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Preface

There has been much demand for the statistical inference for dependent observa-
tions in many fields, such as economics, finance, biology, and engineering. A model
that describes the probability structure of a series of dependent observations is
called a stochastic process. The primary aim of this book is to discuss the non-
parametric methods such as empirical likelihood method and quantile method for
such stochastic processes. We deal with a wide variety of stochastic processes, for
example, non-Gaussian linear processes, a-stable processes, and sinusoid models.
We develop new estimation and hypothesis testing theory and discuss the effi-
ciency, robustness, and optimality from the point of view of prediction problem for
the stochastic processes. This book is designed for the researchers who specialize in
or are interested in time series analysis.

Chapter 1 reviews the elements of stochastic processes. Especially, we introduce
the Gaussian processes and a-stable processes for preparation. We also discuss the
prediction problem, interpolation problem, and extrapolation problem for such
processes in the frequency domain. Chapter 2 deals with the parameter estimation
problem for stationary time series. We review several methods in minimum contrast
estimation and formulate a new class of disparities for parameter estimation. The
efficiency and robustness of the new disparities are discussed with numerical sim-
ulations. Chapters 3 and 4 focus on the nonparametric approach for time series
analysis. The quantile methods in the frequency domain are discussed in Chap. 3.
The scope of the methods is considered from second-order stationary processes to
sinusoid models. Chapter 4 discusses the empirical likelihood methods for the
pivotal quantity in the frequency domain. We investigate the asymptotic theory
of the empirical likelihood ratio statistics for the linear processes with finite variance
innovations and infinite variance innovations. Chapter 5 constructs another robust
estimation/testing procedure, called self-weighting method for time series models.
We generalize the empirical likelihood method to the self-weighted version and
derive the pivotal limit distributions of the proposed statistics. Application of the
GEL to the change point test of possibly infinite variance process is also discussed.

We have many people to thank. We thank Prof. Murad S. Taqqu for enlightening
us to a-stable processes. We also thank Profs. Hans R. Künsch, Richard A. Davis,
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Thomas Mikosch, and Claudia Klüppelberg for the suggestion on the statical
inference for the infinite variance processes. We have also collaborated with Profs.
Marc Hallin, Holger Dette, Roger Koenker, Ngai-Hang Chan, Anna C. Monti,
Thomas Diccio, and Yoon-Jae Whang in the quantile and empirical likelihood
methods for time series. Professors Yoshihide Kakizawa and Hiroaki Ogata pro-
vided us with high-level information for the empirical likelihood method for time
series. We deeply thank all of these people. Finally, research by the first author was
supported by JSPS Grant-in-Aid for Young Scientists (B) (17K12652), and the book
was written while he was at Waseda University and belongs to Kyoto University and
RIKEN AIP. Research by the second author was supported by JSPS Grant-in-Aid for
Young Scientists (B) (16K16022) and was done at the Research Institute for Science
& Engineering, Waseda University. Research by the third author was supported by
JSPS Grant-in-Aid Kiban (A) (15H02081) and Kiban (S) (18H05290) and was done
at the Research Institute for Science & Engineering, Waseda University.

Our thanks also go to the editor of JSS-Springer Series, Prof. Naoto Kunitomo,
for his valuable comments to finalize the manuscripts into a book form. We also
thank Mr. Yutaka Hirachi and Ms. Suganya Gnanamani for their great patience and
cooperation in the final production of the book.
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Tokyo, Japan Fumiya Akashi
Tokyo, Japan Masanobu Taniguchi
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Chapter 1
Introduction

Abstract In this chapter, we describe some basic properties of stationary time series.
Two fundamental approaches to time series analysis have been developed so far. One
is the time-domain approach, and the other is the frequency-domain approach. In this
book, we place the emphasis on the frequency-domain approach to analyzing sta-
tionary time series. Prediction problems, including interpolation and extrapolation
problems, are discussed for stationary time series. In particular, we clarify the con-
struction of a robust linear interpolator and extrapolator.

1.1 Stationary Time Series

A time series is supposed to be a realization of a family of random variables {X (t) :
t ∈ T }. Such a family of random variables is called a stochastic process. The precise
mathematical definition is as follows.

Definition 1.1 A stochastic process is a family of random variables {X (t) : t ∈ T }
defined on a probability space (Ω,F , P).

In this book, we only consider the case that T is a countable set. LetT be the set of
all vectors {t = (t1, t2, . . . , tn)T ∈ T n : t1 < t2 < · · · < tn}. The finite-dimensional
joint distribution function of the stochastic process {X (t)} is defined as follows.

Definition 1.2 Consider the stochastic process {X (t) : t ∈ T }. For t ∈ T , the func-
tion Ft(·), defined as

Ft (x) = P(X (t1) < x1, X (t2) < x2, . . . , X (tn) < xn), x = (x1, x2, . . . , xn)
T ∈ R

n,

is called the finite-dimensional joint distribution of {X (t)}. For any measurable func-

tion g : R
n → R

m of a random vector X :=
(
X (t1), X (t2), . . . , X (tn)

)T
, the expec-

tation of g is defined as

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
Y. Liu et al., Empirical Likelihood and Quantile Methods for Time Series,
JSS Research Series in Statistics, https://doi.org/10.1007/978-981-10-0152-9_1
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2 1 Introduction

E[g(X)] =
∫

Rn

g(x) dFt(x).

The variance matrix of g(X) is defined as

Var [g(X)] = E
(
g(X) − E[g(X)] )

(
g(X) − E[g(X)] )T,

and the covariance of the random variables X (t1) and X (t2) is defined as

Cov
(
X (t1), X (t2)

) = E
[ (

X (t1) − E[X (t1)]
)(

X (t2) − E[X (t2)]
) ]

.

The following examples demonstrate some well-known stochastic processes.

Definition 1.3 (Gaussian process) A stochastic process {X (t)} is called aGaussian
process if and only if all the finite-dimensional joint distributions of {X (t)} are
multivariate normal.

Definition 1.4 (α-stable process) A stochastic process {X (t)} is called an α-stable
process if and only if all the finite-dimensional joint distributions of {X (t)} are
multivariate α-stable distributions. (See Definition 1.5.)

For completeness, we introduce multivariate α-stable distributions. Let X =
(X1, X2, . . . , Xd)

T ∈ R
d be a d-dimensional random vector and denote its char-

acteristic function by φ(t), i.e.,

φ(t) = E exp(i tTX).

In addition, let Sd be a (d − 1)-dimensional surface of a unit sphere in R
d , i.e.,

Sd = {x ∈ R
d : ||x|| = 1}.

Definition 1.5 Let 0 < α < 2. A random vector X is said to follow a multivariate
α-stable distribution in R

d if and only if there exist a vector µ ∈ R
d and a finite

measure Γ on Sd such that the following hold:

(a) if α �= 1,

φ(t) = exp
{
i tTµ −

∫

Sd
|tTs|α(

1 − isign(tTs) tan
(
πα/2

))
Γ (ds)

}
,

(b) if α = 1,

φ(t) = exp
{
i tTµ −

∫

Sd
|tTs|

(
1 + i

2

π
sign(tTs) log |tTs|)Γ (ds)

}
.

For more on α-stable distributions, see Samoradnitsky and Taqqu (1994) and Nolan
(2012).

Now, we introduce the concept of stationarity for a stochastic process. To be
specific, let T = Z. Such a stochastic process is referred to as a time series.
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Definition 1.6 A time series {X (t) : t ∈ Z} is strictly stationary if the random vec-
tors (X (t1), X (t2), . . . , X (tk))T and (X (t1 + h), X (t2 + h), . . . , X (tk + h))T have
the same joint distribution for all positive integers k and all t1, t2, . . . , tk, h ∈ Z.

As an alternative to strict stationarity, a useful concept is “second-order stationary”
defined as follows.

Definition 1.7 A time series {X (t) : t ∈ Z} is second-order stationary if there exist
a constant m and a sequence {γ (h) : h ∈ Z} such that

m = EX (t), for all t ∈ Z,

γ (h) = Cov(X (t), X (t + h)), for all t, h ∈ Z,

γ (0) < ∞.

The function γ (·) is called the autocovariance function of the process {X (t)}.
Note that in Definition 1.7, a finite variance at any fixed time point is required for

the time series. A strictly stationary process with finite second moments is second-
order stationary. To facilitate a precise understanding of Definitions 1.6 and 1.7, we
provide two examples.

Example 1.1 A second-order stationary Gaussian time series is strictly stationary.

Example 1.2 Even if an α-stable process is strictly stationary, if α �= 2, then the
α-stable process does not satisfy the conditions in Definition 1.7, i.e., the strictly
stationary α-stable process is not second-order stationary.

For the sake of brevity, we abbreviate “second-order stationary” as “stationary”
hereafter. We introduce the nonnegative definiteness of a function as follows.

Definition 1.8 (Nonnegative definiteness) A real-valued function ζ : Z → R is said
to be nonnegative definite if and only if

n∑
i, j=1

aiζ(ti − t j )a j ≥ 0

for all positive integers n and all vectors a = (a1, a2, . . . , an)T ∈ R
n and t =

(t1, t2, . . . tn)T ∈ Z
n .

The autocovariance function γ is nonnegative definite. To see this property, let

Y t =
(
X (t1) − EX (t1), X (t2) − EX (t2), . . . , X (tn) − EX (tn)

)T
andΓn = [γ (ti −

t j )]ni, j=1.
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n∑
i, j=1

aiζ(ti − t j )a j = aTΓna

= aT
(
E Y tYT

t

)
a

= E
(
aTY t

)(
YT

t a
)

= Var [aTY t ]
≥ 0.

In addition, the spectral distribution function of a stationary time series {X (t)} charac-
terizes the behavior of the autocovariance function γ (·). Note that the autocovariance
function γ can be regarded as a self-adjoint operator. Since every self-adjoint oper-
ator has an associated projection-valued measure, we obtain the following spectral
theorem. This is well known as Herglotz’s theorem.

Theorem 1.1 (Herglotz’s theorem) A complex-valued function γ defined on Z is
nonnegative definite if and only if

γ (h) =
∫ π

−π

exp(ihλ)dF(λ) for all h ∈ Z,

where F is a right-continuous, nondecreasing, and bounded function on Λ =
[−π, π ] and F(−π) = 0.

Let {X (t)} be a zero-mean stationary process with a spectral distribution function
F . An analytic comprehension of stationary processes is stated in the following
spectral representation of {X (t)}.
Definition 1.9 (L p-spaces) Let (X ,B, μ) be a measure space and 0 < p ≤ ∞.
L p(X ,B, μ) is defined as

L p(X ,B, μ) =
{
f :

∫

X
| f |p dμ < ∞}

, for 0 < p < ∞,

and
L∞(X ,B, μ) =

{
f : μ(| f | > K ) = 0 for some K ∈ (0,∞)

}
.

Here, the absolute value | f | of a complex-valued function f is defined as | f |2 = f f̄ ,
where f̄ denotes the complex conjugate of f . In particular, whenX = Λ is coupled
with a measure F and its measurable sets, we abbreviate the notation as L p(F).

Definition 1.10 (Closed linear span) The closed span of any subset S of a space
X is defined to be the smallest closed linear subspaceS which is generated by the
elements of S and contains all of the limit points under the norm of X . Especially,
we denote the closed linear span by sp, i.e., S = sp S.
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Let K = sp{X (t) : t ∈ Z} and L = sp{exp(i t ·) : t ∈ Z} be subspaces in
L2(Ω,F , P) and L2(F), respectively. There exists a unique linear isomorphism
I : K → L , i.e., from the random variables in the time domain to the functions
on [−π, π ] in the frequency domain. Let Z(λ) = I −1(1[−π, λ](·)) and define the
linear isomorphism

I( f ) =
∫ π

−π

f (μ) Z(dμ).

It can be shown that I = I −1 if we pay attention to each dense set of L2(Ω,F , P)

and L2(F). The following spectral representation of {X (t)} holds.
Theorem 1.2 A zero-mean stationary process {X (t) : t ∈ Z} with a spectral distri-
bution function F admits an expression in terms of a right-continuous orthogonal
increment process {Z(λ),−π ≤ λ ≤ π} such that

(i) X (t) = ∫ π

−π
exp(−i tμ)Z(dμ) with probability one;

(ii) E |Z(λ) − Z(−π)|2 = F(λ), where −π ≤ λ ≤ π .

