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Preface

The key objective of this book is to introduce and provide instruction on the design

and analysis of experiments. This expanded edition contains additional examples,

exercises, and situations covering the science and engineering practice. We have

tried to make this book special in two major ways. First, we have tried to provide a

text that minimizes the amount of mathematical detail, while still doing full justice

to the mathematical rigor of the presentation and the precision of our statements.

This decision makes this book more accessible for those who have little experience

with design of experiments and need some practical advice on using such designs to

solve day-to-day problems. Second, we have tried to focus on providing an intuitive

understanding of the principles at all times. In doing so, we have filled this book

with helpful hints, often labeled as ways to “practice safe statistics.” Our perspec-

tive has been formed by decades of teaching, consulting, and industrial experience

in the field of design and analysis of experiments.

Approach

Our approach seeks to teach both the fundamental concepts and their applications.

Specifically, we include simple examples for understanding as well as larger, more

challenging examples to illustrate their real-world nature and applications. Many

of our numerical examples use simple numbers. This is a choice the authors con-

sciously make, and it embraces a statement by C. C. Li, Professor of Biometry at

the University of Pittsburgh, that the authors took to heart over 30 years ago and

have incorporated into their teaching and writing: “How does one first learn to

solve quadratic equations? By working with terms like 242.5189X2

� 683.1620Xþ 19428.5149¼ 0, or with terms like X2� 5Xþ 6¼ 0?” Our belief is

that using simpler numerical calculations that students can more easily follow and

verify aids them in the intuitive understanding of the material to a degree that more

than offsets any disadvantage from using numbers that do not look like those in real
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cases. This does not mean that we focus solely on hand calculations (to us, this term

includes the use of a calculator); we do not.We also have examples, as well as follow-

up exercises at the end of chapters, that encourage, demonstrate, and, indeed, require

the use of statistical software. Nevertheless, we believe in the virtue of students’
doing it at least once by hand or, at a minimum, seeing it done at least once by hand.

Background and Prerequisites

Most of our readers have some prior knowledge of statistics. However, as experi-

enced teachers, we are aware that students often do not retain all the statistical

knowledge they acquired previously. Since hypothesis testing is so fundamental to

the entire text, we review it heavily, essentially repeating the depth of coverage the

topic is accorded in an introductory course in statistics. Other useful topics from a

typical introductory statistics course are reviewed on an ad hoc basis: an example of

this is the topic of confidence intervals. With respect to topics such as probability

and the Student t distribution, we occasionally remind the student of certain

principles that we are using (e.g., the multiplication rule for independent events).

In this new edition, we go into more detail on statistical principles that were

discussed briefly in the first edition of the book, such as randomization and sample

sizes, among others.

We have taught experimental design courses in which the audience varied

considerably with respect to their application areas (e.g., chemical engineering,

marketing research, biology); we preface these courses by a statement we fervently

believe to be true:

The principles and techniques of experimental design transcend the area of their applica-
tion; the only difference from one application area to another is that different situations
arise with different frequency and, correspondingly, the use of various designs and design
principles occur with different frequency.

Still, it is always helpful for people to actually see applications in their area of

endeavor. For this reason, we have expanded the number of examples and exercises

covering the engineering and science fields. After all, many people beginning their

study of experimental design do not know what they do not know; this includes

envisioning the ways in which the material can be applied usefully.

Considering the broad audience to which this book is targeted, we assume a

working knowledge of high-school algebra. On occasion, we believe it is necessary

to go a small distance beyond routine high-school algebra; we strive to minimize

the frequency of these occasions, and when it is unavoidable we explain why it is in

the most intuitive way that we can. These circumstances exemplify where we aim to

walk the fine line of minimal mathematical complexity without compromising the

rigor of our presentation or the precision of our statements. This can be a surprising

consideration for a book written for engineers, who often use mathematics and

calculus on a daily basis; however, we believe that this approach can increase the

appeal and boost the use of design of experiments in various situations.
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The second way in which we have tried to make this book special is to emphasize

the application of the experimental design material in areas of management, such as

marketing, finance, operations, management information systems, and organiza-

tional behavior, and also in both the traditional business setting and non-profit areas

such as education, health care, and government. In addition, we include some

applications that could be placed in other categories as well – say, engineering

and science.

For example, a company needs to test whether different brands of D-cell

batteries differ with respect to average lifetime (with the same pattern of usage)

in order to convince a television network to accept a promotion that claims one

brand’s superiority over other brands. Even if the manager or the person responsible

for this campaign does not know in intimate detail how a battery works, he or she

must have the ability to evaluate the validity of the experiment, and be able to

understand the analysis, results, and implications. The same example could be

viewed from a different perspective: a chemical engineer is working on a new

type of battery and wants to compare it with other brands currently available in the

market in order to determine the efficiency of new electrolyte solutions. What we

are trying to say is that the field of study does not change how we analyze and

interpret the data, although our conclusions will depend on our initial objectives.

Organization and Coverage

We have made some tough choices for which topics to include. Our goal was to

write a book that discussed the most important and commonly used methods in the

field of experimental design. We cover extensively the topics of two-level complete

factorial designs, two-level fractional-factorial designs, and three-level complete

factorial designs, and their use in practice in depth. In the interest of space, we

prepare readers to study three-level fractional-factorial designs elsewhere and we

provide our favorite references on the topic. The text contains a chapter devoted to

the use of Taguchi methods and its comparison to more traditional options, a topic

which is not commonly found in the literature. In this new edition, we also include

some additional chapters on (simple and multiple) regression analysis and mixture

designs.

This book provides a choice of material for a one-semester course. In the

authors’ experience, the entire text would likely require a period of time longer

than one semester. Two of the authors have also successfully used parts of most of

the chapters in this text in an undergraduate course in marketing research. The first

edition of the book is currently used as reference material for a professional

education course offered at MIT, which once again indicates the need for more

accessible books for these professionals. Naturally, the 18 chapters in this new

edition comprise our choice of topics; however, most of Chaps. 7, 13, 14, 15, 16,

and 17 can be replaced by other material preferred by the instructor without

compromising the integrity of the remaining chapters. One might also choose to
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cover various other subsets of chapters; for example, one can cover Chaps. 1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, and 17 on mixture designs in a seamless way.

With the addition to new chapters, this version is organized in four parts:

Part I – Statistical Principles for Design of Experiments, Chaps. 2, 3, 4, and 5

cover the basic statistical principles that are necessary for our study of design of

experiments, including one-factor designs, analysis of variance (ANOVA), multi-

ple comparison testing, orthogonality, and orthogonal decomposition. In Chap. 3,

entitled Some Further Issues in One-Factor Designs and ANOVA, we introduce

several topics that are with us throughout the text, such as underlying assumptions

of the F-test, hypothesis testing (encompassing the concept and calculation of

power), and nonparametric tests (in this chapter, the Kruskal-Wallis test). Follow-

ing this chapter, we cover the topics of multiple-comparison testing and the

orthogonal partitioning of sums of squares, topics that take the macro result of

the F-test and inquire more deeply into the message the data have for us.

Part II – Identifying Active Factors, Chaps. 6, 7, and 8 include the introduction to

two-factor experimentation – both cross-classification designs (including introduc-

tion to the concepts of blocking and interaction) and nested designs. It also includes

designs having three or more factors – notably, Latin-square and Graeco-Latin

square designs. For the most part, the design and analysis concepts in Chaps. 6, 7,

and 8 do not vary substantially as a function of the number of levels of the factors,

but focus on the number of factors under study.

Part III – Studying Factors’ Effects, Chaps. 9, 10, 11, 12, and 13 discuss the two-
and three-level experimentation, including factorial and confounding designs with

factors at two levels, fractional-factorial designswith factors at two levels, and designs

with factors at three levels. It also includes an introduction to Taguchi methods.

Part IV – Regression Analysis, Response Surface Designs, and Other Topics,

Chaps. 14, 15, 16, 17, and 18 wrap up with introductory chapters on simple and

multiple regression, followed by an introduction to response-surface methods and

mixture designs, and a concluding chapter discussing the literature and resources in

the field of experimental design, our choices of texts and other sources as references for

specific topics, and the discussion of various topics not covered in the text. Although

several of our references are quite recent, many references are from the 1980s and

earlier. In our view, the best references for many of the fundamental topics are

relatively older texts or journal articles, and we have included these excellent sources.

Statistical Software Packages

JMP version 13 software (a registered product of SAS Institute Inc.) is used for the

experimental design and statistical analysis of the examples covered in the main

body of the chapters. When appropriate, we perform the same analysis using MS

Excel (Microsoft), SPSS Statistics version 23 (a registered product of IBM Corp),
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and the free package R version 3.3 (R Foundation for Statistical Computing), and the

results are presented as an appendix of the corresponding chapter. This is something

new in this edition, to improve the flow of the discussion in the chapters, while still

providing the required information for those readers who prefer other software

packages. There are also other software packages not covered in this book (such

as Minitab and Design-Expert) that can perform experimental design and analysis.

Exercises

The quality of a text in the area of design and analysis of experiments is, to an

important extent, influenced by the end-of-chapter exercises. We present not only

exercises that illustrate the basics of the chapter, but also some more challenging

exercises that go beyond the text examples. Many of the more challenging problems

have appeared on take-home exams in courses we have taught. Although a few other

texts also offer such challenging exercises, they are, sadly, still in the small minority.

Supplementary Material

The data sets for the many examples used in this book are provided as supplemen-

tary material, in addition to data for most end-of-chapter exercises.

Acknowledgments

Many people deserve our thanks for their contributions toward making this book

what it is. First, we are grateful to the several individuals who gave us the

opportunity to be exposed to a large variety of applications of experimental design

to real-world situations. Most notable among them is Dr. Kevin Clancy,

Ex-Chairman and CEO of Copernicus Marketing Consulting and Research. For

many years, working with Kevin throughout various incarnations of his company

and with many excellent coworkers such as Dr. Steven Tipps, Robert Shulman,

Peter Krieg, and Luisa Flaim, among others, author PDB has observed more

experimental design application areas, discussed more experiments, and designed

more experiments than would seem possible. Many of the examples in this book

have their basis in this experience. Another person to be thanked is Douglas Haley,

former Managing Partner of Yankelovich Partners, who also afforded PDB the

opportunity to be exposed to a large variety of experimental design application

areas. Many other individuals – too numerous to list – have also provided PDB with

consulting experience in the field of experimental design, which has contributed

significantly to the set of examples in this book.

Preface ix



Author REM acknowledges the influence of his many colleagues, and particu-

larly Dr. Lewis E. Franks, at Bell Telephone Laboratories. Bell Labs was for many

years the country’s premier R&D organization, where the commitment to funda-

mental understanding was endemic. Many of the principles and techniques that

constitute the essence of experimental design were developed at Bell Labs and its

sister organization, Western Electric. REM expresses his gratitude to his colleague

and coauthor, PDB, who contributed greatly to the depth and breadth of his

knowledge and understanding of DOE. And, finally, REM gratefully acknowledges

the influence of his first teacher, his father, Edward, who showed by example the

importance of a commitment to quality in all endeavors, and his mother, Eleanor,

who was the inspiration for both father and son.

Author GBC acknowledges the encouragement provided by her PhD supervisor,

Dr. Su-Ling Brooks. GBC is also grateful for the continuous support and mentor-

ship provided by Dr. Berger since she met him at the professional education course.

She also acknowledges one of the managers she had worked with who claimed that

“you cannot change many variables at the same time as you wouldn’t be able to

assess their impact in the final product” – in fact, you can and the methods described

in this book are proof of it!

A very special thank you is due posthumously to Professor Harold A. Freeman of

the Economics Department at MIT. Professor Freeman was one of “the great ones,”

both as a statistician and teacher of experimental design as well as, more impor-

tantly, a person. Professor Freeman, who died at age 88 in March 1998, was PDB’s
experimental design teacher and mentor, instilling in him a love for the subject and

offering him his first opportunity to teach experimental design in 1966, while a

graduate student at MIT. Professor Freeman’s teaching, as well as his way of

teaching, has had a continuing and profound effect on PDB’s teaching and writing

in the field of experimental design. If this book is dedicated to any one individual,

this individual is, indeed, Harold A. Freeman.

Finally, thanks are due to our families for affording us the ability to focus on

writing this book. Susan Berger patiently waited for her husband to “tear himself

away” from the computer to (finally) join her for dinner. She often wondered if he

knew she was in the house. Mary Lou Maurer was never too busy to help her

digitally impaired husband with the typing, along with providing copious amounts

of encouragement and coffee. Luiz Augusto Pacheco was a constant questioner

even though most topics covered in this book were abstract to him and gave

significant insights whenever his wife needed them.

Thanks to all of you.

Waltham, MA, USA Paul D. Berger

Boston, MA, USA Robert E. Maurer

Ithaca, NY, USA Giovana B. Celli

x Preface



Contents

1 Introduction to Experimental Design . . . . . . . . . . . . . . . . . . . . . . 1

1.1 What Is Experimentation? . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Growth in Experimental Design . . . . . . . . . . . . . . . . . . . 2

1.3 The Six Steps of Experimental Design . . . . . . . . . . . . . . . . . . 3

1.3.1 Step 1: Plan the Experiment . . . . . . . . . . . . . . . . . . . 4

1.3.2 Step 2: Design the Experiment . . . . . . . . . . . . . . . . . 6

1.3.3 Step 3: Perform the Experiment . . . . . . . . . . . . . . . . 7

1.3.4 Step 4: Analyze the Data from the Experiment . . . . . 7

1.3.5 Step 5: Confirm the Results of the Experiment . . . . . . 8

1.3.6 Step 6: Evaluate the Conclusions

of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Experimental-Design Applications . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Corporate Environmental Behavior . . . . . . . . . . . . . . 10

1.4.2 Supermarket Decision Variables . . . . . . . . . . . . . . . . 11

1.4.3 Financial Services Menu . . . . . . . . . . . . . . . . . . . . . . 12

1.4.4 The Qualities of a Superior Motel . . . . . . . . . . . . . . . 14

1.4.5 Time and Ease of Seatbelt Use: A Public Sector

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.6 Emergency Assistance Service for Travelers . . . . . . . 16

1.4.7 Extraction Yield of Bioactive Compounds . . . . . . . . . 17

1.4.8 The “Perfect” Cake Mixture . . . . . . . . . . . . . . . . . . . 18

Part I Statistical Principles for Design of Experiments

2 One-Factor Designs and the Analysis of Variance . . . . . . . . . . . . . 23

2.1 One-Factor Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 The Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Estimation of the Parameters of the Model . . . . . . . . 28

2.1.3 Sums of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



2.2 Analysis of (the) Variance (ANOVA) . . . . . . . . . . . . . . . . . . 33

2.3 Forming the F Statistic: Logic and Derivation . . . . . . . . . . . . 38

2.3.1 The Key Fifth Column of the ANOVA Table . . . . . . 38

2.4 A Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Some Further Issues in One-Factor Designs and ANOVA . . . . . . 69

3.1 Basic Assumptions of ANOVA . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Kruskal-Wallis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Review of Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 p-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.2 Type I and Type II Errors . . . . . . . . . . . . . . . . . . . . . 81

3.3.3 Back to ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Power Considerations in Determination

of Required Sample Size . . . . . . . . . . . . . . . . . . . . . 91

3.5 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Multiple-Comparison Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1 Logic of Multiple-Comparison Testing . . . . . . . . . . . . . . . . . . 108

4.2 Type I Errors in Multiple-Comparison Testing . . . . . . . . . . . . 109

4.3 Pairwise Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Fisher’s Least Significant Difference Test . . . . . . . . . 112

4.3.2 Tukey’s Honestly Significant Difference Test . . . . . . 120

4.3.3 Newman-Keuls Test with Example . . . . . . . . . . . . . . 124

4.3.4 Two Other Tests Comparing All Pairs

of Column Means . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.5 Dunnett’s Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Post Hoc Exploratory Comparisons: The Scheffé Test . . . . . . 131
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4.4.2 Discussion of Scheffé Test . . . . . . . . . . . . . . . . . . . . 134

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Orthogonality, Orthogonal Decomposition, and Their Role

in Modern Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.1 Forming an Orthogonal Matrix . . . . . . . . . . . . . . . . . . . . . . . 157

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

xii Contents



Part II Identifying Active Factors

6 Two-Factor Cross-Classification Designs . . . . . . . . . . . . . . . . . . . . 183

6.1 Designs with Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.1.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1.2 Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.1.4 Back to the Statistical Model: Sum of Squares . . . . . . 192

6.2 Fixed Levels Versus Random Levels . . . . . . . . . . . . . . . . . . . 201

6.3 Two Factors with No Replication and No Interaction . . . . . . . 206

6.4 Friedman Nonparametric Test . . . . . . . . . . . . . . . . . . . . . . . . 209

6.4.1 Perspective on Friedman Test . . . . . . . . . . . . . . . . . . 212

6.5 Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7 Nested, or Hierarchical, Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.1 Introduction to Nested Designs . . . . . . . . . . . . . . . . . . . . . . . 236

7.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

7.3 A Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

8 Designs with Three or More Factors: Latin-Square

and Related Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

8.1 Latin-Square Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

8.1.1 The Latin-Square Model and ANOVA . . . . . . . . . . . 271

8.2 Graeco-Latin-Square Designs . . . . . . . . . . . . . . . . . . . . . . . . 277

8.3 Other Designs with Three or More Factors . . . . . . . . . . . . . . . 282

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Part III Studying Factors’ Effects

9 Two-Level Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

9.1 Two-Factor Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

9.1.1 Estimating Effects in Two-Factor, Two-Level

Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

9.2 Remarks on Effects and Interactions . . . . . . . . . . . . . . . . . . 300

9.3 Symbolism, Notation, and Language . . . . . . . . . . . . . . . . . . 301

9.4 Table of Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

9.5 Modern Notation and Yates’ Order . . . . . . . . . . . . . . . . . . . 305

9.6 Three Factors, Each at Two Levels . . . . . . . . . . . . . . . . . . . 307

9.6.1 Estimating Effects in Three-Factor,

Two-Level Designs . . . . . . . . . . . . . . . . . . . . . . . . 307

9.7 Number and Kinds of Effects . . . . . . . . . . . . . . . . . . . . . . . . 312

Contents xiii



9.8 Yates’ Forward Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

9.9 A Note on Replicated 2k Experiments . . . . . . . . . . . . . . . . . . 316

9.10 Main Effects in the Face of Large Interactions . . . . . . . . . . . . 318

9.11 Levels of Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

9.12 Factorial Designs Versus Designs Varying Factors

One-at-a-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

9.13 Factors Not Studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

9.14 Errors of Estimates in 2k Designs . . . . . . . . . . . . . . . . . . . . . . 325

9.15 A Comment on Testing the Effects in 2k Designs . . . . . . . . . . 327

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

10 Confounding/Blocking in 2
k
Designs . . . . . . . . . . . . . . . . . . . . . . . . 343

10.1 Simple Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

10.2 Partial Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

10.3 Multiple Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

10.4 Mod-2 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

10.5 Determining the Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

10.6 Number of Blocks and Confounded Effects . . . . . . . . . . . . . . 358

10.7 A Comment on Calculating Effects . . . . . . . . . . . . . . . . . . . . 361

10.8 Detailed Example of Error Reduction

Through Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

11 Two-Level Fractional-Factorial Designs . . . . . . . . . . . . . . . . . . . . . 371

11.1 2k�p Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

11.2 Yates’ Algorithm Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

11.3 Quarter-Replicate Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

11.4 Selection of a Workable Set of Dead Letters . . . . . . . . . . . . . . 390

11.5 Orthogonality Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

11.6 Power and Minimum-Detectable Effects in 2k�p Designs . . . . . 403

11.7 A Comment on Design Resolution . . . . . . . . . . . . . . . . . . . . . . 412

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

12 Designs with Factors at Three Levels . . . . . . . . . . . . . . . . . . . . . . . 423

12.1 Design with One Factor at Three Levels . . . . . . . . . . . . . . . . . 424

12.2 Design with Two Factors, Each at Three Levels . . . . . . . . . . . . 426

12.3 Nonlinearity Recognition and Robustness . . . . . . . . . . . . . . . . 435

12.4 Three Levels Versus Two Levels . . . . . . . . . . . . . . . . . . . . . . . 438

12.5 Unequally Spaced Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

12.6 A Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

xiv Contents



13 Introduction to Taguchi Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 449

13.1 Taguchi’s Quality Philosophy and Loss Function . . . . . . . . . . . 450

13.2 Control of the Variability of Performance . . . . . . . . . . . . . . . . 453

13.3 Taguchi Methods: Designing Fractional-Factorial Designs . . . . 455

13.3.1 Experiments Without Interactions . . . . . . . . . . . . . . . . 456

13.3.2 Experiments with Interactions . . . . . . . . . . . . . . . . . . . 458

13.4 Taguchi’s L16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

13.5 Experiments Involving Nonlinearities or Factors

with Three Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

13.6 Further Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

13.6.1 Confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

13.6.2 Economic Evaluation of Proposed Solution . . . . . . . . . 472

13.7 Perspective on Taguchi’s Methods . . . . . . . . . . . . . . . . . . . . . . 474

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Part IV Regression Analysis, Response Surface Designs,

and Other Topics

14 Introduction to Simple Regression . . . . . . . . . . . . . . . . . . . . . . . . . 483

14.1 The Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

14.2 Linear-Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

14.3 Confidence Intervals of the Regression Coefficients . . . . . . . . . 495

14.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

15 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

15.1 Multiple-Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . 507

15.2 Confidence Intervals for the Prediction . . . . . . . . . . . . . . . . . . 512

15.3 A Note on Non-significant Variables . . . . . . . . . . . . . . . . . . . . 516

15.4 Dummy Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

15.5 Stepwise Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

16 Introduction to Response-Surface Methodology . . . . . . . . . . . . . . . 533

16.1 Response Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

16.2 The Underlying Philosophy of RSM . . . . . . . . . . . . . . . . . . . . 536

16.3 Method of Steepest Ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

16.3.1 Brief Digression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

16.3.2 Back to Our Example . . . . . . . . . . . . . . . . . . . . . . . . . 540

16.3.3 The Next Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 544

16.3.4 Testing the Plane: Center Points . . . . . . . . . . . . . . . . . 546

Contents xv



16.4 Method of Local Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 548

16.4.1 Central-Composite Designs . . . . . . . . . . . . . . . . . . . . 549

16.4.2 Box-Behnken Designs . . . . . . . . . . . . . . . . . . . . . . . . 551

16.4.3 Comparison of Central-Composite

and Box-Behnken Designs . . . . . . . . . . . . . . . . . . . . . 552

16.4.4 Issues in the Method of Local Experimentation . . . . . . 553

16.5 Perspective on RSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

16.5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

16.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

16.6 A Note on Desirability Functions . . . . . . . . . . . . . . . . . . . . . . . 575

16.7 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

17 Introduction to Mixture Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

17.1 Mixture Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

17.2 Simplex-Lattice Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

17.3 Simplex-Centroid Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

18 Literature on Experimental Design and Discussion

of Some Topics Not Covered in the Text . . . . . . . . . . . . . . . . . . . . . 611

18.1 Literature Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

18.1.1 Some Classics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

18.1.2 Recommendations for Specific Topics . . . . . . . . . . . . . 613

18.1.3 General Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

18.2 Discussion of Some Topics Not Covered in the Text . . . . . . . . 617

18.2.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

18.2.2 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

18.2.3 Power and Sample Size . . . . . . . . . . . . . . . . . . . . . . . 618

18.2.4 Time-Series and Failure-Time Experiments . . . . . . . . . 618

18.2.5 Plackett-Burman Designs . . . . . . . . . . . . . . . . . . . . . . 619

18.2.6 Repeated-Measures Designs . . . . . . . . . . . . . . . . . . . . 619

18.2.7 Crossover Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

18.2.8 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Statistical Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

xvi Contents

http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200
http://dx.doi.org/10.1007/978-3-319-64583-4_16#Sec200


About the Authors

Paul D. Berger has been teaching Experimental Design at the Massachusetts

Institute of Technology for over 40 years and continues to do so. He had an

academic appointment for 37 years at Boston University and has had an academic

appointment for the last 11 years at Bentley University. He is currently the Director

of Bentley University’s Master of Science in Marketing Analytics (MSMA) pro-

gram, in which he also teaches Experimental Design, as well as Marketing Research

and Statistics. He is the author of over 200 peer-reviewed articles and conference

proceedings, as well as six texts, his latest in 2015, co-authored with Michael Fritz,

Improving the User Experience Through Practical Data Analytics. His research has
been incorporated into Government agency reports and presented at conferences

worldwide. In 2015, he taught his Experimental Design class at Deakin University

in Melbourne, Australia. Professor Berger continues to provide consulting services

in the area of Experimental Design and Quantitative Methods/Statistics in general

to numerous companies. His clients have included companies such as Duracell,

Gillette, Texas Instruments, and many others; in addition, Professor Berger has

provided consulting services internationally, including in China, Japan, India, and

Argentina.

Robert E. Maurer has more than 35 years of industrial experience at Bell Tele-

phone Laboratories. For most of that period, in collaboration with the National

Security Agency, he worked on protecting domestic radio and satellite communi-

cations, and ultimately led the development and deployment of the largest (in terms

of the amount of traffic protected) communications security system ever installed

by anyone anywhere at the time. After that, he collaborated with Walter G. Deeley,

the Deputy Director for Communications Security at NSA, to demonstrate the

feasibility of a secure voice terminal (STU 3) for classified point-to-point commu-

nications. Finally, he led the AT&T STU 3 development program. In his last

assignment, he was responsible for process and product design and manufacture

of a several-hundred-million-dollar product line of hybrid integrated circuits.

Through his initiative and guidance, the disciplines of statistical process control

xvii



and experimental design were deployed throughout his organization, leading to

improved quality and reduced cost. Dr. Maurer has more than 35 years of experi-

ence teaching in the areas of statistical communication theory at the Graduate

School of Engineering at Northeastern University and a variety of quantitative

courses at the Questrom School of Management at Boston University. He has

published numerous papers and holds patents in the communications and encryp-

tion areas. Dr. Maurer earned his Bachelor and Master of Science and Doctoral

degrees in Electric Engineering from Northeastern University, and an MBA from

Boston University.

Giovana B. Celli worked as a consultant for Brazilian and Canadian food compa-

nies and is currently a Postdoctoral Researcher at the Department of Food Science

at Cornell University. She has been working as food technologist and researcher for

over eight years and has developed several products currently on the market. She

has also mentored and co-advised several students and researchers on design of

experiments and has served as an invited reviewer for various pharmaceutical and

food-related journals. Dr. Celli earned her Bachelor’s degree in Pharmacy and

Master’s degree in Food Technology from Universidade Federal do Paraná (Brazil)
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Chapter 1

Introduction to Experimental Design

1.1 What Is Experimentation?

Experimentation is part of everyday life. Will leaving 30 minutes earlier than usual

in the morning make it easier to find a legal parking space at work? How about

20 minutes earlier? Or only 10 minutes earlier? Can I increase my gas mileage by

using synthetic oil? Will my problem employees make more of an effort to be on

time if I make it a practice to stop by their office to chat at the start of the day?Will a

chemical reaction be faster if the amount of a specific reagent is increased three-

fold? How about if the temperature is increased by 10 �C? Will the yield increase if

an extraction is carried for 40 minutes instead of 20 minutes?

We’re frequently interested to learn if and how some measure of performance is

influenced by our manipulation of the factors that might affect that measure.

Usually we undertake these activities in an informal manner, typically not even

thinking of them as experimentation, and the stakes are such that an informal,

unstructured approach is quite appropriate. Not surprisingly, as the consequences

grow, if the performance improvement means a substantial increase in profitability,

or the running of the experiment involves a significant expenditure of time and

resources, the adoption of a more structured experimental approach becomes more

important. In a research setting, experimentation is a tool to identify the effect of a

factor (with statistical significance) on a response. On the other hand, the purpose of

experimentation in an industrial context is often to obtain the maximum amount of

information about different factors that can affect a process with the fewest number

of observations possible.

An experiment is an inquiry in which an investigator chooses the levels (values)

of one or more input, or independent, variables, and observes the values of the

output, or dependent, variable(s). The purpose of experimental activity is to lead to

an understanding of the relationship between input and output variables, often to

further optimize the underlying process. An experimental design is, then, the

aggregation of independent variables, the set of amounts, settings or magnitudes
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(called levels) of each independent variable, and the combinations of these levels

that are chosen for experimental purposes. That is, the core of an experimental

design is to answer the three-part question: (1) which factors should we study,

(2) how should the levels of these factors vary, and (3) in what way should these

levels be combined? Of course, other issues, such as the choice of output variable,

need stipulation.

Frequently we have the latitude to select the levels of the factors under study in

advance of data collection; in these instances, we realize advantages that increase the

efficiency of the experimental effort. Sometimes, however, we cannot specify the

levels of the independent variables – we have to take what we are given. For example,

if we want to study the impact of corporate dividends on stock price, we generally

cannot manipulate the companies’ dividends; they would be what they would

be. Such situations can also arise simply because the data are already collected, and

an analysis can be done only ex post facto (that is, after the fact, or after the data are

collected). However, in both situations, it might be possible to sort the data to find a

subset of companies with the exact levels of dividends one would wish to choose.

1.2 The Growth in Experimental Design

Experimental design is a growing area of interest in an increasing number of

applications. Initially, experimental design found application in agriculture, biol-

ogy, and other areas of hard science. It has since spread through the engineering

arenas to the social sciences of economics and behavioral analysis. Experimental

design appears to have been used in traditional business and management applica-

tions only since the mid-1960s; more recently, experimental-design methodology

has been applied in the nonprofit and government sectors. There are many reasons

for this progression, but the principal one is the increased training in statistics and

quantitative methods among professionals in management and the latter areas,

along with the resultant widespread use of quantitative decision-making techniques.

This trend was further encouraged by the Total Quality Management (TQM)

movement originating in the mid-1980s and continuing today. Indicative of the

widespread acceptance of the virtues of experimental design was its being heralded

by the esteemed “establishment” outlet Forbes magazine in a March 11, 1996,

article entitled “The New Mantra: MVT.” MVT stands for multivariable testing, a

term presented in the article along with experimental design, and used to distinguish

factorial designs from the vilified (both in the article and this text) one-factor-at-a-

time experiments.1

1A factorial design consists of varying combinations of levels of factors. A full (or complete)

factorial design consists of all combinations of levels of factors, whereas a fractional factorial

design consists of a carefully chosen subset of combinations. In a one-factor-at-a-time experiment

the levels of factors are varied, but only one factor at a time. In Chap. 9 we describe and compare

these designs in detail.
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That the trend continues is attested to by the article “The Numbers Game:

Multivariate Testing Scores Big,” in the Executive Edge section of the April

2000 edition of Continental, the in-flight magazine of Continental Airlines. The

article cites many companies that rely more and more on experimental design

(including DuPont, American Express, Boise Cascade, Circuit City, and SBC

Communications), and reports in detail on its use by the Deluxe Corporation.

More examples can be found with a simple internet search in various areas and

businesses.

Behind all the praise of experimental-design methods is the simple fact that it

works. The two articles note many successes, and Forbes briefly described the

history of the discipline. Experimental design is not, strictly speaking, a new field. It

originated at the beginning of the twentieth century with Sir Ronald Fisher’s work;
indeed, Fisher is often referred to as “the father of experimental design.”2

The field is, in many ways, a simple one. The terminology and notation may

appear strange to the uninitiated and the mathematical connections may seem

formidable, but as for any worthwhile new skill, one can overcome the barriers to

entry with study and practice. With mastery one can admire the inherent beauty of

the subject and appreciate how its success is enhanced by combining the discipline

of statistics with the knowledge of process experts.

1.3 The Six Steps of Experimental Design

One can frame the experimental-design process as a six-step process, as seen in

Fig. 1.1.

1. Plan the experiment.
2. Design the experiment.
3. Perform the experiment.
4. Analyze the data from the experiment.
5. Confirm the results of the experiment.
6. Evaluate the conclusions of the experiment.

Fig. 1.1 The process of experimental design

2In addition to its contribution to the experimental design study, Fisher’s book “The Design of

Experiments” (1st edition, 1935) introduces the concept of a null hypothesis – a general statement

assumed to be true unless further evidence proves it otherwise.
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1.3.1 Step 1: Plan the Experiment

The planning process is vital to the success of the experiment. It is at this stage that

close collaboration between the people knowledgeable about the process under

study (the process experts) and those experienced in the design-of-experiments

methodology (the designers) is required. Diligence at this stage can greatly increase

the chance that appropriate, meaningful assumptions are made; giving short shrift to

this stage of the process can make everything that follows a waste of time and

resources. The planning stage itself consists of five steps:

1. Identify the dependent, or output, variable(s).

2. Translate output variables to measurable quantities.

3. Determine the factors (independent, or input, variables) that potentially affect

the output variables that are to be studied.

4. Determine the number of levels or values for each factor and what those

levels are.

5. Identify potential synergy between different factors.

The dependent variable to be studied should be chosen carefully. Sometimes the

choice is obvious, but other times it is not. The general guideline is to ensure that

the right performance measure is chosen – typically, the quantity that is really the

important one; perhaps the one that tells how good a product is, or how well it does

its job, or how it is received in the marketplace. For example, in an experiment to

help develop a better cover for a specialty catalog, it is unlikely that a wise choice of

dependent variable is the brightness of the cover; a wiser choice is the sales volume

that results, or even a measure of the potential customer’s attitude toward the cover.
One way to choose a dependent variable is to make sure that all vested interests

are represented – those of the user, producer, marketing department, and relevant

others – perhaps in a formal brainstorming session. If the goal is to produce popcorn

that sells more, is it obvious to the consumer what the key qualities should be?

Fluffiness? Color? Taste? Texture? Percent popped?

Once the dependent variable is selected, it must usually be transformed into a

quantitative measure to make it useful. Many variables are subjective. How do you

measure taste or appearance? What about the units of measurement? The choice of

units is almost never important if those under consideration are linearly related to

one another (such as inches versus feet, or dollars versus yen). However, how about

the choice between circumference, area, and volume to measure the size of a

spherical product? A known value for one measure determines the values of the

other two measures, but if the value of one measure changes, the values of the other

measures do not change proportionally. So, although one measure may vary

linearly with the level of a factor, another measure may vary non-linearly. As we

note later, varying linearly versus non-linearly may be an important issue.

Choosing the factors to study is sometimes quite straightforward; however, other

times it is not as easy as it might seem. In our consulting experience, the process

experts sometimes propose an unworkably large number of possible factors for

study. An effective way to raise for consideration all candidate input variables is to
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begin with a formal brainstorming session, perhaps using Ishikawa (often called

Fishbone or cause-and-effect) diagrams, a technique developed in the context of

quality control to help identify factors affecting product quality, but adaptable to

any situation where one desires to identify factors that affect a dependent variable.

This approach generally yields a nearly exhaustive list of choices in categories such

as people factors, equipment factors, environmental factors, methods factors, and

materials factors. This initial list may be pared down to its essentials through a

Pareto analysis, which in this context classically states the now well-known concept

that 80% of the identifiable impact will be associated with 20% of the factors,

though the exact values of “80” and “20” are unlikely to be precisely realized. Of

course, one should reduce the list in any obvious ways first. We recall one case in

which (in simplistic terms) the factor “temperature greater than 212 �F or not” was

identified along with another factor, “presence or absence of steam” (with the

experiment run at sea level in an unpressurized container).

One is usually motivated to minimize, to the degree possible, the number of

factors under study. In general, everything else being equal, a higher number of

factors under study is associated with an increased size of an experiment; this, in

turn, increases the cost and time of the experiment. The connection between the

number of factors in an experiment and the size and efficiency of the experiment is

an issue that is discussed from numerous perspectives in the text.

At how many different levels should a factor appear in an experiment? This is

not always easily answered. A quick-and-dirty answer is that if the response of the

dependent variable to the factor is linear (that is, the change in the dependent

variable per unit change in the level of the factor is constant), two levels of the

factor will suffice, but if the response is non-linear (not a straight line), one needs

more than two. In many non-linear cases, if the factor is measured on a numerical

scale (representing some unit of measurement, not simply categories), three levels

will suffice. However, this answer has the major flaw of circular reasoning: the

answer is clear if we know the response function (the true relationship between the

dependent variable and the independent variable), but the reason for running the

experiment generally is to find the response function. Naturally, if factors have a

higher number of levels, the total number of combinations of levels of factors

increases. Eight factors, each at two levels, have a total of 256 (28) different

combinations of levels of factors, whereas eight factors, each at three levels, have

6,561 (38) different combinations of levels of factors – a big difference! The issue of

number of levels is addressed for various settings throughout the text.

The last of the planning steps noted earlier was the identification of synergy

(or of anti-synergy) between factors. The more formal word used for synergy is

interaction. An interaction is the combined effect of factor levels that is above and

beyond the sum of the individual effects of the factors considered separately. That

is, the total is greater or lower than (i.e., not equal to) the sum of the parts. For

example, if adding a certain amount of shelf space for a product adds 10 units of

sales, and adding a certain amount of money toward promoting the product adds

8 units of sales, what happens if we add both the shelf space and the promotional

dollars? Do we gain 18 (the sum of 10 and 8) units of sales? If so, the two factors,
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shelf space and promotion, are said to not interact. If the gain is more than 18 units

of sales, we say that we have positive interaction or positive synergy; if the gain is

less than 18 units, we say we have negative interaction or negative synergy. The

text covers this concept in great depth; indeed, the number of interactions that might

be present among the factors in the study has major implications for the experi-

mental design that should be chosen.

1.3.2 Step 2: Design the Experiment

Having completed the planning of the experiment, we undertake the design stage,

which is the primary subject of the entire text. First, we make the choice of design

type. A fundamental tenet of this text is that factorial designs, in which the

experiment comprises varying combinations of levels of factors, are in general

vastly superior to one-at-a-time designs, in which the level of each factor is varied,

but only one factor at a time. This is a major theme of the Forbes article mentioned

earlier; indeed, it leads directly to why the article is entitled “Multivariable Test-

ing.” We discuss this issue at length.

Having chosen the design type, we need to make the specific choice of design. A

critical decision is to determine how much “fractionating” is appropriate. When

there is a large number of combinations of levels of factors, inevitably only a

fraction of them are actually run. Determining which fraction is appropriate, and the

best subset of combinations of levels of factors to make up this fraction, is a large

part of the skill in designing experiments. It is possible for the degree of fraction-

ating to be dramatic. For example, if we study 13 different factors, each with three

levels, we would have 1,594,323 different combinations of levels of factors.

However, if we could assume that none of the factors interacted with others, a

carefully selected, but not unique, subset of only 27 of these combinations, perhaps

with modest replication, would be necessary to get a valid estimate of the impact of

each of the 13 factors. The issue of the accuracy of the estimates would be

determined in part by the degree of replication, i.e., the number of data values

that are obtained under the same experimental conditions.3

Another critical element of designing an experiment is the consideration of

blocking, which is controlling factors that may not be of primary interest but that

if uncontrolled will add to the variability in the data and perhaps obscure the true

effects of the factors of real interest. For example, suppose that we wish to study the

effect of hair color on the ability of a particular brand of shampoo to reduce the

amount of a person’s hair that has split ends. Further suppose that, independent of

3“Replication” is sometimes used erroneously as a synonym for “repetition.” Replicates are

measurements made on different items/units/etc. performed under the same experimental condi-

tions. On the other hand, repetitions are repeated measurements on the same item/unit/etc. at

certain conditions.
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hair color, male and female hair react differently to the shampoo. Then, we likely

would want to introduce sex as a second factor (although some texts would not label

it a factor but simply a block, to distinguish it from the primary factor, hair color).

By being controlled, or accounted for, the variability associated with the factor

(or block) of sex could be calculated and extracted so that it does not count against

and obscure differences due to hair color. Blocking is briefly discussed in Chap. 6

and is explored in greater detail in Chap. 10. Blocking is illustrated in some

descriptions of experimental applications in Sect. 1.4.

The discussion in this section is necessarily somewhat superficial. Designing an

experiment does not always follow such an easily describable set of separate

sub-steps. Other considerations must be taken into account, at least tangentially if

not more directly. For example, perhaps the experiment under consideration is to be

one of a series of experiments; in this case, we might wish to design a somewhat

different experiment – perhaps one that does not include every factor that might be

needed for a stand-alone experiment. Issues of combining data from one experiment

with data from another might also arise in choosing a design. These additional

considerations and many others are discussed in various sections of the text.

1.3.3 Step 3: Perform the Experiment

It goes without saying that once the experiment has been designed, it must be

performed (“run”) to provide the data that are to be analyzed. Although we do not

spend a lot of time discussing the running of the experiment, we do not mean to

imply that it is a trivial step. It is vital that the experiment that was designed is the

experiment that is run. In addition, the order of running the combinations of levels

of factors should be random (more about this later in the text). The randomization

prevents the introduction of unexpected effects or bias in the experiment. For

instance, in an experiment to determine the effectiveness of a new drug in compar-

ison to a standard option, the patients could be randomly allocated to the two

treatments. Indeed, some statistical software programs that use information decided

during the planning stage to provide designs for the user also provide a worksheet in

which the order of the combinations has been randomly generated.

1.3.4 Step 4: Analyze the Data from the Experiment

Sometimes the conclusions from an experiment seem obvious. However, that can

be deceptive. Often the results are not clear-cut, even when they appear that way. It

is important to tell whether an observed difference is indicating a real difference, or

is simply caused by fluctuating levels of background noise. To make this distinc-

tion, we should go through a statistical analysis process called hypothesis testing.
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Statistical analysis cannot prove that a factor makes a difference, but it can

provide a measure of the consistency of the results with a premise that the factor has

no effect on the dependent variable. If the results are relatively inconsistent with

this premise (a term that gets quantified), we typically conclude that the factor does

have an effect on the dependent variable, and consider the nature of the effect. The

statistical analysis also provides a measure of how likely it is that a given conclu-

sion would be in error.

Somewhat formidable mathematics are required to derive the methods of

hypothesis testing that are appropriate for all but the simplest of experiments.

However, the good news is that, for the most part, it is the application of the

methodology, not its derivation, that is a core requirement for the proper analysis

of the experiment. Most texts provide illustrations of the application. In addition,

numerous statistical software packages do virtually all calculations for the user.

Indeed, far more important than the mechanics of the calculations is the ability to

understand and interpret the results. However, as we noted in the preface, we do

believe that the ability to understand and interpret the results is enhanced by the

competence to “crunch the numbers” by hand (and as noted earlier, to us this phrase

includes the use of a calculator).

The principal statistical method used for the analysis of the data in experimental

designs is called analysis of variance (ANOVA), a method developed by Sir Ronald

Fisher. The primary question ANOVA addresses is whether the level of a factor

(or interaction of factors) influences the value of the output variable. Other statistical

analyses augment ANOVA to providemore detailed inquiries into the data’s message.

1.3.5 Step 5: Confirm the Results of the Experiment

Once we have reached the pragmatic conclusions from our analysis, it is often a

good idea to try to verify these conclusions. If we are attempting to determine which

factors affect the dependent variable, and to what degree, our analysis could include

a determination as to which combination of levels of factors provides the optimal

values of the dependent variable. “Practicing safe statistics” would suggest that we

confirm that at this combination of levels of factors, the result is indeed what it is

predicted to be. Note that if the experiment is intended for research purposes, some

scientific journals will not accept manuscripts without a verification step.

Why?Well, it is very likely that while running only a fraction of the total number

of combinations of levels of factors, we never ran the one that now seems to be the

best; or if we did run it, we ran only one or a few replicates of it. The wisdom of the

design we chose was likely based in part on assumptions about the existence and

nonexistence of certain interaction effects, and the results derived from the analysis

surely assumed that no results were misrecorded during the performance of the

experiment, and that no unusual conditions which would harm the generalizability

of the results occurred during the experiment. Thus, why not perform a confirma-

tion test (with several replicates) that (we hope) verifies our conclusions? If there is

a discrepancy, better to identify it now rather than later!
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1.3.6 Step 6: Evaluate the Conclusions of the Experiment

Clearly, after any experiment, one evaluates whether the results make sense. If they

do not make sense, further thinking is necessary to figure out what to do next. The

particular kind of evaluation we have in mind as the sixth step of the experimental-

design process is the economic evaluation of the results.

Not all situations lend themselves to an explicit utilization of this step. However,

in our experience, a significant proportion of experiments applied in the manage-

ment areas do lend themselves to, indeed mandate, a cost/benefit analysis to

determine whether the solutions suggested by the results of the experiment are

economically viable. Today, it is clear that companies generally cannot, and should

not, embrace quality for quality’s sake alone. Quality improvements need to be

economically justified.

A fruitful application of designed experiments is in the area of product config-

uration, which involves running experiments to examine which combination of

levels of factors yields the highest purchase intent, or sales. However, the combi-

nation of levels of factors that has the highest purchase intent (let’s put aside the

issue of if and how intent translates to sales) may be a big money loser. A three-

scoop sugar-cone ice cream for a nickel would surely yield very high revenue, but

not for long – the company would soon go out of business. As another example,

suppose that a combination of certain levels of ingredients that has a variable cost

higher than the current combination would result in the same average quality

indicator value (such as battery life), but with a lower amount of variability from

product to product. Everyone would agree that the lower variability is desirable, but

does, say, a 20% drop in this variability warrant a 30% increase in variable cost?

The answer lies with an economic evaluation, or cost/benefit analysis. It may or

may not be easy to do such an evaluation; however, it is difficult to reach a

conclusion without one.

1.4 Experimental-Design Applications

In this section, we present details of some case studies that reflect actual examples

of the design and analysis of experiments on which the authors have consulted. The

goal is to provide the reader with a variety of real-life illustrations of the use of the

material covered in this text. Each subsequent chapter is introduced by one of these

or a similar example on which at least one of the authors worked, to illustrate an

application of the concepts in that chapter to an actual experimental-design problem

in a management area. In most cases, the company name cannot be revealed;

however, as noted earlier, each situation is real and the description of the specifics,

although sometimes changed in minor ways, has not been altered in any way that

would affect the design or analysis of the experiment.
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1.4.1 Corporate Environmental Behavior

In some industries, the name or specific brand of a company is not a major selling

point. This is true for most utility companies, except perhaps for some telecommu-

nication companies. In this day and age of increased deregulation and actual

competition, however, many utility companies are seeking to distinguish them-

selves from the pack. One particular energy company, Clean Air Electric Company

(a fictitious name), decided to inquire whether it could achieve an advantage by

highly publicizing promises of environmentally-sound corporate behavior.

The company decided to study whether demand for its product in two newly

deregulated states (Pennsylvania and California) would be influenced by a set of

factors, notably including different levels of corporate environmental behavior;

other factors included price, level of detail of information provided to customers

about their pattern of use of the product, level of flexibility of billing options, and

several others. The factor “corporate environmental behavior” had five levels for

what should be publicized (and adhered to), as shown in Fig. 1.2.

1. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment.

2. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment. Also, Clean Air 
Electric Company will donate 3% of its profits to environmental organizations.*

3. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment. Also, Clean Air 
Electric Company will donate 6% of its profits to environmental organizations.

4. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment, and will engage 
an unbiased third party to provide environmental audits of its operations. Also, Clean 
Air Electric Company will provide college scholarships to leading environmental 
colleges.

5. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment. Also, Clean Air 
Electric Company will donate 3% of its profits to environmental organizations, and will 
actively lobby The Government to pass environmentally-friendly legislation.

* Boldface typing is solely for ease of reader identification of the differences among the levels.

Fig. 1.2 Levels of factor: corporate environmental behavior
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The experiment had several dependent-variablemeasures. Perhaps themost critical

one for the company was an 11-point scale for likelihood of purchase. It is well known

that one cannot rely directly on self-reported values for likelihood of purchase; they

are nearly always exaggerated – if not for every single respondent, surely on average.

Virtually every marketing research or other firm that designs and analyzes experi-

ments involving self-reported likelihood of purchase has a transformation algorithm,

often proprietary and distinct for different industries, to non-linearly downscale the

self-reported results. Certain firms have built up a base of experience with what these

transformations should be, and that is a major asset of theirs. One would expect this to

be important in the evaluation stage. Other measures included attitude toward the

company and the degree to which these company policies were environmentally

friendly. The experiment was run for six mutually-exclusive segments of potential

customers and the data were separately analyzed; the segments were formed by

whether the potential customer was commercial or residential and by the potential

customer’s past product usage. It might be noted that having the six segments of

potential customers identified and analyzed separately is, in essence, using the seg-

ment of customer as a block, in the spirit of the earlier discussion of this topic.

1.4.2 Supermarket Decision Variables

The majority of supermarkets have a relatively similar physical layout. There are

two primary reasons for this. One is that certain layouts are necessary to the

functioning of the supermarket; for example, the location of the meat products is

usually at the rear of the store, to allow the unloading (unseen by the public) of large

quantities of heavy, bulky meat products, which are then cut up and packaged

appropriately by the meat cutters working at the supermarket, eventually resulting

in the wrapped packages that are seen by its patrons. The other reason for the

similarity of layout is that the people who run supermarkets have a vast store of

knowledge about superior product layout to enhance sales; for example, certain

items are placed in locations known to encourage impulse purchases. As another

example, products in the bread aisle will likely get more traffic exposure than

products in the baby-food aisle. Placing necessities in remote locations ensures

that customers have plenty of opportunity to select the more optional items on their

way to the milk, eggs, and so on.

A large supermarket association wished to more scientifically determine some of

its strategies concerning the allocation of shelf space to products, product pricing,

product promotion, and location of products within the supermarket. In this regard,

the association decided to sponsor an experiment that examined these “managerial

decision variables” (as they put it). There was also concern that the strategies that

might work in the eastern part of the United States might not be best in the

stereotypically more laid-back atmosphere of the western part of the country. In

addition, it was not clear that the impact of the level of these decision variables

would be the same for each product; for example, promoting a seasonal product
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might have a different impact than the same degree of promotion for non-seasonal

products, such as milk.

An experiment was set up to study the impact of eight factors, listed in Fig. 1.3.

The experiment involved 64 different supermarkets and varied the levels of the

factors in Fig. 1.3 for various products. The dependent variable was sales of a

product in the test period of six weeks, in relation (ratio) to sales during a base

period of six weeks immediately preceding the test period. This form of dependent

variable was necessary, since different supermarkets have different sizes of cus-

tomer bases and serve different mixes of ethnic groups. After all, a supermarket in

an Asian community sells more of certain vegetables than supermarkets in some

other neighborhoods, simply due to the neighborhood makeup – not due primarily

to the level of promotion or to other factors in Fig. 1.3.

1.4.3 Financial Services Menu

A leading global financial institution, GlobalFinServe (fictitious name), wished to

expand its services and both acquire new clients and sell more services to current

clients. In these days of increased deregulation, financial service companies are

allowed to market an expanding set of products. Their idea was to consider promoting

a “special relationship with GlobalFinServe,” allowing clients who join the “select

client group” to take advantage of the institution’s experience and technological

innovations.

In joining GlobalFinServe’s select client group, a client would receive a set of

benefits, including having a personal relationship with a manager who would

provide certain services, depending on the results of the experiment, such as giving

investment advice, insurance advice, and other types of more detailed financial

planning than typically available from such a financial institution; these additional

services include stock brokerage and foreign-currency trading. Also, members of

the select client group would receive several other “convenience” privileges: access

to accounts 24 hours a day, 7 days a week, by ATM or computer, from anywhere in

the world, consolidated monthly statements, preferential treatment at any branch

office (similar to a separate line for first-class passengers at an airline counter), and

other possibilities, again depending on the results of the experiment.

1. Geography (eastern vs. western part of the U.S.)
2. Volume category of the product
3. Price category of the product
4. Degree of seasonality of the product
5. Amount of shelf space allocated to the product
6. Price of the product
7. Amount of promotion of the product
8. Location quality of the product

Fig. 1.3 Factors for supermarket study
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GlobalFinServe hoped to resolve many questions using the results of the exper-

iment. The primary issue was to determine which benefits and services would drive

demand to join the special client group. Using the company’s information on the

different costs it would incur for the different levels of each factor, a cost/benefit

analysis could then be done. Some of the factors and levels to be explored in the

experiment are listed in Fig. 1.4.

The experiment was conducted in many different countries around the world,

and the data from each country were analyzed separately; in part, this was done in

recognition that in some cases, different countries have different banking laws, as

well as different attitudes toward saving and investing (i.e., different countries were

introduced as blocks). The experiment for each country was carried out by assem-

bling a large panel of different segments of clients and potential clients in that

country. Segments included those who were already GlobalFinServe clients and

heavy users; those who were already GlobalFinServe clients but non-heavy users;

non-clients of GlobalFinServe with high income and/or net worth; and non-clients

of GlobalFinServe with moderate income and net worth. Respondents were shown

a profile containing a combination of levels of factors and then indicated their

likelihood of joining the GlobalFinServe select client group. In addition, for each

respondent, various demographic information was collected, and open-ended com-

mentary was solicited concerning other services that respondents might like to have

available in such a setting.

1. Dedicated financial relationship manager?
•

•

•

•

•

•
•
•

•
•
•

Yes; one specific person will be familiar with your profile, serve your needs, and proactively 
make recommendations to you
No; there is a pool of people, and you are served by whoever answers the phone; no 
proactive recommendations

2. Availability of separate dedicated centers at which clients and financial relationship 
managers can meet?
Yes
No

3. Financial services availability
About ten different levels of services available; for example, investment services and 
financial planning services available, but borrowing services not available

4. Cost to the special client
$20 per year
$200 per year
0.5% of assets per year

5. Minimum account balance (total of investments and deposits)
$25,000
$50,000
$100,000

Fig. 1.4 Financial services: factors and levels
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1.4.4 The Qualities of a Superior Motel

A relatively low-priced motel chain was interested in inquiring about certain factors

that might play a large role in consumers’ choice of motel. It knew that certain

factors, such as location, could not be altered (at least in the short run). Price plays a

significant role, but for the experiment it was considered to be already set by market

forces for the specific location. The chain was interested in exploring the impact on

customer satisfaction and choice of motel of a set of factors dealing with the

availability and quality of food and beverages, entertainment, and business ameni-

ties. Some of the factors and their levels are listed in Fig. 1.5.

1. Breakfast (at no extra charge)
•
•
•

•

•

•

•
•

•

•

•

•

•

•

None available
Continental breakfast buffet – fruit juices, coffee, milk, fresh fruit, bagels, doughnuts
Enhanced breakfast buffet – add some hot items, such as waffles and pancakes, that the 
patron makes him/her self
Enhanced breakfast buffet – add some hot items, such as waffles and pancakes, with a 
“chef” who makes them for the patron
Enhanced breakfast buffet – add some hot items, such as waffles and pancakes, that the 
patron makes him/her self, and also pastry (dough from a company like Sara Lee) 
freshly baked on premises
Enhanced breakfast buffet – add some hot items, such as waffles and pancakes, with a 
“chef” who makes them for the patron, and also pastry (dough from a company like 
Sara Lee) freshly baked on premises

2. Business amenities available
Limited fax, printing, and copy services available at front desk, for a nominal fee
Expanded fax, printing, and copy services available 24 hours per day accessed by credit
card
Expanded fax, printing, copy services, and computers with Internet and email 
capability, available 24 hours a day accessed by credit card

3. Entertainment
Three local channels and five of the more popular cable stations, plus pay-per-view
movies
Three local channels and fifteen of the more popular cable stations, plus pay-per-view
movies
Three local channels and fifteen of the more popular cable stations, plus pay-per-view 
movies and X-Box games
Three local channels and fifteen of the more popular cable stations, plus pay-per-view 
movies and DVD
Three local channels and fifteen of the more popular cable stations, plus pay-per-view 
movies and both X-Box games and DVD

Fig. 1.5 Factors and levels for motel study
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The sample of respondents was separated into four segments (i.e., blocks). Two

of the segments were frequent users of the motel chain (based on the proportion of

stays in hotels/motels of the sponsoring chain), split into business users and leisure

users. The other two segments were infrequent or nonusers of the motel chain, split

the same way. The key dependent variable (among others, more “intermediary”

variables, such as attitude toward the chain) was an estimate of the number of nights

for which the respondent would stay at the motel chain during the next 12 months.

1.4.5 Time and Ease of Seatbelt Use: A Public Sector
Example

A government agency was interested in exploring why more people do not use

seatbelts while driving although it appears that the increased safety so afforded is

beyond dispute. One step the agency took was to sponsor an experiment to study the

factors that might influence the time required to don (put on) and doff (take off) a
seatbelt (don and doff were the words used by the agency). The concomitant ease of

use of seatbelts was a second measure in the experiment. The agency decided that

two prime groups of factors could be relevant.

One group had to do with the physical characteristics of the person using the

seatbelt. The other group had to do with the characteristics of the automobile and

with seatbelt type. The factors under study (each at two levels) are noted in Fig. 1.6.

For those not familiar with the terminology, a “window-shade” is just that: an inside

shade that some windows have (factory installed or added) for the purpose of

privacy or keeping out sunlight. The presence of a window-shade could affect the

time and ease associated with donning and doffing the seatbelt. A “locking latch-

plate” arrangement is the name given to the type of latch common for seatbelts in

virtually all automobiles today; that is, the seatbelt locks into a fixed piece of

hardware, usually anchored on the floor or console. The non-locking latch-plate

was used fairly often in the 1970s, when the study was conducted, but today it is

rare except in race cars. With a non-locking latch-plate, the seatbelt may go through

a latch-plate, but it does not lock into any fixed hardware: it simply connects back

onto itself.

In essence, there were sixteen different automobiles in the experiment – 24

combinations of levels of factors 4–7. There were eight people types. The male/

female definition was clear; for the weight and height factors, a median split was

used to define the levels.
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1.4.6 Emergency Assistance Service for Travelers

An insurance company was developing a new emergency assistance service for

travelers. Basically, the concept was to offer a worldwide umbrella of assistance

and insurance protection in the event of most types of medical, legal, or financial

emergency. The service would go well beyond what traditional travelers’ insurance
provided.

There would be a 24-hour, toll-free hot line staffed locally in every country in the

free world (a list of countries with services available would be listed). A highly trained

coordinator would answer your call, assess the situation, and refer you to needed

services. The coordinator would call ahead to ready the services, and follow up

appropriately. All medical expenses would be covered, and other services would be

provided. The traveler would not be required to do any paperwork. The company

wanted to explore the importance to “enrollment” of various factors and their levels

with respect to these other services.Also, the importance of priceneeded to be explored.

1. Sex
•

•

•

•

•

•

•

•

•

•

•

•

•

•

Male
Female

2. Weight
Overweight
Not overweight

3. Height
Tall
Short

4. Number of doors of automobile
Two
Four

5. Driver’s side window has window-shade
Yes
No

6. Seatbelt’s latch-plate
Locking
Non-locking

7. Front seat type
Bucket seats
Bench seats

Fig. 1.6 Seatbelt study: factors and levels
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The company wanted to determine one “best” plan at one fixed price, although it

left open (for itself – not to be included in the experiment) the possibility that it

might allow the level of several factors to be options selected by the traveler. All

plans were to include the basic medical service and hot-line assistance. Some of the

other factors whose levels were explored are listed in Fig. 1.7.

The dependent variable was respondents’ assessment of the number of days

during the next 2 years that they would use the service. In addition to this measure,

respondents were asked about their travel habits, including questions about with

whom they typically traveled, the degree to which a traveler’s destinations are

unusual or “offbeat,” and the countries often traveled to. In addition, respondents

indicated their view of the anticipated severity of medical problems, legal prob-

lems, financial problems (such as a lost wallet), and travel problems (lost tickets and

so on), using a five-point scale (ranging from 5 ¼ “extremely big problem” to 1 ¼
“not a problem at all”).

1.4.7 Extraction Yield of Bioactive Compounds

A research group wanted to investigate the biological activity of certain bioactive

compounds extracted from berries. The laboratory had recently implemented a

1. Personal liability coverage (property damage, bail, legal fees, etc.)
•
•
•

•
•

•
•
•

•

•
•
•

•

None
Up to $5,000
Up to $10,000

2. Transportation home for children provided if parent becomes ill
Yes
No

3. Baggage insurance
Not provided
Up to $600
Up to $1,200

4. Insurance for trip interruption or hotel or tour cancellation
A large variety of levels

5. Price
$2 per day for individual, family plans available
$6 per day for individual, family plans available
$10 per day for individual, family plans available
$14 per day for individual, family plans available

Fig. 1.7 Travelers’ emergency assistance: factors and levels
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policy to reduce the amount of solvents used in research in order to promote

sustainability and reduce the costs associated with waste disposal. For this reason,

the principal investigator wanted to assess the effects of certain factors on the

process that would lead to a higher extraction yield of the compounds of interest

(dependent variable) with the smallest number of treatment combinations possible.

The first step this group took was to brainstorm various factors that would affect

the process (each at three levels). These were narrowed down to the ones presented

in Fig. 1.8 based on their experience with the equipment and other reports in the

literature. Additionally, the researchers decided to conduct the project with berries

collected under the same conditions (i.e., no blocks were assumed), as it is known

that environmental, biological, and postharvest factors can affect the concentration

of certain metabolites in the fruits.

1.4.8 The “Perfect” Cake Mixture

A food industry was interested in developing a new line of products which would

consist of dry cake mixtures of various flavors. The marketing department had

indicated that consumers were looking for healthier options which were not cur-

rently available in the market, including gluten- and lactose-free options. In order to

simplify the process, the R&D department decided that it wanted to develop a base

formulation and later add flavors, colorants, etc., which would not require consid-

erable changes in their process line and procedures.

1. Proportion of volume of solvent in relation to the amount of berry material (mL/g)
•

•

•

•

•

•

•

•

•

•
•

•

10/1
30/1
50/1

2. Concentration of the solvent used for the extraction 
50%
75%
100%

3. Extraction temperature in the ultrasonic bath
95 ºF
113 ºF
131 ºF

4. Extraction time
10 minutes
20 minutes
30 minutes

Fig. 1.8 Factors and levels considered in the extraction yield of certain bioactive compounds
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The dry mixture would consist mainly of modified corn starch, sugar, maltodex-

trin, salt, sorbitol, and emulsifiers. The formulation also required water, oil, and

eggs (called the wet ingredients) which would be mixed with the dry ingredients by

the consumer. The factors selected for the investigation were: modified starch,

sugar, and sorbitol for the dry mixture, and water, oil, and eggs for the wet mixture.

The cakes were evaluated in terms of their physicochemical properties and by a

trained panel of sensory analysts using a 9-point hedonic scale, where 1 ¼ “dislike

extremely” and 9 ¼ “like extremely.”

We cover this example in more detail in Chap. 17, when we discuss mixture

designs. Unlike most of the designs covered in this book, mixture designs are

subjected to a constraint that the components of the mixture must add up to 1 or

100%. If the sum is not 100%, the proportion of the components can be scaled to

suppress this requirement.
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Chapter 2

One-Factor Designs and the Analysis
of Variance

We begin this and subsequent chapters by presenting a real-world problem in the

design and analysis of experiments on which at least one of the authors consulted.

At the end of the chapter, we revisit the example and present analysis and results.

The appendices will cover the analysis using statistical packages not covered in the

main text, where appropriate. As you read the chapter, think about how the

principles discussed here can be applied to this problem.

Example 2.1 Corporate Environmental Behavior atCleanAirElectricCo.

A number of states have deregulated the electric-power industry, and other states

are considering doing so. As noted in Chap. 1, Clean Air Electric Company

wondered whether it could achieve a competitive advantage by promising to

provide electricity while conserving the environment.

The company decided to study whether demand for its electricity would be

influenced by a set of factors, notably including different levels of publicized

corporate environmental behavior; other factors included price, level of detail of

information provided to customers about their pattern of use of electricity, level of

flexibility of billing options, and several more. The factor “corporate environmental

behavior” had five levels, as shown in Fig. 2.1. Because these five levels of the

environmental factor have very different revenue and cost (and hence profit)

implications, the company wanted to know whether and how the demand for its

electricity would vary by the level implemented. We return to this example at the

end of the chapter.

Electronic supplementary material: The online version of this chapter (doi:10.1007/978-3-319-

64583-4_2) contains supplementary material, which is available to authorized users.
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2.1 One-Factor Designs

In this chapter, we consider studies involving the impact of a single factor on some

performance measure. Toward this end, we need to define some notation and

terminology. Careful thought has been given to how to do this, for the nature of the

field of experimental design is such that, if we are to be consistent, the notation

introduced here has implications for the notation throughout the remainder of the text.

We designate by Y the dependent variable – the quantity that is potentially

influenced by some other factors (the independent variables). Other terms com-

monly used for the dependent variable are yield, response variable, and perfor-
mance measure. We will, from time to time, use these as synonyms. In different

fields, different terms are more common; it is no surprise, for example, that in

agricultural experiments the term yield is prevalent.

In this chapter, our one independent variable – the possibly influential factor

under study – is designated as X. (Here we consider the situation in which only one

independent variable is to be investigated, but in subsequent chapters we extend our

designs to include several independent variables.)

In order to make things a bit more tangible, let us suppose that a national retailer

is considering a mail-order promotional campaign to provide a reward (sometimes

called a loyalty incentive) to members of their master file of active customers

1. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment.

2. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment. Also, Clean Air 
Electric Company will donate 3% of its profits to environmental organizations.*

3. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment. Also, Clean Air 
Electric Company will donate 6% of its profits to environmental organizations.

4. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment, and will engage 
an unbiased third party to provide environmental audits of its operations. Also, Clean 
Air Electric Company will provide college scholarships to leading environmental 
colleges.

5. Clean Air Electric Company will ensure that its practices are environmentally sound. It will 
always recycle materials well above the level required by law. It will partner with local 
environmental groups to sponsor activities that are good for the environment. Also, Clean Air 
Electric Company will donate 3% of its profits to environmental organizations, and will 
actively lobby The Government to pass environmentally-friendly legislation.

* Boldface typing is solely for ease of reader identification of the differences among the levels.

Fig. 2.1 Levels of factor: corporate environmental behavior
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holding a company credit card; the retailer defines “active” as those company

credit-card holders who have made a purchase during the last two years. The retailer

wishes to determine the influence, if any, of the residence of the cardholder on the

dollar volume of purchases during the past year. Company policy is to divide the

United States into six different “regions of residence” and to have several other

regions of residence outside the United States, representing parts of Europe, Asia,

and other locations; there are over a dozen mutually-exclusive regions of residence

in total, covering the entire planet. Our variables are as follows:

Y ¼ dollar volume of purchases during the past year in $100s ðsales volumeÞ
X ¼ region of residence of the cardholder

We might indicate our conjecture that a cardholder’s sales volume is affected by the

cardholder’s region of residence by the following statement of a functional

relationship:

Y ¼ f X; εð Þ

where ε is a random error component, representing all factors other than X having

an influence on a cardholder’s sales volume.

The equation says, “Y (sales volume) is a function of (depends on) X (region of

residence) and ε (everything else).” This is a tautology; obviously, sales volume

depends on region of residence and everything else! How could it be otherwise?

Nevertheless, this functional notation is useful and is our starting point. We seek to

investigate further and with more specificity the relationship between sales volume

and region of residence. We now develop the statistical model with which we will

carry out our investigation.

Consider the following array of data:

1 2 3 . . . j . . . C

1 Y11 Y12 Y13 Y1C
2 Y21 Y22 Y23 Y2C
3 Y31 Y32 Y33 Y3C
.

.

.

i Yi1 Yi2 Yi3 Yij YiC
.

.

.

R YR1 YR2 YR3 YRC

Imagine that every element, Yij, in the array corresponds to a sales volume for

person i (i indexes rows) whose region of residence is j ( j indexes columns, and a

column represents a specific region of residence). In general, Yij is an individual

data value from an experiment at one specific “treatment” or level (value, category,
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or amount)1 of the factor under study. The array is a depiction of the value of the

dependent variable, or yield or response, for specific levels of the independent

variable (factor under study). Specifically, the columns represent different levels of

X; that is, all sales volumes in a specific column were obtained for active customers

having the same (level of) region of residence. Column number is simply a

surrogate for “level of region of residence”; there are C columns because

C different regions of residence are being investigated in this experiment. (Natu-

rally, there are many ways in which one could categorize parts of the United States

and the world into specific regions of residence; for simplicity, let’s assume that in

this case it is merely based on company precedent.)

There are R rows in the array, indicating that R customers in each region of

residence were examined with respect to their sales volume. In general, the array

represents the fact that R values of the dependent variable are determined at each of

the C levels of the factor under study. Thus, this is said to be a replicated experi-

ment, meaning it has more than one data value at each level of the factor under study.

(Some would also use the word replicated for a situation in which one or more, but

not necessarily all, levels of the factor have more than one data value.) Here, R, the
number of rows, is also the number of replicates, but this is usually true only when

studying just one factor. The total number of experimental outcomes (data points) is

equal to RC, the product of the number of rows (replicates) and the number of

columns (factor levels). The depicted array assumes the same number of replicates

(here, customers) for each level (here, region of residence) of the factor under study.

This may not be the case, but for a fixed number of data points in total, having the

same number of replicates per column, if possible, is the most efficient choice (that is,

will yield maximum reliability of the results – a term defined more precisely later).

The RC positions in the array above are indexed; that is, each data value

corresponds to a specific row and a specific column. The subscripts i and j are
used to designate the row and column position; that is, Yij is the data value that is in
the ith row and jth column.2

1The word level is traditionally used to denote the value, amount, or category of the independent

variable or factor under study, to emphasize two issues: (1) the factor can be quantitative/

numerical, in which case the word value would likely be appropriate, or it can be nominal (e.g.,

male/female, or supplier A/supplier B/supplier C), in which case the word category would likely

be appropriate; (2) the analysis we perform, at least at the initial stage, always treats the variable as

if it is in categories. Of course, any numerical variable can be represented as categorical: income,

for example, can be represented as high, medium, or low.
2Many different notational schemes are available, and notation is not completely consistent from

one text/field/topic to another. We believe that using i for the row and j for the column is a natural,

reader-friendly choice, and likewise for the choice of C for the number of columns and R for the

number of rows. Naturally, when we go beyond just rows and columns, we will need to expand the

notation (for example, if we wanted to investigate the impact of two factors, say region of

residence and year of first purchase, with replication at each combination of levels of the two

factors, we would need three indices). However, we believe that this choice of notation offers the

wisest trade-off between being user-friendly (especially here at the initial stage of the text) and

allowing an extrapolation of notation that remains consistent with the principles of the current

notation.
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2.1.1 The Statistical Model

It is useful to represent each data point in the following form, called a statistical

model:

Yij ¼ μþ τj þ εij

where

i ¼ 1, 2, 3, . . ., R
j ¼ 1, 2, 3, . . ., C
μ ¼ overall average (mean)

τj¼ differential effect (response) associated with the jth level of X; this assumes that

overall the values of τj add to zero (that is, ∑τj¼ 0, summed over j from 1 to C)
εij ¼ noise or error associated with the particular ijth data value

That is, we envision (postulate or hypothesize) an additive model that says every

data point can be represented by summing three quantities: the true mean, averaged

over all factor levels being investigated, plus an incremental component associated

with the particular column (factor level), plus a final component associated with

everything else affecting that specific data value. It is entirely possible that we do

not know the major components of “everything else” (or ε) – indeed, the knowledge
of the likely factors that constitute ε depends on the type of business or scientific

endeavor. As we mentioned earlier, it is tautological to state that a quantity depends

on the level of a particular factor plus everything else. However, in the model given,

the relative values of the components are most important. To what degree is sales

volume affected by region of residence, relative to everything else? As we shall see,

that is a key question, perhaps the most important one.

Suppose we were randomly selecting adults and were interested in their weight

as a function of their sex. Of course, in reality, we expect that a person’s weight
depends on a myriad of factors – age, physical activity, genetic background, height,

current views of attractiveness, use of drugs, marital status, level of economic

income, education, and others, in addition to sex. Suppose that the difference

between the average weight of men and the average weight of women is 25 lb,

that the mean weight of all adults is 160 lb, and that the number of men and women

in the population is equal. Our experiment would consist of selecting R men and

Rwomen. Our data array would have two columns (C¼ 2), one for men and one for

women, and R rows, and would contain 2R weights (data points). In the relationship

Yij¼ μþ τj + εij , μ¼ 160 , τ1¼ 12.5 (if men are heavier than women and the

weights of men are in the first column), τ2¼ � 12.5, and εij depends on the actual

weight measurement of the person located in the ith row and jth column. Of the

myriad of factors that affect a person’s weight, all but one (sex) are embraced by the

last term, εij. Of course, ordinarily we do not know the values of μ, τj, or εij and
therefore need to estimate them in order to achieve our ultimate goal, that of

determining whether the level of the factor has an impact on Yij, the response.

2.1 One-Factor Designs 27



2.1.2 Estimation of the Parameters of the Model

We need to compute the column means to proceed with the estimation process. Our

notation for the column means is �Y�j ¼
XR

i¼1
Yij=R, for the mean of column j; that

is, �Y�1, �Y�2, �Y�3, . . . , �Y�j, . . . , �Y�C are the means for the first, second, third, . . ., jth, . . .,
and Cth columns, respectively.

We append the column means to the data array as follows:

1 2 3 . . . j . . . C

1 Y11 Y12 Y13 Y1C
2 Y21 Y22 Y23 Y2C
3 Y31 Y32 Y33 Y3C
.

.

.

i Yi1 Yi2 Yi3 Yij YiC
.

.

.

R YR1 YR2 YR3 YRC

�Y�1 �Y�2 �Y�3 �Y�j �Y�C

We use the �j notation to explicitly indicate that it is the second subscript, the

column subscript, that remains. That is, the act of averaging over all the rows for

any specific column removes the dependence of the result on the row designation;

indeed, if you were to inquire: “The mean of the first column is associated with

which row?,” the answer would be either “none of them” or “all of them.”

Correspondingly, we “dot out” the row subscript. (In a later chapter, we will use
�Y1� to designate the mean of the first row – a quantity that has no useful meaning in

the current study). For the first column, for example,

�Y�1 ¼ Y11 þ Y21 þ Y31 þ � � � þ Yi1 þ � � � þ YR1ð Þ=R

Similarly, the average of all RC data points is called the grand (or overall)
mean, and is a function of neither row nor column (or, perhaps, all rows and

columns), has the consistent notation of �Y ��, and equals

�Y �� ¼

ðY11 þ Y21 þ Y31 þ � � � þ Yi1 þ � � � þ YR1Þ
þðY12 þ Y22 þ Y32 þ � � � þ Yi2 þ � � � þ YR2Þ
þðY13 þ Y23 þ Y33 þ � � � þ Yi3 þ � � � þ YR3Þ þ � � �
þðY1j þ Y2j þ Y3j þ � � � þ Yij þ � � � þ YRjÞ þ � � �
þðY1C þ Y2C þ Y3C þ � � � þ YiC þ � � � þ YRCÞ

2
66664

3
77775
=RC

An example of these and subsequent calculations appears in the Sect. 2.2 example.

The grand mean can also be computed as the mean of the column means, given our
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portrayal of each column as having the same number of rows, R. Thus, �Y�� also
equals

�Y�� ¼
�
�Y�1 þ �Y�2 þ �Y�3 þ � � � þ �Y�j þ � � � þ �Y�C

�
=C

If the number of data points is not the same for each column, the grand mean, which

always equals the arithmetic average of all the data values, can also be computed as

a weighted average of the column means, with the weights being the R�j for each
column j.3

Recall our statistical model:

Yij ¼ μþ τj þ εij

It is useful to understand that if we had infinite data (obviously, we never do), we

would then know with certainty the values of the parameters of the model; for

example, if one takes the sample mean of an infinite number of data values, the

sample mean is then viewed as equaling the true mean. Of course, in the real world,

we have (or will have, after experimentation), only a “few” data points, the number

typically limited by affordability and/or time considerations.

Indeed, we use the data to form estimates of μ, τj, and εij. We use the principle of

least squares developed by Gauss at about the beginning of the nineteenth century

as the criterion for determining these estimates. This is the criterion used 99.99% of

the time in these situations, and one would be hard pressed to find a commercial

software program that uses any other estimation criterion for this situation. In

simplified form, the principle of least squares says that the optimal estimate of a

parameter is the estimate that minimizes the sum of the squared differences

(so-called deviations) between the actual Yij values and the “predicted values”

(the latter computed by inserting the estimates into the equation). In essence, the

difference is an estimate of ε; most often, this estimate is labeled e. Then, the
criterion is to choose Tj (an estimate of τj, for each j) and M (an estimate of μ) to
minimize the sum of the squared deviations.

eij ¼ Yij �M � Tj

� �
and

XX
eij
� �2 ¼ XX

Yij �M � Tj

� �2

where∑∑ indicates double sums, all of which are over i from 1 to R, and over j from
1 to C; the order doesn’t matter.

We won’t go through the derivation of the estimates here; several texts illustrate

a derivation, in most cases by using calculus. In fact, you may have seen a similar

3Unequal sample sizes can result for various reasons and are a common issue, even in well-planned

experiments. It can affect the design by compromising the random assignment of experimental

units to the treatments, for example. However, in certain cases where one believes that the samples

reflect the composition of a certain population, it might be possible to calculate an unweighted

grand mean as the error variance is assumed to be constant across populations.
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derivation in the context of regression analysis in your introductory statistics

course.

It can be shown, by the least-squares criterion, that

M ¼ �Y��, which estimates μ

and that

Tj ¼ ð�Y�j � �Y��Þ, which estimates τj

for all j. These estimates are not only the least-squares estimates but also (we would

argue) commonsense estimates. After all, what is more common than to have μ, the
true overall mean, estimated best by the grand mean of the data? The estimate of τj
is also a commonsense estimate. If we were reading about the difference between

the mean age of Massachusetts residents and the mean age of residents of all

50 states (that is, the United States as a whole), what would we likely read as a

quantitative description? Most likely, we would read a statement such as “Massa-

chusetts residents are, on average, 1.7 years older than the average of all

U.S. residents.” In essence, this 1.7 is the difference between the Massachusetts

mean and the mean over all 50 states. And this is exactly what
�
�Y �j � �Y��

�
does – it

takes the difference between the mean of one column (equivalent to a state in our

example) and the mean of all columns (equivalent to the entire United States in our

example).

If we insert our estimates into the model in lieu of the parameter values, it

follows, from routine algebra, that eij, the estimate of εij, equals

Yij � �Y�j

Note that we have eij¼ (Yij�M� Tj), or eij ¼ Yij � �Y�� �
�
�Y�j � �Y��

�
, and the above

follows. We then have, when all estimates are inserted into the equation,

Yij ¼ �Y�� þ
�
�Y�j � �Y��

�þ �
Yij � �Y�j

�

This, too, may be seen as a tautology; remove the parentheses, implement the

algebra, and one gets Yij¼ Yij. Nevertheless, as we shall soon see, this formulation

leads to very useful results. With minor modification, we have

�
Yij � �Y��

� ¼ �
�Y�j � �Y��

�þ �
Yij � �Y�j

�

This relationship says: “The difference between any data value and the average

value of all the data is the sum of two quantities: the difference associated with the

specific level of the independent variable (that is, how level j [column j] differs
from the average of all levels, or columns), plus the difference between the data

value and the mean of all data points at the same level of the independent variable.”
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In our example, the difference between any sales volume value and the average

over all sales volume values is equal to the sum of the difference associated with the

particular level of region of residence plus the difference associated with

everything else.

2.1.3 Sums of Squares

We can square both sides of the previous equation (obviously, if two quantities are

equal, their squares are equal); this gives us:

�
Yij � �Y��

�2 ¼ �
�Y�j � �Y��

�2 þ �
Yij � �Y�j

�2 þ 2
�
�Y�j � �Y ��

��
Yij � �Y�j

�

An equation similar to the preceding exists for each data point – that is, for each ij
combination. There are RC such data points and, correspondingly, RC such equa-

tions. Clearly, the sum of the RC left-hand sides of these equations is equal to the

sum of the RC right-hand sides. Taking these sums, at least symbolically, we get

XXðYij � �Y��Þ2 ¼ XXð�Y�j � �Y ��Þ2 þ XXðYij � �Y�jÞ2
þ2 � XX½ð�Y�j � �Y��ÞðYij � �Y�jÞ�

ð2:1Þ

where, again, all double sums are over i (from 1 to R) and j (from 1 to C). As an
outgrowth of the way we selected the estimates of the parameters in our model, that

is, using the principle of least squares, Eq. 2.1 becomes greatly simplified; writing

the last term as 2 �Pjfð�Y�j � �Y��Þ½
P

iðYij � �Y�jÞ�g, we can easily show that the term

in the brackets is zero for all j, and the entire cross-product (last) term thus equals

zero. Furthermore, the first term following the equal sign can be reduced from a

double sum to a single sum; this is because the term is, in essence, a sum of terms

(R of them) that are identical. That is,

XX�
�Y�j � �Y��

�2 ¼ X
i

X
j

�
�Y �j � �Y��

�2h i

¼ X
j

�
�Y�j � �Y��

�2 þ X
j

�
�Y�j � �Y��

�2 þ � � �

þ X
j

�
�Y�j � �Y��

�2 ð2:2Þ

¼ R
X

j

�
�Y �j � �Y��

�2h i
ð2:3Þ

In other words, this double sum (over i and j) of Eq. 2.2 can be written as R times

a single sum (over j), as in Eq. 2.3. The algebra involved in reducing the double sum
to a single sum is no different than if we had something like the sum from 1 to 20 of
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the number 7: Σ7, from 1 to 20. Of course, this is 7þ 7þ � � � þ 7, 20 times, or,

more efficiently, 20 � 7. The result of all this apparently fortuitous simplification is

the following equation, which undergirds much of what we do (again, both double

sums over i [from 1 to R] and j [from 1 to C]):

XX�
Yij � �Y ��

�2 ¼ R
X

j

�
�Y�j � �Y��

�2h i
þ XX�

Yij � �Y�j
�2 ð2:4Þ

This says that the first term, the total sum of squares (TSS), is the sum of the second

term, which is the sum of squares between columns (SSBc), plus the third term, the

sum of squares within columns (SSW)4 (alternatively called SSE, explained shortly).

TSS, the total sum of squares, is the sum of the squared difference between

each data point and the grand mean. It would be the numerator of an estimate of the

variance of the probability distribution of data points if all data points were viewed

as coming from the same column or distribution (which would then have the same

value of μ). It is a measure of the variability in the data under this supposition. In

essence, putting aside the fact that it is not normalized, and thus does not directly

reflect the number of data points included in its calculation, TSS is a measure of the

degree to which the data points are not all the same.

SSBc, the sum of squares between columns, is the sum of the squares of the

difference between each column mean and the grand mean, multiplied by R, the
number of rows, and is also akin to a variance term. It is also not normalized, and it

does not reflect the number of columns or column means whose differences from the

grand mean are squared. However, SSBc is larger or smaller depending on the extent

to which column means vary from one another. We might expect that, if region of

residence has no influence on sales volume, the column means (average sales volume

corresponding to different regions of residence) would be more similar than dissim-

ilar. Indeed, we shall see that the size of SSBc, in relation to other quantities, is a

measure of the influence of the column factor (here, region of residence) in account-

ing for the behavior of the dependent variable (here, sales volume).

Although the summation expression of SSBc might be called the heart of the

SSBc, it is instructive to consider the intuitive role of the multiplicative term R. For
a given set of column means, the summation part of the SSBc is determined. We can

think of R as an amplifier; if, for example, R ¼ 50 instead of R ¼ 5, SSBc is ten

times larger. We would argue that this makes good sense. Think of the issue this

way: suppose that a random sample of household incomes was taken from two

towns, Framingham and Natick (both in the western suburbs of Boston), with

outliers (statistically extreme data values) not counted. If you were told that the

sample means were $5,000 apart, wouldn’t this same $5,000 difference suggest

4It would certainly seem that a notation of SSWc would be more consistent with SSBc, at least in

this chapter. However, the former notation is virtually never used in English language texts. The

authors suspect that this is because of the British ancestry of the field of experimental design and

the sensitivity to WC as “water closet.” In subsequent chapters, the “within” sum of squares will

not always be “in columns,” and the possible inconsistency becomes moot.
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something very different to you depending on whether 6 or 6,000 households were

sampled from each town? Of course! In the former case (n ¼ 6), we wouldn’t be
convinced at all that the $5,000 value was meaningful; one slightly aberrant

household income could easily lead to the difference. In the latter case

(n ¼ 6,000), the $5,000 difference would almost surely indicate a real difference.5

In other words, R amplifies the sum of the squares of the differences between the

column means and the grand mean, giving the SSBc a value that more meaningfully

conveys the evidentiary value of the differences among the column means.

Finally, SSW, the sum of squares within columns, is a measure of the influence

of factors other than the column factor on the dependent variable. After all, SSW is

the sum of the squares of the differences between each data point in a column and the

mean of that column. Any differences among the values within a specific column, or

level of the factor under study, can have nothing to do with what the level of the

factor is; all data points in a column have the same level of the factor. It seems

reasonable that, if SSW is almost as big as TSS, the column factor has not explained

very much about the behavior of the dependent variable; instead, factors other than

the column factor dominate the reasons that the data values differ to the degree they

do. Conversely, if the SSW is near zero relative to the TSS, it seems reasonable to

conclude that which column the data point is in just about says it all. If we view our

major task as an attempt to account for the variability in Y, partitioning it into that

part associated with the level of the factor under investigation, and that part

associated with other factors (“error”), then SSW is a measure of that part associated

with error. This is why SSW is often called SSE, the sum of squares due to error.

2.2 Analysis of (the) Variance (ANOVA)

Traditionally, we analyze our model by use of what is called an analysis-of-

variance (ANOVA) table, as shown in Table 2.1. Let’s look at each of the columns

of the table. The first and second columns are, by now, familiar quantities. The

heading of the second column, SSQ, indicates the various sum-of-squares quantities

(numerical values) due to the sources shown in the first column.

The third column heading, df, stands for degrees of freedom. The degrees-of-

freedom number for a specific sum of squares is the appropriate value by which to

divide the sum of squares to yield the fourth column, called the mean square. The

reason that we need to divide by something is to make the resulting values legiti-

mately comparable (comparing mean squares is part of our analysis, as will be seen).

After all, if we were comparing whether men and women have a different mean grade

point average (GPA), and we had the total of the GPAs of ten men and of six women,

we would never address our inquiry simply by comparing totals (although one

5Of course, along with the sample sizes and difference in sample means, the standard deviation

estimates for each town’s data need to be considered, along with a significance level, and so on;

this description simply attempts to appeal to intuition.

2.2 Analysis of (the) Variance (ANOVA) 33



woman student was heard to say that if we did, perhaps the men would have a chance

to come out higher). We would, of course, divide the male total by ten and the female

total by six, and only then would we compare results. Amean square is conceptually
the average sum of squares. That is, we noted earlier that neither the SSBc nor the SSW

reflected the number of terms that went into its sum; dividing these sums of squares by

the number of terms that went into the sum would then give us, in each case, the

average sum of squares. However, instead of dividing by the exact number of terms

going into the sum, the statistical theory behind our analysis procedure mandates that

we instead divide by the number of terms that are free to vary (hence, the name degrees
of freedom). We need to clarify what the phrase “free to vary” means.

Suppose that I am at a faculty meeting with 50 other faculty members and that we

are willing to assume that the 51 of us compose a random sample of the XYZ

University faculty of, let’s say, 1,500. If I tell you the weight of each of the 50 faculty
members other than myself, and I also tell you that the average weight of the 1,500

XYZUniversity faculty members is 161 lb, can you, from that information, determine

myweight? Of course, the answer is no.We could say that my weight is free to vary. It

is not determined by the other information and could be virtually any value without

being inconsistentwith the available information.However, suppose now that I tell you

the weight of each of the 50 faculty members other thanmyself, and I also tell you that

the average weight of the 51 of us in the room is 161. Then, can you determine my

weight? The answer is yes. Take the average of the 51 faculty members, multiply by

51, getting the total weight of the 51 faculty, and then subtract the 50 weights that are

given; what remains is my weight. It is not free to vary but rather is completely

predetermined by the given information. We can say that we have 51 data values,

but that when we specify the mean of the 51 values, only 50 of the 51 values are then

free to vary. The 51st is then uniquely determined. Equivalently, the 51 values have

only 50 degrees of freedom. In general, we can express this as the (n� 1) rule:

When we take each of n data values, subtract from it the mean of all n data values, square
the difference, and add up all the squared differences (that is, when n data values are
“squared around the mean” of those same n values), the resulting sum of squares has only
(n� 1) degrees of freedom associated with it.

(Where did the “missing” degree of freedom go? We can think of it as being used in

the calculation of the mean.) The application of this rule stays with us throughout

the entire text, in a variety of situations, applications, and experimental designs.

Table 2.1 ANOVA table

Source of

variability SSQ df Mean Square (MS)

Between columns

(due to region of

residence)

SSBc C � 1 MSBc¼ SSBc/(C� 1)

Within columns

(due to error)

SSW (R� 1)C MSW¼ SSW/[(R� 1)C]

Total TSS RC� 1
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The statistical theory dictates that, given our assumptions and goals, the proper

value by which to divide each sum of squares is its degrees of freedom. An

important example of these goals is that the estimates be unbiased – that is, for

each estimate, the expected sample value is equal to the unknown true value.

In the context of introductory statistics, one usually first encounters this notion

when learning how to use sample data, say x1, x2, . . ., xn, to provide an unbiased

estimate of a population variance, typically called S2 (summation over i):

S2 ¼ X�
xi � �x

�2h i
= n� 1ð Þ

If we examine SSBc, we note that its summation component is taking each of the

C column means and squaring each around the mean of those C values (the latter

being the grand mean). Thus, applying the (n� 1) rule, the degrees-of-freedom

value used to divide SSBc is (C� 1). To repeat, the statistical theory mandates this

result; the (n� 1) rule and the example of the professors’ weight are attempts to

give the reader some degree of intuitive understanding of why the statistical theory

yields the results it does. There are other ways to explain the (n� 1); the most

notable ones deal with constraints and rank of matrices; however, the authors

believe that the most intuitive way is that described above.6

Now consider the SSW. One way to describe its calculation is to say that first we

pick a column, square each value in the column around the mean of that column,

and add up the squared differences; then we do this for the next column, and

eventually every column; finally, we add together the sum from each column.

With R data values in each column, each column contributes (R� 1) degrees of

freedom; having (R� 1) degrees of freedom associated with each of the C columns

results in a total of C(R� 1) degrees of freedom for SSW.

The degrees of freedom for the TSS is (RC� 1), corresponding to RC data values

squared around the mean of the RC data values. It is useful to note that the degrees

of freedom in the body of the table add up to (RC� 1).7 The fact that the total

degrees of freedom are equal to the total number of data points less one will turn out

to be true for all designs, even the most complicated; indeed, in some situations, we

will use this fact to back into a degrees-of-freedom value that is difficult to reason

out using the (n� 1) argument. For example, suppose that we were unable to reason

out what the degrees-of-freedom value for the SSW is. We could calculate it by

knowing that the total number of degrees of freedom is (RC� 1), that SSBc has

(C� 1) degrees of freedom, and that there are only two sources of variability, and

thus the SSW must be associated with the rest of the degrees of freedom. If we take

(RC� 1) and subtract (C� 1), we arrive at the number of degrees of freedom for the

SSW of [RC� 1� (C� 1)]¼RC�C¼ (R� 1)C.

6Virtually all theoretical results in the field of statistics have some intuitive reasoning behind them;

it remains for the instructor to convey it to the students.
7As we did for the (n� 1) rule, we can think of this one degree of freedom as having been used in

the calculation of the grand mean to estimate μ.
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When we divide the SSBc by its degrees of freedom, we get the mean square

between columns (MSBc); similarly, the SSW divided by its degrees of freedom

becomes the mean square within columns (MSW).

The fifth and last column of the ANOVA table has purposely been left blank for

the moment; we discuss it shortly. However, first let’s look at an example to illustrate

the analysis up to this point, and use it as a springboard to continue the development.

Example 2.2 Study of Battery Lifetime

Suppose that we wish to inquire how the mean lifetime of a certain manufacturer’s
AA-cell battery under constant use is affected by the specific device in which it is

used. It is well known that batteries of different cell sizes (such as AAA, AA, C,

9-volt) have different mean lifetimes that depend on how the battery is used –

constantly, intermittently with certain patterns of usage, and so on. Indeed, usage

mode partly determines which cell size is appropriate. However, an additional

question is whether the same usage pattern (in this case, constant) would lead to

different mean lifetimes as a function of the device in which the battery is used. The

results of battery lifetime testing are necessary to convince a TV network to run an

advertisement that claims superiority of one brand of battery over another, because

possessing results that back up the claim reduces the network’s legal liability. The
testing is traditionally carried out by an independent testing agency, and the data are

analyzed by an independent consultant.

Suppose that we choose a production run of AA high-current-drain alkaline

batteries and decide to randomly assign three batteries (of the same brand) to each

of eight test devices; all test devices have the same nominal load impedance:

1. Cell phone, brand 1

2. Cell phone, brand 2

3. Flash camera, brand 1

4. Flash camera, brand 2

5. Flash camera, brand 3

6. Flashlight, brand 1

7. Flashlight, brand 2

8. Flashlight, brand 3

Our dependent variable (yield, response, quality indicator), Y, is lifetime of the

battery, measured in hours. Our independent variable (factor under study), X, is test
device (“device”). The number of levels of this factor (and the number of columns),

C, is eight.8

8One could argue that this study really has two factors – one being the actual test device and the

other the brand of the device. However, from another view, one can validly say that there are eight

treatments of one factor. What is sacrificed in this latter view is the ability to separate the

variability associated with the actual device from the one associated with the brand of the device.

We view the study as a one-factor study so that it is appropriate for this chapter. The two-factor

viewpoint is illustrated in later chapters.
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Because we have three data values for each device, this is a replicated experi-

ment with the number of replicates (rows), R, equal to three. We have RC¼ 24 data

points (sample values), as shown in Table 2.2. The column means (in the row at the

bottom) are averaged to form the grand mean, �Y��, which equals 5.8. The sum of

squares between columns, SSBc, using Eq. 2.3, is

SSBc ¼ 3½ð2:6� 5:8Þ2 þ ð4:6� 5:8Þ2 þ � � � þ ð7:4� 5:8Þ2�
¼ 3½23:04�
¼ 69:12

The sum of squares within columns, SSW, using the last term of Eq. 2.4, is

SSW¼ 1:8� 2:6ð Þ2 þ 5:0� 2:6ð Þ2 þ 1:0� 2:6ð Þ2
h i

þ 4:2� 4:6ð Þ2 þ 5:4� 4:6ð Þ2 þ 4:2� 4:6ð Þ2
h i

þ � � � þ 9:0� 7:4ð Þ2 þ 7:4� 7:4ð Þ2 þ 5:8� 7:4ð Þ2
h i

¼ 8:96þ 0:96þ � � � þ 5:12
¼ 46:72

The total sum of squares, TSS, as noted in Eq. 2.4, is the sum of these:

TSS ¼ SSBc þ SSW ¼ 69:12þ 46:72 ¼ 115:84

Next, we observe that our total degrees of freedom are RC� 1¼ 24� 1¼ 23,

with C� 1¼ 8� 1¼ 7 degrees of freedom associated with device, and (R� 1)C¼
(2)8¼ 16 degrees of freedom associated with error. We embed these quantities in

our ANOVA table as shown in Table 2.3 (again, we omit the last column – it will be

filled in soon).

Table 2.2 Battery lifetime (in hours)

Device

1 2 3 4 5 6 7 8

1.8 4.2 8.6 7.0 4.2 4.2 7.8 9.0
5.0 5.4 4.6 5.0 7.8 4.2 7.0 7.4
1.0 4.2 4.2 9.0 6.6 5.4 9.8 5.8

2.6 4.6 5.8 7.0 6.2 4.6 8.2 7.4

Table 2.3 ANOVA table of the battery lifetime study

Source of

variability SSQ df MS

Device 69.12 7 9.87

Error 46.72 16 2.92

Total 115.84 23
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2.3 Forming the F Statistic: Logic and Derivation

2.3.1 The Key Fifth Column of the ANOVA Table9

It can be proven that

E MSWð Þ ¼ σ2

where E( ) indicates the expected-value operator (which is similar to saying “on the

average, with a theoretically infinite number of random samples, from each of

which [in this case] MSW is calculated”) and σ2 is the (unknown) variance (square
of the standard deviation) of the probability distribution of each data value, under

the assumption that each data value has the same variance. This assumption of

constant variance is one of the assumptions that are often made when performing an

ANOVA – more about assumptions in the next chapter.

It is, perhaps, useful to elaborate a bit about this notion of an expected value; in

essence, the above equation says that if we somehow repeated this entire experi-

ment a very large number of times (with the same number of similar subjects, same

levels of the same factor, and so on), we would get different values for the MSW

each time, but on average, we would get whatever the value of σ2 is. Another way to
say this is that MSW is a random variable, with its true mean equal to σ2; since this
is true, MSW is said to be an unbiased estimate of σ2. By definition, the expected

value of a random variable is synonymous with its true mean.

It can also be proven that

EðMSBcÞ ¼ σ2 þ Vcol

where Vcol is our notation for “variability due to differences in population (that is,

true) column means.” The actual expression we are calling Vcol equals the following

(summations are over j, from 1 to C):

R= C� 1ð Þ½ � � X μj � μ
� �2

¼ R= C� 1ð Þ½ � � Xτ2j

where μj is defined as the true mean of column j. Vcol is, in a very natural way, a

measure of the differences between the true column means. A key point is that Vcol

equals zero if there are no differences among (true) column means, and is positive if
there are such differences.

It is important to note something implied by the E(MSBc) formula:

There are two separate (that is, independent) reasons why the MSBc almost surely will not
be calculated to be zero. One reason is that, indeed, the true column means might not be
equal. The other, more subtle reason is that even if the true column means happen to be
equal, routine sample error will lead to the calculated column means being unequal. After

9Remember that we are assuming a constant variance. More details are discussed in Chap. 3.
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all, the column means we calculate are merely sample means (�x’s, in the usual notation of
an introductory course in statistics), and C sample means generated from a distribution
with the same true mean will, of course, never all be equal (except in the rarest of
coincidences and even then only with rounding).

Again, note that we do not know σ2 nor Vcol; it would take infinite data or divine

guidance to know the true value of these quantities. Too bad! If we knew the value

of Vcol, it would directly answer our key question – are the true column means equal

or not? Even if we knew only E(MSBc) and E(MSW), we could get the value of Vcol

by subtracting out σ2 or by forming the ratio

EðMSBcÞ=EðMSWÞ ¼ ðσ2 þ VcolÞ=σ2

and comparing this ratio to 1. A value larger than 1 would indicate that Vcol, a

nonnegative quantity, is not zero.

Because we don’t know this ratio, we do the next best thing: we examine our

estimate of this quantity, MSBc/MSW, and compare it to the value 1.10 We call this

ratio Fcalc. We use the notation of “calc” as a subscript to indicate that it is a value

calculated from the data and to clearly differentiate the quantity from a critical

value – a threshold value, usually obtained from a table, indicating a point on the

abscissa of the probability density function of the ratio. The F is in honor of Sir

Ronald Fisher, who was the originator of the ANOVA procedure we are discussing.

To review, we have

EðMSBcÞ ¼ σ2 þ Vcol and EðMSWÞ ¼ σ2

This suggests that if

MSBc=MSW > 1

there is some evidence that Vcol is not zero, or, equivalently, that the level of

X affects Y, or in our example, the level of device affects battery lifetime. But if

MSBc=MSW � 1

there is no evidence that the level of X affects Y, or that the (level of) device affects
battery lifetime.

10One may say, “Why not examine (MSBc � MSW) and compare it to the value 0? Isn’t this
conceptually just as good as comparing the ratio to 1?” The answer is a qualified yes. To have the

ratio be 1 or different from 1 is equivalent to having the difference be 0 or different from

0. However, since MSBc and MSW are random variables, and do not exactly equal their respective

parameter counterparts, (σ2 + Vcol) and σ2, as we shall discuss, we will need to know the

probability distribution of the quantity examined. The distribution of the difference between

MSBc and MSW depends critically on scale – in essence, the value of σ2, something we don’t
know. Examining the ratio avoids this problem – the ratio is a dimensionless quantity! Its

probability distribution is complex but can be determined with known information (R, C, and so

on). Hence, we always study the ratio.
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However (and this is a big however), because Fcalc is formed from data, as are all

statistical estimates, it is possible that Fcalc could be greater than 1 even if the level

of X has no effect on Y. In fact, if Vcol ¼ 0, both MSBc and MSW have the same

expected value, σ2, and we would expect Fcalc> 1 about half the time (and Fcalc< 1

about half the time).11 Since Fcalc comes out greater than 1 about half the time when

X has no effect on Y, we cannot conclude that the level of X does have an effect on

Y solely on the basis of Fcalc > 1.

You may wonder how Fcalc can be less than 1. This really addresses the same

issue as the previous paragraph – that the values of MSBc and MSW virtually never

equal their expected-value counterparts. Think of this: on average, men weigh more

than women; yet, for a random sample of ten men and ten women, it is possible that

the women outweigh the men. Similarly, on average, the value of MSBc is never

less than the value of MSW; yet, for a particular set of data, MSW might exceed

MSBc.

Anyway, how do we resolve the issue that the value of Fcalc being greater than

1 or not doesn’t necessarily indicate whether the level of X affects or does not affect

Y, respectively? Questions such as this are resolved through the discipline of

hypothesis testing. We review this topic in some detail in Chap. 3. Here, we borrow

from that section (calling on your recollection of these notions from introductory

statistics courses) to complete the current discussion.12

We need to choose between two alternatives. One is that the level of the factor

under study has no impact on the response, and the other is that the level of the

factor under study does influence it. We refer to these two alternatives as hypoth-

eses, and designate them as H0 and H1 (or HA), respectively.

H0 : Level of X does not affect Y
H1 : Level of X does affect Y

We can, equivalently, define H0 and H1 in terms of the differential effects from

column to column, the τj, a term in our statistical model:

H0 : τ1 ¼ τ2 ¼ τ3 ¼ . . . ¼ τj ¼ . . . ¼ τC ¼ 0

H1 : not all τj ¼ 0 (that is, at least one τj is not zero)13

11It is not exactly half the time for each, because, although the numerator and denominator of Fcalc

both have the same expected value, their ratio does not have an expected value of 1; the expected

value of Fcalc in our current discussion is (RC�C)/(RC�C� 2)> 1, although the result is only

slightly more than 1 in most real-world cases. Also, as we shall soon see, the probability

distribution of Fcalc is not symmetric.
12It often happens, in an exposition such as this, that the best order of presentation is a function of

the level of knowledge of the reader; background material required by one may be unnecessary for

another. The flow of presentation is, of course, influenced by how these disparate needs are

addressed. At this point, we present just enough of the hypothesis-testing background to allow

us to continue with the analysis. Some readers may find it advantageous to first read Sect. 3.3 and

then return to the current section.
13We assume that the values of τj add to zero. If one of the τj 6¼ 0, we have at least another τj that is
non-zero.
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Finally, we can also express our hypotheses in terms of μj, defined earlier as the true
column means:

H0 : μ1 ¼ μ2 ¼ . . . ¼ μj ¼ . . . ¼ μC
(that is, all column means are equal)

H1 : not all μj are equal
(at least one column mean is different from the others)

H0 is called the null hypothesis. We will accept H0 unless evidence to the

contrary is overwhelming; in the latter case, we will reject H0 and conclude that H1,

the alternate hypothesis, is true. By tradition, H0 is the basis of discussion; that is,

we refer to accepting or rejecting H0. The benefit of the doubt goes to H0 and the

burden of proof on H1; this concept of the benefit of the doubt and the burden of

proof is well analogized by the credo of criminal courtroom proceedings, in which

the H0 is that the defendant is not guilty (innocent), and the H1 is that the defendant

is guilty, and the assumption is “innocent until proven guilty.” Our decision to

accept or reject H0 will be guided by the size of Fcalc. Given, as noted earlier, that

Fcalc will be greater than 1 about half the time even if X has no effect on Y, we
require Fcalc to be much greater than 1 if we are to reject H0 (and conclude that

X affects Y ); otherwise, we accept H0, and do not conclude that X has an effect on Y;
we might think of the decision to accept H0 as a conclusion that there is insufficient

evidence to rejectH0, in the same sense that a finding of not guilty in a criminal case

is not an affirmation of innocence, but rather a statement that there is insufficient

evidence of guilt.

The quantity Fcalc, the value of which is the function of the data on which our

decision will be based, is called the test statistic. This test statistic Fcalc is a random

variable that we can prove has a probability distribution called the F distribution if

the null hypothesis is true and the customary assumptions (discussed in Chap. 3)

about the error term, εij, are true.14 Actually, there is a family of F distributions,

indexed by two quantities; these two quantities are the degrees of freedom associ-

ated with the numerator (MSBc) and the denominator (MSW) of Fcalc. That is, the

probability distribution of Fcalc is a bit different for each (C, R) combination. Thus,

we talk about an F distribution with (C� 1) and (R� 1)C degrees of freedom.

Because Fcalc cannot be negative (after all, it is the ratio of two squared quantities),

we are not surprised to find that the F distribution is nonzero only for nonnegative

values of F; a typical F distribution is shown in Fig. 2.2.

14We are consistent in our notation; for example, when we encounter a quantity whose probability

distribution is a t curve, we call the test statistic tcalc.
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The shaded area in the tail, to the right of c (for critical value), is typically some

small proportion (such as .05 or .01) of the entire area under the curve; this entire

area is, by definition, equal to 1 (the units don’t really matter). Then, if the null

hypothesis is true, the shaded area represents the probability that Fcalc is larger than

c and is designated α (the Greek letter alpha). The critical value c is obtained from

tables of the F distribution because this distribution is quite complex, and it would

be difficult for most people analyzing experiments to derive the critical values

without these tables. The tables are indexed by the two values for degrees of

freedom (C� 1) and (R� 1)C, which detail the particular probability distribution

of a specific Fcalc. As in all hypothesis testing, we set up the problem presuming H0

is true and reject H0 only if the result obtained (here, the value of Fcalc) is so

unlikely to have occurred under that H0-true assumption as to cast substantial doubt

on the validity of H0. This amounts to seeing if Fcalc falls in the tail area defined by

the set of values greater than c (the rejection [of H0] region). In other words, our

procedure is akin to a proof by contradiction: we say that if the probability of

getting what we got, assuming that the level of X has no effect on Y, is smaller than

α (perhaps α ¼ .05, a 1 in 20 chance), then getting what we got for Fcalc is too

unlikely to have been by chance, and we reject that the level of X has no effect on Y.
The double-negative tone of the conclusion is characteristic of the hypothesis

testing procedure; however, in essence, the double negative implies a positive,

and we conclude that the level of X actually does affect Y. In summary, if Fcalc falls

in the rejection region, we conclude that H0 is false and that not all column means

are equal; if Fcalc falls in the acceptance region, we conclude thatH0 is true, and that

all column means are, indeed, equal.15

Fig. 2.2 A typical F distribution

15You may recall from a basic statistics course that accepting or rejecting the null hypothesis is

often based on the p-value, which in our study is the area on the F curve to the right of the Fcalc.

The significance level (α) is a threshold value for p. We will see this in more detail in Chap. 3.
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Example 2.3 Study of Battery Lifetime (Revisited)

A portion of the F distribution table is shown in Table 2.4, specifically for α ¼ .05.

Tables with more extensive values of α, and for a larger selection of degrees of

freedom, are in an appendix at the back of the text.

Note that, as indicated earlier, we need two degrees-of-freedom values to

properly make use of the F tables. The first, (C� 1), associated with the numerator

of Fcalc (that is, MSBc), is shown across the top of the table, and is often

labeled simply “numerator df” or “df1.” The second, (R� 1)C, associated with

the denominator of Fcalc (that is, MSW), is shown along the left side of the table,

and is often simply labeled “denominator df” or “df2.”
16 Remember that the

F distribution is used here (at least for the moment) under the presumption that

H0 is true – that the level of the column factor does not influence the response.

Although nobody does this in practice, we could designate the probability distri-

bution of F as P(Fcalc/H0) to emphasize the point. Note also that the value of α on

the P(Fcalc/H0) distribution is the probability that we reject H0 (in error) given that

H0 is true.

From the F table, we see that the critical value c equals 2.66 when α ¼ .05,

numerator df¼ 7, and denominator df¼ 16. We repeat our earlier ANOVA table as

Table 2.5 with Fcalc, the key fifth column, now filled in with the value of

3.38 ¼ MSBc/MSW ¼ 9.87/2.92. Figure 2.3 shows the appropriate F distribution

for Table 2.5, with Fcalc and c labeled. As shown in this figure, Fcalc ¼ 3.38 falls

within the rejection region (for H0). Again, Fcalc > c is interpreted as saying

“It is too improbable that, were H0 true, we would get an Fcalc value as large as

we did. Therefore, the H0 premise (hypothesis) is rejected; the results we observed

are too inconsistent with H0.” In our example, rejection of H0 is equivalent to

concluding that the type of device does affect battery lifetime. When H0 is

rejected, we often refer to the result as statistically significant. We can obtain

the F-table value from a built-in Excel command, F(α, df1, df2); if we pick a cell and
type “¼F(.05, 7, 16)” and press the enter key, we will see the value “2.66,” same as

the table value.

16The vast majority of texts that include F tables have adopted the convention that the table has

numerator df indexed across the top, and denominator df indexed going down the left-hand column

(or, on occasion, the right-hand column for a right-side page).
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Note that some software packages change the order of columns one (SSQ, which

is the same as SS) and two (df). Others present the information in a somewhat

different fashion, but in a form from which all the above information can be

determined. For example, one software program gives the degrees of freedom,

the F-value, the square root of the MSW, and the percentages of the TSS that are the

SSBc and SSW; from this information, we can derive all the values of Table 2.5.

Table 2.4 Portion of F table showing the critical value, for right tail area, α ¼ .05

Denominator

df2

Numerator df1

1 2 3 4 5 6 7 8 9

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96
1 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

Source: M. Merrington and C. M. Thompson (1943), “Tables of Percentage Points of the

F Distribution.” Biometrika, vol. 33, p. 73. Reprinted with permission of Oxford University Press

Table 2.5 ANOVA table of the battery lifetime study with the fifth column added

Source of

variability SSQ df MS Fcalc

Device 69.12 7 9.87 3.38

Error 46.72 16 2.92

Total 115.84 23
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Example 2.4 A Larger-Scale Example: Customer Satisfaction Study

The Merrimack Valley Pediatric Clinic (MVPC) conducted a customer satisfaction

study at its four locations: Amesbury, Andover, and Methuen in Massachusetts, and

Salem in southern New Hampshire. A series of questions were asked, and a

respondent’s “overall level of satisfaction” (using MVPC’s terminology) was com-

puted by adding together the numerical responses to the various questions. The

response to each question was 1, 2, 3, 4, or 5, corresponding to, respectively, “very

unsatisfied,” “moderately unsatisfied,” “neither unsatisfied nor satisfied,” “moder-

ately satisfied,” and “very satisfied.” In our discussion, we ignore the possibility that

responses can be treated as an interval scale.17

There were 16 questions with the possibility of a 5-rating on each, so the

minimum score total was 16 and the maximum score total was 80. (For proprietary

reasons, we cannot provide the specific questions.)

Marion Earle, MVPC’s medical director, wanted to know (among other things)

if there were differences in the average level of satisfaction among customers in

the four locations. Data from a random sample of 30 responders from each of the

four locations are provided in Table 2.6.

Fig. 2.3 F distribution for Table 2.5

17An interval scale is the one formed by equal intervals in a certain order. For instance, the distance

between the ratings 1 and 2 is the same as the one between 4 and 5 in our scale.
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Several software programs perform one-factor ANOVA. Some of these are

designed as statistical software programs, whereas others are not primarily for

statistical analysis but perform some of the more frequently encountered statistical

techniques (such as Excel). We illustrate below the use of JMP in analyzing the

consumer satisfaction data (Fig. 2.4).18 Sample analyses done using other software

programs can be found in the Appendix at the end of this chapter. In JMP,

one-factor ANOVA is performed by first fitting a linear model (Fit Y by X

command), followed by Means/Anova available in the dropdown menu when

you click the “inverted” triangle, as shown in Fig. 2.4.

Table 2.6 Data from MVPC satisfaction study

Amesbury Andover Methuen Salem

66 55 56 64
66 50 56 70
66 51 57 62
67 47 58 64
70 57 61 66

64 48 54 62
71 52 62 67
66 50 57 60
71 48 61 68
67 50 58 68

63 48 54 66
60 49 51 66
66 52 57 61
70 48 60 63
69 48 59 67

66 48 56 67
70 51 61 70
65 49 55 62
71 46 62 62
63 51 53 68

69 54 59 70
67 54 58 62
64 49 54 63
68 55 58 65
65 47 55 68

67 47 58 68
65 53 55 64
70 51 60 65
68 50 58 69
73 54 64 62

18The reader should note that JMP and other statistical packages organize the data differently; i.e.,

each column is considered a new factor or response. In order to run this analysis, you will have to

stack the columns (an option is available under Tables so you don’t have to do it manually). In this

example, you will end up with 120 rows and 2 columns.
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As can be seen in the top part of the output report, JMP represents a “means

diamonds” figure. The horizontal center line in the graph is the grand mean (60.09);

the center line for each diamond is the mean at that level (here, city), and the top and

bottom of the diamonds, vertically, represent a 95% confidence interval for the

mean. The shorter lines near the vertices represent what JMP calls overlap lines,

which are at distances of .707 of the 95% confidence limits from the mean. For

sample sizes per level that are the same, seeing if the top overlap line of one level

and the bottom overlap line of another level indeed overlap or not determines

whether a t-test (explained in Chap. 3) for differences in mean with a significance

level of .05 would accept (if they do overlap) or reject (if they do not overlap) the

null hypothesis that those two means are really the same.

As can be seen in the table part of Fig. 2.5, the Fcalc (called “F Ratio” by JMP) is

quite large (205.29) with a p-value (called “Prob> F”) of<.0001, indicating that at

any practical significance level, we reject the hypothesis that there is no difference

among mean satisfaction levels for the four locations, in favor of there being

differences among them. In addition to the ANOVA table, the output also provides

the mean and standard error of the mean (the pooled standard deviation estimate,

2.93, which equals the square root of the mean square error, 8.60, divided by the

square root of 30, the “sample size” per column) for each column. Also provided are

Fig. 2.4 Steps for one-factor ANOVA in JMP
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Fig. 2.5 Graphic and ANOVA analysis in JMP
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the R2, which is the SSBc (5296.425) divided by the TSS19 (6293.9917), and the

adjusted R2:

Adjusted R2 ¼ 1� 1� R2
� �

n� 1ð Þ= n� Cð Þ� �

where n¼ RC, the total number of data values, and as before, R and C are the number

of rows and columns, respectively.20 These terms are explained in Chap. 14.

Example 2.5 A Sustainable Option of Oil for Margarine

Some issues have been raised concerning the use of palm oil in food products. One

is an important tradeoff - the area that has been cultivated has increased, due to the

high yield of the oil extracted from the palm trees. However, the increased number

of farms has lead to a reduction in forest space, bringing environmental conse-

quences from the land use. For this reason, the food industry has replaced, when

possible, palm oil by other alternatives, such as soybean, rapeseed, and coconut oil.

In our hypothetical example, let’s assume that the food industry we work in is

currently being pressured by the consumers to have a sustainable practice. Our main

product, a margarine, contains palm oil in its formulation. Our manager asks us to

try the same formulation using corn, soybean, and coconut oil, and determine the

free acidity, which indicates the amount of free fatty acids released from triglycer-

ides (Table 2.7).

Table 2.7 Free acidity (% oleic acid) of different margarine batches

Palm oil Corn oil Soybean oil Coconut oil

0.14 0.17 0.30 0.20
0.16 0.24 0.27 0.21
0.15 0.20 0.25 0.25
0.11 0.18 0.28 0.27
0.09 0.21 0.27 0.18

0.10 0.19 0.31 0.23
0.17 0.20 0.34 0.26
0.12 0.21 0.29 0.19
0.17 0.17 0.33 0.20
0.14 0.19 0.33 0.21

0.11 0.20 0.31 0.25
0.12 0.21 0.34 0.24
0.10 0.22 0.35 0.18
0.16 0.16 0.33 0.19
0.14 0.17 0.32 0.20

19R2 also represents the estimated proportion of variability in Y accounted for by variation in the

level of the factor. We discuss this further in Chap. 14.
20The adjusted R2 is adjusting the R2 statistic downward based on the number of factors under

study; we also discuss this further in Chap. 14.
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The analysis output using JMP is presented in Fig. 2.6. Again, the top part of the

report shows the grand mean (0.213%) and the 95% confidence interval for the

mean. The Fcalc in this example is also large (105.40) with a p-value of <.0001,

indicating that we can reject the null hypothesis at any reasonable significance

level; i.e., there are differences in the free acidity level between the four types of oil

tested. Of course, in a real-world example, we would base our recommendations on

other considerations, such as the sensory attributes of the product as well.

Fig. 2.6 Graphic and ANOVA analysis in JMP for the margarine study
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Example 2.6 Corporate Environmental Behavior at Clean Air Electric

Co. (Revisited)

The experiment described at the beginning of the chapter was actually conducted.

On the basis of the experimental results and other industry-wide indicators, as of

early 1999, Clean Air Electric did expand its activities to two of the three states that

had already deregulated the electric power industry. (One of the three states,

Massachusetts, deregulated its electric power industry in a way that made it difficult

for any company not from Massachusetts to enter its market.) A year later, Clean

Air Electric had well over a million and a quarter customers in these states.

The factor “corporate environmental behavior,” although not the only significant

factor in the experiment, was indeed significant with a very low p-value. The level
of publicized corporate environmental behavior clearly did have an impact on the

self-reported intent to use Clean Air Electric. The detailed results for the factor,

level by level, cannot be made public.

Interestingly, based on specific location within one of the states, some customers

were able to switch to Clean Air Electric and simultaneously reduce their cost for

electric power. It is not yet clear to Clean Air Electric whether the environmental

behavior has had a material impact on their customers’ choice to switch. Other

customers who have switched are now knowingly paying more for their electric

power; it seems clear that they were affected by the stated corporate environmental

behavior. In anticipation of other states’ deregulating, as well as for further pro-
motion in the current states of operation, further experimentation is under

consideration.

The marketing strategies developed from the results of this experiment are given

significant credit for the success of Clean Air Electric so far.

2.4 A Comment

We have completed the basics of the analysis of variance and hypothesis testing for

a study inquiring about the impact on the dependent variable of one factor. In the

next chapter, we continue with several additional topics that connect to the core of

this chapter.

Exercises

1. Suppose that we have the data in Table 2EX.1, with four replicates of sales for

each of three levels of one factor, treatment. Perform an ANOVA to test

whether there is sufficient evidence of differences in sales due to the level of

the treatment. Use α ¼ .05.
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2. Having completed Exercise 1, you are now told that the actual data available

include eight replicates, as in Table 2EX.2. A bureaucrat noticed that the last

four replicates were duplicates of the first four replicates; thus, he thought, why

not give only the top half of the data to you, the consultant, thus saving time and

money. After all, he reasoned, the second half of the data doesn’t add or

subtract from the story contained by the data. Perform an ANOVA on these

data to test whether there is sufficient evidence that differences in sales are due

to the level of the treatment. Again, use α ¼ .05.

3. Compare your results for Exercise 1 with the results for Exercise 2 and discuss.

4. An industry can be dominated by one of five manufacturing process

technologies:

A: Project

B: Job shop

C: Batch

D: Mass production

E: Continuous process

It has been established by research conducted by Professor Peter Ward of

Ohio State for his doctoral dissertation at the School of Management, Boston

University, that certain industry average “staffing ratios” (that is, 100 times the

ratio of the number of workers in a particular occupation, such as functional

manager, to the number of production workers) are not the same for industries

having different dominant technologies.

Table 2EX.2 Complete sales data

Treatment

1 2 3

6 6 11
3 5 10
8 4 8
3 9 11
6 6 11
3 5 10
8 4 8
3 9 11

Table 2EX.1 Sales by treatment

Treatment

1 2 3

6 6 11
3 5 10
8 4 8
3 9 11
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Suppose that we randomly choose four industries having each of the dom-

inant technologies (20 industries in total) and record each industry’s staffing
ratio for occupation K (one particular occupation), as done in Table 2EX.4.

Using a significance level of .05, and studying the staffing ratio for occupation

K, is there sufficient evidence of a difference due to dominant technology?

5. Suppose that we have data on the weight loss of 100 people, each person

assigned to one specific diet, each diet having assigned to it the same number

of people. In performing an ANOVA, the analysts arrived at Table 2EX.5,

which is incomplete; complete the table.

6. Consider the data in Table 2EX.6, representing four levels (literally!) of

lodging on a cruise ship and a random sample of six passengers from each

level. The response is an assessment of the amount of motion felt during

cruising (scaled from 1 to 30). Is there sufficient evidence from which to

conclude that the level of the room on the cruise ship affects perception of

the degree of motion? Perform an F-test with a significance level of .05.

7. Suppose that an animal hospital wished to determine whether the cost of a

service call for a dog differs by species of dog. The hospital examined its

records for three months for four different dog species and arrived at the data in

Table 2EX.7 based on cost per visit ($). At a significance level of .05, is there

evidence of a difference in cost per visit for the four dog species?

Table 2EX.4 Staffing ratios by dominant technology

A B C D E

1.7 1.7 2.4 1.8 3.1
1.2 1.9 1.2 2.2 2.9
0.9 0.9 1.6 2.0 2.4
0.6 0.9 1.0 1.4 2.4

Table 2EX.5 ANOVA for diet and weight

Source of

variability SSQ df MSQ Fcalc

Diet 3 15

Error 600

Total

Table 2EX.6 Motion assessment by ship level

1 2 3 4

16 16 28 24
22 25 17 28
14 14 27 17
8 14 20 16
18 17 23 22
8 14 23 25
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8. The computer science department of a university wishes to test whether there

are differences among three programming texts with respect to how long it

takes a student completing the text to write a program in Cþþ language. Eight

students from an introductory class were randomly assigned each of the texts,

asked to complete the steps outlined in the text, and then given a program to

write. The results, in minutes, are shown in Table 2EX.8. Conduct a one-factor

ANOVA to determine if the texts are equally effective.

9. The data in Table 2EX.9 represent the cost per bottle ($) of a certain interna-

tional brand of bottled water in five supermarkets in each of three different

contiguous cities on the east coast of southern Florida. At a significance level of

.05, is there evidence of a difference in price of the brand of bottled water

among the three cities?

10. There is a common belief that the price of many products is higher in Boca Raton

than in neighboring cities, simply because those who live in Boca Raton have a

higher average income than those in the neighboring cities, and many of them

will pay the higher prices for convenience. Based on the data in Table 2EX.9, at

α ¼ .05, is there a significant difference between prices of the brand of bottled

water between Boynton Beach and Boca Raton? Between Delray Beach and

Boca Raton? Between Boynton Beach and Delray Beach?

Table 2EX.8 Programming time (in minutes)

1 2 3

10 14 12
9 12 8
12 14 10
13 13 12
15 15 13
12 15 10
13 14 14
12 16 11

Table 2EX.9 Supermarket prices for bottled water (in $)

Boynton Beach Delray Beach Boca Raton

1.19 1.29 1.44
1.24 1.29 1.51
1.09 1.29 1.59
1.14 1.25 1.39
1.19 1.19 1.49

Table 2EX.7 Statistics for veterinary costs by dog species

Statistic

Species

1 2 3 4

Mean 38.12 29.72 33.40 36.15
Std. dev 9.18 10.42 11.34 9.36
Sample size 23 35 17 29
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11. A rental-car company wondered whether car size – subcompact, compact,

midsize, or full size – makes any difference in how many days a customer

rents a car. A random sample of four rentals was chosen for each size car, and

the number of days before the car was returned was recorded in Table 2EX.11.

Perform an ANOVA to test to see if there is evidence at α ¼ .01 of a difference

in duration of rentals among the four different sizes of cars.

12. One of the complaints mentioned by patients at the four offices of the Merrimack

Valley Pediatric Clinic (MVPC) related to the time they had to wait before a

receptionist was available to welcome them, ask them about the purpose of their

visit, and give them an estimate of how soon a physician or nurse practitioner

would be able to see them. The waiting times for 45 patients at each of the four

offices were unobtrusively measured with a stop watch. The data, in minutes, are

in Table 2EX.12. Perform an ANOVA to test whether there is a difference in

average waiting time for a receptionist among the four MVPC offices.

Table 2EX.11 Days per rental by car size

Subcompact Compact Midsize Full size

7 3 4 4
3 3 3 5
3 3 1 3
7 1 3 7

Table 2EX.12 Minutes of waiting time by office

Amesbury Andover Methuen Salem Amesbury Andover Methuen Salem

7.71 5.79 4.24 9.59 3.58 5.78 3.98 11.98
4.88 2.83 8.43 13.19 6.43 4.85 4.98 5.61
5.59 9.48 3.24 10.40 5.59 7.44 7.09 10.06
3.38 3.75 6.66 10.42 4.89 3.74 7.37 10.77
8.36 6.03 5.89 12.80 6.83 3.73 8.62 10.68

4.06 4.83 3.67 9.92 4.05 4.32 4.11 7.84
5.77 3.81 6.28 10.05 4.05 4.85 4.40 14.15
4.87 5.06 4.40 11.03 4.49 6.93 7.52 11.15
4.11 3.52 5.82 12.25 4.89 2.57 8.62 11.53
5.05 4.50 4.37 10.93 6.45 7.37 4.11 11.61

3.89 6.37 7.45 9.72 3.17 4.31 4.81 7.17
4.62 3.39 6.09 9.50 6.78 7.18 5.77 10.08
6.03 3.51 9.66 10.47 4.48 4.73 7.40 8.87
3.79 3.41 5.34 9.00 6.64 2.28 7.70 12.66
3.88 5.68 9.05 4.64 4.80 0.34 5.22 10.48

3.81 4.40 4.06 13.15 2.96 4.18 5.79 10.34
5.51 2.30 5.48 12.06 1.50 6.31 7.98 12.67
4.55 5.87 6.34 12.72 4.39 5.80 4.10 10.68
2.98 7.61 4.44 11.29 5.98 4.06 5.90 13.46
5.65 7.85 6.90 8.42 5.60 6.73 8.85 8.59

6.96 4.17 3.08 13.07
7.14 8.23 7.48 9.59
4.38 2.88 7.64 12.71
7.42 3.10 6.66 11.84
3.41 6.91 6.65 12.82
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13. Members of the golf league at Eastern Electric are looking for a new golf

course; the course they’ve used for years has been sold to developers of a

retirement community. A search team has gathered the data in Table 2EX.13 on

four local courses; for each course, they have the most recent scores for players

like those in the Eastern Electric golf league. Perform an ANOVA to determine

whether there is a significant difference in average score among the four local

golf courses.

Table 2EX.13 Golf scores on four courses

Near

Corners

Meadow

Brook

Birch

Briar Fountainbleau

Near

Corners

Meadow

Brook

Birch

Briar Fountainbleau

115 99 107 135 108 95 108 142
106 101 111 144 106 100 118 136
108 98 114 131 100 106 111 116
101 99 107 130 107 97 116 138
117 90 109 139 102 98 110 127

103 96 119 133 106 106 106 141
109 100 117 137 102 94 111 142
106 93 116 139 110 96 111 142
103 89 117 138 106 99 120 144
106 99 108 128 116 96 115 138

102 103 111 136 104 97 114 136
105 102 115 145 114 98 112 148
109 102 110 142 101 100 113 138
102 97 121 122 105 99 114 137
102 104 114 132 107 100 115 129

102 104 113 133 102 95 109 140
108 93 101 139 108 100 107 137
104 96 114 130 98 90 114 140
99 90 114 140 110 97 120 142
108 94 116 125 110 101 121 132

113 102 111 123 108 102 110 135
113 99 113 141 108 96 119 136
104 100 114 141 101 99 116 137
114 94 115 137 103 105 116 129
101 92 113 142 109 105 116 148

101 97 112 135 110 90 120 134
111 97 114 138 113 97 112 135
108 98 114 129 101 99 117 138
106 93 115 136 102 96 111 138
112 102 113 142 110 95 117 135

103 100 118 121 113 99 113 145
103 100 112 126 101 93 113 129
104 99 110 137 103 97 115 140
106 95 112 133 105 114 112 134
111 100 121 126 110 92 104 137

100 104 114 130 110 99 120 152
112 104 113 132 104 104 120 137
114 93 108 135 105 97 119 139
111 93 118 134 111 99 117 133
105 105 117 134 101 92 113 127

(continued)
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14. Consider the data in Table 2EX.14, which represent the amount of life insur-

ance (in $1,000s) for a random selection of seven state senators from each of

three states: California, Kansas, and Connecticut. All of the senators are male,

married, with two or three children, and between the ages of 40 and 45. Are

there significant differences due to state? Use α ¼ .05.

15. Suppose that a symphony orchestra has tried three approaches (A, B, and C) to

solicit funds from 30 generous local sponsors, 10 sponsors per approach. The

dollar amounts of the donations that resulted are in Table 2EX.15. The column

means are listed in the bottom row. For convenience when we revisit this

example at the end of the next chapter, we rank-order the results in each

column in descending order in presenting the table. Use an F-test at α ¼ .05

to determine whether there are differences in amount of charitable donations

due to solicitation approach.

Table 2EX.13 (continued)

Near

Corners

Meadow

Brook

Birch

Briar Fountainbleau

Near

Corners

Meadow

Brook

Birch

Briar Fountainbleau

99 94 124 128 106 102 108 135
94 100 118 131 113 99 115 128
104 99 117 142 103 97 114 128
109 98 114 132 99 109 121 126
108 97 113 127 104 98 119 143

104 87 110 132 101 95 118 139
110 107 113 138 94 103 113 133
101 102 117 138 102 104 116 144
112 98 120 130 105 107 115 134
99 106 119 133 112 106 120 130

Table 2EX.14 Life insurance (in $1,000s)

State

California Kansas Connecticut

90 80 165
200 140 160
225 150 140
100 140 160
170 150 175
300 300 155
250 280 180
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16. The battery-lifetime study was repeated with new and more extensive data; the

results are in Table 2EX.16. (Recall that the devices represent two brands of

cell phone, three brands of flash camera, and three brands of flashlight.)

Develop the ANOVA table. What do you conclude at α ¼ .05 about the

influence of the device on mean battery lifetime?

Table 2EX.15 Funds raised

Approach

A B C

3,500 3,200 2,800
3,000 3,200 2,000
3,000 2,500 1,600
2,750 2,500 1,600
2,500 2,200 1,200
2,300 2,000 1,200
2,000 1,750 1,200
1,500 1,500 800
1,000 1,200 500
500 1,200 200

2,205 2,125 1,310

Table 2EX.16 Battery lifetime (in hours) by device

Cell 1 Cell 2 Fl. Cam. 1 Fl. Cam. 2 Fl. Cam. 3 Flash. 1 Flash. 2 Flash. 3

4.74 5.39 4.92 8.67 3.47 4.93 8.40 4.31
3.24 5.21 6.46 8.90 4.20 5.07 7.48 4.80
2.09 4.55 6.17 6.62 6.52 6.11 11.06 6.62
4.06 5.85 5.76 11.35 3.32 5.40 8.25 5.56
6.20 4.45 3.43 7.80 9.03 3.78 7.18 7.99

3.63 4.19 0.51 4.57 8.92 4.59 8.84 9.61
4.00 4.07 9.42 3.91 8.77 3.25 7.45 8.16
2.94 4.36 5.27 9.31 3.12 4.48 6.54 8.82
1.19 4.99 7.25 8.66 9.24 5.09 8.12 10.91
0.59 4.59 4.27 4.56 9.42 4.73 9.58 7.71

1.54 4.38 6.08 6.28 7.20 2.99 7.56 6.13
1.54 5.22 2.82 7.88 4.58 5.25 5.79 7.37
1.72 5.51 1.08 8.20 3.21 5.38 8.91 3.94
5.91 4.68 4.51 7.37 7.35 5.02 7.31 6.91
2.72 4.29 8.81 5.42 3.90 4.05 8.61 7.32

5.11 4.64 7.66 5.11 5.73 5.76 9.25 4.29
3.97 4.75 4.65 6.22 8.27 3.00 7.78 11.02
1.87 5.23 5.96 5.71 6.35 4.33 9.35 9.71
3.18 4.27 8.23 7.99 7.09 4.34 7.95 5.17
3.08 3.62 6.08 5.37 3.97 6.01 8.59 6.20

1.72 4.80 3.86 7.93 6.73 5.13 8.41 4.54
1.71 3.96 7.02 3.25 6.58 5.14 8.44 7.25
1.08 5.13 1.01 6.44 5.50 5.32 10.23 8.87
5.03 4.89 9.69 4.69 4.24 4.90 10.16 6.27
1.50 3.99 5.05 9.01 7.60 5.47 8.61 7.83

(continued)
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Table 2EX.16 (continued)

Cell 1 Cell 2 Fl. Cam. 1 Fl. Cam. 2 Fl. Cam. 3 Flash. 1 Flash. 2 Flash. 3

1.69 4.45 2.79 7.05 7.25 3.80 9.33 6.49
4.17 4.09 5.11 8.60 6.09 3.71 8.89 8.06
6.28 3.78 4.90 13.33 6.75 5.05 8.74 9.45
2.96 5.06 8.01 7.47 7.11 6.08 7.47 5.24
1.47 4.76 2.57 6.72 8.98 3.11 10.51 7.95

5.65 4.44 5.06 5.88 3.67 5.08 12.06 6.75
1.67 4.78 3.64 11.86 6.94 4.46 6.37 10.88
5.72 3.88 7.66 6.91 5.22 4.76 7.90 9.40
1.52 4.64 2.15 6.00 5.66 4.39 12.03 8.66
3.73 3.74 3.90 6.70 2.02 4.77 6.81 6.36

6.75 5.31 9.43 8.36 7.32 4.09 9.58 6.89
1.69 4.48 8.36 10.37 7.28 5.12 8.59 9.61
1.93 4.21 6.56 6.13 5.46 4.56 9.29 6.02
6.08 4.89 7.98 11.02 5.48 3.59 10.42 5.19
3.51 4.74 5.50 5.65 2.83 4.48 7.77 6.13

2.28 5.30 10.32 6.16 5.02 3.13 9.10 7.97
1.34 4.25 8.33 8.93 3.13 5.91 7.89 5.12
5.54 5.12 10.48 7.89 5.14 5.45 7.88 6.39
2.57 3.44 4.98 5.91 7.71 5.5 6.37 7.32
4.38 4.17 3.09 6.80 1.61 4.58 4.94 10.50

1.46 5.57 6.38 4.77 5.79 4.59 8.51 6.09
1.48 4.71 6.20 6.32 5.17 4.74 6.26 7.86
4.59 3.74 2.28 4.51 8.44 3.71 7.88 8.26
2.19 3.69 8.69 10.59 5.86 3.82 6.60 8.00
1.82 4.37 4.95 5.45 8.73 4.15 9.30 6.43

1.73 4.80 5.94 9.44 5.76 3.97 9.85 10.86
1.58 5.09 2.24 7.43 8.17 4.67 10.19 6.84
1.26 5.03 9.26 8.97 8.89 6.34 8.55 9.02
5.06 4.98 4.18 10.12 6.39 4.27 5.38 8.30
2.18 4.96 2.97 7.21 2.49 3.44 8.85 8.24

0.65 3.74 8.09 7.00 4.84 5.11 7.38 5.08
2.16 5.26 4.89 8.71 7.34 4.69 7.92 10.65
2.14 4.04 8.37 8.00 5.80 3.46 7.03 8.37
4.44 4.97 7.25 5.11 4.07 4.44 7.14 5.11
4.37 4.59 0.51 7.93 5.76 5.65 9.55 5.64

6.04 4.74 5.95 5.10 4.52 4.65 8.87 9.08
5.34 3.76 5.15 7.76 4.49 4.76 7.22 8.25
1.63 4.94 6.78 8.92 7.00 5.84 8.89 6.30
3.49 5.18 6.83 7.76 8.58 4.58 5.69 7.79
3.27 4.97 5.73 2.86 6.33 5.45 7.56 7.20

1.27 4.02 3.92 10.09 2.62 5.73 8.08 8.38
6.03 4.14 9.09 8.38 7.97 2.99 7.68 9.25
0.54 4.05 11.71 6.59 7.45 5.16 8.66 7.67
2.22 4.13 7.63 10.8 9.36 5.01 6.96 7.18
3.95 5.27 1.86 6.17 5.91 4.87 11.21 6.39

6.59 3.07 7.61 4.18 4.93 4.42 7.93 10.21
6.45 4.71 6.18 3.18 4.65 4.13 8.59 6.09
4.48 5.03 1.59 8.10 6.57 5.52 8.45 10.04
5.95 4.25 4.00 8.91 6.98 5.23 7.51 8.09
2.61 3.88 7.25 4.76 8.19 4.28 6.64 5.51

(continued)

Exercises 59



17. One of the authors has taught two sections of the same course, called Quanti-

tative Methods, in the same semester. This course was a core MBA course

covering the basics of introductory statistics, ranging from probability, through

discrete and continuous distributions, confidence intervals, hypothesis testing,

and extensive model-building techniques, including multiple regression and

stepwise regression. One class was taught on Tuesday evenings, the other

Wednesday evenings (each class of three hours was held once a week for

14 weeks, plus a final exam week).

