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Preface

All human decisions, including those made in scientific experiments and in obser-
vational studies, are made in some context. Such contexts are being explicitly
considered in this book. To do so, a conceptual variable is defined as any variable
which can be defined by a (group of) human(s)—for instance scientists—in a given
setting. Such variables are classified. Sufficiency and ancillarity in a statistical
model used in scientific investigations are defined conditionally in the scientists’
context. The conditionality principle, the sufficiency principle and the likelihood
principle are generalized, and a rule for when one should not condition on an
ancillary is motivated by examples. Model reduction is discussed in general from
the point of view that there exists a mathematical group acting upon the parameter
space of the model. It is shown that a natural extension of this whole discussion
gives a conceptual fundament from which the formalism of quantum theory can
be discussed. This can also be considered as an argument for an epistemological
basis for quantum theory, a kind of basis that has also been advocated by part of
the quantum foundation community in recent years. Born’s celebrated formula is
shown to follow from a focused version of the likelihood principle together with
some reasonable assumptions on rationality connected to experimental evidence.
The questions around Bell’s inequality are approached by using an epistemic point
of view connected to each observer. The Schrödinger equation is derived from
reasonable assumptions. The objective aspects of the world are identified with
the ideal observational results upon which all real and imagined observers agree.
Philosophical conclusions from my point of departure are discussed.

This is a very brief summary of this book. At the outset, it is written for several
groups of readers: (a) physicists interested in the foundation of their science, (b)
statisticians interested in the foundation of their science and its relationship to
modern physics, (c) philosophers of science, (d) students with a good background in
mathematics and (e) mathematicians with an interest in the foundation of empirical
science. To have such a diversity of readers in mind is quite a challenge. Some will
experience part of the text as rather technical; others will see the approach as unusual
compared to the way they are used to see their own science presented. I encourage
the reader to start with a relatively open mind, but also criticism of my way of
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thinking is welcome. The text concentrates on the foundation; there are very many
aspects of both quantum theory and statistical inference that are not covered. On
the foundational level, I argue that there is a connection between these two areas.
This may be an unusual way of thinking, especially for physicists, and it implies
a special interpretation of quantum mechanics. As an interpretation it is related to
the recent Quantum Bayesian approach, briefly called QBism, but I try to emphasize
that Bayesianism is a branch of statistical inference theory, not of probability theory.
Also, I will allow other approaches to statistical inference. Looking at quantum
mechanics as related to statistical inference will presuppose that there are data.
These data are provided by macroscopic measurement apparatuses. In the ordinary
approach towards quantum mechanics, these measurement apparatuses are first
discussed at a later stage; here I will assume from the beginning that they are there.

In a discussion of a brief version of the account given in this book, the Quantum
Bayesian Ruediger Schack wrote: “The main difference between your approach and
QBism is that your approach is phrased in terms of acquiring information about
variables. QBism on the other hand is concerned with decision theory. . . ”. I will
discuss my relation to QBism in more detail below. I appreciate that decision theory
is important, but here I prefer the Quantum Decision Theory promoted in a series of
papers by Yukalov and Sornette; see Sect. 1.3 below. Also, see my remarks to this
theory in Sect. 5.5, where I just see decision as a primitive concept. My claim is that
a theory about acquiring information about variables is important enough to warrant
a book. After all its aim is to cover the basis of statistics as a science and also very
much of quantum theory as a science. Some of my more qualitative views on the
process of making decisions are discussed in Chap. 6.

Statisticians talk about data on the one hand and parameters of statistical models
on the other hand. Here, I will generalize the parameter concept in such a way that
the new concept also covers prediction and other statements about single units. I
call the new concept e-variable, an abbreviation for epistemic conceptual variable.
In a quantum mechanical setting, simple e-variables will correspond to what is
usually is called observables. As a statistician I want to distinguish between these
observables and the corresponding data values that result from experiments. A
statistician will call these estimates. However, in quantum theory, this distinction
is not always clear. The reason from a statistical point of view is as follows: The
e-variables of elementary quantum theory are discrete, and experiments are often
very accurate. This result, in confidence intervals, credibility intervals or prediction
intervals around the true value that may degenerate to a single point, which actually
is the true value. Thus, in such cases the distinction between estimates and true
value is blurred out, and much of statistical theory becomes irrelevant. At the
foundational level, I will nevertheless keep the distinction and insist that this is
related to statistical inference. As such, it is made in a context, as alreadymentioned.
The observer, and the information available to the observer, plays a crucial role in
quantum mechanics.

I acknowledge that many readers may be confused by this book, especially
readers who know a little (or more) of the usual treatment of quantum mechanics. I
think that the only thing I can offer these readers at present is a letter that I wrote to
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my colleague Barbara Heller recently. Barbara is a statistician living in Chicago, and
she has a keen interest in quantummechanics. After reading a part of mymanuscript,
she wrote to me that she was confused. Here is my answer.

Dear Barbara,
I understand very well your confusion. —
What does statistics have to offer, in my opinion? It is true that statistics is

being used to a large extent by experimental physicists, but I have been looking
for something more fundamental. Can one think of quantum theory and statistical
inference as having partly a common basis? I think so, and I have tried to sketch
such a basis in my book. The common basis is, as I see it, that of an epistemic
process: a process to achieve knowledge. In the simplest case having what I call an
e-variable (epistemic conceptual variable) θ , asking a question to nature: what is θ?
And obtaining an answer in terms of information about θ .

In statistics, θ is most often a continuous parameter, and the answer can be
in terms of a confidence interval or a Bayesian credibility interval. In elementary
quantum mechanics, θ can be discrete, and in an ideal measurement we can obtain
a definite answer: θ = u.

Furthermore, in quantum theory, we have what I call complementary e-variables:
think of spin components in different directions. We can obtain information about
θa and about θb, but the vector (θa, θb) is inaccessible.

In the Hilbert space formulation, an e-variable is identified with an operator, the
possible values of θ are the eigenvalues of that operator and very many state vectors
can be identified by the events of the type θ = u. I have made a point of discussing
this identification from several points of view in my book.

Where do the probabilities in quantum theory come from? They are given by
Born’s formula, a formula for P(θb = uk|θa = uj ) in terms of the state vectors. I
have a rather long derivation of Born’s formula in my book, using two premises:
(1) A focused likelihood principle, which can be motivated from the likelihood
principle in statistics, a basic principle which again can be derived from fairly
obvious assumptions: a conditionality principle and a sufficiency principle. (2) An
assumption of perfect rationality.

Of course, this is not the full story, but it appears to me to be a very useful
beginning for understanding quantum theory from assumptions that are related to
the basic assumptions of statistical theory.

I hope that this has clarified my points of view to some extent, and I sincerely
hope that it may have contributed to remove some of your confusion.

*

The readers just interested in my views on the foundation of quantum mechanics
may skip Chap. 2, but Sect. 2.3 should be looked at, and the concept of likelihood
as the joint probability (probability density) of the data, seen as a function of the e-
variable/parameter (Sect. 2.1.3), should be understood. Section 3.2 may be dropped
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if the generalized likelihood principle of Sect. 3.2.4 is taken for granted. Section 4.4
may be dropped in the first reading. The very impatient reader may go directly from
Chap. 1 to Sect. 5.15.

Aas, Norway Inge S. Helland
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Chapter 1
The Epistemic View Upon Science

Abstract This chapter gives the background for the book. Its relation to other
views on the foundation of quantum theory are clarified and discussed. The
fundamental notion of an e-variable (epistemic conceptual variable) is explained,
it is discussed and is related to the statistical parameter-concept. A quantum state
is in some generality linked to a question-and-answer pair, and an experiment
connected to such a question-and-answer pair is described for the case of a spin
1/2 particle. The two basic postulates of quantum theory are stated and discussed.
The importance of inaccessible conceptual variables is stressed, and this is related
to Bohr complementarity.

1.1 Introduction

The aim of science is to gain knowledge about the external world; this is what we
mean by an epistemic process. In its most primitive form, the process of achieving
knowledge can be described by what Brody (1993) called an epistemic cycle: “Act,
and see what happens”. Experiments in laboratories and observational studies done
by scientists are usually much more sophisticated than this; they often require
several epistemic cycles and also higher order epistemic cycles acting upon the
first order cycles. An experiment or an observational study is always focused on
some concrete system, it involves concrete experimental/observational questions
and it is always done in a context, which might depend on conceptual formulations;
in addition the context may be partly historical and partly chosen by the scientist
himself, or depending upon the scientist.

In earlier years, experiments were often done by single scientists; now it
is more and more common that people are working in teams. Also, results of
experiments should be communicated to many people. This calls for a conceptual
basis which is common to a whole culture of scientists. One problem, however, is
that people from different scientific cultures have difficulties with communicating.
They might not have a common language. The first purpose of this book is to
develop a scientific language for achieving knowledge which is a synthesis of
the languages that I have met in the three cultures that have been exposed to
myself: (1) Mathematical statistics; (2) Quantum mechanics; (3) Applied statistics

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
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including simple applications. It is a hope that this investigation may lead to a
deeper understanding of the epistemic process itself. It is also a hope that such an
investigation may be continued in order to include more scientific cultures, say,
machine learning and quantum computation.

Since statistical inference is used as a tool in very many experimental studies,
also within physics, it is natural to take this culture as a point of departure. But I
will add some elements which are not very common in the statistical literature:

1. I make explicit that every experimental investigation is made in a context.
2. A transformation group may be added to the statistical model.
3. Model reductions by means of such groups are introduced.
4. In order to address also the physicists, the parameter concept is introduced

through the more general term epistemic conceptual variable (e-variable). Any
variable which can be defined in words by a person or by a group of persons in an
experimental situation is called a conceptual variable. The notion of an e-variable
at the outset includes every conceptual variable involved in an epistemic process,
and an e-variable can also be connected to a single unit (say to a single human
being in a sociological or psychological investigation or to a single particle in
physics). The basic aim of an epistemic process is to gain some knowledge about
the relevant e-variables. It turns out, however, that even in the basic quantum
mechanical situation, the term ‘e-variable’ might in principle from a statistical
point of view be replaced by ‘parameter’. The problem is that the latter word is
so over-burdened in physics. It is of course important to stress that whenever I
say ‘e-variable’ in connection to an ordinary statistical investigation, this term
can be replaced by ‘parameter’.

5. To give a conceptual basis for causality theory and ultimately for finding a
link to quantum theory, I will also introduce inaccessible conceptual variables,
that is, conceptual variables which cannot be estimated or given any value with
arbitrary accuracy in any experiment. Versions of such unobservable variables
can be found in counterfactual situations, but the notion is also relevant, say, in
connection to regression models where the number of variables by necessity is
larger than the number of units. We will see that this notion is crucial in quantum
mechanics, where it can be linked to Niels Bohr’s concept of complementarity.

Also, I have included the recent notion of confidence distributions, in order
to allow both a frequentist and a Bayesian basis for any given experimental
investigation.

This framework as further developed in the present bookwill lead to a non-formal
way to discuss essential elements of quantum theory, a theme which occupies later
chapters of this book, and is also discussed further in this chapter. The usual basis
for quantum theory as developed by von Neumann (1932) was a great achievement,
and the language that is implied by this basis is used for all further theoretical
developments and for all discussions among physicists. It is a strong intrinsic part
of the quantum mechanical culture, in fact, of the culture shared by the whole
community of modern physicists. But since the traditional language is purely formal
and has little or no intuitive basis for people outside the community of physicists and
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mathematicians, it seems to be of some interest to develop an alternative language
for discussing aspects of quantum theory, even if this language is somewhat limited
compared to the ordinary quantum language.

Several recent investigators in quantum foundations have reasoned that quantum
mechanics should be interpreted as an epistemic science. I agree with this. But
I see it as somewhat problematic that this notion of an epistemic science should
be connected to one language in fundamental physics and a completely different
language in the rest of empirical science. One purpose of this book is to argue for
a new language concerning the concept of a quantum state. I will keep the notion
of a quantum state defined as a unit vector (or ray) in a complex Hilbert space.
But in many connections this notion can be replaced by the following: One poses
a focused question about the system under consideration: ‘What is the value of θ?’
and obtains a definite answer: θ = uk . Here θ is an e-variable/ observable (to be
further discussed below), and uk is one of the values that θ can take. There are open
ends of the present programme as far as quantum physics is concerned, but I will
argue that the investigations can be carried on further along the same lines.

The sceptic might ask: What is the purpose of introducing a new language when
this does not lead to anything new?My first answer is that a simple language may be
of importance in communication between people. For those who know this paradox,
it may be that Wigner’s friend is ignorant of the formal language of quantum theory.
Nevertheless, he might have an intuitive feeling of what it means that the spin
component in direction a of a particle is +1, and from this he might be able to
communicate his state notion to Wigner, and the two will then share a common
state for the physical system.

My second answer is that I will show that my programme indeed leads to
something essentially new, also within the science of quantummechanics itself: The
Born formula, which is the basis for all probability calculations in quantum physics,
is taken as an independent axiom in textbooks. I will derive it from a set of intuitive
assumptions. I am also able to discuss the problematic questions connected to Bell’s
inequalities by using an epistemic point of departure. Several so-called paradoxes
can be resolved using the language of epistemic processes. Also questions around
the derivation of the Schrödinger equation are discussed.

One aspect of my programme is to propose sort of a link between quantum
theory and statistical inference, two cultures which until now have been completely
separated. The study of scientific cultures is not common. An exception is the
book by Knorr Cetina (1999), where the author describes from the inside epistemic
cultures connected to two empirical groups: High energy physics experimenters at
CERN and molecular biologists at a laboratory. Her arguments strongly depend
upon the notion of knowledge societies. Of course I agree that the nature of
knowledge is different in different scientific communities, but it is the process of
achieving knowledge that I feel should have something in common, and it is this
process I will focus upon in this book.

As already mentioned, the language for quantum mechanics used in the present
book also implies a particular interpretation of the theory. Nearly since its intro-
duction in the beginning of the previous century, the physical community has been
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divided on the question of the interpretation of quantum theory. On the one hand
many has argued for an ontic interpretation of the quantum state: It is a real state of
nature. But on the other hand other people has argued for an epistemic interpretation
of the quantum state: It only describes an observer’s knowledge of the state of
nature. In my opinion some sort of a synthesis of the two views is called for. The
phenomenon of collapse of the wave packet during a measurement and paradoxes
such as that of the Schrödinger cat give strong arguments in order that the epistemic
view should play an important part. This in itself calls for a thorough analysis of
how the epistemic process can be, and this is part of the purpose of the present
book. The observer and his context play an important role in this process. By verbal
communication and with the help of time, several observers may develop a common
context. The ontic state of a particular physical system is in this book identified
with the hypothetical state that all potential ideal observers with a common context
of relevance to this physical systems agree upon.

Recently, several related no-go theorems have appeared in the physical literature
which have been taken as arguments that a pure epistemic view are inconsistent
with the predictions of quantum mechanics. However, these theorems rely on
certain specific assumptions. The epistemic toy model of Spekkens (2007), which
reproduces very many aspects of quantum theory, shows that these assumptions are
not necessarily satisfied in practice.

It is interesting that a specialization of my own theory is closely related the
Spekkens toy model, and this in itself indicates that my theory is related to several
aspects of quantum mechanics.

This book is the result of a long process. In Helland (2006) an approach towards
quantum mechanics was made in a leading statistical journal. Part of this approach
is implemented later in the present book. In Helland (2008) an approach was made
in a good physical journal, but again I know now that the reasoning is not complete.
In the book Helland (2010) it was attempted to have two cultures in the mind
at the same time. The book contains some relatively deep results in group action
theory and in mathematical statistics, but the attempts made there to prove a link to
quantum theory are too simple. The main limitation of all these three references is
that I there attempted to deduce quantum theory from a version of statistical theory.
In the present book I just assume that the two theories can be seen to have a common
basis.

1.2 Different Views on the Foundation of Quantum
Mechanics

The ordinary textbook formulation of quantum mechanics is very abstract. Its
starting point: ‘The state of a physical system is a normalized vector in a separable
Hilbert space’ has lead to an extremely rich theory, a theory which has not been
refuted by any experiment and whose predictions range over an extremely wide
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variety of situations. Nevertheless, it is still unclear how this state concept should be
interpreted.

Many conferences on quantum foundation have been arranged in recent years,
but this has only implied that the number of new interpretations have increased,
and no one of the old have died out. In two of these conferences, a poll among the
participants was carried out (Schlosshauer et al. 2013; Norsen and Nelson 2013).
The result was an astonishing disagreement on several simple and fundamental
questions. One of these questions was whether quantum theory should be interpreted
as an objective theory of the world (the ontological interpretation) or if it only
expresses our knowledge of the world (the epistemic interpretation). According to
Webster’s Unabridged Dictionary, the adjective ‘epistemic’ means ‘of or pertaining
to knowledge, or the conditions for acquiring it’.

Recently Fuchs (2010), Fuchs and Schack (2011), Fuchs et al. (2013) and others
have argued for various versions of Quantum Bayesianism, a radical interpretation
where the subjective observer plays an important part. See also the philosophical
discussion by Timpson (2008), the popular account in von Baeyer (2013) and the
recent book (von Baeyer 2016).

QBism is a way of thinking about science quite generally, not just quantum
physics. To cite Mermin (2014):

‘QBism maintains that my understanding of the world rests entirely on the
experiences that the world has induced in me throughout the course of my life.
Nothing beyond my personal experience underlies the picture that I have formed of
my own external world.’

But on the other hand:
‘Facile charges of solipsism miss the point. My experience of you leads to

hypothesize that you are very much like myself, with your own private experience.’
In the communication between you and me—in general between human beings,

scientists and others, we need commonly defined concepts. I will come back to this
later in the book.

This book takes as a point of departure that in some sense or other the epistemic
interpretation should be important for issues of the quantum world. The next
question then arises: Can one find a new and more intuitive foundation of quantum
theory, a foundation related to the epistemic interpretation? It is my view that such
a foundation ought to have some relation to statistical inference theory, another
scientific fundament, which gives tools for wide variety of empirical investigations,
and which in its very essence is epistemic. It should also be a kind of decision theory,
related to decisions taken in everyday life.

Since the classical Copenhagen interpretation, which can be made precise in
slightly different ways, several groups of researchers have proposed different
interpretations of quantum mechanics. An extreme view on this was recently given
by Tammaro (2014), who claimed that all these interpretations were deficient.
More precisely, Tammaro stated that no current interpretation was consistent with
experiment, resolved the measurement problem, and was completely free from
logical deficiencies or fine-tuning problems.
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Central to this discussion was the measurement problem, in particular the
reconciliation of the two possible modes of change that the wave function can take:
(1) Discontinuous, indeterministic time evolution sending |ψ〉 into an eigenstate
|oi〉 of observable O as a result of measurement of O . (2) Unitary time evolution
governed by the Schrödinger equation.

Tammaro claimed to demonstrate that these two processes are inconsistent. His
argument considered the state of the observer plus system after a measurement by
the observer has been made. Process (1) then generates a mixed state, while Process
(2) generates a pure state. One possible view is as follows: That this represents
an inconsistency, may be related to the assumption that this quantum state really
represents some objective reality for the system plus observer. According to QBism,
a quantum state is always connected to some agent, and at each time it represents the
subjective reality of that agent. In particular, the above system plus observer may be
observed by another agent, and the wave function of this ‘Wigner’ (relative to the
first agent, ‘Wigner’s friend’) at time t may represent the belief or knowledge that
he has at time t . This may depend upon how he obtains knowledge about the system,
the agent, and the system plus agent.

Discussions in the literature of the EPR paradox (Einstein et al. 1935) and of
Bell’s theorem (Bell 1987), usually end up with the statement that quantummechan-
ics must violate the assumption of local realism. Since the locality assumption is
inherent in relativity theory, my view is that it is the assumption of realism which
must be discussed further. The quantum state represents the subjective reality of an
agent or by a group of communicating agents, and this is in principle all there is to
it. When all real and imagined agents agree on some observation at time t , this may
be regarded as an objective reality at time t .

This is a rather radical view upon what reality should mean to us, but it is not
inconsistent with the fact that people in complex macroscopic situations also may
have different world views, and that these different world views may be extremely
difficult to reconcile. This analogy should not be taken too far, though. The agents
of quantum theory are ideal observers, while the humans of the macro world are far
from perfect. The QBism interpretation of quantum mechanics is still only held by
a minority of physicists.

My own views on quantummechanics follow the views of the QBists a long way,
but I differ in two respects: (1) For the purpose of a given experiment, the single
observer can be replaced by a group of communicating observers. Thus language
and the forming of concepts are important issues. (2) As formulated originally,
QBism was closely tied to the philosophy of Bayesianism. I want to look upon
the inference from observation in physics as related to inference in statistics, and I
want to allow also other philosophies behind statistical inference. The ideal observer
might well be a Bayesian, but since we humans are imperfect, we must also be
allowed to use frequentist methods.

In any case, both the QBists and I agree that epistemic processes are of
importance in the understanding of quantum mechanics. The simplest epistemic
process consists of at least two decisions by the relevant agent (or communicating
agents): First a decision on what question to nature to focus upon. Then the
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experiment or collection of data itself. Then finally a decision on how to deduce
from these data the answer to the question originally posed.

Statistical theory and practice are almost solely concentrated on the last decision
here. The decisions connected to focusing are attempted included in the present
book.

An interesting discussion of various interpretations of quantummechanics can be
found in Khrennikov (2014). Khrennikov (2016) discusses QBism from the point of
view of general decision making.

1.3 Theory of Decisions: Focusing—Context

Classical decision theory has been used with great success in a variety of fields like
economics, medicine and politics. It is the basis for much of statistical inference
theory. Yukalov and Sornette (2008, 2010, 2011, 2014) have in a series of papers
tried to challenge this tradition with their Quantum Decision Theory (QDT). QDT
is based upon the formalism of separable Hilbert spaces. It is parallel to quantum
theory in many respects, but this does not imply that the decision maker is a quantum
object. QDT is a way to avoid dealing with hidden variables, but at the same time
reflecting the complexity of nature. The authors demonstrate that several paradoxes
of classical decision theory can be resolved within QDT, and they claim that QDT
covers both conscious and unconscious decisions.

This is not a place to describe QDT in detail, but the main idea is a mindspace
M spanned by states corresponding to elementary prospects en. These elementary
prospects are intersections of intended actions. Both prospect states |πj 〉, describing
possible future actions, and strategic states |ψs(t)〉, describing the actor at time t ,
are vectors in M. Prospect probabilities are given as p(πj ) = |〈πj |ψs(t)〉|2, and
rational decision makers maximize these probabilities.

QDT is presented as a formalism by Yukalov and Sornette, but there is also
some discussion in the articles cited above of possible intuitive reasons behind this
formalism. It is interesting in this connection that there is a large recent literature on
various quantum models in psychology and cognitive science in books and articles;
see Khrennikov (2010), Busemeyer and Bruza (2012), Bagarello (2013), Haven
and Khrennikov (2013), Yukalov and Sornette (2009), Sornette (2014), Ashtiani
and Azgomi (2015), Haven and Khennikov (2016) and in particular the review and
discussion article (Pothos and Busemeyer 2013).

Other approaches to decision making using quantum theory methods are Aerts
et al. (2014) and Eichberger and Pirner (2017).

It is clear that decisions can be made by single actors or by groups of
communicating actors. Therefore language and a common set of concepts must
be of some importance in a theory of decisions. In some cases decision making
may take time; in other cases one does not have so long time in making decisions.
Decisions may take into account selected experiences with past events, and may
have a view towards future events. All decisions are made in a context. This context
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may be physical, historical, conceptual or constituting properties of the decision
makers themself. In particular all these considerations are relevant for decisions
made under an epistemic process.

1.4 The PBR Theorem. A Toy Model

Recently, Pusey et al. (2012) proved that the wave function must be ontic (i.e. a
state of reality) in a broad class of realistic approaches to quantum theory. Two
assumptions are made in that paper: (1) A system has a real physical state, not
necessarily completely described by quantum theory, but objective and independent
of the observer. (2) Systems that are prepared independently have independent
physical states.

The assumption (1) goes to the roots of the traditional physicist’s world view.
I will claim that this state concept is unclear to many people outside the physical
community. Why should one always be able to talk about a state independent of
the observer? Of course the world itself exists independent of any observer, but the
state of the world, what is that? As is discussed in Chap. 6 below, different people
experience the world differently, also in macroscopic cases.

The Pusey, Barrett and Rudolph (PBR) theorem, related theorems and arguments
connected to the theorem have been thoroughly reviewed by Leifer (2014). In
particular it is discussed in detail there what is meant by a realistic approach. It
is admitted that there are views of quantum mechanics that are not realistic, and
that the Pusey, Barrett, Rudolph theorem does not apply to such interpretations. The
approach discussed in the present book belongs to this class, broadly characterized
in Leifer (2014) as neo-Copenhagen views. A recent argument against a realistic
interpretation of the wave function is given by Rovelli (2016). A new criticism of the
PBR theorem, discussing the ontological models framework, is given in Charrakh
(2017).

The different interpretations of quantum theory were recently attempted classi-
fied by Cabello (2015). First, the interpretations were divided into two types: Type
I (intrinsic realism) and Type II (participatory realism). For further discussion of
the concept of participatory realism, see Fuchs (2016). The Type II interpretations
were further divided into those concerned about knowledge and the one concerned
about belief (QBism). As will become clear, this book is concentrating on Type
II interpretations concerned about knowledge. According to Cabello (2015), this
includes among others the classical Copenhagen interpretation, the approach by
Zeilinger (1999) and even the no ‘interpretation’ approach by Fuchs and Peres
(2000).

As a possible motivation behind epistemic views of quantum mechanics, the
toy model of Spekkens (2007) is based on a principle that restricts the amount
of knowledge an observer can have about reality. A wide variety of quantum
phenomena were found to have analogues within this toy theory, and this can be
taken as an argument in favour of the epistemic view of quantum states.
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In the simplest version of the toy model, we have one elementary system. This
system can be in one of the four ontic states 1, 2, 3 or 4, but our knowledge of this is
in principle restricted. We can only know one of the following six epistemic states:
(a) The ontic state is 1 or 2; (b) it is 3 or 4; (c) it is 1 or 3; (d) it is 2 or 4; (e) it is 1
or 4; or (f) it is 2 or 3. These are the epistemic states of maximal knowledge.

The ontic base of the state a) is {1, 2} etc. If the intersection of the ontic bases of
a pair of epistemic states is empty, then those states are said to be disjoint. Thus (a)
and (b) are disjoint, (c) and (d) are disjoint, and (e) and (f) are disjoint. There is a
correspondence with certain basis vectors of the two-dimensional complex Hilbert
space, where disjointness corresponds to orthogonality in the Hilbert space. For
those who knows the Bloch sphere representation of that Hilbert space, the pairs
of disjoint epistemic states can be pictured on the intersections of three orthogonal
axes with that sphere.

Transformations of the epistemic states correspond to permutations of the ontic
states. Thus the underlying group is the permutation group of four symbols,
which has 24 elements. Each permutation induces a map between the epistemic
states. In the Hilbert space correspondence, the even permutations correspond
to unitary transformations, and the odd permutations correspond to anti-unitary
transformations.

The toy model of Spekkens (2007) is generalised in several directions in
Spekkens (2014). The generalisations are called epirestricted theories, and are
showed to be equivalent to subtheories of quantum mechanics. An epirestricted
theory consists of three steps. One starts with a classical ontological theory. Then
one constructs a statistical theory over these ontic states. Finally one postulates
a restriction on what sorts of statistical distributions that can describe an agent’s
knowledge of the system. The theory of the present paper is related both to this and
to the QBism school, but there are important differences, as will be seen from the
discussion below.

1.5 Epistemic Processes

The Quantum Bayesianism is founded on an observer’s belief, quantified by a
Bayesian probability. I want to relate my state concept also to the notion of certain
belief, which I call knowledge. The knowledge will be associated with an agent
or with a group of communicating agents, and his/her/their knowledge will be
knowledge about what I will call an e-variable.

An epistemic process is any process under which an agent or a group of
communicating agents obtain knowledge about a physical system. In general there
are many ways by which one can obtain knowledge about the world or about aspects
of the world. In a given situation the observer has some background, in terms of his
history, in terms of his physical environment, and in terms of the concepts that he is
able to use in analysing the situation. This is called the context of the observer, and
the context may limit his ability to obtain knowledge.
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A conceptual variable is any variable related to the physical system, defined by
an agent or by a group of communicating agents. The variable may be a scalar, a
vector or belong to a larger space.

An e-variable or epistemic conceptual variable θ is a conceptual variable
associated with an epistemic process: Before the process the agent (or agents) has
(have) no knowledge about θ ; after the process she/they has/have some knowledge,
in the simplest case full knowledge: θ = uk . Here uk is one of the possible values
that θ can take. In this book it is mostly assumed for simplicity that θ is discrete,
which it will be in the elementary quantum setting below. For a continuous variable
θ , knowledge on the e-variable will be taken to mean a statement to the effect that θ
belongs to some given set, an interval if θ is a scalar.

The e-variable concept is a generalization of the parameter concept as used in
statistical inference, introduced by Fisher (1922), and today incorporated in nearly
all applications of statistics. In statistics, a parameter θ is usually an index in the
statistical model for the observations, and the purpose of an empirical investigation
is to obtain statements about θ , in terms of point estimation, confidence interval
estimation or conclusion from the testing of hypotheses. The parameter is often
associated with a hypothetical infinite population. My e-variable will also be
allowed to be associated with a finite physical system, a particle or a set of particles.
But, in the same way as with a parameter, the purpose of any empirical investigation
will be to try to conclude with some statement, a statement expressed in terms of an
e-variable θ .

1.5.1 E-Variables in Simple Epistemic Questions

The point of departure is that we ask a question to nature, a question in order to
achieve increased knowledge. The e-variable is the particular conceptual variable
that is connected to such a question.

To give a very simple example, let us assume that we are given some object A,
and ask ‘What is the weight of object A?’. Then μ =‘weight of A’ is an e-variable.
We can use a scale to obtain a very accurate estimate of μ. Or we can use several
independent measurements, and use the mean of those as a more accurate estimate.
In the latter case it is common to introduce a statistical model whereμ is a parameter
of that model. But in my view the e-variable concept is a more fundamental notion.
The variable μ exists before any statistical model is introduced. Most people will
agree that μ exists in some sense. Thus in this example the e-variable has some
ontic basis, but my claim is that this need not always be the case in all epistemic
processes. Even in this case the existence of μ as a real number may be discussed.
For instance, the question ‘Is μ rational or irrational?’ is rather meaningless.

In some cases we can obtain very precise knowledge about some e-variable after
some time. As an example, ask ‘What will be the number of sun hours tomorrow?’
To to answer this question today, we need huge computer models and expert advice
from meteorologists. Tomorrow, it is just a question about counting the sun hours.
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Similar situations occur when doing simple causal inference. We may for
instance ask ‘What is the causal effect of medicine C on individual A?’. The e-
variable we might have in mind, might be ‘Time to recovery for A’ compared to time
to recovery without any medicine. If we have no earlier experience with A having
the disease in question, we have a counterfactual situation. If we have observed A
earlier with the same disease when he did not take any medicine, we can at least
have a tentative answer within a few days.

1.5.2 E-Variables in Statistics

The most important kinds of e-variables in statistics are statistical parameters. The
concept of a statistical parameter was introduced by Fisher (1922), and is today
used in nearly all cases where statistical inference is applied. A statistical model is a
probability model of the data given the parameters, and the purpose of inference
is to obtain information about the parameters. Sometimes only a subset of the
parameters are of interest, and the epistemic question is then ‘What are the values
of these parameters?’ Usually one will not be able to get complete information.
Partial information, given the data, can be expressed in terms of confidence regions
of credibility regions, concepts that will be discussed later in this book.

A completely different kind of e-variables—here called simple e-variables—
occur in prediction problems. When we want to predict a random variable Y , the
epistemic question is again ‘What is the value of Y ?’ The answer is often sought
via a statistical model by first estimating the parameters of the model, and then
formulating a prediction equation from this. This gives a predicted value ̂Y , again
incomplete information from the data. But prediction problems can also be seen as
of different nature than estimation problems, requiring separate techniques.

1.5.3 E-Variables in Causal Inference

A causal model is different from a statistical model, as stressed by Pearl (2009). Sta-
tistical concepts are correlation, regression, conditional independence, association,
likelihood etc., all concepts that can be related to a statistical model. Causal concepts
are randomization, influence, effect, confounding etc.. A causal model is defined
in terms of what is called a directed acyclic graph, and again these models contain
parameters. The epistemic question is again ‘What is the value of these parameters?’
Sometimes, but not always, incomplete answers can be given by means of data.

Simple e-variable also occur in causal inference. Again we can look at the
example ‘What is the causal effect of medicine C on individual A?’, and the e-
variable might be ‘Time to recovery for A’.
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1.5.4 E-Variables in Quantum Mechanics

E-variables as statistical parameters connected to an infinite population may also
occur in quantum mechanics. An example is given in Wootters (1980). Consider
a photon which has just emerged from a polarizing filter and which is about to
encounter a Nicol prism. The filter can have a continuum of possible orientations,
each characterized by a polarization angle θ . But when the photon encounters the
Nicol prism, it is required to choose between exactly two possible actions: (1) to
go straight through the Nicol prism, or (2) to be deflected in a direction uniquely
determined by the orientation of the prism. A straightforward epistemic problem is
to estimate θ form an ensemble of photons using the probability law p(θ) = cos2θ .
Wootters was investigating the much deeper problem whether this probability law
is the best possible in some sense.

But in quantum mechanics simple e-variables are most important. A quantum
system can be given some preparation, and under this preparation e-variables like
position, momentum, energy, spin, angular momentum may be investigated. The
quantum formulation is introduced by associating each e-variable to a Hermitian
operator in a Hilbert space (in the discrete case to be precise; for continuous
variables a more general construction is needed, one approach is the rigged Hilbert
space, see Ballentine 1998) In the present book I will mostly concentrate on discrete
e-variables, at least to begin with, and these e-variables always correspond to
Hermitian operators in some basic Hilbert space. The quantum states are in general
given by vectors in the basic Hilbert space, but in this book special emphasis is
often given to state vectors that are eigenvectors of some Hermitian operator. Given
a quantum system and an e-variable for this system, a natural focused question will
be ‘What is the value of this e-variable?’, and a simple (ideal) measurement will give
the answer. But the epistemic question can also be to predict the e-variable before
the measurement is done. Then an incomplete answer can be given, the probability
distribution as found from the Born rule.

Many books and papers use the term ‘observable’ for what I have called a
simple e-variable in quantum mechanics. Ballentine (1998), remarking on some
ambiguity in the use of this term, prefers to use ‘dynamical variable’. Bell (1975)
introduced the term ‘beable’ for a related concept, assuming some sort of reality of
the dynamical variables. My own point is basically to relate the e-variable concept
closely to an epistemic process.

The first basic postulate of the quantum formalism may now be written:

Postulate 1.1 To each physical system there corresponds a Hilbert space. To each
simple e-variable of this physical system there corresponds a unique Hermitian
operator of the Hilbert space. The possible values of the e-variable are the
eigenvalues of this operator.

(This formulation is only valid for discrete e-variables, which will occupy most
of this book. In general one needs a rigged Hilbert space if possible values as
eigenvalues should be taken literally.)
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There are several recent attempts to motivate this postulate from more intuitive
assumptions, see references later. My own attempt, starting from what I call a
symmetrical epistemic setting, generalizing the case of spin/ angular momentum,
is contained in Chap. 4 below.

1.5.5 Real and Ideal Measurements in Quantum Mechanics

As emphasized by Ballentine (1998), it is important to distinguish between prepa-
ration and measurement of a physical system. In my notation from Chap. 3, the
preparation gives part of the context τ for the measurement. The purpose of the
measurement is to say something about an e-variable θa .

To be concrete, let us assume that we want to measure the z-component θz of the
spin of a silver atom. (A similar experiment with a charged particle like electron
will lead to practical difficulties due to the so-called Lorentz force acting upon
the charge.) The spin component takes one of two possible values, say ±1. The
experiment is done by sending the atom in some direction, say the y-direction,
through a magnetic field which is inhomogeneous in the z-direction. This will cause
the atom to be deflected up in the z-direction if θz = +1, down if θz = −1.

How should this deflection be detected? One way would be to place a screen
of detectors in the xz-plane after the silver atom has passed the magnetic field.
Hopefully this will give a click in one detector in the positive z-direction if θz = +1,
or one in the negative z-direction if θz = −1.

But such detectors are far from perfect. it may be that the silver atom goes
through the screen without being detected. It may be that it clicks on two or more
neighbouring detectors when passing through the screen. What we have as a result
of the experiment is data, which is an array of 0’s and 1’s corresponding to the
detectors: 1 if the detector clicks, 0 otherwise.

This kind of detection errors may seem like a nuisance, but they have funda-
mental physical importance. Similar detection errors have played a large role in the
physical literature on Bell’s inequality, which will be discussed in Sect. 5.8 below.
The point here is that one on the background of such detection errors have proposed
possible ‘loopholes’ in quantum mechanical experiments to test Bell’s theorem.
Very recent experiments have excluded such loopholes.

Another point about this simple experiment is the following: The same magnet
and screen of detectors can be rotated so as to measure spin component θa in any
direction a, and the same probability model can be used for the measurement. Thus
there is strictly speaking no reason to use a superscript a on the data za of the
experiment, but we will do it anyway to make it clear that this is the data for the
experiment for the spin e-variable θa in the direction a.

Thus we have data za , and we may construct a statistical model for these data, a
model depending on the true value of θa . The details of this model need not concern
us now, but my important point is that we are in the generalized experiment situation
discussed in detail in Sect. 3.2. The distribution of za , given the context τ , depends
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on the unknown e-variable θa , and relative to this distribution, τ is independent of
θa . (A prior for θa may depend upon τ , however.)

So far, we have had only one particle, but a similar construction applies in
the situation with a beam of n independent particles. Then we have a set of e-
variables θa = (θa

1 , θa
2 , . . . , θa

n ) with data za = (za
1, z

a
2 , . . . , z

a
n). When n → ∞,

this approaches a probability distribution over the e-variable, and the data may
without loss of generality be reduced to a frequency distribution of clicks over the
detectors of the screen. Under suitable assumptions the probability distribution of
the e-variable is given by the Born rule derived in Chap. 5, and the data reduction
corresponds to a reduction by sufficiency, a concept discussed in Chap. 3.

In Chap. 3 three fundamental principles of statistical inference are discussed, the
conditionality principle, the sufficiency principle and the likelihood principle, where
the last one is shown to follow from the first two principles. This whole apparatus is
now available for experiments of the quantum type. I will in fact use the likelihood
principle later when deriving Born’s rule, the basic probability rule of quantum
theory. It is therefore important to me that a similar discussion with an imperfect
apparatus in principle can be carried out in all quantum experiments. But this is
in principle. Once the statistical principles are established, we can return to ideal
experiments were data are in one-to-one correspondence with the e-variables of the
experiment.

The same kind of data and data model can be used for any choice of focused
direction, focused measurement. Assume that the situation is such that the vector
of different e-variables θa is inaccessible; see Sect. 1.5.8. Then this gives rise to a
focused version of the likelihood principle. This is the kind of likelihood principle
used to derive the Born rule. The details are in Chaps. 3, 4 and 5.

1.5.6 Quantum States, Their Interpretations, and a Link
to the Ensemble Interpretation

Pure quantum states are defined formally as unit vectors in the Hilbert space. These
vectors may or may not be eigenvectors of physicalmeaningful Hermitian operators.
They are denoted as ket vectors |k〉 and may be assumed to form a complete set. For
more information, see Sect. 5.1 and Appendix B.

Let first |k〉 be a unit eigenvector of a Hermitian operator A corresponding to a
simple e-variable θ . Assume for simplicity that A do not have multiple eigenvalues.
Then, from an epistemic process point of view, and from what can be seen as a
simple observation from the quantum formalism, |k〉may be identified by a question
‘What is the value of θ?’ together with a definite answer ‘θ = uk’, where uk is the
corresponding eigenvalue.

Given a unit vector |k〉, there will in general be an infinity of Hermitian operators
for which |k〉 is an eigenvector, and there may be many such operators which
correspond to physically meaningful e-variables θ . Also, one must consider the case
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with multiple eigenvalues. Hence, given |k〉, its association to a question-and-answer
pair is not unique in general. In the special case of the spin or angular momentum
of a particle and in related cases, there is some uniqueness, however.

(a) For a spin 1/2 particle, or more generally for a qubit, a unit vector in a 2-
dimensional Hilbert space, there is a unique question-and-answer pair for spin
component corresponding to each unit vector; see Sect. 5.1.1 and Proposition
5.4 of Sect. 5.2.

(b) In the general case of spin or angular momentum component there will
correspond a unique normalized ket vector corresponding to each question-
and-answer pair; see Proposition 5.3 of Sect. 5.2. For dimension higher than 2
there are however unit vectors that do not correspond directly to a question-
and-answer pair for spin/angular momentum components.

(c) In a general setting, related to, but weaker than that of spin/ angular momentum,
one can prove without assuming a quantum formalism from the outset, that
each question-and-answer pair under a certain technical assumption corre-
sponds to a unique normalized ket vector of some Hilbert space. This is proved
in Chap. 4. Unfortunately, one of the technical assumptions as stated there,
seems to be too strong; it is argued that it should be possible to weaken this
assumption.

A larger class of pure states than those corresponding directly to question-
and-answer pairs for some given set of e-variables may be found by taking
linear combinations, which may be motivated physically, or as solutions of the
Schrödinger equation.

In most of this book I will discuss epistemic processes, processes to obtain
knowledge about some system, physical or otherwise. Then the question-and-
answer pair corresponds to two decisions: First a decision on which e-variable to
focus upon. Then after the data are obtained, a decision on the value of this e-
variable. In statistical theory, only the last of these decisions is discussed. It is very
interesting that the quantum state concept turns out to be useful for more general
decisions; from a qualitative point of view this will be discussed in Chap. 6 below.

To the ket vector |k〉 correspond the bra vector 〈k| and the projection operator
|k〉〈k|.

