risk [5] based on the tolerance doses summarising 
clinical knowledge by Emami et al. [18]. Originally, the Lyman model was devel-
oped for particle therapy where dose distributions fall off steeply and essentially 
result in uniform dose D to a percentage of the organ with little dose to the remain-
der. The tolerance dose parameter TD50(1) or TD5(1) is the 50 or 5 % probability of 
experiencing toxicity where the whole structure is irradiated. The power law is 
employed to account for fractional irradiation.
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TD50(V) is the tolerance dose for a partial volume V. The parameter m is the standard 
deviation of TD50(1) and n indicates the volume effect of the organ being assessed. 
n = 0 indicates a completely ‘serial’ structure, where the maximum dose dominates 
outcome and n = 1 is a ‘parallel’ structure where the mean dose is related to the 
outcome.

17.1.2	 �Dosimetric Data Reduction-Summary Measure

In reality, the dose distribution to an organ at risk is likely to be inhomogeneous. In 
this case, a reduction is required to translate the inhomogeneous dose distribution to 
a single metric that results in the same radiation response as a corresponding homo-
geneous dose distribution. The most commonly used metric is the generalised 
equivalent uniform dose [47]. Originally developed as the equivalent uniform dose 
to tumours [46], the concept was extended to include normal tissues. The formula is 
usually written as

	
gEUD = ( )∑V Di

a a
i

1

	
(17.4)

where Di is the dose in the ith bin of the DVH and Vi is the volume of tissue receiv-
ing dose Di and a is the volume parameter and is equivalent to 1/n.

Alternative models which consider the functional architecture of the organ/struc-
ture have also been employed. The functional subunit (FSU) [63] is a concept which 
describes either an anatomically defined substructure such as the nephron of a kid-
ney or the largest group of cells which continue to function provided one clonogen 
survives. In an analogy to electrical circuits, FSU are arranged in either series, par-
allel or a combination of both (Fig. 17.4). If the architecture of a structure is serial, 
then lethal damage to just one functional subunit can impair function. An example 
of this is the spinal cord where damage to a short section of the spine can lead to 
serious side effects. Consequently, constraining the maximum dose delivered to any 
part of the structure is used to protect a serial structure from damage. In contrast, 
organs arranged in parallel have a reserve, whereby a number of functional subunits 
may be damaged before there is any loss of function. This is true of the liver. In this 
case, it is the mean dose to the structure that is generally considered. In many cases, 
the true architecture of an organ is mixed, and the manifestation of the side effects 
differs.
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The relative seriality model [28] proposed by Kallman considers the dose 
distribution on a voxel-by-voxel basis and calculates the probability of local damage 
for each voxel in the treatment plan incorporating the dose-response curve with a 
tolerance dose D and slope γ before combining these probabilities and weighting 
according to the parameter S which defines the ‘relative seriality’ of the organ with 
a value of 1 indicating a highly serial structure, whilst parallel structures have an s 
value close to 0.

Niemierko et al. [48] proposed a critical volume model based on FSU. A parallel 
architecture model proposed by Jackson et al. [25] considers the phenomenological 
response of functional subunits describing the probability defined in terms of the 
tolerance dose and slope of the dose-response. Whilst each of these models attempts 
to model the dose-response relationship for an individual structure, the LKB model 
is still dominant in the clinic.

17.1.3	 �Quantification of Toxicity Data

Each organ or normal tissue structure exhibits an individual profile of one or more 
radiation-induced responses. For example, the rectum is incidentally irradiated  
(as a normal tissue) in the course of treating a number of pelvic malignancies, 
including the prostate and endometrium. Rectal toxicity may manifest as loose 
stools, rectal urgency, pain and frequency in addition to the well-studied endpoint of 
rectal bleeding [42]. It is thought that the underlying pathophysiology for each of 
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Fig. 17.4  Description of series and parallel functional subunits [30]
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these symptoms may be different. In order to understand the relationship between 
dose (and other contributing factors) and toxicity, the quality of the toxicity data is 
vitally important. A number of validated reporting schemes exist. Many of these 
include questions for specific normal tissues and specific endpoints. However, the 
fact that there is more than one scoring scheme available suggests that none are 
perfect and inconsistencies will occur when comparing data and models based on 
different schemes. In addition, it is important to ensure that the length of follow-up 
of a patient cohort is sufficiently timed to include all likely events. A cross-sectional 
analysis at 3 years is likely to yield different results to a cumulative analysis up to 3 
years. All of these factors must be taken into account when building models as there 
is potential for ‘garbage in, garbage out’.

17.1.4	 �Parameter Fitting

Conventionally, models are obtained by fitting a sigmoidal-shaped curve to a mea-
sure of dose to predict toxicity. This is achieved using data from retrospective 
cohorts of patients. Commonly, multivariate logistic regression [24] is performed 
where the model to predict probability of toxicity is comprised of coefficients 
describing the contribution of individual explanatory variables to the final model 
[15]. Maximum likelihood estimation (MLE) [27] is employed to establish the coef-
ficients using optimisation algorithms such as conjugate gradient descent. The out-
come predicted by the model is compared to the known outcome, and the error is 
minimised to find the optimal parameter fit. Logistic regression assumes that the 
variables in the model are independent and uncorrelated. Since DVH data is neither 
of these, careful consideration is required on the use of logistic regression. As a 
result, dosimetric information can be reduced to a summary metric such as mean 
dose resulting in a compromise of the data included in the model. Statistical tech-
niques of cross validation and bootstrapping are employed to ensure generalisability 
of the models.

17.1.5	 �Challenges of NTCP Modelling

Despite many studies on large, high-quality datasets, predicting NTCP remains a 
challenge. Figure 17.5 presents results from the UK MRC-RT01 study [21]. A ret-
rospective analysis of implementing dose-volume constraints to dose distributions 
for the rectum following prostate radiotherapy demonstrated that the more con-
straints a patient failed, the more likely they were to experience toxicity. However, 
1/3 of patients who met all the constraints still reported moderate or severe rectal 
toxicity. There are many potential reasons for this.

	1.	 In addition to the dosimetric response of normal tissues, many other factors con-
tribute to the incidence of toxicity, including patient characteristics, such as 
comorbidities or previous treatments which may modify the dose-response and 
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other treatments including chemotherapy which have the potential to cause side 
effects but may also affect the dose-response of an organ [29].

	2.	 Preliminary data is emerging to indicate that the response of normal tissues 
is partly determined by genetic susceptibilities. Genome-wide association 
studies (GWAS) have so far shown inconsistent results when associations 
between toxicity and single nucleotide polymorphism (SNPs) have been 
investigated [1].

	3.	 Currently, the 3D dose distribution to an organ is summarised and/or reduced to 
provide dosimetric information. However, this often results in the loss of spatial 
information. It is known that many organs contain substructure which is inherent 
to organ function. A classic example is the kidney [13] where dose to the neph-
rons is known to be important.

	4.	 Dosimetric data for an organ at risk relies on the contouring of the structure on 
the treatment planning system. Institutional protocols should be in place to 
ensure consistency of outlining. However, definitions may vary between institu-
tions, and this is particularly important when applying a model to data from 
another institution [20].

	5.	 What you see is not what you get (WYSINWYG). In addition to contouring 
consistency, most NTCP studies use the treatment planning scan to define 
the organ at risk. Great care is taken at each fraction of radiotherapy to 
ensure that the treatment plan is reproduced and that the target is irradiated 
accordingly. However, variation in normal tissues is not necessarily 
accounted for, so unless an accumulated dose, based on daily imaging, is 
constructed, there may well be a difference between the dosimetric data 
reported from the treatment plan and the actual dose to the normal tissue 
being modelled [26].

Awareness of these challenges and, where possible, incorporating them into the 
NTCP model will improve the robustness and the generalisability of the resultant 
models.
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Fig. 17.5  Maximum grade of combined late rectal toxicity, none (0), mild (1) and moderate/
severe (2), compared to the number of dose-volume constraints (applied retrospectively) 
failed [21]
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17.2	 �Why Should We Consider Machine Learning 
Approaches to Dose-Volume Effects?

Machine learning brings a new toolbox to the challenges of predicting NTCP. The 
concept of allowing a non-linear model to develop without an ‘a priori’ definition 
of the relationship between input variables and outcomes removes bias from our 
limited understanding of the response of normal tissues to radiation and enables 
us to uncover new information. Many of the considerations for predicting NTCP 
using machine leaning are common to the different ‘flavours’ of machine learn-
ing. As discussed, the data available includes dosimetric data, patient character-
istics, previous health history, other current health conditions (comorbidities), 
systemic therapy (chemotherapy) and surgery. Little is known about the interac-
tion between these different types of information, and therefore, the flexibility of 
being able to include variables without understanding higher-order interaction 
terms is a genuine advantage of machine learning. Many of the publications to 
date that predict NTCP from dosimetric variables present the data in the form of 
volume receiving (x) Gy or a reduction of the dose-volume histogram to EUD. The 
bins of the histograms for an individual patient are known to be highly corre-
lated. Depending on the uniformity of the radiotherapy protocol for the cohort 
under observation, there is usually an inter-patient correlation to consider. 
Machine learning approaches are generally well placed to cope with such 
interactions.

17.2.1	 �Feature Selection

Feature/variable selection can be regarded as either a preprocessing step or an inte-
gral part of model fitting. Where the existence or strength of correlation between 
individual features and toxicity is unknown, a wide range of possibilities will need 
to be included in the original input data. It is important to also consider interactions 
between variables that may contribute to the predictive power of the model.

Advantages of preprocessing feature selection include reduction of model com-
plexity, decrease in computational burden and improved generalisability of unseen 
data [16].