The distribution (in alphabetical order) of the final numerical grades (prior

to translating them into letter grades) was tabulated by evening, status (part-

time/full-time), and gender. The results for the 55 students are in Table 2EX.17.

Does mean grade differ by evening? Use α ¼ .05.

Table 2EX.16 (continued)

Cell 1 Cell 2 Fl. Cam. 1 Fl. Cam. 2 Fl. Cam. 3 Flash. 1 Flash. 2 Flash. 3

1.73 4.95 0.48 5.06 4.11 4.22 7.67 6.81
6.12 4.32 6.27 7.15 6.03 4.40 9.23 7.96
2.55 5.37 0.09 6.96 7.43 6.36 9.74 5.28
1.86 4.04 6.80 8.87 3.88 4.18 8.05 7.87
3.79 5.06 7.65 10.46 7.53 4.43 10.45 7.37

1.03 4.29 3.62 5.56 5.94 5.04 9.80 9.96
5.21 3.76 7.64 7.68 6.55 4.41 11.85 5.79
3.66 4.09 6.30 5.44 8.84 5.86 9.42 8.34
2.08 5.08 3.75 8.17 6.05 5.42 9.21 8.58
4.74 4.40 3.35 6.39 4.64 5.31 8.46 8.67

1.55 5.03 10.74 6.27 7.32 3.93 7.73 8.11
0.33 2.88 5.39 2.58 5.77 4.69 6.10 5.97
2.59 4.35 3.85 8.22 7.30 3.34 6.63 8.58
2.39 4.10 6.47 8.92 5.92 5.72 7.40 10.13
2.37 5.46 6.89 8.94 5.84 4.14 8.63 8.58

1.78 3.62 2.80 7.28 3.23 4.84 8.09 9.75
1.07 5.14 1.20 9.61 5.78 4.56 9.79 7.63
2.08 3.31 3.08 5.32 7.37 3.76 7.66 6.76
2.24 4.27 2.34 5.33 3.25 4.16 8.58 4.95
6.54 4.62 7.14 7.15 3.16 5.27 9.61 6.14

6.51 4.54 5.36 7.42 7.13 5.41 9.39 6.60
3.03 6.07 6.70 4.98 8.09 3.07 8.59 7.81
1.10 5.95 6.37 7.61 7.30 3.66 7.66 5.74
2.60 4.64 5.55 8.59 5.88 4.94 9.18 5.07
0.66 4.41 5.95 8.04 6.58 4.07 5.90 6.70
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18. Using the data in Table 2EX.17, does mean grade differ by status? Use α¼ .05.

19. Using the data in Table 2EX.17, does mean grade differ by gender? Use

α ¼ .05.

20. When you tested differences in grades by gender (Exercise 19), you may have

noticed that the number of females who are part-time versus full-time is not the

same proportion as that for males. Does this potentially affect your conclusions

for Exercise 18 or 19?

21. Consider the data in Table 2EX.21, which represent the yield of soybean (in kg)

grown using different concentrations of potassium (in ppm). Are there signif-

icant differences due to the concentration of potassium used? Use α ¼ .05.

22. A company is investigating a new proprietary extraction method which is

aimed to increase the yield of oil from fish waste. Five temperatures were

investigated to determine if it makes any difference in the yield and the results

are expressed in Table 2EX.22. Perform an ANOVA to test to see if there is

evidence at α ¼ .01 of a difference in yield of fish oil (in percentage) for

samples treated at different temperatures (in �F).

Table 2EX.21 Yield of soybean by the concentration of potassium

Potassium (ppm)

0 60 120 180

15.7 19.5 18.1 19.3
13.1 17.8 19.2 21.4
13.5 16.7 18.7 20.9
14.9 17.7 19.8 21.3
14.4 18.2 19.5 20.8
13.9 18.8 19.7 21.1

Table 2EX.22 Yield of fish oil by temperature

Temperature (�F)
77 87 97 107 117

78.6 67.7 62.2 55.0 52.4
77.2 68.9 61.4 53.9 51.1
78.1 66.6 61.5 54.3 51.9
77.8 67.9 62.1 55.1 52.0
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Appendix

Example 2.7 Study of Battery Lifetime using Excel

After entering the data as illustrated in the spreadsheet in Table 2.2, we used the

Anova: Single-Factor command from the Data Analysis section. The output

below is the eight-column, three-replicate data input. Table 2.8 shows how the

count (number of replicates per column), the sum of the data points in a column, the

column average (mean), and the column variance (the value of s2 for the column)

are provided, followed by the ANOVA table. The first five columns of the table

have exactly the same information, in the same order, as described in the previous

section. This is not true for all software packages.

Table 2.8 Excel format and ANOVA table for battery lifetime study

1.8 4.2 8.6 7.0 4.2 4.2 7.8 9.0

5.0 5.4 4.6 5.0 7.8 4.2 7.0 7.4

1.0 4.2 4.2 9.0 6.6 5.4 9.8 5.8

Anova: single factor

Summary

Groups Count Sum Average Variance

Column 1 3 7.8 2.6 4.48

Column 2 3 13.8 4.6 0.48

Column 3 3 17.4 5.8 5.92

Column 4 3 21 7 4

Column 5 3 18.6 6.2 3.36

Column 6 3 13.8 4.6 0.48

Column 7 3 24.6 8.2 2.08

Column 8 3 22.2 7.4 2.56

ANOVA

Source
of variation

SS df MS F P-value F crit

Between

groups

69.12 7 9.87429 3.3816 0.02064 2.657

Within

groups

46.72 16 2.92

Total 115.84 23
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Table 2.8 output adds an additional column to the ANOVA table, labeled Fcrit

and represents c, the critical value, that is, the appropriate F table value with

α ¼ .05; this value is 2.66.21

Example 2.8 Study of Battery Lifetime using SPSS

Now, let’s use the software program SPSS for the same battery-lifetime example.

SPSS, which stands for Statistical Package for the Social Sciences, is designed as a

statistical-software package. The data are entered somewhat differently than in

Excel; they are entered as 24 rows and two columns. One column contains the

24 values of the dependent variable, and the other column contains the

corresponding level of the factor under study for each of these values – that is,

three 1s, three 2s, . . ., three 8s.
Figure 2.7 shows a box plot for the data. A box plot’s usefulness is much greater

when there are largenumbers of data valuesper column.Even here, however,with three

data points per column, it graphically indicates the range of values within each column.

10.0

8.0

6.0

4.0

2.0

.0
1.0 2.0 3.0 4.0

Device

L
if
et
im

e

5.0 6.0 7.0 8.0

Fig. 2.7 Box plot generated in SPSS for the battery-lifetime study

21Excel output also contains a P-value column, which we will cover in the next chapter. It tells us

that the p-value (the area to the right of Fcalc) is less than .05, indicating that the value 3.38 is in the

critical region (rejection region) for α ¼ .05.
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The one-way ANOVA command is found under Analyze > Compare Means,

as shown in Fig. 2.8. Table 2.9 shows the ANOVA table in SPSS format. SPSS also

provides the p-value, though it uses the phrase “Sig.” instead. However, the output

is more or less the same for both packages.

Example 2.9 Study of Battery Lifetime using R

In this final demonstration, we show how the same analysis is done using R. To

simply the import process, we can organize data in two columns (device in one,

lifetime in the other) and save them as a .csv file. We can use the read.csv()

Fig. 2.8 Steps for one-factor ANOVA in SPSS

Table 2.9 SPSS format and ANOVA table for battery-lifetime study

ANOVA

Lifetime

Sum of squares df Mean square F Sig

Between groups 69.120 7 9.874 3.382 .021

Within groups 46.720 16 2.920

Total 115.840 23
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function to read the data (our spreadsheet did not have a header, which is set to

FALSE or F) and assign them to a new object (lifetime), as follows:

> lifetime <- read.csv(file.path("/Users/documents", "ex2.9.

+csv"), header=F)

A quick inspection will show that all the data have been imported successfully

into two columns: V1 (device) and V2 (lifetime).

> lifetime

V1 V2
1 device1 1.8
2 device1 5.0
3 device1 1.0
4 device2 4.2
5 device2 5.4
6 device2 4.2
7 device3 8.6
8 device3 4.6
9 device3 4.2
10 device4 7.0
11 device4 5.0
12 device4 9.0
13 device5 4.2
14 device5 7.8
15 device5 6.6
16 device6 4.2
17 device6 4.2
18 device6 5.4
19 device7 7.8
20 device7 7.0
21 device7 9.8
22 device8 9.0
23 device8 7.4
24 device8 5.8

> str(lifetime)

’data.frame’:24 obs. of 2 variables:

$ V1: Factor w/ 8 levels "device1","device2",..: 1 1 1 2 2 2 3 3 3 4 ...

$ V2: num 1.8 5 1 4.2 5.4 4.2 8.6 4.6 4.2 7 ...

It is possible to obtain the overall mean, standard deviation, and the ANOVA

table following the steps described below. The symbol # will be used to insert

comments and are not read by R.
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> mean(lifetime$V2)

[1] 5.8

# “$” specifies the variable of interest in the data set

> sd(lifetime$V2)

[1] 2.24422

> lifetime.aov <- aov(V2~V1, data=lifetime)

# “lifetime.aov” is the object of the aov( ) function. The arguments indicate

that V2 (lifetime) is a dependent variable, and V1 (device) is the independent

variable. Both variables are included in the object “lifetime” that we created

previously.

> summary(lifetime.aov)

Df Sum Sq Mean Sq F value Pr(>F)
V1 7 69.12 9.874 3.382 0.0206 *
Residuals 16 46.72 2.920

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# The ANOVA table can be generated with the summary( ) function. Pr(>F) is

the p-value.

Alternatively, the ANOVA table can be obtained by:

> lifetime.lm <- lm(V2~V1, data=lifetime)

> anova(lifetime.lm)

Analysis of Variance Table

Response: V2

Df Sum Sq Mean Sq F value Pr(>F)
V1 7 69.12 9.8743 3.3816 0.02064 *
Residuals 16 46.72 2.9200

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# The lm( ) function is used to fit a linear model to the data. Once we create a

new object (lifetime.lm), we can use the anova( ) function to analyze it.
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The Fcrit or c can be obtained by:

> qf(0.075,7,16,lower.tail=F)

[1] 2.344197

# The first argument (0.075) indicates the quartile of the F distribution of

interest, with 7 and 16 degrees of freedom.

If necessary, we can generate a box plot as shown in Figure 2.9, using the

following command:

> boxplot(V2~V1, data=lifetime, main="Boxplot diagram",

+xlab="Device", ylab="Lifetime (h)")

Fig. 2.9 Box plot for the battery-life study generated with R
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Chapter 3

Some Further Issues in One-Factor Designs
and ANOVA

We need to consider several important collateral issues that complement our

discussion in Chap. 2. We first examine the standard assumptions typically made

about the probability distribution of the ε’s in our statistical model. Next, we discuss

a nonparametric test that is appropriate if the assumption of normality, one of the

standard assumptions, is seriously violated. We then review hypothesis testing, a

technique that was briefly discussed in the previous chapter and is an essential part

of the ANOVA and that we heavily rely on throughout the text. This leads us to a

discussion of the notion of statistical power and its determination in an ANOVA.

Finally, we find a confidence interval for the true mean of a column and for the

difference between two true column means.

3.1 Basic Assumptions of ANOVA

Certain assumptions underlie the valid use of the F-test to perform an ANOVA, as

well as some other tests we encounter in the next chapter. The actual statement of

assumptions depends on whether our experiment corresponds with what is called a

“fixed” model or a “random” model. Because the F-test described in Chap. 2 is

identical for either model, we defer some discussion of the distinction between the

two models to Chap. 6, when we introduce two-factor designs. For designs with two

or more factors, the appropriate Fcalc is often different for the two models. How-

ever, for now, we will consider a basic description of a fixed model and a random

model.

A fixed model applies to cases in which there is inherent interest in the specific

levels of the factor(s) under study, and there is no direct interest in extrapolating

results to other levels. Indeed, inference will be limited to the actual levels of the

factor that appear in the experiment. This would be the case if we were testing three

specific promotional campaigns, or four specific treatments of an uncertain asset

situation on a balance sheet. A random model applies to cases in which we test
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randomly selected levels of a factor, where these levels are from a population of

such levels, and inference is to be made concerning the entire population of levels.

An example would be the testing of six randomly selected post offices to see if post

offices in general differ on some dimension (the Yij); another example would be the

testing of whether there are differences in sales territories by randomly selecting

five of them as the levels of the factor “territory.”

For a fixed model, those well-versed in regression analysis will find the assump-

tions familiar; the same so-called standard assumptions are common to both

techniques. We ascribe no special meaning to the order in which we list them.

Recall the statistical model Yij¼ μ+ τj + εij. We assume the following three

statements:

1. The εij are independent random variables for all i, j.

This means that each error term, εij, is independent of each other error term. Note

that this assumption, as well as the assumptions to follow, pertain to the error term.

In essence, we assume that although each column may have a different true mean

(indeed, what we wish to determine is whether or not this is true), knowing the

deviation of any one data value from its particular true column mean sheds no light

on the deviation of any other data point from its particular true column mean. If this

assumption is violated, it is often because of the correlation between error terms of

data values from different time periods. If the correlation is between error terms of

data values of successive time periods, it is referred to as first-order autocorrelation;

if also between error terms two periods apart, it is referred to as second-order

autocorrelation, and so on.

2. Each εij is normally distributed; with no loss of generality, we can assume that

E(εij)¼ 0 (that is, the true mean of εij is zero).
1

This is equivalent to saying that if we consider all the data values in a specific

column, they would (theoretically, or if we had an infinite number of them) be

distributed according to a normal distribution, with a mean equal to whatever is the

true mean of that column.

3. Each εij has the same (albeit unknown) variance, σ2ε .

This says that the normal distribution of each respective column, though perhaps

differing in mean, has the same variance. This assumption is often referred to as the

assumption of constant variance, and sometimes the assumption of
homoscedasticity.2

1There are different ways to assess the normality of the random error component. The most

common types include histograms, normal probability plots, and dot plots.
2We note the word homoscedasticity solely to prepare readers for it, should they see it in other

texts or treatises on the subject. It means “constant variance,” or something close to that, in Greek.

It is sometimes spelled homoskedasticity.
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If the random model applies, the key difference is essentially that the τj values
are random variables, as opposed to the fixed model, where the τj values are

unknown constants. We would state the assumptions as follows:

1. The εij are independent random variables for all i, j (same as assumption

1 above).

2. Each εij is normally distributed with a constant variance (same as assumptions

2 and 3 above).

3. (a) The τj values are independent random variables having a normal distribution

with a constant variance.

(b) The τj and εij are independent random variables.

When these assumptions are observed, the estimates of the grand and column

means, �Y �� and �Y�j, respectively, are maximum-likelihood estimates (this is a good

thing – a property complementing the unbiasedness property noted earlier) and,

perhaps more importantly, the conventional F-test we have introduced (and t-test
we make use of in the next chapter) is valid for the hypothesis testing we undertake.

It is not likely that all of the assumptions above are completely true in any

particular study. This is especially so for the assumption of constant variance.

However, the last two assumptions (2, 3a, 3b) are said to be robust; that is, a

moderate (a term never precisely quantified) violation of the assumption is likely

not to have a material effect on the resulting α value (the significance level) or the β
value, the probability of Type II error (that is, the chance of obtaining results that

suggest accepting that there is no effect of the factor, when in fact there actually is

an effect). We discuss the probability of reaching incorrect conclusions – rejecting

H0 when it is actually true (Type I error) and accepting H0 when it is actually false

(Type II error) – a bit later in this chapter.

The first assumption, that of independence of the error terms, is not especially

robust, and hence can seriously affect the significance level and the probability of

Type II error. As noted above, the other two assumptions, those of normality and

constant variance of the error terms, are considered robust. The degree to which

these assumptions are robust is not generally quantified in a rigorous way; however,

a number of researchers have investigated these issues. We report on some of these

studies to give the reader a feel for the topic.

The robustness of the normality assumption partly depends on what the departure

from normality primarily involves: a skewness or a kurtosis that is different from a

normal curve. Skewness is a measure of the extent to which a distribution is not

symmetric; the normal curve, of course, is symmetric.Kurtosis for a random variable,

X, is defined as the fourth central moment divided by the square of the variance (which

is the second central moment), or (E{[X�E(X)]4})/(E{[X�E(X)]2})2; in essence,

kurtosis is a dimensionless measure of the degree to which the curve “tails off.” One

extreme would be a rectangle, the other extreme would be toward a distribution with

thicker and thicker tails. A kurtosis departure from the normal curve is considered

more serious than nonzero skewness. Still, the effect is slight on α; α can actually be a

bit smaller or a bit larger, depending on the way in which the kurtosis deviates from

that of a normal curve. The same is true for the probability of Type II error, though the

latter may be affected more seriously if the sample size per column is small.
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Remember that all of this discussion is based on what we have referred to as a

“moderate departure,” though as noted earlier, the term is not precisely defined.

Scheffé, in his text The Analysis of Variance (New York, Wiley, 1959), presents an

example (which is as valid today as it was “way back” then), in which the skewness

(defined as the third central moment, divided by the cube of the standard deviation) of

the error terms is two (for normality it is zero), and a nominal α of .05 resulted in an

actual significance level of .17. Too many results would be found to be significant if

there is really no effect of the factor; most people would regard this difference between

.05 and .17 as, indeed, material.

The impact of non-constant variance depends, to a degree, on whether the sample

size per column is equal for each column; that is, whether R is a constant for all

C columns or Rj are not all the same. In the former case, the impact of non-constant

variance on α is quite minimal. In the latter case, with unequal sample size per

column, the impact can bemore serious if the variances corresponding to the columns

with smaller sample sizes are also the larger variances. In the battery-lifetime

example in Chap. 2, the sample variances for the eight columns are listed as part of

the Excel output in Table 2.8 (Appendix). Note that the largest is 5.92 and the

smallest is 0.48, a ratio of about 12.3 to 1. This ratio might seem to indicate a more

than moderate violation of the equal-variance assumption, but remember that there

are only three data values per column; thus, each column does have the same value of

R, and perhaps more important, each sample variance is not a reliable estimate of its

column’s true variance. We can test for equality among the eight (true) column

variances using the Hartley test.3 The Hartley test specifically bases its conclusions

on the ratio of the highest sample variance to the lowest sample variance (in this case,

the ratio is the 12.3 value). The 12.3 ratio gives the Fmax and the interpretation is

similar to the F-test we have seen in Chap. 2 (in this case, df2¼ n� 1, where n is the
common sample size for the samples under consideration). This value was nowhere

near high enough at α ¼ .05 to reject the null hypothesis of equality of variances; the

critical ratio value was over 400, a high critical value that reflects the unreliability of

variance estimates based on only three data values.

Conventional wisdom indicates that the effects of non-normality and

non-constant variance are additive and not multiplicative. This provides some

further comfort.

We end this discussion about the assumptions by noting that there are ways to

test for the validity of each assumption. Furthermore, if a serious violation of an

assumption is found, remedial actions can be undertaken to deal with the problem.

These remedies are, generally, either to transform the data (for example, replace

each Y by the log of Y ) to try to eliminate the problem or to incorporate a more

onerous model. We leave discussion of these tests and remedies to other sources.

Another alternative is to simply avoid the whole issue of the probability distribution

associated with the data. We discuss this option next.

3The Hartley Fmax test is described, for example, in R. Ott and M. Longnecker (2010), An
Introduction to Statistical Methods and Data Analysis, 6th edition, p. 376. This test assumes

independent samples of a normally-distributed population with equal sample sizes.
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3.2 Kruskal-Wallis Test

One way to avoid the distributional aspect of the standard assumptions (that is, the

assumption of normality) is to perform what is called a nonparametric test. An
alternate, perhaps more appropriate, name is a distribution-free test. One

distribution-free test which is analogous to the one-factor ANOVA F-test was
developed by Kruskal and Wallis and takes their name: the Kruskal-Wallis test.4

However, there is a drawback to its use (otherwise, why not always use the Kruskal-

Wallis test?): the F-test is more powerful than the Kruskal-Wallis test. Power, as

defined later in this chapter (Sect. 3.4), equals (1 – β), that is, one minus the

probability of Type II error. Thus, power is the probability of rejecting H0 when

it indeed should be rejected (obviously, a good thing!). So, the probability of

drawing the correct conclusion is higher for the F-test, everything else being

equal and when the assumptions are valid (or close to valid – see earlier remarks

about robustness), than it is for the Kruskal-Wallis test. The key to the Kruskal-

Wallis test, as is true for the majority of distribution-free tests, is that the data are

converted to ranks. The test assumes that the distributions of the data in each

column are continuous and have the same shape, except perhaps for the mean.

Example 3.1 Battery Lifetime Study with Kruskal-Wallis Test

We illustrate the technique of the Kruskal-Wallis test using the battery-lifetime

example from Chap. 2. Table 3.1 reiterates the data in Table 2.2; the last row shows

the column means. The use of the Kruskal-Wallis test could be motivated by the

fact that the sample variances are somewhat different from column to column

(although not significantly different from the perspective of their impact on the

final result), and by the fact that each is based on only three data values.

Table 3.1 Battery lifetime (in hours)

Device

1 2 3 4 5 6 7 8

1.8 4.2 8.6 7.0 4.2 4.2 7.8 9.0
5.0 5.4 4.6 5.0 7.8 4.2 7.0 7.4
1.0 4.2 4.2 9.0 6.6 5.4 9.8 5.8

2.6 4.6 5.8 7.0 6.2 4.6 8.2 7.4

4In JMP, the Kruskal-Wallis test is found under Nonparametric, Wilcoxon Test. The Wilcoxon

test – also known as Mann-Whitney, Mann-Whitney-Wilcoxon, or Wilcoxon rank-sum test – is

similar to the Kruskal-Wallis test; however, the latter can accommodate more than two groups

(or columns). In Excel, there is no function for the Kruskal-Wallis test.
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The question, as in Chap. 2, is whether the different devices yield different

mean-battery lifetimes. We formulate this as a hypothesis-testing problem:

H0: Device does not affect battery lifetime (technically: if a randomly-

generated value of battery lifetime from device 1 is X1, from device

2 is X2, from device 3 is X3, and so on, then P(X1>X2)¼P(X2>X3)¼
P(X3>X1)¼ � � � ¼ . 5; that is, a battery lifetime from any device has an

equal chance of being lower or higher than a battery lifetime from any

other device).

H1: Device does affect battery lifetime (or, technically, not all of the proba-

bilities stated in the null hypothesis equal .5).

The Kruskal-Wallis test proceeds as follows. First, we rank the data in

descending order, as if all the data points were from one large column. For
example, the largest value in any column is 9.8, so this value from column 7 gets

the highest rank of 24 (given that there are 24 data values in total). The next highest

value is 9; however, two data values equal 9 – a tie; therefore, the ranks of 23 and

22 are split or averaged, each becoming a rank of 22.5. Then comes the value of 8.6,

which gets a rank of 21; next is the value of 7.8, of which there are two, each getting

the rank of 19.5. The process continues until the lowest value gets assigned a rank

of 1 (unless it is tied with other values).

In Table 3.2 we replace each data value with its rank. The quantities in the last two

rows are the sum of the rank values in that column (T) and the number of data points in

that column (n). Now, instead of using the actual data points to form the test statistic,

we use the ranks. We might expect, under the null hypothesis, that the high, medium,

and low ranks would be uniformly distributed over the columns, and thus that the T’s
would be close to one another – if the column factor didn’t matter. An indication to the

contrary would be seen to indicate that device affects battery lifetime.

The Kruskal-Wallis test statistic, which equals zero when the T’s are the same

for each column (assuming equal n’s), equals (summation over columns)

H ¼ 12= N N þ 1ð Þ½ �f g
X k

j¼1
T2
j =nj

� �
� 3 N þ 1ð Þ

Table 3.2 Battery lifetime (rank orders)

Device

1 2 3 4 5 6 7 8

2 5.5 21 16.5 5.5 5.5 19.5 22.5
10.5 12.5 9 10.5 19.5 5.5 16.5 18
1 5.5 5.5 22.5 15 12.5 24 14

13.5 23.5 35.5 49.5 40 23.5 60 54.5

3 3 3 3 3 3 3 3
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where

nj ¼ number of data values in jth column

N ¼ total number of data values, equal to the sum of the nj over j
k ¼ number of columns (levels)

Tj ¼ sum of ranks of the data in jth column

In our example,

H ¼ 12= 24 25ð Þ½ �f g 13:52=3þ 23:52=3þ � � � þ 54:52=3
� �� 3 25ð Þ

¼ 12:78

However, there is one extra step: a correction to H for the number of ties. This

corrected H, Hc, equals

Hc ¼ H= 1�
X

t3 � t
� �

= N3 � N
� �h i

where, for each tie, t ¼ the number of tied observations. In our data, we have six

ties, one of six data values (the ranks of 5.5), and five of two data values (ranks of

22.5, 19.5, 16.5, 12.5, and 10.5). The correction factor is usually negligible, and in

fact Hc ¼ 13.01, not much different than H ¼ 12.78.

Presuming H0 is true, the test statistic H (or Hc) has a distribution that is well

approximated by a chi-square (χ2) distribution with df¼K� 1. The χ2 distribution
looks similar to the F distribution (both have a range of zero to infinity and are

skewed to the right). In fact, it can be shown that for any given value of α, any
percentile point of a χ2 distribution with K � 1 degrees of freedom, divided by K �
1, is equal to the percentile point of the corresponding F distribution, with numer-

ator degrees of freedom equal to K � 1, and with denominator degrees of freedom

equal to infinity.5 In our battery-lifetime problem, with eight columns, K� 1¼ 7. A

plot of a χ2 distribution for df ¼ 7, α ¼ .05, and our test statistic value of

Hc ¼ χ2calc ¼ 13:01, is shown in Fig. 3.1. The critical value is c ¼ 14.07; χ2 tables
appear in an appendix at the end of the text.6 Hc ¼ 13.01 falls in the acceptance

region, though close to the critical value. We cannot (quite) conclude that device

affects battery lifetime.

5In fact, there are close relationships among the F distribution, the chi-square distribution (χ2), the
Student t distribution (t), and the standard normal, Z distribution; here we relate each to the

F distribution:

χ2 df 1ð Þ=df 1 ¼ F df 1;1ð Þ
t2 df 2ð Þ ¼ F 1; df 2ð Þ

Z2 ¼ F 1;1ð Þ
6Alternatively, certain commands in Excel can be used to obtain table values for a t distribution
(TINV) and F distribution (FINV). In Chap. 2, we provided details of the FINV command. The p-
values, which we will see soon, can also be obtained in Excel, considering a χ2 distribution

(CHIDIST), t distribution (TDIST), and F distribution (FDIST).
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Interestingly, the overall result changed! The p-value is about .02 using the

F-test and about .06 using the Kruskal-Wallis test; because the α value used was

.05, the results are on opposite sides of the respective critical values. However,

given that α ¼ .05 is arbitrary (though very traditional), one could debate how

meaningful the difference in results really is – it is similar to comparing a 94%

confidence level to a 98% confidence level in a result.

3.3 Review of Hypothesis Testing

As we have seen in Chap. 2, when analyzing our data to determine whether the

factor under study has an effect on the response – the dependent variable – the

discipline we use is called hypothesis testing (sometimes referred to as significance

testing). It recognizes that we do not have an infinite amount of data and therefore

need to use statistical inference, where we “make inference” about one or more

parameters based on a set of data. Typically, in ANOVA, we are both estimating the

value of each τ (and μ) and testing whether we should believe that the τj (for each
column) are equal to zero or not; we do this by computing Fcalc from the data and

comparing its value to a critical value. In this section, we elaborate on the logic of

the discipline of hypothesis testing. If we had to single out one portion of the world

of statistics that could be labeled The Statistical Analysis Process, it would be the

thought process and logic of hypothesis testing. It is a relevant concept for situa-

tions we encounter routinely – even though, in most of these situations, we don’t
formally collect data and manipulate numerical results.

The essence of hypothesis testing is accepting or rejecting some contention called,

not surprisingly, a hypothesis. The formulation is structured in a way such that we

choose between two mutually-exclusive and collectively-exhaustive hypotheses.7

Fig. 3.1 χ2 distribution for battery lifetime study

7Although not necessarily the case from a mathematical perspective, the two hypotheses are

collectively exhaustive for all practical purposes, and certainly in the applications we undertake.

This means that the hypotheses represent all potential states of the world.
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Example 3.2 Internal Revenue Service Watchdog

Let’s consider a simple example. Suppose that the U.S. Internal Revenue Service

(IRS) suggests that a new version of the 1040 Form takes, on the average,

160 minutes to complete and we, an IRS watchdog agency, wish to investigate

the claim. We collect data on the time it takes a random sample of n taxpayers to

complete the form. In essence, we are interested in deciding whether the data

support or discredit a hypothesis: here, the hypothesis is a statement about the

value of μ, the true average time it takes to fill out the form. We state:

H0: μ ¼ 160 minutes (that is, the IRS’s claim is true)

versus

H1: μ 6¼ 160 minutes (that is, the IRS’s claim is not true)

By tradition, we call H0 the null hypothesis and H1 the alternate hypothesis.

We must decide whether to accept or reject H0. (Also by tradition, we always talk

about H0, though, of course, whatever we do to H0, we do the opposite to H1.) How

are we to decide? Here, we decide by examining the average of the n data values

(often called �X, the sample mean in introductory courses) and considering how

close or far away it is from the alleged value of 160.

We start with the presumption that the null hypothesis is true; that is, the null

hypothesis gets the benefit of the doubt. Indeed, we decide which statement we

label as the null hypothesis and which we label as the alternate hypothesis,

specifically depending on which side should get the benefit of the doubt and

which thus has the burden of proof. This usually results in the null hypothesis

being the status quo, or the hypothesis that historically has been viewed as true. The
analogy to a criminal court proceeding is very appropriate and useful, though in that

setting, there is no doubt which side gets the benefit of the doubt (the not-guilty

side, of course).8 In other words, H0 will be accepted unless there is substantial

evidence to the contrary.

What would common sense suggest about choosing between accepting H0 and

rejecting H0? If �X is close to 160, and thus consistent with a true value of 160, then

accept H0; otherwise, reject H0. Of course, one needs to clarify the definition of

“close to.” Our basic procedure follows this commonsense suggestion. Here are the

steps to be followed:

1. Assume, to start, that H0 is true.

2. Find the probability that, ifH0 is true, we would get a value of the test statistic, �X,
at least as far from 160 as we indeed got.

8In the criminal courts,H0 is the presumption of innocence; it is rejected only if the evidence (data)

is judged to indicate guilt beyond a reasonable doubt (that is, the evidence against innocence is

substantial).
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3. If, under the stated presumption, the probability of getting the discrepancy we

got is not especially small, we view the resulting �X as “close” to 160 and accept

H0; if this probability is quite small, we view the resulting �X as inconsistent with

(“not close” to) a true value of 160 and thus we reject H0.

Of course, we now must define the dividing line between “not especially small”

and “quite small.” It turns out that the experimenter can choose the dividing line any

place he or she wants. (In practice, the choice is not as arbitrary as it may appear; it

is determined by the expected cost of making an error.) In fact, this dividing line is

precisely what we have called the “significance level,” denoted by α. The tradi-

tional value of α is .05, though, as stated above, the experimenter can choose it to be

any value desired. In the vast majority of real-world cases it is chosen to be either

.01, .05, or .10. (Sometimes one doesn’t explicitly choose a value of α but rather

examines the results after the fact and considers the p-value, the “after-the-fact α,”
to compare to .05 or another value. Whether choosing a significance level at the

beginning or examining the p-value later, the salient features of the hypothesis-

testing procedure are maintained.)

In our IRS example, we need to know the probability distribution of �X given that

H0 is true, or given that the true mean, μ, equals 160. In general, the standard

deviation of the distribution may or may not be known (in this example, as in the

large majority of examples, it likely would not be). However, for simplicity, we

shall assume that it is known,9 and that σ ¼ 50. Supposing a sample size (n) of
100, we can appeal to the central limit theorem and safely assume that the

probability distribution of �X is very well approximated by a Gaussian (or normal

or bell-shaped) distribution with mean μ ¼ 160 and σ
�
�X
� ¼ σ=

ffiffiffi
n

p ¼ 50=10 ¼ 5.

Also, we will specify an α value of .05. Now, we find a range of values, in this case

symmetric around the (alleged) center of 160, that contains an area of .95 (that is,

1 � α), which is called the acceptance region.10 The area outside the range of

values is the critical (or rejection) region. In Fig. 3.2 we show the probability

curve, upper and lower limits of the acceptance region, and the shaded critical

region. The limits are found by computing 160� 1.96(5)¼ (150.2 to 169.8), where

1.96 is the 97.5% cumulative point on the standard normal (Z) curve.

9In most cases, the standard deviation is not known. Indeed, we have encountered a known

standard deviation only when (1) the process being studied had a standard deviation that histor-

ically has remained constant, and the issue was whether the process was properly calibrated or was

off-center, or (2) the quantity being tested is a proportion, in which case the standard deviation is

treated as if known, as a direct function of the hypothesized value of the proportion. However, the

assumption of known standard deviation is useful in this presentation. Our goal at this point does

not directly include distinctions between the Z and the t distributions; that changes in Chap. 4,

where the Student t distribution is discussed.
10Notice that, in this example, logic suggests a critical (rejection) region that is two-sided (more

formally called two-tailed, and the test is said to be a two-tailed test). After all, common sense says

that we should rejectH0: μ¼ 160 if the �X is either too small (that is, a lot below 160) or too large (that
is, a lot above 160). Because α is whatever it is (here, .05) in total, it must be split between the upper

and lower tails. It is traditional, when there are two tails, to split the area equally between the tails.
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If, for example, we found our sample mean was �X ¼ 165, we would reason that

the true mean might well be 160, but that due to statistical fluctuation (that is, error

– the varying effects of factors not controlled, and perhaps not even overtly

recognized as factors), our sample mean was a bit higher than the true (population)

mean. After all, even if μ ¼ 160, we don’t expect �X to come out to exactly 160! On

the other hand, if our sample mean had instead been 175, we would not be so

understanding; we would conclude that a value so far from 160 ought not be

attributed to statistical fluctuation. Why? Because if μ truly equals 160, the prob-

ability that we would get a value of �X that is as far away as 175 (in either direction) is

simply too low. Indeed, “too low” is defined as less than α (or α/2 in each tail). We

know that this probability is less than α because the �X is in the critical region. We

would conclude that the more appropriate explanation is that the population mean

is, in fact, not 160 but probably higher, and that 175 is perhaps not inconsistent with

the actual population mean. Could we be wrong? Yes! More about this later.

We have portrayed this analysis as determining whether 160 is a correct depic-

tion of the average time it takes to fill out the new form. The analysis, of course,

recognizes that we don’t insist that �X comes out at exactly 160 in order to be

considered supportive of the hypothesis of a true mean of 160.

One could have portrayed this problem a bit differently. Suppose that the group

was not interested in whether the 160 was an accurate value per se but in whether

the IRS was understating the true time it takes to fill out the form. Then the issue

would not be whether μ ¼ 160 or not, but whether μ was actually greater than 160.

We would then formulate the two hypotheses as follows:

H0: μ � 160 (that is, the IRS-claimed mean time is not understated)

versus

H1: μ > 160 (that is, the IRS-claimed mean time is understated)

These hypotheses suggest a one-tailed critical region; common sense says that we

would reject H0, in favor of H1, only if �X comes out appropriately higher than 160.

No sensible reasoning process says that �X can be so low as to push us towardH1. We

thus perform a so-called one-tailed test, as pictured in Fig. 3.3. In the figure, the

critical value 168.25 is calculated from 160 + 1.65(5)¼ 168.25, where 1.65 is the

95% cumulative point on the standard normal (Z ) curve.

Fig. 3.2 Acceptance and critical (shaded) regions for two-sided hypothesis test
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Notice that although α still equals .05, all of this quantity is allocated to the upper
tail. The critical value (there’s only one) is 168.25; any value of �X below this value

falls in the acceptance region and indicates acceptance of H0. A value of �X above

168.25 falls in the critical region (“shaded-in” region in Fig. 3.3) and causes us to

reject H0. One-sided hypothesis tests may, of course, be either upper-tailed or

lower-tailed; for a lower-tailed test, the analysis proceeds in a similar, albeit

mirror-image, manner.

As we have seen, the logic of the F-test in ANOVA suggests using the one-tailed

(upper-tailed) test, as we have just done. The same is true of the χ2 test we

performed when conducting a Kruskal-Wallis test. However, in subsequent chap-

ters we shall encounter some two-sided tests; this is especially true in Chap. 4.

3.3.1 p-Value

The ANOVA results for the battery life example as presented in Table 2.8 refer to a

quantity called the p-value. This quantity was also part of the output of the SPSS

report, as well as the JMP presentation of the MVPC problem, although labeled by a

different name. Indeed, it is a quantity that is part of every software package that

performs hypothesis testing (whether an F-test, a t-test, or any other test).

Just what is the p-value of a test? One way to describe it would be the weight of
evidence against a null hypothesis. Simply picking a significance level, say α¼ .05,

and noting whether the data indicate acceptance or rejection of H0 lacks a precision

of sorts. Think of an F curve with a critical/rejection region to the right of the

critical value; a result stated as “reject” doesn’t distinguish between an Fcalc that is

just a tad to the right of the critical value and one that is far into the critical region,

possibly orders of magnitude larger than the critical value. Or consider the example

in Fig. 3.3 for testing the hypotheses

Fig. 3.3 Acceptance and critical regions for one-sided hypothesis test
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H0: μ � 160 (that is, the IRS-claimed mean time is not understated)

versus

H1: μ > 160 (that is, the IRS-claimed mean time is understated)

The critical value for the test is 168.25, as we have seen. Consider two different

results, �X ¼ 168:5 and �X ¼ 200. The former value just makes it into the critical

region, whereas the latter value is just about off the page! In the real world, although

both of these results say, “Reject the null hypothesis at the 5% significance level,”

they would not be viewed as equivalent results. In the former case, the evidence

against H0 is just sufficient to reject; in the latter case, it is much greater than that

required to reject. The determination of a p-value is one way to quantify what one

might call the degree to which the null hypothesis should be rejected. In Fig. 3.3, the

p-value is the area to the right of the �X value. If �X ¼ 168:5, the area to the right of �X
(which we would instantly know is less than .05, since 168.5 > 168.25) is .0446,

corresponding to 168.5 being 1.7 standard deviations of the mean σ
�
�X
� ¼ 5

� �
above

160. If �X ¼ 200, the p-value is zero to many decimal places, as 200 is eight standard

deviations of the mean above 160.

To be more specific, we can define the p-value as the highest (preset) α for

which we would still accept H0. This means that if α is preset, we have to look at

the p-value and determine if it is less than α (in which case, we reject H0) or greater

than or equal to α (in which case, we accept H0). More specifically, for a one-sided

upper-tailed test, the p-value is the area to the right of the test statistic (on an

F curve, to the right of Fcalc; on an �X curve, the area to the right of �X, and so on); for
a one-sided lower-tailed test, the p-value is the area to the left of the test statistic; for
a two-sided test, the p-value is determined by doubling the area to the left or right of

the test statistic, whichever of these areas is smaller. The majority of hypothesis

tests that we illustrate in this text are F-tests that are one-sided upper-tailed tests,

and as noted above, the p-value is then the area to the right of Fcalc.

3.3.2 Type I and Type II Errors

Will we always get a value of �X that falls in the acceptance region when H0 is true?

Of course not. Sometimes �X is higher than μ, sometimes lower, and occasionally �X is

a lot higher or a lot lower than μ – far enough away to cause us to reject H0 – even

though H0 is true. How often? Indeed, α is precisely the probability that we reject

H0 when H0 is true. If you look back at either of the hypothesis-testing figures

(Figs. 3.2 or 3.3), you can see that the curve is centered at 160 (H0, or at the limit of

the range of H0 values) and the shaded-in critical region has an area of precisely α.
In fact, the value of α was an input to determining the critical value. The error of

rejecting an H0 when it is true is called a Type I error; α¼P(rejectH0/H0 true).

We can make the probability of a Type I error as small as we wish. If, going back to
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the two-tailed example, we had picked an acceptance region of 140 to 180, we

would have had α ¼ .00006 – small by most standards.

Why don’t we make α vanishingly small? Because there’s another error, called a
Type II error, which becomes more probable as α decreases. This, of course, is the

“other side of the coin,” the error we make when H0 is false, but we accept it as

true. The probability of a Type II error is called β; that is, β¼P(acceptH0jH0

false). In our two-tailed test earlier, β¼P(accept that μ¼ 160 j in actuality μ 6¼ 160).

As we’ll see, to actually quantify β, we need to specify exactly how μ 6¼ 160.

It may be useful to consider the following table, which indicates the four

possibilities that exist for any hypothesis-testing situation. The columns of the

table represent the truth, over which we have no control (and which we don’t
know; if we did know, why would we be testing?); the rows represent our conclu-

sion, based on the data we observe.

H0 True H0 False

We accept H0 Correct Type II error

1 – α β

We reject H0 Type I error Correct

α 1 – β

Holding the sample size constant, α and β trade off – that is, as one value gets larger,
the other gets smaller. The optimal choices for α and β depend, in part, on the

consequences of making each type of error. When trying to decide the guilt or

innocence of a person charged with a crime, society has judged (and the authors

agree) that an α error is more costly – that is, sending an innocent person to jail is

more costly to society than letting a guilty person go free. In many other cases, it is

the β error that is more costly; for example, for routine medical screening (where

the null hypothesis is that the person does not have the disease), it is usually judged

more costly to conclude a person is disease-free when he/she actually has the

disease, compared with concluding that he/she has the disease when that is not

the case. (In the latter case, the error will often be discovered by further medical

testing later, anyway.) Hence, we can’t generalize about which error is more costly.

Is it more costly to conclude that the factor has an effect when it really doesn’t (an α
error)? Or to conclude that the factor has no effect, when it actually does have an

effect? It’s situation-specific!
As we have seen, we generally preset α, and as noted, often at .05. One reason for

this, as we’ll see, is that β depends on the real value of μ, and as we just noted above,
we don’t know the true value of μ! Let’s look back at the one-tailed test we

considered in Fig. 3.3:

H0: μ � 160 (that is, the IRS-claimed mean time is not understated)

versus

H1: μ > 160 (that is, the IRS-claimed mean time is understated)
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For β, we then have

β ¼ P accept H0 H0 falsejð Þ
¼ P �X < 168:25 μj > 160ð Þ

However, we have a problem: μ > 160 lacks specificity. We must consider a

specific value of μ in order to have a definite value at which to center our normal

curve and determine the area under 168.25 (that is, in the acceptance region – while

H0 is actually false). In essence, what we are saying is that we have a different value

of β for each value of μ (as long as the μ considered is part of H1; otherwise there is

no Type II error).

Going back to our one-tailed example of Fig. 3.3 where the critical value was

168.25, with α ¼ 0.05, σ ¼ 50, and n ¼ 100, we can illustrate β for a true mean of

μ ¼ 180 minutes, as in Fig. 3.4. This value is simply an example; perhaps the true

μ ¼ 186.334, or 60π, or anything else.

We find the area below 168.25 by transforming the curve to a Z curve and using

the Z table; the results are in Fig. 3.5.

Fig. 3.4 β if the true value of μ is 180

Fig. 3.5 Z value for 168.25 when the true value of μ is 180
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We computed the �2.35 value by a routine transformation to the Z curve:

168:25� 180ð Þ= 50=
ffiffiffiffiffiffiffiffi
100

p� �
¼ �11:75=5 ¼ �2:35

Routine use of a Z table (see appendix to the book) reveals that β ¼ .0094.

Now, assuming that the true value of μ¼ 185 as shown in Fig. 3.6, we computed

the �3.35 value in Fig. 3.7 as follows:

168:25� 185ð Þ= 50=
ffiffiffiffiffiffiffiffi
100

p� �
¼ �16:75=5 ¼ �3:35

and β ¼ .0006.

Note that as the separation between the mean under H0 and the assumed true

mean underH1 increases, β decreases. This is to be expected because discrimination

between the two conditions becomes easier as they are increasingly different. One

can graph β versus the (assumed) true μ (for example, the values 180, 185, other

values between and beyond those two values, and so on); this is called an Operating

Characteristic Curve, or OC curve.

Fig. 3.6 β if the true value of μ is 185

Fig. 3.7 Z value for 168.25 when the true value of μ is 185
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3.3.3 Back to ANOVA

Recall that in ANOVA for the battery example

H0: μ1 ¼ μ2 ¼ . . . ¼ μj ¼ . . . ¼ μC; all column means are equal

H1: Not all column means are equal

We saw in Chap. 2 that the test statistic, Fcalc¼MSBc/MSW, has an F distribution

with degrees of freedom (C� 1,RC�C). α is the probability that we reject the

contention that the factor has no effect, when it actually has no effect. The critical

value, c, is determined from an F table or Excel command, such that

P(Fcalc> c)¼ α. What is β?

β¼P(Fcalc> c j not all μj are equal); that is, givenH1, that the level of X does,

indeed, affect Y

But the condition “not all μj are equal” is less easy to make specific. It would be

extremely rare in the real world to know with any confidence the precise way in

which “not all μj are equal,” if indeed they are not all equal.11 Thus, determining β is
usually meaningful only under the most general assumptions about the μ values (for
example, if they are assumed to be some specific uniform distance apart from one

another). We consider this determination in the next section. Always keep in mind

that just because we cannot easily conceive with confidence a specific value with

which to determine β, it does not change the fact that β error exists, or the fact that,
as noted earlier, it trades off against α.

3.4 Power

Often, instead of considering the β of a hypothesis test, we speak of the power of a

hypothesis test. Whereas β is the probability of accepting H0 when H0 is false,

the power of a test is merely the probability of (correctly) rejecting H0 when

H0 is false. That is, power¼ 1� β. Switching the focus from β to power is simply a

matter of working with a quantity in which higher is better instead of one in which

lower is better. In some fields it is traditional to work with β. An example is quality

control, in which it is customary to talk about α and β as producer’s risk and

consumer’s risk, respectively.12 When working with ANOVA problems, it is

customary to talk about the power of the test being performed.

11Obviously, we don’t know for sure the exact values of the μ’s, or we would not have a need to

test. However, in very rare cases we are not certain whether the μ’s are equal or not, but we do

know what they are if they are not all equal.
12These terms arise from the notion that the producer is hurt economically by rejecting good-

quality products, whereas the consumer is hurt economically by accepting bad-quality products.

Interestingly, consumer risk is often more costly to the producer than producer’s risk; indeed, it is
seldom true that a Type II error leaves the producer unscathed.
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It can be shown that, for a one-factor ANOVA,

Power ¼ f α; ν1; ν2; and ϕð Þ

where

α ¼ significance level

ν1 ¼ df of numerator of Fcalc, C � 1

ν2 ¼ df of denominator of Fcalc, RC � C
ϕ ¼ non-centrality parameter, a measure of how different the μ’s are from one

another; specifically

ϕ ¼ 1=σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Rj μj � μ
� �2

	 

=C

s

where summation is over j (index for columns). Note that ϕ includes the sample size

by virtue of its dependence on R and C. Of course, if R is constant, it can be factored

out and placed in front of the summation sign.

Although we have indicated what quantities affect power, we have not indicated

explicitly the nature of the functional relationship; it’s quite complex. The proba-

bility distribution of Fcalc, given that H0 is false, is called the non-central

F distribution and is not the same as the “regular” F distribution, which is appro-

priate when H0 is true, that we have already used. We can make some inferences

about power from what we already know. All other things being equal,

1. Power should increase with increasing α (corresponding to the trade-off between

α and β).
2. Power should increase with lower σ (corresponding to the increased ability to

discriminate between two alternative μ’s when the curves’ centers are more

standard deviations apart).

3. Power should increase with increased R (corresponding to the standard deviation

of each column mean being smaller with a larger R).
4. Power should decrease with increased C (corresponding to an increased number

of columns being equivalent to levels of a factor that are closer together).

Obviously, an important aspect of ANOVA is the attempt to discriminate

between H0 and H1. As we’ve noted, the smaller the difference between them, the

more likely we are to make an error. Because our approach usually starts by fixing

α, and α is independent of the specifics of the alternate hypothesis, the difference

between H0 and H1 is a nonissue for α. Yet it’s a driving force for power. The issue
is further complicated because, as also indicated earlier, the study of β (or power)

requires that prior to running the experiment we have knowledge of some values

that we don’t know and are what we wish to discover from the experiment (for

example, σ, μj’s, μ). Hence, in practice, we need to make assumptions about these

quantities. Often, we make assumptions in terms of multiples of σ, which can avoid
an explicit input value for σ.
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Consider the following example. Suppose we have a one-factor ANOVA with

α ¼ .05, R ¼ 10, C ¼ 3. Suppose further that we (arbitrarily, but not totally

unrealistically) decide to calculate power assuming that the μ’s are one standard

deviation apart (for example, μ1¼ μ2� σ , μ2 , and μ3¼ μ2 + σ). Then, noting that

the mean of the three means equals μ2, the non-centrality parameter is

ϕ ¼ 1=σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �σð Þ2 þ 0þ σ2

h i
=3

r
¼

ffiffiffiffiffiffiffiffiffiffi
20=3

p
¼ 2:58

and

ν1 ¼ C� 1 ¼ 2

ν2 ¼ R� 1ð ÞC ¼ 27

and we already specified that α ¼ .05.

We now are able to refer to what are called power tables (Figs. 3.8, 3.9, and

3.10).13 Using the values above, we find that power approximately equals .976. The

sequence of steps is as follows:

1. Find the table for the appropriate value of ν1 (here, equal to 2 – the first one

shown, Fig. 3.8).

2. Find which horizontal-axis measure of ϕ is appropriate (it depends on the value

of α, with the tables including .05 and .01), and determine the appropriate point

on the horizontal axis (here, indicated on the ν1¼ 2 table by a thick dot at 2.58 in

Fig. 3.8).

3. Find which set of curves corresponds with the value of α (here, it’s the set on the
left, labeled .05).

4. Find among the appropriate set of curves the one corresponding to the value of

ν2, RC � C (here, equal to 27, although given that they are so close together, we

used the nearest listed value, 30).

5. Find the intersection of that curve with the horizontal axis value identified in step

2 (here, indicated by a thick square).

6. Read the value of the power along the left vertical scale (here, we see a value

somewhere between .97 and .98, approximately .976).

13It may be possible to obtain these values, and those of the next section, via software. However,

there is insight to be gained, here, as elsewhere throughout the text, through seeing the entire tables

in print.
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3.4.1 Power Considerations in Determination of Required
Sample Size

We can examine the issue of power from a slightly different perspective. Rather than

determinewhat power we have for a given set of input values, it is oftenmore useful to

specify the desired power ahead of time (along with the number of levels of the factor

to be included, C, and the desired value of α), and find out how large our sample size

(in terms of the number of replicates per column)must be to achieve the desired power.

We view the number of columns, C, as an input value that was previously determined

based on other, presumably important, considerations; however, one can instead find

the required number of replicates for varying values ofC, and then decide on the value
of C. Of course, as for any determination involving β or power, one must specify a

degree to which the μ’s are not equal, analogous to the ϕ of the previous section.

The customary formulation for quantifying the degree to which the μ’s are not

equal is through the quantity Δ/σ, where

Δ ¼ the range of the μ’s ¼ maxðμjÞ �minðμjÞ

In essence, the table we are about to describe assumes that the μ’s are uniformly spread

between the maximum and the minimum values. Because we are determining the

required sample size before we have collected any data, we typically do not have an

estimate ofσ2, such as theMSW(ormean square error,MSE, as it is often called). Thus,

we usually input a value of Δ/σ, as opposed to separate values of Δ and σ. A popular

choice isΔ/σ¼ 2 (that is, the range of values of the true columnmeans is two standard

deviations). We determine the required sample size (again, in terms of replicates per

column) using the sample size tables (Table 3.3). The sequence of steps is as follows:

1. Find the portion of the table with the desired power (Table 3.3 provides powers

of .70, .80, .90, and .95).

2. Within that portion of the table, find the section with the desired Δ/σ ratio.

3. Find the column with the desired value of α.
4. Find the row for the appropriate number of columns, C.
5. Match the row found in step 4 with the column found in step 3, and read the

value at their intersection; this is the value of R.

For example, if we wish the following values:

1 � β ¼ .9

Δ/σ ¼ 2

α ¼ .05

C ¼ 3

then R ¼ 8 (circled in the table). Note also that we can now go to the section of

power equal to .80, and for the same α, see that R ¼ 8 also provides 80% power to

detect a Δ/σ of 1.75; we can go to the section of power equal to .70, and note that,

again for α ¼ .05, R ¼ 8 provides power of 70% to detect a Δ/σ of 1.50. Indeed,

R ¼ 8 has 95% power of detecting a Δ/σ partway between 2.0 and 2.5.
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Example 3.3 Dissolution Improved by a New Mixture of Excipients

Let’s assume a pharmaceutical industry is investigating a new mixture of excipients

that can improve the dissolution of a traditional drug used for the treatment of

migraine. As managers, we are requested to design a study that will evaluate four

excipient formulations, designated as F1, F2, F3, and F4. The first question we are

asked is: How many samples will be needed for each formulation?

We can use JMP to calculate the sample size based on certain assumptions.

Based on previous experiments, we know that the four means range from 68% to

80%, with a standard deviation of .8. We also set α ¼ .05. Using the Sample Size
and Power tool for k Sample Means in JMP (under DOE > Design Diagnostics),

we obtain a power versus sample size curve as shown in Fig. 3.11. A sample size of

5, for example, would give a power of .393, whereas R ¼ 6 would increase the

power to .969! This is a useful tool; however, it requires a prior knowledge of the

sample behavior, which is not often the case.

Fig. 3.11 Plot power versus sample size in JMP
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3.5 Confidence Intervals

In this section, we present the procedure for finding a confidence interval for (1) the

true mean of a column (or level) and (2) the true difference between two column

means. We assume that the standard assumptions described earlier in this chapter

hold true. In general, with a normally-distributed sample mean, �X , and with a

known value for the standard deviation, σ, a 100(1� α)% confidence interval for

the true μ is formed by taking �X � e, with

e ¼ z1�α=2 σ=
ffiffiffi
n

p� � ð3:1Þ

where z1� α/2 is the 100(1� α/2)% cumulative value of the standard normal curve,

and n is the number of data values in that column (or R, as we described previously).
For example, z1� α/2 equals 1.96 for 95% confidence. However, in performing an

ANOVA, we do not know the true standard deviation (although by assumption it is

a constant for each data value). When a standard deviation is unknown (which is

most of the time in real-world data analysis), the z is replaced by a t in Eq. 3.1, and
the true standard deviation is replaced by our estimate of the standard deviation, s.
This gives us

e ¼ t1�α=2 s=
ffiffiffi
n

p� � ð3:2Þ

where t1� α/2 is the 100(1� α/2)% cumulative value of the Student t curve,

with the number of degrees of freedom that corresponds with the degrees of

freedom used to estimate the sample standard deviation, s. With one column of

n data points, the number of degrees of freedom is (n � 1). However, in ANOVA,

our estimate of the standard deviation is the square root of the MSW (or of the mean

square error), and is based on pooling variability from each of the columns,

resulting, indeed, in (RC � C) degrees of freedom (that is, the degrees of freedom

of the error term).

Example 3.4 Confidence Interval for Clinic Satisfaction Study

To find a confidence interval for a particular column mean, we simply apply Eq. 3.2.

We can demonstrate this using the data from the Merrimack Valley Pediatric Clinic

(MVPC) satisfaction study in Chap. 2. Recall that the study asked 30 respondents at

each of the clinic’s four locations to rate satisfaction as earlier described. The

ANOVA results, along with the mean of each column, were presented as JMP

output in Fig. 2.4 and are repeated in Fig. 3.12.
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Figure 3.12 also indicates the lower and upper 95% (confidence limits). How

were these values obtained? Suppose that we want to find a 95% confidence interval

for the true mean of the Amesbury site (column one, as the data were set up in

Table 2.6). The column mean is 67.1. The standard deviation estimate is the square

root of 8.60, which is equal to 2.933. With 116 degrees of freedom (see output

above), the value of t1� α/2 is equal to about 1.98, and with n ¼ R per column of

30, we have14

e ¼ t1�α=2 s=
ffiffiffi
n

pð Þ
¼ 1:98 2:933=

ffiffiffiffiffi
30

p� �
¼ 1:06

Thus, our 95% confidence interval is

�X � e or 67:10� 1:06 or 66:04 to 68:16

What if we want to find a confidence interval for the true difference between two
column means? Then, with the two columns of interest labeled 1 and 2, our

confidence interval centers at the difference in the column means, �X1 � �X2, and is

�
�X1 � �X2

�� e

However, now, recognizing that under the standard assumption of independence

among data values, along with the assumption of constant variance, the standard

deviation estimate of �X1 � �X2 is

Fig. 3.12 ANOVA for clinic satisfaction study in JMP

14Usually, when degrees of freedom for the t distribution exceed 30, we simply use the

corresponding z value, which here is 1.96. However, for 120 degrees of freedom, the value of

the t is 1.98. For 116 degrees of freedom, it is very close to 1.98.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=n1 þ s2=n2

p
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p
where again, s ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

MSW
p

; we have

e ¼ t1�α=2 s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p� �
ð3:3Þ

or, if n1 ¼ n2 ¼ R,

e ¼ t1�α=2 s
ffiffiffiffiffiffiffiffi
2=R

p� �
ð3:4Þ

In the MVPC example above, let’s find a 95% confidence interval for the difference

in means between Methuen and Andover. The difference in column means is

(57.5667� 50.4000)¼ 7.1667. Plugging into Eq. 3.4 and noting that the degrees

of freedom is again 116, we get

e ¼ 1:98 2:933
ffiffiffiffiffiffiffiffiffiffi
2=30

p� �
¼ 1:499

Thus, our 95% confidence interval for the true difference in mean satisfaction score

between Methuen and Andover is

�
�X1 � �X2

�� e or 7:1667� 1:499 or 5:6677 to 8:6657

Exercises

1. Consider the data in Table 3EX.1 (a repeat of Table 2EX.6), representing four

levels (literally!) of lodging on a cruise ship, and a random sample of six

passengers from each level. The response is an assessment of the amount of

motion felt during cruising (scaled from 1 to 30). Is there evidence sufficient to

conclude that the level of the room on the cruise ship affects perception of the

degree of motion? Analyze using the Kruskal-Wallis test with α ¼ .05.

Table 3EX.1 Motion assessment by ship level

1 2 3 4

16 16 28 24
22 25 17 28
14 14 27 17
8 14 20 16
18 17 23 22
8 14 23 25

Exercises 97



2. Consider the data in Table 3EX.2, which represent the amount of life insurance

(in $1,000s) for a random selection of seven state senators from each of three

states: California, Kansas, and Connecticut. All of the senators are male, married,

with two or three children, and between the ages of 40 and 45. Because it appears

that there could be major differences in variability from column to column, it was

decided that a Kruskal-Wallis test would be performed to inquire whether

amounts of life insurance differed by state/part of the country, at least with

respect to state senators with these demographics. Conduct this test at α ¼ .05.

3. Repeat Exercise 2 using a conventional F-test. Do your conclusions differ?

Discuss.

4. Consider the data in Table 3EX.4, which represent the size of soy seedlings

(in cm) after they had been fed for a certain period of time with four types of

liquid fertilizers (identified as 1–4). All seeds came from the same batch and

were grown under the same conditions. Is there evidence sufficient to conclude

that the type of fertilizer affects seedling growth? Analyze using the Kruskal-

Wallis test with α ¼ .05.

5. Repeat Exercise 4 using a conventional F-test. Do your conclusions differ?

Discuss.

Table 3EX.2 Life insurance (in $1,000s)

State

California Kansas Connecticut

90 80 165
200 140 160
225 150 140
100 140 160
170 150 175
300 300 155
250 280 180

Table 3EX.4 Seedling size (in cm)

1 2 3 4

1.4 1.5 1.1 1.8
1.3 1.5 1.1 1.8
1.1 1.2 1.8 1.6
1.1 1.3 1.7 1.9
1.2 1.2 1.2 1.5
1.1 1.7 1.0 1.8
1.0 1.5 1.7 1.3
1.4 1.2 1.7 1.7
1.0 1.7 1.0 1.9
1.1 1.4 1.5 1.5
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6. Imagine that we are testing the quality of recreational water in public beaches.

One of the fastest and cheapest ways to determine the quality is by testing for

coliform bacteria, which are commonly found in the intestines of mammals and

associated with fecal contamination. Our study will include four locations

(designated as A, B, C, and D) selected based on the criteria determined by

the Health Department of our state. The protocol indicates that not less than five

samples should be collected in a 30-day period; however, for the sake of

simplicity, we are only comparing samples collected on a particular day and

presented in Table 3EX.6. Analyze using the Kruskal-Wallis test and compare

with a conventional F-test, with α ¼ .05. Do your conclusions differ? Discuss.

7. Suppose that we are conducting a one-factor ANOVA and have four levels of

the factor under study, six replicates at each of the four levels, and desire a

significance level of .01. At a value of ϕ of 2.5, what power would our F-test
have?

8. What is the gain in power in Exercise 7 if we increase the sample size to nine

replicates per column? What is the loss in power if we reduce the number of

replicates to three replicates per column? What does this suggest about the way

power varies with number of replicates per column?

9. Consider Exercise 7 again. Does the power increase more if we increase the

number of replicates per column to nine, or if we change the significance level

to .05?

10. Consider the situation with one factor under study at four levels. If we desire a

significance level of .01, and insist that the power of the F-test be .80 with aΔ/σ
value of 2, what is the number of replicates needed at each level of the factor?

11. If we have performed an ANOVA for a one-factor design with four columns

and ten replicates per column, and found MSBc to be 100 and MSW to be

25, what is our estimate of ∑(μj� μ)2?
12. Suppose that a symphony orchestra has tried three approaches, A, B, and C, to

solicit funds from 30 generous local sponsors, 10 sponsors per approach. The

dollar amounts of the donations that resulted are in Table 3EX.12. The column

means are listed in the bottom row. For convenience, we rank-order the results

in each column in descending order in the table. Use the Kruskal-Wallis test at

α¼ .05 to determine whether there are differences in solicitation approach with

respect to amount of charitable donations.

Table 3EX.6 Coliform bacteria in recreational water

(in counts/100 mL)

Location

A B C D

80 120 60 89
95 134 53 104
76 118 72 92
88 129 67 96
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13. (a) For each of the columns in Table 3EX.12, find a 95% confidence interval

for the true column mean. Assume all of the standard assumptions hold.

(b) Are there any values that are included in all three of these confidence

intervals?

(c) Discuss the implications of the answer to part b.

Appendix

Example 3.5 Study of Battery Lifetime with Kruskal-Wallis test using

SPSS

The Kruskal-Wallis test can be performed in SPSS using the following procedure.

The data in Table 3.1 are entered in a way similar to that which we used in Chap. 2,

using 24 rows and two columns. Using the K Independent Samples. . . command

under Analyze > Nonparametric Tests > Legacy Dialogs, we obtain an output

shown in Table 3.4, which indicates we do not have evidence sufficient to reject the

null hypothesis.

Table 3EX.12 Funds raised

Approach

A B C

3,500 3,200 2,800
3,000 3,200 2,000
3,000 2,500 1,600
2,750 2,500 1,600
2,500 2,200 1,200
2,300 2,000 1,200
2,000 1,750 1,200
1,500 1,500 800
1,000 1,200 500
500 1,200 200

2,205 2,125 1,310

Table 3.4 Kruskal-Wallis test summary in SPSS

Test Statisticsa,b

Lifetime

Chi-square 13.010
df 7
Asymp. sig. .072

aKruskal Wallis Test
bGrouping Variable: Device
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Example 3.6 Confidence Interval for Clinic Satisfaction Study using

SPSS

SPSS can also be used to find the confidence interval for the means in Example 3.4

(Clinic Satisfaction Study). After entering the data as previously shown, we select

the Explore command under Analyze > Descriptive Statistics and fill in the

dependent and factor lists. A portion of the output summary is shown in

Table 3.5. Note that some values are slightly different from what we have calcu-

lated by hand and using JMP.15

Table 3.5 Confidence interval summary in SPSS

Descriptives

Location Statistic Std. error

Satisfaction Amesbury Mean 67.1000 .53251

95% confidence interval

for mean

Lower bound 66.0109
Upper bound 68.1891

5% trimmed mean 67.1481

Median 67.0000

Variance 8.507

Std. deviation 2.91666

Minimum 60.00

Maximum 73.00

Range 13.00

Interquartile range 5.00

Skewness �.142 .427

Kurtosis �.070 .833

Andover Mean 50.4000 .51773

95% confidence interval

for mean

Lower bound 49.3411
Upper bound 51.4589

5% trimmed mean 50.2963

Median 50.0000

Variance 8.041

Std. deviation 2.83573

Minimum 46.00

Maximum 57.00

Range 11.00

Interquartile range 4.25

Skewness .574 .427

Kurtosis �.489 .833

(continued)

15Potential causes and issues associated with these discrepancies are discussed by D. B.

Merrington and J. A. Thompson (2011), “Problematic Standard Errors and Confidence Intervals

for Skewness and Kurtosis.” Behavior Research Methods, vol. 43, pp. 8–17.
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Example 3.7 Study of Battery Lifetime using R

The Kruskal-Wallis test can be done easily in R. After importing the data as we

have done previously, we can use the kruskal.test() function and assign it to a

new object (lifetime.kw). Here, we show two ways in which the arguments can

be written:

# Option 1:

> lifetime.kw1 <- kruskal.test(lifetime$V2, lifetime$V1)

# Option 2:

> lifetime.kw2 <- kruskal.test(V2~V1, data=lifetime)

Although the output summary is slightly different, the results are the same.

Table 3.5 (continued)

Descriptives

Location Statistic Std. error

Methuen Mean 57.5667 .55020

95% confidence interval

for mean

Lower Bound 56.4414
Upper Bound 58.6920

5% trimmed mean 57.5741

Median 58.0000

Variance 9.082

Std. deviation 3.01357

Minimum 51.00

Maximum 64.00

Range 13.00

Interquartile range 5.00

Skewness .027 .427

Kurtosis �.298 .833

Salem Mean 65.3000 .54065

95% confidence interval

for mean

Lower bound 64.1943
Upper bound 66.4057

5% trimmed mean 65.3148

Median 65.5000

Variance 8.769

Std. deviation 2.96124

Minimum 60.00

Maximum 70.00

Range 10.00

Interquartile range 6.00

Skewness .002 .427

Kurtosis �1.214 .833
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# Option 1:

> lifetime.kw1

Kruskal-Wallis rank sum test

data: lifetime$V2 and lifetime$V1

Kruskal-Wallis chi-squared = 13.01, df = 7, p-values = 0.07188

# Option 2:

> lifetime.kw2

Kruskal-Wallis rank sum test

data: V2 by V1

Kruskal-Wallis chi-squared = 13.01, df = 7, p-values = 0.07188

If necessary, we can find the critical value (c) using the qchisq() function

> qchisq(.95, df=7)

[1] 14.06714

where .95 is the 95th percentile of the χ2 distribution.

Example 3.8 Confidence Interval for Clinic Satisfaction Study using R

As we have seen in this chapter, we can find the confidence intervals of a particular

mean and of the difference between two means. Both procedures require a series of

commands in R. First, let’s find the confidence interval of the mean, taking the data

for the Amesbury clinic. We import the data as two columns (V1 – location, V2 –

satisfaction level) and find the ANOVA table.

> satisfaction.aov <- aov(V2~V1, data=satisfaction)

# names( ) function can be used to obtain the names of an object

> names(satisfaction.aov)

[1] “coefficients” “residuals” “effects” “rank”
[5] “fitted.values” “assign” “qr” “df.residual”
[9] “contrasts” “xlevels” “call” “terms”
[13] “model”
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In order to find the confidence interval, we will calculate each term of Eq. 3.2

separately. We find the mean of the Amesbury clinic using the mean( ) function:

> amesbury <- mean(satisfaction1$model$V2[satisfaction.aov

+$model$V1==“Amesbury”])

> amesbury

[1] 67.1

Next, we find the t value, the estimate of the sample standard deviation (s), and
the number of observations (n):

>tvalue<-qt(0.025,satisfaction.aov$df.residual,lower.tail=F)

> tvalue

[1] 1.980626

> s <- sqrt(sum((satisfaction.aov$residuals)^2)/satisfaction1

+$df.residual)

> s

[1] 2.932527

# s is the square root of MSW. The latter is the sum of the square of residuals

(sum(satisfaction.aov$residuals)^2) divided by the degrees of free-

dom of the residuals (satisfaction.aov$df.residual).

> n <- sum(satisfaction.aov$model$V1==“Amesbury”)

> n

[1] 30

The confidence interval is:

> amesbury–tvalue*(s/sqrt(n)) ; amesbury+tvalue*(s/sqrt(n))

[1] 66.03957

[1] 68.16043

Now, we will find the confidence interval of the difference between two means,

Methuen and Andover. We will use the t value and the estimate of the sample

standard deviation (s) found previously to find the confidence interval using Eq. 3.3:

> methuen.n <- sum(satisfaction.aov$model$V1=="Methuen")

> methuen.n

[1] 30

> andover.n <- sum(satisfaction.aov$model$V1=="Andover")

> andover.n

[1] 30

104 3 Some Further Issues in One-Factor Designs and ANOVA



> methuen <- mean(satisfaction.aov$model$V2[satisfaction.aov

+$model$V1==Methuen"])

> methuen

[1] 57.56667

> andover <- mean(satisfaction.aov$model$V2[satisfaction.aov

$model$V1=="Andover"])

> andover

[1] 50.4

>(methuen–andover)–tvalue*(s*sqrt(1/methuen.n+1/andover.n));

+(methuen–andover) + tvalue*(s*sqrt(1/methuen.n+1/andover.n))

[1] 5.666986

[1] 8.666347

Since n1 ¼ n2, we can also find the confidence interval using Eq. 3.4:

> (methuen–andover) – tvalue*(s*sqrt(2/n)) ; (methuen–andover) +

+ tvalue*(s*sqrt(2/n))

[1] 5.666986

[1] 8.666347
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Chapter 4

Multiple-Comparison Testing

So far, we have seen a couple of statistical tests which can indicate if a factor has an

impact on the response or not, and which would make us reject or accept

H0 (μ1¼ μ2¼ μ3¼ . . .¼ μC); however, they do not show how the means differ, if,

indeed, they do differ. In this chapter, we will discuss the logic and Type I errors in

multiple-comparison testing. We then present several procedures which can be used

for multiple comparison of means, such as Fisher’s Least Significant Difference

(LSD) test, Tukey’s HSD test, the Newman-Keuls test, and Dunnett’s test. Finally,
we discuss the Scheffé test as a post hoc study for multiple comparisons.

Example 4.1 The Qualities of a Superior Motel

A relatively low-priced motel chain was interested in inquiring about certain factors

that might play an important role in the consumers’ choice of a motel. As mentioned

in Chap. 1, the managers knew that certain factors, such as location, couldn’t be
altered (at least in the short run), and that price played a significant role but, for

most locations, needed to be considered as already set by market forces for the

specific location. The chain was interested in exploring the impact on customer

satisfaction and choice of motel of a set of factors involving the availability and

quality of food and beverages, entertainment, and business amenities. The company

believed that the impact of these factors would be relatively uniform across

locations.

Two of the factors that the company believed would be very important, and their

levels, are listed in Fig. 4.1.

The sample of respondents was separated into four segments. Two of the

segments were frequent users of the motel chain (based on the proportion of total

hotel or motel use involving the sponsoring chain), split into business users and

leisure users. The other two segments were infrequent or nonusers of the motel

chain, split the same way. The key dependent variable (among other, more
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intermediary variables, such as attitude toward the chain) was the respondent’s
estimate of the number of nights he or she would stay at the motel chain during the

next 12 months. We return to this example at the end of the chapter.

4.1 Logic of Multiple-Comparison Testing

In Chap. 2, we saw how to determine whether the level of some factor affects a

dependent variable of interest. After we decided on the dependent variable and the

factor to study, the procedure was primarily objective and quantitative (with some

necessary judgments, such as evaluating the validity of the assumptions and

choosing the value of α). If we conclude that the factor under study does have an

impact on the dependent variable, we would certainly not want to stop our analysis

there. After all, if the F-test led to rejection of H0(μ1¼ μ2¼ μ3¼ . . .¼ μC) in favor

ofH1 (not all column means are equal), we would still have no indication of the way

in which they are not equal – only that they’re not all the same! If C¼ 4, are all four

μ’s different, or are three the same and one different from those three? If one is

different from the rest, which one? We will demonstrate procedures to answer these

types of more-detailed inquiries. These procedures are referred to as multiple-

comparison tests and, nicely enough, require only the data used in the already

completed F-test.

1. Breakfast (at no extra charge)
None available
Continental breakfast buffet fruit juices, coffee, milk, fresh fruit, bagels, doughnuts
Enhanced breakfast buffet add some hot items, such as waffles and pancakes, that the patron 
makes him/her self
Enhanced breakfast buffet add some hot items, such as waffles and pancakes, 
who makes them for the patron
Enhanced breakfast buffet add some hot items, such as waffles and pancakes, that the patron 
makes him/her self, and pastry (dough from a company like Sara Lee) freshly baked on 
the premises
Enhanced breakfast buffet add some hot items, such as waffles and pancakes, 
who makes them for the patron, and pastry (dough from a company like Sara Lee) freshly 
baked on the premises

2. Entertainment
Three local channels and five of the more popular cable stations, plus pay-per-view movies
Three local channels and fifteen of the more popular cable stations, plus pay-per-view movies
Three local channels and fifteen of the more popular cable stations, plus pay-per-view movies 
and X-Box games
Three local channels and fifteen of the more popular cable stations, plus pay-per-view movies 
and DVD
Three local channels and fifteen of the more popular cable stations, plus pay-per-view movies 
and both X-Box games and DVD

Fig. 4.1 Some factors and levels for motel study
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Example 4.2 Multiple-Comparison Testing for Battery Lifetime

Having learned that the device in which the AA-cell battery is used affects the

battery’s average lifetime, for example, we would likely want to know more detail.

Is it whether it’s a cell phone, flash camera, or flashlight that makes the difference?

Or is it the brand of cell phone, flash camera, or flashlight that seems to be key? Is

the average lifetime higher for a particular brand of flash camera than for that same

brand of flashlight? Or is it a case of all eight devices simply having different

average battery lifetimes? Multiple-comparison tests extend the analysis from the

aggregate impact of levels of the factor (for example, does device affect average

battery lifetime for AA batteries?) to the detailed differences among subsets of

levels of the factor (for example, how does one subset of devices vary from another

subset of devices with respect to impact on average battery lifetime?).

Several different multiple comparison tests are available. The choice among them

depends on a number of considerations, but the primary one is: what questions do

the experimenters wish to answer and how did they arrive at them? Sometimes,

the experimenters state, in advance of seeing the data, which particular set of

comparisons they wish to explore (a comparison, typically, is a linear combination

of the means); these are called a priori or planned comparisons. Other times, the

experimenters wish to routinely compare each column mean (that is, each level of the

factor) with each other column mean (each other level of the factor); these are called

pairwise comparisons. Yet other times, the experimenters wait until after examining

the data to decide which comparisons look interesting for study; these after-the-fact

comparisons are called post hoc, a posteriori, or exploratory comparisons. (Tradi-

tionally, pairwise comparisons are also viewed as being post hoc.)
However, even after concluding which of the above scenarios is relevant, more

than one test is usually eligible for selection. The next decision that the experi-

menters may have to make concerns consideration of the probability of a Type I

error for the hypothesis test (the “α” we have already discussed in Chap. 3) versus
the probability that we make at least one Type I error (of course, not equal, itself, to
α, although related to it) when performing a group of hypothesis tests. This is a

matter of “philosophy,” and has implications, as shall be discussed.

4.2 Type I Errors in Multiple-Comparison Testing

We already know that if we reject a null hypothesis when it is true, we are committing

what is called a Type I error. In our discussions, this erroneous rejection means

concluding that there are differences among the levels of a factor when, in truth, there

are no such differences. However, inmultiple-comparison testing, it is not clearwhat the

term Type I error probability, when set equal to .05, or .01, or any other value, means.

If we test three hypotheses, each involving independent test statistics (for

example, separately testing the value of three different column means), and each
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having a probability of Type I error, α, of .05, what is the probability that, if the

three null hypotheses are all true, we reject at least one of them? Given the

independence among the test statistics, the answer is

P at least one Type I errorð Þ ¼ a ¼ 1� P no Type I errorð Þ ¼ 1� :95ð Þ3 ¼ :143

(This calculation uses the so-called multiplication rule for independent events, and

then the complementary events rule, both of elementary probability theory.) The

quantity a (boldfaced to distinguish it from the routine indefinite article) is called

the experimentwise error rate. It represents the probability that one or more Type I

errors are committed in an experiment (hence the name experimentwise).1 Type I

error probability per comparison is, in a sense, replaced with Type I error proba-

bility per experiment. For six independent tests, we would have an experimentwise

error rate of .265; for ten independent tests, .401.

In many of the applications we shall pursue, the determination of the

experimentwise error from the knowledge of the probability of a Type I error for

a single comparison (a hypothesis test) is not as easily accomplished as by the

formula above. This is because, most often, the test statistics of the hypothesis tests

(that is, comparisons) we wish to include in our analysis are not independent.

Consider the following example of three hypotheses to be tested:

Test 1 Test 2 Test 3

H0: μ1 ¼ μ2 H0: μ1 ¼ μ3 H0: μ2 ¼ μ3
H1: μ1 6¼ μ2 H1: μ1 6¼ μ3 H1: μ2 6¼ μ3

Intuitively, if we were told that H0 was accepted for test 1, and that H0 was rejected

for test 2, isn’t it more likely than it was before we had any knowledge about test

1 and test 2 that we will reject H0 for test 3?
2 Indeed, the test statistics for the three

tests are not independent. When the test statistics are not independent, it is not

straightforward to determine the experimentwise error rate if each individual test

has a marginal/individual error rate of α; likewise, it is not straightforward to

determine the α of each individual test given an experimentwise error rate of a.

What we can say is that if the k tests are not independent, a� 1� (1� α)k.
A decision has to be made as to which to control (that is, specify): the traditional

Type I error, which we could call the “individual error rate,” or the experimentwise

error rate. Typically, we specify one of the two error rates, and the other error rate is

not directly addressed. Most of the multiple-comparison tests control the

1Although it is universal to use the Greek letter α to represent the probability of making a Type I

error, it makes sense to the authors to use some other symbol to represent the probability of making

at least one Type I error; we have adopted the bold letter a to represent the experimentwise error

rate. The notation in this area is not consistent from text to text. Some texts simply use α for both

errors; others use α and a as we do; yet others differentiate between the two error rates in other

ways – such as αindividual and αexperimentwise.
2“Transitivity” does not apply in this situation. If we knew that μ1¼ μ2 and μ2 6¼ μ3, then we would
rightfully conclude, since transitivity would apply, that μ1 6¼ μ3.
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experimentwise error; however, one notable test we introduce deals solely with the

individual error rate.

Example 4.3 Broker Study

For our discussion of multiple-comparison tests, we use a common example, which

we now introduce, to illustrate each of them. An experiment was conducted by a

financial-services firm (let’s call the firm American Financial Services, AFS) to

determine if brokers they use to execute trades differ with respect to their ability to

provide an equity (for simplicity, say stock) purchase for AFS at a low buying price

per share.3 To measure cost, AFS used, for each trade of a particular stock, an index,

Y, that is clearly “the higher the better”:

Y ¼ 1000 A� Pð Þ=A
where

P ¼ per share price paid for the stock

A ¼ average of high price and low price per share, for the day

The study segmented trades by size (as a percent of all shares traded that day in

that stock). Other types of segments, such as industry sector of the stock and

liquidity of the stock (measured by average volume of that stock per day), were

considered but not used in this experiment; they may be used in future experiments.

The current data are for trades involving 0–20% of the amount of that stock traded

during that day. Five brokers were in the study and six trades were randomly

assigned to each broker.

With six trades per broker, we have a replicated (R¼ 6) one-factor study, with that

factor (broker) at five levels (C ¼ 5). A summary of the data (rounded to nearest

integer) is in Table 4.1. For example, the value 11 in Table 4.1 (boldfaced to make it

easy to find) was derived by taking a price per share (P) of 67.25, with high and

low for the day of 69.25 and 66.75, respectively, for an average (A) of 68.00; then,
1000(68.00� 67.25)/68.00¼ 11.03, which, rounded to the nearest integer, equals 11.

Table 4.1 AFS broker study

Trade

Broker

1 2 3 4 5

1 12 7 8 21 24
2 3 17 1 10 13
3 5 13 7 15 14
4 �1 11 4 12 18
5 12 7 3 20 14
6 5 17 7 6 19
Column mean 6 12 5 14 17

3Given the large volume of virtually every trade, the issue of how much would be paid in

commissions was essentially irrelevant. The issue was, indeed, the buying price.
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The ANOVA table appears as Table 4.2. Recall that with five columns, the

numerator df¼C� 1¼ 4 and the denominator df¼C(R� 1)¼ 5 � 5¼ 25.

Fcalc ¼ 7.56 is compared to the threshold value, which is c ¼ 2.76 for α ¼ .05

and df¼ 4 , 25 (c¼ 4.18 for α¼ . 01). We reject H0 (that there is no difference

between column means) and conclude that there are differences among the brokers

examined with respect to the index of purchase price per share. Now, we delve

further into the analysis.

We noted earlier that there are three basic categories of multiple comparison

tests: a priori (planned) comparisons, pairwise comparisons, and post hoc explor-

atory comparisons. We treat the first category, a priori comparisons, in Chap. 5.

This separate treatment is useful in illustrating the different mind-set involved when

using planned comparisons, which are often based at least partly on theoretical

considerations. In this chapter, we discuss pairwise comparisons and post hoc
exploratory comparisons.

4.3 Pairwise Comparisons

Several multiple-comparison tests have as their basic procedure the comparison of

all pairs of column means. Pairwise comparison tests are likely the most frequently

used type of multiple-comparison tests. We discuss four of the more popular of

these tests in detail and briefly mention two others. For a variety of reasons, not

necessarily identical for each test discussed, all of these tests should be used only

when the original F-test has indicated the rejection of H0. Indeed, one can

reasonably argue that if the original F-test indicates that we cannot reject equality
of all of the column means, what more is there to explore?

4.3.1 Fisher’s Least Significant Difference Test

The first method we discuss, devised by R. A. Fisher and called Fisher’s least

significant difference (LSD) test, essentially involves performing a series of

pairwise t-tests, each with a specified value of α. In isolation, the equality of each

pair of means is tested with a Type I error rate of α. But the different tests are clearly

Table 4.2 ANOVA table for broker study

Source of

variability SSQ df MS Fcalc

Broker 640.8 4 160.2 7.56

Error 530 25 21.2

Total 1170.8 29
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not independent, and there is no simple formula to derive the experimentwise error

rate – the latter is not a focal point and is “whatever it is.” There is one slight

modification to just doing a series of unconnected t-tests: the unknown population

standard deviation is estimated for all tests by the same value, the square root of

MSW. This modification is supported by the assumption of constant variance,

mentioned in Chap. 3, and provides us with a larger number of degrees of freedom

for the error term. This, in turn, results in each test having greater power (1 � β)
relative to using the respective error estimate derived from only the two specific

columns being tested.4

Recall that in any hypothesis test, we establish an acceptance region for H0 and

accept H0 if the appropriate test statistic falls within that region. If it falls in the

critical region, we reject H0. Here, for each pair of columns, i and j, the test statistic
is the difference between the column means, ð�Yi � �YjÞ. If this difference is small,

we conclude that the true means are equal (that is, their true difference is really

zero, μi ¼ μj, and any difference in the observed column means is just that due to

statistical fluctuation). If the difference is not small, we conclude that the two levels

of the factor being tested produce different true means, that is, μi 6¼ μj. We apply this

method to our AFS broker study soon.

Figure 4.2 illustrates the distribution for
�
�Yi � �Yj

�
. It is a linear transformation of

a t distribution, centering at zero, but with variance equal to the variance of a

t distribution with (RC � C) degrees of freedom, multiplied by the variance

estimate of
�
�Yi � �Yj

�
, which is

ffiffiffiffiffiffiffiffiffiffiffiffi
MSW

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ni þ 1=nj

p
, as discussed below. The

acceptance region falls between the lower and upper critical values, Cl and Cu,

respectively. The variance estimate for a data value is the MSW. (In this context, it

may be useful to note that the MSW is equivalent to the “pooled variance,” s2p, a

term you might recall from a basic statistics course.) Then, the acceptance region,

AR, for
�
�Yi � �Yj

�
is

0� t1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffi
MSW

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ni þ 1=nj

q
ð4:1Þ

where t1� α/2 is the abscissa (that is, the horizontal axis) value from the t table with
the appropriate degrees of freedom and a left tail cumulative area of (1� α/2); if
α ¼ .05, the value of (1� α/2) is .975, reflecting that the .05 is split evenly between
the two tails. The number of replicates in column i is denoted as ni; similarly for nj.
In our AFS broker example, ni and nj are both equal to R ¼ 6. Note the plus-or-

minus sign: when the plus sign is applied, we get Cu in Fig. 4.2, and when the minus

sign is applied, we get Cl.

4Several tests are available for testing the different levels of the factor for the equality of variances.

We provided a reference for these tests in Chap. 3.
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To find a confidence interval for the difference between two of the column

means, we use Eq. 3.3, which takes the difference in the �Y’s and, essentially, adds to
and subtracts from that difference the same quantity as added to and subtracted

from zero in Eq. 4.1:

t1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffi
MSW

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ni þ 1=nj

q

In Eq. 3.3,
ffiffiffiffiffiffiffiffiffiffiffiffi
MSW

p
was written as s, representing the general case of the square

root of the pooled variance estimate.

In our example, MSW¼ 21.2, df¼ 25, and, as noted, the number of replicates in

each column is ni ¼ nj ¼ R ¼ 6. With α ¼ .05, the acceptance region becomes

0� 2:060
ffiffiffiffiffiffiffiffiffi
21:2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=6þ 1=6

p
or 0� 5:48

The t-value of 2.060 comes directly from a t table with 25 degrees of freedom (see

Table 4.3), or from the Excel command, TINV(.05, 25). The value 5.48 is called

Fisher’s least significant difference (LSD). Indeed, it is accurately named, for this

is the smallest difference between two column means (in the AFS broker example)

that would indicate a significant result – the rejection of the null hypothesis of the

equality of the two true means. With the same number of data points, R, in each

column, the LSD formula reduces to

LSD ¼ t1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSW=R

p
Now, to complete the use of Fisher’s LSD method, we compare each pairwise

difference to the LSD. In Fig. 4.3a, we show a box plot for the data; in Fig. 4.3b, we

show a plot of the means for the same data. However, the LSD process is facilitated

by first arranging the column means in ascending order:

Column: 3 1 2 4 5

Mean: 5 6 12 14 17

Fig. 4.2 Distribution and acceptance region for �Yi � �Yj
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Fig. 4.3 Plots for AFS broker study: (a) box plot and (b) mean plot. Boxplots (or box-and-whisker

plots) are graphical representations used to assess the distribution of experimental data. The line

that crosses horizontally the rectangles (shown in gray in Fig. 4.3) is the median (or the second

quartile). The bottom and top lines of the boxes are the first and third quartiles, respectively. The

vertical lines extending vertically from the boxes (sometimes called whiskers) are the inferior and
superior quartiles (or limits). Note that in the example shown in Fig. 4.3, the output does not show

any error bar for broker 2 and only one vertical line for broker 1, which are due to the distribution

of the data

Table 4.3 t table

df α/2 ¼ .10 α/2 ¼ .05 α/2 ¼ .025 α/2 ¼ .010 α/2 ¼ .005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.333 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

(continued)
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Next, we examine the column means and identify any differences in adjacent

column means that exceed our LSD of 5.48, marking them with a vertical bar

between them. (Note that we carry the column identity through the analysis – just

another example of “practicing safe statistics.”) The only adjacent column means

with a difference greater than 5.48 are the 6 and 12:

3 1 2 4 5

5 6 12 14 17

In this notation, if there are any vertical bars, all column means to one side of the

vertical bar are significantly different from all column means to the other side of the

vertical bar.

Next, we compare with the LSD the difference in column means for each pair of

means within each subset:

Columns

compared

Difference in

means

Difference < or

> LSD

3 vs. 1 * <
2 vs. 4 * <
2 vs. 5 5 <
4 vs. 5 * <

*Adjacent columns; comparison already done

Note that the preceding table has an asterisk for adjacent comparisons; this is to

reflect that if they were significantly different, the fact would have been noted at the

earlier stage when adjacent column means were first examined. Now to draw the

Table 4.3 (continued)

df α/2 ¼ .10 α/2 ¼ .05 α/2 ¼ .025 α/2 ¼ .010 α/2 ¼ .005

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617
1 1.282 1.645 1.960 2.326 2.576

Source: E. S. Pearson and H. O. Hartley (1966), “Probability Points of the

t Distribution with w Degrees of Freedom,” Biometrika Tables for Statisticians,
vol. 1, 3rd ed (Reprinted with permission of Oxford University Press)
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conclusions: We would say that brokers 1 and 3 are equivalent (their difference is

not statistically significant, and, hence, we cannot reject their equality) with respect

to buying price index, Y; similarly for brokers in the second subset (brokers 2, 4, and

5). However, the two subsets of columns (brokers) are concluded to be different.

We can show this diagrammatically:

Conclusion: 3 1 2 4 5

We read this as follows: “Means three and one are equal, but are different from

(smaller than) means two, four, and five, these latter three means being equal.”5

Sadly, it must be said that things are not always so clean. Suppose that the mean

for column five were a bit larger – 18 instead of 17, with the same LSD of 5.48,

which would be the case if each data value in that column were increased by 1. The

analysis would look as follows:

3 1 2 4 5

5 6 12 14 18
Columns

compared

Difference in

means

Difference < or

> LSD

3 vs. 1 * <
2 vs. 4 * <
2 vs. 5 6 >
4 vs. 5 * <

Conclusion: 3 1 2 4 5

The preceding table appears to foster an inconsistency: “column mean two is

equal to column mean four, column mean four is equal to column mean five, but

column mean two is different from column mean five.” With multiple comparisons,

as noted earlier, we cannot impute transitivity. Think of the example of a series of

streets that are next to each other; we might describe each pair of adjacent streets as

near each other, but the two farthest apart might well not be described as near each

other. The conclusions literally read: “column mean three and column mean one are

equal, but different from (smaller than) column means two, four, and five. Column

means two and four are equal, and columns four and five are equal, but column

mean two is different from (smaller than) column mean five.” However, as a

practical matter, we would conclude that column means three and one are equal

and different from (smaller than) the other three column means; column mean two

5This quote is not elegantly said. To be very technical, we should say, “We cannot reject the

contention that true column means three and one are equal; we also cannot reject that contention

for column means two, four, and five. However, we can reject the contention that each column

mean in the first subset is equal to each column mean in the second subset.” The authors view the

issue as a choice between clarity and elegance, and prefer the clarity.

4.3 Pairwise Comparisons 117



is different from (smaller than) column mean five; we do not get a clear indication

concerning the status of column mean four, except that it is between column means

two and five, inclusive.

As we indicated earlier, Fisher’s least significant difference test starts with a

fixed value for Type I error probability (for each individual comparison). In this

case, with α ¼ .05, the probability of at least one false rejection, given that all H0’s
are true, would be an experimentwise error rate of .401 if the comparisons were

independent, since we are, in essence, performing C5
2 ¼ 10 pairwise comparisons;

of course, they are not, and the true experimentwise error rate is not straightforward

to obtain.

Example 4.4 Using JMP to Perform a t-Test and Fisher’s LSD

Multiple comparison of means can be easily done in JMP. However, JMP is

somewhat limited in its coverage of the multiple-comparison tests discussed in

this chapter. Another consideration is that JMP, like Excel, does not perform

Fisher’s LSD test directly; what it can do is a t-test for any two columns. We

illustrate the use of JMP using the data in Table 4.4, which corresponds to brokers

1 and 2 in our AFS broker study and repeated here for convenience. Note that these

columns are organized differently in JMP; that is, the first column is the indepen-

dent variable (here, named Column 1 and Column 2) and the second is the response

(data values). The t-test is found in the dropdown menu in the inverted triangle,

where we can also find the Compare Means tool (available tests are Student’s t,
Tukey’s HSD, Hsu MCB, and Dunnett’s).

The output using Student’s t-test is shown in Fig. 4.4. We choose to illustrate the

t-test assuming equal variances. As we mentioned earlier, this is in keeping with the

assumptions made in Fisher’s LSD analysis.

Table 4.4 Data for Fisher’s LSD analysis

Column 1 Column 2

12 7
3 17
5 13
�1 11
12 7
5 17
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Fig. 4.4 Fisher’s LSD test output in JMP
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The output in Fig. 4.4 indicates that at α¼ .05, we accept the equality of column

means one and two (though it was close – the p-value of .057 in the t-test table is

only slightly above .05). We will discuss the output results obtained using other

statistical packages in the Appendix. The Fisher’s LSD test is the one pairwise

comparison procedure that directly considers the Type I error as a per comparison

error rate. The remaining pairwise comparison (and exploratory comparison) pro-

cedures focus on the experimentwise error rate.

4.3.2 Tukey’s Honestly Significant Difference Test

The honestly significant difference (HSD) test, devised by J. W. Tukey, focuses on

the experimentwise error rate, a. Except for the value against which we compare the

difference in column means to determine significance, the HSD test works in a

manner similar to that of the LSD test in the previous section. That there is any

difference at all results from the focus on the experimentwise error rate instead of

on the individual comparison error rate. There are two different, equivalent

approaches to applying the HSD test. One resembles the approach used in the

LSD discussion, and simply replaces t1� α/2 in the formula for LSD,

LSD ¼ t1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSW=R

p
by a special Tukey t-value, which could be notated as tuk1� a/2. Its derivation could

be described and a table of these values, as a function of a, provided. This would

give us the HSD value of

HSD ¼ tuk1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSW=R

p
The table of tuk1� a/2 values would be those that control a at the desired value.

Although this approach seems to the authors to have great pedagogical virtue,

especially after having introduced the LSD technique, the vast majority of discussions

of the HSD form the same numerical value of HSD as above, but by viewing it as

HSD ¼ q1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSW=R

p
where q1�α=2 ¼ tuk1�a=2

� � � ffiffiffi
2

p
. (The traditional notation for indexing q uses the

symbol α in place of a, but this α is meant to represent the experimentwise error

rate.) In other words, instead of simply replacing t1� α/2 by tuk1� a/2, we replace

t1�α=2
� � ffiffiffi

2
p

by q1� α/2. In a sense, we can say that the table value of q includes the

multiplier
ffiffiffi
2

p
.
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To repeat, the HSD procedure works the same way as does the LSD procedure

(including the rank-order step and so on – we illustrate it below), except

that the differences between pairs of column means are compared to HSD, not

LSD, and

HSD ¼ q1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSW=R

p
A few words about q1� α/2 are in order. The difference between the largest

and smallest of a set of column means, that is, the range of the column means,

under the null hypothesis assumption that all true column means are equal, depends

on how many column means there are, as well as on the standard deviation of

the data. The “how many column means under study” question comes into the

discussion in a natural way; if we sample two people, the range of heights of the

two is their height difference. If we add another person to the mix, the range of

heights can only stay the same or get larger. Surely, we’d expect the range in

heights of 100 people (maximum height minus minimum height) to be much larger

than the range of heights of only two randomly chosen people. This concept is

related to the primary ideas in the field called order statistics. The random variable,

q, is defined, with �Y’s as column means and R as the number of replicates per

column, as

q ¼ ð�Ylargest � �YsmallestÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSW=R

p
The probability distribution of q is called the Studentized range distribution. The

percentiles of the distribution of q, q1� α/2 being the (1� α/2)th percentile, depend
on how many columns are under study and, similar to the t distribution, how many

degrees of freedom, C(R� 1), are associated with the MSW. Therefore, sometimes,

q1� α/2 is written as q(C, df)1� α/2, and

HSD ¼ qðC,df Þ1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSW=R

p
Table 4.5 is a Studentized range table for various values of C, df, and α.
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Table 4.5 Studentized range table

Error

df a

Number of treatment means

2 3 4 5 6 7 8 9 10 11

5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17
.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48

6 .05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65
.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30

7 .05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30
.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55

8 .05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05
.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03

9 .05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87
.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65

10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72
.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36

11 .05 3.11 3.82 4.26 4.57 4.82 5.03 5.30 5.35 5.49 5.61
.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13

12 .05 3.08 3.77 4.20 4.52 4.75 4.95 5.12 5.27 5.39 5.51
.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94

13 .05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43
.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79

14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36
.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66

15 .05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31
.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55

16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26
.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46

17 .05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21
.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38

18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17
.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31

19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14
.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25

20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11
.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19

24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 3.92 5.01

.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02
30 .05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92

.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85
40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82

.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69
60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73

.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53
120 .05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64

.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37
α .05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55

.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23

Source: E. S. Pearson and H. O. Hartley (1966), Biometrika Tables for Statisticians, vol. 1, 3rd ed
(Reprinted with permission of Oxford University Press)
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Example 4.5 Broker Study Revisited (Tukey’s HSD Test)

We now illustrate the HSD test for our AFS broker study example.We begin the same

way we began for the LSD test, by writing the column means in ascending order.

Column: 3 1 2 4 5

Mean: 5 6 12 14 17

However, now we must compute the HSD; note that C ¼ 5, df ¼ 25, MSW ¼
21.2, R ¼ 6, and suppose we choose a ¼ .05 (recall that a is called α in the

q expression):

HSD ¼ qðC,df Þ1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSW=R

p
¼ ð4:16Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

21:2=6
p

¼ 7:82

(The value 4.16 is linearly interpolated from the df¼ 24 value, 4.17, and the df¼ 30

value, 4.10, both for number of treatments ¼ 5, circled in Table 4.5.)

Next, as we did for the LSD, we examine the column means and identify any

differences in adjacent column means that exceed our HSD of 7.82. If we find any,

we note this fact with a vertical bar. In this case, no adjacent column means have a

difference greater than 7.82.

Thus, we need to compare each of the 10 differences in column means with the

HSD, as shown in Table 4.6. What is the story that Table 4.6 tells? If we ignore the

column two mean for the moment, we conclude that column means three and one

are the same, but different from (smaller than) column means four and five, which

are themselves the same; that is,

Conclusion: 3 1 4 5

Table 4.6 Tukey’s HSD test

Columns

compared

Difference in

means

Difference vs.
7.82

Reject

equality

3 vs. 1 * <
3 vs. 2 7 <
3 vs. 4 9 > Yes
3 vs. 5 12 > Yes
1 vs. 2 * <
1 vs. 4 8 > Yes
1 vs. 5 11 > Yes
2 vs. 4 * <
2 vs. 5 5 <
4 vs. 5 * <
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However, column mean two is “the same as column means three and one,” but

also “the same as column means four and five.” (As pointed out in footnote 5, this

type of phrasing is more concise than it is elegant.) We have an inconsistency of the

type expressed earlier. In a consulting capacity, we would tell a client that “column

means three and one cannot be said to be different, column means four and five

cannot be said to be different, but the former two can be said to be different from

(smaller than) the latter two; we cannot determine the role of column mean two.”

We would express this thought diagrammatically as

Conclusion: 3 1 2 4 5

In JMP, the same results are obtained as indicated in the output in Fig. 4.5 (seen

in the “Connecting Letters Report” section). Note that JMP uses letters to indicate

which means differ or not, a common notation used in scientific reports.

It should be noted that one potential reason for obtaining different results from those

of the Fisher’s LSD analysis is that the per-comparison error rates are very different. In

the immediately preceding Tukey’s HSD analysis, with 10 comparisons and a ¼ .05,

each comparison error rate is, relatively speaking, very small; if theywere independent

comparisons, which they’re not, each would be only .0051. The per comparison error

rate for the Fisher’s LSD analysis was α ¼ .05, about ten times larger.

Tukey’s HSD test determines the HSD based on the difference in the two most

extreme means
�
�Ylargest � �Ysmallest

�
and uses it as the benchmark for all pairwise

comparisons. It is, therefore, considered by many to be too conservative, yielding

fewer significant results than might be warranted (that is, it is said to be negatively

biased). This is because a difference other than that of the two extremes, but which

is nearly as large as this difference, may not be judged as contradicting H0, as it

might be judged under a less conservative test in which the critical difference to

reject H0 is set at a more appropriate value. For this reason, the Newman-Keuls test,

which we cover next, is considered by many to be preferable to Tukey’s HSD test.

4.3.3 Newman-Keuls Test with Example

The Newman-Keuls test6 is an alternative to Tukey’s HSD test. It is similar to

the HSD test in that it uses the same Studentized range distribution table.

However, it differs from the HSD test in that it does not use the same value of

q1� α/2¼ q(C, df)1� α/2 for all individual comparisons, but uses a value, q(s, df)1� α/2,

that takes into account how many “steps,” s, separate the two means being com-

pared after the means are rank-ordered. If, as in our AFS broker study example,

6Some of the tests discussed in this chapter go by more than one name. For example, Fisher’s LSD
test is often called, simply, the LSD test. The Newman-Keuls test is sometimes called the Student-

Newman-Keuls (or S-N-K) test.
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Fig. 4.5 Tukey’s HSD test output in JMP
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C ¼ 5, then when comparing the two extreme column means, s ¼ 5. If we label our

rank-ordered means in ascending order as means I, II, III, IV, and V (for the

moment, irrespective of original column label), we then use q(5, df)1� α/2 when

comparing means I and V (five steps apart, inclusive), q(4, df)1� α/2 when compar-

ing means I and IV or means II and V (four steps apart, inclusive), q(3, df)1� α/2
when comparing means I and III or means II and IV or means III and V (three steps

apart, inclusive), and lastly, q(2, df)1� α/2 (two steps apart, inclusive) when com-

paring the sets of adjacent means.

Thus, the format for performing the Newman-Keuls test is very much like that of

the HSD procedure, except that we compare different differences to different

benchmarks. In our example, with C ¼ 5, df ¼ 25, and again choosing a ¼ .05,

we have (again, with interpolation):

q 5; dfð Þ1�α=2 ¼ 4:16 sameas in theHSDanalysisð Þ
q 4; dfð Þ1�α=2 ¼ 3:89

q 3; dfð Þ1�α=2 ¼ 3:52

q 2; dfð Þ1�α=2 ¼ 2:91

With MSW ¼ 21.2 and R ¼ 6, we multiply each of these q values byffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:2=6

p ¼ 1:880, as we did in the HSD analysis, getting the NKD (our notation,

standing for Newman-Keuls difference) values of

s ¼ 5, NKD ¼ 7:82
s ¼ 4, NKD ¼ 7:31
s ¼ 3, NKD ¼ 6:62
s ¼ 2, NKD ¼ 5:47

Table 4.7 shows the Newman-Keuls test results for the same rank-ordered

column means as earlier, repeated here for convenience:

Column: 3 1 2 4 5

Mean: 5 6 12 14 17

Table 4.7 Newman-Keuls test

Columns

compared

Difference in

means

Difference vs.
NKD

Reject

equality

3 vs. 1 1 < (5.47)
3 vs. 2 7 > (6.62) Yes
3 vs. 4 9 > (7.31) Yes
3 vs. 5 12 > (7.82) Yes
1 vs. 2 6 > (5.47) Yes
1 vs. 4 8 > (6.62) Yes
1 vs. 5 11 > (7.31) Yes
2 vs. 4 2 < (5.47)
2 vs. 5 5 < (6.62)
4 vs. 5 3 < (5.47)
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We observe that the Newman-Keuls test finds two results that are different from

those of the HSD test: column means three and two, as well as column means one

and two, are now concluded to be different, whereas the HSD test did not conclude

that they were different. In some sense, it is no surprise that the Newman-Keuls test

indicated more significant comparisons than Tukey’s HSD test. As noted earlier,

each benchmark used in the Newman-Keuls test is less than or equal to its

counterpart comparison when performing Tukey’s HSD test; hence, the Newman-

Keuls test will always yield an equal or greater number of significant comparisons.

TheNewman-Keuls results happen to come outmuch cleaner than theTukey’sHSD
results, and now happen to equal the results yielded by the earlier Fisher’s LSD test:

Conclusion: 3 1 2 4 5

That is, column means three and one are the same, and are different from (smaller

than) columnmeans two, four, and five, the latter three columnmeans being the same.

The Newman-Keuls test has one minor caveat that needs to be mentioned. For the

procedure to actually control the experimentwise error rate at the stated value, it is

necessary that any time a comparisonwith a certain number of steps apart, s, is found to
be nonsignificant, all comparisons with a smaller value of s, within these bounds, are

automatically judged to be nonsignificant. In otherwords, no significant differences can

be concluded within the bounds of an already-judged difference that is nonsignificant.

4.3.4 Two Other Tests Comparing All Pairs of Column
Means

We briefly mention two other pairwise comparison tests that are similar to the three

tests we have examined in detail. Tukey, perhaps in reaction to the Newman-Keuls

test, suggested a middle ground between his HSD test and the Newman-Keuls test,

using the average of the HSD and the NKD as the benchmark to establish signif-

icance. This is called Tukey’s wholly significant difference (WSD). In our AFS

broker study example, we have, at a ¼ .05,

s HSD NKD WSD

5 7.82 7.82 7.82
4 7.82 7.31 7.57
3 7.82 6.62 7.22
2 7.82 5.47 6.64

In fact, using the WSD in this example happens to produce the same results as the

HSD test.

D. B. Duncan argues that both the Tukey and Newman-Keuls tests tend to use

a ¼ .05, and that, therefore, the individual comparison error rate is quite small,

smaller than traditional (indeed, we commented on this α earlier). Duncan suggests

that the value of a should be
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a ¼ 1� 1� αð Þs�1

where s is the number of steps, as defined in the Newman-Keuls test. You may recall

that the above formula correctly relates a to α only when the tests are all independent

of one another; Duncan, of course, knew that the tests to which his technique would

normally be applied are not independent, but nevertheless suggested this choice. The

procedures followed in Duncan’s test mirror those of the Newman-Keuls test,

especially the proceeding to a comparison with a lower value of s only when finding
a significant result. What singles out Duncan’s test is that it requires values of the
Studentized range tables that are not the usual ones of a¼ .05 or .01, but are values of

a such as .098 (α ¼ .05, s ¼ 3), .143 (α ¼ .05, s ¼ 4), and .185 (α ¼ .05, s ¼ 5).7

The choice ofwhich of the all-pairwise comparisons tests to use is, of course, up to the

individual experimenter. The authors believe that the Newman-Keuls is the best choice,

and various texts agree; however, we have noticed that the Tukey’s HSD test seems to

be the one that appears most frequently in the literature. This may be due to the fact

that many older texts which cover the HSD test do not cover the Newman-Keuls test.

4.3.5 Dunnett’s Test

Let’s consider one further pairwise comparison test. What distinguishes it from the

others of this section is that it does not test all pairs (or potentially all pairs) – only a

specific subset of pairs. Devised by C.W. Dunnett, this procedure considers one of the

columns as a “control,” or “control group,” and addresses only the comparison of each

other columnmean to this control columnmean. For example, if there arefive columns,

Dunnett’s test conducts four comparisons, not the ten comparisons that would

ensue if all pairwise comparisons were performed. Naturally, with fewer comparisons,

and a different pattern of interdependency among those comparisons, the same

experimentwise error rate a, in Dunnett’s test yields a set of table value benchmarks

that are different from the other tests that perform all pairwise comparisons.

Dunnett’s test is conducted similarly to Fisher’s LSD test, in that the Dunnett

difference (Dut-D, our notation) can be considered as simply replacing the t1� α/2 in

the LSD formula,

LSD ¼ t1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSW=R

p
with Dut1� a/2

Dut-D ¼ Dut1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSW=R

p
where the Dut1� a/2 value is taken from Table 4.8

7Tables for use with Duncan’s test can be found in D. B. Duncan (1955), “Multiple Range and

Multiple F Tests.” Biometrics, vol. 11, pp. 1–42.
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Example 4.6 Broker Study Revisited (Dunnett’s Test)

We illustrate Dunnett’s test using our AFS broker study example, assuming broker

one (that is, column one) is the control. This would correspond with a situation in

which broker one is the default broker, used the majority of the time, and a switch

will be made only if there is overwhelming evidence that another broker is superior.

For an experimentwise error rate of .05, df ¼ 25, and four columns (brokers, or in

Dunnett’s terms, “treatments”) in addition to the control, we have Dut1� a/2¼ 2.61

(circled in Table 4.8). This gives us

Dut�D ¼ Dut1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSW=R

p
¼ 2:61

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 21:2=6p

¼ 6:94

The results are in Table 4.9, with the columns and means repeated here for

convenience. Note that there is no need to rank-order the column means.

Table 4.8 Dunnett’s table, a ¼ .05

df

One control and number of treatments

1 and 1 1 and 2 1 and 3 1 and 4 1 and 5 1 and 6 1 and 7 1 and 8 1 and 9

5 2.57 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97
6 2.45 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71
7 2.36 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53
8 2.31 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41
9 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32
10 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24
11 2.20 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19
12 2.18 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14
13 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10
14 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07
15 2.13 2.44 2.61 2.73 2.82 2.89 2.93 3.00 3.04
16 2.12 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02
17 2.11 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00
18 2.10 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98
19 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96
20 2.09 2.38 2.34 2.63 2.73 2.80 2.80 2.90 2.95
24 2.06 2.35 2.31 2.61 2.70 2.76 2.81 2.86 2.90

30 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86
40 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81
60 2.00 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77
120 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73
œ 1.96 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69

Source: C. W. Dunnett (1995), “A Multiple Comparison Procedure for Comparing Several

Treatments with a Control.” Journal of the American Statistical Association, vol. 50, pp.
1096–1121 (Reprinted with permission)
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Column: 1 2 3 4 5

Mean: 6 12 5 14 17

We conclude that brokers 2 and 3 are not significantly different from the “control

broker” – broker 1 (although, in the case of broker 2, it is close), but that brokers

4 and 5 are, indeed, significantly different from (larger than) the control broker. The

output for this example in JMP is presented in Fig. 4.6.

Table 4.9 Dunnett’s test for AFS broker study

Columns

compared

Difference in

means

Difference vs.
7.82

Reject

equality

1 vs. 2 6 <
1 vs. 3 1 <
1 vs. 4 8 > Yes
1 vs. 5 11 > Yes

Fig. 4.6 Dunnett’s test output in JMP
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4.4 Post Hoc Exploratory Comparisons: The Scheffé Test

Sometimes the data themselves suggest comparisons. That is, the experimenters

had no anticipation at all that a specific set of column means should be compared

with another specific set of column means, but after examining the results, they

notice something that appears to be an identifiable pattern of differences and decide

to see if the differences are “statistically significant.” For example, suppose that, in

the AFS broker study example discussed in this chapter, the experimenters, just by

chance, noticed that broker 1 was the only female broker of the five, and had nearly

the lowest mean of the five, and had nearly twice as high a standard deviation as the

other low-scoring broker. Further suppose that as a consequence of this realization,

the experimenters decide to test whether column mean one differs from the average

of the other four column means.

What is the potential statistical problem with this test? The problem is that the

decision to conduct the test was post hoc; that is, it was based at least partly on a

finding from the data “after the fact.” Presumably the experimenters had no

intention to test the impact of gender. Likely, the issue was of interest only because

the female column mean was overtly smaller than all but one other column mean,

and the data in the column had a higher standard deviation than that for the other

low-scoring broker. Obviously, comparisons determined to be interesting after the

fact often reflect surprisingly large differences. Testing one of these interesting

differences as if it were a planned test is capitalizing too much on a chance

occurrence; the probability of Type I error is greatly magnified above its nominal

value. This kind of “data snooping,” combined with the fact that an infinite number

of comparisons can be made among a set of column means (when we do not limit

the comparisons to pairwise comparisons, and include all comparisons of one linear

combination of the column means to another linear combination of the column

means), requires that we do something to acknowledge (and control) the Type I

error potential.8

A real-world example of an analysis tainted by data snooping is an article one of

the authors saw in a newspaper that had the headline, “Incidence of certain diseases

later in life depends upon the month in which you’re born.” The article went on to

report the results of a hypothesis test (believed to have been a χ2 goodness of fit test
– the type of test wasn’t made perfectly clear in the article) that showed a

statistically-significant relationship between birth month and incidence of disease

for two diseases: cancer and schizophrenia. Not believing the conclusions in

general, and noting that the two diseases put forth were somewhat far apart along

8Some authors emphasize that the contrasts examined under this post hoc thought process must be

ones that are generated from examining the data “after the fact” – that is, they must be the result of

“data snooping.” One could debate whether the female/male issue is in that category; however, we

take the view that the key issue generating interest in the contrast is from the data: that the column

one mean is nearly the lowest, and the data composing the mean seem to have a somewhat higher

amount of variability, whereas we would never have considered gender if the data didn’t stand out.
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the spectrum of ill health, the author investigated further (by reading the article in

detail and trying to infer what analysis was actually performed). His conclusion was

that the experimenter tested for a relation between each of about 250 different

diseases and/or combinations of diseases and birth month, finding a strong rela-

tionship for these two diseases in particular; for all 250 tests, the experimenter used

the routine critical value with an individual comparison error rate of .01! Is there
any wonder that the author of the article found two tests/diseases highly

significant?9

H. Scheffé developed a test for controlling the experimentwise error rate at

whatever value is desired, in a situation in which all of the infinite possible

comparisons among the column means (not just pairs of column means) take

place, and regardless of how these comparisons are chosen. The Scheffé test can

be based on the F distribution or the t distribution, both of which were discussed

earlier. We illustrate it using the F distribution, since that is how it is usually

introduced.

4.4.1 Carrying Out the Test

Scheffé’s procedure tests the following hypotheses:

H0 : L ¼ 0

H1 : L 6¼ 0

where L is, in a sense, any linear combination of the true column means. Of course,

a pairwise comparison can be written in this form; for example, to compare column

means one and two when there are five columns:

L ¼ 1 μ1ð Þ þ ½�1 μ2ð Þ� þ 0 μ3ð Þ þ 0 μ4ð Þ þ 0 μ5ð Þ

The above L is simply μ1� μ2. The general case, when there are C column means, is

L ¼ a1 μ1ð Þ þ a2 μ2ð Þ þ . . .þ aC μCð Þ

The test statistic is

L0 ¼ a1
�
�Y1

�þ a2
�
�Y2

�þ . . .þ aC
�
�YC

�
The critical value that the absolute value of L’ must exceed in order to reject H0

(and conclude that the difference expressed by L is not equal to zero) depends, in

9In fact, the expected number of Type I errors, assuming all of the null hypotheses are true and

none of the diseases are related to birth-month, and incidence of the diseases are independent, is

.01 � (250)¼ 2.5.
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part, on the values of the aj in the L0 expression. This is because the variance of L0

can be shown to equal (summation over j from 1 to C)

σ2=R
� �X

a2j

� �

Of course, σ2 is unknown and the above expression assumes that the variance is

the same for each data point. Dividing σ2 by R reflects the well-known fact that the

variance of a sample mean (of independent data values) is the variance of an

individual data value, divided by the number of data values. The summation of

the squares of the aj values is basically derived from the matter of scale (that is, if all

the aj values were doubled, the variance would quadruple, and the standard devi-

ation would double).

As expected, we estimate σ2 by MSW. The critical value for the absolute value

of L0 is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
MSW=R

!
�
X

ða2j Þ � ðC� 1Þ � F1�aðdf 1, df 2Þ
vuut

where F1� a(df1, df2) stands for the (1� a)th percentile of the F distribution (the

value of a is the experimentwise error desired), with numerator df1¼C� 1, and

denominator df2¼C(R� 1). The degrees of freedom are the same as the degrees of

freedom for the original F-test. The C � 1 multiplicative factor enters the above

formula for the critical value of L0 for a subtle reason. The MSBc has (C � 1)

degrees of freedom; the maximum L02 value, divided by (MSW/R) �Pða2j Þ, is equal
to the MSBc, but that can occur only when the particular L0 explains all of the

variability expressed in the SSBc. Because the SSBc is divided by (C � 1) degrees

of freedom to produce the MSBc, whereas a comparison has only one degree of

freedom, the maximum L02 divided by ðMSW=RÞ �
X

a2j

� �
requires a critical

F-value that is (C � 1) times the original F1� a(df1, df2) value.

Example 4.7 Broker Study Revisited (Scheffé Test for Post Hoc Study)

We now apply the Scheffé test to the hypothetical situation mentioned in the

opening paragraph of this section: it was noticed that column mean one

corresponded to the only female broker, and was nearly the lowest value of all

the column means, and the experimenters decided to test whether column mean one

was statistically different from the average of the other four column means (that

consisted of male brokers).

The test of whether column mean one equals the average of the other columns

means or not is essentially taking a comparison:
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L0 ¼ �Y1 � 1=4ð Þ��Y2 þ �Y3 þ �Y4 þ �Y5

�
or

L0 ¼ 1
�
�Y1

�� 1=4
�
�Y2

�� 1=4
�
�Y3

�� 1=4
�
�Y4

�� 1=4
�
�Y5

�
For the column means (in the order 1, 2, 3, 4, 5) of 6, 12, 5, 14, 17, we calculate an

absolute value of L0 of |6� . 25(12þ 5þ 14þ 17)|¼ |6� 12|¼ 6.

And,

P
a2j

� �
¼ 1þ �1=4ð Þ2 þ �1=4ð Þ2 þ �1=4ð Þ2 þ �1=4ð Þ2
¼ 1:25

With MSW ¼ 21.2, R ¼ 6, C ¼ 5, and choosing a ¼ .05, which yields F1� a(df1,
df2)¼F.95(4, 25)¼ 2.76, we calculate the critical value for L0 to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:2=6ð Þ � 1:25 � 4 � 2:76

p
¼ 6:98

Because L0 equals 6, we accept H0 and cannot reject the hypothesis that the true

column-one mean equals the average of the other four true column means.

4.4.2 Discussion of Scheffé Test

If the original F-test accepts H0 (that all the column means are equal), there can

never be a comparison for which the Scheffé test rejects H0 (that the true value of

the comparison equals zero). If the original F-test rejects its H0, then there exists at

least one comparison for which the Scheffé test would reject its H0. Of course, in

this latter case, the experimenter may not actually choose to test a particular

comparison for which the Scheffé test rejects H0.

Because the Scheffé test goes out of its way to cover all possible comparisons
while still retaining an experimentwise error rate of a, it has relatively low
power. It should not be used for pairwise comparisons (since the other tests
presented are more powerful), nor when there are planned comparisons.

The notion of testing whether a linear combination of column means is zero or

not is an important one. Indeed, this notion is a good introduction to the next

chapter, in which we consider orthogonal contrasts; these are sets of linear combi-

nations of the column means with special properties, and will be defined more

precisely in Chap. 5.
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Example 4.8 A Larger-Scale Example: Customer Satisfaction Study

We revisit the Merrimack Valley Pediatric Clinic (MVPC) example of Chap. 2, in

which we had customer satisfaction data for its four locations (Amesbury, Andover,

Methuen, and Salem), and wished to inquire, among other things, whether the

average level of satisfaction differed by location. For details about the scale,

questions, and so on, see Example 2.3. For convenience, we repeat the data in

Table 4.10; we have 30 responders from each location.

In this example, we will make an exception and illustrate how the multiple-

comparison tests discussed in this chapter can be made in SPSS, so that the reader

has some software possibility that, indeed, does all the techniques presented in this

chapter. These tests can be found under Analyze > Compare Means > One-Way

ANOVA and then clicking on Post Hoc..., and checking off the tests wished to be

performed (indicated by arrows in Fig. 4.7). As noted earlier, JMP is limited in

terms of the tests it can perform.

Table 4.10 Data from MVPC satisfaction study

Amesbury Andover Methuen Salem

66 55 56 64
66 50 56 70
66 51 57 62
67 47 58 64
70 57 61 66

64 48 54 62
71 52 62 67
66 50 57 60
71 48 61 68
67 50 58 68

63 48 54 66
60 49 51 66
66 52 57 61
70 48 60 63
69 48 59 67

66 48 56 67
70 51 61 70
65 49 55 62
71 46 62 62
63 51 53 68

69 54 59 70
67 54 58 62
64 49 54 63
68 55 58 65
65 47 55 68

67 47 58 68
65 53 55 64
70 51 60 65
68 50 58 69
73 54 64 62

4.4 Post Hoc Exploratory Comparisons: The Scheffé Test 135



SPSS, as a statistical software package, recognizes that there are two variables in
this study, a dependent variable and one independent variable, indicated by the user.

The ANOVA results, in SPSS output format, are in Table 4.11.

Fig. 4.7 Multiple-comparison tests in SPSS

Table 4.11 ANOVA for MVPC satisfaction study using SPSS

Tests of between-subjects effects

Dependent variable: satisfaction

Source Type III sum of

squares

df Mean square F Sig.

Corrected model 5296.425a 3 1765.475 205.295 .000
Intercept 433321.008 1 433321.008 50387.847 .000
Location 5296.425 3 1765.475 205.295 .000
Error 997.567 116 8.600
Total 439615.000 120
Corrected total 6293.992 119

aR Squared ¼ .842 (Adjusted R Squared ¼ .837)
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Fisher’s LSD

We request Fisher’s LSD test and the output is in Table 4.12. The “Sig.” values

refer to the p-values when testing whether the means in that subset are equal, with

an * next to the mean differences with p-value less than .05. Different versions of

SPSS yield different formats for the output, although the substance of the results is

the same. In essence, Fisher’s LSD test with α ¼ .05 indicates that all four groups

are different from one another.

Tukey’s HSD

Tukey’s HSD test (Table 4.13) with a ¼ .05 indicates that Andover has a different

mean from the others, Methuen has a different mean from the others, and Salem and

Amesbury have means that cannot be said to differ. Of course, the different result

from that of Fisher’s LSD is caused primarily by the much lower α per individual

comparison in the HSD test.

Table 4.12 Fisher’s LSD test for MVPC satisfaction study in SPSS

Multiple comparisons

Dependent variable: satisfaction

LSD

(I) Location (J) Location

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence Interval

Lower

Bound

Upper

Bound

Amesbury Andover 16.70000* .75718 .000 15.2003 18.1997

Methuen 9.53333* .75718 .000 8.0337 11.0330

Salem 1.80000* .75718 .019 .3003 3.2997

Andover Amesbury �16.70000* .75718 .000 �18.1997 �15.2003

Methuen �7.16667* .75718 .000 �8.6663 �5.6670

Salem �14.90000* .75718 .000 �16.3997 �13.4003

Methuen Amesbury �9.53333* .75718 .000 �11.0330 �8.0337

Andover 7.16667* .75718 .000 5.6670 8.6663

Salem �7.73333* .75718 .000 �9.2330 �6.2337

Salem Amesbury �1.80000* .75718 .019 �3.2997 �0.3003

Andover 14.90000* .75718 .000 13.4003 16.3997

Methuen 7.73333* .75718 .000 6.2337 9.2330

*The mean difference is significant at the 0.05 level
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For Tukey’s HSD, the SPSS output also provides another format, called “Homo-

geneous Subsets,” shown in Table 4.14. (SPSS doesn’t provide this format for

Fisher’s LSD.) The “Homogeneous Subset” format directly illustrates (in a sense,

“sums up”) the conclusions to be drawn, and thus, could be argued to be a more

useful format.

Table 4.13 Tukey’s HSD test in SPSS

Multiple comparisons

Dependent variable: satisfaction

Tukey HSD

(I) Location (J) Location

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Amesbury Andover 16.70000* .75718 .000 14.7263 18.6737

Methuen 9.53333* .75718 .000 7.5596 11.5070

Salem 1.80000 .75718 .087 �.1737 3.7737

Andover Amesbury �16.70000* .75718 .000 �18.6737 �14.7263

Methuen �7.16667* .75718 .000 �9.1404 �5.1930

Salem �14.90000* .75718 .000 �16.8737 �12.9263

Methuen Amesbury �9.53333* .75718 .000 �11.5070 �7.5596

Andover 7.16667* .75718 .000 5.1930 9.1404

Salem �7.73333* .75718 .000 �9.7070 �5.7596

Salem Amesbury �1.80000 .75718 .087 �3.7737 .1737

Andover 14.90000* .75718 .000 12.9263 16.8737

Methuen 7.73333* .75718 .000 5.7596 9.7070

*The mean difference is significant at the 0.05 level

Table 4.14 HSD test: Homogeneous Subset format in SPSS

Satisfaction

Tukey HSDa

Location N

Subset for alpha ¼ 0.05

1 2 3

Andover 30 50.4000

57.5667
65.3000

Methuen 30
Salem 30
Amesbury 30 67.1000
Sig. 1.000 1.000 0.087

Means for groups in homogeneous subsets are displayed
aUses harmonic mean sample size ¼ 30.00010

10(Harmonic mean is expressed as the reciprocal of the arithmetic mean of the reciprocals. For

instance, the harmonic mean of 2, 3, and 5 is 2�1þ3�1þ5�1

3

� ��1

¼ 3
1
2
þ1

3
þ1

5

¼ 3
31
30

¼ 2:903).
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Newman-Keuls Test

Next, we demonstrate the Newman-Keuls test. As mentioned in footnote 6, some

texts (and the SPSS output) call it by the name Student-Newman-Keuls test (S-N-K

in SPSS). Our test results (in Table 4.15) duplicate those found earlier, which are

that all four groups differ from one another. While SPSS provides both formats for

the HSD test, it provides only the Homogeneous Subsets format for the Student-

Newman-Keuls test.

SPSS includes Tukey’s WSD (called Tukey’s-b in this software) and Duncan’s
test, two other tests we briefly discussed without full analysis. The SPSS output,

shown here only in homogeneous subset form, is in Table 4.16.

Table 4.15 Student-Newman-Keuls test in SPSS

Satisfaction

Student-Newman-Keulsa

Location N

Subset for alpha ¼ 0.05

1 2 3 4

Andover 30 50.4000

57.5667

65.3000
67.1000

Methuen 30
Salem 30
Amesbury 30

1.000Sig. 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed
aUses harmonic mean sample size ¼ 30.000

Table 4.16 Tukey’s WSD and Duncan’s test in SPSS

Satisfaction

Location

N Subset for alpha ¼ 0.05

1 2 3 4

Tukey Ba Andover 30 50.4000
57.5667

65.3000

67.1000

Methuen 30
Salem 30
Amesbury 30

Duncana Andover 30 50.4000
57.5667

65.3000
67.1000

Methuen 30
Salem 30
Amesbury 30
Sig. 1.000 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed
aUses harmonic mean sample size ¼ 30.000
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Dunnett’s Test

To perform Dunnett’s test (Table 4.17), we assume that Amesbury is the “control”

location. In SPSS, the control group needs to be either the first or the last category.

Obviously, we can perform Dunnett’s test with any of the locations as the control

group – it is just a matter of reordering the locations so that the desired group is

placed in the first or last category. Methuen and Andover differ from the control

location, whereas the p-value for Salem was slightly above .05 even though it is

listed in Table 4.17 as .050 rounded to three digits.

Example 4.9 The Qualities of a Superior Motel (Revisited)

A major experiment, including the two key factors as noted at the beginning of the

chapter, was conducted. Of the two factors listed, “breakfast” was highly signifi-

cant, but “entertainment” was not significant. However, as noted earlier, what was

key in each case was not solely to determine whether the level of the factor

“mattered,” but more specifically to identify the pattern of differences, if any,

because different costs apply to implementing different levels of each factor.

Indeed, it was conceivable that a level of one of the factors could engender a higher

estimated demand than another level of that factor, but not exceed that other level

by enough to be economically justified.

For the factor “breakfast,” Fig. 4.8 shows the mean for each level for the

infrequent users or (up to now) nonusers in terms of estimated number of nights

of stay at the chain over the next 12 months.

Table 4.17 Dunnett’s test in SPSS

Multiple comparisons

Dependent variable: satisfaction

Dunnett t (2-sided)a

(I) Location (J) Location

Mean difference

(I-J) Std. error Sig.

95% confidence interval

Lower bound Upper bound

Andover Amesbury �16.70000* .75718 .000 �18.5022 �14.8978

Methuen Amesbury �9.53333* .75718 .000 �11.3355 �7.7311

Salem Amesbury �1.80000 .75718 .050 �3.6022 .0022

*The mean difference is significant at the 0.05 level
aDunnett t-tests treat one group as a control, and compare all other groups against it
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Using a Newman-Keuls test with a ¼ .05, levels 1, 2, and 3 were not signifi-

cantly different from one another and were all different from (lower than) levels

4, 5, and 6. Levels 4 and 5 were not different from one another, but level 6 was

different from (higher than) all of the others. It appeared to motel management that

even though it was truly difficult to interpret the actual means with any precision,

never mind an exact economic meaning, the addition of a “chef” (in reality, simply

a somewhat-experienced cook who dresses in white with a chef’s hat) was worth
implementing. Motel management interpreted the data to suggest that it was

economically advisable to also add the Sara Lee-like pastry. Both were

implemented as of early 1999.

As mentioned, the results were not significant for entertainment. Motel manage-

ment thought that this was because the motel chain was used primarily by travelers

on their way from one place to another, most often staying one night at a time. For

those travelers, breakfast is still important (“Folks are still going to eat!”), but they

often don’t spend sufficient time in the room to make the entertainment issue a

significant one. Of course, this insight came after seeing the results. If true, and if it

had been recognized before the experiment was conducted, it might have suggested

not including that factor in the experiment.

Exercises

1. Consider the data on sales results for three levels of the factor “treatment” in

Table 4EX.1 (The data were presented in Exercise 2 in Chap. 2 and are repeated

here for convenience.) Perform Fisher’s LSD test for all pairwise comparisons.

Use α ¼ .05.

Mean Level Breakfast (at no extra charge)

3.5 1 1. None available

3.8 2 2. Continental breakfast buffet – fruit juices, coffee, milk, fresh fruit, 
bagels, doughnuts

4.0 3 3. Enhanced breakfast buffet – add some hot items, such as waffles and 
pancakes, that the patron makes him/her self

5.2 4 4. Enhanced breakfast buffet – add some hot items, such as waffles and 
pancakes, with a “chef” who makes them for the patron

5.4 5 5. Enhanced breakfast buffet – add some hot items, such as waffles and 
pancakes, that the patron makes him/her self, and pastry (dough from 
a company like Sara Lee) freshly baked on the premises

6.4 6 6. Enhanced breakfast buffet – add some hot items, such as waffles and 
pancakes, with a “chef” who makes them for the patron, and pastry 
(dough from a company like Sara Lee) freshly baked on the
premises

Fig. 4.8 Mean for levels of the factor “breakfast”
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2. For the Table 4EX.1 data, perform Tukey’s HSD test for all pairwise compar-

isons. Use an experimentwise error rate of a ¼ .05.

3. For the Table 4EX.1 data, perform the Newman-Keuls test for all pairwise

comparisons. Use an experimentwise error rate of a ¼ .05.

4. For the Table 4EX.1 data, perform Dunnett’s test, assuming that column one is

the control group. Use an experimentwise error rate of a ¼ .05.

5. For the Table 4EX.1 data, perform Scheffé’s test to test whether or not the

mean of column two is equal to the average of column means one and three.

6. Consider Exercise 4 in Chap. 2, in which we noted the five different

manufacturing process technologies which can be dominant:

A. Project

B. Job shop

C. Batch

D. Mass production

E. Continuous process

Using the data for that exercise (repeated for convenience in Table 4EX.6),

perform a Newman-Keuls test at a¼ .05. Explain your conclusions in practical

terms.

7. Consider the Table 4EX.7 data (repeated from Exercise 6 of Chap. 2),

representing four levels of lodging on a cruise ship. The response is an

assessment of the amount of motion felt during cruising (scaled from 1 to

30). Perform Tukey’s HSD test on these data at a ¼ .05. Explain your

conclusions in practical terms.

Table 4EX.1 Sales data

Treatment

1 2 3

6 6 11
3 5 10
8 4 8
3 9 11
6 6 11
3 5 10
8 4 8
3 9 11

Table 4EX.6 Staffing ratios by dominant technology

A B C D E

1.7 1.7 2.4 1.8 3.1
1.2 1.9 1.2 2.2 2.9
0.9 0.9 1.6 2.0 2.4
0.6 0.9 1.0 1.4 2.4
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8. For Table 4EX.7, perform a Newman-Keuls test on the data at a¼ .05. Explain

your conclusions in practical terms.

9. In Exercises 7 and 8, do the two tests yield exactly the same practical conclu-

sions? Explain.

10. Consider the data in Table 4EX.10 (repeated from Exercise 14 of Chap. 2),

which represents the amount of life insurance (in $1,000s) carried by a random

selection of seven state senators from each of three states: California, Kansas,

and Connecticut. Perform Fisher’s LSD test for all three pairwise comparisons.

11. For Table 4EX.10, perform Tukey’s HSD test for all three pairwise compari-

sons. Use an experimentwise error rate of a ¼ .05.

12. For Table 4EX.10, perform Dunnett’s test assuming that column one is the

control; repeat Dunnett’s test assuming column two is the control; repeat

Dunnett’s test assuming column three is the control. Are your results consis-

tent? How do the Dunnett results, combined, relate to the HSD test results? Use

an experimentwise error rate of a ¼ .05.

13. Among the brokers in the example used throughout the chapter, suppose that

broker five differed from the others in some identifiable way (such as years of

experience). Using Scheffé’s test, would you accept or reject the hypothesis

that the mean for broker five equals the average of the means for brokers two,

three, and four (that is, considering only the male brokers)? Use a ¼ .05.

14. Tables 4EX.14a and b show the data and ANOVA results for the AA-cell

battery problem of Chap. 2. Perform a Tukey’s HSD test on the eight column

means. Use a ¼ .05.

Table 4EX.7 Motion assessment by ship level

1 2 3 4

16 16 28 24
22 25 17 28
14 14 27 17
8 14 20 16
18 17 23 22
8 14 23 25

Table 4EX.10 Life insurance (in $1,000s)

State

California Kansas Connecticut

90 80 165
200 140 160
225 150 140
100 140 160
170 150 175
300 300 155
250 280 180
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15. For Table 4EX.14a, perform a Newman-Keuls test on the eight column means.

Use a ¼ .05.