The more general concept of a mixed state is defined from a probability
distribution {πk} as follows:

ρ =
∑

k

πk|k〉〈k|. (1.1)

Depending upon the observator(s) and upon the physical situation, the proba-
bilities πk may be interpreted—and assessed/estimated—in three possible ways:
(1) as Bayesian prior distributions; (2) as Bayesian posterior distributions; (3)
as frequentist confidence distributions, see Schweder and Hjort (2016). From a
statistical point of view, Bayesian probabilities are connected to credibility intervals,
confidence distributions are derived from confidence intervals; see Chap. 2 below.
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It is interesting that under specific symmetry assumptions, the confidence intervals
and the credibility intervals coincide and are associated with the same probability;
see Corollary 3.6.2 p. 93 in Helland (2010). A consequence of this is that the
probabilities estimated under the interpretations (2) and (3) will be numerically
equivalent under these symmetry assumptions.

In this section it will be convenient to use the confidence distribution interpre-
tation (3), even though it is new and unknown, also largely among statisticians.
The basic concept is that of a confidence interval with some variable confidence
coefficient; details will be discussed in Chap. 2. The important point to us now is
the interpretation of the confidence coefficient. It can be seen as a limiting frequency
obtained from data in a large hypothetical set of epistemic processes were the same
statistical method is used.

A similar idea carries over to the quantum situation: Ballentine (1998) makes
an important point of the fact that probabilities in quantum mechanics must be
interpreted with respect to a hypothetical ensemble. In Smolin (2011) it is proposed
that this hypothetical ensemble is realised by all systems in the universe that occupy
the same quantum state.

The state concept is the basis for all calculation of probabilities in quantum
mechanics. A physical system is prepared in some given state, and probability
distributions of measurements from this state are given by the Born rule.

The Born rule is developed from my point of view in Sect. 5.6 below. A conse-
quence of this rule is a simple formula which can be used to restate Ballentine’s

Postulate 1.2 To each state there corresponds a unique state operator ρ. The aver-
age value of an e-variable θ , represented by the operator A, in the virtual ensemble
of events that may result from a preparation procedure for state represented by the
operator ρ is

〈θ〉 = tr(ρA).

From a statistical point of view, the average value here is interpreted as an
expectation. By extending this formula in a natural way, the probability distribution
of θ under ρ may be derived; see again Ballentine (1998). In fact this probability
distribution follows easily directly from my Theorem 5.6 in Sect. 5.6.

1.5.7 Quantum States for Spin 1/2 Particles

Consider again the silver atom of Sect. 1.5.5, and suppose that we want to measure
the spin component in some direction a. Let us now assume that the measurement
apparatus is perfect. Then the experiment has two possible outcomes: spin up or
spin down. This corresponds to two possible quantum states:

|a; +〉 or |a; −〉. (1.2)
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Let now a be arbitrary. In Sect. 5.2 I will prove the important result: All pure
quantum states for spin 1/2 particles can be written in one of the forms (1.2) for
some a.

In concrete terms, this means that every pure quantum state for a spin 1/2 particle
can be interpreted as a question:What is the spin component in direction a? together
with a definite answer: +1 or −1. (Strictly speaking, this gives a double counting
of quantum states, since, given some direction a, we can also choose the opposite
direction −a; and θa = +1, say, is equivalent to θ−a = −θa = −1.)

It is of some related interest that the axioms of quantummechanics recently were
approached by Smilga (2017) by taking spin measurements in different directions
as a point of departure, and using group representation theory.

1.5.8 Inaccessible Conceptual Variables and Complementarity

It is important that not all conceptual variables are e-variables. A conceptual
variable φ is called inaccessible if there is no epistemic process by which one
can get accurate knowledge about it. An example from the area of quantum
mechanics is φ = (ξ, π), where ξ is the position of a particle, and π is the
momentum. An example which will be discussed throughout the present book, is
φ = (λx, λy, λz), where λa is the component of an angular momentum or a spin for
a particle or a system of particles, the component in direction a. Here each λa is an
accessible conceptual variable, an e-variable, but the vector φ is inaccessible. Also
macroscopic examples abound, for instance connected to counterfactual situations
in causal inference: Let θ1 be the time to recovery for given patientA at time t when
he is given treatmentB, let θ2 be his time to recovery when he is given treatment C,
and let φ = (θ1, θ2).

In such cases, where a vector of e-variables is inaccessible, it is equivalent to
say that the components are complementary. Since introduced by Bohr, the concept
of complementarity has played a fundamental and important role in quantum
mechanics.

It is essential to stress that the conceptual variables above are not hidden
variables. Variables like φ are just mathematical variables, but variables upon
which group actions may be defined. φ = (ξ, π) may be subject to Galilean
transformations, time translations or changes of units, while φ = (λx, λy, λz)

may be subject to rotations. This will of course also induce transformation of the
components, the e-variables. Important transformations in the group of rotations of
the last φ are: (1) Those leading to a change in the values of λx (or of any other
fixed component); (2) Those leading to an exchange of λx and λy (or any other pair
of components).

The (simple) e-variables are not hidden variables, but closely tied to the epistemic
processes.

To illustrate the general view of this book, look at Fig. 1.1. Here φ is an
inaccessible conceptual variable, the θ ’s are e-variables, the τ ’s are context variables
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Fig. 1.1 A graphical picture,
illustrating a general view
upon quantum theory

φ; τ

Za Zb

θbθa

τa τb

and the z’s are data. The upper arrows denote functional dependence, and the
lower arrows denote conditional probability distributions of the data. The dotted
arrows indicate that one may or may not have a prior for θ , given the context.
The experimentalist has the choice between two mutually excluding experiments,
denoted by a and b.

When does this situation lead to a quantum theory, which can alternatively be
described by a Hilbert space formulation? A partial answer is given in Chap. 4 and
in Sect. 5.2 below. The crucial concept is the context variable τ . One possibility
is that this denotes the maximal symmetrical epistemic setting of Chap. 4 (here
θ is replaced by λ), satisfying Assumptions 4.1–4.3 there. Another possibility is
the corresponding general symmetrical epistemic setting, and a final situation is
a spin/angular momentum situation. An open question is to find the most general
conditions under which a quantum theory can come into being from the situation of
Fig. 1.1. In the situations above, the θ ’s are discrete, which they are in elementary
quantum theory, but we can also let the same figure illustrate a setting where the θ ’s
are continuous; for a completely general formulation, see Sect. 5.15.

The inference on simple e-variables as presented in this book implies some
connection between the quantum mechanical culture and the statistical culture. In
the next chapter I will give a broad description of the science of statistical inference.
Then I will give some general principles on inference on parameters/ e-variables
when data are involved, and after that I will turn to quantum theory.
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Chapter 2
Statistical Inference

Abstract A summary of statistical inference theory as it has been developed up
to now, is given. Both frequentist and Bayesian inference are covered. The recent
concept of confidence distributions is described. As a preparation for the next
chapter, statistical inference is also seen as a special case of inference in a general
epistemic process.

2.1 Basic Statistics

2.1.1 Probability

The concept of probability is basic for statistical theory. As developed by
Kolmogorov in 1930, it is a taken as a normed measure on some probability
space 
.

Formally, we first introduce a σ -algebra F of subsets of 
. The mathematical
requirements are: (a) 
 should be in F ; (b) the complement Ac should be in F
whenever A is in F , where Ac = {ω ∈ 
 : ω /∈ A}; (c) ∪∞

n=1An should be in F
whenever An is in F for n = 1, 2, . . ..

A normed measure P is then a set function such that a) 0 ≤ P(A) ≤ P(
) = 1
for all A ∈ F ; b) P(∪∞

n=1An) = ∑∞
n=1 P(An) if the sets Ai and Aj are disjoint;

i.e., Ai ∩ Aj = ∅ when i �= j . This implies P(Ac) = 1 − P(A) and P(A ∪ B) =
P(A) + P(B) − P(A ∩ B) for all sets A and B. The sets A ∈ F are called events,
and the triple (
,F , P ) is called a probability space.

If 
 is a topological space, the Borel σ -algebra is the smallest σ -algebra
containing all open sets. If 
 is discrete and finite, we can, and will, take F to
consist of all subsets.

A random variable X is a measurable function from 
 into the Euclidean space
Rn, that is, a function such that {X ∈ B} = {ω ∈ 
 : X(ω) ∈ B} = X−1(B) is in
F whenever B is a Borel set in Rn. The probability distribution of X is defined by
P(X ∈ B) = P(X−1(B)).

Readers not willing to go into all these mathematical details may think of a
random variable X as some variable with a distribution associated with it. In this
book I will work with real-valued random variables of two kinds:
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• Discrete finite-valued random variables X with point probabilities p(i) =
P(X = i); i = 1, . . . , r satisfying

∑r
i=1 p(i) = 1.

• Continuous random variables X with P(a ≤ X ≤ b) = ∫ b

a f (x)dx for some
probability density f (x) satisfying

∫ ∞
−∞ f (x)dx = 1.

From this we define expectation

μ = E(X) =
r

∑

i=1

ip(i); μ = E(X) =
∫ ∞

−∞
xf (x)dx

E(g(X)) =
r

∑

i=1

g(i)p(i); E(g(X)) =
∫ ∞

−∞
g(x)f (x)dx

and variance

σ 2 = Var(X) = E[(X − μ)2].

Two random variables X and Y are independent if P((X ∈ A) ∩ (Y ∈ B)) =
P(X ∈ A)P(Y ∈ B) for all Borel sets A and B, with a natural generalization
to several random variables. For discrete random variables, this is equivalent to
pX,Y (i, j) = pX(i)pY (j); for continuous random variables it is equivalent to
fX,Y (x, y) = fX(x)fY (y) with an obvious definition of the joint density.

The interpretation of the probability concept is important for applications. In the
literature, three different, but related interpretations are given:

1. The principle of equally likely outcome: If there are r possible outcomes, each
is given the probability 1/r . This can immediately be applied to discrete finite-
valued variables, and has examples in the tossing of a die, the tossing of a coin, in
card games, in opinion polls etc. Below I will generalize the principle to random
variables with a compact range, using the group concept. When the range is not
compact, we need un-normed measures. This causes conceptual difficulties that
I will not go too deeply into in the present book. I will return to the problem at
some points, however.

2. The principle of odds making or subjective probability: The probability of an
event A is found on the basis of how much a person is willing to pay for each
outcome in a wager with the two outcomes A and Ac. This was introduced by de
Finetti and Savage, and used by them as a foundation for Bayesian statistics.

3. The principle of long run frequency: If an experiment is repeated n times, the
relative frequency of the event A is the number of times A happens, divided
upon n. The probability of A is interpreted as the limit in some sense (see below)
of the relative frequency as n → ∞. I will indicate below that this interpretation
always can be applied, and made precise, in situations where an experiment can
be repeated an arbitrary number of times and the probability can be defined from
other considerations.
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In many concrete applications, not only one, but two or three of these interpreta-
tions may be relevant.

The concept of conditional probability can be given a precise mathematical
definition using the notion of a Radon-Nikodym derivative. Specifically, if B is a
sub-σ -algebra of F , then we define P(A|B) as the unique (up to a P-measure 0)
B-measurable function such that

∫

B

P(A|B)P (dω) =
∫

B

IA(ω)P (dω) (2.1)

for all B ∈ B. If B is generated by the disjoint events {Bi}, this is consistent with
the definition that P(A|Bi) = P(A ∩ Bi)/P (Bi) whenever P(Bi) �= 0.

Finally, asymptotic considerations may simplify statistics in cases where there
are many observations. I will introduce three limit concepts in probability:

• Convergence in probability: P(|Yn − Y | > ε) → 0 for all ε > 0.
• Convergence almost surely: P({ω : Yn(ω) → Y (ω)}) = 1. This is stronger than

convergence in probability.
• Convergence in law: P(Yn ≤ y) → P(Y ≤ y) for all y whereF(y) = P(Y ≤ y)

is continuous. This is a property of the distribution functions rather than of the
random variables, but it is related in several ways to the concept of convergence
in probability. For instance, for convergence to a degenerate distribution, the two
concept are equivalent, and when Yn tends in law to Y and Un in probability to c,
then Yn + Un tends in law to Y + c.

In statistical applications, we often have repeated observations, and thus a sample
X = (X1,X2, . . . , Xn), where the Xi’s are independent with the same distribution.
Assuming these have finite expectationμ and finite variance σ 2, one can prove three
limit laws for the mean X̄n = n−1 ∑n

i=1 Xi :

• The law of large numbers I: X̄n converges in probability to μ as n → ∞.
• The law of large numbers II: X̄n converges almost surely to μ as n → ∞.
• The central limit theorem:

√
n(X̄n − μ) converges in law to N(0, σ 2), where

N(ξ, σ 2) in general is the continuous distribution with density

f (x) = 1√
2πσ

exp(− (x − ξ)2

2σ 2 ). (2.2)

For the first and the third law, see Lehmann (1999). The second law is proved for
instance in Sen and Singer (1993).

Using the law of large numbers on the indicator functions Xi = I (Zi ∈ A), one
easily shows that the frequency interpretation of the probability concept always is
valid in situations where it is applicable.
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2.1.2 Statistical Models

In general, a model is a representation of the real world, simplified, but designed
such that the essential features that one is interested in, are focused in the model
and are correctly represented in the model. A map of the London underground is
sometimes taken as an example of a model.

In statistics, one wants a model which can be employed in the epistemic process.
This is the reasoning used: The unknown feature that one is interested in, is modeled
as a parameter θ , real-valued or belonging to a subset of some Euclidean space
Rp. (I will not go into nonparametric statistics in this book.) Giving θ some value
defines a state of the unknown world. Look at the situation before the experiment
or observational study is done, and choose some potential observations Xi . These
observations are assumed to have a probability distribution for each given state of
the world. The specification of this class of probability distributions constitutes the
statistical model. The statistical model should focus on the relationship between
the parameter that one is interested in and the observations to be done, and it should
represent this relationship as well as possible. It should be simple, but not too simple.

The purpose of statistical modeling can be listed as follows:

• Give a rough description of the data generating process.
• Provide parameters that can be estimated from data.
• Allow focusing upon certain parameters.
• Give a language for asking questions about nature.
• Give means for answering such questions by estimation or by the testing of

hypotheses.
• Provide confidence intervals and error estimates.
• Give a possibility to study deviations from the model and choosing new models.

Thus the model can be seen as part of a language. A model should be chosen
carefully using subject matter knowledge together with a realization of what can be
done statistically. If possible, the model should be scrutinized empirically. But once
the model is chosen, this is an existential choice. Any conclusion is conditional,
given the model.

Specifically, consider the situation with n repeated, independent observations.
This is modeled by independent, identically distributed random variables
(X1,X2, . . . , Xn) with distribution depending upon some parameter θ ,

In the discrete case:

Pθ (X1 = x1, . . . , Xn = xn) = �n
k=1pθ(xk).

In the continuous case:

Pθ(X1 ≤ x1, . . . , Xn ≤ xn) =
∫ x1

−∞
. . .

∫ xn

∞
�n

k=1fθ (uk)du1 . . . dun.
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Here pθ(x) is the point probability of the individual observations and fθ (x) is
the probability density of the individual observations. For continuous models, a
very common choice of the probability density fθ (x) is the normal density (2.2).
In some cases, this may be motivated by some form of the central limit theorem; in
other cases it is just a matter of convenience. Here θ = (ξ, σ ). One can distinguish
between three cases: (1) σ is known and ξ is the unknown parameter. (2) ξ is known
and σ is the unknown parameter. (3) Both ξ and σ are unknown. The study of
statistical methods that are robust against the assumption of normality, is an active
research area in statistics.

One simple discrete case is when one has n independent repeated trials, each
with two possible outcomesA or Ac, often called success and failure. Assuming the
same probability η of success in each trial, and letting Xk be the indicator of success
in the kth trial, we have the point probabilities pη(0) = 1 − η and pη(1) = η. If
now Y is the number of successes in the n trials, it is a straightforward exercise to
show that Y has a binomial distribution:

Pη(Y = y) =
(

n

y

)

ηy(1 − η)n−y .

The binomial distribution gives E(Y ) = nη and Var(Y ) = nη(1 − η).
A multivariate generalization is the multinomial distribution: Assume n indepen-

dent trials, each with k possible outcomes A1, . . . , Ak . Let P(Aj ) = ηj for each
j in each trial, so that

∑k
j=1 ηj = 1. Let Yj be the number of times that Aj has

occurred in the n trials. Then for
∑k

j=1 yj = n we have

P(Y1 = y1, . . . , Yk = yk) = n!
y1! · · · yk!η

y1
1 · · · η

yk

k .

Hereμj = E(Yj ) = nηj , Var(Yj ) = nηj (1−ηj ) and the covariance Cov(Yi , Yj ) =
E(Yi − μi)(Yj − μj) = −nηiηj . This can be summarized in the covariance
matrix C(Y ) with Var(Yj ) (j = 1, . . . , k) on the diagonal and Cov(Yi, Yj ) (i, j =
1, . . . , k) as off-diagonal terms.

Other standard choices of point probabilities and probability densities are listed
in Chapter 1 of Lehmann (1999).

An extensive and deep article arguing for a limitation of the ordinary concept of
a statistical model, is McCullagh (2002).

2.1.3 Inference for Continuous Parameters

The modern theory of statistical inference was developed by R.A. Fisher in the
1920s and the 1930s, at the same time as modern quantum theory was developed.
Fisher knew about quantum theory, but did never hint at any relation to it in his own
work.
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From an epistemic point of view it is important in statistics to distinguish between
the situation before any observations are done, and after observations are done.
Before, the observations are unknown, but are modeled as stochastic variables X

through the chosen statistical model. After the observations, they are known values
X = x, and we want to use these observations to say something about the state of
nature, the parameters θ . There has to be a recipe from x to the inference about θ .

The simplest concept is that of point estimation: The parameter θ is estimated
by a function of the data: ̂θ(x). The properties of this estimation procedure is
evaluated by looking at the before-observation situation and using the statistical
model: With the stochastic variable X inserted, ̂θ(X) is called an estimator. One
good property might be that the estimator is unbiased: E(̂θ(X)) = θ or nearly
so. Another good property is that it has a small variance. These two properties
are sometimes combined in the requirement that the estimator should have a mean
square error which is as small as possible, where

MSE(̂θ(X)) = E((̂θ(X) − θ)2) = Var(̂θ(X)) + (E(̂θ(X)) − θ)2.

A point estimator is often given together with a standard error: An estimate of
the standard deviation of the corresponding estimator, i.e., the square root of its
variance. The standard error gives an indication of uncertainty of the estimate.

In a typical before-observations situation, one has also the possibility to decide
how much data one should take; this may be indexed by a number n. The simplest,
but not uncommon, case is that of repeated measurements, that is, of n independent,
identically distributed observations Xn = (X1, . . . , Xn), but many more situations
of this kind exist. The before-observation version of the estimation recipe, ̂θ =
̂θ(Xn) is then the estimator. A weak, but desirable property of the estimator is that
it should be consistent: ̂θ(Xn) should converge in probability or almost surely to
θ as n tends to infinity. A further property which is often satisfied by some central
limit type theorem is that of asymptotic normality: Typically

√
n(̂θ − θ) converges

in law to N(0, σ 2) for some variance σ 2. It is desirable that σ 2 should be as small
as possible.

In fact these properties are satisfied for a large class of situations, explored by
Fisher. In the case of discrete observations, the model implies joint probabilities
for the data pθ (x), in the continuous case joint probability densities fθ (x). In
both cases, when one focuses upon the θ -dependence, this function is called the
likelihoodL(θ). Fisher argued that one should maximize the likelihood to find good
estimates of θ . The intuitive argument is that this will provide the θ -value which
in a best possible way explains the obtained data. The maximum ̂θ(x) is called
the maximum likelihood estimate. Local extremes can be found by equating the
derivative of the likelihood functions to zero. In more complicated situations one
may have problems with several local extremes, but often these problems may be
tackled by numerical maximization methods.

Maximum likelihood estimation is used throughout statistics in a large number
of applications to a diverse set of applied sciences.
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To evaluate the properties of the maximum likelihood procedure, one again
turns to the pre-observation situation. Then ̂θ(X) with the stochastic variable from
the model inserted, is called the maximum likelihood estimator. For simplicity
let us look at the situation with repeated independent continuous observations
Xn = (X1, . . . , Xn). Let fθ (x) be the probability density of a single observation,
and define the Fisher information by I (θ) = E(( ∂

∂θ
lnfθ (x))2) assuming that this

exists. Then under regularity conditions (see for instance Lehmann 1999, where
uniqueness of the local extrema is assumed for this), one can prove the following:
(1) ̂θ = ̂θ(Xn) is consistent; (2)

√
n(̂θ − θ0) converges in law to N(0, 1/I (θ0))

under θ0, the true value, as n → ∞. Thus the maximum likelihood estimator has
some good asymptotic properties, and these results may be generalized to other
cases with a large amount of data. However, there exist many examples of cases
where the maximum likelihood estimator does not behave in an optimal way; see
Le Cam (1990).

A good estimator δ(X) can also be found using a loss function L(δ(X), θ), for
instance quadratic loss L = (δ(X) − θ)2. One objective might be to minimize
the risk, or expected loss, R(δ, θ) = Eθ (L(δ(X), θ)), but a uniform minimization
here is not feasible: Taking δ(X) ≡ θ0 gives R(δ, θ0) = 0 for all reasonable
loss functions. One way around this, is to limit oneself to unbiased estimators:
Eθ (δ(X)) = θ for all θ . The theory on this can be found in Lehmann and Casella
(1998).

In addition to point estimation, statistical inference theory discusses hypothesis
testing and confidence intervals. Hypothesis testing is closely related to confidence
intervals. I will consider here one-sided confidence intervals (−∞, θ̄] and two-
sided confidence intervals [θ, θ̄ ]. The lower and upper limits of these intervals are
functions of the data. When considered again in the pre-observational situation, they
should have the properties

Pθ (θ ∈ (−∞, θ̄(X)]) = Pθ (θ̄(X) ≥ θ) = γ, (2.3)

Pθ (θ ∈ [θ(X), θ̄ (X)]) = Pθ (θ(X) ≤ θ ≤ θ̄ (X)) = γ, (2.4)

where γ is a pre-assigned confidence coefficient, say 0.95 or 0.99.
The statistical methods discussed so far are called frequentist methods: They

are coupled to a pre-observational distribution using the statistical model. The
probabilities and expectations involved in this can be interpreted by a thought
construction: Imagine that the whole experiment is repeated a large number of
times. Then the imagined relative frequency of an event A for these repetitions
is approximately equal to the hypothetical probability P(A). The probabilities and
expectations are therefore connected to the methods used and to the statistical model
used.

There is another approach to statistical inference which has a long history, but
has been particularly popular in the last few years: The Bayesian approach. Here
the probabilities are imagined to be connected to the parameters themselves. The
important assumption is that one first in some way has obtained a prior distribution
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on the parameter, say with a probability density π(θ). From this prior, one finds a
posterior distribution, given the data, by using a variant of Bayes’ formula

P(T |D) = P(T ∩ D)

P(D)
= P(T )P (D|T )

P (D)
.

The first part of this formula is the definition of the conditional probability of
T , given D. This definition is consistent with the Radon-Nikodym approach, and
also consistent with what one calls conditional probability in simple examples. The
second part of the formula is a consequence.Applied to a situation with a continuous
parameter θ and a continuous data model with density fθ (x), a formula for the
posterior density of θ given the data is obtained:

π(θ |x) = π(θ)fθ (x)

f (x)
= π(θ)fθ (x)

∫

π(φ)fφ(x)dφ
.

Consider first Bayesian point estimation. Again defining a loss function
L(δ(x), θ), we can now introduce the Bayesian risk as

BR(δ(x)) =
∫

L(δ(x), θ)π(θ |x)dθ,

and find the estimate δ(x) which minimized BR. With quadratic loss this leads to
the posterior mean

∫

θπ(θ |x)dθ as an estimate. Other possible estimates include the
mode and the median of the posterior distribution, the mode being the maximum of
the density and the median is the value such that the probability that the parameter is
below this value, equals 1/2. In these estimates one can insert the pre-observational
stochastic variable X, compare them with estimators obtained by frequentists
methods, evaluating estimators using a frequentist or Bayesian approach.

The Bayesian concept which replaces the confidence intervals is that of credibil-
ity intervals. Again consider the one-sided case (−∞, θ∗(x)] and the two-sided case
[θ∗(x), θ∗(x)]. These intervals have direct interpretations in terms of a probability
distribution over the parameter, the posterior distribution:

P(θ ∈ (−∞, θ∗(x)]) =
∫ θ∗(x)

−∞
π(θ |x)dθ.

P (θ ∈ [θ∗(x), θ∗(x)]) =
∫ θ∗(x)

θ∗(x)

π(θ |x)dθ.

To choose θ∗(x) and θ∗(x), this can again be given a preassigned value γ , say 0.95
or 0.99. In a specific sense, the interpretation of the credibility interval is simpler
and more direct than the interpretation of the confidence interval.

There is much more to say about Bayesian theory and Bayesian methods; see
Bernardo and Smith (1994), Box and Tiao (1973) and Congdon (2006).
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The great weakness with the Bayesian approach is that the scientist should be
able to specify a prior distribution of the unknown parameter. In a way he should be
willing to and able to enter a let on the values of this parameter. It is often claimed
that if the scientist is not willing to do this, he should use an objective prior; for
different formal ways to specify this concept, see Kass and Wasserman (1996). I
have recently used such a prior myself (see Helland et al. 2012), but even so I would
claim: There are many cases where the scientist could not or should not have any
fully specified prior opinion about the parameter, even not one based upon symmetry
or other ‘objective’ criteria. In such cases he should resort to frequentist methods.
In statistical inference one should be flexible, not staying with one approach which
should be imagined to cover all cases. Many modern statisticians argue for such a
flexible attitude. An example is Efron (2015), who proposes a way to measure the
frequentist accuracy of Bayesian estimates.

Quite recently there has been proposed a frequentist alternative to a distribution
connected to a parameter: The confidence distribution; see Schweder and Hjort
(2002, 2016) and Xie and Singh (2013). The main idea is that one looks upon the
confidence interval for any value of the confidence coefficient γ . Let (−∞, τ (γ, x)]
be a one-sided confidence interval with coefficient γ , where τ (γ ) = τ (γ, x) is
an increasing function. Then H(·) = τ−1(·) is the confidence distribution for θ .
This H is a distribution function and has the property that H(θ,X) has a uniform
distribution over the interval [0, 1] under the model.

In general, look at any one-dimensional parameter θ , a function of the total
parameter φ. Then H(θ,X) is the cumulative distribution for a confidence distri-
bution for θ provided that it has a uniform distribution under the distribution of X,
whatever the true value of φ.

Confidence distributions are often found by means of a pivot. A function
piv(θ,X) is a pivot it its distribution function G(u) = P(piv(θ,X) ≤ u) is
independent of the underlying parameter φ. If the pivot is increasing in θ , we can
take H(θ,X) = G(piv(θ,X)).

According to Xie and Singh (2013), and also Schweder and Hjort (2016), which
is a very good monograph over confidence distributions, the distribution functionH

is to be looked upon as a distribution for the parameter, to be used in the epistemic
process, not a distribution of the parameter, as we have in the Bayesian approach.
Xie and Singh (2013) use the confidence distribution as a general concept in order
to build a bridge between the Bayesian approach and various interpretations of the
frequentist approach. This may be seen to be in the spirit of the present book.

A confidence probability for a parameter is in Schweder and Hjort (2016) called
an epistemic probability, and is of a different nature than ordinary probabilities,
called aleatoric probabilities. The latter are coupled to real randomness in the world,
and not only to our lack of knowledge attached to phenomena in the world. The
confidence distributions are coupled to epistemic probabilities, or as Schweder and
Hjort write, they express what a rational observer thinks about the world in the
light of the model and the data. Schweder and Hjort claim that the confidence
distributions are objective, in contrast to most Bayesian aposteriori distributions.
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The following is a straightforward translation from a book report by Hermansen
et al. (2017):

‘For many Bayesians this distinction between two different interpretations of
probability is well known. For example Gelman and Robert (2013) write that
“priors are not reflections of a hidden “truth” but rather evaluation of the modeler’s
uncertainty about the parameter.” For the Bayesians of this school the parameter θ is
a fixed, but unknown quantity, the prior distribution π(θ) is epistemic, while f (y|θ)

is aleatoric. . .One might say that one as Bayesian not is forced to regard θ as a
random variable from an ontological point of view, only mathematical. Schweder
and Hjort’s claim that the Bayesian “has only one form of probability, and has no
choice but to regard parameters as stochastic variables”, is therefore a simplification.
It is true that the Bayesian only has one form for probability theory, the one built
upon Kolmogorov’s axioms, but that does not mean that the Bayesian is forced to
have one interpretation of what probability is.

While Bayesians like Gelman and Robert have one probability theory and two
interpretations of probability, the confidencialist is forced to have two probability
theories, the one we know for the aleatoric and something else for the epistemic.
This is because the confidence probabilities violate Kolmogorov’s axioms.’

In the general language of the present book one might say that statisticians are
divided into three complementary schools, Bayesians, Frequentists and Fiducials,
where the last school is inspired by what some call Fisher’s largest blunders, but
which contains techniques that has gained new popularity in recent years. It is
not quite true that these schools are completely disjoint; good statisticians may
use techniques from two or three schools. One can also find connections between
the various approaches. There are now being arranged yearly international joint
Bayesian, Frequentist and Fiducial (BFF) conferences (informally: Best Friends
Forever), where both practical, technical and philosophical questions are discussed.

Three general book on statistical inference are Casella and Berger (1990), Bickel
and Doksum (2001) and Cox (2006). For a discussion of Fisher’s contributions with
a view towards the future, see Efron (1998). The recent book by Cox and Donnelly
(2011) discusses many aspects of applied statistics and also provides some links to
theoretical statistics.

2.1.4 Inference for Discrete e-Variables

Opinion polls, or sample surveys, while very much used in practice, are not much
discussed in the standard mathematical statistical literature. But specialized books
like Cochran (1977) exist. The framework is that one has a finite population
consisting of N units, say N human beings, and one seeks some information
about this population from a smaller sample of n units. The simplest case is when
the sample is taken randomly from a register of the whole population, but other
sampling plans exist. To increase efficiency, one often uses stratified sampling:
The population is divided into k strata using some relevant criterion, such that the



2.1 Basic Statistics 31

numbers of unit in stratum i is Ni , and one samples randomly ni units from this
stratum. Of course

∑k
i=1 Ni = N and

∑k
i=1 ni = n.

As a simple epistemic problem, assume that an unknown number M in the
population possesses some specific property A, and one wants to use the sample to
estimate θ = M/N . This θ takes a discrete set of values 0, 1/N, . . . , N/N , and is
not always called a parameter. In this book we will use the more general concept of
an e-variable, a conceptual variable which is unknown before the epistemic process
begins. In general it is implicit in the concept of an e-variable that this is a quantity
that we want to gain knowledge about.

A more general problem is that each unit j in the population has some value yj

attached to it, and one wants to estimate θ = ȳpopulat ion = ∑N
j=1 yj/N . The simple

problem above is then obtained by specializing yj to be an indicator function. A
common estimate of θ is

̂θ =
∑

sample yj /πj
∑

sample 1/πj

,

where πj is the probability that unit j should be included in the sample. This can be
used for many sampling plans. For stratified sampling we get ̂θ = ∑k

i=1 Niȳi/N ,
where the mean ȳi is over the sample in stratum i.

Opinion polls are based on the assumption that each person ‘has’ an opinion on
the issue that is focused upon. The fact that opinions may vary with time, and that
they may depend on the contexts, is perhaps realized, but it is not always discussed
in this connection. To see this first from the point of view of the person being
interviewed, imagine for instance that a woman A has spent some time on an hotel,
and then after a few days receives a questionnaire by e-mail, one of the questions
being: ‘On a scale from 1 to 10, how do you evaluate the service at this hotel?’ This
causes her to enter an epistemic process, mostly related to introspection. To begin
with, the score is some unknown number θ , but after a while she decides on a value
θ = uk, one of the values from 1 to 10.

This decision process may be evaluated subjectively by the woman A herself. We
may also consider the whole situation as looked upon by some person B knowing
her background. In this latter case prediction is relevant. The person B may have
access to some kind of data from a sample of size ni from a stratum consisting of
people with the same background as the woman, and to detailed information about
the hotel. On this basis he may want to predict θ . Again this is an epistemic process
with a discrete e-variable; the target for the prediction of this e-variable is not a
population, but a single unit, the woman A in this case. B may wish a large ni

to have accurate data, but at the same time resources may be limited: He may be
forced to have a small ni in order to be able to predict from a fairly homogeneous
subpopulation.

Both in the introspection case and in the external observer case, one can consider
the following: Assume that the woman A had an unfortunate episode with the
receptionist of the hotel just before she left, and that the observer B does not know
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about this episode. Let θ ′ be the hypothetical score that A would have had if the
episode had not taken place. Depending on the further circumstances, θ ′ may not be
accessible to the woman A herself, and θ may not be accessible to the observer B.

Considerations of this kind are here very vague, but they should give some feeling
of what I mean by an epistemic process when a single unit is involved. The situation
here is on the borderline or outside what one meets in ordinary statistics, but the
point is that it describes epistemic processes, and that one of these processes (the
prediction part) in principle can be made precise in statistical terms.

Such considerations will be important when I later will try to approach the
foundation of quantum mechanics from an intuitive point of view. The variables
of interest in quantum mechanics are discrete or continuous e-variables. They have
some properties in common with the parameters of statistics, and some properties
in common with the example just sketched. They are connected to single units
(particles) or to a few units. It is important to realize, however, that the e-variables of
quantum mechanics are connected to the microworld and to the relevant observers.
They have properties analogous to the e-variables of the macro-world, but they must
be considered as unique concepts.

The Bayesian concepts of prior and posterior distribution are straightforward
to formulate in the case of a discrete e-variable, and the concept of confidence
distribution also carries over: If θ takes the values u1, . . . , ur , then the confidence
coefficient γ can take only r values, and the confidence distributionH is determined
as follows: Let again (−∞, τ (γ, x)] be a one-sided confidence interval with coeffi-
cient γ , where τ (γ ) = τ (γ, x) on the r values. ThenH(·) = τ−1(·) can be extended
to a discrete distribution function for θ , which has the property that H(θ,X) for
data X has a uniform distribution on the r values H(u1),H(u2), . . . , H (ur) = 1.
Strictly speaking, this does not fit into the general definition of Schweder and Hjort
(2016) of a confidence distribution, which requires a uniform distribution on the
unit interval, but it satisfies their definition of an asymptotic confidence distribution.
Since discrete e-variables will play an important role in the last part of the book, I
will take the liberty to use the word confidence distribution here also.

2.2 Group Actions and Model Reduction

In simple random sampling, a natural objective prior for the e-variable θ is found
by giving the same probability 1/N to each unit in the population. This is the
invariant measure (see Appendix B) for the permutation group. In general an
epistemic problem related to a θ may often have some symmetry property associated
with it, and this is formalized by introducing a group of transformations acting
upon the space � of the e-variable. When θ is transformed by the group and
the observations are transformed accordingly (see Helland 2004), one should get
equivalent results from the statistical analysis. As a trivial example: One should
get equivalent results from a statistical analysis whether the parameters and the
observations are measured in meters or in centimeters. A summary of basic group
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theory is given in Appendix B. Examples of groups acting upon a parameter space,
are location: ξ → ξ + a for a real; scale group: σ → bσ for b > 0; location
and scale: (ξ, σ ) → (a + bξ, bσ), where ξ is an expectation and σ is a standard
deviation; rotation in a multidimensional parameter space; a general linear group
acting upon a multidimensional parameter space etc.. Invariance under a group may
help improving the estimation or the inference in general.

I will not be very precise on the choice of G, but just say vaguely that we choose
G, if possible, in agreement with some symmetry aspect of the whole situation.

The model reduction that I will introduce now, will later be relevant also in a
quantum theory setting. In order to be general, I will now for a moment use the term
‘e-variable’ instead of ‘parameter’. For the present discussion one can just think of
this as a parameter, however.

Now fix a point θ0 in the e-variable space�. An orbit in this space underG is the
set of points of the form gθ0 as g varies over the group G. The different orbits are
disjoint, and θ0 can be replaced by any e-variable on the orbit. Any set in � which
is an orbit of G or can be written as a union of orbits, is an invariant set under G in
�, and conversely, all invariant sets can be written in this way. If there is only one
orbit in �, the group is said to be acting transitively upon �.

A statistical model should be as simple as possible, but not simpler. In some cases
we may want to do a simplification, a model reduction. This may take the form of
a reduction of the e-variable space �. Parts of this space which are essential for
the epistemic process, must always be retained, but irrelevant dimensions should be
left out. I will now formulate a general criterion which will be used throughout this
book:

If there is a group G acting upon the e-variable space �, any model reduction
should be to an orbit or to a set of orbits of G.

This will ensure that G also can be seen as a group acting upon the new e-
variable space. In particular, if the group actions form a transitive groupG, no model
reduction is possible.

Example 2.1 Assume that a single set of observations is modeled by some large
parametric model, only assuming that parametric class contains the normal model.
Let the location and scale group be acting upon the parameter space �. Then
one orbit is given by the N(ξ, σ 2) distribution. This is not an uncommon model
reduction.

Example 2.2 Look at two independent sets of observations: (X1, . . . , Xm) inde-
pendent and identically N(ξ1, σ

2
1 ) and (Y1, . . . , Yn) independent and identically

N(ξ2, σ
2
2 ). Let G be the translation and scale group given by ξ1 → a1 + bξ1, σ1 →

bσ1, ξ2 → a2 + bξ2, σ2 → bσ2. Note that a common scale transformation by
b is assumed. Then the orbits of the group in the parameter space are given by
σ1/σ2 = constant. A common model reduction is given by σ1 = σ2. This simplifies
the comparison of ξ1 and ξ2, which is often the goal of the investigation.
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Example 2.3 Linear statistical models have a large range of applications. In general
these models have the form where the observations Yl are independent N(ξl, σ

2),
where the expectations ξl are linear combination of a set of parameters. In one
particular such model (the two-way analysis of variance model) the observations
Yijh have expectations μ + αi + βj + γij . To get a unique representation of this
kind, one often imposes the restrictions

∑

i αi = 0,
∑

j βj = 0,
∑

i γij = 0 for
each j and

∑

j γij = 0 for each i. Let the group G be given by all permutations of
the index i and all permutations of the index j . Then an obvious model reduction is
given by the invariant set where the expectation is μ + αi + βj . This is called the
model without interaction, and is a valid simplification in some cases.

Example 2.4 Another example of a linear model is the polynomial regressionmodel
Yi = β0 + β1xi + . . . + βpx

p
i + Ei , where the Ei’s are independent N(0, σ 2) for

i = 1, . . . , n. Let G be the group defined by translations in the x-space: x → x +a,
which generates a transformation group on the parameters (β0, . . . , βp). Then the
submodels Yi = β0 + β1xi + . . .+ βqx

q
i + Ei q < p correspond to invariant sets in

the parameter space.

Example 2.5 A further example of a linear model is the multiple regression model
Yi = β0 + β1xi1 + . . . + βpxip + Ei for i = 1, .., n with fixed xij , which again
has many different applications. Consider first the case where the xij are measured
in different units for different j . Then there is a natural transformation group given
by separate scale changes xij → kjxij (j = 1, . . . , p). This induces a group on
the regression parameters by βj → βj /kj (j = 1, . . . , p). The invariant sets in the
parameter space are found by putting some of the βj ’s equal to 0. These reduced
models are well-known from many applications of regression analysis.

Example 2.6 Consider the same multiple regression model as in Example 2.5, but
assume now that the explanatory variables xij all are measured in the same units. A
large class of transformations xi· → Qxi· may then be of interest. In particular, an
interesting case is when Q varies over the orthogonal matrices.

As here, and as in any linear model, estimates of the regression parameters can
in principle be found by the method of least squares, which is equivalent to the
maximum likelihood method. However, this method breaks down when p > n, or
more generally when one has collinearity problems such that the matrix which we
need to invert in order to implement the least squares solution, is singular. A large
number of alternative estimation methods are proposed in the statistical literature to
tackle this problem, but it seems very difficult to decide which of these methods one
should use in practice.

For this problem, one place where one may start the investigation, is that many
of the methods are equivariant under the transformation induced by rotation in the
x-space: A transformation on ̂θ found from transformations of the data is the same
the corresponding transformation on the parameter θ .

Before I return to this problem, I will summarize a little more theory. In
Appendix B the concept of a right invariant measure for the group is defined, and
it is recommended that such a prior is used as an objective prior. Among other
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things it is proved in Helland (2004, 2010) that there for a transitive group is a very
close connection between confidence intervals and Bayesian credibility intervals in
this case. It follows from this that there is a close connection between confidence
distributions and posterior distributions with this prior.

Concerning equivariant estimators, there is a generalization of an old theorem
by Pitman, which is proved in Helland (2010), showing that if the loss function
is invariant and proportional to the quadratic loss, if the group is transitive and a
right invariant prior is used, then the posterior mean, if finite, is the best equivariant
estimator.

Example 2.6, continued Look at a modification of the model in Example 2.6
where the explanatory variables are random variables Xij . This is natural in many
observational studies. For simplicity, assume that all variables are centered: E(Yi) =
0 and E(Xij ) = 0. Then the model is Yi = β1Xi1 + . . . + βpXip + Ei for
i = 1, .., n. Let�x be the covariancematrix of the x-variables, which can be defined
by the property that Var(

∑

j ajXij ) = aT �xa for all vectors a = (a1, . . . , ap)T .

Then β = (β1, . . . , βp)T can always be expanded in terms of an orthogonal set of
eigenvectors di of �x :

β =
p

∑

i=1

γid i . (2.5)

In this expansion the number of terms can be reduced in two ways: (1) Some of
the eigenvalues may be coinciding. Then the eigenvectors in this eigenspace can be
rotated in such a way that there is just one eigenvector in this space which has a
nonzero component along β. (2) The vector β has no component in this eigenspace.
So an interesting reduced model is the one with m non-zero terms in (2.5). The
ordering of the terms in (2.5) is arbitrary, so the reduced models only specify the
number m of non-zero terms, not which terms that are non-zero. It is not difficult
to show that these models for different m are exactly the orbits of the following
group G: Rotations in the x-space and hence of the eigenvectors d i augmented by
independent scale transformations γi → aiγi where ai > 0.