A wide range of methods for variable selection are available, and a useful sum-
mary on this is found in [49]. Within the literature for predicting NTCP using 
machine learning, undoubtedly one of the most popular is principal component 
analysis (PCA). Principal components are uncorrelated linear combinations of vari-
ables in a given dataset, which account for the variance in the input features in a 
dataset without reference to the corresponding outcome data, i.e. unsupervised 
learning. Ideally, data with the same outcome class naturally cluster together, and 
the clusters are separable from each other. PCA is a particularly attractive feature 
for DVH-based analysis where variables are known to be highly correlated and has 
been coupled with conventional statistical models such as logistic regression as well 
as machine learning methodologies.
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A large proportion of the variance in a dataset is often described by the first few 
principal components. PCA enables reduction to a lower dimension allowing visu-
alisation which can inform researchers on the complexity of the input-output rela-
tionship of the data and consequently on the appropriate choice of model. The 
reduction of dimensionality results in the ability to visualise high-order data. One of 
the earliest studies using PCA to predict NTCP was published by Dawson et al. [12] 
who considered PCA for two different organs at risk. PCA was chosen in order to 
consider all the bins of a DVH without having to reduce to a single metric, such as 
mean dose, or summary metric such as EUD. The first cohort included 56 head and 
neck patients where data from the parotid glands was used to predict xerostomia 
(dryness of the mouth) 12 months after radiotherapy. The dosimetric data was char-
acterised as a cumulative DVH with 1 Gy bins (84 bins in total). The first two prin-
cipal components explained 94 % of the variance in the DVH. When these were 
plotted against each other (Fig. 17.6) and labelled according to outcome class, there 
was a clear separation between the classes indicating that outcome classes were 
potentially linearly separable. The 1st principal component was shown to corre-
spond to a larger percentage of parotid volume treated to 10–60  Gy. This was 
approximated as the mean dose, which is commonly used as the constraint to the 
parotid gland [14]. Logistic regression was applied to the first three principal com-
ponents in addition to patient sex, age and diagnosis. Only the first principal com-
ponent was significantly associated with toxicity.

In contrast to these clear-cut results, the other cohort studied was 203 patients 
who received radiotherapy to either partial or whole liver. Initial PCA analysis of 
the DVH (again 1 Gy bins of the cumulative DVH) showed separated clusters for 
patients where the whole liver was irradiated vs. those who received partial liver 
radiotherapy. Subsequent PCA excluded patients who received >20 Gy to >90 % of 
the liver volume, reducing the number of patients to 138. The first two principal 
components were plotted along with the Lyman NTCP model however no separa-
tion between clusters was observed. Despite this result the results of logistic regres-
sion including the first three principal components and relevant clinical factors 
demonstrated that only the first principal component was significantly associated 
with toxicity.

Following on from the work by Dawson, Bauer et al. [2] explored the use of PCA 
to quantify rectal bleeding in a cohort of prostate cancer patients treated with radio-
therapy. As with the previous study, the intention was to reduce the degrees of free-
dom in the rectal dose-volume histograms to characterise those with or without 
toxicity. The paper gives a very helpful explanation of the background to PCA. 

However, unlike other studies on this subject, the authors state that direct imple-
mentation of PCA forfeits ease of interpretation as the individual principal compo-
nents do not represent unique dose-volume combinations that are associated with 
outcome, although they acknowledge that some insight into relevant features of the 
DVH may be ascertained. Consequently, the authors propose the use of a varimax 
rotation, an orthogonal rotation applied to the subset of principal components that 
account for most of the variance in the dataset. The varimax rotation maximises 
sparseness of the subset, and only small regions of each mode (component) remain 
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large allowing identification of specific regions of the DVH. However, the process 
reintroduces correlation which must be accounted for. A subsequent study by Sohn 
et al. [56] applied PCA to a cohort of 262 prostate cancer patients who were treated 
with a different treatment planning technique. Here, the conventional four-field 
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Fig. 17.6  Demonstrating linear separability of data describing xerostomia based on parotid gland 
dose distributions (Taken from Dawson et al. [12])
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‘box’ beam arrangement was used. However, an adaptive approach based on imag-
ing over the first week of treatment was employed. Fifty patients reported late rectal 
bleeding CTCAE v. 3 ≥ G2. As with the previous study, the bins of the cumulative 
DVH provided the input features; however, in this case, the bin width was 0.1 Gy 
resulting in 850 variables. 93.5 % of the variation was accounted for by the first two 
principal components. This increased to 96.1 % when the 3rd principal component 
was also included. The 1st principal component was correlated with much of the 
DVH, whilst the 2nd principal component was considered to be related to the vol-
ume of the rectum in the high-dose region where all of the treatment beams over-
lapped. The 3rd principal component was correlated with 2 distinct regions 40–45 
and 70 Gy. Again, this was attributed to the treatment technique. Although the first 
three principal components accounted for most of the variation and were interpre-
table, when plotted no obvious clusters were observed. Univariate logistic regres-
sion analysis indicated that only the 2nd principal component was significantly 
associated with rectal bleeding. Multivariate models including the first two and the 
first three principal components were both shown to be statistically significant. The 
first principal component was shown to correlate both with mean dose and indepen-
dently with V60, whilst the 3rd principal component correlated with the maximum 
dose.

The use of PCA to predict both rectal and bladder toxicity following prostate 
radiotherapy was reported by Skala et al. [55]. In this study, responses from 437 
patients to a postal questionnaire (using RTOG grading) sent out following radio-
therapy were analysed. The DVH data were characterised in 1 Gy bins and were 
analysed using both absolute (volume in cc) and relative (% of volume) descriptors. 
PCA results were tested for correlation with toxicity ≥G2 using the Mann-Whitney 
test, but none of the principal components was statistically significant. Standard 
descriptors of dose Dmax, V50, V60 and V70 were also tested, and again none were 
found to be statistically significant. The incidence of rectal toxicity ≥G2 reported in 
the study was very low (~3 %), and therefore, the lack of statistical significance is 
unsurprising. Bladder toxicity was slightly higher (~10 %); however, historically, 
correlating dosimetry with toxicity of the bladder has been much more challenging 
with variable results [62]. It is important to emphasise that the lack of correlations 
is most likely related to the data itself and that the use of a more sophisticated tech-
nique will not necessarily improve the results.

Another study by Vesprini et al. [61] describes using the same methodology as 
Skala on a cohort of 102 prostate cancer patients who received hypo-fractionated 
radiotherapy (3 Gy per fraction) to predict the incidence of both acute and late blad-
der and rectal toxicity. Association between dosimetric descriptors, both conven-
tional and principal components, and toxicity was assessed using Pearson’s 
correlation coefficient. None of the dosimetric predictors for the rectum were cor-
related with acute rectal toxicity. However, the bladder V40, V50 and the 3rd prin-
cipal component were correlated to acute genitourinary (GI) toxicity. In contrast, all 
of the conventional descriptors and the 1st principal component were statistically 
significant for late rectal toxicity, and none of the bladder variables were related to 
late genitourinary (GU) toxicity. The interpretation of principal component 1 was 
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not presented, but the results were shown to overlap with those provided by the 
conventional dosimetric variables. It was suggested that principal component results 
did not necessarily add extra information on the relationship between the rectal 
DVH and rectal toxicity.

A more recent publication on the use of PCA in radiotherapy incorporates spatial 
information into the relationship between dosimetry and toxicity. Liang et al. [33] 
used PCA to identify patterns of irradiation of the bone marrow in the pelvic region 
which were likely to increase acute haematologic toxicity. White blood cell count 
nadir was used as an indicator for acute haematological toxicity in a cohort of 37 
patients treated with chemo-radiotherapy for cervical cancer. The dose distribution 
for each patient was standardised by mapping each treatment planning CT, via 
deformable registration, onto a pelvic bone template. The corresponding dose dis-
tributions were interpolated and mapped onto the template. The dose to each voxel 
in the standard image was calculated and considered as a predictor variable. The 
template ensured the same number of voxels for each patient, and these voxels were 
sampled systematically, left-right, anterior-posterior and superior-inferior, to form a 
row vector for each patient containing 44,146 elements. For each patient, the same 
element referred to the same voxel. Clearly, this dataset would benefit from dimen-
sionality reduction. As with some of the previous studies, since all of the variables 
were measured using the same scale (Gy), PCA was performed with the covariance 
matrix. Of the 36 non-zero eigenvalues with corresponding eigenvectors, 5 were 
statistically correlated with acute haematologic toxicity using univariate logistic 
regression. Although the first PC accounted for over 20 % of the variation, the prin-
cipal components shown to be correlated to toxicity were the 12th, 23rd, 24th, 25th 
and 31st principal components, and combined together, they accounted for just 
4.2 % of the variation in the dataset. The results of the regression were used to test 
if the resultant dose space was related to toxicity. Acute haematological toxicity was 
defined by dichotomising the white blood cell nadir as <2,000/μml for no toxicity 
(n = 23) vs. ≥2,000/μml for toxicity (n = 14). Difference maps of the dose distribu-
tion were projected onto the pelvic bone template for those with/without the defined 
toxicity and compared with the voxels which were shown to be statistically signifi-
cant in the regression model. There was good agreement between the two assess-
ments (Fig. 17.7). This mapping approach allowed the visualisation of important 
anatomical regions of active bone marrow which could be avoided using intensity 
modulated radiotherapy (IMRT).