16. Do the results for Exercise 14 differ from the results for Exercise 15?

17. For Table 4EX.14a, perform a Dunnett’s test with column 3 as the control

column. Use a ¼ .05.

18. For Table 4EX.14a, use Scheffé’s test to test whether the average true column

mean for the columns with the four lowest observed column means is equal

(or not) to the average of the true column means for the four columns with the

four highest observed column means. Use a ¼ .05. (The wording of this

question itself illustrates well the conceptual issues involved in post hoc
comparisons.)

19. Using the data from Table 2EX.12 in Chap. 2, which consist of the waiting

times of patients at four offices of the Merrimack Valley Pediatric Clinic

(MVPC), perform Fisher’s LSD test for the four offices, using α ¼ .05.

20. Using the same MVPC waiting time data as for Exercise 19, perform Tukey’s
HSD test on the four columns, using a ¼ .05.

21. Repeat Exercise 20, using the Newman-Keuls test.

22. Repeat Exercise 20 using Dunnett’s test and assuming that Andover is the

“control group.”

23. Using the data from Exercise 13 of Chap. 2, which consist of the golf scores at

four local golf courses for golfers similar to those of Eastern Electric, perform

Fisher’s LSD test for the four courses, using α ¼ .05.

24. Using the same golf-score data as for Exercise 23, perform Tukey’s HSD test

on the four columns, using a ¼ .05.

25. Repeat Exercise 24, using the Newman-Keuls test.

26. Repeat Exercise 24, using Dunnett’s test and assuming that the Meadow Brook

golf course is the “control group.”

Table 4EX.14a Battery lifetime (in hours)

Device

1 2 3 4 5 6 7 8

1.8 4.2 8.6 7.0 4.2 4.2 7.8 9.0
5.0 5.4 4.6 5.0 7.8 4.2 7.0 7.4
1.0 4.2 4.2 9.0 6.6 5.4 9.8 5.8

2.6 4.6 5.8 7.0 6.2 4.6 8.2 7.4

Table 4EX.14b ANOVA table for battery-lifetime study

Source of Variability SSQ df MS Fcalc

Device 69.12 7 9.87 3.38

Error 46.72 16 2.92

Total 115.84 23
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27. Using the data from Exercise 21 of Chap. 2 (repeated in Table 4EX.27 for

convenience), which consist of the yield of soybean (in kg) grown using

different amounts of potassium (in ppm), perform Fisher’s LSD test for the

four concentrations, using α ¼ .05. Perform Tukey’s HSD test on the four

columns, using a ¼ .05. Repeat this exercise using the Newman-Keuls test and

Dunnett’s test (assuming that the concentration of 0 ppm is the control group).

Do the results of these tests differ?

28. Using the data from Exercise 22 of Chap. 2 (repeated in Table 4EX.28 for

convenience), which consist of the extraction yield of oil from fish waste using

five temperatures, perform Fisher’s LSD test for the four columns, using

α ¼ .05. Perform Tukey’s HSD test on the four columns, using a ¼ .05. Repeat

this exercise using the Newman-Keuls test and Dunnett’s test (assuming that

the temperature of 117 �F is the control group). Do the results of these tests

differ?

Appendix

Example 4.10 Broker Study using Excel

We revisit the broker study example to illustrate the Fisher’s LSD test discussed in

this chapter. The Excel software package does not routinely include multiple-

comparison testing of any kind. However, it does include the t-test for a single

Table 4EX.27 Yield of grain (in kg) by the concentration of

potassium (ppm)

Potassium (ppm)

0 60 120 180

15.7 19.5 18.1 19.3
13.1 17.8 19.2 21.4
13.5 16.7 18.7 20.9
14.9 17.7 19.8 21.3
14.4 18.2 19.5 20.8
13.9 18.8 19.7 21.1

Table 4EX.28 Yield of fish oil by temperature

Temperature (�F)
77 87 97 107 117

78.6 67.7 62.2 55.0 52.4
77.2 68.9 61.4 53.9 51.1
78.1 66.6 61.5 54.3 51.9
77.8 67.9 62.1 55.1 52.0
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pair of columns (and in theory, one could do this t-test for each pair of columns).

We illustrate the use of this t-test in Excel solely because of its likelihood of

availability to virtually all readers; add-ins produced by several companies do

include most of the techniques discussed later in the chapter.

For simplicity, let’s assume we want to compare only brokers 1 and 2. The t-test
for columns one and two is illustrated in Table 4.18; we choose to illustrate the

t-test assuming equal variances (available in the Data Analysis tool),11 as noted in

the body of the computer output. As we mentioned earlier, this is in keeping with

the assumption made in Fisher’s LSD analysis. Note that the pooled variance equals

23.4, a value not equal to the MSW used earlier in Fisher’s LSD of 21.2; indeed, the

pooled variance will be different for each pair tested. Commensurate with this fact

is that the degrees-of-freedom value of the variance estimate is only 10 (see

Table 4.18), instead of 25 as in the earlier LSD analysis; correspondingly, a

lower value of power would result if a series of unconnected t-tests were to be

conducted.

Table 4.18 t-test for AFS broker study (brokers 1 and 2) in

Excel

12 7

3 17

5 13

�1 11

12 7

5 17

t-Test: two-sample assuming equal variances

Variable 1 Variable 2

Mean 6 12

Variance 26.4 20.4

Observations 6 6

Pooled variance 23.4

Hypothesized mean difference 0

df 10

t Stat �2.1483

P(T<¼t) one-tail 0.0286

t Critical one-tail 1.8125

P(T<¼t) two-tail 0.0572

t Critical two-tail 2.2281

11The “Data Analysis” tool gives two options: (a) assuming equal variances and (b) not assuming

equal variances (which Excel words incorrectly as “assuming unequal variances”).
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The output in Table 4.18 indicates that at α ¼ .05, we accept the equality of

column means one and two (though it’s close – the p-value of .057 is only slightly

above .05). The output doesn’t literally determine an LSD for the difference in

column means, but it does the algebraic equivalent of finding a tcalc of �2.148

(simply called “t Stat” in Table 4.18), equal to the difference in column means

divided by the square root of (the pooled variance times the quantity [1/n1þ 1/n2]),
and comparing it with the “t Critical” (our t1� α/2) value of 2.228. It properly uses

the value for a two-tailed test, which implies another “t Critical” of �2.228. This

result would seem to contradict our conclusion from the previous LSD analysis that

column means one and two were different.

It is instructive to consider why the conclusions here are different. One reason is

that the single t-test uses a slightly higher variance estimate of 23.4 instead of the

21.2 of the earlier LSD analysis (the latter is the average variance estimate for the

five columns, not simply the average of the two columns being tested). However, a

second reason is that with only 10 degrees of freedom, a larger difference in

observed column means is necessary to conclude that there is a real difference,

retaining the same probability of Type I error; this is related to the fact that the

single t-test has less power – if there is a real difference, this test is less likely to

reveal it. Finally, as noted earlier, the accept/reject decision was a close one.

Example 4.11 Customer-Satisfaction Study using R

In this final demonstration, we illustrate how the MVPC customer satisfaction study

can be analyzed by the techniques covered in this chapter using R.

Fisher’s LSD

There are two ways in which we can perform the Fisher’s LSD in R. The first

involves a series of pairwise t-tests, similar to Excel. The second applies the

LSD.test() function available in the agricolae package. First, we will see

the procedures for a pairwise t-test. After importing the data and performing an

ANOVA (an object broker.aov is assigned), we can compute the LSD. In this

demonstration, we will compare brokers 1 and 2, as follows:

> score <- read.csv(file.path("/Users/documents", "ex4.11.

+csv"), header=F)

> score.aov <- aov(V2~V1, data=score)

# Create a new object for Amesbury:

> amesbury <- sum(score.aov$model$V1=="Amesbury")
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# Create a new object for Andover:

> andover <- sum(score.aov$model$V1=="Andover")

Next, we find the t value and the estimate of the sample standard deviation (s), as
we have done in Chap. 3, and then calculate the LSD:

> tvalue <- qt(0.025,score.aov$df.residual,lower.tail=F)

> tvalue

[1] 1.980626

>s<-sqrt(sum((score.aov$residuals)^2)/score.aov$df.residual)

> s

[1] 2.932527

> LSD <- tvalue*s*sqrt(1/amesbury + 1/andover)

> LSD

[1] 1.499681

We can calculate the difference of means for Amesbury and Andover and

compare it with the LSD:

> amesbury.mean <- mean(score.aov$model$V2[score.aov$model

+$V1== "Amesbury"])

> amesbury.mean

[1] 67.1

> andover.mean <- mean(score.aov$model$V2[score.aov$model

+$V1== "Andover"])

> andover.mean

[1] 50.4

> amesbury.mean–andover.mean > LSD

[1] TRUE

which confirms the results we obtained previously, that is, the means for Amesbury

and Andover are different.

Alternatively, we could use the pairwise.t.test () function to perform all

pairwise comparisons using t-tests, which would save time if we wanted to compare

all the “treatments” (in this case, brokers).

> pairwise.t.test(score$V2, score$V1, p.adj= "none")

Pairwise comparisons using t tests with pooled SD

data: score$V2 and score$V1
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Amesbury Andover Methuen
Andover < 2e-16 - -
Methuen < 2e-16 4.3e-16 -
Salem 0.019 < 2e-16 < 2e-16

P value adjustment method: none

Now, we will see the second way of performing the Fisher’s LSD using the LSD.

test() function available in the agricolae package. The arguments of this

function are the dependent variable (V2), the independent variable (V1), the

degrees of freedom of the error term (116), and the mean-square error or MSW

(8.6) (these last two values can be obtained in the ANOVA table or assigned to new

objects, as demonstrated below).

> df <- df.residual(score.aov)

> df

[1] 116

> MSerror <- deviance(score.aov)/df

> MSerror

[1] 8.599713

> lsd.test <- LSD.test(score$V2, score$V1, df, MSerror)

> lsd.test

$statistics

Mean CV MSerror LSD
60.09167 4.880089 8.599713 1.499681

$parameters

Df ntr t.value alpha test name.t
116 4 1.980626 0.05 Fisher-LSD score$V1

$means

score$V2 std r LCL UCL Min Max
Amesbury 67.10000 2.916658 30 66.03957 68.16043 60 73
Andover 50.40000 2.835733 30 49.33957 51.46043 46 57
Methuen 57.56667 3.013571 30 56.50623 58.62710 51 64
Salem 65.30000 2.961244 30 64.23957 66.36043 60 70

$comparison

NULL
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$groups

trt means M
1 Amesbury 67.10000 a
2 Salem 65.30000 b
3 Methuen 57.56667 c
4 Andover 50.40000 d

Tukey’s HSD

The TukeyHSD() function can be used for Tukey’s HSD test in R, as described

below:

> tukey <- TukeyHSD(score.aov, ordered=T)

> tukey

Tukey multiple comparisons of means

95% family-wise confidence level

factor levels have been ordered

Fit: aov(formula = V2 ~ V1, data = score)

$V1

diff lwr upr p adj
Methuen-Andover 7.166667 5.1929648 9.140369 0.0000000
Salem-Andover 14.900000 12.9262981 16.873702 0.0000000
Amesbury-Andover 16.700000 14.7262981 18.673702 0.0000000
Salem-Methuen 7.733333 5.7596315 9.707035 0.0000000
Amesbury-Methuen 9.533333 7.5596315 11.507035 0.0000000
Amesbury-Salem 1.800000 -0.1737019 3.773702 0.0872085

Alternatively, it is possible to use the HSD.test() function, which will return

the same results in a slightly different output.

> hsd <- HSD.test(score.aov, "V1", group=TRUE)

> hsd

$statistics

Mean CV MSerror HSD
60.09167 4.880089 8.599713 1.973702

$parameters

Df ntr StudentizedRange alpha test name.t
116 4 3.686381 0.05 Tukey V1
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$means

V2 std r Min Max
Amesbury 67.10000 2.916658 30 60 73
Andover 50.40000 2.835733 30 46 57
Methuen 57.56667 3.013571 30 51 64
Salem 65.30000 2.961244 30 60 70

$comparison

NULL

$groups

trt means M
1 Amesbury 67.10000 a
2 Salem 65.30000 a
3 Methuen 57.56667 b
4 Andover 50.40000 c

Newman-Keuls Test

The SNK.test() function can be used for Newman-Keuls test in R, as described

below:

> snk <- SNK.test(score.aov, "V1", df, MSerror, alpha=0.05,

+group=TRUE)

> snk

$statistics

Mean CV MSerror
60.09167 4.880089 8.599713

$parameters

Df ntr alpha test name.t
116 4 0.05 SNK V1

$SNK

Table CriticalRange
2 2.801028 1.499681
3 3.357590 1.797666
4 3.686381 1.973702

$means

V2 std r Min Max
Amesbury 67.10000 2.916658 30 60 73
Andover 50.40000 2.835733 30 46 57
Methuen 57.56667 3.013571 30 51 64
Salem 65.30000 2.961244 30 60 70
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$comparison

NULL

$groups

trt means M
1 Amesbury 67.10000 a
2 Salem 65.30000 b
3 Methuen 57.56667 c
4 Andover 50.40000 d

Dunnett’s Test

The Dunnett’s test can be performed using the procedure below. It requires the

glht() function available in the multcomp package. It automatically set the first

“treatment” as the control group.

> summary(glht(score.aov, linfct=mcp("V1"="Dunnett")))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = V2 ~ V1, data = score)

Linear Hypotheses:

Estimate
Std.
Error t value Pr(>|t|)

Andover - Amesbury == 0 -16.7000 0.7572 -22.056 <0.001 ***
Methuen - Amesbury == 0 -9.5333 0.7572 -12.591 <0.001 ***
Salem - Amesbury == 0 -1.8000 0.7572 -2.377 0.0505 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Alternatively, it is possible to use the DunnettTest() function available in the

DescTools package. An advantage of this approach is that it allows the user to set

which “treatment” will be the control (in this example, Methuen was set as the

control). If we do not specify the control, it will be set automatically as the first

“treatment”. Both alternatives are presented below.

# Option 1:

> dunnett <- DunnettTest(V2~V1, data=score)

> dunnett
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Dunnett’s test for comparing several treatments with a control :

95% family-wise confidence level

$Amesbury

diff lwr.ci upr.ci pval
Andover-
Amesbury

-16.700000 -18.502297 -14.897703182 <2e-16 ***

Methuen-
Amesbury

-9.533333 -11.335630 -7.731036516 <2e-16 ***

Salem-
Amesbury

-1.800000 -3.602297 0.002296818 0.0505 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

# Option 2:

> dunnett2 <- DunnettTest(V2~V1, control="broker3", data=broker)

> dunnett2

Dunnett’s test for comparing several treatments with a control :

95% family-wise confidence level

$Methuen

diff lwr.ci upr.ci pval
Amesbury-Methuen 9.533333 7.731037 11.33563 <2e-16 ***
Andover-Methuen -7.166667 -8.968963 -5.36437 <2e-16 ***
Salem-Methuen 7.733333 5.931037 9.53563 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Scheffé Test

The Scheffé test is applied using the scheffe.test() function also available in

the agricolae package. First, we create an object that includes the F value, which

will be used in the Scheffé test:

> Fvalue <- anova(score.aov)["V1", 4]

> Fvalue

[1] 205.2947

> scheffe <- scheffe.test(score.aov, "V1", df, MSerror, Fc,

+alpha=0.05, group=TRUE)
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> scheffe

$statistics

Mean CV MSerror CriticalDifference
60.09167 4.880089 8.599713 2.138087

$parameters

Df ntr F Scheffe alpha test name.t
116 4 2.682809 2.836975 0.05 Scheffe V1

$means

V2 std r Min Max
Amesbury 67.10000 2.916658 30 60 73
Andover 50.40000 2.835733 30 46 57
Methuen 57.56667 3.013571 30 51 64
Salem 65.30000 2.961244 30 60 70

$comparison

NULL

$groups

trt means M
1 Amesbury 67.10000 a
2 Salem 65.30000 a
3 Methuen 57.56667 b
4 Andover 50.40000 c
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Chapter 5

Orthogonality, Orthogonal Decomposition,
and Their Role in Modern Experimental
Design

In Chap. 2, we saw how to investigate whether or not one factor influences some

dependent variable. Our approach was to partition the total sum of squares (TSS),

the variability in the original data, into two components – the sum of squares

between columns (SSBc), attributable to the factor under study, and the sum of

squares within a column (SSW), the variability not explained by the factor under

study, and instead explained by “everything else.” Finally, these quantities were

combined with the appropriate degrees of freedom in order to assess statistical

significance. We were able to accept or reject the null hypothesis that all column

means are equal (or, correspondingly, reject or accept that the factor under study

has an impact on the response). In Chap. 4, we discussed multiple-comparison

techniques for asking more detailed questions about the factor under study; for

example, if not all column means are equal, how do they differ? We now present a

more sophisticated, flexible, and potent way to analyze (or “decompose”) the

impact of a factor on the response, not limited to pairwise comparisons.

The procedure amounts to partitioning SSBc into (C – 1) “orthogonal” (we define

this term in more detail later – for now, consider the word to mean “independent”)

components. Recall that the Bc in SSBc relates to the variability “between col-

umns.” The reference to columns is our way of referring to various values, or levels,

of the factor under study. There is no inherent meaning to the notion of columns;

indeed, in Chap. 2 we could just as well have written the data horizontally and

called the different levels “rows.”

Each of the (C – 1) orthogonal components represents a one-degree-of-freedom

test statistic (such as Fcalc), which can be viewed as addressing one particular

question (that is, testing one particular hypothesis) about the way in which the

factor under investigation affects the response. In terms of the battery example of

Chap. 2, where average battery lifetime was analyzed for eight different devices, we

might decompose the differences among the eight devices into seven sub-sources:

© Springer International Publishing AG 2018

P.D. Berger et al., Experimental Design, DOI 10.1007/978-3-319-64583-4_5
155



for example, the differences between two brands of cell phone, the differences

between two brands of flash camera, the difference between one brand of flash

camera and that same brand of flashlight, and so forth. Each of the seven questions

is formulated as one of seven1 orthogonal inquiries into the data’s message. We

revisit this battery lifetime example in an exercise at the end of the chapter.

Example 5.1 Planning Travel Packages at Joyful Voyages, Inc.

With the cruise-ship industry experiencing enormous growth – consumer demand

growing at an increasing rate and new entrants into the market making the entire

marketing process more competitive – Joyful Voyages, Inc.,2 decided to run a set of

experiments to help determine terms of a travel package that would enhance both

demand and profit. The cost structure of cruises is, in some sense, a “step function.”

Once the cruise is “a go,” that is, is sufficiently full so that the ship will indeed sail,

profit margins are extremely high on filling otherwise-empty berths; at least 80% of

a typical price paid for the cruise will be profit. The food costs are minimal and the

primary incremental costs are land costs (for example, the per person entry fee to a

museum, included in the cruise price).

Joyful Voyages was interested in testing various factors: the “offer” (discussed

in more detail below), different positionings, itinerary length, and cobranding with

strategic allies (for example, a well-known Japanese company for a trip to Japan).

Price (per person) was considered part of the offer. It was clear that, at least to begin

with, each destination had to be viewed as a “separate” study. If results were similar

for several destinations, then generalizations might be considered. The first exper-

iment was carried out for a specific destination in the South Pacific, encompassing a

series of biweekly sailings during a 12-week period. Joyful Voyages was most

interested in the offer factor, as listed in Fig. 5.1.

Each of the eight offers was sent to 12,500 different (randomly selected)

potential responders (that is, 100,000 responders in total). All potential responders

came from Joyful Voyage’s house list of people having taken at least one voyage

with the company. The number of responses to each offer was recorded. We return

to this example at the end of the chapter.

1For a situation with C levels of a factor, we have referred to (C – 1) orthogonal questions

(components) into which the SSBc can be partitioned; in this example, with eight levels, we

refer to seven orthogonal questions. In fact, we do not need to specify a full seven questions – we

can specify any number up to seven – the remaining variability is simply labeled as “other

differences.” We note this again later in the chapter.
2A fictitious name. However, the example is real, with only a few changes in levels of factors,

results, and locations, in order not to reveal the identity of the company.
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5.1 Forming an Orthogonal Matrix

Asking questions of the data to break down the variability into sub-sources is

equivalent, as we shall see below, to constructing linear combinations of the column

means (that is, �Y�j) and testing, in each case, whether its “true-value counterpart” is

zero or not. These linear combinations are sometimes called “orthogonal contrasts.”

We form each linear combination by multiplying each column mean by some

constant and the resulting products are then summed. We can show this with the

following notation. For simplicity, we assume for the moment that we have four

columns (that is, j ¼ 1, . . ., 4 and C ¼ 4).

Z1 ¼ a11Y1 þ a12Y2 þ a13Y3 þ a14Y4

where Yj represents the column mean for the jth column and Z1 is the first linear

combination to be evaluated.3

1. Price of $2,989 − no other provisions (as is customary and routine, full payment is due four
weeks prior to the sailing)

2. Price of $3,489 − no other provisions (as is customary and routine, full payment is due four
weeks prior to the sailing)

3. Price of $2,989 − ability to finance the payment over three months in three equal payments,
one payment before the trip takes place

4. Price of $3,489 − ability to finance the payment over three months in three equal payments,
one payment before the trip takes place

5. Price of $2,989 − flexibility to wait until last minute (two weeks before the sailing, on a
first-come, first-served basis) to decide on the date of the trip, out of the six trips in the 12-
week period

6. Price of $3,489 − flexibility to wait until last minute (two weeks before the sailing, on a
first-come, first-served basis) to decide on the date of the trip, out of the six trips in the 12-
week period

7. Price of $2,989 − opportunity to pay at least three months in advance
and get a 15% discount

8. Price of $3,489 − opportunity to pay at least three months in advance
and get a 15% discount

* Boldface type is solely for ease of reader identification of the difference among the levels.

Fig. 5.1 Levels of the offer factor

3Where the context makes it clear, we replace �Y�j with the less cumbersome Yj.
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Similarly, for our second linear combination,

Z2 ¼ a21Y1 þ a22Y2 þ a23Y3 þ a24Y4

Finally,

Z3 ¼ a31Y1 þ a32Y2 þ a33Y3 þ a34Y4

Although we have set the stage for the development, we have not said how these aij
coefficients are determined, nor have we yet explained the significance of the term

“orthogonal.” We do so now.

We can organize these coefficients into a table, or more accurately, into an array

known as a matrix. (The fact that these coefficients are arranged in a matrix

facilitates the process of orthogonal decomposition when we use a spreadsheet.)

It is always true that the aij coefficient matrix has C columns and (C – 1) rows,4

where C still designates the number of levels of the factor under study and (C – 1)

still indicates the number of degrees of freedom associated with the column sum of

squares, SSBc. Each row of the matrix corresponds to one of the Z’s; indeed, the
first subscript (i in aij) designates both the ith Z and the ith row. The number of Z’s
and the number of rows in the coefficient matrix logically equals the number of

degrees of freedom available. Similarly, the columns of the matrix and the columns

(representing levels) of the original data set are, in essence, the same; that is, the

second subscript ( j in aij) designates both the jth column in the coefficient matrix

and the jth column in the original data set. Hence, the number of columns in the

coefficient matrix and the number of columns in the original data set must be equal

as well. Here is the coefficient matrix:

COEFFICIENT MATRIX

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

If every pair of different rows of the matrix satisfies the condition that their inner

product (also called the dot product) is zero, then the rows are said to be orthog-

onal. The terms inner product and dot product may sound complex, but they are

just simple arithmetic operations: multiply, for a given two rows, the coefficients,

column by column, and then sum the products. For example, for rows one and two,

the inner product is

a11 � a21 þ a12 � a22 þ a13 � a23 þ a14 � a24

4Again, the same exception applies as in footnote 1: the matrix may be specifically chosen to have

fewer than (C – 1) rows, along with a catchall row describing “other differences.”
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In general, for a four-column analysis, the condition that the inner product equals

zero can be expressed as

X
j¼1,4

ai1j � ai2j
� � ¼ 0

where i1 and i2 designate two different rows. Mathematically, this condition of

having the inner product equal to zero can be proven to indicate that the two Z’s
(that is, rows), and the inquiries they represent, are uncorrelated. This lack of

correlation, combined with the normality assumption noted in Chap. 3, indicates

that the two Z’s are statistically independent – a very desirable condition, discussed
in the previous chapter, that enables us to make inferences not otherwise available;

we also revisit this issue later in the chapter.

If, furthermore, the inner product of each row with itself (or equivalently, and
perhaps more easily visualized, the sum of the squares of the coefficients in each

row) equals 1, the rows (and the matrix) are said to be orthonormal. These terms,

orthogonal and orthonormal, are commonly used in the areas of science and

engineering, although they are not often used in areas of social science and

management. The literature on the subject matter of this chapter uses these terms,

so we do also. In essence, an orthonormal table or matrix is simply an orthogonal

table or matrix that is scaled or normalized to 1 or 100%, as are many numerical

results we encounter routinely. For example, for row one, the condition is

a11 � a11 þ a12 � a12 þ a13 � a13 þ a14 � a14 ¼ 1

or, equivalently,

a211 þ a212 þ a213 þ a214 ¼ 1

The making of an orthogonal matrix into an orthonormal matrix is simply a matter

of dividing all coefficients, originally chosen by contextual considerations – the

“how” of which we shall soon see – by whatever appropriate number, or scale

factor, makes the sum of squared coefficients equal to one.

Finally, we add a third condition to what we shall call an orthonormal matrix:

that the sum of the coefficients of each row (without squaring!) equals zero; for

example, for row one:

a11 þ a12 þ a13 þ a14 ¼ 0

This condition ensures that the question being addressed by the Z (the linear

combination represented by the aij’s of that row) is arithmetically sensible. For

example, to compare the total of five column means with the total of three other

column means makes no logical, arithmetic, or any other kind of sense! This lack of

sense would manifest itself in the resulting coefficients: fiveþ1s and only three�1s

for a total ofþ2, not zero (perhaps divided by the square root of eight, if we include

the condition that the matrix be orthonormal). Note that we can compare five
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column means with three other column means (if it’s contextually useful to do so),

but before we adjust to make the system orthonormal we first give each column

mean in the group of five a coefficient of 1/5 and give each of the other three column

means a coefficient of �1/3; this is sensible and the coefficients now sum to zero.

With these three conditions on the coefficients, we have a set of questions (Z’s)
that allows independent assessment of three (in general, (C – 1)) different hypoth-

eses concerning the division of the variability accounted for by the original column

factor. That is, the SSBc can be partitioned (decomposed) by these orthogonal

contrasts into (C� 1) components.5 Each Z (each query of the data) is independent6

of every other Z; thus, the probabilities of Type I and Type II errors (α and β) in the
ensuing hypothesis tests are independent and stand alone. (Recall the complexities

noted in the previous chapter in this regard.) In addition, the sum of the (C – 1)

separate sums of squares (SSQ) precisely equals the SSBc. This is very helpful in

interpreting the data’s message – we can now take ratios of these sum-of-squares

quantities (SSQs) in a meaningful way. For example, in the earlier battery lifetime

example, we might find that “70% of the variability in average lifetime among

batteries used in the eight different devices can be attributed to differences between

flash camera usage [averaged over brands of flash cameras] and flashlight usage

[averaged over the three brands of flashlight]” or that “differences in battery

average lifetime among the three brands of flash camera explain 2.5 times as

much variability as do differences in average battery lifetime among the two brands

of cell phone.”

An example of an orthonormal matrix (that is, a C – 1 by Cmatrix of coefficients

that satisfies the three conditions) is the following 3� 4 matrix:

ORTHONORMAL MATRIX

1/2 1/2 −1/2 −1/2

1/2 −1/2 1/2 −1/2

1/2 −1/2 −1/2 1/2

5Those who studied (and remember) their high-school physics may recognize the similarity of

orthogonal decomposition to the resolution of vectors, loosely defined as a quantity with a

magnitude and a direction, into components in the “X, Y, and Z directions.” Typical examples

include force and velocity. V (the vector, let’s say) is decomposed along three unit vectors, one

each in the X, Y, and Z directions, respectively. Unit vectors have a magnitude of one and are

perpendicular; in this instance, perpendicular and orthogonal are synonyms. The result of the

vector decomposition is a magnitude in the X direction, a magnitude in the Y direction, and a

magnitude in the Z direction, such that the sum of squares of these magnitudes is equal to the

square of the magnitude of V. The orthonormal rows of the coefficient matrix are, in fact,

orthogonal unit vectors; the calculation of the Zi’s is the resolution of the effect under study into

components along these unit vectors.
6If two events, A and B, are independent, knowledge of the occurrence of one of the events sheds

no light on the occurrence of the other event. If A and B are independent, P(A and B)¼P(A) �P(B).
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Note the following three characteristics of an orthonormal matrix: each row has

coefficients that sum to zero, each row has squared coefficients that sum to one, and

the inner product of each pair of rows equals zero. As a final reminder: if we relaxed

the condition that the sum of the coefficients, when first squared, equals one, we

could fill the cells of the table above with ones instead of halves [negative ones

instead of negative halves], and we’d have an orthogonal matrix, but one that isn’t
orthonormal. However, scaling the coefficients to achieve an orthonormal matrix

has useful benefits, as we stated earlier and will subsequently illustrate.

Example 5.2 Calculation Example

We’ll now go through an example demonstrating how the sum of squares of the

individual components equals the original SSBc of the factor composing

the columns. Suppose we have four column means – �Y�1, �Y�2, �Y�3, and �Y�4, as follows:

�Y�1 �Y�2 �Y�3 �Y�4

6 4 1 �3

We calculate the grand mean and SSBc as follows:

Grand mean ¼ �Y�� ¼ ð6þ 4þ 1� 3Þ=4 ¼ 2

SSBc ¼ R 6� 2ð Þ2 þ 4� 2ð Þ2 þ 1� 2ð Þ2 þ �3� 2ð Þ2
h i

¼ 46R

where R is the number of rows (replications per column). Suppose that we use the

orthonormal matrix above.

Z1 is computed by calculating a linear combination of the column means, using

the first row of the coefficient matrix as the weights. Equivalently, we can say that

Z1 is calculated by taking the inner product of the first row of the coefficient matrix

and the row of column means. Either way, we get

Z1 ¼ 1=2ð Þ 6ð Þ þ 1=2ð Þ 4ð Þ þ �1=2ð Þ 1ð Þ þ �1=2ð Þ �3ð Þ
¼ 3þ 2� 0:5þ 1:5
¼ 6

Z2 and Z3 are calculated in a similar fashion to be 3 and �1, respectively.

Note that Z2
1 þ Z2

2 þ Z2
3 ¼ 62 þ 32 þ �1ð Þ2 ¼ 36þ 9þ 1 ¼ 46. And, as we saw

above, SSBc¼ 46R.
A summary of the calculations is in Table 5.1.
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Example 5.3 Portfolio Rating

It may not be perfectly clear yet how the above helps us. As it turns out, the column

means above have been obtained from a one-factor ANOVA experiment in which

four different individual retirement account (IRA) options – that is, portfolios –

were each offered to a test group of four different people (16 people in all) in order

to determine client preference. Each person rated the one portfolio presented to him

or her on a scale of�10 toþ10.7 Three attributes of these investment portfolios are

identified – “aggressiveness” (degree of risk), “balance” (mixture of debt and

equity), and “environmental responsibility” (overt commitment to conduct business

in an environmentally-responsible way). The four fund prospectuses have been

designed to promise either a high or a low degree of each of these attributes. The

characteristics of the four portfolios (pf-1 through pf-4) are shown in Table 5.2.

The raw data are as follows, with the column means in the last row:

pf-1 pf-2 pf-3 pf-4

5 5 2 �4
7 4 0 �5
8 2 3 �1
4 5 �1 �2

6 4 1 �3

Table 5.1 Calculation of Zi from �Y�j

�Y�1 �Y�2 �Y�3 �Y �4
6 4 1 �3 Z Z2

Z1¼ 1/2 1/2 �1/2 �1/2 6 36

Z2¼ 1/2 �1/2 1/2 �1/2 3 9

Z3¼ 1/2 �1/2 �1/2 1/2 �1 1

SSBc¼ 46R

7There would be some major advantages to designing this experiment so that each of the 4 (or 16)

people evaluate each of the four portfolios. However, “people” would then be a second factor, and

we have not yet covered designs with two factors. If each person evaluated each of the four

portfolios, the design would be called a “repeated-measures” or “within-subject” design.

Table 5.2 Characteristics of four IRA portfolios

Feature pf-1 pf-2 pf-3 pf-4

Aggressiveness High High Low Low
Balance High Low High Low
Environmental responsibility High Low Low High
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Note that the column means are the same as those we used in the previous

calculation example in Table 5.1. When the data are analyzed as a one-factor design

with C ¼ 4 (four columns) and R ¼ 4 (four rows, or replicates per column), the

ANOVA table is as shown in Table 5.3.

At α ¼ .05, F(3,12) ¼ 3.49 and the F-test thus indicates that client ratings are
not equal for all portfolios offered (that is, the factor “portfolio” is significant; in

fact, p < .01). Yet this result by itself does not provide all of the information that

might be useful. By partitioning the results further, into three orthogonal compo-

nents, Z1, Z2, and Z3, we can break up the SSQ associated with portfolio (that is,

the SSBc, which equals 184) into separate SSQs for the three attributes, thus

determining which investment attributes are driving the differences among the

ratings. We use the same orthonormal matrix as used in the previous section

(repeated for convenience):

pf-1 pf-2 pf-3 pf-4

Z1¼ 1/2 1/2 �1/2 �1/2
Z2¼ 1/2 �1/2 1/2 �1/2
Z3¼ 1/2 �1/2 �1/2 1/2

Z1, by multiplying the first and second column means by þ1/2, and the third and

fourth column means by �1/2 (see the orthonormal matrix in the table above), is

calculating the difference between the average rating for the two highly aggressive

choices (the first two portfolios; see Table 5.2) and the average rating of the two

less-aggressive choices (the last two portfolios). Thus, the difference between Z1
and zero is an indication of how much of the differences in ratings among the four

portfolios can be placed on the shoulders of the degree of aggressiveness of the
portfolio. How different Z2 is from zero is an indication of how much of the

differences in ratings among the four portfolios can be placed on the shoulders of

the balance of a portfolio. Z2 is formed as the difference between the average rating

of the more balanced portfolios (1 and 3) and the less-balanced portfolios (2 and 4).

Finally, how different Z3 is from zero is an indication of how much of the

differences in ratings among the four portfolios can be placed on the shoulders

of the environmental responsibility of a portfolio. It is formed as the difference

between the average rating of the more environmentally responsible portfolios

(1 and 4) and the less environmentally responsible portfolios (2 and 3).

(Note also that limiting the detailed analysis to pairwise comparisons would not

fully enable clarification of the potential sub-sources of variability.)

Table 5.3 One-way ANOVA table for IRA portfolio study

Source of variability SSQ df MS Fcalc

Portfolio 184 3 61.33 20.44

Error 36 12 3

Total 220 15
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We can now form an augmented ANOVA table (Table 5.4), statistically testing

these three attributes, or sub-factors, explicitly to see whether a different level of the

attribute truly has an impact on portfolio rating. The SSBc is 184 with three degrees

of freedom (see Table 5.3). The 184 can be partitioned (orthogonally decomposed)

into three orthogonal components. If we look back at Table 5.1 for the three Z2

values of 36, 9, and 1, respectively, and multiply each of these by R¼ 4 (the number

of replicates), we get 144, 36, and 4, and 144þ 36þ 4¼ 184 – getting a total of

exactly 184 is no coincidence! We knew that would be the result because the

coefficient matrix was indeed orthonormal (and not merely orthogonal). We’ll
soon discuss how this helps us.

It can be mathematically proven that each of these SSQ components, formed in

the manner described, can be interpreted as a sum-of-squares value that is properly

associated with one degree of freedom, and that can also legitimately serve as the

numerator of an Fcalc, and all that this implies.8

At α ¼ .05, F(1,12) ¼ 4.75, and the degree of aggressiveness and the degree

of balance of the portfolio are each significant at .05 (indeed, p < .001 for both),

but the degree of environmental responsibility is not ( p > .20). Furthermore,

differences in portfolios that are aggressive from those that are not aggressive are

estimated to explain four times as much variability in ratings among the four

portfolios as differences in the portfolios’ balance (that is, 144 is 4 times 36).

Indeed, differences in described aggressiveness of the portfolios are estimated to

explain 100(144/184) ¼ 78% of the differences in ratings among the four

portfolios.

Table 5.4 Augmented ANOVA table for IRA portfolio study

Source of variability SSQ df MS Fcalc

Portfolio 184 3 61.33 20.44

Aggressiveness 144 1 144 48.0

Balance 36 1 36 12.0

Env. resp 4 1 4 1.33

Error 36 12 3

Total 220 15

8In essence, one can prove that each component sum of squares follows a chi-square distribution

with one degree of freedom and is independent of the error sum of squares. After all, an

F distribution is derived as the ratio of two independent chi-square random variables, each divided

by its respective degrees of freedom.
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Example 5.4 Drug Comparison

Consider another example, in which we evaluate the efficacy of two brands of

aspirin and one brand of non-aspirin-based pain killer (let’s simply call it “Non-A”),

along with a placebo9 for reference.

Note that the need for experimental control (here, a placebo) extends beyond the

testing of drugs. In a famous experiment held at Hawthorn Works, an AT&T

Western Electric factory in Chicago, Illinois, in the 1940s, industrial engineers

were testing to see if the light level affected production. Engineers increased the

amount of light reaching each work location and observed an increase in production

output. Having completed the experiment, they restored the light level to its

previous value, only to discover another increase in production output. It was

subsequently determined that it was the fact that the workers were inspired

to work harder because they believed that management cared about their

working conditions, and not the level of light, that was affecting production. This

phenomenon, against which every experimenter must guard, is known as the

Hawthorn effect.
For the drug study, Table 5.5 shows the raw data and experimental results

including column means. Each drug was administered to R ¼ 8 different people.

Yij was the self-reported degree of improvement (reduction of pain) in the patient’s
headache, on a scale of 1 (virtually no reduction) to 15 (virtually no pain

remaining). Table 5.6 is the associated one-way ANOVA table.

Table 5.5 Column means for drug comparison study

Placebo Aspirin 1 Aspirin 2 Non-A

4 9 8 10
5 6 7 8
7 2 7 12
3 5 8 10
5 7 6 9
9 6 3 14
6 6 7 6
1 7 10 11

Y1 ¼ 5 Y2 ¼ 6 Y3 ¼ 7 Y4 ¼ 10

9A placebo is an inactive substance used for control. Placebos are frequently used in studies of

drugs to account for the tendency of patients to perceive an improvement in symptoms merely due

to the ingestion of “medicine.” Double-blind studies, in which the identity of the real drug and the

placebo are hidden from both the patient and the experimenter, mitigate against the unintentional

giving of cues that otherwise might undermine the integrity of the experiment. Such studies have

revealed, for example, that yohimbine hydrochloride, a drug long prescribed for temporary male

impotence, performs no better than a placebo. (R. Berkow,Merck Manual of Medical Information,
Rahway, N.J., Merck, 1997).
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We conclude that at α ¼ .05, with F(3,28)¼2.95, “drug” is significant (again,

p< .01). However, this “macro” statement reveals only a small portion of the story.

We want to understand just what about the four drugs is driving the differences in

patient improvement. Suppose that we decide to decompose the differences in

improvement among the four drugs into the following three components; with

respect to degree of patient improvement, we ask the following questions:

1. Are the “real” drugs, overall, different from the placebo? (P0 versus P)
2. Are the aspirin drugs different from one another? (A1 versus A2)
3. Are aspirin drugs different from the Non-A? (A versus Non-A)

We need to construct our questions in the form of linear combinations of the

column means. For the first question, how would you form a linear combination to

compare placebo to non-placebo? Your first thought might be to say, “Compare the

column average of the placebo to the average of the other three column averages,”

and that is correct. But what does compare really mean here? It means to subtract

one from the other and examine the difference! The direction of subtraction doesn’t
matter (as long as the later interpretation is consistent with the chosen direction). In

terms of coefficients in a linear combination, this means to take 1/3 of the sum of the

column means of A1, A2, and Non-A, and subtract from it (or it from) the mean of

the placebo column. In essence, this gives a coefficient of�1 to the placebo column

mean and coefficients of 1/3 to each of the other three column means. Though these

coefficients don’t yet conform to an orthonormal row (that is, the sum of the squares

of �1, 1/3, 1/3, and 1/3 is not equal to one), it is noteworthy that the unsquared

coefficients do sum to zero. We see these coefficients in the first coefficient row of

Table 5.7. It might be instructive to contrast what this first row is doing with the

goal of the Dunnett’s test of the previous chapter. This first row is comparing the

mean of the last three columns (“treatments”) to the mean of the first column

(placebo). The Dunnett’s test compares each of the other column means, individ-
ually, to the mean of the control column.

Table 5.6 One-way ANOVA table for drug comparison study

Source of variability SSQ df MS Fcalc

Drug 112 3 37.33 7.47

Error 140 28 5

Total 252 31

Table 5.7 Linear combinations for questions 1–3 for drug study

P A1 A2 Non-A

P vs. P0 �1 1/3 1/3 1/3
A1 vs. A2 0 �1 1 0
A vs. Non-A 0 �1/2 �1/2 1
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By a similar logic, the second row looks at the difference between the degree of

improvement obtained with one brand of aspirin and that obtained with the other

brand of aspirin. The third row analyzes the difference between the average degree of

improvement from the two brands of aspirin and that from the non-aspirin. In each

case, if the absolute value of the difference is large (that is, “very nonzero”), we infer

that the corresponding columns, or combinations of columns, are not the same with

respect to degree of improvement – the differences are statistically significant.

We observe that these rows each add to zero (that is, each calculation of Z is

arithmetically sensible) and that they are orthogonal (the inner product of any two

rows equals zero). They might not have come out orthogonal. The authors pur-

posely chose a set of questions so that they would be; however, these seem to be

intuitively appealing questions. It could have been otherwise. For example, if

question one were to compare the placebo to only the aspirin drugs, and question

two were to compare the placebo to the non-aspirin drug, the two questions would

not be orthogonal; the inner product of (�1, 1/2, 1/2, 0) and (�1, 0, 0, 1) is not zero;

it’s 1. It should always be remembered that the choice of questions that make

contextual sense is not the purview of the statistician, it’s the purview of (in this

case) the pharmacist. This issue is revisited in Exercise 14 at the end of the chapter.

The rows of coefficients in Table 5.7 are not, however, orthonormal: the inner

product of each row with itself (or equivalently, the sum of the squares of the

coefficients in a given row) does not equal 1. We can divide the coefficients in any

given row by any nonzero constant without losing the first two properties (orthog-

onality and unsquared coefficients summing to zero). If we calculate the sum of the

squares of the coefficients in a row and then divide each coefficient of that row by

the square root of that exact value, it will guarantee that we have scaled the row

such that it does have a sum of squared coefficients that equals 1. We illustrate this

as follows:

First row:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð Þ2 þ 1=3ð Þ2 þ 1=3ð Þ2 þ 1=3ð Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffi

12=9
p ¼ 1:1547

Second row:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0ð Þ2 þ �1ð Þ2 þ 1ð Þ2 þ 0ð Þ2

q
¼ ffiffiffi

2
p ¼ 1:4142

Third row:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0ð Þ2 þ �1=2ð Þ2 þ �1=2ð Þ2 þ 1ð Þ2

q
¼ ffiffiffiffiffiffiffiffi

3=2
p ¼ 1:2247

When we divide each coefficient in row one by 1.1547, each coefficient in row two

by 1.4142, and each coefficient in row three by 1.2247, we obtain the following

orthonormal matrix (due to rounding, a row may sum to a tiny nonzero amount):

ORTHONORMAL MATRIX

−.8660 .2887 .2887 .2887

0 −.7071 .7071 0

0 −.4082 −.4082 .8165
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As before, we can embed the orthonormal matrix into the template for calculating

the Zi from the Yj as shown in Table 5.8.

Now we determine whether or not the estimates of the indicated differences are

statistically significant. Table 5.9 shows the augmented ANOVA table; each of the

sub-items in the SSQ column represents a Z2 value in Table 5.8 multiplied by R¼ 8.

We conclude, at α ¼ .05, with F(1,28) ¼ 4.20, that with respect to degree of

improvement of patients’ condition, there is no difference between the two aspirin

brands ( p ¼ .412), but that the group of “real” drugs is different from the placebo

[and “better,” based on a Z value that is positive and the direction of our subtrac-

tion], and that the aspirin drugs are different from the non-aspirin drug (and “not as

good” as the non-aspirin drug, based on a positive Z value and, again, the direction

of the subtraction).

At this point, we can make some meaningful observations. For example, 38.1%

[¼100(42.64/112)] of the variability among the four drugs is estimated to be due to

the difference between the real drugs and the placebo and 58.4% can be attributed to

the difference between aspirin brands and the non-aspirin. Note that even though

the intra-aspirin brand difference cannot, beyond a reasonable doubt, be said to be

nonzero, we still allocate 3.6% [¼100(4/112)] to that source. This is a matter of

convention, for 3.6% is the best estimate, even though we are not convinced that it

is different from zero. Furthermore, due to the statistical independence of the values

associated with each source of variability, we can say that, of the “within-real-drug

differences” (that is, ignoring differences concerning the placebo versus the real

drugs), virtually all of the variability, 94.2% of it [¼100(65.36/69.36)], is explained

by the difference between the aspirin brands and the non-aspirin.

Table 5.8 Calculation of Zi from Yj for drug comparison study

Y1 Y2 Y3 Y4

5 6 7 10 Z Z2

Z1¼ �.8660 .2887 .2887 .2887 2.309 5.33

Z2¼ 0 �.7071 .7071 0 .707 .50

Z3¼ 0 �.4082 �.4082 .8165 2.858 8.17

SSBc¼14R

Table 5.9 Augmented ANOVA table for drug comparison study

Source of variability SSQ df MS Fcalc

Drug 112 3 37.33 7.47

P vs. P0 42.64 1 42.64 8.53

A1 vs. A2 4.00 1 4.00 .80

A vs. Non-A 65.36 1 65.36 13.07

Error 140 28 5

Total 252 31

168 5 Orthogonality, Orthogonal Decomposition, and Their Role in Modern. . .



Example 5.5 Drug Comparison (Amended)

We can use this numerical example again to further illustrate the process of

formulating the equations for orthogonal decomposition. Suppose these same data

were from a different experiment – one in which the four columns consisted of two

aspirin brands and two types of non-aspirin medications, as follows:

ASPIRIN 1 ASPIRIN 2 NON-A1 NON-A2

Y1 ¼ 5 Y2 ¼ 6 Y3 ¼ 7 Y4 ¼ 10

Since the column means and the error have not changed, and we still have eight

rows, we know that Fcalc ¼ 7.47 and we conclude that not all column means are the

same – the null hypothesis of no difference among the column means is rejected at

α¼ .05. The questions we would ask about the data are different, however. Suppose

that we would like to test if the two aspirin brands differ from one another, if the

two non-aspirin types are different from one another, and finally, if the aspirin

brands on average are different from the non-aspirin types on average. The not-yet-

normalized coefficients appear in Table 5.10. The first row measures the difference

between the mean of the two aspirin brands. Similarly, the second row measures the

difference between the mean of the two non-aspirin types. Finally, the difference

between aspirin brands and non-aspirin types is determined by taking the difference

between the average of the non-aspirin types (columns three and four) and the

average of the aspirin brands (columns one and two). Could anything else be as

intuitively sensible?

Note, once again, that the rows are orthogonal and each row adds to zero (recall:

inner/dot product of all pairs of different rows equals zero). It remains for us to

normalize the rows. We determine the scale factors as before – for each row, we

calculate the square root of the sums of the squares of the coefficients in each row.

Convince yourself that the orthonormal matrix in Table 5.11 results.

Table 5.10 Linear combinations for amended drug study

A1 A2 Non-A1 Non-A2

A1 vs. A2 �1 1 0 0
Non-A1 vs. Non-A2 0 0 �1 1
A vs. Non-A �1/2 �1/2 1/2 1/2

Table 5.11 Orthonormal matrix

A1 A2 Non-A1 Non-A2

A1 vs. A2 �.707 .707 0 0
Non-A1 vs. Non-A2 0 0 �.707 .707
A vs. Non-A �.5 �.5 .5 .5
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As before, we embed this matrix into our calculation table (Table 5.12). Once

again, we turn to the augmented ANOVA table, shown in Table 5.13, to determine

which differences are significant. We find, at α ¼ .05, with F(1,28) ¼ 4.20, that

there is no difference between the aspirin brands ( p ¼ .412); there is, however, a

difference between the non-aspirin types ( p< .02) and a difference between aspirin

brands and non-aspirin types ( p < .001). Furthermore, the variability explained by

the difference between aspirin brands and non-aspirin types is twice as much as that

explained by the difference between non-aspirin types.

Note that the analyses we discussed in this chapter cannot be done in JMP and

Excel. We will see how we can use SPSS and R for orthogonal contrasts in the

Appendix at the end of this chapter.

Example 5.6 Planning Travel Packages at Joyful Voyages, Inc. (Revisited)

The dependent variable for the study described at the beginning of the chapter was

the number of bookings (out of the same number of names mailed for each offer),

although the number of inquiries was also recorded. The anticipated general level of

response (that is, bookings), based on experience with this and similar locations,

and for similar offers, was about 0.4%. Other promotional vehicles that contributed

to the final number of bookings were also used.

A one-factor ANOVA revealed that, indeed, there were significant differences

among responses to the different offers. Then an orthogonal breakdown of the sum

of squares associated with “offer” was conducted. Once the concept of an

Table 5.12 Calculation of Zi from Yj for amended drug comparison study

Y1 Y2 Y3 Y4

5 6 7 10 Z Z2

Z1¼ �.707 .707 0 0 .707 .5

Z2¼ 0 0 �.707 .707 2.121 4.5

Z3¼ � . 5 �.5 .5 .5 3.000 9.0

SSBc¼ 14R

Table 5.13 Augmented ANOVA table for drug comparison study

Source of variability SSQ df MS Fcalc

Drug 112 3 37.33 7.47

A1 vs. A2 4 1 4 .80

Non-A1 vs. Non-A2 36 1 36 7.20

A vs. Non-A 72 1 72 14.40

Error 140 28 5

Total 252 31
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orthogonal breakdown was explained to the company executives, they indicated

that they wanted to study four specific “propositions” (that was their word – to us,

they would be contrasts or questions). Recall that there is no need to have a full set
of contrasts – seven contrasts in this case, given the eight columns – indeed, we

have only four.

We repeat the eight levels of the factor in Table 5.14 for convenience, using an

abbreviated form. As we have seen in Chap. 2, level is the amount or category of the

independent variable (or factor) under study. We will use this term frequently from

now on.

Contrast 1 examined overall differences between the low price ($2,989) and the

high price ($3,489). Its set of coefficients (before the normalizing), was as follows:

Level 1 2 3 4 5 6 7 8

Contrast 1: �1 1 �1 1 �1 1 �1 1

Contrast 2 compared the levels whose incentive didn’t focus on price (none and

flexibility) versus those that did focus on price (finance and discount). Contrast

3 examined whether the flexibility offers truly differed from no incentive at all.

Contrast 4 compared the two types of price-focused incentives.

Level

1 2 3 4 5 6 7 8

Contrast 2 1 1 �1 �1 1 1 �1 �1
Contrast 3 1 1 0 0 �1 �1 0 0
Contrast 4 0 0 1 1 0 0 �1 �1

The analyses of the contrasts yielded the following results: Contrast 1 was

significant ( p < .01) and negative. That’s no big surprise – the lower price did

generate significantly more responses; of course, whether the lower price would

generate more profit was a different question. Contrast 2 was also significant

( p < .01) and negative; the offers with monetary inducements generated more

responses. Contrast 3 was not significant (or was “marginally” significant, p¼ .08).

The contrast 4 result caused the most discussion among the company executives,

because nobody believed that it could be not significant. However, the result was

not such a mystery when it was discovered that even the executives had split

opinions: before the results were known, three of the six executives present had

Table 5.14 Levels of the price and incentive factors

Factor

Level

1 2 3 4 5 6 7 8

Price Low High Low High Low High Low High
Incentive N N Fi Fi Fl Fl D D

Low price $2,989, high price $3,489. N none, Fi finance, Fl flexibility,
D discount
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been convinced that the “finance the payments” offers would out-book the price-

discount offers and the other three executives had been convinced that the price-

discount offers would generate the most bookings. However, based on the result of

contrast 2, both trios claimed to have had the right insight! (We didn’t comment.)

Exercises

1. Suppose that we have data on the response to various analgesics, in terms of the

reduction of headache pain, with two replicates per treatment, as shown in

Table 5EX.1. Analyze as a one-factor design to test for differences among

analgesics. Use α ¼ .05.

2. In Exercise 1, design a set of orthogonal contrasts to compare the following:

(a) Placebo versus non-placebo
(b) Aspirin (both brands) versus non-aspirin brand 2

(c) Non-aspirin brand 1 versus aspirin (both brands) and non-aspirin brand 2

(d) Aspirin brand 1 versus aspirin brand 2

3. For the orthogonal contrasts in Exercise 2, test for significant differences in

each of the four comparisons. Use α ¼ .05.

4. A journal (Decision Sciences) article reported the results of an experiment

conducted at a series of graduate business schools, dealing with the job

satisfaction of junior faculty members as a function of the leadership style of

the dean. Essentially, each dean was classified into one of the following

leadership styles:

(a) Charismatic

(b) Autocratic

(c) Democratic

(d) Laissez-faire

Job satisfaction was measured for junior faculty at the various business

schools that participated in the study. The key question was whether job

satisfaction varied by decanal leadership style. However, the authors also

professed interest in three other sub-issues:

Table 5EX.1 Headache pain reduction

Aspirin

(Brand 1)

Aspirin

(Brand 2)

Non-aspirin

(Brand 1)

Non-aspirin

(Brand 2) Placebo

8 12 7 7 5
7 10 6 5 4
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I. Is there a difference in mean job satisfaction between some kind of

leadership (charismatic, autocratic, democratic) versus no leadership

(laissez-faire)?
II. Is there a difference in mean job satisfaction between democratic leader-

ship and non-participative (charismatic, autocratic) leadership?

III. Is there a difference in mean job satisfaction between charismatic leader-

ship and autocratic leadership?

Form an appropriate orthogonal matrix that can be used to decompose the

variability associated with leadership style into components that allow the

experimenter to address the three questions above.

5. Suppose that we have a one-factor ANOVA, with three columns, in which each

level of the factor is the amount of shelf space given to a product and the

dependent variable is sales (in dollars – a numerical value). With three col-

umns, we can, of course, break up the sum of squares between columns into two

sources. What two sources (that is, what orthogonal contrasts) might make

sense in this situation? (We cover this real-world situation explicitly in

Chap. 12.)

6. Revisit Exercise 2.12, specifically the data in Table 2EX.12 for the waiting

time of patients at four offices of the Merrimack Valley Pediatric Clinic

(MVPC). Consider the following three questions:

(a) Do the more-recently-opened offices (Amesbury and Andover) differ in

mean waiting time from the less-recently-opened offices (Methuen and

Salem)?

(b) Do the larger offices (Amesbury and Methuen) differ in mean waiting time

from the smaller offices (Andover and Salem)?

(c) Do the offices that are in the two less affluent cities (Amesbury and Salem)

differ in mean waiting time from the offices in the two more affluent cities

(Andover and Methuen)?

Are these questions orthogonal?

7. If you conclude that the answer to Exercise 6 is yes, set up an orthonormal

table, preparing to analyze the questions.

8. Continuing with Exercise 7, test each contrast. Which question of the three is

associated with the largest source of variability?

9. In Exercise 6, can we replace question (c) with another question, with the result

that, with the new third question, the three questions are orthogonal?

10. Revisit Exercise 2.13, specifically the data in Table 2EX.13, which deal with

scores of golfers at four local golf courses that have clientele similar to the

golfers at Eastern Electric. The four golf courses are named Near Corners,

Meadow Brook, Birch Briar, and Fountainbleau. Suppose that further data

about the golf courses reveal that Near Corners has relatively few sand traps,

relatively few water hazards, and relatively few par-30s; that Meadow Brook

has relatively few sand traps, relatively many water hazards, and relatively

many par-30s; that Birch Briar has relatively many sand traps, relatively few
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water hazards, and relatively many par-30s; and that Fountainbleau has rela-

tively many sand traps, relatively many water hazards, and relatively few

par-30s. Determine three questions to orthogonally decompose the sum of

squares due to golf course.

11. Form the orthonormal matrix for the three questions you composed for Exer-

cise 10.

12. Test each contrast at α ¼ .05.

13. Discuss the trade-off between decomposing the sum of squares due to the factor

into orthogonal questions versus decomposing them into questions that are

perhaps more desirable, but not orthogonal. Is there a way to accomplish both

goals?

14. The data for the battery example from Chap. 2, along with an indication of

whether the test devices were made within the United States or elsewhere, are

presented in Table 5EX.14. Questions of interest are as follows (all with respect

to average battery lifetime): Is the mean battery lifetime for the cell phone

made by the domestic manufacturer different from the mean battery lifetime for

the cell phone made by the foreign manufacturer? Is the mean battery lifetime

of the flash camera brand made by the domestic manufacturer different from

the mean battery lifetime of the flash camera brands made by foreign manu-

facturers? Is the mean battery lifetime of the flashlight brand made by the

domestic manufacturer different from the mean battery lifetime of the flashlight

brands made by foreign manufacturers?

Set up an orthogonal matrix to study these three questions.

15. In Exercise 14, suppose we have the following two additional questions of

interest: Is there a difference in mean battery lifetime between flash cameras

and flashlights? Is there a difference in mean battery lifetime between cell

phones and the other devices? Add these two inquiries as rows in the orthog-

onal matrix constructed in Exercise 14.

16. Add two (more) orthogonal questions as rows to the five-row orthogonal matrix

constructed in Exercise 15.

17. Consider again the five-row orthogonal matrix of Exercise 15. Would an

inquiry comparing the mean battery lifetime of cell phones to the battery

lifetime of flashlights be a sixth orthogonal row of this matrix? Discuss.

Table 5EX.14 Battery lifetime (in hours) by device

Cell

phone 1

Cell

phone 2

Flash

cam. 1

Flash

cam. 2

Flash

cam. 3

Flashlight

1

Flashlight

2

Flashlight

3

Domestic Foreign Domestic Foreign Foreign Domestic Foreign Foreign

1.8 4.2 8.6 7.0 4.2 4.2 7.8 9.0
5.0 5.4 4.6 5.0 7.8 4.2 7.0 7.4
1.0 4.2 4.2 9.0 6.6 5.4 9.8 5.8
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Appendix

Example 5.7 Drug Comparison Using SPSS

We use the drug comparison example to illustrate the use of SPSS when using

orthogonal contrasts. Data from Table 5.5 are repeated in Table 5.15 for

convenience.

Running the ANOVA using SPSS yields the same basic result as we have seen

previously, shown in Table 5.16. Once again, we conclude that our result is

significant ( p < .01), so not all “treatments” are the same with respect to efficacy.

We now set out to see how they differ. Similar to what we have done, we will

break down the differences into three components: (a) “real” drugs versus placebo;
(b) aspirin 1 versus aspirin 2; and (c) aspirin drugs versus non-aspirin. To use SPSS
to enter the contrast values, we click on Contrasts... under Analyze > Compare

Means > One-Way ANOVA and enter the three sets (rows) of coefficients in the

orthonormal matrix we have built previously (click Previous or Next to change

contrasts, and Continue once the three contrasts have been included), as shown in

Fig. 5.2; the output in Table 5.17 verifies that these were the coefficients used.

Table 5.15 Column means for drug-comparison study

Placebo Aspirin 1 Aspirin 2 Non-A

4 9 8 10
5 6 7 8
7 2 7 12
3 5 8 10
5 7 6 9
9 6 3 14
6 6 7 6
1 7 10 11

Y1 ¼ 5 Y2 ¼ 6 Y3 ¼ 7 Y4 ¼ 10

Table 5.16 One-way ANOVA table for drug-comparison study in SPSS

ANOVA
Pain

Sum of squares df Mean square F Sig

Between groups 112.000 3 37.333 7.467 .001
Within groups 140.000 28 5.000
Total 252.000 31
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Fig. 5.2 Steps for including contrasts in SPSS

Table 5.17 Orthonormal matrix in SPSS

Contrast coefficients

Contrast Drug

Placebo Aspirin 1 Aspirin 2 Non-A

1 �.86 .288 .288 .288
2 0 �.71 .71 0
3 0 �.41 -.41 .82
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Unfortunately, SPSS does not provide the augmented ANOVA table in one fell

swoop. What it does provide, in the notation of this chapter, are the values of the Z’s
and of the tcalc’s, which are the respective square roots of the Fcalc’s in the augmented

ANOVA table, as well as the p-values. It does this under the banner of an analysis that
uses the mean-square error in the original ANOVA table as the basis of the standard

error for all contrasts (as opposed to using a variance estimate based only on the

particular columns, weighted according to the contrast’s coefficients). The SPSS

results are in Table 5.18. Note that the “Value of Contrast” column in Table 5.18

consists of the same set of values as the Z’s in Table 5.8 and the numbers in the “t”
column are each the square root of the corresponding Fcalc value in Table 5.9, the

augmented ANOVA table (some numbers are off a tiny bit due to rounding).

Example 5.8 Drug Comparison Using R

We will use the same drug comparison example to demonstrate how the analysis is

done in R. After importing the data, we have to access the order in which the levels

of the independent variable (V1) are organized.

> drug <- read.csv(file.path("/Users/documents", "ex5.8.csv"),

+header=F)

> levels(drug$V1)

[1] "Aspirin1" "Aspirin2" "NonA" "Placebo"

We will notice that the levels have been organized alphabetically and this has to

be taken into account when setting up the contrast matrix. In the command below,

the data are entered per row (byrow¼T) using the contrast values in the orthonor-

mal matrix we discussed previously. Note that the order of the values has changed

to reflect the order of the levels in R.

Table 5.18 Contrast tests in SPSS

Contrast tests

Contrast Value of

contrast

Std. Error t df Sig. (2-tailed)

Pain Assume equal

variances

1 2.32a .786 2.957 28 .006
2 .71 .794 .894 28 .379
3 2.87 .794 3.615 28 .001

Does not

assume equal

variances

1 2.32a .837 2.778 10.884 .018
2 .71 .710 1.000 14.000 .334
3 2.87 .820 3.500 11.789 .004

aThe sum of the contrast coefficients is not zero
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> matrix <- matrix(c(0.2887, 0.2887, 0.2887, -0.866, -0.7071,

+0.7071, 0, 0, -0.4082, -0.4082, 0.8165, 0), nrow=3, ncol=4,

+byrow=T)

> matrix

[,1] [,2] [,3] [,4]
[1,] 0.2887 0.2887 0.2887 -0.866
[2,] -0.7071 0.7071 0.0000 0.000
[3,] -0.4082 -0.4082 0.8165 0.000

R gives an error message if we try to use this matrix in further analysis. This is

because the software package deals with contrasts when the values are organized in

columns, rather than rows. For this reason, we have to transpose the contrast matrix,

as follows:

> matrix_t <- t(matrix)

> matrix_t

[,1] [,2] [,3]
[1,] 0.2887 -0.7071 -0.4082
[2,] 0.2887 0.7071 -0.4082
[3,] 0.2887 0.0000 0.8165
[4,] -0.8660 0.0000 0.0000

Alternatively, it is possible to create the transposed matrix, which would elim-

inate one step in the programming – we just have to remember to set the correct

number of columns and row and byrow¼F. Next, we set the contrast:

> contrasts(drug$V1) <- matrix_t

> drug.aov <- aov(V2~V1, data=drug)

# This command is used to verify if the contrast matrix has been correctly

assigned to the levels.

> drug.aov$contrasts

$V1

[,1] [,2] [,3]
Aspirin1 0.2887 -0.7071 -0.4082
Aspirin2 0.2887 0.7071 -0.4082
NonA 0.2887 0.0000 0.8165
Placeo -0.8660 0.0000 0.0000

178 5 Orthogonality, Orthogonal Decomposition, and Their Role in Modern. . .



This will also provide the augmented ANOVA table, which can be viewed using

the summary.aov() function. Note that in this command we specify how the SSBc

will be split, addressing our three questions regarding the differences between the

treatments.

> summary.aov(drug.aov, split=list(V1=list("P vs. P’"=1, "A1 vs.

+A2"=2, "A vs. Non-A"=3)))

Df Sum Sq Mean Sq F value Pr(>F)
V1 3 112.00 37.33 7.467 0.000802 ***
V1: P vs. P0 1 42.67 42.67 8.533 0.006820 **
V1: A1 vs. A2 1 4.00 4.00 0.800 0.378718
V1: A vs. Non-A 1 65.33 65.33 13.067 0.001168 **
Residuals 28 140.00 5.00

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Part II

Identifying Active Factors



Chapter 6

Two-Factor Cross-Classification Designs

Chapter 2 introduced one-factor designs – experiments designed to determine

whether the level of a factor, the (one) independent variable, affects the value of

some quantity of interest, the dependent variable. By way of example, we consid-

ered whether device/usage influences battery life. We expanded on this initial

analysis by introducing multiple-comparison testing and orthogonal breakdowns

of sums of squares.

Now suppose that we want to determine whether battery life varies by battery

brand (a different issue from the brand of the device in which the battery is used).

How should we proceed? We could design another one-factor experiment and note

its results along with the results of the first experiment, which considered the impact

of the test device. Indeed, this sequential process takes place frequently in practice.

Unfortunately, for a whole host of reasons, it’s usually an unwise decision. A major

reason for this is that the conclusions drawn may be incorrect – not a small matter.

For example, maybe one brand of battery is superior when used in one device, but

another brand is superior in a different device. In other words, device and brand of

battery may be synergistic (or interactive) in their effect on battery lifetime.1

A prudent experimental design would allow for such interaction; an experiment

that doesn’t, such as the one-factor-at-a-time sequence, may easily yield results that

are suboptimal – that is, for two factors, A and B, the optimal level of factor A,

without regard to the level of factor B, may be A0 (A “optimal”); the optimal level

of factor B, without regard to factor A, may be B0; but the optimal combination of

levels of factors A and B may not be (A0, B0). We discuss the critical issue of

interaction at length in a later section.

Electronic supplementary material: The online version of this chapter (doi:10.1007/978-3-319-

64583-4_6) contains supplementary material, which is available to authorized users.

1In fact, this is definitely the case. In general, a battery can be manufactured to cater to one type of

usage, often at the expense of another kind of usage.
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There are other reasons that the one-factor-at-a-time process is not a wise choice.

Indeed, even if we knew that there were no interaction effect between the two

factors under study, studying the two factors one at a time would result in less

reliable estimates of effects given the same total number of data values. And if we

study one factor while holding the other factor constant, we may not be able to

generalize the results. This issue is elaborated upon in Chap. 9.

We now develop the preferred procedure for examining the possible effect of

two cross-classified factors on some quantity of interest. Two factors are said to be

“crossed” or cross-classified when each level of one factor is in combination with

each level of the other factor.2 (In Chap. 7, we discuss two-factor experiments in

which the factors are not crossed but “nested.”)

Example 6.1 Planning Travel Packages at Joyful Voyages, Inc.: A

Second Look

Example 5.1 introduced Joyful Voyages, Inc., a company seeking to use experi-

mentation to take full advantage of the increasing demand for cruises to various

locations. The company wanted to investigate how the number of bookings for a

particular voyage varied by the parameters of the offer. The offer had two core

components – one was the base price and the other was the “incentive” (a traditional

direct-mail term for this type of factor) – to further entice the prospect to actually

book a cruise. The price factor had two levels and the incentive factor had four

levels, including that of no incentive. In Chap. 5, we examined the eight combina-

tions of price and incentive, viewing the problem as a one-factor design with eight

levels, as seen in Fig. 5.1.

However, the experiment can be viewed and designed as a two-factor design, or

two-factor experiment, where the two factors are as shown in Fig. 6.1. The same

eight offers (combinations of the two factors) are considered, and the same data are

used for analysis. However, the analysis will be different, explicitly capturing the

interaction between the two factors – the factor effects acting non-additively. That

is, we will now be able to additionally address the question of whether the appeal of

each incentive differs or not depending on the price, or conversely, whether or not

the price effect differs by the type of incentive. We return to this example, and the

specific issue of interaction, at the end of the chapter.

2In this chapter, we discuss experiments with and without replication, with all combinations of

levels of the two factors. Later in the text, we consider experiments in which we could, but choose

not to, for good reasons, run all combinations of levels of the two factors. The two factors are,

however, still considered to be cross-classified. In addition, the definition of cross-classified

extends to more than two factors.
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6.1 Designs with Replication

Example 6.2 Battery Brand as a Second Factor

Continuing with our study of battery lifetime, the dependent variable, we now use

two independent variables (factors): battery brand and the device in which the

battery is used. Suppose we study three devices and four brands, and decide to run

each combination of levels of factors for two batteries; that is, each combination of

levels of factors, or “treatment combination,” is replicated twice. (In the real world,

battery testing often involves 16 batteries, sometimes more, for each combination

of device and brand. However, to make the arithmetic easier to follow so we can

focus on the concepts, we use only two batteries per cell in this first example; some

other examples in the chapter use a much larger data set.)

Our model development assumes that, as in this example, each treatment com-

bination has the same number of replicates, n. If all treatment combinations do not

include the same number of replicates, we use the notation nij for the number of

replicates of treatment combination (i, j); only minor changes in algebra are then

required. We present the data in an array, as in Table 6.1. The data are in hours;

instead of “devices/usages” we use only the word “device,” since these data are for

one type of usage (continuous running of the battery) in three different devices.

Having signed confidentiality agreements, we do not reveal which brand of battery

is which column, and simply note that the brands are four of the following

(in alphabetical order): Duracell, Eveready, Kodak, Panasonic, RadioShack, and

Rayovac. For example, we read Table 6.1 as follows: when we ran the experiment

(and observed battery life of two batteries), at the combination of device 1 and

Factor 1 – Price 
Levels:
1. $2,989 per person
2. $3,489 per person

Factor 2 – Incentive 
Levels:
1. None – payment due in full four weeks before the sailing
2. Finance payment – over a period of three months, first payment due one month before the

sailing
3. Flexibility – ability to keep the dates of the sailing optional (on a first-come, first-served 

basis) until two weeks before the sailing; six trips embark over a 12-week period
4. Discount – opportunity to pay three months in advance and receive a 15% discount off the 

price

Fig. 6.1 Levels of price and incentive
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brand 1, battery life values were 17.9 hours and 18.1 hours, respectively, for the two

replicates/batteries.

The first row of experimental results in Table 6.1 corresponds to all trials of the

experiment for which the device in which the battery was inserted was held at device

1 (“level 1”). Remember, the different levels may or may not correspond to metric

values (here, they don’t); either way, they are treated simply as “categories.”

(We discussed this point at length in footnote 1 at the end of Chap. 2.) Similarly,

the first column of experimental results corresponds to all trials of the experiment

using battery brand/level 1. The cell located at the intersection of this row and column

contains all experimental outcomes for which device was held at level 1 and,

simultaneously, brand of battery was held at level 1; that is, a cell on the spreadsheet

is the location for a treatment combination. As we noted earlier, this array is known as

a cross-classification (or cross-tabulation). Each entry may be said to be at a “cross-

ing” of the two factors; hence the name, “two-factor cross-classification design.”

Table 6.1 has three rows (R ¼ 3), four columns (C ¼ 4), and two replicates

(n¼ 2) for each cell or treatment combination. Remember, each cell corresponds to

a specific and unique combination of the levels of the row and column factors. This

arrangement, which has the same number of replicates for each cell, is an orthog-

onal design: if you are told which row a data value is in, it gives you no clue as to

which column it is in, and vice versa.3 This is said to be a “balanced” design.4

Of course, a design need not have the same number of replicates per cell;

however, the analysis is simpler and the experiment more efficient and easier to

interpret if it does. (Alternatively, as we’ll see later in the book, there are carefully

planned, systematic designs in which the number of replicates is not the same for

each cell – for example, a specific half of the cells have the same number of

replicates, n, and the other half of the cells are not run at all.) If an array is not

balanced, we often try to make it balanced. For example, if all but one cell has five

replicates, and that one has four replicates, this might be because the missing data

value had been lost or never taken, for whatever reason. We might create a fifth

replicate for that cell by taking the average of the other four replicates of that cell

and account for having done so by dropping one degree of freedom from the error

Table 6.1 Battery lifetime (in hours) by brand and device

Device

Brand

1 2 3 4

1 17.9, 18.1 17.8, 17.8 18.1, 18.2 17.8, 17.9
2 18.2, 18.0 18.0, 18.3 18.4, 18.1 18.1, 18.5
3 18.0, 17.8 17.8, 18.0 18.1, 18.3 18.1, 17.9

3Having an equal number of replicates in each cell is a sufficient, but not necessary, condition for

the design to be orthogonal.
4A balanced design is one in which all levels of all factors are together with all levels of all other

factors an equal number of times.
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term. Or, if there were an extra data value in one cell, we could randomly choose

one to drop. Although this might be considered “throwing away good data,” in

practice the facilitation of analysis and interpretation is often considered more

important than the added reliability from one additional data value.

6.1.1 The Model

As in Chap. 2, we begin with a statistical model. Every data point can be written as

Yijk ¼ μþ ρi þ τj þ Iij þ εijk

where

i ¼ 1, 2, 3, . . ., R; that is, i indexes rows
j ¼ 1, 2, 3, . . ., C; j indexes columns

k ¼ 1, 2, 3, . . ., n; k indexes replication per cell

Yijk ¼ the data point that corresponds with the kth replicate in the cell at the

intersection of the ith row and jth column; for example, Y231¼ 18.4 in

Table 6.1

μ ¼ the grand mean

ρi ¼ the difference between the ith row mean and the grand mean

τj ¼ the difference between the jth column mean and the grand mean

Iij ¼ a measure of the interaction associated with the ith row and the jth column

(more about this later)

εijk ¼ the “error” or “noise” in the data value (i, j, k) – the difference between the
data value and the true mean of that cell

The terms τj and εijk are the same quantities as they were in Chap. 2, where we

considered one-factor designs, except that the error term has a necessary additional

subscript. ρi is for rowswhat τj is for columns and is symmetric in the role it plays. As

noted, Iij represents the degree of interaction associatedwith the i
th row and jth column

and will be elaborated on soon. In general, we have n observations per cell and RC
cells, corresponding to a total of nRC data values and (nRC – 1) degrees of freedom.

6.1.2 Parameter Estimates

Our estimates of the parameters of this model follow a development similar to that

in Chap. 2. Replacing each parameter in the model by its corresponding estimate,

we find

Yijk ¼ �Y��� þ ð�Yi�� � �Y���Þ þ ð�Y�j� � �Y ���Þ þ ð�Yij� � �Yi�� � �Y�j� þ �Y���Þ þ ðYijk � �Yij�Þ
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where

�Y��� is the grand mean (mean of all the data)
�Yi�� is the mean of row i
�Y�j� is the mean of column j
�Yij� is the mean of cell [i, j]

All the terms in the above equation are similar to those of the corresponding one-

factor-design equation and are intuitive, with the notable exception of the term

ð�Yij� � �Yi�� � �Y �j� þ �Y���Þ. Let’s consider this term in detail. In doing so, recall that we

are examining an equation for the value of one specific data value – the kth replicate
in the ith row and the jth column (that is, in the ijth cell).

We may write the term ð�Yij� � �Yi�� � �Y�j� þ �Y���Þ as

ð�Yij� � �Y ���Þ � ð�Yi�� � �Y���Þ � ð�Y�j� � �Y���Þ
where

ð�Yij� � �Y���Þ is the difference between the cell mean and the grand mean

ð�Yi�� � �Y���Þ is the difference between the row mean and the grand mean

ð�Y�j� � �Y���Þ is the difference between the column mean and the grand mean

Thus, ð�Yij� � �Y���Þ � ð�Yi�� � �Y���Þ � ð�Y�j� � �Y���Þmay be viewed as the degree to which
a cell mean differs from the grand mean minus an adjustment for the data value’s
“row membership,” minus an adjustment for the data value’s “column
membership.”

Assume for a moment, without loss of generality, that there is no error in any of

the �Y values. This is unrealistic, but can certainly be envisioned – just imagine that

there are an infinite number of replicates, so that the calculated mean of each cell,
�Yij�, exactly equals the true mean of that cell, μij. Given this assumption (which is

made simply to elucidate the discussion), how can (or why might)

ð�Yij� � �Y ���Þ � ð�Yi�� � �Y���Þ � ð�Y�j� � �Y���Þ

be nonzero? After all, we have (by assumption) no error, and have explicitly taken

the row effect and column effect into account. The answer, as alluded to in the

introductory paragraph, is interaction. The next section defines and illustrates this

important concept.

6.1.3 Interaction

Suppose we have two factors, A and B, each at two levels, high (H) and low (L), and

(again for clarity of discussion and no loss of generality) an infinite amount of

replication (and hence no error in the cell means). Further suppose that the cell

means are as follows:
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BL BH

AL 5 8

AH 10 ?

Suppose we start from row 1 and column 1 (AL, BL), where the yield is 5. As we

change the level of factor A (AL!AH), holding the level of factor B constant

(at BL), the yield increases by 5 (¼10 – 5). If we hold the level of factor A constant

(at AL) and change the level of factor B (BL!BH), the yield increases by 3 (¼ 8 –

5). What happens when the level of both factors, A and B, changes (AL!AH and
BL!BH)? There are three possibilities. If the yield is 13 (increasing by 8, precisely

the sum of 3 and 5), there is no interaction. If the yield is greater than 13 (increasing

by more than 8, the sum of 3 and 5), we have positive interaction. If the yield is less

than 13 (increasing by less than 8, the sum of 3 and 5, or not even increasing at all,

possibly decreasing!), we have negative interaction. To summarize:

If (AH, BH) ¼ 13, there is no interaction.

If (AH, BH) >13, there is positive interaction.

If (AH, BH) <13, there is negative interaction.

This suggests one practical way to describe interaction, at least with respect to its

sign:

Interaction ¼ degree of difference from the sum of the separate effects

In many real-world situations, this working definition of interaction has proved

useful to the authors. For example, in Chap. 11 we consider a case with a dependent

variable of sales in a supermarket. Suppose that we consider two factors of the

study, with two levels each. One is the amount of shelf space a product gets (say,

apples) and the other is whether the product is promoted (highlighted in signs at the

entrance to the supermarket). If the normal amount of shelf space is doubled and

there is no promotion, sales increase 12%. If the product is promoted and shelf

space is normal, sales increase 8%. In practice, management considered it impor-

tant to determine how sales would be affected if shelf space were doubled and the

product were promoted. Would sales increase by 20% (the sum of 12% and 8%),

more than 20% (showing positive interaction) or less than 20% (showing negative

interaction)? The answer had profound implications concerning whether each of the

limited resources (shelf space with respect to capacity, promotion with respect to

budget) should be given to the same product (if there’s positive interaction) or to

different products (if there’s negative interaction).
There is another way to conceptualize interaction. Suppose we have the follow-

ing cell means:

BL BH

AL 5 8

AH 10 17
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Holding the level of factor B constant at BL, what happens as (AL!AH)?

Answer: the yield increases by 5 (¼ 10 – 5).

Holding the level of factor B constant at BH, what happens as (AL!AH)?

Answer: the yield increases by 9 (¼ 17 – 8).

This suggests another useful, practical way to describe interaction:

If the effect of one factor varies depending on the level of another factor, there is
interaction between the two factors.

Of course, we can examine the interaction between A and B by holding the level of

factor A constant and varying the level of factor B (instead of the reverse, above).

At AL, BL!BH increases yield by 3 (¼ 8 – 5).

At AH, BL!BH increases yield by 7 (¼ 17 – 10).

It is no coincidence that the magnitude of the interaction is the same:

9� 5ð Þ ¼ 7� 3ð Þ ¼ 4

This second working definition of interaction has also proved useful to the

authors in many real-world situations. For example, as in a problem discussed

later in the chapter, suppose that one factor is gender (M, F), the other two-level

factor is brand name, and the dependent variable is “purchase intent.” In both this

example and the later one, changing from one brand name to the other has one

effect for males and a very different effect for females. To say that gender and brand

name “interact,” as illustrated by the fact that the brand name effect differs from

one gender to the other, is fairly simple. It’s a lot clearer than describing the

interaction the first way: “As you go from male to female at the same brand

name, the change in purchase intent is this; as you go from brand name 1 to

brand name 2 for the same gender, the change in purchase intent is that; when

you change both brand name and gender you get a change that is different from the

sum of the aforementioned two changes.” What?

Each way of viewing interaction is useful in different scenarios. Sometimes both

ways are practical. Either way, the numerical value of the interaction is the same,

regardless of which is the more useful way to view it.

We’ll say much more about interaction effects in subsequent chapters. At this

point, merely note that the performance of two separate one-factor experiments

(as opposed to a cross-classification of the two factors) does not allow the exam-

ination of interaction effects. Prudent experimentation must allow for the possibil-

ity of interaction unless there is ample reason to believe that there is none (an issue

also discussed in later chapters). The default presumption, in the absence of

evidence to the contrary, should generally be that interaction may be present.

A useful way to depict interaction between two factors is with an interaction plot.

For example,

BL BH

AL 5 8

AH 10 17
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could be represented by Fig. 6.2. In an interaction plot, only when the lines are

linear (which is automatic when there are only two levels of a factor) and

parallel can we say that there is no interaction between the factors. In Fig. 6.2,

the lines are not parallel, confirming that there is nonzero interaction, as calcu-

lated earlier. Remember that, for the moment, we are ignoring error; ultimately,

hypothesis testing needs to be used to inquire whether the difference that we

observe is significant – i.e., different enough to reject the null hypothesis that the

true interaction effect is zero. If there is interaction, the interpretation of main

effects become problematic. In this example, going from AL to AH gives an

average increase in yield of 7; however, it’s really either 5 or 9, depending on the
level of B. Thinking that the increase is 7 for both levels of B might not be too

big a distortion; however, when the lines cross, the distortion is usually more

serious.

For example, suppose that the numbers were

BL BH

AL 5 8

AH 10 7

Now, the main effect of A is 2; however, it’s 5 when B is low, and �1 when B is

high. This is more of a distortion. For B, it’s “worse”; the main effect of B is zero,

but it’s either +3 or �3 depending on the level of A. The interaction plot in Fig. 6.3

illustrates a crossover.

Fig. 6.2 Interaction plot
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6.1.4 Back to the Statistical Model: Sum of Squares

We now develop the sums-of-squares relationships, as in Chap. 2, for our

two-factor design. Recall from the earlier section, Parameter Estimates, the equa-
tion in which we replaced each parameter by its best estimate:

Yijk ¼ �Y��� þ ð�Yi�� � �Y���Þ þ ð�Y�j� � �Y ���Þ þ ð�Yij� � �Yi�� � �Y�j� þ �Y���Þ þ ðYijk � �Yij�Þ

We rearrange terms slightly to get

Yijk � �Y��� ¼ ð�Yi�� � �Y���Þ þ ð�Y�j� � �Y ���Þ þ ð�Yij� � �Yi�� � �Y�j� þ �Y���Þ þ ðYijk � �Yij�Þ

As in Chap. 2, we can square both sides of this equation (if two quantities are

equal, their squares are, of course, equal), and recalling that we can write this

equation for every combination of i, j, and k (row, column, and replicate, respec-

tively), we can add all nRC such squared equations. Again, as in Chap. 2, all cross-

product terms cancel and we get (sums over i are from 1 to R, sums over j are from
1 to C, and sums over k are from 1 to n):

P
i

P
j

P
kðYijk � �Y���Þ2 ¼

P
i

P
j

P
kð�Yi�� � �Y���Þ2 þ

P
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P
j

P
kð�Y�j� � �Y���Þ2

þP
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P
j

P
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P
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Once again, observe that
P

i

P
j

P
kð�Yi�� � �Y���Þ2 does not depend on the indices j and

k; we can factor the sum as follows:

X

i
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�
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�
�Yi�� � �Y���

�2
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Similar reasoning holds for the second and third terms to the right of the equal sign,

and we arrive at

Fig. 6.3 Crossover

interaction plot

192 6 Two-Factor Cross-Classification Designs



P
i

P
j

P
kðYijk � �Y���Þ2 ¼ nC

P
ið�Yi�� � �Y���Þ2 þ nR

P
jð�Y�j� � �Y���Þ2

þn
P

i

P
jð�Yij� � �Yi�� � �Y�j� þ �Y���Þ2þ

P
i

P
j

P
kðYijk � �Yij�Þ2

Note that without replication the last term equals zero since, for every value of (i, j),
�Yij� ¼ Yijk; that is, with no replication, a cell mean equals the individual data value.

We’ll come back to this observation later.

We may write the above equation symbolically as

TSS ¼ SSBr þ SSBc þ SSIr,c þ SSW

and allocate the degrees of freedom as follows:

nRC� 1 ¼ R� 1ð Þ þ C� 1ð Þ þ R� 1ð Þ C� 1ð Þ þ RC n� 1ð Þ

Note that SSBc is the same basic quantity as SSBc in our one-factor design in

Chap. 2. SSBr is the analogous quantity for the row factor; after all, rows and

columns are, in essence, symmetric in their role in the analysis. In SSIr,c, the I

stands for interaction; the subscripts are, in a sense, unnecessary, since what else

could be interacting except the two factors under study? However, we adopt the

subscripted notation to indicate that, in a study with three or more factors, the

subscripts would distinguish which term stands for which set of factors

interacting.

Consider the degrees-of-freedom allocation. The terms (nRC – 1) for the total,

(C – 1) for columns, and its analog (R – 1) for rows, follow directly from the (n –

1) rule discussed in Chap. 2. The degrees-of-freedom value for an interaction term

is always the product of the degrees of freedom of the factors interacting. This

may not be obvious, and we don’t want to spend a lot of time formally proving

this, but consider the following 3� 4 table. If you know the value of the cell

means for the cells with X’s in them, along with all row means and column means,

the cell means of the remaining cells (those without X’s inside) are uniquely

determined.

X X X

X X X

There are X’s in six of the cells, corresponding to (3� 1)(4� 1)¼ 2 � 3¼ 6

degrees of freedom. This logic generalizes to (R – 1)(C – 1) cells necessary to be

known, along with all but one of the row means and column means, for all of the

remaining cell means to be determined; hence, we have (R – 1)(C – 1) degrees of

freedom for the interaction sum of squares, a sum of squares that includes each cell

and uses the row and column means in its calculation.
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The number of degrees of freedom for the error term, SSW, follows directly

from the (n – 1) rule; each cell, with n data values, contributes (n – 1) degrees of

freedom, and we have RC cells, for a total of RC(n – 1) degrees of freedom.

Example 6.3 Numerical Example

6.1.4.1 Calculating Sums of Squares

Now let’s calculate these sums-of-squares quantities with our data for the battery

lifetime example. We’ll consider in detail the mechanics that the authors have

found helpful.

Across the left and the top of the array in Table 6.2 are the level designations of

the row and column factors, respectively, for our battery example; we’ll need these

later when we examine how the rows and columns differ (if they do). Within each

cell, we enter the cell mean and put it in parentheses (or circle it by hand) to

distinguish it from the yields themselves. (Another example of practicing safe

statistics!) The row and column means are at the right and bottom of the array,

respectively, and the grand mean (18.05) is shown as the lowest-rightmost entry.

Check to verify that the average of the row means equals the average of the column

means. Next, calculate the sums of squares.

SSBr ¼ 2ð Þ 4ð Þ 17:95� 18:05ð Þ2 þ 18:20� 18:05ð Þ2 þ 18:00� 18:05ð Þ2
h i

¼ 8 :01þ :0225þ :0025½ �
¼ :28

SSBc ¼ ð2Þð3Þ ð18:00� 18:05Þ2 þ ð17:95� 18:05Þ2 þ ð18:20� 18:05Þ2
h

þð18:05� 18:05Þ2
i

¼ 6½:0025þ :001þ :0225þ 0�
¼ :21

Table 6.2 Battery lifetime (in hours) by brand and device

Device

Brand

1 2 3 4 �Yi��
1 17.9, 18.1 17.8, 17.8 18.1, 18.2 17.8, 17.9

17.95(18.0) (17.8) (18.15) (17.85)
2 18.2, 18.0 18.0, 18.3 18.4, 18.1 18.1, 18.5

18.20(18.1) (18.15) (18.25) (18.3)
3 18.0, 17.8 17.8, 18.0 18.1, 18.3 18.1, 17.9

18.00(17.9) (17.9) (18.2) (18.0)
�Y�j� 18.00 17.95 18.20 18.05 18.05

Cell means are in parentheses, column means are in the bottom row, and row means

are in the last column
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SSIr,c ¼ ð2Þ ð18:00� 17:95� 18:00þ 18:05Þ2 þ ð17:80� 17:95� 17:95þ 18:05Þ2
h

þ . . .þ ð18:00� 18:00� 18:05þ 18:05Þ2þ
i

¼ 2½:055�
¼ :11

SSW¼ 17:90� 18:00ð Þ2 þ 18:10� 18:00ð Þ2 þ 17:80� 17:80ð Þ2 þ � � �
h

þ 17:90� 18:00ð Þ2
i

¼ :30

and, as a consequence,

TSS¼ :28þ :21þ :11þ :30
¼ :90

If doing the calculations by hand, it may be simpler to independently compute

SSBc, SSBr, SSW, and TSS, and then derive SSIr,c by subtraction.

6.1.4.2 The Analysis of Variance

We are now prepared to embark on our analysis of variance to determine if row or

column factors or interaction effects are statistically significant. Our ANOVA table

is in Table 6.3.

We compare Fcalc to the appropriate critical value, c, taken from the F tables in

the Statistical Tables appendix, or obtained from the Excel command. For the row

factor, we test these hypotheses:

H0: All row means are equal

H1: Not all row means are equal

Table 6.3 ANOVA table for two-factor study of battery life

Source of variability SSQ df MS Fcalc

Rows .28 2 .14 5.6

Columns .21 3 .07 2.8

Interaction .11 6 .0183 .73

Error .30 12 .025

Total .90 23
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In Chap. 2, we saw that

MSBc ¼ SSBc=ðC� 1Þ and EðMSBcÞ ¼ σ2 þ Vc

where E( ) is the expected value function and Vc is the variability due to differences

in true column means. In the same way, we have

MSBr ¼ SSBr=ðR� 1Þ and EðMSBrÞ ¼ σ2 þ Vr

where Vr is the variability due to differences in true row means. Similarly for

interaction, we have

MSI ¼ SSI=½ðR� 1ÞðC� 1Þ� and EðMSIÞ ¼ σ2 þ Vint

where Vint ¼ n
P

i

P
jI
2
ij=½ðR� 1ÞðC� 1Þ�.

With α ¼ .05, and for df ¼ (2, 12), we have c ¼ 3.89. Thus, Fcalc ¼ 5.6 > 3.89,

and we reject H0 ( p < .05); the row factor is significant, meaning that we conclude

that not all true row means are equal.

For the column factor, we test these hypotheses:

H0: All column means are equal

H1: Not all column means are equal

With α ¼ .05, and for df ¼ (3, 12), we have c ¼ 3.49. Thus, Fcalc ¼ 2.8 < 3.49 and

we acceptH0 ( p> .05); the column factor is not significant, meaning that we cannot

reject that all true column means are equal.

Finally, for interaction, we test these hypotheses:

H0: There is no interaction between row and column factors

H1: There is interaction between row and column factors

With α ¼ .05, and for df ¼ (6, 12), we have c ¼ 3.00. Thus, Fcalc ¼ .73 < 3.00,

p > .05, and we accept H0; the interaction effect between the two factors is not

significant – we cannot reject that there is no interaction between the two factors. As

an aside, whenever an Fcalc is less than one, we really don’t have to bother to look

up the value of c in the F table; for any practical value of α, no F table value is

under one.

Note that in our example, the mean square for interaction, MSI, is less than

MSW. We concluded that there is no interaction by comparing Fcalc ¼ .73 to

c ¼ 3.00. Since

EðMSIÞ ¼ σ2 þ Vint and EðMSWÞ ¼ σ2

and Vint cannot be negative, some experimenters take the view that this constitutes

strong evidence that Vint is zero. Correspondingly, they then argue that

EðMSIÞ ¼ σ2 þ 0 ¼ σ2
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meaning that MSI and MSW are both estimating the same quantity – σ2. Hence,
they say, one should pool the two estimates for use as the denominator of Fcalc when

testing for significance of the row and column factors. (Everyone would agree with

the latter part of the discussion – if two quantities are known to estimate the same

quantity, they should be pooled; it’s the premise that they estimate the same

quantity with which not all experimenters agree.)

The pooling leads to a modified ANOVA table, as in Table 6.4. Pooling the two

estimates is algebraically equivalent to adding the sums of squares and the degrees

of freedom. In each case, both Fcalc and c change, the latter due to the increase in the

error df. For the row factor, Fcalc ¼ 6.15 > c ¼ 3.55 ( p < .05) and we continue to

reject H0; for the column factor, Fcalc ¼ 3.07 < c ¼ 3.16 ( p > .05) and we still

accept H0 (but it’s a much closer call).

Example 6.4 A Larger Example: First United Federal Bank of Boston

Mary Lou Naughton, the vice president of operations at the First United Federal

Bank of Boston, wanted to investigate the benefit of various types of teller training.

Tellers may attend a formal 2-week teller-training course, depending on its avail-

ability at the time of their hiring, or they may have some number of weeks of one-

on-one training working with an experienced teller at a branch office, or they may

have some combination of both. Branch managers usually augment formal course

work with one-on-one training before allowing a new employee to work unaided

with bank customers.

There are many measures of a teller’s performance; one of the more important is

the magnitude of the monthly gross overage and/or shortage for that teller. The bank

cares about the error irrespective of the sign – either the customer or the bank is the

loser in an erred transaction, and neither is acceptable to the bank.

The bank staff has assembled data on 100 new tellers, as seen in Table 6.5. For

each teller, the entry in the "Course" column indicates the teller did (yes) or did not

(no) take the 2-week course. The column headed "Weeks 1:1" indicates the number
of weeks of one-on-one training provided for that teller. The entry in the "Error"

column indicates the larger of the sum of overages and the sum of shortages for that

teller. What was of prime interest is whether either (or both) of the training options

affect performance, and whether there is (nonzero) interaction between the two.

Table 6.4 ANOVA with pooled error and interaction

Source of variability SSQ df MS Fcalc

Rows .28 2 .14 6.15

Columns .21 3 .07 3.07

Error .41

(.11 + .30)

18

(6 + 12)

.0228

Total .90 23
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Table 6.5 Bank teller performance by training type

Teller Course Weeks 1:1 Error Teller Course Weeks 1:1 Error

1 No 2 $66.52 51 No 2 $59.24
2 No 4 $22.10 52 No 4 $22.22
3 No 6 $18.48 53 No 6 $10.36
4 No 8 $8.08 54 No 8 $14.23
5 No 10 $22.69 55 No 10 $7.30

6 Yes 2 $11.88 56 Yes 2 $14.52
7 Yes 4 $15.07 57 Yes 4 $8.21
8 Yes 6 $10.57 58 Yes 6 $14.82
9 Yes 8 $7.53 59 Yes 8 $10.73
10 Yes 10 $10.16 60 Yes 10 $19.64

11 No 2 $53.81 61 No 2 $55.77
12 No 4 $21.25 62 No 4 $30.53
13 No 6 $19.93 63 No 6 $11.39
14 No 8 $9.48 64 No 8 $12.13
15 No 10 $7.78 65 No 10 $12.40

16 Yes 2 $11.02 66 Yes 2 $10.89
17 Yes 4 $14.20 67 Yes 4 $14.87
18 Yes 6 $9.50 68 Yes 6 $3.32
19 Yes 8 $3.75 69 Yes 8 $14.40
20 Yes 10 $12.16 70 Yes 10 $14.31

21 No 2 $64.03 71 No 2 $59.24
22 No 4 $29.63 72 No 4 $24.20
23 No 6 $14.42 73 No 6 $11.19
24 No 8 $21.57 74 No 8 $10.81
25 No 10 $6.21 75 No 10 $14.37

26 Yes 2 $10.26 76 Yes 2 $18.60
27 Yes 4 $17.27 77 Yes 4 $19.40
28 Yes 6 $12.96 78 Yes 6 $6.03
29 Yes 8 $10.12 79 Yes 8 $6.30
30 Yes 10 $16.10 80 Yes 10 $13.99

31 No 2 $54.35 81 No 2 $64.39
32 No 4 $19.32 82 No 4 $17.53
33 No 6 $14.80 83 No 6 $13.36
34 No 8 $13.12 84 No 8 $12.89
35 No 10 $16.33 85 No 10 $15.18

36 Yes 2 $8.92 86 Yes 2 $19.48
37 Yes 4 $18.42 87 Yes 4 $10.46
38 Yes 6 $9.28 88 Yes 6 $10.44
39 Yes 8 $15.95 89 Yes 8 $15.71
40 Yes 10 $9.32 90 Yes 10 $5.01

41 No 2 $50.70 91 No 2 $57.24
42 No 4 $10.84 92 No 4 $30.00
43 No 6 $14.45 93 No 6 $13.40
44 No 8 $16.77 94 No 8 $6.94
45 No 10 $13.50 95 No 10 $9.24

46 Yes 2 $12.65 96 Yes 2 $10.24
47 Yes 4 $16.83 97 Yes 4 $0.08
48 Yes 6 $6.38 98 Yes 6 $6.87
49 Yes 8 $16.89 99 Yes 8 $9.62
50 Yes 10 $2.74 100 Yes 10 $16.49
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There were two levels of the factor “formal two-week teller-training course”:

took it (yes) or not (no). And there were five levels of the factor “number of weeks

of one-on-one training”: two weeks, four weeks, six weeks, eight weeks, or ten

weeks. For each of the resulting ten treatment combinations, there were ten tellers/

“replicates.”

Using JMP, we performed a two-factor cross-classification ANOVA.5 Fig. 6.4

represents the “means diamonds” plot, as described for JMP in Chap. 2. Note that

this dependent variable, called “Error,” is one for which lower is better. In Fig. 6.4,

the data for “Course¼No” has an interesting feature: it appears to be bimodal. This

is because the Table 6.5 data for “Course¼No” and “Course¼Yes” include all the

levels of one-on-one time; the bimodality will turn out to be a manifestation of

interaction between the two factors.

Figure 6.5 shows the means-diamonds plots for the factor “time (weeks) of one-

on-one training.” The ANOVA results are in Fig. 6.6. Note that JMP doesn’t break
down the ANOVA table into the model components as we did manually; however,

it provides an “Effects Tests” table with the necessary information if we want to

augment the ANOVA table.

Fig. 6.4 Means-diamonds plots for “formal course”

5There isn’t a direct command in JMP for this type of analysis. In order to run a two-way ANOVA,

we have to select Fit Model under Analyze, then select the appropriate Y and construct model

effects (in this case, course, weeks, and course*weeks).
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It can be seen that both factors, “Course” and “Weeks 1:1,” and their interaction

are highly significant. From the diamonds plots, we can see that “Course ¼ Yes” is

lower (better) than “Course ¼ No,” and at least pictorially, it appears that “Weeks

1:1 ¼ 4” is lower than “Weeks 1:1 ¼ 2,” and that “Weeks 1:1 ¼ 6, 8, and 10” are

about equally effective, and lower than “Weeks 1:1 ¼ 4.” Indeed, Fisher’s LSD at

α¼ .05 and Tukey’s HSD at a¼ .05 both verify this.

Table 6.6 shows the cell means. We can see from the table the direction of the

interaction. For “Weeks 1:1 ¼ 2,” the benefit of taking the formal course is quite

Fig. 6.5 Means-diamonds plots for “one-on-one training time”

Fig. 6.6 ANOVA table for bank study in JMP
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high – a reduction in error from $58.53 to $12.85. For “Weeks 1:1 ¼ 4,” the benefit

is not quite as large, but still relatively large. For “Weeks 1:1 ¼ 6,” there is a

noticeable benefit, but it is somewhat lower than for the previous levels of

Weeks 1:1; for “Weeks 1:1 ¼ 8 or 10,” there is not much benefit, if any at all.

Or, equivalently, the benefit of increasing the weeks of one-on-one training is quite

strong (at least up to six weeks) if there is no formal course, but is not very evident if

the teller does take the formal course.

This can be represented by an interaction plot of Error vs. “Took Course” for

each “Weeks 1:1” treatment (Fig. 6.7).

6.2 Fixed Levels Versus Random Levels

Thus far, we have assumed (without having said so) that each factor has what are

called “fixed” levels. Basically, a factor has fixed levels if the levels of the factor

implemented in the experiment are chosen by the experimenter, and the levels of

Table 6.6 Cell means for bank study

Weeks 1:1

Took course

0 1

2 58.53 12.85
4 22.76 13.48
6 14.18 9.02
8 12.60 11.10
10 12.50 11.99

Fig. 6.7 Interaction plot for teller training
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the factor in the experiment are the only levels about which inferences are to be

made. The definition is not always so clean, however. Should the term apply in a

case in which the factor is continuous and some specific subset is chosen system-

atically (say, five equally-spaced values between the practical minimum and max-

imum levels of the factor)? Except on a mathematical level, which is not our focus,

not all authors agree on a specific definition of “fixed-level” factor, but the defini-

tion above is appropriate for all practical considerations.

A factor with fixed levels is called a “fixed-level factor.” A classic example of a

fixed-level factor would be the factor “sex” (male, female).

The opposite of fixed levels is random levels. A reasonable working definition of

a factor having random levels is that the levels of the factor implemented in the

experiment are randomly selected (that is, they are a random sample) from a larger

number of possibilities. Some authors specify that this larger set must be infinite,

but others specifically include cases where it is not infinite. A classic example of a

random-level factor is the amount of rainfall, where the levels in the experiment are

those that “just happened” to occur.

If each factor in a design is a fixed-level factor, we have a “fixed model”; if each

factor in a design is a random-level factor, we have a “random model.”6 Of course,

we can have a “mixed model” – a design in which some factors are fixed-level

factors and others are random-level factors. For a two-factor study, the subject of

this chapter, an example might be having one factor, “type of fertilizer,” under our

control, and another factor, “amount of rainfall,” not under our control. You may

wonder why this matters. The answer is that it affects the analysis with regard to

how the Fcalc’s should be formed; hence, the conclusions could change. The Fcalc’s
are formed for different models as a function of the different expected mean

squares, listed in Table 6.7. You may recognize the expected mean squares for

the fixed model as those we stated earlier in the chapter.

The significance of Table 6.7 is that it guides the selection of the denominator in

the calculation of Fcalc as a function of the model. Consider the fixed-model column

of Table 6.8; note that to inquire if there are nonzero row effects, we form

Fcalc¼MSBr/MSW . Why this ratio? Because this is the ratio that “isolates” Vr;

that is, the numerator has exactly the same terms as the denominator, except for an

Table 6.7 Expected mean square in fixed, random, and mixed models

Mean square Fixed Random

Mixed: col. fixed,

row random

MSBr σ2 +Vr σ2 +Vr +Vint σ2 +Vr

MSBc σ2 +Vc σ2 +Vc +Vint σ2 +Vc +Vint

MSIr,c σ2 +Vint σ2 +Vint σ2 +Vint

MSW σ2 σ2 σ2

6We saw a brief definition of fixed and random models in Chap. 3.
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additional nonnegative term, Vr. Only a ratio that isolates Vr can test for row effects;

for example, if we formed the (silly) ratio of MSBr divided by MSBc, what would it

definitively tell us? If it is close to one, both Vr and Vc could be nonzero but nearly

equal, or they could be exactly zero: there’s no way to distinguish between the two

cases! Yet, distinguishing whether Vr is nonzero or zero is exactly what we’re trying
to do. By examining Table 6.8 for the random model, we can see that the ratios to

isolate Vr and Vc are different than for the fixed model. For the mixed model, some

of the appropriate ratios are different from either of the other two columns.

Why do we get different expected mean squares for the different models?

Carefully examine and consider the expectations in the mixed-model column.

One of the authors, when a student, looked at such a table and was convinced that

it had an error in the mixed-model column; after all, if the row factor is the random

one, shouldn’t it be the row expected mean square that has the “extra” Vint term?

Yet, Table 6.7 says that it’s the column expected mean square that has the extra Vint

term, and it is correct. The logic derives from the definition of interaction. If the

levels of the row factor are random, and the two factors interact, then the column
effects will vary for each (mythical) repeat of the experiment, because the column

effects (essentially, the differences among the column means) depend on the levels

of the row factor, and these levels will differ for each repeat of the experiment.

Thus, the variability of the specific column effects we observe is larger, and so the

mean square for columns on average is larger, because the observed column means

vary for an additional reason besides the standard reasons of error and true column

differences.

To test for interaction, the proper ratio is the same for all three models. Table 6.8

summarizes the proper ratios. Again, for the mixed model, we assume that the

column factor is a fixed-level factor and the row factor is a random-level factor.

We offer no specific advice concerning whether a model is fixed, random, or

mixed, except to consider the formal definitions of each model. As suggested

earlier, sometimes it is clear that a factor is fixed (such as sex, or a specific set of

mailing lists from which no generalizations can be or will be made, or two specific

brands of battery); sometimes it is clear that a factor is random – the classic example

is when the factor is “person.” Imagine a two-factor experiment in which two

brands are being tested (such as Coca-Cola versus Pepsi). A sample of each drink

(unlabeled) is given to each person, who evaluates it on some measure, say, taste. In

Table 6.8 Calculation of Fcalc in fixed, random, and mixed models

Fixed Random

Mixed: col. fixed,

row random

Row factor MSBr/MSW MSBr/MSIr , c MSBr/MSW

Column factor MSBc/MSW MSBc/MSIr , c MSBc/MSIr , c

Interaction MSIr , c/MSW MSIr , c/MSW MSIr , c/MSW
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this case, a two-factor cross-classification might include “brand” and “person”7

(although “person” would likely not be a very important factor in this experiment).

We automatically consider “person” as a random factor – after all, the subjects in

the experiment are likely to be a random sample of a large universe of people (for

example, of all people, of men only, of heavy users of soft drinks) and the results are

likely to be viewed as generalizable to that universe. Thus, in accordance with the

mixed model (brand is a fixed-level factor, people is a random-level factor), we

would compute all of the sum-of-squares terms the same way as we learned earlier

in the chapter, but the Fcalc for brands would be formed by taking the ratio of

MSBbrands and MSIbrands�people.
Depending on whether the model is fixed or random, there may be some

difference in how the results are used, or at least thought about. When the random

model is apropos, the experimenter is often more interested in the universe of μ
values, as opposed to the specific μ values of the levels of the factor(s) that

happened to be used in the analysis. The experimenter is also likely to be interested

in the variance of these μ values, σ2μ – recall that, in Chap. 3, we noted that in the

random model, the τj values are random variables; it follows that the μj¼ μ + τj
values are also random variables. The experimenter can then go a step further and

compute

σ2μ=ðσ2μ þ σ2Þ

which is a ratio between 0 and 1, and which can be considered a measure of the

effect of that factor in proportion terms.

The situation is too context-dependent to provide further specific advice here.

We simply note that if there is no interaction (Vint ¼ 0), the three models converge

to the same set of expected mean squares. Also, it is possible that all three models

will yield the same ultimate “accept/reject” decision.

Example 6.5 Brand Name Appeal for Men and Women

Now let’s look at an interesting example of studying two cross-classified factors

with replication. It is adapted from an article in the journalDecision Sciences.8 Two
hundred college students participated in an experiment that was allegedly to test

market a new cigarette to determine what consumers thought of it and whether they

would purchase it. However, the real reason for the experiment was to determine

how, if at all, the proposed brand name of a new cigarette affected its attractiveness

7This type of experiment, in which “people” is one of the factors, is often called a “repeated-

measures” design, or a “within-subjects” design, to denote that the same person (say, as the row) is

utilized for more than one level of the other factor(s).
8H. H. Friedman and W. S. Dipple Jr. (1978), “The Effect of Masculine and Feminine Brand

Names on the Perceived Taste of a Cigarette.” Decision Sciences, vol. 9, pp. 467–471.
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to potential customers. Of course, in 1978, smoking didn’t carry the stigma it does

today. All students in the study were regular cigarette smokers.

Two brand names were selected for testing: “Frontiersman” and “April.” It was

suspected that the presumed “masculine” name “Frontiersman” would make the

cigarette more appealing to men and less appealing to women, and that the

presumed “feminine” name “April” would make the cigarette more attractive to

women and less attractive to men. Four separate groups of 50 people were placed in

four different rooms and asked various questions about the cigarette under discus-

sion; two of the groups were all male, two were all female. The cigarette was the

same for each group and there was no brand indication on the cigarette paper. Fifty

men and 50 women (two of the groups) were told that the brand name of the

cigarette was to be “Frontiersman” and asked for various opinions about the

cigarette. Another fifty men and fifty women (the other two groups) were told

that the brand name was to be “April.” Results for the two-factor experiment with

R ¼ 2 and C ¼ 2, and n ¼ 50 (replicates per cell), are in the following table. The

entries in the cells represent average “intent to purchase” (that is, cell means) for

each group on a seven-point scale with 7 representing “nearly a certain purchase of

the cigarette” and 1 representing “nearly zero chance of purchase of the cigarette.”

This question (intent to purchase) was one key question among several.

Brand name

Sex

Male Female

“Frontiersman” 4.44 2.04
“April” 3.50 4.52

The mean for “Frontiersman”, averaged over both sexes, is 3.24; for “April,” the

average is 4.01. The means for male and female, respectively, each averaged over

both brands, are 3.97 and 3.28. The ANOVA table is as shown in Table 6.9.

The model was assumed to be a fixed model. (For the sex factor, this is clear! For

the brand name factor, the implication is that whatever results are found cannot be

directly extrapolated to any other brand names.) For α ¼ .05, and df ¼ (1, 196),

c ¼ 3.84 and all three effects are significant. Clearly, the interaction effect is

dominant. The main effect of brand name is � . 77(¼ 3.24� 4.01). The clearest

way to discuss the interaction might be: “Whereas the main effect of brand name is

�.77, it’s + . 94(¼ 4.44� 3.50) for males, and �2.48(¼ 2.04� 4.52) for females.

Table 6.9 ANOVA table for brand name study

Source of variability SSQ df MS Fcalc

Sex 23.80 1 23.80 5.61

Brand name 29.64 1 29.64 6.99

Interaction 146.2 1 146.2 34.48

Error 831.0 196 4.24

Total 1,031.0 199
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Clearly, the difference in the effects between the two sexes, 3.42[¼ . 94� (�2.48)],

jumps out.” Of course, in the face of such strong interaction, the �.77 value of the

brand effect is less useful than the separate effects by sex. An interaction plot is

shown in Fig. 6.8.

In Chap. 9, we further explore interaction effects, their interpretation, and the

impact of a large interaction on the interpretation of the main effects.

6.3 Two Factors with No Replication and No Interaction

As indicated earlier, without replication the error term is zero; there’s no “pure”

way to estimate error. Indeed, error is measured by considering more than one
observation (replication) at the same treatment combination. Our general

two-factor model from before, repeated here for convenience, is

Yijk ¼ μþ ρi þ τj þ Iij þ εijk

which led to the sums-of-squares breakdown results of

P
i

P
j

P
kðYijk � �Y���Þ2 ¼ nC

P
ið�Yi�� � �Y���Þ2 þ nR

P
jð�Y�j� � �Y���Þ2

þn
P

i

P
jð�Yij� � �Yi�� � �Y�j� þ �Y���Þ2 þ

P
i

P
j

P
kðYijk � �Yij�Þ2

We wrote the above equation symbolically as

TSS ¼ SSBr þ SSBc þ SSIr,c þ SSW

However, as we mentioned then, without replication, n ¼ 1, and the last term of

both equations equals zero since, for every (i, j), �Yij� ¼ Yijk ; that is, with no

Fig. 6.8 Interaction plot for

brand name effect by sex
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replication, a cell mean equals the individual data value. Also, there is no longer a

use for the third subscript, k. We then have

X

i

X

j
ðYij � �Y��Þ2 ¼ C

X

i
ð�Yi� � �Y��Þ2 þ R

X

j
ð�Y�j � �Y��Þ2

þ
X

i

X

j
ðYij � �Yi� � �Y�j þ �Y��Þ2

and

TSS ¼ SSBr þ SSBc þ SSIr, c

with allocation of degrees of freedom of

RC� 1 ¼ R� 1ð Þ þ C� 1ð Þ þ R� 1ð Þ C� 1ð Þ

We know from our earlier work that with a fixed model,

EðMSBrÞ ¼ σ2 þ Vr

EðMSBcÞ ¼ σ2 þ Vc

EðMSIr, cÞ ¼ σ2 þ Vint

Considering our earlier discussion about the need to isolate an effect (such as Vr) in

order to test it, we have a problem; there’s no ratio available to test for row effects,

column effects, or interaction effects. Unless some additional insight can be

brought forth, we can’t perform an ANOVA – which, in turn, suggests a major

shortcoming of not replicating. Of course, there’s one big advantage to not repli-

cating – with fewer data values, it’s cheaper! This suggests a useful question: Is

there a way to gain the economic advantage of not replicating and yet avoid the

shortcoming of not replicating? The answer is, potentially, yes.

Suppose we assume, based on the specific application at hand, that there is no

interaction, and thus Vint¼ 0. Then, E(MSIr , c)¼ σ2, and with

EðMSBrÞ ¼ σ2 þ Vr

EðMSBcÞ ¼ σ2 þ Vc

EðMSIr, cÞ ¼ σ2

(now true for fixed and random models) we can use SSIr,c and MSIr,c to represent

the role of SSW and MSW, respectively – the latter the denominator of Fcalc. In

other words, if there is really no interaction, the estimate of the “interaction” term is

nonzero solely due to error and we can use that value as an error estimate. It is

traditional to change the notation to reflect the fact that there is no interaction and

that the term that is calculated like an interaction term is instead measuring error.
With this substitution (and dropping the unnecessary subscript, k), our notation
becomes
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Yij ¼ μþ ρi þ τj þ εij

and

TSS ¼ SSBr þ SSBc þ SSW:

Example 6.6 An Unreplicated Numerical Example

Let’s illustrate the above model and its analysis with an example. Suppose we have

an unreplicated two-factor experiment with the data array shown in Table 6.10.

We presume that for good reason (usually the knowledge of the process expert,

perhaps based on historical evidence) we can assume that there is no interaction

between the two factors.

The sums-of-squares values are calculated to be

SSBr ¼ 28:67

SSBc ¼ 32:00

SSW¼ }SSIr,c
}

� � ¼ 28:67

and the ANOVA table is as shown in Table 6.11. If α¼ .01, we find that the critical

value, c, is equal to 9.78 with df¼ (3, 6) and 10.93 for df¼ (2, 6). Thus, the row and

column factors are both highly significant.

As a comforting sidebar, consider the following: suppose we were wrong in

assuming that there is no interaction. What happens to our conclusions? Are they all

Table 6.10 Data array for numerical example

Level of factor

B

Level of factor A

1 2 3

1 7 3 4
2 10 6 8
3 6 2 5
4 9 5 7

Table 6.11 ANOVA table for unreplicated numerical example

Source of variability SSQ df MS Fcalc

Row 28.67 3 9.55 43

Column 32.00 2 16.00 72

Error 1.33 6 .22

Total 62.00 11
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useless? Let’s examine the row factor; the same reasoning holds for the column

factor.

We thought that our test statistic, Fcalc, estimated the ratio with numerator and

denominator expected mean squares of

ðσ2 þ VrÞ=σ2

However, with the interaction not zero, we actually estimated

ðσ2 þ VrÞ=ðσ2 þ VintÞ

This means that our calculated test statistic, Fcalc, is, on average (that is, Fcalc can be

expected to be), smaller than it “deserves” to be. In other words, the quantity we

want, which has the numerator and denominator expected values (σ2 +Vr)/σ2, is, on
average, larger than the quantity we have calculated, which has the numerator and

denominator (σ2 +Vr)/(σ2 +Vint). That is, without the Vint term, the denominator is

less than or equal to what it was before and the ratio is correspondingly greater than

or equal to the value it was before. All of this, of course, concerns expectations.
However, it can be shown that the basic idea probabilistically carries over to the

actual results. That is, if with the assumption of no interaction we end up rejecting

H0 (as we did, for both rows and columns), there is even less chance of our rejection

ofH0 occurring if, indeed, H0 is true. If, on the other hand, we had acceptedH0 for a

particular factor, the assumption works “against us.” We might be making a Type II

error. Nevertheless, it provides some comfort to know that only one of the two

possible outcomes (accept H0, reject H0) can be harmful (i.e., misleading) if we are

incorrect concerning our assumption of no interaction.

6.4 Friedman Nonparametric Test

We now present a nonparametric, meaning distribution-free, test as an alternative to

the two-factor ANOVA without replication. This test was developed by the Nobel

Prize-winning economist Milton Friedman.9 As with the Kruskal-Wallis test

discussed in Chap. 3, this test is less powerful than the ANOVA F-test but doesn’t
require the normality assumption of the latter. We illustrate the technique with an

example.

9M. Friedman (1937), “The Use of Ranks to Avoid the Assumption of Normality Implicit in the

Analysis of Variance.” Journal of the American Statistical Association, vol. 32, pp. 675–701.
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Example 6.7 Analysis of Angioplasty Equipment

The experiment was intended to see if there is a difference in burst pressure (that is,

pressure at which the item bursts) as a function of type of angioplasty unit, for

various types of balloon-dilation catheters. The data for this unreplicated two-factor

experiment are in Table 6.12. Note that the Friedman test considers differences in

levels only for the column factor – in this case, type of angioplasty unit. By

rewriting Table 6.12 as a 4� 9 table, instead of its current 9� 4 form, we could

examine differences in the levels of type of balloon dilation catheter.

We wish to test the following hypotheses:

H0: There are no differential effects among the different angioplasty-unit types with

respect to burst pressure.

H1: There are differential effects among the different angioplasty-unit types with

respect to burst pressure.

As with many nonparametric tests,10 we first convert the data to ranks – here,

ranks within each row. That is, we replace each data value by its rank within its row

(here, 1 through 4), as shown in Table 6.13. If there’s a tie, we average the ranks.

Finally, we sum the ranks for each column; these sums are designated R.j and are

noted in the bottom row of Table 6.13. For example, in the first row, the largest

original value is 26; this is in column two and receives the rank of 4; next highest is

25 in column three, which receives the rank of 3, and so on. For row two, there is a

tie for the highest value, 27, in columns one and two; each gets a rank of 3.5, the

average of 3 and 4.

Table 6.12 Type of angioplasty unit: data

Balloon-dilation

catheter type

Angioplasty-unit type

A B C D

1 24 26 25 22
2 27 27 26 24
3 19 22 20 16
4 24 27 25 23
5 22 25 22 21
6 26 27 24 24
7 27 26 22 23
8 25 27 24 21
9 22 23 20 19

10Even though there are several nonparametric tests, we are limited to the Friedman test as an

equivalent to two-way ANOVA. Unfortunately, there is no direct command for this test in JMP

and Excel. However, it is available in SPSS as we shall demonstrate in the Appendix.
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The test statistic is as follows. In our problem, C ¼ 4 and R ¼ 9; the constants,

12 and 3, were fixed by Friedman and determined by scale considerations:

FR ¼ f12=½RCðCþ 1Þ�gPj¼1 to CðR:2j Þ � 3RðCþ 1Þ
¼ ½12=ð9 � 4 � 5Þ�ð252 þ 34:52 þ 202 þ 10:52Þ � 135

¼ 155:03� 135 ¼ 20:03

Under the null hypothesis, FR is well approximated by a χ2 distribution with

(C � 1) degrees of freedom.11 For our problem, df ¼ 3, and with α ¼ .05, the

critical value is 7.815. Since FR is well within the critical region

(FR ¼ 20.03> 7.815), as shown in Fig. 6.9, we reject H0 and conclude that there

are differences in angioplasty-unit type with respect to burst pressure.

Table 6.13 Rank-ordered data for Friedman test

A B C D

1 2 4 3 1
2 3.5 3.5 2 1
3 2 4 3 1
4 2 4 3 1
5 2.5 4 2.5 1
6 3 4 1.5 1.5
7 4 3 1 2
8 3 4 2 1
9 3 4 2 1

R�j 25 34.5 20 10.5

Fig. 6.9 Chi-square distribution for Friedman test

11This is true for sufficiently high values of R and C. For R¼ 4, it is considered true for C> 4 (our

example has R¼ 9). Tables of exact values for lower values of R for different C’s appear in various
texts on nonparametric statistics and in Friedman’s original article (Journal of the American
Statistical Association, 1937, vol. 32, pp. 688–689 for the tables).
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6.4.1 Perspective on Friedman Test

If a regular two-factor ANOVA without replication were performed on these data,

we would get the same basic conclusions. This is often the case when a nonpara-

metric test is used. One of the authors has frequently been an expert witness in the

statistical area, often dealing with hypothesis-testing issues. Being able to show that

the appropriate nonparametric test confirms the F-test result is sometimes useful to

prevent debate about the validity of assumptions from clouding the issue.

6.5 Blocking

One reason for having a second factor in an experiment, even if we are principally

(or only) interested in one specific “prime factor,” is the difficulty of studying the

levels of the prime factor under homogeneous conditions. For example, suppose

that we are studying worker absenteeism as a function of the age of the worker, and

have different levels of ages – say, three of them: 25–30, 40–45, and 55–60.

(Workers of ages not included in these groups, say 35, are excluded from the

experiment.) However, we may be concerned that a worker’s gender may also

affect his or her amount of absenteeism – say that gender A has a higher absentee

rate than gender B. Even though we are not particularly concerned with this

potential impact of gender, we want to ensure that the gender level does not pollute

our conclusions about the effect of age. For example, if the people comprising

age-group 1 happen to include a higher proportion of gender A – solely due to a

random assignment of people that ignores gender – then the absentee rate of

age-group 1 may be higher due to gender, and NOT due to being that age group

(or due to routine, non-gender related, error, ε).
In another example, we might want to study the amount of product that can be

produced by a given process as a function of the size of the required machinery;

we’ll study two different sizes. This could mandate that the experiment to be

conducted at the two different times, or require the use of two comparable pieces

of equipment. As with the gender impact in the worker-absenteeism study, we

might not be interested in the effect of the equipment on the quantity of the product

produced; however, this factor (“equipment”) could have implications that we

haven’t considered. What should we do?

In the absenteeism example, one solution is to restrict our study to one gender

with the downside that we would obtain results only for the level we selected.12 We

could do two separate studies, one for each gender. The downside of this strategy

could be that we don’t get an overall measure of the impact of age, and the result for

12There has been an increased concern with the design of certain clinical trials for new drugs as

they often focus on one gender (most often, male), even though the results will be extrapolated to

the whole population.
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each gender would not have the reliability that a combined study might have. In

addition, if there is any interaction effect, we have no opportunity to measure it.

What is often done in such situations is to “block” on the factor (here, gender) that

might affect the results of our study. To block we introduce a second factor, gender,

and perform a two-factor study. Again, note that this would be true even if we have

no interest at all in the effect of gender! Our goal in introducing gender as a factor –

that is, blocking on gender – is to eliminate gender as a nuisance factor. We wish to

ensure that, in the data, the levels of this nuisance factor are evenly distributed over

the levels of the primary factor; in other words, each age group consists of people

with the same gender mix, and is, therefore, “on equal footing” with respect to

gender. The bottom line is that with respect to investigating the impact of age, it

doesn’t matter what the motivation is for introducing gender is; our action is the

same, whether we want to study the effect of gender or we just want to prevent

gender from polluting our conclusions about the impact of age. We can view the

introduction of a blocking factor as something that is done only when it is necessary

to remove the nuisance value of the blocking factor. Later in the text, notably in

Chap. 10 on confounding, we dive more deeply into the issue of blocking.

Example 6.8 Planning Travel Packages at Joyful Voyages (Revisited)

Let’s return to the experimental design considered at the beginning of the chapter,

with levels of the factors shown in Fig. 6.1. This study showed that the main effect

of factor 1, “price,” on “number of bookings generated” was highly significant. We

found the same result in our discussion in Example 5.1 at the end of Chap. 5, when

we examined an orthogonal contrast (“contrast 1”) that essentially represented

price. The main effect of “incentive” was also significant; this says that we cannot

conclude that the four incentives (one of them being “no incentive”) were equal

with respect to number of bookings generated. This is consistent with the contrast

2 finding in Chap. 5; the analysis of this contrast indicated that priced-based

incentives (financing and discount) differed from non-price-based incentives (flex-

ibility, or no incentive).

What is added to the story by considering the eight offers in the two-factor cross-

classification framework noted in Example 6.1 is the ability to formally statistically

test for an interaction effect: Is the “price” effect different for different incentives?

The answer is yes. There was significant interaction and the direction indicated that

the “price” effect was largest when there was no incentive, next largest when the

incentive was the flexibility incentive, and not as prominent when the incentive was

one of the priced-based incentives.

We could have addressed these issues to a lesser degree using the one-factor,

orthogonal breakdown approach of Chap. 5. We could have inquired whether the

price effect was different from one particular incentive to another. For example,

using the eight treatments in the order in which they appeared in Chap. 5 (Fig. 5.1),

a contrast of (�1, 1, 1,�1, 0, 0, 0, 0) would have addressed whether the price effect

when there is no incentive differs from the price effect when the incentive is the

financing incentive; that is, the contrast represents
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mean 2�mean 1ð Þ � mean 4�mean 3ð Þ½ �
¼ �mean 1þmean 2þmean 3�mean 4ð Þ

However, this and similar contrasts do not address interaction questions in the

aggregate (that is, “all together”).

Exercises

1. Consider the data in Table 6EX.1 concerning the performance of an antenna

aimed at a specific satellite. Management wishes to study the impact of two

factors and their interaction: one factor is the type of mount of the antenna and

the other is the temperature at which it operates. The dependent variable is a

measure of the distortion of the transmission. Three antennae are tested at each

combination of mount type and temperature. Test for differences among

temperatures and mount types, and for the existence of interaction between

temperature and mount type. Use α ¼ .05. Assume a fixed model.

2. This exercise is designed partly to illustrate that we often can’t tell what is
going on just by looking at the data. Table 6EX.2 contains two sets of data –

each has the same row means, column means, row SSQ, column SSQ, degrees

of freedom, and about the same range of numbers.

Table 6EX.1 Antenna performance

Temperature

Mount type 1 2 3

I .80 1.10 .50
1.00 1.15 .70
1.05 1.20 .75

II .60 .65 .55
.80 .65 .90
1.30 1.25 .95

Table 6EX.2 Two sets of data

Set 1 Set 2

Rows

Column factor

Rows

Columm factor

a b c d e a b c d e

I 35 39 37 43 41 I 27 53 23 53 39
II 43 45 33 57 47 II 39 51 37 43 55
III 39 51 35 59 51 III 45 45 49 39 57
IV 23 37 27 37 41 IV 21 23 31 45 45
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(a) For each set of data, perform an ANOVA, with α ¼ .05. The model is

Yij¼ μ+ ρi + τj + εij

(b) Why are the results so dramatically different from one set to the other?

3. For the Exercise 2, Set 1 data, perform Fisher’s LSD analysis on the column

factor. Use α ¼ .05.

4. For the Exercise 2, Set 1 data, perform Tukey’s HSD analysis on the column

factor. Use an experimentwise error rate, a, of .05.

5. For the Exercise 2, Set 1 data, perform a Newman-Keuls analysis on the

column factor. Use an experimentwise error rate, a, of .05.

6. The data in Table 6EX.6 concerns time before failure of a special-purpose

battery. It is important in battery testing to consider different temperatures and

modes of use; a battery that is superior at one temperature and mode of use is

not necessarily superior at other treatment combinations. Furthermore,

other factors may be relevant in addition to these two factors, depending on

circumstances. In a battery-production situation, even for a specific battery size

(such as AA), management is acutely aware of the trade-offs that need to be

made in choosing the properties of the battery to be produced. In this study, the

special-purpose batteries were being tested at four different temperatures,

for three different modes of use (intermittent [I], continuous [C], sporadic

[S]). There were two replicates at each of the 12 temperature, mode-of-use

combinations. Test for differences due to temperature and mode of use, and for

the existence of interaction between these factors. Assume a fixed model and

use α ¼ .05.

7. For the data in Exercise 6, conduct an orthogonal breakdown of the sum of

squares associated with rows in order to test if there’s a difference (1) between
mode of uses I and C (the systematic use modes) and mode of use S

(nonsystematic use mode), and (2) between mode of use I and mode of use C.

Use an α value of .05.

8. Suppose that we have the data in Table 6EX.8 on mileage (miles per

gallon) and management wishes to test whether mileage varies by gasoline

type across various automobile makes. Perform an ANOVA to test whether

gasoline type affects mileage. Test also whether auto make affects mileage.

Use α ¼ .01.

Table 6EX.6 Battery time before failure

Temperature

Mode of use 1 2 3 4

I 12, 16 15, 19 31, 39 53, 55
C 15, 19 17, 17 30, 34 51, 49
S 20, 21 19, 18 36, 37 54, 56
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9. Perform a Friedman test on the data in Exercise 8 to test for differences due to

gasoline type. Use α ¼ .01. Do you get the same basic results as you did for

Exercise 8?

10. A major advertiser places the same ad in several different magazines; the ads

are of the same size and inside the front cover in all cases. Consider N ¼ RC
observations on the amount of response received at each of R levels of the

factor “magazine” (that is, R different magazines) and C different prices. Each

of the RC published advertisements was sent to a random sample of 100,000

people, all in the same location. The differences in magazines were neglected,

and a standard (one-way) ANOVA was performed to study the effect of price.

An Fcalc was routinely generated to test for price differences. Call this value F1.

Now a standard two-way ANOVA (without interaction and replication) has

been performed, including the row factor, “magazine.” Again, an Fcalc is

generated to test for price differences. Call this value F2.

In general, F1 6¼ F2. Under what conditions on the sum of squares due to

“magazines” will F2 exceed F1? Under what conditions on the sum of squares

due to “magazines” will MSW2 be less than MSW1? These questions could

form the basis of a consideration of when “blocking” (as described in Sect. 6.5)

would be useful (or judicious).

11. In Example 6.4, we addressed an application using data based on teller training

at the First United Federal Bank of Boston. The dependent variable was called

the “error” and represented the larger of the sum of the overage and underage

errors. Another important performance measure, relating to productivity as

opposed to accuracy, is the number of transactions per unit time. In retail

banking, a transaction is any of a large variety of services provided to the

customer; examples are check cashing, accepting deposits, and providing

cashier’s checks.
Table 6EX.11 contains productivity data for the same 100 tellers listed in

Table 6.5. The column headed "Transactions" indicates the average number of

retail transactions per hour for each teller. The two factors, of course, are the

same as in Example 6.4: the teller took a formal off-site training course (Yes) or

not (No) and received some number of weeks of one-on-one training ("Weeks

1:1") by the supervisor. Do either (or both) of the training-options factors affect

productivity? Is there interaction between the two? Use α ¼ .05.

Table 6EX.8 Miles per gallon by gas type and auto make

Gas type

Auto make 1 2 3 4 5 6

F 26 32 26 20 28 18
B 38 37 27 30 33 33
Y 26 35 26 26 29 26
H 38 40 29 28 34 35

216 6 Two-Factor Cross-Classification Designs



Table 6EX.11 Number of teller transactions by training type

Teller Course Weeks 1:1 Transactions Teller Course Weeks 1:1 Transactions

1 No 2 24.02 51 No 2 16.74
2 No 4 18.60 52 No 4 18.72
3 No 6 23.98 53 No 6 15.86
4 No 8 19.58 54 No 8 25.73
5 No 10 38.19 55 No 10 22.80

6 Yes 2 22.88 56 Yes 2 25.52
7 Yes 4 29.57 57 Yes 4 22.71
8 Yes 6 26.57 58 Yes 6 30.82
9 Yes 8 24.03 59 Yes 8 27.23
10 Yes 10 27.16 60 Yes 10 36.64

11 No 2 11.31 61 No 2 13.27
12 No 4 17.75 62 No 4 27.03
13 No 6 25.43 63 No 6 16.89
14 No 8 20.98 64 No 8 23.63
15 No 10 23.28 65 No 10 27.90

16 Yes 2 22.02 66 Yes 2 21.89
17 Yes 4 28.70 67 Yes 4 29.37
18 Yes 6 25.50 68 Yes 6 19.32
19 Yes 8 20.25 69 Yes 8 30.90
20 Yes 10 29.16 70 Yes 10 31.31

21 No 2 21.53 71 No 2 16.74
22 No 4 26.13 72 No 4 20.70
23 No 6 19.92 73 No 6 16.69
24 No 8 33.07 74 No 8 22.31
25 No 10 21.71 75 No 10 29.87

26 Yes 2 21.26 76 Yes 2 29.60
27 Yes 4 31.77 77 Yes 4 33.90
28 Yes 6 28.96 78 Yes 6 22.03
29 Yes 8 26.62 79 Yes 8 22.80
30 Yes 10 33.10 80 Yes 10 30.99

31 No 2 11.85 81 No 2 21.89
32 No 4 15.82 82 No 4 14.03
33 No 6 20.30 83 No 6 18.86
34 No 8 24.62 84 No 8 24.39
35 No 10 31.83 85 No 10 30.68

36 Yes 2 19.92 86 Yes 2 30.48
37 Yes 4 32.92 87 Yes 4 24.96
38 Yes 6 25.28 88 Yes 6 26.44
39 Yes 8 32.45 89 Yes 8 32.21
40 Yes 10 26.32 90 Yes 10 22.01

41 No 2 8.20 91 No 2 14.74
42 No 4 7.34 92 No 4 26.50
43 No 6 19.95 93 No 6 18.90
44 No 8 28.27 94 No 8 18.44
45 No 10 29.00 95 No 10 24.74

46 Yes 2 23.65 96 Yes 2 21.24
47 Yes 4 31.33 97 Yes 4 14.58
48 Yes 6 22.38 98 Yes 6 22.87
49 Yes 8 33.39 99 Yes 8 26.12
50 Yes 10 19.74 100 Yes 10 33.49
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12. A survey was taken to see if a person’s purchases based on infomercials on

television differed by the level of several different factors. One study consid-

ered the two factors “household income” and “marital status.” Household

income was categorized into four categories: (1) under $30,000, (2) $30,000–

$50,000, (3) $50,000–$100,000, and (4) over $100,000. Marital status was

categorized into three levels: A, single (never married); B, married; and C,

divorced/separated/widowed. For each of the 12 cells, ten people were sur-

veyed and reported their estimated past purchases (in dollars) that were based

on infomercials on television. The data are in Table 6EX.12; each cell presents

the cell mean and the standard deviation of the ten replicates (rounded to

nearest integer and labeled SD for standard deviation).

Test for significance of the factor “household income.”

13. For the Exercise 12 data, test for significance of the factor “marital status.”

14. For the Exercise 12 data, test for significance of the interaction of “household

income” and “marital status.”

15. For the Exercise 12 data, assume that there is no interaction and combine the

sum of squares and degrees of freedom for the error with those of the

(nominal) interaction effect. Do your results change with respect to conclu-

sions about the main effects?

16. Three brands of batteries were tested with three low-power disposable cam-

eras and three low-power flashlights. The 18 combinations are replicated eight

times. The battery lifetimes are recorded in Table 6EX.16. The cameras and

flashlights were characterized as having similar power requirements, and test

conditions were the same for each combination of battery brand and test

device. Is there a difference in average lifetime among battery brands? Do

the average lifetimes vary with test device? Is there an interaction between the

test device and battery brand?