It is shown in Helland et al. (2012) and Cook et al. (2013) that these reduced
models coincide with reduced models introduced by researchers from two different
traditions: The envelopemodel of Cook et al. (2010) and a natural population model
arising from the partial least squares algorithmic ‘soft’ models from chemometrics.
Maximum likelihood estimation and other estimators under the reduced model are
discussed in Cook et al. (2013) and Bayes estimation in Helland et al. (2012). The
invariant prior induced by the group leads to an undefined posterior expectation, so
a best equivariant estimator can not be found from this. However approximating the
scale prior with a proper prior leads to β-estimates, hence predictions, which seem
to have good properties.
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These two estimators assume a multinormal distribution of {Xij , Yi}. However,
both the chemometric tradition and the envelope model of Cook et al. (2010, 2013)
demand no detailed distributional assumptions.

A systematic comparison of estimators under the multinormal envelope/PLS
model is now carried out by Helland et al. (2018). This is based upon a computer
package which is being developed by Sæbø et al. (2015).

Finally I give for completeness a simple example of model reduction for the case
where the e-variable in question is not a continuous parameter.

Example 2.7 In stratified random sampling, the natural group G is the group of
independent permutations within each stratum. The orbits of G are then given by
the single strata, and model reductions to invariant sets are given by reduction to
any set of strata. Such a reduction is of course natural in cases where one want to
limit the investigation to a particular set of strata.

2.3 Interlude

Before the epistemic process, one has an unknown e-variable θ . What is the
situation after one has gone through an epistemic process? In the case where θ is
the parameter of a statistical model, the situation can be summarized as follows:
Depending upon the statistical philosophy used, one has either a confidence interval
[θ(x), θ̄ (x)] or a credibility interval [θ∗(x), θ∗(x)]. In both cases, assume that
the coefficient γ is very high, say 0.999. Then the practical conclusion from the
epistemic process is that the new state is specified by saying that θ belongs to this
interval.

Confidence intervals or credibility intervals for discrete e-variables are not much
discussed in the statistical literature, but the concepts carry over. One difference
is that when one has very much data or the experimental uncertainty is very low,
the intervals can degenerate into a single point. In the following, it will make the
discussion much simpler to consider such a case. Assume that one has this situation,
and let again the coefficient γ is very high, say larger than 0.999. Then in the
frequentist case, one has a conclusion of the type Pθ [̂θ(X) = uk] = γ with
realized data X = x, and in the Bayesian case one has a posterior probability
P [θ = uk|x] = γ . In both cases we conclude for practical purposes that the new
state is given by θ = uk , and that this value can be used in further investigations.

Any epistemic process starts with an unknown e-variable θ , and when the process
ends, one has some knowledge about θ . A state is obtained when this knowledge is
almost certain. In the simplest case the knowledge can be expressed by a certain
fixed value θ = uk . This situation can be realized by a statistical investigation
with a discrete parameter/e-variable, but it can also be realized in other epistemic
situations. One example is when a person through introspection makes up his or
her mind on a particular issue, as illustrated with the woman answering an opinion
poll in Sect. 2.1.4. Again we can talk about a state when the person’s knowledge
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about his/her opinion is almost certain. Looking upon the process of achieving an
opinion on an issue as an epistemic process is an example of a decision. From amore
qualitative point of view decisions are discussed in Sects. 3.3, 6.1 and 6.2 below.
Many examples of everyday decisions can be given, some realized through the
communication with other people. Some of these processes start with an unknown θ

and end up with an (almost) sure state θ = uk . Other examples of this are connected
to prediction of some variable. In these last examples, the e-variable is typically
attached to a single unit, not to a population of units, which is the most common
situation in statistical investigations.

The example in Sect. 2.1.4 illustrates another issue: Here one e-variable θ is
accessible to the woman A herself, while another e-variable θ ′ (the hypothetical
score if a certain episode had not taken place) is accessible to the person B
knowing her background and having information about the hotel. The reason for
this difference is that the two persons have different background knowledge. We
will come back to similar situations later when discussing quantum mechanics.

Returning now to statistics, nearly all papers on statistical inference have data
models, that is, either parametric or nonparametric models of the observed data,
as their point of departure. Also, statistical practice is deeply founded upon this
tradition. Even though a different culture was promoted and discussed by Breiman
(2001), the data modeling culture is now more dominant than ever.

Nor will this book depart radically from this culture, but we will add an element
to it: Every decision in any experimental or observational setting is made in a
context. This context may not be trivial, and may have decisive influence on how the
inference should be made. The context may be in parts be formed by the historical
and cultural background for the study, and it may depend upon earlier decisions.
But it can also in addition be conceptual, including the formulated goal of the
investigation, the model, a loss function and/or a Bayesian prior. Also the framework
for the study must be considered as a part of the context: The experimental units
available, what can be measured on these units; limitations in terms of money, time
and human resources.

In order to be able to discuss contexts in general, it turns out to be useful first to
give a precise definition of what we mean by conceptual variables, which includes
observations, parameters, latent variables and more. Then we define e-variables,
which up to now has been a loosely defined concept.

In statistical theory, a parameter is often defined as an index of a class of
distributions, but in statistical practice, a parameter is often a quantity of interest
in itself, introduced as an expectation, a variance, a covariance, a correlation, a
regression coefficient or a probability. These two facets of the parameter concepts
may to some extent be regarded as complementary, even though this introduces no
logical difficulty.

In the statistical tradition, a parameter is usually connected to a hypothetical
infinite population, but in fact parts of the statistical theory - in reality nearly
everything that is not related to asymptotical considerations - can be generalized
to the case where the parameter is replaced by a conceptual variable connected to a
single unit or to a few units.
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In addition to the unknown conceptual variable there are data z. The purpose of
an experiment is then to use these data to answer questions formulated in terms of
the conceptual variable. This will be the background for our approach to essential
parts of quantum theory later in this book. Quantum theory is not statistics, but both
give examples of epistemic processes involving observations.

The present book concentrates upon estimation and prediction, but the conceptual
framework discussed here is also valid for other types of statistical inference.
Confidence intervals may be considered if the context contains a set of hypothetical
situations where a particular estimation procedure is used, and Bayesian analysis
is relevant if prior distributions of parameters are part of the context. Finally, in
the case of a hypothesis testing setting, which is not much discussed in this book,
the context may contain a specification of a null hypothesis and an alternative
hypothesis. Or if we are interested in Fisherian p-value testing, a null hypothesis
and a direction for the alternative should be specified in the context.
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Chapter 3
Inference in an Epistemic Process

Abstract A conceptual variable is defined, and on this background the e-variable
is given a precise definition. Also, the context of an epistemic process is defined.
One can formulate a precise setting called a generalized experiment, and in this
setting sufficiency and conditioning are discussed. The conditionality principle and
the sufficiency principle are seen as intuitively obvious. Birnbaum’s theorem states
that the likelihood principle follows from these two principles. Everything is seen
in the context of an epistemic process.

3.1 Conceptual Variables and Contexts

Fisher (1922) introduced the concept of parametric models in the way it is used
throughout statistics today. According to Stigler (1976) and Cook (2007), the word
‘parameter’ is mentioned 57 times in that groundbreakingpaper. Recently, Taraldsen
and Lindqvist (2010) argued that in Bayesian inference the parameters and the
potential observations should be defined on the same underlying measure space.
This is one point of departure of the present book. Another point of departure is
that in any situation where inference is supposed to be done, several other types
of unknown variables than parameters are of relevance (one simple example is in
prediction), and that additional types of variables are needed to describe the context
of the experiment or observational study.

Definition 3.1 Consider any experimental or observational situation at a given time
or over some time span, more generally any epistemic process. Any variable which
can be defined in words by a person or by a group of persons in that situation is
called a conceptual variable.

This term was indicated in Helland (2010), where it also was argued that some
unknown conceptual variables could be inaccessible, that is, they could not be given
a value with arbitrary accuracy through estimation or prediction in any way in the
given situation. This was taken as the first steps in a line of reasoning indicating
a connection between theoretical statistics and quantum theory, a line of reasoning
that I will continue below.
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In the following, I may alternately speak about one conceptual variable and
several related conceptual variables in the same way as we may talk about a
multivariate parameter or several one-dimensional parameters.

Several classes of conceptual variables are of interest in a statistical investigation,
depending upon the situation:

• Context variables: The background variables for an experiment or observational
study.

• OCV’s (observed conceptual variables): Data or preset values.
• Statistics: Known functions of the data.
• Quasi-statistics: Known or unknown functions of the data.
• Input variables and responses/output variables. As used in prediction and regres-

sion, cp. Hastie et al. 2009.
• UCV’s (unknown conceptual variables): For instance parameters, latent variables

or a response for a new set of input variables.
• Hypothesis variables: Concepts from which one may formulate assertions about

the value of a parameter.
• Conclusion variables: Conceptual variables by which one may formulate the

conclusions from an experiment or observational study.
Most variables in this book are either real variables, vector variables or

variables belonging to some function space. But in principle a variable can be
anything. The conclusion variable may be a journal article, its summary or part
of the article.

In this book I will consider any epistemic process.

Definition 3.2 A conceptual variable which is used in an essential way in an
epistemic process is called an e-variable θ . Before the epistemic process is started,
the e-variable is unknown. After the process, one is able to achieve some conclusion
about the e-variable, the simplest case being that we know its value: θ = uk, a type
of conclusion which is only possible for discrete e-variables.

In this book the concept of e-variable will be very important. In the same way
as a parameter in statistics can be any property for a population, an e-variable can
represent any property for a population, a single unit or a group of units. The sole
requirement is that is shall be used in an epistemic process. Like a parameter, it is a
theoretical variable before the process, but one will have concrete information about
the value of the e-variable after the epistemic process.

As indicated in Chap. 1, the concept of e-variables is also important in quantum
mechanics. In this and the following chapters I will focus much on discrete simple
e-variables, which are essentially what is called observables in quantum mechanics.
The fact that these observables may be associated with operators of a Hilbert space,
will be the theme of the next chapters. The discussion of the present chapter will
focus upon generalized experiments and upon properties that are shared between
the parameters of experiments in statistics and the e-variables of experiments in
quantum mechanics. We have similar kinds of epistemic processes in mind for the
two cases.
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We also have the important concept of a context of an epistemic process.

Definition 3.3 In the case of an experiment the context includes the setting of the
experiment, similarly for an observational study. But in general for any epistemic
process it also includes the background for the process, historical, specific and
conceptual. The conceptual background for any study should always include a
formulated goal of the study.

In a series of experiments or in a meta-analysis, the conclusions from one
situation may be used as a part of the context of the next situation. In a quantum
mechanical situation, it is important to distinguish between the preparation of the
physical system and the measurement on the system. The preparation then forms
the context for the measurement.

Several operationsmay be done on any assertion containing conceptual variables,
including ¬ (negation), ∧ (and) and ∨ (or). Formulating statements connected
to a concrete experimental or observational situation may then be done using
propositional logic, a subject which has a large abstract literature. As formulated in
Appendix E, I want to bemore concrete and regard sentences formulated in ordinary,
everyday language as primitive entities.

There is a close connection between propositional logic and set theory, where
we identify ¬ with complement, ∧ with intersection and ∨ with union. Such
identifications are often done implicitly in elementary textbooks in probability. Let
(
′,F ′) be the measurable space thus obtained, where F ′ is a σ -algebra of subsets
of 
′. On some measurable subset 
 of 
′ one can define conditional probability
measures related to one conceptual variable given other conceptual variables, where
the conceptual variable conditioned upon may or may not belong to 
, that is, may
or may not be measurable functions on (
,F), where F = {A ∩ 
 : A ∈ F ′}.
Strictly speaking, conditioning here must be taken as more general than the usual
conditioning in statistics where we condition upon σ -algebras. We are talking in
general about probabilities, given some information, so that we should wish to stay
within the framework of propositional logic. As indicated in Appendix E, however,
it seems like we need some extra assumptions in this framework to make the
conditional probabilities precise in general. Therefore I will in this book stay within
the probabilistic framework and limit myself to conditional probabilities given a
σ -algebra as defined by (2.1). Conditional probabilities, given some conceptual
variable τ which is a random variable on (
,F), is defined as the conditional
probability, given the σ -algebra generated by this conceptual variable, that is, the
collection of sets τ−1(B), where B runs through the relevant Borel sets. Conditional
probabilities, given some non-random variable τ are simply measurable functions
of this variable.

When considering conditional probabilities, given the context, in most cases only
part of the context will be relevant. The conceptual variables on which probabilities
can be defined, will be called random variables. For simplicity, technical problems
resulting from the fact that conditional distributions are only defined almost surely,
are mostly disregarded in this book. However, difficulties from this in the definition
of sufficiency (see Lehmann and Casella 1998) will be addressed.
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A statistical model is defined as a conditional distribution of the data, given all
parameters (together with the context, including preset values). It is assumed as
usual that this class is dominated, that is, all conditional distributions are absolute
continuous with respect to some fixed conditional probability measure P , given
the context, where Q is defined to be absolutely continuous with respect to P if
P(A) = 0 implies Q(A) = 0.

In addition, if a Bayesian analysis is to be carried out, there is a prior distribution
of the parameters (again given the context). To allow for objective priors, I will,
in agreement with Taraldsen and Lindqvist (2010) allow these measures to be
unnormalized; see that paper and also the recent paper by McCullagh and Han
(2011) on how logical difficulties with this can be avoided. Note that I talk about
a Bayesian analysis to be carried out, not about Bayesian or frequentist research
workers. The same person may in certain cases carry out both types of analysis, first
a frequentist analysis and then at a later point of time a Bayesian analysis.

In the following, I will depart from my earlier notation and also denote random
data by lower case letters. It will be clear from the context whether I talk about the
pre-experimental or post-experimental situation. The statistical model will, if this is
natural, be seen from a pre-experimental point of view.

As a particular case I will also look briefly at the following prediction or learning
situation: In the statistical model, let yi have some identical conditional distribution,
given xi and some fixed parameter ζ for i = 0, 1, 2, . . . , n, and assume that these
distributions are independent. In addition xi (i = 0, 1, 2, . . . , n) may or may not
have some identical independent distributions given a parameter κ , and ζ and κ may
or may not have priors. I assume that y0 is unknown, but the other yi’s are observed
data. The xi’s are data or preset values. Thus here the UCV’s—the e-variables—
are y0, ζ and κ , while the OCV’s—the data z in the case where the xi’s are not
preset—are {xi, yi; i = 1, . . . , n} and x0. In principle the variables may belong to
any topological space and the σ -algebras of relevance may be contained in the Borel
σ -algebra, but in most practical cases they are constrained to subsets of Euclidean
spaces. In this case y0 is the e-variable of interest. This is a simple e-variable, but it
is important to emphasize that it is not of the same nature as the simple e-variables
of quantum mechanics; see Sect. 3.3 below.

The situation sketched above is the conceptual basis for much of Hastie et al.
(2009) (supervised learning).

3.2 Data; Generalized Sufficiency and Ancillarity

Let z be a statistic, and let τ be a conceptual variable. The following two
assumptions are taken as basic throughout this section and in much of this book.
Any setting where these two assumptions are satisfied, will be called a generalized
experiment.

1. The distribution of z, given τ , depends on an unknown parameter θ .
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2. If τ or part of τ has a distribution, this is independent of θ . The part of τ which
does not have a distribution is functionally independent of θ . However, separated
from this, there may be a prior for θ which depends upon τ .

To fix ideas, think of (1) and (2) as describing a situation where inference on θ

is sought from the data z in the context described by τ , but there are variants of
this. In a simple experiment, z may be the whole data set, and τ may be trivial
or some nuisance parameter. In addition, τ may contain the real context of the
experiment, which it always will, but this is often just taken as an implicit fact. In a
series of experiments, ordered in time, z may be the data set of the last experiment,
and the context τ may contain some or all of the conceptual variables connected
to the earlier experiments. In a meta-analysis, z may contain all data sets, and τ

may contain all contexts. It is a basic condition that the model assumptions are rich
enough so that (1) and (2) are meaningful. Throughout most of this section, z and τ

will be held fixed.
In quantum mechanics it is not so common to distinguish between data and e-

variable/parameter, because one often talks about ideal measurements. But in real
measurements, such a distinction is necessary. With preparations τ , measurement
data z and the parameter θ focused on, we are again in the situation of a generalized
experiment; see Sect. 1.5.5. The purpose of the experiment is to gain knowledge
about θ .

3.2.1 Sufficiency

We let t be a known or unknown function of z. Later I will give an example of the
perhaps unfamiliar situation where we have an unknown function of the data. The
concept of sufficiency was introduced by Fisher as a tool for reducing the data in a
given situation without sacrificing anything related to the inference on the parameter
θ . A very simple example is when we have data z = (y1, . . . , yn), where the yi are
assumed independent and identicallyN(μ, σ 2). Then t (z) = (ȳ, s2) is sufficient for
θ = (μ, σ 2). Here s2 = ∑

(yi − ȳ)2/(n − 1).

Definition 3.4 We say that t = t (z) is a (z, τ )-sufficient quasi-statistic for θ if the
conditional distribution of z, given t, τ and θ is independent of θ . If z is the whole
data set, we say just that t is τ -sufficient.

From the fact that (1) is meaningful, it follows that the conditional distribution of
z, given t, τ and θ is meaningful. However, difficulties (Lehmann and Casella 1998)
may arise because the conditional distribution is only defined almost everywhere.
I then follow Reid (1995) in making the definition more precise: The quasistatistic
t (z) is (z, τ )-sufficient if there is a transformation from z to (t, v) such that the
densities satisfy

f (z|θ, τ ) ∝ f (t|θ, τ )f (v|t, τ ),
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where the constant of proportionality is independent of θ . This is a version of the
factorization theorem: t (z) is (z, τ )-sufficient if and only if there exist functions
g(t|θ, τ ) and h(z|τ ) such that for all z and θ we have

f (z|θ, τ ) = g(t (z)|θ, τ )h(z|τ ).

Ordinary sufficiency results if τ is trivial, θ is the full parameter and t is a
statistic. The case where part of τ is a nuisance parameter is also of interest. The
general concept is of interest also in many other situations.

In general, if t (z) is a (z, τ )-sufficient statistic, the rest of the distribution of z can
be thought of as generated by some randomization independent of θ , and gives no
information about the parameter. This will be made precise by a sufficiency principle
formulated later.

It is clear that t = z is a (z, τ )-sufficient statistic, but usually we are interested in
smaller functions of z. In general a minimal sufficient observator will not exist, but
translating a result from ordinary sufficiency theory, any boundedly complete (z, τ )

observator will be minimal sufficient.

Definition 3.5 A (z, τ )-sufficient quasi-statistic t is boundedly complete if for all
bounded functions h

E(h(t)|θ, τ ) = 0 for all θ implies P(h(t) = 0|θ, τ ) = 1 for all θ.

Proposition 3.1 (Bahadur’s Theorem) Suppose that t takes values in a k-
dimensional Euclidean space and that t is a (z, τ )-sufficient and boundedly
complete quasi-statistic. Then t is a minimal (z, τ )-sufficient quasi-statistic.

Standard results like the Rao-Blackwell Theorem and the Lehmann-Scheffé
Theorem generalize immediately to (z, τ )-sufficiency. The first result says that if
g(z) is any estimator of a scalar θ and if t (z) is a (z, τ )-sufficient statistic, then the
conditional expectation of g(z), given t (z) is an at least as good estimator as g(z),
using quadratic loss. Sometimes one gets a considerable improvement using such a
Rao-Blackwellization. The last result says that if t is complete and τ -sufficient for
the scalar θ and h(t) is an estimator of θ which is conditionally unbiased, given τ ,
then h(t) has uniform minimal conditional variance, given τ .

Assume that we on the basis of data z want to estimate the parameter θ in the
context given by τ .

Definition 3.6 If t (z) is a minimal sufficient quasi-statistic for θ , and the distribu-
tion of t depends on a part of τ , we say that this part is relevant for the estimation
of θ .

Example 3.8 Let z = (y1, . . . , yn), where y1, . . . , yn are independent and iden-
tically distributed (i.i.d.) N(μ, σ 2). Then (ȳ, s2) is sufficient for (μ, σ 2), where
s2 = (n − 1)−1 ∑n

i=1(yi − ȳ)2. However, even in this simple example it is of
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interest which parameter we focus upon. Write the log likelihood as

lnf = k+ 1

2σ 2

n
∑

i=1

(yi−μ)2+1

2
ln(σ 2) = k+ 1

2σ 2

n
∑

i=1

[(yi−ȳ)2+n(ȳ−μ)2]+1

2
ln(σ 2).

From this we see:

(a) If τ contains the nuisance parameter σ 2, then ȳ is (minimal) (z, τ )-sufficient for
μ.

(b) If τ contains the nuisance parameterμ, then
∑n

i=1(yi −μ)2 is (minimal) (z, τ )-
sufficient for σ 2. This is an example of an unknown function of the data where
the concept of sufficiency is of interest.

In each case the minimality of the sufficient quasi-statistic can be proved from
Proposition 3.1.

We conclude from this that σ 2 is irrelevant for the (point-)estimation of μ, while
μ is relevant for the estimation of σ 2.

3.2.2 Ancillarity and Conditioning

Next I turn to the generalization of ancillarity, another basic concept introduced by
Fisher.

Definition 3.7 We say that u = u(z) is a (z, τ )-ancillary quasi-statistic for θ if the
conditional distribution of u, given τ is independent of θ .

If u is (z, τ )-ancillary and f is a measurable function, then f (u) is (z, τ )-
ancillary. In the corresponding partial ordering of statistics (u < v if u = f (v) for
some function f ), z is an upper bound. By Zorn’s Lemma, one or several maximal
ancillaries will exist. We say that u is τ -ancillary if z is the whole data set; just
ancillary if τ is trivial.

A very important and much discussed question is when one should condition
upon ancillaries. Once one has conditioned upon an ancillary, this can be taken as
part of the context of the experiment or the observational study. Thus the context is
expanded, but after this expansion, (1) and (2) in the beginning of Sect. 3.2 will still
hold. A closer discussion of the question of conditioning will be given in the next
section, but as a background for this discussion we will sketch some examples.

A basic argument for conditioning is given by the following example:

Example 3.9 (Berger and Wolpert 1988; Cox 1958) Consider two potential labo-
ratory experiments for the same unknown parameter θ such that E1 is planned to
be carried out in New York while E2 is planned to be carried out in San Francisco.
The owner of the material to be sent chooses to toss an unbiased coin, deciding E1

with probability 1/2 and E2 with probability 1/2. Consider the whole experiment E
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including the coin toss, and let u be the result of the coin toss. Here u is ancillary,
and everybody would condition upon u in the statistical analysis.

A problem with the requirement of conditioning, is that maximal ancillaries may
not be unique.

Example 3.10 Let θ be a scalar parameter between −1 and +1. Consider a
multinomial distribution on four cells with respective probabilities p1 = (1+ θ)/6,
p2 = (2−θ)/6,p3 = (1−θ)/6 and p4 = (2+θ)/6 and total number of observations
n. Let the corresponding observed numbers in the sample be z1, z2, z3 and z4. Recall
from Sect. 2.1.2 that the multinomial distribution is a generalization of the binomial
distribution with multivariate point probabilities

n!
z1!z2!z3!z4!p

z1
1 p

z2
2 p

z3
3 p

z4
4 .

Then one can show that each of the statistics

u1 = z1 + z2, u2 = z1 + z3

is ancillary for θ , but they are not jointly ancillary. And conditioning upon u1,
respectively u2 leads to distinct inference (the maximum likelihood estimator is the
same, but the asymptotic variances are different).

Cox (1971) has proposed an intrinsic criterion for the choice of ancillary to
condition upon in such cases, but my opinion is that this choice should depend upon
the context.

Example 3.11 In a certain city the sex ratio is 1:1, and it is known that 1/3 of the
population have their own cellphone. The ratio between female and male cellphone
owners is an unknown quantity (1 + θ)/(1 − θ), where −1 < θ < 1. One is
interested in estimating θ by sampling randomly n persons from a register of the
city population. It is assumed that the population is much larger than the sample
size n.

Let the number of men in the sample be u1, and let u2 persons in the sample
be owners of cellphones. Thus u1 = z1 + z2 and u2 = z1 + z3, where z1 and
z2 are the male cellphone owners and non-owners, respectively, and z3 and z4
are the corresponding female numbers. The joint distribution of z1, . . . , z4 is as
in Example 3.10. Again each of u1 and u2 are ancillary, but they are not jointly
ancillary.

Another question is whether or not one should always condition upon ancillaries.
The following examples give a background for that discussion.

Example 3.12 (Helland 1995) As a part of a larger medical experiment, two
independent individuals (1 and 2) have been on a certain diet for some time, and
by taking samples at the beginning and at the end of that period some response like
the change in blood cholesterol levels is measured. For the individual i (i = 1, 2),
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the measured response is yi , which is modeled as independent normal (μi, σ
2) with

a known measurement variance σ 2.
Because the two individual have been given the same treatment (diet) in the larger

experiment, the parameter of interest is not μ1 and μ2, but their mean: θ = 1
2 (μ1 +

μ2).
Suppose now that for some reason we have only capacity to measure one of the

individuals, but at the outset, we don’t know which. Let u be the indicator of the
individual chosen. It is clear that, given u, that is, given the person chosen, we get
no information about θ . But choosing u randomly with probability 1

2 for each of the
two values will give us such information, provided that the identity of the individual
chosen is not revealed. The last statement follows from a sampling argument: The
situation is a special case of a sampling situation where n individuals are sampled
randomly from a population of N individuals where the parameter of interest is the
mean in the population. In addition there is a measurement error for each individual,
modeled as independently normal (0, σ 2). It is then clear that the sample mean of
the observations is an appropriate estimator of this population mean. It is equally
clear that this conclusion also must be valid for the special case N = 2, n = 1, the
situation at hand.

The surprising aspect of this example is that a situation with less information
can give us more ability to do inference: By not knowing u we can make some
(admittedly uncertain, but nevertheless valid) inference on θ ; when we know u,
such an inference is impossible.

Example 3.13 Consider a sensory analysis firm where there is a staff of N trained
assessors and a panel of n out of these are selected randomly to taste a particular
product. A report is written. Given the assessors, what they do in the analysis must
be considered as separate experiments on a common parameter θ . Consider the
whole investigation, and let u be the result of choosing randomly the assessors to
take part in it. Again u is ancillary. But in this case it may not be immediately natural
to condition upon u in the written report.

3.2.3 Conditioning and the Conditionality Principle

Any statistical investigation has to start with a conceptual analysis. This includes
choosing question of interest, collect earlier information on this question, the choice
of design or sampling plan, choosing target population and sampling units, the
choice of a model and maybe of a loss function etc.. The result of this analysis must
be considered as a part of the context of the estimation and prediction problem. Then
data are collected.

Assume now a generalized experiment, that is, a setting where assumptions (1),
(2) in the beginning of Sect. 3.2 are satisfied, and let u is a (z, τ )-ancillary quasi-
statistic in this setting. All the examples in Sect. 3.2.2 satisfy these assumptions.
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Example 3.9 is the typical situation, and a situation where it is obvious that one
should condition upon u.

To choose the conditioning in Example 3.11, one must specify further. Suppose
that the data collection is done by first finding out whether the person in question is a
man or woman, thereafter asking about cellphone ownership, then the conditioning
should be done upon sex. In the opposite case, if the data collection is done from
a register of cellphone owners, later asking about sex, then one should condition
upon cellphone ownership. In the case where the data are found from a register
containing both information on sex and cellphone ownership, one should perhaps
condition upon both variables, even though we don’t have joint ancillarity here.

The last two examples describe different situations. First consider Example 3.12.
Here the parameter of interest θ is a function of the inaccessible conceptual variable
φ = (μ1, μ2), and an ancillary for θ is the choice u of a person to investigate. This
is chosen randomly, and is at the outset unknown to the experimentalist. Assuming
that u takes some definite value, let μu be the value of μ for the specific person
chosen. The point is that information about u may give information about μu, but
no information about the parameter of interest θ = 1

2 (μ1 + μ2).

The Generalized Principle for Conditioning (GPC) Assume that u is a maximal
(z, τ )-ancillary quasi-statistic for an parameter θ .

1. Assume that the generalized experiment obtained by knowing the value of u has θ

as the parameter. Then one should condition upon u. If there are several maximal
such u’s to choose between, one should condition upon the one corresponding to
the data that have first been obtained.

2. If knowledge of u will imply a generalized experiment with another parameter
than θ , one should not condition upon u.

Part (1) is consistent with the conditioning chosen in Example 3.9 and in
Example 3.11. This is the most common situation, and is often thought about as just
the principle of conditioning. Part (2) is consistent with the decision not to condition
in Example 3.12, since the parameter in the experiment obtained by conditioning is
μu, not θ , which is the parameter of interest.

Example 3.13 is a bordering situation. In most cases, a user of the results of the
sensory analysis will not be interested in which assessors that are chosen, will not
ask for this information and will thus not condition upon this information. More
precisely, if one conditions, the parameter of the conditioned experiment will be the
mean for the n chosen assessors, while the parameter of interest will most probably
be a population mean.

I have given a normative form of the conditionality principle. For the further
development in this book it is also important to consider a descriptive form, which is
often given in the literature; see Berger and Wolpert (1988). In this case, the notion
‘one should condition upon . . . ’ translates into ‘. . . the unconditioned experiment
contains no experimental evidence on θ in addition to that of the conditioned
experiment’. As in Berger and Wolpert (1988), the concept of ‘experimental
evidence’ is left undefined, i.e., it can be made precise in any reasonable way.
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The Generalized Weak Conditionality Principle (GWCP) Suppose that there are
two generalized experiments E1 and E2 with common parameter θ and with
equivalent contexts τ . Consider the mixed experiment E∗, whereby u = 1 or 2 is
observed, each having probability 1/2 (independent of θ , the data of the experiments
and the contexts), and the experimentEu is then performed. Then the evidence about
θ from E∗ is just the same as the evidence from the experiment actually performed.

Note that this corresponds to the situation 1) of the GPC: The variable u is a
statistic here; the two experiments are known to the experimentalist. Two contexts τ

and τ ′ are defined to be equivalent if there is a one-to-one correspondence between
the relevant parts of them: τ ′ = f (τ), τ = f −1(τ ′).

3.2.4 The Sufficiency and Likelihood Principles

The motivation behind the definition of a sufficient statistic is that one wants to
reduce the data and still get the same information about the parameter. One version
of the sufficiency principle, as formulated in Berger and Wolpert (1988), translates
to our setting as follows:

The Generalized Weak Sufficiency Principle (GWSP) Consider a generalized
experiment in a context τ as described above, let z be the data of that experiment,
and let θ be the parameter connected to the experiment. Assume that (1) and (2)
of Sect. 3.2 are satisfied. Let t = t (z) be a (z, τ )-sufficient statistic for θ . Then, if
t (z1) = t (z2), the data z1 and z2 contain the same experimental evidence about θ
in the context τ .

There can be given many examples to support the GWSP. The simplest example
is an independent measurement series z = (y1, . . . , yn), where the yi’s are normal
(μ, σ 2). If σ 2 is known, ȳ = n−1 ∑

yi is sufficient for μ, and any reasonable
inference is based upon ȳ. If σ 2 is unknown, then t (z) = (ȳ, s2) is sufficient for
θ = (μ, σ 2), where s2 = (n − 1)−1 ∑

(yi − ȳ)2. (The denominator n − 1 makes
s2 an unbiased estimator of σ 2.) Any reasonable inference on θ under the normal
model is based upon t (z). This kind of data reduction was Fisher’s motivation for
introducing the concept of sufficiency.

The general argument for the GWSP runs as follows: By Fisher’s factorization
theorem, if t (z) is sufficient for θ , then the probability density can be written as
f (z|θ) = g(t (z)|θ)h|z|, where h(z) is independent of θ . But then an artificial
experiment, where h(z) is generated by a computer simulation, will give the same
information an θ as the real experiment.

Now following an argument from Berger and Wolpert (1988), using the GWSP
and the GWCP, which we will regard as more or less obvious, we can derive
the following likelihood principle. This result is a classical theorem first given by
Birnbaum (1962). The argument is reproduced for completeness in Appendix A for
the discrete case; this is in fact the case I need later in the discussion of quantum
mechanics. For the continuous case, see Berger and Wolpert (1988).
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A version of the likelihood principle will be used later to motivate Born’s formula
in quantum mechanics.

The Generalized Likelihood Principle Consider two generalized experiments with
equivalent contexts τ , and assume that θ is the same full parameter in both
experiments. Suppose that two observations z∗

1 and z∗
2 have proportional likelihoods

in the two experiments, where the proportionality constant c is independent of θ .
Then these two observations produce the same experimental evidence on θ in this
context.

Since both my definition of ancillary and my definition of sufficient statistic
depend on the context, and therefore the context is kept fixed in the corresponding
principles, it is important that it is kept essentially fixed also here. This aspect makes
the generalized likelihood principle weaker than the principle as formulated in the
literature, in particular in Berger and Wolpert (1988). On the other hand, paradoxes
like what the ordinary likelihood principle seems to imply in the following situation
are avoided.

Example 3.14 Suppose that s1, s2, . . . are independent, identically distributed vari-
ables with P(s = 1) = θ and P(s = 0) = 1 − θ , i.e., iid Bernoulli variables with
parameter θ . In experiment E1, a fixed sample size of ten observations is decided
upon, and the sufficient statistic t1 = ∑10

i=1 si turns out to be t1 = 8. In experiment
E2, it is decided to take observations until a total of 2 zeroes has been observed. Then
assume that the sufficient statistics t2 = ∑

si also turns out to take the value 8. The
two likelihoods are proportional, but the contexts are different, so the intuition that
the two experiments may lead to different inference on θ is supported by my version
of the likelihood principle. For further discussion of this example, see Berger and
Wolpert (1988) and references there.

The introduction of a context makes my formulation of the likelihood principle
far less controversial than the ordinary formulation. According to the ordinary
principle, the way data are obtained is irrelevant to inference; all information
is contained in the likelihood. Thus sampling plans, randomization procedures,
and stopping rules are irrelevant according to a common interpretation of the
ordinary principle. Furthermore, common frequentist concepts like bias, confidence
coefficients, levels and powers of statistical tests, etc., are irrelevant, as they depend
on the sample space, not only on the observed observations. In my formulation,
all these concepts are related to the context. Also Bayesian priors, if needed, are
contained in the context. Maximum likelihood estimation can not be derived from
the likelihood principle, but is obviously permissible as a method of obtaining
reasonable proposals for estimates in general.

An important special case of the generalized likelihood principle is when the
proportionality constant c is equal to 1. Then the two observations z∗

1 and z∗
2 have

equal likelihoods. Again an important special case is when the two experiments
are identical. A consequence of the generalized likelihood principle is then that
all experimental evidence, given the context, is a function of the likelihood of the
experiment, i.e, is contained in the likelihood function.
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3.3 Prediction and Simple e-Variables

Now look at situations with what I called in Chap. 1 simple e-variables. In most
statistical settings this corresponds to the area of prediction. So first, let y is
an unknown e-variable (random variable) to be predicted, we have data z and a
statistical model for (z, y) depending on an unknown parameter η. The context is
denoted by τ . There are many situations where this is a relevant practical problem;
one situation is sketched at the end of Sect. 3.1.

Berger and Wolpert (1988) formulated a likelihood principle for prediction,
stating that all evidence about (y, η) is contained in the likelihood function

Lz(y, η|τ ) = pη(y, z|τ ). (3.1)

In Bjørnstad (1990) predictive likelihood is reviewed, taking this as a point of
departure. The essential problem is that of eliminating η from (3.1) using one of the
following operations on Lz: integration, maximization and conditioning. In all, 14
different combinations of these operations were proposed, resulting in 14 different
versions of the what is called a predictive likelihood. In a statistical setting, it is
too much to demand that all evidence about θ is contained in such a predictive
likelihood.

The situation is completely different in quantum mechanics. Here, in a given
situation, we will have a model for the data z depending upon the context τ and the
e-variable of interest θ ; see the example in Sect. 1.5.5. Thus, even though θ is simple,
from a statistical point of view it acts as a parameter in the model. An eventual extra
parameter η in such a model will be assumed known from earlier experiments of
the same type, and may be included in the context. This gives a unique likelihood
L(θ |z, τ ) = p(z|τ, θ). And in this situation the whole discussion in Sect. 3.2 is
valid. In particular the generalized likelihood principle above holds true.

In simple quantum theory θ will be discrete. The situation will be taken up again
in Sect. 5.4, where the main point is to focus on a particular θ .

3.4 Epistemic Processes, Decisions and Actions

Recall that an epistemic process may result in a confidence interval or a credibility
interval for the parameter θ . Also recall that (cp. Sect. 2.1.1) in the present
book we support all 3 interpretations of the probability concept: The one based
on symmetry, the subjective interpretation and the frequentist interpretation. The
subjective interpretation is relevant if the context contains a prior. The frequentist
interpretation is relevant if the epistemic process can be repeated an arbitrary
number of times with the same context. The first case gives a credibility interval;
the second case a confidence interval. An important case for us is when we have a
prior which is a right invariantmeasure of a transitive group, and the same group acts
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on the sample space. Then (Helland 2010, Corollary 3.6.2) the confidence intervals
and the credibility intervals with the same coefficient are numerically equal if they
are based on equivariant estimators (estimators which transform in the same way as
the corresponding parameters under the group).

Assume now that the epistemic process results in a 99% confidence interval or
credibility interval [θ, θ̄ ] for the parameter θ . Then the next step is an existential
choice, a decision: We claim that in the given context θ really belongs to the
interval [θ, θ̄ ]. In this way a decision is always a part of the epistemic process.
This decision may be the basis for further decisions, for instance in the planning of
new experiments.

A special case is when θ is discrete. Then the interval may degenerate into a
single point θ . The epistemic decision may then be that θ really takes the value θ .
Similar kinds of decisions will be important in the second part of the book.

For those who know about hypothesis testing: A Neyman-Pearson hypothesis
testing situation may be taken as mathematically equivalent to a one-sided or two-
sided confidence interval situation. Suppose that we want to test the null-hypothesis
H0 : θ = θ0. Then the nullhypothesis is rejected with the level α if and only if θ0 do
not belong to a confidence interval with coefficient 1 − α.

Another decision type is a Fisherian p-value testing. In this case a nullhypothesis
and a direction of rejection are chosen as a part of the context. The result of the
decision is a p-value, 1 minus the confidence coefficient of the largest one-sided
confidence interval not containing θ0.

Both in science and in everyday life the epistemic process may be a part of
a larger process where a goal is formulated. The epistemic process itself may be
formal or informal. A great variety of decisions to act may result after an epistemic
process is carried out, and the result of this process is known.

A scientist who has gained some knowledge through an empirical process may
or may not decide to publish the results. The publishing process will involve several
minor decisions. In a similar way, any human being that has gained some knowledge
may decide to share his knowledge with other persons. But his newly gained
knowledge may also result in a wide variety of other decisions.

Every serious communication between human beings involves a complicated
interplay between epistemic processes and decisions together with other elements
like insights, reflections and appreciations. In this interplay, the free will of each
individual involved plays an important role. Intuition is also important.

A group of persons may decide to go collectively into an epistemic process, and
to make collective decisions on how to act after the epistemic process is completed.

Each decision on how to act should be taken in an intelligent way, taking into
account the knowledge available. The time sequence will be important: First an
epistemic process, then a decision or a set of decisions, then actions and after that
perhaps new epistemic processes.

A person or a group of persons may decide explicitly to go into an epistemic
process before making a new important decision. The result of the epistemic process
will then be a part of the context of the important decision.
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In general the result of an epistemic process may form part of the context for
new decisions or for other epistemic processes. The time span here may be short for
some decisions or epistemic processes; often longer for more important decisions
or epistemic processes.

In scientific decisions it is always necessary to focus. Such focusing should be
done at every stage of the decision process. The focusing made when choosing the
epistemic question will play an important role in the second part of this book.

In the next part of the book I will address quantum mechanics from an epistemic
point of view. A crucial concept is then that of an inaccessible conceptual variable,
that is, a conceptual variable for tentative use in an epistemic processes which cannot
be estimated with arbitrary accuracy by any experiment. In the regression model
where the dimension p by necessity is larger than the number n of observations, the
regression vector β must be seen as an inaccessible conceptual variable. However,
under suitable circumstances, the e-variable function βT x0 may still be estimable.
In particular this is the case when x0 is regarded as random, with the same
distribution as the other xi ’s. One approach towards estimating this function may
be model reduction as discussed earlier.
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Chapter 4
Towards Quantum Theory

Abstract The point of departure is that of an inaccessible conceptual variable;
several examples are given, both macroscopic and microscopic. One focuses on a
certain e-variable, a function the inaccessible conceptual variable. Some questions
on the foundation of quantum theory are briefly addressed. Next, a maximal
symmetric setting is defined, where certain symmetry assumptions are introduced.
Spekkens’ toy model is discussed and is related to this setting. A concrete Hilbert
space is defined, and it is shown that under a certain technical condition question-
and answer pairs concerning e-variables are in one-to-one correspondence with
unit vectors of this Hilbert space. Finally, a more general symmetric setting,
corresponding to degenerate eigenvalues of the relevant operator, is discussed.

4.1 Inaccessible Conceptual Variables and Quantum Theory

The statistical literature is full of discussions on how to do inference, but contains
very little on the choice of question to do inference on in some given situation.
These different questions may be conflicting, even complementary. In the following
sections I will start by formalizing a way in which the discussion of such
complementary questions may be addressed in the extreme case where it is only
possible to raise one out of many different possible questions at a time. Each such
question will be an epistemic question ‘What is θ?’ for some e-variable θ , and I will
assume that the epistemic process ends by giving some information about θ , in the
simplest case a complete specification: θ = uk .

The concept of an epistemic process is taken to be very wide in this book. In
addition to statistical questions concerning a parameter θ , we can think of questions
like: How many sun hours will there be here tomorrow? At the outset, to address
this epistemic question will involve meteorological expertise and a lot of data from
similar situations, but tomorrow the question can be answered by just counting the
number of sun hours. Both these processes will be seen as epistemic processes.