The right-continuous orthogonal increment process {Z(λ),−π ≤ λ ≤ π} has the
following properties:

(i) EZ(λ) = 0;
(ii) E |Z(λ)|2 < ∞;

(iii) E
(
Z(λ4) − Z(λ3)

)(
Z(λ2) − Z(λ1)

) = 0 if (λ1, λ2] ∩ (λ3, λ4] = ∅;
(iv) E |Z(λ + δ) − Z(λ)|2 → 0 as δ → 0.

This expression enables us to consider prediction problems for stationary processes
in the frequency domain.

1.2 Prediction Problem

Let us consider prediction problem for a real-valued zero-mean stationary process
{X (t) : t ∈ Z}. For the process {X (t)}with finite second moments, the optimality of
predictors is often evaluated by themean square error. To be precise and simple, let us
first consider the 1-step ahead prediction problem.Without loss of generality, suppose
we predict X (0) by observations {X (t) : t ∈ S1}, where S1 = {x ∈ Z : x ≤ −1}.
The prediction error under the mean square error is given by

MSE(a) := E
∣∣∣X (0) −

∞∑
j=1

a j X (− j)
∣∣∣
2
, a = (a1, a2, . . .), (1.1)

and the prediction problem is to solve the problem min{ai }∞i=1
MSE(a).

We interpret the 1-step ahead prediction problem in the frequency domain by the
isomorphismI . Applying the spectral representation of {X (t)} in Theorem 1.2, we
have
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min
{a j }∞j=1

E
∣∣∣X (0) −

∞∑
j=1

a j X (− j)
∣∣∣2 = min

{a j }∞j=1

E
∣∣∣
∫ π

−π
Z(dλ) −

∞∑
j=1

∫ π

−π
a j exp(i jλ)Z(dλ)

∣∣∣2

= min
{a j }∞j=1

E
∣∣∣
∫ π

−π

(
1 −

∞∑
j=1

a j exp(i jλ)
)
Z(dλ)

∣∣∣2

= min
φ∈L 2(S1)

∫ π

−π
|1 − φ(λ)|2F(dλ), (1.2)

where φ(λ) = ∑∞
j=1 a j exp(i jλ) and L 2(S1) denotes the closed linear subspace

of L2(F) generated by the set {ei jλ : j ∈ S1}. The third equality follows from the
orthogonal increment property of the process Z(λ).

To keep the argument simple, suppose there exists a spectral density f , the deriva-
tive of F , of the stationary process {X (t)}. Rewriting the right-hand side of (1.2),
we obtain the 1-step ahead prediction problem

min
φ∈L 2(S1)

∫ π

−π

|1 − φ(λ)|2 f (λ)dλ. (1.3)

For the prediction problem, the following formula is well known. The formula is
due to Szegö (1915) in the case that the spectral density f exists, with the extension
to the general case (1.2) due to Kolmogorov in his papers Kolmogorov (1941b)
and Kolmogorov (1941a). A polished extension is discussed in Koosis (1998). We
substantially follow Brockwell and Davis (1991). The proof other than ours for
(1.2) could be found in Helson and Lowdenslager (1958), whose approach is clearly
exhibited in Hoffman (1962) and Helson (1964). See also Hannan (1970).

Theorem 1.3 (Kolmogorov’s formula) Suppose the spectral density f of the real-
valued stationary process {X (t)} is continuous on Λ and is bounded away from 0.
The 1-step ahead prediction problem error of the process {X (t)} is

σ 2 := min
φ∈L 2(S1)

∫ π

−π

|1 − φ(λ)|2 f (λ)dλ = 2π exp
{ 1

2π

∫ π

−π

log f (λ)dλ
}
. (1.4)

Proof (Brockwell and Davis (1991)) Note that the Taylor expansion of log(1 − z) is

log(1 − z) = −
∞∑
j=1

z j

j
, |z| < 1. (1.5)

We first suppose f (λ) has the following expression, i.e.,

f (λ) = g(λ) := σ 2

2π

∣∣∣1 − g1e
−iλ − · · · − gpe

−i pλ
∣∣∣
−2

, (1.6)
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where g(z) ≡ 1 − g1z − · · · − gpz p �= 0 for |z| ≤ 1. For any fixed p, we see that
there exists a real constant Mg such that

∑p
j=1 |g j | ≤ Mg . At the same time, since

the spectral density f in continuous on the compact setΛ, there exists a real constant
M f such that f (λ) ≤ M f uniformly in λ. Thus, we have

∫ π

−π

∣∣∣
p∑

j=1

g je
−i jλ

∣∣∣
2
f (λ)dλ ≤

∫ π

−π

p∑
j=1

p∑
k=1

|g j ||gk | f (λ)dλ

≤ 2πM2
g M f .

Therefore,
∑p

j=1 g je−i jλ ∈ L 2(S1) and we obtain

min
φ∈L 2(S1)

∫ π

−π

|1 − φ(λ)|2g(λ)dλ = σ 2.

A direct computation by (1.5) leads to

∫ π

−π

log g(λ)dλ =
∫ π

−π

log
( σ 2

2π

)
dλ −

∫ π

−π

log
∣∣∣1 − g1e

−iλ − · · · − gpe
−i pλ

∣∣∣
2
dλ

= 2π log
( σ 2

2π

)
.

Thus, the right-hand side of (1.4) is

2π exp
{ 1

2π

∫ π

−π

log g(λ)dλ
} = σ 2.

Now,we justify the expression (1.6) is sufficiently general. That is, for any positive
ε and any symmetric continuous spectral density f bounded away from0, there exists
a spectral density g such that

| f (λ) − g(λ)| < ε, λ ∈ [−π, π ]. (1.7)

Actually, from Corollary 4.4.2 in Brockwell and Davis (1991), the inequality (1.7)
holds. Thus the set of g(λ) is dense in the set of symmetric continuous spectral
densities.

Returning back to (1.4), one can see that σ 2 is a linear functional of f (λ). By the
Cauchy–Schwarz inequality, it holds that for some fixed M ∈ R,

min
φ∈L 2(S1)

∫ π

−π

|1 − φ(λ)|2 f (λ)dλ ≤ min
φ∈L 2(S1)

∣∣∣
∫ π

−π

|1 − φ(λ)|4dλ

∣∣∣
1/2|| f ||L2 ≤ M || f ||L2 .

The second inequality holds since 0 ∈ L 2(S1). Therefore, we obtain the second
equality in (1.4) since it holds on a dense set in the set of symmetric continuous
spectral densities, and the linear functional σ 2 is continuous. �
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An important result for the stationary process is the Wold decomposition. We
leave the detail to other literature such as Hannan (1970) and Brockwell and Davis
(1991). Let Ms beMs = sp{X(t) : −∞ < t ≤ s}.
Theorem 1.4 (The Wold decomposition) Suppose σ 2 > 0. A stationary process
{X (t) : t ∈ Z} has the following unique expression:

X (t) =
∞∑
j=0

ψ j Z(t − j) + V (t),

where

(i) ψ0 = 1 and
∑∞

j=0 ψ2
j < ∞;

(ii) {Z(t)} is a sequence of uncorrelated random variables with variance σ 2;
(iii) for each t ∈ Z, Z(t) ∈ Mt ;
(iv) for all s, t ∈ Z, E Z(t)V (s) = 0;
(v) for each t ∈ Z, V (t) ∈ M−∞;
(vi) {V (t)} is deterministic.
A linear time series is a useful model for time series analysis. The model is usually
used in economics and finance (e.g., Box and Jenkins (1976), Hamilton (1994),
Lütkepohl (2005) and Taniguchi and Kakizawa (2000)). Below are some concrete
examples.

Example 1.3 The process {X (t) : t ∈ Z} is an ARMA(p, q) process if {X (t)} is
stationary and for any t ∈ Z,

X (t) − b1X (t − 1) − · · · − bpX (t − p) = Z(t) + a1Z(t − 1) + · · · + aq Z(t − q),

(1.8)
where {Z(t)} is a sequence of zero-mean and uncorrelated random variables with
variance σ 2. Especially, if p = q = 0, then the process is called white noise. For the
ARMA process (1.8), the spectral density fX (λ) of {X (t)} is

fX (λ) = σ 2

2π

|1 + ∑q
k=1 ake

−ikλ|2
|1 − ∑p

j=1 b j e−i jλ|2 . (1.9)

Several examples of the spectral function FX (λ) are given in Fig. 1.1.
Let us introduce the pth quantile λp of the spectral distribution function FX (λ).

For simplicity, writeΣX := RX (0). Note that the spectral distribution function FX (λ)

takes values on [0,ΣX ]. The generalized inverse distribution function F−1
X (ψ) for

0 ≤ ψ ≤ ΣX is defined as

F−1
X (ψ) = inf{λ ∈ Λ ; FX (λ) ≥ ψ}.

For 0 ≤ p = Σ−1
X ψ ≤ 1, we define the pth quantile λp as
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λp := F−1
X (pΣX ) = inf{λ ∈ Λ ; FX (λ)Σ−1

X ≥ p}. (1.10)

The statistical inference for the quantile λp is discussed in Chap.3.

Example 1.4 The stationary process {X (t) : t ∈ Z} is a linear process with finite
variance innovations if there exists a sequence {ψ j } such that

∑∞
j=0 |ψ j | < ∞ and

X (t) =
∞∑
j=0

ψ j Z(t − j), (1.11)

where {Z(t)} is a sequenceof zero-mean anduncorrelated randomvariableswith vari-
ance σ 2. If {Z(t)} is a sequence of i.i.d. random variables distributed as α-stable dis-
tribution and

∑∞
j=0 |ψ j |δ < ∞ for some δ ∈ (0, α) ∩ [0, 1], then the process {X (t)}

defined by (1.11) exists with probability 1 and is strictly stationary. In this case, we
call the process {X (t)} a linear process with infinite variance innovations.

Let us consider the existence of the generalized linear process {X (t)}with infinite
variance. First, suppose 1 < α < 2. In other words, E |Zt | < ∞. Accordingly,

E |X (t)| ≤ E
( ∞∑

j=0

|ψ j Z(t − j)|
)

=
∞∑
j=0

|ψ j | E |Z(t − j)|

≤
{ ∞∑

j=0

|ψ j |δ
}1/δ

E |Z(t)| < ∞.

Therefore, the process {X (t)} is finite with probability 1.
Let us consider the other case of 0 < α ≤ 1. Again, we can evaluate the absolute

δth moment by the triangle inequality as follows:

E |X (t)|δ ≤ E
∣∣∣

∞∑
j=0

ψ j Z(t − j)
∣∣∣
δ

≤ E
∞∑
j=0

|ψ j |δ|Z(t − j)|δ

=
∞∑
j=0

|ψ j |δE |Z(t)|δ < ∞,

since δ ∈ (0, α). Therefore, the process {X (t)} is finite with probability 1.

The statistical inference for the linear time series is described in the following
chapters.Before that,wekeep studying important properties of the stationary process.
Especially, we consider the interpolation and extrapolation problem of stationary
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Fig. 1.1 Some examples of spectral distribution F(λ) of stationary process {X (t)}

process, which stems from the prediction problem. The optimal interpolator and
extrapolator are derived in both cases that the spectral density of the process is
identified and not.

1.3 Interpolation and Extrapolation Problem

In this section, we consider interpolation and extrapolation problems of stationary
processes. The interpolation and extrapolation problem is an extension of the concept
of prediction for a stationary process. Some parts of this section are presented based
on Liu et al. (2018).

The genuine interpolation problem for a stationary process is defined as fol-
lows. Suppose that all the values of the process {X (t) : t ∈ Z} are observed except
for X (0). The interpolation problem is to look for a linear combination X̂(0) =∑

j �=0 a j X ( j) that provides a good approximation of X (0).
The extrapolation problem for a stationary process is more abstract. Suppose

that some values before X (0) of the process {X (t) : t ∈ Z} are observed. As in the
previous section, define the set S1 as S1 = {x ∈ Z : x ≤ −1}. A precise formulation
of the extrapolation problem is to assume that the values on the subsetU ⊂ S1 of the
process {X (t)} are observed. The extrapolation problem is then to look for a linear
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combination X̂(0) = ∑
j∈U a j X ( j) which provides a good approximation of X (0).

For instance, the 1-step ahead prediction problem is an extrapolation problem.
If we follow the consideration in Sect. 1.2 for the prediction problem, then we

can see that both the interpolation and extrapolation problems can be formulated in
the frequency domain. That is, the interpolation and extrapolation problems are to
find φ̂(λ) such that

φ̂(λ) = arg min
φ∈L 2(S)

∫ π

−π

|1 − φ(λ)|2 f (λ)dλ, (1.12)

where S is an adequate set of observations from the stationary process {X (t)}.
The interpolation and extrapolation problems depend on the choice of the set S.