Table 6EX.12 Purchases based on infomercials

Marital status

Household income

1 2 3 4

A Mean ¼ 56

SD ¼ 33

Mean ¼ 73

SD ¼ 39

Mean ¼ 64

SD ¼ 45

Mean ¼ 62

SD ¼ 44
B Mean ¼ 63

SD ¼ 35

Mean ¼ 80

SD ¼ 23

Mean ¼ 74

SD ¼ 40

Mean ¼ 65

SD ¼ 20
C Mean ¼ 68

SD ¼ 41

Mean ¼ 81

SD ¼ 32

Mean ¼ 85

SD ¼ 19

Mean ¼ 73

SD ¼ 27
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Table 6EX.16 Battery test with low load

Battery brand Test device

Useful life

(hours) Battery brand Test device

Useful life

(hours)

ACME Camera A 5.94 ACME Camera A 9.30
Hi power Camera A 6.25 Hi power Camera A 7.41
Stancell Camera A 9.02 Stancell Camera A 9.08

ACME Camera B 4.48 ACME Camera B 9.59
Hi power Camera B 8.81 Hi power Camera B 7.99
Stancell Camera B 6.72 Stancell Camera B 5.67

ACME Camera C 7.12 ACME Camera C 5.99
Hi power Camera C 8.76 Hi power Camera C 8.33
Stancell Camera C 12.17 Stancell Camera C 12.32

ACME Flash light A 6.48 ACME Flash light A 7.36
Hi power Flash light A 10.72 Hi power Flash light A 5.24
Stancell Flash light A 8.50 Stancell Flash light A 7.10

ACME Flash light B 2.82 ACME Flash light B 6.06
Hi power Flash light B 4.89 Hi power Flash light B 5.74
Stancell Flash light B 5.74 Stancell Flash light B 7.50

ACME Flash light C 4.59 ACME Flash light C 3.64
Hi power Flash light C 7.30 Hi power Flash light C 7.62
Stancell Flash light C 9.67 Stancell Flash light C 8.05

ACME Camera A 6.08 ACME Camera A 5.62
Hi power Camera A 3.84 Hi power Camera A 8.26
Stancell Camera A 6.31 Stancell Camera A 9.41

ACME Camera B 6.98 ACME Camera B 0.63
Hi power Camera B 6.29 Hi power Camera B 7.99
Stancell Camera B 8.87 Stancell Camera B 9.34

ACME Camera C 6.97 ACME Camera C 2.19
Hi power Camera C 8.39 Hi power Camera C 6.69
Stancell Camera C 9.89 Stancell Camera C 8.34

ACME Flash light A 6.10 ACME Flash light A 6.97
Hi power Flash light A 2.22 Hi power Flash light A 4.17
Stancell Flash light A 8.64 Stancell Flash light A 4.51

ACME Flash light B 8.66 ACME Flash light B 2.88
Hi power Flash light B 5.51 Hi power Flash light B 9.07
Stancell Flash light B 7.15 Stancell Flash light B 8.86

ACME Flash light C 5.66 ACME Flash light C 3.22
Hi power Flash light C 8.69 Hi power Flash light C 10.36
Stancell Flash light C 10.32 Stancell Flash light C 7.44

ACME Camera A 10.10 ACME Camera A 9.09
Hi power Camera A 8.37 Hi power Camera A 3.29
Stancell Camera A 7.52 Stancell Camera A 8.21

ACME Camera B 11.61 ACME Camera B 8.17
Hi power Camera B 6.25 Hi power Camera B 5.75
Stancell Camera B 4.84 Stancell Camera B 7.55

ACME Camera C 7.35 ACME Camera C 5.87
Hi power Camera C 4.71 Hi power Camera C 11.19
Stancell Camera C 6.35 Stancell Camera C 8.73

ACME Flash light A 2.08 ACME Flash light A 5.82
Hi power Flash light A 2.46 Hi power Flash light A 8.58
Stancell Flash light A 8.14 Stancell Flash light A 7.81

(continued)
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17. Table 6EX.17 contains data on four brands of batteries using four different

types of similar test devices, each of which is considered to represent a

moderate current load. Battery life is measured in minutes. Each combination

of battery brand and test device is replicated 16 times (that is, with 16 batteries,

one at a time). Test to see if brand or device affects battery life. Test for

interaction as well.

Table 6EX.16 (continued)

Battery brand Test device

Useful life

(hours) Battery brand Test device

Useful life

(hours)

ACME Flash light B 4.89 ACME Flash light B 3.87
Hi power Flash light B 7.37 Hi power Flash light B 5.63
Stancell Flash light B 10.44 Stancell Flash light B 9.52

ACME Flash light C 6.78 ACME Flash light C 8.45
Hi power Flash light C 7.51 Hi power Flash light C 6.15
Stancell Flash light C 8.22 Stancell Flash light C 9.32

ACME Camera A 7.72 ACME Camera A 1.72
Hi power Camera A 7.79 Hi power Camera A 8.90
Stancell Camera A 6.74 Stancell Camera A 10.13

ACME Camera B 7.57 ACME Camera B 6.76
Hi power Camera B 8.37 Hi power Camera B 4.77
Stancell Camera B 8.90 Stancell Camera B 10.79

ACME Camera C 7.99 ACME Camera C 7.77
Hi power Camera C 5.24 Hi power Camera C 7.60
Stancell Camera C 6.33 Stancell Camera C 7.60

ACME Flash light A 6.70 ACME Flash light A 4.33
Hi power Flash light A 10.20 Hi power Flash light A 6.23
Stancell Flash light A 5.80 Stancell Flash light A 8.95

ACME Flash light B 6.29 ACME Flash light B 7.51
Hi power Flash light B 10.72 Hi power Flash light B 8.62
Stancell Flash light B 5.46 Stancell Flash light B 5.91

ACME Flash light C 5.56 ACME Flash light C 3.53
Hi power Flash light C 6.76 Hi power Flash light C 4.83
Stancell Flash light C 6.20 Stancell Flash light C 8.15

Table 6EX.17 Battery-life test with moderate load

Battery brand Test device Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

A 1 17 28 32 36 32 36 30 29
B 1 32 31 43 21 26 31 33 25
C 1 39 43 36 38 34 27 43 37
D 1 39 37 40 36 43 45 39 42

A 2 40 36 31 32 27 37 33 28
B 2 32 39 40 30 36 25 30 33
C 2 43 45 52 45 42 48 42 33
D 2 56 45 45 46 53 45 55 50

A 3 42 36 41 32 38 39 40 40
B 3 42 36 60 43 29 37 43 39
C 3 48 36 51 48 56 59 66 51
D 3 74 65 34 62 60 58 60 64

(continued)
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18. Suppose a researcher is investigating a new chemical reaction that produces a

highly-desirable product. In this hypothetical example, two reagents A and B

are mixed at different concentrations to form the product C. The yield of C

(in %) is shown in Table 6EX.18 (experiments conducted with replicates).

Test to see if the concentration of reagent A or of reagent B affects C. Test for

interaction as well.

19. A process engineer is investigating the effect of machinery wear and cutting

angle on the diameter of stainless-steel components. In his study, he tested

two pieces of equipment (new and old) and three angles, and six components

Table 6EX.17 (continued)

Battery brand Test device Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

A 4 30 26 38 26 24 28 35 29
B 4 24 24 39 29 30 30 18 22
C 4 40 50 43 48 40 47 46 41
D 4 50 52 35 46 52 47 59 54

A 1 24 30 29 29 25 18 30 25
B 1 25 19 39 36 28 33 27 33
C 1 39 35 54 35 42 30 38 43
D 1 38 47 31 40 46 48 47 44

A 2 40 35 38 30 39 30 33 34
B 2 32 37 45 34 28 38 31 28
C 2 59 35 56 50 47 38 35 35
D 2 56 59 47 46 54 65 44 50

A 3 35 46 38 41 33 42 30 35
B 3 36 30 57 44 37 42 30 36
C 3 49 57 73 48 52 51 50 55
D 3 60 66 30 57 67 62 72 59

A 4 32 18 25 31 26 29 23 28
B 4 29 31 37 20 27 30 48 36
C 4 41 37 50 35 35 35 42 32
D 4 52 50 36 36 45 38 45 51

Table 6EX.18 Yield of C (in %)

A B C A B C

20 10 67.1 30 10 80.3
20 10 69.5 30 10 81.4
20 15 68.2 30 15 85.7
20 15 66.4 30 15 86.2
20 20 70.1 30 20 75.6
20 20 72.3 30 20 74.3
25 10 78.9 40 10 62.2
25 10 79.0 40 10 63.5
25 15 54.5 40 15 66.1
25 15 55.7 40 15 67.3
25 20 68.9 40 20 69.2
25 20 69.1 40 20 67.8

Exercises 221



were produced per combination, as shown in Table 6EX19. Test to see if the

machinery wear or cutting angle affects the diameter of the components. Test

for interaction as well.

Appendix

Example 6.9 Numerical Example using Excel

We now perform the analysis of Example 6.3 using Excel. As mentioned in Chap. 2,

we do not recommend Excel as the software of choice for experimental design and

ANOVA analyses, but we include examples using it because Excel is so commonly

available and may be the only software a reader is able to use.

The input data are shown in Table 6.14. Note certain facts about their form for

Excel. The first two rows of the input are data from the first level of the row-factor,
the next two rows correspond to the second level of the row-factor, and so

on. That’s how replication is dealt with in Excel: a dialog box asks the user to

specify how many rows of replicates correspond to each row-factor level. Specify-

ing "2" tells the software that the six rows of data represent three levels of two

replicates each, and not, for example, two levels of three replicates each or six

levels of one replicate each.

Also, Excel insists that the complete first (literal) row be column labels and that

the first (literal) column have one or more row labels; thus, one needs to highlight a

7� 5 table like that in Table 6.14 in order to get Excel to read the problem as a

Table 6EX.19 Diameter of stainless steel (in mm)

Equipment Angle 1 2 3 4 5 6

New 1 169 173 178 172 172 170
New 2 180 190 189 184 182 188
New 3 210 208 199 204 208 200
Old 1 150 157 152 154 158 152
Old 2 160 162 158 162 155 160
Old 3 170 172 177 175 174 172

Table 6.14 Input data for two-factor design in Excel

1 2 3 4

a 17.9 17.8 18.1 17.8

18.1 17.8 18.2 17.9

b 18.2 18 18.4 18.1

18.0 18.3 18.1 18.5

c 18.0 17.8 18.1 18.1

17.8 18.0 18.3 17.9
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six-row, four-column set of data – hence, the “1, 2, 3, 4” and “a, b, c” labels in

Table 6.14. If Excel is to be a user’s software of choice, perhaps a software “add-
in”13 to Excel should be purchased.

The output generated using the Data Analysis > Anova:Two-Factor With

Replication command, which gives various descriptive statistics (count, total,

mean, variance) before providing the ANOVA table, is shown in Table 6.15.

Table 6.15 ANOVA analysis and output in Excel

Anova: two-factor with replication

Summary 1 2 3 4 Total

1

Count 2 2 2 2 8

Sum 36 35.6 36.3 35.7 143.6

Average 18 17.8 18.15 17.85 17.95

Variance 0.02 0 0.005 0.005 0.0257

2

Count 2 2 2 2 8

Sum 36.2 36.3 36.5 36.6 145.6

Average 18.1 18.15 18.25 18.3 18.2

Variance 0.02 0.045 0.045 0.08 0.0343

3

Count 2 2 2 2 8

Sum 35.8 35.8 36.4 36 144

Average 17.9 17.9 18.2 18 18

Variance 0.02 0.02 0.02 0.02 0.0286

Total

Count 6 6 6 6

Sum 108 107.7 109.2 108.3

Average 18 17.95 18.2 18.05

Variance 0.02 0.039 0.016 0.063

ANOVA

Source of variation SS df MS F P-value F crit

Sample 0.28 2 0.14 5.6 0.019 3.885

Columns 0.21 3 0.07 2.8 0.085 3.490

Interaction 0.11 6 0.0183 0.73 0.632 2.996

Within 0.3 12 0.025

Total 0.9 23

13An “add-in” is an additional piece of software that works seamlessly with the original piece of

software (here, Excel) and enhances its capabilities, or at least makes the program more user-

friendly. Many add-ins with experimental design capabilities are available for Excel, depending on

the type of PC or Macintosh used.
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Example 6.10 An Unreplicated Numerical Example using Excel

We now analyze Example 6.6 (unreplicated example) using Excel. First, enter the

input data, shown in Table 6.16 in a routine format for Excel. Because we clicked

on Anova: Two-Factor Without Replication, Excel knows that there is not only a

column factor with three levels, but also a row factor with four levels.

Table 6.17 shows the output, which provides descriptive statistics for each row

and column, and then the same ANOVA table information that our earlier numer-

ical analysis yielded.

Example 6.11 Numerical Example using SPSS

We now perform the analysis of Example 6.3 using SPSS software. Table 6.18

shows the input data. We list all the data in column three, and in columns one

Table 6.16 Excel input data for unreplicated example

7 3 4

10 6 8

6 2 5

9 5 7

Table 6.17 ANOVA table for unreplicated example using Excel

Anova: two-factor without replication

Summary Count Sum Average Variance

Row 1 3 14 4.667 4.333

Row 2 3 24 8 4

Row 3 3 13 4.333 4.333

Row 4 3 21 7 4

Column 1 4 32 8 3.333

Column 2 4 16 4 3.333

Column 3 4 24 6 3.333

ANOVA

Source of variation SS df MS F P-value F crit

Rows 28.667 3 9.556 43 0.000 4.757

Columns 32 2 16 72 0.000 5.143

Error 1.333 6 0.222

Total 62 11
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and two we note to which row and column, respectively, each data point belongs.

SPSS provides a dialog box under Analyze > General Linear Model > Univar-

iate which asks which column/variable is the Y (the dependent variable) and

which columns/variables are the factors (the independent variables), as shown in

Fig. 6.10.

Table 6.18 Input data for two-factor design in SPSS

Device Brand Time Device Brand Time

1.00 1.00 17.9 1.00 3.00 18.1

1.00 1.00 18.1 1.00 3.00 18.2

2.00 1.00 18.2 2.00 3.00 18.4

2.00 1.00 18.0 2.00 3.00 18.1

3.00 1.00 18.0 3.00 3.00 18.1

3.00 1.00 17.8 3.00 3.00 18.3

1.00 2.00 17.8 1.00 4.00 17.8

1.00 2.00 17.8 1.00 4.00 17.9

2.00 2.00 18.0 2.00 4.00 18.1

2.00 2.00 18.3 2.00 4.00 18.5

3.00 2.00 17.8 3.00 4.00 18.1

3.00 2.00 18.0 3.00 4.00 17.9

Fig. 6.10 Two-factor ANOVA in SPSS
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Table 6.19 shows the SPSS output. The format of the ANOVA table is a bit

different from the one we constructed in Table 6.3 and from that of Excel; as we

noted in Chap. 2, each software package presents the output somewhat differently.

Of course, the basic information is the same. In Table 6.19, SPSS ANOVA provides

the standard information for rows (in this case, column 1 or “Device”) and columns

(column 2 or “Brand”), and a row for the interaction term; here, there is only one

interaction term (Brand*Device) (with SSI ¼ .11, df ¼ 6, and so on). The output

then pools all main and interaction effects, calling it “CorrectedModel” (SSQ¼ .60,

df ¼ 11, and so on).14

Noticing that the Fcalc value for the interaction is under 1.0, we might decide

that we want to pool its sum of squares and degrees of freedom with those of the

error term and then recompute the F values for the two main effects. We could

instruct SPSS to do this pooling by going intoModel and indicating that only main

effects are to be “in the model” (Fig. 6.11). The new ANOVA is shown in

Table 6.20.

Table 6.19 ANOVA table in SPSS

Tests of between-subjects effects

Dependent variable: time

Source Type III sum

of squares

df Mean square F Sig.

Corrected model .600a 11 .055 2.182 .098

Intercept 7819.260 1 7819.260 312770.400 .000

Device .280 2 .140 5.600 .019

Brand .210 3 .070 2.800 .085

Device * Brand .110 6 .018 .733 .633

Error .300 12 .025

Total 7820.160 24

Corrected total .900 23

14Each factor’s effect, by itself, is called a “main effect.” If we pooled the main effects, we would

add, for each factor, the sums of squares and the degrees of freedom, which yields a mean square

and an Fcalc value. If we wondered whether the main effects taken as a whole are significant

(although this is often not a useful question), we would use the pooled Fcalc and p-value.
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Fig. 6.11 Steps for recomputing the F values in SPSS
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Example 6.12 An Unreplicated Numerical Example using SPSS

We repeat Example 6.6 using SPSS. The input data in Table 6.21 is formatted

specifically for SPSS and, again, differently than it is for Excel.

The procedure is similar to the one used in Example 6.11. First, we select

Analyze > General Linear Model > Univariate; then, under Model, we instruct

SPSS that only main effects are to be considered. Table 6.22 shows the SPSS

output, which is similar in format to Table 6.21, the SPSS output for the example

that did have replication.

Table 6.20 ANOVA table with pooled error in SPSS

Tests of between-subjects effects

Dependent variable: time

Source

Type III sum

of squares df Mean square F Sig

Corrected model .490a 5 .098 4.302 .009

Intercept 7819.260 1 7819.260 343284.585 .000

Brand .210 3 .070 3.073 .054

Device .280 2 .140 6.146 .009

Error .410 18 .023

Total 7820.160 24

Corrected total .900 23

Table 6.21 Input data for unreplicated example in SPSS

Row Column Y

1 1 7

2 1 10

3 1 6

4 1 9

1 2 3

2 2 6

3 2 2

4 2 5

1 3 4

2 3 8

3 3 5

4 3 7
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Example 6.13 Analysis of Angioplasty Equipment using SPSS

Excel, at least in its generic form, does not perform the Friedman test. As noted

before, other software companies produce “add-on” software packages that work

within Excel to allow it to do other analyses, including the Friedman test. We now

illustrate the Friedman test using SPSS. Table 6.23 shows the input data. Note that it

is in a form similar to what we have seen when using Excel. If it were in typical

SPSS form, it would be a column of one through nine, repeated four times, to denote

row membership of each data value, a second column to designate column mem-

bership, and finally a third column with 36 data values.

The steps required for the Friedman test in SPSS are shown in Fig. 6.12.

Table 6.24 shows the output. It’s relatively sparse but has the necessary informa-

tion, including the p-value of the test (called “Asymp. Sig.”), which is well below

.05, signifying that at α ¼ .05, we reject H0.

Table 6.22 SPSS output for unreplicated example

Tests of between-subjects effects

Dependent variable: VAR00003

Source

Type III sum

of squares df Mean square F Sig.

Corrected model 60.667a 5 12.133 54.600 .000

Intercept 432.000 1 432.000 1944.000 .000

Row 28.667 3 9.556 43.000 .000

Column 32.000 2 16.000 72.000 .000

Error 1.333 6 .222

Total 494.000 12

Corrected total 62.000 11

Table 6.23 SPSS input data for Friedman test

24 26 25 22

27 27 26 24

19 22 20 16

24 27 25 23

22 25 22 21

26 27 24 24

27 26 22 23

25 27 24 21

22 23 20 19
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Fig. 6.12 Steps for Friedman test analysis in SPSS

Table 6.24 SPSS output for Friedman test

Ranks

Mean rank

VAR00001 2.78

VAR00002 3.83

VAR00003 2.22

VAR00004 1.17

Test statisticsa

N 9

Chi-Square 20.724

df 3

Asymp. Sig. .000
aFriedman test
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Example 6.14 Numerical Example using R

We now illustrate the same examples using R. The commands are similar to the

ones we saw previously.15 Note that we use brand*device to indicate to the

software we are running a two-factor ANOVA.

> battery <- read.csv(file.path("/Users/documents", "ex6.14.

+csv"), header=T)

> battery.aov <- aov(time~brand*device, data=battery)

> summary(battery.aov)

Df Sum Sq Mean Sq F value Pr(>F)
Brand 3 0.21 0.07000 2.800 0.0853 .
Device 2 0.28 0.14000 5.600 0.0191 *
Brand:device 6 0.11 0.01833 0.733 0.6325
Residuals 12 0.30 0.02500

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As previously, we can remove the interaction effect from the analysis (F value

< 1.0). In order to obtain a new ANOVA table with the pooled error, we apply the

aov() function again (with a "+" sign), but this time without indicating the

interaction between factors:

> battery.aov <- aov(time~brand+device, data=battery)

> summary(battery.aov)

Df Sum Sq Mean Sq F value Pr(>F)
brand 3 0.21 0.07000 3.073 0.05409 .
device 2 0.28 0.14000 6.146 0.00923 **
Residuals 18 0.41 0.02278

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

15It is important to check to see if the independent variables are recognized as factors

(or categorical variables) by R; otherwise the analysis will not work properly. This is because

we used integers to name the different levels, which could be misinterpreted as numeric vectors by

the software. The variables can be converted to factors, if necessary. Alternatively, one can use the

factor() function to indicate that “brand” and “device” are indeed factors.
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Example 6.15 An Unreplicated Numerical Example

The analysis of unreplicated studies is quite easy in R once we learn the basic

commands, as we have done so far. Remember that, in this example, there is no

interaction term and the analysis is done as follows:

> unreplicated <- read.csv(file.path("/Users/documents",

+"ex6.15.csv"), header=T)

> unreplicated.aov <- aov(response~A+B, data=unreplicated)

> summary(unreplicated.aov)

Df Sum sq Mean sq F value Pr(>F)
A 2 32.00 16.000 72 6.4e-05 ***
B 3 28.67 9.556 43 0.000189 ***
Residuals 6 1.33 0.222

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Example 6.16 Analysis of Angioplasty Equipment

Finally, this last demonstration shows how the Friedman test is performed in R

using the angioplasty equipment example presented in this chapter. For this, we will

use the friedman.test() function, which can be used in three different ways that

are shown below:

# Option 1: specify the response, group, and block, in this order

> angio <- read.csv(file.path("/Users/documents", "ex6.16.

+csv"), header=T)

> friedman.test(angio$response, angio$unit, angio$catheter)

Friedman rank sum test

data: angio$response, angio$unit and angio$catheter

Friedman chi-squared = 20.724, df = 3, p-value = 0.0001201

# Option 2: in this case, we specify a formula in the form of a ~ b|c, where a ¼
response or data values, b ¼ groups, c ¼ blocks

> friedman.test(response~unit | catheter, data=angio)

Friedman rank sum test

data: response and unit and catheter

Friedman chi-squared = 20.724, df = 3, p-value = 0.0001201
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# Option 3: for this method, our data has to be converted into a matrix prior to

the analysis, where the columns are angioplasty unit types (our group of interest)

> c1 <- angio[angio$unit=="A", 3]

> c2 <- angio[angio$unit=="B", 3]

> c3 <- angio[angio$unit=="C", 3]

> c4 <- angio[angio$unit=="D", 3]

> angio_matrix <- cbind(c1, c2, c3, c4)

> angio_matrix

c1 c2 c3 c4
[1,] 24 26 25 22
[2,] 27 27 26 24
[3,] 19 22 20 16
[4,] 24 27 25 23
[5,] 22 25 22 21
[6,] 26 27 24 24
[7,] 27 26 22 23
[8,] 25 27 24 21
[9,] 22 23 20 19

> friedman.test(angio_matrix)

Friedman rank sum test

data: angio_matrix

Friedman chi-squared = 20.724, df = 3, p-value = 0.0001201
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Chapter 7

Nested, or Hierarchical, Designs

In previous chapters, we have seen one- and two-factor designs and how to analyze

them. In a factorial design, such as the one discussed in Chap. 6, the levels of the

two factors – for convenience, A and B – are crossed, that is, every level of B will

occur with every level of A. In practice, this means that, if we have three levels per

factor, we will have nine experimental runs (without considering replicates). In this

chapter, we will see a different type of design, called nested designs, where the

levels of factor B will occur only at certain levels of A. For instance, we can have

three levels of A and nine levels of B, but levels 1–3, 4–6, and 7–9 of B will only

occur when the levels of A are 1, 2, and 3, respectively.

Example 7.1 Shaving Cream Evaluation at American Razor

Corporation

A company that produces a large variety of shaving products wanted to test whether

there were differences among three formulations of shaving cream they had pro-

duced in the lab, primarily with respect to closeness of the shave. Another measure

they were interested in was the degree of irritation of the skin. An experiment that

had 10 men randomly assigned to each shaving-cream formulation was designed;

that is, a total of 30 men were involved. Each man had been shaving routinely with a

blade (as opposed to an electric shaver), was between 20 and 25 years old, and had

the same type of beard hair and length of beard-hair growth; the beard-hair type

categorization is a complex and technical classification scheme. Although it was

acknowledged that using only one beard-hair type might limit generalization, this

was thought to be outweighed by the reduction in variability achieved.
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To reduce variability based on individual shaving habits (such as in what

direction one strokes the razor and how often one strokes over the same area), six

professional barbers were hired to do the shaving, each assigned to shave five men

per morning, as described below.

Each man visited an independent research laboratory at precisely the same time

each morning (six men at a time, at 15-minute intervals). The men received modest

compensation for their inconvenience.

Each of the 30 men was shaved each morning by his “personal barber.” All

barbers used the same brand of razor and the same brand of blade (although both

were debranded from a visibility point of view), used a new blade each morning,

and used their assigned shaving cream formulation. There was a set protocol,

beginning with washing the face with a designated soap, and then applying the

shaving cream.

The protocol continued for seven consecutive days. On the morning of the eighth

visit, the length of each man’s beard was carefully measured, using a special device

for this purpose. Measurements were taken separately on the cheek area and on the

neck area, to hide the fact that the experiment was concentrating on the cheek area;

the neck data were not utilized further. Fifty measurements of beard-hair length

were taken on the side of each cheek (a random 50 hairs were chosen by the

mechanism and individually measured), and the 100 measurements were averaged

to arrive at a single number for each man. For these data, “smaller is better” in that a

smaller length indicates less hair present, which is taken to indicate that the shave

the previous morning was closer. Measurements of skin irritation were also taken.

One key issue in the analysis of this experiment is that we do not have a

two-factor cross-classification design (that is, a barber by shaving cream formula-

tion, with five replicates per cell), as we would if all the men used all the barbers

(whatever that might actually mean). The company was concerned primarily about

the “shaving cream formulation” effect, but it was also interested in the “barber”

effect: Does how the shave is performed matter significantly to the beard-hair

length issue?

Analysis of this experiment requires the methods discussed here. We return to

this example at the end of the chapter.

7.1 Introduction to Nested Designs

Example 7.2 Statistical Software and Professor Study

Suppose that we want to examine how four statistical software packages used in an

MBA statistics course affect the statistical competence a student achieves. We also

want to determine if the amount of statistical competence a student gains varies as a
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function of the professor teaching the course. The measure of competence will be

the student’s score on a comprehensive, standardized examination at the end of the

course.

Let us assume that during the semester of interest, this required statistics course

has 24 sections and that 12 professors teach the course, each teaching two section. It

is a good idea to avoid conducting the experiment across different semesters; the

authors’ experience is that from semester to semester and year to year, students

differ in aggregate. This may be due to self-selection based on when they take the

course, different admission standards from year to year, or other reasons. This does

not mean that we can’t design an experiment across semesters; in Chap. 10 we focus

on dealing with such issues by conducting an experiment across different “blocks.”

But for now, we decide that each professor will use the same statistical software

package for his or her two sections of the course (in practice, the professors would

lobby for this, simply as a matter of the effort required in terms of writing notes,

holding computer labs, and so on), and that each of the four software packages will

be randomly assigned to three of the 12 professors. Using Y to stand for a data point

(the average grade on the exam for the students in that section), S to stand for

statistical software package, and P to stand for professor, Table 7.1 shows a

schematic, or configuration, for the experiment. The first subscript of

P indicates which software package is used and the second subscript indicates

which of the three professors is using that software package. In the case of Y, the
first subscript refers to the software package, the second indicates the professor, and

the third refers to the section. For example, Y111 means the average student

competence when we have software 1, professor 1, and section 1; Y112 is assigned
to the same software and professor, except for now being section 2 of that professor,

and so on.

It is important to understand why Table 7.1 is not the same as the schematic in

Table 7.2, which mirrors a two-factor cross-classification design with replication

discussed in Chap. 6. The key is that the cross-classification configuration depicted

in Table 7.2 implies that there are, essentially, only three distinct professors (or,

instead, three levels of some other factor, such as “age of the professor” – in which

case the factor is not “professor” but rather “age,” with three professors at each

age). However, in actuality there are 12 different professors. Also, there is no link

from any professor using one software package to any professor using another

Table 7.1 Schematic for two-factor hierarchical study

Software package

S1 S2 S3 S4
Professor Professor Professor Professor

P11 P12 P13 P21 P22 P23 P31 P32 P33 P41 P42 P43

Y111 Y121 Y131 Y211 Y221 Y231 Y311 Y321 Y331 Y411 Y421 Y431
Y112 Y122 Y132 Y212 Y222 Y232 Y312 Y322 Y332 Y412 Y422 Y432

Note: Y’s represent data points
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software package. Saying this another way: in Table 7.1, there is no relationship

among P11, P21, P31, and P41, even though they each have the same second

subscript of 1. Indeed, for (or “within”) each software package, the professors are

arbitrarily ordered. P11, P12, and P13 (the three professors using software 1) could

just as well be labeled Peter, Paul, and Mary, and P21, P22, and P23 (the three

professors using software 2) could be labeled Larry, Moe, and Curly, and so forth.

We notationally retain the letter P solely as a convenience for remembering that the

issue is whether the Professor makes any difference to what we’re measuring.

Designs such as that depicted in Table 7.1 are called nested designs, or equiv-

alently, hierarchical designs. The names derive from the view that the factors are

in a hierarchy and the levels of the so-called minor factor (here, Professor) are

nested under the levels of the so-called major factor (here, Software). Not all texts

use the labelsminor andmajor. Also, nested designs can have more than two factors

– or two stages of hierarchy. If, absurdly, each of the 12 professors used a different

textbook for each of his or her two sections, so that 24 different textbooks were used

in the course, “textbook” would be a third stage of the hierarchy (though, as

described, it would not have replication). Perhaps “textbook” would be labeled

the sub-minor factor? (Or perhaps this is why not all authors use the major/minor

labels!)

The design in Table 7.2 is, of course, a perfectly fine design under many

circumstances, and even here it could be a fine design – except that if the experi-

ment were to be conducted all in the same semester, it would require a situation in

which each of three professors taught eight sections of the course, two sections

using each of the four software packages. We are not making any statement about

which type of design is “superior,” in general – that requires a context-dependent

answer. Also, we are not trying to argue that the choice is primarily one of practical

convenience – though sometimes that is the case, as here. Rather, we want to make

clear the differences between the two types of designs (nested versus cross-classi-
fication) and under what set of circumstances each is appropriate.

Tables 7.1 and 7.2 are both schematics for two-factor designs. What we’ve now
discovered is that the phrase two-factor, although perhaps necessary to describe the
features of a design, is not sufficient to do so. For each type of design – the cross-

classification and the nested – we have a somewhat different statistical model and

corresponding breakdown of the total sum of squares and ANOVA. We have

already explored the statistical model for cross-classification designs with two

Table 7.2 Schematic for

replicated two-factor cross-

classification design

Software package

Professor S1 S2 S3 S4

P1 Y111, Y112 Y121, Y122 Y131, Y132 Y141, Y142
P2 Y211, Y212 Y221, Y222 Y231, Y232 Y241, Y242
P3 Y311, Y312 Y321, Y322 Y331, Y332 Y341, Y342
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factors and shall consider those with three or more factors in Chap. 8. Now we

present the model and analysis for a replicated1 nested design.

7.2 The Model

Our model, following the lead from previous chapters, is

Yijk ¼ μþ ρi þ τðiÞj þ εðijÞk ð7:1Þ

where

i indexes the level of the major factor (here, the software package; for simplic-

ity of notation later, let’s also call it “factor A”).

(i)j indexes the level of theminor factor, j (here, the professor, to be called “factor
B”), nested within the level of the major factor, i. The notation of putting i in
parentheses (introduced here) is meant to be consistent with, and emphasize the

concept of, the hierarchy as discussed previously.

(ij)k indexes the replicate, k, nested within the (i, j) combination. Including the

parentheses here in the error term is solely a matter of tradition. Obviously,

replication in a nested design is not really different from replication in any

design, in that the replication is always “within” the treatment combination.

We have

i ¼ 1, 2, 3, . . ., M (M ¼ the number of levels of the major factor)

j ¼ 1, 2, 3, . . ., m (m ¼ the number of levels of the minor factor for each level of

the major factor)

k ¼ 1, 2, 3, . . ., n (n ¼ the number of replicates per (i, j) combination)

This indexing description also follows the lead of earlier chapters by assuming a

“balance,” which, here, indicates that each level of the major factor has the same

number of levels of the minor factor and each combination of levels (i, j) has the
same number of replicates. As before, we assume this balance for simplicity of

exposition. We could write mi to indicate that for each level of the major factor,

j goes from 1 to mi; we could also write nij to indicate the number of replicates at

each (i, j) combination.

Note that when two factors are in a hierarchy, by definition the two factors

do not interact, since the levels of the minor factor for one level of the major factor

have no link to the levels of the minor factor for another level of the major factor.

Hence, there is no explicit interaction term.

1If, in a nested design, there is no replication, the lowest-stage factor in the hierarchy essentially

disappears and takes the place of error. Hence, for an explicit set of factors to be studied in a nested

design, with an ANOVA that includes them all, replication is necessary.
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Our notation is

Yijk is the data value corresponding to the k
th replicate at the ith level of A and the jth

level of B within that ith level of A.
�Y��� is the grand mean of all data values.
�Yi�� is the mean for the ith level of A, averaged over all levels of B within that ith level

of A, and all replicates therein.
�Yij� is the (cell) mean of the replicates of the jth level of B within the corresponding

ith level of A.

The subscripts for the �Y terms are consistent with our previous chapters, in that a “.”

(dot) represents a dimension over which the data are averaged.

The parameter estimates (by common sense and by Gauss’ least-squares princi-
ple) are

μ is estimated by �Y���
ρi is estimated by ð�Yi�� � �Y���Þ
τ(i)j is estimated by ð�Yij� � �Yi��Þ
ε(ij)k is estimated by ðYijk � �Yij�Þ
Note, however, that although parentheses are used to denote a nesting when writing

the statistical model, as we did above, parentheses are usually not used in the

subscript notation when referring to the data values and their means. Making that

change and replacing the parameters of Eq. 7.1 with their estimates, we find

Yijk ¼ �Y��� þ ð�Yi�� � �Y���Þ þ ð�Yij� � �Yi��Þ þ ðYijk � �Yij�Þ ð7:2Þ

As you can probably guess, after we subtract �Y���from both sides of Eq. 7.2, we then

square each side and sum both sides over all indices (i ¼ 1, . . ., M; j ¼ 1, . . ., m;
k ¼ 1, . . ., n). The cross products cancel, yielding

X
i

X
j

X
k
ðYijk � �Y���Þ2 ¼

X
i

X
j

X
k
ð�Yi�� � �Y���Þ2

þ
X

i

X
j

X
k
ð�Yij� � �Yi��Þ2

þ
X

i

X
j

X
k
ðYijk � �Yij�Þ2 ð7:3Þ

Since the first term on the right side of Eq. 7.3 does not depend on j and k and the

second term does not depend on k, Eq. 7.3 may be rewritten as

X
i

X
j

X
k
ðYijk � �Y���Þ2 ¼ mn

X
i
ð�Yi�� � �Y���Þ2 þ n

X
i

X
j
ð�Yij� � �Yi��Þ2

þ
X

i

X
j

X
k
ðYijk � �Yij�Þ2 ð7:4Þ
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The relationship involving these sums of squares may be summarized as follows:

TSS ¼ SSAþ SSB=Aþ SSWerror

where

SSA is the sum of squares associated with the major factor (A).

SSB/A is the sum of squares associated with the minor factor (B) within the major

factor (A).

SSWerror is the routine sum of squares due to error.

TSS has the corresponding degrees of freedom,

Mmn� 1 ¼ ðM � 1Þ þMðm� 1Þ þMmðn� 1Þ

Note that the total number of degrees of freedom is, yet again, one fewer than the

number of data values. ForM levels of the major factor, we have (M – 1) degrees of

freedom. Within each level of the major factor, we have m levels of the minor

factor, producing (m – 1) degrees of freedom within each level of the major factor,

for a total of M(m – 1) degrees of freedom. Each (i, j) combination includes

n replicates, yielding (n – 1) degrees of freedom each, for a total of Mm(n – 1)

degrees of freedom.

Example 7.3 A Numerical Example: Statistical Software/Professor

Study

Suppose, as in Example 7.2, that there are four software packages (M ¼ 4 for the

number of levels of A, the major factor), three professors assigned each software

package (m ¼ 3 for the number of levels of B, the minor factor, for each level of A,

for a total of 12 professors), and two replicates (sections of the statistics course) for

each software-professor combination. The data are in Table 7.3. The quantities in

the third row of data are the means, �Yij�, for each software-professor combination.

As noted, the means for each software package are in the subsequent row and the

grand mean is in the last row.2

2To precisely satisfy the “equal-variance” assumption, theoretically required for the F-test to
be appropriate, we would need to have the same number of students in each class, assuming that

the σ2 of each student’s score (its propensity to vary from its truth) is identical. For each class to

have the same number of students is somewhat unrealistic; however, for each to have approxi-
mately the same number of students is not. Given the robustness of the equal-variance assumption,

minor differences in class size should not materially affect our results.
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Now, we calculate the sums of squares for the ANOVA table:

SSA ¼ 3 � 2 � ½ð86:0� 82:05Þ2 þ ð77:2� 82:05Þ2 þ ð84:9� 82:05Þ2
þ ð80:1� 82:05Þ2�

¼ 6 � ½15:6025þ 23:5225þ 8:1225þ 3:8025�
¼ 6 � ½51:05�
¼ 306:3

SSB=A ¼ 2 � ½ð82:1� 86:0Þ2 þ ð89:9� 86:0Þ2 þ ð86:0� 86:0Þ2 þ . . .
þ ð79:0� 80:1Þ2 þ ð82:3� 80:1Þ2 þ ð79:0� 80:1Þ2�

¼ 2 � ½15:21þ 15:21þ 0þ � � � þ 1:21þ 4:84þ 1:21�
¼ 2 � ½81:28�
¼ 162:56

TSS ¼ 78:7� 82:05ð Þ2 þ 85:5� 82:05ð Þ2 þ 89:7� 82:05ð Þ2
þ � � � þ 79:1� 82:05ð Þ2 þ 76:5� 82:05ð Þ2 þ 81:5� 82:05ð Þ2

¼ 11:2225þ 11:9025þ 58:5225
þ � � � þ 8:7025þ 30:8025þ :3025

¼ 646:22

SSWerror ¼ TSS� SSA� SSB=A
¼ 646:22� 306:3� 162:56
¼ 177:36

Table 7.4 shows the ANOVA table, with the last column not filled in.

Table 7.3 Data for software/professor study

S1 S2 S3 S4

P11 P12 P13 P21 P22 P23 P31 P32 P33 P41 P42 P43

78.7 89.7 82.1 77.1 75.0 78.0 89.4 81.0 77.9 77.9 85.5 76.5
85.5 90.1 89.9 83.7 77.2 72.2 88.8 86.2 86.1 80.1 79.1 81.5

�Yij� 82.1 89.9 86.0 80.4 76.1 75.1 89.1 83.6 82.0 79.0 82.3 79.0

�Y1�� ¼ 86:0 �Y2�� ¼ 77:2 �Y3�� ¼ 84:9 �Y4�� ¼ 80:1
�Y ��� ¼ 82:05

Table 7.4 ANOVA table for software/professor study

Source of variability SSQ df MS Fcalc

A (software) 306.3 3 102.1

B/A (professor) 162.56 8 20.32

Error 117.36 12 14.78

Total 646.22 23
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To know how to calculate Fcalc (that is, what should be in ratio to what in order to

test the effects of interest), we need to know the expected value of each mean

square. It can be shown that

EðMSWerrorÞ ¼ σ2

EðMSB=AÞ ¼ σ2 þ VB=A

and

EðMSAÞ ¼ σ2 þ VA If factor B is fixed

EðMSAÞ ¼ σ2 þ VB=A þ VA If factor B is random

where MSB/A is SSB/A divided by its degrees of freedom and MSA is SSA divided

by its degrees of freedom (see Table 7.4).

With B random, VB=A ¼ nσ2τ ; with B fixed, VB=A ¼ n
P

i

P
jτ

2
ðiÞj=½Mðm� 1Þ�,

with A random, VA ¼ mnσ2ρ, with A fixed, VA ¼ mn
P

iρ
2
i =ðM � 1Þ.

Note that the fixed-versus-random issue first encountered in Chap. 3 and first

applied in Chap. 6, arises here also; however, only the expected mean square for

factor A is affected (in terms of having a V present) and only by the type of levels of

factor B.

The experiment in this example is using a random set of professors, in the sense

that it could have been any professors and these simply happened to be scheduled

for the course in the semester of the experiment and also that our conclusions would

pertain to whether, in general, the professor has an impact on competency. There-

fore, we view factor B (the professor) as a random-level factor. Thus, the Fcalc for

factor A is the ratio of MSA (102.1) divided by SSB/A (20.32). The completed

ANOVA table is shown in Table 7.5.

At α ¼ .05, the F table value with (3, 8) degrees of freedom is 4.07, whereas for

(8, 12) degrees of freedom it is 2.85. Thus, at α ¼ .05, we conclude that there is a

significant difference among the software programs ( p < .05), but we cannot

conclude that there are differences among the professors ( p > .25). (Before the

experiment, the authors believed that the results would come out just the opposite

way!)

Table 7.5 ANOVA table with Fcalc

Source of variability SSQ df MS Fcalc

A (software) 306.3 3 102.1 5.02

B/A (professor) 162.56 8 20.32 1.37

Error 117.36 12 14.78

Total 646.22 23
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If we view the factor “software” as random also, then we have

E MSAð Þ ¼ σ2 þ VB=A þ VA

becomes

σ2 þ 2σ2τ þ 6σ2ρ

and

E MSB=Að Þ ¼ σ2 þ VB=A

becomes

σ2 þ 2σ2τ

We can now derive by subtraction estimates of σ2ρ and σ
2
τ to compare the effects of

software and professor. We find that our estimates are σ2ρ ¼ 13:63 and σ2ρ ¼ 2:77.

The former is about five times as large as the latter.

We believe that the impact of the software program was due to the varying

degree of user-friendliness of the respective packages. The students indicated, on

course evaluation sheets, that some of the software packages required much more

time to learn than others and that the total time spent on the course was (using our

words, not theirs) a “zero-sum game;” the more time spent dealing with learning

how to use the software, the less time spent gaining an understanding of the

statistical concepts. With respect to the lack of impact of the professor, well – we

suspect a Type II error!

We were not certain how to quantify the “degree of user-friendliness” of the

four software packages; indeed, student opinion was not fully consistent. Hence, we

did not attempt to break down the sum-of-squares associated with software pack-

ages (306.3) into “meaningful” subsets of user-friendliness. However, when we

analyzed the four software means using Fisher’s LSD approach with α ¼ .05, we

found that packages one and three were not different from one another, but were

each different from package two; the status of packages three and four was not

perfectly clear:

1 3 4 2
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Example 7.4 Software/Professor Study using JMP

We now use the statistical software package JMP to analyze this same numerical

example, using the Fit Model under Analyze. After indicating the independent and

dependent variables, we select Professor and Software and click on Nest, as shown

in Fig. 7.1; then, in Attributes, select Random Effects. Figure 7.2 shows the

output.

Fig. 7.1 Steps for analyzing nested design in JMP
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Example 7.5 Purity of a Juice After Ultrafiltration

A researcher designs a study to investigate the purity3 of a certain juice after

ultrafiltration. Using the same batch of juice, he used three different compressors

(major factor) to force the liquid under high pressure through membrane filters, and

nine suppliers of membrane filters (minor factor) of the same pore size. He collected

four samples per combination. The data are shown in Table 7.6.

Fig. 7.2 ANOVA table for software/professor study using JMP (To obtain this table, we specified

“Professor” as the random effect. For this analysis, it used the EMS [expected mean squares]
method of fitting the model. This is because JMP calculates the F-value as the ratio of MSeffect to

the MSerror. Using the EMS method, we get the ANOVA table for fixed and random effects and the

“true” F-value for the nested design.)

3Purity (%) is calculated as the percentage of sucrose over �Brix (total of soluble solids in

solution).
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Figure 7.3 shows the analysis of the data using JMP. The results indicate a

significant difference among filter suppliers nested within high-pressure equipment,

whereas the differences in equipment itself were not statistically significant.

Table 7.6 Purity of juice versus unit

Equipment Supplier Purity Equipment Supplier Purity

1 A 71 1 A 65
1 B 78 1 B 74
1 C 83 1 C 81

2 D 79 2 D 68
2 E 76 2 E 79
2 F 80 2 F 81

3 G 73 3 G 70
3 H 80 3 H 74
3 I 83 3 I 82

1 A 69 1 A 77
1 B 75 1 B 74
1 C 81 1 C 82

2 D 79 2 D 73
2 E 76 2 E 80
2 F 86 2 F 83

3 G 80 3 G 69
3 H 72 3 H 80
3 I 82 3 I 82
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Example 7.6 A Larger Example: First United Federal Bank of Boston

We now revisit the venue of the First United Federal Bank of Boston, and again

consider teller performance. The vice president of operations, Mary Lou Naughton,

wants to investigate the performance of experienced tellers in each of four branch

offices. Once again, the monthly gross overage and/or shortage for several tellers

will be evaluated.

The bank staff has assembled the following data for four employees at each of

four branches, all of whom have been with the respective branch for over ten years;

there are ten data points for each teller, each data point representing one week. A

key question in this study is not only whether performance varies from branch to

branch but also whether performance varies from teller to teller within branches.

Table 7.7 shows the 160 data points.

Fig. 7.3 ANOVA table for juice purity
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Table 7.7 Teller performance versus branch

Branch Teller Error Branch Teller Error

Back Bay 1 $17.64 Back Bay 1 $22.93
Back Bay 2 $14.15 Back Bay 2 $13.37
Back Bay 3 $18.08 Back Bay 3 $14.13
Back Bay 4 $20.94 Back Bay 4 $22.05

Charlestown 5 $26.30 Charlestown 5 $20.75
Charlestown 6 $21.98 Charlestown 6 $23.82
Charlestown 7 $18.14 Charlestown 7 $26.10
Charlestown 8 $14.77 Charlestown 8 $23.99

State Street 9 $15.27 State Street 9 $21.89
State Street 10 $15.67 State Street 10 $21.82
State Street 11 $19.23 State Street 11 $14.65
State Street 12 $14.63 State Street 12 $4.96

Kenmore Square 13 $24.08 Kenmore Square 13 $18.03
Kenmore Square 14 $19.62 Kenmore Square 14 $18.56
Kenmore Square 15 $19.39 Kenmore Square 15 $15.20
Kenmore Square 16 $20.71 Kenmore Square 16 $10.13

Back Bay 1 $22.86 Back Bay 1 $17.00
Back Bay 2 $13.63 Back Bay 2 $12.30
Back Bay 3 $14.55 Back Bay 3 $22.38
Back Bay 4 $13.23 Back Bay 4 $12.60

Charlestown 5 $26.14 Charlestown 5 $18.27
Charlestown 6 $22.75 Charlestown 6 $25.19
Charlestown 7 $21.92 Charlestown 7 $22.30
Charlestown 8 $18.47 Charlestown 8 $21.15

State Street 9 $14.91 State Street 9 $23.74
State Street 10 $16.69 State Street 10 $13.84
State Street 11 $13.08 State Street 11 $22.27
State Street 12 $7.01 State Street 12 $17.07

Kenmore Square 13 $21.34 Kenmore Square 13 $26.35
Kenmore Square 14 $18.86 Kenmore Square 14 $6.78
Kenmore Square 15 $3.65 Kenmore Square 15 $14.06
Kenmore Square 16 $15.22 Kenmore Square 16 $7.39

Back Bay 1 $24.52 Back Bay 1 $17.68
Back Bay 2 $14.04 Back Bay 2 $14.18
Back Bay 3 $23.12 Back Bay 3 $17.36
Back Bay 4 $19.71 Back Bay 4 $22.38

Charlestown 5 $26.71 Charlestown 5 $31.30
Charlestown 6 $33.47 Charlestown 6 $24.83
Charlestown 7 $12.41 Charlestown 7 $22.06
Charlestown 8 $23.21 Charlestown 8 $22.64

State Street 9 $26.17 State Street 9 $14.61
State Street 10 $14.07 State Street 10 $15.78
State Street 11 $10.26 State Street 11 $8.41
State Street 12 $22.73 State Street 12 $19.30

Kenmore Square 13 $19.94 Kenmore Square 13 $20.98
Kenmore Square 14 $21.42 Kenmore Square 14 $24.68
Kenmore Square 15 $13.40 Kenmore Square 15 $10.84
Kenmore Square 16 $13.75 Kenmore Square 16 $11.12

(continued)
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Figure 7.4 shows the analysis of the data using JMP. The results indicate a

significant difference between branches and among tellers within branch. The

output assumes that “tellers” is a random factor, which was indeed the case (the

tellers were chosen at random from tellers at each branch who had at least 10 years

of service). The factor “branch” is actually a fixed factor; however, if we momen-

tarily assume it is random, for the sake of comparison, we calculate σ2teller ¼ 4:16
and σ2branch ¼ 8:57.

Table 7.7 (continued)

Branch Teller Error Branch Teller Error

Back Bay 1 $26.92 Back Bay 1 $20.81
Back Bay 2 $14.79 Back Bay 2 $26.76
Back Bay 3 $17.01 Back Bay 3 $24.48
Back Bay 4 $18.12 Back Bay 4 $19.70

Charlestown 5 $20.11 Charlestown 5 $26.71
Charlestown 6 $27.27 Charlestown 6 $18.73
Charlestown 7 $31.51 Charlestown 7 $25.65
Charlestown 8 $17.34 Charlestown 8 $9.38

State Street 9 $22.17 State Street 9 $16.27
State Street 10 $20.14 State Street 10 $13.25
State Street 11 $17.48 State Street 11 $6.23
State Street 12 $26.45 State Street 12 $13.07

Kenmore Square 13 $12.96 Kenmore Square 13 $14.56
Kenmore Square 14 $16.56 Kenmore Square 14 $19.53
Kenmore Square 15 $15.16 Kenmore Square 15 $6.08
Kenmore Square 16 $15.71 Kenmore Square 16 $12.29

Back Bay 1 $20.26 Back Bay 1 $10.39
Back Bay 2 $24.36 Back Bay 2 $18.81
Back Bay 3 $12.22 Back Bay 3 $21.18
Back Bay 4 $22.26 Back Bay 4 $20.85

Charlestown 5 $25.75 Charlestown 5 $21.84
Charlestown 6 $37.35 Charlestown 6 $22.72
Charlestown 7 $27.23 Charlestown 7 $11.91
Charlestown 8 $17.98 Charlestown 8 $12.60

State Street 9 $17.01 State Street 9 $13.16
State Street 10 $9.11 State Street 10 $18.14
State Street 11 $23.07 State Street 11 $16.70
State Street 12 $12.08 State Street 12 $17.02

Kenmore Square 13 $8.56 Kenmore Square 13 $17.55
Kenmore Square 14 $23.85 Kenmore Square 14 $12.65
Kenmore Square 15 $5.85 Kenmore Square 15 $15.26
Kenmore Square 16 $13.85 Kenmore Square 16 $10.58
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Example 7.7 Shaving Cream Evaluation at American Razor Corpora-

tion (Revisited)

The experiment described at the beginning of the chapter was, indeed, conducted.

One interesting issue which arose was that although an independent research

laboratory was conducting the experiment, in terms of arranging for all the pro-

tocols to be followed, the equipment used to measure the beard-hair length/growth

was sufficiently complex that it had to be done by American Razor Corporation

personnel. This raised the theoretical issue of independence of the testing. Hence, it

was decided that the people doing the measuring would not know which men were

assigned to which brand of shaving cream, so that they could not bias the results

Fig. 7.4 ANOVA table for bank-teller study using JMP
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even were they so inclined. Of course, the men themselves did not know which

shaving cream formulation they were using (and likely wouldn’t have cared). This
type of protocol is sometimes referred to as a “double-blind” experiment: both the

subjects and the “beard-hair measurers” (or the subjects and the doctors in a

medical experiment, and so on) do not know which data value pertains to which

“treatment.”

The results did indicate differences among the shaving cream formulations;

using Tukey’s HSD test, the two that were best in terms of enabling a closer

shave (resulting in a shorter beard-hair length after a fixed period of time) were

significantly better than the other shaving cream formulation. (By the way, it was

assumed on technical grounds that a shorter beard-hair length was associated with a

closer shave being delivered on the previous day, and not by some chemical or other

action of the shaving cream that actually retards beard-hair growth. This is not a

critical issue for the experiment at hand [a shorter beard-hair length is a shorter

beard-hair length], but it would have implications for other uses – for example, a

cream’s potential role as a depilatory).
Of the two shaving cream formulations that were superior to the third, but not

different from one another, one of them appeared to be superior in terms of

engendering less skin irritation; this became the “winner” among the three com-

peting shaving cream formulations.

7.3 A Comment

We noted earlier that nested experiments can have any number of stages of

hierarchy. Especially with an equal number of levels of each lower-stage factor

for each level of the higher-stage factor, and with an equal number of replicates for

each hierarchical combination, the statistical model, formulas, computations, and

ANOVA table logic and analysis follow somewhat directly from the discussion

available in this chapter. Also, note that in a situation with three or more factors, we

can have an experiment with both nesting and crossing. An example appears in

Exercise 6 at the end of the chapter.

Exercises

1. A study to examine the use of emergency services was performed. Of interest

was variation among states and variation among counties within a state. Three

bellwether states were selected and four hospitals (that is, replicates) were

chosen from each of two randomly selected counties from each state.

Table 7EX.1 shows the data. Conduct an ANOVA to answer the study’s ques-
tions. Use α ¼ .05.
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2. Assuming for the sake of comparison that the two factors in Exercise 1 are

random factors, find the estimates of the variance components and

compare them.

3. Perform a two-way ANOVA with replication for the Exercise 1 data, now

configured as shown in Table 7EX.3.

4. Compare and discuss the results from Exercises 1 and 3.

5. For a three-factor design in which a minor factor is nested within a major factor,

and a sub-minor factor is nested within the minor factor, the statistical model is

Yijkl ¼ μþ ρiþ τ(i)kþ γ(ij)kþ ε(ijk)l

Consider the data in Table 7EX.5 which correspond to the nested arrange-

ment described above. There were two industries in the study, each was

represented by two different companies, and each company provided data on

manufacturing plants in two different geographical locations; there were eight

distinct locations in the study. Two production managers from each plant were

randomly selected (as replicates). The dependent variable was percent of income

voluntarily contributed to a 401K pension plan. It was hoped that the analysis

would shed light on whether there was variation between the industries, between

companies within industries, and between (manufacturing plant) locations

within company.

Perform an ANOVA to examine the sources of variability noted above.

Use α ¼ .05 and assume that company and location are random-level factors.

Table 7EX.1 Use of emergency

State

1 2 3

County County County

A B C D E F

31 43 31 19 35 15
55 49 33 39 45 49
55 59 37 35 37 45
31 53 31 31 47 31

Table 7EX.3 County emergency services by state

State

County 1 2 3

A 31, 55, 55, 31 31, 33, 37, 31 35, 45, 37, 47
B 43, 49, 59, 53 19, 39, 35, 31 15, 49, 45, 31
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6. We noted in Sect. 7.3 that an experiment can have both nesting and crossing in

it. Consider the following situation: we have a manufacturer with a three-shifts-

per-day operation. During each shift, there are four workers (in all, 12 different

workers); we run an experiment over the same 3-day period for each worker, and

for each worker we collect four items (observations) per day. The dependent

variable is the quality of the item observed. A layout of the experiment is in

Table 7EX.6A; it is an experiment that combines nesting and crossing. (X stands

for a data value.)

Let “shift” be called factor A and indexed by i, “worker” be called factor B and

indexed by j, and “day” be called factor C and indexed by k. The model for this

experiment would be

Yijkl ¼ μþ ρi þ τ ið Þj þ γk þ IðiÞjk þ Iik þ ε ijkð Þl

where

ρi ¼ the effects of A

τ(i)j ¼ the effects of B, within A

γk ¼ the effects of C

I(i)jk ¼ interactions of B and C, within A

Iik ¼ interactions of A and C

Table 7EX.5 Percent of income contributed to 401K plan

Industry 1 Industry 2

Company 1 Company 2 Company 3 Company 4

Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5 Loc. 6 Loc. 7 Loc. 8

2 4.5 5 6 9 9 7 5
4 5.5 4 5 7.5 8.5 7 7

Table 7EX.6A Experimental layout combining nesting and crossing

Day

Shift Worker 1 2 3

1 1 XXXX XXXX XXXX
2 XXXX XXXX XXXX
3 XXXX XXXX XXXX
4 XXXX XXXX XXXX

2 1 XXXX XXXX XXXX
2 XXXX XXXX XXXX
3 XXXX XXXX XXXX
4 XXXX XXXX XXXX

3 1 XXXX XXXX XXXX
2 XXXX XXXX XXXX
3 XXXX XXXX XXXX
4 XXXX XXXX XXXX
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Write out the sum-of-squares expression for each of the six sources of variabil-

ity. Also, note the degrees of freedom of each. That is, fill in Table 7EX.6B

(which shows one example of a sum-of-squares expression).

7. Table 7EX.7 contains productivity data for the same bank tellers and branches

discussed in Example 5. The column headed “Transactions” indicates the aver-

age number of retail transactions per hour for each teller. Does this measure of

productivity vary from branch to branch? Does productivity vary for tellers

within the same branch? Use α ¼ .05.

Table 7EX.6B ANOVA table

Source of Variability SSQ df

A 48 �Pið�Yi��� � �Y����Þ2
C

B within A

BC interaction within A

AC interaction

Error

Table 7EX.7 Teller performance versus bank branch

Branch Teller Transactions Branch Teller Transactions

Back Bay 1 23.82 Back Bay 1 26.33
Back Bay 2 31.29 Back Bay 2 21.01
Back Bay 3 18.72 Back Bay 3 18.83
Back Bay 4 17.90 Back Bay 4 24.05

Charlestown 5 19.41 Charlestown 5 32.96
Charlestown 6 30.21 Charlestown 6 30.46
Charlestown 7 32.99 Charlestown 7 30.87
Charlestown 8 27.22 Charlestown 8 27.54

State Street 9 18.23 State Street 9 27.45
State Street 10 25.29 State Street 10 28.12
State Street 11 21.46 State Street 11 23.42
State Street 12 21.62 State Street 12 26.77

Kenmore Square 13 17.43 Kenmore Square 13 26.79
Kenmore Square 14 30.04 Kenmore Square 14 19.30
Kenmore Square 15 12.77 Kenmore Square 15 16.56
Kenmore Square 16 21.96 Kenmore Square 16 12.34

Back Bay 1 27.65 Back Bay 1 24.38
Back Bay 2 18.03 Back Bay 2 30.04
Back Bay 3 12.51 Back Bay 3 14.85
Back Bay 4 7.92 Back Bay 4 13.05

Charlestown 5 36.70 Charlestown 5 27.45
Charlestown 6 36.12 Charlestown 6 42.91
Charlestown 7 20.31 Charlestown 7 21.83
Charlestown 8 20.29 Charlestown 8 22.82

(continued)
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Table 7EX.7 (continued)

Branch Teller Transactions Branch Teller Transactions

State Street 9 25.51 State Street 9 25.88
State Street 10 19.17 State Street 10 20.93
State Street 11 22.54 State Street 11 18.67
State Street 12 19.42 State Street 12 19.06

Kenmore Square 13 28.88 Kenmore Square 13 23.37
Kenmore Square 14 21.27 Kenmore Square 14 17.58
Kenmore Square 15 15.37 Kenmore Square 15 23.74
Kenmore Square 16 15.48 Kenmore Square 16 17.87

Back Bay 1 26.14 Back Bay 1 17.90
Back Bay 2 20.09 Back Bay 2 32.61
Back Bay 3 18.09 Back Bay 3 31.89
Back Bay 4 17.96 Back Bay 4 21.41

Charlestown 5 33.64 Charlestown 5 26.80
Charlestown 6 27.89 Charlestown 6 36.14
Charlestown 7 23.10 Charlestown 7 28.44
Charlestown 8 23.70 Charlestown 8 17.44

State Street 9 25.79 State Street 9 18.98
State Street 10 33.51 State Street 10 24.41
State Street 11 23.25 State Street 11 17.35
State Street 12 23.91 State Street 12 23.98

Kenmore Square 13 18.70 Kenmore Square 13 26.97
Kenmore Square 14 19.31 Kenmore Square 14 26.00
Kenmore Square 15 15.31 Kenmore Square 15 20.90
Kenmore Square 16 12.97 Kenmore Square 16 20.07

Back Bay 1 28.27 Back Bay 1 33.71
Back Bay 2 21.71 Back Bay 2 31.49
Back Bay 3 23.30 Back Bay 3 22.52
Back Bay 4 24.88 Back Bay 4 27.97

Charlestown 5 23.29 Charlestown 5 33.10
Charlestown 6 37.54 Charlestown 6 36.40
Charlestown 7 27.17 Charlestown 7 21.57
Charlestown 8 26.65 Charlestown 8 20.35

State Street 9 30.33 State Street 9 24.80
State Street 10 32.35 State Street 10 26.23
State Street 11 21.04 State Street 11 20.48
State Street 12 14.02 State Street 12 15.07

Kenmore Square 13 21.31 Kenmore Square 13 26.03
Kenmore Square 14 15.96 Kenmore Square 14 27.76
Kenmore Square 15 12.52 Kenmore Square 15 25.02
Kenmore Square 16 21.60 Kenmore Square 16 20.46

Back Bay 1 22.12 Back Bay 1 17.88
Back Bay 2 24.78 Back Bay 2 25.90
Back Bay 3 29.89 Back Bay 3 24.59
Back Bay 4 21.51 Back Bay 4 21.67

Charlestown 5 40.23 Charlestown 5 26.16
Charlestown 6 45.13 Charlestown 6 36.64
Charlestown 7 23.81 Charlestown 7 31.60
Charlestown 8 23.21 Charlestown 8 22.32

(continued)
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8. Suppose the 12 professors of Example 7.2were using a total of only three software

packages, instead of the four packages as noted in Table 7.3. That is, suppose that

we have the same data as those in the software example in the chapter, but the data

now represent the 12 professors using three software packages, four professors

using each package, instead of the four packages, three professors using each

package. The same but “reconfigured” data could then be shown as in

Table 7EX.8. Is there a significant difference between professors “within” soft-

ware package? Between software packages? Use α ¼ .05.

Table 7EX.7 (continued)

Branch Teller Transactions Branch Teller Transactions

State Street 9 23.15 State Street 9 16.16
State Street 10 30.19 State Street 10 28.05
State Street 11 18.30 State Street 11 18.92
State Street 12 19.90 State Street 12 29.13

Kenmore Square 13 22.39 Kenmore Square 13 19.57
Kenmore Square 14 32.78 Kenmore Square 14 17.54
Kenmore Square 15 23.27 Kenmore Square 15 15.56
Kenmore Square 16 18.58 Kenmore Square 16 24.10

Table 7EX.8 Reconfigured statistics package study

Software Package Professor Score

1 1 78.7
1 1 85.5
1 2 89.7
1 2 90.1
1 3 82.1
1 3 89.9
1 4 77.1
1 4 83.7

2 1 75.0
2 1 77.2
2 2 78.0
2 2 72.2
2 3 89.4
2 3 88.8
2 4 81.0
2 4 86.2

3 1 77.9
3 1 86.1
3 2 77.9
3 2 80.1
3 3 85.5
3 3 79.1
3 4 76.5
3 4 81.5
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9. The records of three physicians at each of four offices of the Merrimack Valley

Pediatric Clinic were audited in an attempt to determine their use of generic

versus brand-name drugs when generic drugs were available. Table 7EX.9

gives the percentage of times each physician insisted on brand-name drugs

for each of four weeks during July 2015, assume that the different weeks are

replicates. Is there a difference in percentage of brand-name drugs prescribed

between office locations? Between physicians within office? Use α ¼ .01.

10. The golf courses first discussed in Chap. 2, and then referred to in various

exercises in Chaps. 4 and 5, were designed by two retired professional golfers –

Jim Fisher of Belmont, Massachusetts, and Edward “Fuzzy” Newbar of

Medfield, Massachusetts. Fisher designed Near Corners and Meadow Brook,

and Newbar designed Birch Briar and Fountainbleau. Fisher and Newbar have

extensive design experience; these are only two of the many courses each has

designed. With respect to the score of players “like those in the Eastern Electric

golf league,” based on these same golf score data, is there a difference between

the two designers? Between courses “within” designer? Use α ¼ .05. The data

set are in Table 7EX.10 (repeated here for convenience).

Table 7EX.9 Percentage use of generic drugs

Location Physician

Week

1 2 3 4

Amesbury Dr. Barros 17 22 21 15
Amesbury Dr. Russ 18 22 18 19
Amesbury Dr. Rastogi 29 26 29 24

Andover Dr. Maloney 12 14 15 15
Andover Dr. Franks 21 20 21 18
Andover Dr. Lawton 19 19 26 22

Methuen Dr. Kohl 23 21 21 24
Methuen Dr. Bruni 31 29 27 27
Methuen Dr. Seth 32 28 28 26

Salem Dr. Masello 19 15 14 15
Salem Dr. Adams 16 23 21 20
Salem Dr. Klonizchii 16 17 16 14

Table 7EX.10 Golf scores by course and by designer

Designed by Fisher Designed by Newbar Designed by Fisher Designed by Newbar

Near

Corners

Meadow

Brook

Birch

Briar Fountainbleau

Near

Corners

Meadow

Brook

Birch

Briar Fountainbleau

115 99 107 135 108 95 108 142
106 101 111 144 106 100 118 136
108 98 114 131 100 106 111 116
101 99 107 130 107 97 116 138
117 90 109 139 102 98 110 127

(continued)
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Table 7EX.10 (continued)

Designed by Fisher Designed by Newbar Designed by Fisher Designed by Newbar

Near

Corners

Meadow

Brook

Birch

Briar Fountainbleau

Near

Corners

Meadow

Brook

Birch

Briar Fountainbleau

103 96 119 133 106 106 106 141
109 100 117 137 102 94 111 142
106 93 116 139 110 96 111 142
103 89 117 138 106 99 120 144
106 99 108 128 116 96 115 138

102 103 111 136 104 97 114 136
105 102 115 145 114 98 112 148
109 102 110 142 101 100 113 138
102 97 121 122 105 99 114 137
102 104 114 132 107 100 115 129

102 104 113 133 102 95 109 140
108 93 101 139 108 100 107 137
104 96 114 130 98 90 114 140
99 90 114 140 110 97 120 142
108 94 116 125 110 101 121 132

113 102 111 123 108 102 110 135
113 99 113 141 108 96 119 136
104 100 114 141 101 99 116 137
114 94 115 137 103 105 116 129
101 92 113 142 109 105 116 148

101 97 112 135 110 90 120 134
111 97 114 138 113 97 112 135
108 98 114 129 101 99 117 138
106 93 115 136 102 96 111 138
112 102 113 142 110 95 117 135

103 100 118 121 113 99 113 145
103 100 112 126 101 93 113 129
104 99 110 137 103 97 115 140
106 95 112 133 105 114 112 134
111 100 121 126 110 92 104 137

100 104 114 130 110 99 120 152
112 104 113 132 104 104 120 137
114 93 108 135 105 97 119 139
111 93 118 134 111 99 117 133
105 105 117 134 101 92 113 127

99 94 124 128 106 102 108 135
94 100 118 131 113 99 115 128
104 99 117 142 103 97 114 128
109 98 114 132 99 109 121 126
108 97 113 127 104 98 119 143

104 87 110 132 101 95 118 139
110 107 113 138 94 103 113 133
101 102 117 138 102 104 116 144
112 98 120 130 105 107 115 134
99 106 119 133 112 106 120 130
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11. Suppose that in the Exercise 10 example, Fisher and Newbar had each designed

only the two courses ascribed to them above. How would your analysis change?

Do your ultimate conclusions change?

12. A researcher wants to test the amount of vitamin C in orange juices of different

brands carried by three supermarkets. Table 7EX.12 gives the amount of

vitamin C. Each brand was assessed in triplicate (one bottle per analysis). Is

there a difference of amount of vitamin C for the juice brands carried between

each store? Between brands within store? Use α ¼ .05.

13. In the previous exercise, brand was considered a minor factor. Now, suppose
one bottle of each of the nine brands was collected from each store; that is,

values previously assigned as Bottle 1 in Table 7EX.12 now refer to Store A,

Bottle 2 to Store B, and Bottle 3 to Store C. Perform a two-way ANOVA,

without replication. How do the results differ from the ones found in Exercise

12? Discuss.

Appendix

Example 7.8 A Larger Example: First United Federal Bank of Boston
using SPSS

Excel and SPSS will analyze nested designs in a way similar to that we have used

for two-way ANOVA. Note that Excel will display the F-value as we would

normally calculate for ANOVA – that is, dividing MSeffect by MSerror – and we

will have to calculate manually the “true” F-value. For SPSS, we input the data and
start our analysis as we did previously (using Analyze > General Linear Models
>Univariate), but we specify fixed and random factors and include the main effect

Table 7EX.12 Amount of vitamin C

Bottle

Store Brand 1 2 3

A 1 110 113 112
A 2 80 87 82
A 3 105 105 106

B 4 74 78 79
B 5 60 58 60
B 6 95 89 100

C 7 74 63 64
C 8 95 102 90
C 9 82 82 87
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of the fixed factor and an “interaction” term in the model, as shown in Fig. 7.5. Note

that SPSS interprets this “interaction” term as the nested factor. The results are

presented in Table 7.8.

Fig. 7.5 Steps for analyzing nested design in SPSS
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Alternatively, it is possible to use the New > Syntax to obtain a full ANOVA

table for nested design in SPSS. Note that syntax in SPSS can be used for several

purposes, and here we illustrate one use – further work with syntax is beyond the

scope of this book. After inserting the commands as shown in Fig. 7.6, we click the

green triangle or Run > Selection in the syntax menu. The full ANOVA table is

presented in Table 7.9.

Table 7.8 ANOVA table for bank teller study using SPSS

Tests of between-subjects effects

Dependent variable: error

Source Type III sum of

squares

df Mean

square

F Sig.

Intercept Hypothesis 53,013.325 1 53,013.325 771.217 .000
Error 824.878 12 68.740a

Branch Hypothesis 1,234.856 3 411.619 5.988 .010
Error 824.878 12 68.740a

Teller

(Branch)

Hypothesis 824.878 12 68.740 2.794 .002
Error 3,542.894 144 24.603b

aMS(Branch * Teller)
bMS(Error)

Fig. 7.6 Steps for full ANOVA table for nested design in SPSS

Table 7.9 Full ANOVA table for bank teller study using SPSS

Tests of between-subjects effects

Dependent variable: error

Source Type III sum of

squares

df Mean

square

F Sig.

Corrected Model 2,059.733a 15 137.316 5.581 .000
Intercept 53,013.325 1 53,013.325 2,154.713 .000
Branch 1,234.856 3 411.619 16.730 .000
Teller(Branch) 824.878 12 68.740 2.794 .002
Error 3,542.894 144 24.603
Total 58,615.952 160
Corrected Total 5,602.627 159

aR Squared ¼ .368 (Adjusted R Squared ¼ .302)
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Example 7.9 A Larger Example: First United Federal Bank of Boston

using R

There are three ways in which R can recognize a nested design with the same

output; they are listed below. In all cases, we will make sure that the independent

variables are identified as factors by the software.

> bank <- read.csv(file.path("/Users/documents", "ex7.9.

+csv"), header=T)

# Option 1:

> bank1 <- aov(Errors~Branch+Branch:Teller, data=bank)

# Option 2:

> bank2 <- aov(Errors~Branch+Teller%in%Branch, data=bank)

# Option 3:

> bank3 <- aov(Errors~Branch/Teller, data=bank)

> summary(bank3)

Df Sum Sq Mean Sq F value Pr(>F)
Branch 3 1235 411.6 16.730 2.23e-09 ***
Branch:Teller 12 825 68.7 2.794 0.00186 **
Residuals 144 3543 24.6

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that, in these three options, we didn’t specify the random variable and the

F-value is not accurate. Considering that “teller” is a random effect, we can

calculate the appropriate F- and p-values as follows:

> F <- 16.73/2.794

> F

[1] 5.987831

> p-value <- 1- (pf(F, 3, 12, lower.tail=F))

> p-value

[1] 0.009799043
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Chapter 8

Designs with Three or More Factors:
Latin-Square and Related Designs

When more than two factors are under study, the number of possible treatment

combinations grows exponentially. For example, with only three factors, each at

five levels, there are 53 ¼ 125 possible combinations. Although modeling such an

experiment is straightforward, running it is another matter. It would be rare to

actually carry out an experiment with 125 different treatment combinations,

because the management needed and the money required would be great.

The cost issue for running the experiment is obvious. Usually, the cost of

actually running the experiment is somewhat proportional to the number of data

values obtained, although often replicates of a given treatment combination are

relatively cheap, so that cost is more in proportion to the number of treatment

combinations. But cost also includes setting up the experiment.1 In practice, each

experiment usually requires that a set of adjustments, process parameters, equip-

ment settings, advertising agency arrangements, test market locations, and so on be

established. Sometimes the equipment setup is far more expensive than the running

of the experiment.

Managing the collection of data is also an issue. We recall an instance in which

the gathering of sales data for a supermarket chain was partially compromised

because an assistant manager at one store simply forgot to count how many bananas

were sold that day! (This was before the era of price scanning.)

This isn’t to say that, often, several factors should not be studied. But to be useful
and affordable, a study must be designed carefully. Were that not the case, we

would have no need for the discipline of experimental design; we could use the

brute force approach of just running all combinations.

Electronic supplementary material: The online version of this chapter (doi:10.1007/978-3-319-

64583-4_8) contains supplementary material, which is available to authorized users.

1We do not include in our discussion the cost of analyzing the experiment. This cost doesn’t
materially vary with the size of the experiment. We do not view the data entry cost of 150 data

points as materially more expensive than that of 32 data values, for example.

© Springer International Publishing AG 2018

P.D. Berger et al., Experimental Design, DOI 10.1007/978-3-319-64583-4_8
265



There are several ways to manage the size of experiments involving several

factors. In subsequent chapters, we investigate powerful design techniques that

restrict the number of levels of each factor as much as possible; fewer levels mean

the experiment can be smaller and cheaper. Using factors with only two levels each

allows the most powerful of the techniques to be applied with the most “delicacy,”2

as we will see in Chap. 11. In this chapter, we consider procedures that allow more

levels (actually, any number of levels), but are restrictive in other ways. Often, to

design both effectively and efficiently an experiment that has many factors, we

must make informed compromises.

Example 8.1 Maximizing Profit at Nature’s Land Farms

Nature’s Land Farms (NLF), a large farming cooperative, decided to conduct

marketing research to determine the impact of certain factors on its sales and

profits. The two products of principal interest were tomatoes and potatoes. For

potatoes, in particular, an experiment in which three primary factors were studied,

along with another factor, price, was designed.

NLF believed that price is a different kind of factor that might cloud the effect of

other factors and thus should be studied in a different way. This means that NLF

suspected, rightfully so, that price could have significant interaction with some or

all of the other three factors. Ultimately, the design chosen for studying the three

main factors was repeated for each of three prices. Here, however, we focus on only

the three main factors, essentially, for the moment, viewing price as being held

constant.

The three factors of interest to NLF were decided upon after extensive focus-

group activity. First was positioning, the most prominently-featured reason to buy

the product. This involved highly visible material displayed wherever the potatoes

were sold and had three levels:

POSITIONING

1. Environmentally friendly, with no sacrifice in taste

2. Superior taste, without sacrificing the environment

3. Biotech products, to provide extra nutrients and zero bacteria

A second factor was cobranding with another name well known to potato

consumers; this has the potential of adding credibility and verisimilitude. Three

other companies were considered as branding partners (for proprietary reasons, we

cannot list them; however, think of brands having the stature of Sunshine or Dole –

neither of which were involved).

2What we mean by delicacy is having a more finely-grained resolution with respect to the ability to

choose which subset of interaction effects is assumed to equal zero. The designs discussed in this

chapter require the assumption that all interaction effects equal zero.
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COBRANDING

1. Cobrand 1

2. Cobrand 2

3. Cobrand 3

The third factor was packaging – that is, the container in which the potatoes were
sold. Three were of interest to NLF:

PACKAGING

1. Paper with no window

2. Paper with a window

3. Clear plastic

Of major concern to NLF was that three levels of three factors means 27 different

possibilities. It would be prohibitively expensive to implement a study with all of

them, even in a simulated test market. We return to this example at the end of the

chapter.

8.1 Latin-Square Designs

Suppose we want to study three factors, each at three levels, as in the introductory

NLF case. We can diagram the 33 ¼ 27 possible treatment combinations of factor

levels as shown in Table 8.1. The notation is as follows: for any of the 27 cells, the

row designates the level of A, the column designates the level of B, and the

subscripts inside the cells designate the level of C. For example, the cell in the

fourth row and third column has A at level 1, B at level 3, and C at level 2.

When we run an experiment such as this and wish to show the data, we follow

the tradition of placing the data results inside the cell as well. Here, we can think of

Table 8.1 Three factors, three levels

B1 B2 B3

A1 C1 C1 C1

A2 C1 C1 C1

A3 C1 C1 C1

A1 C2 C2 C2

A2 C2 C2 C2

A3 C2 C2 C2

A1 C3 C3 C3

A2 C3 C3 C3

A3 C3 C3 C3

Bold entries are those used in Table 8.2

8.1 Latin-Square Designs 267



A as the row factor, B as the column factor, and C as the “inside factor.” Which is
which makes no difference: there is no advantage or disadvantage to being a row,

column, or inside factor. Notice that the 3� 3� 3 set of combinations is shown in

Table 8.1 as a 9� 3 matrix for reasons of simplicity. You can also think of this as a

three-dimensional cube with 27 cells arranged 3� 3� 3 and with C as the depth

factor.

Suppose we run not all 27 combinations, but only nine. Which nine? Consider

Table 8.2; it shows only the nine treatment combinations that are printed in bold

type in Table 8.1.

These nine treatment combinations have some important, desirable properties.

They are not unique with respect to having these properties, but only 1/4,000 of a

percent of the possible groups of nine that can be formed by 27 treatment combi-

nations have the desirable properties. What are these properties?

Notice that Table 8.2 is a square – after all, its design is called a Latin square,

not a Latin rectangle! Several desirable properties of this design are possible only

when we have a square – that is, when all three factors under study have the same

number of levels. As we shall see, there is no restriction on the number of levels of

each factor except that each must be the same. A key property of the square in

Table 8.2 is that it is balanced: each factor is at each level the same number of times

(three); furthermore, each level of a factor is used in combination with each other

level of a factor the same number of times – once.

This deserves a bit of elaboration, since it ensures unbiased estimates of the main

effect of each of the factors. Note that A1 is with B1 once, B2 once, and B3 once. A2

is also with B1 once, B2 once, and B3 once; similarly for A3. Furthermore, A1 is with

C1 once, C2 once, and C3 once; similarly for A2 and A3. And the same can be said

for the levels of factors B and C; each level of each of those factors is once and only

once combined with each level of each other factor.

This special balance in the set of nine treatment combinations of Table 8.2 is

very important. As we mentioned above, it guarantees the unbiasedness of the main

effects of the factors. For example, when we look at differences in the row means

(that is, the mean for each level of A), we can note that row one includes exactly one

data value at each level of B, and exactly one data value at each level of C.3

Table 8.2 Nine of 27 possibilities

B1 B2 B3

A1 C1 C2 C3

A2 C2 C3 C1

A3 C3 C1 C2

3If there were replication, nothing material in our discussion would change. Instead of “exactly one

data value” at each level of B and of C, it would be “exactly n data values (. . .).” The key is that it
is the same number of data values at each level of each other factor.
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The same holds for rows two and three. Thus, each row mean is on equal footing

with respect to the levels of factors B and C. Consequently, differences among the

row means can legitimately be examined in the traditional F-test, ANOVA way to

determine whether the row differences are significant. For example, if the data

values at A1 all had factor C at C1, all data values at A2 had factor C at C2, and so on,

row differences could not be attributed solely to the impact of factor A (along with

the omnipresent error, of course). That is why the design in Table 8.3, although it

consists of nine of the 27 treatment combinations of Table 8.1, is poor, even though

it does provide an unbiased evaluation of the effect of factor B.

Let’s consider Table 8.3 for a moment. In addition to error, differences in the

row means can be due to the level of factor A or to the level of factor C; the two

effects cannot be separated. When the impact of one factor can’t be separated from
that of a second, we say that the effects are confounded. We explore this concept

more fully in Chap. 10.

If you know how chess pieces move, here’s a way to understand how the levels

of C are placed in the cells so as to balance them: if all the C1’s were rooks (towers)

in chess, none of them could take each other off in one move; similarly for the C2’s

and C3’s. This is true of the 3� 3 square of Table 8.2, but not true of the 3� 3

square of Table 8.3.

Actually, we’re guilty of one sin of omission so far about Latin-square and

related designs. In fact, for each level of each factor to be on equal footing in a

design such as that depicted in Table 8.2, we must be willing to assume that there

is no (or, in practice, negligible) interaction among the factors. After all, when

we stated that in Table 8.2, A1 is combined once with each level of B and once with

each level of C (and similarly for A2 and A3), we neglected to mention that A1

includes, for example, one data point at (B1, C1), whereas neither A2 nor A3 have a

data value at the (B1, C1) combination. So, if B1 and C1 together induce a response

that is more (or less) than the sum of their separate main effects (that is, factors B

and C have a positive or negative interaction effect), the mean of row one (level A1)

includes the impact of that combination, but row means two and three do not

include the impact of that combination. To repeat: for the design in Table 8.2 and

throughout this chapter, to provide meaningful evaluation of the impact of each

factor, we must assume that none of the factors interact with each other. In

subsequent chapters, we present design procedures that also include only a portion

of the total number of treatment combinations, yet do not require this restriction.

This point leads to the notion of a design trade-off. In Chap. 6 we saw that, if

there were no interaction between two factors, we could, without negative

Table 8.3 A poor choice of nine

B1 B2 B3

A1 C1 C1 C1

A2 C2 C2 C2

A3 C3 C3 C3
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consequences,4 design the experiment without replication. This can be viewed as a

trade-off between making a limiting assumption and the cheaper cost of an

unreplicated experiment with the same number of factors and levels. Likewise,

the design depicted in Table 8.2 can be viewed as a trade-off, but one that is more

dramatic: if the assumption of no interaction is incorrect, the consequences are far

more severe than those mentioned in Chap. 6. But the benefits to be gained are also

far greater!

If there really is interaction among the factors, the values of the main effects

determined may not be valid. Consider the example in Table 8.2, in which A1

included a data value that had levels (B1, C1), but A2 and A3 did not include such a

value. If this (B1, C1) combination greatly increases the response beyond the average

effect of B1 alone plus the average effect of C1 alone, then the mean of row one may

be much higher than the other row means solely due to including the (B1, C1)

combination, and not due at all to the level of A being A1! In the Chap. 6 situation,

the effect and sum of squares of each factor were correctly estimated, even if there

was interaction; only the F-test had the possibility of being misleading. To repeat, for

the design of Table 8.2, the assumption about interaction is more critical. However,

zero interaction is not necessary as long as the interaction effects are very small.

Now consider the benefits. Notice that the design of Table 8.2 studies three

factors at three levels each, with only nine combinations – the same number needed

for just two factors at three levels each, as we saw in Chap. 6. For this reason, we

might say that the Table 8.2 design studies three factors for the cost of two factors.

Sometimes this is called a “one-third replicate,” because one runs (and pays for!)

only nine of the 27 combinations.5 This generally cuts the cost of running the

experiment considerably; it is much less expensive than running all possible

treatment combinations and simply not replicating them.

Designs of this sort, in which we study three factors, all at the same number of

levels in this balanced manner and assuming that there is no interaction among

factors, are called Latin-square designs. Latin-square designs may be replicated or

unreplicated. An example of an unreplicated four-level Latin-square design is

shown in Table 8.4. The dependent variable is the number of new car sales over a

specified period (for car dealership franchises offering the same make and models

of car, and that historically have sold about the same number of cars per year). The

independent variables are (A) service policy (for example, all scheduled services up

to 30,000 miles are free); (B) hours open for business (for example, open all day

Sundays); and (C) ancillary amenities (for example, a free car wash anytime, even if

the car is not brought in for service that day). The numerical quantity in each cell of

Table 8.4 is the response – sales in units (that is, number of new vehicles sold).

4Obviously, in the general case of less data, less power holds true. That is, with no replicates and

keeping everything else the same, there will be less power in the hypothesis testing than if we did

have replication.
5A 3� 3 Latin square can be said to be a “one-third replicate,” a 4� 4 Latin square can be said to

be a “one-fourth replicate,” a 5� 5 a “one-fifth replicate,” and so forth.
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Notice that Table 8.4 depicts only 16 of the 64 combinations possible. This

unreplicated design (each of the 16 combinations is run only once) is a quarter

replicate; it uses only a fourth of the 64 possible combinations. Also, it appears that

the assumption of no interaction is reasonable in this application: the impact of each

factor, whatever it is, would seem not to depend on the levels of the other factors.6

8.1.1 The Latin-Square Model and ANOVA

The model for the unreplicated Latin-square analysis, following the notation from

earlier chapters, is as follows. Recall that, since this is a Latin-square design,

interactions have been assumed to be zero or negligible. The model acknowledges

this by omitting interaction terms. The data value for the ith level of the row factor,

jth level of the column factor, and kth level of the inside factor is

Yijk ¼ μþ ρi þ τj þ γk þ εijk

where i, j, and k take on values 1, 2, 3, . . ., m. That is, we have three factors, each at
m levels. The only new symbol is γ, analogous to ρ and τ, representing the third

cross-classified factor.

As previously, we replace the parameters with their respective estimates:

μ is estimated by �Y ���
ρi is estimated by ð�Yi�� � �Y���Þ
τj is estimated by ð�Y�j� � �Y ���Þ
γk is estimated by ð�Y��k � �Y���Þ

Table 8.4 Data for new car sales example

B1 B2 B3 B4

A1 C4 C3 C2 C1

855 877 890 997

A2 C1 C2 C3 C4

962 817 845 776

A3 C3 C4 C1 C2

848 841 784 776

A4 C2 C1 C4 C3

831 952 806 871

6One could argue the possibility that factors B and C interact; ancillary services might be a tad

more attractive if hours open are more convenient. One could also argue that this interaction, if not

zero, is negligible. In any event, it is the subject-matter experts (car dealers) who decide.
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This yields

Yijk ¼ �Y ��� þ ð�Yi�� � �Y���Þ þ ð�Y�j� � �Y���Þ þ ð�Y��k � �Y���Þ þ R

where R is a catchall term (the “remainder,” to make the equation indeed an

equality). We’ll come back to R shortly. Rearranging the above equation slightly,

we have

ðYijk � �Y���Þ ¼ ð�Yi�� � �Y���Þ þ ð�Y�j� � �Y���Þ þ ð�Y��k � �Y���Þ þ R

where

ðYijk � �Y ���Þ is the total variability among responses

ð�Yi�� � �Y���Þ is the variability among responses associated with ρ, the row factor

ð�Y�j� � �Y���Þ is the variability among responses associated with τ, the column

factor

ð�Y��k � �Y���Þ is the variability among responses associated with γ, the inside

factor, and (by algebra):

R ¼ Yijk � �Yi�� � �Y�j� � �Y��k þ 2�Y��� ¼ ðYijk � �Y���Þ
� ½ð�Yi�� � �Y���Þ þ ð�Y�j� � �Y���Þ þ ð�Y��k þ �Y���Þ�

Recall the discussion in Chap. 6 of error and interaction when an unreplicated

design is applied to a case where there is no interaction. Without replication, we

have no pure way of estimating error. The model is “fully specified” without error.

If we can assume that there is no interaction, then the interaction term must be

measuring (only) error. The second expression for R above shows that it is an

interaction-like term; the first way of writing R, though less intuitive as a declara-

tion of interaction, makes it easier to see that, algebraically, it is the correct

expression to make the alleged equality into an actual equality.

By writing an equation for each i, j, k combination, then squaring both sides of

each equation, and finally adding all the left sides and all the right sides, we arrive at

a breakdown of the sums-of-squares of

TSS ¼ SSBr owsð Þ þ SSBc olumnsð Þ þ SSBinside factor þ SSW

The general layout for an m-level Latin square (three factors – A, B, and C, each
at m levels) could be as follows:

B1 B2 . . . Bm

A1 C1 C2 . . . Cm

A2 C2 C3 . . . C1

⋮ ⋮ ⋮ . . . ⋮
Am Cm C1 . . . Cm – 1

The ingredients of the ANOVA table and the expected value of each mean

square are summarized in Table 8.5.
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The degrees of freedom for each factor are the same, (m – 1), corresponding to

the number of levels,m, minus one. The total number of degrees of freedom is equal

to the total number of data points, m2, minus one. We can, by subtraction, then

calculate the number of degrees of freedom associated with the error term as

follows7:

Error df ¼ m2 � 1ð Þ � 3 m� 1ð Þ
¼m2 � 3mþ 2

¼ m� 1ð Þ m� 2ð Þ

As indicated in Table 8.5, it is usually easier to calculate the sum of squares for

error, SSW, by subtraction:

SSW ¼ TSS� SSBr owsð Þ � SSBc olumnsð Þ � SSBinside factor

The last column of Table 8.5 points the way for the ratios of mean squares used for

calculation of Fcalc for each factor. To test rows, use MSQr/MSW; to test columns,

use MSQc/MSW; to test the inside factor, use MSQinside factor/MSW. The detailed

expressions for the V’s are as we might expect them to be, based on those of

previous chapters; for example, VrðowsÞ ¼ σ2 þ m
P

iρ
2
i =ðm� 1Þ for a fixed factor,

and for a random factor, Vr owsð Þ ¼ σ2 þ mσ2ρ.
For the 4� 4 Latin-square example of Table 8.4, the ANOVA results are shown

in Table 8.6. None of the three factors are significant at α ¼ .05. This indicates that

service policies, hours open, and amenity levels cannot be said [statistically] to

affect sales. Note, however, that amenities, with a p-value of .099, would be

significant at α ¼ .10.

Table 8.5 Ingredients of the ANOVA table for m-level Latin square

Source of variability SSQ df E(MS)

Rows m
P

ið�Yi�� � �Y���Þ2 m – 1 σ2 +Vrows

Columns m
P

jð�Y�j� � �Y���Þ2 m – 1 σ2 +Vcolumns

Inside factor m
P

kð�Y��k � �Y ���Þ2 m – 1 σ2 +Vinside factor

Error By subtraction (m – 1)(m – 2) σ2

Total
P

i

P
j

P
kðYijk � �Y���Þ2 m2 – 1

7For some readers, this might be the first time that he/she actually sees a factoring of a quadratic

equation being used in many years – if not the first time ever since learning it in high school. See, it

wasn’t a total waste after all!
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If the Latin-square design has replication, the model is similar, except that there

is an additional, explicit term for error. Unlike the Chap. 6 discussion in which a

two-factor design having replication allows separate capturing and testing of the

interaction effect, a Latin-square design does not afford such a luxury. It still

requires us to assume that there is no interaction; recall that interaction would

interfere with all levels of a factor being on equal footing.

Analyzing a replicated Latin-square design, therefore, is very similar to analyz-

ing an unreplicated design. The sum of squares for each of the three factors is still

determined by examining the mean at each factor level. Also, the expression for the

sum of squares is the same as for an unreplicated design, except that there is an extra

multiplicative value, n, representing the number of replicates per cell. For example,

for the row factor,

SSBrðowsÞ ¼ nm
X

i
ð�Yi��� � �Y ����Þ2

Algebra indicates that n belongs in the expression. From an intuitive point of view,

it is present because the number of data values supporting each row mean (that is,

the number of data values in the row) is no longer m but is now nm. Once we have
SSBr, SSBc, and SSBinside factor, we simply determine the sum of squares associated

with error, SSW, by subtraction, exactly as above. The degrees of freedom will still

be (m – 1) for each factor, but for error the degrees of freedom will change to

nm2 � 1
� �� 3 m� 1ð Þ ¼ nm2 � 3mþ 2

which equals the sum of the previous degrees-of-freedom value of [(m – 1)(m – 2)],

and the additional degrees of freedom due to replication, [m2(n – 1)], which is the

number of cells times the replication degrees of freedom per cell. The reason is that

the total number of degrees of freedom changes from (m2 – 1) to (nm2 – 1). Still, the

determination of the MSQ values proceeds in the usual way and the same ratios

form the respective Fcalc’s. Following is another example of a non-replicated case.

Example 8.2 Latin-Square Analysis of Valet-Parking Use

We study the number of patients using valet parking at a large medical clinic near

Boston. The factors, shown in Table 8.7, are the cost of the valet-parking service

Table 8.6 ANOVA table for car dealership example

Source of variability SSQ df MS Fcalc p-value

Service policy 17566.5 3 5855.5 2.173 0.192

Hours open 4678.5 3 1559.5 0.579 0.650

Amenities 26722.5 3 8907.5 3.306 0.099

Error 16164.5 6 2694.1

Total 65132.0 15
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(rows), the quantity of handicapped parking spaces in the parking lot closest to the

clinic entrance (columns), and the number of valet-parking attendants on duty

(inside factor, considered an indirect indicator of waiting time). The study’s
primary goal was to determine how best to accommodate the needs of patients

efficiently.

Each factor is studied at four levels. For the number of spaces, levels 4, 3, 2, 1

are, respectively, ten, eight, six, and four spaces; for cost, levels 1, 2, 3, 4 are,

respectively, $3, $4, $5, and $6. For number of attendants, the levels happen to be

the actual values. Earlier studies have demonstrated that interaction effects are

negligible. Table 8.7 shows the data in a Latin square and Table 8.8 is the ANOVA

table.

At α ¼ .05 and df ¼ (3, 6), c ¼ 4.76. We conclude that the number of

handicapped parking spaces nearby affects how many people use the valet-parking

service, p < .001. The number of valet-parking attendants available, which is a

surrogate for the amount of time a patient must wait to use the valet service, is also

significant, p < .01. The cost of the valet service, in the range of costs studied, does

not seem to affect its use: p > .10. The most significant factor is the number of

handicapped spaces; as this number increases from four to ten, the average demand

decreases, as shown in Fig. 8.1. Also, as the number of attendants increases from

one to four, the average demand increases from 40.5, to 48.5, to 51.75, to 66.25. The

results indicate the importance of the number of handicapped spaces as well as of

the number of valet-parking attendants.

Table 8.7 Use of valet parking

Number of handicapped spaces

C
o
st

to
p
a
rk

4 3 2 1

1 2 4 3 1
29 44 54 71

2 3 1 2 4
22 22 59 100

3 4 3 1 2
38 31 40 79

4 1 2 4 3
29 27 83 100

Table 8.8 ANOVA table for valet-parking study

Source of variability SSQ df MS Fcalc

Cost 370.5 3 123.5 2.9

No. of spaces 9025.0 3 3008.3 71.1

No. of attendants 1389.5 3 463.2 10.9

Error 254.0 6 42.3

Total 11039.0 15
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Next, we analyze the same problem using JMP

Example 8.3 Latin-Square Analysis of Valet-Parking Use in JMP

For a two-factor design, the input lists the data in one column and has two additional

columns to indicate, for each data value, the level of the row factor and of the

column factor. For a Latin-square design, one must simply add another column to

indicate the level of the third factor. Table 8.9 shows this format for the input data

from the valet-parking study of Example 8.2. The first three columns represent the

levels, respectively, of the row, column, and inside factor, and the last column is the

dependent variable.

Fig. 8.1 Use of valet

parking by number of

handicapped spaces

Table 8.9 Input data for valet-parking study in JMP

Cost NumberSp NumAtt Demand

1 4 2 29

2 4 3 22

3 4 4 38

4 4 1 29

1 3 4 44

2 3 1 22

3 3 3 31

4 3 2 27

1 2 3 54

2 2 2 59

3 2 1 40

4 2 4 83

1 1 1 71

2 1 4 100

3 1 2 79

4 1 3 100

This format is the same as that used in SPSS
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Figure 8.2 presents the output for this same example using the JMP software.

8.2 Graeco-Latin-Square Designs

Factors in a Latin-square design can have any number of levels, but strictly

speaking a Latin square accommodates only three factors. Similar designs

with four factors are called Graeco-Latin squares. Historically, similar designs

with five factors were called Sino-Graeco-Latin squares. The names come from

early forms of notation in which rows and columns were designated by numbers

(1, 2, 3, . . .) and levels of the inside factor were designated by Latin-derived letters

(a, b, c, . . .). When a fourth factor (second inside factor) was involved in a study, it

was usually represented by Greek letters, such as α, β, γ, and the like. A fifth factor

(third inside factor) might be represented by Chinese symbols. Sanity ultimately

prevailed, so that now any design involving more than three factors is called a

Graeco-Latin square and, usually, all letters used are Latin letters (at least in the

United States). An example of a Graeco-Latin square involving four factors, each at

three levels, is shown in Table 8.10.

Notice that the balance requirement for a Latin square is satisfied here. Each

level of A is paired once with each level of B; each level of A is paired once with

each level of C; each level of A is paired once with each level of D. Hence, each

level of A is on equal footing. The same holds for factors B, C, and D – all assuming

that there are no interaction effects among the factors. We might use such a Graeco-

Fig. 8.2 ANOVA table for

valet-parking study in JMP

Table 8.10 Example of a Graeco-Latin square

B1 B2 B3

A1 C1D1 C2D2 C3D3

A2 C2D3 C3D1 C1D2

A3 C3D2 C1D3 C2D1
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Latin square if, for example, we had a variation on the valet-parking example: three

levels per factor (cost, number of handicapped parking spaces, and number of valet-

parking attendants) plus a fourth factor, also at three levels – perhaps the number of

hours the clinic is open.

A necessary, but not sufficient, condition for the treatment combinations of

factors A, B, C, and D (with C and D as inside factors) to form a Graeco-Latin

square is that factors A, B, and C form a Latin square, and that factors A, B, and D

form a Latin square. The reason these conditions are not sufficient is illustrated by

the treatment combinations in Table 8.11. In that table, factors A, B, and C form a

Latin square, and so do factors A, B, and D. However, factors C and D are

confounded.

The Graeco-Latin square in Table 8.10 is a complete Graeco-Latin square. This

means that the full capacity of the square (the maximum number of factors that can be

included) is used. The relationship that defines this maximum involves the number of

levels,m, and the resultant number of degrees of freedom. In anm-level Graeco-Latin
square without replication, irrespective of the number of factors in the study, the

number of data points is m2 and the total number of degrees of freedom is (m2 – 1).

Because the number of degrees of freedom associated with each factor is (m – 1), the

maximum number of factors that can be accommodated is

m2 � 1
� �

= m� 1ð Þ ¼ mþ 1

If m ¼ 3, (m þ 1) ¼ 4. In the Table 8.10 example, we might say that we are

analyzing four factors for the cost of two; the nine treatment combinations represent

a one-ninth replicate of the possible 34 ¼ 81 treatment combinations. Another

example of a complete Graeco-Latin square appears in Table 8.12. It shows how,

with five levels, six factors can be accommodated.

Table 8.11 A non-Graeco-Latin square

B1 B2 B3

A1 C1D1 C2D2 C3D3

A2 C2D2 C3D3 C1D1

A3 C3D3 C1D1 C2D2

Table 8.12 Complete Graeco-Latin square

B1 B2 B3 B3 B5

A1 C1D1E1F1 C2D2E2F2 C3D3E3F3 C4D4E4F4 C5D5E5F5

A2 C2D3E4F5 C3D4E5F1 C4D5E1F2 C5D1E2F3 C1D2E3F4

A3 C3D5E2F4 C4D1E3F5 C5D2E4F1 C1D3E5F2 C2D4E1F3

A4 C4D2E5F3 C5D3E1F4 C1D4E2F5 C2D5E3F1 C3D1E4F2

A5 C5D4E3F2 C1D5E4F3 C2D1E5F4 C3D2E1F5 C4D3E2F1
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The creation of these arrays is not simple, especially when they get larger. Of the

billions of subsets of 25 out of 56 ¼ 15,625 possible treatment combinations, less

than a billionth of a percent qualify as Graeco-Latin squares. The issue is further

complicated by the fact that some Graeco-Latin squares, even with only four factors

(including two inside factors), are impossible to create. For example, it is impossible

to find a 6� 6 Graeco-Latin square (that is, one with four or more factors). It was

thought for many years (even by Fisher, who invented the term “Latin square” in

1926) that it was impossible to create any Graeco-Latin square with dimension (that

is, number of levels) m ¼ (4L þ 2) for integer L; however, in 1959, Graeco-Latin

squares of dimension 10 and 22 were published. Tables of Graeco-Latin-square

designs appear in some of the references listed at the end of Chap. 18.

There is a certain elegance and efficiency inherent in complete Graeco-Latin-

square designs, but they suffer a major flaw: all the degrees of freedom have been

used to estimate the effects and none are left, in an unreplicated design, to allow the

assessment of error. That is, if there are (m þ 1) factors, each “using up” (m � 1)

degrees of freedom, all (m2 – 1) degrees of freedom are utilized; the SSW would

come out zero, and the MSW would be zero divided by zero (its degrees of

freedom) or, appropriately, an “indeterminate form.” With an indeterminate

MSW, it is not possible to perform hypothesis testing (that is, the F-test).
Accordingly, if we decide against replication, so-called incomplete Graeco-

Latin squares may be used. These are Graeco-Latin squares, such as the one

shown in Table 8.13, that have m levels (in this case, five) of each factor, but

fewer than (m þ 1) factors (in this case, four).

The ANOVA table, shown in Table 8.14, illustrates the testing of the four

hypotheses related to the significance of each of factors A, B, C, and D. The

value of SSW in Table 8.14 is determined by subtracting the other SSB terms

from the TSS. In this case, the SSB for each factor has four degrees of freedom,

corresponding to five levels. The number of degrees of freedom for SSW is also

determined by subtraction. Given 25 data values, there are a total of 24 degrees of

freedom; since 16 of them correspond to the four factors, that leaves 8 degrees of

freedom for error. The mean squares and Fcalc values for each factor follow

arithmetically. Each Fcalc would then be compared with an F-table value at the

appropriate value of α and (4, 8) degrees of freedom. So, we examine the impact of

each of the four factors, in some sense studying four factors for the price of two: we

are performing a 1/25th replicate (25 treatment combinations run, out of 54 ¼ 625

possible treatment combinations).

Table 8.13 Incomplete Graeco-Latin square

B1 B2 B3 B4 B5

A1 C1D1 C2D2 C3D3 C4D4 C5D5

A2 C2D3 C3D4 C4D5 C5D1 C1D2

A3 C3D5 C4D1 C5D2 C1D3 C2D4

A4 C4D2 C5D3 C1D4 C2D5 C3D1

A5 C5D4 C1D5 C2D1 C3D2 C4D3

8.2 Graeco-Latin-Square Designs 279



Example 8.4 Fuel Additive in JMP

A company that produces ethanol fuel wants to test the efficiency of five additives

they have been working on, identified as 1, 2, 3, 4, and 5. They also indicated that

the car model, driver, and the day in which the experiment was to be conducted

could have an impact in the results. No interactions were expected for these factors.

An incomplete, unreplicated Graeco-Latin square design similar to the one

presented in Table 8.14 was used. In order to run the experiment, five car models

with similar specifications, but different makes, were selected (1, 2, 3, 4, and 5),

which were driven by five experienced drivers (1, 2, 3, 4, and 5) on five different

days (1, 2, 3, 4, and 5). The fuel economies, measured in miles per gallon (mpg), are

shown in Table 8.15.

Table 8.14 ANOVA table for an incomplete Graeco-Latin square

Source of Variability SSQ df MS Fcalc

A SSBA 4

B SSBB 4

C SSBC 4

D SSBD 4

Error SSW 8

Total TSS 24

By subtraction

Table 8.15 Ethanol fuel economy (in mpg) with three additives

Additive Car Driver Day Economy

1 1 1 1 15.0
1 2 2 2 13.5
1 3 3 3 12.9
1 4 4 4 13.5
1 5 5 5 14.1

2 1 2 3 16.9
2 2 3 4 18.8
2 3 4 5 18.3
2 4 5 1 17.5
2 5 1 2 14.8

(continued)
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Figure 8.3 presents the output using the JMP software. Note that we were able to

estimate the error term because the design was incomplete. At α ¼ .05, we can

conclude that the additive affects fuel economy, p < .01. The car make, driver, and

day in which the experiment was conducted do not appear to affect fuel efficiency,

p > .05.

Fig. 8.3 ANOVA table for fuel additive study in JMP

Table 8.15 (continued)

Additive Car Driver Day Economy

3 1 3 5 17.3
3 2 4 1 16.7
3 3 5 2 18.3
3 4 1 3 17.4
3 5 2 4 13.5

4 1 4 2 16.8
4 2 5 3 18.5
4 3 1 4 15.7
4 4 2 5 16.3
4 5 3 1 17.2

5 1 5 4 19.5
5 2 1 5 18.2
5 3 2 1 18.7
5 4 3 2 20.0
5 5 4 3 19.9

8.2 Graeco-Latin-Square Designs 281



8.3 Other Designs with Three or More Factors

One need not use a Latin-square or Graeco-Latin-square design just because there

are three or more factors. In many cases, the situation isn’t a square; factors under
study simply do not have the same number of levels. Sometimes it may be possible

to add or subtract a level to obtain a square, but not always. If running a Latin square

or Graeco-Latin square is not feasible or desirable, what do we do?

Possibly we could run every combination of factors and levels. This might work

if the numbers of levels of the factors are relatively small. But if, for example, a

study has four factors, with two having five levels and the other two having three

levels (total combinations 52 � 32¼ 225), the financial and management costs might

be excessive. But if we can hone our study such that it considers two factors at three

levels and two factors at two levels (total combinations 32 � 22¼ 36), it may be cost-

effective.

If all factors in a study have only two levels, running all treatment combinations

of say, five factors (25 ¼ 32) might not be a burden. Obviously, when all factors

have two levels, the number of factors that can be studied for a fixed number of

treatment combinations is maximized. This situation has been researched exten-

sively and we devote Chaps. 9, 10, 11, and part of 13 directly to it, highlighting the

running of fractional replicates (other than Latin squares or Graeco-Latin squares).

These designs can also accommodate situations in which some factors have four

levels and others have two levels. In all of these designs, we may encounter

interaction effects among three or more factors at a time, not solely the interaction

effects encountered thus far that are only two-factor interactions. We defer discus-

sion of three-way and higher-order interactions until Chap. 9.

Some classes of designs in the incomplete-Latin-square family are beyond the

scope of this text. For a design that is a Latin square, except that one factor has one

level fewer than the other two factors, the analysis procedure is not too complicated

(though far more so than for a routine Latin square), and discussion of that situation

can be found in various texts on experimental design. If one row and one column are

missing, the procedure is more complicated. However, certain patterns of incom-

plete Latin squares are systematic, in the sense that the designs and analyses can be

generalized; for example, consider Table 8.16, an incomplete Latin square with

three factors having numbers of levels three, seven, and seven for rows, columns,

and inside factors respectively. Note that, within columns, each level of C occurs

exactly once with each other level of C (for example, C1 occurs in the same column

with C2 once [column B7], with C3 once [column B1], and so on).

Table 8.16 Incomplete Latin square

B1 B2 B3 B4 B5 B6 B7

A1 C7 C6 C5 C4 C3 C2 C1

A2 C1 C7 C6 C5 C4 C3 C2

A3 C3 C2 C1 C7 C6 C5 C4

282 8 Designs with Three or More Factors: Latin-Square and Related Designs



Now consider the incomplete Latin square in Table 8.17, with factors having

numbers of levels seven, four, and seven, for rows, columns, and inside factors,

respectively. In this incomplete Latin square, within rows, each level of factor C

occurs exactly twice with each other level of C (for example, in rows, C4 occurs

twice with C1 [rows A1 and A6], twice with C2 [rows A3 and A4], and so on).

Designs exemplified by such rectangles are, curiously, called Youden squares. A

Youden square is a special, systematic type of incomplete Latin square in which

each level of the inside factor appears the same number of times in the incomplete

dimension with each other level of the inside factor. In Table 8.16, each level of C

appears once in a column with each other level; in Table 8.17, twice with each other

level, in rows. The analysis of Youden squares involves systematic adjustments to

the means of the levels of the factors not on equal footing: factors B and C in

Table 8.16, and factors A and C in Table 8.17.8

Example 8.5 Maximizing Profit at Nature’s Land Farms (Revisited)

The experiment, as described at the beginning of the chapter, was run using a Latin

square, so that of the 27 combinations of positioning, cobranding, and packaging,

only nine combinations had to be formed. Remember, the use of a Latin square is

helpful only if one has ascertained the appropriateness of the no-interaction

assumption. Just what “interaction” meant in this situation was carefully explained

to the management of the cooperative; people often confuse it with the concept of

correlation. For example, we asked questions such as, “Whatever differences in

results we get for different positioning options, if any, would you expect them to

Table 8.17 Incomplete Latin square

B1 B2 B3 B4

A1 C1 C3 C4 C5

A2 C6 C1 C2 C3

A3 C7 C2 C3 C4

A4 C2 C4 C5 C6

A5 C3 C5 C6 C7

A6 C4 C6 C7 C1

A7 C5 C7 C1 C2

8More information about Youden squares can be found in K. C. Peng, The Design and Analysis of
Scientific Experiments, Reading, Mass., Addison Wesley, 1967, among other references listed in

Chap. 18.
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vary by cobrand?” The questions were repeated in various ways; for example,

“Would you expect any differences due to the cobrand to vary with which posi-

tioning is chosen?”

A separate simulated test market was set up, with each treatment combination

prominently displayed. A simulated test market is a store-like setting in which a

“customer” (a participant in the study) is exposed to various possible products and

brands and asked to spend a fixed amount of money or, in some cases, to buy a fixed

number of items. Each of the nine treatment combinations was tested with the same

set of competing products and brands. For each simulated test market/treatment

combination, there were 100 “customers”/replicates. The primary dependent vari-

able was the number of NLF packages of potatoes purchased; another measure was

the attitude toward the NLF product, obtained by a questionnaire administered after

the shopping experience was completed. The participants did not know during the

shopping portion of the experiment which products and brands were being studied.

It turned out that the positioning factor and the packaging factor dominated the

cobranding factor. In advance of the experiment, NLF managers agreed that the

biotech issue would make a difference, although they were divided on the direction.

“Biotech” potatoes decreased sales relative to other levels of the positioning factor,

p < .01. “Superior taste” potatoes slightly outsold the “environmentally friendly”

potatoes, but the difference was not statistically significant, with a p-value of

about .15.

The cobranding factor was not significant at all. It was decided afterward that

since all three cobrands were well known and had a solid reputation, differences

among them were too small to detect. In packaging, there was no difference

between the clear plastic and the paper with a window. However, the paper

packaging without a window was significantly inferior to both. Apparently, the

ability to see the product is important to consumers. This did not seem to surprise

NLF managers (although they did say that it was “too bad,” because paper without a

window is the cheapest packaging).

Exercises

1. The text example that studied the impact on demand for valet parking at the

clinic included one day’s data for each combination of parking cost, number of

handicapped spaces available, and number of attendants. Suppose that there

were, in fact, five random weekdays of data for each treatment combination of

the three factors, as outlined in Table 8EX.1. Repeat the Latin-square analysis,

now using the five replicates per cell.
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2. Consider the Latin-square design in Table 8EX.2 in which the row-factor levels

represent different magazines, the column-factor levels represent different

sizes of print advertisements, and the inside-factor levels represent different

times of the year. The dependent variable is “number of orders generated from

the advertisement.” Other factors inherent in the ad – positioning, location in

the magazine, and so on – are held constant.

Analyze the experiment to determine if there are significant differences

among magazines, among the different sizes of the advertisements, and

among different times of the year. Use α ¼ .05. Note that we have used the

“Latin-letters-on-the-inside” notation for the first time, to enhance the sense of

the history of the field of experimental design. We also use old-style notation in

Table 8EX.2.

3. For the Exercise 2 data, perform Tukey’s HSD analysis on the rows. Use

a ¼ .05.

4. For the Exercise 2 data, perform a Newman-Keuls test on the rows. Use

a ¼ .05.

Table 8EX.2 Latin square for magazine ad study

1 2 3 4

1 A 122 B 129 C 135 D 126

2 B 117 A 116 D 113 C 102

3 C 114 D 120 A 123 B 111

4 D 120 C 128 B 129 A 123

Table 8EX.1 Valet-parking study

Cost to

park

No. of

spaces

No. of

attendants

Five replicates (days)

1 2 3 4 5

$3 10 2 29 18 28 27 21
$4 10 3 22 21 24 23 27
$5 10 4 38 42 39 46 29
$6 10 1 29 24 33 28 25

$3 8 4 44 43 49 50 48
$4 8 1 22 18 20 28 16
$5 8 3 31 32 36 36 24
$6 8 2 27 32 29 31 34

$3 6 3 54 56 52 54 58
$4 6 2 59 56 53 53 56
$5 6 1 40 49 45 47 34
$6 6 4 83 87 82 83 91

$3 4 1 71 73 60 68 72
$4 4 4 100 105 103 104 103
$5 4 2 79 81 81 78 76
$6 4 3 100 94 90 104 98
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5. For the Exercise 2 data, use an orthogonal breakdown of the sum-of-squares

associated with the row factor to test whether: (1) the average of magazines one

and three differs from the average of magazines two and four; (2) the average of

magazines one and two differs from the average of magazines three and four;

(3) the average of magazines one and four differs from the average of maga-

zines two and three. Use α ¼ .01.

6. The data in Table 8EX.6 expand upon Exercise 2 and involve four factors –

magazines (row factor), size of print (column factor), season (first inside

factor), and number of colors in the ad (second inside factor). For each

treatment combination in the Graeco-Latin square arrangement, the table

shows the results (number of orders generated) for four randomly-chosen issues

(replicates).

Ignore the fourth factor, number of colors, and analyze as a Latin square.

Find the p-value when testing each factor.

7. Now analyze the Exercise 6 data as a Graeco-Latin square as if there were no

replication (that is, use only the first column of data).

8. Finally, analyze the Exercise 6 data using all the data in the table (that is, as a

Graeco-Latin square with four replicates per cell).

9. The Merrimack Valley Pediatric Clinic has gathered data in order to determine

what affects customer satisfaction. It is studying four factors: location (Ando-

ver, Methuen, Salem, and Amesbury), extended hours (none beyond the normal

office hours, extra evening hours, extra Saturday hours, and extra hours on both

evenings and Saturdays), follow-up calls by nurse-practitioners (levels: none,

low, medium, and high), and clerical assistance for patients who need help with

insurance forms (levels: none, minimum, medium, and maximum). Analyze the

Table 8EX.9 data as a Graeco-Latin square; each data point represents a

Table 8EX.6 Magazine ad study

Magazine Print Season Colors Issue 1 Issue 2 Issue 3 Issue 4

1 8 point Fall 1 125 121 122 123
2 8 point Winter 4 118 113 118 119
3 8 point Spring 2 118 115 119 117
4 8 point Summer 3 120 118 119 120

1 10 point Winter 2 127 134 128 127
2 10 point Spring 3 113 115 118 118
3 10 point Summer 1 118 127 118 120
4 10 point Fall 4 127 122 130 128

1 12 point Spring 3 133 140 132 133
2 12 point Summer 2 109 113 111 113
3 12 point Fall 4 118 125 126 121
4 12 point Winter 1 133 125 128 136

1 14 point Summer 4 129 125 125 125
2 14 point Fall 1 103 105 100 96
3 14 point Winter 3 113 110 114 110
4 14 point Spring 2 122 120 119 124
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satisfaction score for one client, based on a lengthy discussion of the levels of

the factors (higher is better). Use α ¼ .05.

10. Prove that it is impossible to construct a Graeco-Latin square with four factors,

each factor having two levels.

11. How many different 4� 4 Latin squares are possible?

12. Suppose that in Exercise 2 there had been a fourth factor (second inside factor),

representing four different prices, thus forming a Graeco-Latin square, as shown

in Table 8EX.12. Analyze the data as a Graeco-Latin square, using α ¼ .05.

13. Consider the analyses in Exercises 2 and 12. Compare MSW values. Under

what conditions, in general, will the MSW of the Graeco-Latin square be

greater/less than the MSW of the Latin square?

14. Consider a 4� 4� 4 Latin square without replication. Suppose that the upper-

left cell has each of the three factors A, B, and C, at its respective level one;

suppose further that of the 16 data values composing the Latin square, the

upper-left value is missing – only the other 15 data values are available. What

value would you substitute for this missing value, if the goal is to minimize the

SSW of the experiment (when, with the substituted value, the experiment is

Table 8EX.12 Old-style Graeco-Latin square

1 2 3 4

1 Aα 122 Bβ 129 Cγ 135 Dδ 126

2 Bδ 117 Aγ 116 Dβ 113 Cα 102

3 Cβ 114 Dα 120 Aδ 123 Bγ 111

4 Dγ 120 Cδ 128 Bα 129 Aβ 123

Table 8EX.9 Analysis of MVPC customer satisfaction

Office Hours Follow-up Insurance help Score

Andover None None None 47
Methuen None Low Max 62
Salem None Med Min 62
Amesbury None High Med 68

Andover Eve Low Min 68
Methuen Eve None Med 67
Salem Eve High None 85
Amesbury Eve Med Max 62

Andover Sat Med Med 72
Methuen Sat High Min 68
Salem Sat None Max 66
Amesbury Sat Low None 73

Andover EveþSat High Max 87
Methuen EveþSat Med None 64
Salem EveþSat Low Med 78
Amesbury EveþSat None Min 82
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analyzed as a “normal” Latin square)? In reality, this is exactly what would be

done. However, the degrees of freedom for the error term would be reduced

from 6, which it would routinely be, to 5, reflecting the fact that the total

number of degrees of freedom is actually 14, since there were only 15 data

values to begin with.

15. Suppose that you wanted to design an experiment in which there were four

factors, A, B, C, and D, each having three levels. However, you cannot rule out

a two-factor interaction effect between factors C and D. What set of treatment

combinations would you suggest should be run?

16. Suppose that we revisit the data of Exercise 1, but now we assume that the

“replicates” are not true replicates but represent a random Monday, a random

Tuesday, a random Wednesday, a random Thursday, and a random Friday, in

that order. Analyze the data on this basis. Hint: even if there were four days

instead of five, this would not simply turn the Latin square into a Graeco-Latin

square; after all, we have a Latin square for each “level” of day. For example,

consider the upper-left cell, the (1, 4, 2) cell. Letting the fourth number

represent the day, we have a data point for (1, 4, 2, 1), (1, 4, 2, 2), (1, 4,

2, 3), and (1, 4, 2, 4); a Graeco-Latin square would have a data point for only

one day, X: (1, 4, 2, X).
17. Suppose in Exercise 9 that four people were interviewed per treatment combi-

nation and the data were as shown in Table 8EX.17. Analyze as a Graeco-Latin

square with replication. Use α ¼ .05.

18. Suppose that Example 8.5 (fuel additive) was repeated in a different location,

but this time in triplicate, as shown in Table 8EX.18. Analyze as a Graeco-

Latin square with replication. Use α ¼ .01.

Table 8EX.17 Analysis of MVPC customer satisfaction

Office Hours Follow-up Insurance help Score

Andover None None None 47, 58, 52, 45
Methuen None Low Max 62, 54, 56, 50
Salem None Med Min 62, 73, 73, 67
Amesbury None High Med 68, 76, 69, 77

Andover Eve Low Min 68, 57, 60, 63
Methuen Eve None Med 67, 76, 63, 79
Salem Eve High None 85, 75, 92, 73
Amesbury Eve Med Max 62, 68, 58, 61

Andover Sat Med Med 72, 76, 67, 73
Methuen Sat High Min 68, 87, 78, 87
Salem Sat None Max 66, 68, 75, 68
Amesbury Sat Low None 73, 63, 72, 76

Andover EveþSat High Max 87, 72, 75, 72
Methuen EveþSat Med None 64, 66, 68, 81
Salem EveþSat Low Med 78, 77, 69, 75
Amesbury EveþSat None Min 82, 83, 80, 79
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Appendix

Example 8.6 Latin-Square Analysis of Valet-Parking Use in SPSS

Analysis of an experiment with a Latin-square design fits naturally within the

framework of SPSS’s ANOVA model analyses, as we have seen using JMP. The

input is similar to Table 8.9. When arranging for the SPSS output of a Latin-square

analysis, enter theModelmenu – as we have done previously withAnalyze>Gen-

eral Linear Model > Univariate – and be careful to specify no interaction effects.

Table 8.18 shows the SPSS output.

Table 8EX.18 Fuel additive with replicate

Additive Car Driver Day Economy

1 1 1 1 15.0, 14.8, 14.5
1 2 2 2 14.5, 14.6, 14.0
1 3 3 3 14.0, 15.0, 14.2
1 4 4 4 14.5, 14.5, 13.0
1 5 5 5 14.1, 14.5, 14.2

2 1 2 3 16.9, 17.0, 17.2
2 2 3 4 18.8, 19.0, 18.7
2 3 4 5 18.3, 18.1, 18.0
2 4 5 1 17.5, 17.0, 17.2
2 5 1 2 14.8, 15.0, 14.9

3 1 3 5 17.3, 17.0, 17.5
3 2 4 1 16.7, 17.0, 16.8
3 3 5 2 18.3, 18.3, 18.0
3 4 1 3 17.4, 17.5, 17.8
3 5 2 4 13.5, 14.0, 13.6

4 1 4 2 16.8, 17.0, 16.9
4 2 5 3 18.5, 18.0, 18.2
4 3 1 4 15.7, 16.0, 15.8
4 4 2 5 16.3, 16.9, 16.3
4 5 3 1 17.2, 17.0, 17.1

5 1 5 4 19.5, 20.0, 20.1
5 2 1 5 18.2, 18.0, 18.5
5 3 2 1 18.7, 18.4, 18.6
5 4 3 2 20.0, 19.7, 20.0
5 5 4 3 19.9, 20.0, 19.3
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Example 8.7 Latin-Square Analysis of Valet-Parking Use in R

The analysis of a Latin-square design can be easily done in R now that we learned

some of the basic commands. As we mentioned in this chapter, Latin squares

assume no interactions between the factors. Based on this assumption, we build

the model using only the main effects of the factors, as follows:

> demand <- read.csv(file.path("/Users/documents", "ex8.7.

+csv"), header=T)

> demand1 <- aov(Demand~Cost+NumberSp+NumAtt, data=demand)

> summary(demand1)

Df Sum Sq Mean Sq F value Pr(>F)
Cost 3 371 123.5 2.917 0.12251
NumberSp 3 9025 3008.3 71.063 4.44e-05 ***
NumAtt 3 1390 463.2 10.941 0.00759 **
Residuals 6 254 42.3

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Alternatively, we could use the lm() function, which will give the same results.

> demand2 <- lm(Demand~Cost+NumberSp+NumAtt, data=demand)

> summary(demand2)

Analysis od Variance Table

Table 8.18 ANOVA table for valet-parking study in SPSS

Tests of between-subjects effects

Dependent variable: demand

Source

Type III sum of

squares df Mean square F Sig.

Corrected model 10785.000a 9 1198.333 28.307 .000
Intercept 42849.000 1 42849.000 1012.181 .000
Cost 370.500 3 123.500 2.917 .123
NumberSp 9025.000 3 3008.333 71.063 .000
NumAtt 1389.500 3 463.167 10.941 .008
Error 254.000 6 42.333
Total 53888.000 16
Corrected total 11039.000 15

aR Squared ¼ .977 (Adjusted R Squared ¼ .942)
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Response: Demand

Df Sum Sq Mean Sq F value Pr(>F)
Cost 3 370.5 123.50 2.9173 0.122507
NumberSp 3 9025.0 3008.33 71.0630 4.441e-05 ***
NumAtt 3 1389.5 463.17 10.9409 0.007591 **
Residuals 6 254.0 42.33

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Part III

Studying Factors’ Effects



Chapter 9

Two-Level Factorial Designs

We now change our focus from the number of factors in the experiment to the

number of levels those factors have. Specifically, in this and the next several

chapters, we consider designs in which all factors have two levels. Many experi-

ments are of this type. This is because two is the minimum number of levels a factor

can have and still be studied, and by having the minimum number of levels (2), an
experiment of a certain size can include the maximum number of factors. After all,
an experiment with five factors at two levels each contains 32 combinations of

levels of factors (25), whereas an experiment with these same five factors at just one

more level, three levels, contains 243 combinations of levels of factors (35) – about

eight times as many combinations! Indeed, studying five factors at three levels each

(35 ¼ 243 combinations) requires about the same number of combinations as are

needed to study eight factors at two levels each (28 ¼ 256). As we shall see in

subsequent chapters, however, one does not always carry out (that is, “run”) each

possible combination; nevertheless, the principle that fewer levels per factor allows

a larger number of factors to be studied still holds.

Two levels can also be chosen for continuous factors as a way to screen whether

the level of the factor appears to affect the dependent variable. Designs that have

many factors in order to narrow down the set of factors to use in a more detailed

study are called, naturally enough, screening designs.

Example 9.1 Pricing a Supplemental Medical/Health Benefit Offer

An insurance company, HealthMark, was interested in conducting a marketing

research study to determine the “best” (that is, most profitable) offer of supplemen-

tal medical and health benefits. On the basis of previous studies, it already had
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determined the benefits which would be offered; there would be a core set of

benefits priced as a package, along with three auxiliary benefits which had two

levels each, a price and a specific degree of benefit. The key remaining step was the

pricing of the core benefits and the price/specific degree of benefit of the three

auxiliary benefits. The five core benefits were (in no particular order):

1. Pharmacy channel: savings of 25–50% for prescriptions at 25,000 pharmacies

nationwide (HealthMark used the term “channel” to indicate a network of

providers.),

2. Mail-order pharmacy service channel: a further 10% off the prices in benefit

1, for frequently-ordered prescriptions,

3. Vision channel: 25–50% off for eye glasses and contact lenses, major discounts

on eye exams, especially at major chains, such as Pearle Vision, BJ’s, and other
warehouse stores offering optometry and ophthalmology services,

4. Hearing-aid channel: 50–75% off many hearing-aid models, including most

national brands, by mail-order, with a 1-year full warranty, and

5. Dental channel: discount of 15–40% off a dentist’s usual prices, with a national
network, including periodontists and orthodontists.

The three auxiliary benefits offered were:

1. Chiropractic channel: discount of 25 or 50% (depending on the “level” – see

Table 9.1) off of chiropractic services, with a national network and extensive

referral services,

2. Dermatology/cosmetic-surgery channel: discount of 20 or 40% off most der-

matology- and cosmetic-surgery procedures, with a national network and

extensive referral services, and

3. Massage channel: a discount of 15 or 30% for massage treatments, with a

national massage network and an extensive referral network.

The factors under study were the price to be attached to the core benefits, and the

price and specific level of auxiliary benefits. In each case, previous research,

competitive pressures, and marketing considerations narrowed each price to two

options. The factors and the two levels of each are noted in Table 9.1.

Table 9.1 Prices and benefits offered

Factor Levels (low/high)

Price of core benefits $9.95 / $12.95 per month per adult
Price (and benefit) of chiropractic

channel

$0.50 (and 25% off) / $1.00 (and 50% off) per month

per adult
Price (and benefit) of dermatology

channel

$2 (and 20% off) / $3 (and 40% off) per month per adult

Price (and benefit) of massage

channel

$1 (and 15% off) / $2 (and 30% off) per month per adult
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There are 16 (24) treatment combinations. Five hundred people evaluated each

of the 16 combinations by selecting a “purchase-intent score” on a scale of 0–10,

where 0 indicated “0 chances in 100 I would sign up” and 10 indicated “99 chances

in 100 I would sign up.” A score of 1 corresponded to 10 chances in 100, a score of

2 to 20 chances in 100, and so on, increasing by 10 chances at each step. We return

to this example at the end of the chapter.

9.1 Two-Factor Experiments

We now study a very simple, powerful, and efficient technique for the design and

interpretation of experiments containing factors at two levels each; in Chap. 11, we

detail the formal statistical analysis (hypothesis testing) of the results via ANOVA.

Example 9.2 Direct-Mail Study

Suppose that we are conducting a direct-mail campaign in which the response rate

is of prime interest. Management wishes to study the impact on response rate of

three factors: size of the envelope, amount of the postage, and price of the product.

Management wishes to assess not only the “main” effect of each factor, but

interaction among factors as well. Each factor will be studied at only two levels,

traditionally called low and high. For relatively-small experiments (two to five

factors, perhaps), analysis requires no more than pencil and paper.

We start with an example of the simplest case in which only two of these three

factors (envelope size and postage) are believed to potentially influence the

response rate of the mailing. With two factors to study, each at two levels, we

have four combinations: both low, the first low with the second high, the first high

with the second low, and both high. Suppose that the two potential envelope sizes

are #10 and 9 � 12, and the postage possibilities are third class and first class. The

intuitively-satisfying way to assign names would be to call third-class postage

“low” and first-class postage “high.” It need not be this way, however. We could

just as well reverse the names. Furthermore, the levels being studied need not be

quantitative – they could, for example, be the choice of envelope color (white

versus pale gray) or the timing of the mailing (weekday versus weekend). The

assignment of labels is arbitrary; we just need to know, for each factor, which level

has been called high and which low, and we need to keep these consistent. (On the

other hand, it is perhaps “practicing safe statistics” to select the most intuitively-

obvious assignment if there is one.)

In our example, then, assume that we have the following assignment of labels:

Factor Low level High level

A: Envelope size #10 9�12

B: Postage Third class First class
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Each combination of factor levels is called a treatment or treatment combi-

nation; we designate them as follows:

a0b0 A at low level, B at low level

a0b1 A at low level, B at high level

a1b0 A at high level, B at low level

a1b1 A at high level, B at high level

For now, we assume that each of the four treatments is run only once (in a direct-

mail situation, it is typical to talk about the number of “thousands of names” mailed;

hence, “once” in this example means one thousand names). Later, we address the

use of several replications of each treatment, which would be more typical in this

application. (Recall that a replication is another “data point” under the same

combination of levels of factors.) For now, we just note that the presence of

replication does not affect the details of the design and the calculation of the

estimates of the impact of the factors in the experiment. However, as we know

from earlier chapters, the reliability of the estimates, and the associated probabil-

ities of Type I and Type II errors, are affected. We discuss this aspect further when

we focus on the formal statistical analysis. What we now have is a two-factor

(envelope size and postage), two-level (low and high), complete factorial design

without replication. The term factorial signifies the inclusion of all combina-

tions of levels of factors in the experiment; there is no connection between this

term and the factorial function in mathematics.

One “trial” (here, the mailing to 1,000 names) is “run” (conducted) at each of the

four treatment combinations and the response rate is determined. As we have seen,

the more general term for the resulting value of the relevant performance measure,

here the response rate, is “yield” or “response,” or more generically, “dependent-

variable value.” The symbols used for the treatments, such as a0b1, are also used for
the response, generally without causing confusion. Thus, for example, a0b1 is used
for the response when treatment a0b1 is run.

9.1.1 Estimating Effects in Two-Factor, Two-Level
Experiments

Having run one trial at each of the four treatment combinations, we have four

responses. We begin by estimating the effect of changing the envelope size from

#10 to 9� 12 (that is, going from envelope size “low” to envelope size “high”). We

do so by averaging the change in response rate resulting from changing envelope

size, at the two levels of postage:

a1b1� a0b1 ¼ estimate of effect of A at high B

a1b0� a0b0 ¼ estimate of effect of A at low B

Sum � 2 ¼ estimate of effect of A over all levels of B
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Thus, the effect of A is estimated to be equal to

a1b1 � a0b1ð Þ þ a1b0 � a0b0ð Þ½ �=2 ¼ a1b1 � a0b1 þ a1b0 � a0b0½ �=2

Similarly, the effect of B is estimated as follows:

a1b1� a1b0 ¼ estimate of effect of B at high A

a0b1� a0b0 ¼ estimate of effect of B at low A

Sum � 2 ¼ estimate of effect of B over all levels of A

Thus, the effect of B is estimated to be equal to

a1b1 � a1b0ð Þ þ a0b1 � a0b0ð Þ½ �=2 ¼ a1b1 � a1b0 þ a0b1 � a0b0½ �=2

If we wish to estimate the overall average (“grand mean”) of the four treatment

combinations, so as to estimate the difference between this value and the mean of a

particular treatment combination, we simply compute the arithmetic average of the

four treatment combinations.

Estimating the interaction between A and B may be a bit less intuitive. Were

there no interaction, we would expect the change in response rate resulting from a

change in envelope size to be the same whether the postage was third class or first

class (and vice versa). However, we could well have interaction, especially if there

is a nonzero difference in the effect of envelope size at the two different levels of

postage.1 The estimate of the interaction of A and B is

a1b1� a0b1 ¼ estimate of effect of A at high B

a1b0� a0b0 ¼ estimate of effect of A at low B

Difference � 2 ¼ estimate of effect of B on the effect of A

This is called the interaction of A and B.

Alternately,

a1b1� a1b0 ¼ estimate of effect of B at high A

a0b1� a0b0 ¼ estimate of effect of B at low A

Difference � 2 ¼ estimate of effect of A on the effect of B

This is called the interaction of B and A.

The numerical values of these interactions are identical – they both equal

[(a1b1 + a0b0)� (a0b1 + a1b0)]; the interaction of A and B is the same as the inter-

action of B and A. In practice, the preferred (or more sensible, or more intuitive)

interpretation of the interaction effect depends on the situation. In the present

example, the direct-mailer may prefer to think about the interaction as “the

1Of course, the observed difference in response rate between any of the two treatment combinations

is not necessarily the true difference, because the data are a sample that estimates the true values.
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difference in response rate as a function of envelope size depends on the postage;”

or equivalently, “the difference in response rate as a function of postage depends on

the envelope size.” Both statements are interpretable in a marketing sense, but in

other cases one statement gives a more clear-cut interpretation. For example, it is

understandable to hear that a fan’s rating of a movie starring Natalie Portman and of

one starring Ryan Gosling differs depending on the fan’s gender. But what if you
hear that how a fan’s rating of a movie differs by the fan’s gender depends on

whether the movie star is Natalie Portman or Ryan Gosling? The latter is not as

clear a statement; yet an experiment would yield the same numerical result for each

“interpretation.”

9.2 Remarks on Effects and Interactions

Several important observations can be made about two-level factorial designs. All

available data are used to estimate every effect. That is, we use all four responses

(yields) to estimate the effect of A, we use all four responses to estimate the effect

of B, and we use all four responses to estimate the effect of the interaction of A and

B. Furthermore, every effect is estimated separately (and, as we shall discuss later,

orthogonally), even though the experiment varied the levels of the factors simulta-

neously. Finally, we have obtained estimates of every possible aspect of the

influence of the two factors on the response rate – the factors themselves and

their interaction. Furthermore, the required computations and the logic behind

them couldn’t be simpler! These are among the merits of two-level factorial

designs.