However, when it comes to the parameters/e-variables of the epistemic processes,
I will often make more specific assumptions. I will then take generalized experi-
ments as point of departure, that is, I assume that there in each setting exist data z

and a context τ such that the assumptions (1) and (2) of Sect. 3.2 are satisfied. For
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the most part, z and τ will be implicit in the discussion, but they will be there. The
e-variables are also assumed to be associated with some actor (observer) or with a
group of communicating actors.

So far I have assumed that each conceptual variable relevant to an epistemic
process is accessible, that is, it can be estimated or given a value with arbitrary
accuracy by any experiment. In Helland (2006, 2008, 2010) several situations
with inaccessible conceptual variables were described (see also below), and it was
indicated that such situations in special cases could form a link to important parts of
quantum theory. I consider this way of thinking to be essential as a step towards
obtaining a unification of epistemic science, and also as an attempt to give an
alternative background for the—from a statistical point of view and also from the
layman’s point of view—very formal language that one finds in textbooks and
in scientific publications, both within quantum physics and in the mathematical
traditions developed from this. In the following sections a less formal approach
will be presented. Compared to my earlier publications, the discussion here will
hopefully give both a simpler and a more complete treatment of my approach
towards quantum mechanics.

In statistics, the parameter concept is connected to a hypothetical population of
items. My e-variables are intended also for situations where we have a single item or
a few items, and a human subject or a group of subjects use these variables in making
statements about the item(s). This is crucial for my epistemic interpretation of
quantummechanics, an interpretationwhich I also share with the Bayesian quantum
foundation school (QBism); see below.

The concept of e-variable will be very important in this book. Recall that it is any
conceptual variable used in the epistemic process. In the same way as a parameter
in statistics is any property for an hypothetical population, an e-variable can in
principle be any property of a population, a single unit or a group of units. Like
a parameter, it is a theoretical variable before the epistemic process, but after the
process the observer or the set of communicating observers in question have some
information about the value of the e-variable. An e-variable is a property of a unit or
a set of units. A modern view of quantum theory and particle physics, see Kuhlmann
(2013), reduces everything to properties and relations.

Quantum theory has a long history starting with the work of several eminent
physicists in the beginning of the previous century, via the formalization made by
von Neumann (1932) to the rather intense debate on quantum foundation that we see
today. Several good books on quantum theory exist, for instance Ballentine (1998).
Interpretations of the theory have been given by many authors, but it has also been
argued that no interpretation is needed; see Fuchs and Peres (2000). Several authors
have derived quantum theory from a few explicit or implicit physical assumptions;
see Hardy (2001), Chiribella et al. (2010), Masanes (2010), Fields (2011), Fivel
(2012) and Casinelli and Lahti (2016). There is also a group of quantum foundation
researchers working towards a link with Bayesian inference; see Caves et al. (2002),
Schack (2006), Timpson (2008), Fuchs (2010), Fuchs and Schack (2011) and Fuchs
et al. (2013). The use of quantum information theory in the exploration of the
foundation has also recently proved to be very useful, see Fuchs (2002). The present
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work has much in common with these schools, but I find it fruitful to maintain a
broader link to statistics, in particular to allow a broader view on statistical inference
than just the Bayesian view. In this way I will argue for a foundation which is
purely epistemological: A general approach for going from experienced data to
information about the nature behind these data. I will discuss connections to the
quantum Bayesian interpretation later; see also Chap. 1.

One very obvious case of an inaccessible conceptual variable is in connection to
counterfactual reasoning. Assume a single medical patient and let the doctors have
the choice between two mutually exclusive treatments. Let θ i be the time for this
patient until recoverywhen treatment i is used (i = 1, 2), and let φ = (θ1, θ2). Then
θ1 or θ2 can be predicted before the treatment is applied, and each of them can be
determined precisely after some time period, but φ is inaccessible, that is, there is
no procedure by which φ can be given a value with arbitrary accuracy at any time
for a single patient by any medical doctor, by any scientist or by any observer. This
can be amended by instead of one patient considering large homogeneous groups
of patients, which is done in standard statistical texts, but in practice there is a
limitation on how homogeneous a group of patients can be. And concepts may be
of interest for one single patient, too.

Here are two other examples of inaccessible conceptual variables:

• We want to measure some quantity θ1 with a very accurate apparatus which is so
fragile that it is destroyed after a single measurement. There is another quantity
θ2 which can only be found by dismantling the apparatus, and then it can not be
repaired. The vector φ = (θ1, θ2) is again inaccessible.

• Assume that two questions are to be asked to a single individual at some given
moment, and that we know that the answer will depend on the order in which
the questions are posed. Let the e-variable (θ1, θ2) be the answers when the
questions are posed in one order, and let the answers be (θ3, θ4) when the
questions are posed in the opposite order. Then the vector φ = (θ1, θ2, θ3, θ4) is
inaccessible.

Now go to the quantum mechanical situation. It is well known that the position
θ1 of a particle can be measured accurately in some experiments and its momentum
θ2 can be measured accurately in other experiments, but that the vector φ = (θ1, θ2)

is inaccessible. Similarly, the spin vector φ of a particle is inaccessible, but its
component θa in some fixed, determined direction a is possible to measure in a
suitable experiment.

In general, let φ = (θ1, θ2) be inaccessible. Then different experimental settings
are needed to measure θ1 and θ2. In the words of Niels Bohr, the variables θ1 and
θ2, which I call e-variables, are complementary. The concept of complementarity
was crucial to Bohr, and it has been crucial to the foundation of quantummechanics
even before its formal apparatus was developed. In the same way, the concept of an
inaccessible conceptual variable will be crucial in the further development of this
book.

From a statistical point of view: Inaccessible parameters also occur in linear
models of non-full rank, often used in the case of unbalanced data, cp. Searle
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(1971), and in the analysis of designed experiments where only some contrasts can
be estimated. Also, in regression models where the number of variables by necessity
is larger than the number of observations, the regression parameter is an inaccessible
parameter. In my opinion a more complete theory of statistical inference is definitely
obtained if we allow for inaccessible conceptual variables.

It is a crucial fact that the inaccessible conceptual variables φ are abstract
variables in some mathematical space and that operations such as group actions
may be made on this space. This is the case with the counterfactual example above,
where a group action such as a change of time scale can be made. See the summary
of group theory in Appendix B. In general, let φ vary in a set �. Then the group
of endomorphisms on � is the group of all possible transformations of elements
of �. This group always exists from a mathematical point of view. In my later
approach towards quantum mechanics, I will choose a fixed subgroup G of the
group of endomorphisms acting on the space� of inaccessible conceptual variables.
Important subgroups of G again, are the groups Ga , where Ga corresponds to all
transformations of the values of θa = θa(φ) in the space �a .

What is important to note, however, is that I will not regard the inaccessible
conceptual variables as physical variables, and they do not take concrete values,
so I am not developing a hidden variable theory of the kind that has been much
debated in the physical literature over the years. Also, the e-variables/ parameters
are not hidden variables, but closely connected to the epistemic process. Note that
the parameters of statistics exist only in our minds.

Historically, an example of a hidden variable theory is David Bohm’s dual wave-
particle theory, and John Bell (see Bell 1987) proved that this theory is non-local.
In fact, Bell proved much more. His famous theorem states that any realistic theory
consistent with quantum mechanics must be non-local. This result has been very
important in discussions among physicists in recent years. Bell’s theorem is proved
using what is called the Einstein-Podolski-Rosen experiment and Bell’s inequality,
concepts which will be discussed later in this book. One point for me here is that
I do not want to develop a non-local theory, that is, a theory where communication
is made by signals traveling faster than the light speed. Then I am instead forced to
take a closer look upon the concept of realism. This has also been done recently in
a very convincing way by Nisticò and Sestito (2011). In that paper they take as a
point of departure the criterion of reality as formulated be Einstein et al. (1935):

Criterion of Reality If, without in any way disturbing a system, we can predict
the value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity.

Following arguments from Bohr’s discussion of Einstein et al. (1935) they make
the case for a strict interpretation of this criterion:

Strict Interpretation To ascribe reality to P , the measurement of an observable
whose outcome would allow for the prediction of P , must actually be performed.

Nisticò and Sestito (2011) go on and formulate an extension of quantum
correlationwhich is consistent with the strict interpretation, and using this they show
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that Bell’s argument and several related arguments in the literature fail when realism
is interpreted in this strict way. Thus the possibility turns out to be open to interpret
the non-locality theorems in the physical literature as arguments supporting the strict
criterion of reality, rather than as a violation of locality.

Since the present book is theoretical and not experimental, I will have to modify
Nisticò and Sestito’s requirement of strict interpretation slightly: ‘. . . a description
of how the measurement can be actually performed, must be given.’ It is important
that my conceptual variables are thought of as defined by one person or a group of
persons and to the experimental data that he/she/they are able to obtain.

In other papers, Bell’s theorem is interpreted as saying that quantum physics must
necessarily violate either the principle of locality or counterfactual definiteness.
Counterfactual definiteness is defined as the ability to speak with meaning of
definiteness of results of measurements that have not been performed (i.e., the ability
to assure the existence of objects, and properties of objects, even when they have
not been measured.) In this book it is crucial that I do not assume counterfactual
definiteness. All my conceptual variables are assumed to be defined by some
person(s), and these conceptual variables will not necessarily be such that results
of measurements not performed will have meaning. Here is a simple example: By
first sight, one of the statements ‘I have something on my lap’ and ‘I do not have
anything on my lap’ must be true. But if I am standing, neither of these statements
are true. The logical status of statements must depend on the context.

In my formulation, I will look upon the accessible e-variables as variables
connected with experiment which actually can be imagined to be performed by
some person. This personwill have a certain context for his experiment. It is possible
that another person, who has no communication with the first one, has a different
context and uses different e-variables to formulate his observations, therefore getting
seemingly conflicting predictions. But as soon as communication is restored, there
must be no conflict any more. To make this precise: The two persons must then
make non-conflicting predictions if they agree on a common context, and they must
agree on observed results as long as they both have observed results.

In this chapter I will assume ideal experiments, where I will not distinguish
between data and corresponding e-variables. I will come back to more realistic
experiments with data in the next chapter.

4.2 The Maximal Symmetrical Epistemic Setting

I proceed to discuss a setting from which I will show that essential parts of the
formalism of quantummechanics can be derived under certain technical conditions.
From my point of view this is nothing but a special situation with an inaccessible
conceptual variable, where I focus upon accessible sub conceptual variables and
where symmetry is introduced by natural group actions. The purpose at this
particular point is not to derive all aspects of quantum mechanics, only as much
that we see that the e-variable concept is useful also in this connection, so that we



62 4 Towards Quantum Theory

can obtain an interpretation where there is a link to the ordinary statistical theory of
estimation. The rest of this chapter will involve some technical discussions, and can
only be skimmed in the first reading of the book. The results of these discussions are
crucial, however: To which extent can the Hilbert space formalism be derived from
simple assumptions in the epistemic process setting? The next chapter will begin by
simply assuming this formalism.

Let in general φ be an inaccessible conceptual variable taking values in some
topological space �, and let λa = λa(φ) be accessible functions for a belonging to
some index set A. I will repeat that a conceptual variable is accessible if it in the
given context can be estimated with arbitrary accuracy by some experiment. In other
words, the λa’s are e-variables. Technically I will without further mention assume
that all functions defined on � are Borel-measurable. To begin with, I will assume
that the functions λa are maximal, and also that there is an one-to-one functional
relation between them. This is made precise below. In general, transformations of
� by group elements g may be defined.

Assumption 4.1

a) Consider the partial ordering defined by α ≤ β iff α = f (β) for some function
f . Under this partial ordering each λa(φ) is maximally accessible, that is, (1)
λa(φ) is accessible, an e-variable; (2) if λa(φ) = f (μ(φ)) for a non-invertible
function f , then μ(φ) is inaccessible.

b) For a �= b there is an invertible transformation gab such that λb(φ) =
λa(gab(φ)).

Note that the partial ordering in a) is consistent with accessibility: If β is
accessible and α = f (β), then α is accessible. Also, φ is an upper bound under this
partial ordering. The existence of maximal accessible conceptual variables follows
then from Zorn’s lemma.

To be clear, no summation convention is used in b). This assumption induces an
one-to-one functional relation between λa and λb.

In this abstract setting, the inaccessible variable φ and the accessible variables
λa(φ) can be anything. However, to begin with it might be useful to have the
following physical example in mind: Let φ be the spin or angular momentum vector
for a particle, then focus upon some direction a in space, and let λa(φ) be the spin
or angular momentum component in that direction. Let the group elements g consist
of rotations of φ in space. It is useful to think through what Assumption 4.1 means
in this setting. An important point of departure is that φ only exists in our minds. A
closer discussion of this example will be given below.

Consider in general the situation where the vector φ = (λ1, λ2) is inaccessible.
Then the statement that λ1 and λ2 are maximally accessible is equivalent to the
statement that they are complementary in Niels Bohr’s sense. The concept of
complementarity is extremely important in quantum mechanics. In Sect. 6.3 I will
discuss the concept in other contexts as well.

Below, I will often single out a particular index 0 ∈ A. Then (a), given (b), can
be formally weakened to the assumption that λ0(φ) is maximally accessible, and b)
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can be weakened to the existence for all a of an invertible transformation g0a such
that λa(φ) = λ0(g0a(φ)). Take gab = g−1

0a g0b.
In the example above with counterfactual medical treatments, we can take λa =

θ1, λb = θ2, φ = (λa, λb) and gab((λ
a, λb)) = (λb, λa). In general, when the

transformation of Assumption 4.1b) exists, it is usually easy to see how it can be
chosen.

Even though φ is inaccessible, it is possible to operate on φ with functions, in
particular group actions. The group of endomorphisms on �, all transformations of
elements φ always exists from a mathematical point of view, and one can imagine
many subgroups of this group. Some of these will now be defined.

Definition 4.8 For each a, let G̃a be the group of endomorphisms on �a , the space
upon which λa varies. For g̃a ∈ G̃a let ga be any transformation on � for which
g̃aλa(φ) = λa(gaφ).

Note that this makes sense in the spin/ angular momentum case: For some
fixed integer or half integer number j , the possible values of λa(φ) are −j,−j +
1, . . . , j − 1, j . Start with some vector φ, and fix a plane through this vector. Then
by suitable rotations in this plane, λa(φ) will change from one of these values to
another arbitrary value. λa(φ) is fixed when this plane is rotated with fixed φ.

It is easily verified in general that

1. For fixed g̃a the transformations ga form a group.
2. For fixed a the transformations ga form a group Ga .

In simpler terms, the group Ga is the group transforming values of λa into the
same or other values of this e-variable, and the corresponding group G̃a is the group
of all transformations of these values.

The group Ga can be characterized as follows. Let a function η on � be called
permissible (Helland 2010) with respect to a group H if η(φ1) = η(φ2) implies
η(hφ1) = η(hφ2) for all h ∈ H . Then Ga is the maximal group under which λa is
permissible.

Obvious consequences of Definition 4.8 are that G̃a is transitive over�a and that
Ga is transitive over �.

Now single out a fixed index 0 ∈ A.

Definition 4.9 Let G be the group of transformations generated by G0 and the
transformations g0a , a ∈ A.

It is easily verified that Ga = g−1
0a G0g0a. Together with gab = g−1

0a g0b this
implies that G also is the group generated by Ga , a ∈ A and gab, a, b ∈ A.

Now I want to introduce the further

Assumption 4.2

a) The group G is a locally compact topological group, and satisfies weak
assumptions such that an invariant measure on � exists. (see Appendix B).

b) The group generated by products of elements of Ga,Gb, . . .; a, b, . . . ∈ A is
equal to G.
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Assumption 4.2a) is a technical one, needed in the next section. Note that
G is defined in terms of transformations upon �, so that the topology must be
introduced in terms of these transformations. Technically this can be achieved
by assuming � to be a metric space with metric d , and letting gn → g for
instance if supφd(gn(φ), g(φ)) → 0. Concerning Assumption 4.2b), it follows

from gagb . . . = g−1
0a g0g0ag

−1
0′bg

0′
g0′b, . . ., where ga ∈ Ga, gb ∈ Gb, . . . and

g0, g0
′
, . . . ∈ G0, that the group of products is contained in G. That it is equal

to G, is an assumption on the richness of the index set A or the richness of G0.
The setting described here, where Assumptions 4.1 and 4.2 are satisfied,

includes many quantummechanical situations including spins and systems of spins.
I will call it the maximal symmetrical epistemic setting. Later I will also sketch
a macroscopical situation where the assumptions of the maximal symmetrical
epistemic setting are satisfied. However, the focus in the present book will be
quantum-mechanical.

An important special case is when each �a is discrete. Then G̃a is the group
of permutations of elements of �a , and Ga is the group of all transformations
on � which induce permutation of �a . In this situation I will later define a state
of the system as a focused question: “What is the value of λa?” together with a
definite answer: “λa = uk”. Under an additional technical assumption on the group
structure, I will prove that this leads to a link to the ordinary Hilbert space formalism
of quantum mechanics.

Example 4.15 Model the spin vector of a particle such as the electron by a vector
φ, an inaccessible conceptual variable. More generally, we can let φ denote the total
spin/angular momentum vector for any particle or system of particles. Let � be the
sphere corresponding to a fixed norm ‖φ‖. Let G be the group of rotations of this
vector.

Next, choose a direction a in space, and focus upon the spin component in this
direction:

ζ a = ‖φ‖cos(φ, a).

Associate ζ a(φ) with the group Fa of rigid rotations around a together with a
reflection in a plane through the origin perpendicular to a. This is the largest
subgroup of G with respect to which ζ a is a permissible subvariable. (For a
closer discussion of the concept of permissible subparameter; see Helland 2010,
Chapter 3.) The actions of the group F̃ a on ζ a are just a change of sign together
with the identity.

Finally, introduce model reduction of the kind discussed in Sect. 2.2: The orbits
of F̃ a as acting on ζ a are given as two-point sets {±c} together with the single point
0. A maximal model reduction is to one such orbit. Later I will give arguments to
the effect that we want to reduce to the a set of orbits indexed by an integer or
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half-integer j , and that we will let this reduced set of orbits be

−j,−j + 1, . . . , j − 1, j,

this together with ‖φ‖2 = j (j + 1).
Now fix j and let λa be the conceptual variable ζ a reduced to this set of

orbits of F̃ a . This is assumed to be the maximal accessible e-variable. Define
the transformations gab, and define the groups G̃a , Ga and G as in the maximal
epistemic setting. It is easy to see that the group G is as before. The group G̃a is
the group of permutations of values of λa . The group elements ga can be seen as
products of two kinds of elements. The first kinds are rotations around a. The second
kinds are suitable rotations of each φ in a plane through a and φ.

We can prove that the general assumptions of this section are satisfied. In the
case j = 0, where we must define G = G0 to be the trivial group. Otherwise
G is the group of all rotations of vectors φ, is obviously compact and satisfying
Assumption 4.2a). Here an argument leading to the proof of Assumption 4.2b):
Given a and b, a transformation gab sending λa(φ) onto λb(φ) can be obtained by
a reflection in a plane P perpendicular to a plane containing the two vectors a and
b, where P contains the mid-line between a and b. More precisely: Let d be the
orthogonal to the midline between a and b in the plane containing the two vectors,
let λd be the spin component along d and let gd be the group element changing sign
of λd . Then gab = gd .

The case with one orbit and c = 1/2 corresponds to electrons and other spin 1/2
particles. The direction defined by a = 0 is some arbitrary fixed direction.

In general, the assumptions of this section may be motivated in a similar manner:
First, a conceptual variable ζ a = ζ a(φ) is introduced for each a through a chosen
focusing, and a suitable group acting on ζ a is defined. Then λa is defined as a
reduction of ζ a to a set of orbits of this group. The essence of Assumption 4.1 is
that it is this λa which is maximally accessible. This may be regarded as the quantum
hypothesis.

This reasoning works for variables like spin and angular momentum, in general
for many discrete e-variables. For theoretical position ξ and theoretical momentum
π of a particle, let φ = (ξ, π). Then one can again introduce groups and group
elements, and the assumptions of this section are except Assumption 4.2b) are
satisfied for this case. A special discussion of continuous e-variables is carried out
in Sect. 5.2 below.

4.3 The Toy Model of Spekkens

Nearly since its introduction in the beginning of the last century, discussions of
the interpretation of quantum mechanics have taken place. In particular, researchers
have disagreed on how the quantum state should be interpreted. Should it be seen
as a real state of nature (the ontic view) or does it only represent our knowledge of
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some focused aspect of nature (the epistemic view)? In my opinion, some synthesis
here should be sought, but one should start with an observer and the epistemic
process connected to this observer in his particular context. This will give an easy
interpretation of the collapse of the wave packet during measurement, and it will
also solve paradoxes like that of Schrödinger’s cat and that of Wigner’s friend.
These aspects will be further discussed later in the book after Born’s formula and the
Schrödinger equation have been introduced and motivated from my point of view.
The ontic interpretation arises in my world view from a hypothetical situation where
all potential observers communicate and arrive at a common context.

As it stands now, however, the quantum community is divided. Recently there
has appeared in the literature certain no-go theorems which seem to support
the ontic view. All these theorems are deeply founded, but they rely on certain
assumptions. Under these assumptions they show that a pure epistemic view leads to
inconsistencies. In particular Pusey et al. (2012) take as a point of departure a certain
assumption of separability. This is weakened by Hall (2011) to an assumption of
compatibility. Hardy (2012) introduced a different assumption of ontic indifference.
The common denominator of these papers is that they show that under the specific
assumptions the probability distribution over the ontic states corresponding to
different quantum states cannot overlap. See also my discussion of the PBR theorem
in Sect. 1.4. A crucial assumption is that the properties of the system can be defined
by some state concept.

The toy model of Spekkens (2007) is based on a principle that restricts the
amount of knowledge an observer can have about reality. A wide variety of quantum
phenomena were found to have analogues within this toy theory, and this can be
taken as an argument in favour of the epistemic view of quantum states.

In the simplest version of the toy model, we have one elementary system. This
system can be in one of the four ontic states 1, 2, 3 or 4, but our knowledge of this is
in principle restricted. We can only know one of the following six epistemic states:
(a) The ontic state is 1 or 2; (b) it is 3 or 4; (c) it is 1 or 3; (d) it is 2 or 4; (e) it is 1
or 4; or (f) it is 2 or 3. These are the epistemic states of maximal knowledge.

The ontic base of the state (a) is {1, 2} etc.. If the intersection of the ontic bases
of a pair of epistemic is empty, then those states are said to be disjoint. Thus (a)
and (b) are disjoint, (c) and (d) are disjoint, and (e) and (f) are disjoint. There is a
correspondence with certain basis vectors of the two-dimensional complex Hilbert
space, where disjointness corresponds to orthogonality in the Hilbert space. For
those who knows the Bloch sphere representation of that Hilbert space, the pairs
of disjoint epistemic states can be pictured on the intersections of three orthogonal
axes with that sphere.

Transformations of the epistemic states correspond to permutations of the
ontic state. Thus the underlying group is the permutation group of four symbols,
which has 24 elements. Each permutation induces a map between the epistemic
states. In the Hilbert space correspondence, the even permutations correspond
to unitary transformations, and the odd permutations correspond to anti-unitary
transformations.
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In my terminology, the system can be described by an inaccessible conceptual
variable φ which is a vector whose three components are accessible e-variables:

φ = (λa, λc, λe).

Here λi is the indicator of the event that the epistemic state is i. Each λi takes the
value 1 or 0. If λa = 1, say, the ontic state is either 1 or 2; if λa = 0, it is either 3 or
4. A complete knowledge of φ is equivalent to a knowledge of the ontic state, which
is impossible in the Spekkens toy model.

Each λi is a maximal accessible e-variable. The event λa = 1 is taken into the
event λa = 0 by the even permutation ga = (13)(24), written in cycle notation.
This together with the identity generates the group Ga . Similarly Gc and Ge are
generated. The e-variable λc is taken into the e-variable λa by the even permutation
gca = (123)(4). This permutation can also be written as gaf = gbe = gdb = gf c =
ged if obvious new e-variables are introduced. Similarly, the group elements gac,
gae, gea , gce and gec are even permutations. The group G is the group of all even
permutations. All assumptions of the maximal symmetrical epistemic setting are
satisfied except Assumption 4.2b). Thus the Spekkens toy model can not be seen as
a special case of the maximal symmetrical epistemic setting, but the simplest case
of the toy model is closely related to this.

The next simplest case of the Spekkens toy model consists of two elementary
systems. The main requirement from one system carries over: If one has maximal
knowledge, then for every system, at every time, the amount of knowledge one
possesses about the ontic state of the system at that time must equal the amount
of knowledge one lacks. The following discussion is very brief and presupposes a
knowledge of Spekkens (2007). There are sixteen ontic states: 1 · 1, 1 · 2, . . . , 4 · 4.
It turns out that the valid epistemic states are of two types: The uncorrelated states
exemplified by (a) 1 · 1, 1 · 2, 2 · 1 or 2 · 2, and the correlated states exemplified by
(e) 1 · 1, 2 · 2, 3 · 3 or 4 · 4.

Turning to my terminology, the state (a) can be represented by the event λa = 1,
where λa is the indicator of the epistemic state (a), an e-variable. The event λa =
0 does not represent an epistemic state of maximal knowledge, however, so the
following trick is called for: Let λ1 = (λa, λb, λc, λd), where λa is the indicator of
the epistemic state (a), λb is the indicator of the epistemic state (b): 3 · 1, 4 · 1, 3 · 2
or 4 ·2, λc is the indicator of the epistemic state 1 ·3, 1 ·4, 2 ·3 or 2 ·4, and λd is the
indicator of the epistemic state 3 · 3, 3 · 4, 4 · 3 or 4 · 4. Allow λ1 to take the values
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) or (0, 0, 0, 1). Then λ1 is a maximal e-variable,
and the events λ1 = uk are all valid epistemic states in the Spekkens toy model. A
similar trick can be made for the correlated epistemic states.

In Spekkens (2007) transformations between the epistemic states are discussed
in terms of permutations between the ontic states. It turns out that there are
permutations that take each of λa, λb, λc, λd and λe (with an obvious definition
of the last one) into each single other of this set. The transformations taking λ1

into similar other maximal e-variable are transformations of four-vectors whose
components are transformed by permutations. The transformations g1 etc. can be
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written in a similar form, though they at the outset only are given by permutations
of the components of the four-vector. Thus the groupG is a subgroup of the group of
transformations of four-vectorswhose components are transformed by permutations
of 16 elements, that is, a finite group. The assumptions of the maximal symmetrical
epistemic setting are satisfied except Assumption 4.2b).

The fact that the Spekkens toy model has a valid epistemic interpretation and
is strongly related to many phenomena of quantum mechanics, together with the
fact that there is a link between this model and a modification of the maximal
symmetrical epistemic setting, gives a strong indication that eventual logical
difficulties in the interpretation of the maximal symmetrical epistemic setting and
relating it to quantum mechanics, can be overcome. In the next section the formal
apparatus of quantum mechanics will be reproduced from the maximal symmetrical
epistemic setting under a certain technical condition.

4.4 The Hilbert Space Formulation

Take again as a point of departure the maximal symmetrical epistemic setting. The
crucial step now towards the formalism of quantum mechanics is to define a Hilbert
space, that is, a complete inner product space which serves as a state space in
the formalism (see Appendix B). In ordinary quantum mechanics all observables
are identified with operators on such a Hilbert space and every state is identified
with a unit vector in the Hilbert space or more generally with a ray proportional
to a unit vector. There is a large abstract general theory on this, well known to
physicists, but largely unknown to statisticians and many other professionals. My
goal here is to rederive this theory from the assumptions of the maximal symmetrical
epistemic setting and possibly further assumptions. This may serve as introducing
other scientists to the theory. The section is somewhat technical. It can be skimmed
at the first reading, but it is in some sense essential for what I feel should be a way
to understand ordinary quantum theory. However, it must only be seen as one out
of several possible approaches towards the Hilbert space formalism. Several deep
theories with a similar purpose exist; see references in Sect. 4.1.

4.4.1 Quantum Reconstruction

Fix 0 ∈ A, and let H be the Hilbert space

H = {f ∈ L2(�, ρ) : f (φ) = f̃ (λ0(φ)) for some f̃ }.

Here L2(�, ρ) is the set of all complex functions f on � such that
∫

�
|f (φ)|2dρ <

∞. Two functions f1 and f2 are identified if
∫

� |f1(φ) − f2(φ)|2dρ = 0. From
now on I will assume that the λa’s are discrete. Then H is separable. If the λa’s
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take d different values, H is d-dimensional. Since all separable Hilbert spaces are
isomorphic, it is enough to arrive at the quantum formulation on this H .

Lemma 4.1 The values ua
k of λa can always be arranged such that ua

k = uk is the
same for each a (k = 1, 2, . . .).

Proof By Assumption 4.1

{φ : λb = ub
k} = {φ : λa(gabφ) = ub

k} = gba({φ : λa(φ) = ub
k}).

The sets in brackets on the lefthand side here are disjoint with union�. But then the
sets in brackets on the righthand side are disjoint with union gab(�) = �, and this
implies that {ub

k} gives all possible values of λa .

Now I am able to formulate the main result of this section. In the next subsection,
I will prove this result under an additional technical assumption. An open question
is to find exactly the conditions under which this theorem is valid.

Theorem 4.1

a) For every a, uk and associated with every indicator function I (λa(φ) = uk)

there is a vector |a; k〉 ∈ H . The mapping I (λa(φ) = uk) → |a; k〉 is invertible
in the sense that |a; k〉 �= |b; j 〉 for all a, b, j, k except in the trivial case a =
b, j = k. This inequality is interpreted to mean that there is no phase factor eiγ

such that |a; k〉 = eiγ |b; j 〉.
b) For each a the vectors |a; k〉 form an orthonormal basis for H .

This gives us the possibility to interpret the vectors |a; k〉, corresponding to the
indicators I (λa(φ) = uk), as follows:

(1) The question ‘What is the value of λa?’ has been focused on.
(2) Through an epistemic process we have obtained the answer ‘λa = uk’.

When a ket vector is defined, a corresponding bra vector can be defined. The
operator corresponding to λa can be defined as

Aa =
∑

k

uk|a; k〉〈a; k|.

In the maximal setting this has non-degenerate eigenvalues.

4.4.2 Proof Under an Extra Assumption

Let U be the left regular representation of G on L2(�, ρ): U(g)f (φ) = f (g−1φ).
It is well known that this is a unitary representation. We will seek a corresponding
representation of G on the smaller space H .
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In the following, recall that upper indices as in ga indicate variables related to a
particular λa , here a group element of Ga . Also recall that 0 is a fixed index in A.
Lower indices as in gab has to do with the relation between two different λa and λb .

Proposition 4.2

a) A (multivalued) representation V of G on the Hilbert space H can always be
found.

b) There is an extended group G′ such that V is a univalued representation of G′
on H .

c) There is a homomorphism G′ → G0 such that V (g′) = U(g0). If g′ �= e′ in G′,
then g0 �= e in G0.

Proof
a) For each a and for ga ∈ Ga define V (ga) = U(g0a)U(ga)U(ga0). Then

V (ga) is an operator on H , since it is equal to U(g0ag
aga0), and g0ag

aga0 ∈ G0 =
g0aG

aga0. For a product gagbgc with ga ∈ Ga , gb ∈ Gb and gc ∈ Gc we define
V (gagbgc) = V (ga)V (gb)V (gc), and similarly for all elements of G that can be
written as a finite product of elements from different subgroups.

Let now g and h be any two elements in G such that g can be written as a product
of elements from Ga,Gb and Gc, and similarly h (the proof is similar for other
cases.) It follows that V (gh) = V (g)V (h) on these elements, since the last factor
of g and the first factor of h either must belong to the same subgroup or to different
subgroups; in both cases the product can be defined by the definition of the previous
paragraph. In this way we see that V is a representation on the set of finite products,
and since these generate G by Assumption 4.2b) it is a representation of G.

Since different representations of g as a product may give different solutions, we
have to include the possibility that V may be multivalued.

b) Assume as in (a) that we have a multivalued representation V of G. Define
a larger group G′ as follows: If gagbgc = gdgegf , say, with gk ∈ Gk for
all k, we define g′

1 = gagbgc and g′
2 = gdgegf . Let G′ be the collection

of all such new elements that can be written as a formal product of elements
gk ∈ Gk . The product is defined in the natural way, and the inverse by for example
(gagbgc)−1 = (gc)−1(gb)−1(ga)−1. By Assumption 4.2b), the group G′ generated
by this construction must be at least as large as G. It is clear from the proof of
a) that V also is a representation of the larger group G′ on H , now a one-valued
representation.

c) Consider the case where g′ = gagbgc with gk ∈ Gk. Then by the proof of a):

V (g′) = U(g0a)U(ga)U(ga0)U(g0b)U(gb)U(gb0)U(g0c)U(gc)U(gc0)

= U(g0ag
aga0g0bg

bgb0g0cg
cgc0) = U(g0),

where g0 ∈ G0. The group element g0 is unique since the decomposition g′ =
gagbgc is unique for g′ ∈ G′. The proof is similar for other decompositions. By the
construction, the mapping g′ → g0 is a homomorphism.
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Assume now that g0 = e and g′ �= e′. Since U(g0)f̃ (λ0(φ)) =
f̃ (λ0((g0)−1(φ))), it follows from g0 = e that U(g0) = I on H . But then from
what has been just proved, V (g′) = I , and since V is a univariate representation, it
follows that g′ = e′, contrary to the assumption.

Assumption 4.3

a) U is an irreducible representation of every cyclic subgroup of the group G̃0 on
H other than the trivial group, and the dimension d of H is larger or equal to 2.

b) The representation V of the whole group G is really multivalued on the elements
gab.

c) When finding this basis, one can choose f̃k and f̃j in such a way that there exists
a λ1 such that f̃k(g̃

0λ1) �= f̃j (λ1) for all g̃0εG̃0 in the sense that the two sides
can not be made equal by introducing a phase factor.

Now choose an orthonormal basis for H : f1, . . . , fd where fk(φ) = f̃k(λ
0(φ)),

and where the interpretation of fk is that λ0 = uk . Write |0; k〉 = fk(φ).

Lemma 4.2 For every k and every g0 ∈ G0, g0 �= e, we have U(g0)fk �= fk in
the sense that the two functions can not be made equal by multiplying with a phase
factor.

Proof Let d ≥ 2. Assume that there exist γ , k and g0 �= e such that U(g0)fk =
eiγ fk . Then eiγ /2fk span a one-dimensional subspace of H which is invariant under
the cyclic group generated by g0, contrary to the assumption of irreducibility.

Introduce now the assumption that the representation V really is multivalued. Let
g′
0a1 and g′

0a2 be two different elements of the group G′, both corresponding to g0a

of G. Define g′
a = (g′

0a1)
−1g′

0a2. Then g′
a �= e′ in G′. By the homomorphism of

Proposition 4.2c), let g′
a → g0a . Then g0a �= e in G0. Now define

|a; k〉 = f̃k(λ
0(g0aφ)) = U((g0a)−1)|0; k〉.

Proof of Theorem 4.1 Under Assumption 4.3 By Lemma 4.2, |a; k〉 �= |0; k〉. Here
and below, inequality of state vectors is interpreted to mean that they can not be
made equal by introducing a phase factor.

Next let j �= k. I will prove that the basis functions f1, . . . , fd can be chosen so
that |a; k〉 �= |0; j 〉 for all a. To this end, choose f̃j and f̃k in such a way that there

exists an λ
j
0 such that f̃k(g̃

0λ
j
0) �= f̃j (λ

j
0) for all g̃0εG̃0. Then for any fixed g, f̃kg

defined by f̃kg(λ0(φ)) = f̃k(λ
0(gφ)) is different from f̃j , and |a; k〉 �= |0; j 〉 for

all a.
The proof that |a; k〉 �= |b; j 〉 (except in the trivial case a = b, k = j ) holds

under Assumption 4.3, is a straightforward extension.
The vectors |0; k〉 are chosen to be an orthonormal basis for H . Since |a; k〉 =

U |0; k〉 for some unitary U , it follows that the vectors |a; k〉 form an orthonormal
basis.
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Several authors have approached the foundation of quantum mechanics through
group representation theory, one example being Mirman (1995), another Smilga
(2017).

Assumption 4.3 is not satisfied for the spin/ angular momentum case. For this
case the group G̃0 is too small to generate all states |a; k〉 from |0; k〉. I will show
directly in the next chapter that Theorem 4.1 holds in general for the case of spin/
angular momentum (Corollary 5.1 of Sect. 5.2). But this also means that it must be
possible to weaken Assumption 4.3) in some way.

Theorem 4.1, saying that the question-and-answer pairs can be put in one-to-one
correspondence with some states in a concrete Hilbert space, must hold under a set
of assumptions including the spin/ angular momentum case.

In the qubit case (Hilbert space dimension 2; answers to questions: −1 and +1),
the question-and-answer pairs can be put in one-to-one correspondencewith all state
vectors in the Hilbert space. (Sect. 5.1.1 and Proposition 5.4 of Sect. 5.2.)

4.4.3 The Interpretation Argument

In the previous subsections I started with a setting where questions-and-answers
could be defined, and arrived at Hilbert space unit vectors. Now start by assuming
the Hilbert space formulation, and let |ψ〉 be an arbitrary unit vector in the Hilbert
space H . This vector is of course the eigenvector of many operators in H . Assume
that one can find such an operator A such that

1. A is physically meaningful, i.e., can be associated by an e-variable λ.
2. |ψ〉 is an eigenvector corresponding to a non-degenerate eigenvalue u of A.

Then |ψ〉 can be interpreted as a question ‘What is the value of λ?’ together with
a definite answer ‘λ = u’. The non-degenerate eigenvalue case corresponds to the
maximal epistemic setting.

4.5 The General Symmetrical Epistemic Setting

Go back to the definition of the maximal symmetrical epistemic setting. Let again
φ be the inaccessible conceptual variable and let λa = λa(φ) for a ∈ A be
the maximal accessible conceptual variables satisfying Assumption 4.1. Let the
corresponding induced groups Ga and G satisfy Assumptions 4.2 and 4.3 (or some
weaker assumption which can replace Assumption 4.3). Finally, let ta for each a be
an arbitrary function on the range of λa , and assume that we instead of focusing on
λa , focus on θa = ta(λa) for each a ∈ A. I will call this the symmetrical epistemic
setting; the e-variables θa are no longer maximal.

Let the Hilbert space be as in Sect. 4.4.1 with an orthonormal basis redefined to
be {|a′; j 〉} for each a. Let {uj } be the values of λa , and let ua

k be the values of
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θa = ta(λa). Define Ca
k = {j : ta(uj ) = ua

k}, let V a
k be the space spanned by

{|a′; j 〉; j ∈ Ca
k } and let �a

k be the projection upon V a
k . Finally, let |a; k〉 be any

unit vector in V a
k .

Interpretation of the State Vector |a; k〉 (1) The question: ‘What is the value of
θa?’ has been posed. (2) We have obtained the answer θa = ua

k . Both the question
and the answer are contained in the state vector.

From this we may define the operator connected to the e-variable θa:

Aa =
∑

k

ua
kΠ

a
k =

∑

j

ta(uj )|a′; j 〉〈a′; j |. (4.1)

Then Aa is no longer necessarily an operator with distinct eigenvalues, but Aa is
still Hermitian: Aa† = Aa .

Interpretation of the Operator Aa This gives all possible states and all possible
values corresponding to the accessible e-variable θa .

The general decomposition Aa = ∑

k ua
k�

a
k will be important in Sect. 5.4 and

Sect. 5.7, and will be further discussed there.
The projectors |a; k〉〈a; k| and hence the ket vectors |a; k〉 are no longer uniquely

determined by Aa: They can be transformed arbitrarily by unitary transformations
in each space corresponding to one eigenvalue. As long as the focus is only on θa ,
or Aa , I will redefine |a; k〉 by allowing it to be subject to such transformations.
These transformed eigenvectors all still correspond to the same eigenvalue, that is,
the same observed value of θa and they give the same operators Aa . In particular,
in the maximal symmetric epistemic setting I will allow an arbitrary constant phase
factor in the definition of the |a; k〉’s.

A more precise state interpretation is then to let the whole vector space of such
transformed vectors |a; k〉 represent a question-and-answer pair. This will be gone
more thoroughly into in Sect. 5.7.3.

As an example of the general construction, assume that λa is a vector: λa =
(θa1, . . . , θam). The different θ ’s may be connected to different subsystems. This
example is highly relevant when considering several observers. One single observer
may have access to just a few subsystems. In addition he has his own context. From
this context he may define his accessible and inaccessible conceptual variables.
In the same way a group of observers may through verbal communication arrive
at a common context, and from this context one may define their accessible and
inaccessible conceptual variables. Assume that these observers together observe a
particular physical system.

Assumption 4.4 For a given physical system at some particular time one can imag-
ine an observer or a group of communicating observers for which the assumptions of
the symmetrical epistemic setting are satisfied. In some cases all possible observers
agree on the physical observations, and these then describe an objective property of
the system.
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So far I have kept the same groupsGa andGwhen going from λa to θa = ta(λa),
that is from the maximal symmetrical epistemic setting to the general symmetrical
epistemic setting. This implies that the (large) Hilbert space will be the same. A
special case occurs if ta is a reduction to an orbit of Ga . This is the kind of model
reduction discussed in Sect. 2.2. Then the construction of the previous sections can
also be carried with a smaller group action acting just upon an orbit, resulting then
in a smaller Hilbert space. In the example λa = (θa1, . . . , θam). it may be relevant
to consider one Hilbert space for each subsystem. Then one can write a state vectors
corresponding to λa as

|a; k〉 = |a1; k1〉 ⊗ . . . ⊗ |am; km〉

in an obvious notation, where a = (a1, . . . , am) and k = (k1, . . . , km). The
large Hilbert space is however the correct space to use when the whole system is
considered. In this Hilbert space the subsystem ket vectors will have degenerate
eigenvalues and correspond to the general symmetrical epistemic setting.

At any time we can also imagine non-communicating observers. Then for each
particular observers the assumptions of the general symmetrical setting may be
assumed to apply. Particular state vectors in each observer’s Hilbert space may be
linear combinations of primitive state vectors in the form of a tensor product. These
are called entangled states when they can not be reduced to a primitive form, and
play an important role in many areas of quantum physics.

Assumption 4.4 is assumed for a large class of physical systems. Through the
imagined observers the constructions of this chapter may be carried out, and for
each case a Hilbert space may e constructed.