17.2.2	 �General Considerations

The use of machine learning is often favoured where the underlying relationship 
between the data is unknown and there is a need for future prospective evaluation of 
data. This is exactly the case for normal tissue complication probability. Generally, 
the dose-response of organs at risk is not well quantified, particularly for specific 
endpoints. This needs to be improved in order to optimise the use of available tech-
nology and to further increase the rate of successful cancer treatments. In the 
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meantime, we prospectively evaluate every treatment plan going through the clinic, 
and the development of knowledge-based tools to facilitate this process is highly 
desirable. Therefore, the ability of a trained model to generalise unseen data is 
imperative. Techniques to ensure this include cross validation and bootstrapping 
which reduce the dependency of a final model on a specific training dataset. The use 
of an independent (relevant) test set, to measure model performance, once the model 
has been finalised, should also be regarded as standard practice. It is important to 
appreciate the extent to which the model can generalise. If a model is trained on data 
from a centre, then a well-built model should be able to reflect the toxicity experi-
ence of that centre. However, it may not be able to predict toxicity for a similar 
cohort of patients from a neighbouring centre where subtle changes in treatment 
technique, toxicity reporting or patient demographic may render the model 
irrelevant.

Since the intention of radiotherapy is to keep the incidence of toxicity to a mini-
mum, the balance of toxicity/no toxicity in the dataset may be very unbalanced with 
only a small number of patients reporting toxicity. Whilst this is generally good 
news for the patient, it is a challenge to model building. A number of approaches 
exist to try to account for this. Firstly, the ratio of toxicity/nontoxicity cases should 
be standardised across training groups, for example, stratified cross validation, and 
in the independent test set. It is also possible to promote the number of cases within 
the dataset for the underrepresented class [30].

17.2.3	 �Assessing Model Accuracy

The performance of NTCP models is often quantified using the receiver-operator 
curve (ROC) analysis which quantifies the ability of a continuous variable to predict 
for a dichotomised outcome by considering every possible cut-point in the continu-
ous variable and calculating the resultant sensitivity and specificity [57]. Sensitivity 
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(true positive rate (TPR)) and specificity (true negative rate (TNR)) are calculated 
from the confusion matrix (contingency table) of predicted vs. known outcome 
classes for a given dataset and cut-point. The resultant plot of sensitivity against 
1-specifity for all possible cut-points is known as the ROC curve. The area under the 
curve (AUC) indicates the probability that the model would rank a randomly 
selected positive case higher than a randomly selected negative case. Alternatively, 
Matthews correlation coefficient [37], also calculated from the confusion matrix of 
a binary classification problem, is an alternative approach to quantifying the predic-
tive power of the model. It is regarded as being particularly useful in situations 
where the classes are of different sizes.

It is defined as

	

MCC
TP TN FN FP

TN FN TP FP TN FP TP FN
=

× − ×( )
+( ) +( ) +( ) +( )( ) 	

(17.5)

where TP is the number of true positives, TN true negatives, FN false negatives and 
FP false positives.

An MCC value of 1 indicates a perfect classification, 0 a random classification 
and −1 a wholly inverted classification.

Once the model has been finalised, it is useful to evaluate the importance of each 
input feature in making the prediction. Some model types, for example, decision 
trees, lend themselves to interpretation, whilst others such as artificial neural net-
works are regarded as impenetrable black boxes. Even in this case, it is possible to 
investigate the role of each input by using techniques such as leave one out (LOO) 
where data for each input feature is removed and the effect of the predictive power 
of the model reassessed.

17.3	 �Classic Machine Learning Approaches

There are many flavours of machine learning; however, most of the literature related 
to predicting NTCP is from the more established techniques. These can be broadly 
separated into supervised and unsupervised learning approaches including. 
Conventionally, a model relates a number of variables to an outcome or classifica-
tion; this is supervised learning. In contrast, unsupervised learning finds patterns 
and groupings among the input variables only; these groupings should then natu-
rally reflect the classification of the data. The following sections consider the use of 
supervised learning approaches, artificial neural networks and support vector 
machines, and unsupervised learning techniques for prediction of NTCP.

17.3.1	 �Artificial Neural Networks

Artificial neural networks (ANNs) are one of the classic machine learning 
approaches dating back to the seminal work of McCulloch and Pitts [39]. With the 
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analogy of the way the human brain works, it is tempting to think that the knowl-
edge of an experienced clinician or medical physicist can be easily transferred. It 
has been a popular choice for applications relating to predicting the response of 
normal tissues to radiotherapy. One of the earliest papers was published by Munley 
et al. [44] who trained a feedforward, back-propagation, neural network to predict 
symptomatic lung injury following radiotherapy. Ninety-seven patients were 
included in the neural network of which 25 had a clinician assessed symptomatic 
lung injury. Patients with a number of tumour sites were included. Although 2/3 of 
the patients were treated for lung tumours, the inclusion of other tumour sites 
increased the diversity of the dose distributions and confounding factors in the train-
ing cohort. The neural network had 29 inputs corresponding to pretreatment fea-
tures which described a range of variable types including patient characteristics 
(age, race, sex, smoking status); disease characteristics (tumour site and central lung 
tumour); baseline assessment (heterogeneity of SPECT scan adjacent to and away 
from the tumour, diffusion capacity of carbon monoxide (DLCO), forced expiration 
volume in 1  s (FEV1), haemoglobin, chronic obstructive pulmonary disease 
(COPD)); chemotherapy and dosimetry which included dose-volume histogram 
reduction using both the Lyman [36] and Kutcher method [32]; volume of lung 
receiving 10 Gy (V10), V20, V30, V40, V50, V60, V70 and V80; and the full and 
effective dose to lungs and the lung volume. Each input was scaled 0–1. The archi-
tecture included two to five hidden nodes and a single output node each with a sig-
moidal activation function. Training was performed using the leave-one-out 
approach where each patient case was taken out and the neural network retrained. 
Training was terminated when the ROC analysis was maximised. The final result 
was an AUC of 0.833 +/−0.04. This result was compared with multivariate logistic 
regression which resulted in an AUC of 0.813 +/−0.064 and the dose-volume histo-
gram reduction method of Kutcher which yielded an AUC of 0.521 +/−0.08. The 
influence of each input variable was assessed by retraining the neural network with 
the leave-one-out approach applied to each variable and ranked by assessing the 
deterioration in AUC after a fixed number of iterations. The top five variables were 
found to be heterogeneous SPECT (apart from the tumour), haemoglobin, histo-
gram reduction (Kutcher), COPD and age, the first three of these were also the top 
three ranked variables using multivariate logistic regression. It is clear from these 
results that combining dosimetric and clinical information enabled the most accu-
rate prediction of toxicity. The use of a leave-one-case-out approach to train the 
neural network is likely to result in overfitting, but using a leave-one-input-out 
approach to investigate the contribution of individual features allowed useful insight 
into the prediction of toxicity. Following on from the early work by Munley, Su 
et al. [58] used data from 142 non-small-cell lung cancer patients from the same 
institution (Duke University Medical Centre) to predict radiation pneumonitis ≥ 
grade 2 also using ANN. Thirty-one of these patients were included in the previous 
study. This study compared 3 different approaches to segmenting the training and 
testing data and only considered 8 dosimetric input features describing the volume 
of lung receiving 10 Gy stepping up in increments of 10 Gy up to 80 Gy. As previ-
ously, a leave-one-out approach was employed to train ANN_1 on all but one case 
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and testing on the omitted case. The predictive success was characterised by AUC 
which was reported to be 0.85. Two further approaches were tested. ANN_2 used 
2/3 of the available data for training and 1/3 for testing. The allocation of data was 
essentially random as patients were ordered in alphabetical order in terms of their 
last name. Finally, ANN_3 was intended to improve the quality of the training data 
by ensuring the maximum variation in input parameters for the cases reporting tox-
icity where once again 2/3 of the cases were used for training. The respective AUC 
for ANN_2 and ANN_3 were 0.68 and 0.81 demonstrating that careful consider-
ation of the cases provided for training can have a statistically significant improve-
ment in predictive accuracy. The ability to generalise the unseen cases should also 
be improved compared to the leave-one-out method. A comparison with standard 
predictive models of V20 and mean lung dose and LKB model (TD5/5 23 Gy, m 
0.17 and n 0.86) [5] demonstrated that each of these models yielded an AUC of 
around 0.5, no better than chance, although the authors acknowledged that a fairer 
comparison would have been to derive the parameters for their own data using max-
imum likelihood estimation.