How else might we have designed this inquiry? We might have evaluated the

effects on response rate by varying only one factor at a time. Then, however, we

would not have been able to estimate interaction. We discuss this later; at this

juncture, we merely draw attention to the following point: nonzero interaction is a
possibility in any study with at least two factors that are cross-classified. If the
effect of envelope size depends on the postage, it’s a “fact of life”; it’s not the

creation of the statistician, the direct-mailer, or the U.S. Post Office. To consider its

possibility is not to “make things more complicated.” Indeed, to avoid addressing

interaction in designing an experiment (for the misguided purpose of “keeping

things simple”), as too often happens in practice, is counterproductive, possibly

making the results less useful or even misleading; in fact, this avoidance is

unnecessary. As we have seen from this example, explicit consideration of the

interaction between two factors need not cause any appreciable increase in com-

plexity. An important rule of thumb is that an interaction between two factors

should be considered, and acknowledged in an experimental design, unless there is

an explicit understanding of why it is acceptable to assume that it is zero. Admit-

tedly, in practice, opinions may differ and the “understanding” on occasion

becomes somewhat subjective, or worse, murky. After all, it is rare to be 100%

certain about the answer to this type of question in decision making, although this

certainty may not be quite as rare in the physical sciences.
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9.3 Symbolism, Notation, and Language

A is called a main effect; our estimate of A is often simply written A. The same is

true of B. The interaction effect between A and B is written AB; our estimate of AB

is often simply written AB. Thus, we use the same letter(s) without italics to

designate the factor and with italics to designate its effect and our estimate of the

effect, generally without confusion. We should always remember that the quantities

obtained from the responses (data) are (of course!) estimates. For economy in

writing (and speaking), we call a numerical result an “effect,” but what we really

mean is our estimate of that effect. Because we never know the true value of an

effect (we need infinite data to determine the true value), why bother always writing

Â (A with a caret on top, affectionately read as “A hat”) or some other symbol for

the estimate? It’s simpler and more sensible to simply write A for the estimate.2

9.4 Table of Signs

There is a pattern to the calculations of A, B, and AB above. It is worth studying the

nature of the previous calculations, before we move on, to gain insight into an

evaluation technique that is very helpful in analyzing more complex designs. Note

that, except for the multiplicative factor of 1/2, all of the effects are formed by sums

and differences of the responses a0b0, a0b1, a1b0, and a1b1. We can illustrate these

sums and differences in a table as follows:

A B AB

a0b0 �1 �1 +1
a0b1 �1 +1 �1
a1b0 +1 �1 �1
a1b1 +1 +1 +1

We list the effects to be estimated as columns; we list the responses (treatment

combinations) as rows. The order of listing the rows is not too important at this

point, and we have chosen the order so that the subscripts are in numerical order

(00, 01, 10, 11); later, we present a preferred order that offers certain conveniences.

The table consists of the coefficients that multiply the responses to produce the

effects (along with dividing by two). That is, for example,

2One reviewer of the first edition of this book was adamant that using the same notation for the

factor, the true effect, and the estimate of the effect was “very sloppy and will be confusing to the

student.” We respectfully disagree. Virtually all treatises on this subject use this notation; what

would be confusing would be to change a notation that is so universal. But we, once again, thank

the reviewer for reinforcing our interest in alerting the reader to what we and other experimental

designers are doing.

9.4 Table of Signs 301



2A ¼ �1ð Þa0b0 þ �1ð Þa0b1 þ þ1ð Þa1b0 þ þ1ð Þa1b1

A is estimated by subtracting the first and second terms from the third and fourth;

the plus signs go with the high level of A. Similarly, B is estimated by subtracting

the first and third terms from the second and fourth terms; here, the plus signs go

with the high level of B. In addition, note that the right most column of the sign

table, the column representing the interaction AB, has values that are the products of
the values in the A and B columns. The interaction is obtained by subtracting the

second and third terms from the first and fourth terms; a plus sign goes with the

terms where factors A and B are both high or both low. A characteristic of this table

is that the columns are orthogonal; that is, the dot (or inner) product of any pair of

columns is zero. (Remember, the dot product of two columns is formed by multi-

plying the columns, element by element – here, row by row – and summing the

results. This was discussed in Chap. 5.) By way of example, the dot product of the

first and second column is

�1ð Þ �1ð Þ þ �1ð Þ þ1ð Þ þ þ1ð Þ �1ð Þ þ þ1ð Þ þ1ð Þ ¼ þ1ð Þ þ �1ð Þ þ �1ð Þ þ þ1ð Þ ¼ 0

and the two columns are orthogonal. When we defined orthogonality in Chap. 5, we

also discussed the conditions that (1) the sum of the coefficients add to zero, which

is satisfied here; and (2) the orthogonal matrix is made into an orthonormal one by

scale factor. Since the sum of the squares of the coefficients in the second line of the

equation above equals 4, to do the proper scaling, we should divide by the square

root of 4, which is 2.

All of the coefficients in the sign table above have an absolute value of 1. Thus, it

is traditional to omit the 1 from each coefficient, leaving only the sign (þ or –); the

sign table would then be written as follows:

A B AB

a0b0 – – +
a0b1 – + –
a1b0 + – –
a1b1 + + +

This omission of the 1’s continues in sign tables throughout this chapter. This

feature, that all of the coefficients are the same in absolute value, is true for

two-level experimentation but not, as we note in a subsequent chapter, for three-

level experiments.

Example 9.3 Four Illustrations of Interaction

Suppose that the following four tables display the responses or yields of a two-by-

two factorial design (assuming ε ¼ 0):
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Example 1

B
A Low High

Low 10 12

High 13 15

Example 2

B
A Low High

Low 10 15

High 15 15

Example 3

B
A Low High

Low 10 13

High 13 10

Example 4

B
A Low High

Low 15 15

High 15 15

In the first example, the change in response for a change in the level of A (the

word “change” always refers to going from the low level to the high level) is þ3,

independent of the value of B. Similarly, the change in response for a change in the

level of B is þ2, independent of the level of A. The interaction is calculated to be

zero, and logically so, since the change in the response associated with the change

in level of each factor is a constant, regardless of the level of the other factor.

We can represent these results graphically, as shown in Fig. 9.1.

Fig. 9.1 Example 1: zero

interaction
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Such is not the case for the interaction in the next two examples. In example 2, a

change in the response of þ5 results from a change in the level of A when the level

of B is low, but no change in the response results from changing the level of A when

B is at its high level. Thus, the main effect of A (that is, the average change) isþ2.5.

Similarly, a change of þ5 in the response is associated with a change in the level of

B when the level of A is low, but no change in the response results from changing

the level of B when the level of A is high, and again the main effect (of B) is þ2.5.

However, here we have substantial interaction. AB is estimated to be

(10� 15� 15þ 15)/2¼ � 2.5. After all, the change in the response associated

with changing the level of A decreases as we go from low B to high B (from þ5

to 0). Another way to possibly intuit this value is to suppose that someone had tested

the effects of the two factors separately, by starting in the upper left corner (the

“low, low” cell), and changing the level of each factor. They might have concluded

that the response could be increased by 5 by changing the level of A to high, and

another 5 by changing the level of B to high (and might have spent substantial

capital to implement the high levels), only to be disappointed that the total increase
is not 10 but only 5. Figure 9.2 gives a view of the interaction effect in example 2.

In example 3, starting in the upper left corner and changing the level of either A

or B separately gives a change in the response of þ3, but simultaneous change of

both (that is, changing the level of both factors) gives a net result of no change!

More careful inspection leads to some interesting observations. When B is low,
changing the level of A gives a change in the response of þ3; however, when B is

high, changing the level of A gives a change in the response of �3; on the average,

changing the level of A doesn’t change the response at all! This reminds us of the

guy who had his head in the refrigerator and his feet in the stove, and, on the

average, he felt fine. The main effects of A and B are both zero. All the “action” is

in the interaction! Indeed, AB¼�3; as we go from low B to high B, the main effect

of A goes from þ3 to �3, decreasing by 6; dividing this by 2 (so it retains the same

scale as main effects), the result is �3. This example is graphically represented in

Fig. 9.3.

Fig. 9.2 Example 2:

interaction
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In the fourth example, the response doesn’t change as the levels of A and B vary.

Apparently, the process is not influenced by these factors, directly or through

interaction. The purpose of this example 4 is to emphasize that effects are measur-

ing incremental changes; effects of zero do not mean the responses are zero! The

graphical representation would be simply two coincident horizontal lines at

response ¼ 15.

We summarize the results of the analysis of these examples below:

Example A B AB

1 3 2 0
2 2.5 2.5 �2.5
3 0 0 �3
4 0 0 0

A final note relates to the scaling of the numerical quantities. Suppose a constant

was added to each response, for example, as a result of weighing each of several

products, packaging and all, that have the same packaging weight. The packaging

weight would be netted out in the calculation of the effects. Now suppose instead

that all responses were multiplied by some constant, as would happen in a change in

scale from kilograms to pounds. The change in units would carry through the

calculation of the effects, yielding equivalent results (for example, an effect is

5 kg or 11 lb). In mathematical terms, the analysis is tolerant of linear trans-

formations. What matters are not the numerical values of the effects themselves

but rather their relative magnitudes.

9.5 Modern Notation and Yates’ Order

We can, with no loss of generality, rename or “relabel” our responses; the modern

notation, used in virtually all textbooks, is as follows:

Fig. 9.3 Example 3:

interaction
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Former notation Modern notation

a0b0 1
a0b1 b
a1b0 a
a1b1 ab

We are not giving these responses new values. That is, the quantity represented by

a0b0 did not just get set equal to 1. It merely got renamed. This notation is more

compact and makes it a lot easier to extend our analysis. The explicit inclusion of

the letter in modern notation indicates that the factor is at its high level; thus,

a represents A high and (because of the absence of the b) B low. Then, b represents
B at high level and A at low level; ab represents both factors at high level. When all

factors are at low level, we have no letters. Yet, some symbol is required to indicate

that situation. The symbol 1 was adopted as a matter of convention; it could have

been $, the symbol for the “empty set” (here, the lack of any letters), or any other

symbol.

Actually, the choice of 1 was inspired by its making easier some algebraic steps

explained in a later chapter. From the mathematical point of view, it’s interesting to
think of the subscripts in the former notation as exponents, so that a0b1 is thought of
as a0b1 ¼ b. Anything to the power of 0 equals 1 and anything to the power of 1 is

the quantity itself. As other examples, a1b1 would be a
1b1 ¼ ab, and a0b0 would be

a0b0 ¼ 1. (It might also be observed that these exponents [or subscripts] are

counting in binary from 0 to 3; i.e., 00 ¼ 0, 01 ¼ 1, 10 ¼ 2, and 11 ¼ 3.)

We also introduce Yates’ (standard) order of listing treatments and responses in

two-level experimentation. Each letter is followed by all combinations of that letter

and letters previously introduced, before any additional letter is introduced; and

new letters are introduced in alphabetical order. This is the order preferred for

analysis (we discuss later in this chapter why this is true) and need not be related to

the actual order in which the treatment combinations are performed (which should

be randomly chosen).

For a two-level, two-factor design, Yates’ order is

1 a b ab

Note that we start with the 1. Then a is introduced. Next, a appears in combination

with all previous letters (but there are none because a is the first letter of the

alphabet). Then b is added. Next, b is listed in combination with all other previously

introduced letters (of which there is only one, a). Using the modern notation and

Yates’ order, the estimates of the effects are as follows:

A¼ �1þ a� bþ abð Þ=2
B¼ �1� aþ bþ abð Þ=2

AB¼ 1� a� bþ abð Þ=2

The results are, of course, exactly as before.
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9.6 Three Factors, Each at Two Levels

To examine how a third factor is studied, let’s return to the direct-mail example and

extend it.

Example 9.4 Direct-Mail Study with a Third Factor

As before, we are trying to sell a product by mail (say, a new book on gardening)

and the yield or response variable is the rate of response to the offer. The factors

under study are the postage on the envelope, the price of the product being sold, and

the size of the envelope. Here are the specifics of the factors and their levels:

Factor Low High

A: Postage Third-class First-class
B: Product price $9.95 $12.95
C: Envelope size #10 9�12

The former style of notation (in numerical order of subscripts) and the

corresponding modern notation are

Former: a0b0c0 a0b0c1 a0b1c0 a0b1c1 a1b0c0 a1b0c1 a1b1c0 a1b1c1

Modern: 1 c b bc a ac ab abc

Note, in the Former notation (above), the subscripts (or the exponents, from the

earlier discussion) correspond to counting from 0 to 7 in binary. This suggests a

possibly-quicker way to write (or check) the terms in proper order; assign the

subscripts (exponents) by counting in binary.

A reordering of the Modern row above, in Yates’ standard order, is

Yates’ order : 1 a b ab c ac bc abc

Observe, again, that the notation shows the letter only when it corresponds to a

factor at high level.

Note that in Yates’ order, after c is introduced, it is combined with previous

treatment combinations in the order in which those were introduced (ac before bc,
and so forth).

9.6.1 Estimating Effects in Three-Factor, Two-Level Designs

We begin with some sample calculations. We then reveal the underlying pattern

that is facilitated by Yates’ order.
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9.6.1.1 Estimate of A

1. a – 1 ¼ estimate of A, with B low and C low

2. ab – b ¼ estimate of A, with B high and C low

3. ac – c ¼ estimate of A, with B low and C high

4. abc – bc ¼ estimate of A, with B high and C high

Sum �4 ¼ overall estimate of A

Thus,

Estimate of A¼ ðaþ abþ acþ abc� 1� b� c� bcÞ=4
¼ ð�1þ a� bþ ab� cþ ac� bcþ abcÞ=4 in Yates’ order

Notice that all terms with A high have plus signs, and all with A low have minus

signs. The estimate of A is determined by averaging over the four combinations of B

and C. The estimates of B and C are determined similarly.

9.6.1.2 Estimate of AB

Effect of A with B high, minus effect of A with B low, all with C high,
plus
Effect of A with B high, minus effect of A with B low, all with C low

Note that this interaction is an average (as are all interactions). Just as our estimate

of A is an average of response to A over all B and all C, so our estimate of AB is an

average of response to AB over all C.
Referring to the four numbered terms in the estimate of A above,

AB ¼ f½ð4Þ � ð3Þ� þ ½ð2Þ � ð1Þ�g=4
¼ ð1� a� bþ abþ c� ac� bcþ abcÞ=4 in Yates’ order

9.6.1.3 Estimate of ABC

The effect of ABC is a “three-way” or “three-factor” interaction. Basically, it

represents a three-way joint effect; one interpretation of ABC is, for example,

how the level of factor C affects the AB interaction. ABC is discussed further,

after we present its estimate (based on the interpretation of the previous sentence):

Effect of A with B high, minus effect of A with B low, all with C high,
minus
Effect of A with B high, minus effect of A with B low, all with C low

Again, referring to the numbers assigned in the estimate of A calculation above,
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ABC¼ f½ð4Þ � ð3Þ� � ½ð2Þ � ð1Þ�g=4
¼ ð�1þ aþ b� abþ c� ac� bcþ abcÞ=4 in Yates’ order

This is our first encounter with a three-factor interaction. Extending our previous

discussion of two-factor interactions: although the numerical value of the estimate

is unique, there are different possible interpretations, all of which are technically

correct, but one of which is likely more intuitive for the context. For a three-factor

interaction, we have three ways of “interpreting” the numerical result. In the direct-

mail example, it measures the impact on the response rate of interaction AB when

factor C (envelope size) goes from #10 to 9 � 12; or it measures the impact on the

response rate of interaction AC when factor B (price) goes from $9.95 to $12.95; or,

finally, it measures the impact on the response rate of interaction BC when factor A

(postage) goes from third class to first class. (We’ll not try to extend here the earlier
example with Natalie Portman and Ryan Gosling.) As mentioned before, the

derivation of the signs of the treatment combinations in the above equation are

based on the first of these interpretations: the impact of the level of C on the AB
interaction.

As with two-factor, two-level factorial designs, the formation of estimates in

three-factor, two-level factorial designs can be summarized in a table of signs like

that in Table 9.2. Note that both columns and rows follow Yates’ order. The array is
not square – there are seven columns, one for each of the seven effects, and there are

eight rows, one for each of the eight treatments. Notice the pattern of the signs.

Column A alternates signs; column B alternates two at a time; column C alternates

four at a time. (Were there a column D, as would be present in a four-factor design,
its signs would alternate eight at a time.) Next, observe that the signs for the

interactions are products of the signs for the factors interacting. For example, the

signs in column AB are, respectively, the product of the sign in column A and the

sign in column B; the signs in column ABC are, respectively, the product of the sign

in column A, the sign in column B, and the sign in column C. Finally, all columns

are mutually orthogonal (that is, the dot product of every two columns is zero, using

�1 and þ1 as the column entries).

Table 9.2 Signs for effects of three factors at two levels each

A B AB C AC BC ABC

1 � � + � + + �
a + � � � � + +
b � + � � + � +
ab + + + � � � �
c � � + + � � +
ac + � � + + � �
bc � + � + � + �
abc + + + + + + +
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Example 9.5 Response Rate in Direct-Mail Study

We continue with our earlier example. Suppose the response rates were as follows

(for each treatment combination, the proportion of people who responded):

1 a b ab c ac bc abc

.062 .074 .010 .020 .057 .082 .024 .027

Using the table of signs (Table 9.2) and dividing by 4, we calculate the effects as

follows:

A ¼ main effect of postage ¼ .0125

B ¼ main effect of price ¼ –.0485

AB ¼ interaction effect of postage and price ¼ –.0060

C ¼ main effect of envelope size ¼ .0060

AC ¼ interaction effect of postage and envelope size ¼ .0015

BC ¼ interaction effect of price and envelope size ¼ .0045

ABC ¼ interaction effect of postage, price, and envelope size ¼ �.0050

Note that the largest response rate was generated at (treatment) ac, while (effect)
AC is the smallest effect (in absolute value). This highlights that the lowercase

letters (treatments) and the capital italicized letters (effects) represent very different

quantities, so it’s important to remember which is which. Note also that it is yet to

be determined if any of these effects are actually statistically significant (that is,

nonzero beyond a reasonable doubt, as opposed to simply an aberration due to the

random variation of uncontrolled factors).3 We return to this in a later chapter.

The largest (magnitude) estimate is �.0485, for the main effect B. (Remember:

when we speak of the size of an effect, we mean its magnitude, independent of

sign.) An increase in price from $9.95 to $12.95 is, not surprisingly, associated with

a decline in response rate (although this is only one consideration in determining

price; the direct-mailer also has to consider the profit margin and other issues). The

interaction AB ¼ �.006; an increase in price (factor B) reduces the effect of A

(which, on average, equals .0125) on response rate. Or, equivalently, AB may be

viewed this way: a change in postage (factor A) from third to first class reduces

(makes more negative) the already negative effect of price (�.0485) on response

rate. Do not assume that a change in response rate of “only” .006, or even less, is not

important from a practical point of view; in many direct-mail campaigns the mailer

3Because the dependent variable is a proportion, the normality assumption traditionally made

when performing and interpreting an ANOVA may not be strictly true. However, this is not the

primary issue here, and the robustness of the normality assumption is likely to keep this consid-

eration from having a material effect on the results of an ANOVA. If necessary, we can come

closer to normality by transforming the data using the “standard” transformation for proportion

data for this purpose,Ytransformed ¼ arcsin
ffiffiffi

Y
p

. See, for example, G. E. P. Box and D. R. Cox (1964),

“An Analysis of Transformations.” Journal of the Royal Statistical Society. Series B (Methodo-
logical), vol. 26, pp. 211–252.
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would be delighted to receive a total response rate of .006, not to mention an

increase of .006. After all, if it costs, say, $0.50 to send out a mail piece, and the

margin on a sale (perhaps including potential re-sales) is, say, $200, a mailing to a

million names, with a response rate of .006, will yield a profit of $700,000!

Finally, the interaction of all three factors is ABC¼�.0050. This may be viewed

in three ways. Going from a #10 to a 9 � 12 envelope (factor C), the negative

interaction effect between postage and price (AB) becomes even more negative. Or,

increasing price (B) reduces the positive interaction between postage and envelope

size (AC). Or, changing postage from third to first class (A) reduces the positive

interaction between price and envelope size (BC). All three descriptions of the

interaction ABC have the same numerical value, but the direct-mailer would select

the one that made the most intuitive sense in the direct-mail industry.

9.6.1.4 Using the Results

Now that we have analyzed the results of the experiment, what do we do with the

results of our analysis? (We assume for the moment that we have determined that

all our estimates of effects, both main effects and interaction effects, are statistically

significant; if they were not, we would replace them with zero.) The point of an

experiment can be merely to point the way to the next experiment, perhaps to

narrow down how many factors need to be studied so that additional levels can be

added for more detail. However, the raison d’être of the experiment is more likely

to be to directly guide the selection of the levels of the factors which optimize the

response. In our example, the yield – often called the “performance measure” in

management studies – is the response rate.

Assume for the moment that we need to limit our choices to the levels of the

factors in the experiment. For postage and envelope size, those are probably sensible

choices. For price, the choice may not be so clear; even if we insist for psychological

reasons that price end in $.95, and even if market forces would make unworkable a

price outside the range of our low ($9.95) and high ($12.95) levels, why not $10.95 or

$11.95? In theory, by having only two levels of the price factor, we cannot say

anything about what the response rates would be for the intermediate values, except

what those values would be if we assumed that the relationship were linear.4 (If we

assumed the relationship to be quadratic or higher order, wewould not have sufficient

information to determine the intermediate values. A quadratic function, for example,

has three constants, the c1, c2, and c3 of c1x
2 + c2x + c3, requiring us to have data for

three points; we have data for only two points.) Again, we shall assume that we are

limiting our choices to the levels of the factors in the experiment.

Suppose a0b0c0 (now called 1) corresponds to the previous mailing conditions,

and we change postage to first class, price to $12.95, and envelope size to 9 � 12.

Response rate changed by �.035(¼ .027�.062). If a higher response rate were the

4It would be reasonable to assume that the response as a function of price is monotonically

[i.e., continuously and consistently] decreasing.
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only consideration, we would prefer not to have this decrease; however, as men-

tioned earlier, a lower response rate with a higher price can sometimes be prefer-

able. In addition, there are differences in cost between different sizes of envelopes,

and an obvious cost difference in the choice of postage. But suppose, just for

illustration, that we wish to maximize response rate. What combination of levels

of factors would we choose? Actually, in this case, the choice is obvious. We would

examine the results from the eight treatment combinations and choose the largest.

Hence, we would choose ac, which is A-high, B-low, C-high: first-class postage,

price of $9.95, and 9 � 12 envelope; response rate would be predicted to be about

.082. Of course, we would not be naive enough to expect to get exactly .082, but we

could find, for example, a 95% confidence interval for the response rate, to obtain

limits that have a .95 probability of containing the true response rate.

In Chap. 11, when we choose to run only a fraction of the total treatment

combinations possible (reasonably enough called a fractional-factorial design),
the process of determining the optimal levels of the factors will not be quite as

simple. Because we will not have all treatment combinations available, we cannot

simply observe which has the highest (or lowest) value. At that point, we introduce

a general way to maximize or minimize the response. The ultimate result would be

equivalent to maximizing (or minimizing, in some contexts) the equation

Yield¼ response rate

¼ :0445þ ð:0125=2ÞAþ ð�:0485=2ÞBþ ð�:0060=2ÞAB
þð:0060=2ÞCþ ð:0015=2ÞACþ ð:0045=2ÞBC
�ð:0050=2ÞABC

where .0445 is the estimate of the grand mean, the mean of all eight treatment

combinations; and A, B, and C are each 1 if the factor is at high level, �1 if at low

level. For example, if all three factors are at their low level, the equation predicts a

response rate of .062.

In practice, if we were predicting the response for a treatment combination not

actually in the experiment, we would want to try out that treatment combination to

be certain that the response is close to what we predict. This is called running a

confirmation test and is discussed in Chap. 13.

9.7 Number and Kinds of Effects

In a two-factor, two-level design, each factor is studied at two levels, yielding four

treatment combinations. Three factors raise this to eight treatment combinations,

four makes it 16 treatment combinations, and so on. In general, with k factors at two
levels, there are 2k treatment combinations. For this reason, a design with each of

k factors at two levels is called a 2kdesign. We can present the number of each kind

of effect that exists, and can be studied, in an array known as Pascal’s triangle;

Table 9.3 displays these numbers for designs up to and including 27.
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In a 2k design, the number of r-factor main/interaction effects is

kCr ¼ k!= r! k � rð Þ!½ �

where kCr stands for the number of combinations of k objects taken r at a time.

Notice that the total number of effects estimated in any of these designs is always

one fewer than the number of treatment combinations:

In a 22 design, we estimate 22� 1¼ 3 effects.

In a 23 design, we estimate 23� 1¼ 7 effects, and so on.

This is to be expected because the “one fewer than the number of treatment

combinations” is a special case of the (n � 1) rule for degrees of freedom which

was introduced in Chap. 2. In essence, an unreplicated 23 design can be examined

from the perspective of degrees of freedom as an eight-column, one-factor analysis,

with the eight columns yielding seven degrees of freedom.

One need not repeat the logic for deriving the signs of the treatment combina-

tions in the estimates for 2k designs for higher values of k. Table 9.4 is a table of

signs going up to 25.

9.8 Yates’ Forward Algorithm

A systematic method of calculating the estimates of effects in 2k designs was

developed by Yates in 1937; using his algorithm requires dramatically fewer

calculations compared with calculating each effect using the sign tables. For 2k

complete factorial designs, the subject of this chapter, first arrange the responses in

Yates’ (standard) order in a column. Then, create a second column from the first

column by taking sums of adjacent elements and then differences of adjacent

elements of the first column. That is, add the first two elements (place the result

as the first element of the second column), then add the next two (place the result as
the second element of the second column), then the next two, and so on, until you

have gone through the entire first column. Then go through the first column again,

Table 9.3 Number of effects estimated

Type of effect

Type of design

22 23 24 25 26 27

Main 2 3 4 5 6 7
Two-factor interaction 1 3 6 10 15 21
Three-factor interaction – 1 4 10 20 35
Four-factor interaction – – 1 5 15 35
Five-factor interaction – – – 1 6 21
Six-factor interaction – – – – 1 7
Seven-factor interaction – – – – – 1

Total 3 7 15 31 63 127
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subtracting the first from the second, then subtracting the third from the fourth, and

so on, placing the differences in the second column. At this point you have formed

the entire second column. (We find it useful to refer to what was just done as having

“Yates’d the data once,” or in present tense, as “Yatesing the data.” No disrespect of
Yates is intended.) Repeat this process to form additional columns (that is, use the

values of the second column to determine a third column, and so forth). For a 2k

design, k columns will be calculated; that is, the data must be Yates’d k times.

Table 9.5 illustrates this for a 23 design.

Note the pattern in Table 9.5 – the elements in the top half of the columns are

formed by adding pairwise the elements from the preceding column and the

elements in the bottom half of the columns are formed by taking the differences,

again pairwise, from the elements in the preceding column. Note also that the

differences are the second minus the first, the fourth minus the third, and so on; for

adding, the order does not matter, but for subtraction it is important.

In Table 9.5, note the line-by-line correspondence between responses (lowercase

letters in the left column of the table, which are also treatment combinations) and

effects estimates (capital letters in the last column). Treatment combinations and

estimates of effects are both in Yates’ order. We made a point earlier in the chapter

that there is no direct connection between the “lowercase letters” (treatment

combinations) and the “capital letters” (effects); this is still true, but there must

be some way to link together what is estimated by what. How useful would an

algorithm be if it gave us all the estimates but never informed us which estimate is

which? We could check the 23 section within the table of signs (Table 9.4) and

observe that each entry in what is labeled “Third Column” in Table 9.5 does indeed

estimate the listed effect. Of course, whether using Yates’ algorithm or the sign

table, we must divide the estimates obtained by the adding and subtracting, in this

case by 4 (or, in general, by 2k�1).

Applying Yates’ forward algorithm to the response-rate data, we get the results

shown in Table 9.6. Again, note the line-by-line correspondence between treatment

combinations and estimates; both are in Yates’ order. Although there are only seven
effects to be determined, we have eight values in the last column of numbers. The

top value, .356, is the sum of all eight responses. Dividing this sum by 8, we have

.356/8 ¼ .0445; this is the average response rate (estimate of μ) across all eight

treatment combinations.

Table 9.5 Yates’ forward algorithm

Response First column Second column Third column Estimate

1 a þ 1 ab+ b + aþ 1 abc+ bc+ ac + c + ab+ b+ aþ 1 8μ
a ab + b abc+ bc+ ac + c abc� bc + ac� c + ab� b + a� 1 4A
b ac + c ab� b + a� 1 abc+ bc� ac� c + ab+ b� a� 1 4B
ab abc + bc abc� bc + ac� c abc� bc� ac+ c + ab� b� aþ 1 4AB
c a � 1 ab+ b� a� 1 abc+ bc+ ac + c� ab� b� a� 1 4C
ac ab � b abc+ bc� ac� c abc� bc + ac� c� ab+ b� aþ 1 4AC
bc ac � c ab� b� aþ 1 abc+ bc� ac� c� ab� b + aþ 1 4BC
abc abc � bc abc� bc� ac+ c abc� bc� ac+ c� ab+ b + a� 1 4ABC
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Although the wide availability and usage of statistical software might seem to

belie the necessity for learning Yates’ algorithm, an appreciation of the workings of

Yates’ algorithm offers insights into how one goes from the data to the results (that

is, what’s going on inside the software). Indeed, the use of Yates’ standard order and
Yates’ algorithm helps clarify some topics in Chaps. 10 and 11.

9.9 A Note on Replicated 2k Experiments

If a 2k experiment is replicated (with equal replicates for each treatment combina-

tion), the way one determines the effects is substantially the same as for

non-replicated experiments. This is true whether we determine the effects using

Yates’ algorithm, simple successive adding and subtracting as indicated by the sign

table, or doing the problem using software. In essence, using Yates’ algorithm or

the sign tables, we have two equivalent methods when replication is present. One

method is to compute the cell mean for each treatment combination and then to

proceed as if each cell mean was the single data value of the cell. The other method

is to compute the effects separately for each replicate and then take the average of

each effect over the replicates, to arrive at the “final” estimate of each effect. The

methods will produce the exact same results. When using software, the data for all

replicates are simply included as part of the input data.

Although the fact that the data are replicated does not change the effects, it does

impact the F-test as to whether the effect in question can reasonably be said to be

nonzero. We will see the impact of replication on the F-test in Chap. 11.

Example 9.6 Direct-Mail Study using JMP

The statistical software JMP is more oriented toward two-level experimentation

than SPSS is. Using JMP to design and analyze the direct-mail study, begin by

selecting the DOE command from the main menu. Next, choose Classical >
Screening Design (or Full Factorial Design); this causes the window titled

Table 9.6 Yates’ forward algorithm for direct-mail study

Treatment Yield First column Second column Third column Estimate

1 .062 .136 .166 .356 8μ
a .074 .030 .190 .050 4A
b .010 .139 .022 �.194 4B
ab .020 .051 .028 �.024 4AB
c .057 .012 �.106 .024 4C
ac .082 .010 �.088 .006 4AC
bc .024 .025 �.002 .018 4BC
abc .027 .003 �.122 �.020 4ABC
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DOE – Screening Design to appear. Define the Response (Response rate) and the

Factors (Postage, Price, and Size), then click on Continue. If the names of the

independent and dependent variables are not provided, JMP will assign then to X’s
and Y’s, respectively. Next, select Choose from a list of fractional factorial

designs. Four design choices are available; we want 8, Full Factorial, >6 – Full

Resolution. Highlight this selection and then click on Continue and Make Table.

The user can also define the number of replicates and the run order before gener-

ating the design table. The design template in Table 9.7, minus experimental

results, appears (column headings will automatically appear if the factor labels

were defined, otherwise this will have to be done manually). In a real experimental-

design situation, we would use this as our starting point for running the experiment

to obtain the data for subsequent analysis. Having already worked through this

example, we have the data to enter in the last column, as shown in Table 9.7.

To analyze the experimental results, we click on Analyze > Fit Model. Most of

the information is already filled for us (if not, we should do it manually): Y is

assigned as the dependent variable, and the main effects of Postage, Price, and Size

(and their two-way interactions) are included in the model. Next, we highlight any

of the two-way interactions from the model panel (for example, Postage*Price) and

the third variable not included in this interaction from the Select Columns panel

(in our example, Size) and use Cross to indicate this as a desired three-way

interaction effect. This procedure tells the software which effects to include in the

model and which interactions are assumed to be zero (these will be put into the error

term) – in this example, we want all main effects (Postage, Price, and Size),

two-way interactions (Postage*Price, Postage*Size, and Price*Size) and three-

way interaction (Postage*Price*Size) in the model. Finally, we then click on Run
to get our output, which appears in Fig. 9.4.

In Fig. 9.4, note that the effects (such as Postage¼ .00625) are half of the values

obtained earlier (Main effect of postage¼ .0125). This is because JMP provides the

change in Y per unit change in the factor level, whereas the traditional approach

provides the change in Y per two-unit change in the factor level (from �1 to 1).

Note also that a dot appears in many places (in some versions, it is a question mark).

This is because no error estimate is available, so all ratios requiring such a value

cannot be determined.

Table 9.7 JMP template for direct-mail study

Pattern Postage Price Size Response rate

1 ��� �1 �1 �1 0.062
2 ��+ �1 �1 1 0.057
3 �+� �1 1 �1 0.010
4 �++ �1 1 1 0.024
5 +�� 1 �1 �1 0.074
6 +�+ 1 �1 1 0.082
7 ++� 1 1 �1 0.020
8 +++ 1 1 1 0.027
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9.10 Main Effects in the Face of Large Interactions

One must be cautious in interpreting a main effect when an interaction involving

that factor is large. Consider the 22 study design in Example 6.5, which we explore

further in Example 9.7.

Example 9.7 Cigarette Brand Names and Gender

We encountered a large interaction effect in the cigarette-marketing study in which

one factor was the sex of the person rating a proposed new cigarette (Male, Female)

and the other factor was the proposed brand name of the cigarette (Frontiersman,

April). Recall that Frontiersman was viewed as a masculine name and April as a

feminine name. There were 50 data values (that is, people) for each treatment

combination, though only the means are relevant to make our point here. The

treatment combinations and means appear in the following table. Each person

was told the proposed brand name of the cigarette, smoked it, and rated the cigarette

on a variety of attributes, though only the overall “purchase intent” values are

reported (rated on a scale from 1 to 7, higher being more likely to purchase).

Brand name (B)

Sex (S) Frontiersman (low) April (high)

Male (low) 4.44 3.50
Female (high) 2.04 4.52

Fig. 9.4 JMP output for

direct-mail study
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The estimates of the effects are

S ¼ �:69 B ¼ þ:77 and SB ¼ þ1:71

Remember that interactions, like main effects, are averages. Furthermore, in this

example, the interaction is an average of widely-disparate numbers:

Effect of B at high S ¼ sb� s¼ 4.52� 2.04¼ þ 2.48

Effect of B at low S ¼ b� 1¼ 3.50� 4.44¼ � . 94

B¼ 2:48þ �:94ð Þ½ �=2 ¼ þ1:54=2 ¼ þ:77

SB¼ 2:48� �:94ð Þ½ �=2 ¼ þ3:42=2 ¼ þ1:71

Although the average effect of B is þ.77 (that is, averaging over both sexes, the

cigarette is rated more highly when the purported brand name is April than when it

is Frontiersman), that knowledge is not nearly as helpful as knowing that the effect

of B at high S is þ2.48 whereas at low S it’s �.94. In other words, for females the

cigarette is rated a lot more highly when the brand name is April than when it is

Frontiersman, and for males the cigarette is rated somewhat more highly when the

brand name is Frontiersman than when it is April.

(In terms of the movie example, it might be more insightful to say that males

have a strong preference for Natalie Portman over Ryan Gosling, and females have

a strong preference for Ryan Gosling over Natalie Portman, rather than to observe

that, averaging over the sexes, Natalie and Ryan are about equally popular.)

Thus, in the face of large interactions, it seems more useful to specialize the main

effect of each factor to particular values of the other factors. Of course, in doing so,

we have two (instead of four) treatment combinations contributing to each special-

ized estimate of S at specific levels of B and of B at particular levels of S.

In general, we accept high interactions where we find them, and seek to explain

them. In the process of explaining them, we may find it beneficial to replace main

effects by more meaningful specialized effects (and, possibly, lower-order interac-

tions by more specialized higher-order interactions).

9.11 Levels of Factors

Sometimes, in an experiment a factor may have only two (or some other specific

number of) levels at which it is practical to test. In other cases, especially when the

factor is measured along a continuum, one must choose the particular levels (say,

two) at which to set the factor for purposes of the experiment. Does it matter which

levels are chosen? Let’s attempt to answer this question by considering an example.

Suppose that the response (suppleness of leather) as a function of pressure (P, at two

levels, p1 and p2) and temperature (T, at two of the four levels t1, t2, t3, and t4)
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follows the curves in Fig. 9.5. The response is graphed as a function of T at each

level of P. First, consider the effect P at various levels of T:

Temperature level P effect ( p2 � p1)

t1 22� 30¼ � 8
t2 29� 58¼ � 29
t3 47� 20¼ þ 27
t4 18� 15¼ þ 3

Then, at (t1, t2):

P ¼ �8� 29ð Þ=2 ¼ �18:5
T ¼ 29� 22ð Þ þ 58� 30ð Þ½ �=2 ¼ 17:5

and

PT ¼ �29� �8ð Þ½ �=2 ¼ 7� 28ð Þ=2 ¼ �10:5

At (t3, t4):

P ¼ 27þ 3ð Þ=2 ¼ 15

T ¼ 18� 47ð Þ þ 15� 20ð Þ½ �=2 ¼ �17

and

PT ¼ 3� 27½ �=2 ¼ �29� �5ð Þ½ �=2 ¼ �12

If we considered (t1, t3), (t2, t4), or (t1, t4), we would obtain yet other answers for
P, T, and PT. It is only when the conjectured responses in a diagram like Fig. 9.5 are

linear and parallel that the choice of levels is unimportant. We must acknowledge

Fig. 9.5 Suppleness of

leather as a function of

pressure and temperature
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the essentially circular nature of this observation. One needs to understand the
nature of the response curves to set up the experiment (that is, to choose the levels
of the factors to implement in the experiment) – for an experiment designed to
reveal that nature! This kind of circularity characterizes all experimental science.

We need not, however, throw up our hands in despair. There are two approaches

to resolving this dilemma. The first is to use the knowledge of people who are

experts in the process under study, frequently our client. Typically, experts in the

process or product to be optimized are not experts in statistics or experimental

design; that’s why we, the experimental-design consultants, are involved. However,

the relationship can and should be nicely symbiotic. The second approach is to do a

series of experiments. Usually, we begin by getting the best starting point we can,

often through careful, probing questions. Then we do a few simple experiments, in

sequence, often with each factor at two levels, to get a sense of how to change the

levels of the factors to levels that perform better. We continue to run sequences of

experiments until we are confident that we are in the neighborhood of the best

choices of levels. Finally, we run a more detailed (that is, larger) experiment to

home in on the best levels. We revisit this concept in Chap. 16 on response-surface

methodology.

9.12 Factorial Designs Versus Designs Varying Factors
One-at-a-Time

We have spent many pages discussing the logic of two-level factorial designs, for

two good reasons. One is that factorial designs (whether two levels or more) are

very efficient, as we mentioned earlier. In this section, we make more explicit the

second reason, the enormous advantages that the factorial design has over the other

type of design frequently used: designs in which factors are varied one at a time.

These are designs that vary the first factor while holding all others constant (thus

measuring the impact of the first factor on the response), then varying the second

factor while holding all other factors, including the first factor, constant (thus

measuring the impact of the second factor), and so on, studying each factor

individually. This seems, superficially (to the uninitiated), to be a safe way to

experiment, but it is very inefficient and (as we have pointed out before) the safety

is an illusion.

Let us consider a study inquiring whether future profitability of a company is

related to (that is, can be predicted from) two factors that are characteristics of a

company’s annual report: principal time frame discussed in the company presi-

dent’s message and principal presentation mode of this message. (A study of the

impact of these factors, among others, was actually conducted.) We study both

factors at two levels:

9.12 Factorial Designs Versus Designs Varying Factors One-at-a-Time 321



Factor Low level High level

Time frame Past year Future
Mode Numerical Non-numerical

First, consider a design for studying the impact of the factors on profitability by

varying one factor at a time. Hold “Time Frame” constant at “past year” and

examine four (randomly-chosen) companies at each level of “Mode of presenta-

tion.” Then, hold “Mode” constant at “numerical” and add four different, randomly-

chosen companies with “Time Frame” at the level “future.” (We take four obser-

vations at each condition tested in order to facilitate comparison with the factorial

design – in both cases, effects are based on eight data points, as we shall see.) Thus,

we have the following data points, as represented by the dots:

Time frame
Mode Past year Future

Numerical •••• ••••
Non-numerical ••••

Now, consider a replicated 22 factorial design. We have two data points at each

of the four treatment combinations, one of which is both factors at high level (that

is, future, non-numerical), not included in the previous study. The data points are as

follows:

Time frame
Mode Past year Future

Numerical •• ••
Non-numerical •• ••

In a comparison of designs, we can note the following:

1. In spite of having (and paying for!) 12 data values in the one-at-a-time design

and only eight in the factorial design, the one-at-a-time design has the same

number of data points contributing to the estimate of the main effects as does

the factorial design – eight. (In the one-at-a-time design, only the eight “ver-

tical” data points can contribute to estimating the impact of “Mode”; only the

eight “horizontal” data points can contribute to estimating the impact of “Time

Frame.”) Thus, the estimate of each main effect has the same amount of

supporting data (and, in essence, the same reliability) in both designs.

(Section 9.14 examines more closely the direct linkage between the reliability

of an estimate – its variance [σ2] – and how many data points support the

estimate.)

2. Interactions, routinely estimable in the factorial design, cannot be estimated in

the one-at-a-time design; this is a serious defect. Even if we were to say that
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there may not be interaction, there is no decline in the merit of the factorial

design – see item 1 above. Indeed, in the one-at-a-time design, there would be

no way to determine that there is no interaction.

3. In the factorial design, each main effect is estimated over both levels of the

other factor, not at one level as in the case of the one-factor-at-a-time design;

this increased generality is usually, though not always, attractive. If interaction

is high, we may want to determine the effect of each factor at each level of the

other factor. The one-factor-at-a-time design provides more of this information

for two situations (the “Mode” effect at the “Time Frame” level “past year,”

and the “Time Frame” effect at the “Mode” level “numerical”) than does the

factorial design (eight data points of support, instead of four). However, as

noted earlier, in an instance of high interaction, the one-factor-at-a-time design

will not reveal the magnitude of the interaction in the first place.

4. An estimate of the effect of factors other than the two factors studied is possible

using both designs. The differences in the response at a given treatment

combination cannot be due to “Mode”, “Time Frame”, or their interaction,

since “Mode” and “Time Frame” were fixed throughout each set of replicates.

These differences must be due to the random variation of other, uncontrolled,

factors. However, given our standard assumptions about variability, the

one-factor-at-a-time design will contribute nine degrees of freedom to estimat-

ing the impact of these other factors (what we have been calling “error”),

whereas the above replicated factorial design will contribute only four degrees

of freedom to estimating this impact. As we have noted, more degrees of

freedom for an error term has several previously-mentioned benefits.

5. One-factor-at-a-time designs are less vulnerable to missing yields.

In summary, the general judgment, particularly in recent years, and certainly in the

opinion of the authors, is that factorial designs are definitely superior to one-factor-

at-a-time experimentation.

Example 9.8 Factorial versus One-Factor-at-a-Time Designs

We end this section by considering an example of a 25 design – say a chemical

reaction with five reagents or conditions (temperature, time, etc.) at two levels each.

Using five factors demonstrates more dramatically the advantage of a factorial

design over a one-factor-at-a-time design. In a 25 factorial design, we have 32 treat-

ment combinations and, without replication, 32 data values. Each data value

contributes to the estimate of each effect. Thus, each effect has a reliability

corresponding to 32 data values. To achieve the same reliability doing one-factor-

at-a-time experimentation, we would need 96 data values!
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Consider the following six treatment combinations:

1. A-low B-low C-low D-low E-low

2. A-high B-low C-low D-low E-low

3. A-low B-high C-low D-low E-low

4. A-low B-low C-high D-low E-low

5. A-low B-low C-low D-high E-low

6. A-low B-low C-low D-low E-high

In a one-factor-at-a-time design, we would estimate A by comparing treatment

combinations 1 and 2 (that is, subtracting the response at treatment combination

1 from the response at treatment combination 2); the responses of the other four

treatment combinations would shed no light on A. To achieve the “reliability” of

32 data points of the factorial design, we would need 16 replicates of each of the

two treatment combinations. Similarly, we would compare the responses of treat-

ment combinations 3 and 1 to estimate B, 4 and 1 for C, 5 and 1D, and 6 and 1 for E.
Needing 16 of each of the six treatment combinations above would require a total of

96 data values simply to achieve the same reliability of the factorial design, which

requires only 32 data points in total. Furthermore, the one-at-a- time design won’t
inform us about the presence of interaction effects!5

9.13 Factors Not Studied

We mentioned that there may be variation among the responses due to factors other

than the main effects and interactions of the factors we are studying. This is, of

course, what in the previous chapters we called “error.” In virtually any experiment,

factors other than those studied may be influential. These other factors may be

neglected, and their impact ignored, but the cost of neglect can be high. These other

factors often have uneven impact, affecting some treatments more than others, and

thereby seriously confounding inferences about the studied factors. It is important

to deal explicitly with them; even more, it is important to measure their impact. The

primary ways of addressing these uncontrolled factors are as follows:

1. Hold them constant. Suppose that one wished to study how bakery sales were

affected by price and promotion. It is well known that bakery sales differ also

by day of the week, even though this effect may not be of prime interest to the

manager (in part because the effect is known). One option for “neutralizing the

nuisance value” of day of the week is to hold it constant. For example, vary

price and promotion from day to day, using only Mondays. However, the

downside of this approach is that generalizability may be compromised; per-

haps the results found are valid only for Mondays.

5In situations where replication is relatively inexpensive, and most of the cost of a data point is

driven by changes in setup, the cost of 32 different treatment combinations may not be less than the
cost of 16 replicates of six treatment combinations.
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2. Randomize their effects. In the bakery example above, one could randomly

assign different prices and promotional expenditures to different days; this

approach is taken quite often. At least on an a priori basis, estimates of effects

are unbiased. There is not complete agreement in the statistical community

exactly what to do if, for example, by chance all low prices were randomly

assigned to weekdays and all high prices to weekends.

3. Estimate their magnitude by replicating the experiment. If one replicates each
treatment combination enough, variation due to these uncontrolled factors

“averages out,” or “evens out,” or “balances out.” The degree to which the

variations even out depends on how much variation is present and how much

one replicates. For example, if a low price were randomly assigned to 180 days

of the year, and a high price to the other 180 days of the year, it is likely (due to

considerations of immutable [and helpful] statistical laws) that the distribution

of days using each price will not differ materially.

4. Estimate their magnitude via side or previous experiments. In theory, espe-

cially if the assumption of equal variance for each treatment combination is

tenable, one could estimate the impact of the uncontrolled factors by replicating

one treatment combination in a side experiment. We say “in theory” because it

is infrequent that one sees this approach implemented.

5. Argue (convincingly, but with integrity) that the effects of some of these
unstudied factors and/or some of their interactions with studied factors are
zero, either in advance of the experiment or in light of the responses. This is
done all the time, at least for interaction effects between unstudied factors and

the factors under study. (This would be analogous to having “covariates” in a

regression model and not including their interactions with the primary factors

as separate “independent variables.”) Input from process experts is usually

necessary here.

6. Confound certain non-studied factors. This means to design the experiment so

that the “nuisance impact” of some specific non-studied factors is “neutral-

ized.” This is the subject of the next chapter.

9.14 Errors of Estimates in 2k Designs

Assume that the probability distribution of data points has a variance, σ2. Further
assume that the σ2 value is constant for each treatment combination. Of course, if

we ran several replications of these treatment combinations, they would not all be

equal, and would form a probability distribution (which we often assume is a

normal [bell-shaped, Gaussian] distribution, though that assumption is not neces-

sary for this section). Because of this variability, which characterizes all of the

treatment combinations, our estimates (which, as we know, combine treatment

combinations by addition and subtraction, and then division by a constant) are

subject to error and have their own probability distribution and variance. This

variance (and its square root, the standard deviation) speaks directly to the reliabil-

ity of the estimate. Sometimes it is relatively small; other times it is substantial.
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Ceteris paribus, of course, smaller variance is better! The smaller the variance, the

narrower (more precise) the confidence interval is, and the smaller the Type II error

(or, equivalently, the larger the power) is for a fixed significance level.

What is the variance of an estimate? In a 2k design without replication, 2k

treatment combinations go into each estimate. The signs of the treatment combi-

nations are half “þ” and half “�”, the assignment of which depends on the effect

being estimated. So:

Any estimate ¼ ð1=2k�1Þ � ½generalized ðþ or �Þ sum of 2k treatments� ð9:1Þ

It can be proved that, in general, if K is a constant,

σ2ðKXÞ ¼ K2σ2ðXÞ

Also, for X’s that are independent (as we assume that the treatment combinations

are) and have a common variance, σ2 (which, as noted in earlier chapters, is one of

the “standard assumptions” usually made),

σ2ðX1 � X2 � � � � � XnÞ ¼ nσ2ðXÞ

Thus, we can show that

σ2ðany estimateÞ ¼ ð1=22k�2Þ ð2kσ2Þ ¼ σ2=2k�2 ð9:2Þ

Note that the larger the number of factors, k, the smaller the variance of any

estimate.

What if we have replication? That is, suppose that instead of one value at each

treatment combination, we have r replicates at each combination. Then a similar

analysis indicates that the result is the same as that in Eq. 9.2, except that the σ2

term becomes σ2/r, since the variance of the average is the variance of the

individual value, divided by the number of data points composing the average

(this “sample size” is, here, the number of replicates). Thus, we have

σ2ðany estimateÞ ¼ ð1=22k�2Þ½2kðσ2=rÞ� ¼ σ2=ðr2k�2Þ ð9:3Þ

and the larger the replication per treatment combination, the smaller the variance of

each estimate.

So, the variance of an estimate depends on k (the number of factors studied) and

r (the replications per treatment combination). It also obviously depends on the

variance, σ2. The variance can be reduced by holding some of the non-studied

factors constant; however, as mentioned before, this gain may be offset by the

reduced generality of the conclusions.
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9.15 A Comment on Testing the Effects in 2k Designs

As noted earlier, we consider the analysis of the 2k design via an F-test (or,

equivalently, a t-test) in Chap. 11. We have chosen this separate presentation

because the methodology used for testing whether effects are nonzero is a key

component of the analysis, as opposed to the design, of the experiment. The

methodology is essentially the same for the topic of this chapter and those of

Chaps. 10 and 11. Yet, the design issues of this and the subsequent two chapters,

though related, are distinct enough to warrant separate chapters. We believe that our

approach is efficient and helps point out the overall umbrella under which the

hypothesis-testing process operates in these experimental-design settings.

Example 9.9 Pricing a Supplemental Medical/Health Benefit Offer

(Revisited)

As mentioned in Chap. 1, self-reported purchase-intent scores are nearly always

overstated and need to be lowered in a nonlinear way that usually differs by product

category; here, the product category is health-care products and insurance. Most

algorithms for lowering these scores are proprietary, based on experience. Details

of this process cannot be discussed here.

Perhaps to nobody’s surprise, all main effects were significant. This finding in

itself was of little value (although had it not been true, that would be of major

interest). The real question was whether the additional demand generated by having

the lower price resulted in a higher versus lower profit. That is, the issue’s
resolution is primarily one of elasticity (along with the issue that different levels

of benefits of the auxiliary factors cost different amounts). Adding to the complex-

ity, all two-factor interactions were also significant, in the anticipated direction –

when one component (a core or an auxiliary benefit) was at a higher price, using the

higher price of another component had a larger negative effect on demand.

There were significant, but not really material, three-way interactions in the

same direction. This is a case where some differences (here, three-factor interac-

tions) observed are statistically significant, which strongly indicates that these

interactions aren’t literally zero, but they are so small relative to the two-factor

interactions and main effects that they can be ignored in the decision-making

process and viewed as having no practical significance.
The results clearly indicated that of the auxiliary benefits, the massage network

had the least diminution of demand as price went from low to high ($1 to $2 per

month), along with raising the level of benefit. The chiropractic network was next in

terms of diminution of demand (even though its going from low to high was only a

$0.50 increase per month, as opposed to a $1 difference for the other auxiliary

networks), and the dermatology network was last. The diminution of demand for
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the core benefits resulting from the $3 increase per month in going from low to high

price indicated that the low price would be the wisest choice (there was discussion

that this effect could be partly due to the consumer appeal of the promotion phrase

“for under $10 per month. . .”).
The overall analysis, taking into account all the main effects and two-factor

interactions, indicated an optimal strategy of core benefits at low price, the optional

dermatology and massage networks at high price, and the chiropractic network at

the low price. For the chiropractic network decision, the difference of only $0.50

per month between the low and high price played a key role in the result (that is,

going to the high price would gain less additional profit).

After this study, HealthMark undertook a confirmation test to inquire whether the
results would be verified (in Chap. 13, we look more deeply into the issue of

confirmation testing). The results were, indeed, verified. However, by the time the

confirmation test was completed, HealthMark had decided to add another auxiliary

benefit, and was so pleased with the experimental design/marketing research process

that it decided to undertake a next (two-level factorial) experiment, now with five

factors (the pricing of the core benefits and of the four auxiliary benefits). This next

experiment, and some additional issues that arose with it, are discussed in Chap. 10.

Exercises

1. In Example 9.7, involving the brand name of the cigarette and the sex of the

person rating the cigarette, the treatment combinations can be assigned letters

a–d as follows:

Brand name (B)

Sex (S) Frontiersman April

Male a b
Female c d

The responses presented in Example 9.7 were the purchase intent averages

per treatment combination. Participants also rated several other dependent

variables, all on a seven-point scale. Among these were (1) the richness (versus
blandness) of the flavor, (2) the strength (versus weakness) of the taste, and

(3) the “masculinity” (versus “femininity”) of the cigarette. Using the treatment

combinations above, the results for the three other dependent variables (that is,

cell means) were as shown in Table 9EX.1.

Table 9EX.1 Cigarette ratings

Variable a b c d

Richness 4.42 3.84 3.30 4.26

Strength 4.40 4.60 6.06 4.32

Masculinity 3.94 1.60 4.68 0.88
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For each of the three additional dependent variables, find the sex effect, the

brand name effect, and the sex/brand name interaction effect.

2. In Exercise 1, which dependent variable has the largest sex effect? Does this

make sense? Explain.

3. In Exercise 1, which dependent variable has the largest interaction effect? Does

this make sense? Explain.

4. In an experiment conducted by Laurence Baker at the University of Indiana as

part of his doctoral dissertation, a large number of (randomly chosen) people

were called on the telephone and were requested to give help, as described

below. The response was the proportion of persons who agreed to help.

The experiment was conducted as follows: a male made a phone call to a

person in the general Bloomington, Indiana, region and said that his name was

Larry Baker and that he was trying to call a taxi to visit a certain location but

had apparently misdialed, using up his last coins. Could the person who

answered the phone please call the location and inform the person there that

Larry was stranded at a specified street corner? The three factors under study

and their levels (L ¼ low, H ¼ high) were:

A: Sex of person called Male (L)
Female (H)

B: Location to be visited (a matter

of sordid/respectable)

Clara’s rooming house (L)
Well-known hotel (H)

C: Whether the caller seeking

help said he was blind

No (L)
Yes (H)

The results were:

1 a b ab c ac bc abc
.64 .45 .72 .65 .59 .55 .73 .78

Use Yates’ algorithm to determine the effects of the three factors and all

interaction effects. (Incidentally, Larry Baker is blind.)

5. In an analysis of return on investment (ROI) of certain investment options,

researchers studied three factors:

A: Type of option Put (L) Call (H)

B: Length of option 60 days (L) 6 months (H)

C: Market trend during which option

was purchased

Bull (L) Bear (H)

The bull market period studied was March to August 1968; the bear market

period studied was April to September 1966. (A neutral market period was also
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studied, but results for this period are not included here.6) The responses

recorded were the yearly percent returns. The results were:

1 a b ab c ac bc abc
�363 1,056 �85 194 410 81 321 �144

Find the effect of each factor and their interactions.

6. In Exercise 5, the statistical analysis of the data indicated that the main effects,

A and C, were not “significant.” Can you devise a way to determine what the

responses would be if the A and C effects were zero while the other effects stay

the same as they are based on the above yields? Hint: what you need is a

“reverse” Yates’ algorithm.

7. For a 24 design, with four factors, A, B, C, and D, suppose that we have the

following data in Yates’ standard order:

7.2 6.1 7.5 5.9 6.9 5.8 7.6 6.2 7.0 6.0 8.0 5.5

7.0 5.5 8.0 5.3

Use Yates’ algorithm to find all the main effects and interaction effects.

8. Consider a 23 design with no replication. Give an example of values for the

eight treatment combinations so that all two-factor interactions equal zero, but

the three-way interaction is (strictly) positive:

1 ¼_________ a ¼_________ b ¼_________ ab ¼_________

c ¼_________ ac ¼_________ bc ¼_________ abc ¼_________

After accomplishing your goal, consider the issue of more versus less

efficient ways of achieving this goal.

9. Whether a person redeems a coupon or not is suspected to be, in part, affected

by four factors: Face Value, Product, Customer Willingness To Use (CWTU),

and Ease of Use. Suppose that the 24 factorial design in Table 9EX.9 is run to

test this suspicion. The numbers in the table cells represent the number of

coupons redeemed out of 1,000 coupons. Find the effects and interpret them.

Table 9EX.9 Coupons redeemed: four-factor design

CWTU Ease of use

Low value and High value and

Food product Paper product Food product Paper product

Low Low 4 2 8 6
Low High 4 4 8 8
High Low 4 5 9 9
High High 7 6 8 8

6For more information, see C. A. Hawkins and R. J. Halonen (1973), “Profitability in Buying Puts

and Calls.” Decision Sciences, vol. 4, pp. 109–118.
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10. In Exercise 7, what is the variance of an effect, as a function of the (unknown) σ2?
11. We now revisit a problem first encountered in the exercises of Chap. 2, in

which a series of one-factor-analyses were called for. Now we have the

ammunition to consider the same problem in a more sophisticated way, as a

factorial design. We repeat the exercise’s statement:

One of the authors recently taught two sections of the same course, called

Quantitative Methods, in the same semester. This course was a core MBA

course covering the basics of introductory statistics, ranging from probability,

through discrete and continuous distributions, confidence intervals, hypothesis

testing, and extensive model-building techniques, including multiple regres-

sion and stepwise regression. One class was taught on Tuesday evenings, the

other Wednesday evenings (each class of three hours was held once per week

for 14 weeks, plus a final-exam week).

The distribution (in alphabetical order) of the final numerical grades (prior

to translating them into letter grades) was tabulated by evening, status (part-

time/full-time), and gender. The results for the 55 students are in Table 9EX.11.

Note that the data, not having come from a designed experiment, do not have

equal frequencies in the eight cells that the treatment combinations would form.

It isn’t viable to force the same frequency, and even if it were possible and

desirable, students sometimes drop a course during the semester. Of course, the

analysis can still be done. We assume the use of a software package, which

eliminates the arithmetic burden resulting from the uneven cell sizes.

Analyze as a 23 factorial design, with replication, to find all effects. On the

basis of either the software output or your intuition after examining the

magnitudes of the effects (we haven’t formally covered the F-test in

two-level factorial design, but we have shown some output of said tests),

which effects appear to be statistically significant (α ¼ .05)?

12. Now consider a subset of the data of Exercise 11. These data represent the first

two students on the list having each of the eight treatment combinations of the

three factor levels; it is viewed as a random sample of the data values in each

cell. These data, shown in Table 9EX.12, represent the students numbered 1, 2,

4, 6, 7, 11, 12, 14, 16, 17, 18, 19, 25, 29, 42, 50.

The experimental data now represent a balanced three-factor, two-level

design with two replicates per treatment combination. Find all the effects.

Which are, or appear to be, statistically significant (α ¼ .05)?
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13. How do the results from Exercise 11 compare with those of Exercise 12?

14. We now extend the data from Exercise 11 to include the individual components

of the students’ grades. The components were two term papers (P1 and P2),

graded for a data analysis and write-up of the results, two quizzes (Q1 and Q2)

during the semester, homework assignments (HW) that were required to be

handed in each week, class participation (CP), and the final exam (F). The first

four columns of the data in Table 9EX.14 are the same as the data of

Exercise 11.

Table 9EX.12 Two-replicated sample of grade study

Evening Status Gender Grade

Tuesday Part-time Male 61.39
Tuesday Part-time Male 81.47
Tuesday Full-time Female 70.30
Tuesday Part-time Female 63.70
Tuesday Part-time Female 51.94
Tuesday Full-time Male 64.30
Tuesday Full-time Male 58.88
Tuesday Full-time Female 74.40
Wednesday Full-time Female 61.80
Wednesday Part-time Male 62.08
Wednesday Part-time Male 83.80
Wednesday Full-time Female 76.10
Wednesday Part-time Female 53.08
Wednesday Part-time Female 61.72
Wednesday Full-time Male 86.30
Wednesday Full-time Male 83.30

Table 9EX.14 Course grades and components

Student Day Status Sex P1 Q1 P2 Q2 HW CP F Grade

1 Tues Part M 8.0 30 7.0 15 8.9 3 40 61.39
2 Tues Part M 8.5 25 9.0 25 8.7 9 71 81.47
3 Tues Part M 9.0 25 8.0 20 8.9 1 54 65.59
4 Tues Full F 10.0 20 9.0 15 10.0 10 46 70.30
5 Tues Part M 8.5 25 10.0 29 10.0 5 84 85.20

6 Tues Part F 9.0 19 8.0 19 10.0 0 59 63.70
7 Tues Part F 9.0 16 7.0 16 6.4 3 35 51.94
8 Tues Part M 7.5 24 9.5 20 8.4 9 41 68.74
9 Tues Part F 9.0 28 7.0 23 9.8 3 50 69.28
10 Tues Full M 8.5 28 10.0 17 10.0 3 43 66.90

11 Tues Full M 8.5 24 10.0 13 10.0 5 41 64.30
12 Tues Full M 8.5 22 9.0 20 9.8 1 32 58.88
13 Tues Part M 9.0 27 9.0 26 8.9 9 79 86.09
14 Tues Full F 9.0 27 8.0 25 10.0 1 68 74.40
15 Tues Part F 8.0 15 7.0 22 10.0 3 34 56.70

16 Wed Full F 9.5 30 10.0 12 10.0 2 31 61.80
17 Wed Part M 9.0 29 9.0 14 8.2 3 38 62.08
18 Wed Part M 10.0 26 10.0 25 10.0 10 61 83.80
19 Wed Full F 9.5 23 10.0 21 10.0 9 52 76.10
20 Wed Part M 8.0 26 8.0 19 9.1 1 40 60.59

(continued)
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Repeating Exercise 11, but now for the grade component P1, analyze as a 23

factorial design, with replication, to find all effects.

15. Repeating Exercise 11, but now for the grade component Q1, analyze as a 23

factorial design, with replication, to find all effects.

16. Repeating Exercise 11, but now for the grade component P2, analyze as a 23

factorial design, with replication, to find all effects.

17. Repeating Exercise 11, but now for the grade component Q2, analyze as a 23

factorial design, with replication, to find all effects.

18. Repeating Exercise 11, but now for the grade component HW, analyze as a 23

factorial design, with replication, to find all effects.

19. Repeating Exercise 11, but now for the grade component CP, analyze as a 23

factorial design, with replication, to find all effects.

Table 9EX.14 (continued)

Student Day Status Sex P1 Q1 P2 Q2 HW CP F Grade

21 Wed Full F 9.5 30 7.0 23 10.0 1 59 71.70
22 Wed Full F 9.5 26 10.0 30 10.0 2 80 83.50
23 Wed Part M 8.0 16 7.0 12 4.5 1 52 50.15
24 Wed Part M 8.0 27 10.0 27 10.0 9 83 88.90
25 Wed Part F 8.5 13 10.0 13 8.2 2 38 53.08

26 Wed Part M 8.0 24 10.0 28 4.5 1 55 66.05
27 Wed Full F 9.0 24 10.0 19 9.1 0 43 62.49
28 Wed Part M 8.5 11 8.0 23 9.6 6 57 66.24
29 Wed Part F 9.5 16 9.0 22 9.8 0 48 61.72
30 Wed Part M 9.0 26 9.0 23 9.1 2 63 72.49

31 Wed Part F 9.0 12 10.0 18 10.0 0 36 54.80
32 Wed Part M 9.0 19 10.0 11 10.0 1 31 54.30
33 Wed Full F 9.5 22 10.0 14 10.0 9 71 77.80
34 Wed Full F 9.5 18 7.0 27 10.0 0 61 67.30
35 Wed Full F 9.5 29 9.5 20 10.0 1 59 72.20

36 Wed Part M 10.0 20 7.0 16 8.9 3 52 62.51
37 Wed Full F 10.0 24 10.0 21 10.0 9 69 81.90
38 Wed Part F 9.0 30 10.0 28 10.0 1 73 80.90
39 Wed Part F 9.0 14 7.0 2 8.0 1 20 39.00
40 Wed Part M 10.0 16 10.0 16 5.5 7 58 65.85

41 Wed Full F 8.5 26 10.0 9 8.2 0 28 52.58
42 Wed Full M 10.0 25 10.0 27 10.0 9 71 86.30
43 Wed Part F 8.5 3 0.0 7 6.4 2 29 30.56
44 Wed Part M 9.0 30 9.0 22 9.1 6 54 75.29
45 Wed Part M 9.0 12 10.0 27 8.9 9 49 71.11

46 Wed Part F 10.0 20 7.0 16 3.6 2 53 56.04
47 Wed Part M 8.5 30 8.0 16 10.0 3 62 71.10
48 Wed Part M 9.5 25 9.0 14 10.0 0 52 63.60
49 Wed Part M 10.0 13 7.0 15 10.0 0 23 47.90
50 Wed Full M 10.0 30 10.0 22 10.0 9 61 83.30

51 Wed Part M 9.0 26 10.0 23 10.0 1 67 74.60
52 Wed Part M 9.5 22 7.0 27 8.2 0 35 59.68
53 Wed Part F 8.0 20 9.0 4 8.9 0 42 50.51
54 Wed Full M 9.5 30 10.0 28 10.0 9 66 87.30
55 Wed Part M 9.5 30 7.0 23 9.1 2 55 70.59
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20. Repeating Exercise 11, but now for the grade component F, analyze as a 23

factorial design, with replication, to find all effects.

21. The analyses of Exercises 14–20 allow discussion of which portions of the

overall grade differ by evening, status, and gender. Which components of the

overall grade differ the most by evening? Which differ the most by status?

Which differ the most by gender? Is there any support for the notion that part-

time MBA students, who generally have more work experience and are older,

are able to perform better on quizzes and exams, whereas full-timers, who

surely have more time available to study, are able to perform better on handed-

in assignments (papers and homework)?

22. Edward “Fuzzy” Newbar, a former professional golfer and a golf course

designer, funded a series of studies to determine if various club offerings

affected golf scores for the players at several New England industrial golf

leagues like that at Eastern Electric. Four factors were examined: the provision

of steeply discounted golf lessons (Teach), the provision of steeply discounted

practice sessions (Prac), the provision of generous prizes for improved perfor-

mance (Prize), and required participation in a winners’ pool where each player

had to pay an extra $100 entrance fee above all other fees (Risk). In each case,

the “low” factor level, represented by�1, was the presence of the offering, and

the “high” level of each factor, represented by þ1, represented the absence of

the offering. (The reasoning for this assignment of levels was that lower scores

correspond with more improvement.) The study involved 128 players, a ran-

dom selection of eight players who had experienced each of the 16 possible

treatment combinations. The results are in Table 9EX.22.

Table 9EX.22 Edward “Fuzzy” Newbar golf study

Factors Scores

Comb Teach Prac Prize Risk 1 2 3 4 5 6 7 8

1 �1 �1 �1 �1 82 78 84 76 84 77 80 76
2 �1 �1 �1 1 89 82 83 93 90 79 80 84
3 �1 �1 1 �1 83 85 87 90 87 87 84 78
4 �1 �1 1 1 88 88 81 91 89 93 88 85

5 �1 1 �1 �1 91 95 95 95 97 96 99 93
6 �1 1 �1 1 105 97 97 102 101 95 104 103
7 �1 1 1 �1 101 100 99 102 101 100 106 101
8 �1 1 1 1 101 105 110 108 101 101 110 109

9 1 �1 �1 �1 94 97 93 94 99 95 95 93
10 1 �1 �1 1 98 98 99 101 95 101 99 102
11 1 �1 1 �1 102 99 105 97 103 98 102 97
12 1 �1 1 1 109 109 103 97 101 106 109 106

13 1 1 �1 �1 108 105 113 98 103 102 107 109
14 1 1 �1 1 108 108 108 107 112 109 109 111
15 1 1 1 �1 112 107 108 109 113 111 111 114
16 1 1 1 1 110 118 118 112 113 119 114 113
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Analyzing the results as a 24 factorial design, find all the effects. Ignoring all

interactions, which main effect has the highest value (and hence the highest

reduction in average score)?

23. Would consideration of interaction effects change the result found in

Exercise 22?

24. In Exercise 21 of Chap. 2, we investigated the effect of varying concentrations

of potassium in the yield of soybeans. In a different study, we decide to

evaluate more factors using two concentrations potassium: (a) irrigation (L –

Low, H – High), (b) nitrogen concentration (L – 0 ppm, H – 200 ppm),

(c) potassium (L – 0 ppm, H – 180 ppm), and (d) soil pH (L – 6.0; H – 6.8),

as shown in Table 9EX.24. We have two data points per treatment combination,

which represents pooled samples collected from two greenhouses kept at the

same conditions.

Analyze as a 24 factorial design, with replication, to find main effects and

two-way interactions. Which effects appear to be statistically significant

(α ¼ .05)?

Appendix

Example 9.10 Direct-Mail Study using SPSS

To analyze our direct-mail example using SPSS, we would input the data as

indicated in Table 9.8. The first, second, and third columns represent, respectively,

Table 9EX.24 Yield of soybean on different growing conditions

Irrigation Nitrogen Potassium Soil pH Yield

Low 0 0 6.0 15.7, 15.9
Low 0 0 6.8 19.5, 16.7
Low 0 180 6.0 18.1, 19.8
Low 0 180 6.8 19.3, 21.4
Low 200 0 6.0 13.1, 14.4
Low 200 0 6.8 17.8, 18.8
Low 200 180 6.0 19.2, 19.5
Low 200 180 6.8 20.9, 20.8
High 0 0 6.0 14.5, 15.6
High 0 0 6.8 17.7, 17.9
High 0 180 6.0 18.7, 18.4
High 0 180 6.8 20.9, 20.2
High 200 0 6.0 13.9, 16.1
High 200 0 6.8 18.2, 17.8
High 200 180 6.0 19.7, 19.3
High 200 180 6.8 21.1, 20.0
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the level of factors A (Postage), B (Price), and C (Size), and the fourth column

contains the dependent variable (Response rate) values. We use 1 for the low level

and 2 for the high level; we could just as well use 0 and 1 or 7 and 8 – any two

consecutive integers.

Using the same procedure described in Chap. 8 (Analyze > General Linear

Model > Univariate, leaving the box Full Factorial checked under Model), we

can generate an ANOVA table, as shown in Table 9.9. Note that SPSS is not

oriented toward providing output in a form traditionally associated with two-level

experimentation. In fact, the output does not actually provide the effects. However,

we can calculate the main effects using the means for each factor. To obtain these

values, we can select Options also in the Univariate window and identify the

factors in the Display Means for.7 The means are shown in Table 9.10.

Table 9.8 SPSS input data for direct-mail study

1 1 1 .062

2 1 1 .074

1 2 1 .010

2 2 1 .020

1 1 2 .057

2 1 2 .082

1 2 2 .024

2 2 2 .027

Table 9.9 SPSS output for direct-mail study

Tests of between-subjects effects

Dependent variable: response

Source Type III sum

of squares

df Mean square F Sig.

Corrected model .005a 7 .001
Intercept .016 1 .016
A .000 1 .000
B .005 1 .005
C 7.200E-5 1 7.200E-5
A * B 7.200E-5 1 7.200E-5
A * C 4.500E-6 1 4.500E-6
B * C 4.050E-5 1 4.050E-5
A * B * C 5.000E-5 1 5.000E-5
Error .000 0
Total .021 8
Corrected total .005 7

aR Squared ¼ 1.000 (Adjusted R Squared ¼ )

7If the interest is on other statistical properties of the factors (e.g., confidence interval, median,

variance, etc.), one can click on Analyze > Explore and fill the dependent and factor lists.

338 9 Two-Level Factorial Designs



For example, for A, the output tells us that the mean is .051 for high A, .038 for low

A. The difference between the two values, .013, is the effect of A. The value resulting

fromYates’ algorithm in the previous sectionwas .0125 (that is, 4A¼ .05,A¼ .0125);

the difference is rounding error. Similarly to JMP, the SPSS output on Tables 9.9

and 9.10 also contains dots in many places, since no error estimate is available.

Example 9.11 Direct-Mail Study in R

In this final demonstration, we show how the analysis of a 2k factorial design can be

performed inR using (a) an input table and (b) a table that we generate in the software.

The first case is simple and the analysis does not differ to what we have done so far.

The difference here is that we will use the model.tables() function to obtain a

table of effects (note that the effects are half the values we determined previously

because R reports the change in the response per unit change in the factor level).

> response <- read.csv(file.path("/Users/documents",

+"ex9.11.csv"), header=T)

> response.aov <- aov(Response~Postage*Price*Size, data=

+response)

> summary(response.aov)

Table 9.10 Factor means in SPSS

Estimated Marginal Means
1. A

Dependent variable: response

A Mean Std. Error 95% confidence interval

Lower bound Upper bound

Third-class .038 . . .
First-class .051 . . .

2. B
Dependent variable: response

B Mean Std. Error 95% confidence interval

Lower bound Upper bound

$9.95 .069 . . .
$12.95 .020 . . .

3. C
Dependent variable: response

C Mean Std. Error 95% confidence interval

Lower bound Upper bound

#10 .042 . . .
9X12 .048 . . .
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Df Sum Sq Mean Sq
Postage 1 0.000312 0.000312
Price 1 0.004704 0.004704
Size 1 0.000072 0.000072
Postage:Price 1 0.000072 0.000072
Postage:Size 1 0.000005 0.000005
Price:Size 1 0.000040 0.000040
Postage:Price:Size 1 0.000050 0.000050

> model.tables(response.aov, "effects")

Tables of effects

Postage

Postage
high low

0.00625 -0.00625

Price

Price
high low

-0.02425 0.02425

Size

Size
high low

0.003 -0.003

Postage:Price

Price
Postage high low

high -0.003 0.003
low 0.003 -0.003

Postage:Size

Size
Postage high low

high 0.00075 -0.00075
low -0.00075 0.00075
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Price:Size

Size
Price high low
high 0.00225 -0.00225
low -0.00225 0.00225

Postage:Price:Size

, , Size = high

Price
Postage high low

high -0.0025 0.0025
low 0.0025 -0.0025

, , Size = low

Price
Postage high low

high 0.0025 -0.0025
low -0.0025 0.0025

Another option is to use the fac.design() function available in the DoE.base

package, which will allow us to create the design matrix in R and input the

experimental results (using the add.response() function). Note that we used

�1 and 1 to identify the levels, but we could have used “low” and “high” or any

other classification.

> response <- fac.design(nfactors=3, replications=1, randomize=

+FALSE, factor.names=list(Postage=c(-1,1), Price=c(-1,1), Size=

+c(-1,1)))

creating full factorial with 8 runs ...

> response

Postage Price Size
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

class=design, type= full factorial
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# Create a vector containing the data values

> Rate <- c(.062, .074, .010, .020, .057, .082, .024, .027)

> response <- add.response(design=response, response=Rate)

> response

Postage Price Size Rate
1 -1 -1 -1 0.062
2 1 -1 -1 0.074
3 -1 1 -1 0.010
4 1 1 -1 0.020
5 -1 -1 1 0.057
6 1 -1 1 0.082
7 -1 1 1 0.024
8 1 1 1 0.027

class=design, type= full factorial
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Chapter 10

Confounding/Blocking in 2k Designs

The topic of this chapter is useful in its own right, and absolutely essential to

understanding the subject of fractional-factorial designs discussed in Chap. 11.

Imagine coming to a point in designing our experiment where we have settled on

the factors and levels of each factor to be studied. Usually this will not be an

exhaustive list of all the factors that might possibly influence the experimental

response, but a bigger list would likely be prohibitive and, even then, not truly

exhaustive. There are always factors that affect the response but that cannot be fully

identified. Of course, if we are fortunate, these unidentified factors are not among

the most influential (often the intuition of good process experts contributes to such

“luck”). Ideally, we would like to have all of these other factors held constant

during the performance of our experiment; unfortunately, this is not always possi-

ble. In this chapter, we discuss a potentially-powerful way to mitigate the conse-

quences if we can’t. We focus on 2k factorial designs; however, the concepts and

reasoning involved apply to all experimental designs.

Example 10.1 Pricing a Supplemental Medical/Health Benefit Offer,

Phase II

As noted in the previous chapter, the insurance company HealthMark was inter-

ested in conducting a marketing-research study to determine the best (that is, most

profitable) offer of supplemental medical and health benefits. Example 9.9 reported

the results of an experiment to study pricing for a set of core benefits and three

auxiliary benefits. Those four factors, and their levels, are the first four factors listed

in Table 10.1. After confirming the results of the experiment, HealthMark manage-

ment decided to add a fourth auxiliary benefit which is the fifth factor listed in

Table 10.1. Descriptions of the first four factors are in Example 9.1. The

emergency-care channel provides a discount of 25% or 50% at a national chain

of emergency-care centers, for emergency care, with an extensive referral service.
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There are now 32 treatment combinations , 25. The previous experiment found

statistically-significant two- and three-factor interaction effects, as we noted, so an

experiment that does not allow each of these interaction effects to be separately and

routinely identified would not be appropriate. In essence, all 32 treatment combi-

nations need to be examined. (In Chap. 11, we will examine designs in which not all

treatment combinations are run, an expansion of some ideas we considered with

Latin-square and Graeco-Latin-square designs.)

However, it is unwise to show a respondent 32 scenarios to solicit his or her

purchase intent. It is generally accepted that, after seeing 16 scenarios (or fewer, if a

large amount of demographic and other information is also solicited), respondents

get tired and the quality of their responses decreases dramatically. Hence, the

500 available respondents were split into two groups, each of which was shown

only 16 of the 32 scenarios. That led to another issue: the potential bias induced

when one set of respondents evaluates 16 scenarios and a different set of respon-

dents evaluates the other 16 scenarios. Try as you might to make the respondents in

each group alike, experience indicates that there will likely still be bias.

What can be done to eliminate this potential bias? Are there ways to systemat-

ically split respondents into two groups (or, more generically, blocks) such that

there is no bias? We return to this example at the end of the chapter.

10.1 Simple Confounding

An unreplicated 2k experiment has 2k treatment combinations. If we study three

factors (that is, k ¼ 3), each at two levels, we have eight treatment combinations; if

each takes two hours to run, 16 hours will be required to complete the experiment.

Over such a long period, many influences could occur that are not of interest to us in

this experiment, but that might make the interpretation of our results unclear. For

example, personnel could change (the day-shift radiologist might be replaced by the

night-shift radiologist in a hospital radiology experiment), the humidity in the photo

lab might vary, line voltages might fluctuate due to the evening air-conditioning

demand, water pressure might drop, traffic might increase, and the like. These

“nuisance” factors can pollute our data, rendering the interpretation problematic.

Table 10.1 Prices and benefits offered

Factor Levels (low/high)

Price of core benefits $9.95 / $12.95 per month per adult
Price (and benefit) of chiropractic

channel

$0.50 (and 25% off) / $1.00 (and 50% off) per month

per adult
Price (and benefit) of dermatology

channel

$2 (and 20% off) / $3 (and 40% off) per month per

adult
Price (and benefit) of massage channel $1 (and 15% off) / $2 (and 30% off) per month per

adult
Price (and benefit) of emergency-care

channel

$2.50 (and 25% off) / $3.50 (and 50% off) per month

per adult
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Suppose we have only eight hours available in a day, and so are forced to run our

16-hour experiment over two days: a block of four treatment combinations on

Monday and another block of four on Tuesday. (This is just one example; instead

of two time periods, with “time” or “day” as the nuisance factor, we could be

dealing with two radiologists sharing eight sets of X-rays on the same shift, two

auto-parts stores, or two groups of responders evaluating subsets of alternative

product configurations in a marketing-research study, and so on.)

Whatever the situation, imagine that we are not able to run all eight treatment

combinations as one large block under homogeneous conditions; instead, we have

to split the one large block of eight treatment combinations into two smaller blocks

of four.

The eight treatment combinations, in Yates’ standard order, are 1, a, b, ab, c, ac,
bc, abc; there are 70 ways in which we can assign them to the two days (assuming

an even split of four and four). Does it matter which of these we choose? Should

they be assigned randomly? Table 10.2 shows three of the 70 possible arrange-

ments. Before continuing, consider the three arrangements (designs) and form your

own intuitive answers to the above questions.

Is one of the three arrangements in Table 10.2 preferable to the others? Assume

that, if there is a “block effect” (here, the systematic difference, if any, between a

measurement made on Monday and the same one made on Tuesday), it causes all

Monday responses to be higher, by some unknown but approximately constant

amount, X, than if they had been obtained on Tuesday; X can be positive or negative.

It’s useful to identify the block that includes the “1” observation (that is, all

factors at low level) by a name; it is usually called the principal block. This is

simply a way to identify this block; in no way is the principal block different from

(except that it has the “1” observation in it), or of greater or lesser stature than, any

other block.

A cursory examination of Design 1 in Table 10.2 reveals that all treatments with

C high occur on Tuesday; all with C low are on Monday. Recall from the previous

chapter that the C effect is estimated by taking the difference between the average

of the responses with C high and the average with C low. However, with this

“blocking design,” we can’t tell how much of this difference is associated with the

main effect C and how much is associated with the block (here, day) effect (and, of

course, “noise” is present also). Our estimate of C has thus been confounded with

the block effect, and other effects could be confounded as well (in this case, they

aren’t). Usually, a design that confounds a main effect is not desirable. Con-

founded is the word used to describe a situation in which two or more effects

Table 10.2 Three possible designs

Design 1 Design 2 Design 3

Monday Tuesday Monday Tuesday Monday Tuesday

Treatments 1 c 1 a 1 a
a ac ab b ab b
b bc c ac ac c
ab abc abc bc bc abc
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(here, the main effect, C, and the block effect, X) are estimated together, in sum or

difference, and are not separable. In many texts, the word “confounded” is used

narrowly to indicate the non-separability of a factor (main or interaction) effect and

a block effect.

It’s more difficult to spot the flaw in Design 2. The main effects seem to be (and,

in this case, are) unaffected by the block effect – the plus and minus signs or,

equivalently, the number of high and low levels of the factor are equally balanced

over the two days. But notice that all terms with plus signs in the calculation of AB
are on Monday and all those with negative signs for AB are on Tuesday. Hence, the

AB interaction term is confounded with the block effect.

The third arrangement is even more difficult to analyze. The main and two-factor

interactions appear to be unaffected by the block effect (that is, the signs of the

effects are “balanced”). However, a more rigorous analysis of the block effect could

proceed as follows: calculate the three main effects, the three two-factor interaction

effects, and the three-factor interaction effect as in Chap. 9, with each Monday

response shown with the constant X added explicitly.

For example, the usual estimate of main effect A is given by

A ¼ 1=4ð Þ �1þ a� bþ ab� cþ ac� bcþ abc½ �

For Design 3 in Table 10.2, the usual estimate of A would become

A¼ 1=4ð Þ � 1þ Xð Þ þ a� bþ abþ Xð Þ � cþ acþ Xð Þ � bcþ Xð Þ þ abc½ �
¼ usual estimate of A

because the X’s cancel out; no “pollution” is introduced into our estimate of A due

to a possible block effect.

Continuing with Design 3, the usual estimate of ABC is

ABC ¼ 1=4ð Þ �1þ aþ b� abþ c� ac� bcþ abc½ �

In Design 3, this becomes

ABC ¼ 1=4ð Þ � 1þ Xð Þ þ aþ b� abþ Xð Þ þ c� acþ Xð Þ � bcþ Xð Þ þ abc½ �
¼ usual estimate� X

That is, our estimate of the three-factor interaction effect, ABC, is polluted by

(confounded with) the block effect; it is equal to the sum of three quantities: (1) the
true estimate of ABC, (2) the specific “noise” (ε), and (3) the unknown block effect,
X. Without X being present, the value we find would be the sum of the first two of

these – the case that always holds true when we collect data. Were we to calculate

all seven effects for Design 3, we would find that only the estimate of ABC has been

confounded; all main and two-factor interactions are unaffected by the (presum-

ably, necessary) separation of the eight treatment combinations into two smaller

blocks of four. Estimates that are polluted by the block effect are simply said to be

confounded. We would say that estimates A, B, C, AB, AC, and BC are “clean,”

whereas ABC is “confounded.”
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What happens if we reverse the order of the two blocks, such that the principal

block is run on Tuesday and the other on Monday? All main and two-factor

interaction effects would still be clean, and ABC¼ usual estimateþX. Since the

sign of X is generally unknown (and doesn’t really matter), in the final analysis it

makes no difference which block is on Monday and which is on Tuesday; it’s the
way the treatment combinations are grouped into blocks that matters!

Similar analysis of the other two designs yields the results shown in Table 10.3.

Normally, main effects are most important, two-factor interactions are of next

importance, and the three-factor interaction is of least interest, in an experiment

with three factors. Thus, these three designs are likely not equivalent in the eyes of

the experimenter. Everything else being equal, Design 3 is probably superior to the

others.

Replacement of one block by two smaller blocks always requires the “sacrifice”
(confounding) of at least one effect.

Consider another design – the one shown in Table 10.4. The confounded effects

are B, C, AB, and AC; only three of the seven effects, A, BC, and ABC, are clean. Of
the 70 possible arrangements, only 14 have just one effect confounded (the seven

designs corresponding to each effect, respectively, and their mirror images –

switching Monday and Tuesday). The rest of the designs have more than one effect

confounded, in most cases four of them. Of course, we would never prefer to

confound more effects than is minimally necessary. Fortunately, we can choose
which effect we wish to confound (given that there must be one!). Thus, randomly

assigning treatments to blocks is silly because it abrogates an opportunity to design

a superior experiment.

Table 10.3 Confounding in the three possible designs

Design 1 Design 2 Design 3

Monday Tuesday Monday Tuesday Monday Tuesday

Treatments 1 c 1 a 1 a
a ac ab b ab b
b bc c ac ac c
ab abc abc bc bc abc

Confounded

effects
Only C Only AB Only ABC

Table 10.4 A fourth design

Monday Tuesday

Treatments 1 ab
a c
b bc
ac abc

Confounded

effects
B, C, AB, and AC
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To summarize thus far, it’s best to run all treatment combinations at the same

time, under the same conditions. When we can’t, we partition the original block into
two (or, as we discuss later, more than two) equal-sized smaller blocks. By doing

so, we force the block effect to be zero for the effects we care about most, thus

eliminating error associated with the block effect, at the expense of confounding

one effect (or more than one, when more than two blocks are necessary). All

“clean” estimates (those that are not confounded) can be judged against reduced

variability, with the corresponding narrower confidence limits, increased power,

and the like; for these more-important effects, it is as though there were no block

effect. Later in this chapter we present a more explicit and detailed discussion and

example of the mechanics of this error reduction.

We choose a design that confounds only one effect – the most expendable one.

Generally, the most expendable effect is the highest-order interaction effect.1 To be

prudent, we often allow for the existence of a block effect unless we are confident

that there is none (or that it’s negligible). The cost of designing an experiment to

deal as efficiently as possible with a block effect that doesn’t exist is far less

than the consequence of ignoring a block effect when one is present.

Underlying the approach of this chapter is the assumption that X is approxi-

mately constant. If there is reason to suspect that the block effect is not independent

of the treatment combinations, but rather, varies for different treatment combina-

tions (that is, the blocking factor interacts with primary factors and/or their inter-

actions), then the blocking factor (such as day or time) must be considered

explicitly as another factor under study.

As the size of an experiment grows (k becomes larger in a 2k design),

confounding becomes more likely for two reasons: it is difficult to create large

homogeneous blocks (hence, one may have no choice but to confound) and the loss

of one effect may not be of great consequence – for example, in a 27 design, giving

up one out of 127 effects, perhaps ABCDEFG. Let’s make sure that we understand

what this effect means; one of the ways of describing what it indicates is: how the

level of A affects how the level of B affects how the level of C affects how the level

of D affects how the level of E affects how the level of F affects the G effect. It’s
hard to say that in one breath!! If you have a job in which this effect is not zero, get a

new job!!!

1What is meant by the term “highest-order interactions” – that is, how high is “higher order” – is

that in the vast majority of real-world applications, interactions of three or more factors are

routinely assumed to be zero or negligible. Of course, this issue must be thought through for

each application.
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10.2 Partial Confounding

We began our discussion of confounding with an unreplicated 23 design in which

we had to run the experiment over two days; we assumed that we could run only

four treatments per day. We now extend this concept of confounding to a 23 design

with replication. Our first illustration has four replications. Clearly, more than

two days are involved. Assume that we decide to run the experiment over a four-

week period, and that each replicate consists of one block of four treatment

combinations run on Monday and the other block on Tuesday. We could, of course,

repeat the same design each week, thereby confounding the same effect, likely

ABC. If we did so, each main effect and each two-factor interaction effect could be

estimated cleanly, based on all four replications; that is, each effect would be based

on all 32 data values. We might loosely say that “32 units of reliability” contribute

to each estimate.2 We could arrive at each effect by averaging the four estimates of

each effect, one per replicate, or equivalently, averaging each of the four responses

for the eight treatment combinations before calculating the effects. In either case,

we would not get any useful information about ABC.
Rather than confounding the same effect for each replicate, we might instead run

a different “confounding scheme” or “design” for each replicate, as shown in

Table 10.5. This design “partially” confounds each of the interaction effects. We

can still base our estimate of each of the three main effects on all 32 data values.

The interaction effects can all be estimated cleanly, albeit with reduced reliability.

We use all but the second replicate for AB, all but the third for AC, all but the fourth
for BC, and all but the first for ABC. The interaction effects are each based on

24 data values. No effect is completely confounded (or “lost”); instead, each of the

interaction effects is partially confounded. For the loss of some reliability for some
effects, we don’t have to completely sacrifice any one effect. And, once again, we

have the latitude to select which effects are clean and which are partially

confounded.

2Note that we say “loosely.” As seen in Chap. 9, the variance of an estimate is, essentially,

inversely proportional to the number of data values making up the estimate, and the standard

deviation is inversely proportional to the square root of this number.

Table 10.5 Four replicates with different designs

Week 1 Week 2 Week 3 Week 4

Monday Tuesday Monday Tuesday Monday Tuesday Monday Tuesday

Treatments 1 a 1 a 1 a 1 b
ab b ab b b ab a ab
ac c c ac ac c bc c
bc abc abc bc abc bc abc ac

Confounded

effects
ABC AB AC BC
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In Table 10.5, we have a rather specific scenario of the timing of the blocks. Is it

important that we use Monday and Tuesday of successive weeks (or some other

comparable pattern)? What would happen if we ran all replications within a

two-week period? Suppose we ran the principal block of each replicate one week

and the non-principal block of each replicate the next week? Haven’t we introduced
another block effect – the “week” effect? The answer to this question is “Yes, but it

doesn’t matter.” Recall that block effects relate to an (approximately) constant

difference between the same treatment combination run in two different blocks. If

the first replication in Table 10.5 is conducted on two successive Mondays, the

constant difference might be different from the constant difference between

Monday and Tuesday of the first week, but so what? Only ABC will be confounded

in either case, and we agreed to sacrifice ABC even before we ran the first

replication. That is, the “block effect” might be week-to-week, instead of day-to-

day, but when it cancels for an effect (in the sense of the illustrations with X earlier

in the chapter), it cancels. And when it doesn’t, it doesn’t. In fact, even if the

principal blocks were run on Monday through Thursday of the first week, and the

non-principal blocks were run on Monday through Thursday of the next week – in
reverse order (perhaps a silly plan, but just to prove a point), it wouldn’t matter.

Again, when the block effect cancels, it cancels, and when the block effect doesn’t
cancel, the estimate is confounded.

To emphasize this subtle but important (and often confusing) point, assume that

the response being measured for each treatment combination is a weight, in pounds,

to be measured on one of eight different scales. Each scale has some (fixed, but

unknown) calibration error. Any of the eight columns in Table 10.5, currently

designated by day and week, could correspond to any one of the eight scales. The

column’s mate (the other block of that replicate) corresponds to some other scale.

Each scale has some fixed calibration error that is applied to every response

measured on that scale, but, from the previous section, we know that if the

experiment is designed thoughtfully, for each replicate the calibration errors cancel

out for every effect but one – the chosen confounded (sacrificed) effect.

Finally, remember that block effects are those due to the partitioning of an

experiment over two or more sets of experimental conditions (blocks) that poten-

tially have some nearly constant difference in response. The requirement to parti-

tion is often due to some constraint of resources. For example, eight pieces of

ceramic tile must each be weighed within a specific time after removal from the kiln

to measure shrinkage on a consistent basis, but one set of scales cannot do the

weighings quickly enough; two sets of scales are needed. The constraint is often

time, but it might be anything.

Example 10.2 Grading X-Ray Film

By way of further example, consider an experiment involving a new X-ray film.

The dependent variable is “film readability,” a subjective evaluation by an
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experienced radiologist using a reference tumor pattern on a simulated torso. The

radiologist grades each image on a 100-point scale; the higher the score, the greater

the readability. The two-level factors are photo-resist thickness, exposure time, and

development time. We label these as follows:

Designation Factor

A Photo-resist thickness
B Exposure time
C Development time

Two radiologists are available to evaluate the films; each will examine four

treatment combinations for each of two replications. (The two replications are

available at different times, which eliminates the option of letting each radiologist

evaluate a complete replicate; as indicated earlier, a different time for a different

complete replicate is not a concern). We want to allow for the possibility that the

radiologists may differ in their assessments – one might be a bit more demanding

than the other. We assume that this will introduce an approximately constant

difference in evaluation; the block effect is associated with the use of two different

radiologists.

The design of this 23 experiment, with two replicates, is shown in Table 10.6.

Five of the seven effects, A, B, C, AC, and BC, are clean in both replications; they

will be estimated using all 16 responses. ABC and AB are partially confounded.

ABC is estimated using data only from the second replication, and AB is estimated

with data only from the first replication; estimates of the partially confounded

effects are based on only eight data points. The design shown in Table 10.6 suggests

that the experimenter believes that factor C is more important than the other two

factors; both two-factor interactions involving factor C use the maximum amount of

data available, while the two-factor interaction not involving factor C is chosen to

be estimated with reduced reliability.

By the way, as noted earlier in the chapter, there are two equivalent arithmetic

ways to estimate the five effects that are based on both replicates. One way to

estimate, for example, the A effect is to calculate it separately for each of the two

replicates in the routine way (using, say, Yates’ algorithm); then take the average of

Table 10.6 Two partially confounded effects in 23 design

First replication Second replication

Dr. Hillary Dr. Donald Dr. Hillary Dr. Donald

Treatments 1 a 1 a
ab b ab b
ac c c ac
bc abc abc bc

Confounded

effects
ABC AB
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the two estimates. An equivalent way is to first average the two 1’s, the two a’s, the
two b’s, and so on, and apply Yates’ algorithm once to these “cell means.” These

arithmetic procedures yield the same result. Software packages don’t usually allow

for explicit partial confounding. Hence, it may be necessary to use the first approach

mentioned, with each replicate “run” separately.

10.3 Multiple Confounding

As experiments grow larger, it is sometimes necessary to have more than two

blocks. Consider an unreplicated 24 design in which we must partition the exper-

iment into four blocks of four treatment combinations each. Table 10.7 shows one

possible design.

Imagine that responses in the four blocks of Table 10.7 differ by constants in

terms of the variable being measured – responses in the first block are too high

(or low) by R, those in the second block by S, those in the third by T, and those in the
fourth by U. (These letters play the role of X in the discussion of confounding into

two blocks.) The exact values of R, S, T, and U are irrelevant; however, we assume,

with no loss of generality, that R + S + T + U ¼ 0. Tedious examination of the

expressions for all 15 effects (15 ¼ 24 – 1) reveals that the (unknown, but constant

and systematic) block effects confound three estimates – AB, BCD, and ACD.
(As we will see in more detail later, the minimum number of confounded effects

is one fewer than the number of blocks.) The remaining 12 effects in this 24 design

are clean.

This result is illustrated for ACD (a confounded effect) and D (a “clean” effect)

in Table 10.8. The treatments are listed in Yates’ order, and the columns of signs are

from our previous work. The result is to yield the block effects, R, S, T, and U, with
the signs as shown. We observe that all block effects cancel out in our calculation of

D, but they do not cancel out for ACD. Indeed, our estimate of ACD is

1=8ð Þ 8ACD � 4Rþ 4S� 4T þ 4U½ � ¼ ACD� R=2þ S=2� T=2þ U=2

Clearly, the ACD estimate is hopelessly confounded with block effects.

Table 10.7 Four blocks in a 24 design

Block 1 Block 2 Block 3 Block 4

1 a b c
cd acd bcd d
abd bd ad abcd
abc bc ac ab
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For illustrative purposes, we began our discussion of multiple confounding with

four treatment combinations allocated to each of four blocks. We then determined

which effects would, as a result of that allocation scheme (design), be confounded.

In practice, the order of these steps is reversed; the experimenters begin by deciding

which effects they would be willing to sacrifice (confound) and select the design to

achieve that result. Indeed, this order embodies the objective of experimental

design. Presumably, the 24 experiment above was designed to confound one

two-factor interaction, AB, and two three-factor interactions, BCD and ACD.
Knowing the relatively decreasing importance of multifactor interaction effects

in most typical situations, we might wonder why, in the 24 experiment, the

designers didn’t elect to sacrifice, for example, ABCD rather than AB. The answer,
due to a theorem by Barnard, is that they can’t – at least not without other

undesirable ramifications. Barnard proved that in a four-block design, where three

effects (at minimum) must be confounded, only two of the three confounded

effects3 can be freely chosen by the designer; the third is defined (that is, mandated)

by the choice of the first two.4 As we shall see, insisting on confounding ABCD will

result in the loss of either two two-factor interactions or one main effect; both of

these alternatives are likely inferior to the choice made in the above example.

Table 10.8 Signs for a confounded and a clean effect

Treatment

ACD D

Sign of treatment Block effect Sign of treatment Block effect

1 � �R � �R
a + +S � �S
b � �T � �T
ab + +U � �U
c + +U � �U
ac � �T � �T
bc + +S � �S
abc � �R � �R
d + +U + +U
ad � �T + +T
bd + +S + +S
abd � �R + +R
cd � �R + +R
acd + +S + +S
bcd � �T + +T
abcd + +U + +U

3Our discussion rests on there being four blocks and would be true for any value of k.
4For more information, see M. M. Barnard (1936), “An Enumeration of the Confounded Arrange-

ments in the 2� 2� 2. . . Factorial Designs”, Supplement to the Journal of the Royal Statistical
Society, vol. 3, pp. 195–202.
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10.4 Mod-2 Multiplication

We now describe a technique whose roots are in the area known as polynomial rings

and extension fields in the discipline of modern abstract algebra. We use only the

fruits of this field of study, in a down-to-earth manner, and do not concern ourselves

with “proofs”; however, everything stated is rigorously supported mathematically.

First, we develop some necessary notation. We need to define an operation of

multiplying two effects by one another, but not exactly in the usual sense of

arithmetically multiplying two numbers. We call this operation mod-2 multiplica-

tion; notice the mod-2 or base-2 element of the operation. Some people refer to the

operation as the symbolic product, and others as the exclusive union. The mod-2

multiplication of A and B is A �B¼AB. The mod-2 multiplication of AB and CD is

then AB �CD¼ABCD. So far, it’s like “regular” multiplication. The mod-2 multi-

plication of A and A is A �A¼A2¼A0¼ 1. That is, exponents are from the binary

field; the only exponents allowed are 0 and 1. Any odd-integer exponent is equivalent

to the exponent 1 and any even-integer exponent is equivalent to the exponent

0. Finally, we observe that anything to the 0 power is, of course, equal to 1.

Barnard’s theorem says that, relative to the example above of a 24 in four blocks,

whenever two effects are specified to be confounded, the mod-2 multiplication of

these two effects is automatically (that is, must be!) the third effect confounded. For

a threesome of effects, it doesn’t matter which two are specified; the three form a

“closed group” of sorts. Table 10.9 illustrates this for our example. Note that

whichever two effects we start with, the third comes out as the remaining member

of the group. With a little practice, one can easily learn to do mod-2 multiplication

rapidly in one’s head.

We need to choose the selected effects to be confounded with care; otherwise,

the resulting third confounded effect may not be a desirable one, rendering the set of

three confounded effects an unwise choice. Suppose in a 25 design we had first

specified the confounding of ABCDE (perhaps thinking “who cares about a five-

factor interaction”), and then ABCD – “who cares about that one either.” Oops! We

would then lose ABCDE �ABCD¼E, a main effect. It would be better to confound,

say, ABD, ACE, and BCDE, so as not to lose any main effects or any two-factor

interactions. One approach often taken for selecting confounded effects might be

called aminimax strategy – pick a design that minimizes the importance of the most

important effect confounded.

Table 10.9 Closed group of confounded effects

First specified

confounded effect

Second specified

confounded effect

Resultant (third)

confounded effect

AB BCD AB �BCD¼AB2CD¼AB0CD¼ACD
AB ACD AB �ACD¼A2BCD¼A0BCD¼BCD
BCD ACD BCD �ACD¼ABC2D2¼ABC0D0¼AB
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10.5 Determining the Blocks

Once effects to be confounded are chosen, treatment combinations that go into each

block are determined as follows:

Treatment combinations that have an even number of letters in common with each of the
confounded effects go into one block – the principal block.
Treatment combinations to fill the other blocks are determined by mod-2 multiplication
of any treatment combination not in the principal block with each of the treatment
combinations in the principal block.

This will become clear with an example. Consider a 25 experiment with four

blocks. Three effects must be confounded; we can specify two of the three. We

specify ABD and ACE, and thereby also confound BCDE, as in the example above.

In this design, all main effects and two-factor interactions are clean.

Having determined which effects are to be confounded, we now develop the

design to achieve that end. The principal block contains all treatment combinations

that have an even (remember – zero is even) number of letters in common with all

confounded effects. Actually, we need to be concerned only with the two effects

that are “independent generators,” as they are sometimes called. If a treatment

combination has an even number of letters in common with these, it will automat-

ically have an even number of letters in common with any effect that is the mod-2

multiplication of these.

We might first list all 32 treatment combinations in Yates’ order: 1, a, b, ab, . . .,
abcde. We can show that the principal block is

Principal block 1 abc bd acd abe ce ade bcde

Follow carefully the steps used to arrive at this principal block:

1. Clearly, the treatment combination 1 has an even number of letters in common

with ABD, ACE, and BCDE – zero. Indeed, 1 has zero letters in common with all

effects; thus, we always begin with 1 in forming the principal block – it’s
definitional. We ignore, in terms of describing “letters in common,” that the

treatment combinations are lowercase and the effects are capitalized.

2. We next identified abc, which has two letters in common with ABD: A and B; it
also has two in common with ACE, and consequently an even number (in this

case two) in common with BCDE. How did we identify abc? By “educated” trial
and error! In this specific case, we looked at the first confounded effect listed,

ABD, and arbitrarily picked the A and B as two (an even number) in common; we

then hoped that the treatment combination ab had an even number in common

also with the next confounded effect listed, ACE. Alas, it didn’t! So, we added c,
yielding abc, which did have an even number of letters in common with ACE, as
well as being “even” with ABD. This may seem like an ordeal; it is not. With a

minimal amount of practice, this kind of reasoning becomes easy and quick.

Nevertheless, we boldfaced the abc term in the principal block list because it did
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need to be “innovated” (our term for a treatment combination that we had to

figure out with the “educated trial and error process,” instead of determining it

mechanically, as described below). As we will see, relatively little innovating is

needed.

3. Then, again somewhat arbitrarily, and again using educated trial and error, we

identified bd, which has two letters in common with ABD, zero with ACE (and

two with BCDE). bd is also boldfaced above.

4. Next, we take advantage of a very helpful property of the principal block. Any

two members of the principal block, when mod-2 multiplied, always yield a

member of the principal block. (For the algebraically inclined, the principal

block forms what is called a “closed group under the operation of mod-2

multiplication.") This yields abc � bd ¼ acd as the next listed member of the

principal block.

5. Then, we innovated one more treatment combination: abe.
6. Finally, we used the “closed group” property to multiply abe times the previous

three treatment combinations listed, to generate, respectively, ce, ade, and bcde.

The elements abc, bd, and abe, the treatment combinations that were innovated,

are said to be “generator” elements. The generators are not unique; we could have

ended up with other sets of three, depending on which ones we happened to think of

first. We now have all eight treatment combinations that have an even number of

letters in common with the three confounded effects, and the set of eight is unique!

A second block is formed from the first by picking any yet-unused treatment

combination and mod-2 multiplying it by each element of the principal block,

respectively. If we pick a (why not pick a treatment combination that has as few

letters as possible?), we get the following:

Principal block

(block 1)

1 abc bd acd abe ce ade bcde

Multiply by a
(block 2)

a bc abd cd be ace de abcde

Note that the mod-2 product of any two elements in block 2 does not yield a

member of block 2. Indeed, it yields an element of the principal block. (Can you see

why?)

We continue the process by selecting some still-unused treatment combination,

say b, and mod-2 multiplying it by the elements of the principal block:

Principal block

(block 1)

1 abc bd acd abe ce ade bcde

Multiply by a
(block 2)

a bc abd cd be ace de abcde

Multiply by b
(block 3)

b ac d abcd ae bce abde cde
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The final block is made up of those treatment combinations still unassigned. It

may be easier to simply generate the last block by picking one more still-unused

treatment combination, say e, and mod-2 multiplying it by the elements of the

principal block. The result is as follows:

Principal block

(block 1)

1 abc bd acd abe ce ade bcde

Multiply by a
(block 2)

a bc abd cd be ace de abcde

Multiply by b
(block 3)

b ac d abcd ae bce abde cde

Multiply by e
(block 4)

e abce bde acde ab c ad bcd

We compute all effects as before – by using either Yates’ algorithm, the sign

table, or, of course, software. When we get the results, we basically drop the

confounded effects, here, ABD, ACE, and BCDE, from further consideration. We

illustrate the confounded nature of ABD, ACE, and BCDE, and the unconfounded

nature of two arbitrarily chosen clean effects, AB and D, in Table 10.10. Note that

for the clean effects, block effects cancel out within each block. That is, for both

AB and D (and any other clean effect we might have chosen to examine), the table

of signs has four plus signs and four minus signs within each block. This equality is
required to cancel out the block effects. Note, as well, that this is not true in the

case of the confounded effects. Within each block, for any given confounded

effect, the signs are all the same; rather than cancel out, the block effects

accumulate.

Table 10.10 Sign table for confounded and clean effects

Block (and constant) Treatment

Confounded effects Clean effects

ABD ACE BCDE AB D

Block 1 (too high or

too low by R)
1 � � + + �
abc � � + + �
bd � � + � +
acd � � + � +
abe � � + + �
ce � � + + �
ade � � + � +
bcde � � + � +

Block 2 (too high or

too low by S)
a + + + � �
bc + + + � �
abd + + + + +
cd + + + + +
be + + + � �
ace + + + � �
de + + + + +
abcde + + + + +

(continued)
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10.6 Number of Blocks and Confounded Effects

We now summarize the consequences of partitioning a 2k experiment into 2r blocks.

As a function of the size of the experiment and the number of blocks, we list in

Table 10.11 the minimum (which should be the actual) number of effects that will

be confounded, how many of these the designer can specify, and how many are an

automatic consequence of the designer’s choice.

We have already explicitly discussed the first two rows of Table 10.11, for two

blocks and four blocks. For the case of eight blocks, the experimenter may initially

choose three of the necessary seven effects to be confounded. Call these effects X,
Y, and Z. Then, the four consequentially confounded effects will be (where the

symbolic operation is “mod-2 multiplication”)

X � Y, X �Z, Y � Z, X � Y, X � Y � Z
For the case of 16 blocks, the experimenter may (initially) choose four of the

15 necessary effects to be confounded. Call these effects X, Y, Z, and V. Then, the

Table 10.10 (continued)

Block (and constant) Treatment

Confounded effects Clean effects

ABD ACE BCDE AB D

Block 3 (too high or

too low by T )
b + � � � �
ac + � � � �
d + � � + +
abcd + � � + +
ae + � � � �
bce + � � � �
abde + � � + +
cde + � � + +

Block 4 (too high or

too low by U )

e � + � + �
abce � + � + �
bde � + � � +
acde � + � � +
ab � + � + �
c � + � + �
ad � + � � +
bcd � + � � +

Table 10.11 Number of blocks and confounded effects

Number of smaller

blocks

2r

Number of confounded

effects

2r�1

Number designer may

choose

r

Number defined by

consequence

2r�1�r

2 1 1 0
4 3 2 1
8 7 3 4
16 15 4 11
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11 consequentially-confounded effects will be these four effects multiplied two at a

time, three at a time, and four at a time:

X � Y, X � Z, X � V,Y � Z, Y � V, Z � V, X � Y � Z,
X � Y � V, X � Z � V, Y � Z � V, and X � Y � Z � V

You might think there would be little interest in designs that confound as many

as, say, seven effects. In practice, such is not the case. For example, a 26 design has

26 – 1 ¼ 63 effects; confounding seven of 63 effects might well be tolerable.

When the size of an experiment is quite large, it can be somewhat cumbersome

(though not really difficult) to explicitly determine and lay out the results of a

confounding scheme. Various publications provide lists of designs with

confounding, as a function of various parameters. These sources combine full-

factorial designs and fractional-factorial designs (the latter being the subject of

Chap. 11). Most notable of these are a series of books, one for two-level designs

(Statistical Engineering Laboratory, Fractional Factorial Experiment Designs for
Factors at Two Levels, National Bureau of Standards, Applied Mathematics Series,

48, April 1957), one for three-level designs – covered in Chap. 12 (W. Connor and

M. Zelen, Fractional Factorial Experiment Designs for Factors at Three Levels,
National Bureau of Standards, Applied Mathematics Series, 54, May 1957), and

one for experiments that mix two- and three-level factors (W. Connor and

S. Young, Fractional Factorial Designs for Experiments with Factors at Two and
Three Levels, National Bureau of Standards, Applied Mathematics Series,

56, September 1961). The designs are indexed by what we would expect: the

number of factors, number of levels, number of blocks, the fractional replicate

(when applicable), and the number of treatment combinations run.

In some cases, it is possible to use software to provide the design of a

confounding scheme. The logic and process used are generally similar to those

for using software to provide a fractional-factorial design. Hence, we defer such

discussion to the next chapter.

Example 10.3 Confounding/Blocking in JMP

In the previous chapter, we have seen how to set up a factorial design in JMP. Here,

we will demonstrate how to include blocks in our design and to choose or determine

the confounding estimates. We start with the same commands we have used before:

DOE > Classical > Screening Design and include the Responses and Factors. In

this example, we assume a 25 factorial design. After clicking Choose from a list of

fractional factorial designs, we select the appropriate block size we are interested

in (in this case, we will use 8, Full Factorial, 5þ – All 2-factor interactions).

Before creating the design table, we check Change Generating Rules. You will

see three columns (Factors, Block, Block), as shown in Fig. 10.1.
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We are creating a design with four blocks. Table 10.11 indicates that we will

have three confounded effects and the designer is free to choose two of them, which

is exactly what the two columns named “Block” refer to in the Generating Rules.

If we don’t change the rules, JMP will use the programmed settings. In Fig. 10.1, we

changed the rules so A, B, and D are checked in the first block (which corresponds

to ABD confounded), and A, C, and E are checked in the second (which corresponds

to ACE confounded). Whenever we change the rules, we have to click Apply to

make them valid.

From what we learned in this chapter, we know that the third confounded effect

is BCDE. To assess the confounded effects, we click on the red “inverted” triangle

under Aliasing of Effects > Show Confounding Pattern. We have to indicate the

order we want to show in the table of aliases, use 5 (the highest order interaction),

then OK. The confounding pattern is as shown in Fig. 10.2. Note that in the “Block

Aliases” column we have an identification (“Block”) that shows the confounded

effects, circled in Fig. 10.2 for demonstration purposes. Note that JMP uses a

Fig. 10.1 Steps for blocking/confounding in JMP
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different nomenclature for the Yates’ order, where C ¼ 1, 1 ¼ a, 2 ¼ b, and so

on. We confirm that ABD, ACE, and BCDE are confounded. Once we are satisfied

with the design, we can click onMake Table to generate the factorial design table.

10.7 A Comment on Calculating Effects

This chapter has dealt with the topic of confounding. We did not include any

explicit numerical examples. This is because the numerical calculations that

would be utilized in this chapter are identical to those of the previous chapter. That

is an important point that bears repeating: effects are calculated in the routine 2kway;

the values of the effects that are confounded are simply not accorded the status of an

unbiased estimate.

Fig. 10.2 Confounding pattern table in JMP
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10.8 Detailed Example of Error Reduction Through
Confounding

The following example illustrates in more detail the reduction of error that designs

with confounding provide for estimates of the clean effects. Reconsider the exam-

ple of a 23 design with no replication (to simplify the example) and the necessity to

run the eight treatment combinations in two blocks of four. Again, suppose, without

loss of generality, that we run four treatment combinations on Monday (M) and four

on Tuesday (T).

Consider an effect, say A. We know that the estimate of A is

1=4ð Þ �1þ a� bþ ab� cþ ac� bcþ abcð Þ

Suppose that σ2¼ 4 for any and every data value (this discussion loses no generality

by assuming that σ2 is known). Then, we know from Chap. 9 that if the experiment

is routinely carried out in one complete block, the variance of A, V1(A), is

1=16ð Þ8σ2 ¼ σ2=2

However, in our example we must, as noted above, run the experiment with four

treatment combinations on M and four on T. As before, X represents the difference

in the same response on M from that on T. Further suppose that we allocate the eight

treatment combinations into two sets of four randomly (reflecting, perhaps, the lack

of knowledge to use a non-random design). Of the 70 ways to allocate eight

treatment combinations into two sets of four treatment combinations [70¼ 8 ! /

(4 ! � 4!)], there is one way that results in an estimate of A of (A + X):

M : a, ab, ac, abc

T : 1, b, c, bc

There is also one way that results in an estimate of A of (A�X), the reverse of the
allocation above.

There are 36 ways [4 ! /(2 ! � 2!) � 4 ! /(2 ! � 2!)¼ 6 � 6] of allocating eight treat-

ment combinations into two sets of four treatment combinations that result in an

estimate of A (that is, A is clean); theþ terms of A and the – terms of A are each two

on Monday and two on Tuesday. There are 16 ways [4 ! /(3 ! � 1!) � 4 ! /(1 ! � 3!)¼
4 � 4] of allocating eight treatment combinations into two sets of four treatment

combinations that result in an estimate of A of (A +X/2); the þ terms of A are three

on Monday and one on Tuesday, and the – terms are one on Monday, three on

Tuesday. One example would be

M : 1, a, ab, ac

T : b, c, bc, abc

Similarly, the mirror images of each of these 16 allocations result in an estimate of

A of (A�X/2).
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Hence, if we randomly allocate four treatment combinations to Monday and four

to Tuesday, we have the following probability distribution of estimates of A

(ignoring, for the moment, the σ2 ¼ 4 alluded to earlier):

Estimate of A Probability

A � X 1/70
A�X/2 16/70
A 36/70
A +X/2 16/70
A + X 1/70

1

This distribution has a variance, associated with “day of week,” Vday(A), of

Vday Að Þ ¼ 1=70ð Þ �Xð Þ2 þ 16=70ð Þ �X=2ð Þ2 þ 0þ 16=70ð Þ X=2ð Þ2 þ 1=70ð ÞX2

¼ X2=70
� �

1þ 16=4þ 0þ 16=4þ 1ð Þ
¼ X2=7

Now suppose that X, the Monday/Tuesday difference, also equals 4. Just for the

sake of the example, we selected X to equal 2σ (if σ2 ¼ 4, σ ¼ 2, and 2σ ¼ 4) – we

could have used any value. Then,

Vday Að Þ ¼ X2=7 ¼ 16=7 ¼ 2:29

Assuming that the variability associated with day of the week and the variability

associated with the other components of error (that exist even if the entire exper-

iment is run on one day) are independent of one another, we have, with the random

allocation,

Vtotal Að Þ ¼ V1 Að Þ þ Vday Að Þ
¼ 4þ 2:29
¼ 6:29

Of course, with the proper confounding design in which A is clean, Vtotal(A) would
revert to 4. This would represent about a 20% reduction in standard deviation (from

2.51, the square root of 6.29, to 2, the square root of 4). In turn, this would result in

about a 20% reduction in the width of (a 20% increase in the precision of) a

confidence interval.

This is what we meant earlier in the chapter by the statement that all effects not

confounded can be judged with reduced variability – that is, greater reliability.
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Example 10.4 Pricing a Supplemental Medical/Health Benefit Offer

(Revisited)

Based on its earlier experience, HealthMark was not willing to assume three-factor

interactionswere zero; however, itwaswilling to assume that all four-factor interactions

and the five-factor interaction were zero. Thus, an experiment was designed in which

the 32 treatment combinations were split into two blocks of 16 treatment combinations

each, using ABCDE as the confounded effect. This meant that each of the treatment

combinations was evaluated by only 250 respondents, instead of all 500 respondents

seeing each treatment combination. However, the reliability of the results was similar

to that of the experiment in Chap. 9, in which 500 respondents evaluated 16 scenarios:

500 � 16¼ 250 � 32 (see the discussion of reliability in Sect. 9.15).
The results mirrored what was found from the previous experiment, which

included the core benefits and the first three of the four optional factors of this

experiment: the optimal prices were $9.95 for the core benefits, $0.50 (and 25% off)

for the chiropractic channel, $3 (and 40% off) for the dermatology channel, and $2

(and 30% off) for the massage channel. For the factor that was new to this

experiment, the emergency care channel, the optimal price was the high price,

$3.50 (and 50% off) per adult per month.

Alas, HealthMark has decided to experiment further before arriving at a final

configuration for its offering. Also, it wishes to consider other possible types of

product designs, such as offering more products (at HealthMark’s optimal price)

but insisting, for example, that a purchaser choose at least two of the optional

channels from the, say, seven offered. It remains to be seen exactly how

HealthMark finalizes its offering.

Exercises

1. Consider running a 24 factorial design in which we are examining the impact of

four factors on the response rate of a direct-mail campaign. We will mail

160,000 “pieces” in total, 10,000 pieces under the condition of each of the

treatment combinations, and will note the response rate from each 10,000.

The four factors are

A. Feature of the product

B. Positioning for the ad

C. Price for the product

D. Length of the warranty offered

Suppose that the test mailing must be split among four different time periods

(T1, T2, T3, T4) and four different regions of the country (R1, R2, R3, R4). One

of the 16 treatment combinations is to be mailed within each of the 16 (T, R)

combinations. The resulting design is shown in Table 10EX.1. (For example,

10,000 pieces are mailed with the treatment combination bcd in region 1 during
time period 2).
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Suppose that we believe that T and R may each have an effect on the

response rate of the offering, but that neither T nor R interact with any of the

primary factors, A, B, C, D. We also believe that T and R do not interact with

each other. When we routinely estimate the 15 effects among the four primary

factors, which of the effects are clean of the “taint” of T and/or R?

2. Suppose that in a 24 factorial design it is necessary to construct two blocks of

eight treatment combinations each. We decide to confound (only) ACD. What

are the two blocks?

3. Suppose in Exercise 2 that we choose the following two blocks:

Block 1: 1, b, ab, abc, ad, bd, abd, bcd
Block 2: a, c, ac, bc, d, cd, acd, abcd

Which of the 15 effects are confounded with the block effect?

4. Suppose that in a 28 factorial design we must have eight blocks of 32 treatment

combinations each. If the following are members of the principal block, find the

entire principal block.

1, gh, efh, cdh, bdfg, adf
5. In Exercise 4, find the seven confounded effects.

6. Suppose that we are conducting a 26 factorial design, with factors A, B, C, D, E,

and F, and have to run the experiment in four blocks.

(a) How many treatment combinations will be in each block?

It is decided to confound the effects ABCE and ABDF.
(b) What (third) effect is also confounded?

(c) What are the four blocks?

7. Consider a 25 experiment that must be run in four blocks of eight treatment

combinations each. Using the techniques discussed in the chapter, find the four

blocks if ABCD, CDE, and ABE are to be confounded.

8. Show for Exercise 7 that another approach to finding the four blocks is to first

construct two blocks, confounding (only) ABCD; then divide each of these two
blocks “in half,” resulting in four blocks of eight treatment combinations, by

confounding CDE (and, thereby, ABE also).

9. In a 28 design run in eight blocks, suppose that ABCD, CDEF, and AEGH are

confounded. What are the other four effects that are, as a consequence, also

confounded?

10. Suppose that in a 28 design to be run in eight blocks, we confound ABCDE,
DEFGH, and AGH. Find the other four effects that are, as a consequence,

confounded.

Table 10EX.1 Direct-mail design

T1 T2 T3 T4

R1 1 bcd abd ac
R2 ab acd d bc
R3 cd b abc ad
R4 abcd a c bd
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11. If you add the number of letters in the seven confounded effects of Exercise

10, and you add the number of letters in the seven confounded effects of

Exercise 9, you get the same answer. If you find the seven confounded effects

derived from confounding A, B, and ABCDEFGH (admittedly a silly choice),

and add up the number of letters in the seven effects, you again get the same

number as in the previous two cases. Does a generalization present itself, and if

so, what?

12. Convince yourself that the mod-2 multiplication operation presented in the

chapter is the same operation that is called the “exclusive union”; the exclusive

union is defined as the union of the two sets minus the intersection of the two
sets.

13. Consider a 25 design in four blocks. If one knows the block effects (a very rare
situation), does the confounding scheme matter? Discuss.

14. Suppose again that the block effects are not known (the usual case), but that the

signs of the effects are known. An example is when one machine is “known” to

yield a higher score than another, but the value of the difference is not known

with certainty. Would this affect how you design a confounding scheme?

Discuss.

15. Suppose that a 24 experiment is run during what was ostensibly a homogeneous

time period. Later, after the experiment has been completed and analyzed, it is

discovered that a block effect did exist – morning differed from afternoon

because of an unplanned change in machine operator. Assuming that you

determined that 1, a, c, ac, ad, bd, abd, and cd were run in the morning,

which effects are confounded with the block effect?

16. A researcher is investigating the conversion of a fruit slurry into powder using a

novel drying technology. In this system, the slurry is placed on a plastic

conveyer belt that is circulated on hot water and cold air is circulated on top

of the food product to prevent an increase of temperature that could negatively

impact the quality of the powder. He/she designed a 23 factorial design

considering three factors: (A) cold air velocity, (B) conveyer belt velocity,

and (C) thickness of the slurry. He/she wants to run two replicates of each

treatment condition and his/her company has only two drying systems that

could be used for this study. The blocks were organized as follows:

Replicate 1: Block 1 1 ab ac bc
Block 2 a b c abc

Replicate 2: Block 3 1 ab ac bc
Block 4 a b c abc

Is this the most appropriate design to obtain information of all interactions?
Discuss and, if appropriate, propose a new design.
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Appendix

Example 10.5 Confounding/Blocking in R

A useful feature of R is that it allows the user to identify which effect will be

confounded in a design with blocks. In this example, we demonstrate how to set up

factorial designs with simple, partial, and multiple confounding using the same

fac.design() function (available in the DoE.base package) we used in Chap. 9.

Simple Confounding

Assume an unreplicated 23 experiment run in two blocks. Using the fac.design()

function,we can definewhich effect estimatewill be confoundedwith the block effect.

For example, let’s saywe are not concerned that the estimate ofAB is confoundedwith

the block effect, as we have seen on Design 2 in Table 10.3. In R, this would be set as

# The first command (G or whatever we name it) is the block generating

information and indicates the effects that will be confounded (in this case,

AB). Each value represents one factor – 1 is confounded, 0 is clean. An error

message indicates there is at least one two-factor interaction confounded with

the block effect.

> G <- rbind(c(1,1,0))

> a <- fac.design(nfactors=3, replications=1, randomize=FALSE,

+ factor.names=list("A"=c(-1,1), "B"=c(-1,1), "C"=c(-1,1)),

+ blocks=2, block.gen=G)

creating full factorial with 8 runs ...

Warning message:

In fac.design(nfactors=3, replications=1, randomize=FALSE, :

confounding of blocks with 2-factor interactions

> a

run.no run.no.std.rp Blocks A B C
1 1 1.1.1 1 -1 -1 -1
2 2 4.1.2 1 1 1 -1
3 3 5.1.3 1 -1 -1 1
4 4 8.1.4 1 1 1 1

run.no run.no.std.rp Blocks A B C
5 5 2.2.1 2 1 -1 -1
6 6 3.2.2 2 -1 1 -1
7 7 6.2.3 2 1 -1 1
8 8 7.2.4 2 -1 1 1
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class=design, type= full factorial.blocked

NOTE: columns run.no and run.no.std.rp are annotation, not

part of the data frame

Using conf.set() function (available in the conf.design package), we can

assess the confounded effects, which confirms AB is the only confounded (p¼2 is

the number of levels of each factor):

> conf.set(G, p=2)

[1] 1 1 0

Partial Confounding

Now, assume a replicated 23 experiment as described in Example 10.2. In this

demonstration, ABC and AB will be confounded. First, we have to create one set of

experiments with ABC confounded and another one for AB confounded. Next, we

combine both objects to obtain our final design.

ABC

> G <- rbind(c(1,1,1))

> a <- fac.design(nfactors=3, replications=1, randomize=FALSE,

+ factor.names=list("A"=c(-1,1), "B"=c(-1,1), "C"=c(-1,1)),

+ blocks=2, block.gen=G)

creating full factorial with 8 runs ...

AB

> H <- rbind(c(1,1,0))

> b <- fac.design(nfactors=3, replications=1, randomize=FALSE,

+ factor.names=list("A"=c(-1,1), "B"=c(-1,1), "C"=c(-1,1)),

+blocks=2, block.gen=H)

creating full factorial with 8 runs ...

Warning message:

In fac.design(nfactors = 3, replications = 1, randomize = FALSE, :

confounding of blocks with 2-factor interactions

Now, we combine both objects:

> ab <- within(rjoin(a,b), {

+ Blocks <- join (Part, Blocks)

+ Part <- NULL

+ })

> ab

368 10 Confounding/Blocking in 2k Designs



Blocks A B C
1 Part1:1 -1 -1 -1
2 Part1:1 1 1 -1
3 Part1:1 1 -1 1
4 Part1:1 -1 1 1
5 Part1:2 1 -1 -1
6 Part1:2 -1 1 -1
7 Part1:2 -1 -1 1
8 Part1:2 1 1 1
9 Part2:1 -1 -1 -1
10 Part2:1 1 1 -1
11 Part2:1 -1 -1 1
12 Part2:1 1 1 1
13 Part2:2 1 -1 -1
14 Part2:2 -1 1 -1
15 Part2:2 1 -1 1
16 Part2:2 -1 1 1

Multiple Confounding

In this final demonstration, we show the multiple confounding in an unreplicated 24

experiment. This time, we include more “rules” in the block-generating process.

Remember: with four blocks, we have the liberty to choose two confounded effects.

Let’s say AB and BCD are confounded (the third confounded effect, as a conse-

quence, is ACD), which is generated by the conf.set() function:

> J <- rbind(c(1,1,0,0), c(0,1,1,1))

> c <- fac.design(nfactors=4, replications=1, randomize=FALSE,

+ factor.names=list("A"=c(-1,1), "B"=c(-1,1), "C"=c(-1,1),

+"D"=c(-1,1)), blocks=4, block.gen=J)

creating full factorial with 16 runs ...

Warning message:

In fac.design(nfactors=4, replications=1, randomize=FALSE, :

confounding of blocks with 2-factor interactions

> c

run.no run.no.std.rp Blocks A B C D
1 1 1.1.1 1 -1 -1 -1 -1
2 2 8.1.2 1 1 1 1 -1
3 3 12.1.3 1 1 1 -1 1
4 4 13.1.4 1 -1 -1 1 1

run.no run.no.std.rp Blocks A B C D
5 5 4.2.1 2 1 1 -1 -1
6 6 5.2.2 2 -1 -1 1 -1
7 7 9.2.3 2 -1 -1 -1 1
8 8 16.2.4 2 1 1 1 1

run.no run.no.std.rp Blocks A B C D
(continued)
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9 9 2.3.1 3 1 -1 -1 -1
10 10 7.3.2 3 -1 1 1 -1
11 11 11.3.3 3 -1 1 -1 1
12 12 14.3.4 3 1 -1 1 1

run.no run.no.std.rp Blocks A B C D
13 13 3.4.1 4 -1 1 -1 -1
14 14 6.4.2 4 1 -1 1 -1
15 15 10.4.3 4 1 -1 -1 1
16 16 15.4.4 4 -1 1 1 1

class=design, type= full factorial.blocked

NOTE: columns run.no and run.no.std.rp are annotation, not

part of the data frame

> conf.set(J, p=2)

[,1] [,2] [,3] [,4]
[1,] 1 1 0 0
[2,] 0 1 1 1
[3,] 1 0 1 1
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Chapter 11

Two-Level Fractional-Factorial Designs

We continue our examination of two-level factorial designs with discussion of a

design technique that is very popular because it allows the study of a relatively large

number of factors without running all combinations of the levels of the factors, as

done in our earlier 2k designs. In Chap. 10, we introduced confounding schemes,

where we ran all 2k treatment combinations, although in two or more blocks. Here,

we introduce the technique of running a fractional design, that is, running only a

portion, or fraction, of all the treatment combinations. Of course, whatever fraction

of the total number of combinations is going to be run, the specific treatment

combinations chosen must be carefully determined. These designs are called

fractional-factorial designs and are widely used for many types of practical

problems.

It often happens, when several factors are chosen for study, that many of the

effects (usually most, if not all, of the higher-order interactions) are known

(or “comfortably assumed” – little is ever known with 100% certainty) to be zero

or negligible and that the cost of each treatment combination is relatively expensive

(perhaps in terms of setting up for the combination, not necessarily per replicate). In

such circumstances, we may be able to obtain all of the relevant information (such

as estimates of main effects, two-factor interactions, and selected other interac-

tions), by running only a fraction of the number of treatments required in a

complete-factorial experiment.

We have seen the trade-off of assuming interactions to be zero so that we could

have fewer runs in an experiment. First, we studied two-factor designs and were

able to avoid replication (and, hence, reduce the number of runs) if we were willing

to assume no interaction between the two factors. This trade-off didn’t reduce the
number of treatment combinations we ran, but did reduce the total number of runs.

Then, we studied Latin squares and Graeco-Latin squares. In these designs, we

again assumed no interaction among the factors and did gain the benefit of having to
run only a subset of the treatment combinations – indeed, only a relatively small

portion of the total number of treatment combinations. For example, in a four-level

Graeco-Latin square with four factors, we need to run only 16 of the 44 ¼ 256
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treatment combinations. In this chapter, we encounter more refined, or delicate,

trade-offs. Unlike in the Latin and Graeco-Latin square designs, we will not

need to assume away all interaction effects; in general, we can pick and choose

which interactions can be sacrificed, based on the beliefs of the experimenter

and what we get in return. This satisfies our intuitive expectation that there

ought to be some economy in the study of several factors where many of the

effects are “known” to be zero, relative to studying the same number of factors

where all effects must be estimated and none can be assumed to be negligible.

Example 11.1 Managerial Decision Making at FoodMart Supermarkets

FoodMart Supermarkets decided to undertake a study of how sales are affected by

various managerial decision-variables – most notably, the amount of shelf space

allocated to a product, whether, and to what degree, a product is promoted with

signs in the store and circulars distributed in the neighborhood and inserted in local

newspapers, the price of the product, and its location in the supermarket (called

“location quality”).

It would be naive to assume that the impact of these factors is the same for each

product, so the products were divided into eight groups with, presumably, each

group having the same product attributes: volume category (high versus low), price
category (high versus low), and whether the product is seasonal (yes versus no).
These three categories are matters of definition within the industry, and do not

depend on whether it is literally true for any given supermarket. FoodMart owns

chains of supermarkets around the country, so management also decided to see if

there was any difference for supermarkets located in the eastern and western parts

of the United States. The specific factors under study and their levels are shown in

Table 11.1.

Since supermarkets differ in several ways – most notably size, sales volume, and

the race and ethnicity of customers – it was necessary to define carefully the levels

of the factors as well as the dependent measure of sales. One way that the

Table 11.1 Factors and levels for FoodMart study

Label Factor Low level High level

A Geography East West

Product

attributes

B Volume category Low High
C Price category Low High
D Seasonality No Yes

Managerial

decision

variables

E Shelf space Normal Double
F Price Normal 20% cut
G Promotion None Normal (if)
H Location quality Normal Prime
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differences among supermarkets were dealt with was to first record sales (in units)

for each product studied for a six-week base period, in which everything was

routine. Then, treatment combinations were implemented during the next six weeks,

the dependent measure being the dimensionless ratio of sales in the “treatment six

weeks” to sales in the “base six weeks.” Note that this approach also neutralizes, to

the degree possible, the impact of factors such as holidays, weather, and the like,

because the six-week periods were the same for all supermarkets. If one six-week

period engendered more or fewer sales than the other, it presumably would do the

same for other supermarkets in the study (or at least those in the same city). In

addition, as a safety check, sales were also recorded for a third six-week period in

case this would prove valuable if anomalies occurred. Although various products

were included in the overall study, here we limit our discussion to the segment of

the study dealing with produce1 products.

For factor A, geography, east turned out to be the greater Boston area, whereas

west was the greater Denver area.

For factor E, shelf space, the low level was called “normal,” equal to the level

during the six-week base period; the high level was double that amount. These

definitions allow for different capacities and demand at different supermarkets.

The same concept holds for the low level of factor F, price, even though in this

case the high level of the factor is numerically lower than the low level. As

mentioned in Chap. 9, it is usually a “sanity preserver” to define the high level as

the higher value if the factor is measured on a numerical scale; however, here we

decided to do the opposite, so that the main effect, if significant, would likely be

positive. This makes the result easier to explain to people who have not been trained

in statistics, but makes no difference from a statistical-analysis viewpoint.

Factor G was the amount spent on promotion: ads for the product in flyers

inserted into local newspapers, signs put up in the supermarkets, and the like. A

particular product may or may not be promoted. In practice, if promotion occurs, it

usually is a standard amount; hence, the high level of G is listed as “normal (if),”

meaning “if there was promotion.”

Certain locations within supermarkets are known to be prime locations, ones that

increase sales of virtually any product placed there. One example is the register

aisles, where people are more likely to buy on impulse2; another is the end of the

more popular aisles (often those that include milk or bread), because the product is

exposed to more traffic. Most supermarkets are laid out in a similar fashion: the

“normal” location for most products is the low level of factor H.

1Produce products are agricultural products, especially fresh fruits and vegetables, as distinguished

from grains and other staple crops.
2Studies are currently being done to determine the effect of mobile phones on this location/impulse

buying issue in supermarkets. There seems to be preliminary evidence that the level of impulse

buying in supermarkets is decreasing due to customers’ spending the time in line at the cash

register using their mobile phones for various activities, instead of pondering impulse purchases –

a phenomenon termed by the retail industry as the “mobile blinders.”
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FoodMart executives thought they could predict the usual main effects of

factors E, F, G, and H, at least directionally, but they were not sure that the effects

of these factors were the same for all products. For a variety of reasons, including

the fact that relationships among products sometimes mean that they are comple-

mentary to, or substitute, for one another, it’s not possible to test every product. So,
it was decided to assume that products having the same “product attributes” would

respond similarly to changes in the level of factors E, F, G, and H. Potatoes, for

example, are defined as a high-volume, low-price, non-seasonal produce product.