This is the connection between my theory and the formal quantum theory defined
in textbooks. I will claim that the theory defined by having the maximal symmetrical
epistemic setting as a point of departure is from one point of viewmore intuitive than
the ordinary formal theory.
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Chapter 5
Aspects of Quantum Theory

Abstract The basic formalism of quantum theory is reviewed and put into my
setting. In particular, spin and angular momentum are considered, and also e-
variables like position and momentum. For the spin/angular momentum case, the
correspondence between question-and-answer pairs and unit Hilbert space vectors is
proved directly. A link to statistical inference is found by proving a focused version
of the likelihood principle. From this and from an assumption of rationality the Born
rule is proved. A macroscopic example is proposed. Measurements and quantum
statistical inference are briefly discussed. Bell’s inequality issues are considered
from an epistemic point of view. The free will theorem is mentioned, and the
Schrödinger equation is derived in the one-dimensional case. Several so-called
paradoxes are explained from an epistemic setting. Quantum measurements when
the density matrix is completely unknown are discussed from a statistical point of
view. A discussion of the book so far concludes the chapter.

5.1 Basic Quantum Theory

In this section I will no longer assume the symmetrical epistemic setting, and
we thus will for a moment forget the group-theoretical assumptions like Assump-
tions 4.1–4.3. I just take as a point of departure a finite dimensional complex vector
space H with kets |k〉 being orthonormal basis vectors, and corresponding bras 〈k|.
The one-dimensional predictors |k〉〈k| are defined as before, and all operators on H

are of the form

A =
∑

k

uk|k〉〈k| with 〈i|j 〉 = δij . (5.1)

This is equivalent to defining the action of A on any vector of H :

A
∑

i

ai |i〉 =
∑

i

aiui |i〉. (5.2)
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A fundamental assumption of quantum theory is that there to each physical
system correspond a Hilbert space H , and that there to each simple e-variable/
observable θ of this physical system correspond an operator A of this Hilbert space.
Basic operator theory is reviewed in Appendix B.

Assume first that A has distinct eigenvalues. This corresponds to the maximal
symmetric setting of Sect. 4.2. Then all eigenvectors of A define quantum states.
In the general case, we can extend A by taking into account auxiliary eigenvalues
in such a way that the extended operator is maximal, and let the states be the
eigenvectors of this extended operator; see below. All these states can be given an
interpretation in terms of a focused question: ‘What is the value of θ?’ together with
a definite answer: ‘θ = uk’. Often the discussion will involve several e-variables
θa, θb, . . .. The state vector corresponding to θa = ua

k will then be called |a; k〉.
Given a ket vector |k〉 there is an infinity of operators A which have |k〉 as an

eigenvector. In many cases there is at least one such operator which is physically
meaningful, i. e., is associated with some e-variable θ . In some cases, e.g., the spin
of an electron, this operator is unique in a specific sense.

From this all the features of elementary quantum mechanics follow except the
probability statements and the time development of states, which I will come back
to later. Quantum states that are not directly constructed as eigenvectors of any
physically meaningful operator can be found via the time dependent Schrödinger
equation; see Sect. 5.11, and also in some cases by considering physically meaning-
ful linear combination of state vectors; see below.

The operators can be multiplied as also discussed in Appendix B. The multi-
plication is associative, but not commutative. As usual we define the commutator
as

[A,B] = AB − BA.

The Hermitian adjoint operatorA† is defined such that the ket A†|k〉 corresponds
to the bra 〈k|A, in other words 〈i|A†j 〉 = 〈iA|j 〉 for all |i〉, |j 〉. This A† can
also be defined by complex conjugating the eigenvalues in the formula above. The
observables are defined as the Hermitian operators: A† = A, that is, the case where
the eigenvalues uk are real. In general one has (AB)† = B†A†. The possible values
of the observables are their eigenvalues, and the states are given by the ket vectors.

As already stated, the maximal symmetrical epistemic setting of the previous
chapter correspond to the case where the eigenvalues of the operator A are distinct,
but this is generalized in the general symmetrical setting of Sect. 4.5. There I also
had a brief discussion on the choice of Hilbert space. A smaller Hilbert space is
relevant when only a subsystem is considered, but when the whole system is to be
described, a larger Hilbert space is needed.

These considerations are highly relevant when considering several observers.
One single observer may have access to just a few subsystems. In addition he
has his own context. From this context one can define what is his accessible and
inaccessible conceptual variables. In the same way a group of several observers may
through verbal communication arrive at a common context, and from this context
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one can define their accessible and inaccessible conceptual variables. Imagine that
these observers together observe a particular physical system, and consider the
corresponding Hilbert space.

Assumption 5.4 For a given physical system at some particular time one can either
imagine an observer or a group of communicating observers for which assumptions
leading to the Hilbert space formulation are satisfied. In many cases all real
and imagined observers agree on the physical observations, in which case this is
considered part of the ontic world.

It is important that for every physical system we can consider imagined
observers. All real and imagined observers may agree on observations like charge
or non-relativistic mass of a particle. For these observations we do not need the
formalism of quantum mechanics. For other variables the construction of this
section applies, leading to a formal apparatus which is identical to that of quantum
theory.

At any time we can also imagine non-communicating observers. For each
observer then the general setting corresponding to the quantum formulation may
apply. Particular state vectors in each observer’s Hilbert space may then be linear
combinations of primitive state vectors of the form |a1; k1〉 ⊗ . . . ⊗ |as; ks〉. When
these can not be reduced to a primitive form, they are called entangled state vectors.
Entangled state vectors play an important role in many discussions of quantum
mechanics, and I will come back to them briefly below.

When the physical system available to an observer A is subject to a non-
maximal setting resulting in an operator Aa = ∑

k ua
k |a; k〉〈a; k|, we can

always imagine another observer B, communicating with A, with an operator
Bb = ∑

j vb
j |b; j 〉〈b; j |, so that the operator Aa ⊗ Ba = ∑

k,j ua
kv

b
j (|a; k〉 ⊗

|b; j 〉)(〈a; k| ⊗ 〈b; j |) corresponds to a maximal setting, i.e., has distinct
eigenvalues.

Assumption 5.4 is assumed to hold for any physical system, and also for
combinations of physical systems. Through the imagined observers the construction
of this section can be carried out, and for each case a Hilbert space can be
constructed.

Connected to any general physical system, one may have several e-variables θ

and corresponding operators A. There is well-known theorem saying that, in my
formulation, θ1, . . . , θn are compatible, that is, there exists an e-variable λ such
that θ i = t i (λ) for some functions t i if and only if the corresponding operators
commute:

[Ai,Aj ] ≡ AiAj − AjAi = 0 for all i, j.

(See Holevo 2001 or Ballentine 1998.) Compatible e-variables may in principle be
estimated simultaneously with arbitrary accuracy.

In an attempt to make all this a little more concrete, look again at Example 4.15.
Let Jx , Jy and Jz be the operators corresponding to spin in three orthogonal
directions x, y and z. In quantum mechanical texts (see Messiah 1969) it is shown
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that there is a constant c such that these operators satisfy the commutation relations:

[Jx, Jy ] = icJz, [Jy, Jz] = icJx, [Jx, Jz] = icJy.

This can also be proved fairly easily directly in my setting for the electron spin case
j = 1/2, using the geometry of SU(2). In standard quantum mechanics c = h̄/2,
where h̄ is Planck’s constant. We will choose units here such that c = 1/2. In
great generality, commutation relations may be derived from group properties by
exploiting the relation between Lie groups and Lie algebras; see for instance Barut
and Raczka (1985).

Several consequences of the above commutation relations are derived in standard
texts, for instance Messiah (1969). First it is shown that Jz commutes with J 2 =
J 2

x + J 2
y + J 2

z and that J 2 has eigenvalues of the form j (j + 1), where j is integer
or half integer. It is well known, see the discussion above, that commuting operators
can be simultaneously diagonalized. In terms of the corresponding e-variables
(θx, θy, θz) this means that the vector (‖θ‖2, θz) is accessible, where ‖θ‖2 =
θ2x +θ2y +θ2z . Given j , the eigenvalues of Jz are of the form−j,−j +1, . . . , j −1, j
as anticipated in Example 4.15. Also, eigenvectors can be explicitly discussed.

We conclude from this that we have two possible situations:

1. J 2 is known; more explicitly, the squared modulus ‖θ‖2 is known, and takes
one of the values j (j + 1). Then the situation is exactly as in Example 4.15, in
particular the first assumptions of the maximal symmetrical epistemic setting are
satisfied.

2. The squared modulus ‖θ‖2 is unknown. Then the operator J 2 ⊗ Jz (taking
infinitely many, but discrete values) can be diagonalized, can be understood in
terms of conceptual variables, but is not directly given in terms of a maximal
symmetrical epistemic setting.

In conclusion, the first assumptions from Sect. 4.2 defining a symmetrical
epistemic setting are sometimes satisfied, sometimes not for a given quantum
mechanical situation, but the introduction of conceptual variables does seem to be
useful for understandingwhat is going on.Model reduction seems to be crucial here.

Let now by a slight change of notation J = (Jx, Jy, Jz) be the inaccessible total
angular momentum of a system of particles where ‖J‖2 = J (J + 1) is known.
Assume that J is the sum of two spins j1 and j 2 where ‖j 1‖2 = j1(j1 + 1)
and ‖j2‖2 = j2(j2 + 1) are known. Let |mi〉 be the state where jiz = mi for
−ji ≤ mi ≤ ji . Then the state |M〉 where Jz = M can be decomposed into

|M〉 =
∑

m1m2

cMm1m2 |m1〉 ⊗ |m2〉.

The coefficients cMm1m2 , nonzero only for m1 + m2 = M , are called Clebsch-
Gordon coefficients and are discussed in standard quantum mechanical texts like
Messiah (1969). Generalizations, only more technically involved, exist when J is
the sum of more than two spins or angular momenta. This is an important example
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of a situation where new states are found by taking linear combinations of a basic
set of state vectors.

From elementary quantum mechanical texts one can get the impression that all
linear combinations of state vectors in a Hilbert space are possible state vectors.
This is however only true under certain qualifications (I will define superselection
rules later). Nevertheless, taking linear combinations of state vectors leads to
the introduction of interesting and important quantum mechanical phenomena, in
particular that of entanglement, which will be touched upon in Sect. 5.8.

Superposition of quantum states can be introduced in my setting as follows:
Assume that we know a state |a; k〉, that is, we know that θa = ua

k for an e-variable
θa , and that we are interested in information about another e-variable θb. Since
∑

j |b; j 〉〈b; j | = 1, we have

|a; k〉 =
∑

j

|b; j 〉〈b; j |a; k〉 =
∑

j

〈b; j |a; k〉|b; j 〉. (5.3)

In general, when the corresponding operators Aa and Ab do not commute, this
is a genuine linear combination of states |b; j 〉, and part of the interpretation in
my language is that we do not know the value of θb. A situation like this can be
illustrated by the two-slit experiment, which I will come back to later, and in many
other settings.

However; there are also other situations than the one sketched above where linear
combinations of state vectors are of interest. In more generality, given a set of basis
vectors {|j 〉} for the Hilbert space, new state vectors of interest can be of the form

|ψ〉 =
∑

j

cj |j 〉, (5.4)

where {cj } is an arbitrary set of complex numbers such that
∑

j |cj |2 = 1.
To assume a state |a; k〉 is to assume perfect knowledge of the e-variable θa :

θa = ua
k . Such perfect knowledge is rarely available. In practice we have data za

about the system, and use these data to obtain knowledge about θa . Let us start with
Bayesian inference. This assumes prior probabilities πa

k on the values ua
k , and after

the inference we have posterior probabilities πa
k (za). In either case we summarize

this information in the density operator:

ρa =
∑

k

πa
k |a; k〉〈a; k|.

Interpretation of the Density Operator ρa (1) We have posed the question ‘What is
the value of θa?’ (2) We have specified a prior or posterior probability distribution
πa

k over the possible answers. The probability for all possible answers to the
question, formulated in terms of state vectors, can be recovered from the density
operator.
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A third possibility for the probability specifications is a confidence distribution;
see Sects. 2.1.3 and 2.1.4 and references there. For discrete θa the confidence
distribution function Ha is connected to a discrete distribution, which gives the
probabilities πa

k . Extending the argument of Xie and Singh (2013) to this situation,
this should not be looked upon as a distribution of θa , but a distribution for θa , to
be used in the epistemic process.

Since the sum of the probabilities is 1, the trace (sum of eigenvalues, or
equivalently, sum of diagonal terms) of any density operator is 1. In the quantum
mechanical literature, a density operator is any positive operator with trace 1. Given
a set of basis vectors {|k〉}, a density operator is any operator of the form

ρ =
∑

k

πk|k〉〈k|,

where
∑

k πk = 1.

Lemma 5.3 A density operator corresponds to a pure state if and only if the trace
of its square is 1.

Proof trace((ρ)2) = ∑

k(πk)
2 ≤ ∑

k πk = 1. Equality can hold here if and only if
only one πk is 1 and the rest 0. Then ρ is a one-dimensional projector, corresponding
to a single ket-vector.

A good modern introduction to quantum mechanics, in particular to the Hilbert
space formalism, is Ballentine (1998). Concepts andmethods of quantummechanics
are discussed in Peres (1993), and also in other, more recent books.

5.1.1 The Qubit Case; The Case of Dimension 2

Let us look closer on the case where the Hilbert space dimension is 2. One particular
case of this is the spin 1/2 particle, say the spin components of an electron. The
discussion here often starts with the Pauli spin operators

σx =
(

0 1
1 0

)

, σy =
(

0 −i

i 0

)

, σz =
(

1 0
0 −1

)

. (5.5)

All of these have eigenvalues +1 and −1, the possible spin components in the x-
direction, y-direction and z-direction, respectively. The corresponding eigenvectors
are (1 1)′ and (1 − 1)′ for σx , (i − 1)′ and (i 1)′ for σy and (1 0)′ and (0 1)′ for σz.
In an obvious way, each of these corresponds to a question-and-answer pair for spin
component.
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The Pauli spin operators are Hermitian and satisfy

trace(σx) = trace(σy) = trace(σz) = 0;

σ 2
x = σ 2

y = σ 2
z = I ;

σxσy = −σyσx = iσz, σyσz = −σzσy = iσx, σzσx = −σxσz = iσy.

Also, the four matrices I , σx , σy and σz span all Hermitian matrices, and one can
define the density operator

ρr = 1

2
(I + rxσx + ryσy + rzσz) = 1

2
(I + r · σ ). (5.6)

This is the most general density operator, i.e., operator with trace(ρr ) = 1. A
straightforward calculation gives trace((ρr )2) = 1

2 (1 + ‖r‖2). Thus in order that
(5.6) shall be a density operator (see the proof of Lemma 5.3), we must have
‖r‖ ≤ 1. The pure states (Lemma 5.3) correspond to ‖r‖ = 1. This gives a one-
to-one correspondence between ket vectors in the two dimensional Hilbert space
and real-valued three-dimensional vectors ‖r‖ of norm 1. This three-dimensional
picture is called the Bloch sphere.

The Bloch sphere representation can also be used to describe measurements.
(For more details and for a far-reaching recent elaboration of this; see Aerts et al.
2016.) To this end, focus on the eigenstates of the e-variable that is measured. More
precisely, for an e-variable represented by the Hermitian operatorA = u1P1+u2P2,
where Pk = |k〉〈k| is the projection associated with the ket vector |k〉, we can write:
Pk = 1

2 (I + nk · σ ), where nk is the unit vector representing the ket vector |k〉 on
the Bloch sphere, k = 1, 2.

The two eigenvectors being orthogonal, we have P1P2 = 0, so that
trace(P1P2) = 1

2 (1 + n1 · n2) = 0, implying n1 = −n2, i.e., the two vectors
representative of P1 and P2 must point in opposite directions.

In this picture, a ket vector corresponding to a vectorn on the Bloch sphere can be
given the interpretation: We have asked the question: ‘What is the spin component
corresponding to n?’ with the answer +1. The ket vector corresponding to a vector
−n is given the interpretation: ‘What is the spin component corresponding to −n?’
with the answer +1, or equivalently: ‘What is the spin component corresponding to
n?’ with the answer −1.

In this way we have a one-to-one correspondence between the ket vectors in a
two-dimensional Hilbert space and question-and-answer pairs for spin components.
This correspondence will be proved in another way in the next section.
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5.2 More on Angular Momentum

Since all separable Hilbert spaces of a given dimension are isomorphic, we are
free to and will in this section use the ordinary Hilbert space formulation used in
textbooks for angular momenta/spins. The discussion here will rely on Messiah
(1969). Let the angular momentum operator be J, let j in ‖J‖2 = j (j + 1) be
fixed, let Jx, Jy and Jz be the angular momentum operators in directions x, y and
z, respectively, and let Ja = a1Jx + a2Jy + a3Jz be the operator corresponding to
angular momentum θa in the direction a = (a1, a2, a3). Without loss of generality,
assume

∑

i a2i = 1.

Proposition 5.3 For each a and each k (k = −j,−j + 1, . . . , j − 1, j ) there
is exactly one normalized ket vector |v〉 = |a; k〉 with arbitrary phase such that
Ja|v〉 = k|v〉. This ket vector corresponds to the question ‘What is the angular
momentum component θa in the direction a?’ together with the definite answer
‘θa = k’.

Proof Let {|m〉}; m = −j, . . . , j be the normalized eigenstates of Jz, and seek a
ket vector |v〉 = ∑j

m=−j bm|m〉 with ∑ |bm|2 = 1 satisfying Ja|v〉 = k|v〉. From
Messiah (1969) the operators J+ = Jx + iJy and J− = Jx − iJy satisfy

J+|m〉 = √

(j − m)(j + m − 1)|m + 1〉 = Am|m + 1〉; m �= j,

J−|m〉 = √

(j + m)(j − m + 1)|m − 1〉 = Bm|m − 1〉; m �= −j.

Solving this for Jx and Jy leads to

Ja |v〉 = (a1Jx + a2Jy + a3Jz)

j
∑

m=−j

bm|m〉

=
j

∑

m=−j

[1
2
(a1 − ia2)bm−1Am−1 + 1

2
(a1 + ia2)bm+1Bm+1 + a3bmm]|m〉

if we define A−j−1 = Bj+1 = 0. Putting this equal to k
∑

bm|m〉 we get the
recursion relations

kbm − a3mbm − 1

2
(a1 − ia2)bm−1Am−1 = 1

2
(a1 + ia2)bm+1Bm+1

for k,m = −j, . . . , j .

Put b−j = c. Then the recursion relation first gives b−j+1 = (k+ja3)c
√
2

(a1+ia2)
√

j
, and the

same relation then determines bm+1 for m = −j + 1, . . . j − 1. The relation for
m = j gives an eigenvalue equation for k, but we already know from J a|v〉 = k|v〉
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that this has solutions k = −j,−j +1, . . . , j −1, j . Finally, |c| is determined from
∑ |bm|2 = 1. Thus, modulo an arbitrary phase factor, we have a unique ket vector
|v〉 determined from the basis vectors |m〉, m = −j, . . . , j .

Corollary 5.1 Theorem 4.1 of Sect. 4.4.1 is valid for the spin/angular momentum
case.

Proof This follows here from the construction above, giving a solution depending
in a unique way upon a = (a1, a2, a3) on the unit sphere.

Corollary 5.2 The epistemic ket vectors of Proposition 5.3 form a set in the Hilbert
space determined by k and by two independent real parameters.

Proof These simple epistemic states may be indexed by k and by a1, a2 and a3 =
±

√

1 − a21 − a22.
In the spin 1/2 the unit ket vectors in the spin 1/2 case are determined by

the 2-dimensional Bloch sphere. Hence the following result is intuitive from
Corollary 5.2.

Proposition 5.4 For the spin 1/2 case the vectors of Proposition 5.3 give all unit
vectors in the Hilbert space of dimension 2.

Proof Let v0 be a fixed 2-dimensional complex unit vector, e.g., v0 = (1, 0), and
let v be any complex vector of dimension 2. Then there is a unitary matrix M with
determinant 1 such that v = Mv0. It is well known (see, e.g., Ma 2007) that there is a
homomorphism of the group SU(2) of unitary matrices with determinant 1 onto the
3-dimensional rotation group. Let R be the image of M under this homomorphism.
Fix a fixed direction a0, let a = Ra0, and look at the ket vector |a; +〉. This gives
a mapping from v to |a; +〉. Changing a into −a in this argument gives a mapping
from the complex unit 2-vectors to the ket vectors |a; −〉. By Proposition 5.3 each
ket vector |a; k〉 is a complex unit vector. Hence we have established a one-to-one
correspondence.

For j > 1/2 the set of simple epistemic states for angular momenta is not closed
under linear combinations. As remarked in Sect. 1.5.7, however, each pure quantum
state can nevertheless be seen as the eigenstate of some operator; the problem is
only to associate this operator to a physically meaningful e-variable. For j > 1/2 it
is not enough to look at angular momentum components θa in various directions a.
Candidates for other physically meaningful e-variables may be, e.g., αθa + βθb for
a �= b, or more generally any f (θa, θb, θc, . . .).

5.3 Continuous e-Variables: Phase Space

Consider the one-dimensionalmovement of a single non-relativistic particle in some
force field, the particle having position ξ and momentum π at some given time.
Both ξ and π are e-variables and can be estimated by suitable experiments. But it
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has been well known from the early days of quantummechanics that it is impossible
to estimate the vector φ = (ξ, π) with arbitrary accuracy. Thus the point φ in the
phase space is an inaccessible conceptual variable.

I will first concentrate in the position ξ . This is a continuous variable, so a state
cannot be defined as simply as in the discrete case. Consider a fixed confidence
interval or credibility interval (ξ, ξ̄ ) for this position. Either ξ lies in this interval or
it does not lie in this interval. In the first case, the confidence coefficient/credibility
coefficient of the interval can be made arbitrarily close to 1 by doing a suitable large
experiment. In the second case, the same coefficient can be made arbitrarily close
to 0. Thus it is crucial by experiment, that is, by an epistemic process, to make a
choice between the two indicator variables:

I1(ξ) = I (ξ ∈ (ξ , ξ̄ )), I2(ξ) = I (ξ /∈ (ξ , ξ̄ )).

Let Gξ be the translation group on the real line R. The invariant measure
corresponding to Gξ is the Lebesgue measure dξ , and I will define the Hilbert space
H = L2(R, dξ). The indicator I1(ξ) belongs to this space. The indicator I2(ξ) does
not belong to H , but this is not important since I2 = 1 − I1.

By letting ξ and ξ̄ vary, the ξ -state of the system can be defined in terms of the
indicators I1. For fixed ξ and ξ̄ this is a discrete e-variable taking values I1 = 0 and
I1 = 1. It is crucial in quantummechanics that linear combinations of states defined
by indicators and the limits of these also can be introduced as states. One way
they will emerge is through the time development of states through the Schrödinger
equation; see Sect. 5.11.

The approach I will take here is a limiting operation obtained through dividing
the real line into many intervals such that the width of each interval tends to
zero. Through this limiting process we can approximate any function f in H . In
traditional quantum mechanics, any such f is describing a state of the particle,
and f is called a wave function. I will not go into any interpretation of this here,
but just mention that there are interpretations trying to connect this to the theory
of stochastic processes; this is the content of the stochastic mechanics of Edward
Nelson (1967). I will discuss this later in connection to the Schrödinger equation,
but here I only address the limiting process. I will limit myself to continuous f .

Thus for each n let ξn1 < ξn2 < . . . < ξnkn be a sequence of real numbers such
that

1. ξn1 → −∞ and ξnkn → ∞ as n → ∞.
2. δn = ξn,i+1 − ξni is constant for i = 1, . . . , kn − 1 and tends to 0 as n → ∞.

Let Ini(ξ) = I (ξ ∈ (ξni , ξn,i+1]) for i = 1, 2, . . . , kn−1. For a given continuous
function f ∈ H , define the step function approximation fn by fn(ξ) = f (ξni) for
ξni ≤ ξ < ξn,i+1 when i = 1, . . . , kn − 1; fn(ξ) = 0 for ξ < ξn1 and for ξ ≥ ξnkn .
Thus fn(ξ) = ∑

i f (ξni)Ini(ξ), a linear function of indicators. Finally, on the space
of such step functions define the operator An by

Anfn(ξ) =
∑

i

ξnif (ξni)Ini(ξ). (5.7)
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The interpretation of (5.7) is as follows: Approximate ξ by ξni when ξ ∈
(ξni , ξn.i+1] (and neglect its value when ξ < ξn1 or ξ ≥ ξnkn ; this is assumed to
have negligible probability/ confidence coefficient). This approximate variable is
discrete, so we can use the theory of Sect. 5.1. The indicators Ini can be regarded
as an orthonormal set of ket vectors for this approximate variable for a suitable
normalization of the Lebesgue measure. Then (5.7) is equivalent to (5.2) of Sect. 5.1
with |i〉 = Ini(ξ) constituting an orthonormal basis for a Hilbert space Hn of step
functions, a subspace of H . Thus An is the quantum-mechanical operator of the
discrete e-variable.

It is of interest to see what happens when n tends to ∞. The following basic
result is proved in Appendix C.

Theorem 5.3 Assume that f is a continuous function in H such that the function k

defined by k(ξ) = ξf (ξ) satisfies ‖k‖ < ∞. Then ‖fn−f ‖ → 0 and ‖Anfn−k‖ →
0 as n → ∞.

In this specific sense the operatorA corresponding to the e-variable ξ can be said
to be the operator of multiplying with ξ . By Theorem 5.3 it is motivated as such an
operator defined on all continuous f in H such that

∫ |ξf (ξ)|2dξ < ∞.
The operator A is an unbounded operator, and as such it must always have a

limited domain of definitionD(A). There is a very large and advancedmathematical
theory on unbounded operators; see for instance Murphy (1990) or Bing-Ren
(1992).

The spectral theorem (see any mathematics book or for instance Busch et al.
1991, page 21) is valid also for the operator A. The spectral measure for an interval
I = |ξ1, ξ2] is given by E(I)f (ξ) = f (ξ) for ξ1 ≤ ξ ≤ ξ2 and E(I) = 0 for
ξ outside the interval. This E(I) is the operator of multiplying with the indicator
function of the interval. This measure will be important when considering general
versions of the Born formula; see Sect. 5.7 and Sect. 5.15.

So far I have considered the position ξ . A completely parallel discussion can be
made on the moment π in the Hilbert space Hπ = L2(S, dπ), where S is the line
where π varies. Thus the operator B corresponding to momentum π in this space
is multiplication by π with domain of definition D(B) = {f ∈ Hπ : ∫ |πf (π)|2d
π < ∞.

As in the discrete case it is important to have everything described in one
Hilbert space, so we need a unitary transformation from Hπ to H . For this case
we have an apparently different solution than I offered in the maximal symmetric
epistemic setting, namely the use of Fourier transform. If ̂f ∈ Hπ , we define the
corresponding f ∈ H by

(U ̂f )(ξ) = f (ξ) = 1√
2 · 3.14

∫

exp(i
ξπ

h̄
) ̂f (π)dπ,

where h̄ is Planck’s constant, which has the correct unit of measurement. One point
here is that this unitary transformation does not transform indicator variables into
indicator variables, so there is no confusion between simple π-states and simple
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ξ -states. The inverse transformation is given by

(U†f )(π) = ̂f (π) = 1√
2 · 3.14

∫

exp(−i
ξπ

h̄
)f (ξ)dξ.

These two equations may be considered as the continuous analogues of (5.3).
By partial integration one can show that the operator C = UBU† corresponding

to B in H is given by −ih̄ d
dξ

with domain of definition D(C) given by the set of

differentiable f such that
∫ |f ′(ξ)|2dξ < ∞. It follows that when f ∈ D(A) ∩

D(C) we have (AC − CA)f (ξ) = ih̄f (ξ), so A and C do not commute. Hence
by the brief discussion of commutation relations in Sect. 5.1, ξ and π cannot be
estimated simultaneously with arbitrary accuracy, in agreement with observed fact.
From the commutation relation Heisenberg’s uncertainty relation can be proved:
From any estimators ̂ξ and π̂ we have std(̂ξ)std(π̂) > h̄/2. For a derivation, see
standard quantum-mechanical texts or Holevo (2001). But now I am anticipating
the inference theory which will be briefly discussed in later sections.

5.4 A Link to Statistical Inference

In this section I again assume the discrete quantum formulation of Sect. 5.1. We can
here think of a spin component in a fixed direction to be determined.

Assume now that the quantum mechanical system is prepared in a state with
an unknown value of θa . Given then the focused question a, the e-variable θa

plays the role similar to a parameter in statistical inference, even though it may
be connected to a single unit. Inference can be done by preparing many independent
units in the same state. Inference is then from data za , a part of the total data z that
nature can provide us with. All inference theory that one finds in standard texts like
Lehmann and Casella (1998) applies. In particular, the concepts of unbiasedness,
equivariance, average risk optimality, minimaxity and admissibility apply. None
of these concepts are much discussed in the physical literature, first because
measurements there are often considered as perfect, at least in elementary texts,
secondly because, when measurements are considered in the physical literature, they
are discussed in terms of the more abstract concept of an operator-valued measure;
see Sect. 5.7 below.

Whatever kind of inference we make on θa , we can take as a point of departure
the statistical model and the generalized likelihood principle of Sect. 3.2.4. Hence
after an experiment is done, and given some context τ , all evidence on θa is
contained in the likelihood p(za |τ, θa), where za is the portion of the data relevant
for inference on θa , also assumed discrete. This is summarized in the likelihood
effect:

Ea(ua; za, τ ) =
∑

k

p(za |τ, θa = ua
k)|a; k〉〈a; k|.
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Interpretation of the Likelihood Effect Ea(za, τ ) (1) We have posed some infer-
ence question on the accessible e-variable θa . (2) We have specified the relevant
likelihood for the data. The likelihood for all possible answers of the question,
formulated in terms of state vectors, can be recovered from the likelihood effect.

Since the focused question assumes discrete data, each likelihood is in the range
0 ≤ p ≤ 1. In the quantum mechanical literature, an effect is any operator with
eigenvalues in the range [0, 1].

Some qualifications must be made relative to this interpretation, however, if
we want to be precise. We have the freedom to redefine the e-variable in the
case of coinciding eigenvalues in the likelihood effect, that is, if p(za |τ, θa =
ua

k) = p(za |τ, θa = ua
l ) for some k, l. An extreme case is the likelihood effect

E(ua; za, τ ) = I , where all the likelihoods are 1, that is, the probability of z is 1
under any considered model.

Recall that the e-variable θa is identified with the Hilbert space operator
∑

k ua
k�

a
K , cf. (4.1). Hence the projections |�a

kk| are crucial in this identification.
We have the following mathematical result on the likelihood effects:

Proposition 5.5 Assume that a and b are such that there exist some constant c > 0
such that

Ea(ua; za, τ ) = cEb(ub; zb, τ ). (5.8)

Then we can order the states such that

1) p(za |τ, θa = ua
k) = cp(zb|τ, θb = ub

k) for each k.
2) Introduce the class of indices Cj such that p(za |τ, θa = ua

k) = p(za |τ, θa =
ua

l ) whenever k, l ∈ Cj , and these likelihoods are different when k and l belong
to different Cj -classes, similarly Dj for p(zb|τ, θb = ub

k). Then we have

∑

k∈Cj

|a; k〉〈a; k| =
∑

k∈Dj

|b; k〉〈b; k|

for all j .

On the other hand, if 1) and 2) are satisfied, then (5.8) holds.

The last part is fairly trivial. The direct part is proved in Appendix C.
Return now to the generalized likelihood principle of Sect. 3.2.4. Recall that this

principle follows from the very reasonable conditionality principle and sufficiency
principle, and that the principle itself is fairly reasonable in our setting, where
we condition upon the context τ . In statistics, the likelihood principle says the
following: If two experiments have proportional likelihood, with constant of
proportionality independent of the parameter, they produce the same experimental
evidence about the parameter. Here experimental evidence is left undefined. In
quantum mechanics, where we focus on a specific question a, we must in addition
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demand that this focused question is the same for each possible value of the
e-variable; that is, the projections �a

k must be the same.
An observation za is called regular if p(za |τ, θa = ua

k) = p(za|τ, θa = ua
j )

implies ua
k = ua

j .
The following principle follows:

The Focused Generalized Likelihood Principle (FGLP) Consider two potential
experiments a and b in some setting with equivalent contexts τ , and assume that the
inaccessible conceptual variable φ is the same in both experiments. Suppose that
the two observations za

1 and zb
2 have equal likelihood effects in the two experiments,

and assume that both observations za
1 and zb

2 are regular.
Then

A) The questions posed in the two experiments are equivalent in the sense that the
corresponding eigenvector spaces are equal.

B) The two observations produce equivalent experimental evidence on the relevant
e-variables in this context.

Proposition 5.6 The focused generalized likelihood principle follows from the
generalized likelihood principle of Sect. 3.2.4.

Proof The Proposition is trivial if we know that the e-variables are the same in the
two experiments. If not, we have a siuation where (Eq. 5.8) holds with c = 1. Then
by (Eq. 4.1) θa−operator = ∑

ua
k�

a
k , θ

b−operator = ∑

vb
k�a

k , where the equality
of the projection operators follow from Proposition 5.5, 2) and the assumption of
regularity. The eigenvalues ua

k are all different, similarly the eigenvalues vb
k . These

are the answers to the questions connected to θa and θb; the questions are equivalent.
B) follows from Proposition 5.5, 1) with c = 1 and the ordinary likelihood principle.

Two contexts are considered equivalent if they are one-to-one functions of each
other. For regular observations the principle says that both the question posed and
the experimental evidence are functions of the likelihood effect and the context of
the experiment.

5.5 Rationality and Experimental Evidence

Throughout this section I will consider a fixed context τ and a fixed epistemic
setting in this context. The inaccessible conceptual variable is φ, and I assume that
the accessible e-variables θa take a discrete set of values. Let the data behind the
potential experiments be za , also assumed to take a discrete set of values.

Let first a single experimentalist A be in this situation, and let all conceptual
variables be attached to A, although he also has the possibility to receiving
information from others through part of the context τ . He has the choice of doing
different experiments a, and he also has the choice of choosing different models
for his experiment through his likelihood pA(za|τ, θa). The experiment and the
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model, hence the likelihood, should be chosen before the data are obtained. All
these choices are summarized in the likelihood effect Ea , a function of the at
present unknown data za . For use after the experiment, he should also choose a good
estimator ̂θa , and he may also have to choose some loss function, but the principles
behind these latter choices will be considered as part of the context τ .

If A chooses to do a Bayesian analysis, the estimator should be based on a prior
πA(θa|τ ). We assume that he is trying to be as rational as possible in all his choices,
and that this rationality is connected to his loss function or to other criteria. What
should be meant by experimental evidence, and how should it be measured? As a
natural choice, let the experimental evidence that we are seeking, be the posterior
probability for some fixed value of θa , given the data. From the experimentalist A’s
point of view this is given by:

pa
A(θa = ua

j |za, τ ) = pA(za|τ, θa = ua
j )πA(θa = ua

j |τ )

pa
A(za|τ )

,

assuming the likelihood chosen by A and A’s prior πA for θa .
Some Bayesians claim that their own philosophy is the only one which is

consistent with the likelihood principle. For my own view on this, see below and also
comments in Sect. 3.4 and at the end of Sect. 2.1.3. In a non-Bayesian analysis, we
can let the concept of experimental evidence be tied to the confidence distribution,
given the context, see Sect. 2.1.3. Also in such an analysis we must assume A to be
as rational as possible.

We have to make precise in some way what is meant by the rationality of the
experimentalist A. He has to make many difficult choices on the basis of uncertain
knowledge. His actions can partly be based on intuition, partly on experience from
similar situations, partly on a common scientific culture and partly on advices from
other persons. These other persons will in turn have their intuition, their experience
and their scientific education. Often A will have certain explicitly formulated
principles on which to base his decisions, but sometimes he has to dispense with
the principles. In the latter case, he has to rely on some ‘inner voice’, a conviction
which tells him what to do.

We will formalize all this by introducing a perfectly rational superior actor D,
to which all these principles, experiences and convictions can be related. We also
assume that D can observe everything that is going on, in particular A, and that
he on this background can have some influence on A’s decisions. We assume that
D has priors, so that he can do a Bayesian analysis. These priors can for example
be based on symmetry. The real experimental evidence will then be defined as the
probability of the e-variable θa from D’s point of view, which we assume also to
give the real objective probabilities. By the FGLP this must again be a function of
the likelihood effect Ea .

D’s experimental evidence = real probability = q(Ea(ua; za, τ )) (5.9)
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under the assumption that the experiment connected to some e-variable θa is to be
done. Here and in the following I will assume that the observations za are regular in
the sense defined in Sect. 5.4 . I will come back to this assumption later.

The superior actor D represents here the scientific ideals of the experimentalist
A, and my main point is that D should be perfectly rational. This should influence
A’s decisions during the experiment.

In this book I have not tried to develop a theory of decisions. Instead I have in
Sect. 1.3 referred to the Quantum Decision Theory of Yukalov and Sornette, which
is particularly nicely formulated in Yukalov and Sornette (2010) and Yukalov and
Sornette (2014). Here one must be careful, however. Quantum Decision Theory
takes its departure in the ordinary mathematical formulation of quantum theory, in
particular in Born’s rule for calculating probabilities. Using this theory here, where
I am preparing to derive Born’s rule, will lead to circular reasoning. Instead I will
now take decision as a primitive concept.

An important point is that decisions made by the brain are not the same
as straightforward computerlike calculations. Human decisions are based on the
functioning of and the interplay between conscious and subconscious processes
in the brain. Informally one might say that D also contains an idealization of
what makes the mind of A different from a computer. In simple words, this
might be called intuition. Intuition is the source of energy for all sorts of art, for
communication between people, and even for scientific investigations.

In a scientific connection we assume that D is perfectly rational. This can be
formalized mathematically by considering a hypothetical betting situation for D

against a bookie, nature N . A similar discussion was recently done using a more
abstract language by Hammond (2011). Note the difference to the ordinary Bayesian
assumption, where A himself is assumed to be perfectly rational. This difference is
crucial to me. I do not see any human scientist, including myself, as being perfectly
rational. We can try to be as rational as possible, but we have to rely on some
underlying rational ideals that partly determine our actions.

So let the hypothetical odds of a given bet for D be (1 − q)/q to 1, where q is
the probability as defined by (5.9). This odds specification is a way to make precise
that, given the context τ and given the question a, the bettor’s probability that the
experimental result takes some value is given by q: For a given utility measured
by x, the bettor D pays in an amount qx—the stake—to the bookie. After the
experiment the bookie pays out an amount x—the payoff—to the bettor if the result
of the experiment takes the value θa , otherwise nothing is payed.

The rationality of D is formulated in terms of

The Dutch Book Principle No choice of payoffs in a series of bets shall lead to a
sure loss for the bettor.

For a related use of the same principle, see Caves et al. (2002).

Assumption 5.5 Consider in some context τ an epistemic setting where the FGLP
is satisfied, and the whole situation is observed and acted upon by a superior actor
D as described above. Assume that D’s probabilities q given by (5.9) are taken as
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the experimental evidence, and that D acts rationally in agreement with the Dutch
book principle.

A situation where Assumptions 5.4 and 5.5 hold will be called a rational
epistemic setting. It will be assumed to be implied by essential situations of quantum
mechanics. The question will be raised later if it also can be coupled to certain
macroscopic situations.

Theorem 5.4 Assume a rational epistemic setting, and assume a fixed context τ .
Let E1 and E2 be two likelihood effects in this setting, and assume that E1 + E2
also is an effect. Then the experimental evidences, taken as the probabilities of the
corresponding data, satisfy

q(E1 + E2|τ ) = q(E1|τ ) + q(E2|τ ).

Proof The result of the theorem is obvious, without making Assumption 5.5, if E1
and E2 are likelihood effects connected to experiments on the same e-variable θa .
We will prove it in general. Consider then any finite number of potential experiments
including the two with likelihood effects E1 and E2. Let q1 = q(E1|τ ) be equal to
(5.9) for the first experiment, and let q2 = q(E2|τ ) be equal to the same quantity for
the second experiment. Consider in addition the following randomized experiment:
Throw an unbiased coin. If head, choose the experiment with likelihood effectE1; if
tail, choose the experiment with likelihood effectE2. This is a valid experiment. The
likelihood effect when the coin shows head is 1

2E1, when it shows tail 1
2E2, so that

the likelihood effect of this experiment is E0 = 1
2 (E1+E2). Define q0 = q(E0). Let

the bettor bet on the results of all these three experiments: Payoff x1 for experiment
1, payoff x2 for experiment 2 and payoff x0 for experiment 0.

I will divide into three possible outcomes: Either the likelihood effect from the
data z is E1 or it is E2 or it is none of these. The randomization in the choice of E0
is considered separately from the result of the bet. (Technically this can be done by
repeating the whole series of experiments many times with the same randomization.
This is also consistent with the conditionality principle.) Thus if E1 occurs, the
payoff for experiment 0 is replaced by the expected payoff x0/2, similarly if E2
occurs. The net expected amount the bettor receives is then

x1 + 1

2
x0 − q1x1 − q2x2 − q0x0 = (1 − q1)x1 − q2x2 − (1 − 2q0)

1

2
x0 if E1,

x2 + 1

2
x0 − q1x1 − q2x2 − q0x0 = −q1x1 − (1 − q2)x2 − (1 − 2q0)

1

2
x0 if E2,

−q1x1 − q2x2 − 2q0 · 1
2
x0 otherwise.
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The payoffs (x1, x2, x0) can be chosen by nature N in such a way that it leads to
sure loss for the bettor D if not the determinant of this system is zero:

0 =
∣

∣

∣

∣

∣

∣

1 − q1 −q2 1 − 2q0
−q1 1 − q2 1 − 2q0
−q1 −q2 −2q0

∣

∣

∣

∣

∣

∣

= q1 + q2 − 2q0.

Thus we must have

q(
1

2
(E1 + E2)|τ ) = 1

2
(q(E1|τ ) + q(E2|τ )).

If E1 + E2 is an effect, the common factor 1
2 can be removed by changing the

likelihoods, and the result follows.