In 2007, Chen et al. [8] reported results for a larger cohort of lung cancer patients 
from the same institution, Duke University Medical Centre, North Carolina. 
Radiation-induced pneumonitis (≥ grade 2) was reported in 34 out of 235 patients, 
all of whom were treated using 3D conformal radiotherapy. ANNs were constructed 
using an algorithm that successively pruned and grew the input features and hidden 
nodes, using a training-validation cohort to assess improvement (or otherwise) of 
each successive iteration. To avoid local minima, weights and bias were trained 
from five randomised initial sets and the lowest error used overall. Weights were 
constrained to ensure reasonable responses between input variables and outcome. 
For example, weights connecting dosimetric variables were constrained to have a 
positive value only. The authors acknowledged that this approach prohibits a com-
plimentary subtractive effect between variables but suggest that this will safeguard 
against detrimental overfitting. 93 potential input variables were available. 
Dosimetric information included V6 to V60 in 2 Gy increments and gEUD varying 
from 0.4 to 4 in increments of 0.1. The mean dose to the heart was also included. 
Since many of the dosimetric variables are highly correlated, the training rules 
ensured that once a variable had been incorporated into the model, no other highly 
correlated variables (>0.95) were eligible for inclusion in the model. The inclusion 
of non-dosimetric variables was justified by citing previous analysis of normal tis-
sue response which was shown to be modified by interaction with chemotherapy 
[40] and age [34]. A wide range of non-dosimetric variables, similar to the previous 
publications, were included covering patient demographics, treatment information 
and pre-radiotherapy assessment of lung function. A tenfold cross-validation 
approach was used to ensure that the results were generalisable, whilst a 2nd 
approach using all patient data for training was developed for prospective testing. 
Leave-one-out analysis was used on this 2nd architecture to assess the influence of 
individual-chosen variables. Comparison of models was performed using ROC 
analysis. For the ANN trained using cross validation, the optimised architecture 
containing only dosimetric variables resulted in an ROC of 0.67 for the independent 
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test when non-dosimetric variables were added to the model construction; this 
improved to 0.76. Each of the ANN developed using cross validation contained dif-
ferent variables; however, the authors highlight that often highly correlated vari-
ables were represented in each model. The model trained for prospective testing 
included 6 variables, V16, gEUD a = 3.5, gEUD a = 1, forced expiration volume in 
1  s (FEV1), carbon monoxide diffusion capacity of the lung (DLCO%) (both of 
which were assessed prior to radiotherapy) and induction chemotherapy. All input 
features except FEV1 and induction chemo were shown to be individually statisti-
cally significant. It is clear from these results that different parts of the dose distribu-
tion were included in the final model despite dosimetric correlation being 
constrained. This result suggests that different parts of the dose distribution are 
important in predicting toxicity. We will consider this again with later 
publications.

To date, we have considered neural networks where features from the dose dis-
tribution have been based on the cumulative dose distribution. The disadvantage of 
using dose-volume histograms is that all spatial information is discarded. It is 
known that each organ at risk has an internal structure and function and that this is 
important for both damage and repair. For example, it has been shown that sparing 
the superficial gland of both parotids reduces the incidence of xerostomia compared 
to sparring one parotid completely and irradiating the other. This is thought to be 
because the majority of parotid stem cells are located in the superficial lobe whilst 
the deep lobe is predominantly the ductal structure [41]. It is also considered that the 
nephrons are the most sensitive structure within the kidney [13]. Very little work has 
been done to incorporate spatial information into prediction of normal tissue toxic-
ity. One example is the paper by Büttner et al. [4] where a dose-surface map of the 
rectum was used to provide the input features to an ensemble of neural networks 
which predicted rectal bleeding following prostate radiotherapy. A dose-surface 
map is generated by unfolding the cylindrical structure of the rectum outlined in the 
treatment planning system. A number of unfolding methodologies have been sug-
gested. In this study, a slicewise method was chosen whereby the rectal contour 
outlined on each slice of the treatment planning CT was virtually unfolded by cut-
ting at the most posterior point. The maps were normalised on a slice-by-slice basis 
to produce maps as shown in Fig. 17.8. Since the dose in the adjacent pixels is cor-
related, four locally connected neural network architectures were constructed. The 
first connected a row of 3 neighbouring pixels to each node in the hidden layer with 
an overlap of 1 pixel. The second connected a 3 × 3 group of pixels to the 1st hidden 
layer where a group of 4 × 4 nodes was connected to the 2nd hidden layer. In the 3rd 
architecture, a group of 3 × 3 pixels was connected to the 1st hidden layer. These 
nodes were connected to the 2nd hidden layer row by row with no overlap. Finally, 
in the fourth architecture, the input nodes were connected in the same way as the 
2nd architecture, i.e. 3 × 3 group of pixels linked to the hidden nodes. The weights 
between each group were shared making the presumption that a global dose-
response could be modelled. In comparison, a fully connected ANN using the dose-
surface histogram values, i.e. the area of the DSM receiving x Gy, was constructed 
with 35 inputs characterising the dose between 5 and 73 Gy.
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An ensemble approach [22] was employed to train the ANN-based classifier. An 
ensemble is a group of independently trained ANN, each of which contributes to the 
output prediction. Ensembles should be less susceptible to overfitting and ‘choosing 
an unrepresentative’ local minima. In this study, an ensemble of 250 ANN was con-
structed. Each ANN was trained using a different sample of cases from the training 
data with independent initialisation of the weights in each ANN. Since the inci-
dence of rectal bleeding was relatively low (53/329 patients), 20 % of the patients 
who did not report rectal bleeding and 75 % of the patients who did report rectal 
bleeding were randomly chosen for each ANN. Expert ensemble was developed by 
sequentially adding ANN and evaluated using the area under the ROC curve for 
predictions on a subset of patients from the training set. If the AUC improved when 
predictions from the newest ANN were added, then the ANN was added to the 
ensemble. This process was repeated three times, and ANN that was included in all 
three ensembles was incorporated into the expert ensemble. This whole process was 
repeated for each fold of the tenfold cross validation.

Architecture 2 was shown to produce the best predictive results with an AUC of 
0.61 for all ANNs and 0.64 for the expert ensemble; this was compared to AUC of 
0.59 for the dose-surface histogram-based ANN. In order to assess the influence of 
the data partition resulting from cross validation, the cross-validation partitioning 
was repeated 100 times and the most promising locally connected architecture (2) 
retrained. The mean AUC was 0.65 +/−0.018.

Compared to other studies, the AUC is relatively low. However, the improvement 
in the AUC when spatial information was incorporated suggests that using spatial 
information improves the input information and that overall shortcomings may well 

Fig. 17.8  Example dose distribution to the rectum shown as a mesh based on the contours delin-
eated on the treatment planning CT and as a slicewise-unfolded, normalised dose-surface map (DSM)
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be due to a lack of non-dosimetric data or the fact that the radiotherapy dose distri-
bution (either DVH or DSM) from the treatment planning scan is not representative 
of the actual dose distribution received by the patient over the course of the fraction-
ated treatment. The study by Tomastis et al. [59] combined dosimetric and clinical/
treatment variables to predict late rectal bleeding for a large cohort of patients 
(n = 718) from the AIROPROS 0102 trial [19]. The dosimetric information included 
dose to the pelvic nodes and seminal vesicles; ICRU dose; mean and maximum dose 
to the rectum; rectal V50Gy, V60Gy, V70Gy and V75Gy; and finally rectal EUD 
(n = 0.03) [53]. Clinical variables included diabetes, hormonal therapy, haemor-
rhoids, use of anticoagulants/antiaggregants, previous abdominal surgery, pelvic 
node irradiation and seminal vesicle irradiation. A genetic algorithm was used for 
feature selection [43]. Five variables were chosen: EUD, previous abdominal sur-
gery, presence of haemorrhoids, use of anticoagulants and androgen deprivation. 
Fourfold cross validation was employed. In each split, half of the patients were used 
for training, a quarter to validate training and a quarter as an independent test set. 
Stratification was employed to ensure that the number of cases who reported toxic-
ity (n = 52) was balanced in each group. The number of hidden nodes in the archi-
tecture varied between 1 and 10, and a leave-one-out approach was used in training. 
Assessment of the ANN was performed using area under the ROC curve. The leave-
one-out training method resulted in an AUC of 0.730 which reduced to 0.704 when 
tested on the validation cohort. The cross-validation AUC resulted in an AUC of 
0.714; this is in comparison with an AUC of 0.636 for a logistic regression model 
using the same variables and fitted in the same way. The importance of each variable 
was tested by replacing the variable with the average value in each case. It was 
found that EUD was the most important variable followed by previous abdominal 
surgery, haemorrhoids, anticoagulants and finally androgen deprivation. This study 
demonstrates that adding clinical factors is likely to improve the predictive abilities 
for rectal bleeding. However, caution is required when one class of outcome is 
underrepresented as this can skew the AUC results.

17.3.2	 �Support Vector Machines (SVM)

Support vector machines are a class of machine learning that attempt to find a 
boundary plane that separates two classification outcomes in feature space. When 
the cases are linearly separable, this is relatively straightforward; however, more 
often than not, when considering prediction of normal tissue toxicity, the cases are 
not linearly separable. In this situation, the variables can be transformed into a 
higher dimensional feature space where the cases may be separated by a hyper-
plane. This is achieved using a non-linear kernel such as a polynomial or radial basis 
function. Each data point represents a vector of the variables included in the model. 
The dual optimisation of separating the cases whilst improving fitting accuracy 
results in a balanced trade-off. This is computationally intensive to solve; however, 
it is possible to characterise the prediction function using only a subset of training 
data. The cases used to define the boundary between classes are known as support 
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vectors. Unlike other approaches to machine learning, SVM maximises the distance 
between the two classes rather than minimising the mean square error, and it is per-
missible for a defined number of cases to be on the ‘wrong side’ of the boundary. 
The framework of a SVM implicitly includes higher-order interactions between 
variables without having to predefine what they are.