Grapes, on the other hand, are defined as a low-volume, high-price, seasonal

produce product. These categories – factors B, C, and D – are defined by the

trade for its own purposes, although some definitions seem at odds with a layper-

son’s expectation.
Given these category definitions, we could consider interaction effects between

these factors, B, C, and D, and the primary factors, E, F, G, and H. These interaction

effects would go beyond the question of, for example, how much shelf space is

desirable (the answer is that more is better) to address the question of how best to

deploy the available space.

To ensure to the degree possible that effects were not confounded, and taking

into account some practical considerations (to avoid two different prices for a

product in nearby stores and to address the concern about product complementarity

and substitutability), it was decided that each treatment combination would corre-

spond to a single store. (However, in addition to produce products, the actual study

included paper goods, meat, and medical-related products, so each supermarket

actually had four unrelated products under study.)

A full-factorial experiment would thus involve 28 ¼ 256 stores. This would be

very expensive and exceedingly difficult to manage. However, if all eight factors

were retained, along with the desired condition that no more than one (say, produce)

product is manipulated at each store, what could be done?We return to this example

at the end of the chapter.

11.1 2k�p Designs

Extending the notation of earlier chapters, we designate as 2k�p fractional-factorial

designs the two-level designs where k indicates the number of factors to be studied

and 2k�p gives the number of treatment combinations to be used. Thus, a 23–1 design

is one with three factors and four treatment combinations. The notation is important;

even though 23–1 is numerically equal to 22, we would not write it that way.

We could also call this design a half replicate of a 23 design, in that we can write

it as (23 � 2�1)¼ (23 � 1/2), although nobody really writes it that way either. A 22

design is one with two factors and four treatment combinations, and is a full
factorial, in that the same logic would give you 22�0¼ (22 � 20)¼ (22 � 1). By exten-
sion, a 25–2 design would have five factors and eight treatment combinations, and

could be called a quarter replicate of a 25 design.
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Example 11.2 A 23–1 Design

To illustrate the ideas involved in a two-level fractional design, we begin with an

example of a 23–1 design. Specifically, suppose that we run the following four

treatment combinations of the eight possible in a 23 design: a, b, c, and abc.
In this explanation, it helps to have available the table of signs for a 23 design, as

discussed in Chap. 9. Table 11.2 repeats this, and for easier reference, the above

four treatment combinations are highlighted. Recall that the table of signs shows

how to combine the responses of the eight experimental treatment combinations to

estimate the seven effects.

Here, however, we are running only four treatment combinations: a, b, c, and
abc. We begin, apparently arbitrarily, by writing the expressions for A and BC:

A ¼ 1=4ð Þ �1þ a� bþ ab� cþ ac� bcþ abc½ �
¼ 1=4ð Þ þa� b� cþ abcð Þ þ �1þ abþ ac� bcð Þ½ � ð11:1Þ

BC ¼ 1=4ð Þ þ1þ a� b� ab� c� acþ bcþ abc½ �
¼ 1=4ð Þ þa� b� cþ abcð Þ � �1þ abþ ac� bcð Þ½ � ð11:2Þ

Note that neither A nor BC can be estimated, because four of the eight treatment

combinations (1, ab, ac, bc) needed for the estimation of each are not available.

However, A and BC can be estimated in combination. That is, if we add together

Eqs. 11.1 and 11.2, the four missing yields cancel, and

Aþ BC ¼ 1=2ð Þ þa� b� cþ abcð Þ

The result is that the sum of A and BC can be estimated from only the four available

treatment combinations. In a similar manner, we can show that (B + AC) and (C +

AB) can also be estimated from only the same four yields:

Table 11.2 Table of signs for 23 full-factorial design

A B AB C AC BC ABC

1 � � + � + + �
a + � � � � + +
b � + � � + � +
ab + + + � � � �
c � � + + � � +
ac + � � + + � �
bc � + � + � + �
abc + + + + + + +
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Bþ AC ¼ 1=2ð Þ �aþ b� cþ abcð Þ
Cþ AB ¼ 1=2ð Þ �a� bþ cþ abcð Þ

On the other hand, ABC can be estimated by:

ABC ¼ 1=4ð Þ �1þ aþ b� abþ c� ac� bcþ abc½ �
¼ 1=4ð Þ þaþ bþ cþ abcð Þ þ �1� ab� ac� bcð Þ½ �

Note that ABC cannot be estimated at all, even in sum with another effect.3 We can

summarize our results with a modified table of signs specific to the particular half-

replicate design of a, b, c, abc, as in Table 11.3.

If all effects are important (that is, no effects can be assumed to be zero or

negligible), any apparent benefit from the foregoing is illusory; knowing (A
+BC)¼ 100, for example, tells us nothing about A or BC. True, A¼ 100�BC,
but since the value of BC is unknown (not even estimated!), we know nothing

specific about the value of A. We might say that these effects are “confounded,” but

it is more traditional to save that term for effects that are combined with block

effects, as discussed in Chap. 10. Instead, it is conventional (for reasons beyond the

scope of this discussion) to say that A and BC are aliased or are an alias pair of

effects. Aliased effects are knowable in combination (that is, in sum or, as we will

see, in difference), but not individually.

If, as suggested earlier, we know (that is, are willing to assume) that some effects

are zero, then we may be able to benefit from the above conception and analysis.

Suppose that all interactions can be assumed to be negligible – that is, the three

factors each independently (additively) affect the dependent variable (whether the

effect, on average, is zero or not). Then, we can determine all main effects from just

these four yields. We could say that we have “studied three factors for the price of

two” (that is, with four treatment combinations, not 2 � 2 � 2¼ 8 treatment combi-

nations) or that we have “studied three factors at half-price.”

In practice, we do not start with the treatment combinations and then see what

alias pairs result. (Doing that takes away the “design” from the phrase “design of

Table 11.3 Table of signs for a 23�1 design

AþBC BþAC CþAB

a + � �
b � + �
c � � +
abc + + +

3Using the logic of earlier chapters, with only four treatment combinations (and, say, no repli-

cates), we have only three degrees of freedom and can thus get estimates of only three effects. The
three pairs noted are those three estimates. In a sense, ABC is “wrapped up” in the estimate of the

grand mean – the mean of the eight treatments.
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experiments!”) Rather, we start by specifying which effects we wish to estimate

unambiguously – except, of course, for the ubiquitous “error” – and which effects

we are willing to assume are zero or negligible. These determinations are usually

specific to the situation and come from knowledge of the process under investiga-

tion. We can then design the experiment – determine which treatment combinations

will be run, and if the experiment must be run in more than one block, what the

blocks are.

Toward that end, let us go back and examine how the choice of treatment

combinations leads to specific alias pairs. That will guide us to perform the design

steps in the “reverse,” correct order.

Examine Table 11.4, which is the Table 11.2 sign table with an additional

bottom row showing the other member of each aliased pair of effects. Note that

there is a relationship between the totally lost effect, ABC, the highlighted treatment

combinations, and ultimately, the alias pairs. The four treatment combinations

correspond to rows in which the ABC column has all signs the same (in this case,

the plus sign). Note next that for each alias pair, the signs in the highlighted rows are

the same for each member of the pair, and the signs are opposite in each

non-highlighted row. (It’s easiest to observe this for the alias pair AB and C,
since they are in adjacent columns in Table 11.4). This must be the case to have

the cancellation of the treatment combinations not run, given that the alias pairs are

summed. Finally, observe the special relationship between the lost effect, ABC, and
the three alias pairs, (A + BC), (B + AC), and (C + AB). Is it coincidence that each of
these pairs seems to add up to – more specifically, multiply to (using the mod-2

multiplication introduced in Chap. 10 on confounding) – the lost effect? We’ll
investigate this relationship a bit later.

What would happen if we selected the set of treatment combinations whose rows

correspond to a negative sign in the ABC column? These are 1, ab, ac, and bc. In
that case, we would have the same alias pairs, but now connected by negative signs

(differences, instead of sums). We need to keep track of the signs, shown in

Table 11.5, in order to determine the sign of the nonzero effect: there’s a big

difference between concluding that A ¼ 37.2 and A ¼ �37.2.

Table 11.4 Table of signs for 23 full-factorial design

A B AB C AC BC ABC

1 − − + − + + −
a + − − − − + +
b − + − − + − +
ab + + + − − − −
c − − + + − − +
ac + − − + + − −
bc − + − + − + −
abc + + + + + + +

BC AC C AB B A
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Now consider running a different experiment, using the treatment combinations

corresponding to the positive signs in the effect AB. These are 1, ab, c, and abc,
highlighted in Table 11.6. Following the earlier discussion, observe that the alias

pairs are (A + B), (C + ABC), and (AC + BC); that is, for example, A and B have the

same sign for the highlighted rows and opposite signs for the non-highlighted rows.

No other column except B matches up (or “aliases”) with the A column in this

manner. And note that AB is not aliased with anything, and thus has been lost.

Ordinarily, we would not want a design like this because it makes aliases of two

main effects. Without one of them assumed to be zero, we cannot say much about

either of them. So not all designs are created equal: some are better than others!

A design with three two-level factors has seven effects: three main effects, three

two-factor interactions, and one three-way interaction. This is true whether we do a

full 23, a 23–1 half replicate or (making no sense, but numerically it exists) a 23–2

quarter replicate. In general, a 23–1 design loses one of the seven effects completely

and gets the other six in three aliased pairs of two effects each. This is consistent

with what we would expect from the degrees-of-freedom principle: with four

yields, we can estimate three independent (orthogonal) effects. So, the objective

is to select the right set of treatment combinations (that is, design the right

experiment) to obtain the effects of interest cleanly (obtain each effect by itself or

aliased with an effect or effects “known” to be zero), with the desired degree of

reliability, and by running the fewest possible treatment combinations.

Table 11.5 Table of signs for another 23�1 design

A�BC B�AC C�AB

1 � � �
ab + + �
ac + � +
bc � + +

Table 11.6 Table of signs for 23 full-factorial design

A B AB C AC BC ABC

1 − − + − + + −
a + − − − − + +
b − + − − + − +
ab + + + − − − −
c − − + + − − +
ac + − − + + − −
bc − + − + − + −
abc + + + + + + +

B A ABC BC AC C

378 11 Two-Level Fractional-Factorial Designs



Example 11.3 A Four-Factor, Half-Replicate Design

Another half-replicate example will further illustrate the nature of two-level frac-

tional-factorial designs. Consider a 24–1 design in which we use the eight treatment

combinations 1, ab, ac, bc, ad, bd, cd, and abcd, which are highlighted in

Table 11.7.

Note in Table 11.7 that we have again chosen the eight treatment combinations

(implying seven degrees of freedom) that correspond to the eight plus signs in the

column representing the effect ABCD. One effect, ABCD, is lost; we will estimate

the remaining 14 effects (out of the 24� 1¼ 15) in seven alias pairs: (A + BCD),
(B + ACD), (C + ABD), (D + ABC), (AB + CD), (AC + BD), and (BC + AD).
Table 11.8 is the table of signs for their calculation. Had we chosen the other eight

treatment combinations, the ones with minus signs in the ABCD column, we would

have had differences instead of sums of the same alias pairs.

Table 11.7 Table of signs for 24 full-factorial design

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

1 − − + − + + − − + + − + − − +
a + − − − − + + − − + + + + − −
b − + − − + − + − + − + + − + −
ab + + + − − − − − − − − + + + +
c − − + + − − + − + + − − + + −
ac + − − + + − − − − + + − − + +
bc − + − + − + − − + − + − + − +
abc + + + + + + + − − − − − − − −
d − − + − + + − + − − + − + + −
ad + − − − − + + + + − − − − + +
bd − + − − + − + + − + − − + − +
abd + + + − − − − + + + + − − − −
cd − − + + − − + + − − + + − − +
acd + − − + + − − + + − − + + − −
bcd − + − + − + − + − + − + − + −
abcd + + + + + + + + + + + + + + +

Table 11.8 Table of signs for 24�1 design using listed combinations

A+BCD B+ACD AB+CD C+ABD AC+BD BC+AD D+ABC

1 � � + � + + �
ab + + + � � � �
ac + � � + + � �
bc � + � + � + �
ad + � � � � + +
bd � + � � + � +
cd � � + + � � +
abcd + + + + + + +
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In the Table 11.8 design, all main effects are aliased with three-factor interac-

tions and two-factor interactions are aliased with other two-factor interactions. In

many practical applications, all main effects and some two-factor interaction effects

are of interest; the remaining effects are assumed to be zero or negligible. We have

the liberty to label (assign the letters to) the factors as we wish.

Suppose we are evaluating the impact of four factors on lateness of worker

arrival at a work location. The four factors are official start time, traffic congestion,

rank in the organization, and weather. Further suppose that there are no interactions

involving the rank factor. We could label that factor D. The remaining factors could

be labeled A, B, and C. Relative to Table 11.8, then, all main effects and all not-

assumed-zero two-way interactions are “clean.” (Remember: based on empirical

evidence, three-factor and higher-order interaction effects are assumed to be zero in

almost all real-world applications.)

Again, in this example, we have evidence of a special relationship between the

lost effect (here, ABCD) and the alias pairings that result. We examine this defining

relationship in the next, more complex example. Fortunately, we can design

two-level fractional-factorial experiments without resorting to the sign table.

We’ve used the sign table thus far to demonstrate the existence of patterns and

relationships that underlie our development of the experimental-design techniques.

Example 11.4 A Five-Factor, Half-Replicate Design

Suppose we have a process in which five factors are to be studied, each at two

levels. We want to estimate all main effects and some of the lower-order interac-

tions cleanly. We might start by considering a 25–1 fractional-factorial design, for a

variety of reasons. For example, perhaps our budget allows a maximum of only

16 treatment combinations. Actually, we should explicitly repeat the philosophy

that underlies the popularity of fractional-factorial designs:

For those who believe that the world is a relatively simple place, higher-
order interactions can be announced to be zero in advance of the inquiry.
Prevailing wisdom is that fractional-factorial designs are almost inevitable
in a many-factor situation. For example, it is generally better to study
six factors with a quarter replicate (26�2¼ 16) than four factors completely
(24¼ 16). Whatever else the world is, it’s multifactored.

As discussed earlier, what counts are the specific alias groups and what is

estimated cleanly given which assumptions. Also, the overall number of data values

may be an issue, as this affects the power of the F-tests (discussed later in this

chapter). Returning to the five-factor example with factors A, B, C, D, and E, the

design procedure involves educated trial and error and gets faster with experience.

At this point, we know that we must acknowledge the 25� 1¼ 31 effects of a full-

factorial design; of these, one effect, which we will specify, will be lost, and the

remaining 30 effects will be grouped into 15 alias pairs. This is a half-replicate
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design in which we will run 16 treatment combinations, thus having 15 degrees of
freedom. A condition necessary to ensure that we are on the right path (or at least

a right path) is that we get the same result (in this case, 15) from reasoning out the

number of alias groups and the degrees of freedom. From that, we know that our

selection of the effect to be lost determines how the remaining effects are paired.

Let us choose ABDE as the lost effect and write this choice in a form called a

defining relation or a defining contrast:

I ¼ ABDE

The designation I indicates what in group theory is called an identity element, in

this case for the mod-2 multiplication operation, as defined in Chap. 10.

(We needn’t delve further into group theory; however, use of the mod-2 multipli-

cation operation will be very important.) It is traditional to indicate the alias

relationship by an ¼ sign, which will eventually be replaced by a þ or a � sign,

depending, as we saw earlier, on which half we choose to run – the treatment

combinations in rows corresponding with plus or minus signs in the ABDE column.

We now determine the alias pairs. First, we pick an effect, say A. (It’s not

mandatory, but usually one begins with the main effects and proceeds alphabeti-

cally.) To find the alias pairing that goes with A, simply multiply A times the

defining relation, using mod-2 multiplication. This pairs A with BDE, since

A � ABDE ¼ A2BDE
� � ¼ BDE

In essence, we multiply the defining relation equation by A. Thus, A � (I¼ABDE)
yields the pairing of A and BDE (A¼ BDE). The alias pairs are shown in Table 11.9.
In practice, we might not list the higher-order interaction effects explicitly, because

we assume they are zero anyway. Instead, we might simply give them a number that

corresponds to the number of letters in the effect. For example, BDE becomes

3, ABCDE becomes 5, and the like. This shorthand simply saves time. Table 11.9

shows higher-order interaction effects instead of the shorthand number only for

tutorial purposes.

If our selection of a defining relation ultimately gives a set of unacceptable

pairings, such as a main effect aliased with another main effect, we drop that design

and look for a better choice by trying another defining relation.

At this point, we don’t yet have the sign connecting the effects, we have not

determined how to select the treatment combinations required to result in the

Table 11.9 Alias pairs, I ¼ ABDE

A ¼ BDE AB ¼ DE CD ¼ ABCE
B ¼ ADE AC ¼ BCDE CE ¼ ABCD
C ¼ ABCDE AD ¼ BE ABC ¼ CDE
D ¼ ABE AE ¼ BD BCD ¼ ACE
E ¼ ABD BC ¼ ACDE BCE ¼ ACD
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Table 11.9 alias pairs, and we haven’t figured out how to compute the effects once

we’ve determined the appropriate treatment combinations and collected the data.

Nevertheless, we can assess the merits of the design.

It looks good at first glance: all main effects except C are aliased with three-

factor interactions; C is aliased with a five-factor interaction. All two-factor inter-

actions involving C are aliased with four-factor interactions; two-factor interactions

not involving C are aliased with other two-factor interactions. This design gives

factor C preferential treatment; if we are especially interested in one factor more

than the others, we would label it C.

Note also that A, B,D, and E are treated equally in the I¼ ABDE defining relation;

that is, all four letters are there or all four are not. In this case, they are all present,

which means they are treated equally in the alias pairings: for each of these four

factors, (1) eachmain effect is aliasedwith a three-way interaction; (2) each two-factor

interaction involving two of these four factors is aliased with another two-factor

interaction involving two of these four factors; and (3) each two-factor interaction

involving C and one of these four factors is aliased with a four-factor interaction.

We can simplify the design effort by using such symmetries. For example, when

inquiring how main effects are treated by a defining relation, we can figure out how

A is treated and know that it is the same for B, D, and E.
We can pick a different defining relation. Suppose, knowing that we have to lose

one effect entirely, that we opt to lose the highest-order interaction effect, ABCDE,
and write I ¼ ABCDE. In that case, Table 11.10 shows the alias pairs. Here, all

factors are treated alike; all main and two-factor interaction effects are clean if all

three-factor and higher-order interactions are assumed to be zero.

We could examine other designs, but these two look good. Which we should use

depends on the application. The second design, with I ¼ ABCDE, is a classic; the
earlier design is, as noted, a wise choice if one factor, the one we called C, is

overwhelmingly more important than the other factors. For example, we recall an

application in which one of the factors was amount (“level”) of gold that was

optimal in a manufacturing application. Its effect was considered of overwhelming

importance due to the cost of gold relative to the cost of the other factors, and this

I ¼ ABDE design was used.

In the current example, we will proceed with the first, I ¼ ABDE design and

determine the two possible sets of treatment combinations that give us the alias

pairings of Table 11.9. To do this, we use the same technique developed in Chap.10,

Table 11.10 Alias pairs, I ¼ ABCDE

A ¼ BCDE AE ¼ BCD
B ¼ ACDE BC ¼ ADE
C ¼ ABCE BD ¼ ACE
D ¼ ABCE BE ¼ ACD
E ¼ ABCD CD ¼ ABE
AB ¼ CDE CE ¼ ABD
AC ¼ BDE DE ¼ ABC
AD ¼ BCE
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on confounding, to find the two blocks that allow us to lose only ABDE. Table 11.11
shows the two blocks, highlighting the “innovative” treatment combinations as we did

in Chap. 10. Our solution for a half replicate is to run either of these two blocks.

Although we’ve identified the two appropriate sets of treatment combinations for

I ¼ ABDE, we will, of course, use only one. This is one way to distinguish

confounding schemes from fractionating. In the former, we divide the entire set of

treatment combinations into blocks, but run all the treatment combinations. In frac-

tionating, we also divide the entire set of treatment combinations into blocks, but run

only one of the blocks. (We can also bring both concepts, confounding and fraction-

ating, to bear in the same experiment; that is, we can divide a fractional experiment

into blocks. This issue is exemplified in Exercises 6 and 7 at the end of this chapter.)

Statistically, the blocks are equivalent. In practice, however, one block could be

preferable to the other – for example, in Table 11.11, suppose that the treatment

combination with all factors at high level is a chemically volatile combination; then

one can purposely choose the second block above to avoid abcde. Or perhaps one
set contains less expensive or less time-consuming treatment combinations, or one

set includes some treatment combinations that are run anyway during the normal

course of business.

In this continuing illustration, we’ll arbitrarily pick the second block to run.

Presume that we’ve run the experiment and now have the data. The next step is to

analyze the data.

11.2 Yates’ Algorithm Revisited

In Chap. 9, we demonstrated how to use Yates’ (forward) algorithm to estimate the

effects based on the data. We started by arranging the data in standard Yates’ order.
This made use of all of the 2k treatment combinations in the full-factorial design.

Here, however, we don’t have all treatment combinations – we have only half of

them – and must therefore first generate a “workable” Yates’ order – an order that,

when Yates’ algorithm is routinely implemented, results in the same systematic

approach to estimate the effects as earlier. It turns out that one cannot simply take

the treatment combinations of the fractional replicate and put them in Yates’

Table 11.11 Blocks for I ¼ ABDE design

Principal block Second block

1 c a ac
ab abc b bc
de cde ade acde
abde abcde bde bcde
ad acd d cd
bd bcd abd abcd
ae ace e ce
be bce abe abce
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standard order “with gaps.” On occasion, doing that will (fortuitously) give us a

workable Yates’ order, but, in general, it won’t.
The technique of creating a workable Yates’ order is required in two-level

fractional-factorial designs if the effects are to be found “by hand.” If software is

used, as in Examples 11.9 and 11.10, all the better – we avoid this seemingly

elaborate, although easily mastered, technique.

Before undertaking an example, let’s get an overview of the technique. To start,

we arbitrarily pick one of the letters in our study and, for the moment, call it “dead.”

By letters, we mean the lowercase letters corresponding to the factors under study.

Continuing our 25–1 study of Example 11.4, we have the five letters (a, b, c, d, e).
After picking a dead letter, we then form a standard Yates’ order using the

remaining (in this case, four) “live” letters. That is, we “make believe” that the

remaining four letters are the first four letters of the alphabet (whether they truly are

or not). Finally, we append the dead letter as necessary to the (make-believe)

standard Yates’ order, to create the block chosen to be run. (We could say that

the dead letter is “resurrected” as needed.) When we are through, we will have

arranged all treatment combinations of our half-replicate design in an order that

facilitates routine use of Yates’ forward algorithm; that is, we will have arranged a

“workable” Yates’ order. We now illustrate the technique – like that of Yates’
algorithm in Chap. 9, the technique is more easily illustrated than described.

Example 11.5 Creating a Workable Yates’ Order

For our example, we will arbitrarily pick d to be the dead letter. In Table 11.12, we
first create a standard Yates’ order with the remaining live letters, a, b, c, and e; note
that we have also set up a template for Yates’ algorithm.

Table 11.12 Template for Yates’ algorithm: 25�1 design

Yates’ Algorithm

Standard

Yates’ order
Response

(Data)
1 2 3 4

8 � Estimated

effects

1 �
a A�BDE
b B�ADE
ab AB�DE
c C�ABCDE
ac AC�BCDE
bc BC�ACDE
abc ABC�CDE
e E�ABD
ae AE�BD
be BE�AD
abe ABE�D
ce CE�ABCD
ace ACE�BCD
bce BCE�ACD
abce ABCE�CD
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However, we need to say a few words about the details of the template. First,

note that the “standard Yates’ order” column includes only the “live” letters (a, b, c,
and e). Next, after the response (data) column, we have written four columns for

applying Yates’ algorithm. Why four columns instead of five? After all, in Chap. 9

we learned that if we have a 2k, we must apply Yates’ algorithm k times! However,

this design is a 25–1, not a 25. From the point of view of the algorithm, the number of

treatment combinations, 16, looks like a 24. Indeed, the rule that applies to using

Yates’ algorithm in a fractional-factorial design is that Yates’ algorithm must be

applied (k � p) times; here, (k � p) ¼ 4. Finally, note that in the last column, we

begin by writing the effect (using capital letters) corresponding to the treatment

combination in the standard Yates’ order column. This is exactly what we did in

Chap. 9. However, here we also write the other member of the alias pair, connected

by the appropriate sign. Since we chose to run the second block, a glance at the sign

table would reveal that each treatment combination in this second block has a minus

sign in the calculation of ABDE, so that is the appropriate sign connecting the alias

members. Later, we discuss a way to determine the appropriate sign without having

to resort to the sign table. The estimates produced in the last column would then, as

indicated in the column heading, be divided by 8, where, following the Chap. 9

discussion, 8 is half of 25�1¼ 16.

We now append d in order to create the second block in a workable Yates’ order,
as shown in Table 11.13. The first column repeats the standard Yates’ order of
Table 11.12; the second column indicates the treatment combinations with

d appended, but only when needed to produce a member of the second block, the

block we have chosen to run. This appending process may seem somewhat daunting

and arbitrary. It is neither. In fact, what really makes this process simple is that in

every case, only one of the appending choices works (the other doesn’t)! For

example, consider the first row. The first column has the treatment combination

“1” – if we append d to it, then, as noted in the workable Yates’ order column, the

result is d, a member of the second block. If we do not append d, we stay with the

treatment combination 1 – and this is not a member of the second block. The same

holds for each row. For the second row, we begin with a – it is (already) a member

of the second block. If we did append d, getting ad, we would then not have a

member of the second block.
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The regular pattern of the presence or absence of the appended dead letter is not

just coincidental. For example, in Table 11.13, d is appended for each set of four

treatment combinations in the pattern 1–4, 1–4, then 2–3, 2–3. This is not always

the pattern, but there is always some identifiable pattern; for example: 1–4, 1–4,

then 1–4, 1–4 again. Although this subject of the “appending pattern” has rarely, if

ever, been explicitly addressed in the literature, the authors have observed it over

many years and over many designed and analyzed two-level fractional-factorial

experiments. Such patterns should not be surprising, given similar patterns embed-

ded in the sign tables. Absence of such a pattern would be, in our view, an indicator

of error, rather than simply an exception. The prudent designer will look for the

presence of such a pattern as an indicator of the way things should be.

11.3 Quarter-Replicate Designs

Suppose that we desire to study five factors and believe that all interactions are zero

or negligible; then our goal is to estimate the five main effects. To estimate these

main effects with the lowest fractional replicate of a 25, a degrees-of-freedom

argument would lead us to consider a 25–2 fractional-factorial design. That is, we

want to estimate five main effects. Since each factor has two levels, each main

effect “consumes,” or requires, one degree of freedom (that is, 2� 1¼ 1), for a total

of five degrees of freedom needed. The minimum value of “25�p less one” degrees

of freedom that exceeds five is seven, which implies that p ¼ 2. In the following

example, we will examine designing a 25–2 to estimate the main effect of five

Table 11.13 Yates’ algorithm: 25�1 design, I ¼ ABDE, with appended letters

Yates’ Algorithm

Standard

Yates’ order
Workable

Yates’ order
Response

(Data) 1 2 3 4

8 � Estimated

effects

1 1 (d ) �
a a A�BDE
b b B�ADE
ab ab (d ) AB�DE
c c (d ) C�ABCDE
ac ac AC�BCDE
bc bc BC�ACDE
abc abc (d ) ABC�CDE
e e E�ABD
ae ae (d ) AE�BD
be be (d ) BE�AD
abe abe ABE�D
ce ce CE�ABCD
ace ace (d ) ACE�BCD
bce bce (d ) BCE�ACD
abce abce ABCE�CD
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factors: A, B, C, D, and E.4 Note that this could be described as “studying five

factors for the price of three.”

Example 11.6 A Five-Factor, Quarter-Replicate Design

We know that a 25–2 has eight treatment combinations. On the basis of our previous

discussion in this chapter, we would liken this to a 25 full-factorial design con-

founded into four blocks, with the (major) extra consideration that we will run only
one block. As discussed in Chap. 10, when we confound into four blocks, we lose

three effects entirely. In the setting of a fractional-factorial design, we write these

three effects as a defining relationship containing I and the three effects. And again,
as in Chap. 10, the three effects chosen to be lost, or members of the defining

relationship, are not independent. We can specify two of them and the third must be

the mod-2 product of the first two. The remaining effects (31� 3¼ 28 of them)

must be shared by the seven degrees of freedom available (again, eight treatment

combinations less one is seven), so they will be represented in seven alias groups of

four effects each. Table 11.14 shows the alias groups for the defining relation, I ¼
ABC ¼ BCDE ¼ ADE. Note that the third effect, ADE, is the mod-2 product of the

first two effects, as it must be. Recall: if we look at the row with A, we derive BC by

A �ABC, ABCDE by A �BCDE, andDE by A �ADE, and similarly for the other rows.

Our choice of defining relation was made carefully. It’s hard to imagine how we

could choose a superior one. All main effects are aliased with interaction effects

(that is, not with other main effects) and the bottom two alias rows each allow the

possibility of estimating a two-factor interaction, should there be any material

doubt about one or two of them. As noted earlier in the chapter, although the

bottom alias row, for example, lists the interactions BD and BE, we could get AE to

appear there by exchanging A and B in all terms of the defining relation.

Table 11.14 Alias groups for 25�2, I ¼ ABC ¼ BCDE ¼ ADE

I ¼ ABC ¼ BCDE ¼ ADE

A ¼ BC ¼ ABCDE ¼ DE
B ¼ AC ¼ CDE ¼ ABDE
C ¼ AB ¼ BDE ¼ ACDE
D ¼ ABCD ¼ BCE ¼ AE
E ¼ ABCE ¼ BCD ¼ AD
BD ¼ ACD ¼ CE ¼ ABE
BE ¼ ACE ¼ CD ¼ ABD

4If one is interested in seven or fewer estimates to be clean, this is a necessary – but not sufficient –

condition to having a design with eight treatments, that is, k � p ¼ 3. Consider, for example, that

instead of the main effects, we want A, B, C, D, E, AB, and CD to be clean. There is no 25–2 design

that works in this case.
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To proceed with our design, we follow the procedure in Chap. 10 to generate the

principal block and the three other blocks as shown in Table 11.15 (again, the

“innovated” treatment combinations are highlighted).

Once again, we select a block and then run the experiment. Assume we pick the

principal block (block 1). Because the design is a 2k�2 (that is, 2 to the power

[k � 2]), setting up a Yates’ algorithm template for analysis requires that we select

two letters as dead; in general, we need to choose p dead letters. We arbitrarily pick

b and d. In Table 11.16, we start with a standard Yates’ order, append the dead

letters as required to generate the treatment combinations of the principal block, and

proceed as before.

Specifically, we take the first column with the standard Yates’ order in the three

“live” letters (a, c, e) and form the second column by appending one of the

following as needed to form the principal block: (1) neither b nor d, (2) b alone,

(3) d alone, or (4) both b and d. Again, there is only one “right way” the appending

can be done – looking at the second row, which begins with a, if we append only

b (getting ab), only d (getting ad) or neither b nor d (keeping a), we would not get a
member of the principal block. Only appending both b and d gets us a member of

the principal block, abd. Note the pattern of appending: none, bd, b, d, and then the
mirror image of that.

Table 11.15 Treatment combinations, I ¼ ABC ¼ BCDE ¼ ADE

Block 1 Block 2 Block 3 Block 4

1 a b d
abd bd ad ab
bc abc c bcd
acd cd abcd ac
de ade abcd ac
abe be ae abde
bcde abcde cde bce
ace ce abce acde

Table 11.16 Yates’ algorithm: 25�2 design, I ¼ ABC ¼ BCDE ¼ ADE

Yates’ algorithm

Standard

Yates’ order
Workable

Yates’ order
Response

(Data) 1 2 3 4 � Estimated effects

1 1 �
a a (bd) A�BC+ABCDE�DE
c c (b) C�AB+BDE�ACDE
ac ac (d ) AC�B+ABDE�CDE
e e (d ) E�ABCE +BCD�AD
ae ae (b) AE�BCE+ABC�D
ce ce (bd) CE�ABE+BD�ACD
ace ace ACE�BE+ABD�CD
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Table 11.16 shows our results so far, including the appropriate signs joining the

members of each alias group, and highlights the five main effects in boldface. As

mentioned, were there one or two important two-factor interactions, we would

arrange to label our factors such that we can estimate them in the bottom two

alias groups/rows. Also, as noted before, the signs are important. Note that B and

D carry negative signs. (If every effect of interest were the first listed in every alias

group, the particular signs joining alias group members would perhaps be moot.

However, that is rarely the case.) We need not go to the sign table to determine the

correct signs, though doing so certainly provides the correct answer. Instead, we can

use the following “good-to-know” rule:

A treatment combination with an even number of letters in common with an
even-lettered effect gets a plus sign in the calculation of that effect. A
treatment combination with an odd number of letters in common with an
odd-lettered effect also gets a plus sign in the calculation of that effect.
Otherwise, the treatment combination gets a minus sign.

The following table illustrates this rule:

No. of letters treatment

combination has in

common with effect

No. of letters in effect

Even Odd

Even + �
Odd � +

For example, in the calculation of ABCDE, abd has three letters (an odd number) in

common with ABCDE (a, b, and d ), and ABCDE contains five letters (an odd

number), so it is a case of “odd number of letters in common with an effect that has

an odd number of letters,” the lower right cell (odd, odd) in the even/odd table.

Thus, abd has a plus sign in the sign table under ABCDE. Another example: in the

calculation of ABCDFG (for which we don’t have a sign table – our sign table in

Chap. 9 goes up to only five letters/factors), abce has three letters (odd) in common

with ABCDFG (a, b, and c), and ABCDFG has six letters (even). So, we have a case

of “odd in common with even,” the lower left cell (odd, even) in the table, and thus

abce has a minus sign in the calculation of ABCDFG. An alternative version of the

rule would be to identify how many letters in the effect are not included in the

treatment combination. If it is an even number, the effect will have a þ for that

treatment combination; otherwise, if the number is odd, the effect gets a � sign.5

For the example abd and ABCDE, we have two letters (even number) not included,

C and E, hence, a þ sign.

5Professors are always learning with their students, especially in a class of somewhat advanced

material. This easier method for the “good-to-know” rule was proposed by Joe Bush of the

U.S. Army Corp of Engineers R&D Center, while a student in the 14.37S course taught by one

of the authors at MIT in 2012.
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The determination of the sign for each alias column is facilitated through the use

of this rule. We can examine any one treatment combination in the second column

of Table 11.16 – that is, the treatment combinations after appending, so that we

have those actually run – and apply the rule with that one treatment combination

(it would come out the same for any of the treatment combinations) and each term

of the defining relation. For example, suppose that we examine abd. With ABC, abd
has two (even) in common with an odd (three letters in ABC); hence, all second
terms of the alias groups are preceded by minus signs. With BCDE, abd has two

(even) in common with an even (four letters in BCDE); hence, all third terms of the

alias groups are preceded by a plus sign. Similarly, all fourth terms of the alias

groups are preceded by a minus sign. (In this example, using the abd treatment

combinations was for illustration only; using the 1 observation would likely be

simpler.)

11.4 Selection of a Workable Set of Dead Letters

To summarize what we have done so far, our procedure for using Yates’ algorithm
for a 2k�p fractional-factorial design requires us to determine a workable Yates’
order. The way to do this, in turn, involves the selection of p (of the k) letters to be

temporarily designated as “dead” letters. Next, a standard Yates’ order is formed

using only the “live” letters. Then, the dead letters are appended to the treatment

combinations of this standard Yates’ order as needed to form the block that is

actually chosen to be run.

Most, but not all, choices of dead letters allow the easy formation of the

treatment combinations of the selected block, along with the “can’t go wrong”

unique choice of appending the dead letter(s). We avoided mentioning this earlier

so as not to complicate the discussion and because in practice, very often all choices

of dead letters will work! If we do find that we’ve unluckily chosen a set of dead

letters that does not allow us to form the block we selected to run (that is, there’s no
way to append the dead letters that gets us the treatment combinations we need), we

can simply choose another set of letters and try again – it is unlikely that we would

have to make more than one (or at most two) selection of dead letters. Occasionally,

a choice is not workable. This section presents an algorithm that ensures selection

of a workable set of letters.6

We begin by listing p independent terms of the defining relation. In Example

11.6, the 25–2 design where we had I¼ ABC¼ BCDE¼ ADE, any two terms might

be considered the independent terms, whereas the third is defined as their mod-2

product. We’ll arbitrarily select the first two: ABC and BCDE.

6This algorithm was derived and first published by one of the authors. A more detailed discussion

can be found in P. D. Berger (1972), “On Yates’ Order in Fractional Factorial Designs.”

Technometrics, vol. 14, n. 4, pp. 971–972.
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Next, we pick one letter from the first term; this will be our first dead letter. Say

we pick a. We then examine the second term of the defining relation and, if the first

dead letter is not there, we can choose any letter from this second term of the

defining relation and use it as the second dead letter. Since a is not included in

BCDE, we could use a and b, a and c, a and d, or a and e (that is, a and any other

letter) as our dead letters. Going back one step, if we had picked b as the first dead

letter, we would have found it present as well in BCDE; in this instance, we must

multiply the two terms of the defining relation, getting ABC �BCDE¼ADE (which,

of course, will be another term in the defining relation), and pick any one of the

letters from the mod-2 product as our second dead letter. So, we can use b and

a (as we did above), b and d (as we did earlier in Example 11.6), or b and e. Note
that b and c is one set that is precluded.

In this example, there are ten possible choices; only two (b and c, and d and e)
are not workable. Observe that each of these two pairs of letters occur together an

even number of times; as a good heuristic, this pattern is something to avoid if we

choose not to use this algorithm in a formal way. For a half replicate, where one

letter is to be chosen as dead, the algorithm reduces to the choosing of any letter in

the (one term of the) defining relation. The large majority of half replicates have a

defining relationship of I ¼ highest order interaction, so any letter at all will be a

workable (set of one) dead letter.

We continue with a 26–3 example; here, we need p¼ 3 dead letters. Suppose that

the defining relation is I¼ ABC¼ AEF¼ BDF¼ BCEF¼ ACDF¼ ABDE¼ CDE
(note that this defining relation results in all main effects being clean if all

interaction effects are assumed to be zero). The first three terms are independent

(none of them is the mod-2 product of the other two, and the three generate the

subsequent four effects); we’ll start with them:

ABC AEF BDF

From the first term, say we choose b. The second term does not contain b, so we
leave it as is. The third term does contain b; thus, we multiply it by the first term,

getting ACDF. This leaves us with:

AEF ACDF

From AEF, say we choose f. The third term contains f, so we take the mod-2 product

of AEF and ACDF, leaving us with

CDE

From CDE, we can take c, d or e as our third dead letter. Thus, workable sets,

among many others, are b, f, c (b, c, f ), or b, f, d (b, d, f ), or b, f, e (b, e, f ).
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11.5 Orthogonality Revisited

We now return to orthogonality, the subject matter of Chap. 5, and examine

two-level full- and fractional-factorial designs from the perspective that estimates

of the main effects and interaction effects form an orthogonal (and ultimately

orthonormal) matrix as defined and discussed previously. In particular, we use

this connection to develop procedures for significance testing of factorial-design

and fractional-factorial-design estimates. To start, recall that the table of signs for a

22 design is as follows:

A B AB

1 � � +
a + � �
b � + �
ab + + +

The sign table facilitates the calculation of the effects. Recall from Chap. 9 that

the columns of the table of signs are orthogonal; the inner product of any two

(different) columns equals zero when the signs are treated asþ1’s and�1’s – which
is what, in essence, they are. It’s only as a shorthand that we don’t write the 1’s
explicitly. The minus signs mean “multiply the corresponding yields by minus

one,” the plus signs mean “multiply the corresponding yields by plus one.” We then

add up the products and divide by two to get the results:

A ¼ �1þ a� bþ abð Þ=2
B ¼ �1� aþ bþ abð Þ=2
AB ¼ 1� a� bþ abð Þ=2

We could have obtained the same result, following the development of Chap. 5,

by defining the orthonormal matrix below. The rows of this matrix are the effects

and correspond to the columns of the sign table7; in addition, as is typical, the scale

factor is explicitly in evidence. As a quick review, note that the sum of each row

equals zero, the inner product of any two different rows is zero, and the sum of the

squares of each term in a row equals 1.8 The rows of this orthonormal matrix are A,
B, and AB, in that order:

7Whether the effects are in columns and the treatment combinations in rows (as in the sign tables in

general) or the transpose of that – the effects in rows and the treatment combinations represented

by columns (as in the orthogonal matrices of Chap. 5 and the one below the reference to this note) –

is simply a matter of the respective traditions.
8Note the coincidence in this example: for a 22 design, we divide by 2 when finding the effects and

by
ffiffiffi
4

p ¼ 2 when forming the orthonormal table. This is not true for other designs. Taking a 23

design, for example, we would divide by 4 when finding the effects and by
ffiffiffi
8

p
when forming the

orthonormal table.
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1 a b ab

�1/2 1/2 �1/2 1/2
�1/2 �1/2 1/2 1/2
1/2 �1/2 �1/2 1/2

We embedded the rows of this matrix in Table 11.17, our calculation table.

Table 11.17 demonstrates that A, B, and AB are orthogonal estimates and all of

the statistical analysis developed in Chap. 5 applies here as well – breaking down

sums of squares into orthogonal components and testing their significance using

single-degree-of-freedom F testing. Thus, as noted earlier, we shall use this frame-

work with the F test as our method of testing for significant effects in 2k and 2k�p

designs.

Example 11.7 Boosting Attendance for a Training Seminar

Let’s look at an example of significance testing in a 2k�p design. Suppose that we

first perform a “routine” one-factor analysis with six replicates of each of four

levels of a factor. The response (that is, the Yij’s) is the percentage of people from a

particular company showing up at an optional after-hours training seminar. Four

motivational techniques are being tested, one technique at each company, 24 com-

panies participating. That is, each technique was tried out at six companies. Assume

that the results are as shown in Table 11.18.

Table 11.19 gives the one-way ANOVA table for the results. For α ¼ .05 and df
¼ (3, 20), we have a critical value c (from the F table or Excel command) of 3.1. We

can calculate that Fcalc ¼ 5.4, which exceeds 3.1, so we conclude that the result is

significant; that is, we reject the null hypothesis that the (true) column means are

Table 11.17 Calculation of Zi from Yj

1 a b ab Z Z2

�1/2 1/2 �1/2 1/2 Z1¼ � (1/2)1þ (1/2)a� (1/2)bþ (1/2)ab¼A Z2
1 ¼ A2

�1/2 �1/2 1/2 1/2 Z2¼ � (1/2)1� (1/2)aþ (1/2)bþ (1/2)ab¼B Z2
2 ¼ B2

1/2 �1/2 �1/2 1/2 Z3¼ (1/2)1� (1/2)a� (1/2)bþ (1/2)ab¼AB Z2
3 ¼ ABð Þ2

Table 11.18 Percentage attendance by technique

Technique 1 Technique 2 Technique 3 Technique 4

16 28 16 28
22 27 25 30
16 17 16 19
10 20 16 18
18 23 19 24
8 23 16 25

�Y1 ¼ 15 �Y2 ¼ 23 �Y3 ¼ 18 �Y4 ¼ 24
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equal and conclude that the column means are not all the same – the level of the

factor does affect attendance.

Suppose we are now told that promotional technique 1 is a low amount of poster

deployment and a low amount of prizes awarded, technique 2 is a high amount of

poster deployment and a low amount of prizes awarded, technique 3 is a low

amount of poster deployment and a high amount of prizes awarded, and technique

4 is a high amount of both poster deployment and prizes awarded. In essence,

techniques 1, 2, 3, and 4 are really (1, a, b, ab) of a 22 design in which factor A is the

amount of poster deployment (low, high) and factor B is the amount of prizes

awarded (low, high). That is, a 22 study is embedded in the one factor, “column.”

(It’s only for clarity of presentation that we use the “just found out” ruse; obviously,
the ideal case is that the embedded 22 study is part of designing the experiment.)

We can calculate A, B, and AB using the sign table, by using Yates’ forward
algorithm (which is what the authors advocate) or we could use the earlier orthog-

onal matrix. The result is the same, as it must be, regardless of our choice. From the

sign table,

A ¼ 1=2ð Þ �15þ 23� 18þ 24ð Þ ¼ 7

B ¼ 1=2ð Þ �15� 23þ 18þ 24ð Þ ¼ 2

AB ¼ 1=2ð Þ 15� 23� 18þ 24ð Þ ¼ �1

Using Yates’ algorithm, we would set up the following table:

Treatment

combination Yield (1) (2)

Estimate

divided byffiffiffi
4

p ¼ 2

1 15 38 80 �
a 23 42 14 7
b 18 8 4 2
ab 24 6 �2 �1

As a practical matter, if doing the arithmetic by hand/calculator, we often

“conceptualize” the effects as being derived from the sign table, but in actuality,

the calculations are done using Yates’ algorithm, as above.

Using the orthogonality formulation first introduced in Chap. 5 and discussed

above as applying to a 2k and 2k�p design, we find the sum of squares for each effect

by first finding the square of each effect, and then multiplying each of these by the

number of rows, R (here, 6); this yields the following calculation for SSQ:

Table 11.19 ANOVA table

Source of variability SSQ df MS Fcalc

Column 324 3 108 5.4

Error 400 20 20

Total 724 23
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Z Z2 SSQ¼ 6Z2

7 49 294
2 4 24
�1 1 6

Total ¼ 324

Finally, we determine the significance of the estimates by using an “augmented”

ANOVA table (Table 11.20), which shows that it is appropriate to use degrees of

freedom of (1, 20) for significance testing of the effects. At α ¼ .05, c ¼ 4.3, only

A is significant. We would conclude that the amount of poster deployment does

have an impact on the percentage of people who show up for the after-hours training

session, and that the amount of prizes awarded does not. There is no interaction

between the amount of poster deployment and amount of prizes awarded, which

essentially indicates that the effect of amount of poster deployment is constant

across levels of amount of prizes awarded.9 Apparently, attendance improves if

people are reminded adequately of the event, but people are not especially moti-

vated by the potential of winning prizes.

We can extend this approach to fractional-factorial designs. Suppose we have

the same numerical data, except that the four techniques are combinations of three
factors, amount of poster deployment (A), amount of prizes awarded (B), and the

third factor, amount of encouragement by the person’s supervisor (C). The follow-
ing table shows the levels used in each technique.

Factor level

Technique A B C Treatment combination

1 Low Low High c
2 High Low Low a
3 Low High Low b
4 High High High abc

Table 11.20 ANOVA table for 22 design

Source of variability SSQ df MS Fcalc

Column 324 3 108 5.4

A 294 1 294 14.7

B 24 1 24 1.2

AB 6 1 6 .3

Error 400 20 20

Total 724 23

9We are, of course, aware that we have not used the technically correct wording. To do so, we

should say something like, “We reject the hypothesis that the amount of poster deployment has no

effect (. . .),” and for prizes, “We cannot reject the hypothesis that (. . .).” At times, we prefer to

avoid such double negatives.
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This corresponds to a 23–1 design, with I ¼ ABC. With the numerical quantities

the same as in the 22 design, we get the same numerical values in the ANOVA table

(Table 11.21) that we did in Table 11.20, with some slight changes in “labels.” Note

that each of the treatment combinations has an odd number of letters in common

with an odd-lettered effect, so the signs connecting the members of the alias pairs

are pluses, as noted in the Table 11.21 sub-column “Source of Variability.”

Presumably, we would not run an experiment like this one unless we were

comfortable with the assumption that all interaction effects are zero. In this case,

the only significant effect is, again, for factor A: amount of poster deployment.

Example 11.8 Magazine-Advertising Study

An ad agency wished to study six two-level factors related to magazine ads, as

indicated in Table 11.22. The dependent variable was the number of people in a

sample of 500 who recalled a specific ad, after being asked to read a new issue of a

magazine in which the ad appeared. Each person was asked to read a magazine

already indicated in a screening test to be one that he or she read regularly (that is,

that person had read at least three of the last four issues).

Table 11.21 ANOVA table for 23�1 design

Source of variability SSQ df MS Fcalc

Column 324 3 108 5.4

A + BC 294 1 294 14.7

B þ AC 24 1 24 1.2

AB þ C 6 1 6 .3

Error 400 20 20

Total 724 23

Table 11.22 Factors in advertising study

Factor Levels

A ¼ Size of ad Eighth of page
Quarter of page

B ¼ Color Black and white
Two colors

C ¼ Location Top of page
Bottom of page

D ¼ Rest of page Mostly ads
Mostly article

E ¼ Ad layout “Cluttered”
“More white”

F ¼ Magazine Magazine X
Magazine Y
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The sponsoring ad agency was willing to assume that all interaction effects

except two-factor interactions involving factor F were zero. This assumption about

interaction effects was determined by the ad agency personnel (after it was clear to

the experimental designer that those deciding the issue truly understood what

interaction effects were!). Apparently, each of factors A through E were acknowl-

edged to have potentially different effects for the two different magazines, X and Y.
It was decided to use a 26–2 fractional-factorial design with.

I ¼ ABCD ¼ ABEF ¼ CDEF

Note that all main effects and two-factor interaction effects involving factor F are

“clean” under our assumptions. We decided to use the principal block, derived

using the “innovated” combinations shown in bold:

1, ab, cd, abcd, ef, abef , cdef , abcdef , ace, bce, ade, bde, acf , bcf , adf , bdf

Then the data were collected. The next step was to obtain a workable Yates’
order for the quarter-replicate listed above. We needed to choose two dead letters to

start the Yates’ algorithm process. Suppose that we decided to choose a and c, using
the algorithm described in this chapter. We would then set up a Yates’ order as in
Table 11.23. (Note the pattern of appended letters in column 2 of Table 11.23 and

that each treatment combination in the block chosen to be run has “an even number

of letters in common with an even-lettered effect,” so all the signs in the alias rows

are pluses.)

Table 11.23 Yates’ algorithm: 26�2 design, I ¼ ABCD ¼ ABEF ¼ CDEF

Yates’ Algorithm

Standard

Yates’ order
Workable

Yates’ order
Response

(Data) 1 2 3 4 8 � Estimated effects

1 1 �
b b (a) Bþ 3þ 3þ 5
d d (c) Dþ 3þ 5þ 3
bd bd (ac) BD+ACþ 4þ 4
e e (ac) Eþ 5þ 3þ 3
be be (c) BEþ 4þAFþ 4
de de (a) DEþ 4þ 4þCF
bde bde BDEþ 3þ 3þ 3
f f (ac) Fþ 5þ 3þ 3
bf bf (c) BFþ 4þAEþ 4
df df (a) DFþ 4þ 4þCE
bdf bdf BDFþ 3þ 3þ 3
ef ef EFþ 6þAB+CD
bef bef (a) BEFþ 5þAþ 3
def def (c) DEFþ 5þ 3þC
bdef bdef (ac) BDEFþ 4þAD+BC

11.5 Orthogonality Revisited 397



When we add the data to the third column of the table and perform Yates’
algorithm, we have completed the analysis, as shown in Table 11.24. To see which

effects are significant, we must note that in this example we do not have replication.

However, we can obtain an error sum of squares by “lumping together” the sums of

squares corresponding to alias rows in which all terms are assumed to be zero. Since

this is a 26–2 design, to get the SSQ for each alias row we take each value in the last

column of numbers (Yates’ algorithm column 4), divide it by 4 (square root of

16, the number of treatment combinations), and square the result. If we do this, and

then add up the four resulting terms corresponding to the alias rows without a

boldface term, we get a total of 468/16 ¼ 29.25. (These four rows are rows 4, 8,

12, and 16, which have values in the last column of numbers in Table 11.24 of�11,

17,�7, and�3, respectively. When these values are divided by 4 and then squared,

we get, respectively, 121/16, 289/16, 49/16, and 9/16; their sum is 29.25.) Note that

we have six main effects and five not-assumed-zero interaction terms, so that four
remaining rows of the 15 alias rows are available for error estimation.

This 29.25 is our SSQerror. If we divide it by its four degrees of freedom

(we added one degree of freedom four times), we get an MSQerror of 29.25/

4 ¼ 7.31. If we now consider the 11 alias rows with potentially-nonzero effects,

divide each of these estimated-effect values by 4, square each result, and divide

this squared result by 7.31, we find that three effects – B, D, and F – have an Fcalc

value that exceeds 7.71, the table value for the F distribution with (1,4) degrees

of freedom for α ¼ .05. For B, we get (385/4)2 ¼ 9264 and an Fcalc of

9264/7.31 ¼ 1266. For effects D and F, we get, respectively, Fcalc’s of 5484 and

21,962; the effects are also significant at α ¼ .0001.

Table 11.24 Completed template: Yates’ algorithm for 26�2, I ¼ ABCD ¼ ABEF ¼ CDEF

Yates’ Algorithm

Standard

Yates’ order
Workable

Yates’ order
Response

(Data) 1 2 3 4 8 � Estimated effects

1 1 152 355 516 1030 3663 �
b b (a) 203 161 514 2633 385 Bþ 3þ 3þ 5
d d (c) 58 360 1316 192 �801 Dþ 3þ 5þ 3
bd bd (ac) 103 154 1317 193 �11 BD+ACþ 4þ 4
e e (ac) 157 762 96 �400 �1 Eþ 5þ 3þ 3
be be (c) 203 554 96 �401 �15 BEþ 4þAFþ 4
de de (a) 52 755 104 �2 3 DEþ 4þ 4þCF
bde bde 102 562 89 �9 17 BDEþ 3þ 3þ 3
f f (ac) 353 51 �194 �2 1603 Fþ 5þ 3þ 3
bf bf (c) 409 45 �206 1 1 BFþ 4þAEþ 4
df df (a) 253 46 �208 0 �1 DFþ 4þ 4þCE
bdf bdf 301 50 �193 �15 �7 BDFþ 3þ 3þ 3
ef ef 355 56 �6 �12 3 EFþ 6þAB+CD
bef bef (a) 400 48 4 15 �15 BEFþ 5þAþ 3
def def (c) 259 45 �8 10 27 DEFþ 5þ 3þC
bdef bdef (ac) 303 44 �1 7 �3 BDEFþ 4þAD+BC

398 11 Two-Level Fractional-Factorial Designs



In terms of interpreting the actual effects, we go back to the estimated-effect

values before squaring them. Going from low to high B (from black-and-white to

two-color) increases recall; going from low to high D (rest of the page mostly ads to

rest of the page mostly article) decreases recall. Going from low to high F

(magazine X to magazine Y ) increases recall. It turned out that none of these results
were surprising to the ad agency (although it was not clear to others who saw the

results why ads were more “recallable” when they appeared in magazine Y instead

of magazine X).

Example 11.9 Magazine Ad Study using JMP

We now use JMP to analyze the same magazine advertising results. As noted in

Chap. 9, after opening JMP, select DOE > Classical > Screening Design (this is

true either for a complete-factorial or a fractional-factorial design). Set the Number

of Factors to 6, select Choose from a list of fractional factorial designs > 16,

Fractional Factorial, Resolution 4 – Some 2-factor interactions. By examining

the generating rules (under Change Generating Rules), we can see that BCDE and

ACDF are aliased (ABEF is the mod-2 product), and the defining relation is

I ¼ ABEF ¼ ACDF ¼ BCDE

We can make JMP’s defining relation into our defining relation by the following
transformations.

JMP factor Our factor

A A

B C

C E

D F

E D

F B

That is, when we examine JMP’s output, we can simply make these changes in

factor identifications to transform JMP’s output into one for the design we want

to use.

We also get the JMP spreadsheet in Table 11.25, which represents the principal

block of the JMP defining relation noted above.
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We relabeled the factors in our order, using the transformations listed above, and

input the values for Y, as shown in Table 11.26.

Table 11.25 JMP spreadsheet: Principal block

JMP A B C D E F Y

1 �1 �1 �1 �1 �1 �1

2 �1 �1 �1 1 1 1

3 �1 �1 1 �1 1 1

4 �1 �1 1 1 �1 �1

5 �1 1 �1 �1 1 �1

6 �1 1 �1 1 �1 1

7 �1 1 1 �1 �1 1

8 �1 1 1 1 1 �1

9 1 �1 �1 �1 –1 1

10 1 �1 �1 1 1 �1

11 1 �1 1 –1 1 �1

12 1 �1 1 1 �1 1

13 1 1 �1 �1 1 1

14 1 1 �1 1 �1 �1

15 1 1 1 �1 �1 �1

16 1 1 1 1 1 1

Table 11.26 JMP spreadsheet with factors reordered and responses entered

Our A B C D E F

JMP A F B E C D Y

1 �1 �1 �1 �1 �1 �1 152

2 �1 1 �1 1 �1 1 301

3 �1 1 �1 1 1 �1 102

4 �1 �1 �1 �1 1 1 355

5 �1 �1 1 1 �1 �1 58

6 �1 1 1 �1 �1 1 409

7 �1 1 1 �1 1 �1 203

8 �1 �1 1 1 1 1 259

9 1 1 �1 �1 �1 �1 203

10 1 �1 �1 1 �1 1 253

11 1 �1 �1 1 1 �1 52

12 1 1 �1 �1 1 1 400

13 1 1 1 1 �1 �1 103

14 1 �1 1 �1 �1 1 353

15 1 �1 1 �1 1 �1 157

16 1 1 1 1 1 1 303

400 11 Two-Level Fractional-Factorial Designs



Next, as in the Chap. 9 example, selectAnalyze and then click on Fit Model (the

dependent variable and model effects are automatically included in the designated

spaces – otherwise, we can select them manually). In this example, we will consider

the following two-way interactions: AF, BF, CF, DF, and EF. Then, click on Run

Model and, finally, click on Parameter Estimates. Figure 11.1 shows the result.

As we saw in Chap. 9, the effects are conveyed in “equation form,” where the

intercept (228.9375) is the grand mean. Note that the effects presented in Param-

eter Estimates represent column (4) of Yates’ algorithm (Table 11.24) divided by

16. For instance, A of�15 noted in column (4) (Table 11.24) divided by 16 gives us

�. 9375 in JMP output.

Fig. 11.1 JMP output for magazine ad study with relabeled factors
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Example 11.10 Fuel Additive Study

In Chap. 8, we introduced a company which investigated the efficiency of new fuel

additives using an incomplete, unreplicated Graeco-Latin-square design. In a fur-

ther experiment, we selected two of these additives which exhibited high economies

(A – “Additive”), two car models (B – “Model”), two drivers (C – “Driver”), and

two days/conditions (D – “Day”) which had not been investigated previously. Due

to cost and time constraints, we decided to run a replicated 24–1 design in order to

determine the main effects and all two-factor interactions involving factor A. The

fuel economies (in mpg) are shown in Table 11.27.

The results are presented in Fig. 11.2 Note that all the effects are significant

( p < 0.05), except for AB – this term is aliased with CD, which we assumed to be

zero.

Table 11.27 Ethanol fuel economy (in mpg) in replicated 24�1 design

Pattern A B C D Economy

1 ���� �1 �1 �1 �1 14.7, 15.1

2 ��þþ �1 �1 1 1 16.1, 15.7

3 �þ�þ �1 1 �1 1 17.0, 16.9

4 �þþ� �1 1 1 �1 15.4, 16.0

5 þ��þ 1 �1 �1 1 18.7, 18.5

6 þ�þ� 1 �1 1 �1 20.1, 19.7

7 þþ�� 1 1 �1 �1 19.9, 18.5

8 þþþþ 1 1 1 1 20.5, 20.2
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11.6 Power and Minimum-Detectable Effects in 2k�p

Designs

In order to test whether an effect, say A, equals zero or not, that is,

H0 : A ¼ 0 versus H1 : A 6¼ 0

we can use a t-test or, as we illustrated for the magazine advertising example, an F-
test. We can also examine the power of the test. We considered power in Chap. 3

and viewed the issue in two ways. One way was, essentially, to input the size of the

experiment, the value of α (probability of Type I error) and the assumed true value

of the effect at which power is to be determined (measured by ϕ), and use power

tables to determine the power of the test. The other way was to input the α and

power values desired, along with the number of columns in the study, and the value

of the effect at which to determine power (here, measured byΔ/σ), and use tables to
determine the sample size (number of replicates per column for a one-factor

experiment) needed to achieve the desired α and power/effect size combination.

Fig. 11.2 JMP output for fuel additive study
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In the 2k�p setting, we often wish to frame the issue of power in a way that is

slightly different from the two ways above. We specify the values of k, p, and r (the
number of replicates) in a particular way (described below), along with the values

of α and power (recall, power is the complement of β). We then use tables to find the

minimum effect size that can be detected at the power specified. This is called the

minimum-detectable effect (MDE). The MDE value is necessarily specified in “σ
units”; hence, a table value of 2.2 refers to 2.2σ.

The discussion in this section is based on an article in the Journal of Quality
Technology (“Minimum Detectable Effects for 2k�p Experimental Plans,” by R. O.

Lynch (1993), vol. 25, pp. 12–17). The MDE tables are also from this article.

Specifically, to find the MDE from the tables provided, we need to supply the

following: α, β, the number of factors (k), and the number of runs (r � 2k�p). Since

the MDE also depends on the degrees of freedom in the error term, and this value in

turn depends on which higher-order interactions are assumed to equal zero, we must

make assumptions as to these degrees-of-freedom values. In general, we assume

that all (and only) three-factor and higher-order interactions are zero, unless

some two-factor interactions must also be assumed to be zero to allow clean

determination of main effects. This reflects Lynch’s apparent view that, without

specific affirmative reasons, a two-factor interaction should not be assumed to be

zero. The authors of this text agree with that view. However, as we know, not all

two-level fractional-factorial designs allow all main effects and two-factor interac-

tions to be placed in separate alias rows; in these cases, the number of degrees of

freedom of the error term is assumed to be the number of alias rows composed

solely of three-factor and higher-order interactions.

Following these rules, Table 11.28 (similar to the table in Lynch’s article)

indicates the degrees of freedom that can be placed in the error term. For example,

when there are three factors and eight data points (k ¼ 3, N ¼ 8), we have a

complete factorial design and one degree of freedom for error – the ABC effect. For

k ¼ 5 and N ¼ 32, we have either a complete 25 design or a twice-replicated 25�1

design; if the former, there are 16 effects of three-factor or higher-order interac-

tions. If the latter, there are only the 16 degrees of freedom derived from replication,

since all alias rows contain either a main effect or a two-factor interaction effect

(with I ¼ ABCDE).

Table 11.28 Degrees of freedom for error term

Number of factors, k

N 3 4 5 6 7 8 9 10 11

4 0
8 1 0 0 0 0
16 9 5 0 2 1 0 0 0 0
32 25 21 16 10 6 3 1 0 5
64 57 53 48 42 35 27 21 14 8

128 121 117 112 106 99 91 82 72 61

Source: R. O. Lynch (1993), “Minimum Detectable Effects for 2k�p Experimental Plans.”

Journal of Quality Technology, vol. 25, p.13. Adapted with permission

N number of data points
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However, note that several cells in Table 11.28 have no degrees of freedom

available for the error term; they represent what are called saturated designs. Some

designs are nearly saturated and have a low number of degrees of freedom available

for the error term. In determining the MDE values in subsequent tables, Lynch

assumed that (“somehow”) three degrees of freedom would be available for esti-

mating the error term for designs with a degrees-of-freedom value of less than three

in Table 11.28.

Tables 11.29, 11.30, 11.31, and 11.32 reproduce the MDE tables in the Lynch

article; each table is for a different value of α: .01, .05, .10, and .15. Within each

table, the columns represent the number of factors; the rows represent the number of

data points, N, and within N, the value of β. The body of the table presents the MDE

values.

To illustrate the use of Tables 11.29, 11.30, 11.31, and 11.32, suppose that we

are considering a 27–3 design without replication. Then k ¼ 7 and N, the number of

data points ¼ 16. If we wish to have α ¼ .01 and power of .95 (that is, β ¼ .05), the

MDE is found from the tables to be 4.9 (bolded in Table 11.29), meaning 4.9σ. This
is likely to be too large to be acceptable, in that the desired power is achieved only

with an extremely large effect size. Suppose, then, that we consider a 27–2 design.

With the same α and power demands and k¼ 7, and now N ¼ 32, the table gives an

MDE of 2.1σ (bolded in Table 11.29). This might also be considered too large to be

acceptable. However, if we are willing to reduce our Type I error demands to α ¼
.05, instead of .01, retaining a power of .95, the MDE would then be only 1.5σ
(bolded in Table 11.30). Or with α ¼ .05 and a change to a power of .75, the MDE

would be 1.1σ.
An alternative to inputting values of α and β to determine MDE using the tables,

as above, is to use them to determine the power achieved for a given α value and

MDE. For example, for a 25–1 design and α¼ .05, what is the probability (power) of

detecting an effect of size 2σ? From the tables, β ¼ .25 and the power is .75. What

about for an effect size of 1.5σ? From the tables, β is between .25 and .5, nearer to

.5; consequently, power is between .5 and .75, nearer to .5. (See the circled entries

in Table 11.30 for the last two questions.)
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Table 11.29 Minimum detectable effects (σ units), α ¼ .01

Number of factors, k

No. of

runs β 3 4 5 6 7 8 8 10 11

4 .01 11.8
.05 9.7
.1 8.7 Results inside shaded regions were obtained assuming a minimum

of 3 degrees of freedom. Results outside the shading were obtained

using the degree of freedom counts listed in Table 11.28

.15 8.0

.25 7.0

.5 5.2

8 .01 8.3 8.3 8.3 8.3 8.3
.05 6.9 6.9 6.9 6.9 6.9
.1 6.1 6.1 6.1 6.1 6.1
.15 5.6 5.6 5.6 5.6 5.6
.25 4.9 4.9 4.9 4.9 4.9
.5 3.7 3.7 3.7 3.7 3.7

16 .01 3.1 3.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9
.05 2.6 3.3 4.9 4.9 4.9 4.9 4.9 4.9 4.9
.1 2.4 3.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3
.15 2.2 2.7 4.0 4.0 4.0 4.0 4.0 4.0 4.0
.25 2.0 2.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5
.5 1.6 1.9 2.6 2.6 2.6 2.6 2.6 2.6 2.6

32 .01 1.9 1.9 1.9 2.1 2.5 4.2 4.2 4.2 2.7
.05 1.6 1.6 1.7 1.8 2.1 3.4 3.4 3.4 2.3
.1 1.5 1.5 1.5 1.6 1.9 3.1 3.1 3.1 2.1
.15 1.4 1.4 1.4 1.5 1.8 2.8 2.8 2.8 1.9
.25 1.2 1.2 1.3 1.4 1.6 2.5 2.5 2.5 1.7
.5 .98 .99 1.0 1.1 1.2 1.8 1.8 1.8 1.3

64 .01 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.6
.05 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.4
.1 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.2
.15 .93 .93 .94 .94 .95 .96 .98 1.0 1.1
.25 .84 .84 .84 .85 .85 .87 .88 .92 1.0
.5 .66 .66 .67 .67 .68 .69 .70 .73 .81

128 .01 .88 .88 .88 .88 .88 .88 .88 .89 .89
.05 .76 .76 .76 .76 .76 .76 .76 .76 .77
.1 .69 .69 .69 .69 .69 .69 .70 .70 .70
.15 .65 .65 .65 .65 .65 .65 .65 .65 .66
.25 .58 .58 .58 .58 .58 .59 .59 .59 .59
.5 .46 .46 .46 .46 .46 .46 .48 .47 .47

Source: R. O. Lynch (1993), “Minimum Detectable Effects for 2k�p Experimental Plans.”

Journal of Quality Technology, vol. 25, p. 14 (Adapted with permission)
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Table 11.30 Minimum detectable effects (σ units), α ¼ .05

Number of factors, k

No. of

runs β 3 4 5 6 7 8 8 10 11

4 .01 6.9
.05 5.7
.1 5.0 Results inside shaded regions were obtained assuming a minimum

of 3 degrees of freedom. Results outside the shading were obtained

using the degree of freedom counts listed in Table 11.28

.15 4.6

.25 4.0

.5 2.9

8 .01 4.9 4.9 4.9 4.9 4.9
.05 4.0 4.0 4.0 4.0 4.0
.1 3.5 3.5 3.5 3.5 3.5
.15 3.2 3.2 3.2 3.2 3.2
.25 2.8 2.8 2.8 2.8 2.8
.5 2.0 2.0 2.0 2.0 2.0

16 .01 2.4 2.7 3.4 3.4 3.4 3.4 3.4 3.4 3.4
.05 2.0 2.3 2.8 2.8 2.8 2.8 2.8 2.8 2.8
.1 1.8 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5
.15 1.7 1.9 2.3 2.3 2.3 2.3 2.3 2.3 2.3
.25 1.5 1.6 2.0 2.0 2.0 2.0 2.0 2.0 2.0
.5 1.1 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4

32 .01 1.6 1.6 1.6 1.7 1.8 2.4 2.4 2.4 1.9
.05 1.3 1.3 1.4 1.4 1.5 2.0 2.0 2.0 1.6
.1 1.2 1.2 1.2 1.3 1.4 1.8 1.8 1.8 1.4
.15 1.1 1.1 1.1 1.2 1.3 1.6 1.6 1.6 1.3
.25 .97 .98 .99 1.0 1.1 1.4 1.4 1.4 1.2
.5 .72 .73 .74 .77 .83 1.0 1.0 1.0 .86

64 .01 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2
.05 .92 .92 .92 .92 .93 .94 .95 .97 1.0
.1 .82 .83 .83 .83 .83 .84 .85 .87 .93
.15 .76 .76 .76 .77 .77 .78 .79 .81 .86
.25 .67 .67 .67 .67 .68 .68 .69 .71 .75
.5 .50 .50 .50 .50 .50 .51 .51 .53 .56

128 .01 .76 .76 .76 .76 .77 .77 .77 .77 .77
.05 .64 .64 .64 .64 .64 .64 .64 .65 .65
.1 .58 .58 .58 .58 .58 .58 .58 .58 .58
.15 .53 .53 .53 .53 .54 .54 .54 .54 .54
.25 .47 .47 .47 .47 .47 .47 .47 .47 .47
.5 .35 .35 .35 .35 .35 .35 .35 .35 .35

Source: R. O. Lynch (1993), “Minimum Detectable Effects for 2k� p Experimental Plans.”

Journal of Quality Technology, vol. 25, p. 14 (Adapted with permission)
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Table 11.31 Minimum detectable effects (σ units), α ¼ .10

Number of factors, k

No. of

runs β 3 4 5 6 7 8 8 10 11

4 .01 5.5
.05 4.5
.1 3.9 Results inside shaded regions were obtained assuming a minimum

of 3 degrees of freedom. Results outside the shading were obtained

using the degree of freedom counts listed in Table 11.28

.15 3.6

.25 3.1

.5 2.1

8 .01 3.9 3.9 3.9 3.9 3.9
.05 3.2 3.2 3.2 3.2 3.2
.1 2.8 2.8 2.8 2.8 2.8
.15 2.5 2.5 2.5 2.5 2.5
.25 2.2 2.2 2.2 2.2 2.2
.5 1.5 1.5 1.5 1.5 1.5

16 .01 2.2 2.3 2.7 2.7 2.7 2.7 2.7 2.7 2.7
.05 1.8 1.9 2.2 2.2 2.2 2.2 2.2 2.2 2.2
.1 1.6 1.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0
.15 1.5 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8
.25 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5
.5 .89 .95 1.1 1.1 1.1 1.1 1.1 1.1 1.1

32 .01 1.4 1.5 1.5 1.5 1.6 1.9 1.9 1.9 1.7
.05 1.2 1.2 1.2 1.3 1.3 1.6 1.6 1.6 1.4
.1 1.1 1.1 1.1 1.1 1.2 1.4 1.4 1.4 1.2
.15 .97 .98 .99 1.0 1.1 1.3 1.3 1.3 1.1
.25 .84 .85 .86 .88 .93 1.1 1.1 1.1 .96
.5 .60 .60 .61 .62 .66 .75 .75 .75 .67

64 .01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2
.05 .83 .83 .83 .84 .84 .84 .85 .87 .90
.1 .74 .74 .74 .74 .75 .75 .76 .77 .80
.15 .68 .68 .68 .68 .68 .69 .69 .71 .74
.25 .59 .59 .59 .59 .59 .59 .60 .61 .64
.5 .42 .42 .42 .42 .42 .42 .42 .45 .45

128 .01 .71 .71 .71 .71 .71 .71 .71 .71 .71
.05 .58 .58 .59 .59 .59 .59 .59 .59 .59
.1 .52 .52 .52 .52 .52 .52 .52 .52 .52
.15 .48 .48 .48 .48 .48 .48 .48 .48 .48
.25 .41 .41 .41 .41 .41 .41 .41 .41 .41
.5 .29 .29 .29 .29 .29 .29 .29 .29 .29

Source: R. O. Lynch (1993), “Minimum Detectable Effects for 2k�p Experimental Plans.”

Journal of Quality Technology, vol. 25, p. 15 (Adapted with permission)
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Example 11.11 Managerial Decision Making at FoodMart Super-

markets (Revisited)

FoodMart has eight factors under study, as described at the beginning of this

chapter. For convenience, Table 11.1 is repeated as Table 11.33, listing the factors

and their levels.

Table 11.32 Minimum detectable effects (σ units), α ¼ .15

Number of factors, k

No. of

runs β 3 4 5 6 7 8 8 10 11

4 .01 4.8
.05 3.9
.1 3.4 Results inside shaded regions were obtained assuming a minimum

of 3 degrees of freedom. Results outside the shading were obtained

using the degree of freedom counts listed in Table 11.28

.15 3.1

.25 2.6

.5 1.7

8 .01 3.4 3.4 3.4 3.4 3.4
.05 2.7 2.7 2.7 2.7 2.7
.1 2.4 2.4 2.4 2.4 2.4
.15 2.2 2.2 2.2 2.2 2.2
.25 1.8 1.8 1.8 1.8 1.8
.5 1.2 1.2 1.2 1.2 1.2

16 .01 2.0 2.1 2.4 2.4 2.4 2.4 2.4 2.4 2.4
.05 1.6 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9
.1 1.4 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7
.15 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5
.25 1.1 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3
.5 .76 .80 .87 .87 .87 .87 .87 .87 .87

32 .01 1.4 1.4 1.4 1.4 1.5 1.7 1.7 1.7 1.5
.05 1.1 1.1 1.1 1.2 1.2 1.4 1.4 1.4 1.2
.1 .98 .99 1.0 1.0 1.1 1.2 1.2 1.2 1.1
.15 .89 .90 .91 .93 .96 1.1 1.1 1.1 .99
.25 .76 .77 .77 .79 .82 .92 .92 .92 .84
.5 .52 .52 .52 .54 .56 .62 .62 .62 .57

64 .01 .95 .95 .95 .95 .96 .96 .97 .98 1.0
.05 .78 .78 .78 .78 .78 .79 .79 .80 .83
.1 .69 .69 .69 .69 .69 .69 .70 .71 .73
.15 .62 .63 .63 .63 .63 .63 .63 .64 .66
.25 .53 .53 .53 .54 .54 .54 .54 .55 .57
.5 .36 .36 .36 .36 .36 .37 .37 .37 .38

128 .01 .67 .67 .67 .67 .67 .67 .67 .67 .67
.05 .55 .55 .55 .55 .55 .55 .55 .55 .55
.1 .48 .48 .48 .48 .48 .48 .48 .48 .49
.15 .44 .44 .44 .44 .44 .44 .44 .44 .44
.25 .38 .38 .38 .38 .38 .38 .38 .38 .38
.5 .25 .25 .25 .25 .25 .26 .26 .26 .26

Source: R. O. Lynch (1993), “Minimum Detectable Effects for 2k�p Experimental Plans.”

Journal of Quality Technology, vol. 25, p. 15 (Adapted with permission)
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As noted earlier, a complete 28 factorial design would require 256 treatment

combinations, which is not practical from either an expense or a managerial point of

view. Upon reconsideration, FoodMart decided that the maximum number of

supermarkets that it would allow to participate in the study was 64; this suggested

a 28–2 design – which indeed is what took place.

As when designing any fractional experiment, we needed to prioritize the

effects. From discussion with FoodMart executives, we learned that the most

important main effects were those for the managerial decision variables, E, F, G,

and H. Of virtually no importance were the product attribute main effects, B, C, and
D; after all, they are what they are and involve nothing to be decided, never mind

optimized (for example, how beneficial is it to “discover” that products in the high-

volume category sell more than products in the low-volume category?). The main

effect of geography, A, was deemed of less interest than the main effects of E, F, G,

and H.

FoodMart did suggest that factors E, F, G, and H might have a different impact in

the two different areas of the country. Thus, it could be important to cleanly

estimate interaction effects of A with E, F, G, and H. However, these two-factor

interactions were not as important as two other sets of two-factor interactions. The

most important two-factor interactions were those between the managerial decision

variables: EF, EG, EH, FG, FH, and GH. That is, to make superior allocations of

limited resources, FoodMart would need to know the answer to questions such as

these: “If doubling shelf space generates (an average of) 10% more sales and the

normal promotion of the product generates 13% more sales, when we do both, do

we get about (10% þ 13%) ¼ 23% more sales? Or do we get less than 23% more

sales – implying a negative EG interaction effect? Or do we get more than 23%

additional sales – implying a positive EG interaction (or synergy) effect?” Presum-

ably, if there’s a negative interaction effect, it’s better to give the shelf-space boost

and the promotion boost to different products. With a positive interaction effect, it’s
likely better to give both boosts to the same product.

Also very important were the 12 two-factor interactions of the form XY, between
the product attributes (X ¼ B, C, and D) and the managerial decision variables (Y¼
E, F, G, and H ). These interaction effects will tell us whether certain classes of

products gain differentially from changing the levels of E, F, G, and H from low to

Table 11.33 Factors and levels for FoodMart study

Label Factor Low

level

High level

A Geography East West

Product
attributes

B Volume category Low High
C Price category Low High
D Seasonality No Yes

Managerial
decision
variables

E Shelf space Normal Double
F Price Normal 20% cut
G Promotion None Normal (if)
H Location quality Normal Prime
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high, and have the obvious benefit of enhancing the decisions about which products

should be allocated which resources.

It was concluded that EFG, EFH, EGH, and FGH, the three-factor interactions
involving the managerial decision-variables, should not be assumed to be zero

automatically. It was determined that the remaining three-factor interactions and

all higher-order interactions could be assumed to be zero.

The design chosen was a 28–2 (quarter-replicate) with the defining relation.

I ¼ BCD ¼ ABEFGH ¼ ACDEFGH

Notice that E, F, G, and H are all treated similarly – they’re either all present or all
absent in each term above (actually, A is also treated identically; however, since A is

clearly of less importance than the former factors, we list it separately). As noted

earlier, we can benefit from this fact in our evaluation of the design – whatever is

true for one of the factors (letters) is true for the others. C and D are also treated

similarly – analysis of one of them will suffice for the other.

The alias groups are summarized in Table 11.34; note that (1) we consider

representative effects to stand for all members of a group which are treated alike,

and (2) as mentioned in Example 11.4, we use a shorthand system of showing the

number of letters in the aliased effects, rather than writing out the effects explicitly.

An evaluation of Table 11.34 shows that all desired effects (in the first column)

are clean, given what effects we are assuming to be zero or negligible. Indeed, few

of the effects of interest are aliased even with any three-factor interactions, and

those three-factor interactions are believed to be zero. It appears that this design is

capable of providing clean estimates of all effects of interest.

The results of this study do not, in themselves, answer all the questions necessary

for supermarket managers to make optimal decisions. Not all revenue from addi-

tional sales is profit, so a profitability analysis would subsequently be needed to

answer questions such as these: Does a promotion that costs $X generate enough

additional sales to be warranted? Or (because different products have different

Table 11.34 Alias groups for FoodMart study

Effects BCD ABEFGH ACDEFGH

Main Effects
A 4 5 6
E, F, G, H 4 5 6

Two-Factor Interactions
EF, EG, . . . 5 4 5
BE, BF, . . . 3 4 7
CE, CF, DE, DF, . . . 3 6 5
AE, AF, . . . 5 4 5

Three-Factor Interactions
EFG, EFH, . . . 6 3 4
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margins), do high-volume products and low-volume products benefit differently

from doubling the shelf space, and if so, what is the difference?

A small sample of the results found for produce products follows:

• The main effect E is significantly positive. This is no big surprise – averaged

over all levels of all factors, doubling the shelf space significantly increases sales

of that product.

• The BE interaction effect is significantly negative – low-volume products benefit

more than high-volume products from a doubling of the amount of shelf space.

An example of such an interaction would be E ¼ þ44% averaged over both

volume categories, E ¼ þ57% for low-volume products, and E ¼ þ31% for

high-volume products.

• The CE interaction effect is significantly positive – high-price (category) prod-

ucts benefit more from a doubling of the shelf space than do low-price (category)

products.

• The DE interaction effect was not significant. Seasonal and non-seasonal prod-

ucts did not differ (statistically) in their benefit from a doubling of shelf

space. This result surprised the author who was a consultant on the project -

wouldn’t seasonal products benefit more from the increased visibility, since not

everybody knows when they become available? - but did not seem to surprise the

FoodMart folks.

11.7 A Comment on Design Resolution

Resolution of a design is a concept often applied to 2k�p designs, and we will see

other situations where it is used in Chap. 16. (We have seen this term in our example

using JMP in Chap. 9 and Example 11.9) It refers to the smallest number of letters

in any term of the defining relation for that design. Any 2k�p design of resolution

greater than or equal to five is guaranteed to yield all main and two-factor interac-

tion effects cleanly. (A 2k�p design with resolution four, such as the one described

in Example 11.9, would ensure that main effects are aliased with three-factor and

higher-order interactions, but would alias at least some two-factor interactions with

other two-factor interactions.)

Exercises

1. Suppose that we wish to study as many factors as possible in a two-level

fractional-factorial design. We also wish to have all main effects and all

two-factor interaction effects estimated cleanly, under the assumption that all

three-factor and higher-order interactions are zero. The following list gives the

maximum number of factors that can be studied, given the conditions stated
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above, as a function of 2k�p, the number of treatment combinations run in the

experiment:

2k�p (Number of

treatment combinations)

Maximum number of factors

which can be studied

8 3
16 5
32 6
64 X

For 2k�p¼ 8, 16, and 32, give an example of a defining relation for a study with

the maximum number of factors listed above.

2. In Exercise 1, find X for 2k�p¼ 64. Support your answer.

3. Consider a 26–2 fractional-factorial design with the defining relation

I ¼ ABCE ¼ ABDF ¼ CDEF

(a) Find the alias rows (groups).

(b) Find the four blocks (from which one is to be run).

4. Suppose that in Exercise 3 the principal block is run and a workable order is

found by choosing the two dead letters a and d. Suppose that the 16 data values
(with no replication), in the workable Yates’ order described, are

3, 5, 4, 7, 8, 10, 5, 6, 12, 11, 5, 7, 3, 5, 9, 13.

Find the 15 effects.

5. Suppose in Exercise 4 it is now revealed that each of the 16 treatment combi-

nations was replicated five times, and when analyzed by a one-factor ANOVA,

the mean square error was 2.8. Derive the augmented ANOVA table and

determine which effects (that is, alias groups) are significant.

6. Refer back to Exercise 3. Suppose that the principal block is run, but must be

run in four blocks of four. Assume that we want to estimate all main effects

cleanly and that it is preferable to have two two-factor interactions aliased,

compared with three two-factor interactions aliased (in terms of potential

separation later). What would our four blocks be and which two-factor inter-

actions (in alias groups) are confounded with block effects? Assume that three-

factor and higher-order interactions equal zero. Note: this problem combines

the ideas of fractionating and confounding.

7. A company is contemplating a study of six factors at two levels each. A 26

design is considered too expensive. A 26–1 design is considered to extend over

what might be too long a time to avoid non-homogeneous test conditions; also,

available funds might run out before all 32 treatment combinations can be run.
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It is decided to run two 26–2 blocks (16 treatment combinations each), with the

first block to be analyzed by itself, should the experiment then be curtailed. The

first block is the principal block of the defining relation I ¼ ABCE ¼ BCDF ¼
ADEF. The second block, if run, is to be the principal block of the defining

relation I¼ ABF¼ CDE¼ ABCDEF. (This was a real experimental situation –

and one of the favorite problems of the authors.)

(a) If money and time allow only the first block to be run, what analysis do you

suggest? (That is, name which effects are estimated cleanly with which

assumptions, what is aliased with what, and so forth.)

(b) If both blocks are run, what analysis do you suggest?

8. In Exercise 7, how does your answer to part b change depending on whether

there are block (time) effects?

9. In Exercise 7, how can the block effect, if any, be estimated?

10. In Exercise 7, what is the advantage of this experimental design (two blocks,

each having a different defining relation), over a 26–1 confounded into two

blocks (that is, a set of two blocks from the same defining relation)?

11. Suppose that a 28–2 experiment has been performed and that the following

statements can be made about the results:

(a) All three-factor and higher-order interactions are considered to be zero,

except possibly for those listed in (d) below.

(b) All main effects are estimated cleanly or known from prior

experimentation.

(c) All two-factor interactions are estimated cleanly or known from previous

experimentation, except for those listed in (d) below.

(d) The following alias pairs (“pairs,” because other terms have been dropped

as equal to zero) have significant results:

CDF ¼ ABF
CF ¼ CGH
AB ¼ CD
BF ¼ BGH
AF ¼ AGH
DF ¼ DGH

We wish to design a follow-up mini-experiment in order to try to remove

the aliasing in the six alias pairs listed in (d). That is, we would like to be

able to estimate cleanly each of the 12 listed effects. What mini-experiment

would you design to best accomplish this goal, using the minimum number

of treatment combinations? Describe how your design accomplishes this
goal.
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12. A number of years ago, the Government studied the attitude of people toward

the use of seatbelts, as a function of seven two-level factors. Three factors had

to do with the person (it isn’t important at the moment precisely how the levels

of B and C are defined):

A Sex of person Male/female

B Weight Light/heavy

C Height Tall/short

Four factors had to do with the car and/or seatbelt type:

D Number of doors Two/four

E Attribute of belt Windowshade/none

F Latch-plate Locking/non-locking

G Seat type Bucket/bench

How would you design a 27–3 experiment if all interaction effects, except

two-factor interactions involving factor A, can be assumed to be zero?

13. Consider an actual experiment in which the dependent variable is the sentence

given out by a judge to a convicted defendant. For simplicity, think of the

sentence as simply the “months of prison time.” (Actually, the sentence

consisted of prison time, parole time, and dollar amount of fine.) Factors of

interest, all two-level factors, were

A Crime Robbery/fraud

B Age of defendant Young/old

C Previous record None/some

D Role Accomplice/principal planner

E Guilty by Plea/trial

F Monetary amount Low/high

G1 Member of criminal organization No/yes

G2 Weapon used No/yes

Factor G1 was mentioned only for the fraud cases; factor G2 was mentioned

only for the robbery cases. In other words, a judge was given a scenario, in

which he or she was told the crime, age, and so on (a treatment combination).

Only if the crime were fraud was it mentioned whether the defendant was a

member of a criminal organization or not (and the issue of weapon was not

mentioned). Only if the crime were robbery was the question of weapon

mentioned (and, correspondingly, the issue of membership not mentioned).

The following 16 treatment combinations were run:

g bdeg abcdefg acfg
abc acde def bf
ceg bcdg abdfg aefg
abe ad cdf bcef
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Assuming a 27–3 design, in which we do not distinguish between G1 and G2,

which main effects are clean, if we are willing to believe that all interactions

are zero?

14. In Exercise 13, what is the special subtlety involving the estimate of the effects

of factors F, G1, and G2? This flaw occurs only when we consider an objective

that includes the separate estimation of G1 and G2.

15. Suppose that the ad-agency example in the text was repeated with four repli-

cations, with the results shown in Table 11EX.15. Analyze, assuming that all

interactions other than two-factor interactions involving F are zero.

16. Suppose that, in Exercise 15, replications 1 and 2 are men, replications 3 and

4 are women, and we believe that the gender of the people tested for recall may

matter, but that gender will not interact with any of the six primary factors of

the problem. Analyze, again assuming that all interactions except two-factor

interactions involving F equal zero.

17. Suppose that in Exercise 15, replication 1 consists of older men, replication

2 consists of younger men, replication 3 consists of older women, and replica-

tion 4 consists of younger women. We believe that age and gender may matter,

but that their interaction is zero and that neither age nor gender interact with

any of the six primary factors of the problem. Analyze, again assuming that all

interactions except two-factor interactions involving F equal zero.

18. Repeat Exercise 17, assuming that age and gender may have a nonzero

interaction.

19. What is the resolution of a 25–1 design? Would it be possible to get the same

design, but of another resolution? Discuss.

Table 11EX.15 Magazine advertising study with replications

Replication

Treatment combination 1 2 3 4

1 153 149 149 154
b (a) 302 300 306 307
d (c) 102 97 102 99
bd (ac) 352 352 360 354

e (ac) 54 58 54 56
be (c) 406 412 408 405
de (a) 211 203 204 210
bde 258 259 265 262

f (ac) 205 202 205 199
bf (c) 257 249 259 255
df (a) 45 48 51 49
bdf 397 399 398 397

ef 104 106 106 102
bef (a) 348 355 352 352
def (c) 158 155 148 156
bdef (ac) 301 302 304 302
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Appendix

Example 11.12 Boosting Attendance for a Training Seminar using SPSS

We now use SPSS to analyze the 23�1 fractional-factorial design for the attendance

for a training seminar example. Again, there are three factors (A – amount of poster

deployment, B – amount of prizes awarded, C –amount of encouragement by the

person’s supervisor) in two levels (low and high). Table 11.35 shows how the data

are input. Note that the first three columns are composed of 1’s and 2’s, designating,
respectively, the low level and the high level for factors A, B, and C, and the fourth

column contains the dependent variable (the replicates are entered separately in

SPSS). Actually, the data can be input in any order – the dependent variable need

not be in the last column; we specify for SPSS which column is which variable/

factor.

The output in Table 11.36, as discussed in Chap. 9 for a complete two-level

factorial design, does not provide the effect of each factor, but simply the mean of

each level of each factor. For example, for factor A, the mean is 16.5 for the low

level and 23.5 for the high level (see the first pair of results in Table 11.36). The

grand mean is the mean of these two values, 20.0. Thus, A is (20.0 � 16.5), or

equivalently, (23.5 � 20.0) ¼ 3.5. The output also provides an ANOVA, shown in

Table 11.37.

Table 11.35 Data input in SPSS

A B C Attendance

1 1 2 16, 22, 16, 10, 18, 8

2 1 1 28, 27, 17, 20, 23, 23

1 2 1 16, 25, 16, 16, 19, 16

2 2 2 28, 30, 19, 18, 24, 25
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Clearly, SPSS is not oriented toward two-level fractional-factorial experimen-

tation. In general, the output concerning the means does not acknowledge interac-

tion effects or alias groups. The SSQ terms do include sums of squares associated

with interaction terms corresponding to the smallest-order interaction of an alias

group, but give no acknowledgment of alias groups.

Table 11.37 SPSS ANOVA for attendance study

Tests of between-subjects effects

Dependent variable: response

Source

Type III sum of

squares df Mean square F Sig.

Corrected model 324.000a 3 108.000 5.400 .007
Intercept 9600.000 1 9600.000 480.000 .000
A 294.000 1 294.000 14.700 .001
B 24.000 1 24.000 1.200 .286
C 6.000 1 6.000 .300 .590
Error 400.000 20 20.000
Total 10324.000 24
Corrected total 724.000 23

aR Squared ¼ .448 (Adjusted R Squared ¼ .365)

Table 11.36 SPSS output for attendance study

Response * A

Response

A Mean N

1 16.50 12
2 23.50 12
Total 20.00 24

Response * B
Response

B Mean N

1 19.00 12
2 21.00 12
Total 20.00 24

Response * C
Response

C Mean N

1 20.50 12
2 19.50 12
Total 20.00 24
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Example 11.12 Boosting Attendance for a Training Seminar using R

For this example, we will use the package FrF2, which is used to create and

analyze fractional factorial two-level designs (package DoE.base is also required).

First, we create the design table and then add the response:

> design <- FrF2(nruns=4, nfactors=3, factor.names=list(A=c

+ ("low","high"), B=c("low","high"), C=c("low","high")),

+ randomize=FALSE, replications=6, repeat.only=FALSE)

> attendance <- c(16, 28, 16, 28, 22, 27, 25, 30, 16, 17,

+ 16, 19, 10, 20, 16, 18, 18, 23, 19, 24, 8, 23, 16, 25)

> design.response <- add.response(design, attendance)

> summary(design.response)

Call:

FrF2(nruns = 4, nfactors = 3, factor.names = list(A = c

("low", "high"), B = c("low", "high"), C = c("low",

"high")), randomize = FALSE, replications = 6, repeat.only

= FALSE)

Experimental design of type FrF2

4 runs

each run independently conducted 6 times

Factor settings (scale ends):

A B C
1 low low low
2 high high high

Responses:

[1] attendance

Design generating information:

$legend

[1] A=A B=B C=C

$generators

[1] C=AB

Alias structure:

$main

[1] A=BC B=AC C=AB
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The design itself:

run.no run.no.std.rp A B C attendance
1 1 1.1 low low high 16
2 2 2.1 high low low 28
3 3 3.1 low high low 16
4 4 4.1 high high high 28
5 5 1.2 low low high 22
6 6 2.2 high low low 27
7 7 3.2 low high low 25
8 8 4.2 high high high 30
9 9 1.3 low low high 16

10 10 2.3 high low low 17
11 11 3.3 low high low 16
12 12 4.3 high high high 19
13 13 1.4 low low high 10
14 14 2.4 high low low 20
15 15 3.4 low high low 16
16 16 4.4 high high high 18
17 17 1.5 low low high 18
18 18 2.5 high low low 23
19 19 3.5 low high low 19
20 20 4.5 high high high 24
21 21 1.6 low low high 8
22 22 2.6 high low low 23
23 23 3.6 low high low 16
24 24 4.6 high high high 25

class=design, type= FrF2

NOTE: columns run.no and run.no.std.rp are annotation, not

part of the data frame

The ANOVA table and effects are obtained as follows:

> design.anova <- aov(attendance~A+B+C, data=design.

+response)

> summary(design.anova)

Df Sum Sq Mean Sq F value Pr(>F)
A 1 294 294 14.7 0.00104 **
B 1 24 24 1.2 0.28634
C 1 6 6 0.3 0.58994
Residuals 20 400 20

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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> summary(lm(design.anova))

Call:

lm.default(formula=design.anova.)

Residuals:

Min 1Q Median 3Q Max
-7.00 -2.25 0.00 3.25 7.00

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.0000 0.9129 21.909 1.88e-15 ***
A1 3.5000 0.9129 3.834 0.00104 **
B1 1.0000 0.9129 1.095 0.28634
C1 -0.5000 0.9129 -0.548 0.58994

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.472 on 20 degrees of freedom

Multiple R-squared: 0.4475, Adjusted R-squared: 0.3646

F-statistic: 5.4 on 3 and 20 DF, p-value: 0.00691

Alternatively, the effects can be obtained by

> model.tables(design.anova,"effects")

Tables of effects

A

A
low high
-3.5 3.5

B

B
low high
-1 1

C

C
low high
0.5 -0.5
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Chapter 12

Designs with Factors at Three Levels

Sometimes, we wish to examine the impact of a factor at three levels rather than at

two levels as discussed in previous chapters. For example, to determine the differ-

ences in quality among three suppliers, one would consider the factor “supplier” at

three levels. However, for factors whose levels are measured on a numerical scale,

there is a major and conceptually-different reason to use three levels: to be able to

study not only the linear impact of the factor on the response (which is all that can be

done when studying a factor that has only two levels), but also the nonlinear impact.

The basic analysis-of-variance technique treats the levels of a factor as categorical,

whether they actually are or not. One (although not the only) logical and useful way

to orthogonally break down the sum of squares associated with a numerical factor

is to decompose it into a linear effect and a quadratic effect (for a factor with three

numerical levels), a linear effect, a quadratic effect, and a cubic effect (for a factor

with four numerical levels), and so forth.

In this chapter, we study the 3k design, a k-factor complete-factorial design with

each factor at three levels. We do not explicitly discuss three-level fractional-

factorial designs, leaving that to those who wish to pursue experimental design

further. Readers who master the concepts in two-level fractional-factorial designs

and three-level complete-factorial designs will be able to cope with chapters on

three-level fractional-factorial designs in other texts.1 Actually, we have already

seen three-level fractional-factorial designs in Chap. 8: three-level Latin squares

and Graeco-Latin squares fit into that category.

Electronic supplementary material: The online version of this chapter (doi:10.1007/978-3-319-

64583-4_12) contains supplementary material, which is available to authorized users.

1We especially recommend Applied Factorial and Fractional Systems by R. McLean and

V. Anderson, New York, Marcel Dekker, 1984.
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Example 12.1 Optimal Frequency and Size of Print Ads for MegaStore

Electronics

MegaStore Electronics, Inc., wanted to know the most economic frequency and size

of print ads in a certain weekly national magazine. Does an ad on two facing pages

generate sufficient to warrant more sales than a one-page or a half-page ad to warrant

the additional expense? Should the ad appear every week or less frequently?

To find out,MegaStore and its ad agency arrangedwith themagazine for a split-run

arrangement: some subscribers saw larger ads, some smaller; some saw the various-

sized ads weekly and others saw them less often. The experiment lasted three weeks.

There were three levels of ad size: half-, full-, and two-page. The frequency of ad

placement also had three levels: every week, twice in three weeks, and once in

three weeks. For the one-week-in-three level, the week varied equally over each of

the three weeks; the two weeks of the three varied equally over weeks 1 and 2, 1 and

3, and 2 and 3. In each case, the ad’s position in the magazine was the same: after

letters to the editor and a few editorials, but before the first story of the issue.

Each ad featured a coupon offering meaningful savings, and MegaStore assumed

that the number of items bought when the coupon was redeemed was a reasonable

indicator of the effectiveness of the ad or series of ads. Each of the nine (3� 3)

treatments was sent to 100,000 people, using an Nth name sampling process (that is,

900,000 subscribers were identified in two highly populated states and every ninth

name was assigned a particular treatment).

What was key to this analysis was not simply main effects or interaction effects;

it was clear that sales would increase as the ad size or ad frequency increased. The

critical element was the way in which these increases took place – a matter of

concavity or convexity (that is, departure from linearity). Was there decreasing or

increasing return to scale in this particular situation? We return to this example at

the end of the chapter.

12.1 Design with One Factor at Three Levels

We begin with a 31 design. This one-factor-at-three-levels design actually captures

the salient features of a 3k design for any k.
Figure 12.1 portrays an example of the yield plotted as a function of the level of

factor A; the levels are called low, medium, and high. For simplicity, we assume in

Fig. 12.1 and elsewhere, unless noted otherwise, that A is metric and takes on three

equally-spaced levels – that is, the medium level is halfway between the low and

high levels. (This assumption is not necessary to perform the analyses in this

chapter, but we use it for clarity; the changes needed if the levels are not equally

spaced are minimal. The issue of unequally spaced levels is discussed later when

the MegaStore example is revisited.)
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If the relationship between the level of the factor and the yield were linear, all

three points would appear on a straight line (not counting the impact of error, or ε,
of course). But collecting data at only two levels of a factor gives no clue as to

whether the relationship is linear; at least three points are needed to do that.

The linear effect of A is defined as follows:

AL ¼ a3 � a2ð Þ þ a2 � a1ð Þ ¼ a3 � a1

That is, the linear effect of A on yield depends only on yields a1 and a3 (the two

outer levels, low and high).2

The nonlinear effect of A, also appropriately called the quadratic effect,3 is

defined as

AQ ¼ a3 � a2ð Þ � a2 � a1ð Þ ¼ a3 � 2a2 þ a1

Fig. 12.1 Illustration of the

yield as a function of the

three levels of the factor

2In essence, we are taking the change in yield as we go up a level of A from low to medium, and

then the change in yield as we go up to the next level of A (i.e., from medium to high) – both linear

effects, and “averaging” them – except that, by tradition, we do not bother with a denominator at

this time. The appropriate denominator will be prominently discussed later.
3Just as we need two points to define a straight line, we require three points to define a quadratic

function – defined to be a polynomial in which the highest power (exponent) is 2. Given that we

have limited ourselves in this section to factors with three levels, we can determine the presence

(or absence) of curvature to be ascribed solely to a quadratic (“squared”) term. Thus, for a three-

level factor’s impact on yield, the term quadratic may be accurately viewed as a synonym for

nonlinear; the restriction of nonlinear behavior to the quadratic category is due to a limitation of

the model, not to a statement of knowledge. In practice, this issue pertains more to mathematical

completeness than to a limitation in the usefulness of the results. One can investigate models

constructed of higher-order polynomials by including factors with more than three levels.
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That is, (a3� a2) is the estimated change in yield per change by one level of A;

similarly, (a2� a1) is also the change in yield per change by one level of A. Any

difference between the two suggests curvature – a slope that is not constant (again,
ignoring error/noise). If the yield at each of the three levels of A does fall on a

straight line, then, under our assumption of equally-spaced factor levels,

(a3� a2)¼ (a2� a1) and there is no curvature:

a2 ¼ a3 þ a1ð Þ=2

and AQ equals zero. If the curve is concave (that is, the yield at the medium level is

above the straight line connecting the yields at the low and high levels), then

a2> (a3 + a1)/2 and AQ is negative. If the curve is convex (that is, the yield at the

medium level is below the straight line connecting the yields at the low and high

levels), then a2< (a3 + a1)/2 and AQ is positive; the sign of the quadratic effect tells

us whether the curve is concave or convex. (For those familiar with calculus, this is

similar to using the sign of the second derivative to check whether a local extreme

point is a maximum point or minimum point.)

Table 12.1 presents a sign table for a 31 design. Note that the two rows of the sign

table have a dot product of zero and are thus orthogonal (but not yet orthonormal),

and the elements of each row sum to zero. Recall the discussion of orthogonal

decomposition in Chap. 5: after determining that a factor is significant, we inves-

tigate the influence of that factor by formulating meaningful questions; that is, by

forming linear combinations of the column means. That’s what is going on here.

The rows of the orthogonal matrix in Table 12.1 correspond to the single-degree-of-

freedom questions, or Z’s, that examine the linear and quadratic components of

factor A. As noted earlier, these two questions are typically the only logical

orthogonal questions that are useful when breaking down a column sum of squares

for a numerical factor having three levels.

12.2 Design with Two Factors, Each at Three Levels

We can extend this logic to designs with more than one three-level factor. Consider

a 32; this is a two-factor design with each factor at three levels. There are nine

treatment combinations: a1b1, a1b2, a1b3, a2b1, a2b2, a2b3, a3b1, a3b2, and a3b3.
Repeating the procedure above, we calculate the linear and quadratic effects of A,

but separately hold constant each of the three levels of B, as shown in Table 12.2.

Similarly, the linear and quadratic effects for B are calculated as shown in

Table 12.3.

Table 12.1 Sign table for 31 design

Effect a1 a2 a3

AL �1 0 1
AQ 1 �2 1
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It is possible to investigate interactions between the linear and quadratic effects

of different factors,4 but the derivation is somewhat complex and beyond the scope

of this text. However, we still interpret the overall AB interaction, first introduced in

Chap. 6, in the routine manner for such interactions; Example 12.2 includes such an

interaction.

Just as for 2k designs, there are tables of signs for each k of 3k designs; the sign
table for a 32 design is shown in Table 12.4. The effects AL, AQ, BL, and BQ can be

estimated by adding and subtracting the indicated yields in accordance with the

rows of the sign table.

Table 12.2 Calculation of effects for factor A

Level of B Linear effect of A Quadratic effect of A

High a3b3� a1b3 a3b3� 2a2b3 + a1b3
Medium a3b2� a1b2 a3b2� 2a2b2 + a1b2
Low a3b1� a1b1 a3b1� 2a2b1 + a1b1
Total AL ¼ a3b3 � a1b3

þ a3b2 � a1b2
þ a3b1 � a1b1

AQ ¼ a3b3 � 2a2b3
þ a1b3 þ a3b2
� 2a2b2 þ a1b2
þ a3b1 � 2a2b1 þ a1b1

Table 12.3 Calculation of effects for factor B

Level of A Linear effect of B Quadratic effect of B

High a3b3� a3b1 a3b3� 2a3b2 + a3b1
Medium a2b3� a2b1 a2b3� 2a2b2 + a2b1
Low a1b3� a1b1 a1b3� 2a1b2 + a1b1
Total BL ¼ a3b3 � a3b1

þ a2b3 � a2b1
þ a1b3 � a1b1

BQ ¼ a3b3 � 2a3b2
þ a3b1 þ a2b3
� 2a2b2 þ a2b1
þ a1b3 � 2a1b2 þ a1b1

Table 12.4 Sign table for 32 design

a1b1 a1b2 a1b3 a2b1 a2b2 a2b3 a3b1 a3b2 a3b3

Sum of squares

of coefficients

AL �1 �1 �1 0 0 0 1 1 1 6
AQ 1 1 1 �2 �2 �2 1 1 1 18
BL �1 0 1 �1 0 1 �1 0 1 6
BQ 1 �2 1 1 �2 1 1 �2 1 18

4In fact, one can actually compute four two-factor interactions: between linear A and linear B,
between linear A and quadratic B, between quadratic A and linear B, and between quadratic A and

quadratic B.
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Note in Table 12.4, as in the 31 sign table (Table 12.1), the presence of zeros; this

means that, unlike in 2k and 2k�p designs, not every data point contributes to every

effect. Furthermore, the data value (or mean, if there is replication) from some

treatment combinations is weighted twice as much as others in calculating some

effects. The presence of zeros and the fact that not all the data points are weighted

the same indicates that 3k designs are not as efficient (meaning that the estimates

they provide are not as reliable, as measured by standard deviation, relative to the

number of data points) as 2k and 2k�p designs. That having zeros in the sign table

implies less efficiency is reasonably intuitive; we noted earlier that the standard

deviation of an estimate decreases if a larger number of data values compose the

estimate. It can be proven that, for a fixed number of data values with the same

standard deviation composing an estimate, minimum variance is achieved if each

data value is weighted equally. Finally, observe that, as in the 31 sign table, the rows

of the 32 sign table are orthogonal and each row adds to zero. The rows can each be

made to have the sum of squares of their coefficients equal to 1 (that is, the tables

can be made orthonormal) by dividing each coefficient in a row by the square root

of the sum of the squares of the coefficients for that row. This sum of squares is

indicated in the last column of Table 12.4.

Example 12.2 Selling Toys

Here’s an illustration of the breakdown of the sum of squares due to each factor, for

numerical factors having three levels. Our data are based on a study that considered

the impact on sales of a specific toy in a national toy-store chain. Two factors were

examined: the length of shelf space allocated to the toy (the row factor) and the

distance to that shelf space from the floor (the column factor). The row factor, A,

had three levels: 4 (L), 6 (M), and 8 ft long (H). The column factor, B, had three

levels: second shelf (L), third shelf (M), and fourth shelf from the floor (H). Store

managers wondered whether a lower shelf (at child-eye level) or a higher shelf

(at adult-eye level) would sell more of the toy in question. The height of a shelf

(from bottom to top of any one shelf) was already held constant from store to store.

Sales were adjusted for store volume.

We first examine this 32 example as simply a two-factor design with each factor

at three levels, as done in Chap. 6. Each cell has two replicates, listed in Table 12.5.

With each cell mean calculated (Table 12.6), we calculate the grand mean, 70.67.

Table 12.5 Sales by shelf space length (A) and height (B)

High Medium Low Row mean

High 88, 92 105, 99 70, 86 90
Medium 81, 67 80, 92 57, 43 70
Low 60, 80 34, 46 47, 45 52

Column mean 78 76 58 70.67
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Using the procedures developed in Chap. 6, we calculate the two-way ANOVA

table. Table 12.7 shows the results (it assumes that each factor has fixed levels). At

α ¼ .05, F(2, 9) ¼ 4.26; we conclude that the row factor (length of shelf space) and

the column factor (height of the shelf space from the floor) are both significant. Also

at α ¼ .05, F(4, 9) ¼ 3.63; we conclude that there is interaction between the two

factors. A graphical demonstration of this interaction appears in Fig. 12.2.

Although the graph pattern in Fig. 12.2 is similar (nearly parallel, in a sense) for

B ¼ Low and B ¼High, it is very different for B ¼ Medium. One way to interpret

this is that the impact of shelf space length depends on shelf height. Or we could

draw the interaction graph with the horizontal axis representing the level of B, with

a drawing for each level of A, as shown in Fig. 12.3. Again, the three graph patterns

are not all similar, although two of the three (A ¼ High and A ¼ Medium) are.

Table 12.6 Shelf space length/height example

High Medium Low Row mean

High 90 102 78 90
Medium 74 86 50 70
Low 70 40 46 52

Column mean 78 76 58 70.67

Table 12.7 Two-way ANOVA table

Source of variability SSQ df MS Fcalc

Rows, A 4336 2 2168 28.03

Columns, B 1456 2 728 9.41

Interaction, AB 1472 4 368 4.76

Error 696 9 77.33

Fig. 12.2 Yield as a

function of shelf-space

length for different heights

from floor
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Now, we’ll look at this example from the 32 perspective developed in this

chapter. We can use the 32 sign table (Table 12.4) to write out the equations for

the four effects (using the cell means, entering zero when the cell mean gets no

weight and double the cell mean when it is multiplied by 2):

AL ¼ �46� 40� 70þ 0þ 0þ 0þ 78þ 102þ 90ð Þ ¼ þ114

AQ ¼ 46þ 40þ 70� 100� 172� 148þ 78þ 102þ 90ð Þ ¼ þ6

BL ¼ �46þ 0þ 70� 50þ 0þ 74� 78þ 0þ 90ð Þ ¼ þ60

BQ ¼ 46� 80þ 70þ 50� 172þ 74þ 78� 204þ 90ð Þ ¼ �48

One can construct a simple tabular template to facilitate these calculations;

Table 12.8 gives an example. Using calculation templates for 3k designs is not

mandatory, but it is a useful and easy way to check one’s work. The cost of

designing, running, and analyzing the results of an experiment justifies care in the

relatively mundane task of “running the numbers” – this is just another example of

practicing safe statistics. Of course, using appropriate software for the analysis

makes the problem moot.

Table 12.8 3k calculation template applied to 32 example

AL AQ BL BQ

� + � + � + � +

46 78 2(50) 46 46 70 2(40) 46

40 102 2(86) 40 50 74 2(86) 50

70 90 2(74) 70 78 90 2(102) 78

78 70

102 74

90 90

Column sum Column sum Column sum Column sum

156 270 420 426 174 234 456 408

Net Net Net Net

114 6 60 48

Fig. 12.3 Yield as a

function of height from

floor for different shelf

space length
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Next, we normalize the estimates by dividing each by the square root of the sum

of squares of the respective coefficients of the estimate, which are noted in the last

column of Table 12.4. This yields

Normalized AL ¼ 114=
ffiffiffi

6
p

¼ 114=2:449 ¼ 46:54

Normalized AQ ¼ 6=
ffiffiffiffiffi

18
p

¼ 6=4:243 ¼ 1:41

Normalized BL ¼ 60=
ffiffiffi

6
p

¼ 60=2:449 ¼ 24:50

Normalized BQ ¼ �48=
ffiffiffiffiffi

18
p

¼ �48=4:243 ¼ �11:31

Following the notation and procedure introduced in Chap. 5, the AL and AQ terms

are essentially equivalent to Z1 and Z2, respectively, with regard to asking two

“questions” about the sum of squares associated with factor A (or SSQrows); simi-

larly, the BL and BQ terms are essentially equivalent to Z1 and Z2, respectively, with
regard to asking two “questions” about the sum of squares associated with factor B

(or SSQcolumns). To continue the Chap. 5 procedure, we square each of these Z values
and multiply each by the number of replicates per cell. For A, this yields

Z1ð Þ2 � 2 ¼ 46:54ð Þ2 � 2 ¼ 4332

and

Z2ð Þ2 � 2 ¼ 1:41ð Þ2 � 2 ¼ 4

For B, it yields

Z1ð Þ2 � 2 ¼ 24:50ð Þ2 � 2 ¼ 1200

and

Z2ð Þ2 � 2 ¼ �11:31ð Þ2 � 2 ¼ 256

Observe that, in this orthogonal decomposition of the sums of squares associated

with A and B,

ALð Þ2 þ AQ

� �2 ¼ 4332þ 4 ¼ 4336 ¼ SSQA ¼ SSQrows

BLð Þ2 þ BQ

� �2 ¼ 1200þ 256 ¼ 1456 ¼ SSQB ¼ SSQcolumns

Table 12.9 summarizes these results in an augmented ANOVA table. For α ¼ .05,

F(1, 9)¼ 5.12; we find that the linear component of the row factor, AL, is significant

( p < .001), as is the linear component of the column factor, BL ( p < .001). At

α¼ .05, neither of the quadratic terms are significant (for AQ, p is nearly 1.0; for BQ,

p is about .11). In essence, we can conclude that both factors A and B have an

impact on the yield, and that in each case the yield increases linearly with the level

of the factor – with no significant curvature.
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This indicates that, as the length of the shelf space given to the toy increases,

sales increase linearly, with no statistically-significant indication of concavity nor

convexity – meaning that going from four to six feet engenders about the same sales

increase as going from six to eight feet. Indeed, the row means go from 52 to 70 to

90; (70� 52)¼ 18 is not very different from (90� 70)¼ 20. We would not suggest

that the linearity goes on forever, nor that it is valid for very small amounts of shelf

space. We judge this result as appropriate only for the range of values in the

experiment and perhaps only for the specific toy in the experiment. The same

qualifying statements apply to the conclusions for the distance of the shelf from

the floor. (Indeed, such qualifying statements apply in general to all of the field of

experimental design – the resulting conclusions should not be assumed to apply for

treatment values far outside the experimental region.) Sales increase when the toy is

placed on the third shelf rather than the second, and they increase by about the same

amount if it is placed on the fourth shelf rather than the third. Again, there is no

statistically-significant indication of concavity nor convexity. The column means

go from 58 to 76 to 78. Here, (76 � 58) ¼ 18 does not seem so close to

(78 � 76) ¼ 2; indeed, the result had a p-value of about .11, not so far from .05;

this is an indication that the data results are less close to being literally linear.

Again, there is no good reason to think that this “technical linearity” holds for levels

outside the range of values in the experiment. Figure 12.4 graphs the column means

for A and B to show the curvature or lack thereof (in the left graph of the impact of

the level of A, it looks virtually linear).

Table 12.9 Augmented ANOVA table

Source of variability SSQ df MS Fcalc

Rows 4336 2 2168 28.0

AL 4332 1 4332 56.0

AQ 4 1 4 .1

Columns 1456 2 728 9.4

BL 1200 1 1200 15.5

BQ 256 1 256 3.3

Interaction 1472 4 368 4.8

Error 696 9 77.3

Fig. 12.4 Column means as a function of shelf space (left) and shelf height (right)
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Example 12.3 Selling Toys Example using JMP

Now, we use JMP to evaluate the effect of shelf length and height on the toy-sales

problem; the set-up and analysis of the design table is similar to what we have done

in previous chapters – it produces the analysis in Fig. 12.5. Both the main and the

interaction components are significant ( p < 0.05).5

JMP can also decompose the sums of squares into linear and quadratic compo-

nents. Table 12.10 summarizes the output for factors A and B (the labels “Linear”

and “Quadratic” in the contrast row are not used in JMP; the results were grouped in

one table for demonstration purposes). To obtain these results, we click on the red

“inverted” triangle next to the factor’s name under Effect Details tab. Then, we

click on LSMeans Contrast. . . and specify the contrasts. For the linear contrast,

�1, 0, and þ1 values were inserted. For the quadratic contrast, þ1, �1, and þ1

values were inserted (even though we really wanted to insert [1,�2, 1], but JMP

would not allow that), and the software changed the values to those shown in

Table 12.10: .5, �1, and .5. Note that contrasts were enabled only as coefficients

of the column means, not for all nine data values, as in the sign table earlier. This

does no harm; indeed, the SS row in Table 12.10 (4332 and 4) reproduces the

appropriate sums of squares for the augmented ANOVA table even though JMP

does not reproduce the augmented ANOVA table itself.

5JMP gives an error message if we try to include the quadratic terms in the “model” since the

independent variables used are categorical/nominal (that is, the levels were assigned as low,

medium, and high). It automatically removes the terms from the analysis.
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Fig. 12.5 JMP analysis of

toy-store example

Table 12.10 Decomposition of sum of squares

Contrast

Factor A Factor B

Linear Quadratic Linear Quadratic

1 �1 0.5 �1 0.5
2 0 �1 0 �1
3 1 0.5 1 0.5
Estimate 38 1 20 �8
Std Error 5.0772 4.397 5.0772 4.397
t Ratio 7.4845 0.2274 3.9392 �1.819
Prob > |t| 3.8e–5 0.9123 0.0034 0.1022
SS 4332 4 1200 256
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In the “Estimate” row for factor A, if we multiply 38 by 3 (the number of

columns for each row), the result (114) is the same as that in the calculation

template (Table 12.8). If we multiply 1 (quadratic estimate) by 3, and also by

2 (because the Table 12.8 template was based on the coefficients 1, �2, 1, whereas

the JMP analysis used .5, �1, .5) we reproduce the 6 of the template. Note that

"Prob> |t|" refers to the p-value for a two-sided t-test that assumes a null hypothesis

that the true t Ratio value (that is, the ratio of the "Estimate" to the "Std Error")

is zero.

Similarly, for factor B, the values in the SS row (1200 and 256) correspond with

the sums of squares in the augmented ANOVA table (Table 12.9), whereas the

values in the estimate row (20, �8) are transformed to the Table 12.8 template

values (60, �48) in a manner similar to that described for factor A.

12.3 Nonlinearity Recognition and Robustness

Nonlinearity can help reduce sensitivity in performance due to variability in the

level of input parameters (that is, variability in implementing the precise level of the

factor). This attribute of insensitivity is called robustness. Figure 12.6 illustrates

the relationship of the parameter setting of an input factor to performance, focusing

on the choice of two levels, L1 and L2, of a single factor.

Suppose, in Fig. 12.6, that we can operate at either setting L1 or L2. Also, suppose
that our objective is to reduce variability in performance in response to variability in

the level of factors not under our complete control (a worthy objective, everything

else being equal). Examples range from variability in materials or processes over

Fig. 12.6 Effects of

nonlinearity on robustness

12.3 Nonlinearity Recognition and Robustness 435



which the company has some control but which might be expensive to improve, to

true “noise factors,” such as the temperature at which the product is used after it

leaves the shop. The nonlinearity (the curvature) in the relationship between output

(performance) and the input level of the factor indicates that the variability of the

output varies with the variability of the level of the input factor in a way that isn’t
constant. If we choose level L2 in Fig. 12.6, a relatively large variability in the

parameter setting will have minimal impact on the variability of performance (PL2 in

the figure); but if we choose level L1, even small variability in the level of the factor

will result in large variability in performance (PL1 in the figure). We say a lot more

about this issue in the next chapter. However, we hope it is already clear that the

potential benefit of nonlinearity cannot be exploited if it is not first identified.

Example 12.4 Drug Comparison Study

In this example, let’s consider an animal study that aimed to investigate the effect of

a new drug on cholesterol levels. Two quantitative factors with three levels each

were considered in a 32 design: “drug dosage” (control or 0 mg, 15 mg, and 30 mg)

and “diet” (low-fat diet, no dietary restriction, and high-fat diet), as shown in

Table 12.11. The levels are equidistant, that is, the medium level is halfway

between low and high levels. Five animals who started with no statistically-

significant difference in cholesterol levels were randomly allocated in each treat-

ment combination, and the response assessed was the percentage reduction in the

cholesterol levels. The JMP output, which indicates that only the linear components

are significant ( p < .0001), is shown in Fig. 12.7.

Using the same contrast coefficients as those specified in Example 12.3, we can

decompose the sum of squares. Table 12.12 summarizes the output for “Drug

dosage” and “Diet,” and indicates that, for both factors, their linear component

contributes significantly to the sum of squares, whereas the quadratic term is not

significant.

Table 12.11 Factors, levels, and responses for drug comparison study

Drug dosage Control 15 mg 30 mg
Diet

Low-fat diet 28.5, 29.2, 28.8, 30.8, 30.2 32.6, 33.2, 33.0, 32.1, 33.4 35.8, 36.1, 36.6, 35.4, 37.2
No dietary
restriction

24.2, 26.8, 26.0, 25.8, 25.2 28.2, 27.7, 29.0, 29.4, 28.0 31.4, 32.5, 32.2, 33.1, 32.0

High-fat diet 22.9, 20.6, 20.2, 21.2, 19.9 25.1, 23.9, 23.4, 24.9, 25.0 27.1, 28.6, 28.1, 26.5, 26.0
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Table 12.12 Decomposition of sum of squares

Contrast

Drug dosage Diet

Linear Quadratic L3inear Quadratic

1 �1 .5 �1 .5
2 0 �1 0 �1
3 1 .5 1 .5
Estimate 6.5533 .0367 �8.633 �.223
Std Error .3153 .2730 .3153 .2730
t Ratio 20.785 .1343 �27.38 �.818
Prob > |t| 1e-21 0.8939 1e-25 0.4188
SS 322.1 0.0134 559.01 0.4988

Fig. 12.7 JMP output for

drug comparison study
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Figure 12.8 shows the plot of column means by drug dosage and diet regime.

Note that the response (reduction of cholesterol level) increases linearly as the level

of the factor “Drug dosage” increases, whereas it decreases linearly with increasing

level of “Diet.”

12.4 Three Levels Versus Two Levels

In the final analysis, deciding whether to estimate nonlinear effects involves

judgment. Considerations should include the guidance of the process experts, the

importance (cost implications) of the factor, the expected monotonicity of the factor

(that is, whether the relationship between the performance and the level of the

factor continually increases or decreases, as opposed to going up and then down

[or down and then up] as the level of the factor increases), and the cost of the

experiment with and without evaluating nonlinearity. No single guideline (with the

possible exception of the guidance from the process experts) is appropriate for all

applications.

If there is a reasonable chance that performance does not vary monotonically

over the range of interest of the levels of the factor, then the study of nonlinearity is

virtually mandatory. However, if the relationship is anticipated to be monotonic

(if it turns out to have any effect at all), judgments may be necessary. With only a

few factors, to be safe we should probably include in the design the study of

nonlinearity. However, if there are many factors in the experiment and the task at

hand is to narrow down the number of factors for later study, then perhaps studying

only two levels of the factor is appropriate. Remember: 37 is a lot larger than 27, and

for that matter, 37�2 is much larger than 27�2!
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Fig. 12.8 Response means as a function of drug dosage (left) and diet regime (right)

438 12 Designs with Factors at Three Levels



Example 12.5 Optimal Frequency and Size of Print Ads for MegaStore

(Revisited)

In the MegaStore experiment, the results for ad size clearly indicated significant

linear and quadratic effects of a concave nature. As ad size went from half a page to

two pages, sales increased; however, as ad size increased from one page to two

pages, the sales increase was less than double the sales increase engendered as ad

size increased from half a page to one page. (If the increase were completely linear,

the extra sales gained from a two-page versus a one-page ad would be double the

sales increase engendered by going from a half page to a full page.) The results for

ad frequency followed a similar pattern. But, while the results for ad size were as

expected by MegaStore management, the ad frequency results were not. MegaStore

thought, in retrospect, that perhaps four levels of frequency should have been

tested. Maybe so; in many situations, increasing frequency results in an S-shaped

curve, arguably based on the need for a critical mass (of exposure, in the case of

advertising). And with only three levels, an S shape cannot be captured; this would

require a cubic effect. With only three levels, we cannot distinguish between the

two diagrams in Fig. 12.9, assuming that the response at each of three levels (low,

medium, and high) is the same in both diagrams.

12.5 Unequally Spaced Levels

To analyze the MegaStore data, one needs to perform the linear and quadratic sum-

of-squares breakdown for unequally spaced intervals. The factor “number of ads

over the three-week period” was equally spaced at one, two, and three; however, the

factor “ad size” was not: half a page, one page, and two pages.

When the three levels are not equally spaced, all the logic described in this

chapter is still fully applicable, but the contrast coefficients are different. The

coefficients of the linear contrast must be proportional to the deviation from the

Fig. 12.9 Failure of three levels to distinguish S-shaped from non-S-shaped curve
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mean level. For example, if the levels are .1, .3, and .8 pages, the mean level is .4

pages. Then, the coefficient for the low level is (.1� .4)¼�.3; for the middle level,

it is (.3� .4)¼�.1; for the high level, it is (.8� .4)¼þ.4. Hence, the (not yet

normalized) contrast is

�:3 �:1 :4½ �

These values reflect the fact that linearity would not suggest that the difference in

response in going from A¼ .1 pages to A¼ .3 pages is the same as the difference in

going from A ¼ .3 pages to A ¼ .8 pages; in fact, linearity precludes the result.

Indeed, the difference between the coefficients is .2 for the former and .5 for the

latter, corresponding to the 2.5:1 ratio of differences in actual levels. Further, note

that the sum of the coefficients is still zero.

For the actual case at hand, with levels of .5, 1, and 2, the mean level is 7/6.

Writing .5 as 3/6, 1 as 6/6, and 2 as 12/6, and, without loss of generality, working

only with the numerators (that is, the importance of the coefficients is relative – the

scale is taken care of later) the differences/coefficients are

�4 �1 þ 5½ �

What about the quadratic contrast’s coefficients? The coefficients for the three-
level quadratic contrast are obtained by (1) taking the difference between the low

and medium levels and placing that value, with a plus sign, as the coefficient for the

high level, (2) taking the difference between the medium and high levels and

placing that value, with a plus sign, as the coefficient for the low level, and

(3) placing as the coefficient of the medium level the value, with a minus sign,

that makes the sum of the coefficients equal to zero. Here’s an illustration:

For the linear contrast of

½�:3 �:1 þ :4�

take the difference between �3 and �.1, which equals .2, and place it as the

coefficient for the high level:

� � :2½ �

Then, take the difference between �.1 and þ.4, which equals .5, and place it as the

coefficient of the low level:

:5 � :2½ �

Finally, find the coefficient for the medium level to be .5þ . 2¼ . 7, but with a

minus sign:

:5 �:7 :2½ �

The orthogonal table for our numerical example becomes
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Effect a1 a2 a3

AL �.3 �.1 .4
AQ .5 �.7 .2

Note that the inner product of the two rows is, indeed, zero. Also note that the

“smallness” of the coefficients is not an issue, as the normalization process accounts

for that. The sums of squares of the coefficients for the two rows are .26 and .78,

respectively.

For the MegaStore example with levels .5, 1, and 2, the linear contrast

is noted above as [�4 � 1 5], and we can derive the quadratic contrast as

[6 � 9 3], which, dividing each coefficient by 3, can be reduced to

[2 � 3 1], resulting in the following sign table for the unequally spaced levels:

Effect a1 a2 a3

AL �4 �1 5
AQ 2 �3 1

12.6 A Comment

Many designs that can be set up as a 3k or 3k�p can also be set up, sometimes more

efficiently, using other designs that we discuss in Chap.16 on response-surface

methods (RSM). However, the RSM approach is potentially useful only when the

levels of the factors in the study are continuous.

Exercises

1. Consider the 32 experiment shown in Table 12EX.1. Perform a standard

two-factor cross-classification ANOVA; assume that it is known that there is

no interaction between the two factors. (Assume in this problem and all

subsequent problems that the levels are equally spaced.)

2. In Exercise 1,

(a) Break down the sum of squares associated with A, and the sum of squares

associated with B, into a total for the two factors of four single-degree-of-

freedom components.

Table 12EX.1 Yields for a 32 design

Level of B

Low Medium High

Level of A
Low 23 17 29
Medium 16 25 16
High 24 18 12
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(b) Continuing with the assumption of no interaction, test for the linear and

quadratic effects of each factor.

3. Consider the data in Table 12EX.3 comprising yields for the 27 treatment

combinations of a 33 design, with two replicates per cell. Perform a standard

three-factor cross-classification ANOVA; assume that it is known that there is

no three-factor interaction, but that there might be two-factor interactions

among any two factors.

4. In Exercise 3,

(a) Break down the sum of squares associated with A, the sum of squares

associated with B, and the sum of squares associated with C, into a total of

six single-degree-of-freedom components.

(b) Continuing with the assumptions about interaction stated in Exercise

3, test for the linear and quadratic effects of each factor.

5. The data in Table 12EX.5 represent the experimental results from a 32 design

with eight replicates per cell. Analyze (first) as a one-factor design, the row

factor. Use α ¼ .05 for this exercise and Exercises 6, 7, 9, and 10.

6. Analyze the data in Exercise 5 as a one-factor design, the column factor.

7. Analyze the data in Exercise 5 as a two-factor cross-classification design,

assuming that the two factors do not interact.

8. Compare the results of Exercise 7 with those for Exercises 5 and 6. Explain

the reasons for the different results.

9. Now, analyze the data of Exercise 5 as a two-factor cross-classification design

with the possibility of interaction. Compare the results to those of Exercise

7 and explain the reasons for the differences in results.

10. Finally, break down the results for the two factors in the Exercise 9 analysis

into linear and quadratic effects and test for the significance of these effects.

11. Suppose that you wish to investigate the effect of ingredients A and B on the

thickness of cookies in a 32 design with five replicates (that is, cookies) per

treatment combination. The data are shown in Table 12EX.11.

Perform a standard two-factor cross-classification ANOVA using α ¼ .05;

assume that it is known that there is no interaction between the two factors.

12. In Exercise 11, break down the sum of squares associated with ingredient A,

and the sum of squares associated with ingredient B, into linear and quadratic

effects and test for the significance of these effects. Use α ¼ .05

Table 12EX.3 Yields for a 33 experiment with two replicates

B ¼ Low B ¼ Medium B ¼ High

C ¼ Low C ¼ Medium C ¼ High C ¼ Low C ¼ Medium C ¼ High C ¼ Low C ¼ Medium C ¼ High

A ¼ Low 8.4, 9.5 2.3, 2.2 7.9, 12.5 12.2, 15.8 5.6, 6.2 14.0, 11.7 8.1, 8.5 6.6, 5.7 13.5, 8.0

A ¼ Medium 22.1, 19.4 12.0, 15.5 20.9, 17.4 17.6, 29.8 22.8, 21.4 23.0, 15.2 21.2, 22.6 22.6, 24.9 23.7, 27.5

A ¼ High 8.4, 8.5 15.7, 11.4 20.5, 19.3 5.7, 7.5 15.6, 13.4 20.8, 17.5 10.0, 7.0 11.2, 8.0 17.4, 12.4
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Table 12EX.11 Cookie thickness (in mm) as a function of ingredients A and B

B
A

Low Medium High

Low 15.2, 15.1, 14.9, 16.4, 15.4 16.8, 17.1, 18.0, 17.4, 18.2 20.4, 20.2, 19.7, 21.2, 20.1

Medium 17.2, 16.8, 16.6, 18.0, 17.8 18.9, 17.7, 18.9, 19.4, 19.0 21.8, 22.4, 22.2, 20.4, 21.2

High 13.5, 14.5, 14.3, 15.0, 13.4 15.8, 17.4, 17.1, 16.9, 15.7 17.9, 18.6, 18.4, 17.7, 19.2

Table 12EX.5 Yields for a 32 experiment with eight replicates

Y Row Column Y Row Column

86 3 3 39 1 2
96 3 3 53 1 2
92 3 3 39 1 2
90 3 3 52 1 2

88 3 3 86 2 3
92 3 3 65 2 3
87 3 3 80 2 3
91 3 3 65 2 3

59 1 3 79 2 3
83 1 3 65 2 3
61 1 3 83 2 3
77 1 3 68 2 3

60 1 3 71 3 1
80 1 3 88 3 1
62 1 3 70 3 1
81 1 3 85 3 1

109 3 2 70 3 1
98 3 2 88 3 1
107 3 2 73 3 1
97 3 2 86 3 1

103 3 2 60 2 1
100 3 2 42 2 1
106 3 2 56 2 1
102 3 2 42 2 1

69 2 2 58 2 1
81 2 2 42 2 1
65 2 2 56 2 1
81 2 2 44 2 1

72 2 2 48 1 1
78 2 2 44 1 1
68 2 2 50 1 1
83 2 2 42 1 1

39 1 2 47 1 1
48 1 2 41 1 1
40 1 2 48 1 1
55 1 2 47 1 1
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Appendix

Example 12.6 Selling Toys Example using SPSS

From the perspective of SPSS, the toy-store problem is a two-factor cross-classifi-

cation with replication. The data were entered as shown in Table 12.13 and SPSS

was told that the first and second columns represent the levels of the row (A) and

column (B) factors, respectively, and the third column represents the dependent

variable. Table 12.14 shows the SPSS output.

Table 12.13 SPSS input format for toy study

A B Response

88 3 3

92 3 3

81 2 3

67 2 3

60 1 3

80 1 3

105 3 2

99 3 2

80 2 2

92 2 2

34 1 2

46 1 2

70 3 1

86 3 1

57 2 1

43 2 1

47 1 1

45 1 1
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The breakdown of the main-effect sum of squares into linear and quadratic

components in an augmented ANOVA table is not provided, but would have to

be independently and separately generated. For this, we can use a syntax to specify

the coefficients for factors A and B, as shown in Fig. 12.10, where L1 and L2 are the

linear and quadratic components, respectively. This will generate the results shown

in Tables 12.15 and 12.16.

Table 12.14 SPSS ANOVA table for toy-store example

Tests of between-subjects effects

Dependent variable: response

Source Type III sum

of squares

df Mean square F Sig.

Corrected Model 7264.000a 8 908.000 11.741 .001
Intercept 89888.000 1 89888.000 1162.345 .000
A 4336.000 2 2168.000 28.034 .000
B 1456.000 2 728.000 9.414 .006
A * B 1472.000 4 368.000 4.759 .024
Error 696.000 9 77.333
Total 97848.000 18
Corrected total 7960.000 17

aR Squared ¼ .913 (Adjusted R Squared ¼ .835)

Fig. 12.10 Steps for setting up the contrast coefficients in SPSS

Table 12.15 Decomposition of sum of squares for factor A in SPSS

Contrast results (K matrix)

A Special contrast

Dependent variable

Response

L1 Contrast estimate 38.000

Hypothesized value 0

Difference (estimate – hypothesized) 38.000

Std. error 5.077

Sig. .000

95% Confidence interval for

difference

Lower bound 26.515
Upper bound 49.485

L2 Contrast estimate 1.000

Hypothesized value 0

Difference (estimate – hypothesized) 1.000

Std. error 4.397

Sig. .825

95% confidence interval for

difference

Lower bound �8.947
Upper bound 10.947
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Example 12.7 Selling Toys Example using R

In this example, we will use the fac.design() introduced in previous chapters.

We will use �1, 0, and 1 to identify the levels, but we could have used “low,”

“medium,” and “high” or any other classification.

> design <- fac.design(nlevels=3, nfactors=2, factor.names=list

+(A=c(-1,0,1), B=c(-1,0,1)), replications=2, randomize=FALSE)

creating full factorial with 9 runs ..