This is described precisely in the following. Without loss of generality, we assume
that X (0) is always missing. Denote all the positive integers by Z+ and all the neg-
ative integers by Z−. We suppose that the observation set of the time series is given
by {X (t) : t ∈ S}, where S = S− ∪ S+, S− ⊂ Z− and S+ ⊂ Z+. The interpolation
problem corresponds to the case S satisfying S− �= ∅ and S+ �= ∅, while the extrap-
olation problem corresponds to the case that S ( �= ∅) satisfies S− = ∅ or S+ = ∅.

Several possible choices of the set S are given below.

Example 1.5 Some well-known choices of the set S are in the following:

• S1 = {. . . ,−3,−2,−1}: the 1-step ahead prediction problem;
• S2 = {. . . ,−3,−2,−1} ∪ {1, 2, 3, . . .}: the interpolation problem;
• S3 = {. . . ,−3,−2,−1} \ {−k}: the incomplete past prediction problem;
• S4 = {. . . ,−k − 2,−k − 1,−k}: the k-step ahead prediction problem.

Recall that the expression (1.12) stems from the spectral representation of {X (t)}
and the evaluation under the mean square error. Let us consider a more general
problem, which is motivated by the work in Wald (1939) and Wald (1945). In the
literature, it is suggested that the minimization problem

min
θ

∫

R

L(θ, x)P(dx) (1.13)

is preferable, where L(θ, x) is a loss function of parameters and observations, and
P(x) is the distribution function of i.i.d. random variables. The reason why the
minimization method (1.13) is preferable is that the distribution function P of i.i.d.
randomvariables is uncertain in nature.Although the formulation (1.13) is considered
for i.i.d. observations, it is also possible to formulate the procedure for a stationary
process as follows.

For a stationary process {X (t)}, it is reasonable to regard the spectral distribution
F(λ) as “its distribution”. Motivated by the equation (1.13), the extension of the
mean square error to other functional norms is possible. From this point on, we
discuss the following interpolation and extrapolation problem
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φ̂(λ) = arg min
φ∈L (S)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ, p ≥ 1, (1.14)

whereL (S) denotes the closed linear span of the set {ei jλ : j ∈ S} in L p( f ). Under
the formulation (1.14), we call φ̂(λ) “the optimal interpolator (or extrapolator)”.

To treat the minimization problem (1.14), we use a technique, known as the dual
method, in the field of complex analysis. We first introduce the Hardy space as
follows. Let D be the unit disk with center 0. The Hardy space H p(D) is a space
consisting of all the holomorphic functions f on the open unit disk with

{ 1

2π

∫ π

−π

| f (reiλ)|pdλ
}1/p

< ∞,

as r → 1−. Define the norm of f in H p(D) as

|| f ||p = lim
r→1−

{ 1

2π

∫ π

−π

| f (reiλ)|pdλ
}1/p

.

From now on, we also write the function f using the expression f (z) ≡ ∑∞
k=0 fk zk ,

|z| < 1, which is a function of a complex variable z, where { fk} denote the Fourier
coefficients of the spectral density f .

We always suppose that q satisfies 1/p + 1/q = 1 in the following to exploit the
dual method. We discuss the derivation of the optimal extrapolator and interpolator
in each case S = S4, S1, S2, which are exemplified in Example 1.5.

Case S = S4
Let us first consider the extrapolation problem of S = S4, i.e., the minimization
problem

min
φ∈L (S4)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ. (1.15)

Let O(z) be defined as

O(z) = exp
( 1

2πp

∫ π

−π

eiλ + z

eiλ − z
log f (eiλ)dλ

)
. (1.16)

Thus, O p is the outer function of f , and |O(eiλ)p| = f (eiλ) almost everywhere
(a.e.). (c.f. Hoffman (1962).) Suppose that the Fourier coefficients of O p/2 are given
by {c j } and that the polynomial up to the (k − 1)th order is denoted by the polynomial
operator pk such that

pk(O
p/2)(z) ≡

k−1∑
j=0

c j z
j .
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Assume that the polynomial pk(O p/2) has no zeros inD . The expression of optimal
extrapolator φ̂ is given in the following theorem.

Theorem 1.5 Let S = S4. Suppose that f is nonnegative and integrable, log f ∈ L1.
The optimal extrapolator φ̂ of (1.15) is

φ̂(λ) = 1 −
(
p2/pk (O p/2)

)
(e−iλ) O−1(e−iλ) a.e.

The minimum error of (1.15) is

min
φ∈L (S4)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ =
k−1∑
j=0

|c j |2.

Proof Let S̄4 be S̄4 = {k, k + 1, k + 2, . . .}. It holds that H p(D) = e−ikλL (S̄4).
We embed the problem (1.15) into the Hardy space H p(D) to find the optimal
extrapolator φ̂ as follows. In fact,

min
φ∈L (S)

{ ∫ π

−π

|1 − φ(λ)|p f (λ)dλ
}1/p

= min
φ∈L (S4)

{ ∫ π

−π

|1 − φ(λ)|p f (λ)dλ
}1/p

= min
φ∈L (S4)

{ ∫ π

−π

|e−ikλO(eiλ) − e−ikλφ̄(λ)O(eiλ)|pdλ
}1/p

= min
g∈H p(D )

{ ∫ π

−π

|e−ikλO(eiλ) − g(λ)|pdλ
}1/p

(say), (1.17)

where we have the relation

g(λ) = e−ikλφ̄(λ)O(eiλ) a.e. ∈ H p(D). (1.18)

Now, we focus on the function e−ikλO(eiλ) in (1.17). Let P be P = pk(O p/2).

It holds that z−k
(
O(z) − P2/p(z)

) ∈ H p(D). To see this, note that O p/2 − P is

analytic. Let us expand O p/2 − P around the neighborhood of z = 0 as follows:

O p/2(z) − P(z) =
∞∑
n=0

anz
n,

where a0 = a1 = · · · = ak−1 = 0. Then it also holds that

O(z) − P2/p(z) =
∞∑
n=0

bnz
n,



14 1 Introduction

where b0 = b1 = · · · = bk−1 = 0, which can be shown by applying the chain rule as
follows:

b0 = O(0) − P2/p(0)

= O(0) −
(
O(0)p/2 − a0

)2/p

= 0,

b1 = O ′(0) − (P2/p)′(0)

= 2

p
{O p/2(0)}2/p−1

(
O p/2)′

(0) −
{ 2

p
P(0)2/p−1}P ′(0)

=
{ 2

p
P(0)2/p−1

}{(
O p/2

)′
(0) − P ′(0)

}

=
{ 2

p
P(0)2/p−1

}
a1

= 0,

and similarly, b2 = b3 = · · · = bn = 0 since a0 = a1 = · · · = ak−1 = 0. Therefore,
it holds that z−k(O − P2/p)(z) ∈ H p(D).

Let uswrite e−ikλO(eiλ) in (1.17) as e−ikλO(eiλ)=e−ikλ
(
O(eiλ) − P2/p(eiλ)

) +
e−ikλP2/p(eiλ). Then the minimization problem (1.17) is equivalent to

min
g∗∈H p(D )

||e−ikλP2/p − g∗(λ)||p, (1.19)

where
g∗(λ) = g(λ) − e−ikλ

(
O(eiλ) − P2/p(eiλ)

)
a.e. (1.20)

From Theorem 8.1 in Duren (1970), it holds that

min
g∗∈H p(D )

||e−ikλP2/p − g∗||p = max
K (z)∈Hq (D ),
||K (z)||q=1

1

2π

∣∣∣
∫

|z|=1
z−kP2/p(z)K (z)dz

∣∣∣

= max
K (z)∈Hq (D )

| ∫|z|=1 z
−kP2/p(z)K (z)dz|
2π ||K ||q . (1.21)

On the other hand, let K ∗(z) be

K ∗(z) = zkP(z)P(z)

P2/p(z)
.

For K ∗, it holds that
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||K ∗||q =
{

1
2π

( ∫
|z|=1 P(z)P(z)dz

)1/q
when p > 1;

1
2π when p = 1.

We also have the expression

||e−ikλP2/p||p = | ∫|z|=1 z
−kP2/p(z)K ∗(z)dz|
2π ||K ∗||q . (1.22)

Combining (1.21) and (1.22), we have

||e−ikλP2/p||p ≥ min
g∗∈H p(D )

||e−ikλP2/p − g∗||p

= max
K (z)∈Hq (D )

| ∫|z|=1 z
−kP2/p(z)K (z)dz|
2π ||K ||q

≥ | ∫|z|=1 z
−kP2/p(z)K ∗(z)dz|
2π ||K ∗||q

= ||e−ikλP2/p||p. (1.23)

From (1.23), it can be seen that the function g∗ = 0 is the minimizer of the extremal
problem (1.19). From (1.18) and (1.20), we obtain that

φ̂(λ) = 1 −
(
p2/pk (O p/2)

)
(e−iλ) O−1(e−iλ) a.e., (1.24)

which concludes Theorem 1.5. �
Case S = S1
Let S = S1 = {. . . ,−3,−2,−1}. The case that S = S1 is a special case of S = S4
when k = 1. From (1.16), we obtain

(
p2/p1 (O p/2)

)
(eiλ) = c0 = exp

( 1

2πp

∫ π

−π

log f (eiλ)dλ
)
.

From (1.24), we have

|1 − φ̂(λ)|p = 1

f (λ)
exp

( 1

2π

∫ π

−π

log f (λ)dλ
)
.

Hence, it holds that

min
φ∈L (S)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ = 2π exp
{ 1

2π

∫ π

−π

log f (λ)dλ
}
. (1.25)

Equation (1.25) shows nothing but Kolmogorov’s formula in Theorem 1.3.
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Case S = S2
Next, let us consider the case that S = S2 = {. . . ,−3,−2,−1} ∪ {1, 2, 3, . . .}, i.e.,
the interpolation problem

min
φ∈L (S2)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ. (1.26)

The expression of the optimal interpolator φ̂ is given in the following theorem.

Theorem 1.6 Let S = S2. The optimal interpolator φ̂ of (1.26) is

φ̂(λ) = 1 − (2π) f (λ)−q/p

∫ π

−π
f (λ)−q/pdλ

a.e. (1.27)

(i) If p > 1 and f −q/p ∈ Ls for some s > 1, then the minimum error of (1.26) is

min
φ∈L (S2)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ = (2π)p
( ∫ π

−π

f (λ)−q/pdλ
)−p/q

.

(ii) If p = 1, then the minimum error of (1.26) is

min
φ∈L (S2)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ = 2π

|| f −1||L∞
.

Proof Let us rewrite the minimum as follows.

min
φ∈L (S2)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ = min
φ∈L (S2)

∫ π

−π
|1 − φ(λ)|p f (λ)dλ

(2π)−p| ∫ π

−π
(1 − φ(λ))dλ|p . (1.28)

The right-hand side of (1.28) is scale invariant if we regard it as a function of 1 − φ.
We embed φ into the spaceL (S2 ∪ {0}) and change the problem into amaximization
problem as

min
φ∈L (S2)

∫ π

−π
|1 − φ(λ)|p f (λ)dλ

(2π)−p| ∫ π

−π
(1 − φ(λ))dλ|p

= min
g∈L (S2∪{0})

∫ π

−π
|g(λ)|p f (λ)dλ

(2π)−p| ∫ π

−π
g(λ)dλ|p

=
(

max
g∈L (S2∪{0})

(2π)−p| ∫ π

−π
g(λ)dλ|p∫ π

−π
|g(λ)|p f (λ)dλ

)−1

=
(

max
g∈L (S2∪{0})

(2π)−p| ∫ π

−π
g(λ) f (λ)1/p f (λ)−1/pdλ|p∫ π

−π
|g(λ) f (λ)1/p|pdλ

)−1

. (1.29)

From (1.28) and (1.29), it holds that
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min
φ∈L (S2)

( ∫ π

−π

|1 − φ(λ)|p f (λ)dλ
)1/p

= 2π

(
max

g∈L (S2∪{0})

∫ π

−π
g(λ) f (λ)1/p f (λ)−1/pdλ

||g f 1/p||L p

)−1

. (1.30)

If f −q/p ∈ Ls for some s > 1, then f −1/p ∈ Lq . Thus, from Theorem 7.1 in Duren
(1970), we have

max
g∈L (S2∪{0})

∫ π

−π
g(λ) f (λ)1/p f (λ)−1/pdλ

||g f 1/p||L p

= min
g∗:∫ π

−π
g f 1/pg∗dλ=0

∀g∈L (S2∪{0}), ∫ π

−π
gdλ �=0

|| f −1/p − g∗||Lq .