Corollary Assume a rational epistemic setting in the context τ . Let E1, E2, . . . be
likelihood effects in this setting, and assume that E1 + E2 + . . . also is an effect.
Then

q(E1 + E2 + . . . |τ ) = q(E1|τ ) + q(E2|τ ) + . . . .

Proof The finite case follows immediately from Theorem 5.4. Then the infinite case
follows from monotone convergence.

The result of this section is quite general. In particular the loss function and any
other criterion for the success of the experiments are arbitrary. So far I have assumed
that the choice of experiment a is given, which implies that it is the same for A and
for D. However, the result also applies to the following different situation: Let A

have some definite purpose for his experiment, and to achieve that purpose, he has
to choose the question a in a clever manner, as rationally as he can. Assume that this
rationality is formalized through the actor D, who has the ideal likelihood effect E
and the experimental evidence q(E|τ ). If two such questions can be chosen, the
result of Theorem 5.4 holds, with essentially the same proof.

5.6 The Born Formula

5.6.1 The Basic Formula

Born’s formula is the basis for all probability calculations in quantum mechanics.
In textbooks it is usually stated as a separate axiom, but it has also been argued
for by using various sets of assumptions; see Helland (2008) for some references.
In fact, the first argument for the Born formula, assuming that there is an affine
mapping from set of density functions to the corresponding probability functions,
is due to von Neumann (1927) (see Busch et al. 2016, p. 201). In Helland (2006,
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2008, 2010) the formula was proved under rather strong assumptions. Here I will
use assumptions which are as weak as possible; I will base the discussion upon the
result of Sect. 5.5.

I begin with a very elegant recent theorem by Busch (2003). For completeness I
reproduce the proof for the finite-dimensional case in Appendix D.

Let in general H be any separable Hilbert space. Recall that an effect E is any
operator on the Hilbert space with eigenvalues in the range [0, 1]. A generalized
probability measure μ is a function on the effects with the properties

(1) 0 ≤ μ(E) ≤ 1 for all E,

(2) μ(I) = 1,
(3) μ(E1 + E2 + . . .) = μ(E1) + μ(E2) + . . . whenever E1 + E2 + . . . ≤ I.

Theorem 5.5 (Busch 2003) Any generalized probability measure μ is of the form
μ(E) = trace(ρE) for some density operator ρ.

It is now easy to see that q(E|τ ) on the ideal likelihood effects of Sect. 5.5 is
a generalized probability measure if Assumption 5.5 holds: (1) follows since q is
a probability; (2) since E = I implies that the likelihood is 1 for all values of
the e-variable; finally (3) is a consequence of the corollary of Theorem 5.4. Hence
there is a density operator ρ = ρ(τ) such that p(z|τ ) = trace(ρ(τ )E) for all ideal
likelihood effects E = E(z). This is a result which is valid for all experiments.

The problem of defining a generalized probability on the set of effects is also
discussed in Busch et al. (2016).

Define now a perfect experiment as one where the measurement uncertainty can
be disregarded. The quantum mechanical literature operates very much with perfect
experiments which give well-defined states |j 〉. From the point of view of statistics,
if, say the 99% confidence or credibility region of θb is the single point ub

j , we can

infer approximately that a perfect experiment has given the result θb = ub
j .

For perfect experiments the observations za are essentially equal to the relevant
e-variable values θa = ua

k , so we can without loss of generality assume that these
observations are regular, (see Sect. 5.4).

In our epistemic setting then: We have asked the question: ‘What is the value of
the accessible e-variable θb?’, and are interested in finding the probability of the
answer θb = ub

j though a perfect experiment. If ub
j is a non-degenerate eigenvalue

of the operator corresponding to θb, this is the probability of a well-defined state
|b; j 〉. Assume now that this probability is sought in a context τ = τa,k defined as
follows: We have previous knowledge of the answer θa = ua

k of another minimal
question: ‘What is the value of θa?’ That is, we know the state |a; k〉.
Theorem 5.6 (Born’s formula) Assume a rational epistemic setting. In the above
situation we have:

P(θb = ub
j |θa = ua

k) = |〈a; k|b; j 〉|2.
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Proof Assume that both the e-variable θa and the e-variable θb have operators
with non-degenerate eigenvalues. Fix j and k, let |v〉 be either |a; k〉 or |b; j 〉, and
consider likelihood effects of the form E = |v〉〈v|. This corresponds in both cases
to a perfect measurement of a maximally accessible parameter with a definite result.
By Theorem 5.5 there exists a density operator ρa,k = ∑

i πi(τ
a,k)|i〉〈i| such that

q(E|τa,k) = 〈v|ρa,k|v〉, where πi(τ
a,k) are non-negative constants adding to 1.

Consider first |v〉 = |a; k〉. For this case one must have
∑

i πi(τ
a,k)|〈i|a; k〉|2 = 1

and thus
∑

i πi(τ
a,k)(1 − |〈i|a; k〉|2) = 0. This implies for each i that either

πi(τ
a,k) = 0 or |〈i|a; k〉| = 1. Since the last condition implies |i〉 = |a; k〉 (modulus

an irrelevant phase factor), and this is a condition which can only be true for one i, it
follows that πi(τ

a,k) = 0 for all other i than this one, and that πi(τ
a,k) = 1 for this

particular i. Summarizing this, we get ρa,k = |a; k〉〈a; k|, and setting |v〉 = |b; j 〉,
Born’s formula follows, since q(E|τa,k) in this case is equal to the probability of
the perfect result θb = ub

j .

5.6.2 Consequences

Here are three easy consequences of Born’s formula:

1. If the context of the system is given by the state |a; k〉, and Ab is the
operator corresponding to the e-variable θb, then the expected value of a perfect
measurement of θb is 〈a; k|Ab|a; k〉.

2. If the context is given by a density operator ρ, and A is the operator correspond-
ing to the e-variable θ , then the expected value of a perfect measurement of θ is
trace(ρA). This is the formula used in Postulate 1.2 of Sect. 1.5.5.

3. In the same situation the expected value of a perfect measurement of f (θ) is
trace(ρf (A)).

Proof of (1)

E(θb|θa = ua
k) =

∑

i

ub
i P (θb = ub

i |θa = ua
k)

=
∑

i

ub
i 〈a; k|b; i〉〈b; i|a; k〉 = 〈a; k|Ab|a; k〉.

Proof of (2) Let ρ = ∑

k πa
k |a; k〉〈a; k| and A = ∑

j ub
j |b; j 〉〈b; j |. Then from 1)

E(θ) =
∑

k

πa
k 〈a; k|A|a; k〉 = trace

∑

k

πa
k |a; k〉〈a; k|A.

These results give an extended interpretation of the operator A compared to what
I gave in Sect. 5.4: There is a simple formula for all expectations in terms of the
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operator. On the other hand, the set of such expectations determine the state of the
system. Also on the other hand: If A is specialized to an indicator function, we get
back Born’s formula, so the consequences are equivalent to this formula.

As an application of Born’s formula, we give the transition probabilities for
electron spin. Throughout this book, we will, for a given direction a, define the
e-variable θa as +1 if the measured spin component by a perfect measurement for
the electron is +h̄/2 in this direction, θa = −1 if the component is −h̄/2. Assume
that a and b are two directions in which the spin component can be measured.

Proposition 5.7 For electron spin we have

P(θb = ±1|θa = +1) = 1

2
(1 ± cos(a · b)).

This is proved in several textbooks, for instance Holevo (2001), from Born’s
formula. A similar proof using the Pauli spin matrices is also given in Helland
(2010).

Measurements of e-variables will be treated in Sect. 5.7, but here we will look at
the simpler case of a perfect measurement. Assume that we know the state |ψ〉 of a
system, and that we want to measure a new e-variable θb. This can be discussed by
means of the projection operators �b

j = |b; j 〉〈b; j |. First observe that by a simple
calculation from Born’s formula

P(θb = ub
j |ψ) = ‖�b

j |ψ〉‖2. (5.10)

Next observe that after a perfect measurement θb = ub
j have been obtained, the state

changes to

|b; j 〉 = �b
j |ψ〉

‖�b
j |ψ〉‖ .

Successive measurements are often of interest. We find

P(θb = ub
j and then θc = uc

i |ψ) = P(θc = uc
i |θb = ub

j )P (θb = ub
j |ψ)

= ‖�c
i

�b
j |ψ〉

‖�b
j |ψ〉‖‖2‖�b

j |ψ〉‖2 = ‖�c
i �

b
j |ψ〉‖2. (5.11)

In the case with multiple eigenvalues, the formulae above are still valid, but the
projectors above must be replaced by projectors upon eigenspaces. One can show
that (5.10) then gives a precise version of Born’s rule for this case.

Proof Look first at the case with unique eigenvalues. Then Born’s rule says

P(θb = ub
j |ψ) = 〈ψ|b; j 〉〈b; j |ψ〉.
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Let then the eigenvalues move towards coincidence. Let Ck = {j : ub
j = vb

k }. Then
by continuity from the previous equation we get

P(θb = vb
k |ψ) =

∑

j∈Ck

〈ψ|b; j 〉〈b; j |ψ〉 = 〈ψ|�b
k |ψ〉 = ‖�b

k |ψ〉‖2.

Note that in general P(θb = ub
j and then θc = uc

i |ψ) �= P(θc = uc
i and then

θb = ub
j |ψ). Measurements do not necessarily commute.

5.6.3 A Macroscopic Example

A very relevant question is now: Are all these results, including Born’s formula, by
necessity confined to the microworld? Recently, physicists have become interested
in larger systems where quantum mechanics is valid, see Vedral (2011). Of even
more interest are the quantum models of cognition, see Pothos and Busemeyer
(2013). As we have defined it, there is nothing microscopic about the epistemic
setting. It may or may not be that the rationality Assumption 5.5 also is valid for
some larger scale systems. The following example illustrates the point.

Example 5.16 In a medical experiment, let μa,μb,μc and μd be continuous inac-
cessible parameters, the hypothetical effects of treatment a, b, c and d , respectively.
Assume that the focus of the experiment is to compare treatment b with the
mean effect of the other treatments, which is supposed to give the parameter
1
3 (μa + μc + μd). One wants to do a pairwise experiment, but it turns out that
the maximal parameter which can be estimated, is

θb = sign(μb − 1

3
(μa + μc + μd)).

(Imagine for example that one has four different ointments against rash. A patient
is treated with ointment b on one side of his back; a mixture of the other ointments
on the other side of his back. It is only possible to observe which side improves
best, but this observation is assumed to be very accurate. One can in principle do
the experiment on several patients, and select out the patients where the difference
is clear.) This experiment is done on a selected set of experimental units, on whom
it is known from earlier accurate experiments that the corresponding parameter

θa = sign(μa − 1

3
(μb + μc + μd))

takes the value +1. In other words, one is interested in the probabilities

π = P(θb = +1|θa = +1).
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Consider first a Bayesian approach. Natural priors for μa, . . . , μd are indepen-
dent N(ν, σ 2) with the same ν and σ . By location and scale invariance, there is
no loss in generality by assuming ν = 0 and σ = 1. Then the joint prior of
ζ a = μa − 1

3 (μb + μc + μd) and ζ b = μb − 1
3 (μa + μc + μd) is multinormal with

mean 0 and covariance matrix

( 4
3 − 4

9
− 4

9
4
3

)

.

A numerical calculation from this gives

π = P(ζ b > 0|ζ a > 0) ≈ 0.43.

This result can also be assumed to be valid when σ → ∞, a case which in some
sense can be considered as independent objective priors for μa, . . . , μd .

Now consider a rational epistemic setting for this experiment. Since again scale
is irrelevant, a natural group on μa, . . . , μd is a 4-dimensional rotation group
around a point (ν, . . . , ν) together with a translation of ν. Furthermore, ζ a and
ζ b are contrasts, that is, linear combinations with coefficients adding to 0. The
space of such contrasts is a 3-dimensional subspace of the original 4-dimensional
space, and by a single orthogonal transformation, the relevant subset of the 4-
dimensional rotations can be transformed into the group G of 3-dimensional
rotations on this latter space, and the translation in ν is irrelevant. One such
orthogonal transformation is given by

ψ0 = 1

2
(μa + μb + μc + μd),

ψ1 = 1

2
(−μa − μb + μc + μd),

ψ2 = 1

2
(−μa + μb − μc + μd),

ψ3 = 1

2
(−μa + μb + μc − μd).

Let G be the group of rotations orthogonal to ψ0. We find

ζ a = −2

3
(ψ1 + ψ2 + ψ3),

ζ b = −2

3
(ψ1 − ψ2 − ψ3).
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The rotation group element transforming ζ a into ζ b is homomorphic under G

to the rotation group element gab transforming a = − 1√
3
(1, 1, 1) into b =

− 1√
3
(1,−1,−1). Let Ga be the maximal subgroup of G under which ζ a is

permissible. This is isomorphic with the group of rotations around a together
with a reflection in the plane perpendicular to a, but the action on ζ a is just a
reflection. The orbits of this group are given by two-point sets {±c}. In conclusion,
the whole situation is completely equivalent to the spin-example of Example 4.15
and satisfies the assumptions of the symmetrical epistemic setting. Making the
rationality Assumption 5.5 then implies from Proposition 5.7:

π = P(sign(ζ b) = +1|sign(ζ a) = +1) = 1

2
(1 + a · b) = 1

3
.

To be precise, Example 5.16 satisfies the assumptions of the maximal symmetri-
cal epistemic setting except Assumptions 4.2a) and 4.2b). To have these assumptions
satisfied, we must extend the situation:

Example 5.17 Let the situation be as in Example 5.16 with the addition that we
have available treatments with hypothetical effects μa for a ∈ A, where the index
set A can be taken to be the 3-dimensional unit sphere.

It is clear that the extension from Example 5.16 to Example 5.17 does not
mean anything for the result. Assumption 4.3 must be replaced by the result of
Corollary 5.1 of Sect. 5.2. Assumption 5.4 is of no relevance here.

I guess that many statisticians will prefer the Bayesian calculations here for the
rational epistemic setting calculations, which some may consider to have a more
speculative foundation. But the prior chosen in this example must be considered
somewhat arbitrary, and its ‘objective’ limit may lead to conceptual difficulties.
Since experiments of this kind can in principle be done in practice—at least
approximately, the question whether the Bayesian solution or the rational epistemic
setting solution holds in such cases, must ultimately be seen as an empirical
question.

5.6.4 Superselection Rules

Two states |ψ〉 and |θ〉 obey a superselection rule if 〈ψ|A|θ〉 = 0 for all operators
A representing e-variables. This can be the case for instance if the Hilbert space
decomposes as H = H1 ⊕ H2, |ψ〉 ∈ H1, |θ〉 ∈ H2 and all e-variables act either on
H1 or H2. In this case the linear combinations |η〉 = α|ψ〉 + β|θ〉 have no physical
meaning by the following argument:

〈η|A|η〉 = trace(ρA)
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for all A, where ρ = |α|2|ψ〉〈ψ| + |β|2|θ〉〈θ |, so the artificial superposition might
as well be replaced by a density matrix. A thorough discussion of superselection
rules can be found in Giulini (2009).

5.7 Measurements and Quantum Statistical Inference

5.7.1 Simple Measurements

It is an important task now to depart from the assumption of perfect measurements,
and address measurements with real data z. I start by discussing the simplest
measurements. I first introduce the concept of operator-valued measure.

Assume a likelihood p(zb|θb = ub
j ) for the e-variable θb, and assume first

for simplicity that the operator corresponding to θb has non-degenerate eigenval-
ues ub

j . Define an operator-valued measure M by M({zb}) = ∑

j p(zb|θb =
ub

j )|b; j 〉〈b; j |. This is just the likelihood effect corresponding to the observation

zb. The context τ and the values ub
j of θb are assumed fixed. The operatorvalued

measure for a set C in the sample space is defined by M(C) = ∑

z∈C M({z}).
These operators, called POVM (positive-operator valued measures) in the liter-

ature, satisfy M(S) = I for the whole sample space and are countably additive.
Let the current state be given by the question: ‘What is the value of θa?’, and
then the probabilities πa(ua

k) for the different values θa = ua
k . Then, defining

ρ = ∑

k πa(ua
k )|a; k〉〈a; k| we get P(C) = trace(ρM(C)) for all sets C in the

sample space. This is again proved by a straightforward argument from Born’s
formula. An independent proof of the same formula in a more general setting is
given by Holevo (1982) Proposition 1.6.1.

This gives a statistical model. In Sect. 5.13 below I give a discussion on how this
model can be used to estimate ρ when this is completely unknown. This is however
not the usual physical situation. Ordinarily the initial state |a; k〉 is known through
our preparation of the system, and we ask a new question: What is the value of θb?

The statistical approach to this problem is first to model the response of the
measurement apparatus as a function of θb. An example of this approach is given in
Sect. 1.5.5, the Stern-Gerlach experiment. In general, statistical theory can be used
to estimate θb from the experiment, see Lehmann and Casella (1998). Bayesian
estimation can be used, since we have a prior from Born’s formula.

Since θb is discrete, and the experiment is often very accurate, we may get a very
accurate estimate, nearly the real value. In fact, standard quantum mechanical texts
often assume that the real value of θb is obtained in such measurements.

One approach to the quantum theory of measurement is to assume a joint
entangled quantum model for the object systems and the apparatus. As discussed in
detail by Busch et al. (1991), this may lead to logical difficulties if the apparatus also
is assumed to be a quantum system, a point of view which assumes an ontological
interpretation of the wave function. These difficulties have been attempted solved
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by many authors in many different ways. One approach is the consistent history
approach, see Griffiths (2014, 2017a). In Griffiths (2017a) this approach is used to
solve several apparent paradoxes of quantum theory, among others one involving
a Mach-Zehnder inferometer. From an epistemic point of view this is an example
of a general situation where an observer may define θ1 =path chosen by a particle
and θ1 =phase of the source, and where the vector (θ1, θ2) is inaccessible for all
observers.

5.7.2 Collapse of the Wave Packet

Related to the measurement is the phenomenon of collapse of the wave packet.
Assume first an initial state |a; k〉, and then a perfect measurement giving the value
θb = ub

j . After the measurement the state then changes to |b; j 〉. This discontinuous
change of the state has been considered a great problem in the very common general
ontological view on quantum mechanics, problems so great that some physicists
adhere to a many-worlds interpretation (see Everett 1973) to cope with it. In our
epistemic interpretation the collapse represents no problem. A similar ‘collapse’
occurs in Bayesian statistics once an observation is made.

The situation is similar, but more complicated when a real measurement is made.
To cope with this, Barndorff-Nielsen et al. (2003) introduced the notion of an
instrument. A simple instrument is one where the state is transformed by projecting
onto orthogonal subspaces of the Hilbert space, together spanning the whole space.
This is also called the Lüders-von Neumann projection postulate, and is similar to
the collapse in the perfect measurement above. It is indicated in op. cit. that more
general instruments can be formed by combining this with Schrödinger evaluation
(see Sect. 5.11 here) and by forming compound systems.

For completeness I will give a brief description of the Lüders-von Neumann
projection postulate, following Barndorff-Nielsen et al. (2003). Let us measure
a variable connected to a selfadjoint operator A. Let {u1, . . . , ud } be its distinct
eigenvalues. Let �(u) denote the matrix which projects onto the eigenspace
corresponding to the eigenvalue u, not necessarily one-dimensional. Thus A =
∑

u u�(u). Define an operator-valuedmeasure byM({u}) = �(u), and also what is
called an instrument by n(u) = �(u). When this instrument is applied to a quantum
state given by the density matrix ρ = ∑

k πk|k〉〈k|, we obtain the outcome u with
probability trace(ρ�(u)) = ∑

k πk‖�(u)|k〉‖2. We may compute that the final state
is the mixture, according to the posterior probabilities, given that the initial pure
state was |k〉 and given that the measurement outcome was u, a mixture of the pure
states with state vectors equal to the normalized projections

�(u)|k〉/‖�(u)|k〉‖.

The probabilistic interpretation is that with probability πk the quantum system
started in the pure state with state vector |k〉. On measuring the observable A, the
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state vector is projected into one of its eigenspaces, with probabilities equal to the
square lengths of the projections. We observe the corresponding eigenvalue. The
posterior state is the mixture of these different pure states according to the posterior
distribution of the initial state given data u. Explicitly, this gives the state with
density matrix

�(u)ρ�(u)

trace(�(u)ρ)
.

5.7.3 Perfect Observations as Seen by a Single Observer

In Chap. 4 the quantum state was connected to a focused question together with a
definite answer to that question. The different questions where labeled by an index
a. The corresponding e-variable θa was connected to an operator Aa on the Hilbert
space of the physical system. Typically, two such operators Aa and Ab will be non-
commuting. This means that no single observer can observe both θa and θb at the
same time.

So fix one observer, let θ be a simple e-variable observed by this observer, and
let A be the operator connected to θ . By the spectral theorem or by the discussion
in Sect. 4.5 we can write A = ∑

k uk�k , where the uk’s are different and the
orthogonal projectors {�k} satisfy

∑

k

�k = I, �
†
k = �k, �j�k = δjk�k. (5.12)

Let the projector �k project upon a vector space Vk . Then (5.12) means that the
orthogonal vector spaces Vk span the whole Hilbert space. The statement |ψ〉 ∈
Vk means that |ψ〉 is an eigenvector of A corresponding to the eigenvalue uk . The
interpretation of this as seen by a single observer, is: He has posed a question to the
system ‘What is the value of θ?’ and has obtained a definite answer ‘θ = uk’.

For the case of a non-generate eigenvalue uk with eigenvector |k〉, we have �k =
|k〉〈k|. In general (5.12) is called a projective decomposition of the identity (PDI).

If the state of the system is given by a density matrix ρ, then by the Born rule

pk = P(θ = uk) = trace(ρ�k). (5.13)

The projectors �k have eigenvalues 0 and 1, and in this way they resemble
indicator functions. In fact, a PDI divides the Hilbert space into mutually exclusive
subspaces. By combining these subspaces, we get a Boolean algebra (σ -algebra in
statistical terms), and probabilities may be assigned to this algebra. For instance,
�j + �k is a projector, and P(�j OR �k) = P(θ = uj or uk) = trace(ρ(�j +
�k)), and similarly for 3 or more distinct projectors.
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Two PDI’s {�k} and {�k} are called compatible if �j�k = �k�j for every j and
k. The we have a refined Boolean algebra with elements �j�k for all combinations.
If B = ∑

k vk�k is connected to an e-variable γ , then P(�j AND �k) = P(θ =
uj or γ = vk) = trace(ρ(�j�k)). In this way a complete probability calculus for
ideal observations may be found. In the literature on consistent histories, see for
instance Griffiths (2017b), it is important that P(�j AND �k) only is meaningful
when {�k} and {�k} are compatible. In my theory, this can be given a meaning in
terms of successive measurements; see (5.11).

For a continuous e-variable, like the position ξ of a particle, discussed in
Sect. 5.5, a more general construction of the projectors and the corresponding
vector spaces must be applied. As mentioned there, the spectral measure E for
the operator A for the position ξ is given as follows: For an interval I , E(I)

is given by multiplying with the indicator function for the interval. In general
P(ξ ∈ B) = trace(ρE(B)).

5.7.4 Measurements

We consider again a single observer with an e-variable θ and a corresponding
operator A = ∑

k uk�k . Let the current state be given by a density matrix ρ,
and assume non-ideal measurements with data z. A statistical model for these
measurements are given by the likelihood p(z|θ = uk). Again we have positive
operator valued measures, POVM, now defined by

M({z}) =
∑

k

p(z|θ = uk)�k,

M(C) =
∑

z∈C

M({z}).

And again the probability distribution of the observations are given by P(C) =
trace(ρM(C)). A corresponding formula is valid also in the continuous case. How
this probability model should be analysed, will depend on the concrete situation. I
sketch one approach in the next subsection, and give one approach in Sect. 5.13.

5.7.5 Quantum Statistical Inference

In some applications the density matrix ρ depends upon an unknown parameter
η. Then the probability measure P above also depends upon η, and we obtain a
statistical model. This is the point of departure of Barndorff-Nielsen et al. (2003),
where many notions of ordinary statistical inference theory are generalized. It is also
the point of departure of Chap. 6 in Holevo (1982).
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The probability model for the experiment will be given by

Pη(C) = trace(ρηM(C)), (5.14)

where M is a POVM.
In the spirit of this book it is important to look upon the sets C as sets in the data-

space. So (5.14) describes an ordinary statistical model, and all statistical theory
applies.

In particular, we can consider symmetries in the data space and corresponding
symmetries in the e-variable space; see Sect. 2.2 and also Helland (2004). If a group
Ḡ is defined on the data space, the corresponding group G on the e-variable space
is determined by

Pgη(z ∈ C) = Pη(z ∈ ḡC) g ∈ G, ḡ ∈ Ḡ. (5.15)

The two groups are homomorphic.
In the present setting one can talk about covariant measurements. In analogy

with Holevo (1982), Chap. 4, consider the following: Let ḡ → U(ḡ) be a projective
unitary representation of Ḡ in a Hilbert space H ; see the end of Appendix B. The
measurement M is called covariant if

U(ḡ)†M(C)U(ḡ) = M(Cḡ−1), ḡ ∈ Ḡ, (5.16)

for any C, where Cg = {z : z = ḡz′, z ∈ C} is the image of the set C under the
transformation ḡ. This gives rise to an interesting theory.

There is a large literature on quantum statistical inference. The field started with
the monographs of Helstrom (1976) and Holevo (1982), the latter continued in
Holevo (2001). There is much more material in Barndorff-Nielsen et al. (2003)
and also in Holevo (1982, 2001). Hayashi (2005) is a collection of papers on the
asymptotic theory of quantum statistical inference. A number of recent papers on
quantum statistics can be found in Gill et al. (2014).

5.8 Entanglement, EPR and the Bell Theorem

The total spin components in different directions for a system of two spin 1/2
particles satisfy the assumptions of a maximal symmetric epistemic setting. Assume
that we have such a system where j = 0, that is, the state is such that the total spin
is zero. By ordinary quantum mechanical calculations, this state can be explicitly
written as

|0〉 = 1√
2
(|1,+〉 ⊗ |2,−〉 − |1,−〉 ⊗ |2,+〉), (5.17)
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where |1,+〉 ⊗ |2,−〉 is a state where particle 1 has a spin component +1/2 and
particle 2 has a spin component −1/2 along the z-axis, and vice versa for |1,−〉 ⊗
|2,+〉. This is what is called an entangled state, that is, a state which is not a direct
product of the component state vectors. I will follow my own programme, however,
and stick to the e-variable description.

Assume further that the two particles separate, the spin component of particle 1 is
measured in some direction by an observer Alice, and the spin component of particle
2 is measured by an observer Bob. Before the experiment, the two observers agree
both either to measure spin in some fixed direction a or in another fixed direction
b, orthogonal to a, both measurements assumed for simplicity to be perfect. As a
final assumption, let the positions of the two observers at the time of measurement
be spacelike, that is, the distance between them is so large that no signal can reach
from one to the other at this time, taking into account that signals cannot go faster
that the speed of light by the theory of relativity.

This is Bohm’s version of the situation behind the argument against the com-
pleteness of quantummechanics as posed by Einstein et al. (1935) and countered by
Bohr (1935a,b). This discussion is still vigorous in the quantum literature today,
although most physicists now support Bohr on the question of completeness of
quantum mechanics.

I will be very brief on this discussion here. Let θ be the spin component as
measured by Alice, and let η be the spin component as measured by Bob. Alice
has a free choice between measuring in the directions a and in the direction b. In
both cases, her probability is 1/2 for each of θ = ±1. If she measures θa = +1,
say, she will predict ηa = −1 for the corresponding component measured by
Bob. According to Einstein et al. (1935) there should then be an element of reality
corresponding to this prediction, but if we adapt the strict interpretation of Sect. 4.1
here, there is no way in which Alice can predict Bob’s actual real measurement at
this point of time. Bob on his side has also a free choice of measurement direction a

or b, and in both cases he has the probability 1/2 for each of η = ±1. The variables θ

and η are conceptual, the first one connected to Alice and the second one connected
to Bob. As long as the two are not able to communicate, there is no sense in which
we can make statements like η = −θ meaningful.

The situation changes. however, if Alice and Bob meet at some time after the
measurement. If Alice then says ‘I chose to make a measurement in the direction a

and got the result u’ and Bob happens to say ‘I also chose to make a measurement
in the direction a, and then I got the result v’, then these two statements must be
consistent: v = −u. This seems to be a necessary requirement for the consistency
of the theory. There is a subtle distinction here. The clue is that the choices of
measurement direction both for Alice and for Bob are free and independent. The
directions are either equal or different. If they should happen to be different,
there is no consistency requirement after the measurement, due to the assumed
orthogonality of a and b. Note again that we have an epistemic interpretation of
quantum mechanics here. At the time of measurement, nothing exists except the
e-variables as theoretical quantities and then the observations made by the two
observers.
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Let us then look at the more complicated situation where a and b are not
necessarily orthogonal, where Alice tosses a coin and measures in the direction a

if head and b if tail, while Bob tosses an independent coin and measures in some
direction c if head and in another direction d if tail. Then there is an algebraic
inequality

θaηc + θbηc + θbηd − θaηd ≤ 2. (5.18)

Since all the conceptual variables take values ±1, this inequality follows from

(θa + θb)ηc + (θb − θa)ηd = ±2 ≤ 2.

Now replace the e-variables here with actual measurements. Taking then formal
expectations from (5.18), assumes that the products here have meaning as random
variables; in the physical literature this is stated as an assumption of realism and
locality. This leads formally to

E(̂θa
̂ηc) + E(̂θb

̂ηc) + E(̂θb ̂ηd) − E(̂θa ̂ηd) ≤ 2 (5.19)

This is one of Bell’s inequalities, called the CHSH inequality.
On the other hand, using quantum-mechanical calculations, that is Born’s

formula, from the basic state (5.17), shows that a, b, c and d can be chosen such that
Bell’s inequality (5.19) is broken. This is also confirmed by numerous experiments
with electrons and photons.

From the point of view of pure epistemic processes the transition from (5.18) to
(5.19) is not valid. Without assuming that the estimators ̂θ and η̂ can be defined on
some common probability space, one can not take the expectation term by term in
Eq. (5.18). The θ ’s and η’s are conceptual variables belonging to different observers.
From an epistemic point of view, any valid statistical expectation must take one of
these observers as a point of departure. Look at (5.18) from Alice’s point of view,
for instance. She starts by tossing a coin. The outcome of this toss leads to some
e-variable θ being measured in one of the directions a or b. This measurement is
an epistemic process, and any prediction based upon this measurement is a new
epistemic process. In any inference she should condition upon the choice a or b,
since these choices lead to different statistical experiments. This conditioning may
be motivated by an extension of the generalized principle of conditioning (GPC),
situation (1), where u is the outcome of the coin toss (see Sect. 3.2.3).

By doing predictions from this result, she can use Born’s formula. Suppose that
she measures θa and finds θa = +1, for instance. Then she can predict the value
of θc and hence predict ηc as −θc. Thus she can (given the outcome a of the
coin toss) compute the expectation of the first term in (5.18). Similarly, she can
compute the expectation of the last term in (5.18). But there is no way in which
she simultaneously can predict θb and ηd . Hence the expectation of the second
term (and also, similarly the third term) in (5.18) is for her meaningless. A similar
conclusion is reached if the outcome of the coin toss gives b. And of course a similar
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conclusion is valid if we take Bob’s point of view. Therefore the transition from
(5.18) to (5.19) is not valid, not by non-locality, but by taking a pure epistemic
point of departure. This can also in some sense be called lack of realism: Assuming
that it is not meaningful to take expectation from the point of view of an objective
observer, then by necessity one must see the situation from the point of view of one
of the observers Alice or Bob.

There is a huge literature on Bell’s inequality. The first experiments showing
a violation of the inequality in quantum mechanical situations were performed
by Aspect, but these experiments were criticised, and various authors proposed
different ‘loopholes’ for such experiments. In 2015 three different groups reported
‘loophole-free’ experiments, and in all these experiments Bell’s inequality were
violated. For references and further discussion, see Khrennikov (2016b).

Entanglement is very important in modern applications of quantum mechanics,
not least in quantum information theory, including quantum computation. It is also
an important ingredient in the theory of decoherence; see Schlosshauer (2007),
which explains why ordinary quantum effects are not usually visible on a larger
scale. Decoherence theory shows the importance of the entanglement of each system
with its environment. In particular, it leads in effect to the conclusion that all
observers share common observations after decoherence between the system and
its environment, and this can then be identified with the ‘objective’ aspects of
the world; which is also what the superior actor D of Sect. 5.1 would find in this
situation.

5.9 Mermin’s Experiment

Mermin (1985) discusses the following hypothetical experiment to illustrate the
peculiar features of quantum mechanics:

Two detectors, one belonging to Alice and one belonging to Bob, are far from
each other, and no communication between the two detectors is permitted (spacelike
separation). Each detector has a switch that can be set in one of three positions 1, 2
or 3, and each detectors responds to an event by either flashing a green light (G) or
flashing a red light (R). Midway between the two detectors there is a source emitting
particles, causing simultaneous events at the two detectors.

Alice chooses her switch randomly and so does Bob with his switch. An
independent observer reads off the positions of the switches and the responses R
or G after each event. For instance, 32RG means that Alice has position 3, Bob
position 2, there is a red flash at Alice’s detector and a green flash at Bob’s detector.
A large number of events of this type is read off. After this, the observer notes the
following:

1. If one examines only those runs in which both the switches have the same setting,
then one finds that the lights always flash the same colors.
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2. If one examines all runs, without any regard to how the switches are set, then
one finds that the pattern of flashing is completely random. In particular, half the
time the lights flash the same color, and half the time different colors.

Is this really possible? asks Mermin, and answers that by classical thinking it is
not. Imagine that the detectors are triggered by particles that have a common origin
at the source. Suppose, for example, that what each particle encounters as it enters
one detector is a target divided into eight regions, labeled RRR, RRG, RGR, RGG,
GRR, GRG, GGR, and GGG. Suppose that each detector is wired so that if a particle
lands in the GRG bin, the detector flips into a mode in which the light flashes G if
the switch is set to 1, R if it is set to 2, and G if it is set to 3; RGG leads to a mode
with R for 1 and G for 2 and 3, and so on. One can imagine variants of this, but
all such variants leads to an instruction set of this type. The feature 1) will then
result for all possible switch settings of the two detectors if and only if both Alice’s
detector and Bob’s detector receives the same instruction.

Can this then be made consistent with the observation 2)? The answer is no. For
the purpose of the present argument one can let the probability of each of RRR,
RRG,. . . be arbitrary. Given that the result is RRG, then the detectors will flash the
same color when the switches are set to 11, 22, 33, 12, or 21; they will flash different
colors for 13, 31, 23. or 32. Thus with this result, the detectors will flash the same
color 5/9 of the time.With exactly the same reasoning, for all the results RRG, GRR,
RGR, RGG, GRG, and GGR, the detectors will flash the same color 5/9 of the time,
since this argument only depends upon the fact that one color appears twice and the
other once. But in the remaining cases RRR and GGG, the detectors always flash
the same color. Thus by classical thinking, the two detectors will by necessity flash
the same color at least 5/9 of the time. This is inconsistent with 2).

The argument just given, corresponds to Bell’s inequality for this experiment.
The point is now that according to quantummechanics, Bell’s inequality is violated:
One can indeed make a quantum mechanical experiment in which both 1) and 2)
holds!

Let the source produce two particles of spin 1/2 in the singlet state, that is, with
the total spin equal to 0. Let Alice’s detector be as follows: If the switch has position
1, she asks for the spin component in the z-direction; if the switch has position 2 or
3, she asks for the spin component in two different directions in a plane orthogonal
to the line towards the source, each separated 120o from the z-axis. The detector
flashes green if the answer is +1/2, red if the answer is −1/2. Bob’s detector is
similar, except that position 1 corresponds to a question in the −z-direction, and the
directions of his positions 2 and 3 are opposite to Alice’s directions corresponding
to positions 2 and 3. With this arrangement, it is obvious that 1) will hold always. A
straightforward calculation using Proposition 5.7 shows that 2) also holds.

Thus one must by necessity conclude that the classical argument does not hold in
the quantum-mechanical setting. What is wrong? According to my view, one must
take into account that there are different observers here, and the classical argument
must be replaced by an argument from the point of view of one of the observers.
First, let us take Alice’s point of view. As in the previous section, a valid argument
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must be conditional on the position chosen by her switch. Also, everything should
be conditional on the context. Our task is to find some context where the quantum-
mechanical result can be explained.

We describe the context in terms of a third actor Charles. The actions of Charles
will be described in very concrete terms. He is assumed to have a box containing
four balls, three yellow and one blue. Before each event he draws a ball randomly
from the box. This gives the context for the results of Alice and Bob. The context is
also constructed in such a way that Alice and Bob always get the same result if their
switch is the same. If Alice and Bob have different switches, the context gives them
the same result if the ball chosen by Charles is blue, opposite if the ball is yellow.
The whole procedure is repeated for every event.

How can this be arranged explicitly? Charles must be assumed to be able to
observe the switch choices of Alice and Bob, and must be able to send a message
to the two, not about the choice of switches, but about the colour of the ball he
has drawn. If Charles observes that the switches are the same, he always reports a
blue ball. If he observes that the switches are different, he reports the colour of the
ball chosen earlier. Charles does not observe the flash colour at Alice’s and Bob’s
stations.

So let us first look at the experiment from Alice’s point of view. To be concrete,
assume that she chooses switch 1 and gets as her result a green flash. She does not
know Bob’s switch position, but she knows the context, and is able to ask for the
colour of the ball.

Assume that the answer is ‘blue’. After that she knows that if then Bob chooses
switch 1, his result will always be a green flash. If he chooses switch 2 or 3, his
probability of green will be 1/4 and the probability of red 3/4. If the switch is not
recorded, the probability of green will be 1/3 · 1 + 2/3 · 1/4 = 1/2. Thus the
experiment will satisfy 2). She knows from the context that it satisfies 1).

Assume that the answer is ‘yellow’. Then she knows that Bob’s switch position
is 2 or 3, and that the probability of a green ash at Bob’s station is 1/2, assuming
that at the outset both Alice and Bob have equal probabilities for both colours. Thus
the experiment again satisfies 2).

The situation is similar from Bob’s point of view.
We need not worry how nature chooses the actor Charles. It is only necessary

that one such context produces the result of the quantum experiment. In my view,
Mermin’s hypothetical experiment clarifies the role of the Bell type inequalities, and
the reason why such inequalities can be violated in quantum mechanics.

To the above discussion one may object that no inequality is involved. Zeilinger
(2010) discusses a variant of Mermin’s experiment leading directly to an inequality
under the assumption of local realism.
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5.10 The Free Will Theorem

Throughout the times, several authors have proposed various types of hidden
variable theories which they claim to be consistent with quantum mechanics.
Again and again the scopes of these theories have been limited by so-called no-
go-theorems. One of the first and most well-known of these theorems was that
of Kochen and Specker (1967): If a theory should be compatible with quantum
mechanics, one can not find an arbitrary set of hidden variables that are non-
contextual and take definite values at any time.

One of the newest no-go-theorem is The Free Will Theorem of Conway and
Kochen (2006, 2008). They take as a point of departure the EPR-type experiment
with spin 1 particles, but presumably this can be generalized. They state two
assumptions that are weaker than, but implied by quantum mechanics and one
assumption which is implied by relativity theory. Under these assumptions they
prove:

The Free Will Theorem If the choice of directions in which to perform spin 1
experiments is not a function of the information accessible to the experimenters, then
the responses of the particles are equally not functions of the information accessible
to them.

Thus the particles in a sense have a free will: Their responses are not in any way
determined by past history. Past history is here a very wide concept. It can include
stochastic variables given in advance, so this kind of simple randomness will not
help.

The specific assumptions that Conway and Kochen give for their free will
theorem are:

(1) SPIN
Measurements of Alice and Bob are both given in some frame (x, y, z), and the

measurements are always 1, 0,1 in some order. This is in particular satisfied by the
squares of the spin 1 components along the coordinate axes according to quantum
mechanics, which are commuting operators.

(2) TWIN
If the measurements performed by Alice and Bob are along the same axis, they

give the same result. This is analogous to what we assumed in the Bell experiment
discussed above, only that the signs of Bob’s measurements are reversed.

(3) FIN
There is a finite upper bound to the speed with which information can be

effectively transmitted. This assumption is weakened in Conway and Kochen
(2008).

Admittedly, especially the SPIN-assumption describes a rather special situation,
but one can assume that the theorem can be generalized to other situations with
entanglement, in the language of the present book: To other situations where Alice
and Bob choose their measurement freely, but in different contexts. The result of the
Free Will Theorem is then that Nature also chooses its response freely: It is not in



112 5 Aspects of Quantum Theory

any way a function of the past history of the universe. My conjecture is that there is
a free will type theorem whenever the physical system observed is complex enough.

What is then meant by a free choice? I adhere to the definition in a short note by
Colbeck and Renner (2013): A choice A is free if A is uncorrelated with the set of
all events W such that A does not cause W . In the Bell experiment, the choice A

made by Alice should be uncorrelated with the past together with anything related
to Bob and his observations.

Bob is here any observer which cannot communicate with Alice. If two observers
communicate, their free choice is restricted. Then each of them form part of the
context experienced by the other person.

5.11 The Schrödinger Equation

During a time when no measurement is done on the system, the ket vector is known
in quantum mechanics to develop according to the Schrödinger equation:

ih̄
d

dt
|ψ〉t = H|ψ〉t , (5.20)

whereH is a selfadjoint operator called the Hamiltonian (the total energy operator).
I will give two sets of arguments for the Schrödinger equation, one rough and

general, and then one specific related to position. The last argument also includes a
discussion of the wave function.