Next, we create a vector with the responses and add it to the design table:

>y<-c(47,57,70,34,80,105,60,81,88,45,43,86,46,92,99,80,

+67, 92)

> design <- add.response(design=design, response=y)

> design

Table 12.16 Decomposition of sum of squares for factor B in SPSS

Contrast results (K matrix)

B Special contrast

Dependent variable

Response

L1 Contrast estimate 20.000

Hypothesized value 0

Difference (estimate – hypothesized) 20.000

Std. error 5.077

Sig. .003

95% confidence interval

for difference

Lower bound 8.515
Upper bound 31.485

L2 Contrast estimate �8.000

Hypothesized value 0

Difference (estimate – hypothesized) �8.000

Std. error 4.397

Sig. .102

95% confidence interval

for difference

Lower bound �17.947
Upper bound 1.947
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run.no run.no.std.rp A B Blocks y
1 1 1.1 -1 -1 .1 47
2 2 2.1 0 -1 .1 57
3 3 3.1 1 -1 .1 70
4 4 4.1 -1 0 .1 34
5 5 5.1 0 0 .1 80
6 6 6.1 1 0 .1 105
7 7 7.1 -1 1 .1 60
8 8 8.1 0 1 .1 81
9 9 9.1 1 1 .1 88

10 10 1.2 -1 -1 .2 45
11 11 2.2 0 -1 .2 43
12 12 3.2 1 -1 .2 86
13 13 4.2 -1 0 .2 46
14 14 5.2 0 0 .2 92
15 15 6.2 1 0 .2 99
16 16 7.2 -1 1 .2 80
17 17 8.2 0 1 .2 67
18 18 9.2 1 1 .2 92

class=design, type= full factorial

NOTE: columns run.no and run.no.std.rp are annotation, not part

of the data frame

To obtain the ANOVA table:

> design.aov <- aov(y~A*B, data=design)

> summary(design.aov)

Df Sum Sq Mean Sq F value Pr(>F)
A 2 4336 2168.0 28.034 0.000136 ***
B 2 1456 728.0 9.414 0.006222 **
A:B 4 1472 368.0 4.759 0.024406 *
Residuals 9 696 77.3

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As in the procedure described in Chap. 5, we have to set up a matrix with the

contrast coefficients that will be used to decompose the sum of squares.

> matrix <- matrix(c(-1,0,1,0.5,-1,0.5), nrow=3, ncol=2,

+byrow=F)

> matrix

[,1] [,2]
[1,] -1 0.5
[2,] 0 -1.0
[3,] 1 0.5
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> contrasts(design$A) <- matrix

> contrasts(design$B) <- matrix

To determine if the coefficients have been correctly assigned, we use

> design.aov$contrasts

$A

[,1] [,2]
-1 0.5
0 -1.0
1 0.5

$B

[,1] [,2]
-1 0.5
0 -1.0
1 0.5

We can run ANOVA again without the interaction term, assuming we are only

interested in the linear and quadratic components. Otherwise, R will use the

coefficients to break down SSQinteraction, as shown below. The following com-

mand decomposes the sum of squares and is valid for both situations – with or

without the interaction term.

> summary.aov (design.aov2, split=list(A=list(1, 2, 3),

+B=list(1,2,3)))

Df Sum Sq Mean Sq F value Pr(>F)
A 2 4336 2168 28.034 0.000136 ***
A: C1 1 4332 4332 56.017 3.75e-05 ***
A: C2 1 4 4 0.052 0.825172
A: C3 1
B 2 1456 728 9.414 0.006222 **
B: C1 1 1200 1200 15.517 0.003410 **
B: C2 1 256 256 3.310 0.102195
B: C3 1
A:B 4 1472 368 4.759 0.024406 *
A:B: C1.C1 1 72 72 0.931 0.359804
A:B: C2.C1 1 24 24 0.310 0.591051
A:B: C3.C1 1
A:B: C1.C2 1 864 864 11.172 0.008626 **
A:B: C2.C2 1 512 512 6.621 0.030036 *
A:B: C3.C2 1
A:B: C1.C3 1
A:B: C2.C3 1
A:B: C3.C3 1
Residuals 9 696 77
---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Chapter 13

Introduction to Taguchi Methods

We have seen how, using fractional-factorial designs, we can obtain a substantial

amount of information efficiently. Although these techniques are powerful, they are

not necessarily intuitive. For years, they were available only to those who were

willing to devote the effort required for their mastery, and to their clients. That

changed, to a large extent, when Dr. Genichi Taguchi, a Japanese engineer,

presented techniques for designing certain types of experiments using a “cook-

book” approach, easily understood and usable by a wide variety of people. Most

notable among the types of experiments discussed by Dr. Taguchi are two- and

three-level fractional-factorial designs. Dr. Taguchi’s original target population

was design engineers, but his techniques are readily applied to many management

problems. Using Taguchi methods, we can dramatically reduce the time required to

design fractional-factorial experiments.

As important as it is, Taguchi’s work in the design of experiments is just part of

his contribution to the field of quality management. His work may be viewed in

three parts – the philosophy of designing quality into a product, rather than

inspecting defects out after the fact, quantitative measures of the value of quality

improvements, and the development of the aforementioned user-friendly experi-
mental design methods that point the way for quality improvement. Indeed, the

reason that Taguchi developed the techniques for “relatively quick” designing of

experiments is that he believed (and practice has borne out) that unless these

techniques were available, (design) engineers would not have the skills and/or

take the time to design the experiments, and the experiments would never get

performed (and the quality improvement would never be realized).

Taguchi is seen as one of the pioneers in the total-quality-management (TQM)

movement that has swept American industry over the past three decades. Major

organizations that adopted Taguchi methods early on were Bell Telephone Labo-

ratories, Xerox, ITT, Ford, and Analog Devices. These were soon followed by

General Motors, Chrysler, and many others.
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Example 13.1 New Product Development at HighTech Corporation

HighTech Corporation has fostered a corporate image based on its speed of

innovation. Developers of new products are given the best equipment and support

and encouraged to be as innovative as possible in as short a time as possible,

directly on the plant floor, with a minimum of “bureaucratic interruption.” How-

ever, at one point in the company’s history, a problem arose that significantly

slowed the innovative process.

It seemed that, with increasing frequency, the new product developers needed to

design efficient experiments to test a variety of configurations for potential new

products. Yet, the need for an experimental-design expert was not sufficient to

warrant a full-time person on staff. What ensued was that the development process

would come to a standstill while an expert was summoned to help with the

experimental design. These delays became increasingly unsatisfactory. They not

only slowed things down but often led to frustration, which in turn led to the

developers skirting the experimental-design process and getting shoddy results.

Something had to change!

The solution was to teach the engineers methods that allowed them to quickly

and easily design good-quality experiments, and, to the degree possible, tie in these

methods with a “way of thinking about quality” for the whole company.

We return to this example at the end of the chapter.

13.1 Taguchi’s Quality Philosophy and Loss Function

The essence of the Taguchi philosophy is a change in mind-set regarding quality:

moving away from the “goal-post” mentality, wherein a manufacturing component

(or process step or anything else for which there might be a notion of “acceptable or

unacceptable”) is seen as either good or bad – that is, classified simply as a

dichotomy. Typically, specification (spec) limits are defined and the part is mea-

sured against these limits. Examples would be “the diameter of a steel shaft shall be

1.280 � .020 cm,” or “the output of a light source should be between 58 and

62 lumens,” or “the radiation time should be 200 � 2 milliseconds.” These are all

examples of specs that might be called nominal the best, that is, the nominal value is

the best value, rather than the bigger the better or the smaller the better, as in

one-sided specs. (The analogy to goal posts, as in soccer, football, hockey, and

other sports, refers to thinking of the data [the ball or puck] as either “in” or “out”;

the degree of being “in” is immaterial.) Examples of one-sided specs include “the

number of knots must be less than three per sheet,” or “the noise power must be less

than 20 microwatts,” or “the cord must contain at least 120 cubic feet.” At times,

statistical overtones may be added; for example, “the waiting time should be less

than 20 minutes for at least 95% of all customers.” All of these requirements,
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whether nominal-the-best or one-sided, include the notion of a specification that

partitions the possible continuum of parameter values into two classes – good

and bad.

Taguchi would argue that this approach is not grounded in reality. Can it be,

returning to our first example above, that a steel shaft that measures anywhere from

1.260 to 1.300 cm is good but that one measuring 1.301 cm is not? Is it likely that

one measuring 1.300 cm performs as well as one that measures 1.280 cm? Will one

measuring 1.300 cm behave the same as one measuring 1.260 cm? More likely,

there is some best diameter, say 1.280 cm, and a gradual degradation in perfor-

mance results as the dimension departs from this value. Furthermore, it is reason-

able to assume that a departure from this best value becomes more problematic as

the size of the departure increases. Taguchi contends that a more meaningful “loss

function” would be quadratic (or at least concave upward, for which a quadratic

function would be a good approximation). Figure 13.1 depicts Taguchi’s suggested
quadratic loss function along with the goal-post, or spec limit, loss function.

Note points A, B, and C on the horizontal axis of each loss function in Fig. 13.1.

These would correspond, using the values in the steel-shaft example above, to, say,

A ¼ 1.282, B ¼ 1.299, and C ¼ 1.301. It belies logic, at least in the vast majority of

situations, to view points A and B as having equal quality while viewing points

B and C as having dramatically different quality. Yet, this is exactly what the goal-

post mentality embraces. Taguchi’s quadratic loss function recognizes that, by and

large, points B and C are of similar quality (perhaps both being poor quality!), and

points A and B are of very different quality.

Taguchi’s interest was primarily in the difference between the two loss functions

in the acceptable region for the goal-post depiction; that is, he contends that any

departure from the nominal (that is, ideal) value involves some loss. The Taguchi

loss function is of the form

L ¼ K Y � Tð Þ2

Goal-post loss function Taguchi loss function

Single point of

n
o

l
o
s
s

No loss$ 
Lo

ss

Loss Loss Loss Loss

A B C A B C
Lower
spec
limit

Upper
spec
limit

Target Target

Fig. 13.1 Contrasting models for loss functions

13.1 Taguchi’s Quality Philosophy and Loss Function 451



where

L ¼ the loss incurred, in monetary units per part

K¼ a constant appropriate to the problem (K is related to the cost of the part and the

cost for its “reworking” if it is salvageable.)

Y¼ the actual value of the measured quantity (a point along the horizontal axis – for

example, the output voltage of a generator)

T ¼ the target (best, ideal, or nominal) value

Most texts dedicated to Taguchi methods, including those cited in Chap. 18,

discuss the determination of K. This proposed quadratic loss function is related to

the idea of minimizing mean square error, a goal that is virtually always considered

worthy. Regression analysis, a subject covered in the next chapters, nearly always

rests on the determination of a least-squares line (or plane or hyperplane) – that is,

the minimization of the sum of the squared errors. These “connections” add support

to Taguchi’s choice of suggested loss function.

It can be shown that the average loss per unit using the Taguchi loss function is

L ¼ EðLÞ ¼ K½ðμ� TÞ2 þ σ2�

where

E(L ) ¼ expected value of L
μ ¼ the true average value of Y
σ2 ¼ the true variance of Y

In practice, the μ and σ2 values are replaced by their respective estimates, �Y and

S2, yielding the equation

�L ¼ K
�
�Y � T

�2 þ S2
h i

The term
�
�Y � T

�
is called the bias; it demonstrates the extent to which, on the

average, the “performance measure” (or “quality indicator,” or “quality character-

istic”), Y, does not come out equal to the nominal value. Clearly, the ideal result

would be to have both the bias and the variance equal to zero. In practical situations,

the variance is never zero. Furthermore, having the average performance as near as

possible to the target and having variability around the average as near as possible

to zero sometimes are conflicting goals. That is, it is possible that making the bias as

small as possible and incurring whatever variance results may yield a higher

average loss than allowing the bias to become somewhat larger with a more-than-

compensating decrease in variance. As a simple example, consider the following

choice: would we prefer a thermostat in our home that on average is off by one

degree, possibly only a half degree, sometimes one-and-a-half degrees, or a ther-

mostat that on average is exactly accurate, but which much of the time is off

between 10� and 15�, as often below the true temperature as above? Remember: the

average doesn’t tell the whole story. Recall the guy with his head in the refrigerator,
his feet in the stove – on the average, he feels fine!

452 13 Introduction to Taguchi Methods



13.2 Control of the Variability of Performance

Control of average performance is traditional. Control of variability, if done at all,

has usually been accomplished through explicit control; that is, it is determined

that an amount of variability in some input factor, say degree of steel hardness,

leads to an amount of variability in some output variable (that is, some performance

measure), say shaft diameter. Explicit control of the variability of shaft diameter

would be achieved by the control of the variability in steel hardness. Reduce the

latter (at a cost, in most cases), and the result is a reduction in the former. This

explicit control process is illustrated in Fig. 13.2.

Another approach, one advocated by Taguchi, is implicit control – making the

design, process, and so forth less sensitive to input variations. Rather than demand

input improvements, which may be difficult and costly and might even require

temporary interruption of the manufacturing process, we control (reduce) variabil-

ity by changing the relationship between the variability of the input factor and in

performance. In essence, we make the process more robust – that is, we somehow

arrange it so that variability in the performance measure is not very sensitive to (not

increased much by) variability in the input factor. We might, for example, be able to

change the milling process to be less influenced by hardness of the input material

(that is, change it so that the performance of the milling process varies a lot less,
with the hardness of the input material). Designs and processes that are largely

insensitive to input variability are said to be robust. Implicit control is illustrated in

Fig. 13.3a. Note that from the perspective of this diagram, implicit control amounts

to changing the slope of the curve that represents the relationship between the value

of the input factor (for example, degree of hardness) and the value of the perfor-

mance measure (quality of the output of the milling process); the same input

variability yields less output variability.

Fig. 13.2 Explicit control example. By reducing the change in x, one reduces the resulting

change in f(x)

13.2 Control of the Variability of Performance 453



Sometimes the relationship between input and output variability is (or can be

made) not linear. Figure 13.3b illustrates such a nonlinear relationship. Here, rather

than viewing the situation as one in which we change the slope of the function

relating the performance measure to the value of the input factor, we view it as one

in which we move to a different point on that curve – one at which the slope is,

indeed, more forgiving.

Implicit in the discussion above is the holistic notion that everything is fair game

when it comes to quality improvement. Ideally, the design, process, materials, and so

forth are optimized jointly to achieve the best quality at the lowest total cost. Taguchi
used the term design parameters as the generic designation for the factors which

potentially influence quality and whose levels we seek to optimize. The objective is

to “design quality in” rather than to weed out defective items after the fact. There is

ample evidence that as quality objectives become more demanding, it is not possible

to “inspect quality in;” the only solution is to take Taguchi’s lead and design it in.

How does one determine the best values of the design parameters? Taguchi’s
answer was: by designing experiments that are revealing. In fact, Taguchi’s devel-
opment of experimental-design techniques was, from his perspective, solely an

issue of supporting the mechanism by which optimization can take place. As noted

in the chapter introduction, he did this development work only because he believed

that without a quick, user-friendly way to design experiments, engineers simply

wouldn’t perform them – they wouldn’t be able (or willing) to wait for a consultant
to arrive a few days later to design the experiment. Taguchi also suggested that the

dependent variable in such experiments be not just the traditional choice of the

mean of the quality characteristic but something he calls “S/N (signal-to-noise)

ratio.” An example is S=N ¼ �Y =S (S ¼ standard deviation) for a performance

measure where higher is better; if either the mean performance increases, or the

standard deviation of performance decreases, S/N would increase. In this example,

S/N is essentially the reciprocal of the coefficient of variation. For those with a

financial bent, this S/N is akin to the familiar return-to-risk ratio; for a given level of

risk, maximize expected return, or for a given expected return, minimize risk. Of

course, estimation of the standard deviation, which is required for determining S/N

ratio, typically requires replication.

Fig. 13.3 Illustration of implicit control in linear and nonlinear relationships
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13.3 Taguchi Methods: Designing Fractional-Factorial
Designs

To facilitate his objective of determining the optimal level of each design parameter

(his term – we call them factors), and realizing that the way to do this is by

designing appropriate experiments, Taguchi popularized the use of orthogonal
arrays as an easy way to design fractional-factorial experiments.1 As noted, his

belief was that design of experiments must be simplified if it were to be embraced

by the non-specialist; specifically, he meant design engineers and others on the shop

floor. As it turned out, the field of application for his methods is much broader.

Taguchi began by selecting several “good” basic fractional-factorial designs

and, for each, setting up a table, which he calls an orthogonal array. These tables

can be used in very simple ways to design an experiment, as described in the next

paragraph. For two-level designs, he includes what he calls an L4 orthogonal array

for up to three factors, an L8 orthogonal array for up to seven factors (used, in

reality, for four to seven factors, since for three or fewer one would use the L4), an

L16 orthogonal array for up to 15 factors, and so on up to an L128 orthogonal array

for (shudder!) up to 127 factors. For three-level designs, he provides an L9 orthog-

onal array for up to four factors, an L27 orthogonal array for up to 13 factors, and an

L81 orthogonal array for up to 40 factors. Taguchi also constructed other specialized

arrays, such as an L12 orthogonal array for up to 11 factors, but which requires that

all interactions are zero. Finally, there are ways to use the two-level tables for

factors with 4, 8, 16, ... levels and the three-level tables for 9, 27, . . . levels.
The arrays are organized so that factors/effects are placed across the top of the

table (orthogonal array) as column headings. The rows correspond to treatment

combinations. The subscript, for example, 8 in L8, corresponds to the number of

rows (treatment combinations). The number of columns in a two-level design array

is always one fewer than the number of rows and corresponds to the number of

degrees of freedom available: for example, eight treatment combinations corre-

sponds to seven columns, which is akin to seven degrees of freedom, which, as we

know, means we can estimate up to seven orthogonal effects. Once the orthogonal

array has been selected (that is, the “L whatever”), the experimental-design process

is simply the assignment of effects to columns.

Table 13.1 shows Taguchi’s L8. Where we would have � and þ, or �1 and þ1,

Taguchi had 1 and 2 as elements of his table; the low level of a factor is designated

by 1 and the high level by 2. Taguchi used the term “experiment number” where we

would say “treatment combination.” We could show, by replacing each 1 and 2 of

Taguchi’s table by our �1 and 1, respectively, that Taguchi’s tables are orthogonal
– that is, the inner product of any two different columns is zero.

1Taguchi also developed some easy ways to design some other types of experiments, for example,

nested designs; however, in this text, we discuss Taguchi’s methods only for fractional-factorial

designs.
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13.3.1 Experiments Without Interactions

If we can assume that there are no interactions, we can simply assign the factors to

columns arbitrarily.

Example 13.2 Seven Factors with No Interactions

As an example, say we are seeking a 27�4 design with main effects only. We need

seven degrees of freedom and could use the L8. We have factors A, B, C, D, E, F,

and G. Given that we have complete freedom in our choice, we’ll choose the

alphabetical order, as shown in Table 13.2.

By inspection of the Table 13.2 rows (in particular, noting which factors are at

high level), we see that the treatment combinations are, as noted, 1, defg, bcfg, bcde,
aceg, acdf, abef, and abdg. We can determine that this is the principal block of the

defining relation

Table 13.1 Taguchi’s L8

Experiment

number

Column

1

Column

2

Column

3

Column

4

Column

5

Column

6

Column

7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Table 13.2 An assignment of effects for a Taguchi L8

Experiment

number

A B C D E F G

Treatment

combinations

Column

1

Column

2

Column

3

Column

4

Column

5

Column

6

Column

7

1 1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2 defg

3 1 2 2 1 1 2 2 bcfg

4 1 2 2 2 2 1 1 bcde

5 2 1 2 1 2 1 2 aceg

6 2 1 2 2 1 2 1 acdf

7 2 2 1 1 2 2 1 abef

8 2 2 1 2 1 1 2 abdg
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I¼ ADE ¼ BDF ¼ DEFG ¼ ABC ¼ ABEF ¼ AFG ¼ BCDE ¼ BEG
¼ ACDF ¼ ABCDEFG ¼ ABDG ¼ CEF ¼ BCFG ¼ ACEG ¼ CDG

where the first four terms are independent generators (that is, once we have them,

we can multiply all sets of two-terms-at-a-time, three-terms-at-a-time, and four-

terms-at-a-time to produce the other 11 “consequential” terms of the defining

relation). All terms have at least three letters; hence, all seven main effects are in

separate alias “rows” or groups (seven groups, each containing 16 aliased effects).

Because each main effect is in a separate alias row, none are aliased with other

main effects, so all are clean under the assumption that all interactions are zero.

Recall that we can obtain a block other than the principal block, should that be

desirable, by multiplying by a, or abc, or any other treatment combination not in

the principal or other already-examined block, as discussed in Chap. 10.

(Of course, as Taguchi envisioned the situation, the benefit of using these orthog-

onal arrays to design an experiment is that one doesn’t need to find an appropriate

defining relation! We would argue that without Taguchi’s methods, it would take a

fair amount of time [without the aid of a software] to figure out this or a

comparable design that gets us all the main effects coming out clean. We would

need to start with four generators, find the other 11 terms, and hope they all have

three or more letters, stopping [with a cuss or a grimace!!] if, along the way, we

came out with an effect with two or fewer letters. If that happened, we would have

to start over!! The co-author among us with the most experience [never mind

others!!] estimates that it would take him at least 30 minutes to carefully complete

the process of finding the defining relation and then finding the principal block.

That is probably between 5 and 10 times the amount of time needed doing it using

the Taguchi approach we are introducing.)

Example 13.3 Five Factors with No Interactions

What if we have an application, again with no interaction, in which we want to

study fewer than seven factors? In such a case, we can still use an L8, but use only a

portion thereof. For example, if we want to study five factors, A, B, C, D, and E, in a

main-effects-only design, we could use the design in Table 13.3. The treatment

combinations would be 1, de, bc, bcde, ace, acd, abe, and abd, as shown in the last

column. All five main effects would be clean, and with some intelligent examina-

tion we could determine the defining relation for which this is the principal block.

However, if it is true that all interactions are zero, one could argue that the defining

relation doesn’t matter. In the real world, the defining relation might still be useful

to do a type of sensitivity analysis, especially if the results “seem strange” – more

about this later in the chapter.
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Thus, we can span the range of all possible instances in which we seek to

estimate some number of main effects, when interactions are assumed to be zero,

with a relatively small catalog of Taguchi orthogonal arrays. For one to three

factors, we would use an L4; for four to seven factors, we would use an L8; and

so forth. To complete our discussion, note that we need not have dropped the last

two columns of the L8in the previous example; we could have dropped any two

columns. The design may then have been different (that is, it might have had a

different defining relation, leading to a different principal block), or it might have

come out the same; either way, all five main effects would be clean.

13.3.2 Experiments with Interactions

What about cases in which we cannot assume that all interactions are zero? In such

instances, we can still use orthogonal arrays, but we must be a bit more careful

about the assignment of factors to columns. For each orthogonal array, Taguchi

gave guidance, via what he called linear graphs, as to which assignments are

appropriate for specific interactions that are to be estimated (that is, those not

assumed to be zero). Linear graphs for the L8 are depicted in Fig. 13.4. The key

to these linear graphs is that the numbers refer to column numbers of the L8, and a

column number on the line connecting two vertices (“corners”) represents the

interaction between the two vertices. That is, if the interaction between two corner

factors is to be estimated cleanly at all, it must be assigned the column number of

the line connecting those corners.

Table 13.3 Using a portion of an L8

Experiment

number

A B C D E

Treatment

combinations

Column

1

Column

2

Column

3

Column

4

Column

5

1 1 1 1 1 1 1

2 1 1 1 2 2 de

3 1 2 2 1 1 bc

4 1 2 2 2 2 bcde

5 2 1 2 1 2 ace

6 2 1 2 2 1 acd

7 2 2 1 1 2 abe

8 2 2 1 2 1 abd

458 13 Introduction to Taguchi Methods



Given that we assume some interactions are not zero, we are limited to fewer

than seven factors using an L8, because each two-factor interaction of two-level

factors uses up one of the seven degrees of freedom available.

Example 13.4 Four Factors and Three Possible Interactions

Suppose that we wish to study four factors, A, B, C, and D, and we know that

nothing interacts with D, although other two-factor interactions may be nonzero.

Thus, we need to cleanly estimate A, B, C, D, AB, AC, and BC. (As usual, we

assume that all three-factor and higher-order interactions are zero.) Since we are

seeking seven clean effects, we would consider an L8.
2 We connect the factors that

(may) interact; Fig.13.5 shows the result.

Figure 13.5 “looks like” (technically, is “topologically equivalent to”) the L8

linear graph 1 on Fig. 13.4. We thus use linear graph 1, assigning factors and

interactions to columns in Table 13.4 directly in accordance with linear graph 1.

Fig. 13.4 The L8 linear graphs

2It is true that to use an L8, one must need no more than seven estimates to be clean. However, the

inverse is not necessarily true – if seven effects need to be estimated cleanly, it is not guaranteed

that an L8 will succeed in giving that result, although it will in nearly all real-world cases.

Fig. 13.5 Example of

connector graph for

estimating interaction

effects AB, AC, BC
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Since we have only four factors, we need to specify only the levels for those

four; in fact, one is better off to physically blank out the 1’s and 2’s of the

interaction columns, simply to avoid confusion. The treatment combinations in

Table 13.4 are 1, cd, bd, bc, ad, ac, ab, and abcd, which happen to form the

principal block for the 24�1 with I ¼ ABCD.

Example 13.5 Five Factors and Two Possible Interactions

Suppose we want to study five factors, A, B, C, D, and E, and have two interactions

that cannot be assumed to be zero: AB and AC. When we connect the factors that

may interact, we get the shape in Fig. 13.6. This “picture” is part of both linear

graphs in Fig. 13.4! Either one can be used. We can thus use linear graph 1, with

A in column 1, B in column 2, and C in column 4. Then, AB would be assigned to

column 3, and AC to column 5. (By the way, if the two interactions we were

interested in were AB and BC, then, with A in 1, B in 2, and C in 4, we would assign

AB to column 3 and BC to column 6.) We then have the assignment of effects to

columns as shown in Table 13.5.

Table 13.4 Use of an L8 with interactions

Experiment

number

A B AB C AC BC D

Treatment

combinations

Column

1

Column

2

Column

3

Column

4

Column

5

Column

6

Column

7

1 1 1 1 1 1

2 1 1 2 2 cd

3 1 2 1 2 bd

4 1 2 2 1 bc

5 2 1 1 2 ad

6 2 1 2 1 ac

7 2 2 1 1 ab

8 2 2 2 2 abcd

Fig. 13.6 Connector graph

for interaction effects

AB, AC
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A few additional aspects of this example:

1. We could just as well have assigned E to column 6, and D to column 7, instead

of the Table 13.5 assignment of D to 6 and E to 7.

2. Using linear graph 2 would ultimately have led to essentially the same result.

3. As in earlier examples, there are other, essentially equivalent, assignments of

factors to columns – for example, simply exchanging B and C, assigning B to

column 4 and C to column 2 (with the corresponding change in assignments of

the AB and AC interactions).

What we have produced in Table 13.5 is a 25�2 fractional-factorial design with

defining relation I¼ BCD ¼ ADE¼ ABCE. The treatment combinations are 1, cde,
bde, bc, ae, acd, abd, and abce. The aliased effects are in seven rows of four effects
each, as shown in Table 13.6. Notice that in the Table 13.5 array, relative to

Table 13.4, D has replaced BC, based on the assignments made using linear

graph 1. The position represented by the line connecting vertices B and C (the

number 6 in linear graph 1) can be used for interaction BC (and indeed must be, if

BC is to be estimated), but it can also be used for any main effect, for example D in

the Table 13.5 case. That is why D and BC are in the same alias row, as shown in

bold in Table 13.6. In other words, one could say that any main effect can

“override” an interaction on a linear graph, but then that interaction will not be

obtainable elsewhere.

Table 13.5 (Another) Use of an L8 with interactions

Experiment

number

A B AB C AC D E

Treatment

combinations

Column

1

Column

2

Column

3

Column

4

Column

5

Column

6

Column

7

1 1 1 1 1 1 1

2 1 1 2 2 2 cde

3 1 2 1 2 2 bde

4 1 2 2 1 1 bc

5 2 1 1 1 2 ae

6 2 1 2 2 1 acd

7 2 2 1 2 1 abd

8 2 2 2 1 2 abce

Table 13.6 Aliased effects for the 25�2

I BCD ADE ABCE

A ABCD DE BCE
B CD ABDE ACE
C BD ACDE ABE
D BC AE ABCDE
E BCDE AD ABC
AC ABD CDE BE
AB ACD BDE CE
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Example 13.6 A Possible Three-Way Interaction

This example comes from a real problem studied by one of the authors. It was

necessary to evaluate cleanly the effect of five factors, A, B, C, D, and E, one
two-factor interaction, BD, and one three-factor interaction, ABD. All other inter-
actions could safely be assumed to be zero or negligible. As noted in earlier

chapters, it is rare, but not unheard of, to seek a clean estimate of a three-factor

interaction. We show how to do this using the L8 linear graphs; this type of problem

has appeared in various guises in other texts, using various methods of description.

(For convenience, Fig. 13.7 repeats the two linear graphs from Fig. 13.4.)

The assignment of the five main effects using linear graph 1 is shown in

Fig. 13.8. A, B, and D are, respectively, at vertices 1, 2, and 4. The absence of a

nonzero AB (by assumption) allows C to be placed on the line connecting A and B,
“number 3.” Similarly for E, placed on the line connecting A and D, “number 5.”

The two-factor interaction BD is between B and D, corresponding to “number 6.”

Much more subtle is the assignment of the three-factor interaction ABD. For this,
we refer to linear graph 2, as shown in Fig. 13.9. Vertex number 1 is still A and the

line corresponding to number 6 is still BD – the numbers corresponding to the

Fig. 13.7 Linear graphs for L8 (repeated)

Fig. 13.8 Linear graph

1, effects assigned

462 13 Introduction to Taguchi Methods



effects must be the same from linear graph to linear graph. Yet, on linear graph

2, BD, number 6, must be the mod-2 multiplication of A, vertex number 1, and

whatever is represented by number 7; therefore, number 7 must be ABD (which

brought great delight, since that was the task to be achieved).

These assignments and the treatment combinations are shown in the L8 orthog-

onal array in Table 13.7. The defining relation and the seven sets of four aliased

effects for this 25�2 fractional-factorial design are listed in Table 13.8.

Fig. 13.9 Linear graph

2, effects assigned

Table 13.7 Three-way interaction example with a Taguchi L8

Experiment

number

A B C D E BD ABD

Treatment

combinations

Column

1

Column

2

Column

3

Column

4

Column

5

Column

6

Column

7

1 1 1 1 1 1 1

2 1 1 1 2 2 de

3 1 2 2 1 1 bc

4 1 2 2 2 2 bcde

5 2 1 2 1 2 ace

6 2 1 2 2 1 acd

7 2 2 1 1 2 abe

8 2 2 1 2 1 abd

Table 13.8 Aliased rows for Table 13.7

I ADE ABC BCDE

A DE BC ABCDE
B ABDE AC CDE
C ACDE AB BDE
D AE ABCD BCE
E AD ABCE BCD
BD ABE ACD CE
ABD BE CD ACE
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13.4 Taguchi’s L16

As discussed earlier, there is a catalog of Taguchi orthogonal arrays and each has

associated linear graphs. An exhaustive presentation of all of Taguchi’s orthogonal
arrays and the corresponding linear graphs is beyond the scope of this text. They all

appear in Taguchi’s presentation of his methods, a two-volume book listed in the

Chap. 18 references. However, we do present Taguchi’s L16 in Table 13.9, and a

subset of its corresponding linear graphs in Fig. 13.10.

Table 13.9 Taguchi’s L16

Experiment

number

Col.

1

Col.

2

Col.

3

Col.

4

Col.

5

Col.

6

Col.

7

Col.

8

Col.

9

Col.

10

Col.

11

Col.

12

Col.

13

Col.

14

Col.

15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1

7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2

15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

Fig. 13.10 A subset of L16 linear graphs
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Working with the L16 linear graphs reminds us of the complexity of playing

mah-jongg, but with a twist on one facet of the game. For those not familiar with

mah-jongg, think of it as similar to gin rummy3 with one major difference: whereas

in gin rummy all “melds” are acceptable (three of a kind [say, three 5’s] or a run of
three cards in one suit [say, 6, 7, 8 of spades]), in mah-jongg only a subset of melds

is acceptable (melds are certain combinations of the 144 tiles used). A world

organization of mah-jongg changes the acceptable subset of melds each year so

that the experience factor doesn’t pre-ordain who will win. This is because the

social aspect of the game does not allow a player to spend a long time at each turn

looking at the long list of acceptable melds; yet, a winning strategy involves

knowing the acceptable melds so as to make moves that maximize the number of

ways to complete melds – as in gin rummy.

The more one practices with the L16 linear graphs, the more quickly one finds

him/herself able to home in among a multitude of possibilities on the most appro-

priate linear graph for a design. But here experience does help: no world organiza-

tion changes the acceptable linear graphs each year!

13.5 Experiments Involving Nonlinearities or Factors
with Three Levels

In Chap. 12, we discussed the use of 3k designs to study nonlinear effects. Here, we

look briefly at Taguchi’s three-level orthogonal arrays toward that end. The two

most common three-level orthogonal arrays are the L9, which has four columns and

nine treatment combinations, allowing the study of up to four factors, and the L27

with 13 columns and 27 treatment combinations, accommodating up to 13 factors.

Each main effect of a factor having three levels uses two degrees of freedom. Thus,

four three-level factors would use 4 ∙ 2¼ 8 degrees of freedom; this is why an L9 has

nine rows, but only four, not eight, columns. Similarly, the 27-row L27 has 13 col-

umns. An interaction effect between two three-level factors would use 2 ∙ 2¼ 4

degrees of freedom.

The L9 is shown in Table 13.10. Each column corresponds to one factor or is part

of a set of columns representing an interaction. Following the earlier Taguchi

notation, the low, medium, and high levels of a factor are represented in the table

body by the numbers 1, 2, and 3, respectively. Here, too, we follow Taguchi’s
convention of calling each treatment combination an “experiment”; hence the

column heading “Experiment Number.”

3Those unfamiliar with both mah-jongg and gin rummy should skip this paragraph.

13.5 Experiments Involving Nonlinearities or Factors with Three Levels 465



Example 13.7 Contamination study

By way of illustration, consider a contamination study that is intended to probe the

possible nonlinear effects of five factors – temperature of chemical X, temperature

of chemical Y, stirring time for chemical Z, amount of chemical V, and amount of

heel (residue from previous application); the five factors, as well as their effects, are

indicated by the symbols X, Y, Z, V, and H, respectively. Interactions are known to

be zero or negligible. A previous two-level experiment, using five columns of an L8,

indicated that X and Z were significant, and that Y, V, and H were not significant.

Subsequent discussion with process experts has raised a concern about

nonlinearity. Were we to study all five factors at three levels (the minimum number

of levels that allows the study of nonlinearity), we would need to use an L27. If we

can reasonably assume that one of the nonsignificant factors is very likely to be

linear (which would mean that it would continue to be nonsignificant even if a third

level were added), we can drop that one factor from further consideration and use an

L9. Suppose that we have concluded that the nonsignificant H is linear; accordingly,

we drop H and proceed with the others.

The assignment of factors is shown in Table 13.11. For ease of use, Table 13.11

shows both the factor name and level of each factor (Y2, Z1, and so on).

Table 13.12 lists the average experimental yield corresponding to each factor

level. It is instructive to plot these values, as done in Fig. 13.11.

Table 13.10 Taguchi’s L9

Experiment

number

Column

1

Column

2

Column

3

Column

4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1
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Table 13.11 Taguchi’s L9 for contamination study

Y X Z V

Experiment

number

Column

1

Column

2

Column

3

Column

4

1 Y1 X1 Z1 V1

2 Y1 X2 Z2 V2

3 Y1 X3 Z3 V3

4 Y2 X1 Z2 V3

5 Y2 X2 Z3 V1

6 Y2 X3 Z1 V2

7 Y3 X1 Z3 V2

8 Y3 X2 Z1 V3

9 Y3 X3 Z2 V1

Table 13.12 Average yields

Factor Relevant experiments Average yield

Y1 1, 2, 3 7.57
Y2 4, 5, 6 7.55
Y3 7, 8, 9 7.53

X1 1, 4, 7 7.68
X2 2, 5, 8 7.45
X3 3, 6, 9 7.42

Z1 1, 6, 8 7.79
Z2 2, 4, 9 7.55
Z3 3, 5, 7 7.31

V1 1, 5, 9 7.53
V2 2, 6, 7 7.90
V3 3, 4, 8 7.57

Fig. 13.11 Plot of values

for levels of the four

factors Y, X, Z, and V
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Earlier, when examining only two levels of the factors, effects X and Z were

found to be significant, but Y and V were not. The low and high levels for each of

these factors in the second, L9, three-level design are the same values used in the

original L8 two-level experiment. The medium level of each factor is truly a middle

level in each case, halfway between the high and low levels (although as noted in

Chap. 12, this generally is not critical to three-level experimentation). Effects Y and

Z, as we see from the plots in Fig. 13.11, are both linear, as had been earlier

assumed. Furthermore, Y is still not significant, and Z still is significant. In essence,

the results for Y and Z are unchanged. Such is not the case for X and V, each in a

different way. Although X has a strong quadratic component, it is still monotoni-

cally decreasing (that is, continually decreasing with increasing level of factor X);
X was, and is still, significant. What has changed with respect to factor X – that the

response curve is not precisely linear – is not that dramatic. However, the change in

our conclusions about factor V is dramatic! It had been concluded that V had no

effect on the amount of contaminant, because at the two levels chosen initially, the

yield was of similar magnitude (7.53 for V1 versus 7.57 for V3). Now that we see

the result at the middle level (7.90 at V2), our attitude toward the choice of the level

of V, and how important that choice is, changes.

Remember the Taguchi loss-function objective: to minimize both variability and

the departure of the mean result from its target value, using the most economic

combination of these goals. One thing is clear: we pick the least expensive level of

Y (and H) since we have concluded that each does not affect the yield. The

nonlinear effects of X and V provide an opportunity for variability reduction; it’s
likely (the exact choices depend on monetary values not specified in this example)

that we’ll select the level of X and V where the curve is flattest (minimum slope), or

at least relatively flat. The level of X would likely be set somewhere between X2

and X3, and the level of V is likely to be set near V2. Finally, Z will be used to

minimize the difference between the mean and the target in a way that minimizes

the cost of quality. Note that even if the target is, theoretically, zero, this does not

mean that we choose the highest level of Z. The cost of implementing that highest

level of Z must be taken into consideration – it might be prohibitively high. This

example did not explicitly consider that aspect of the overall decision process.

Remember that our use of a 3k�p is equivalent to adopting a quadratic model. We

can use our three data points (that is, the mean yield at the three levels of the factor)

to calculate, for each factor, the coefficients of a quadratic equation that goes

through the three points, and use that quadratic equation to plot our best estimate

of the relationship between factor level and yield.

13.6 Further Analyses

In a real-world problem, the experimental design is only part (albeit a vital part) of
the story. Once experimental results are obtained, they need to be analyzed. The

statistical significance of each effect is usually determined. Next, either further
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experiments are performed, as suggested by the results just obtained, or the best

level of each factor is determined without further experimentation (at least in the

near future). Then, before the results of the experiment are implemented, they are

further considered in a variety of ways.

Most often, the optimal combination of levels of factors indicated by the data is

not one of the treatment combinations actually run in the experiment. This is simply

a matter of elementary probability; after all, if we run a 26�2 fractional-factorial

design, we are running only one-fourth (25%) of the total number of combinations,

64. Thus, the odds are 48:16, or 3:1, against the optimal treatment combination

having been one we actually ran. Prudent management would include a step to

verify that this presumed optimal treatment combination actually produces the yield

predicted by the experimental results.

Finally, if the verification test is satisfactory, the central question, not addressed

directly by the experimental design or its analysis, remains: Is the anticipated

improvement in the yield economically justified? Remember, Taguchi did not

argue for higher quality in the abstract; he advocated quality improvements only

when they were economically justified. Were this not the case, his philosophy and

methods might not have been so readily adopted by many of the world’s industry
leaders!

The following example, which is adapted from a real-world case (only slightly

disguised), includes the steps after the experiment is run.

Example 13.8 Electronic Component Production

Our example concerns the production of electronic components. The quality char-

acteristic (“response”) of interest is the output voltage of a generator. The target

value, T, is 1.600 volts with a “tolerance” of �0.350 volts. Six factors are to be

studied, each at two levels; this corresponds to 26 ¼ 64 possible treatment combi-

nations. Experts in the field had concluded that there were no non-negligible

interactions among the factors. Thus, there are six effects, the six main effects, to

be estimated cleanly, and from what we’ve discussed in this chapter, we know that

an L8 will suffice.
4 It is decided to have four replicates at each of the eight treatment

combinations.

It might be argued that one would never run an experiment like this – that instead

of four replicates of a 26–3 design, one would always run a 26–1; after all, both

require the same number of data points, 32. In this real-world situation, it was very

expensive to set up for a treatment combination, but the cost for replicates for the
same treatment combination was relatively low. Hence, running four replicates of

the 26–3 design was materially less costly than a 26–1 design would have been. If all

data points did cost the same, we likely would run the 26–1 design. Both designs

4Although we noted earlier that having only six effects to be estimated cleanly does not guarantee

that an L8 will suffice; when the six (or seven, for that matter) are all main effects, it is guaranteed.
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have the same variance of an estimate (recall the section of Chap. 9 on errors in two-

level factorial designs). Yet, the half-replicate would have less aliasing to be

concerned with, while there would be plenty of higher-order interaction effects to

comprise an error term. The lesson: the real world intrudes!

As we know, since there are assumed to be no nonzero interactions, the assign-

ment of factors to columns can be arbitrary. Table 13.13 shows the assignment

actually used.

An analysis of the statistical significance of the effects under study revealed that

factors C, D, and E have significant effects, as indicated in Table 13.14. The means

for the two levels of the significant factors are listed in Table 13.15.

Table 13.13 Assignment of factors in L8 for electronic components example

Experiment

number

A B C D E F

Treatment

combinations

Column

1

Column

2

Column

3

Column

4

Column

5

Column

6

Column

7

1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 cdef

3 1 2 1 1 2 2 bef

4 1 2 2 2 1 1 bcd

5 2 2 1 2 1 2 abdf

6 2 2 2 1 2 1 abce

7 2 1 1 2 2 1 ade

8 2 1 2 1 1 2 acf

Table 13.14 Statistical significance

Effect p-value Significant

A .4348 No
B .3810 No
C .0001 Yes
D .0108 Yes
E .0010 Yes
F .5779 No

Table 13.15 Experimental results

Factor level

Average

(volts)

Difference from

Grand Mean (volts)

C1 (low) 1.308 �.090
C2 (high) 1.488 þ.090
D1 (low) 1.360 �.038
D2 (high) 1.436 þ.038
E1 (low) 1.443 þ.045
E2 (high) 1.353 �.045

Overall average ¼ 1.398
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Given that the grand average is somewhat below the target of 1.600 volts, we get

as close as possible to the target by picking the level corresponding to the larger

yield for each of the three significant factors (C, D, and E). Since there is a lack of

evidence that the level of each of the remaining three factors affects the voltage,

their level should be picked simply to minimize cost (that is, with no difference

between the levels, the cheaper the better!). The optimal choice turns out to be C2,

D2, and E1, which maximize the expected output voltage, and A2, B2, and F1,

which are the less expensive levels for A, B, and F. What is the expected voltage at

this (presumably) optimal combination of levels? The expected yield is

1:398þ :090þ :038þ :045 ¼ 1:571 volts

In case the process of determining this 1.571 value doesn’t seem intuitive, consider:

1.398 is the overall average that includes half of the treatment combinations at C1

and half at C2. However, if we include only the treatment combinations at C2, we

get the .090 “benefit,” without the “compensating” �.090 that would bring us back

to the average of 1.398. Thus, the average result would increase by .090, becoming

1.488. However, the 1.488 includes half of the treatment combinations at D1 and

half at D2; if we include in the average only the treatment combinations at D2, we

get an increase in the average of .038, and so forth.

Now that we’ve determined the (presumably) optimal treatment combination,

we need to confirm its merit, from both the performance and cost perspectives,

before implementation.

13.6.1 Confirmation

In our example, we ran 8 of the 64 possible treatment combinations. It was unlikely

(seven-to-one odds against it) that we actually ran the treatment combination that

has been determined thus far to be optimal. Indeed, we did not run A2, B2, C2, D2,

E1, F1 (which, in our two-level factorial design terminology, is abcd). Accordingly,
as noted earlier, prudence dictates that we perform a confirmation experiment to

verify that abcd yields a voltage value around 1.571, as predicted. Why might we

not get a value around 1.571? The possibilities include mundane mistakes like an

incorrect value recorded or misread handwriting. However, a more likely reason

would be that the assumption that several interactions (in our example, all interac-
tions) were zero or negligible was not valid.

How many runs, or replicates, of this presumed optimal treatment combination

do we need in order to provide a confirmation? There’s no clear-cut answer. The

more, the better, but the more, the more expensive! If the cost per replicate is

relatively cheap, once the first run is set up, the more the merrier. If the cost per

replicate is relatively expensive, a minimum of four is suggested; roughly speaking,

a sample size of four results in an average that, with 95% confidence, is within one

standard deviation of the true (unknown at the time, of course) mean.
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What happens if the confirmation test does not verify the earlier result? The first

step should be to look for differences between the conditions under which the

experiment and the confirmation test were run. Were there important differences in

humidity, line voltage, test equipment, personnel, and so on that could be the cause

of the discrepancy? Absent that and obvious mistakes (incorrect recording of

values, handwriting issues, and the like), it is usually appropriate to revisit the

assumptions that were made about interaction effects next. Another brainstorming

session involving the product and process experts would likely be advisable.

Remember, much worse than the inability to confirm earlier results before

implementation is not checking at all, and learning the bad news after spending

considerable money and time making changes that are not helpful (and may be

harmful). Bad news doesn’t smell better with age! Also, if the confirmation test

does verify previous results (which in practice occurs far more often than discon-

firmation), it adds confidence in the proposed process, and implementation may

become an “easier sell.”

13.6.2 Economic Evaluation of Proposed Solution

Once we’ve verified that the proposed solution will provide the anticipated perfor-

mance result, we proceed to see if it makes sense economically. Usually, this simply

involves a cost/benefit analysis; for a process that has been ongoing, this involves a

comparison between the current situation and the proposed solution (the treatment

combination that appears optimal).

First, let’s consider cost. The proposed solution might require an increase in cost,

fixed or variable (or both). The fixed-cost increase could include installation of

some piece of equipment, change in shop layout, additional training, and so forth.

The variable cost may be in the form of additional labor, purchase cost of input

materials (for example, a greater amount of a substance could simply cost more), or

other costs. But sometimes, more often than one might expect, the change in cost is

a net reduction, in addition to the improved performance.

The resultant change in fixed cost is often treated in the analysis by apportioning

it over the quantity of product to be produced, thus merging it with the per-unit

(variable) cost. The net change in per-unit cost (ΔC, which, again, may be positive

or negative) is

ΔC ¼ Vnew � Vcurrent

where V indicates variable cost.

Next, to evaluate the benefit that accrues through the change in levels of the

design parameters (factors), we return to Taguchi’s quadratic loss function. Recall
that the expected loss per unit is proportional to the sum of the square of the bias and

the variance:
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�L ¼ K
�
�Y � T

�2 þ S2
h i

where S2 is our estimate of the variance. We evaluate the bias and variance for the

current and proposed set of factor levels. These lead to our estimate of �Lcurrent and
�Lproposed. The gross benefit per unit from the change of solution is the reduction in

loss:

Δ�L ¼ �Lcurrent � �Lproposed

The net benefit (NB) per unit of the change is then

NB=unit ¼ Δ�L� ΔC

The total net benefit per year would then be the product of this quantity times the

annual volume:

Total net benefit per year ¼ ðNB=unitÞ � ðannual volumeÞ

Table 13.16 is a worksheet that one company uses for calculation of annual benefits

of a proposed change.

In our example, we noted that the proposed treatment combination had the

following yield:

�Y ¼ 1:571 volts

The actual confirmation process did verify this result (eight runs at A2, B2, C2, D2,

E1, F1 yielded an average value of 1.568). The standard deviation estimate, based

on these eight replicates, was

S ¼ :079

Table 13.16 Worksheet for calculation of annual benefits of a proposed change

Benefits Proposed Current

(a) Loss function constant (K )

(b) Bias from target value (Δ ¼ �Y � T)

(c) Square of bias (Δ2)

(d) Variance of process (S2)

(e) Sum of (c) and (d) (Δ2 + S2)

(f) Total loss/unit, (a) � (e)¼ [K(Δ2 + S2)]

(g) Output/year

Total annual loss, (f) ∙ (g) (1) (2)

Savings (annual benefits) ¼ (2) – (1)
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The original treatment combination (the “current” situation) was A1, B2, C2, D1,

E1, F1, with a corresponding predicted mean of 1.398 þ .090 �.038 þ .045, or

�Y ¼ 1:495 volts

(Before the experiment was reported here, the current mean was generally acknowl-

edged as 1.49.) The standard deviation at this “current” treatment combination was

S ¼ :038

If we compute the �L values, we obtain

�Lproposed ¼ K 1:571� 1:600ð Þ2 þ :0792
h i

¼ K :007082ð Þ
�Lcurrent ¼ K 1:495� 1:600ð Þ2 þ :0382

h i
¼ K :012469ð Þ

Thus, the average loss per unit for the proposed solution is 43.2%¼ [100(.012469 –

.007082)/.012469] lower than that of the current solution. If we compare the two

solutions, we see that what really differs are the levels of factors A and D. The level

of factor D was determined to have a significant impact on the voltage, and the �L
values above indicate that the change in the level of factor D is “price-worthy.” In

addition, the current solution was using A1, the more expensive level of factor A,

even though there was no indication that the level of factor A had any impact on the

yield.

13.7 Perspective on Taguchi’s Methods

Taguchi’s methods for designing an experiment – his orthogonal arrays – do not

generate designs that can’t be generated by the traditional methods covered in the

previous chapters of the text. His methods find an appropriate set of treatment

combinations perhaps more quickly (presuming that the designer is capable of
finding one), but do not produce designs unique to Taguchi’s methods. Some

statistical software packages allow the choice “Taguchi designs,” but their use of

the phrase is, for the most part, a misnomer. We will see how R can be used for

Taguchi’s methods in the Appendix section.

Also, there is some controversy concerning designs that Taguchi’s orthogonal
arrays provide. Often, the arrays point to a design that isn’t considered “as good,”

by certain criteria, as one can derive using traditional (Fisherian? Yatesian?)

methods; some would then call the design “suboptimal.” What do we mean by

“not as good”?

For example, suppose that we wish to construct a design in which all interac-

tions, except a select group of two-factor interactions, are assumed to be zero. As an

extreme illustration, suppose that the “routine” Taguchi design aliases some of the
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main effects and the select two-factor interactions with some non-selected

two-factor and some three-factor interactions, whereas using traditional methods,

one can derive another design in which the main effects and select two-factor

interactions are aliased with only four-factor and higher-order interactions. Is the

Taguchi design “not as good”? If the assumptions being made are valid, that all

interactions other than the select group are zero, then the main effects and selected

two-factor interactions are perfectly clean in the Taguchi design, as they are in the

traditional design. However, one never knows for certain that an interaction is zero.

It is axiomatic that, on average, the higher the order of the interaction, the more

likely its true value is zero, so one can argue that a design that aliases the “important

effects” with higher-level interactions is superior to a design that aliases these

important effects with lower-level interactions – even if one assumes that the

lower-level interactions are zero. In this sense, the design yielded by Taguchi’s
orthogonal arrays may provide a design that is “not as good.”

Another criticism of Taguchi’s methods is that “a little knowledge is danger-

ous.” In other words, some argue, it is dangerous for somebody to know which

treatment combinations to run and analyze without knowing the aliasing structure,

defining relation, and so on. We believe that although there is some “danger” (we’d
probably say “minor peril” or “minimal pitfall potential”), the achievement of

Taguchi’s objectives is often more important than the “peril.” Remember, if

quick and easy methods are not available to the engineers/designers, experimenta-

tion may never get done at all. That’s more dangerous!

As an added point, one of the authors routinely provides designs to companies

without providing any of the “backup” in terms of defining relations and alias

groups. This hasn’t hurt the companies’ running the experiment, and analyzing and

interpreting the data. In a few cases, the results seemed to belie common sense; a

call was then made to ask the author what potentially-prominent interactions were

aliased with the seemingly strange results. Yet this latter call could not have been

made without somebody understanding that the main effects were, indeed, aliased

with “other stuff.” Thus, we agree that the ideal case would be for the engineers/

designers to take a short course in the traditional methods of experimental design

before using Taguchi’s methods.

In no way do we intend this discussion of this section to diminish Dr. Taguchi or

his methods. In fact, we believe that his contributions to the field of quality control,

total quality management, and experiment design were important – certainly worth

a full chapter of our text. Remember, a good experiment performed is better than an

optimal experiment not performed!

Example 13.9 New Product Development at HighTech Corporation

(Revisited)

HighTech Corporation set up classes on Taguchi’s methods for all personnel above

the level of “administrative staff” – HighTech’s job title for secretarial and clerical
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duties. New product developers and engineers began to conduct experiments

without the need for outside consultation. Management agreed that productivity

(which they did not define specifically) and, more importantly, results (which they

defined in terms of actual new product development) increased.

HighTech management also commented on what they saw as useful by-products

of this company-wide commitment to Taguchi’s methods: a common language for

all departments and personnel to use, and a “bottom-line” way for individual

projects, as well as individual departments, to be evaluated.

Exercises

1. Given Taguchi’s L8 in Table 13EX.1, and referring to the linear graphs for the

L8 (Figs. 13.4 or 13.7), find, for a 24�1 design, the assignment of factors and

interactions to columns, and thus the treatment combinations to run, if the

effects to be estimated cleanly are A, B, C, D, BC, BD, and CD. All other
interaction effects can be assumed to be zero.

2. Repeat Exercise 1, with the following effects to be estimated cleanly: L, M, N,
O, P, L M, and MN in a 25�2 design.

3. Repeat Exercise 1, with the following effects to be estimated cleanly: A, B, C,
D, E, AB, and CD in a 25�2 design.

4. Suppose that we are studying seven factors, A, B, C, D, E, F, and G, at two

levels each, assuming no interaction effects. Based on an analysis using an L8,

four of the factors were significant: B, C, F, and G. The quality characteristic is

“the higher the better,” and the mean value at each level of each significant

factor is as follows:

Means

B1 ¼ 1.3 B2 ¼ 1.5

C1 ¼ 2.3 C2 ¼ 0.5

F1 ¼ 0.9 F2 ¼ 1.9

G1 ¼ 1.0 G2 ¼ 1.8

Table 13EX.1 Taguchi’s L8

Experiment

number

Column

1

Column

2

Column

3

Column

4

Column

5

Column

6

Column

7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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It is also known that A2 is the cheaper level of A, D2 is the cheaper level of D,

and E2 is the cheaper level of E. What is the optimal treatment combination,

and at this optimal treatment combination, what do we predict the optimal

value of the quality characteristic to be?

5. Suppose in Exercise 4 that you now discover that factors A and B have a

significant interaction effect and that the means of the quality characteristic at

the A, B combinations are

A1, B1 ¼ 0.7

A1, B2 ¼ 2.1

A2, B1 ¼ 1.9

A2, B2 ¼ 0.9

Now what is the predicted mean of the quality characteristic at the treatment

combination chosen in Exercise 4?

6. What should the chosen treatment combination in Exercise 5 be and what is the

predicted mean of the quality characteristic at that treatment combination?

7. Look back at Example 13.7, on minimizing contamination in chemical pro-

duction, in which means were provided for the three levels of each factor.

Consider factor V, where the means at the three levels were 7.53, 7.90, and

7.57. Assuming that the levels of factor V (which refer to amount of the

chemical V) are, respectively, 1, 2, and 3 grams, find the quadratic equation

that fits the three response points.

8. Using Taguchi’s L16 orthogonal array (Table 13.9) and the linear graphs for the

L16 in Fig. 13.10, design an 11-factor experiment, A through K, with each

factor at two levels, all main effects clean, and AB, AE, AH, and JK also clean.

9. Using Taguchi’s L16 orthogonal array and the linear graphs for the L16 in

Fig. 13.10, design an 11-factor experiment, A through K, in which all interac-

tion effects are assumed to be zero, factors A and B each have four levels, and
factors C through K have two levels each.

10. Comment on the criticism, discussed in the chapter, that although Taguchi’s
methods using orthogonal arrays do provide a set of treatment combinations

that satisfies the conditions desired (for example, in a six-factor experiment

with all factors at two levels, the A, B, C, D, E, F, and AF estimates are clean,

assuming all other interactions are zero), they sometimes provide an answer

that is inferior to what traditional methods could provide.

Appendix

Example 13.10 Electronic Component Production in R

For this illustration, let’s assume the same electronic components study described in

Example 3.8. Recall that our target value is 1.600 volts and the tolerance is
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�0.350 volts. We have six factors, each at two levels, in a L8 design with six (clean)

main effects. In this example, we also consider four replicates per treatment

combination, but we will use a different dataset, shown in Table 13.17. The

assignment of factors to columns was arbitrary and is the same as what was used

in Table 13.13.

For this analysis, we will use the qualityTools package in R. Using the

taguchiChoose() function, we can get a matrix of all possible Taguchi designs

available in this package, as follows:

> taguchiChoose()

1 L4_2 L8_2 L9_3 L12_2 L16_2 L16_4
2 L18_2_3 L25_5 L27_3 L32_2 L32_2_4 L36_2_3_a
3 L36_2_3_b L50_2_5 L8_4_2 L16_4_2_a L16_4_2_b L16_4_2_c
4 L16_4_2_d L18_6_3

Choose a design using e.g. taguchiDesign("L4_2")

We are interested in L8_2, that is, a design for four to seven two-level factors.

Using the taguchiDesign() function, we can select this option and set the

number of replicates per treatment combination:

>design<-taguchiDesign("L8_2",randomize=FALSE,replicates=4)

Warning messages:

1: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"taguchiFactor">) :

implicit list embedding of S4 objects is deprecated

2: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"taguchiFactor">) :

implicit list embedding of S4 objects is deprecated

3: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"taguchiFactor">) :

implicit list embedding of S4 objects is deprecated

Table 13.17 Dataset for electronic-components study

A B C D E F Experimental data

1 1 1 1 1 1 1.358, 1.365, 1.387, 1.339

1 1 2 2 2 2 1.433, 1.450, 1.500, 1.441

1 2 1 1 2 2 1.526, 1.546, 1.550, 1.563

1 2 2 2 1 1 1.461, 1.490, 1.472, 1.455

2 2 1 2 1 2 1.444, 1.461, 1.490, 1.476

2 2 2 1 2 1 1.402, 1.403, 1.411, 1.424

2 1 1 2 2 1 1.573, 1.576, 1.558, 1.543

2 1 2 1 1 2 1.528, 1.519, 1.492, 1.554
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4: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"taguchiFactor">) :

implicit list embedding of S4 objects is deprecated

5: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"taguchiFactor">) :

implicit list embedding of S4 objects is deprecated

6: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"taguchiFactor">) :

implicit list embedding of S4 objects is deprecated

7: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"taguchiFactor">) :

implicit list embedding of S4 objects is deprecated

We can then set the names and levels of each factor. Recall that the second

column will not be assigned to any effects; we will call it X.Next, we create a vector
with the responses and incorporate it in the design:

> names (design) <- c("FacA", "X", "FacB", "FacC", "FacD",

+"FacE", "FacF")

> values(design) <- list(FacA=c(1,2), X=c(1,2), FacB=c(1,2),

+FacC=c(1,2), FacD=c(1,2), FacE=c(1,2), FacF=c(1,2))

> y <- c(1.358, 1.433, 1.526, 1.461, 1.444, 1.402, 1.573,

+1.528, 1.365, 1.450, 1.546, 1.490, 1.461, 1.403, 1.576,

+1.519, 1.387, 1.5, 1.55, 1.472, 1.49, 1.411, 1.558,

+1.492, 1.339, 1.441, 1.563, 1.455, 1.476, 1.424, 1.543,

+1.554)

> response(design) <- y

> summary(design)

Taguchi SINGLE Design

Information about the factors:

A B C D E F G
value 1 1 1 1 1 1 1 1
value 2 2 2 2 2 2 2 2
name FacA X FacB FacC FacD FacE FacF
unit
type numeric numeric numeric numeric numeric numeric numeric
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StandOrder RunOrder Replicate A B C D E F G y
1 1 1 1 1 1 1 1 1 1 1 1.358
2 2 2 1 1 1 1 2 2 2 2 1.433
3 3 3 1 1 2 2 1 1 2 2 1.526
4 4 4 1 1 2 2 2 2 1 1 1.461
5 5 5 1 2 1 2 1 2 1 2 1.444
6 6 6 1 2 1 2 2 1 2 1 1.402
7 7 7 1 2 2 1 1 2 2 1 1.573
8 8 8 1 2 2 1 2 1 1 2 1.528

Only the first replicate was shown for demonstration purposes.

We can generate an effect plot (Fig. 13.12) using the following commands:

> par(mar=rep(4,4))

> effectPlot(design,fun=mean, response="y", points=FALSE,

+col=2, pch=16,lty=3, axes=TRUE)

Fig. 13.12 Effect plots for Taguchi design in R
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Part IV

Regression Analysis, Response Surface
Designs, and Other Topics



Chapter 14

Introduction to Simple Regression

In previous chapters, we have had data for which there has been a dependent

variable (Y ) and an independent variable (X – even though, to be consistent with

the notation that is close to universal in the field of experimental design, we have

been using factor names, A, B, etc., or “column factor” and “row factor,” instead of,

literally, the letter X). The latter has been treated mostly as a categorical variable,

whether actually numerical/metric or not. Often, we have had more than one

independent variable. Assuming only one independent variable, if we want to say

it this way (and we do!), we can say that we have had n (X, Y ) pairs of data, where
n is the total number of data points. With more than one independent variable, we

can say that we have n (X1, X2, . . ., Y ) data points.
We have also discussed models that consider X as a numerical variable and how

we can fit a linear model when we have two levels of a factor, and a polynomial

(quadratic) model when we have available three levels of a factor. We noted briefly

that this can be expanded to any level of polynomial if we have data available on

enough levels of the factor.

This chapter deals with the situation when we have one independent variable,

which we label X. We introduce a model that is analyzed using the technique called

regression analysis. It often is the technique that is useful when nothing else in the

text seems to fit exactly. It is also the technique that is the gateway to many other,

more advanced, techniques (beyond the scope of this text). Typically, but certainly

not always, both the X and Y are numerical/metric variables; this aspect is addressed

in the next chapter.

If we have only one independent or predictor variable (in essence, a factor) and
one dependent variable, say temperature and the yield of a chemical reaction, we

call our analysis simple regression – which is the least complex situation we can

experience – whereas, when we have more than one predictor, say temperature and
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64583-4_14) contains supplementary material, which is available to authorized users.
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ingredient concentration, our analysis is called multiple regression (the subject of

Chap. 15). In both cases, the objective is to build mathematical models that describe

the relationship, if there is one, between the variables (that is, how Y behaves as a

function of one or more X’s), and use this information to predict, optimize or control

the output at a given value of X or X’s. This method is widely used to consider the

relationships using data that are not from a designed experiment, such as data that

already exist on two (or more) variables, or questionnaire data in which the levels of

the factors are not “balanced,” where the levels of the factors simply come out with

whatever frequencies they have. It also can be used for data derived from a designed

experiment, although often other techniques presented in this text are preferable. In

this chapter, we will make an exception and include demonstrations using Excel

and SPSS in the main text, as opposed to in an appendix, where appropriate.

Example 14.1 Usefulness of a New Search Engine

A large employment website, vacantpositions.com, is very proud of its numbers.

They have over 5,000 employees around the world, over a million job postings, a

database with more than 1 million resumes, and over 63 million job searches per

month. They noticed a considerable drop in these numbers and received complaints

that their search engine was not as good as the competitors’. So, the managers

decided to conduct an experiment to determine the impact of a new search engine

on the likelihood of adoption by recruiters and employers.

An email was sent to approximately 300 recruiters worldwide who regularly use

online search tools. These recruiters were screened based on previous experience

with Vacant Positions; only those who never used it were selected. The

170 recruiters who passed the screening phase were asked to find candidates to

fill three positions as follows:

• For a full-time Java-Developer position, the candidate should have 5þ years of

experience, a bachelor’s degree from Caltech, an annual salary requirement not

to exceed $90k, and be willing to relocate

• For a Web-Designer position, the candidate should have experience with

Photoshop and Illustrator and be located within 20 miles of San Francisco

• For a Business-Analyst position, the candidate should have worked previously

at a company in Silicon Valley, should have uploaded a resume not including

material relating to activities that happened earlier than 2014, and be willing to

travel 70% of the time

Once the participants found the candidates, they (the recruiters) were asked

about their overall satisfaction with the search engine and to rate their perception

of usefulness for a given set of fields present in this engine using a scale of 1 to 5,

where 1 represented “not useful at all” and 5 was considered “extremely useful.” At

this point, the managers were interested in the participants’ views about being able

to perform a Boolean search (a type of search that allows the user to combine

484 14 Introduction to Simple Regression



keywords with logical operators such as AND, NOT, and OR); Vacant Positions

had spent a considerable amount of money getting rid of this feature. Several clients

indicated that they preferred the competitors’ engine because it had the Boolean

search feature. Lastly, participants were asked about the likelihood that they would

adopt Vacant Positions’ search engine in place of the ones they currently use, at no

cost, using a scale of 1 to 5, where 1 indicated “extremely unlikely to adopt” and

5 “extremely likely to adopt.” We return to this example at the end of the chapter.

14.1 The Correlation Coefficient

Assume that we have n pairs (X, Y ), where X is the independent, predictor, or

regressor variable and Y is the dependent or outcome variable. If we plot these pairs

on what is called a scatter diagram, such as those shown in Fig. 14.1, we can try to

Fig. 14.1 Scatter plots of Y versus X
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fit a straight line through the data points in a way such that it is “as close as

possible” to the data points.1 Our goal is to determine if the variables are linearly

related. (Of course, we will take notice of any other trend as well, but for now we

are restricted to linear.)

The correlation coefficient (r), also known as the Pearson product-moment

correlation coefficient or Pearson’s correlation coefficient, is a measure of the

strength and the direction of the linear relationship between X and Y, and can

assume values between �1 (negative or downward slope) and þ1 (positive or

upward slope).2 One can easily find the value of r using software, as we will

demonstrate later.

An exact relationship such as the ones shown on the top plots of Fig. 14.1 would
never happen in real-life. In situations where the slope is negative, we say the linear
relationship is inverse; that is, as X goes up, Y goes down, and vice versa. In cases

where r ¼ 0, such as the bottom plots shown in Fig. 14.1, we cannot establish a

linear relationship between the variables, and say they are unrelated linearly. (This
does not mean that there is no relationship; there may be one, but it is not linear.)

Whenever this happens, the slope of the straight line is also zero. Note that in the

plot located in the bottom left portion of the figure, Y increases as X increases up to a

certain value, followed by a reduction as the value of X continues to increase. We

have seen a discussion of this phenomenon in Chap. 12, when we discussed the

curvature that might be found in experiments with three or more levels of the

independent variable. In the case of the bottom right plot, the zero slope indicates

that, on average, Y does not change at all as X changes; actually, one might say that

this is true also for the bottom left plot.

As you might recall from a basic statistics course, we are not able to compute a

meaningful linear measure of the amount of deviation/prediction error, as the

positive and negative values would add up to zero, regardless of the actual amount

of deviation/prediction error. We can add up the squares of the prediction error

(which, of course, renders all values non-negative, so that the prediction errors are

accumulating, as desired, instead of canceling out), and we would find that the total

is less for the left middle plot shown in Fig. 14.1 (presented in Fig. 14.2 for

convenience) than for the right plot. This criterion for evaluating how well the

line fits the data, the sum of squared prediction errors, is the same criterion we have

been using throughout the book, and discussed in Chap. 2 – the least squares (LS)

1Unless the scatter diagram indicates dramatically otherwise, we usually consider first a straight

line, since it is the simplest functional form.
2The correlation coefficient is calculated as

r ¼
Pn

i¼1

�
Xi � �X

��
Yi � �Y

�

n� 1ð ÞsXsY

where sX and sY are the sample standard deviation of the independent and the dependent variables,

respectively, and, of course, �X and �Y are their sample means. Note that r is the same, regardless of

which variable is labeled as independent or dependent.
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criterion. Indeed, confirming that the fit for the set of data on the left is superior to

that of the data on the right is that we have r ¼ þ .8 for the data on the left, and

r¼ � .47 for the data on the right. (We shall soon see that the magnitude of r [or its
square] is an indicator of the degree of linear fit.)

At this point, the reader should be advised that a significant correlation does not

imply causality. For instance, consider the high positive correlation between the

amount of ice cream sold and the number of drownings in Cape Cod in the summer!

The variables are clearly not causally related. There is a spurious correlation – both
variables are being driven by a third variable, in this case, temperature at the beach.

In the next examples, we demonstrate how JMP, SPSS, and Excel can be used to

obtain the correlation coefficient.

Example 14.2 Numerical example in JMP

Let’s see how the correlation analysis is performed using JMP. After inputting the

data presented in Table 14.1, as we have done previously, we select Analyze > Fit

Y by X from the main menu. After selecting the appropriate variables, we will be

presented with a scatter plot. One of the ways to find the correlation coefficient in

situations where we have only two variables is to click on the “inverted” red

triangle and select Density Ellipse, with the appropriate probability (e.g., 0.95).

This command will add an ellipse that indicates a specified mass of points, i.e., they

work as a density contour and confidence curves that contain the data points. This

ellipse is also an indication of the correlation between independent and dependent

variables. The output is shown in Fig. 14.3, which provides the same correlation

coefficient obtained previously (r¼ .80, circled in the output table). The output also

shows that p < .001 (labeled as “Signif. Prob”), indicating that r is significant at
α ¼ .05 or any other value traditionally chosen for α; that is, we reject the null

hypothesis that there is no relationship between the variables.

Fig. 14.2 Positive and negative linear relationships
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Table 14.1 Values of X and Y

Variable

Observation number

1 2 3 4 5 6 7 8 9 10 11 12 13

X 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Y 0.80 2.40 2.90 2.80 1.70 3.30 2.50 3.80 4.20 3.50 5.10 3.60 4.20

Fig. 14.3 Output in JMP
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Example 14.3 Numerical example in SPSS

Now, we illustrate how SPSS calculates r. After entering the data, we click on

Analyze > Correlate > Bivariate (this last term means we have two variables). In

the dialog box (shown in Fig. 14.4), we move X and Y to the “Variables” box and no

change has to be made on the default options (we notice that “Pearson” is already

selected for us). The output is shown in Table 14.2.

Fig. 14.4 Steps of correlation analysis in SPSS

Table 14.2 Correlation output in SPSS

Correlations

Advertisement Sales

X Pearson Correlation 1 .804**

Sig. (2-tailed) .001
N 13 13

Y Pearson Correlation .804** 1
Sig. (2-tailed) .001
N 13 13

**Correlation is significant at the 0.01 level (2-tailed)
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The correlation coefficient is the same and, like JMP, SPSS runs a hypothesis

test for r (indicated under “Sig. (2-tailed)”), with a null hypothesis that the true

r (sometimes labeled ρ) is equal to zero.

Example 14.4 Numerical example in Excel

Here we show how Excel can be used for correlation analysis of the same numerical

example. After entering the data, we click on Data > Data Analysis and select

Correlation. Once we enter the (input) data range, we click OK. The output is

shown in Table 14.3.

The correlation output tells us that r¼þ .804, which matches the value obtained

using JMP and SPSS. However, unlike the other software, Excel does not provide a

hypothesis test using the correlation command. (The reader may notice that in

Table 14.3, only the values on the main diagonal and below it are filled. That is

because the correlation table is “symmetric” (usually referred to a “symmetric

matrix”) and that the upper-right cell would repeat the .80399443 of the lower-

left cell.)

Now get ready for a treat, as we delve into the world of linear regression.

14.2 Linear-Regression Models

In linear regression, with one independent variable (i.e., simple regression), we

have the model shown in Eq. 14.1:

Yi ¼ B0 þ B1Xi þ εi ð14:1Þ

The basic idea is that an outcome (Yi) can be predicted from this model, subject

to a certain amount of error. Our model includes a parameter B1 (sometimes

expressed as β1) associated with the correlation (or relationship) between the vari-

ables, and a parameter B0 (or β0) that represents the value of the outcome when

X ¼ 0 (i.e., the point at which the line crosses the Y-axis, or the “Y-intercept”). It

shouldn’t be a surprise that Eq. 14.1 is the same used in high-school algebra to fit a

straight line (with the parameters assuming different designations, such as m and b).
The regression coefficients B0 and B1 represent the intercept and the slope

Table 14.3 Correlation-matrix output using Excel

Column 1 Column 2

Column 1 1

1Column 2 0.80399443
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(or gradient) of this line, and their estimates are designated as b0 and b1,
respectively.

The parameters of our model are typically estimated by a procedure known as

the method of least squares (LS). The principle of this method is to minimize the

sum of squared errors (between the actual Y data values and those predicted from

our model). The LS line is often referred to simply as “the regression line.”

Using the same numerical example, we can fit a linear-regression model to the

observed data (represented by circles), with a corresponding difference between the

observed and predicted values, as shown in Fig. 14.5. These predicted values

(represented by triangles) are calculated from the model and are on the regression

line.

But this would still leave us the problem of finding a fitted line from which

predictions of Y would be calculated. One alternative (at least conceptually) is to

test every possible line in order to determine the option that has the smallest

variability due to error, that is, the sum of the squared differences between observed

and predicted values or SSE (also called sum of squared residuals or sum of squares
of the residual error) – which would require a certain amount of boredom and free

time to be done by hand!3 Luckily, any software with line-fitting capabilities can do

this for us, and we would find that the simple regression least-squares line4 for our
example is

Yc ¼ :7868þ :9407X

where Yc is the predicted value of Y at a known value of X. The slope of .9407 means

that for each unit increase in X, the predicted Y goes up by .9407.

Fig. 14.5 Observed and

predicted values

3There are an infinite number of possible lines – so that REALLY would take up our free time!

Until the availability of personal computers with software packages such as Excel, we would find

the parameter values by evaluating equations.
4It can be shown that the LS line is unique.
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Similar to what we saw in Chap. 2, we can calculate the total sum of squared

errors (TSS) of the regression line. Here, TSS (or the total variability) is the sum of

the variability attributed to X (SSA, which resembles SSBc) plus the variability due

to error (SSE), which would resemble conceptually the SSW of earlier chapters.

TSS ¼ SSAþ SSE

which can also be written as

Xn

i¼1
ðYi � �YÞ2 ¼

Xn

i¼1
ðYc � �YÞ2 þ

Xn

i¼1
ðYi � YcÞ2

How is this done?

For the moment, assume that, in the numerical example we have used so far,

X and Y represent the temperature and the yield of a chemical reaction, respectively.

Without having a prediction line which allows us to predicate our prediction of Y on

the corresponding value of X, our best estimate of the yield at a given temperature

would be 3.1, the average yield – at any temperature! However, as we noted earlier,

our goal is to take advantage of knowing the temperature, if, indeed, yield and

temperature are linearly related, to get better/closer predictions of yield at the

different temperatures. When we find the LS line, invoking the linear regression

model, we can compare the prediction error when we use 3.1 for all temperatures,

and when we compute Yc from the LS line for the different temperature points in our

database. In Fig. 14.6, we can see the vertical distances from the dots to the line and

these are the prediction errors, when we use the mean as the prediction, regardless

of X, and we can square each and add them up, getting TSS.

Of course, we want to compare this TSS value with the value using the LS line.

That process is begun in Fig. 14.7, where we show how the SSA would be computed

– as in the equation above (first term to the right of the equal sign), the sum of

squares of the differences between the predicted values and the mean. Intuitively,

we want this SSA value to be relatively large, since it represents the amount of

prediction error by which we have reduced TSS. And, as we noted, we can

determine SSE by subtraction, TSS�SSA.

Fig. 14.6 Differences

between observed data and
�Y (solid gray line)
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SSE provides an indication of the degree to which the LS line fits (or does not

fit!) the data. A relatively large SSE indicates that the line does not fit the data well,

and relatively speaking, will not predict actual Y values very well for given X’s. To
get a measure of goodness of fit of the line to the data, we can use R2 (or r2 – both

notations are frequently seen when we are dealing with simple linear regression); R2

is called the coefficient of determination and indicates our estimate of the pro-

portion of variability in Y accounted for by variation in X. It is a value between

0 and 1, and is dimensionless, whereas the value of SSE is dependent on the units of

the Y. This value is found by

R2 ¼ SSA=TSS

Going back to our example, R2 was found to be .65 (rounded to two digits),

which means that, based on our data, 65% of the variability in Y can be explained by
the variability in X – leaving 35% of the variability to be accounted for by other

factors. If we take the square root of R2, we obtain r (
ffiffiffiffiffiffiffi
:65

p ¼ :804, the same value in

the previous section); of course, we know that a square-root of a positive number

can be either positive or negative, so we append to our definition of r that it is the
square root of r2, taking on the sign of the slope (b1) in the LS line.

Let’s illustrate how this is done in JMP with an example.

Example 14.5 Trends in Selling Toys using JMP

In Chap. 12, we presented an example of a study that investigated the impact of the

length of shelf space and the distance from the floor on the sales of a specific toy for

a national toy retailer. After some months, they were interested in the trend of toy

sales in relation to the advertising budget before making further decisions. The toy

sales (Y ) versus the amount of money spent on advertising (X) are presented in

Table 14.4.

Fig. 14.7 Differences

between �Y (solid gray line)
and the regression line
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After entering the data in JMP, we select Fit Y by X under the Analyze option

and enter the variables. After selecting the Fit Line option when we click the

“inverted” red triangle, we get the output shown in Fig. 14.8.

First, let’s focus our attention on the Linear Fit summary, which shows the

least-square (best-fitting) line; the intercept is 21.32 and the slope is 1.78. Using this

equation, we can input any value of X to calculate Yc. For instance, if X ¼ 5, we

predict that Y ¼ 30.2.

The next section of output, Summary of Fit, provides the R2 (.82) and the

adjusted R2 (.79). The R2 indicates that a bit over 82% of the variability in Y is due

to the variability in X. In other terms, if X did not change at all, the variability in

Ywould be approximately 18% of what it is now. As we know, the square root of R2

is the correlation coefficient; here, r¼ .906, a strong positive correlation for simple

linear regression. The adjusted R2 is a measure of the predictive power or how

good our model is in terms of “generalization,” that is, how accurate the prediction

is if we were to use the same model for a different sample. Adjusted R2 compensates

for what might be an overly-optimistic assessment of the extent to which our model

explains the variability in Y due to the limited sample size; ceteris paribus, as
sample size increases, adjusted R2 approaches R2. This coefficient provides a

method of cross-validation and should also be used to evaluate the goodness of

our model. A considerable drop to the adjusted R2 value would indicate a shrinkage

or loss of predictive power. Said in a more accurate way, it reveals the extent to

which the actual predictive power was overstated by R2. Another way to cross-

validate our model is to split the sample data and fit the regression data in both

halves and compare the results.

The Analysis of Variance summary gives us a p-value of .0019 for the regres-

sion line, corresponding to the F-value (27.4935). A relatively large F-value
indicates a large SSA. Notice that this p-value is exactly the same p-value for the
slope (see in the next section of output, Parameter Estimates, the p-value for the
slope being .0019). This is not a coincidence! In simple regression, the F-test of the
model will have the same p-value as the slope, which makes this information

redundant. A non-significant t-ratio for “Advertising” would lead us to accept the

null hypothesis and conclude that the outcome does not change as the value of the

predictor changes (i.e., we conclude that the slope is zero).

Table 14.4 Toy sales versus amount of money

spent with advertisement (in $10,000)

Toy sales Advertisement

35 10
80 20
56 30
82 40
126 50
104 60
177 70
153 80

494 14 Introduction to Simple Regression



14.3 Confidence Intervals of the Regression Coefficients

We can find confidence intervals in regression analysis using the standard error of

the coefficients.5 This is automatically done in Excel and SPSS, as we demonstrate

in the following examples.

Fig. 14.8 Output for toy sales example in JMP

5Confidence intervals for predictions are covered in the next chapter.
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Example 14.6 Trends in Selling Toys using Excel

After entering the data presented in Table 14.4, we click on Data > Data Analysis

and select Regression. After entering the X and Y ranges, we obtain the output

shown in Table 14.5.

The output presents the confidence interval for the coefficients (circled). Note

that, for reasons unknown, the p-value for the F statistic is called “Significance F”

by Excel. Also note that, on the output table, the correlation coefficient is labeled

“Multiple R” in Excel, which makes more sense when we are dealing with more

than one independent variable. This is the same value we found when we calculated

r using the R2 provided by JMP.

Example 14.7 Trends in Selling Toys using SPSS

Before moving on, let’s demonstrate how we perform a regression analysis in SPSS.

First, we select Analyze > Regression > Linear. . .; then, after selecting the

dependent and independent variables as shown in Fig. 14.9, we click on Statistics

and select Confidence intervals (with the appropriate significance level). The

output is shown in Table 14.6, with the same values as we obtained before.

Table 14.5 Regression output in excel

Summary
output

Regression
statistics
Multiple R 0.9060
R square 0.8209
Adjusted R
square

0.7910

Standard error 22.0563
Observations 8

ANOVA
df SS MS F Significance F

Regression 1 13375.0060 13375.0060 27.4935 0.0019
Residual 6 2918.8690 486.4782
Total 7 16293.8750

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 21.3214 17.1861 1.2406 0.2611 −20.7314 63.3743 −20.7314 63.3743
X Variable 1 1.7845 0.3403 5.2434 0.0019 0.9518 2.6173 0.9518 2.6173
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Fig. 14.9 Steps for regression analysis in SPSS
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14.4 Assumptions

The assumptions underlying linear-regression analysis relate to the properties of the

error terms and are as follows:

1. Normality: for any value of X, the error, ε, is normally distributed. Since the

probability distribution of Y is the same as the probability distribution of ε,
except for the mean ([A þ BX] for Y, and 0 for ε), as a practical matter, this is

saying that for a given X, the Y values are normally distributed. If this is not

true, we may be able to accomplish this via a transformation (e.g., log

transformation).

2. Constant variability (or homoscedasticity; we already saw this term in

Chap. 3): this means that the variance of the error term is the same across all

values of X. As a practical matter, this is saying that for all values of X, the
variability in Y is the same.

3. Independence: to “the error terms [ε’s] are all uncorrelated with one another;

when this is combined with the normality assumption, it becomes equivalent to

being independent of one another. As a practical matter, this is saying that all of

the Y values are independent from one another. This is often violated when

the data form a time series, but otherwise it is usually fair to assume that it has

been met.

Table 14.6 Regression output in SPSS

Model summary

Model R R square Adjusted R square Std. error of the

estimate

1 .906a .821 .791 22.056
aPredictors: (Constant), Advertisement

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 13,375.006 1 13,375.006 27.494 .002b

Residual 2,918.869 6 486.478
Total 16,293.875 7

aDependent Variable: Sales
bPredictors: (Constant), Advertisement

Coefficientsa

Model

Unstandardized

coefficients

Standardized

coefficients

t Sig.

95% confidence

interval for B

B

Std.

error Beta

Lower

bound

Upper

bound

1 (Constant) 21.321 17.186
.906

1.241 .261 �20.731 63.374
Advertisement 1.785 .340 5.243 .002 .952 2.617
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It has been shown that assumptions 1 and 2 are somewhat robust, while assumption

3 is not considered to be especially robust. The concept of robustness was intro-

duced in Chap. 3.

Example 14.8 Usefulness of a New Search Engine (Revisited)

After performing the experiment, the researchers at vacantposition.com found that

the users considered the Boolean-search capability useful, and that this contributed

to the increased likelihood of adoption of the new search engine. A positive

statistically-significant relationship between the perceived usefulness of this capa-

bility and the likelihood of adoption was found to exist. This was consistent with the

complaints they had received (i.e., qualitative data supported by quantitative data).

As one of the managers stated once he saw the results of the study: “That was a very

costly mistake!”

Exercises

1. Consider the Table 14EX.1 data which represent the effect of varying the con-

centration of baking powder (X) on the height (Y1) and density (Y2) of cakes. Six
samples were produced in a pilot study, using the same base recipe consisting of

150 grams (~1 cup) of flour. Run a correlation analysis for baking powder and

height. Is the correlation significant? Now, run a correlation analysis for baking

powder and density. What can be said about the correlation? Use α ¼ .05.

2. For Exercise 1, run a regression analysis and find the best fitting line for height

(Y ) versus baking powder (X).
(a) What is the least-square line?

(b) Is the model significant? Discuss.

(c) Are the coefficients (i.e., intercept and slope) significant? Discuss.

(d) Find the 95% confidence interval for the parameters B0 and B1.

(e) What do you predict the height to be when X ¼ 3?

Table 14EX.1 Height and density of cakes

X ¼ Baking

powder (grams)

Y1 ¼ Height

(cm)

Y2 ¼ Density

(g/cm3)

0 3.4 8.2
2 5.3 7.5
4 5.6 7.2
6 6.0 6.1
8 6.8 5.5
10 6.7 5.2

Exercises 499



3. Using the results obtained in Exercise 2, what percent of the variability in height

is explained by the linear relationship with the concentration of baking powder?

4. Still using the data of Exercise 1, run a regression analysis and find the best

fitting line for density (Y) versus baking powder (X).
(a) What is the least-square line?

(b) Is the model significant? Discuss.

(c) Are the coefficients (i.e., intercept and slope) significant? Discuss.

(d) Find the 95% confidence interval for the parameters B0 and B1.

(e) What do you predict the density to be when X ¼ 5?

5. Consider the Table 14EX.5 data which represent the release of a drug (Y ) from
pills (after a given time) with varying degrees of coating (X). For this exercise,
consider α ¼ .05.

(a) Is the correlation significant?

(b) What is the least-square line? Is the model significant?

(c) Are the coefficients (i.e., intercept and slope) significant? Discuss.

(d) Find the 95% confidence interval for the parameters B0 and B1.

6. For the same example in Exercise 5, assume that we actually have three values

for every percentage of coating, as shown in Table 14EX.6.

Table 14EX.5 Release profile of a drug

X ¼ Coating (%) Y ¼ Release (%)

1.0 78
1.5 63
3.0 70
5.0 58

10.0 50
15.0 42
20.0 31
25.0 28
30.0 15

Table 14EX.6 Release profile of a drug with replicates

X ¼ Coating (%) Y ¼ Release (%)

1.0 74, 78, 82
1.5 60, 67, 62
3.0 68, 74, 71
5.0 55, 59, 60

10.0 44, 54, 52
15.0 37, 46, 43
20.0 28, 31, 34
25.0 22, 30, 32
30.0 10, 19, 16
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(a) Is the correlation significant?

(b) What is the least-square line? Is the model significant?

(c) Are the coefficients (i.e., intercept and slope) significant? Discuss.

(d) Find the 95% confidence interval for the parameters B0 and B1.

7. Compare and discuss the results obtained in Exercises 5 and 6.

Appendix

Example 14.9 Trends in Selling Toys using R

To analyze the same example, we can import the data as we have done previously or

create our own in R. We will demonstrate the second option here – after all, it is

more fun! This is how it is done:

> advertisement <- c(10, 20, 30, 40, 50, 60, 70, 80)

> sales <- c(35, 80, 56, 82, 126, 104, 177, 153)

> toy <- data.frame(advertisement, sales)

A quick inspection will show us the data frame was successfully created.

> toy

advertisement sales
1 10 35
2 20 80
3 30 56
4 40 82
5 50 126
6 60 104
7 70 177
8 80 153

Using the plot() function, we can generate a scatter plot of our data, shown in

Fig. 14.10. The correlation analysis is shown next.

> plot(toy, pch=16, cex=1.0, main="Sales

+vs. Advertisement")
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> cor(toy,method="pearson")

advertisement sales
advertisement 1.0000000 0.9060138
sales 0.9060138 1.0000000

> cor.test(toy$advertisement, toy$sales, method="pearson")

Pearson’s product-moment correlation

data: toy$advertisement and toy$sales

t = 5.2434, df = 6, p-value = 0.001932

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5568723 0.9830591

sample estimates:

cor

0.9060138

Now, we will perform a regression analysis, using the lm() function.

> toy_regression <- lm(sales~advertisement, data=toy)

> summary(toy_regression)

Call:

lm(formula = sales ~ advertisement, data = toy)

Residuals:

Min 1Q Median 3Q Max
-24.393 -13.027 -7.434 17.336 30.762

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.3214 17.1861 1.241 0.26105
advertisement 1.7845 0.3403 5.243 0.00193 **

---

Fig. 14.10 Scatter plot in R
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Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.06 on 6 degrees of freedom

Multiple R-squared: 0.8209, Adjusted R-squared: 0.791

F-statistic: 27.49 on 1 and 6 DF, p-value: 0.001932

> anova(toy_regression)

Analysis of Variance Table

Response: sales

Df Sum Sq Mean Sq F value Pr(>F)
advertisement 1 13375.0 13375.0 27.494 0.001932 **
Residuals 6 2918.9 486.5

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

To include the regression line in the scatter plot (shown in Fig. 14.11), we can

use any of the following commands:

> abline(21.3214, 1.7845)

> abline(lm(sales~advertisement))

Fig. 14.11 Scatter plot

with the regression line in R
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Chapter 15

Multiple Linear Regression

In the previous chapter, we discussed situations where we had only one independent

variable (X) and evaluated its relationship to a dependent variable (Y ). This chapter
goes beyond that and deals with the analysis of situations where we have more than

one X (independent) variable, using a technique called multiple regression.

Similarly to simple regression, the objective here is to specify mathematical models

that can describe the relationship between Y and more than one X, and that can be

used to predict the outcome at given values of the independent variables. As we did

in Chap. 14, we focus on linear models.

So, multiple linear regression accommodates more than one independent vari-

able. If we have data for Y and several X’s, say six or seven, we can use Excel

(as we shall see), and the analysis would proceed in a straightforward manner,

albeit a bit cumbersome. We wish to have, as our final model, an equation that has

only significant variables in it (nearly always, not all the variables available) – not

counting the occasional case in which it is mandated that a certain variable be in

the final model, regardless of significance. Excel output tells us which of the X’s
are significant. We would want to remove those which are not significant, one at a

time, repeating the analysis after each variable leaves. The result will be an

efficient model – one which predicts Y with the least X’s. But, if we have data

for Y and many X’s, say 20, the Excel procedure gets unmanageable; lots of X’s
become a mixed blessing – more opportunity to explain more about Y, but much

more work involved!! (That is not to suggest that it’s not doable, but we’re too lazy;
in a practical sense, it’s just not doable.) In that case, we use a technique called

stepwise (multiple linear) regression, an algorithm not available in Excel without
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© Springer International Publishing AG 2018

P.D. Berger et al., Experimental Design, DOI 10.1007/978-3-319-64583-4_15
505



an add-in, but readily available with the other software packages we discuss here.”

This process is discussed in a later section. Stepwise regression is based on the

introduction and deletion of a variable from our model/equation, on a step-by-step

basis, based on the significance of the t-test for a given variable (technically, of the

slope parameter of the variable). As we shall repeat when we later focus on the

stepwise-regression topic, the process ends when there are (1) no further variables

that would be significant upon entry to the model and (2) all the variables in the

model at that point are significant. This gives the stepwise-regression technique

two excellent virtues concerning the final model – one is that we are guaranteed

that there are no other X variables in our data set which provide significant

incremental predictive benefit about Y, and the other is that we are guaranteed

that all of the X variables in the model are significant predictors of Y. It is easy to

understand why the stepwise-regression technique refers to the final model as the

“best model.”

Once again, we will make an exception and include some demonstrations using

Excel and SPSS in the main text where appropriate.

Example 15.1 An “Ideal” Search Engine

Everybody seemed to agree: “vacantposition.com” was the go-to website for

those searching or offering jobs. However, an increased number of complaints,

associated with a corresponding drop in the number of users, has led to an

experiment to determine the perceived usefulness of the ability to perform a

Boolean search and the likelihood of adoption of the new search engine. As we

saw in Chap. 14, the experimental results indicated that a very costly mistake

apparently had been made, as the old search engine performed better than the

new one.

The managers decided to collect further data before modifying the current

version of the search engine. This time, they wanted to determine how combina-
tions of certain search fields would affect the likelihood of adoption. Then, they

would use this information to come up with an “ideal” search engine that would

“crush the competition,” as a senior manager pointed out.

Their usability researcher proposed the use of multiple regression to deter-

mine a model which would increase the adoption of the search engine, using the

same questionnaires from the previous experiment. Recall that the experiment

asked 170 participants to find candidates for three positions, with established

criteria, followed by the completion of a questionnaire that assessed the per-

ceived usefulness of each search field, on a scale of 1 to 5, where 1 represented

“not at all useful” and 5 was considered “extremely useful.” In total, there were

15 fields (i.e., X’s) and a dependent variable (i.e., likelihood the respondent

would adopt the search engine). We return to this example at the end of the

chapter.
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15.1 Multiple-Regression Models

In multiple linear regression, where we have more than one independent variable

(X1, X2, . . ., Xk), we can generate a best-fitting line1 as shown in Eq. 15.1:

Yi ¼ B0 þ B1X1 þ B2X2 þ � � � þ BkXk þ εi ð15:1Þ

As with simple regression, an outcome (Yi) can be predicted from the regression

model plus some amount of error; however, in multiple regression we have more

than one slope parameter (B1 to Bk) and a parameter B0 to represent the Y-intercept.
Let’s consider a numerical example, where we have Y, three X’s, and 15 rows of

data, as shown in Table 15.1. Our goal is to determine which X or X’s help us to

predict Y.

If finding a LS line manually with only one X was already cumbersome, you are

right if you guess that estimating the parameters of a multiple regression model

would be nearly impossible to be done by hand; it ismandatory that we use software
in multiple-regression analysis.2 Let’s illustrate how this is done in JMP, Excel,

and SPSS.

Example 15.2 Numerical Example using JMP

After inputting the data presented in Table 15.1, we select Analyze > Fit Model

and fill in the variables. The output is shown in Fig. 15.1.

Table 15.1 Numerical example with one Y and three X’s

X1 X2 X3 Y

82 107 91 89
77 106 99 79
78 111 101 92
74 106 94 75
73 110 88 76
78 107 89 74
67 96 73 53
97 123 105 115
85 119 106 101
96 114 113 127
75 92 77 66
83 112 111 108
73 107 89 67
75 113 83 79
85 108 109 103

1In fact, we would have a plane or hyperplane, since we have multiple dimensions. We will use the

term line in this text for simplicity.
2For those of you who know what this means, you would need to invert a matrix by hand!
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JMP provides a Summary of Fit that contains information about the multiple-

regression line (similar to the “Linear Fit” summary in simple regression output).

This summary gives us a considerably high R2 (.955), which tells us that around

95.5% of the variability in Y can be explained by the variability in the three X’s as a
group.

Next, we have the Analysis of Variance summary, which gives us a p-value of
< . 0001 for the regression line (F-value ¼ 78.7174). In Chap. 14, we mentioned

that the p-values of the t-test and F-test were exactly the same for simple linear

regression. In multiple regression, we have a different story. The p-value of the

F-test indicates that beyond any reasonable doubt, we can predict Y using the three

X’s as a group; that is, we reject the null hypothesis that the X’s as a group do not

help us predict Y.3 However, the Fcalc-value does not indicate which X (or X’s) are

Fig. 15.1 Output for numerical example in JMP

3If we accept the null hypothesis, we would typically abandon formal statistical analysis, since we

have accepted that “the X’s as a group (or, the X’s collectively) do not provide us with predictive

value about Y”; in which case, what more can be said?
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useful to predict Y. This will be answered by the t-test for each X found in the

Parameter Estimates summary.

We can see that X1 and X3 are significant (each has p < .05), whereas X2 is not

significant ( p ¼ .554). A significant t-test result rejects the null hypothesis that a

particular X does not help us predict Y, above and beyond the other variables
present in the model at that time. In other words, we are not evaluating whether a

given X helps us to predict Y in isolation. Rather, the t-test, which, as we know from

the previous chapter, is testing the usefulness of an X for predicting Y by testing

whether the slope parameter (Bi) is zero or not, is hypothesis testing in a multiple-
regression setting (using X1 as an example):

H0: the variable, X1, does not provide incremental predictive benefit about Y

H1: the variable, X1, does, indeed, provide incremental predictive benefit about Y

A more-or-less synonym for “providing incremental benefit” would be “providing

benefit above and beyond the other variables in the model”; another synonym

would be “providing unique predictive benefit.” So, in general, a variable being

significant may easily change, depending on which other variables are in the model/

equation. In our example, we conclude that X1 and X3 each provides incremental

predictive benefit about Y (both exhibiting an incrementally positive relationship

with Y ). However, we cannot reject H0 and, thus, cannot (statistically) conclude that

X2 is providing incremental predictive value about Y. It may well be that X2 would

be a useful predictor of Y if data on X1 and X3 were not available. Our regression

output in Fig. 15.1 does not address that question.

This summary also gives us the LS line coefficients; the intercept is�106.67 and

the estimates of the parameters are b1 ¼ 1.39, b2 ¼ .15, and b3 ¼ .69. If we arrange

these values in the same format of Eq. 15.1, we get4:

Yc ¼ �106:67þ 1:39X1 þ :15X2 þ :69X3

Example 15.3 Numerical Example using Excel

An important consideration should be made before running our analysis. When

inputting data in Excel, the columns of X’s should be contiguous, i.e., be inserted in
adjacent columns. After entering the data, we click on Data > Data Analysis and

select Regression, as we have done in Chap. 14. Here, we enter the Y range and

select the cells that correspond to the three X’s, as shown in Fig. 15.2 (X1 values

were placed in cells A1:15, X2 in cells B1:B15, and X3 in cells C1:C15). The output

is shown in Table 15.2, which shows the same results obtained in JMP.

4At this point we would drop X2 from consideration and repeat the regression without the X2 data.

However, leaving it in the model/equation for the moment allows several salient points to be made

about the methodology over the next several pages in a superior way. We explicitly discuss this

issue later.
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Fig. 15.2 Regression dialog box in Excel

Table 15.2 Multiple regression output in Excel

Summary output

Regression statistics

Multiple R 0.977493224

R square 0.955493003

Adjusted R

square

0.943354731

Standard

error

4.871350093

Observations 15

ANOVA

df SS MS F Significance F

Regression 3 5603.90276 1867.96759 78.71738 1.01997E-07

Residual 11 261.03057 23.73005

Total 14 5864.93333

Coefficients Standard
error

t Stat P-value Lower 95% Upper 95%

Intercept �106.674709 18.922167 �5.637552 0.000152 �148.322118 �65.027299

X Variable 1 1.394781 0.269889 5.167973 0.000309 0.800758 1.988803

X Variable 2 0.153544 0.251779 0.609835 0.554360 �0.400619 0.707707

X Variable 3 0.688196 0.183836 3.743525 0.003246 0.283575 1.092817

Note: Last two columns of output were omitted
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As with simple regression, Excel provides a confidence interval (bottom right of

output in Table 15.2) for each parameter estimate.

Example 15.4 Numerical Example using SPSS

In SPSS, multiple regression is analyzed in a way similar to that which we used for

simple regression. After inputting the data, we select Analyze > Regression >
Linear. . . and move the variables to the appropriate boxes. At this time, we should

use the default option of Method (Enter). The output is shown in Table 15.3.

In SPSS, we can find the confidence intervals for the parameters by checking the

box Confidence intervals under Statistics, available on the linear-regression box,

as shown in Fig. 15.3. This will add two columns to the Coefficients output (see

Table 15.4).

Table 15.3 Multiple regression output in SPSS

Variables entered/removeda

Model Variables entered Variables removed Method

1 X3, X2, X1b Enter
aDependent variable: Y
bAll requested variables entered

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 .977a .955 .943 4.87135

aPredictors: (constant), X3, X2, X1

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 5603.903 3 1867.968 78.717 .000b

Residual 261.031 11 23.730
Total 5864.933 14

aDependent variable: Y
bPredictors: (constant), X3, X2, X1

Coefficientsa

Model

Unstandardized

coefficients

Standardized

coefficients

t Sig.B Std. error Beta

1 (Constant) �106.675 18.922 �5.638 .000
X1 1.395 .270 .569 5.168 .000
X2 .154 .252 .058 .610 .554
X3 .688 .184 .416 3.744 .003

aDependent variable: Y
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15.2 Confidence Intervals for the Prediction

We can use the multiple-regression model obtained using any of the software

packages demonstrated above to make predictions of the outcome. For instance,

if X1 ¼ 80, X2 ¼ 100, and X3 ¼ 90, Yc will be 82.20. We can also determine the

confidence interval for this prediction, that is, the range of values where future

predictions will fall in.

To determine a 95% confidence interval for the prediction (for both simple and

multiple regression) for samples that are sufficiently large (n � 25 is a rule of

Fig. 15.3 Confidence interval in SPSS

Table 15.4 Coefficients table with confidence interval for the parameters

Coefficientsa

Model

Unstandardized

coefficients

Standardized

coefficients

t Sig.

95% Confidence inter-

val for B

B

Std.

error Beta

Lower

bound

Upper

bound

1 (Constant) �106.675 18.922 �5.638 .000 �148.322 �65.027
X1 1.395 .270 .569 5.168 .000 .801 1.989
X2 .154 .252 .058 .610 .554 �.401 .708
X3 .688 .184 .416 3.744 .003 .284 1.093

aDependent variable: Y
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thumb, but the suggested minimum sample size increases as the number of inde-

pendent variables increases), we use:

Yc � 2 � ðstandard error of the estimateÞ

Alternatively, we could substitute for “2” the value “2.6” or “1.65” for a 99% or

90% confidence interval, respectively. Luckily, we can obtain the standard error of

the estimate from the regression output shown previously (i.e., 4.87); it is called

“root mean square error” in JMP. Using the Ycwe calculated at the beginning of this
section, we find that the 95% confidence interval is:

82:2� 2 � 4:87ð Þ or 72:46 to 91:94

This indicates that we have a 95% chance that this interval will contain Y when

X1 ¼ 80, X2 ¼ 100, and X3 ¼ 90.

In JMP, we can extend our regression line to include given values of the X’s to
find the predicted Y. We select Prediction Formula, Mean Confidence Limit

Formula, and Indiv Confidence Limit Formula under the Save Columns option,
as shown in Fig. 15.4. This will save additional columns beyond those used for our

original dataset, identified with vertical arrows in Fig. 15.5. We can include other

values of the X’s that are not part of the original dataset (such as row 16, identified

with a horizontal arrow in Fig. 15.5) purposely leaving the Y cell empty, and the

software will display the predicted values (and confidence interval) automatically.

Fig. 15.4 Commands to find various confidence intervals for prediction
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In SPSS, we can find the confidence interval for the mean and the individual

prediction by selecting the appropriate boxes under the Save command on the

linear-regression box (Fig. 15.6). This will add four columns in the data table, as

shown in Fig. 15.7. To find the confidence interval for given values of X’s not in the
dataset, we use the same process as was used in JMP – adding the X’s and purposely
not entering a value of Y. SPSS will not use that set of X’s (because there is no

Y value) in finding the LS line, but it will give us the prediction interval for that set

of X’s.

Fig. 15.5 Additional columns (vertical arrows) and row (horizontal arrow) in the dataset
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Fig. 15.6 Command to obtain the confidence interval for the mean and the individual prediction
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15.3 A Note on Non-significant Variables

Still considering our numerical example, if we were to run this analysis again and

rightfully drop X2 from our model [except in rare circumstances], we would observe

a small reduction in R2 (¼ .954). Although X2 is not significant, it has a tiny

contribution to R2 of approximately .1%. This is because we will never see an R2

¼ 0, even if the variables are truly unrelated, unless the data resulted from a

designed experiment with orthogonality designed in.

In certain cases, we can find that variables are not significant, but they still have

some degree of importance when predicting Y. This can happen when two or more

of these non-significant variables provide the same information. The regression

analysis would conclude that neither of the variables is adding anything unique to
our model, thus a non-significant result. If two or more X’s highly overlap (are

highly correlated) – a situation not uncommon in practice for data that are not from

a designed experiment – we say that we have multicollinearity. We have implied,

properly, that, in general, we want our X’s to be related to Y; this is the first time we

are mentioning the issue of X’s related to other X’s. The “problem” that arises when

we have multicollinearity is that the interpretation of “what’s going on” is

obscured. Suppose that we have 100 “units of information”5 about Y, and

Fig. 15.7 Additional columns in the dataset

5We are making an analogy to R. That is, imagine that a “unit of information” is equivalent to .01

of the R. There are 100 units of information about Y, labeled 1�100. Obviously, if an X, or group of
X’s, provide all 100 units of information, it would be equivalent to having an R of 1.
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X1 explains units 1–15 (R2 ¼ .15)

X2 explains units of 16–30 (R2 ¼ .15)

X3 explains units of 1–30 (R2 ¼ .30)

If we run a regression with all three X’s, we have explained 30% of what is going on

with Y, and the F-test will come out significant, but none of the X’s will come out
significant via the t-test. The way we can think about it is this: if X1 leaves the

model, do we have any reduction in predictive ability? The answer is, “No” – which

is why X1 is not judged to be significant. The same story holds for the other two

variables. No single variable of the three X’s is providing unique predictive value

about Y.
There are a few issues to note. First, as mentioned above, the F-test will be

significant (after all, we are explaining 30% of what is going on with Y; this
significant F-test would alert us that we likely have multicollinearity.) Second,

even if X3 in the above example explained units 1–29, instead of units 1–30 (thus,

resulting in X2 contributing one unique/incremental unit – unit 30 [again: analogous

to .01 of R2]), the conclusions would be basically the same. None of the X’s would
be significant. We might believe that X2 would be significant, since it contributes

one “unit of uniqueness,” unit 30. However, adding only .01 to the R2 would likely

not be sufficient to warrant the t-test giving a result of significant to X2. We can get

an R2 ¼ .01 by regressing virtually any two variables, ones that are totally

unrelated, especially with a small or moderate sample size. The t-test, as do all

hypothesis tests, recognizes that. As we know, we reject H0 only when the data

results are “beyond a reasonable doubt” or “overwhelming.”

A third issue to note is that the interpretation of multiple-regression results

requires careful thought. Consider an example in which we have a Y and three

X’s. We might expect that we couldn’t have a case in which all three X’s are
significant via the t-test and yet, the F-test is not significant. This would seem to

contradict the basic ideas we have put forth! How can all three X’s be significant,

and the F-test, indicating whether the X’s as a group help us predict Y, not be
significant? We know this cannot be the case with a single X; in Chap. 14, we

illustrated how the t-test and F-test give us identical p-values. Still, in the example

with three X’s, it can happen (see R. C. Geary and C. E. V. Leser (1968),

“Significance Tests in Multiple Regression.” American Statistician, vol. 22, pp.
20–21). (Hint – recall that the degrees of freedom affect significance in both tests,

and they are different for other than simple linear regression.)

Two of the authors have published another anomalous example in which there

are two independent variables, X1 and X2; neither X1 nor X2 alone has any predictive

value (R2 is approximately 0), but their combination explains everything (R2 ¼ 1)!

The good news is that it is very unlikely that we would ever encounter any of

these anomalies. (Otherwise, of course, they wouldn’t be anomalies!)
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15.4 Dummy Variables

Categorical X’s (e.g., brand, sex, etc.) cannot be included directly in a

regression model as numerical quantities; however, they can be transformed into

dummy variables, which are artificial predictors that represent categorical X’s with
two or more levels used to “trick” the regression analysis. For instance, if we have

“sex” as the categorical variable, X2, we can assign values of 1 to male and 0 for

female (or the other way around). If we want to predict Y using these values, we

find:

Yc ¼ b0 þ b1X1 þ b2ð1Þ ¼ b0 þ b1X1 þ b2 ðfor a maleÞ
Yc ¼ b0 þ b1X1 þ b2ð0Þ ¼ b0 þ b1X1 ðfor a femaleÞ

We can see from these equations that b2 represents the male/female difference,

assuming the same value for X1. If b2 ¼ 7, for example, it indicates that we would

predict Y to be 7 units higher if the row of data pertains to a male, than if it pertains

to a female, give the same value of X1. Of course, if b2 ¼ �6, we would predict a

female to have a Y 6 units higher than that of a male. In general, for any multiple-

regression coefficient, we interpret the coefficient as the change in Y per unit change

in (that) X, holding all of the other X’s constant. For a dummy variable, the

interpretation of a coefficient can usually be put into a more useful, practical

context, compared to the very general and “clinical” expression, “the change in

Y per unit change in X.”
Note that we have two categories (male and female), but only one dummy

variable (X2). The rule of thumb is that for C categories, we will have (C – 1)

dummy variables.6

We have seen early in the text that we routinely use ANOVA for categorical

variables. How do the results compare if we run an ANOVA and a regression

analysis using dummy variables? Let’s find out with a simple example using Excel.

Assume we have two categories (A and B). Figure 15.8. shows how we would input

the data for ANOVA and regression. Note that A and B were assigned values of

0 and 1, respectively, for regression analysis.

6In SPSS and JMP, we can enter a column of data as, for example, M and F, for the two sexes.

However, we advise the reader not to do so, for the richness of the output is greater when we

convert the letters to 0’s and 1’s.

518 15 Multiple Linear Regression



Tables 15.5 and 15.6 show the ANOVA and regression analysis output, respec-

tively. Note that the F-value (.8033) and the p-value (.4208) are the same in both

tables – although the labels are different.

Table 15.5 ANOVA output

ANOVA: single factor

Summary

Groups Count Sum Average Variance

Column 1 3 9 3 4

Column 2 3 16 5.3333 16.3333

ANOVA

Source of variation SS df MS F P-value F crit

Between groups 8.16667 1 8.1667 0.8033 0.4208 7.7087

Within groups 40.6667 4 10.1667

Total 48.8333 5

Fig. 15.8 Data entry in Excel: ANOVA vs. regression
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If we had three or more categories for the independent variable, X (or the “column

factor,” as we called it in Chap. 2), or if we have more than one X, we would have

needed to set up the problem with more than one dummy variable, and run a multiple

regression. This is usually far more cumbersome than a routine one-factor ANOVA

with three columns/levels/categories. That is why, typically, if we have a designed

experiment, we analyze it using the techniques of earlier chapters, rather than set it up

as a multiple regression, even though, with some relatively complicated defining of

dummy variables, it can be analyzed also as a multiple-regression model. For further

discussion of constructing a set of dummy variables for variables with more than two

categories, we recommend “A Second Course in Statistics: Regression Analysis,” by

Mendenhall and Sincich, Prentice Hall, 7th edition, 2011.

15.5 Stepwise Regression

As noted in the introduction of this chapter, stepwise regression is a variation of

multiple regression and a tool to analyze situationswhere there aremore than a just few

independent variables. Here is an example in which there could be a potentially

misleading conclusion about the data’smessagewithout the use of stepwise-regression

analysis. Suppose that we have as dependent variable a person’s weight (Y) and two

X (independent) variables, X1 ¼ the person’s height, X2 ¼ the person pant length

Table 15.6 Regression output

Summary output

Regression statistics

Multiple R 0.4089

R square 0.1672

Adjusted R

square

�0.0410

Standard error 3.1885

Observations 6

ANOVA

df SS MS F Significance
F

Regression 1 8.1667 8.1667 0.8033 0.4208

Residual 4 40.6667 10.1667

Total 5 48.8333

Coefficients Standard error t stat P-value Lower 95% Upper 95%

Intercept 3 1.8409 1.6296 0.1785 �2.1111 8.1111

X Variable 1 2.333333333 2.6034 0.8963 0.4208 �4.8949 9.5616

Note: Last two columns were omitted
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[wearing normally tailored, long pants]. Given that the two X’s likely have a value of

R2 which is over .98, neither X variable will be significant, since neither variable adds

(enough) incrementally to the other variable to be statistically significant, even

though each variable, by itself, would be significant in a simple-regression analysis.

Using stepwise regression, we can determine which variables should be kept in

our final model. A key guiding principle of linear regression is that, of course, we do

not want non-significant variables in our final model. Only the one (or ones) with

significant incremental predictive value are included in the model. As the name

implies, the procedure works in steps. In the first step, the software runs a series of

simple regression analyses as we have done so far, but the output is not shown. If we

have five X’s, it will run five simple regressions. Then, the variable with the highest

R2 value is selected and this time the output is provided (say, X4 had the highest R
2).

In the second step, regressions containing two X’s (the variable selected in the first

step plus each of the other four X’s) are run, one at a time. In our illustration, we will

have four regressions: Y/(X1 and X4), Y/(X2 and X4), Y/(X3 and X4), and Y/(X5 and

X4), out of which the software picks the pair with the highest R2 (say, X5 and X4).

The next step is to run three regressions, this time containing X4 and X5 and each of

the variables left from the previous selection (X1, X2, and X3) and, again, the

software selects the combination with the highest R2. This process continues until

we find that we don’t have any significant variables left to enter, and none to be

deleted (discussed next), and a final model is generated.

Every time we potentially add a variable to the model/equation, the stepwise

software runs a t-test to see if this “best variable” is significant – that is, whether the
new variable potentially entering the model/equation, if actually entered, will be

significant. If we reject H0, the variable in question, indeed, is allowed to enter,

since it is “beyond a reasonable doubt” that it is adding predictive ability about Y. If
it is not significant, the variable is barred from entering! And, we should note that if

the best variable (the one that adds the most incremental R2) is not significant, none
of the rest of the variables eligible to enter can be significant either!

There is another feature of the stepwise process that is very useful. A variable is

retained in the model/equation only if it retains its significance. As we include

additional variables in the model/equation, each one adding incremental predictive

ability about Y (or, as noted above, it would not be allowed to enter), it is possible that

new variables “chew away” at the uniqueness of the contribution of previously entered

variables; if an originally-significant variable becomes non significant, it gets deleted
from the model/equation (just as we would do if “manually” developing the model).

The user picks a “p-value-to-enter,” with .05 as the default in most statistical

software packages, and also picks a “p-value-to-delete” with a default which is most

often .10. The reader may wish to think about why that the p-value-to-delete must be

larger than the p-value-to-enter. Some software packages allow criteria for entering

and deleting that do not directly use the p-value as a criterion. However, we advise
the reader to use the p-value as the criterion for both entering and deleting.

When all is said and done we can summarize two great properties of the stepwise-

regression technique – one is that we are guaranteed that there are no eligible

variables that can be (statistically) said to provide incremental predictive value
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about Y (that are not already in the model/equation), and the other is that all the

variables that remain in the final model/equation are significant at whatever was set

as the p-value-to-delete (and was significant at some point at the p-value-to-enter).
Let’s see how this is done with an example. Note that Excel does not include

stepwise regression.

Example 15.5 Faculty Ratings using JMP

Assume that we ask a small class of 15 students to rate the performance of a new

faculty member considering 12 characteristics (X’s) and to provide an overall

satisfaction score (Y ) at the end of the experiment. (This is an example of having

a large number of independent variable and not a large number of data points.) A

scale of 1 to 5 will be used, where 1 represents “completely disagree” and

5 “completely agree.” The results are presented in Table 15.7.7

If we run a multiple regression using all of the X’s, we will notice that none of the
variables are significant. Is this truly the case? Couldn’t it be because the variables
overlap? Let’s see! After entering the data, we proceed as usual: Analyze > Fit

Table 15.7 Ratings of a new faculty member

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

1 4 4 4 1 3 1 3 3 4 3 3 4

4 4 3 4 3 3 2 3 2 4 4 2 4

4 3 4 4 3 2 1 2 2 1 2 1 3

2 3 4 4 2 2 1 2 2 2 3 2 3

4 4 4 4 2 2 2 3 1 3 3 3 4

4 4 3 3 1 2 2 3 3 3 3 2 4

4 4 5 4 3 2 5 3 2 2 3 3 4

5 5 5 4 3 3 3 5 2 3 4 2 5

4 3 4 3 3 2 2 4 3 3 3 2 4

3 3 4 3 3 1 5 3 1 2 2 3 3

4 3 4 3 3 2 2 3 2 3 3 1 4

4 3 4 3 2 1 2 3 1 2 2 2 3

3 3 3 3 1 2 3 3 2 1 2 2 3

4 3 3 3 2 1 1 3 3 1 2 2 3

3 4 4 2 3 3 3 4 3 3 3 1 4

7We would, in general, not be pleased to have 12 X’s and n¼ (only) 15. This is true even though all

12 X’s are extremely unlikely to enter the stepwise regression. There is too much opportunity to

“capitalize on chance,” and find variables showing up as significant, when they are really not. This

possibility is a criticism of the stepwise regression technique and is discussed further in “Improv-

ing the User Experience through Practical Data Analytics,” by Fritz and Berger, Morgan

Kaufmann, page 259.
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Model and move the variables to the appropriate boxes. Before running the

analysis, we select Stepwise under Personality, as shown in Fig. 15.9.

Figure 15.10 shows the next step and the results summary. Here, we will

consider “P-value Threshold” as our selection criteria and specify .05 and .1 as

the probabilities to enter and to leave, respectively. We leave Direction as “For-

ward”8 and then click Go. The Current Estimates summary shows that that only

variables X8 and X11 entered our model and it also provides the estimates and

corresponding F-test.

Fig. 15.9 Stepwise regression in JMP

8JMP and SPSS include some options for “directions” or “methods” when performing stepwise

regression. Forward is equivalent to stepwise, but once a variable is included, it cannot be

removed. Remove is a stepwise in reverse; that is, your initial equation contains all the variables

and the steps remove the least significant ones in each step (not available in JMP). Backward is

similar to remove, although we cannot reintroduce a variable once it is removed from the equation.

JMP also has mixed, which is a procedure that alternates between forward and backward. The
authors recommend stepwise and, while preferring it, are not strongly against remove. We are not

certain why anyone would prefer either forward or backward. These two processes remove the

“guarantee” that all non-significant variables (using p ¼ .10, usually) are deleted from the model/

equation.
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Below we have the Step History that displays how the stepwise process

occurred. If we included only X11 in the equation, R2 would be .73; however, the

addition of X8 in the model increased this measure to .86. If we ran a “conventional”

multiple-regression analysis, including all variables in the model/equation, we

would get an R2 ¼ .973 including all variables in the equation. Our final stepwise

equation would be:

Yc ¼ :92þ :34X8 þ :60X11

This means that the best prediction of the overall satisfaction of the new faculty

member will be obtained with characteristics 8 and 11. As we noted earlier about

the stepwise regression technique, we can be comfortable in the knowledge that

none of the other 10 characteristics would be significant if brought into the model/

equation. In other words, none of the other 10 characteristics can be said to add

significant predictive value about Y, above and beyond the two variables, X8 and

X11, that we already have in the model/equation.

Fig. 15.10 Stepwise-regression output in JMP
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Example 15.6 Faculty Ratings using SPSS

Now, let’s demonstrate how the same example is performed using SPSS. After

selecting Analyze > Regression > Linear. . . and moving the dependent and

independent variables to their designated boxes, we select Stepwise underMethod,

as shown in Fig. 15.11. The output is shown in Table 15.8, with the same values as

we obtained using JMP (some summaries were omitted for simplicity).

Fig. 15.11 Stepwise regression in SPSS

Table 15.8 Stepwise regression output in SPSS

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 .856a .732 .712 .331

2 .928b .860 .837 .249
aPredictors: (constant), X11
bPredictors: (constant), X11, X8
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SPSS also provides a description of how the analysis proceeded. In Model

Summary section, we see that R2 increased from .73 to .86 with the inclusion of

X11 and X8 in the equation. In the bottom part of the output, Coefficients, we find a

column called “Standardized Coefficients Beta,” which is an indication of the

relative importance of the variables (X11 would come first, then X8).
9

Example 15.7 An “Ideal” Search Engine (Revisited)

After running the regression analysis, the usability researcher identified seven

variables that positively affected the likelihood to adopt the search engine signif-

icantly – which he called “the big seven.” These variables were: the ability to search

by job title, years of experience, location, candidates by education level, skills,

candidates by companies in which they have worked, and to perform a Boolean

search; the remaining variables were not significant, but could be useful in certain

situations where recruiters were looking for candidates with a very specific set of

qualifications. Among the variables, the ability to perform a Boolean search

received the highest ratings and had the highest positive correlation with the

outcome. Based on the results of this analysis, the developers were able to come

up with an “ideal” search engine using “the big seven” in the Basic Search and the

remaining variables in the Advanced Search.

Exercises

1. Consider the Table 15EX.1 data that represent the effect of two predictors

(X1 and X2) on a given dependent variable (Y ).

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. Error Beta

1 (Constant) 1.479 .377

.856

3.928 .002

X11 .781 .131 5.965 .000

2 (Constant) .921 .330

.658

2.795 .016

X11 .601 .113 5.342 .000

X8 .339 .102 .408 3.314 .006
aDependent variable: Y

9While standardized coefficients provide an indication of relative importance of the variables in a

stepwise regression, this would not necessarily be the case in a “regular” multiple regression. This

is because there can be large amounts of multicollinearity in a regular multiple regression, while

this element is eliminated to a very large degree in the stepwise process.
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(a) Run a multiple regression. Which X’s are significant at α ¼ .05?

(b) What percent of the variability in Y is explained by the two X’s?
(c) What is the regression equation?

2. For Exercise 1, run a stepwise regression using p-value as the selection criteria.

(a) Which X’s are significant at α ¼ .05?

(b) What percent of the variability in Y is explained by the variables that get into

the final model?

(c) What is the final stepwise-regression equation?

3. Consider the data presented in Table 15EX.3, which represents the effect of nine

predictors (X1 to X9) on a given dependent variable (Y )

Table 15EX.1 Study with two predictors

X1 X2 Y

128 56 163
139 63 174
149 71 182
158 77 205
150 68 186
164 78 209
133 58 178
145 65 182
155 69 209
124 50 157
162 76 203

Table 15EX.3 Study with nine predictors

X1 X2 X3 X4 X5 X6 X7 X8 X9 Y

8.9 19.6 102.8 44.0 21.3 62.0 26.1 68.1 48.8 35.6
8.6 18.8 111.0 43.0 20.4 60.9 26.4 67.8 48.8 34.9
9.3 20.0 113.0 44.0 21.8 62.6 27.9 69.4 49.6 36.3
10.4 18.6 104.8 46.4 21.3 61.4 28.9 68.4 47.8 38.0
10.6 19.3 106.0 45.9 18.0 62.0 30.3 67.1 50.0 39.9

10.2 19.0 107.0 45.5 18.1 62.4 30.0 67.4 46.0 37.4
10.4 19.4 107.8 47.0 20.1 63.3 30.1 69.8 48.6 39.0
9.4 18.9 106.8 45.0 19.9 61.4 29.3 67.4 44.5 36.7
9.2 19.9 101.8 43.9 18.5 61.9 27.3 68.5 49.0 36.4
10.2 22.0 108.2 43.8 18.6 63.9 28.5 66.5 45.3 39.9

21.0 24.0 108.2 45.9 18.2 64.3 63.0 65.6 48.8 39.4
10.2 21.8 108.6 43.1 19.1 64.0 57.2 66.1 22.2 38.9
10.1 21.9 107.0 42.3 19.0 64.3 56.0 66.3 22.4 39.1
11.2 20.6 110.0 43.0 18.4 63.1 58.6 66.0 22.3 37.6
10.4 24.0 110.0 45.4 17.8 61.6 59.8 66.4 28.6 40.0

11.5 19.9 106.0 40.0 19.0 59.5 57.6 61.5 22.5 36.0
11.2 20.4 108.6 42.5 18.4 62.5 56.8 65.3 22.3 36.8
10.9 20.8 110.0 43.3 18.3 62.8 57.8 66.8 21.5 38.3
12.9 22.5 107.2 43.8 17.6 63.9 58.2 65.6 24.5 38.5
12.9 22.3 107.6 43.1 18.3 65.0 63.0 66.4 23.7 38.1

(continued)
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(a) Run a multiple regression. Which X’s are significant at α ¼ .05?

(b) What percent of the variability in Y is explained by all nine predictors?

(c) What is the regression equation?

4. For Exercise 3, run a stepwise regression using p-value as the selection criteria.

Consider p-to-enter ¼ .05 and p-to-delete ¼ .10.

(a) Which X’s are significant at α ¼ .05?

(b) What percent of the variability in Y is explained by the variables that are in

the final model?

(c) What is the regression equation?

5. Why is it that the “p-to-delete” has to be larger than the “p-to-enter”? Discuss.

Appendix

Example 15.8 Faculty Ratings using R

To analyze the faculty ratings example, we can import the data as we have done

previously or create our own in R.

> x1 <- c(1, 4, 4, 2, 4, 4, 4, 5, 4, 3, 4, 4, 3, 4, 3)

> x2 <- c(4, 4, 3, 3, 4, 4, 4, 5, 3, 3, 3, 3, 3, 3, 4)

> x3 <- c(4, 3, 4, 4, 4, 3, 5, 5, 4, 4, 4, 4, 3, 3, 4)

> x4 <- c(4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 2)

⋮
> x12 <- c(3, 2, 1, 2, 3, 2, 3, 2, 2, 3, 1, 2, 2, 2, 1)

> y <- c(4, 4, 3, 3, 4, 4, 4, 5, 4, 3, 4, 3, 3, 3, 4)

> rating <- data.frame(x1, x2, x3, x4, . . ., x12, y)

Table 15EX.3 (continued)

X1 X2 X3 X4 X5 X6 X7 X8 X9 Y

13.8 22.1 102.8 30.6 18.1 64.1 61.0 68.8 21.4 37.8
15.4 22.9 102.6 42.8 19.8 72.5 65.6 72.1 23.5 41.5
14.2 22.8 106.2 43.4 19.1 78.5 71.2 71.0 21.5 41.0
10.3 19.3 107.6 46.0 18.1 63.3 61.6 66.5 28.9 37.5
10.2 19.5 85.8 46.9 18.6 62.9 59.0 70.3 23.9 40.3

10.9 25.1 109.2 47.8 20.1 63.1 61.2 69.1 26.3 41.8
10.2 23.1 105.0 45.0 18.6 62.6 59.2 65.9 24.3 38.5
10.0 21.5 105.2 42.6 18.5 63.8 54.8 65.4 44.3 39.1
11.2 20.6 110.0 43.0 18.6 63.1 58.6 66.0 44.5 37.6
12.8 21.8 107.9 64.6 20.8 30.6 61.2 65.8 46.1 37.0
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First, let’s see how we perform a multiple-regression analysis. The functions

used are the ones we already know:

> rating_model <- lm(y~x1+x2+x3+x4+. . .+x12, data=rating)

> summary(rating_model)

Call:

lm(formula = y~x1+x2+x3+x4+. . .+x12, data=rating)

Residuals:

1 2 3 4 5 6
0.01552 -0.10636 -0.01592 -0.04003 0.14890 -0.02140

7 8 9 10 11 12
-0.04565 0.01751 -0.06493 0.05061 0.21131 -0.22315

13 14 15
0.02642 0.07319 -0.02603

Coefficients:

Estimate Std. error t value Pr(>|t|)
(Intercept) -0.40784 0.84199 -0.484 0.676
x1 0.26856 0.19360 1.387 0.300
x2 0.01166 0.31473 0.037 0.974
x3 0.31028 0.21674 1.432 0.289
x4 0.02993 0.43669 0.069 0.952
x5 -0.17622 0.16670 -1.057 0.401
x6 0.20136 0.42008 0.479 0.679
x7 0.05440 0.14016 0.388 0.735
x8 0.09736 0.24867 0.392 0.733
x9 0.17106 0.14630 1.169 0.363
x10 0.27376 0.19890 1.376 0.303
x11 0.10341 0.32860 0.315 0.783
x12 0.00783 0.38118 0.021 0.985

Residual standard error: 0.2705 on 2 degrees of freedom

Multiple R-squared: 0.9726, Adjusted R-squared: 0.8079

F-statistic: 5.906 on 12 and 2 DF, p-value: 0.1538

Our model is obtained as follows:

> rating_model

Call:

lm(formula = y~x1+x2+x3+x4+. . .+x12, data=rating)
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Coefficients:

(Intercept) x1 x2 x3 x4 x5
-0.40784 0.26856 0.01166 0.31028 0.02993 -0.17622

x6 x7 x8 x9 x10 x11
0.20136 0.05440 0.09736 0.17106 0.27376 0.10341

x12
0.00783

There are different ways a stepwise regression can be performed in R. Here, we

demonstrate a semi-automated procedure using p-value as the selection criteria.

Differently from other software, with R we have to select which variable will be

included or excluded. First, we create a model that contains only the intercept

(called “1” by R) and none of the independent variables:

> rating_none <- lm(y~1, data=rating)

Then, using add1() or drop1() functions we can include or remove single

items from the model. This is done as follows:

> add1(rating_none, formula(rating_model), test="F")

Single term additions

Model:

y ~ 1

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 5.3333 -13.511
x1 1 0.5178 4.8155 -13.043 1.3978 0.258258
x2 1 3.7984 1.5349 -30.194 32.1717 7.643e-05 ***
x3 1 0.9496 4.3837 -14.452 2.8161 0.117186
x4 1 0.1786 5.1548 -12.022 0.4503 0.513918
x5 1 0.2976 5.0357 -12.372 0.7683 0.396645
x6 1 2.7083 2.6250 -22.145 13.4127 0.002869 **
x7 1 0.1190 5.2143 -11.850 0.2968 0.595116
x8 1 2.8161 2.5172 -22.773 14.5434 0.002151 **
x9 1 0.3592 4.9741 -12.557 0.9388 0.350278
x10 1 2.9207 2.4126 -23.410 15.7378 0.001609 **
x11 1 3.9062 1.4271 -31.286 35.5839 4.705e-05 ***
x12 1 0.0160 5.3173 -11.556 0.0392 0.846154

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1
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Next, we select the variable with the smallest p-value – in this case, X11 – and

introduce it in our model without dependent variables:

> rating_best <- lm(y~1+x11, data=rating)

> add1(rating_best, formula(rating_model), test="F")

Single term additions

Model:

y ~ 1 + x11

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 1.42708 -31.286
x1 1 0.15052 1.27656 -30.958 1.4149 0.25724
x2 1 0.47429 0.95279 -35.346 5.9735 0.03093 *
x3 1 0.22005 1.20703 -31.798 2.1877 0.16488
x4 1 0.10665 1.32043 -30.451 0.9693 0.34430
x5 1 0.00125 1.42584 -29.299 0.0105 0.92013
x6 1 0.02708 1.40000 -29.574 0.2321 0.63861
x7 1 0.11905 1.30804 -30.593 1.0922 0.31659
x8 1 0.68192 0.74517 -39.033 10.9814 0.00618 **
x9 1 0.04419 1.38289 -29.758 0.3835 0.54732
x10 1 0.05887 1.36821 -29.918 0.5164 0.48616
x12 1 0.00453 1.42256 -29.334 0.0382 0.84834

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

We keep doing this until there are no significant variables left:

> rating_best <- lm(y~1+x11+x8, data=rating)

> add1(mbest, formula(rating_model), test="F")

Single term additions

Model:

y ~ 1 + x11 + x8

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 0.74517 -39.033
x1 1 0.011724 0.73344 -37.271 0.1758 0.6831
x2 1 0.156982 0.58818 -40.581 2.9358 0.1146
x3 1 0.072753 0.67241 -38.574 1.1902 0.2986
x4 1 0.024748 0.72042 -37.540 0.3779 0.5512
x5 1 0.012667 0.73250 -37.290 0.1902 0.6712
x6 1 0.020492 0.72468 -37.451 0.3110 0.5882
x7 1 0.001921 0.74325 -37.072 0.0284 0.8691
x9 1 0.007752 0.73742 -37.190 0.1156 0.7402
x10 1 0.049515 0.69565 -38.064 0.7830 0.3952
x12 1 0.009649 0.73552 -37.228 0.1443 0.7113
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Since all the other variables are non-significant, we terminate the optimization

process and, using X8 and X11, find our final model:

> rating_final <- lm(y~x8+x11, data=rating)

> rating_final

Call:

lm(formula = y~x8+ x11, data=rating)

Coefficients:

(Intercept) x8 x11
0.9209 0.3392 0.6011
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Chapter 16

Introduction to Response-Surface
Methodology

Until now, we have considered how a dependent variable, yield, or response

depends on specific levels of independent variables or factors. The factors could

be categorical or numerical; however, we did note that they often differ in how the

sum of squares for the factor is more usefully partitioned into orthogonal compo-

nents. For example, a numerical factor might be broken down into orthogonal

polynomials (introduced in Chap. 12). For categorical factors, methods introduced

in Chap. 5 are typically employed. In the past two chapters, we have considered

linear relationships and fitting optimal straight lines to the data, usually for situa-

tions in which the data values are not derived from designed experiments. Now, we

consider experimental design techniques that find the optimal combination of factor

levels for situations in which the feasible levels of each factor are continuous.

(Throughout the text, the dependent variable, Y, has been assumed to be continu-

ous.) The techniques are called response-surface methods or response-surface

methodology (RSM).

Example 16.1 Optimal Price, Warranty, and Promotion at Luna

Electronics

Luna Electronics, Inc. didn’t know how to price its new electronic product, what

warranty duration to offer, or how much it should spend to promote the product.

The president of Luna was convinced that experiments could help to decide the

optimal values of these variables. However, he did not want to limit himself to a

small number of levels for each factor, as was the case in most experimental

situations he had seen (and like those in all but the past two chapters).
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Although there were some marketing issues to consider in terms of the choices

for these variables (for example, a product would not be priced at $42.17 nor a

warranty given for 13 months, or more strangely, 17.6 months), Luna’s president
saw no reason why the variables could not be optimized in a way such that choices

were continuous and not limited to prechosen discrete levels. Some experimental

methods do indeed cater to this mode of analysis. An additional circumstance in this

case is that, rather than using actual sales results, the experiments would have to

simulate reality with survey data in which respondents state their purchase proba-

bility at various combinations of levels of factors. Luna, like many companies, was

accustomed to this form of marketing research and thought it trustworthy. We

return to this example at the end of the chapter.

16.1 Response Surface

Imagine factors X1 and X2 that can take on any value over some range of interest.

Also imagine Y varies fairly smoothly as X1 and X2 vary. For example, X1 is

promotional expenditure on the product, X2 is percent price discount for the

product, and Y is the total dollar contribution of the product. Ceteris paribus, we
might expect that changes in promotional expenditure and percent price discount

would result in changes in contribution.

Suppose that we have lots of data on contribution, promotional expenditure, and

percent price discount for a product being sold in a very large number of indepen-

dent hardware stores over a period. With imagination and skill, we could make a

table-top clay model of the relationship among the three quantities. Along the

length of the table we indicate a scale for X1, and along the width of the table a

scale for X2. Then, we model a clay surface to represent the resulting contribution,

Y, by the height of the clay at each combination of X1 and X2. We have created a

response surface. The height of the surface of the clay model indicates the

response (here, contribution) to all of the different combinations of promotional

expenditure and percent-price discount.

What would the response surface look like? In this case, it might look like a

mountain: as promotional expenditure and percent price discount increase, initially

we would find higher contribution. But with a typical concave sales response-to-

promotional-expense function, at some point we would likely see contribution

begin to decrease as each variable increases. Because expenditure and discount

would probably not have the same effect, and especially because of a possible

interaction effect between expenditure and discount, we would not expect to see a

perfectly symmetrical “mountain.” However, probably some combination of

expenditure and discount is better than any other, and as we move away from this

optimal combination in any direction, the contribution falls off. As we get far from

the optimal combination, the surface flattens out. In other words, when we are far

from the top of the mountain, we’re no longer on the mountain but on the plain

nearby. But given the response surface, we would be able to see where the optimal
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combination (the high point on the mountain) is. Mathematically, with the

“unimodal” picture described here, we can unambiguously determine this optimal

point.