(1.31)

Let us consider the constraint condition for the minimization problem of the right-
hand side in (1.31). Observing that

∫ π

−π
g f 1/pg∗dλ = 0 holds for any g ∈ L (S2 ∪

{0}) and ∫ π

−π
gdλ �= 0, we come to the conclusion that g∗ = 0 a.e. Thus, from (1.30)

and (1.31), we have, if p > 1, then

min
φ∈L (S2)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ = (2π)p
( ∫ π

−π

f (λ)−q/pdλ
)−p/q;

if p = 1, then

min
φ∈L (S2)

∫ π

−π

|1 − φ(λ)|p f (λ)dλ = 2π

|| f −1||L∞
.

In addition, the optimal interpolator φ̂ is

φ̂(λ) = 1 − (2π) f (λ)−q/p

∫ π

−π
f (λ)−q/pdλ

a.e.

The existence of φ̂ is guaranteed by Carleson’s theorem in Hunt (1968). In fact, if
f −q/p ∈ Ls for some s > 1, then it holds that

lim
N→∞

N∑
n=−N

f̂ −q/p(n) · einλ = f (λ)−q/p a.e.,

where f̂ −q/p is the Fourier coefficient of the function f −q/p. This concludesTheorem
1.6. �

Example 1.6 Suppose that p = 2 in the case of S = S2. This is the classical interpo-
lation problem for stationary time series, which is evaluated under the mean square
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error. The optimal interpolator φ̂ is

φ̂(λ) = 1 − f (λ)−1
( 1

2π

∫ π

−π

f (λ)−1dλ
)−1

.

The minimum interpolation error is

min
φ∈L (S2)

∫ π

−π

|1 − φ(λ)|2 f (λ)dλ = 4π
( ∫ π

−π

f (λ)−1dλ
)−1

.

The extrapolation and interpolation problems are important subjects from a prac-
tical viewpoint. However, the assumption that the true spectral density f is known is
not natural in practice. The practitioner is required to estimate the true spectral density
f through some statistical methods and make use of extrapolation and interpolation
strategies after the estimation. The statistical estimation for the spectral density f
will be discussed in the next chapter.

1.4 Robust Interpolation and Extrapolation

In this section, we discuss robust interpolation and extrapolation problems. We have
seen that the optimal interpolator and extrapolator require the knowledge of the true
spectral density. Here, it is discussed here how we can deal with cases in which we
do not have the full knowledge of the spectral density. For this problem, it is usual
to assume that the spectral density f is contained in a contaminated class.

LetD denote the class of all spectral densities supported by the intervalΛ, where
the integral on Λ is 1. Suppose we have knowledge of a spectral density function h
which belongs to a classF of ε-contaminated spectral densities, that is,

F = {h ∈ D : h = (1 − ε) f + εg, g ∈ D}, 0 < ε < 1, (1.32)

where f is a fixed spectral density and g denotes a function with uncertainty which
ranges over the class D .

We define the minimax linear interpolator (or extrapolator) by φ∗, which min-
imizes the maximal interpolation error (or extrapolation error) with respect to h,
i.e.,

max
h∈F

∫ π

−π

|1 − φ∗(λ)|ph(λ)dλ = min
φ∈L (S)

max
h∈F

∫ π

−π

|1 − φ(λ)|ph(λ)dλ, (1.33)

whereL (S) denotes the intersection ∩h∈F L h(S). Here,L h(S) is the closed linear
span of the set {ei jλ : j ∈ S} in L p(h) for any spectral density h ∈ F . We adopt the
minimax principle as the criterion of the optimality.
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Fig. 1.2 The yellow line denotes the spectral density f , the green line represents (1 − ε) f , and the
blue line shows the least favorable spectral density h∗. The set Ah and m := ess. infλ∈Λ h(λ) are
indicated by the black arrows and red arrow. As shown for interpolation and extrapolation problems,
G �= ∅ (Condition 1) if the known spectral density f is bounded away from 0. The least favorable
spectral density h∗ exists if there exists a spectral density g∗ ∈ G (Condition 2)

Let ess. sup f (or ess. inf f ) denote the essential supremum (or infimum) of the
function f , and let μ be the Lebesgue measure on Λ. For any fixed spectral density
h, let φ̂h be the optimal interpolator (or extrapolator) with respect to the spectral
density h, which has already been discussed in Sect. 1.3, and let the set Ah(⊂ Λ) be

Ah = {λ ∈ Λ : |1 − φ̂h(λ)|p = ess. sup
λ∈Λ

|1 − φ̂h(λ)|p}. (1.34)

In addition, define a class G of the uncertainty spectral density g as

G = {g ∈ D : μ(Ah) > 0 for h = (1 − ε) f + εg}. (1.35)

In general, the minimax interpolation and extrapolation problem (1.33) can be
solved under the following two conditions:

Condition 1. For the spectral density f and uncertainty class D , G �= ∅.

Condition 2. For the spectral density f , there exists a spectral density g∗ ∈ G ⊂ D
with h∗ = (1 − ε) f + εg∗, whose support is the set Ah∗ .

In fact, the spectral density h∗ is the least favorable spectral density in class F of
(1.32). An example of the least favorable spectral density is shown in Fig. 1.2.

Under Conditions 1 and 2, the optimal interpolator (or extrapolator) under uncer-
tainty exists, and it is described by the following theorem.

Theorem 1.7 If Conditions 1 and 2 hold, then we have

min
φ∈L (S)

max
h∈F

∫ π

−π

|1 − φ(λ)|ph(λ)dλ =
∫ π

−π

|1 − φ̂h∗(λ)|ph∗(λ)dλ. (1.36)
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The optimal interpolator (or extrapolator) φ∗ under uncertainty satisfies φ∗ = φ̂h∗ .

Proof Let us denote the interpolation (or extrapolation) error for the interpolator (or
extrapolator) φ with respect to the spectral density h by

e(φ, h) =
∫ π

−π

|1 − φ(λ)|ph(λ)dλ.

First, let us consider the maximization problem maxh∈F e(φ, h). From the property
of the classF in (1.32), this is equivalent to considering the maximization problem

(1 − ε)e(φ, f ) + εmax
g∈D

e(φ, g), (1.37)

since the spectral density f is fixed. From Hölder’s inequality, for any φ ∈ L (S) it
holds that

e(φ, g) ≤ |||1 − φ|p||L∞||g||L1 . (1.38)

Under Condition 1, e(φ, h) can attain its upper bound if g ∈ G ; otherwise, there
is no such h ∈ F . Note that the equation in (1.38) holds if the support of g is the
set Ah = {λ ∈ Λ : |1 − φ̂h(λ)|p = ess. supλ |1 − φ̂h |p}. Now, from Condition 2, we
have

max
g∈D

e(φ̂h∗ , g) = e(φ̂h∗ , g∗). (1.39)

Thus, from (1.37) and (1.39), it holds that

max
h∈F

e(φ̂h∗ , h) = (1 − ε)e(φ̂h∗ , f ) + εmax
g∈D

e(φ̂h∗ , g) = e(φ̂h∗ , h∗). (1.40)

In addition, from the definition of the interpolator (or extrapolator), it holds that

e(φ̂h∗ , h∗) = min
φ∈L (S)

e(φ, h∗). (1.41)

Combining (1.40) and (1.41), we have

max
h∈F

e(φ̂h∗ , h) = e(φ̂h∗ , h∗) = min
φ∈L (S)

e(φ, h∗).

Furthermore, for arbitrary φ ∈ L (S), it holds that

max
h∈F

e(φ, h) ≥ e(φ, h∗) ≥ min
φ∈L (S)

e(φ, h∗) = max
h∈F

e(φ̂h∗ , h). (1.42)

Consequently, if we take the minimum with respect to φ ∈ L (S) on both sides in
(1.42), then



1.4 Robust Interpolation and Extrapolation 21

min
φ∈L (S)

max
h∈F

∫ π

−π

|1 − φ(λ)|ph(λ)dλ =
∫ π

−π

|1 − φ̂h∗(λ)|ph∗(λ)dλ.

holds, since φ̂h∗ ∈ L (S), which concludes the equation (1.36) in Theorem 1.7. �

Example 1.7 Let us consider the minimax extrapolation problem for the case of
S = S1 in Example 1.5. In other words, we consider the minimax 1-step ahead
prediction problem. For an arbitrary spectral density h ∈ F , it follows fromTheorem
1.5 that

|1 − φ̂h(λ)|p = 1

h(λ)
exp

( 1

2π

∫ π

−π

log h(λ)dλ
)

a.e. (1.43)

We now show that there exists a unique spectral density h∗ ∈ F such that h∗ satisfies
Conditions 1 and 2. From the definition of the set Ah in (1.34) and the right-hand
side of (1.43), an equivalent form of the set Ah is

Ah =
{
λ ∈ Λ : |1 − φ̂h(λ)|p = ess. sup

λ∈Λ

1

h(λ)
exp

( 1

2π

∫ π

−π

log h(λ)dλ
)}

= {λ ∈ Λ : h(λ) = ess. inf
λ∈Λ

h(λ)}.

For an arbitrary spectral density h ∈ F , let m, Em and Fm be defined as

m = ess. inf
λ∈Λ

h(λ), Em = Ah, and Fm = Λ − Ah .

Suppose that there exists a least favorable spectral density h∗ such that μ(Em) > 0.
We show that there exists no contradiction.

Since μ(Em) > 0, let g∗ be distributed on the set Em . Thus, g∗ should be

g∗(λ) =
{
0 for, λ ∈ Fm,
m−(1−ε) f (λ)

ε
for λ ∈ Em,

since ess. infλ∈Λ h(λ) = m. From the fact that g∗ ∈ D , that is, the integral of g∗ is
1, m should satisfy the following equation:

∫

Em

m − (1 − ε) f (λ)

ε
dλ = 1. (1.44)

Also, from the facts that g∗ is nonnegative, μ(Em) > 0 and (1.43), the concrete
characterization of the decomposition of the interval Λ, by Em and Fm , should be

Em = {λ ∈ Λ : m ≥ (1 − ε) f (λ)}; (1.45)

Fm = {λ ∈ Λ : m < (1 − ε) f (λ)}.
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Noting that the left-hand side of equation (1.44), (1/ε)
∫
Em

m − (1 − ε) f (λ)dλ, is
an increasing and continuous function with respect to m in the domain [0,∞), the
solution to the determination ofm satisfying (1.44) and (1.45) exists uniquely. Thus,
the spectral density h∗(λ) satisfying Conditions 1 and 2, i.e.,

h∗(λ) =
{

(1 − ε) f (λ) for, λ ∈ Fm,

m for λ ∈ Em,
(1.46)

exists uniquely. Clearly, μ(Em) > 0 when ε > 0. From Theorem 1.7, the predictor
φ̂h∗ is the minimax 1-step ahead linear predictor. The solution in Hosoya (1978) is a
special case of our result for p = 2.

Example 1.8 Next, let us consider the minimax interpolation problem for the case
that S = S2 in Example 1.5. From Theorem 1.6, it holds that

|1 − φ̂h(λ)|p = (2π)ph−q(λ)

(
∫ π

−π
h−q/p(λ)dλ)p

a.e. (1.47)

Again, the set Ah is equivalent to the following definition:

Ah = {λ ∈ Λ : h(λ) = ess. inf
λ∈Λ

h(λ)}.

FromExample 1.7, there exists a unique spectral density h∗ ∈ F such that h∗ satisfies
Conditions 1 and 2 and h∗ is defined by (1.46). Therefore, from Theorem 1.7, the
minimax linear interpolator φ∗ is φ̂h∗ . We omit the details since the proof is similar
to the case that S = S1 in Example 1.7. In particular, the result in Taniguchi (1981b)
is a special case of ours for p = 2.

The above discussion is specialized to the case that the spectral distribution H
with uncertainty is absolutely continuous with respect to the Lebesgue measure.
When this is not the case, we must modify the optimal interpolator (or extrapolator)
φ∗. A detailed discussion can be found in Liu et al. (2018). It is shown that for the
modified interpolator (or extrapolator) φ̃, the following inequality:

max
H

∫ π

−π

|1 − φ̃(λ)|ph(λ)dλ <

∫ π

−π

|1 − φ̂h∗(λ)|ph∗(λ)dλ + δ (1.48)

holds for any δ > 0. The equation (1.48) shows that there exists an approximate
interpolator (or extrapolator) φ̃ in the case that the spectral distribution H is not
absolutely continuous with respect to the Lebesgue measure such that the interpo-
lation error (or extrapolation error) of φ̃ is arbitrarily close to that of φ∗ when the
spectral density h exists.