In a publication complimentary to their work using neural networks (discussed 
in the previous section), Chen et al. describe using support vector machines to pre-
dict pneumonitis [6] on the same dataset reported for ANN [8]. A radial basis kernel 
function was chosen for the SVM in preference to a sigmoid or polynomial kernel 
as the increase in free parameters might result in overfitting. SVM were constructed 
using only dosimetric variables and separately with all available variables. Parameter 
values C and σ were predetermined using a grid search. Variable selection was per-
formed using a similar approach to the ANN study whereby variables were added 
and substituted iteratively employing a tenfold cross validation. Although each of 
the ten results was independent, there was a large crossover between the input vari-
ables selected. For the SVM trained using only dosimetric variables, EUD with 
a = 1.1 (1), 1.3 (8) and 1.4 (1) were chosen along with V48Gy (3) and V50Gy (10). 
The overall AUC was 0.71. Similarly, for the SVM trained with dosimetric and non-
dosimetric variables, EUD a = 1.2, (1) 1.3(7) and 1.4(2) were chosen along with 
induction chemotherapy (chosen in all tenfolds), tumour location (9), gender (8) 
and two histological variables: adenocarcinoma vs. not (2) and small cell vs. not (1). 
As with the previous ANN study, highly correlated inputs were not permitted in the 
same model. Therefore, each fold of the SVM using dosimetric variables chose an 
EUD close to mean lung dose (a = 1) and a higher dose constraint. Induction chemo-
therapy was also featured in every fold. Tumour location and gender were also 
strongly represented with the histological variables to a lesser extent. This level of 
consistency between folds is reassuring for generalisability. The AUC for the SVM 
including dosimetric and non-dosimetric variables was 0.76. A LOO approach was 
employed to investigate the importance of individual variables in the SVMall model. 
The AUC was reduced by 0.19 with the exclusion of EUD and by 0.09 for induction 
chemotherapy. The importance of these two variables was consistent with the results 
from the previous ANN study. However, the contribution of other variables demon-
strates the risk of overfitting if techniques such as cross validation are not employed.

El Naqa et al. describe the use of non-linear kernel-based approaches for pre-
dicting normal tissue toxicities [16] highlighting the challenges of mixed models 
built from different data types including dosimetric metrics, patient characteris-
tics and disease-/treatment-based prognostic factors. They recommend the use of 
kernel-based methods, specifically support vector machines, citing the following 
advantages over other machine learning approaches: ability to adapt to artificial 
intelligence, ability to avoid excessive overfitting and ability to maintain compu-
tational efficiency of classical statistical methods, and in summary, they state that 
SVM overcome the stigma of a black box due to rigorous mathematical founda-
tions. Preprocessing of the data is achieved using PCA which also allows visuali-
sation of the higher dimensional data. Examples from two clinical datasets were 
presented. The first was a small cohort of 55 head and neck cancer patients where 
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a model is developed to predict xerostomia which results from a lack of salivary 
production following radiotherapy. Clinical variables included patient age, gen-
der, ethnicity, treatment, Karnofsky performance, chemotherapy, stage and his-
tology. In addition, a previously developed dosimetric model which predicts 
salivary function using the dose to the parotid gland with a factor of 0.054/Gy [3] 
is incorporated. It was observed that the groups of patients with and without 
xerostomia were reasonably separated, and it was subsequently demonstrated 
that a linear kernel produced a model which was not bettered by either radial 
basis function or polynomial Kernel. The authors comment that this is ‘not the 
norm in radiotherapy’ as exemplified by the 2nd dataset presented. Data of 219 
patients treated with radiotherapy for non-small-cell lung cancer (NSCLC) were 
used to predict radiation pneumonitis (RTOG grade3). Dosimetric characterisa-
tion of the dose to the lung was achieved using volume receiving x Gy (Vx). Vx 
with increments of 10 Gy from 10 to 80 Gy was included. Using these variables, 
it was demonstrated that the classes could not be separated using PCA. Using 
SVM, it was demonstrated that an improvement in model performance was 
observed with increasing order of polynomial. A separate model was developed 
which included non-dosimetric variables including patient, disease and treatment 
variables. In addition, the dosimetric descriptors were expanded to include Dx 
(the volume of lung receiving a minimum dose x). In total, 58 variables were 
included. The top 30 variables were selected using recursive feature elimination 
SVM. Variable pruning was used to account for multicolinearity of correlated 
variables. The model resulted in an MCC of 0.22 and contained 6 variables. A 
further SVM was developed using three variables discerned from a previous 
study using model order selection with resampling logistic regression. The resul-
tant SVM with a radial basis function kernel had an MCC of 0.34. The improve-
ment in this value is attributed to the ability of SVM to account for interactions 
between model variables.

In a subsequent, more comprehensive publication, El Naqa et al.[17] expand on 
the data presented. Often in radiotherapy, the incidence of complications can be 
quite low. Conventionally, an SVM cost function treats the two potential classes 
equally; however, to account for the imbalance between classes, different weights 
can be assigned to the samples in the two different classes with a higher penalty 
weight assigned to the underrepresented class.

As such, the penalty term is expanded to
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In addition to the datasets studied in the previous publication, data predicting 
acute oesophagitis in a cohort of 166 NSCLC patients was also presented. Finally, 
data from a multi-institutional RTOG study (9311) was used as an independent vali-
dation set to predict radiation pneumonitis. As previously reported, the best model 
to predict xerostomia was a linear classifier which yielded an MCC value of 0.64. 
The model to predict oesophagitis included concurrent chemotherapy and 
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dosimetric information in the form of Vx. No pre-model variable selection was per-
formed. Optimal performance was achieved using a radial basis function with σ = 2 
and C = 100 and yielded an MCC of 0.43.

It was previously demonstrated that the highest value of MCC for radiation pneu-
monitis (0.21) was achieved using a radial basis function kernel with σ = 5 and 
C = 100 and that an MCC of 0.34 was obtained by using parameters from a previous 
multimetric approach in SVM. Data from the RTOG study (excluding the data used 
for training from Washington State St Louis (WUSTL)) was used to test the gener-
alisability of the model to the independent data resulting in a reduced MCC of 0.15. 
A subsequent model using only the mean lung dose and centre of mass of the tumour 
(superior-inferior direction) (COM-SI) resulted in an MCC of 0.28 when tested on 
the unseen RTOG data. The advantages of using an ensemble of support vector 
machines are explored by Schiller et al. [54]. Using the radiation pneumonitis data 
from WUSTL, the differences in AUC for differing sizes of ensembles of SVM 
were compared using Student’s t-test. The results indicated that the AUC was statis-
tically significantly improved for larger ensembles.

17.3.3	 �Self Organising Maps

Self-organising maps are an unsupervised form of machine learning. Unsupervised 
learning clusters similar data together based on the input features with no reference 
to corresponding output data. Similar to PCA, self-organising maps reduce the 
dimensionality of the data. Proposed by Kohonen [31], self-organising maps are 
regularised grids of neurons which are trained by adapting weights. Each neuron 
contains information on the physical location and the weights which can be consid-
ered as typical values of the input features for that neuron. Neighbouring neurons 
will be more similar than distant nodes. Once trained, subsequent cases are mapped 
onto the SOM by finding the neuron with the most similar weights. The weights 
can be initialised randomly; however, the process may be speeded up by perform-
ing PCA and using the first two principal components to initialise the weights. 
Unlike PCA, the use of self-organising maps to predict normal tissue complication 
probability is very sparse. The most prominent example is the study by Chen et al. 
[7] which is complementary to their studies using ANN and SVM. Using the same 
dataset of 219 lung cancer patients of whom 34 reported radiation pneumonitis, a 
self-organising map was trained. As with previous studies, two models were devel-
oped SOMdose which included dosimetric variables describing the mean dose to the 
lung and heart, volume of lung receiving x Gy and EUD with varying values of a 
and SOMall which also incorporated the non-dosimetric variables such as chemo-
therapy status, tumour information and baseline lung function. Once the weights in 
an SOM are initialised, each case is presented to the map. Two parameters which 
steer the learning of the SOM are neighbourhood distance and learning rate. The 
neighbourhood distance defines the acceptable difference between the weights of 
an input and the weights associated with each neuron in order to decide if the 
patient case belongs to a particular node. In this study, similarity was assessed 
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using the Euclidean distance. The other parameter is the learning rate which in the 
context of SOM defines how much information from the input vector (i.e. how 
many of the input variables) are used in training. Once a case has been assigned to 
a neuron, the associated weights are updated and the process is repeated iteratively. 
In this study, a cross-validation approach was used. One fold of data was removed 
for independent testing and one group was used to test the efficacy of the SOM 
trained on the other eight groups. A map of 4 × 3 neurons was found to be optimal, 
and input variables were included using trial and substitution. Each model was 
evaluated using the ninth group of data, and a variable was accepted if the AUC 
increased. Training was terminated when no new input variables were added to the 
model. Once trained, the outcome information was introduced, and the probability 
of radiation pneumonitis ≥grade 2 (P) on each neuron was calculated as follows:

	
P = +N N Np n p/ 	 (17.7)

where Np is the number of patients assigned to the neuron who experienced toxicity and 
Nn is the number of patients assigned to the node who did not experience toxicity.

The map can then be used prospectively by finding the appropriate neuron for 
each new patient and then using the probability assigned to that node. Evaluation of 
each model was performed for the 10th group of data using AUC and repeated for 
each fold of cross validation. The resultant AUC was 0.67 for SOMdose and 0.73 for 
SOMall. The difference between the two AUCs was shown to be statistically signifi-
cant (p < 0.05). The influence of the cross-validation groups was tested by repeating 
the splitting of the data 200 times and retraining the SOMall model. Remarkably, the 
AUC was 0.724 (SD = 0.017) suggesting a very consistent outcome. The variables 
included in at least one fold of the cross validation of SOMdose were EUD a = 0.7, 
0.8, 0.9 and 1 and V40, V42 and V44. For SOMall, the features selected were EUD 
a = 0.9, 1 and 1.1, chemotherapy, histology and tumour location. As mentioned pre-
viously, EUD with a = 1 is the mean dose which has been previously considered as 
being predictive of radiation pneumonitis. When this variable was removed from 
the model, the decrease in AUC was shown to be statistically significant. The only 
other variable shown to produce a statistically significant decrease on exclusion was 
chemotherapy. These results are consistent with the two other publications by the 
same group.