5.11.1 The General Argument: Unitary Transformations and
Entanglement

Assume that the system at time 0 has a state given by the ket |ψ〉0 and at time t by
the ket |ψ〉t . Let us assume that the contexts are given as follows: We can ask an
epistemic question about the variable θ , and the ket corresponding to a specific
value of this variable is |θ〉0 at time 0 and |θ〉t at time t . We have the choice
between making an ideal measurement at time 0 or at time t . Since there is no
disturbance through measurement of the system between these two time points, the
probability distribution of the answer must be the same whatever choice is made.
Hence according to Born’s formula

|0〈θ |ψ〉0|2 = |t 〈θ |ψ〉t |2. (5.21)

Now we refer to a general theorem by Wigner (1959), proved in detail by
Bargmann (1964): If an equation like (5.21) holds, then there must be a unitary or
antiunitary transformation from |ψ〉0 to |ψ〉t . (Antiunitary U means U−1 = −U†.)
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Since by continuity an antiunitary transformation can be excluded here, so we have

|ψ〉t = Ut |ψ〉0
for some unitary operator Ut . Writing Ut = exp(At

ih̄
) for some selfadjoint operator

At , and assuming that At is linear in t: At = Ht , this is equivalent to (5.20). In fact,
assuming that {Ut } forms a strongly continuous group of unitary transformations,
the formHt of At follows from a theorem by Stone; see Holevo (2001).

Unitary transformations of states play an important role in quantum mechanics.
Both in the continuous case and in the discrete case this can be used to extend the
state concept as used in the present book. Note that, subject to linearity, a unitary
operator U always can be written as U = eiHt for some suitable HamiltonianH, so
these transformations can be seen as closely related to time developments of states.

Consider the discrete case. Let the initial state be |a; k〉 ⊗ |b; j 〉, corresponding
to the answers of two focused questions: θa = ua

k and γ b = vb
j . By a unitary

transformation, essentially by a time development, this initial state is transformed
into a state which can not be written as a product of states in this way, but
is a linear combination of such states. This is called an entangled state. In my
terminology, entangled states can also be given concrete interpretations: Some fixed
time ago they where given as answers to two focused questions. By the inverse
unitary transformation, the entangled state may be transformed back to the state
|a; k〉 ⊗ |b; j 〉 again. Thus we have a concrete interpretation of the entangled state:
Subject to a suitable Hamiltonian, the state can be interpreted as the answer to two
focused questions posed at some past time.

5.11.2 Position as an Inaccessible Stochastic Process

As in Sect. 5.3 consider the motion of a non-relativistic one-dimensional particle,
but now make time explicit. Since momentum and hence velocity cannot be deter-
mined simultaneously with arbitrary accuracy, it is also impossible to determine
positions ξ(s) and ξ(t) simultaneously for two different time points s and t with
arbitrary accuracy. Hence the vector (ξ(s), ξ(t)) is inaccessible. Fix a time point t .
Different observers may focus on different aspects from the past of the time t in
order to try to predict ξ(t) as well as possible. These aspects may be formulated
by propositional logic in different ways, but for reasons discussed in Appendix E I
will in this book concentrate on a probabilistic description. Thus observer Ai may
predict ξ(t) by conditioning on some σ -algebra Pi of information from the past.
This may be information from some specific time point si with si < t , but it can
also take other forms. We must think of these different observers as hypothetical;
only one of them can be realized. Nevertheless one can imagine that all possible
information, subject to the choice of observer later, is collected in an inaccessible
σ -algebra Pt , the past of ξ(t). The distribution of ξ(t), given the past Pt , for each t ,
can then be represented as a stochastic process.
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In the simplest case one can then imagine {ξ(s); s ≥ 0} as an inaccessible
Markov process: The future is independent of the past, given the present. Under
suitable regularity conditions, a continuous Markov process will be a diffusion
process, i.e., a solution of a stochastic differential equation of the type

dξ(t) = b(ξ(t), t)dt + σ(ξ(t), t)dw(t). (5.22)

Here b(·, ·) and σ(·, ·) are continuous functions, also assumed differentiable, and
{w(t); t ≥ 0} is a Wiener process. The Wiener process is a stochastic process
with continuous paths, independent increments w(t) − w(s), w(0) = 0 and
E((w(t) − w(s))2) = t − s. Many properties of the Wiener process have been
studied, including the fact that its paths are nowhere differentiable. The stochastic
differential equation (5.22) must therefore be defined in a particular way; for an
introduction to Itô calculus or Stochastic calculus; see for instance Klebaner (1998).
One well known result is Itô’s formula: For a two times continuously differentiable
function f one has:

df (ξ(t), t) = ft (ξ(t), t)dt + fx(ξ(t), t)dξ(t) + 1

2
fxx(ξ(t), t)σ 2(ξ(t), t)dt.

(5.23)

Here and in the following, subscripts denote partial derivatives.
There is also the Fokker-Planck equation for the probability density ρ(x, t) of

ξ(t):

ρt (x, t) = −(b(x, t)ρ(x, t))x + 1

2
(σ 2(x, t)ρ(x, t))xx .

So far we have considered observers making predictions of the present value
ξ(t), given the past Pt . There is another type of epistemic processes which can be
described as follows: Imagine an actor Aj which considers some future event for
the particle, lying in a σ -algebra Fj . He asks himself in which position he should
place the particle at time t as well as possible in order to have this event fulfilled.
In other words, he can adjust ξ(t) for this purpose. Again one can collect the σ -
algebras for the different potential actors in one big inaccessible σ -algebra Ft , the
future after t . The conditioning of the present, given the future, defines {ξ(t); t ≥ 0}
as a new inaccessible stochastic process, with now t running backwards in time.
In the simplest case this is a Markov process, and can be described by a stochastic
differential equation

dξ(t) = b∗(ξ(t), t)dt + σ∗(ξ(t), t)dw∗(t), (5.24)

where again w∗(t) is a Wiener process.
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Since t is now running backwards in time, Itô’s formula now reads:

df (ξ(t), t) = ft (ξ(t), t)dt + fx(ξ(t), t)dξ(t) − 1

2
fxx(ξ(t), t)σ 2∗ (ξ(t), t)dt.

(5.25)

The Fokker-Planck equation is now:

ρt (x, t) = −(b∗(x, t)ρ(x, t))x − 1

2
(σ 2∗ (x, t)ρ(x, t))xx.

5.11.3 Nelson’s Stochastic Mechanics

Without having much previous knowledge about modern stochastic analysis and
without knowing anything about epistemic processes. Nelson (1967) formulated his
stochastic mechanics, which serves our purpose perfectly. Nelson considered the
multidimensional case, but for simplicity, I will here only discuss a one-dimensional
particle. Everything can be generalized. The discussion here will be brief. I refer to
Nelson (1967) for details.

Nelson discussed what corresponds to the stochastic differential equations (5.22)
and (5.24) with σ and σ∗ constant in space and time. Since heavy particles fluctuate
less than light particles, he assumed that these quantities vary inversely with mass
m, that is, σ 2 = σ 2∗ = h̄/m. The constant h̄ has dimension action, and turns out to
be equal to Planck’s constant divided by 2π . This assumes that σ 2 = σ 2∗ , a fact that
Nelson actually proved in addition to proving that

b∗ = b − σ 2(lnρ)x.

Now define

u = 1

2
(b − b∗), v = 1

2
(b + b∗).

Then

u = 1

2
σ 2(lnρ)x,

and the two Fokker-Planck equations give the continuity equation

ρt = −(vρ)x.

By a simple manipulation from this, one finds that

ut = −1

2
σ 2vxx − (vu)x. (5.26)



116 5 Aspects of Quantum Theory

Related to (5.23) with (5.22) inserted and (5.25) with (5.24) inserted, Nelson
defined the forward and backward derivatives

Df (x(t), t) = ft (x(t), t) + b(x(t), t)fx(x(t), t) + 1

2
σ 2fxx(x(t), t);

D∗f (x(t), t) = ft (x(t), t) + b∗(x(t), t)fx(x(t), t) − 1

2
σ 2fxx(x(t), t),

and argued that the acceleration of the particle can be defined by

a(t) = 1

2
D∗Dx(t) + 1

2
DD∗x(t).

Then a simple manipulation shows that Dξ(t) = b(ξ(t), t), D∗ξ(t) = b∗(ξ(t), t)

and that

vt = a + uux − vvx + 1

2
σ 2uxx. (5.27)

By Newton’s law, the force F upon the particle is ma. Assuming that F is
derived as the negative gradient of a potential V , we get a = −m−1Vx . Inserting
this and at the same time σ 2 = h̄/m into (5.26) and (5.27), we have a coupled
non-linear set of differential equations for u(x, t) and v(x, t). This can be solved as
an initial value problem assuming u(x, 0) = u0(x) and v(x, 0) = v0(x) for some
given functions u0 and v0.

From the relationship between b and b∗ we already know that

Rx = m

h̄
u,

where R(x, t) = 1
2 lnρ(x, t). Let S be defined up to an additive constant by

Sx = m

h̄
v,

and define the complex function f (x, t) by

f = eR+iS .

Then |f (x, t)|2 = ρ(x, t). Nelson interpreted f as the wave function of the particle.
A remarkable fact, noted by Nelson, is that the nonlinear set of Eqs. (5.26) and

(5.27) for u and v transforms into a linear equation

ft = i
h̄

2m
fxx − i

1

h̄
Vf + iα(t)f. (5.28)
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To prove this, we compute the derivatives in (5.28) and divide by f , finding

Rt + iSt = i
h̄

2m
(Rxx + iSxx + [Rx + iSx]2) − i

1

h̄
V + iα(t).

Taking x-derivatives here and separating real and imaginary parts, we see that this
is equivalent to the pair of equations

ut = − h̄

2m
vxx − (vu)x ,

vt = h̄

2m
uxx + 1

2
(u2)x − 1

2
(v2)x − 1

m
Vx.

This is the same as (5.26) and (5.27).
Finally, Nelson notes that since the integral of ρ is 1, hence independent of

t , if (5.28) holds at all then α(t) must be real. By choosing, for each t, the
arbitrary constant in S appropriately, we can arrange for α(t) to be 0. Thus (5.28) is
equivalent to

ih̄
∂

∂t
f (x, t) = [ 1

2m
(−ih̄

∂

∂x
)2 + V (x)]f (x, t). (5.29)

This is the Schrödinger equation (5.20) with the Hamiltonian corresponding to the
sum of kinetic and potential energy. Note that as in Sect. 5.3 the operator for the
momentum of the particle is −ih̄ ∂

∂x
.

5.12 The Epistemic Approach to Quantum Theory

In recent years several conferences on quantum foundation have been arranged. It
is remarkable that the participants of these conferences disagree strongly on several
simple and fundamental questions concerning interpretation. At least two polls have
been arranged showing this (Schlosshauer et al. (2013), and Norsen and Nelson
(2013)), while a third conference ended up by formulating a list of fundamental
open questions (Briggs et al. 2013). In my view, part of the reason for this state of
affair is that quantum theory as it exists today is a very formalistic theory, so it is
uncertain how it should be interpreted. By contrast, the present book gives a very
simple and intuitive point of departure: A quantum state may be determined by the
question ‘What is the value of θ?’ for an e-variable θ , together with the answer to
that question. As seen from the discussion of the Bell inequality, the observer plays
a role in determining this state, but nevertheless an objective world is created when
all real and imagined observers agree. We will see how this simplifies interpretation
in three examples usually associated in different ways with the phrase ‘quantum
paradoxes’.
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Example 5.18 (Schrödinger’s cat) This is an imaginary situation where a cat is
locked inside a sealed box together with some radioactive substance with decay
probability 1/2 during the span of time of the experiment, and some poisonous gas
is released from a flask which is broken when the radioactive particle decays. The
discussion of this example concerns the state of the cat just before the box is opened.
Is it half dead and half alive?

To an observer outside the box the answer is simply: He doesn’t know. Any
accessible e-variable connected to this observer does not contain any information
about the death status of the cat. But on the other hand—an imagined observer inside
the box, wearing a gas mask, will of course know the answer. The interpretation of
quantum mechanics is epistemic, not ontic, and it is connected to the observer. Both
observers agree on the death status of the cat once the box is opened.

Example 5.19 (Wigner’s friend) The Wigner’s friend thought experiment posits a
friend ofWigner who performs the Schrödinger’s cat experiment afterWigner leaves
the laboratory. Only when he returns does Wigner learn the result of the experiment
from his friend, that is, whether the cat is alive or dead. The question is raised: Was
the state of the system a superposition of “dead cat/sad friend” and “live cat/happy
friend,” only determined when Wigner learned the result of the experiment, or was
it determined at some previous point?

My answer to this is that at each point of time there is one quantum state
connected to Wigner’s friend and one quantum state connected to Wigner as an
observer, depending on the information they have at that time. The superposition
given by formal quantum mechanics corresponds to a ‘don’t know’ epistemic
state. The states of the two observers agree once Wigner learns the result of the
experiment.

Example 5.20 (The two-slit experiment) This is an experiment where all real and
imagined observers communicate at each point of time, so there is always an
objective state. Particles, either photons or electrons are sent through a screen with
two parallel slits towards a second screen. An interference pattern shows up on the
second screen even if the particles are sent so slowly that only one particle arrives at
a time. The interference pattern disappears when any observer observes which slit
each particle goes through.

Look first at the situation where we do not know which slit the particles go
through. This is really a ‘don’t know’ situation. Any statement to the effect that the
particles somehow pass through both slits is meaningless. The interference pattern
can be explained by the fact that the particles are (nearly) in an eigenstate of the
component of momentum in the direction perpendicular to the slits in the plane of
the slits, namely corresponding to velocity 0 in this direction. If any observer finds
which slit each particle goes through, the state changes into an eigenstate for the
position component in this direction. In either case the state is an epistemic state for
each of the communicating observers, thus also an objective state.

Many physicists find it disturbing that the observer should play an important role
in the interpretation of a physical theory. One of the recent conferences on quantum
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foundation was entitles ‘Quantum mechanics without an observer’. However, in
my opinion this position is very difficult to hold without arriving at paradoxes. A
case of point is that the Bell inequalities have caused very much discussion among
physicists. As shown in Sect. 5.8 the apparent paradox around these inequalities can
be resolved by taking a purely epistemic point of departure.

So far the epistemic viewpoint has held a minority position among quantum
physicists. However, in recent years a new interpretation has arrived at the scene,
called Quantum Baysianism or QBism; see Fuchs (2010), von Baeyer (2013) and
Fuchs et al. (2013). To cite from Fuchs et al. (2013): ‘A QBist takes quantum
mechanics to be a personal mode of thought—a very powerful tool that any agent
can use to organize his own experience. That each of us can use such a tool to
organize our own experience with spectacular success is an extremely important
objective fact about the world that we live in. But quantum mechanics does not
deal directly with the objective world; it deals with the experiences of that objective
world that belongs to whatever particular agent which is making use of the quantum
theory.’

Exactly the same words could have been used to describe the interpretation
of quantum mechanics advocated in this book, except that I have used the word
‘observer’ instead of ‘agent’. As shown above and shown in the QBism literature,
such an interpretation removes the paradoxes and pseudo-problems that have
plagued quantum mechanics since its introduction. The difference between the two
approaches is that QBism is based upon subjective probabilities; I use basic ideas
from statistical inference theory. However, note from Sect. 5.5 that my perfectly
rational observer D acts as a Bayesian.

Fuchs (2010) discusses other popular interpretations of formal quantum theory
and calls them ‘quick fixes’. ‘They look to be interpretive strategies hardly
compelled by the particular details of the quantum formalism, giving more or less
arbitrary appendages to it.’

He uses Robert Spekkens’s toy model to motivate the epistemic point of view.
As shown in Sect. 4.3, this toy model is closely related to a special case of the
maximal symmetrical epistemic setting of Sect. 4.2. Fuchs states that more than
two dozen quantum phenomena are reproduced qualitatively by this toy model, and
these phenomena can then also be reproduced by my symmetrical epistemic setting.
This is confirmed when in Sect. 4.4 the Hilbert space formalism is derived from this
setting.

Fuchs regards Bayesianism as a branch of probability theory. As shown in
Sect. 2.3, it is really a branch of statistical inference theory. Bayesian theory
and practice has become very popular among statisticians in recent years. Many
statisticians call themselves Bayesians and claim that the Bayesian formalism
should be used in every application of statistics. In this book I take a more
pragmatic attitude: Sometimes Bayesian ideas should be used, and sometimes other,
so-called frequentist ideas should be used. Both approaches are permitted. This
pragmatic attitude is also carried over to the foundation of quantum mechanics. For
instance, the probabilities πa

k in the definition of the density operator in Sect. 5.1
can be Bayesian prior or posterior probabilities, but they can also be derived from
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frequentist confidence distributions. And the experimental evidence in Sect. 5.4 can
in principle be Bayesian or non-Bayesian.

Finally, Fuchs (2010) uses the so-called ‘symmetric informationally complete
positive operator valued measure’ or SIC to integrate and derive the Born formula.
I prefer the derivation given in Sect. 5.4 based upon the likelihood principle and the
assumption of rationality. It is interesting, however, that both approaches rely on a
Dutch book argument. For more about SIC, see the next section.

In all, there are differences between my views and the Quantum Bayesian views.
What we share, is a basic epistemic attitude. One place where we differ, is that
I allow all three interpretations of probability, the frequentist, the subjective and
the symmetry interpretation (see Sect. 2.1.1), while the Quantum Bayesian only
concentrates on the subjective interpretation. I also rely in an essential way upon
several results related to statistical inference theory.

Another recent treatise advocating an epistemic point of view—in his language
a link between realism and information—is Zeilinger (2010). In that book one can
also find nice popular discussions of phenomena like quantum computing, quantum
teleportation and quantum coding, all closely related to the concept of entanglement.

5.13 More on Quantum Measurements

Recall that the density matrix ρ can be defined by a question ‘What is the value of
θ?’ together with probabilities πk associated with the possible answers uk as ρ =
∑

πk|k〉〈k|. In Sect. 5.7 I addressed the measurement situation where we have data
z, and where the question variable was specified. Here we will look at the situation
where ρ is completely unknown; in particular, no specified question variable.

First note that if the dimension of the Hilbert space is m, then ρ depends upon
m2 − 1 unknown real parameters. This is proved as follows: ρ is in general an
Hermitian matrix of trace 1. This implies m real parameters on the diagonal and
m(m − 1)/2 complex parameters above the diagonal which also determine the
parameters below the diagonal, giving a total ofm+2·m(m−1)/2 = m2 parameter.
From this, 1 has to be subtracted because of the trace 1 condition.

Inference on ρ is done by asking new questions ‘What is θb?’ for new known
values of b. For simplicity we assume that the e-variables θb are maximal, so
that the eigenvalues uj of the corresponding operators Ab are distinct. We now
depart from the assumption that the experiment of measuring θb is perfect. We
assume real data zb, also taking the values uj j = 1, . . . ,m. The error model
Pij = P(zb = uj |θb = ui) is assumed known from earlier experiments with the
same measurement apparatus.

Recall that there can be defined a positive operator values measure by the point
measures

Mb(uj ) =
m

∑

i=1

Pij |b; i〉〈b; i|, (5.30)
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and that this leads to the following point probabilities in the state defined by ρ:

P(zb = uj |ρ) = trace(ρMb(uj )). (5.31)

Equation (5.31) gives a model which is linear in the elements of ρ, and linear
combinations of these elements can be estimated as follows:

Assume n independent copies of the system described by the density ρ, and
perform the measurement b on each of these systems. Assume that yj of these
measurements give zb = uj for j = 1, . . . ,m. Then (y1, . . . , ym) is multinomial
(see Sect. 2.1.2) with parameters n and ηj = P(zb = uj |ρ). Only m−1 of the latter
parameters are independent, since the probabilities sum to 1. These probabilities can
be estimated by

η̂j = yj

n
, j = 1, . . . ,m − 1. (5.32)

The covariance matrix of these estimators is given by the diagonal terms ηj (1 −
ηj )/n and the off-diagonal terms −ηiηj /n. These elements are unknown, but for
large n they can be estimated consistently by replacing ηj by η̂j here.

It is interesting that a central limit theorem is valid for the multinomial
distribution. For large n, we have that

√
n(̂ηj − ηj ) for j = 1, . . . ,m − 1 has

an approximate multinormal distribution with a covariance given by the diagonal
terms ηj (1 − ηj ) and the off-diagonal terms −ηiηj . Thus for large n we can write
η̂j = ηj + ej , where the joint covariance matrix of the small error terms ej is
approximately known. And the ej ’s are approximately Gaussian.

By this procedure we are able to estimate m − 1 linear combinations of the m2 −
1 unknown elements of ρ. To find estimates of all the elements, we must make
repeated measurements with different values of b, at least (m2−1)/(m−1) = m+1
values. Suppose that N = np independent copies of the system are available, where
p ≥ m + 1, and make p independent experiments with values br r = 1, . . . , p.
From (5.31) this gives estimates of ηr

j = trace(ρMbr (uj )) for j = 1, . . . ,m − 1
and r = 1, . . . , p.

Since Mbr (uj ) from (5.30) are known operators, this can be written as follows:
Let ρ be the vector of the real parameters in ρ written in some order. Let η be
the vector of parameters ηr

j written in the natural order. Then we can find a known
matrix B such that

η = Bρ.

The dimension of B are (m− 1)p × (m2 − 1). It has therefore at least as many rows
as columns. Since it contains the arbitrary constants Pij , and since the values of br

are different (different sets of orthogonal vectors {|b; j 〉}), it seems to be a relative
weak assumption to assume that is has rank m2 − 1.

From this, it follows that

η̂ = Bρ + e,
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where the error vector e is approximately multinormal with an approximately
known covariance matrix �. If � is assumed known, statistical theory for linear
models leads to the generalized least squares estimate, which also is the maximum
likelihood estimate:

ρ̂ = (BT �−1B)−1BT �−1η̂.

This can be translated back to an estimate of ρ. This ρ̂ will be Hermitian of trace
1, but a problem is that it can happen that it is not positive, that is, 〈ψ|ρ̂|ψ〉 may
be negative for some choice of the ket vector |ψ〉. A similar problem may occur in
statistics, in the estimation of variance components. The problem becomes less if n

is large.
A problem which has not been discussed up to now is the choice of the br ’s.

Look at the minimal choice of p, p = m + 1. Intuitively, all the ket vectors |br; j 〉
j = 1, . . . ,m − 1; r = 1, . . . ,m + 1 should be as orthogonal as possible. It is of
course impossible to havem2−1 orthogonal vectors in an m-dimensional space, but
one could perhaps relax on the assumption that the |br; j 〉 for fixed r and different
j should be exactly orthogonal.

A related problem has been discussed in the quantum mechanical literature
recently. A SIC POVM (symmetric informationally complete positive-operator-
valued measure) is a set of m2 operators of the form Ei = (1/m)|i〉〈i|, where the
ket vectors |i〉 satisfy

|〈i|j 〉|2 = 1

m + 1
.

A SIC POVM has been constructed explicitly for a few valued of m. For many
more m, there is good numerical evidence that a SIC POVM exists. It has been
conjectured that it exists for all values of m, but no proof of this is available up
to now; see Wootters (2004) and references there. It is remarkable that Wootters
tries to connect the problem of determining an unknown density matrix and the SIC
POVM problem to a well known problem from experimental design, that of finding
the maximal number of orthogonal Latin squares of a given dimension.

One purpose of the discussion above has been to demonstrate that it may be
fruitful to use ideas from mathematical statistics to solve problems in quantum
mechanics.

5.14 Discussion

So far, this book falls naturally into two parts, Chaps. 2 and 3 on conventional
inference, and the last chapters on quantum mechanics, although the two parts are
tied together. Let us first discuss some of the results of the first part.
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As indicated in Sect. 3.4, statistical inference is often made in steps. At each
step, the results of the previous steps then form a part of the context. And it may
initiate more steps. A typical case is when a least squares estimation is done in
multiple regression, and this is followed by a residual analysis. Such a sequence is
not consistent with the ordinary likelihood principle, but it is consistent with our
extended basis.

It is often stated that a weakness with the definitions of sufficiency and ancillarity
is that they are strongly model dependent. This can remedied by a stepwise analysis,
where new models are tested in steps, following a residual analysis from older
models.

Taking more steps in the total inference, our basis is even consistent with
algorithmic procedures like Breiman’s trees (see Breiman 2001, and references
there) and the ordinary partial least squares algorithm see Martens and Næs (1989).

All this must be taken under one proviso, however: The overall goal of the
statistical analysis must be formulated first, and taken as part of the context for
all the steps.

I have not gone much into formal logic in this book. In Sect. 3.1 I indicated
an equivalence between propositional logic and the ordinary basis for probability
models. When I now discuss inference in steps, the propositional logic must be
extended to temporal logic, for which there is a large literature; see an introduction
in Venema (2001). A further extension would be to proceed to first order and higher
order logic, but this is beyond the scope of the present book.

As a transition between the two parts of this book, the following remark was
made: Statistical literature has much discussion about the way to do inference, but
very little on the choice of what to do inference about. These different questions may
be conflicting, even complementary. The maximal symmetrical epistemic setting is
a way to formalize a situation where only one out of many possible questions may
be addressed.

Here are some problems that can be discussed further from the point of view of
the present approach to quantum theory.

- The technical Assumption 4.3 of Sect. 4.4.2 is too strong to cover the spin/ angu-
lar momentum case. How can it be weakened? The very fact that Theorem 4.1 is
valid for the spin/ angular momentum case (see Corollary 5.1 of Sect. 5.2) shows
that it indeed must be possible to weaken this condition.

- A closely, related question: Exactly in which cases is it true for a maximal
symmetrical epistemic setting that all unit vectors in H are associated with
indicators I (λa = uk)? For spin or angular momentum higher than 1/2, the
answer is negative if we limit ourselves to e-variables that are spin- (angular
momentum-)components, as can be seen from Corollary 5.2 of Sect. 5.2. On
the other hand, the statement holds under all conditions for spin 1/2 particles,
as shown in Sect. 5.1.1 and also in Proposition 5.4 of Sect. 5.2. This shows
that the statement holds in Hilbert space dimension 2, but that the simple
question-and-answer vectors form a smaller set when the dimension is higher.
In general, quantum states that are not of this form will emerge by taking linear
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combinations, or they can be found a solutions of the Schrödinger equation. Note
that every ket vector |k〉 is trivially the eigenvector of many different operators,
so that if at least one of these has a physically meaningful interpretation, one can
always associate |k〉 with at least one question-and-answer pair.

The one-to-one correspondence between indicatiors I (θa = uk) and certain ket
vectors |a; k〉 under some conditions (Theorem 4.1 etc.) is an important message
of this book. As shown in (5.3), this also implies important instances of the
superposition principle.

- Can the discussion of Sect. 4.4 be extended beyond the discrete case?
- Can one find examples where one is sure that the rational epistemic setting is

indicated in the macroscopic world?
- What about a discussion of open systems? These are thoroughly discussed from

a quantum statistical point of view by Holevo (2001).
- Can this approach to quantum mechanics be reconciled with the influential and

very deep theory of Richard Feynman; see Brown (2005), or even with its
generalization to quantum electrodynamics, see Feynman (1985), and can it be
generalized to quantum field theory?

- Can the group-theoretical approach used here in some way throwmore light upon
elementary particle theory, where group theory is used extensively?

- Can a further development of the discussion here, extended to continuous
systems, lead to a reconciliation of quantum theory and relativity theory? It is
well known that quantum mechanics can be extended to take into account the
special theory of relativity, but that there are conceptual difficulties involved in
finding a synthesis between conventional quantum theory and the general theory
of relativity. Of course I do not have any solution to these difficulties at present.
Already here, however, it is tempting to suggest that gravitational fields and
related physical quantities are conceptual variables, and that they are inaccessible
inside black holes.

Note that all these questions are connected to my ambitious programme of build-
ing a new foundation of quantummechanics on a theory of epistemic processes. The
simple idea of an epistemic interpretation of quantum mechanics is not affected.

In this book I have tried to give a common foundation of statistics and quantum
theory. An important question is then: What is the main feature which make
quantum theory essentially different from classical statistical theory? In my opinion
this main feature is complementarity, a concept that was discussed in detail already
by Niels Bohr, and which will be further elaborated in Chap. 6 below. In the setting
of the previous chapters, this concept may be approached as follows. Assume that
there in some given situation are two different e-variables θa and θb. Assume further
that the vector (θa, θb) is inaccessible, that is, there is no experiment in which
both θa and θb can be measured accurately. Then θa and θb are complementary.
Examples are spin components in different direction of a single particle; or position
and momentum of one particle. Examples abound also in macroscopic situations,
like counterfactual questions concerning one person. Note, however, that these
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macroscopic counterfactual situations cannot easily be linked to quantum theory.
Hence there must also be more than complementarity that lies behind quantum
probabilities. Exactly what, is at present an open question.

Some clues concerning what is needed in addition to complementarity, can be
found in the recent paper by Jaeger (2018). In particular, the notion of randomness
as defined precisely there, seems to be valuable.

A completely different attempt to find a unified approach to statistics, quantum
theory and relativity theory is given by Frieden (1998, 2004). This attempt is much
more formal, however, and in my view it does not go enough in depth into the
questions discussed.

To emphasize again part of the motivation behind the present book, I cite Hardy
and Spekkens (2010): ‘Quantum theory is a peculiar creature. It was born as a
theory of atomic physics early in the twentieth century, but over time its scope
has broadened, to the point where it now underpins all of modern physics with the
exception of gravity. It has been verified to extreme high accuracy and has never
been contradicted experimentally. Yet despite of its enormous success, there is still
no consensus among physicists about what this theory is saying about the nature of
reality.’

What I have tried to do here, is to suggest a new approach to the foundation, and
thereby a new interpretation, by bringing together basic ideas from statistics and
from physics. In the words of John A. Wheeler: ‘Science owes more to the clash of
ideas than to the steady accumulation of facts.’

The underlying concept of both these sciences is that of an epistemic process: The
process of obtaining knowledge about nature from observations. We begin with an
epistemic question: ‘What is the value of θ?’, where θ is some conceptual variable.
Then at the end of the process we have some knowledge of θ , in the simplest case
complete knowledge; θ = uk .

In my opinion the approach of the present book may serve to take some of
the mysteries off the ordinary formal introduction to quantum theory. A challenge
for the future will be to develop the corresponding relativistic theory by using
representations of the Poincaré group (the theory of these representations go back
to Wigner 1939) and the link to elementary particle physics using the relevant Lie
group theory. Group theory is an important ingredience in many parts of physics,
and it should be no surprise that it also is relevant for the foundation of quantum
mechanics.

My hope is that the present book will contribute to settling the discussions
around the interpretation of quantum mechanics. However, it seems probable
that this discussion will continue for some time. Arguments for an ontological/
realistic interpretation of the state vector have been put forward by Penrose (2016),
Section 2.12. On the other hand, Östborn (2016, 2017) has argued in a detailed
way for a quantum model from various epistemic assumptions. Further—in fact
very strong—arguments for an epistemic interpretation can be found in the recent
development of cognitive models and decision theory in a quantum theory context.

To understand the recent development of quantum cognitive models, one can
take the famous example by Tversky and Kahneman (1983) as a point of departure.
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A number of people were given a description of a woman, Linda, as having been
an outspoken and radical student. Then they were given several options to guess her
state now, including feminist (A), bank teller (B), and also feminist and bank teller
(A∧B). In a number of versions of this experiments, results were given which seem
to indicate P(A ∧ B) > P(B), a conclusion which is impossible by using ordinary
Kolmogorov probability. This and many similar experiments were explained by
Pothos and Busemeyer (2013) by using quantum probability. Op. cit. is a review
and discussion paper where a long range of further references may be found. One
should also mention the research by Aerts and Gabora (2005a,b) who developed a
theory of concepts and their combinations leading to a Hilbert space representation.

Yukalov and Sornette (2014) start by reviewing classical decision theory. Here
different prospects are being characterized by their expected utility, the maxi-
mization of which leads to the most useful prospect. Thereafter a probabilistic
approach is described, in which different actors choose different prospects. Finally,
Quantum Decision Theory is proposed, a theory in which conscious operations and
subconscious activity work in parallel to determine the prospect probabilities.

This Quantum Decision Theory is developed in detail by Yukalov and Sornette
(2010). It is based on the mathematical theory of separable Hilbert spaces. The
theory describes entangled decision-making, non-commutativity of subsequent
decisions, and intention interference of composite prospects. They demonstrate
that all known anomalies and paradoxes, documented in the context of classical
decision theory, are reducible to a few mathematical archetypes, all of which find a
straightforward explanation in Quantum Decision Theory. A further description of
this will lead beyond any theory of epistemic processes, however.

5.15 A General e-Variable Based Approach to Quantum
Theory

Consider the world as seen from the point of view of an observer m. This observer
focuses upon a question a to ask nature. Such a question can always be formulated
in terms of an e-variable θa . In much of this book, θa has been a discrete variable.
However, it could be any variable, real, vector or belonging to any measurable
topological space. The general question is: ‘What is the value of θa?’ Let the answer
to this question be of the form ‘θa ∈ B’. The essence of quantum theory, motivated
from different points of view in this book, is:

The focused question together with its answer is under certain condition in a
one-to-one way associated with a closed subspace V ma

B of some Hilbert space Hm,
equivalently with the projector �ma

B upon this subspace.
When θa is of a general form, this theory based upon a finite set of projectors may

be too simple. However, the following is always true when the underlying Hilbert
space Hm is separable: θa for the subject m is under certain technical conditions
associated in a one-to-one way with a self-adjoint operator A = Ama acting on
Hm. Let the domain of definition of Ama be D(Ama). By the spectral theorem for
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this operator (for a formulation and proof, see for instance Busch et al. 2016), it
is always connected to a resolution of the identity, a generalization of the PDI of
Sect. 5.7.3, or more precisely, a spectral measure E = Ema . Then the question:
‘What is the value of θa?’ together with the answer θa ∈ B is associated with the
projector Ema(B), which is defined on D(Ama).

The whole theory is only non-trivial when different questions a and b are non-
compatible, that is:

Assume that a �= b can be found such that the vector of e-variables φ = (θa, θb)

is inaccessible, that is, there is no way in which the question ‘What is the value of
φ?’ can be made meaningful for and can be answered completely by the subject m

at some given time.
In the words of Niels Bohr, the e-variables θa and θb are then complementary.
To define a density matrix ρ = ρma , assume that there is a general measure dθa

on the θa-space, and that we have an a priori (or otherwise) probability distribution
π(θa)dθa on this e-variable. Then define ρma = ∫

π(θa)Ema(dθa).
Suppose that the observerm wants to measure a new e-variable θb, given that his

state is defined by the density matrix ρma . Then according to Born’s formula in a
perfect measurement one has Pma(θb ∈ B) = trace(ρmaEmb(B)).

In real measurements, one has data z and a probability distribution p(dz|θb).
This results in a projective operation valued measure (POVM) Mmb(C) =
∫

p(C|θb)Emb(dθb), and a probability model given the state as Pmab(z ∈ C) =
trace(ρmaMmb(C)). This is from my point of view the starting point of quantum
inference theory.

Note that, in the absence of complementarity, this theory reduces to ordinary
statistical inference theory (Chap. 2). The e-variable then is a parameter, a fact
already discussed in Chap. 1.

Of course there are more aspects of a full epistemic quantum theory. One is
the time development given by the Schrödinger equation. Another aspect is the
information exchange between different observers m. In Yukalov et al. (2017) the
latter questions are discussed from a quantum decision point of view.
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Chapter 6
Macroscopic Consequences

Abstract Philosophical consequences of the view of science and in particular the
view of quantum theory expressed in this book are discussed. In particular the
relationship between science and religion is briefly touched upon. Culture is seen
as a part of the context for making decisions. A thorough discussion of the concept
of complementarity, also extended to macroscopic settings, is given.

6.1 Philosophical Considerations

To repeat the views of this book: The quantum formulation can be seen as having
to do not with how nature is, but with our process of obtaining knowledge about
nature. We focus on certain questions to nature, and obtain answers to those focused
questions. I indicate in different ways that essential parts of the quantum formulation
can be derived by considering such a process—an epistemic process. These are
relatively deep results which require some mathematics to derive.

Who is this ‘we’ who ask questions and obtain answers? It can be a single
observer or a group of communicating observers. The epistemic process that this
(these) observers perform(s) can be likened to statistical inference in some way, and
the quantity which he/she (they) ask questions about and obtain information on, can
be likened to a statistical parameter. I have introduced a new name, an e-variable, to
cover both parameters in statistics and these physical quantities.

I claim that the basic principles of statistics, the conditionality principle, the
sufficiency principle and the likelihood principle can be generalized to all inference
on parameters and to all simple e-variables connected to experiments.

I go on and derive the Born formula from a version of the likelihood principle
together with an assumption of rationality. Also, the Schrödinger equation is derived
by an assumption of observers taking into account both σ -algebras in the past and
in the future.

I stress that my theory is not a hidden variable theory, although it bears some
resemblance with such a theory. The inaccessible variable φ is not a hidden
variable, but a mathematical variable upon which group actions may be defined.
The e-variables are not hidden variables, but closely connected to the epistemic
processes. (Note that the parameters of statistics exist only in our minds.) Also:
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Doing inference has to do with intuitive processes in the brain, and the brain is no
computer and cannot be simulated by any system of computers, so the epistemic
process which lie in the foundation here, cannot be simulated by any system of
computers.

Although essentially new arguments behind quantum mechanics are presented
in this book, I still regard conventional Hilbert space based quantum mechanics as
extremely useful when it comes to calculations. It has developed very far since its
beginning in the previous century; see for instance a modern book like Ballentine
(1998). It still has a very vigorous development; see the many articles posted each
month in arXiv:quant-ph or articles published in many good journals. It is not the
purpose of this book to try to change this culture. I only claim that an alternative,
and perhaps more intuitive basis can be found.

In the same way, the statistical culture, as it is described in Chap. 2, has a vigorous
development today. What I try to point out, is, that these two cultures may be seen
to have a common basis in the concept of an epistemic process. Nevertheless, I am
quite sure that neither quantum mechanics as a science nor mathematical statistics
as a science nor applied statistics as a tool in many empirical sciences would have
developed as far as they have if some sort of a synthesis between the two cultures had
been taken place from the beginning. This may be linked to the quantummechanical
concept of complementarity. Universality and creativity may in some sense be seen
as complementary qualities.

The concept of complementarity is extremely important in this book. Up to now
it has mainly been connected to the process of obtaining knowledge, that is, the
epistemic process. As just seen, it can also be associated with human abilities.
Humans observe, make decisions and act. The complementarity concept can also
be connected to the decisions and the actions. Assume for instance that a student
is to work on some given assignment. He can have his focus on satisfying teacher
A or on satisfying teacher B in the decisions and actions he make when working
on the assignment. These can be complementary foci. The complementarity can be
reduced if more time and concentration is devoted to the assignment.

There are other, complementary, approaches to quantum mechanics than the
one through epistemic processes. Some of these were mentioned in Sect. 4.1. Of
particular interest are the approaches by Hardy (2001, 2011, 2012, 2013). In a series
of papers, Wetterich (2008a,b, 2009, 2010a,b,c,d) has explored the relationship
between classical statistical ensembles and quantum mechanics.

Also for mathematical statistics there are other, complementary, approaches, for
instance through ordinary decision theory.

Going back to the epistemic process situation, the basic feature of the approach
in Chap. 4 was focusing: Ask a selected focused question to nature and obtain a
specific answer. From a given observer’s point of view this defines a state of nature.
The remaining assumptions on the group actions introduced there are mainly to
make the derivation of the ordinary Hilbert space apparatus under certain conditions
possible.

The focusing used in Assumption 4.1 was precise and formal. Informally,
focusing is very often necessary in our daily life when we want to obtain knowledge
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before making decisions and acting from these decisions. We simply do not have
the capacity to absorb all the knowledge from all the sources that we are confronted
with.

An epistemic process as used in this book is a very wide concept. As stated
in Sect. 3.4, every epistemic process involves decisions, a decision to ask a
question and a decision to accept the answer. It is interesting to note that also the
other assumptions made in this book have informal analogues for humans making
decisions.

1. The rational epistemic setting and the arguing leading to the Born formula
was derived from assuming: (a) The perfectly rational actor D. When making
decisions, most humanswill have ideals which they look up to, ideals to the effect
of being as rational as they are able to be. (b) The focused likelihood principle.
When making decisions, most humans will try to use all relevant available data
and if possible also use their prior model for the situation. These are the important
elements which they rely upon.

2. The Schrödinger equation was discussed in detail only for the case of a one-
dimensional position, but it was stated that it can be generalized. The assumptions
made in this derivation were related to an inaccessible stochastic processes
where the observers were able to condition both on the past events and on the
future events for accessible focusing from this process. This has an analogue the
situation a human is in before and after his actions when planning what decisions
to do next. He then takes into account both past events and possible future events.

Thus if we stretch our imagination a little, the two time developments of the
quantum state, which have caused so much discussion in the physical literature, can
both be said to be connected to mechanisms related to the decision making processes
of an observer.

It may also be interesting to speculate around the fact that the free will theorem
follows from the assumptions of quantum mechanics, admittedly in a special case,
but it is possible that it is valid for most situations that are complicated enough.
Humans are governed by their free will, and they are constantly confronted with
other humans that are governed by their free will.

So what should one mean about the question of reality? It is obvious that the
moon is there when nobody looks. (See the title of Mermin 1985). In general any
physical system has an existence which is independent of all observers, and it exists
even when there is no observer at all. It is the state of the system—whatever that
means—which we have limited ability to obtain information of.

All these speculations, and indeed the whole idea of a purely epistemic founda-
tion of quantum mechanics, make one a little uneasy, however. The universe was
created 13.8 billion years ago, and physical laws, including quantum mechanics
have presumably been valid since then. How can then everything be so tightly
connected to the human observer? This is of course an obvious question; I
nevertheless thank Bill Wootters, oral communication, for mentioning this point
to me.



134 6 Macroscopic Consequences

A possible solution in the spirit of this book, is connected to the imagined
observers of Assumption 5.4 (Sect. 5.1) and the perfectly rational actor D of
Sect. 5.5. To go into more details on the question on what these elements stand for,
is again mere speculation, but at least all assumptions made up to now are consistent
with the following world view, which also provides a link to the ontic interpretation
of quantummechanics. A similar proposal was in due time made by the philosopher
George Berkeley in order to avoid accusations of solipsism. (Bent Selchau, personal
communication.)

For several reasons I have chosen to believe that there is a Creator of the universe,
who during the creation also observed it. Then later this Creator is at each time able
to observe, make decisions and act. He is perfectly rational.

I believe that we humans are created in His image, but we are imperfect. The last
statement is obvious; the first may be argued for from the fact that we also are able
to observe, make decisions and act. This is the basis for the idea of an epistemic
process.