Finally, we show some numerical comparisons for the robust interpolation prob-
lem. Note that when the spectral density h is fixed, it follows from (1.47) that
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|1 − φ̂h(λ)|ph(λ) = (2π)ph1−q(λ)( ∫ π

−π
h−q/p(λ)dλ

)p ,

for any p ≥ 1. Suppose that the uncertain spectral density g is contained in the
following subfamily Ds , i.e.,

Ds = {g ∈ D : g(λ) = (2π)−kk(λ + π)k−1, k ∈ R
+}, (1.49)

and hence, the spectral density h is

h ∈ Fs = {h ∈ D : (1 − ε) f + εg, g ∈ Ds} ⊂ F ,

where R
+ denotes the positive real numbers. Note that the spectral density for a

real-valued stationary process is symmetric about the origin. We do not assume that
this is the case in our numerical studies. If one is interested in a real-valued stationary
process, then one can reduce the function along the x-axis direction to [ 0, π ], and
reverse the function on [0, π ] to [−π, 0] with respect to the y-axis.

Now, we change the parameter ε, p and the fixed spectral density f to see the
least favorable case in numerical studies in the following settings:

(i) fix p = 2 and f (λ) = 1/(2π) for λ ∈ Λ. ε = 0.1, 0.2, · · · , 0.9;
(ii) fix f (λ) = 1/(2π) for λ ∈ Λ and ε = 0.2. p = 1.2, 1.4, . . . , 3.0;
(iii) fix ε = 0.2 and p = 2. Let the spectral density f take the form fl as follows,

i.e.,
fl(λ) = (2π)−l l(λ + π)l−1, (1.50)

where we change the parameter l as l = 0.80, 0.85, . . . , 1.20;
(iv) fix ε = 0.2 and p = 1.2. Let the spectral density f take the same form (1.50)

as l = 0.80, 0.85, . . . , 1.20.

For the setting (i), let us first derive the least favorable spectral density h∗. To
specifym in (1.46), we focus on the decomposition of Λ as in (1.45). Here, Em = Λ

since f is constant and μ(Em) �= 0. From (1.44), it holds that

(2π)m − (1 − ε) = ε,

and hence m = 1/(2π). Thus, the least favorable spectral density h∗ is

h∗(λ) = f (λ) = 1

2π
. (1.51)

From (1.51), we observe that g∗(λ) = 1/(2π) ∈ Ds . It is the least favorable case
when k = 1. The numerical results are illustrated in Fig. 1.3.

For the setting (ii), we fix ε = 0.2. The least favorable spectral density h∗ is the
same as that in (1.51) from Example 1.8. Similarly, it is the least favorable case when
k = 1. The numerical results are displayed in Fig. 1.4. We do not include the case of
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Fig. 1.3 For setting (i), the optimal interpolation error takes itsmaximumwhen k = 1.Accordingly,
the least favorable spectral density h∗ is what we have shown in (1.51)

Fig. 1.4 For setting (ii), the optimal interpolation error takes its maximum when k = 1. Accord-
ingly, the least favorable spectral density h∗ is also what we have shown in (1.51)

p = 1 in our numerical results since Condition 1 is not satisfied for the case p = 1
as we consider the subfamily (1.49).

In the setting (iii), we fix ε = 0.2 and p = 2 and change the parameter l of
the spectral density fl . We explain how to determine the parameter m of the least
favorable spectral density h∗ for each l except for l = 1 in the following example.

Example 1.9 When the spectral density f takes the form (1.50), it is obvious that
the spectral density f is continuous on (−π, π). As what we have considered in
Example 1.7, except for the case that l = 1, the spectral density fl and m have an
intersection point and let it be λm . Hence, if 0 < l < 1, then m and λm satisfy

{
(1 − ε)

∫ λm

−π
fl(λ) dλ + m(π − λm) = 1,

(1 − ε) fl(λm) = m,
(1.52)
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Fig. 1.5 For setting (iii), the least favorable spectral density h∗ is not contained in the subfamily
Fs , except for the case that l = 1. This setting shows different aspects from settings (i) and (ii) in
that the constant uncertain spectral density (k = 1) is not the least favorable one in the subfamily
Ds

if l > 1, then m and λm satisfy

{
(1 − ε)

∫ π

λm
fl(λ) dλ + m(π + λm) = 1,

(1 − ε) fl(λm) = m.
(1.53)

Note that Eqs. (1.52) and (1.53) are not linear and they require some numerical
computations.

Now, let us focus on the subfamily (1.49) of uncertain spectral densities g. Note
that it is impossible to find the least favorable spectral density h∗ of (1.46) from the
subfamilyDs , except for the case that l = 1. That is to say, if l �= 1, then ḡ = 1/(2π)

does not make the spectral density h the least favorable. Numerically, this can be
found from Fig. 1.5.

It can also be shown by finding a spectral density g̃ ∈ Ds whichmakes h̃ dominate
h̄ in the sense that

e(φ̂h̃, h̃) > e(φ̂h̄, h̄), (1.54)

where h̃ and h̄ are

h̃ = (1 − ε) fl + εg̃,

h̄ = (1 − ε) fl + εḡ.

Let us consider the next example.
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Example 1.10 In the case that p = 2, it follows from Theorem 1.6 that the optimal
interpolation error e(φ̂h, h) for the stationary process {X (t)} with spectral density h
is

e(φ̂h, h) = (2π)2
( ∫ π

−π

h(λ)−1 dλ
)−1

.

To make the computation simple, let l = 2, that is,

f (λ) = f2(λ) = (2π)−22(λ + π).

Note that the function h = 1/(2π) is not contained in the classF if ε �= 0.5.
Suppose k = 1/2 and then g̃ = (2π)−1/2(λ + π)−1/2/2. As above, we compare

the optimal interpolation errors of the spectral density functions h̃ and h̄, i.e.,

h̃ = (1 − ε)(2π)−22(λ + π) + ε(2π)−1/2(λ + π)−1/2/2,

h̄ = (1 − ε)(2π)−22(λ + π) + ε/(2π),

and show that (1.54) holds. In fact, for the spectral density h̃, it holds that

e(φ̂h̃, h̃) = (2π)2
( ∫ π

−π

h̃(λ)−1 dλ
)−1

= (2π)2
( ∫ π

−π

2/
(
(1 − ε)(2π)−24(λ + π) + ε(2π)−1/2(λ + π)−1/2)dλ

)−1

= 3(1 − ε)
/

log
(
1 + 4(1 − ε)

ε

)
. (1.55)

On the other hand, for the spectral density h̄, we have

e(φ̂h̄, h̄) = (2π)2
( ∫ π

−π

h̄(λ)−1 dλ
)−1

= (2π)2
( ∫ π

−π

1/
(
(1 − ε)(2π)−22(λ + π) + ε/(2π)

)
dλ

)−1

= 2(1 − ε)
/

log
(
1 + 2(1 − ε)

ε

)
. (1.56)

Easily, it can be found that two functions (1.55) and (1.56) of ε intersect at ε =
1 − 1/

√
5, and numerically, ε ≈ 0.553. When ε < 1 − 1/

√
5, (1.54) always holds.

In other words, when the fixed spectral density f is different from the constant
function, then the case that g is constant (k = 1) is not always the least favorite.

Finally, we focus on the setting (iv), i.e., p �= 2. In particular, we fix p = 1.2.
In this case, it follows from Theorem 1.6 again that the optimal interpolation error
e(φ̂h, h) is

e(φ̂h, h) = (2π)6/5
( ∫ π

−π

h(λ)−5dλ
)−1/5

. (1.57)
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Fig. 1.6 The numerical results of setting (iv) are similar to those of the setting (iii). The least
favorable spectral density h∗ is not contained in the subfamily Fs , except for the case that l = 1.
In addition, the constant uncertain spectral density (k = 1) is not the least favorable one in the
subfamily Ds

Again, it is possible to proceed as in Example 1.10 to discuss that the case that g is
constant (k = 1) is not always the least favorite. However, the analytical computation
of (1.57) is extremely complex so we leave it to the reader. The numerical results for
several cases are shown in Fig. 1.6.

In summary, when we have some knowledge of the true spectral density with
some uncertainty, we can apply the methodology described in this section to finding
a robust predictor or a robust interpolator. To obtain the knowledge of the true spectral
density from the observations of a stationary process, we need to make a statistical
inference for our data. The parametric method for spectral inference is discussed in
Chap.2, while the nonparametric method is discussed in Chap.3.



Chapter 2
Parameter Estimation Based
on Prediction

Abstract In this chapter, we discuss the parameter estimation problem for station-
ary time series. The method of maximum likelihood is usually not tractable since
the joint distribution of the time series does not have analytical expression even if
the model is identified. Instead, an alternative method is to estimate the parameters
of the time series model by minimizing contrast function. We introduce a new class
of contrast functions for parameter estimation from the prediction problem, which
is quite different from other existing literature. Under both settings for a station-
ary process with finite and infinite variance innovations, we investigate asymptotic
properties of such minimum contrast estimators. It is shown that the contrast func-
tion corresponding to the prediction error is asymptotically the most efficient in the
class. In our simulation, we compare the relative efficiency and robustness against
randomly missing observations for different contrast functions among the class.

2.1 Introduction

We have reviewed the basic properties of stationary time series so far. The numerical
data with dependence relation can be generated from the time series models we have
discussed. In reality, we often do not have knowledge of the mechanism, especially
the mathematical model, which generates what we have observed. For this purpose,
we have to specify the mathematical models from observations of the stochastic
process. One fundamental method is to fit parametric linear models to time series
data. By the isomorphism in Sect. 1.1, the specification of the spectral density of
stationary time series is equivalent to that of the model. Thus, we discuss parameter
estimation of spectral density function in this chapter.

The method of maximum likelihood has many optimal properties such as full
asymptotic efficiency among regular estimators for parameter estimation from the
point of view of mathematical statistics. The method is applicable to the Gaussian
time series since all the finite-dimensional joint distributions of stochastic process
are multivariate normal. From this desirable property, (Whittle 1952a, 1953, 1954)
systematically investigated the parameter estimation for the Gaussian process. Espe-
cially, he suggested an approximate Gaussian likelihood for parameter estimation
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of spectral density, which is well known as the Whittle likelihood afterward. The
method he proposed is to approximate the inverse of the covariance matrix of the
Gaussian process by the spectral density, and then estimate the parameters in the
spectral density.

Suppose {X (1), X (2), . . . , X (n)} is an observation stretch from stationary pro-
cess {X (t) : t ∈ Z}. From Theorem 1.1, the process has a spectral distribution func-
tion F . Let us suppose there exists a spectral density f for the process.

Let In,X (ω) denote the periodogram of the observations, that is,

In,X (ω) = 1

2πn

∣
∣
∣

n
∑

t=1

X (t)eitω
∣
∣
∣

2
.

To specify the spectral density f of the process, a natural idea makes us suppose the
observation stretch {X (1), X (2), . . . , X (n)} comes from an ARMA(p, q) process,
which has the spectral density

fθ (ω) = σ 2

2π

|1 + ∑q
k=1 ake

−ikω|2
|1 − ∑p

j=1 b j e−i jω|2 ,

where θ = (a1, a2, . . . , aq , b1, b2, . . . , bp) is the parameter to specify (cf. (1.8)). The
Whittle likelihood is defined as

∫ π

−π

In,X (ω)/ fθ (ω)dω. (2.1)

TheWhittle estimator θ̂n minimizes theWhittle likelihood (2.1).Although theWhittle
likelihood is originally an approximation of the Gaussian log likelihood, the estima-
tion procedure does not require one to assume the process is Gaussian. This is one
reason why the Whittle likelihood is popular for parameter estimation of stationary
time series model.

The method of minimizing contrast function, on the other hand, is motivated
by robust estimation, when there is uncertainty about the probability model. Some
typical examples of contrast functions are distance or disparity measures between
observations and models. In time series analysis, the contrast function D( fθ , ĝn) is
introduced for parameter estimation, where fθ is a parametric spectral density and
ĝn is a nonparametric estimator for spectral density constructed by observations. For
example, if we take ĝn = In,X , then Eq. (2.1) can be understood by

D( fθ , In,X ) =
∫ π

−π

In,X (ω)/ fθ (ω)dω.