Determining a large number (maybe even millions) of points to allow us to

sculpt every nook and cranny of the response surface would be prohibitively

expensive. However, the experimental thought processes described in this text

lead to some powerful techniques for determining the response surface in enough

detail to determine this optimal point (that is, combination of X levels) with

accuracy sufficient for practical purposes. Remember, we are not limited to only

two factors. There can be any number of variables, so long as they exhibit

continuous behavior, thus having a corresponding response surface that can be

envisioned and captured mathematically, although with three or more factors, we

cannot, literally, draw the surface.

The response surface may not be smooth: there may be multiple peaks (local

maxima), which makes finding the highest peak a challenge. We’ll discuss such
details later, but the mental picture above is a useful starting point in studying

response-surface methodology.

Some people think it helps to distinguish between three terms used in the field of

experimentation: screening designs, experimental designs, and response-surface

methodology. Screening designs are used primarily to determine which factors

have an effect; they point the way for further study – the next experiment.

Experimental designs determine the influence of specific factors. Response-

surface methodology determines which combination of levels of continuous vari-

ables maximize (or minimize) yield.

Here, however, we view the terms not as mutually exclusive but simply as a set

of overlapping descriptors whose similarities are far greater than their differences.

Response-surface methodology was introduced by Box and Wilson in 1951.1

Initially the techniques were known as Box-Wilson methods. There are hundreds of

examples of their success in the literature. Virtually all of these examples are in

non-managerial applications, partly due to the frequent occurrence of categorical

factors in the management field, rather than numerical factors that more readily fit

response-surface methods. But the way of thinking engendered by the methods is

powerful and should be considered for those applications where it can be used. In an

application where there is, say, one categorical factor having only a few levels or

two categorical factors of two levels each, it might be possible to repeat the

response-surface approach for each value or combination of values of the categor-

ical variables and pick the “best of the best.”

There are entire textbooks on response-surface methodology. Here, we simply

present the basics to provide an appreciation for the methodology and enable the

reader to more easily fathom the more detailed texts, should he/she need or want to

explore them.

1G. E. P. Box and K. B. Wilson (1951), “On the Experimental Attainment of Optimum Condi-

tions.” Journal of the Royal Statistical Society, Series B, vol. 13, pp. 1–45.
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16.2 The Underlying Philosophy of RSM

How do we find the optimal combination of variable levels in the most efficient

way? The optimal combination is that which maximizes yield. (If the yield is to be

minimized, as when seeking the lowest cost, shortest waiting time, lowest defect

rate, and the like, the problem is traditionally converted to maximization by

multiplying the value of all yields by �1 and then proceeding to maximize this

new measure of yield.)

Experimentation in response-surface methodology is sequential. That is, the
goal at each stage is to conduct an experiment that will determine our state of

knowledge about the variable effects (and, thus, the response surface) such that we

are guided toward which experiment to conduct next so as to get closer to the

optimal point. But there must be a built-in way to inform us when our sequence of

experiments is complete – that is, when we have reached the optimal point.

Usually the most appropriate experiment is the smallest one that is sufficient for

the task. However, “sufficient” is not easy to define. The experiment should be

balanced such that the effects of the variables are unambiguous, it should be reliable

enough that the results tell an accurate story, and it should allow estimation of

relevant effects (interaction effects, nonlinear effects, and the like). Keeping the

size of the experiment as small as possible makes intuitive sense, in line with the

presumption that experimentation is intrinsically expensive and time-consuming.

Otherwise, we could run a huge number of combinations of the levels of the

variables, each with many replicates, and just select the best treatment combination

by direct observation.

Note that the smallest sufficient experiment may not be literally small; it may be

quite large. But it will be appreciably smaller than one with a less-disciplined

approach. Box and Wilson said the goal is to use reliable, minimum-sized exper-

iments designed to realize “economic achievement of valid conclusions.” Who can

argue with that?

The strategy in moving from one experiment to another is like a blind person

using a wooden staff to climb a mountain. He (or she) wants to ascend as quickly as

possible, so he takes a step in the previously-determined maximally-ascending

direction, and then probes the ground with his staff again to make his next step in

the then maximally ascending direction. Repeating this process an uncertain num-

ber of times, eventually he’ll know he’s at a peak, because further probing with his

staff indicates no higher ground.

Response-surface methodology has two main phases. The first is to probe as

efficiently as possible, like the blind man above, to find the region containing the

optimal point. The second phase is to look within that region to determine the loca-

tion of the optimal point more precisely.

We start by selecting an initial set of variable levels (that is, treatment combi-

nations). Often, this starting point is determined with the help of experts – people

familiar with levels used by the organization earlier or who can make reasonable

choices of levels based on their experience. Then, we conduct a series of
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experiments to point the way “up the mountain.” These first-stage experiments

usually assume that overall, the region of the experiment is flat, a plane whose

two-dimensional surface has a constant slope in each direction, such as a sheet of

plywood. (If there are more than two dimensions, it’s called, technically, a “hyper-
plane.”) The assumption of a plane surface is reasonable because, mathematically,

any area of the response surface that is sufficiently small can be well represented by

a plane. Similarly, the Earth is a sphere but a piece of it can be well represented by a

flat map.2 And if we’re at the base of a mountain and facing away, on a nearly

horizontal surface, it’s easy to envision being on a geometrical plane.

If we assume we are on a plane, then we can design a relatively small experi-

ment, because it needs to estimate only linear terms – no quadratic (non-linear)

terms and no interaction effects – and to inform us about the reasonableness of the

assumption of a plane. With only linear terms, variables can be at only two levels

and 2k–p designs can assume all interactions to be zero. In formal statistical or

mathematical terms, we refer to needing to estimate the constants of only a first-

order equation:

Y ¼ β0 þ β1X1 þ β2X2 þ ε when there are two variables ð16:1Þ

or

Y ¼ β0 þ
X k

i¼1
βiXi þ ε for k variables ð16:2Þ

(This form of equation is another manifestation of the regression-model ancestry of

RSM, as opposed to an ANOVA-model framework.)

This first stage, a sequence of experiments with the assumption of a first-order

equation, provides two pieces of information after each experiment: (1) whether we

are close to the maximum and (2) if not, what direction appears to move us closer to

the maximum. The indicated direction of maximum ascension is determined by the

estimates of β1 and β2. If the experiment has sufficient power (that is, ability to

identify an effect [here, direction of ascent] when it is present), estimates that are

not statistically significant would indicate that either (1) we’ve essentially reached

the peak, and that’s why no estimate indicates a direction of ascent, or (2) we are not

even near where the mountain begins to rise meaningfully.

To distinguish between the two, we must ensure that the experimental design has

a built-in way to test the validity of the planar assumption. If we are near the optimal

point, a plane is not adequate to describe the curving surface (the top of a mound is

round, not flat!). But if we’re barely on the mountain, a plane is perfectly adequate

to describe the surrounding surface. As a practical matter, if an experiment is quite

small its power may not be very high and there may not be well-reasoned values at

which to compute power. In practice, if we haven’t achieved statistically-significant

2By “flat,” we mean from a curvature-of-the-earth perspective; we are not referring to the issue of

hills and valleys.
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results for an experiment, but based on observed data values we know we are not at

the top of the mountain, we presume that any upward tilt to the plane, statistically

significant or not, is most likely to move us toward the top of the mountain. That’s
why this set of steps is typically called the method of steepest ascent.

Once we find a region that fails the test of “reasonableness of the assumption of a

plane” in the first phase of experimentation, we conclude that we are close to the

maximum. Then, we move to the second phase to probe the surface in greater detail,

allowing for interaction terms and other nonlinear (usually just quadratic) terms.

From a notational point of view, to do this requires considering a second-order

(rarely, a higher-order) model. Here is a second-order model:

Y ¼ β0 þ β1X1 þ β11X
2
1 þ β2X2 þ β22X

2
2 þ β12X1X2 þ ε for two variables

ð16:3Þ

and

Y¼ β0þ
X k

i¼1
βiXiþ

X k

i¼1
βiiX

2
i þ

Xk�1

i¼1

X k

j¼iþ1
βijXiXjþ ε for k variables

ð16:4Þ

An experiment at this second stage usually requires a larger number of treatment

combinations in order to estimate the coefficients of this more complex model. The

good news is that this second stage often involves only one (the final) experiment:

we have completed the reconnaissance, identified the territory that needs a more

detailed mapping, and called in the full survey team.3 This second phase is usually

called the method of local exploration.

We elaborate on these two phases of experimentation in Sects. 16.3 and 16.4;

then, we consider a real-world example.

16.3 Method of Steepest Ascent

We illustrate the procedure for this first experimental phase with an example that is

simplified but retains the salient features of optimum-seeking response-surface

methods.4

3In general, the only time that stage two requires more than one experiment is the unfortunate, but

not unlikely, situation of a “saddle point,” or some other undesirable happenstance. This issue is

discussed later in the chapter.
4This example, and a broad outline of some of the features used for the illustration of the RSM

process, were suggested by the discussion in C. R. Hicks, Fundamental Concepts in the Design of
Experiments, 3rd edition, New York, Holt, Rinehart and Winston, 1982.
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Example 16.2 Optimal Conditions for Banana Shipping

The dependent variable, Y, is the proportion of the skin of a banana that is “clear”

(not brown-spotted) by a certain time after the banana has been picked. There are

two variables: X1, the ratio of the amount of demoisturizer A to the amount of

preservative B (called the A/B ratio) packaged with the bananas during shipping,

and X2, the separation in inches of air space between rows of bananas when

packaged for shipping.5 We seek to find the combination of these two continuous

variables that maximizes the proportion of clear skin. We assume that any other

relevant identifiable variables (position of the banana within its bunch, time of

growth before picked, and the like) are held constant during the experiments.

We envision the value of Y, at any value of X1 and X2, as depending on X1 and X2

and, as always, “everything else.” Our functional representation is

Y ¼ f X1;X2ð Þ þ ε

So long as the response surface is smooth and free from abrupt changes, we can

approximate a small region of the surface in a low-order power (Taylor) series. We

have already noted that first- and second-order equations are the norms at different

stages. We assume that our starting point, which is based on the documented

experience available, is not yet close to the maximum point, and thus the response

surface of this starting point can be well represented by a plane (later we test the

viability of this assumption). That’s the same as assuming we have a first-order

model of Eq. 16.1, as shown in Eq. 16.5:

f X1;X2ð Þ ¼ Y ¼ β0 þ β1X1 þ β2X2 þ ε ð16:5Þ

Our overall goal is to map the surface of f(X1, X2) reliably in the vicinity of the

maximum. Then, we can determine by routine calculus methods the optimal point.

16.3.1 Brief Digression

To ensure that the last sentence is clear, we very briefly illustrate this calculus

aspect via an example with one variable, using a cubic equation. (Although we

5In the real world, issues involving the packaging and other aspects of banana preservation are

quite complex. There are many considerations and a large number of factors involved. However, as

we noted, our example is greatly simplified, but captures the features we wish to illustrate. The

example is loosely based on one author’s experience designing a complex experiment addressing

some of these issues for a well-known harvester and shipper of bananas. Incidentally, in general,

brown spots on bananas are not unhealthy or inedible – only unsightly!
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started with a linear Eq. 16.5, as noted earlier it is common to end up estimating the

parameters of a quadratic equation; whether quadratic, cubic, or a higher order, the

principle is the same.) Suppose that we have

f Xð Þ ¼ β0 þ β1X þ β11X
2 þ β111X

3

Suppose further that after experimentation, we have an estimate of f(X) in the

vicinity of the maximum point, fe(X) (e stands for estimate), where

f e Xð Þ ¼ b0 þ b1X þ b11X
2 þ b111X

3

To find the value of X that maximizes fe(X), we find

df e Xð Þ=dX ¼ b1 þ 2b11X þ 3b111X
2

and set it equal to zero, then solve the quadratic equation for X. (Finally, we check
to ensure that it’s a maximum point, by checking the value of the second derivative

at the maximum.)

16.3.2 Back to Our Example

Suppose that, to estimate the parameters, β0, β1, and β2, of Eq. 16.5, we decide to

use a 22 design without replication. Our starting levels are as follows:

X1 low: A/B ratio ¼ 1 to 4

X1 high: A/B ratio ¼ 1 to 2

X2 low: 2-inch separation between rows of bananas

X2 high: 3-inch separation between rows of bananas

The resultant yields at the four treatment combinations are as follows:

X1 low X1 high

X2 low 94.0 93.5

X2 high 90.8 94.3

We can indicate these yields on an X1, X2 grid as shown in Fig. 16.1. These four data

values are estimates of the corresponding four points on the response surface. Were

there no error, they would be precisely on the response surface.

540 16 Introduction to Response-Surface Methodology



It is customary to translate the data from the X1, X2 plane to theU, V plane so that

the data are displayed symmetrically, at the vertices of a 2� 2 square centered at the

origin of the U, V plane, as shown in Fig. 16.2. That is, X1 is transformed to U and

X2 is transformed to V. How? Well, we want the linear transformation such that

when X1¼ 1/4 ,U¼ �1, and when X1¼ 1/2 ,U¼ þ1. Similarly, we want the

equation that translates X2 to V so that when X2¼ 2 ,V¼ �1, and when X2¼ 3 ,

V¼ þ1. The linear transformations that achieve these goals are6

U ¼ 8X1 � 3 and V ¼ 2X2 � 5

Fig. 16.1 X1, X2 grid

Fig. 16.2 U, V grid

6We obtain the transformation for U as follows: let U¼ a + bX1. When X1¼ 1/4, U¼ �1; this

gives �1¼ a + b(1/4)¼ a+ b/4; when X1¼ 1/2 ,U¼ þ1; this gives 1¼ a + b(1/2)¼ a + b/2. We

have two equations with two unknowns, a and b. We solve these and find a ¼ �3 and b ¼ 8. The

second equation is found in a similar fashion.
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In terms of U and V, our model is

Y ¼ γ0 þ γ1U þ γ2V þ ε

with estimates g0, g1, and g2, respectively. We can use Yates’ algorithm to find the

estimates from the data, as shown in Table 16.1. Note that we divide by 4 instead of

by 2, as in our Chap. 9 discussion of Yates’ algorithm. When, in the earlier chapters,

we divided by half of the number of treatment combinations (here, 2, half of 4), it

was to take into account that the differences between the high (þ1) and low (�1)

values of U and V are both equal to 2; in the equation represented by the γ’s and
estimated by the g’s, we wish to have slope coefficients that represent the per-unit
changes in YwithU and V. Thus, we need to divide by an additional factor of 2 (that
is, we divide by 4 instead of 2). Note also that the error estimate is obtained from

what would have been an interaction term, were there an allowance for interaction;

we’ve seen this phenomenon several times in earlier chapters. Our assumption of a

plane – that is, a first-order model – precludes interaction. (On occasion, a

nonplanar function, including selected two-factor interactions, is utilized at this

“steepest ascent” stage; based on the real-world example later in the chapter, it is

clear that there are no rigid rules for RSM, only guidelines and principles for

“practicing safe experimentation.”)

So, after one 22 experiment (four treatment combinations), we have an estimate

of the plane in this region of U and V:

Ye ¼ 93:15þ :75U � :60V ð16:6Þ

This plane slopes upward as U increases (U has a positive coefficient) and as

V decreases (V has a negative coefficient); thus, larger U (higher A/B ratio) and

smaller V (less separation between rows of bananas) yield better bananas (greater

proportion of freedom from brown spotting).

We have an estimate of the plane from four data points. Is it a good estimate?

That is, can the parameters γ1 and γ2 be said to be nonzero (H1) or not (H0)? We

determine the significance of our estimates via an ANOVA table.

The grand mean is equal to (94.0þ 93.5þ 90.8þ 94.3)/4¼ 93.15, which is g0
according to Yates’ algorithm. So,

Table 16.1 Yates’ algorithm for banana experiment

Treatment Yield (1) (2) �4 Estimates

(�1, �1) ¼ 1 94.0 187.5 372.6 93.15 γ0
(1, �1) ¼ a 93.5 185.1 3.0 .75 γ1
(�1, 1) ¼ b 90.8 �.5 �2.4 �.60 γ2
(1, 1) ¼ ab 94.3 3.5 4.0 1.0 Error
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TSS ¼ 94:0� 93:15ð Þ2 þ 93:5� 93:15ð Þ2 þ 90:8� 93:15ð Þ2 þ 94:3� 93:15ð Þ2
¼ 7:69

We calculate the individual sums of squares (by going back to the column labeled

(2) in the Yates’ algorithm table, and dividing by the square root of 4 [¼ 2], and

squaring the ratio):

SSQU ¼ 3:0=2ð Þ2 ¼ 2:25
SSQV ¼ �2:4=2ð Þ2 ¼ 1:44

and

SSQerror ¼ 4:0=2ð Þ2 ¼ 4:0

We have

TSS ¼ SSQU þ SSQV þ SSQerror

or

7:69 ¼ 2:25þ 1:44þ 4:00

The ANOVA table for the banana example is shown in Table 16.2. From the

F tables, for df ¼ (1, 1) and α ¼ .05, c ¼ 161.5. So, Fcalc << c; there is insufficient

evidence to conclude that γ1 and γ2 are other than zero. We have not yet determined

if the assumption of a plane (first-order model) is reasonable. Earlier in this chapter

we noted that usually there must be a built-in way to investigate how reasonable this

assumption is for a given case; we discuss the preferred way soon. For now, we

assume that it is sensible (meaning that we are not yet close to the maximum point).

Our next step is to decide where, on the X1, X2 plane, to conduct the next

experiment. By custom, as noted earlier, it is in the direction of steepest ascent.

In reality, we would rarely (if ever) conduct an experiment with only four data

values – remember, the banana example is merely a simple illustration. The power

of the hypothesis tests is virtually certain to be extremely low. Thus, even though

we normally would prefer to have statistical significance in order to judge the

Table 16.2 ANOVA table

Source of variability SSQ df MS Fcalc

γ1 2.25 1 2.25 .56

γ2 1.44 1 1.44 .36

Error 4.00 1 4.00

Total 7.69 3
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direction of steepest ascent, given the likely lack of power of the hypothesis tests,

and simplicity of the example, we will act as though we did have statistical

significance in both the U and V direction. As the methodology is typically

practiced, even when only some directions are significant, the direction of steepest

ascent is often still considered to include all variables, in order to ensure that some

gains in yield aren’t forgone. Where should the next experiment be centered?

16.3.3 The Next Experiment

The decision of where to center the next experiment involves two considerations:

what direction and how far? As we said, customarily the direction is that of steepest

ascent. According to Eq. 16.6, this direction is toward (U,V )¼ (.75,�. 60), or

proportionally, (1, �.8). This means that the line of steepest ascent is V ¼ �.8U.
In general, for more than two variables, the steepest ascent (rate of greatest increase

in Y on the response surface) direction is along the line emanating from the origin of

the U, V,W, . . . space and going through a point that is at γ1 (estimated by g1) units
in the U direction, γ2 (estimated by g2) units in the V direction, γ3 (estimated by g3)
units in the W direction, and so forth. (Those familiar with vector analysis will

recognize this as the gradient of Y.)
How far in that direction is another matter. If it is not enough, it will take many

steps to get near the maximum. If it is too much, we might go right past it. Step size

is a judgment call that improves with the assistance of input from the process

experts; the better the notion of what yield to expect at the maximum point, the

better the ability to judge how far to move along the steepest-ascent direction.

Suppose that we choose the next experiment to, again, be a 22, and we pick the

point U ¼ 1, V ¼ �.8, as the center of our next experiment (this point is indeed on

the V ¼�.8U line). Thus, the two values of U for the next experiment are 1 – 1¼ 0

and 1þ 1¼ 2. For V, they are�.8� 1¼�1.8 and�.8þ 1¼þ.2. That is, the four

treatment combinations will be located as shown in Fig. 16.3.

Fig. 16.3 Second U, V grid
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But to run the banana experiment, we need new values for X1 and X2, not just

U and V. We know about U and V, but the person organizing and carrying out the

banana-packaging testing might never have heard of U and V. He/she may be

familiar only with the definitions of X1 and X2.

Recall that the mapping from X1, X2 to U, V is

U ¼ 8X1 � 3 and V ¼ 2X2 � 5

Thus, we solve the equations above for X1 and X2 and find that

X1 ¼ U þ 3ð Þ=8

and

X2 ¼ V þ 5ð Þ=2

We can now use these equations to obtain the new center and settings in terms of X1

and X2 (the new center is X1 ¼ 0.5, X2 ¼ 2.1):

U V X1 X2

0 �1.8 .375 1.6
0 2 .375 2.6
2 �1.8 .625 1.6
2 2 .625 2.6

We could continue, running another 22 experiment at these values of X1, X2, and

then another set of values if useful, and so on, always taking the line of steepest

ascent calculated for the next step. Just as we shifted from the original X1 and X2 to

U and V, we would now shift to other symmetrical axes, say R and S:

R ¼ U � 1 and S ¼ V þ :8

Even with the use of 22 designs, we hope at some point to find significant

coefficients, which would indicate more reliably that we are moving up a mountain

toward the peak. After that, we’d like another result that shows no clear-cut

directional indication (that is, nonsignificant results in every direction). If we find

that the plane is no longer appropriate (when earlier it was appropriate), then we

have reason to believe we have reached the peak. After each experiment, the

direction of steepest ascent will likely have changed. Thus, our trajectory would

probably be erratic; however, we finally get there. (In this sense, math is sometimes

like life: an erratic path toward success is more typical than simple, early, straight-

forward achievement.)
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16.3.4 Testing the Plane: Center Points

As mentioned, we need a built-in way to test for the reasonableness of the assump-

tion of a plane. Here we discuss the center point of our first set of four treatment

combinations. Suppose we have a center point that is the same as the optimal point;

the response surface in that region would not be planar. It would be more like the

shape of a skullcap (depending on the symmetry around the maximum point). But

with only four data points – and no data at or near the center – there is in general no

way to know that the center is elevated above the four points for which we do

have data.

For example, consider a case that has to do with boat or airplane navigation.

Suppose we draw four points, all at 45� latitude in the Northern Hemisphere and at

four longitudes7 that are 90� apart – for example, 0� or on the Greenwich Meridian

(some place in Puynormand, France), 90� east (in Xinjiang region, China), 180�

(south of the Aleutian Islands, in the North Pacific Ocean), and 90� west (some-

where in Athens, Wisconsin). If a plane connected those four points (which means

slicing through the Earth at the 45� latitude), there would be no way to use just these
data to calculate the northerly direction or the distance from the four points to the

North Pole.

How could we get a sense of the degree to which a plane doesn’t “fit” the surface
at the peak of the mountain? Or, more importantly, get a sense that we are close to a

peak? A common way in practice is to add data at internal points, especially at the

center. Here’s an example.

Example 16.3 Test of the Plane Assumption in the Banana Study

Suppose we have the data of the banana example, depicted previously in Fig. 16.2,

with the addition of three replicates at the center, U ¼ 0, V ¼ 0 (which corresponds

to X1 ¼ .375 and X2 ¼ 2.5). Figure 16.4 shows the revised graph. The yields at the

center point are 92.9, 94.7, and 94.3. Note that these three data points do not affect

estimates of the slopes of the plane, g1 and g2, but they do permit an estimate of

error through replication, and most to the point, they provide a test of the reason-

ableness of the assumption of a plane (that is, of a first-order model).

7Latitude refers to the angle that measures north-south position from the equatorial plane, whereas

longitude is the angle that measures west-east position from the Greenwich Meridian.
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The grand mean is (90.8þ 94.3þ 93.5þ 94.0þ 92.9þ 94.7þ 94.3)/7¼ 93.50,

and

TSS¼ 90:8� 93:5ð Þ2 þ 94:3� 93:5ð Þ2 þ 93:5� 93:5ð Þ2 þ 94:0� 93:5ð Þ2
þ 92:9� 93:5ð Þ2 þ 94:7� 93:5ð Þ2 þ 94:3� 93:5ð Þ2

¼ 10:62
SSQU ¼ 2:25 as beforeð Þ
SSQV ¼ 1:44 as beforeð Þ

and, with the mean of the three replicates at the center being 93.97,

SSQerror ¼ ½ð92:9� 93:97Þ2 þ ð94:7� 93:97Þ2 þ ð94:3� 93:97Þ2� ¼ 1:79

Thus, the sum of squares corresponding to “failure of the plane” (fop), or “lack of fit

to a plane,” which includes all interaction and nonlinear terms – that is, anything

that contributes to a departure from a plane – is the difference between the total sum

of squares and the sum of the other sources above:

SSQfop ¼ 10:62� 2:25þ 1:44þ 1:79ð Þ
¼ 10:62� 5:48
¼ 5:14

With seven data points, we have six df in total; by subtraction, we find the SSQfop

has two df.
Once again, we perform an ANOVA, as shown in Table 16.3. Now we want to

test for failure of the plane. At df ¼ (2, 2) and α ¼ .05, c ¼ 19.0, and Fcalc << c;

Fig. 16.4 U, V grid with

center points
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thus, the failure-of-plane is not significant and we cannot conclude that the assump-

tion of a plane is inappropriate. The issue of power (or the lack of it) remains; again,

simple examples have their limitations.

In summary, the method of steepest ascent is used to move us toward the region

that contains a maximum (the maximum, under the very frequent assumption that

the surface is unimodal). Typically, we start a sequence of experiments centered at a

point distant from the maximum. Assuming that the range of levels of each

independent variable in the experiment is appropriately narrow, the experiment is

conducted in a region for which the surface can be adequately represented by a

plane. As we move (maybe “systematically meander” better describes it) toward the

maximum, the region of the experiment continues to be planar. Finally, as we

approach the maximum and if the data are not aberrational, the estimate of the

surface becomes close to horizontal, but with a pronounced lack of fit to a plane. At

this point, we move to the next phase of response-surface methodology: the method

of local exploration.

16.4 Method of Local Exploration

Suppose that, based on our latest experiment, we think we are close to the maximum

point (that is, the optimal combination of factor levels). For this region, we need to

seek a more accurate estimate of the response surface than that afforded by a plane,

which we have proved is an inadequate representation of the surface in this region.

To do this requires designing a more complex experiment, one that allows consid-

eration of interactions and nonlinearities (that is, curvature). After all, a real

mountain has curvature at the top (non-linearity) and does not slope downward at

the same rate in every direction. This is interaction. For example, the change in

Y (altitude) per unit change in the southerly direction may differ depending on how

far east we are. Nor does the downward slope in any one direction stay constant

throughout its downward path (more non-linearity). We still desire to represent the

response surface with a polynomial equation, but one that corresponds with at least

a second-degree model. This model is noted earlier as Eq. 16.3 for two independent

variables and Eq. 16.4 in general. As also noted earlier, once we have conducted

Table 16.3 ANOVA table

Source of variability SSQ df MS Fcalc

γ1 2.25 1 2.25

γ2 1.44 1 1.44

Failure of plane (fop) 5.14 2 2.57 2.88

Error 1.79 2 .89

Total 10.62 6
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this last experiment,8 we can analytically determine the maximum point of the

response surface function.

We now introduce two classes of designs that have been found effective in the

method of local exploration: the central-composite (CC) design and the Box-

Behnken (BB) design.

16.4.1 Central-Composite Designs

A central-composite design has three components:

• A two-level (fractional-) factorial design, which estimates main and two-factor

interaction terms

• A “star” or “axial” design, which, in conjunction with the other two components,

helps estimate quadratic terms

• A set of center points, which estimates error and helps estimate surface curvature

with more stability.

16.4.1.1 Two-Level (Fractional-) Factorial Design Component

Imagine that we desire to study k factors. The two-level fractional-factorial com-

ponent would be a 2k�p design, where p is yet to be determined. The degree of

fractionating in the design ( p) and the corresponding number of treatment combi-

nations (2k–p) typically involve the maximum value of p that allows a clean

resolution of all main and two-way interaction terms (if the maximum value of

p is zero, a full-factorial design is necessary). This means that every main and

two-way interaction should be aliased with interactions of an order higher than two.

If every term in the defining relation has at least five letters, then every main effect

will be aliased with four-factor and higher-order interactions, and each two-factor

interaction will be aliased with three-factor and higher-order interactions.

This type of reasoning leads to the resolution of a design, discussed in Chap. 11.

Again, resolution refers to the smallest number of letters in any term of the defining

relation for that design; that is, any 2k–p design of resolution greater than or equal to

five is guaranteed to yield all main and two-factor interaction effects cleanly.

8We repeat that this will be the last experiment, unless the situation is an “unlucky” one, in which

there is either a saddle point, or local maxima in addition to the global maximum.
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16.4.1.2 Star (Axial) Design Component

The star or axial design component of the CC design adds points along the axis of

each factor at a distance of Ps (“star point”) from the origin/design center in both the

positive and negative directions. These points are at coordinates (that is, each row is

a treatment combination), as follows:

Ps 0 0 . . . 0 0

�Ps 0 0 . . . 0 0

0 Ps 0 . . . 0 0

0 �Ps 0 . . . 0 0

. . .

. . .

0 0 0 . . . Ps 0

0 0 0 . . . �Ps 0

0 0 0 . . . 0 Ps

0 0 0 . . . 0 �Ps

where the first position (column) in the coordinate designation is for the first

factor, the second position is for the second factor, and so on to the last position,

for the kth factor. For k factors, there will be 2k star points. Box and Hunter,9 among

others, proposed values for Ps as a function of the values of (k – p) and k in the 2k–p

design that are optimal to satisfy various criteria (such as minimizing mean squared

error).

16.4.1.3 Center-Points Component

We have noted that adding a number of center points (that is, points at the origin or

design center) allows for an error estimate based on replication, as well as aiding the

stability of quadratic terms. The Box and Hunter article cited in footnote 9, among

other sources, proposes an optimal number of center points in accordance with

certain criteria. That number may differ slightly depending on which criterion is

used; an effective compromise is considered to be two to four center points,

regardless of the values of (k – p) and k.
We illustrate a central-composite design in two dimensions, in the U, V plane, in

Fig. 16.5. Notice the points at the corners, representing the factorial design, and

those on the U and V axes, representing the star component. Notice, as well, the

inclusion of one or more points at the design center, (0, 0). The treatment combi-

nations of these three parts constitute the central-composite design. Note that each

factor takes on five different levels: �Ps, �1, 0, 1, and Ps.

9G. E. P. Box and J. S. Hunter (1957), “Multi-factor Experimental Designs for Exploring Response

Surfaces.” Annals of Mathematical Statistics, vol. 28, n. 1, pp. 195–241.
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Sometimes the requirement of five levels of each factor is a burden. Another

design, which achieves results similar to the central-composite design but requires

fewer levels of each factor, might be desirable. One such design is the

Box-Behnken design.

16.4.2 Box-Behnken Designs

Unlike the central-composite design, a Box-Behnken design requires only three

levels of each factor. These designs are made up of a combination of all possible

two-factor, two-level, full-factorial designs, with, for each 22 design, all other

factors held constant at the origin/design center, plus one or more center points.

The Box-Behnken design for studying four factors is shown in Table 16.4.

Fig. 16.5 Central-

composite design

Table 16.4 Box-Behnken design for four factors

Run X1 X2 X3 X4

1 �1 �1 0 0
2 1 �1 0 0
3 �1 1 0 0
4 1 1 0 0

5 �1 0 �1 0
6 1 0 �1 0
7 �1 0 1 0
8 1 0 1 0

9 �1 0 0 �1
10 1 0 0 �1
11 �1 0 0 1
12 1 0 0 1

(continued)
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Note that in Table 16.4, the first four treatment combinations compose a 22

design for factors X1 and X2, with X3 and X4 held constant at the origin/design

center; treatment combinations five through eight compose a 22 design for factors

X1 and X3, with X2 and X4 held constant at the origin/design center, and so forth.

Treatment combinations 25 and beyond are at the design center.

16.4.3 Comparison of Central-Composite and Box-Behnken
Designs

For local exploration of four factors, both the central-composite design and the

Box-Behnken design involve 24 treatment combinations plus whatever number of

center points are chosen. The central-composite design has 24 ¼ 16 treatment

combinations for the factorial-design portion, eight treatment combinations for

the star portion, and one or more at the center; the Box-Behnken design has six 22

designs (¼ 24) plus one or more at the center. For more than four factors (that is,

k > 4), the number of treatment combinations is fewer for the central-composite

design than for the Box-Behnken design, assuming the same number of center points.

For example, consider k¼ 5. Here, unlike an instance with only four factors, the

2k–p portion of the central-composite design can make use of a fractional-factorial

design, a 25–1. With I ¼ ABCDE (though the notation in a text on response-surface

methods might call it I ¼ X1X2X3X4X5) our 2
5–1 is simply a resolution-five design.

A 25–1 design contains 16 treatment combinations; when we add 10 more treatment

combinations for the star portion, plus one or more for the center, we have 27 or

more treatment combinations. Because there are ten combinations of two factors

from a set of five factors (A/B, A/C, . . ., D/E), the Box-Behnken design requires

10 � 4 ¼ 40 treatment combinations for the ten 22 designs, plus one or more for the

center, for a total of 41 or more. Thus, we have a trade-off. If the total number of

Table 16.4 (continued)

Run X1 X2 X3 X4

13 0 �1 �1 0
14 0 1 �1 0
15 0 �1 1 0
16 0 1 1 0

17 0 �1 0 �1
18 0 1 0 �1
19 0 �1 0 1
20 0 1 0 1

21 0 0 �1 �1
22 0 0 1 �1
23 0 0 �1 1
24 0 0 1 1

25 0 0 0 0
. . . 0 0 0 0
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treatment combinations is more important than the number of different levels that

factors take on in the experiment, the central-composite design is generally prefer-

able. But if there is a relatively high cost of changing levels of one or more factors,

the Box-Behnken design, which requires only three levels instead of five, may be

the better choice. Indeed, this trade-off led directly to the development of the

Box-Behnken design.

16.4.4 Issues in the Method of Local Experimentation

Whether using a central-composite design, a Box-Behnken design, or some other

design or combination of designs, the local exploration experiment is run and the

resulting data are used to form a second-order equation, as in Eq. 16.4, that best

estimates the response surface in that region. Differential calculus is then used to

find each combination of factor levels that gives a point of “horizontal tangency”

(that is, zero slope in every direction: the gradient is the zero vector).

Ideally, this set of combinations is only one point, a point at which the response

surface has a maximum. But it could be that the horizontal tangency is due to a

saddle point.10 Or there could be multiple points of zero tangency, all but one

corresponding to local maxima. Also, there could be no maximum point in the

region covered by the experiment – the maximum is located elsewhere, outside the

experimental region. How could this occur? The answer is ε. That is, the last

experiment in the steepest ascent stage of the process may have given incorrect

results due to the unlucky influence of error. The experimenter, thinking the

maximum point was in the neighborhood, “called in the survey team” to run an

expensive experiment in the wrong place!

There are ways to deal with these possibilities. The point(s) of horizontal

tangency, if any, can be tested to see if it is a maximum, a minimum, or a saddle

point by using “canonical analysis” (using calculus to compute from higher deriv-

atives some quantities that, by their sign and/or magnitude, reveal the category of

the points). If there is no point of horizontal tangency within the test region, a new

test region can be selected in the direction of the maximum indicated by this set of

data. If the point of horizontal tangency turns out to be a saddle point, one can

explore the rising ridges indicated by the data. If there are multiple maxima, one can

evaluate (that is, calculate the surface value at) each point to determine which is

actually the global maximum point.

In practice, these procedures should be done interactively. The experimenter

designs the first experiment with the process experts’ guidance, then interprets the

10In theory, the point could be a minimum point, but, unless the surface is very irregular, this is

very unlikely after being directionally guided by a series of steepest-ascent analyses. A saddle
point represents a stationary situation where there is neither a maximum nor a minimum – this

term is used due to the resemblance of the surface to a saddle. That is, if you are on a horse, sitting

on a saddle, facing north-south, then from a north-south direction, you are sitting at a minimum

point, while from an east-west direction, you are sitting at a maximum point.
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results in order to decide what the next step should be. Close collaboration between

process experts and experimental designers should occur at every stage; this allows

effective adaptation to conditions as they evolve.

16.5 Perspective on RSM

Response-surface methodology is a powerful set of techniques for determining the

best combination of factor levels for continuous factors. Its success, as with all

aspects of experimental design, depends on the nature of the process being charac-

terized, the knowledge of the process experts, and the skill of the experimental

designer. These requirements for success are not unlike those of other techniques in

the world of statistics, statistical analysis, and experimental design. They also

coincide with life in general: the field of statistics is often an allegory of life.

Response-surface methodology is summarized diagrammatically in the flow

chart in Fig. 16.6.

Fig. 16.6 Flow chart of the

response-surface

methodology procedure.

Note: Adapted from several

NASA Technical Notes

(such as TN D-4100, TN

D-5587)
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Example 16.4 illustrates the iterative response-surface methodology. Note how

the steps and decisions proceed in an interactive mode; that is, the experimenters

adapt to results of previous steps and frequently make judgment calls as they see fit,

based on their interpretation of the data, bringing to bear considerations specific to

the particular situation.

(The authors do not necessarily condone or recommend the steps taken by the

experimenters whose actions we describe next; we simply describe them and

comment on them. Also, we have taken liberties in our description so that we

could avoid technical discussions and other matters that are beyond the scope of

this book.)

Example 16.4 Real-World Example: Using RSM for a NASA Project

This example is adapted from a public-domain article, “Statistical Design and

Analysis of Optimal Seeking Experiments to Develop a Gamma-Prime Strength-

ened Cobalt-Nickel Base Alloy,” by Gary D. Sandrock and Arthur G. Holms of

the Lewis Research Center in Cleveland, Ohio (NASA Technical Note 5587, 1969).
The objective of the study was to improve the stress-rupture life of cobalt-nickel-

base alloy castings.

This is not a traditional managerial problem; we picked it for its real-world use

of RSM, which is not often applied to managerial problems partly because those

trained in managerial applications of statistical modeling often are unaware of

RSM. Also, the managerial RSM applications that have been done are proprietary,

whereas this example is in the public domain, so we can give actual details rather

than disguised ones.

The five factors under study were the weight percents of titanium (Ti), chromium

(Ch), carbon (C), and aluminum (A), along with pour temperature in degrees

Fahrenheit (T). (It so happens that the total percent weight of Ti, Ch, C, and A in

this case is under 16% at its maximum; thus, the level of one factor does not

constrain the level of any other, as it might if the percent weights had to add to

100%. If we did have such a constraint, we probably could not use designs studied

so far, including fractional-factorial designs, and would have to consider “mixture

designs,” which will be covered in Chap. 17.)

The factor levels for the first design center were based in part on experience and

in part on metallurgical concepts. There had been substantial previous experimen-

tation with percent weight of aluminum, and strong evidence that the yield as a

function of percent weight of aluminum had a sharp peak. Consequently, the range

of values, or size of the “design unit” (the distance from the center to each level), for

the aluminum factor was relatively small. For the other factors, the metallurgical

concepts and some minimal previous experimentation suggested what was viewed

as a reasonable starting design center, with appropriate design units. These are

noted in Table 16.5.
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The first experiment performed was a two-level fractional-factorial 25–1 design

with defining relation I ¼ ABCDE.11 The actual notation was X1X2X3X4X5; hence-

forth, we use factor designations A, B, C, D, and E when referring to direct

experimental-design concepts, such as a defining relation; we use the actual sym-

bols (not a bad practice in many applications) in the first column of Table 16.5 to

indicate the factor names. Using notation such as X3 requires readers to constantly

ask themselves: Which one was X3?

The principal block of 1, ab, ac, ad, ae, bc, bd, be, cd, ce, de, abcd, abce,
abde, acde, bcde was chosen. The experiment did not include replication. However,

two measurements were made for each treatment combination (casting) in an

attempt to reduce measurement error; stress-rupture life of a casting is measured

in hours. The official yield for each treatment combination was the logarithm of

the average of the two measurements for that treatment combination. As noted in

Footnote 3, Chap. 1, this technique (of multiple measurements of the same treat-

ment combination) is sometimes called repetition to distinguish it from replication.

It is not replication because it does not capture all sources of error, only that of

measurement error. Taking the log of the stress-rupture life results in a situation that

is closer to true constant variance (which, as you may recall, is one of the basic

assumptions of ANOVA). Because the treatment combination that maximizes the

log of the stress-rupture life is clearly the same as that which maximizes the stress-

rupture life itself (they are monotonically related), there is no problem with using

the log of the stress-rupture life as the yield.

The 16 treatment combinations are shown in Table 16.6 in design-unit notation,

along with the actual stress-rupture life results (those that occurred before averag-

ing the two measurements and then taking the log).

Table 16.5 Design center and units

Factor Design center Low High One design unit

Ti 1.0 .5 1.5 .5
Ch 4.0 2.0 6.0 2
C .4 .3 .5 .1
A 7.0 6.75 7.25 .25
T 2,900 2,850 2,950 50
Relabeled: 0 �1 1

11Note that the fractional-factorial design described is of resolution five.
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With 16 data points there are 15 degrees of freedom. This allowed clean

determination of all five main effects and all 10 two-way interactions (remember,

this is a resolution-five design), but with each alias row containing one clean effect,

no degrees of freedom (rows) are available for an error estimate; we’ll return to this
issue soon. The equation for the estimate, Ye, (recall that e is for estimate) of the
response surface, derived by Yates’ algorithm, with the level of each factor being

expressed in design-unit notation, is (using to separate the two factors when

indicating a two-factor interaction)

Ye ¼ 1:1652 � :383 Ch

� :146 A

þ :100 C

þ :078 Ti � Ch
þ :052 Ti � T
� :045 C � T
þ :042 C � A
þ :037 T

þ :036 Ch � T
þ :033 Ti � A
� :029 Ti

þ :022 A � T
� :016 Ti � C
� :003 Ch � C
� :002 Ch � A

The terms are arranged in decreasing magnitude of the coefficient.

Table 16.6 First experiment: five-factor, fractional-factorial experiment

Alloy Ti Ch C A T Life

1 �1 �1 �1 �1 �1 175.1, 199.4
2 1 1 �1 �1 �1 14.7, 21.1
3 1 �1 1 �1 �1 119.5, 129.6
4 1 �1 �1 1 �1 29.2, 47.0

5 1 �1 �1 �1 1 83.2, 166.5
6 �1 1 1 �1 �1 28.2, 39.0
7 �1 1 �1 1 �1 3.5, 11.1
8 �1 1 �1 �1 1 22.9, 24.5

9 �1 �1 1 1 �1 132.1, 190.7
10 �1 �1 1 �1 1 153.5, 237.6
11 �1 �1 �1 1 1 55.1, 79.2
12 1 1 1 1 �1 17.0, 17.0

13 1 1 1 �1 1 30.0, 38.1
14 1 1 �1 1 1 17.7, 19.6
15 1 �1 1 1 1 94.1, 95.1
16 �1 1 1 1 1 12.7, 19.1
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The NASA experimenters next wished to perform an ANOVA in order to inquire

whether there were significant indications of ascending directions, as well as to see

how appropriate the assumption of a plane was for the next experiment. Recall,

however, that significance testing within ANOVA requires an estimate of error for

the denominator of Fcalc expressions. Yet, as mentioned earlier, there are no rows,

or sum-of-squares terms, or degrees of freedom left over for an error estimate. So,

they needed to be clever (it’s allowed!). They decided to test the effects for

significance two different ways – neither one being exact, because there was no

clearly-identifiable error term. One way is conservative (that is, possibly biased, but

if so, toward indicating fewer significant results than might otherwise be deter-

mined), and the other is liberal (that is, possibly biased, but if so, toward indicating

more significant results than might otherwise be determined).

The conservative method was to form an error term by pooling the sum of squares

of all 15 effects; essentially, this meant adding the sum of squares for all 15 terms,

adding the number of degrees of freedom of each term (15, one per term), and

dividing the total of the 15 sums of squares by 15, the total of the degrees of freedom.

Why is this conservative? If there are no nonzero effects, each of the 15 sum-of-

squares terms (divided by 1, its degrees of freedom) truly estimates error, σ2, and
consequently the pooling of the 15 terms indeed provides the best estimate of error.

However, if there are any nonzero main or two-factor interaction effects, the pooled

result will overestimate error; as a result, the denominator of Fcalc will be too large,

and it is possible that fewer than deserved significant effects will result.

The liberal way is to look, after the fact, at the smaller sum-of-squares terms and

pool them, and only them, as error. This procedure often considers only interaction

terms (on balance and out of context, they are more likely to be zero than main

effects). Here, the experimenters used the smallest four (interaction) terms. This

approach is liberal because, although it is generally true that a smaller sum-of-squares

term is less likely to correspond with a nonzero effect, by picking only the smallest

four (or whatever number), it is probable that the resulting error estimate is downward

biased. For example, if we randomly sample the weight of 15 professors at a

university but compute the average weight of only the four lightest ones, the resulting

average is almost certain to be less than the true average weight of all (say, 1,000)

professors. With an underestimated error term, the denominator of Fcalc will be too

small, and possibly some effects will be given more significance than they deserve.

In a perfect world,12 the same effects would be significant under either approach

and the results would then be definitive. However, when applied to the coefficients

in the equation above, the liberal test found the first four terms (effects) significant;

the conservative test found the first two effects significant and the next two close to

(but not) significant.

Approaches other than liberal/conservative hypothesis testing can be used. One

is using “normal probability plots,” which often requires more subjective judgment.

We leave it to you to decide which approach to use if there is no apparent “viable”

12The authors don’t know where this world is; if we did, we’d buy property there!
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error term. We recommend the Daniel text (discussed in Chap. 18) as a good source

for seeing the use of normal probability plots in real-world experiments.

In our metallurgical example, the experimenters noted that at this point it

appeared that decreasing Ch and A and increasing C are beneficial to stress-rupture

life, and that T and Ti have no impact on stress-rupture life except possibly for the

Ti �Ch interaction effect. It certainly would have been reasonable to drop T

(temperature) from further consideration, and possibly even Ti (since Ti �Ch was

significant only under the liberal method). However, NASA decided to keep all five

factors.13 Further, since the interaction term was the least significant, NASA

decided that the response surface was sufficiently planar to allow going forth with

the method of steepest ascent to determine the best factor levels. (Remember, it was

their money, so they could do what they wanted.14) The equation for the response

surface in this region was thus assumed to be (the five main effects of the earlier

equation)

Ye ¼ 1:1652� :383 Ch� :146 Aþ :100 Cþ :037 T� :029 Ti

According to that equation, the direction of steepest ascent is �.383 design units in

the Ch direction, �.146 design units in the A direction, þ.100 design units in the C

direction, þ.037 design units in the T direction, and �.029 design units in the Ti

direction. We summarize this in Table 16.7. Recall what is meant by design units –

one design unit for Ch, for example, is 2% in terms of the weight percentage of

chromium, applied above and below the design center. The design center for

chromium was 4%, so �1 design unit was 2% chromium and þ1 design unit was

6% chromium. Table 16.5 lists these values for the design units of all of the levels of

the factors. We move along the direction of steepest ascent by making changes in

the factors’ levels, away from the design center, in proportion to the values in

Table 16.7.

If we multiply all elements of the table by some constant, the relative values do

not change. As is customary, the experimenters scaled the values in Table 16.7 such

that �.383 became �1; that is, every element of the table was multiplied by

(1/.383) ¼ 2.611, yielding Table 16.8. Next, the Table 16.8 values were rounded

by the NASA folks as shown in Table 16.9.

Table 16.7 Direction of steepest ascent

Ch A C T Ti

�.383 �.146 .100 .037 �.029

13Remember: We are describing what the NASA team did, not necessarily what we would have

done; then again, we weren’t there, and they made the judgment call. This thought applies to many

of the subsequent steps the NASA researchers chose to follow.
14Actually, it was the taxpayers’ money.
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At this point the experimenters were not sure where along this direction of

steepest ascent to locate the next design center. So, they decided to run some

treatment combinations along the vector of steepest ascent. That is, rather than

follow the method-of-steepest-ascent recipe (described earlier) of moving to a new

design center and running the next experiment to find the equation of a plane in the

region of that design center, and so forth, they decided to experiment at sites along

that line (or hyperplane) with one treatment combination at each of a few points on

that line. The first point chosen was at the original design center (see Table 16.10).

Two measurements of the resultant casting were made; the stress-rupture life

measurements were 60.3 and 55.6 hours. (The data at this “new” point – until now

no casting had been produced at this center point – could have been used to assess

the assumption of a plane, but that was not done.)

The next treatment combination was selected by choosing a negative change of

one design unit for Ch and a change of the other factors in the proportions indicated

in the direction of steepest ascent, as indicated in Table 16.9, all from the design

center noted in Table 16.10. That is, they moved �1 design unit, or 2.0%, for Ch

(from 4.0% to 2.0%); �.4 design units, or �. 4 � 25¼ �1%, for A (from 7.0% to

6.9%); þ.26 design units, or .26 � .1¼ .026%, for C (from .4% to .426%); þ.1

design units, or 1 � 50 ¼ 5�, for T (from 2,900� to 2,905�); and �.08 design units, or

�.08 � .5¼ �.04%, for Ti (from 1.0% to .96%). This point is described in

Table 16.11. At this treatment combination, the stress-rupture life measurements

were 101.6 and 92.1 hours.

Table 16.8 Direction of steepest ascent – scaled design units

Ch A C T Ti

�1 �.381 .261 .097 �.076

Table 16.9 Direction of steepest ascent – rounded design units

Ch A C T Ti

�1 �.40 .26 .10 �.08

Table 16.10 Original design center

Ch A C T Ti

4.0 7.0 .4 2,900 1.0

Table 16.11 Second treatment combination on line of steepest ascent

Ch A C T Ti

2.0 6.9 .426 2,905 .96

560 16 Introduction to Response-Surface Methodology



Then, another step of equal size further along this direction of steepest ascent

resulted in the treatment combination noted in Table 16.12. The stress-rupture life

measurements at this treatment combination were 141.9 and 171.1 hours. Note the

continual increase of yield as the experimenters moved along what they calculated

to be the direction of steepest ascent.

They wanted to move one more step along this direction of steepest ascent.

However, they had a problem. The weight percent of chromium, which in

Table 16.12 is zero, can’t be negative. Thus, an attempt to move further along the

direction of steepest ascent, which would suggest a weight percent of chromium of

�2%, is impossible. So, for the next treatment combination they kept the level of

chromium at zero, as in Table 16.12, and changed the level of the other factors by

the same amount as before. This resulted in the treatment combination depicted in

Table 16.13.

Note again: because the level of chromium could not be lowered, the treatment

combination in Table 16.13 is not along the direction of steepest ascent. For this

point, the stress-rupture life measurements were 116.0 and 133.7 hours. Note that

these measurements are not as good (as large) as at the previous step (the treatment

combination depicted in Table 16.12). Table 16.14 summarizes the four points and

their respective results.

In general, it would seem reasonable to revert to the best of the four treatment

combinations of Table 16.14 (point 3) to locate the design center for the next

experiment; however, the value of zero for chromium does not allow symmetric

values above and below it. Accordingly, it was decided to choose point 3, except

that chromium would be set at 2.0% rather than 0. In addition, it was decided to

drop temperature (T) as a factor because it had been determined not to be

Table 16.12 Third treatment combination on line of steepest ascent

Ch A C T Ti

0 6.8 .452 2,910 .92

Table 16.13 The last of the four exploratory points

Ch A C T Ti

0 6.7 .478 2,915 .88

Table 16.14 Summary of four exploratory points

Point Ch A C T Ti Result

1 4.0 7.0 .4 2,900 1.0 60.3, 55.6
2 2.0 6.9 .426 2,905 .96 101.6, 92.1
3 0 6.8 .452 2,910 .92 141.9, 171.1
4 0 6.7 .478 2,915 .88 116.0, 133.7
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significant, either as a main effect or as a part of an interaction term. (It’s not clear
why the experimenters dropped it at this point, given that they kept it in the first

place. It’s no less significant now than it was earlier.) From then on, they held

temperature constant at 2,900 �F. Finally, they did more rounding. The net result

was a new (next) design center at the treatment combination shown in Table 16.15.

At this design center, the experimenters decided to run a complete 24 factorial

design. Given that they were still in the steepest-ascent phase of the process, they

were still assuming a plane, so they could have used a 24–1 fractional-factorial

design, which, as a resolution-four design, estimates all main effects cleanly,

assuming that all interaction effects are zero. However, they didn’t believe that

only eight data values would provide adequate reliability and so, wanting at least

16 data values, they did the complete 24. The results, in Yates’ order, are in

Table 16.16. Note that the results for this second factorial experiment are generally

improved relative to the results of the first experiment in Table 16.6. This confirms

the effectiveness of the steepest-ascent approach.

The coefficients for the equation that estimates the response surface were

calculated from the data in Table 16.16, again using Yates’ algorithm. The slope

coefficients, in descending order, are listed in Table 16.17.

Table 16.15 New design center

Factor Design center Low High

Ch 2.0 ! 2.0 1.5 2.5
A 6.8 ! 6.75 6.5 7.0
C .452 ! .5 .4 .6
Ti .92 ! 1.0 .5 1.5

Relabeled: 0 �1 1

Table 16.16 Second factorial design experiment

Alloy Ti Ch C A Life

1 �1 �1 �1 �1 126.7, 176.5
2 1 �1 �1 �1 196.0, 184.1
3 �1 1 �1 �1 163.4, 152.6
4 1 1 �1 �1 194.0, 249.4

5 �1 �1 1 �1 88.9, 106.1
6 1 �1 1 �1 172.7, 160.1
7 �1 1 1 �1 154.9, 182.2
8 1 1 1 �1 144.1, 162.4

9 �1 �1 �1 1 136.1, 107.0
10 1 �1 �1 1 65.7, 60.0
11 �1 1 �1 1 129.8, 107.2
12 1 1 �1 1 80.6, 87.7

13 �1 �1 1 1 175.8, 164.8
14 1 �1 1 1 167.2, 166.1
15 �1 1 1 1 141.8, 129.2
16 1 1 1 1 145.0, 140.1
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When these coefficients were tested, none were statistically significant. This was

interpreted to indicate that the test region might contain a (or the) maximum, since

no direction of any kind other than horizontal was suggested. It was decided,

therefore, to move on immediately to the method of local exploration. Furthermore,

because the second two-level factorial experiment indicated no particular vector of

ascent, it was decided to continue at the same design center. This made it unnec-

essary to repeat the factorial-design portion of what was to be a central-composite

design experiment. They simply augmented the second factorial design with a set of

star points and four center points. This was probably a good decision, assuming no

block effects. Recall that in such a situation, where an experiment is made up of

treatment combinations that are run at different times, there is a possibility of block

effects. The NASA experimenters acknowledged this, but concluded that any block

effects were minimal and not of consequence. (This is fortunate because the

blocking is not orthogonal as it always was in our Chap. 10 examples and ideally

should always be.)

Each pair of star (axial) points was obtained by holding three of the four factors

at the design center and setting the fourth factor at levels of þPs and �Ps. For this

situation (four factors and a two-level complete factorial design), the suggested

optimal value for Ps is 2 and the number of center points is between two and four.

The experimenters decided to have four center points. The results of measurements

at the star and center points are shown in Table 16.18.

Table 16.17 Coefficients for second factorial experiment

Coefficient Estimate Coefficient Estimate

C �A þ.077 Ti �C þ.024
A �.063 Ch �A �.021
Ti �A �.054 Ch þ.015
Ti �C �A þ.031 Ti �Ch �C �A þ.013
C þ.031 Ch �C �.011
Ti �Ch �C �.026 Ti �Ch �.004
Ti �Ch �A þ.025 Ti þ.002
Ch �C �A �.025

Table 16.18 Data results for star and center points

Alloy Ti Ch C A Life

1 �2 0 0 0 108.6, 159.0
2 +2 0 0 0 94.4, 95.6
3 0 �2 0 0 180.3, 186.6
4 0 +2 0 0 219.5, 184.4

5 0 0 �2 0 189.2, 150.0
6 0 0 +2 0 220.3, 218.7
7 0 0 0 �2 139.8, 123.4
8 0 0 0 +2 153.1, 149.4

9 0 0 0 0 279.3, 269.7
10 0 0 0 0 198.4, 172.1
11 0 0 0 0 233.6, 203.9
12 0 0 0 0 242.8, 227.3
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The 16 data points from Table 16.16 were combined with the 12 points from

Table 16.18. These 28 data points from the (now) central-composite design led to

the following second-order equation. Recall that the use of a second-order equation

automatically corresponds with assuming that all terms higher than quadratic

(which includes interactions of more than two factors) are zero.

Ye ¼ 2:354þ �:011 Tiþ :013 Chþ :030 C� :037 Að Þ þ �:085 Ti2 � :026 Ch2
�

�:026 C2 � :060 A2
�þ �:004 Ti � Chþ :025 Ti � C� :054 Ti � Að Þ

�:011 Ch � C� :021 Ch � Aþ :077 C � AÞ
ð16:7Þ

The terms in Eq. 16.7 have been grouped into linear, quadratic, and two-factor

interaction components. This equation is presumed to be valid within a radius of

two design units.

The next step toward finding the optimal combination of factor levels is to solve

for any points at which the hyperplane that is tangent to the (estimated) response

surface has zero slope (that is, so-called “points of horizontal tangency”). We do

this by taking the partial derivative of Ye with respect to each factor, setting it equal
to zero, and simultaneously solving the resultant set of equations. Since this is a

quadratic (that is, second-order) model, these resulting equations are linear. With

four factor levels as unknowns (recall that we fixed T at 2,900 �F), we have a set of
four linear equations with four unknowns, as follows:

∂Ye=∂Ti ¼ �:011� :170 Ti� :004 Chþ :025 C� :054 A ¼ 0

∂Ye=∂Ch ¼ :013� :052 Ch� :004 Ti� :011 C� :021 A ¼ 0

∂Ye=∂C ¼ :030� :052 Cþ :025 Ti� :011 Chþ :077 A ¼ 0

∂Ye=∂A ¼ �:037� :120 A� :054 Ti� :021 Chþ :077 C ¼ 0

Solving these four equations simultaneously yields the following factor levels in
design units:

Ch ¼ þ:215 A ¼ �:110 C ¼ þ:378 Ti ¼ þ:022

The next step was to inquire whether this point is a true maximum or merely a

saddle point (by now, we know that it is not a minimum point). Further analysis

indicated that this is a saddle point, on a ridge that represents a maximum on all axes

except one, where it remains just about constant. The NASA folks said that “for all

practical purposes, we considered the stationary point to be the optimum alloy with

respect to stress-rupture life.” Finally, converting to the true values of the factors,

by recalling the design center from Table 16.15 and steps since then, we have
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Factor levels in weight%

Chtrue ¼ 2:0þ :5 Ch ¼ 2:11%
Atrue ¼ 6:75þ :25 A ¼ 6:72%
Ctrue ¼ :5þ :1 C ¼ :54%
Titrue ¼ 1:0þ :5 Ti ¼ 1:01%

At this stationary point, Eq. 16.7 predicts the value of stress-rupture life to be about

231 hours. At the design center, the predicted value of stress-rupture life is about

226 hours. These two values can be considered essentially the same, given that the

replicates at the design center have a standard deviation of about 36. Thus, the

NASA experimenters were pleased to conclude that the response was relatively flat

in the neighborhood of the stationary point, and began to investigate how sensitive

other (secondary) dependent factor responses were in the neighborhood of this

stationary point.

Example 16.5 NASA Example Using JMP

JMP is useful in both the design of response-surface experiments and in the analysis

of experimental results (the analysis can be done with JMP whether or not one picks

a design specified by the software package). More specifically, JMP can be used in

the second stage of the process – the method of local exploration, where the

nonlinearities make the analysis process especially cumbersome without aid from

software.

16.5.1 Design

To set up our design table, we clickDOE>Classical>Response Surface Design.
Then, we determine the number of responses (1) and continuous factors (4) and

click on Continue, which will take us to the next window, in which we can choose

of one of a few Box-Behnken and/or central-composite designs. For four factors,

our choices are those in Table 16.19. We could select one of these and JMP would

provide a spreadsheet defining the corresponding treatment combinations and a

column for recording the experimental results. After running the experiment and

entering the results, we could continue to the analysis using JMP.
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Note that JMP does not offer the four-factor, 28-run central-composite design

chosen by the NASA folks. Fortunately, however, we can still use JMP to analyze

the results of the NASA experiment. For this, we select Choose a design > 26,

2 Center Points, Central Composite Design and specify that we have four center

points in the next panel. Here, we have a couple of options, as shown in Fig. 16.7,

which indicates where the axial points are located: rotatable places the axial points
out of the experimental range determined by the experimenter, orthogonal makes

the effects orthogonal during the analysis and also places the axial points out of the

range, on face places the axial points at the range, or we can specify this value. We

select Rotatable.

16.5.2 Analysis

We begin by preparing the input data for JMP. First, we combine Tables 16.16 and

16.18, average the two repetitions for each treatment combination, and take the

logarithm. Next, we input the logarithms, which are the dependent factor values,

into Table 16.20. We then paste the highlighted segment of Table 16.20 into a JMP

spreadsheet.

Table 16.19 JMP response-surface designs for four factors

Number of

runs

Block

size

Number of center

points Type

27

9

3 Box-Behnken
27 3 Box-Behnken
26 2 Central-composite

design
30 10 6 CCD-orthogonal blocks
31 7 CCD-uniform precision
36 12 CCD-orthogonal

Fig. 16.7 Design panel in

JMP
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Now we’re ready to proceed with the analysis. As we have done in previous

examples using JMP, we chooseAnalyze> Fit Model and complete theConstruct

Model Effects dialog box, if necessary (this might have been filled automatically).

If we have to assigned the factors manually, we highlight Ti, Ch, C, and A, and with

these factors highlighted, click Macro and select Response Surface, then Run

Model to get the analytical results in Fig. 16.8.

Table 16.20 Central-composite design

Alloy Ti Ch C A Log life

1 �1 �1 �1 �1 2.180699
2 1 �1 �1 �1 2.278868
3 �1 1 �1 �1 2.198657
4 1 1 �1 �1 2.345766

5 �1 �1 1 �1 1.989005
6 1 �1 1 �1 2.221153
7 �1 1 1 �1 2.226729
8 1 1 1 �1 2.185400

9 �1 �1 �1 1 2.084755
10 1 �1 �1 1 1.798305
11 �1 1 �1 1 2.073718
12 1 1 �1 1 1.925054

13 �1 �1 1 1 2.231215
14 1 �1 1 1 2.220108
15 �1 1 1 1 2.131939
16 1 1 1 1 2.153967

17 �2 0 0 0 2.126456
18 2 0 0 0 1.977724
19 0 �2 0 0 2.263518
20 0 2 0 0 2.305244

21 0 0 �2 0 2.229426
22 0 0 2 0 2.341435
23 0 0 0 �2 2.119256
24 0 0 0 2 2.179695
25 0 0 0 0 2.438542
26 0 0 0 0 2.267758
27 0 0 0 0 2.339948
28 0 0 0 0 2.371160
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In Fig. 16.8, note that the equation represented by the Parameter Estimates

section is essentially the same as Eq. 16.7, with small differences due to rounding

error.

Figure 16.9 shows the solution produced by JMP. JMP indicates that the solution

is a saddle point, as does the NASA article. The predicted value at the solution listed

is 2.3630459, a value whose antilog10 is about 231, the same value reported in the

NASA article. However, the solution values JMP provides for the four factors,

which are in design units, are not the same as those in the NASA article. To

compare:

Factor NASA (reported) JMP

Ti .022 .006
Ch .215 .176
C .378 .473
A �.11 �.036

However, these are not as far away from one another as it might appear. Indeed, if

we examine the actual weight-percentage values, they are quite close:

Fig. 16.8 JMP output
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Factor NASA (reported) JMP

Ti 1.01% 1.00%
Ch 2.11% 2.18%
C .54% .59%
A 6.72% 6.73%

JMP also provides options for which graphics/contour plots we might select. To

produce the contour plot in Fig. 16.10, we pick two factors to provide axes, holding

the other factors (in this case, two of them) constant at chosen values. We also

specify the range of factor values to which the contour plot in Fig. 16.10 pertains.

Figure 16.11 shows another graphic option, a profile of how each factor works in

a univariate way.

Fig. 16.9 JMP solution

Fig. 16.10 JMP contour plot for NASA example
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Example 16.6 Extraction Yield of Bioactive Compounds

In this example, we will illustrate a Box-Behnken design as the method for local

exploration using JMP. A research group wanted to investigate the extraction yield of

certain bioactive compounds from fruits. The laboratory had recently implemented a

policy to reduce the amount of solvents used in research. For this reason, the principal

investigator wanted to assess the effects of certain factors on the process which would

lead to a higher extraction yield of the compounds of interest (dependent variable, Y)
with the smallest number of experiments as possible.

The first step this group tookwas to brainstorm various factors that would affect the

process (each at three levels). They selected those presented in Fig. 16.12, based on

their experience and the relevant literature. Additionally, the researchers decided to

conduct the project with berries collected under the same conditions (i.e., no blocks

were assumed), as it is known that environmental, biological, and postharvest factors

can affect the concentration of certain metabolites in the fruits.

Fig. 16.11 JMP prediction profile for NASA example

1. Proportion of volume of solvent in relation to the amount of  fruit material (X1)
•
•
•

•
•
•

•
•
•

•
•
•

10/1
30/1
50/1

2. Concentration of the solvent used for the extraction (X2)
50%
75%
100%

3. Extraction temperature in the ultrasonic bath (X3)
95 ºF
113 ºF
131 ºF

4. Extraction time (X4)
10 minutes
20 minutes
30 minutes

Fig. 16.12 Factors and levels considered in the extraction yield of bioactive compounds
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To set up the design in JMP, we use steps similar to those of CCD. First, we

select DOE > Classical > Response Surface Design and include information of

the independent and dependent variables. Next, we select Choose a design > 27,
3 Center Points, Box-Behnken. The experimental table and results are presented

in Table 16.21. The output is shown in Fig. 16.13.

Table 16.21 Experimental table and results

X1 X2 X3 X4 Y

10 50 113 20 7.3
10 100 113 20 13.0
50 50 113 20 17.6
50 100 113 20 8.7

30 75 95 10 14.8
30 75 95 30 17.6
30 75 131 10 15.1
30 75 131 30 17.2

10 75 113 10 9.2
10 75 113 30 11.3
50 75 113 10 13.8
50 75 113 30 16.5

30 50 95 20 16.3
30 50 131 20 17.1
30 100 95 20 13.6
30 100 131 20 13.5

10 75 95 20 12.1
10 75 131 20 12.8
50 75 95 20 15.3
50 75 131 20 16.7

30 50 113 10 13.4
30 50 113 30 17.2
30 100 113 10 13.1
30 100 113 30 13.7

30 75 113 20 22.6
30 75 113 20 22.8
30 75 113 20 22.2
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Fig. 16.13 JMP output
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First, we have the Summary of Fit that shows our model has a relatively high R2

(.987) and adjusted R2 (.972). As we have seen in the previous chapter, the R2 tell us

that around 98.7% of the variability in Y can be explained by the variability in the

four X’s as a group. Next, JMP provides the Analysis of Variance table, which

shows that our model is significant ( p < .0001).

What terms are significant in this model? This is addressed in the Parameter

Estimates summary. All the terms are significant, except X3, X1X3, X2X3, X1X4, and

X3X4. The solution provided by JMP shows we have a maximum point and the

predicted value is 22.991.

Example 16.7 Follow-Up Use of Excel’s Solver to Explore a Response

Surface

Once we have an equation representing the response surface, we may, rather than

taking derivatives (definitely the method used in the NASA article, and probably

[we are not certain] the method used by JMP), find the maximum (or minimum)

value of that surface by using Solver, a numerical optimization routine in the Tools

section of Excel. We define the relevant range of factor values (in essence, con-

straints), specify our objective function (the quantity to be maximized or mini-

mized), and Solver searches over all the allowable combinations of factor values for

the specific combination that optimizes the objective function. There is nothing

statistical or calculus-based about Solver! It uses various deterministic algorithms

to do its searching. An advantage of this approach is that, if the maximum is not

within the region under study (that is, if it is instead on the boundary), Solver will

acknowledge that result.

Taking the NASA study as an example, where the stationary point is a saddle

point and not a maximum, Solver will, as it should, yield a different answer

depending upon the starting point. For the problem we have been discussing, we

tried various starting points to ensure that we achieved the best possible results;

Solver found that the best solution occurred at a point that is quite different from

that indicated by the NASA article. This is primarily because the NASA procedure

mandated that the solution be a stationary point, whereas the Solver algorithm has

no such restriction. The solution indicated by Solver was as follows, in design units:

Factor NASA (reported) Solver

Ti .022 .231
Ch .215 1.420
C .378 �2.000
A �.11 �1.950
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In actual weight-percentage values, we have

Factor NASA (reported) Excel

Ti 1.01% 1.11%
Ch 2.11% 2.71%
C .54% .30%
A 6.72% 6.26%

Recall that the predicted (that is, equation-generated) value of the stress-rupture life

at the stationary point for both the NASA solution and the JMP solution is about

231 hours. At the solution indicated by Solver, the predicted value is about

249 hours. The standard deviation of replications at the design origin of the

NASA article was about 36 hours; so, on one hand, this 249 � 231 ¼ 18 hours

represents about one-half of a standard deviation. On the other hand, the 36-hours

standard deviation is not an estimate of the “true standard deviation” but an

underestimate of it – reflecting solely repetition of the measurement, not “com-

plete” replication. Hence, it’s not clear how material the 18-hours difference from

the equation’s prediction is. However, we expect that, had NASA had the option

(Solver didn’t exist then15), the experimenters would have used the combination of

factor levels for which the predicted value was 249 hours.

Example 16.8 Optimal Price, Warranty, and Promotion at Luna

(Revisited)

Two experiments were conducted to arrive at an optimal solution; each was a

simulation in which responders were asked for their purchase intent for different

treatment combinations (called “scenarios”). The first experiment was a 33 factorial

design and had the levels of the factors relatively far apart. The results of that

experiment clearly indicated where to look further for the optimal level for each

factor: between the middle and high levels or between the low and middle levels.

Then, a second experiment, one with a central-composite design, was run. Its

center point was, for each factor, the midpoint between the two levels of the

previous experiment indicated as surrounding the optimal level. The two levels

themselves were designated �1 and þ1, respectively, in design units, and star

points were at �1.5 and þ1.5 design units. (The distances of �1.5 and 1.5 were

chosen for some practical reasons having nothing to do with the theoretically-

optimal placing of star points.) Interestingly, although the origin (that is, center

point) was tested three times, giving us a total of 23þ 6þ 3¼ 17 scenarios, only a

small proportion of the responders had comments such as, “Haven’t I seen this

combination before?” This repeating without recognition probably occurred

15Of course, search techniques were available back in the late 1960s on mainframe computers.

However, they were not readily accessible nor user-friendly. Today, one might question whether

the calculus step shouldn’t always be replaced by Solver or its equivalent.
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because the responders saw the levels in actual monetary and time units, not the

all-zero values of the center point in design units, so it wasn’t easy to recall having

seen the combination several scenario cards earlier. To those who did raise the

question, the moderator replied that he did not know, but to simply assume that it

was not a repeat scenario.

Data from this latter experiment led to a function that related sales (in essence,

expected sales, although company management never thought of it in those terms)

to product price, warranty length, and promotional expense. Along with a some-

what complex determination of the (again, expected) cost incurred as a function of

the warranty length offered, as well as the direct monetary impacts of the price and

promotional expense, a mathematically-optimal point was determined. Ultimately,

however, the marketing folks had their way, and a point significantly different from

the best point was used instead. That’s life!

16.6 A Note on Desirability Functions

Introduced by Derringer and Suich,16 the desirability function is commonly used

to optimize multiple responses simultaneously. It finds the values of X’s that yield
more than one Y within “desirable” limits. This method consists of two phases:

(1) each response is transformed into a desirable value (di) that can assume values

from 0 to 1, and (2) based on these values, we determine the overall desirability

function (D) for the combined Y’s.

16.7 Concluding Remark

We wish to emphasize again that this chapter is an introduction to a way of

thinking, and not an end in itself. Indeed, there are entire texts on response-surface

methods. Some of these are referenced in Chap. 18.

Exercises

1. Suppose that a response-surface analysis with two factors is in its steepest-

ascent stage and the center of the current experiment is (X1 ¼ 40, X2 ¼ 40).

Suppose further that the results of this current experiment are as follows:

16G. Derringer and R. Suich (1980), “Simultaneous Optimization of Several Response Variables.”

Journal of Quality Technology, vol. 12, n. 4, pp. 214–219.
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Y X1 X2

164 35 35
182 35 45
221 45 35
243 45 45

What is the first-order equation resulting from these data?

2. In Exercise 1, what is the direction of steepest ascent?

3. In Exercise 1, which of these points are in the direction of steepest ascent?

(a) (X1, X2) ¼ (88.5, 30)

(b) (X1, X2) ¼ (147.5, 40)

(c) (X1, X2) ¼ (5.9, 2)

(d) (X1, X2) ¼ (202.5, 29.5)

4. Repeat Exercise 2 if we add the data point (Y, X1, X2) ¼ (205, 40, 40).

5. Based on your answer to Exercise 1, what Y value would be predicted for the

response at the design center, (X1, X2) ¼ (40, 40)?

6. In Exercise 1, find the transformations of X1 to U and of X2 to V that result in

the four values of (U, V ) forming a 2� 2 square symmetric about the origin.

7. Is a three-dimensional Latin-square design appropriate for estimation of the

parameters of a second-order equation with three factors? Why or why not?

8. Show that the number of parameters in a second-order equation (Eq. 16.4)

with k factors is (kþ 2) ! /(k ! � 2!).
9. Suppose that our knowledge of the process under study indicates that the

appropriate model with k factors is a pth-order equation without (any) inter-

action terms. How many parameters are to be estimated?

10. Suppose that, in the NASA example, the repetitions were instead replications;

how would the local exploration analysis change? What is the result? The data

are listed in Table 16EX.10.

Table 16EX.10 NASA example with two replications per treatment

Alloy Ti Ch C A Life Log life Alloy Ti Ch C A Life Log life

1 �1 �1 �1 �1 127 2.1038 29 �1 �1 �1 �1 177 2.2480
2 1 �1 �1 �1 196 2.2923 30 1 �1 �1 �1 184 2.2648
3 �1 1 �1 �1 163 2.2122 31 �1 1 �1 �1 153 2.1847
4 1 1 �1 �1 194 2.2878 32 1 1 �1 �1 249 2.3962

5 �1 �1 1 �1 89 1.9494 33 �1 �1 1 �1 106 2.0253
6 1 �1 1 �1 173 2.2380 34 1 �1 1 �1 160 2.2041
7 �1 1 1 �1 155 2.1903 35 �1 1 1 �1 182 2.2601
8 1 1 1 �1 144 2.1584 36 1 1 1 �1 162 2.2095

9 �1 �1 �1 1 136 2.1335 37 �1 �1 �1 1 107 2.0294
10 1 �1 �1 1 66 1.8195 38 1 �1 �1 1 60 1.7782
11 �1 1 �1 1 130 2.1139 39 �1 1 �1 1 107 2.0294
12 1 1 �1 1 81 1.9085 40 1 1 �1 1 88 1.9445

(continued)
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Appendix

Example 16.9 NASA Example in R

In these final demonstrations, we will use rsm and DoE.wrapper packages.

# Option 1: using rsm package

First, we create the design matrix and an object with the responses, which are

later combined.

> NASA <- ccd(4, n0=2, randomize=FALSE, alpha="rotatable")

# n0 is the number of center points per block.

> y <- c(2.180699, 2.278868, 2.198657,. . ., 2.371160)

> NASA <- cbind(NASA, y)

> NASA

run.order std.order x1 x2 x3 x4 Block y
1 1 1 -1 -1 -1 -1 1 2.180699
2 2 2 1 -1 -1 -1 1 2.278868
3 3 3 -1 1 -1 -1 1 2.198657

⋮ ⋮
28 10 10 0 0 0 0 2 2.371160

Table 16EX.10 (continued)

Alloy Ti Ch C A Life Log life Alloy Ti Ch C A Life Log life

13 �1 �1 1 1 176 2.2455 41 �1 �1 1 1 164 2.2148
14 1 �1 1 1 167 2.2227 42 1 �1 1 1 166 2.2201
15 �1 1 1 1 142 2.1523 43 �1 1 1 1 129 2.1106
16 1 1 1 1 145 2.1614 44 1 1 1 1 140 2.1461

17 �2 0 0 0 109 2.0374 45 �2 0 0 0 159 2.2014
18 2 0 0 0 94 1.9731 46 2 0 0 0 96 1.9823
19 0 �2 0 0 180 2.2553 47 0 �2 0 0 187 2.2718
20 0 2 0 0 220 2.3424 48 0 2 0 0 184 2.2648

21 0 0 �2 0 189 2.2765 49 0 0 �2 0 150 2.1761
22 0 0 2 0 220 2.3424 50 0 0 2 0 219 2.3404
23 0 0 0 �2 140 2.1461 51 0 0 0 �2 123 2.0899
24 0 0 0 2 153 2.1847 52 0 0 0 2 149 2.1732

25 0 0 0 0 279 2.4456 53 0 0 0 0 270 2.4314
26 0 0 0 0 198 2.2967 54 0 0 0 0 172 2.2355
27 0 0 0 0 234 2.3692 55 0 0 0 0 204 2.3096
28 0 0 0 0 243 2.3856 56 0 0 0 0 227 2.3560
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# Option 2: using DoE.wrapper package

> NASA <- ccd.design(4, ncenter=2, randomize=FALSE, alpha=

+"rotatable")

full factorial design needed

creating full factorial with 16 runs ...

> y <- c(2.180699, 2.278868, 2.198657,..., 2.371160)

> NASA <- add.response(NASA, y)

> NASA

Block.ccd X1 X2 X3 X4 y
C1.1 1 -1 -1 -1 -1 2.180699
C1.2 1 1 -1 -1 -1 2.278868
C1.3 1 -1 1 -1 -1 2.198657

⋮ ⋮
C2.10 2 0 0 0 0 2.371160

class = design, type = ccd

We can analyze either of the options using the rsm() function described below,

where SO stands for “second-order,” FO for “first-order,” PQ for “pure quadratic,”

and TWI for “two-way interaction”:

> NASA_rsm <- rsm(y~SO(x1, x2, x3, x4), data=NASA)

> summary(NASA_rsm)

Call:

rsm(formula = y ~ SO(x1, x2, x3, x4), data = NASA)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.354352 0.047993 49.0558 3.838e-16 ***

x1 -0.011898 0.019593 -0.6073 0.5541321
x2 0.013357 0.019593 0.6817 0.5073746
x3 0.029071 0.019593 1.4837 0.1617127
x4 -0.036931 0.019593 -1.8849 0.0819968 .

x1:x2 -0.003351 0.023997 -0.1396 0.8910812
x1:x3 0.024473 0.023997 1.0199 0.3263951
x1:x4 -0.053768 0.023997 -2.2406 0.0431455 *
x2:x3 -0.010251 0.023997 -0.4272 0.6762391
x2:x4 -0.021033 0.023997 -0.8765 0.3966624
x3:x4 0.077319 0.023997 3.2221 0.0066779 **
x1^2 -0.084317 0.019593 -4.3034 0.0008579 ***
x2^2 -0.026245 0.019593 -1.3395 0.2033652
x3^2 -0.025982 0.019593 -1.3261 0.2076414
x4^2 -0.059971 0.019593 -3.0608 0.0091087 **
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---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared: 0.7825, Adjusted R-squared: 0.5482

F-statistic: 3.34 on 14 and 13 DF, p-value: 0.0182

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2, x3, x4) 4 0.060696 0.015174 1.6469 0.22181
TWI(x1, x2, x3, x4) 6 0.160430 0.026738 2.9021 0.05070
PQ(x1, x2, x3, x4) 4 0.209692 0.052423 5.6899 0.00715
Residuals 13 0.119775 0.009213
Lack of fit 10 0.104698 0.010470 2.0833 0.29661
Pure error 3 0.015076 0.005025

Stationary point of response surface:

x1 x2 x3 x4
0.006267162 0.176237359 0.473383841 -0.036460362

Eigenanalysis:

$values

[1] 0.003014912 -0.029150191 -0.055951382 -0.114428173

$vectors

[,1] [,2] [,3] [,4]
x1 0.05527429 0.002767506 0.71328348 0.69868718
x2 0.32843898 -0.938320173 -0.08597682 0.06550631
x3 -0.76662083 -0.331545323 0.41456151 -0.36126024
x4 -0.54896730 -0.098108573 -0.55854581 0.61403272

Below, we show the command to obtain the coefficients of our model, and using

the predict() function we can obtain the solution using the values found under

“Stationary point of response surface” on the output.

> NASA_rsm

Call:

rsm(formula = y ~ SO(x1, x2, x3, x4), data = NASA)
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Coefficients:

(Intercept) FO(x1, x2, x3, x4)x1 FO(x1, x2, x3, x4)x2
2.354352 -0.011898 0.013357

FO(x1, x2, x3, x4)x3 FO(x1, x2, x3, x4)x4 TWI(x1, x2, x3, x4)x1:x2
0.029071 -0.036931 -0.003351

TWI(x1, x2, x3, x4)x1:x3 TWI(x1, x2, x3, x4)x1:x4 TWI(x1, x2, x3, x4)x2:x3
0.024474 -0.053768 -0.010251

TWI(x1, x2, x3, x4)x2:x4 TWI(x1, x2, x3, x4)x3:x4 PQ(x1, x2, x3, x4)x1^2
-0.021033 0.077319 -0.084317

PQ(x1, x2, x3, x4)x2^2 PQ(x1, x2, x3, x4)x3^2 PQ(x1, x2, x3, x4)x4^2
-0.026245 -0.025982 -0.059971

> predict(NASA_rsm, newdata=data.frame(X1=0.006267162,

+X2=0.176237359, X3=0.473383841, X4=-0.036460362))

1
2.363046

Next, using the following commands, we can generate contour plots for the pairs

of X’s, shown in Fig. 16.14:

> par(mfrow=c(2,3))

> contour(NASA_rsm, ~x1+x2+x3+x4, at=summary(NASA_rsm)

+$canonical$xs)

Fig. 16.14 Contour plots in R
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Example 16.10 Extraction Yield of Bioactive Compounds in R

Here, we will also demonstrate how to set up and analyze a Box-Behnken design

using rsm and DoE.wrapper packages; this is similar to what we did in the

previous example.

# Option 1: using rsm package

First, we create the design matrix and an object with the responses, which are

later combined.

> extract <- bbd(4, n0=3, block=FALSE, randomize=FALSE)

> y <- c(7.3, 17.6, 13, . . ., 22.2)

> extract <- cbind(extract, y)

> extract

run.order std.order x1 x2 x3 x4 y
1 1 1 -1 -1 0 0 7.3
2 2 2 1 -1 0 0 17.6
3 3 3 -1 1 0 0 13.0
⋮ ⋮
27 27 27 0 0 0 0 22.2

# Option 2: using DoE.wrapper package

> extract <- bbd.design(4, ncenter=2, randomize=FALSE)

> y <- c(7.3, 17.6, 13, . . ., 22.2)

> extract <- add.response(extract, y)

> extract

A B C D y
1 -1 -1 0 0 7.3
2 1 -1 0 0 17.6
3 -1 1 0 0 13.0
⋮ ⋮
27 0 0 0 0 22.2
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class = design, type= bbd

As with CCD, we can analyze either of the options using the rsm() function

described below:

> extract_rsm <- rsm(y~SO(A, B, C, D), data=extract)

> summary(extract_rsm)

Call:

rsm(formula = y ~ SO(A, B, C, D), data = extract)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.53333 0.36723 61.3595 2.323e-16 ***
A 1.90833 0.18362 10.3930 2.358e-07 ***
B -1.10833 0.18362 -6.0361 5.882e-05 ***
C 0.22500 0.18362 1.2254 0.24394
D 1.17500 0.18362 6.3992 3.407e-05 ***
A:B -3.65000 0.31803 -11.4767 7.934e-08 ***
A:C 0.17500 0.31803 0.5503 0.59224
A:D 0.15000 0.31803 0.4716 0.64564
B:C -0.22500 0.31803 -0.7075 0.49279
B:D -0.80000 0.31803 -2.5155 0.02713 *
C:D -0.17500 0.31803 -0.5503 0.59224
A^2 -6.01667 0.27543 -21.8450 4.967e-11 ***
B^2 -4.74167 0.27543 -17.2158 7.966e-10 ***
C^2 -2.54167 0.27543 -9.2281 8.470e-07 ***
D^2 -3.69167 0.27543 -13.4035 1.397e-08 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared: 0.9873, Adjusted R-squared: 0.9725

F-statistic: 66.6 on 14 and 12 DF, p-value: 3.642e-09

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)
FO(A, B, C, D) 4 75.617 18.904 46.7250 3.201e-07
TWI(A, B, C, D) 6 56.387 9.398 23.2286 6.038e-06
PQ(A, B, C, D) 4 245.222 61.305 151.5272 3.686e-10
Residuals 12 4.855 0.405
Lack of fit 10 4.668 0.467 5.0018 0.178
Pure error 2 0.187 0.093
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Stationary point of response surface:

A B C D
0.22908869 -0.22209945 0.05555756 0.18654451

Eigenanalysis:

$values

[1] -2.518852 -3.182962 -3.969465 -7.320388

$vectors

[,1] [,2] [,3] [,4]
A -0.08296588 0.43894755 0.3759016 0.8118741835
B 0.11279773 -0.66136843 -0.4596205 0.5819084989
C -0.98969169 -0.09392243 -0.1081149 -0.0002993512
D 0.03006143 0.60091217 -0.7973444 0.0473573592

> extract_rsm

Call:

rsm(formula = y ~ SO(A, B, C, D), data = extract)

Coefficients:

(Intercept) FO(A, B, C, D)A FO(A, B, C, D)B
22.533 1.908 -1.108

FO(A, B, C, D)C FO(A, B, C, D)D TWI(A, B, C, D)A:B
0.225 1.175 -3.650

TWI(A, B, C, D)A:C TWI(A, B, C, D)A:D TWI(A, B, C, D)B:C
0.175 0.150 -0.225

TWI(A, B, C, D)B:D TWI(A, B, C, D)C:D PQ(A, B, C, D)A^2
-0.800 -0.175 -6.017

PQ(A, B, C, D)B^2 PQ(A, B, C, D)C^2 PQ(A, B, C, D)D^2
-4.742 -2.542 -3.692

Using the predict() function, we can obtain the solution using the values

found under “Stationary point of response surface” in the output.

> predict(extract_rsm, newdata=data.frame(A=0.22908869,

+B=-0.22209945,C=0.05555756, D=0.18654451))

1
22.99085
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Six contour plots are shown in Fig. 16.15.

> par(mfrow=c(2,3))

> contour(extract_rsm, ~A+B+C+D, at=summary(extract_rsm)

+$canonical$xs)

Fig. 16.15 Contour plots in R
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Chapter 17

Introduction to Mixture Designs

In previous chapters, we discussed situations where our factors, or independent

variables (X’s), were categorical or continuous, and there were no constraintswhich
limited our choice of combinations of levels which these variables can assume. In

this chapter, we introduce a different type of design called amixture design, where

factors (X’s) are components of a blend or mixture. For instance, if we want to

optimize a recipe for a given food product (say bread), our X’s might be flour,

baking powder, salt, and eggs. However, the proportions of these ingredients must

add up to 100% (or 1, if written as decimals or fractions), which complicates our

design and analysis if we were to use only the techniques covered up to now.

Example 17.1 The “Perfect” Cake Mixture

A food-producing company was interested in developing a new line of products that

would consist of dry cake mixtures of various flavors. The marketing department

had indicated that consumers were looking for healthier options, including those

which used gluten- and lactose-free ingredients, which were not currently available.

In order to simplify the development process, the R&D department decided that it

would develop a base formulation and later add flavors, colorants, etc., with the

expectation that the latter refinements would not require major changes in their

production lines and procedures.

The dry mixture would consist mainly of modified corn starch, sugar, maltodex-

trin, salt, sorbitol, and emulsifiers. The formulation also required water, oil, and

eggs (called the wet ingredients) that would be mixed with the dry ingredients by

the consumer. The factors selected for the investigation were modified starch,

sugar, and sorbitol for the dry mixture and water, oil, and eggs for the wet mixture.

Electronic supplementary material: The online version of this chapter (doi:10.1007/978-3-319-

64583-4_17) contains supplementary material, which is available to authorized users.
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A supervisor who was familiar with design of experiments suggested that we use a

mixture design to generate and analyze a series of formulations with various pro-

portions of these six ingredients. He mentioned that the only limitation of this type

of experimental design is that the proportions must add up to 1.

After preparation, the cakes would be evaluated in terms of their physicochem-

ical properties and by a trained panel of sensory analysts using a 9-point hedonic

scale, where 1 represented “dislike extremely” and 9 meant “like extremely.” We

return to this example at the end of the chapter.

17.1 Mixture Designs

Unlike most of the designs covered in this book, mixture designs are subject to a

constraint that the components of the mixture must add up to 1 or 100%; that is, the

independent variables (X’s) represent the proportion of the total amount of the

product made up of the components of a mixture or blend, and the sum of those

proportions must add to 1. This constraint makes mixture designs more complicated

since we cannot vary one X independently of all the others. The situation can be

even more complicated when we have additional constrains (e.g., maximum and/or

minimum values for each X), but this will not be discussed in this book.1

Another major difference from other experimental designs we have studied so

far is that the response depends only on the relative proportions of the components

and not the absolute amount of the mixture. That is because we can scale the

proportion of the components if they do not sum up to 100% – and the proportion

will be the same regardless of the total amount of mixture we have.

The assumptions underlying mixture designs are similar to those of factorial

designs. It is assumed that (1) the errors (ε) are independent for all data values,

(2) each ε is normally distributed (with a true mean of zero), (3) each ε has the same

(albeit, unknown) variance, and (4) the response surface is continuous over the

region under study.

In this chapter, we will discuss two types of designs using examples in JMP:

simplex-lattice designs and simplex-centroid designs.2

1For detailed information about mixture designs, including multiple constraints on the proportions

of the components, we refer to J. Cornell, Experiments with Mixtures: Designs, Models, and the
Analysis of Mixture Data, 3rd edition, New York, Wiley, 2002.
2Excel and SPSS do not offer the tools to generate and analyze these types of designs.
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17.2 Simplex-Lattice Designs

In the following examples, we cover situations in which we used simplex-lattice

designs, i.e., an array of points distributed on a geometrical structure.

Example 17.2 Numerical Example in JMP

Let’s assume that we have a mixture consisting of three components (X1, X2, and

X3). Using a simplex-lattice design, we can specify the number of factors (q) and
the degree of lattice or model (m), such that the number of levels of these

q components will be mþ 1; we refer to this as a {q, m} simplex-lattice. With

three factors, this array of points (that is, the lattice) will be spread evenly on a

simplex (a generalization of the notion of a triangle or tetrahedron to arbitrary

dimensions), which refers to the simplest geometrical structure with one dimension

fewer than the number of components in our mixture. In our example, we need only

two dimensions to graph the three components, thus, generating a triangular plot. If

we had four components, as we will see later, we will have a tetrahedron, and so on.

Assuming that we specify that m ¼ 4, our components will have the following

levels: 0, 1/m, 2/m, . . ., 1; that is, 0, .25, .5, .75, and 1. This will result in a {3,4}

simplex-lattice containing 15 coordinates (i.e., experimental runs), as shown in

Table 17.1 (represented graphically in Fig. 17.1).

Table 17.1 Simplex-lattice design with three components, four levels

Run X1 X2 X3

1 1.00 .00 .00

2 .75 .00 .25

3 .50 .00 .50

4 .25 .00 .75

5 .00 .00 1.00

6 .00 .25 .75

7 .00 .50 .50

8 .00 .75 .25

9 .00 1.00 .00

10 .25 .75 .00

11 .50 .50 .00

12 .75 .25 .00

13 .50 .25 .25

14 .25 .50 .25

15 .25 .25 .50
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Let’s see how to interpret Fig. 17.1. Note that the vertices of the triangle

represent pure or single-component mixtures (runs 1, 5, and 9); that is, Xi ¼ 1 for

i ¼ 1, 2, 3. The binary (or two-component) mixtures are located between the three

edges of this triangle (runs 2, 3, 4, 6, 7, 8, 10, 11, and 12), whereas the three-

component mixtures (runs 13, 14, and 15) are in the interior. As we move up the left

side of this equilateral triangle, the proportion of X1 increases from 0 to 1, whereas

the proportion of X2 decreases from 1 to 0. Also on this side, and opposite to the X3

vertex, we find that X3 ¼ 0. Therefore, the coordinates of point 11 are (.5, .5, 0).

This logic is also true for the other sides of the triangle. For instance, the coordi-

nates of points 4 and 6 are (.25, 0, .75) and (0, .25, .75), respectively.

In order to set up the design matrix in JMP, we first select DOE > Classical >
Mixture Design, as shown in Fig. 17.2. After determining Y and the X’s, we have a
couple of options from which to choose, as shown in Fig. 17.3. We select Simplex

Lattice and specify m (called “number of levels” by JMP). Table 17.2 presents the

experimental runs and response.

Fig. 17.1 Configuration of a {3,4} simplex-lattice design, where the numbers in the circles

represent the coordinates presented in Table 17.1
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Fig. 17.2 Steps to set up a mixture design in JMP

Fig. 17.3 Simplex-lattice in JMP
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Next, we click on Analyze > Fit Model, which will generate the output shown

in Fig. 17.4. There are some differences in this summary relative to what we have

seen so far. One difference is that there is no intercept in the model

(no corresponding row in Parameter Estimates and Effect Tests). The ANOVA

table is constructed in a manner similar to that used in previous chapters; however,

note that the degrees of freedom for the model (under Analysis of Variance) is

5 (one fewer than the number of terms in the model); one degree of freedom is lost

because of the constraint that the sum of the components must equal 1.

Table 17.2 Numerical example of {3,4} simplex-lattice design

X1 X2 X3 Y

.00 .00 1.00 16

.00 .25 .75 18

.00 .50 .50 17

.00 .75 .25 16

.00 1.00 .00 13

.25 .00 .75 14

.25 .25 .50 18

.25 .50 .25 20

.25 .75 .00 23

.50 .00 .50 10

.50 .25 .25 18

.50 .50 .00 22

.75 .00 .25 7

.75 .25 .00 18

1.00 .00 .00 6
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Another difference is that our model consists of only six terms(X1,X2,X3,X1X2,

X1X3, andX2X3). Instead of the traditional polynomial fit that we would have in

response-surface methodology; for example, our quadratic model is called a canon-
ical polynomial and written as

Yc ¼
X q

i¼1
BiXi þ

Xq�1

i¼1

Xq

j¼iþ1
BijXiXj

where q is the number of components in the mixture. The parameter Bi represents

the expected response to pure mixture; that is, when Xi¼ 1,Xj¼ 0 (i 6¼ j). Graphi-
cally, this term represents the height of the vertex Xi ¼ 1 of the mixture surface and

is usually a non-negative quantity.

In our numerical example, all the terms (except the negative X1X3 term) are

significant. Our model would be

Yc ¼ 5:5X1 þ 13:3X2 þ 16:5X3 þ 55:7X1X2 � 2:3X1X3 þ 10:6X2X3

Fig. 17.4 Simple-lattice output in JMP
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Considering that, in terms of magnitude, of b3> b2> b1, we could say that of the
three single-component blends, component 3 (X3) is estimated to result in the

greatest Y.3 Also, by mixing components 1 and 2 or 2 and 3 we would have a

higher Y – both terms have positive signs, indicating a synergistic effect, whereas
components 1 and 3 have an antagonistic effect (negative term).

Additionally, we can cause the output to display the triangular surface (shown in

Fig. 17.5), by clicking on Factor Profiling > Mixture Profiler found under the

“inverted” red triangle. We can use it to visualize and optimize our Y. Unlike when
viewing contour plots, we can view three components of a mixture at a time using

the ternary plot. Using the Prediction Profiler (shown in Fig. 17.6), we find that the

highest Y can be obtained when X1 is .43, X2 is .57, and X3 is 0 – note that the

coefficients add up to 1.

Fig. 17.5 Triangular surface in JMP

3While it is quite common in the mixture-design literature to rank-order the importance of the X’s
by the magnitude of the respective b’s, we must take the routine caution of realizing that, of course,

the b’s are, indeed, estimates (ε has not gone away!!), in addition to any effect on the slope

estimates due to multicollinearity.
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Example 17.3 Vitamin Mixture in JMP

Assume we received a request to develop a vitamin mixture containing apple (X1),

banana (X2), and papaya (X3) using a simplex-lattice design to obtain the optimal

recipe. Each component will be studied with four possible levels (m ¼ 3) and the

response will be the score given by a trained panel of sensory analysts using a

7-point hedonic scale, where 1 represents “dislike extremely” and 7 means “like

extremely.” Table 17.3 presents the coordinates and experimental data, and the

output is shown in Fig. 17.7.

Fig. 17.6 Prediction profiler in JMP

Table 17.3 {3,3} Simplex-lattice design

X1 X2 X3 Y

.00 .00 1.00 36

.00 .33 .67 42

.00 .67 .33 43

.00 1.00 .00 43

.33 .00 .67 31

.33 .33 .33 37

.33 .67 .00 40

.67 .00 .33 33

.67 .33 .00 38

1.00 .00 .00 32

17.2 Simplex-Lattice Designs 593



Note that only the linear terms (that is, the pure mixtures) are significant

( p < .0001). Using the Prediction Profiler (shown in Fig. 17.8), we find that,

based on our data, the highest score for the vitamin mixture can be obtained when

the proportions of papaya and banana are .75 and .25, respectively.

Fig. 17.7 Vitamin mixture output
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17.3 Simplex-Centroid Designs

In the next two examples, we discuss simplex-centroid designs, where the data

points are located at each vertex of the simplex, in addition to combinations of the

factors with each factor at the same level.

Example 17.4 Numerical Example in JMP

In this example, let’s assume we still have three independent variables (X1, X2, and

X3) and we want to build and analyze a simplex-centroid design. We would still

have a triangular surface; however, our allowable points would be located at each

vertex (each component would be tested without mixing), and at combinations of

two and three factors at equal levels. (This is what distinguishes a simplex-centroid

design from a simplex-lattice design.) Our coordinates are shown in Table 17.4 and

Fig. 17.9.

Table 17.4 Simplex-centroid design with three components

X1 X2 X3

1.00 .00 .00

.00 1.00 .00

.00 .00 1.00

.50 .50 .00

.50 .00 .50

.00 .50 .50

.33 .33 .33

Fig. 17.8 Prediction profiler in JMP
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As with the previous design, we first select DOE > Classical > Mixture

Design, determine Y and X’s, then select Simplex Centroid and specify K, which
is the maximum number of components to be mixed (with equal proportions) at a

time (here, 2). This K is not to be confused with k (number of factors). We could

specify K ¼ 3, which is more accurate, but our design matrix would have two equal

mixtures since JMP automatically includes a combination with all components at

equal proportions (at the center of Fig. 17.9). This step is shown in Fig. 17.10.

Table 17.5 presents the experimental runs and response.

Fig. 17.9 Configuration of

simplex-centroid design

with three components
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Next, we click on Analyze > Fit Model, which will generate the output shown

in Fig. 17.11. All the terms in our model are significant. Our model would be

Yc ¼ 17:0X1 þ 10:0X2 þ 7:0X3 � 5:9X1X2 þ 16:2X1X3 þ 22:2X2X3

In this example, b1> b2> b3, and we could say that component 1 (X1) has the

greatest contribution to Y. Also, we have a synergistic effect of mixture of compo-

nents 1 and 3 or 2 and 3 (positive sign), and an antagonistic effect of components

1 and 2 (negative sign).

Table 17.5 Numerical example of simplex-lattice design

X1 X2 X3 Y

1.00 .00 .00 17

.00 1.00 .00 10

.00 .00 1.00 7

.50 .50 .00 12

.50 .00 .50 16

.00 .50 .50 14

.33 .33 .33 15

Fig. 17.10 Simplex-centroid in JMP
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A ternary plot also can be obtained by clicking on Factor Profiling > Mixture

Profiler found under the “inverted” red triangle, and is shown in Fig. 17.12.

The highest Y would be obtained when X1 is .81 and X3 is .19 (shown in Fig. 17.13).

Fig. 17.11 Simple-centroid output in JMP
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Fig. 17.12 Triangular surface in JMP

Fig. 17.13 Prediction profiler for simplex-centroid design in JMP
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Example 17.5 A New Alloy Mixture in JMP

Using a simplex-centroid design, we will demonstrate how we can optimize the

formulation of a new alloy mixture containing metals A, B, C, and D. The response

will be the strength of this alloy. Table 17.6 presents the experimental data and the

output is provided in Fig. 17.14.

Table 17.6 Alloy mixture

A B C D Y

1.00 .00 .00 .00 102

.00 1.00 .00 .00 110

.00 .00 1.00 .00 164

.00 .00 .00 1.00 140

.50 .50 .00 .00 116

.50 .00 .50 .00 113

.50 .00 .00 .50 170

.00 .50 .50 .00 156

.00 .50 .00 .50 138

.00 .00 .50 .50 153

.33 .33 .33 .00 134

.33 .33 .00 .33 141

.33 .00 .33 .33 140

.00 .33 .33 .33 143

.25 .25 .25 .25 142
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All linear terms and the two-factor interactions, AC, BC, and AD, are significant.

Using the Prediction Profiler (shown in Fig. 17.15), we find that the optimal

mixture (with the highest strength) has the following proportions: .39 A, .00 B,

.00 C, and .61 D. Note that in the examples included in this chapter at least one

variable has “0” as its optimal level – this is just a coincidence.

Fig. 17.14 Alloy mixture output
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Example 17.6 The “Perfect” Cake Mixture (Revisited)

Using a simplex-lattice design, we were able to determine what the “perfect” cake

mixture would consist of; that is, the proportions of the components in the dry and

the wet mixtures. The company developed a production line with six cake flavors.

After some additional tests, they successfully launched this line in the market. The

managers were so excited with the use of mixture designs that they wanted to apply

them to all their product lines in order to get the “perfect” portfolio!

Exercises

1. Suppose that the data in Table 17EX.1 represent a mixture of three components

(A, B, C) withm¼ 5. Analyze this experiment and find the model. What terms in

the model are significant at α ¼ .05?

Fig. 17.15 Prediction profiler in JMP
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2. Suppose that the data in Table 17EX.2 represent a mixture of five components

(A, B, C, D, E) with K ¼ 4. Analyze this experiment and find the model. What

terms in the model are significant at α ¼ .05?

Table 17EX.1 Three components study

A B C Y

.0 .0 1.0 28

.0 .2 .8 45

.0 .4 .6 50

.0 .6 .4 42

.0 .8 .2 47

.0 1.0 .0 46

.2 .0 .8 30

.2 .2 .6 38

.2 .4 .4 47

.2 .6 .2 37

.2 .8 .0 46

.4 .0 .6 43

.4 .2 .4 36

.4 .4 .2 42

.4 .6 .0 31

.6 .0 .4 48

.6 .2 .2 48

.6 .4 .0 35

.8 .0 .2 41

.8 .2 .0 40

1.0 .0 .0 54

Table 17EX.2 Five components study

A B C D E Y

1.00 .00 .00 .00 .00 56
.00 1.00 .00 .00 .00 58
.00 .00 1.00 .00 .00 50
.00 .00 .00 1.00 .00 60
.00 .00 .00 .00 1.00 58

.50 .50 .00 .00 .00 53

.50 .00 .50 .00 .00 68

.50 .00 .00 .50 .00 76

.50 .00 .00 .00 .50 49

.00 .50 .50 .00 .00 75

.00 .50 .00 .50 .00 78

.00 .50 .00 .00 .50 50

.00 .00 .50 .50 .00 47

.00 .00 .50 .00 .50 79

.00 .00 .00 .50 .50 69

(continued)
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Appendix

Example 17.7 Vitamin Mixture using R

To analyze the same vitamin-mixture example in R, we can import the data as

previously, or we can create our own data. The second option can be implemented

in two ways: using the SLD() function (mixexp package) or the mixDesign()

function (qualityTools package). The steps are as follows:

# Option 1: using the SLD() function

> vitamin <- SLD(3, 3)

# The first and second arguments of the SLD() function refer to the number of

factors and levels, respectively

> score <- c(32, 38, 40, 43, 33, 37, 43, 31, 42, 36)

> vitamin <- data.frame(vitamin, score)

> vitamin

Table 17EX.2 (continued)

A B C D E Y

.33 .33 .33 .00 .00 80

.33 .33 .00 .33 .00 76

.33 .33 .00 .00 .33 54

.33 .00 .33 .33 .00 64

.33 .00 .33 .00 .33 61

.33 .00 .00 .33 .33 62

.00 .33 .33 .33 .00 59

.00 .33 .33 .00 .33 78

.00 .33 .00 .33 .33 59

.00 .00 .33 .33 .33 68

.25 .25 .25 .25 .00 66

.25 .25 .25 .00 .25 77

.25 .25 .00 .25 .25 66

.25 .00 .25 .25 .25 74

.00 .25 .25 .25 .25 72

.20 .20 .20 .20 .20 58
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x1 x2 x3 score
1 1.0000000 0.0000000 0.0000000 32
2 0.6666667 0.3333333 0.0000000 38

(. . .)
10 0.0000000 0.0000000 1.0000000 36

# Option 2: using the mixDesign() function

> vitamin <- mixDesign(p=3, n=3, type="lattice", axial=FALSE,

+randomize=FALSE)

# p and n refer to the number of factors and levels, respectively

Warning messages:

1: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"doeFactor">) :

implicit list embedding of S4 objects is deprecated

2: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"doeFactor">) :

implicit list embedding of S4 objects is deprecated

3: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"doeFactor">) :

implicit list embedding of S4 objects is deprecated

> score <- c(32, 38, 33, 40, 31, 43, 43, 42, 36, 37)

> response(vitamin) <- score

[1] "score"

> vitamin

StandOrder RunOrder Type A B C score

1 1 1 1-blend 1.0000000 0.0000000 0.0000000 32

2 2 2 2-blend 0.6666667 0.3333333 0.0000000 38

(. . .)

10 10 10 <NA> 0.3333333 0.3333333 0.3333333 37

The analysis of this design can also be performed in two ways, with similar

(fortunately!!) results:

# Option 1: using the lm() function

> vitamin_model <- lm(score~-1+x1+x2+x3+x1:x2+x1:x3+x2:x3,

+data=vitamin)

> summary(vitamin_model)

Call:

lm(formula = score ~ -1+x1+x2+x3+x1:x2+x1:x3+x2:x3,

+data=vitamin)
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Residuals:

1 2 3 4 5 6 7
-0.8571 0.8571 -0.4286 0.2857 1.7143 -0.8571 -0.4286

8 9 10
-1.2857 0.8571 0.1429

Coefficients:

Estimate Std. Error t value Pr(>|t|)
x1 32.857 1.331 24.687 1.60e-05 ***
x2 42.714 1.331 32.093 5.62e-06 ***
x3 35.857 1.331 26.941 1.13e-05 ***
x1:x2 4.500 5.892 0.764 0.4876
x1:x3 -11.571 5.892 -1.964 0.1210
x2:x3 13.500 5.892 2.291 0.0837 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.414 on 4 degrees of freedom

Multiple R-squared: 0.9994, Adjusted R-squared: 0.9986

F-statistic: 1186 on 6 and 4 DF, p-value: 1.891e-06

# Option 2: using the MixModel() function

> MixModel(frame=vitamin, "score", mixcomps=c("A", "B",

+"C"), model=2)

coefficient Std. err. t.value Prob
A 32.85714 1.330950 24.6869805 1.597878e-05
B 42.71429 1.330950 32.0930746 5.619531e-06
C 35.85714 1.330950 26.9410091 1.128541e-05
B:A 4.50000 5.891883 0.7637626 4.875729e-01
C:A -11.57143 5.891883 -1.9639610 1.210039e-01
B:C 13.50000 5.891883 2.2912878 8.373821e-02

Residual standard error: 1.414214 on 4 degrees of freedom

Corrected Multiple R-squared: 0.9561644

Call:

lm(formula = mixmodnI, data = frame)

Coefficients:

A B C A:B A:C B:C
32.86 42.71 35.86 4.50 -11.57 13.50
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There are also two ways we can create a triangular surface in R (shown in

Fig. 17.16) using the contourPlot3() function, which will result in the same

(again, fortunately) graph.

# Option 1:

> contourPlot3 (A, B, C, score, data=vitamin, form="score~

+-1+A+B+C+A:B+A:C+B:C")

# Option 2:

> contourPlot3 (A, B, C, score, data=vitamin,

+form=vitamin_model)

Fig. 17.16 Triangular surface in R
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Example 17.8 A New Alloy Mixture using R

We can use the same software packages to design and analyze a simplex-centroid

design. The options are shown below:

# Option 1: using the SCD() function

> alloy <- SCD(4)

> strength <- c(102, 110, 164, 140, 116, 113, 170, 156,

+138, 153, 134, 141, 140, +143, 142)

> alloy <- data.frame(alloy, strength)

> alloy

x1 x2 x3 x4 strength
1 1.0000000 0.0000000 0.0000000 0.0000000 102
2 0.0000000 1.0000000 0.0000000 0.0000000 110

(. . .)
15 0.2500000 0.2500000 0.2500000 0.2500000 36

# Option 2: using the mixDesign() function

> alloy <- mixDesign(p=4, type="centroid", axial=FALSE,

+randomize=FALSE)

Warning messages:

1: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"doeFactor">) :

implicit list embedding of S4 objects is deprecated

2: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"doeFactor">) :

implicit list embedding of S4 objects is deprecated

3: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"doeFactor">) :

implicit list embedding of S4 objects is deprecated

4: In ‘[<-‘(‘*tmp*‘, i, value = <S4 object of class

+"doeFactor">) :

implicit list embedding of S4 objects is deprecated

> strength <- c(140, 164, 110, 102, 153, 138, 156, 170,

+113, 116, 143, 140, 134, +141, 142)

> response(alloy) <- strength

[1] "strength"
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> alloy

Stand-

Order

Run-

Order

Type A B C D score

1 1 1 1-blend 0.0000000 0.0000000 0.0000000 1.0000000 140

2 2 2 1-blend 0.0000000 0.0000000 1.0000000 0.0000000 164

(⋮)

15 15 15 center 0.2500000 0.2500000 0.2500000 0.2500000 142

The analysis of this design can also be performed in two ways, with similar

(‘nuff said) results:

# Option 1: using the lm() function

> alloy_model <- lm(strength~-1+x1+x2+x3+x4+x1:x2+x1:x3+x1:

+x4+x2:x3+x2:x4+x3:x4, data=alloy)

> summary(alloy_model)

Call:

lm(formula = strength ~ -1 + x1 + x2 + x3 + x4 + x1:x2 + x1:

+x3 + x1:x4 +x2:x3 + x2:x4 + x3:x4, data = alloy)

Residuals:

1 2 3 4 5 6 7

-0.55271 -0.63166 -0.65797 -1.68429 -0.06304 0.04222 4.14748

8 9 10 11 12 13 15

0.35801 4.46327 4.56854 5.02123 -4.21561 -4.45245 -5.16298

15

-1.18005

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 102.553 5.467 18.757 7.93e-06 ***

x2 110.632 5.467 20.235 5.45e-06 ***

x3 164.658 5.467 30.116 7.57e-07 ***

x4 141.684 5.467 25.914 1.60e-06 ***

x1:x2 37.883 23.559 1.608 0.168742

x1:x3 -82.590 23.559 -3.506 0.017180 *

x1:x4 174.936 23.559 7.425 0.000698 ***

x2:x3 71.989 23.559 3.056 0.028241 *

x2:x4 29.515 23.559 1.253 0.265674

x3:x4 -18.959 23.559 -0.805 0.457517

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 5.531 on 5 degrees of freedom

Multiple R-squared: 0.9995, Adjusted R-squared: 0.9984

F-statistic: 944.1 on 10 and 5 DF, p-value: 1.51e-07

# Option 2: using the MixModel() function

> MixModel(frame=alloy, "strength", mixcomps=c("A", "B",

+"C", "D"), model=2)

coefficient Std. err. t.value Prob
A 102.55271 8.292953 12.3662476 6.125730e-05
B 110.63166 8.292953 13.3404418 4.233074e-05
C 164.10534 8.292953 19.7885291 6.087322e-06
D 142.23692 8.292953 17.1515406 1.233387e-05
B:A 37.88344 35.734106 1.0601479 3.375799e-01
C:A -72.64288 35.734106 -2.0328724 9.775260e-02
D:A 164.98870 35.734106 4.6171212 5.750377e-03
B:C 81.93607 35.734106 2.2929374 7.039056e-02
B:D 19.56765 35.734106 0.5475902 6.075199e-01
C:D -18.95867 35.734106 -0.5305483 6.184412e-01

Residual standard error: 8.38936 on 5 degrees of freedom

Corrected Multiple R-squared: 0.9361068

Call:

lm(formula = mixmodnI, data = frame)

Coefficients:

A B C D A:B A:C A:D
102.55 110.63 164.11 142.24 37.88 -72.64 164.99

B:C B:D C:D
81.94 19.57 -18.96
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Chapter 18

Literature on Experimental Design
and Discussion of Some Topics Not Covered
in the Text

In this last chapter, we have two goals. The first is to acquaint the reader with

several references in the field of experimental design, and the second is to introduce

some additional topics in experimental design and provide references for them.

To achieve the first goal, we list a number of useful references, along with our

comments about many of them. A number of textbooks and journal articles in the

field are excellent references, but no single text is the best for every topic. In

addition, the texts are written at different levels of mathematical sophistication

and detail, and several texts are primarily dedicated to one area of application. As

we noted in the preface to this text, we believe that additional mathematical detail is

a mixed blessing – it provides more insight to those who want and can handle it, but

causes others added difficulty in finding the gems among the ore. It increases the

difficulty of making more application-oriented inquiries, as well as burdening

readers simply wishing for a mathematically-less-challenging presentation.

We are liberal in giving our opinions about the references from several perspec-

tives. The opinions represent our beliefs, without regard to politics, personalities, or

any other nonprofessional biases of which we are aware. Of course, what makes a

text “better” or “worse” in someone’s view is always, in part, subjective; indeed,

different teachers vary in which aspects of a text they consider more important. In

any event, we view our opinions as ones about which reasonable people may

disagree. In some cases, our views agree with the prevailing wisdom; in other

cases, they may not.

In general, we do not compare our text directly to these references, and indeed,

any comparative (or superlative) statements about the referenced texts are always

with the caveat of “present company (that is, our text) excluded.” Thus, when

we make a statement that “we believe that X text is the best (or one of the best)

text(s) for Y and Z topics,” we are not saying that it is superior to our text. The

referenced text may go into a topic more or less deeply than our text, present the

material at a different mathematical level, and use applications in different areas;

however, we would not agree that any text is superior to ours for the goals we set for
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ourselves (note that we are not claiming global superiority, simply parity). We

believe that all authors should feel that way about their own book!

As mentioned, our second goal in this chapter is to introduce, in a very cursory

way, a number of topics that we have, in the main, not covered in this text (although

we may have briefly alluded to them). We hope to provide the reader with a modest

understanding of the role of these topics in experimental design and to supply

references on those topics.

18.1 Literature Discussion

The list of references at the end of the chapter is ordered alphabetically and is

restricted to texts that have the design and analysis of experiments as the primary

topic. Inclusion of a text on this list indicates that we believe the text (or in some

cases a journal article) belongs to at least one of the following categories: (1) a

classic, (2) one of the best texts for specific topics – some for topics we have

covered in the text, others for topics to be briefly introduced in Sect. 18.2, (3) one of

the best texts at a given mathematical level, (4) a superior text for a dedicated

application area (such as biology), and (5) an “offbeat” text, one that differs from

the others in a positive way. We do not view these categories as mutually exclusive;

indeed, some texts are in multiple categories. A few of these references have

appeared earlier in the body of the text. However, not all references in the body

of the text are repeated here.

18.1.1 Some Classics

Some may wish to read about portions of the subject matter in the original words of

the “masters.” Two of the pioneers of much of the work in this text are Sir Ronald

Fisher and Frank Yates. The examples in Fisher’s two books, Fisher (14th edition,

1970; 9th edition, 1971), are almost exclusively in the areas of genetics and

agriculture. The books are very difficult to follow in places and are not wise choices

for use as textbooks. However, some sections of these books are fascinating –

especially those motivated by Fisher’s description of a woman’s extraordinary

claim that she can taste whether a cup of tea had the tea or the milk put in first.

Fisher used this example to introduce and discuss several aspects of experimental

design.

Yates’ books are also classics. Yates (1937) provides insight about the origins of
factorial design and Yates’ algorithm; Yates (1970) is a series of his papers on a

variety of subjects. These two books would also not be wise choices of a text for a

current course in experimental design.

612 18 Literature on Experimental Design and Discussion of Some Topics. . .



18.1.2 Recommendations for Specific Topics

In this section, we give our preferences for the best texts for specific topics or

combinations of topics that were covered in our text. In Sect. 18.2, where we

introduce and discuss selected topics not included in our text, we include references

on those topics. As noted above, no one text is the best for all topics. We are

focusing on the understanding of the topics. Many of the texts are “older;” clearly,

these texts, for all their merit in terms of clarity of explanation and/or interesting

applications, are lacking use of modern statistical software.

18.1.2.1 Factorial and Fractional-Factorial Designs

We recommend four books on these topics. Two are by the same authors: Anderson

and McLean (1974) and McLean and Anderson (1984). Both of these books are

heavily oriented toward design of two- and three-level factorial and fractional-

factorial designs. Both provide excellent and deep discussions, not only of two- and

three-level complete factorial and fractional-factorial designs, but also of mixed-

level factorial and fractional-factorial designs with two and three levels. Certain

other mixed-level designs are also discussed. The 1984 book goes more deeply into

the mixed-level designs.

A very methodological treatment of the design of two- and three-level factorial

and fractional-factorial designs is provided in Davies (3rd edition, 1984). This book

is more application oriented than the two cited above, and uses many more real-

world examples. It is also a more comprehensive book with more topics covered.

The other book on these topics worth noting is Daniel (1976). This book is

extremely application oriented, with lengthy discussion of many real-world exper-

iments. Cuthbert Daniel was, at various times, one of the chief consultants for

Procter and Gamble, General Foods, Consumers Union, and Pan American, among

others. The book is heavily oriented toward 2k�p, 3k�p, and 2k3n designs. However,

in our view, this book does not provide a useful guide for how to design these

experiments; in addition, its writing style is a bit disappointing.

18.1.2.2 Multiple-Comparison Testing

In Chap. 4, we covered the basics of multiple-comparison testing. There are entire

books on this one subject. We have two recommendations: Hochberg and Tamhane

(1987) and Hsu (1996). Both are excellent; however, we prefer the Hsu’s book as a
bit less (though still moderately) mathematically challenging. It also has an espe-

cially good chapter on abuses and misconceptions in multiple-comparison testing.
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18.1.2.3 Taguchi Methods

We devoted Chap. 13 to Taguchi methods. Although we touched on most of the

aspects of these methods, we did not cover the topic in great depth. A number of

books, as well as entire courses, are devoted to this subject. We believe that, by far,

the best treatise on the subject is by Genichi Taguchi, himself. In our view, his

two-volume book, Taguchi (1987, reprinted 1994), is the clearest and most com-

prehensive available. Three other books also deserve mention. Two are Ryan (3rd

edition, 2011) and Ross (2nd edition, 1996). They offer sound treatment of Taguchi

methods, tying them to quality issues and occasionally suggesting improvements to

classical Taguchi methods. The other book is Park (1996); this book, more so than

the others, covers both Taguchi methods and classical methods and commingles

them. Each of the books is oriented toward engineering applications.

18.1.2.4 Response-Surface Methods

We described and illustrated the basics of response-surface methodology in

Chap. 16, as well as providing a real-world application. This is another topic on

which entire books have been written. Of several excellent books on the subject, our

favorite is Box and Draper (1987). We give it a slight edge due, primarily, to its

clarity of exposition and applied orientation. Our second choice is that of Myers

et al. (2016). Myers wrote one of the first books on the subject of response-surface

methods in 1976; Montgomery is the author of one of the best general books on

experimental design (to be discussed and referenced later in this chapter). This book

is also application oriented and includes some developments in the field not

discussed in Box and Draper. Another example is Khuri and Cornell (2nd edition,

1996). The general level of mathematics is, in our view, somewhat higher than that

of the other books mentioned. Some chapters are the same, or nearly the same, as in

the first edition; overall, however, the second edition is about 25% longer than the

first edition.

We also recommend one journal article, Lucas (1976). Many of the current

journal articles require a much higher level of mathematical preparation and effort

to fathom, compared to a couple of decades ago. In our view, this is not generally a

positive development. We believe that it is due, at least in part, to the increased

competition for publication in some of the so-called top journals. Some cynics

suggest that the average number of readers of these journal articles has been

monotonically decreasing over time; the even more cynical suggest that for some

journals, the attractiveness of an article is inversely proportional to the number of

people able to read it! However, some older journal articles are not so burdensome

to follow and have much to offer those who cannot, or do not choose to, wallow in

complicated mathematics. This article is one of those. It provides a useful perspec-

tive on some issues involved in response-surface methods.
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18.1.2.5 Mixture Designs

In Chap. 17, we introduced mixture designs. As we have discussed, these designs

involve the blending of two or more components in various proportions in such a

way such that, once the levels of some of the factors are selected, levels of other

factors are no longer unrestricted. For example, if the amounts of five factors must

total 100% of a mixture, and four of the factors are assigned levels that total 88%,

the other factor must be at a level of 12%. Therefore, we cannot, in general, set up a

routine factorial (or fractional-factorial) design; not all treatment combinations are

feasible.

A book that is usually recommended as one of the best for a superior, dedicated

treatment of mixture designs is Cornell (3rd edition, 2002). A brief exposure to the

general issues involved in these types of experiments can be found in Piepel and

Cornell (1994). The basis of the simplex-centroid design can be found in

Scheffé (1963).

18.1.3 General Texts

This section is a discussion of books recommended for specific topics. However, we

also wish to include those books which we consider among the best general texts in

the field of experimental design (as we aim for this text to be). First and foremost,

we include Li (1964) and Hicks and Turner (5th edition, 1999). We will discuss

these two favorites in the next section.

A book that is among the best general texts available today is Montgomery (9th

edition, 2017). It is well written, clear, and has good exercises. Another book in this

category is Winer et al. (3rd edition, 1991). One of the most comprehensive books

available, with over a thousand pages, it is part of the McGraw-Hill series in

psychology. Another book that must be mentioned is Box et al. (2nd edition,

2005). Actually, we do not view this book as a superior choice of text. We believe

it lacks some of the ingredients we find most important, including a high level of

clarity; however, it is probably the book most often mentioned by others as one of

the best texts available. In a poll taken in the 1980s, the Box, Hunter, and Hunter

book (1st edition) won the vote for the single book to own if one could own only one

book on experimental design.

18.1.3.1 Level of Mathematics

Of all the books we have seen, the one with a significantly-simpler level of

mathematics is Li (1964). This book is a delight. It is written in an informal style

and virtually every numerical example is contrived with “easy numbers.” As we

noted in the preface, Professor Li stated his view (which we cited in the preface to
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the text): “How does one first learn to solve quadratic equations? By working

with terms such as 242.5189X2� 683.1620Xþ 19428.5149¼ 0, or with terms like

X2� 5Xþ 6¼ 0?” He covers all of the necessary mathematical concepts (that is, he

does not at all avoid topics such as deriving expected mean squares), but in a way

that minimizes the level of mathematics without compromising the derivation of the

results. The Li book has been a major inspiration for us and has had a major impact

on the style, mathematical level and rigor, and “attitude” of our book. It is unlikely

that we shall say as much about any other text.

The next step up in mathematical content is found in Guenther (1964), Hicks and

Turner (5th edition, 1999), and Schmidt and Launsby (4th edition, 1994). Of the

three, we strongly prefer the Hicks book, due to the organization of the topics and

the general writing style. Guenther is a fellow of the American Statistical Associ-

ation and a classical theoretical statistician, but his text is mathematically very

readable. The Schmidt and Launsby text possibly could use some additional editing

and organization. These three texts are mentioned together solely for their mathe-

matical level. The most advanced level of mathematics is found in Scheffé (1959)

and Graybill (1961). The other books on experimental design and analysis have a

mathematical level between those noted in this paragraph.

18.1.3.2 Application Areas

Some books do a superior job of illustrating how the techniques can be applied

usefully in a particular application area. We note our choices of a few of these

books. We base our choices on general reputation, our perception of the clarity of

exposition of both the experimental design and statistical issues as well as applica-

tion issues, and the degree to which the book provides a good perspective on the

distinctive experimental-design issues involved in the particular application area.

Some of the books noted have been around a long time, but have attributes that

more than offset the lack of recency.

For applications in the medical area, we note Armitage et al. (4th edition, 2002)

and Fleiss (1986, reprinted in 1999). For applications in the biology area we suggest

Dennenberg (1976) and Kuehl (2nd edition, 2000). We also note Kuehl (1994)

for selected applications in the agriculture area. For psychological research, we

recommend Edwards (5th edition, 1984). For social and economic policy, we

suggest Ferber and Hirsch (1982). For engineers and scientists, we note Montgomery

(9th edition, 2017) and Diamond (3rd edition, 2001). For physicists and chemists, we

recommend Goupy (1993).

18.1.3.3 Offbeat Books

We list this category, “offbeat,” primarily as an excuse to reference one book, Cox

(1958, reprinted 1992). It is not at all recommended as a textbook for a typical

course in experimental design. However, it provides a relatively rich discussion of a
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number of topics that are not discussed in great detail, if at all, in most other books

on experimental design. Examples of such topics are the use of α ¼ .05 compared

with α¼ .01 or other values, the practical difficulties of randomization, distinctions

among different kinds of factors that appear in factorial designs, the choice of how

many levels of these factors to use and what they should be, the different purposes

for which observations may be made, an especially detailed discussion of the size of

an experiment, and other issues. Another book that is offbeat in terms of discussing

issues that are usually just glossed over is Wilson (revised edition, 1990).

18.2 Discussion of Some Topics Not Covered in the Text

Several topics that either were not addressed in the body of the text or were touched

upon only lightly are discussed here, and references are provided. The last four of

these topics essentially involve different designs.

18.2.1 Outliers

Sometimes a data set contains one or more data points that appear to be aberrations,

in that they are very different from the other data points in the set. If such a data

point is truly the result of an unusual occurrence or circumstance that is rarely likely

to be duplicated, the data point is generally viewed as not part of the process being

modeled and investigated, and is referred to as an outlier and dropped from the data

set before the analysis. Of course, what makes a data point aberrational is not well

defined, and often there is no determinable cause of an unusual-looking data point.

If we “throw out” a data value that was actually part of the probability distribu-

tion at that treatment combination (remember: for normally-distributed output,

about a third of a percent of the time a data point deviates from the true mean by

more than three standard deviations), the analysis of the remaining data might

underestimate the variability of the process and reach unwarranted conclusions.

However, if the data value is retained, but is truly an aberration, the analysis may

suggest misleading conclusions of different sorts. Like many of life’s decision

processes, the decision to label a data value an outlier is a trade-off between Type

I and Type II errors. What should the experimenter do? We don’t have an unequiv-
ocal answer. Indeed, this is not a question that’s easy to answer, as evidenced by the
existence of several entire books on the subject of outliers. We note two of them,

Iglewicz and Hoaglin (1993) and Barnett and Lewis (3rd edition, 1994). There is

also some good elementary discussion of the topic in Hicks and Turner (5th edition,

1999) and Davies (3rd edition, 1984).
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18.2.2 Missing Data

We have only briefly alluded to the treatment of missing data. This is another

problem that has no quick, easy, general answer. We recommend two books

devoted to the subject, Dodge (1985) and Little and Rubin (2nd edition, 2002).

Both are comprehensive and useful. The Dodge book is a bit more oriented toward

the kind of experiments we have covered in this text, and the Little and Rubin book

is a bit more focused on missing data in a regression analysis or other multivariate-

analysis context, although it also considers missing data in the more classic

orthogonal designs we have addressed. The two basic choices are (1) ignore the

fact that the data point(s) is missing and do the analysis under the (generally)

non-orthogonal conditions caused by the absence of the missing data; and (2) esti-

mate the missing data by “surrogates” and make the proper adjustments in the

analysis to recognize that this has been done. How to do the latter is the major topic

of the books cited.

18.2.3 Power and Sample Size

We have discussed power ([1 � β], the complement of the probability of a Type II

error) at a couple of points in the text. As we noted, the determination of power

achieved with a design, or the determination of the sample size that achieves a

specific power, each relative to specific true values of the μ’s (and other inputs, such
as α), is not simple. Indeed, that is why power and sample-size tables appear in

various texts (including ours), and why only a few software programs have decided

to address these issues, sometimes in a limited way.

We note two texts that are known for their tables of samples size versus power as
a function of various other inputs and different designs, and in some cases the form

of the dependent variable. They are Cohen (2nd edition, 1988) and Kraemer and

Blasey (2nd edition, 2016). Cohen’s text is oriented toward the behavioral sciences,
whereas Kraemer and Blasey’s is more general. Each provides basics on the

computation of power and sample size, but is used mostly for its tables.

18.2.4 Time-Series and Failure-Time Experiments

When time is an experimental factor, there is an increased likelihood that one of

the traditional assumptions in basic ANOVA, the assumption of independence-of-

errors, is violated. And, the reader may recall that this assumption is not very robust.

Just how does one inquire about this possible violation? What should be done if this

violation is discovered? Our text has not addressed these issues. A book dedicated
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to this subject is Glass et al. (revisied edition, 2008); it contains a useful compila-

tion of what needs to be considered in this situation.

When the dependent variable is measured in units of time – in particular, when

the yield, or response, is failure-time data, there is an increased probability that the

normality assumption of ANOVA is materially violated. Kalbfleisch and Prentice

(2nd edition, 2002) is dedicated to this topic.

18.2.5 Plackett-Burman Designs

There is a set of designs called Plackett-Burman designs, usually applied in cases in

which all factors are at two levels. These designs provide the minimum possible

number of treatment combinations as a function of the number of factors in order to

determine all main effects cleanly, under the assumption that all interactions equal

zero. Plackett and Burman (1946) provides the methodology and tables to derive

this “optimal” design for two-level designs, and a number of factors from 1 to

100 (except 92), and for the number of levels, L, equal to three, four, five, and

seven, and for a number of factors equal to Lr, r an integer. The vast majority of

these Plackett-Burman designs suffer from a lack of orthogonality.

18.2.6 Repeated-Measures Designs

The term “repeated-measures design” is used to designate a design in which each

subject (usually, a person) is considered to be a block and is used (“repeated”) for

each treatment combination. Repeated-measures designs greatly reduce the error

for situations in which differences from person to person are relatively large.

A repeated-measures design is sometimes referred to as a “within-subjects” design.

Designs covered in this text have been “between-subjects designs” (a term we did

not introduce earlier, since it was not needed to distinguish designs) – if people are

involved, each data value corresponds to a different person; that is, there are no

“repeated measures.” The Luna Electronics application in Chap. 16 is an exception;

it is a repeated-measures design.

Sometimes a repeated-measures design is used when the nature of the experi-

ment suggests that a person be exposed to all treatment combinations. For example,

when studying the reaction to different print ads, what an individual person “brings

to the table” in terms of attitudes (toward life and/or advertisements in general) may

vary far more than an individual’s view of the differences from one ad to another.

Also, a repeated-measures design would be mandatory when studying learning-

curve types of responses over time.

Other times, a repeated-measures design is used to dramatically reduce the

number of subjects required in the experiment. For example, one of the authors

has frequently consulted in marketing research studies in which treatment
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combinations of factor levels are shown to responders (such as 16 “scenarios”

reflecting treatment combinations of eight factors at two or three levels each) and

a purchase-intent measure is solicited for each scenario. If it is desired that each

scenario be evaluated by 200 responders (representing a careful mix of demo-

graphic characteristics and degree of previous purchase), one would need

16 � 200¼ 3200 people if there were no repeated measures. This amount is far

higher than is practical; by having each of the 200 responders consider all

16 scenarios, we achieve the goal of 200 evaluations per scenario, using only

200 people in total.

There are also “partially repeated-measures designs,” in which some factors are

totally repeated and others are not. An example would be an experiment in which

different responders are first exposed to different levels of knowledge about a

product and then each responder evaluates all treatment combinations of product

attributes. The prior-knowledge factor would be a between-subject factor, and the

other factors composing the treatment combinations of product attributes would be

within-subject.

The key element of repeated-measures designs is the treatment of “person” as a

random-level factor and the subsequent implications of this in the analysis phase of

the experiment. We discussed aspects of this issue in Chap. 6, but only for certain

specific cases. There are entire books devoted to these types of experiments. Such

books include Girden (1992) and Vonesh and Chinchilli (1997). Winer et al. (3rd

edition, 1991), basically in one large chapter, provides a superior, thorough treat-

ment of the basic prototypes of these designs.

18.2.7 Crossover Designs

Crossover designs (also called “change-over designs”) are special cases of

repeated-measures designs in which the treatments applied to the same subjects

are systematically changed over time. A complete book on this subject is

Ratkowsky et al. (1993). Also, Li (1964) covers the elementary principles of, and

special issues involved, in this type of design with great clarity and simplicity.

18.2.8 Bibliography

We cite one other reference. In 1970, Balaam and Federer began to compile a

bibliography of all that had ever been written in the field of design and analysis of

experiments. They did a yeoman’s job, being extremely thorough and cross-

referencing the citations by author, topic, language, and in other ways. The refer-

ences include those through 1969. It is understandable why nobody has picked up

the mantle to provide an update. They didn’t finish until 1973! Their efforts resulted
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in the book Balaam and Federer (1973). We have found many of these earlier

publications in the field of experimental design to be fascinating reading.
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Statistical Tables

Table A Standard normal (Z ) distribution
Left-tail cumulative probabilities, F(Z), for Z-values 0(.01)4.00
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Table A (continued)

Source: E. S. Pearson and H. O. Hartley in Biometrika Tables for Statisticians, vol. 1, 2nd
ed. (1958). Reprinted with permission of Oxford University Press
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Table B Student t distribution
Abscissa (horizontal axis) values for degrees of freedom 1(1)30, 40, 60, 120, 1, for upper-tail

areas .25, .1, .05, .025, .01, .005, .0025, .001, .0005

Reprinted with permission of Oxford University Press
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Table C Chi-Square (χ2) distribution
Abscissa (horizontal axis) values for degrees of freedom 1(1)30, 40(10)100, for upper-tail areas

.25, .1, .05, .025, .01, .005, .001

Source: E. S. Pearson and H. O. Hartley in Biometrika Tables for Statisticians, vol. 1, 3rd
ed. (1966). Reprinted with permission of Oxford University Press
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Table D.1 F distribution

Abscissa (horizontal axis) values for numerator degrees of freedom 1(1)10, 12, 15, 20, 24, 30, 40,

60, 120, 1, denominator degrees of freedom 1(1)30, 40, 60, 120, 1, for upper-tail areas .05
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Table D.1 (continued)

From M. Merrington and C. M. Thompson (1943), Biometrika, vol. 33, p. 73. Reprinted with

permission of Oxford University Press
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Table D.2 F distribution

Abscissa (horizontal axis) values for numerator degrees of freedom 1(1)10, 12, 15, 20, 24, 30, 40,

60, 120, 1, denominator degrees of freedom 1(1)30, 40, 60, 120, 1, for upper-tail areas .01
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Table D.2 (continued)

Source: M. Merrington and C. M. Thompson (1943), Biometrika, vol. 33, p. 77. Reprinted with

permission of Oxford University Press
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