With now a divine Creator entering the stage, this idea obtains a new dimension.
If the idealized Heavenly observers agree on the result of their epistemic process,
this result must be said to be an objective fact. This gives us a simple tentative
argument through the concept of an epistemic process, which was argued above to
lie behind the formalism of quantummechanics, to an ontic view of the world. (And
all attempts to find an ontological foundation of quantum mechanics can be seen as
attempts to see the world from the perspective of the Heavenly Creator.)

Such an ideal epistemic process can only be imperfectly mimicked by human
observers. Nevertheless, when several of us agree on an observation, we can be
fairly sure that this is an objective fact. Such a conclusion is strengthened if the
epistemic process leading to the conclusion is a scientific investigation.

The divine Creator may be called God. He is worshiped in different ways in
different cultures and He is seen in different ways by different humans. This can be
explained by the fact that we humans only can have an imperfect image of God. It
is also connected to the fact that we all have different contexts, also when making
deep decisions. The concept of a context has played an important role in this book,
it is important in any epistemic process and it is important for any process of making
decisions.

From my perspective, the ultimate actor God must in some way be the same
across all cultures, and He must be acting over and above what particular image
each single person might have of Him or of aspects of Him.

At the outset we know little about the goals behind the decisions made by God.
My own conviction is related on Albert Einstein’s saying: The Lord is subtle, but
not malicious. It is also based upon the God who ends the play Brand of Henrik
Ibsen: Deus caritatis; the God of love. Thus there seems in my opinion to be a God
which is good and wants the best for us humans. But in a world where we all have
our free will, God is confronted with many complementary goals. On the one hand
He is almighty. On the other hand He seems to meet logical impossibilities if He
should do the best for absolutely all of us.
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By all these speculations I have been entering the realm of theology, which is not
my speciality. However, one can never stop wondering about the large and difficult
questions. Some of the answers must remain open at this stage.

Thus I value high very many aspects of religion. However, I have great difficulties
with the attitude: ‘We in our religious community are right. The others are wrong.’

I am strongly against any kind of fundamentalism. Extreme Muslims may
become terrorists in the belief that they have the right religion. Israeli settlers occupy
Palestinian land in the belief that they have the right religion. It is important to have
an open mind towards the beliefs of other people, but such an open mind should also
have its limitation. There are no simple solutions to the deep conflicts in this world.

In the same way as I believe that there exists an ultimate God, I also believe that
there in some sense is an ultimate science. It is very fruitful to do science in various
scientific cultures, but there must be a logical way to understand the conclusions
obtained in different cultures in a unified way. This is a personal conviction behind
the work of this book, but the view may perhaps be generalized to other human
activities.

At this point it is natural to stress that also science has its limitations. Science
is not able to explain consciousness. Science is not able to grasp in any way the
spiritual power behind a symphony by Ludvig von Beethoven, a painting of Pablo
Picasso, the finding of theorems by Nils Henrik Abel or the finding of theories by
Richard Feynman.

We all have a mind which can not be scrutinized in detail by any scientific
investigation, however far our knowledge of the brain is developed. Thus there is
a room for a dimension in life that goes beyond science, in my view, also a room for
religion. A further discussion of my views on science and religion can be found in
Helland (2017).

6.2 More on the Nature of the Superior Actor

We all go through our lives making repeated decisions in different contexts. These
decisions are governed by our free will, but they may also be influenced by
people that we look up to, who perhaps have done similar decisions before. In our
childhood, the persons that form our basis are most often our parents, but later other
ideals may take over. Human beings that suffer from a confused relation to their first
ideals, may later have difficulties in making good decisions, and they may end up
with having psychological problems.Much mental illnesses can be explained in this
way.

As scientists we also have ideals that we look up to. These may be personal,
or they may be substantiated through certain well-defined principles. In Sect. 5.5 I
made the assumption that the experimentalist A, when posing a focused question to
nature, made his decisions inspired by an ideal D, and that D was perfectly rational.
This may be regarded as a simplification. In reality, when making our decisions,
we are influenced by a multitude of conscious or subconscious sources. All these
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sources are here collected together in the actor D. I assume that D has a positive
influence on A, positive with respect to the goal that A has, in this case the question
that A has chosen as the focus of his experiment.

Let us look at the process of making decisions in some greater generality. People
in different cultures make their decisions partly intuitively on the basis of cultural
values. These values may have a historical origin, and they may also be related
to religion. Christianity, Islam and Judaism are all founded upon the belief in a
personal God. The believers act under the assumption that there is a God behind
everything, and that God is perfect. They believe at the same time that He influences
all human beings, also those who serve as ideals for others. In this sense, God may
take the role as the ultimate ideal D within the relevant culture.

In general a culture may be looked upon as part of a man’s context when making
his decisions. At the outset, all human beings should be respected, and so also the
context they have for making their choices. Hence it is a part of my philosophy that
no culture should in principle be seen as definitely better than other cultures when it
comes to inspiring people’s decisions. However, this tolerance has it limits; one of
these is an ultimate respect for people’s life. Extremists taking lives under the belief
that their own culture is threatened by other cultures, should of course not in any
way be accepted. But in addition there are other universal ethical rules that should
be respected.

In essence certain cultural values and more generally certain value-contexts for
making decisions may be seen from a global point of view to be more satisfactory
than other set of values, but this can only be determined by rational arguments.
Hence communication between cultures is very important in our world as it is now.
As a particular continuation of this statement, this book in itself is written with the
partial purpose of finding a common language with which one can communicate
across scientific epistemic cultures.

6.3 Quantum Mechanics, Decisions, and Complementarity

This Section can be read independently of the rest of the book.
The modern technological development would have been extremely difficult

without scientific theories. In a certain sense physics lies behind all natural science,
and it is impossible to discuss modern physics without touching quantummechanics
in some way or other.

The great American physicist Richard Feynman said once: ‘If somebody claims
that he understands quantum mechanics, he lies.’ This statement is still valid, but
during the recent years new elements of understanding have appeared.

The crucial point is that quantum mechanics is a formalism, a set of calculating
rules for how one can predict the outcome of experiments. These calculating rules
have had an enormous success; they have been used for everything from small
elementary particles to complex chemical and biological systems, and in every case
the predictions have been 100% in agreement with the results of experiments.
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However, the great question is how one shall interpret these calculating rules.
Here the physicists disagree, also today. During the recent years there has been held
a long range of international conferences on the foundation of quantum mechanics.
A great number of interpretations have been proposed; some of them look very
peculiar to the laymen. For instance, during one period it was popular to assume
that there exist millions or billions of parallel worlds, and that a new world appears
every time when one performs a measurement. Some take this point of view even
today.

On two of these conferences recently there was taken an opinion poll among the
participants. It turned out to be an astonishing disagreement on many fundamental
and fairly simple questions. One of these questions was: Is the quantum mechanics
a description of the objective world, or is it only a description of how we obtain
knowledge about reality? The first of these descriptions is called ontological,
the second epistemic. (From Webster’s Unabridged Dictionary: epistemic: what
concerns or comes from knowledge, or the conditions for obtaining knowledge.) A
similar, but not quite identical distinction is realistic versus non-realistic. Up to now
most physicists have supported the ontological or realistic interpretation of quantum
mechanics, but versions of the epistemic interpretation have received a fresh impetus
during the recent years.

One such version is QBism, or quantum-Bayesianism. The predictions of
quantum mechanics involve probabilities, and a QBist interpret these as purely
subjective probabilities, attached to a concrete agent, or observer. There are many
elements of QBism which represents something completely new, both in relation
to classical physical theory, in relation to many peoples conceptions of science in
general and also in relation to earlier interpretations of quantum mechanics. The
essential thing is that the observer plays a role which cannot be eliminated. The
comprehension of reality for a person differ from person to person, at least at a
given point of time, and this is in principle everything that can be said, at a given
point of time.

According to QBism there is no other reality than the subjective one attached to
each single agent. This statement must be made precise to be understood correctly.
Firstly, one talks about an ideal agent, and secondly, groups of agents which
communicate mutually, can go in and act as one agent as long as one talks about
one measurements. When all potential ideal agents agree about an observation, this
observation is a real property of the world.

Nevertheless, these are aspects of physics—and science—which can be surpris-
ing for many people, but in my opinion such viewpoints may be necessary, not only
in physics, but also in many other areas of life.

Such an understanding of reality can in my opinion be made valid for very
many aspects of reality. We humans can have a tendency to experience reality
differently. Partly, this can be explained by the fact that we give different meaning
to the concepts we use. Or we can have different contexts for our appreciations. An
important aspect is that we focus differently.

Subjective Bayes-probabilities have also been in fashion among groups of
statisticians. Personally, I mean that it can be very fruitful to look for analogies
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between statistical inference theory and quantum mechanics, but then one must
look more broadly upon statistics and statistical inference theory, not only focus
on subjective Bayesianism. This is only one of several philosophies that can form a
basis for statistics as a science. Referring to Sects. 6.1 and 6.2, I will assume that the
superior actor D acts as a Bayesian, but for human observers also other philosophies
must be allowed.

My point of departure is that I look upon a quantum state as the result of two
decisions: A decision to focus upon a question to nature, and a decision to interpret
the answer. The present section is also about focusing in human decisions in general,
simple decisions, more complicated decisions and even deeper decisions which can
concern philosophical questions. We all go through life and make decision after
decision, make choice after choice.

It can be of interest to look upon how some ideas from modern physics can
illuminate these processes. It must be emphasized that this an account of my own
opinions, which are far from shared by all physicists. However, Niels Bohr, nearly
hundred years ago, expressed similar thoughts, admittedly not quite as radical as
this.

My own view upon quantum mechanics is inspired by the QBism, but I mean
that one more generally should take as a point of departure a fundamental theory
for epistemic processes, processes with the purpose of obtaining knowledge about
something. In my opinion a theory of such processes could play a role both for our
understanding of daily life and for our understanding of science, quantummechanics
in particular.

Epistemic processes, at least the simplest of them, involve decisions in two
stages: First a decision to choose a focus. Then collection of data, and finally an
informed decision about what these data say about the phenomenon that we have
focused upon. Traditional decision theory is only concerned with the last one of
these decisions.

It is very important to find a good enough theory of human decisions. What
dominates science today, is a far developed—but in its basis relatively simple—
theory for decisions under uncertainty. This covers much of economic theory and
also statistical inference theory, and is thus an important part of the foundation both
of economy as a science and of statistics as a science.

But human decisions are very complex. Firstly, the decisions may depend on
the order in which we want to do our decisions; more generally most decisions
will depend on a context, partly determined by earlier decisions. Secondly, many
decisions may be a result of a complicated interaction between the conscious and
the subconscious. This is not covered by traditional decision theory.

During the recent 5–6 years there has been proposed and developed a new formal
theory for decisions, where these are in part conscious and in part subconscious.
This theory is inspired by quantum mechanics (Yukalov and Sornette 2008, 2009,
2010, 2011, 2014). There has also in the recent years appeared aspects of the
sciences economy and psychology which are analogous to certain aspects of basic
quantum theory. (See Khrennikov 2010.) This can all be coupled to decisions.
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Decisions can be made by single persons or by groups of people. A group of
people can agree to go collectively into a decision process, and can make collective
decisions on which actions should be done after the process is finished. All decisions
and all actions—whether done on a single person level or on a group level, should to
the best of one’s ability be done in an intelligent way, where one takes into account
all accessible knowledge. For many decisions this may take time.

But in certain case we do not have so much time for our decisions. This is true
for most practical decisions taken in everyday life. An important example taken
from daily life is that of driving a car. Here one must take quick decisions and at
every point of time focus on other car drivers, pedestrians, bicyclists, traffic signs
etc.. To be able to do this, concentration is important, but it is also important to
have good training. Other cases where we have to take quick decisions, are in verbal
communication with other people.

All decisions are made in a context. This context may be purely physical, but it
can also be historically determined or be tied to the personality of the one who takes
the decision. If it is a question of a conscious decision, it can be critical to know
what concept the person has at his disposal in order to formulate his thoughts.

Our opinions can depend on our background, what we have experienced earlier
and what persons we have been communicating with or have been influenced by.
But at the same time we have free will to take decisions, in particular to formulate
our viewpoints and opinions.

In discussing these and similar questions, it can be useful to look at the quantum
mechanical concept complementarity. For a thorough discussion of complementar-
ity in physics, see Plotnitsky (2013). The concept was originally introduced by Niels
Bohr to describe what it is possible to measure physically, but in various talks Bohr
also looked upon extensions of the complementarity concept. Such extensions are
also of great current interest.

First look upon the purely physical aspect. It turns out that in principle it
is impossible to simultaneously measure the velocity and position of a particle.
Velocity and position are complementary quantities. It turns also out that this
problem is less for particles with large mass, i.e., heavy particles. Thus the degree
of complementarity in this sense is largest for light particles. Concretely this is
expressed in Heisenberg’s uncertainty relation: The product of the uncertainty in
velocity and the uncertainty in position is greater or equal to Planck’s constant
divided by the mass of the particle. If we try to measure the position accurately, we
disturb the system so much that it is impossible to measure the velocity accurately.
And similarly if we try to measure the velocity accurately.

The terms complementary and complementarity have several meanings, both in
physics and elsewhere. In this section I will let these concepts refer to two or more
aspects of reality which are difficult or impossible to grasp or to have an attitude
to at the same time, but where both (all) in some way are needed to get a complete
picture of reality.

In this way the accurate measurement of velocity and the accurate measurement
of position are complementary activities, and the corresponding quantities are also
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complementary. Many physicists are skeptical to using these concepts outside the
concrete physical context, but we will see that it can be fruitful.

Here is Plotnitsky’s definition of complementarity:

(a) a mutual exclusivity of certain phenomena, entities, or conceptions; and yet
(b) the possibility of applying each one of them separately at any given point; and
(c) the necessity of using all of them at different moments for a comprehensive

account of the totality of phenomena that we consider.

This definition points at the physical situation discussed above, and has Niels
Bohr’s interpretation of quantum mechanics as a point of departure. However, in
my opinion the definition can also be carried over to a long range of macroscopic
phenomena or conceptions.

A simple example: A student works with a difficult assignment. One goal can
be to get it finished fast; another goal can be to hand in a paper which is as good
as possible. These are clearly complementary goals. If his ability to concentrate is
good, this may to some extent reduce the degree of complementarity.

Opinions and viewpoints of different persons may often be complementary.
Examples of this can be seen daily in newspaper debates. But the differences in
opinions may go deeper, and have their basis in complementary world views.

Good authors can write novels where the reader understands each single person’s
descriptions of reality, even in cases where these descriptions are not fully compat-
ible. In such cases one can of course discuss if there is an objective reality behind
these world views. It may be that the author’s point is just that it is not very fruitful
to look for such a complicated objective reality. In any case, to find such an objective
reality, one may have to go beyond the conceptual basis for each single person. This
is similar in many political conflicts, where the schism is between groups of people.

In quantum mechanics, the concept of reality has played a prominent role in
recent discussions. In QBism, the emphasis is moved to each person’s experience
of reality. In this section I want to go one step further and talk about the collective
experience of each group of communicating persons. For different persons or for
different groups of communicating persons, their perceptions of reality may be
complementary. This may be true when observing the microworld.

Many physics papers discuss two actors Alice and Bob, being so far away from
each other that they do not communicate. All physicists agree that there exist
situations where the observations of Alice and Bob are entangled. From an epistemic
point of view the two actors may also have complementary comprehensions of the
world because they focus differently. According to the physicist John A. Wheeler,
each observer can create his/her own history.

I claim that this may be equally true for persons—or groups of persons—
making experiences in the macroworld. People may tend to have different—
complementary—world views.

The summer 2014, in the middle of the Gaza war, both the Israeli and the Pales-
tinian ambassador to Norway were interviewed in a major Norwegian newspaper
about the situation in the Middle East. The two had clearly complementary world
views.
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The Israeli ambassador talked about safety for his population and about Hamas
using human shields for their launching of rockets. He also referred to holocaust
and stressed that the Jews had strong reasons for seeking their own land. He also
mentioned that Hamas had broken several cease-fire agreements, and emphasized
that Hamas would not recognize Israel as a sovereign state.

The Palestinian ambassador described the long term occupation of the West
Bank and the brutal attacks on the Gaza stripe. He emphasized strongly all the
humiliations that the Palestinians are and have been met with. He mentioned illegal
Israeli settlements and Apartheid-like conditions in Israel. Of course he also talked
about the many civilian losses during the war, especially losses of children.

We, while hearing all this, can of course form our own opinions. But to what
extent are these opinions dependent upon which information we by chance have
obtained, and not least, upon which group we belong to? It is a fact that Danes
largely are more Israel-friendly than Norwegians. Demarkwould not sign a common
Nordic resolution about theMiddle East war, but chose instead a more watered down
EU-resolution.

Without doubt, our opinions in general can be influences by which country we
happen to live in, by which period of time we live in, and more generally, by which
culture we belong to.

Sometimes, in such situations, it can be useful to step back and just say that
the two world views are complementary. This can be linked to trying to respect both
parties, something which is important if one should happen to be in a position where
one can help in peace negotiations.

Nevertheless, to only be neutral and rest on the complementarity concept can be
dangerous. As humans we have both the right and the duty to take a definite stand on
various questions. This is the great logical dilemma that we are faced with in every
situation: To make a conscious decision while we at the same time know that we are
guided by unknown subconscious causes. In reality this is a problem in every case
where we shall make a difficult decision. However, for many people this dilemma is
not a big problem: One makes decisions on an intuitive basis.

The complementarity concept must not make us into value-relativists. There is
something right and wrong in this world. During the last world war it was right
to dissociate oneself from Hitler and his fellows, and we must definitely dissociate
ourselves from the human cleansings of Stalin and Pol Pot. In general we should
dissociate ourselves from everybody who do not respect fundamental human rights,
and there are also other moral issues where we can say something of absolute
validity. My own conviction is that moral questions of this kind could be approached
through a faith in God, but unfortunately there are many problems where such a
conviction do not lead to simple, unique solutions.

To take a concrete and very actual problem: What should we mean about the
European refugee issue? From an ideal point of view our borders should be more
open, when seeing all the suffering among the refugees. But at the same time there
is a limitation on howmany refugees the various countries have a capacity to receive
in a decent way. This is an area where the public debate has been hard recently. To
a certain extent the debate has been dominated by complementary points of view.
This should not prevent us from making up our own opinions.
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Politics is not simple, and it should not be simple. Many people in Western coun-
tries were unambiguously enthusiastic when the Arabic spring started, overthrowing
regime after regime. But unfortunately, the spring has turned into winter in many of
the affected countries.

Both in daily life, in politics and in science it can be necessary to focus. Another
essential point is that all decisions are made in a context. Finally, one should be able
to communicate verbally all conscious decisions.

Focusing can be done at all stages of the decision process. As complementary
goals, complementary activities and complementary world views are concerned, it
can be a solution to focus upon one of the goals, one of the activities and one of
the world views. But in particular in the last case, a more intelligent and creative
solution can be to try to find a partial synthesis.

Look again on the Middle East conflict, and the two ambassadors who had
complementary world views. For many westerners it has been important to take
a clear and unambiguous standpoint for one or the other party in this conflict. But
as a sensible person has said: This is not a soccer game. There are serious issues at
stake for both parties. A more constructive question can be: What can reduce the
degree of complementarity? What obstacles get in our way for at the end to reach
a lasting two state solution? Or for other lasting solutions? As emphasized in the
previous two sections, I do not think that any solution can be found without taking
religion and cultural aspects of religion into account.

Concepts from our understanding of modern physics can contribute to enlight-
ening difficult problems, both concerning our own decisions, decisions by groups
of people, and world views lying behind serious conflicts. One hope should be that
a correct understanding of science may create a conceptual apparatus giving both
scientists, politicians and others in leading positions inspiration to work for good
human purposes, in its final consequence to work for peace here on earth. A clear
view on interpretations of modern physics, and extensions of such interpretations to
other areas, can in my opinion contribute to making such a conceptual apparatus. Of
course, this does not mean that this contribution from modern physics is a unique
contribution for peace. Many good people in our societies work for a similar final
goal, and many good people pray for a solution. One point with this section has been
to explain how such a work can be partly motivated completely rationally—with a
basis in a possible interpretation of the most rational of all sciences: Fundamental
physical theory.
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Appendix A
Proof That the Generalized Likelihood
Principle Follows from the GWCP
and the GWSP (Birnbaum’s Theorem);
The Discrete Case

Let E1 and E2 be the two experiments in the generalized likelihood principle, and
let E∗ be the mixed experiment from the GWCP. On the sample space of E∗ define
the statistic

t (j, zj ) =
{

(1, z∗
1) if j = 1 and z1 = z∗

1 or if j = 2 and z2 = z∗
2

(j, zj ) otherwise
.

I will use the factorization theorem to prove that t (j, zj ) is a sufficient statistic in
the mixed experiment E∗. Define

h(j, zj |τ ) =
{

c if (j, zj ) = (2, z∗
2)

1 otherwise
,

where c is the constant of proportionality between the two likelihoods. Define for
both values of j and for all zj :

g(t|θ, τ ) = g((j, zj )|θ, τ ) = f ∗((j, zj )|θ, τ ),

where f ∗ is the point probability in E∗.
Now for all sample points except (2, z∗

2) (but including (1, z∗
1)), we have

t (j, zj ) = (j, zj ), so

g(t (j, zj )|θ, τ )h(j, zj |τ ) = g((j, zj )|θ, τ ) · 1 = f ∗((j, zj )|θ, τ ).
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Such a factorization also holds for (2, z∗
2). Namely, by using the definitions of

t, h, g, f ∗ together with the GWCP, we have

g(t (2, z∗
2)|θ, τ )h(2, z∗

2|τ ) = g((1, z∗
1)|θ, τ )c = f ∗((1, z∗

1)|θ, τ )c = c
1

2
f1(z

∗
1|θ, τ )

= c
1

2
L1(θ |z∗

1, τ ) = 1

2
L2(θ |z∗

2, τ ) = 1

2
f2(z

∗
2|θ, τ ) = f ∗((2, z∗

2)|θ, τ ).

Here L1 and L2 are the likelihoods of the two experiments E1 and E2, and I have
used the premise of the generalized likelihood principle.

Thus by the factorization theorem, t (j, zj ) is a sufficient statistic for θ , and by
the GWSP we have that the evidence about θ in E∗ given by (1, z∗

1) and (2, z∗
2) are

the same. By the GWCP, (1, z∗
1) gives the same evidence as z∗

1 in E1 and (2, z∗
2)

gives the same evidence as z∗
2 in E2. Hence these latter evidences must also be the

same, and the generalized likelihood principle follows.



Appendix B
Some Group Theory, Operator Theory
and Group Representation Theory

A group G is defined in mathematics as a set of elements g with a composition g1g2
satisfying the axioms: (1) There is a unit e such that eg = ge = g for all g; (2) For
each g there is an inverse g−1 such that g−1g = gg−1 = e; (3) The composition is
associative: (g1g2)g3 = g1(g2g3) for all g1, g2, g3.

The group is Abelian (commutative) if g1g2 = g2g1 for all g1, g2.
Important examples of groups are the additive group on the real numbers and the

multiplicative group on the positive real numbers.
For a finite group G, each element g ∈ G has an order m such that gm = e. A

cyclic subgroup is the group with elements {e, g, g2, . . . , gm−1}. In general a group
G may have several subgroups G′ ⊆ G.

Most of the groups used in this paper are group actions, that is, transformation
groups on some set �, even though some must be seen as abstract groups. A
transformation g of � is any function on the elements φ ∈ � which is one-to-one
and onto. These functions can be composed by (g1g2)(φ) = g1(g2(φ)), and they
have inverses g−1. The existence of a unit and the associative law are automatic.
Thus by definition they form a group. For any set � the group of all transformations
on � exists, and is called the automorphism group of �. Thus many groups G of
this paper may be considered as subgroups of some automorphism group.

An orbit of a transformation group G is a subset of �, the set of all φ that are
transformed from a single element φ0, that is {φ : φ = gφ0 for some g ∈ G}. The
restriction of G to an orbit or to a set of orbits will itself be a group transformation,
which again without possible confusion can be called G. Restrictions to orbits of
groups on the parameter space were used in connection with model reduction in
Sect. 2.2 and later. This constraint on model reduction is important if the same
transformation group shall be kept during the reduction. Such reductions were
important in connection to the maximal symmetrical epistemic setting used in
introducing the quantum mechanical perspective.

A group where the only orbit is the full group, is said to be transitive. For a
transitive group, each element of � can be transformed to each other element by
some group action.
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The stabilizer of an element φ0 ∈ � is the subgroupH ofG such that h(φ0) = φ0
for h ∈ H . If φ1 = gφ0, then H(φ1) = gH(φ0)g

−1. For some groups the stabilizer
is trivial.

Let in general both the set � and the group G be given some topology, both
spaces assumed to be locally compact. Then one can under quite general conditions
(see Helland (2010) or any mathematical text on this) define in a unique way
(except for a multiplicative constant) two positive measures, a left Haar measure μG

satisfying μG(gD) = μG(D) and a right Haar measure νG satisfying νG(Dg) =
νG(D) for all g ∈ G and all Borel sets D ⊆ G.

Then turn to invariant measures on the set � itself. In mathematical texts, �

is often itself treated as a group, and then the concepts of Haar measures carry
over. But this is not satisfactory for all statistical applications. In Helland (2010,
Subsection 3.3 and Appendix A.2.2) a summary of a way to fix this is given. In that
book, group actions were written to the right: φ → φg so that φ(g1g2) = (φg1)g2.
This is uncommon, but has a certain logical advantage: In the product g1g2, we get
that g1 is applied first and then g2.

A left-invariant measure on � is then any measure μ satisfying μ(g(B)) = μ(B)

for any g ∈ G and for any Borel set B ⊆ �, while a right-invariant measure is any
measure ν satisfying ν(Bg) = ν(B) for all g,B. In Helland (2010, Theorem A1)
it was proved that a right invariant measure always exists on a given orbit of G if
the stabilizer of one element, hence of all elements, of this orbit is compact. This is
the case under weak technical assumptions (Wijsman 1990, proper group actions;
see) if G is locally compact. In Helland (2010, Subsection 3.3) a list of arguments
were given why the right invariant measure should be used as an objective prior in
statistics if such a prior is required.

The invariant measure is unique up to a multiplicative scalar if the group action
is transitive, otherwise invariant measures can be introduced independently on each
orbit. For compact groups and in many other cases the left-invariantmeasure and the
right-invariant measure can be taken as identical. When � is compact, the invariant
measure can be taken as normalized: ν(�) = 1.

Two groups G and R are homomorphic if there exists a function T from G to R

such that T (g1g2) = T (g1)T (g2) for all g1, g2 and such that T (e) = e′, the unit in
R. Then also T (g−1) = T (g)−1. They are isomorphic if T is one-to-one. Then they
may be considered as the same abstract group.

Next let us introduce some basic algebra. A vector space is an Abelian group
under addition where also multiplication by scalars is defined. In this paper we
mainly consider finite-dimensional complex vector spaces, meaning that the scalars
are complex numbers and that there exists a set of basis vectors ei; i = 1, . . . , k that
are linearly independent:

∑

i ciei = 0 implies c1 = . . . = ck = 0. A linear operator
A on a vector space is a function from the vector space into itself satisfying

A(c1a1 + c2a2) = c1Aa1 + c2Aa2.
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By relating it to the basis vectors, a linear operator can always be represented by a
square matrix:

Aej =
∑

i

eiD(A)ij .

Then if a = ∑

j ej aj and b = Aa = ∑

i eibi , we have bi = ∑

j D(A)ij aj . Thus if
a is the column vector of components aj and similarly for b, we get b = D(A)a; in
complete analogy to b = Aa.

If a is represented by the column vector a, we define a† as represented by the row
vector (a∗

1 , . . . , a
∗
k ), where ∗ denotes complex conjugate. The scalar product a†b is

defined as
∑

i a∗
i bi . This scalar product is linear in the second vector and antilinear

in the first, in agreement with the tradition in physics. Mathematicians tend to use
a scalar product which is linear in the first vector. This is in effect just a cultural
difference, but to outsiders it is annoying.

Two vectors a and b are orthogonal if a†b = 0. With this interpretation, the basis

vectors ei are automatically pairwise orthogonal and have norm ‖ei‖ ≡
√

e
†
i ei = 1.

In general one can always find many sets of n orthogonal basis vectors in an n-
dimensional vector space.

A vector space with the structure above is called an inner product space. This
notion can be generalized to infinite-dimensional spaces, having an infinite set of
basis vectors. The norm ‖a‖ = √

a†a induces a metric, hence a topology on this
space by d(a, b) = ‖a − b‖. The space is complete in this metric if ‖an − am‖ →
0 (n,m → ∞) implies that there exists an a such that ‖an − a‖ → 0. A complete
inner product space is called a Hilbert space. A closed subspace of a Hilbert space is
again a Hilbert space. A finite-dimensional inner product space is always complete,
hence a Hilbert space.

The identity operator I is defined by Ia = a, and the multiplication of operators
by (AB)(a) = A(Ba). Then (in the finite-dimensional case) D(I) is diagonal with
1’s on the diagonal, and D(AB) = D(A)D(B), ordinary matrix multiplication.
An operator A is invertible if there exists an A−1 such that A−1A = AA−1 = I .
A finite-dimensional operator A is invertible if and only if det(D(A)) �= 0; then
D(A−1) = D(A)−1.

The conjugate of an operator A, A†, is defined by a†(Ab) = (A†a)†b. Slightly
different, but equivalent notations for scalar products and conjugates, using kets and
bras, were used in the main text. An operator A is called Hermitian if A† = A. An
operator V is called unitary if V −1 = V †.

An eigenvector v and an eigenvalue θ are solutions of Av = θv. An operator
A is Hermitian if and only if all its eigenvalues are real-valued. Eigenvectors
corresponding to different eigenvalues are then automatically orthogonal. In the
k-dimensional Hermitian case there are always sets of k pairwise orthogonal
eigenvectors.
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A group representation of G is a continuous homomorphism fromG to the group
of invertible linear operators V on some vector space H :

V (g1g2) = V (g1)V (g2).

It is also required that V (e) = I , the identity. This assures that the inverse exists:
V (g)−1 = V (g−1). The representation is unitary if the operators are unitary
(V (g)†V (g) = I ). If the vector space is finite-dimensional, we have a representation
D(V ) on the square, invertible matrices. For any representation V and any fixed
invertible operator K on the vector space, we can define a new representation by
W(g) = KV (g)K−1. One can prove that two equivalent unitary representations are
unitarily equivalent, so K can be chosen as a unitary operator.

A subspace H1 of H is called invariant with respect to the representation V if
u ∈ H1 implies V (g)u ∈ H1 for all g ∈ G. The null-space {0} and the whole
space H are trivially invariant; other invariant subspaces are called proper. A group
representation V of a group G in H is called irreducible if it has no proper invariant
subspace. A representation is said to be fully reducible if it can be expressed
as a direct sum of irreducible subrepresentations. A finite-dimensional unitary
representation of any group is fully reducible. In terms of a matrix representation,
this means that we can always find a W(g) = KV (g)K−1 such that D(W) is of
minimal block diagonal form. Each one of these blocks will represent an irreducible
representation. They are all one-dimensional if and only if G is Abelian. The blocks
may be seen as operators on subspaces of the original vector space, the irreducible
subspaces. These are important in studying the structure of the group.

A useful result is Schur’s Lemma (see for instance Barut and Raczka 1985):

Let V1 and V2 be two irreducible representations of a group G; V1 on the space
H1 and V2 on the space H2. Suppose that there is a transformation T from H1 to
H2 such that

V2(g)T (v) = T (V1(g)v)

for all g ∈ G and v ∈ H1.
Then either T is zero or it is an isomorphism. Furthermore, if H1 = H2, then

T = λI for some complex number λ.

Let ν be the right and left invariant measure of the space � induced by the group
G, assuming the two to be equal, and consider the Hilbert space H = L2(�, ν).
Then the right regular representation of G on H is defined by UR(g)f (φ) =
f (φg) and the left regular representation by UL(g)f (φ) = f (g−1φ). These
representations always exist, and they can be shown to be unitary.

If V is an arbitrary representation of a compact group G in H , then there exists
in H a new scalar product defining a norm equivalent to the initial one, relative to
which V is a unitary representation of G.
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For references to some of the vast literature on group representation theory, see
Helland (2010, Appendix A.2.4).

A generalization of a unitary representation is a projective unitary representation.
The unitary matrices then satisfy

U(g)U(h) = ω(g, h)U(gh),

where the complex multiplier ω satisfies

|ω(g, h)| = 1,

ω(g, h)ω(gh, k) = ω(g, hk)ω(h, k),

ω(g, e) = ω(e, g) = 1,

with e being the unit element of the group G. The discussion of Sect. 4.4 can be
generalized to such representations. For a transitive group G let φ = hφ0, and
define the left regular representation by U(g)f (φ) = ω(g, g−1h)f (g−1φ). This
will provide an arbitrary phase factor for the state vectors.



Appendix C
Proof of Two Results Related to Quantum
Mechanics

Proof of Theorem 5.3 of Sect. 5.3 Let ε > 0 be given. Find first a > 0 so large that
∫ −a

−∞ |f (ξ)|2dξ ,
∫ ∞
a

|f (ξ)|2dξ ,
∫ −a

−∞ |ξf (ξ)|2dξ ,
∫ ∞
a

|ξf (ξ)|2dξ all are less than
ε/4. Assume that n is so large that ξn1 < −a and ξnkn > a. Since f is uniformly
continuous on [−a, a] it follows that ∫ a

−a
|fn(ξ)−f (ξ)|2dξ → 0, so ‖fn−f ‖ → 0.

Since 1−∑

j Inj is less than the indicator of (−∞,−a] plus the indicator of [a,∞),

we have
∫ |ξf (ξ) − ξf (ξ)

∑

j Inj (ξ)|2dξ < ε/2. Now

ξf (ξ)
∑

j

Inj (ξ) − Anfn(ξ) =
∑

j

(ξf (ξ) − ξnj fn(ξnj ))Inj (ξ).

Hence using the uniform continuity of k(ξ) = ξf (ξ) on [−a, a], we get ∫ |ξf (ξ) −
Anfn(ξ)|2 → 0.

Proof of the Direct Part of Proposition 5.5 of Sect., 5.4 Define ak = p(za |τ, θa =
ua

k) and bk = cp(zb|τ, θb = ub
k). Then (5.8) is

∑

k

ak|a; k〉〈a; k| =
∑

k

bk|b; k〉〈b; k|.

In these sums we can collect together terms with equal coefficients. Let Pj =
∑

k∈Cj
|a; k〉〈a; k|, where Cj is defined such that ak = a′

k when k, k′ ∈ Cj ,
similarly define Qj on the righthand side. Redefine aj as akj whenever kj ∈ Cj ,
and redefine bj similarly. Then

∑

j

ajPj =
∑

j

bjQj , (C.1)

{Pj } and {QJ } are orthogonal sets of projection operators, aj �= aj ′ whenever j �=
j ′ and bj �= bj ′ whenever j �= j ′. We can order the terms in (C.1) such that a1 >

a2 > . . . > 0 and b1 > b2 > . . . > 0. Furthermore we can multiply each side of
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(C.1) with itself any number of times, giving

∑

j

am
j Pj =

∑

j

bm
j Qj

for m = 1, 2, . . .. When m is large enough, the first term on each side of this
equation will dominate completely, and we must have am

1 P1 = bm
1 Q1 for all large

enough m. But since P1 and Q1 are projection operators, this is only possible if
a1 = b1 and P1 = Q1.

Then we can subtract the term a1P1 from the lefthand side of (C.1), subtract the
equal term b1Q1 from the righthand side of the equation, and repeat the argument.
It follows that aj = bj and Pj = Qj for each j , which is the conclusion of the
proposition.



Appendix D
Proof of Busch’s Theorem
for the Finite-Dimensional Case

The main point of the proof is to show that any generalized probability measure
on effects extends to a unique positive linear functional on the vector space of all
bounded linear Hermitian operators. This is done in steps.

1. It is trivial that μ(E) = nμ( 1
n
E) for all positive integers. It follows that

μ(pE) = pμ(E) for all rational numbers in [0, 1]. By approximating from
below and from above by rational numbers, this implies that μ(αE) = αμ(E)

for all real numbers α in [0, 1].
2. Let A be any positive bounded operator in H . Then there is a positive number

α such that 〈u|Au〉 ≤ α for all unit vectors u. Then E defined by E = (1/α)A

is an effect. Thus we can always write A = αE for an effect E. Assume now
that there are two effects E1 and E2 such that A = α1E1 = α2E2. Assume
without loss of generality that α2 > α1 > 0. Then by (1) μ(E2) = α1

α2
μ(E1), so

α1μ(E1) = α2μ(E2). Therefore we can uniquely define μ(A) = α1μ(E1).
3. LetA andB be positive bounded operators. Take γ > 1 such that 1

γ
(A+B) is an

effect. Then we can write μ(A+B) as γμ( 1
γ
(A+B)) = γμ( 1

γ
A)+γμ( 1

γ
B) =

μ(A) + μ(B).
4. Let C be an arbitrary bounded Hermitian operator. Assume that we have two

different decompositions C = A − B = A′ − B ′ into a difference of positive
operators. Then A + B ′ = A′ + B implies μ(A) + μ(B ′) = μ(A′) + μ(B).
Hence μ(A) − μ(B) = μ(A′) − μ(B ′), so we can uniquely define μ(C) as
μ(A) − μ(B). It follows then easily from (3) that μ(C + D) = μ(C) + μ(D)

for bounded Hermitian operators.
5. This is extended directly to μ(C1 + . . .+Cr) = μ(C1 + . . .+Cr−1)+μ(Cr) =

μ(C1) + . . . + μ(Cr) for finite sums.

Let {|k〉; k = 1, . . . , n} be a basis for H . Then for any Hermitian operator C

we can write C = ∑

i,j cij |i〉〈j |, where cij are complex numbers satisfying cij∗ =
cji . Define the operator ρ by ρij = μ(|i〉〈j |). Then ρ is a positive operator since
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〈v|ρv〉 = μ(|v〉〈v|) for any vector |v〉. Also

trace(ρ) =
∑

i

ρii =
∑

i

μ(|i〉〈i|) = μ(
∑

i

|i〉〈i|) = μ(I) = 1,

so ρ is a density operator.
We have μ(C) = ∑

i,j ρij cij = trace(ρC), and this holds in particular when C

is an effect.



Appendix E
Propositional Logic, Probabilities
and Knowledge

Mathematical logic can be studies at many different levels. In this book I will
concentrate on propositional logic, and I will look at propositions as they are
formulated in ordinary, everyday language as primitive entities. For a more formal
approach to propositional logic including axioms and a separation between syntax
and semantics, see for instance (Walicki 2012).

Propositions A and B can be connected: A ∨ B means that A or B is true, while
A ∧ B means that both A and B are true, similarly for the connection between more
propositions. Also, ¬A means that A is not true. We let ⊥ denote an impossible
proposition, while � denotes a proposition which is always true. In ordinary texts in
mathematical logic one usually works with a finite number of propositionsAi . I will
allow for an infinite, even uncountable number of propositions, so that propositions
of the form ‘The rain tomorrow will amount to less than or equal to x mm’ will be
permitted for different x.

There is a close connection between propositional logic and set theory. The
translation is straightforward: ∨ translates into ∪, while ∧ translates into ∩; ¬A

corresponds to Ac, while ⊥,� correspond to ∅,
, assuming that all the sets are
subsets of 
.

One can also define probabilities of propositions; in fact this is often done in
elementary probability texts. With the above translations, there is a close connection
to Kolmogorov’s axioms; see Sect. 2.1. For instance P(A1 ∨ A2 ∨ . . .) = P(A1) +
P(A2)+ . . . if theAi’s satisfy Ai ∧Aj = ⊥ for each pair. Also P(¬A) = 1−P(A).
The rule P(A ∨ B) = P(A) + P(B) − P(A ∧ B) is always true. It can be proved
rigorously, but it can also be motivated by a Venn diagram from the analogue with
set theory.

Conditional probabilities can be defined by P(A|B) = P(A ∧ B)/P(B) when
P(B) > 0. In this book I need the more general notion of conditional probability
given a σ -algebra of propositionsB, and then it seems like we may need to assume a
little more structure. Assume thus that there exists a countable collection of atomic
propositions {Ci} such that all other propositions A can be formed by combining
the Ci ’s by ∨’s, such that Ci ∧ Cj = ⊥ for pairs and � = ∨

i Ci . This assumption

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
I. S. Helland, Epistemic Processes, https://doi.org/10.1007/978-3-319-95068-6

157

https://doi.org/10.1007/978-3-319-95068-6


158 E Propositional Logic, Probabilities and Knowledge

simplifies the discussion. It is satisfied in the case of a finite number of propositions
closed under ∧ and ¬. In general we can think of the Ci ’s as formed by combining
all propositions of interest through ∧’s. The whole σ -algebra F is generated by the
Ci’s.

Let now the sub-σ -algebra B be generated by {Bj }, partly a subset of {Ci} and
partly formed by taking ∨ of some Ci , such that Bj ∧ Bk = ⊥ for pairs and such
that � = ∨

j Bj . Then we can define

P(A|B) =
∑

j

P (A|Bj )1(Bj ),

where 1(Bj ) = 1 if Bj is true, 0 if it is not true. From this, P(A|B) is uniquely
defined except on a set with probability 0. The analogue of the Radon-Nikodym
definition (2.1) is then

∫

B

P(A|B)dP = P(A ∧ B)

for all B ∈ B. One of the open questions of this book is whether this formula can be
generalized in the context of propositional logic, and then can be taken as a general
definition of P(A|B).

In the probabilistic treatment I assumed in Sect. 3.1 that the observations and
the parameters could be defined on the same underlying probability space. In the
present setting I assume that all statements regarding conceptual variables can be
given as compatible propositions. The concept of an epistemic process is central
in this book. Before any observations are made, all statements of the form θ = u

are unknown, where θ is the relevant epistemic variable. After the observations are
done, some propositionAk : (θ = uk) is known to some agent i in the simplest case.
The statement that Ak is known to agent i may be written KiAk, and the statement
that agent j knows that i knowsAk may be written KjKiAk . A survey of the formal
propositional logic related to such statements is given by Halpern (1995).
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