The criterion must enjoy desirable properties. One is that the true parameter θ0
should be the minimizer of the contrast function D( fθ , f ), where f is the true
spectral density function of the stationary time series. Some disparity measures as
follows have already been introduced in the literature.
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2.1.1 Location Disparity

One well-known disparity is location disparity, which is introduced in Taniguchi
(1981a). The location disparity is given by

Dl( fθ , ĝn) =
∫ π

−π

Φ( fθ (ω))2 − 2Φ( fθ (ω))Φ(ĝn(ω))dω,

where ĝn is a nonparametric estimator of the spectral density andΦ is an appropriate
bijective function. Several examples of the bijective function Φ(·) are
(i) Φ(x) = log x ,
(ii) Φ(x) = 1.

The first example (i) of function Φ(·) is Bloomfield’s exponential model, which is
proposed in Bloomfield (1973). The advantage of themodel is that the true parameter
θ0, which minimize the criterion Dl( fθ , f ), can be easily expressed in an explicit
form.

2.1.2 Scale Disparity

Another contrast function, scale disparity, is studied in Taniguchi (1987). The dis-
cussion on the higher order asymptotics of the disparity can be found in Taniguchi
et al. (2003). The criterion is given as

Ds( fθ , ĝn) =
∫ π

−π

K ( fθ (ω)/ĝn(ω))dω,

where K is sufficiently smooth with its minimum at 1. Without loss of generality,
the scale function K can also be modified by some function K̃ that

K̃

(
fθ (ω)

ĝn(ω)
− 1

)

:= K

(
fθ (ω)

ĝn(ω)

)

,

where the minimum of K̃ is at 0. Some examples of K are

(i) K (x) = log x + 1/x ,
(ii) K (x) = − log x + x ,
(iii) K (x) = (log x)2,
(iv) K (x) = (xα − 1)2, α �= 0,
(v) K (x) = x log x − x ,
(vi) K (x) = log{(1 − α) + αx} − α log x , α ∈ (0, 1).
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The scale disparity, in fact, has much broader use than the location disparity. Exam-
ples (i) and (iii) have equivalent expressions to what we considered in the location
case, respectively. Example (vi) is investigated in Albrecht (1984) as an α-entropy
criterion for the Gaussian process. This contrast function is robust with respect to
the peak, which is discussed by Zhang and Taniguchi (1995).

2.1.3 A New Disparity Based on Prediction

We introduce a new class of contrast functions for parameter estimation from the
prediction problem. A general form of the new contrast functions is defined as fol-
lows:

Dp( fθ , f ) =
∫ π

−π

(∫ π

−π

fθ (ω)α+1dω
)β

fθ (ω)α f (ω)dω, α �= 0, β ∈ R. (2.2)

The disparity is introduced for parameter estimation of time series models in Liu
(2017a). Comparing with the disparity Dl and Ds , we can see that Dp is not included
in either location disparity or scale disparity since Dl is a measure of the difference
between the true density and the model transformed by a bijective function, and Ds

is a measure of the difference between the ratio of the true density to the model and
1. On the other hand, as for the disparity (2.2), the model fθ and the true density f
have the different power in its own form.

To present the result in general, we need some preparation. Let θ be in a parameter
space Θ ⊂ R

d . Suppose the parametric spectral density fθ is bounded away from
0. The disparity (2.2) is motivated by the following two examples concerning the
prediction error and the interpolation error.

Example 2.1 (Prediction error) Removing the constant term when α = −1, we
obtain the following disparity:

Dp( fθ , f ) =
∫ π

−π

f (ω)/ fθ (ω)dω. (2.3)

If we substitute the periodogram In,X for the true spectral density f in (2.3), then it is
called the Whittle likelihood. This disparity relates to the prediction error when we
use the model fθ to make a prediction. Actually, by the same argument in Sect. 1.2,
from (1.1) and (1.2), we can see that the prediction error in general is expressed as

∫ π

−π

|1 − φ(ω)|2 f (ω)dω,
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where φ(ω) = ∑∞
j=1 a j e−i jω. If we take the inverse fθ (ω)−1 = |1 − φ(ω)|2 with

θ = (a1, a2, . . .), then fθ (ω) is just a spectral density for the AR model without
the constant multiple. Consequently, we can interpret the Whittle likelihood as a
disparity standing for the prediction error when we fit the model fθ .

Example 2.2 (Interpolation error) If we plug α = −2 and β = −2 into the disparity
(2.2), we obtain

Dp( fθ , f ) =
(∫ π

−π

1

fθ (ω)
dω

)−2(∫ π

−π

f (ω)

fθ (ω)2
dω

)

. (2.4)

This disparity (2.4) was investigated in Suto et al. (2016). The disparity relates to the
interpolation error when we use the model fθ to interpolate.

Recall that the interpolation error is expressed by

∫ π

−π

|1 − φ(ω)|2 f (ω)dω, (2.5)

whereφ(ω) = ∑

j �=0 a j ei jω. Tominimize (2.5), 1 − φ must be orthogonal toL 2(S2)
under L2( f )-norm. In other words, we have

∫ π

−π

(

1 − φ(ω)
)

f (ω)eikωdω = 0, ∀k ∈ S2.

Thus, there exists a constant c ∈ C such that

(

1 − φ(ω)
)

f (ω) = c. (2.6)

However, noting that φ(ω) ∈ L 2(S2), we have

∫ π

−π

|1 − φ(ω)|2 f (ω)dω =
∫ π

−π

(

1 − φ(ω)
)

f (ω)
(

1 − φ(ω)
)

dω = 2πc,

which shows that c ∈ R since the interpolation error must be real.
In addition, since the spectral density f (ω) is a real-valued function, it holds that

2πc =
∫ π

−π

|1 − φ(ω)|2 f (ω)dω

=
∫ π

−π

((

1 − φ(ω)
)

f (ω)
)

f (ω)−1 f (ω)
(

1 − φ(ω)
)

dω

= c2
∫ π

−π

f (ω)−1dω,

which shows that
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c =
( 1

2π

∫ π

−π

f (ω)−1dω
)−1

(2.7)

except for the trivial case. Now, if we insert (2.7) into (2.6), we obtain the optimal
interpolator as

φ(ω) = 1 − f (ω)−1
( 1

2π

∫ π

−π

f (ω)−1dω
)−1

. (2.8)

Note that we have already obtained this result by a more general formula (1.23) in
Sect. 1.3, if we let p = q = 2 in formula (1.27). (See also Example 1.6.)

Now,we replace the true density f (ω) by fθ (ω) in (2.8) to see the relation between
the interpolation error and the disparity (2.4). That is,

∫ π

−π

|1 − φ(ω)|2 f (ω)dω

=
∫ π

−π

{

fθ (ω)−1
( 1

2π

∫ π

−π

fθ (ω)−1dω
)−1}2

f (ω)dω

= 4π2

(∫ π

−π

1

fθ (ω)
dω

)−2(∫ π

−π

f (ω)

fθ (ω)2
dω

)

= 4π2D( fθ , f ),

which shows that the disparity with α = −2 and β = −2 is proportional to the
interpolation error.

We investigate the fundamental properties of the disparity (2.4). For brevity, let
a(θ) be

a(θ) =
(∫ π

−π

fθ (ω)α+1dω
)β

, β ∈ R, (2.9)

and the disparity (2.4) can be rewritten as

Dp( fθ , f ) =
∫ π

−π

a(θ) fθ (ω)α f (ω)dω, α �= 0. (2.10)

Denote by ∂ the partial derivative with respect to θ . For 1 ≤ i ≤ d, let ∂i be
the partial derivative with respect to θi . We use the following expressions in our
computation:

A1(θ) =
∫ π

−π

fθ (λ)α+1dλ, B1(θ)i = fθ (ω)α−1∂i fθ (ω),

A2(θ)i =
∫ π

−π

fθ (λ)α∂i fθ (λ)dλ, B2(θ) = fθ (ω)α,

A3(θ)i j =
∫ π

−π

fθ (λ)α−1∂i fθ (λ)∂ j fθ (λ)dλ, C1(θ) = β

(∫ π

−π

fθ (λ)α+1dλ

)β−1

.
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Suppose fθ0 = f and fθ is differentiable with respect to the parameter θ . Now
let us determine the appropriate value of β from the basic requirements that the true
parameter θ0 must be a local optimizer of the disparity Dp( fθ , f ).

Theorem 2.1 For the disparity (2.2), if either of the following cases

(i) α = −1 and θ is innovation free and
(ii) α �= −1 and β = − α

α+1 or

hold, then we have the following result:

∂i Dp( fθ , f )
∣
∣
∣
θ=θ0

= 0, for all 1 ≤ i ≤ d. (2.11)

Proof First, let us consider the case (i). When α = −1, Eq. (2.2) becomes

Dp( fθ , f ) = C
∫ π

−π

fθ (ω)−1 f (ω)dω, (2.12)

where C is a generic constant. On the other hand, from the general Kolmogorov
formula (1.25) for the prediction error, the variance of the innovations of the model
fθ is expressed as

σθ = 2π exp
{ 1

2π

∫ π

−π

log fθ (λ)
}

. (2.13)

From the condition that θ is innovation free, σθ does not depend on θ . The partial
derivative with respect to θi from both sides of (2.13) leads to the result

0 = 2π exp
{ 1

2π

∫ π

−π

log fθ (λ)
}

∂i

( 1

2π

∫ π

−π

log fθ (λ)
)

.

From the positivity of the exponential function, we have

∂i

( 1

2π

∫ π

−π

log fθ (λ)
)

=
( 1

2π

∫ π

−π

fθ (λ)−1∂i fθ (λ)
)

= 0. (2.14)

By (2.12) and (2.14), we have

∂i Dp( fθ , f )
∣
∣
∣
θ=θ0

= C
∫ π

−π

fθ (ω)−2∂i fθ (ω) f (ω)dω

∣
∣
∣
θ=θ0

= 0,

which shows the conclusion (2.11).
We turn to the case (ii). When α �= −1, then

∂i Dp( fθ , fθ0)
∣
∣
∣
θ=θ0

= (α + 1)C1(θ0)A1(θ0)A2(θ0)i + β−1αC1(θ0)A1(θ0)A2(θ0)i .

(2.15)
The conclusion follows from β = −α/(α + 1). �
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It can be seen that the true parameter θ0 is a local optimizer of the disparity
Dp( fθ , f ) under the conditions (i) or (ii) in Theorem 2.1. From now on, we consider
our disparity (2.10) when these conditions hold and thus β = −α/(α + 1). To clarify
the notations, let us rewritten Dp in (2.4) as D, and Eqs. (2.9) and (2.10) become

a(θ) =
(∫ π

−π

fθ (ω)α+1dω

)− α
α+1

, (2.16)

and the disparity (2.4) can be rewritten as

D( fθ , f ) =
∫ π

−π

a(θ) fθ (ω)α f (ω)dω, α �= 0. (2.17)

Note that

C1(θ) = − α

α + 1

(∫ π

−π

fθ (λ)α+1dλ

)− 2α+1
α+1

.

Surprisingly, the disparity (2.17) has been discussed in Renyi (1961), (Csiszár 1975)
and (Csiszár 1991) for the parameter estimation of i.i.d. random variables. The
disparity (2.17) is also the optimal interpolation error if we substitute fθ for the true
spectral density f as we considered in Theorem 1.6 with p = α/(α + 1). (See also
Miamee and Pourahmadi 1988)

2.2 Fundamentals of the New Disparity

Let us consider the fundamental properties of the new disparity (2.17) with a(θ) in
(2.16). Let F denote the set of all spectral densities with respect to the Lebesgue
measure on [−π, π ]. More specifically, we define F as

F =
{

g : g(ω) = σ 2
∣
∣
∣

∞
∑

j=0

g j exp(−i jω)

∣
∣
∣

2
/(2π)

}

.

Denote by F (Θ) the set of spectral densities indexed by parameter θ .

Assumption 2.2 (i) The parameter space Θ is a compact subset of Rd . θ0 is the
true parameter in the interior of the parameter space Θ and f = fθ0 ∈ F (Θ).

(ii) If θ1 �= θ2, then fθ1 �= fθ2 on a set of positive Lebesgue measure.
(iii) The parametric spectral density fθ (λ) is three times continuously differentiable

with respect to θ and the second derivative ∂2

∂θ∂θT fθ (λ) is continuous in λ.