17.3.4	 �Bayesian Networks

Bayesian networks have become a popular statistical approach to challenging non-
linear problems. Bayesian networks are presented using directed acyclic graphs 
which summarise the joint probability distribution between a set of variables. The 
network is optimised by finding the conditional probabilities on each node which 
best represents the dataset. Oh et  al. [50] describe using a Bayesian network to 
detect interaction of dose-volume-related parameters to predict radiation pneumoni-
tis. The dataset comprised information of a cohort of 209 patients treated with 
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radiotherapy for non-small-cell lung cancer. Forty-eight of the patients were subse-
quently diagnosed with radiation pneumonitis. Input features included clinical fea-
tures and dosimetric features characterised as Vx and Dx (minimum dose to the 
hottest x% volume). In all, 160 features were available, and the first step was to 
reduce the number of variables in the model. Information gain-based approach was 
employed for feature selection. Subsequently, the number of input features was 
reduced from 43. The Bayesian classifier assigns each case to the class with the 
highest posterior probability, determined by Bayes’ theorem. We have discussed 
previously that dose-volume data is highly correlated; however, a naïve Bayesian 
classifier presumes that all features are mutually independent. Therefore, Oh et al. 
also implemented a tree augmented naïve Bayes classifier which allows connections 
between features, to overcome this challenge. Given the potential number of net-
works that may exist for a given dataset, it is not feasible to find an exact solution, 
and approximate solutions are usually employed. In this case, both hill climbing and 
the K2 algorithms with random ordering were implemented with the maximum 
number of parents allowed on each node equal to three. The Bayesian networks 
were evaluated using the BDe score metric [23]. Tenfold cross validation was 
employed, and each network was assessed after 30 iterations. The performance of 
each network was assessed using Matthews correlation coefficient. There was rea-
sonable consistency between the different models with MCC between 0.25 and 0.3. 
Unexpectedly, the tree augmented naïve Bayes classifier was reported to be inferior 
in predictive power to the naïve Bayesian classifier. One of the advantages of a 
Bayesian classifier approach is that it is inherently visual, and therefore, relation-
ship between variables can be observed. In this study, the dosimetric features relat-
ing to the heart and lung were shown to be clustered separately. Demonstrating that 
not only is there a relationship between the heart and lung but also between the 
variables for each organ.

17.3.5	 �Decision Trees

Decision trees are constructed using recursive partitioning analysis which optimises 
successive dichotomisation of input variables resulting in a tree-like structure used 
for classification. Each tree is ‘grown’ by starting at the root and splitting the train-
ing cases into two, maximally separated, classes. This branching continues until a 
terminal node (leaf) is reached. Each leaf has an associated probability of being 
assigned to a specific class. In the case of NTCP, this is the probability of experienc-
ing a defined toxicity. Once trained, prospective cases can be tested, by following 
the appropriate path along branches eventually ending at a leaf.

Das et al. [11] describe using decision trees to augment prediction of the classic 
Lyman NTCP [35] by producing a combined prediction. Using the same dataset as 
described previously by Chen et al. [6–8], decision trees with potential dosimetric and 
non-dosimetric factors were built using tenfold cross validation with a balanced rep-
resentation of cases experiencing radiation pneumonitis in each fold. The model was 
constructed using the AdaBoost algorithm which sequentially increases the number of 
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weighted predictive units in the model. The first predictive unit contained only the 
Lyman model; the subsequent predictive units contained both the Lyman model and a 
decision tree. The predictive error ε for each predictive unit was calculated as the sum 
of individual patient errors (deviation from binary outcome) multiplied by patient 
weights. The weight of the predictive unit and patient weights were updated and prop-
agated to the next iteration. The success of the split was assessed using the Gini index 
split threshold criterion [22] which was expressed in this study as

	
N p p N p p N pLs inj s uninj,s inj L uninj L R inj,R1 1 12 2 2 2−( ) − −( ) − −−, , ,− −−( )2 puninj,R

2
	 (17.8)

where S refers to the node being split, L and R refer to the left and right branches, 
N is the number of cases and p is the proportion of patients. The subscript inj refers 
to patients who reported radiation pneumonitis and uninj refers to patients who did 
not. The variables were ranked best to worst based on the Gini index. Only those 
variables with a Gini index >80 % of the maximal Gini reduction were included in 
the model. Only three nodes were allowed on the decision tree in each predictive 
unit to avoid overfitting. Direction rules were implemented for a subset of variables 
to ensure that splits were logical, for example, dose variables and disease stage were 
forced in a positive direction, i.e. higher value associated with increased risk of 
injury. AUC was used to assess the predictive accuracy of the model as successive 
predictive units were added. It was demonstrated that there was no further increase 
in AUC after 11 units. This model resulted in an AUC of 0.72 compared to predic-
tions made solely using the Lyman NTCP model which yielded an AUC of 0.63.

A simplified model was constructed (Fig. 17.9) where the Lyman NTCP value 
was combined with the value on the appropriate terminal node to provide an overall 
predictive value. This simplified model was shown to have an AUC of 0.75 and 
included the use of induction chemotherapy, histology (squamous vs. others), gen-
der and number of fraction per day. More recently, Palma et al. [51] used recursive 
partitioning analysis to predict radiation pneumonitis on a cohort of patients identi-
fied from an international meta-analysis. Data from 836 patients who underwent 
concurrent chemo-radiation therapy for non-small-cell lung cancer (NSCLC) from 
12 different institutions in Europe, North America and Asia were collected. Patients 
were randomly assigned to either training or validation groups (2/3 vs. 1/3). Initially, 
univariate logistic regression was used to identify input features that were predictive 
of radiation pneumonitis. These features were independently assessed using multi-
variate stepwise logistic regression and recursive partitioning analysis. The inci-
dence of radiation pneumonitis was reported as 29.8 % which was scored using a 
number of different scoring schemes where in each case grade 2 or greater was 
counted as a radiation pneumonitis event.

Chemotherapy regimen, age >65 years, V20 and mean lung dose were the vari-
ables used in the recursive partitioning model which defined the three risk groups. A 
statistically significant difference between the risk of pneumonitis between the risk 
groups was observed for both the training and validation cohorts. The results of this 
study are strengthened by the inhomogeneity of the dataset, although no quantifica-
tion is made of predictive accuracy for comparison with other model-based studies.
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17.3.6	 �Hybrid Models and Comparative Studies

Each of the models here has shown strengths and weaknesses. None has been shown to 
be the perfect predictor. The question is whether an improvement can be made by com-
bining predictions from different models to give ‘the best of both worlds’. A useful 
illustration of this is the paper by Das et al. [9] who suggest that fusion of predictions 
from disparate models obtains a more realistic and robust estimate of the ground truth 
and that, where consensus exists between models, this reinforces the predictions. The 
results of the four previous studies discussed earlier in this chapter are combined to give 
a consensus prediction of the risk of radiation-induced pneumonitis using predictions 
from independently trained decision trees, neural network, support vector machines and 
self-organising maps. Each model incorporated dosimetric and non-dosimetric features 
from the same pool of available input variables; individual reports [6–8] demonstrated 
that no two models chose the same set of variables. In this study, the prediction of each 
model was averaged to generate an analogue prediction value. One hundred random 
divisions of the data in to tenfold cross validation were used to make predictions from 
each of the model types. These outcomes were converted to a binary value of 0 (no 
toxicity) and 1 (toxicity) prior to averaging to account for differences in scaling between 
the outputs of each type of classifier. These results were combined to produce an ana-
logue prediction which was averaged over the four models. The resultant model was 
shown to have an AUC which converged at 0.79 when 10 randomly selected predictions 
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were chosen for each model; this was an improvement of the results of each of the indi-
vidual classifiers. The Spearman correlation between any two of the predictions for each 
model was shown to be high (≥0.9) for all models except SVM, whilst correlations 
between models were much lower. This emphasises the benefit of repeated cross valida-
tion and the combination of different classifiers. The importance of individual input 
features was tested using reverse rank method whereby the patient predictions were 
ranked highest to lowest risk of pneumonitis based on the consensus prediction. The 
values of one input variable were then reversed so that the value for the top-ranked 
patient was substituted with the bottom-ranked patient and vice versa. The predictions 
were recalculated and the ranking recalculated. The Spearman correlation coefficient 
was used to compare the pre- and post-switch rankings (which were resampled 105 
times). A large negative coefficient would indicate a large impact on the predictions 
from the variable in question. As with previous publications, highly correlated variables 
(Pearson’s coefficient >0.9) were excluded from being added to a model where another 
correlated feature was already present. Therefore, groups of dosimetric variables were 
grouped together. The largest negative coefficient was observed when two groups of 
dosimetric variables and induction chemotherapy were reversed. Female gender and 
squamous cell histology were also shown to be important. The dosimetric groups repre-
sented I EUD (a 0.5–1.2) and vol >20–30 Gy and II EUD (a 1.2–3). Subsequently, the 
consensus variables were fitted to a logistic regression probability function. This transla-
tion of the consensus of machine learning into an easily interpretable model enables the 
transfer of learned knowledge into the clinical context.

A more recent study by Nalbantov et al. [45] combined predictions from ten dif-
ferent models to predict radiation-induced acute dysphagia (swallowing difficul-
ties). Each model was assigned equal voting rights and tested on a prospective 
cohort of patients. The results were compared to predictions made by physicians. 
All were given the same ‘input’ information which included age, gender, WHO 
performance status, mean and maximum dose to the oesophagus, overall treatment 
time and concurrent/sequential chemotherapy. Predictions of acute dysphagia ≥G3 
(CTCAE) [60] were made using naïve Bayes, bagging, Bayesian networks, boost-
ing, penalised logistic regression, radial basis function network, random forest, lin-
ear support vector machine and LASSO and for a combined model with equal 
voting rights. The combined model resulted in a higher AUC (0.77) for the indepen-
dent prospective validation cohort than for any of the individual models. The cor-
responding AUC for the physicians was 0.53.

Other studies have chosen not to create hybrid models but have made a direct 
comparison between machine learning approaches. Pella et al. [52] presented a com-
parison between models based on ANN and SVM to predict acute toxicity for a 
cohort of 321 patients who received prostate radiotherapy. Both techniques were 
chosen for the flexibility that allows both dosimetric and clinical variables to be con-
sidered in the same model. The input features were selected by the authors based on 
clinical knowledge and appear to be limited compared to those in other studies we 
have considered. The dose distribution to the rectum was quantified by the dose 
received (30 and 60 %) by the rectum (D30 and D60, respectively) and the absolute 
volume (cc) of the rectum on the planning scan. The dose distribution to the bladder 
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was described using only the dose received by 50 % of the bladder and the absolute 
bladder volume (cc) from the treatment planning scan. Unusually, a single outcome 
of either GI or GU toxicity ≥ grade 2 was used; this choice was justified by the per-
ceived low incidence of both GI (37 %) and GU (11.5 %) toxicity in the cohort. The 
artificial neural network architecture was optimised using a genetic algorithm. The 
optimised ANN was reported to have two hidden layers with 47 neurons in the first 
hidden layer with a sigmoid activation function and 44 neurons also with a sigmoid 
activation function. A linear activation function was used in the output layer. The 
ROC for the optimised ANN was 0.697. In comparison, the optimal SVM was found 
to have used a polynomial kernel of the 9th order which resulted in an AUC of 0.717. 
Both of these values related to a subset of 30 patients withheld from training. It 
should be noted that the optimisation of both ANN and SVM chose parameters that 
could lead to overfitting. An ANN with 13 inputs but nearly 100 hidden nodes is 
likely to be overfitted as is an SVM using a 9th-order polynomial. Since no cross 
validation was employed, it is impossible to infer how well these models would gen-
eralise. No statistical comparison was made between the AUC for the two techniques; 
this may be again due to the singular nature of the result. Another study by Oh et al. 
[49] directly compares machine learning methods for outcome prediction of radia-
tion pneumonitis. Comparison is made between both feature selection techniques 
and classification methods. The feature selection methods were SVM-recursive fea-
ture elimination, correlation-based feature selection, chi-square feature selection and 
information gain. Classifiers included SVM, decision tree, random forest and naive 
Bayesian. Matthews correlation coefficient was employed to assess performance. 
Each method was tested on a cohort of 209 NSCLC patients from Washington 
University School of Medicine of whom 48 reported radiation pneumonitis (which 
was also reported in the study of Bayesian networks from the same group). Data 
included clinical variables such as demographics and disease stage and dosimetric 
variables quantified as Vx volume receiving x Gy and Dx dose received by x% of 
volume. Some input features were ranked highly by more than one feature selection 
approach, but generally, there was significant variability between feature selection 
methods. The feature selection was combined with each of the classification methods 
starting with the highest rank variable models and subsequently increasing the num-
ber of variables. It was observed that SVM with a radial basis function or polynomial 
kernel function consistently resulted in the highest Matthews correlation coefficient 
values. Whilst caution is needed when comparing models since results may be data 
specific, it is useful to consider the relative success of different approaches. Of note 
is the variability in the results of the feature selection. It is not stated if any adjust-
ment was made for correlated inputs which may have affected the results.

17.4	 �Summary

This chapter has reviewed many studies which have implemented machine learn-
ing to further knowledge in NTCP. Considering the total number of publications on 
NTCP, machine learning has had a limited impact on the field. Here we consider 
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why this is the case and how that might be addressed. Machine learning, particu-
larly artificial neural networks, is traditionally regarded as being mystical black 
boxes where it is impossible to interpret the underlying model. Although it is chal-
lenging to interpret the weights of a black box, it is not impossible, whilst other 
machine learning techniques, for example, decision trees, are considerably more 
transparent. There are a wide variety of machine learning techniques, and deciding 
which one is appropriate can be daunting. The suite of publications from Duke 
University [6–8, 11] and comparative papers by Oh [49] and Pella [52] are insight-
ful. It is not wise to necessarily take the AUC measure as the comparative standard 
between models as this may well be data specific. However, it is useful to consider 
the congruence of the features selected by the final model. In some cases, combin-
ing different models improves predictive accuracy particularly where input fea-
tures are potentially highly correlated. In this case, an ensemble may facilitate 
similar information being used in slightly different forms. Alternatively, a hybrid 
approach can result in the best of all worlds. The flip side is that these models are 
inherently complex and may suffer from a lack of generalisability if not carefully 
trained. In addition, it may be more challenging to interpret the role of individual 
input features when many are distributed throughout the model. Many of the stud-
ies presented in this chapter have indicated that the results from machine learning 
were superior to standard techniques. This may be in part due to the flexible 
approach to combining different data types that are available. However, only in 
rare cases does the AUC exceed 0.8. Although this is considered to be a very good 
result for both classic statistical and machine learning approaches in the medical 
arena, ideally, every patient would have a valid prediction. The reasons why we 
reach this glass ceiling are complex but essentially result from a failure to fully 
reflect the patient experience. No model can predict an outcome from data that is 
not provided as an input. The amount of data available for each patient is exploding 
as genetic information is incorporated into the studies. In addition, the dose distri-
bution to organs at risk is insufficiently characterised by DVH, and steps to improve 
this by including spatial information will further increase the number of input fea-
tures. Machine learning is a knowledge transfer tool allowing clinicians to present 
all the data that they regard as relevant to a specific prediction situation. Clearly, 
medical understanding evolves daily, and therefore, predictive models will need to 
continuously be updated to include this increased knowledge. Machine learning 
approaches are well equipped to deal with big data, and it is hoped that in the 
future, the understanding of the response of normal tissues following cancer treat-
ment including radiotherapy will be well understood and reliable knowledge-based 
models will be used as standard in the clinic.
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18Modeling of Tumor Control 
Probability (TCP)

Issam El Naqa

Abstract
Modeling of tumor control probability is an important task for predicting 
response in radiotherapy. Most early methods have focused on using biophysical 
analysis based on understanding irradiation effects from in  vitro cell culture. 
However, it has been recognized that clinical tumor response is multifactorial 
and involves a complex interaction of physical, biological, and clinical surro-
gates that data-driven approaches such as machine-learning algorithms would 
play a prominent role. In this chapter, we present using different examples the 
process of applying machine learning to modeling TCP and demonstrate its effi-
cacy compared to existing methods and its potential to improving our under-
standing of tumor response.

18.1	 �Introduction

Recent years have witnessed tremendous technological advances in radiotherapy 
treatment planning, image guidance, and treatment delivery [1, 2]. Moreover, clini-
cal trials examining treatment intensification in patients with locally advanced can-
cer have shown incremental improvements in local control and overall survival [3]. 
Radiotherapy outcomes are traditionally modeled using information about the dose 
distribution and the fractionation [4]. However, it is well known that radiotherapy 
outcomes is multifactorial and may also be affected by multiple clinical and biologi-
cal prognostic factors such as stage, volume, tumor hypoxia, etc. [5, 6]. Therefore, 
recent years have witnessed the emergence of data-driven models utilizing 
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informatics techniques, in which dose–volume metrics are combined with other 
patient- or disease-based prognostic factors [7–15]. These approaches have utilized 
data-driven models incorporating advanced bioinformatics tools in which dose–vol-
ume metrics are mixed with other patient- or disease-based prognostic factors in 
order to improve outcomes prediction [16]. The accurate prediction of tumor 
response would provide patients and their treating clinicians with better tools for 
informed decision-making about expected benefits versus anticipated risks and 
higher likelihood of improved outcomes, in which machine-learning methods are 
expected to play a prominent role.

18.2	 �Tumor Control Probability

Tumor control is strictly defined by the probability of the extinction of clonogenic 
tumor cells at the end of treatment [17]. Several radiobiological models have been 
proposed in the literature to model TCP. The linear-quadratic model (LQ) is the 
most frequently used model for including the effects of repair between treatment 
fractions. The LQ model is based on clonogenic cell survival curves and is param-
eterized by the radiosensitivity ratio (α/β). It is thought that it quantifies the effects 
of both unrepairable damage and repairable damage susceptible to misrepair after 
tumor sterilization by radiation [18, 19]:

	
SF = − ∗ ∗ + ∗exp /a b+( )( )( )d D In t Tpot2 	 (18.1)

where d is the fraction size, D is the total delivered dose, t is the difference 
between the total treatment time (T) and the lag period before accelerated clo-
nogen repopulation begins (TK), and Tpot is the potential doubling time of the 
cells. The ratio ln 2/Tpot is referred to as the repopulation parameter. Several 
variations of this model have been proposed including a Poisson-based [20] 
and a birth–death model [21]. Among the most commonly used LQ-based TCP 
models [22] is:

	
TCP N d D t Tpot= − ( ) +( )( )(exp exp ln /− + ∗ ∗ ∗a b 2 	 (18.2)

A detailed review of analytical methods for TCP in radiation treatment has been 
recently published [23].