Under Assumption 2.2 (i) and (ii), we first examine the extreme value of the
disparity (2.17) in the following. To prove it, we need Hölder’s inequality for p > 0
(p �= 1). Suppose q satisfies
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1

p
+ 1

q
= 1.

Lemma 2.1 (Hewitt and Stromberg 1975) Suppose f ∈ L p, g ∈ Lq.

(i) If p > 1, then
‖ f g‖1 ≤ ‖ f ‖p‖g‖q .

(ii) If 0 < p < 1 and further suppose f ∈ L+
p and g ∈ L+

q , then

‖ f g‖1 ≥ ‖ f ‖p‖g‖q .

The equality holds if and only if

| f |p = C |g|q , almost everywhere.

Remark 2.1 If 0 < p < 1, then q < 0 and vice versa. That is to say, (ii) is equivalent
to the following condition

(ii)’ if p < 0 and f ∈ L+
p and g ∈ L+

q , then

‖ f g‖1 ≥ ‖ f ‖p‖g‖q .

Theorem 2.3 Under Assumption 2.2 (i) and (ii), we have the following results:

(i) If α > 0, then θ0 maximizes the disparity D( fθ , f ).
(ii) If α < 0, then θ0 minimizes the disparity D( fθ , f ).

Proof First, suppose α > 0. The disparity (2.13) can be rewritten as

D( fθ , fθ0) =
∫ π

−π
fθ (ω)α fθ0(ω)dω

(
∫ π

−π
fθ (ω)α+1dω)

α
α+1

.

From Lemma 2.1, the numerator then satisfies

∫ π

−π

fθ (ω)α fθ0(ω)dω ≤
(∫ π

−π

{ fθ (ω)α} α+1
α dω

) α
α+1

(∫ π

−π

fθ0(ω)α+1dω
) 1

α+1

=
(∫ π

−π

fθ (ω)α+1dω
) α

α+1
(∫ π

−π

fθ0(ω)α+1dω
) 1

α+1
.

Therefore,

D( fθ , fθ0) ≤
(∫ π

−π

fθ0(ω)α+1dω
) 1

α+1
.

The equality holds only when fθ = fθ0 almost everywhere. From Assumption 2.2,
the conclusion holds.
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On theother hand, ifα < 0, then there are three cases (a)−1 < α < 0, (b)α < −1,
and (c)α = −1must be considered. However, it is easy to see that both first two cases
are corresponding to the case (ii) and (ii)’ in Hölder’s inequality since if−1 < α < 0
then (α + 1)/α < 0 and if α < −1 then 0 < (α + 1)/α < 1. As a result, we obtain

D( fθ , fθ0) ≥
(∫ π

−π

fθ0(ω)α+1dω
) 1

α+1
,

with aminimum fromAssumption 2.2. For the case (c), the disparity is corresponding
to the predictor error. There is a lower bound for the disparity. (See Proposition 10.8.1
in Brockwell and Davis 1991.) �

Last, let us show a stronger result for the disparity (2.7) under Assumption 2.2.
To see the result, we provide the following Lemma as a preparation, which is a
generalization of the Cauchy–Bunyakovsky inequality, first used in Grenander and
Rosenblatt (1957) in the context of time series analysis and then the paper byKholevo
(1969) later on.

Lemma 2.2 (Grenander and Rosenblatt 1957, Kholevo 1969) Let A(ω), B(ω) be
r × s matrix-valued functions, and g(ω) a positive function on ω ∈ [−π, π ]. If

{∫ π

−π

B(ω)B(ω)Tg(ω)−1dω

}−1

exists, the following inequality:

∫ π

−π

A(ω)A(ω)Tg(ω)dω

≥
{∫ π

−π

A(ω)B(ω)Tdω

} {∫ π

−π

B(ω)B(ω)Tg(ω)−1dω

}−1 {∫ π

−π

A(ω)B(ω)Tdω

}T

(2.18)

holds. In (2.18), the equality holds if and only if there exists a constant matrix C such
that

g(ω)A(ω) + CB(ω) = O, almost everywhere ω ∈ [−π, π ]. (2.19)

Theorem 2.4 Under Assumption 2.2, we have the following results:

(i) If α > 0, then the disparity D( fθ , f ) is convex upward with respect to θ .
(ii) If α < 0, then the disparity D( fθ , f ) is convex downward with respect to θ .

Proof Suppose α �= −1. Then

∂i D( fθ , g) = (α + 1)C1(θ)
{

A1(θ)

∫ π

−π
B1(θ)i g(ω)dω − A2(θ)

∫ π

−π
B2(θ)i g(ω)dω

}

.
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If g = fθ , then it is easy to see that ∂i D( fθ , g) = 0 for any i = 1, . . . , d. Considering
twice derivative of D( fθ , g), we have

∂i∂ j D( fθ , g) = (α + 1)C1(θ)
(

A1(θ)A3(θ)i j − A2(θ)i A2(θ) j

)

if g = fθ . Let us set the expressions A(ω), B(ω) and g(ω) in Lemma 2.2 as follows:

A(ω) = fθ (ω)α/2,

B(ω) = fθ (ω)α/2∂i fθ (ω),

g(ω) = fθ (ω).

Then we can see that the matrix A1(θ)A3(θ)i j − A2(θ)i A2(θ) j is positive definite.
Therefore, the conclusion of the convexity of the disparity holds. The convexity in
the case of α = −1 is also easy to show. �

From Theorem 2.3, it is shown that the true parameter θ0 ∈ Θ is an optimizer of
the criterion D( fθ , f ). The results are different at the two sides of α = 0. To keep
uniformity of the context, we suppose α < 0 hereafter. Accordingly, we can define
the functional T as

D( fT (g), g) = min
t∈Θ

D( ft , g), for everyg ∈ F . (2.20)

Thus, if the model is specified, that is, f ∈ F (Θ), then θ0 = T ( f ).

2.3 Parameter Estimation Based on Disparity

In this section, we elucidate the parameter estimation based on the disparity (2.17).
We first provide the fundamental properties of estimation based on the disparity. We
study the minimum contrast estimators for stationary processes with finite variance
innovations and infinite variance innovations in the next two subsections, respec-
tively.

Theorem 2.5 Under Assumption 2.2, we have the following results:

(i) For every f ∈ F , there exists a value T ( f ) ∈ Θ satisfying (2.20).

(ii) If T ( f ) is unique and if fn
L2−→ f , then T ( fn) → T ( f ) as n → ∞.

(iii) T ( fθ ) = θ for every θ ∈ Θ .

Proof (i) Define h(θ) as h(θ) = D( fθ , f ). If the continuity of h(θ) in θ ∈ Θ is
shown, then the existence of T ( f ) follows the compactness of Θ . From the
proof in Theorem 2.3,

h(θ) ≤
(∫ π

−π

f (ω)α+1dω
) 1

α+1 ≤ C.
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By Lebesgue’s dominated convergence theorem,

|h(θn) − h(θ)| ≤
∣
∣
∣

∫ π

−π

(

a(θn) fθn (ω)α − a(θ) fθ (ω)α
)

f (ω)dω

∣
∣
∣ → 0

for any convergence sequence {θn ∈ Θ; θn → θ}, which shows the continuity
of h(θ).

(ii) Similarly, suppose hn(θ) = D( fθ , fn). Then

lim
n→∞ sup

θ∈Θ

|hn(θ) − h(θ)|

= lim
n→∞ sup

θ∈Θ

∣
∣
∣

∫ π

−π

(a(θ) f α
θ (ω))( fn(ω) − f (ω))dω

∣
∣
∣

≤ lim
n→∞ sup

θ∈Θ

∣
∣
∣

∫ π

−π

(a(θ) f α
θ (ω))2dω

∫ π

−π

( fn(ω) − f (ω))2dω

∣
∣
∣

1/2

≤ C lim
n→∞ sup

θ∈Θ

∣
∣
∣

∫ π

−π

( fn(ω) − f (ω))2dω

∣
∣
∣

1/2

= 0, (2.21)

by fn
L2−→ f . From (2.21), we have

|hn(T ( fn)) − h(T ( fn))| → 0.

In addition, the uniform convergence (2.21) implies that

∣
∣
∣min
θ∈Θ

hn(θ) − min
θ∈Θ

h(θ)

∣
∣
∣ → 0.

In other words, we have

|hn(T ( fn)) − h(T ( f ))| → 0.

By the triangle inequality, it holds that

|h(T ( fn)) − h(T ( f ))| ≤ |h(T ( fn)) − hn(T ( fn))| + |hn(T ( fn)) − h(T ( f ))| → 0,

and therefore
h(T ( fn)) → h(T ( f )).

The continuity of h and the uniqueness of T ( f ) show the conclusion, that is,

T ( fn) → T ( f ).
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(iii) From the definition (2.20), T ( fθ ) is the minimizer of D( ft , fθ ) for t ∈ Θ .
The conclusion is a direct result of Theorem 2.3 (ii), which we have shown
before. �

Now we move on to the Hessian matrix of the estimation procedure (2.20). This
can be regarded as a continuation of Theorem 2.4 from the view of estimation.

Theorem 2.6 Under Assumptions 2.2, we have

T ( fn) = θ0 −
∫ π

−π

ρ(ω)( fn(ω) − f (ω))dω + O(‖ fn − f ‖2),

for every spectral density sequence { fn} satisfying fn
L2−→ f , where

ρ(ω) =
(

A1(θ0)A3(θ0) − A2(θ0)A2(θ0)
T
)−1(

A1(θ0)B1(θ0) − A2(θ0)B2(θ0)
)

.

Proof Note that θ0 = T ( f ). From Theorem 2.1, for all 1 ≤ i ≤ d, we have

∂i D( fθ , fn)
∣
∣
∣
θ=T ( fn)

= 0,

∂i D( fθ , f )
∣
∣
∣
θ=θ0

= 0.

Then there exists a θ∗ ∈ R
d on the line joining T ( fn) and θ0 such that

T ( fn) − θ0 =
{

(α + 1)C1(θ
∗)

(

A1(θ
∗)A3(θ

∗) − A2(θ
∗)A2(θ

∗)T
)}−1

∫ π

−π

(

A1(θ0)B1(θ0) − A2(θ0)B2(θ0)
)

( fn − f )dω + O(‖ fn − f ‖2).
(2.22)

Note that from Theorem 2.5 (ii), we have the following inequality:

∥
∥
∥(α + 1)C1(θ

∗)
(

A1(θ
∗)A3(θ

∗) − A2(θ
∗)A2(θ

∗)T
)

−
(

(α + 1)C1(θ0)(A1(θ0)A3(θ0) − A2(θ0)A2(θ0)
T
)∥
∥
∥ ≤ C | fn − f |2,

(2.23)

where C > 0 is a generic constant. The conclusion follows from (2.22) and (2.23).
�
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2.3.1 Finite Variance Innovations Case

In this subsection, we investigate asymptotic behavior of the parameter estimation
based on disparity. Suppose {X (t) : t ∈ Z} is a zero-mean stationary process and

X (t) =
∞

∑

j=0

g jε(t − j), t ∈ Z,

where {ε(t)} is a stationary innovation process with finite fourth-order moment
Eε(t)4 < ∞ and satisfies E[ ε(t) ] = 0 andVar[ ε(t) ] = σ 2 withσ 2 > 0.We impose
the following regularity conditions.

Assumption 2.7 For all |z| ≤ 1, there exist C < ∞ and δ > 0 such that

(i)
∑∞

j=0(1 + j2)|g j | ≤ C ;

(ii)
∣
∣
∣

∑∞
j=0 g j z j

∣
∣
∣ ≥ δ;

(iii)
∑∞

t1,t2,t3=−∞|Qε(t1, t2, t3)| < ∞, where Qε(t1, t2, t3) is the fourth-order cumu-
lant of ε(t), ε(t + t1), ε(t + t2) and ε(t + t3).

Assumption 2.7 (iii) guarantees the existence of a fourth-order spectral density. The
fourth-order spectral density Q̃ε(ω1, ω2, ω3) is

Q̃ε(ω1, ω2, ω3) =
( 1

2π

)3 ∞
∑

t1,t2,t3=−∞
Qε(t1, t2, t3)e

−i(ω1t1+ω2t2+ω3t3).

Denote by (X (1), . . . , X (n)) the observations from the process {X (t)}. Let
In,X (ω) be the periodogram of observations, that is,

In,X (ω) = 1

2πn

∣
∣
∣

n
∑

t=1

X (t)eitω
∣
∣
∣

2
, −π ≤ ω ≤ π.