18.3	 �Machine Learning for TCP Modeling

Machine learning allows for exploiting nonlinear patterns in the data that may not 
be directly tractable from using analytical or phenomenological models. There are 
several steps into development of a TCP model using machine learning as shown in 
the examples below using dosimetric, clinical, imaging, and biological data in lung 
cancer.
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18.4	 �Example 1: Dosimetric and Clinical Variables

18.4.1	 �Data Set

A set of 56 patients diagnosed with non-small cell lung cancer (NSCLC) and who have 
discrete primary lesions, complete dosimetric archives, and follow-up information for 
the endpoint of local control (22 locally failed cases) is used. The patients were treated 
with three-dimensional conformal radiation therapy (3D-CRT) with a median prescrip-
tion dose of 70 Gy (60–84 Gy). The dose distributions were corrected for heterogeneity 
using Monte Carlo simulations [24]. The clinical data included age, gender, perfor-
mance status, weight loss, smoking, histology, neoadjuvant and concurrent chemo-
therapy, stage, number of fractions, tumor elapsed time, tumor volume, and prescription 
dose. Treatment planning data were de-archived and potential dose–volume histogram 
(DVH) prognostic metrics were extracted using CERR [25]. These metrics included 
Vx (percentage volume receiving at least x Gy), where x was varied from 60 to 80 Gy 
in steps of 5 Gy, mean dose, minimum and maximum doses, and center of mass loca-
tion in the craniocaudal (COMSI) and lateral (COMLAT) directions. This resulted in a 
set of 23 candidate variables to model TCP. The modeling process using nonlinear 
statistical learning starts by applying dimensionality reduction technique such as prin-
cipal component analysis (PCA) to visualize the data in two-dimensional space and 
assess the separability of low-risk from high-risk patients. Separable cases could be 
modeled by linear kernels while non-separable cases are modeled by nonlinear kernels 
that allow for separability of the data but at the expense of increased dimensionality. 
This step could be preceded by a variable selection process and the generalizability of 
the model is evaluated using resampling techniques as discussed below [26].

18.4.2	 �Data Exploration

In Fig. 18.1a, we show a correlation matrix representation of the selected candidate 
variables with clinical TCP and cross-correlations among themselves using 
Spearman’s rank correlation coefficient (rs). Note that many DVH-based dosimetric 
variables are highly cross-correlated, which complicate the analysis of such data. In 
Fig. 18.2b, we summarize the PCA analysis of this data by projecting it into two-
dimensional space for visualization purposes. The plots show that two principal 
components are able to explain 70 % of the data and reflect a relatively high overlap 
between patients with and without local control, indicating potential benefit from 
using nonlinear kernel methods.

18.4.3	 �Logistic Regression Modeling Example

The multimetric model building using logistic regression is performed using a two-
step procedure to estimate model order and parameters. In each step, a sequential 
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forward selection strategy is used to build the model by selecting the next candidate 
variable from the available pool (23 variables in our case) based on increased signifi-
cance using Wald’s statistics [12]. In Fig. 18.2a, we show the model order selection 
using the LOO-CV procedure. It is noticed that a model order of two parameters 
provides the best predictive power with Spearman rank correction coefficient (rs = 0.4). 
In Fig. 18.2b, we show the optimal model parameters’ selection frequency on boot-
strap resampling (280 samples were generated in this case). A model consisting of 
GTV volume (β = −0.029, p = 0.006) and GTV V75 (β = +2.24, p = 0.016) had the high-
est selection frequency (45 % of the time). The model suggests that increase in tumor 
volume would lead to failure, as one would expect due to increase in the number of 
clonogens in larger tumor volumes. The V75 metric is related to dose coverage of the 
tumor, where it is noticed that patients who had less than 20 % of their tumor covered 
by 75 Gy were at higher risk of failure. However, a drawback of this logistic regres-
sion approach is that it does not automatically account for possible interactions 
between these metrics nor does it account for higher-order nonlinearities.

18.4.4	 �Kernel-Based Modeling Example

To account for potential nonlinear interactions as revealed by the PCA, we will 
apply kernel-based methods using support vector machines (SVM). Moreover, we 
will use the same variables selected by the logistic regression approach. We have 
demonstrated recently that such selection is more robust than other competitive 
techniques such as the recursive feature elimination (RFE) method used in micro-
array analysis. In this case, a vector of explored variables is generated by concat-
enation. The variables are normalized using the z-scoring approach to have a zero 
mean and unity variance [27]. We experimented with different kernel forms; best 
results are shown for the radial basis function (RBF) in Fig.  18.3a. The figure 
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Fig. 18.2  TCP model building using logistic regression. (a) Model order selection using LOO-CV. 
(b) Model parameters estimation by frequency selection on bootstrap samples
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shows that the optimal kernel parameters are obtained with an RBF width σ = 2 
and regularization parameter C = 10,000. This resulted in a predictive power on 
LOO-CV rs = 0.68, which represents 70 % improvement over the logistic regres-
sion analysis results. This improvement could be further explained by examining 
Fig. 18.3b, which shows how the RBF kernel tessellated the variable space non-
linearly into different regions of high and low risks of local failure. Four regions 
are shown in the figure representing high/low risks of local failure with high/low 
confidence levels, respectively. Note that cases falling within the classification 
margin have low confidence prediction power and represent intermediate-risk 
patients, i.e., patients with “border-like” characteristics that could belong to either 
risk group [26].

18.4.5	 �Comparison with Other Known Models

For comparison purposes with mechanistic TCP models, we chose the Poisson-
based TCP model and the cell kill equivalent uniform dose (cEUD) model. The 
Poisson-based TCP parameters for NSCLC were selected according to Willner 
et al. work [28], in which the sensitivity to dose per fraction (α/β = 10 Gy), dose for 
50  % control rate (D50 = 74.5  Gy), and the slope of the sigmoid-shaped dose–
response at D50 (γ50 = 3.4). The resulting correlation of this model was rs = 0.33. 
Using D50 = 84.5 and γ50 = 1 .5 [29, 30] yielded an rs = 0.33 also. For the cEUD 
model, we selected the survival fraction at 2 Gy (SF2 = 0.56) according to Brodin 
et al. [31]. The resulting correlation in this case was rs = 0.17. A summary plot of the 
different methods predictions as a function of binned patients into equal groups is 
shown in Fig. 18.4. It is observed that the best performance was achieved by the 
nonlinear (SVM-RBF). This is particularly observed for predicting patients who are 
at high risk of local failure.

18.5	 �Use of Imaging Features

Pretreatment or posttreatment information from anatomical or functional/molecular 
imaging could be used to monitor and predict treatment outcomes in radiotherapy. 
For instance, changes in tumor volume on computed tomography (CT) have been 
used to predict radiotherapy response in NSCLC patients [32, 33]. On the other 
hand, functional/molecular imaging, in particular positron emission tomography 
(PET) with fluorodeoxyglucose (FDG), has received special attention as a potential 
prognostic factor for predicting radiotherapy efficacy [34–37]. For instance, high 
FDG-PET intensity has been shown to correlate with poor local control in lung 
cancer [38–41]. In our previous work, new features based on image morphology, 
intensity, and texture/roughness can provide a more complete characterization of 
uptake heterogeneity [37]. Recently, we have shown that in addition to PET fea-
tures, CT-derived features (from the gross target volume) may also improve predic-
tion of local tumor response as shown in Fig. 18.5 [42].
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Fig. 18.3  Kernel-based modeling of TCP in lung cancer using the GTV volume and V75 with support 
vector machine (SVM) and a radial basis function (RBF) kernel. Scatter plot of patient data (black dots) 
being superimposed with failure cases represented with red circles. (a) Kernel parameter selection on 
LOO-CV with peak predictive power attained at σ = 2 and C = 10,000. (b) Plot of the kernel-based local 
failure (1-TCP) nonlinear prediction model with four different risk regions: (i) area of low-risk patients 
with high confidence prediction level, (ii) area of low-risk patients with lower confidence prediction level, 
(iii) area of high-risk patients with lower confidence prediction level, and (iv) area of high-risk patients 
with high confidence prediction level. Note that patients within the “margin” (cases ii and iii) represent 
intermediate-risk patients, which have border characteristics that could belong to either risk group
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18.6	 �Use of Biological Markers

A biomarker is defined as a characteristic that is objectively measured and evaluated 
as an indicator of normal biological processes, pathological processes, or pharma-
cological responses to a therapeutic intervention [43]. Biomarkers can be imaging 
biomarkers as discussed in section 19.5 or measurements of gene expression or 
protein levels from tissue or fluid specimens. For instance, blood-based protein 
expression of hypoxia [44] and inflammation [45] were shown to be predictive of 
tumor response to radiotherapy. Therefore, we conducted a comparison study of 
physical factors, biological factors extracted from blood sera, and a combined 
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model of local control in NSCLC patients. In order to account for the hierarchal 
relationship between the different variables, we utilized a graphical Bayesian net-
work (BN) framework. A BN is a probabilistic graphical model of outcomes in 
which the variables (dosimetric, clinical, and biological) are presented as nodes in 
the graph and their conditional dependencies are represented by directed acyclic 
graph as shown in Fig. 18.6 [46].
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�Conclusions
Recent evolution in imaging and biotechnology has provided new opportunities 
for reshaping our understanding of radiotherapy response. However, the com-
plexity of radiation-induced effects and the variability of tumor and normal tis-
sue responses would render the utilization of machine-learning algorithms as 
indispensible tools for better delineation of these complex interaction mecha-
nisms such as the case in modeling TCP. Machine-learning algorithms based on 
PCA allow for analyzing the complexity of such interaction and reduce the 
dimensionality of the problem. The use of kernel-based methods such as SVM 
demonstrated superior ability to predicting local control in NSCLC compared to 
the state of the art. Moreover, methods based on Bayesian networks allowed for 
combining physical and biological variables while accounting for the hierarchal 
relationships between the different variables yielding improved models.
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