Under Assumption 2.2, we can define the estimator θ̂n based on (2.20) as

θ̂n = argmin
θ∈Θ

D( fθ , In,X ). (2.24)

Now we state the regularity conditions for the parameter estimation by θ̂n .
Let B(t) denote the σ -field generated by ε(s) (−∞ < s ≤ t).

Assumption 2.8

(i) For each nonnegative integer m and η1 > 0,

Var[E(

ε(t)ε(t + m)|B(t − τ)
)] = O(τ−2−η1)



2.3 Parameter Estimation Based on Disparity 43

uniformly in t .
(ii) For any η2 > 0,

E |E{ε(t1)ε(t2)ε(t3)ε(t4)|B(t1 − τ)} − E
(

ε(t1)ε(t2)ε(t3)ε(t4)
)| = O(τ−1−η2),

uniformly in t1, where t1 ≤ t2 ≤ t3 ≤ t4.
(iii) For any η3 > 0 and for any fixed integer L ≥ 0, there exists Bη3 > 0 such that

E[T (n, s)21{T (n, s) > Bη3}] < η3

uniformly in n and s, where

T (n, s) =
[ 1

n

L
∑

r=0

{ n
∑

t=1

ε(t + s)ε(t + s + r) − σ 2δ(0, r)
}2]1/2

.

Theorem 2.9 Suppose Assumptions 2.2, 2.7 and 2.8 hold. As for the spectral den-
sity f ∈ F (Θ), the estimator θ̂n defined by (2.24) has the following asymptotic
properties:

(i) θ̂n converges to θ0 in probability;
(ii) The distribution of

√
n(θ̂n − θ0) is asymptotically normal with mean 0 and

covariance matrix H(θ0)
−1V (θ0)H(θ0)

−1, where

H(θ0) =
(∫ π

−π
fθ0 (ω)α∂ fθ0 (ω)dω

)(∫ π

−π
fθ0 (ω)α∂ fθ0 (ω)dω

)T

−
∫ π

−π
fθ0 (ω)α+1dω

∫ π

−π
fθ0 (ω)α−1

(

∂ fθ0 (ω)
)(

∂ fθ0 (ω)
)T

dω,

V (θ0) = 4π
∫ π

−π

(

fθ0 (ω)α∂ fθ0 (ω)

∫ π

−π
fθ0 (λ)α+1dλ

− fθ0 (ω)α+1
∫ π

−π
fθ0 (λ)α∂ fθ0 (λ)dλ

)

×
(

fθ0 (ω)α∂ fθ0 (ω)

∫ π

−π
fθ0 (λ)α+1dλ

− fθ0 (ω)α+1
∫ π

−π
fθ0 (λ)α∂ fθ0 (λ)dλ

)T
dω

+ 2π
∫∫ π

−π

(

fθ0 (ω1)
α−1∂ fθ0 (ω1)

∫ π

−π
fθ0 (λ)α+1dλ

− fθ0 (ω1)
α

∫ π

−π
fθ0 (λ)α∂ fθ0 (λ)dλ

)

×
(

fθ0 (ω2)
α−1∂ fθ0 (ω2)

∫ π

−π
fθ0 (λ)α+1dλ

− fθ0 (ω2)
α

∫ π

−π
fθ0 (λ)α∂ fθ0 (λ)dλ

)T

× Q̃X (−ω1, ω2, −ω2)dω1dω2. (2.25)
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Here, Q̃X (ω1, ω2, ω3) = A(ω1)A(ω2)A(ω3)A(−ω1 − ω2 − ω3)Q̃ε(ω1,

ω2, ω3) and A(ω) = ∑∞
j=0 g j exp(i jω).

Proof In view of (2.21), it is equivalent to consider θ̂n satisfies

∂D( fθ , In,X )

∣
∣
∣
θ=θ̂n

= 0.

The result that θ̂n → θ0 in probability follows that for any θ ∈ Θ compact,

∂D( fθ , In,X ) → ∂D( fθ , fθ0) in probability,

which is guaranteed byLemma3.3A inHosoya andTaniguchi (1982).Differentiating
the disparity (2.13) with respect to θ , then we have

∂D( fθ , In,X ) = C1(θ)

∫ π

−π

(A1(θ)B1(θ) − A2(θ)B2(θ))In,X (ω)dω.

From ∂D( fθ , fθ0)
∣
∣
∣
θ=θ0

= 0 as in (2.15), the asymptotic normality of the estimator

follows from Assumption 2.7, that is,

∂D( fθ , In,X )

∣
∣
∣
θ=θ0

=

C1(θ0)

∫ π

−π

(A1(θ0)B1(θ0) − A2(θ0)B2(θ0))(In,X (ω) − fθ0(ω))dω

converges in distribution to a normal distribution with mean 0 and variance matrix

C1(θ0)
2V (θ0). Using ∂D( fθ , fθ0)

∣
∣
∣
θ=θ0

= 0 again, we see that

∣
∣
∣∂

2D( fθ , In,X ) − C1(θ)∂(

∫ π

−π

(A1(θ)B1(θ) − A2(θ)B2(θ))In,X (ω)dω)

∣
∣
∣
θ=θ0

∣
∣
∣ → 0

in probability. We also have

∫ π

−π

B1(θ) fθ (ω)dω ∂A1(θ) −
∫ π

−π

A2(θ) fθ (ω)dω ∂B2(θ) = A2(θ)A2(θ)T

∫ π

−π

A1(θ) fθ (ω)dω ∂B1(θ) −
∫ π

−π

B2(θ) fθ (ω)dω ∂A2(θ) = −A1(θ)A3(θ),

and therefore

C1(θ)∂(

∫ π

−π

(A1(θ)B1(θ) − A2(θ)B2(θ))In,X (ω)dω)

∣
∣
∣
θ=θ0

→ C1(θ0)H(θ0).
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in probability. As a result, we obtain

∂2D( fθ , In,X )

∣
∣
∣
θ=θ0

→ C1(θ0)H(θ0).

in probability. Canceling C1(θ0), the desirable result is obtained. �

The asymptotic variance (2.25) of the estimator θ̂n seems extremely complex.
Sometimes we are not interested in all disparities (2.17) for different α but some.
Especially, when α = −1, the disparity corresponds to the prediction error.

Example 2.3 Let us give the result for the Gaussian stationary process under the
special case α = −1. Suppose the model fθ is innovation free. From Theorem 1.3,
it holds that

σ 2 = 2π exp
( 1

2π

∫ π

−π

log fθ (λ)dλ
)

.

Note that it holds that
∫ π

−π

fθ (λ)−1∂ fθ (λ)dλ = ∂

∫ π

−π

log fθ (λ)dλ = 0. (2.26)

When α = −1, by (2.26), we have

H(θ0) = 2π
∫ π

−π

fθ0(ω)−2
(

∂ fθ0(ω)
)(

∂ fθ0(ω)
)T

dω.

Note that Q̃X (−ω1, ω2,−ω2) = 0 for the Gaussian process. By (2.26) again, we
have

V (θ0) = 16π3
∫ π

−π

fθ0(ω)−2
(

∂ fθ0(ω)
)(

∂ fθ0(ω)
)T

dω.

Therefore, the asymptotic covariance matrix for
√
n(θ̂n − θ0) is

H(θ0)
−1V (θ0)H(θ0)

−1 = 4π
(∫ π

−π

fθ0(ω)−2
(

∂ fθ0(ω)
)(

∂ fθ0(ω)
)T

dω
)−1

. (2.27)

Generally, the inverse of the right-hand side of (2.27) is called the Gaussian Fisher
information matrix in time series analysis. Let us denote it by F (θ0), i.e.,

F (θ0) = 1

4π

∫ π

−π

f −2
θ0

(λ)∂ fθ0(λ)∂ fθ0(λ)Tdλ. (2.28)

An estimator θ̂n is said to be Gaussian asymptotically efficient if
√
n(θ̂n − θ0)

L−→
N (0,F (θ0)

−1).
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2.3.2 Infinite Variance Innovations Case

In this subsection, we consider the linear processeswith infinite variance innovations.
Suppose {X (t); t = 1, 2, . . .} is a zero-mean stationary process generated by

X (t) =
∞

∑

j=0

g jε(t − j), t = 1, 2, . . . ,

where i.i.d. symmetric innovation process {ε(t)} satisfies the following assumptions.

Assumption 2.10 For some k > 0, δ = 1 ∧ k and positive sequence an satisfying
an ↑ ∞, the coefficient g j and the innovation process {ε(t)} have the following
properties:

(i)
∑∞

j=0| j ||g j |δ < ∞;
(ii) E |ε(t)|k < ∞;
(iii) as n → ∞, n/a2δn → 0;

(iv) limx→0 lim supn→∞ P
(

a−2
n

∑n
t=1 ε(t)2 ≤ x

)

= 0;

(v) For some 0 < q < 2, the distribution of ε(t) is in the domain of normal attrac-
tion of a symmetric q-stable random variable Y.

For Assumption 2.10, note that the positive sequence an can be specified from (v)
by choosing an = n1/q for n ≥ 1. (See (Feller 1968), (Bingham et al. 1987).)

An issue concerning the infinite variance innovations is the periodogramWhittle
likelihood In,X (ω) is not well defined in this case. For this type of stationary pro-
cess, the self-normalized periodogram Ĩn,X (ω) = |∑n

t=1 X (t)eitω|2/∑n
t=1 X (t)2 is

substituted for the periodogram In,X (ω). Let us define the power transfer function
f (ω) by

f (ω) =
∣
∣
∣

∞
∑

j=0

g je
i jω

∣
∣
∣

2
, ω ∈ [−π, π ].

Again it is possible to formulate the approach to estimate the parameter byminimizing
the disparity (2.17). That is, we fit a parametric model fθ to the self-normalized
periodogram Ĩn,X (ω):

θ̂n = argmin
θ∈Θ

D( fθ , Ĩn,X ). (2.29)

For the case of infinite variance innovations, we introduce the scale constant Cq

appearing in the asymptotic distribution, i.e.,

Cq =
{

1−q
�(2−q) cos(πq/2) , if q �= 1,
2
π
, if q = 1.
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Theorem 2.11 Suppose Assumptions 2.2 and 2.10 hold. As for the power transfer
function f ∈ F (Θ), the estimator θ̂n defined by (2.29) has the following asymptotic
properties:

(i) θ̂n converges to θ0 in probability;
(ii) It holds that

( n

log n

)1/q
(θ̂n − θ0) → 4πH−1(θ0)

∞
∑

k=1

Yk
Y0

Vk(θ0) (2.30)

in law, where H(θ0) is the same as in Theorem 2.9,

Vk(θ0) =
(∫ π

−π

fθ0(ω)α∂ fθ0(ω)dω
)(∫ π

−π

fθ0(ω)α+1 cos(kω)dω
)

−
(∫ π

−π

fθ0(ω)α+1dω
)(∫ π

−π

fθ0(ω)α∂ fθ0(ω) cos(kω)dω
)

,

and {Yk}k=0,1,..., are mutually independent random variables. Y0 is q/2-stable
with scale C−2/q

q/2 and Yk (k ≥ 1) is q-stable with scale C−1/q
q .

Proof For the proof of Theorem 2.11, we only need to change g(λ, β)−1 in Mikosch
et al. (1995) into a(θ) fθ0(ω)α to show the statements. �

Theorem 2.11 shows that the asymptotic distribution (2.30) in the case of infinite
variance innovations is quite different from the normal distribution (2.25) in the
case of finite variance innovations. Our minimum contrast estimator based on the
disparity, however, has consistency andwell-defined asymptotic distribution not only
in the case of the finite variance innovations but also the infinite variance innovations.

2.4 Efficiency and Robustness

In this section, we discuss the asymptotic efficiency and robustness of the estimator
θ̂n in (2.24). Especially, we discuss the asymptotic efficient estimator in the new class
of disparities and illustrate it by some examples. On the other hand, the estimator θ̂n
is robust in their asymptotic distribution in the sense that it does not depend on the
fourth-order cumulant under some suitable conditions and robust from its intrinsic
feature against randomly missing observations from time series.
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2.4.1 Robustness Against the Fourth-Order Cumulant

The estimator θ̂n is said to be robust against the fourth-order cumulant if the asymp-
totic variance of θ̂n does not depend on Q̃X (−ω1, ω2,−ω2). The estimator θ̂n is
robust against the fourth-order cumulant under the following assumption.

Assumption 2.12 For the innovation process {ε(t)}, suppose the fourth-order cumu-
lant cum

(

ε(t1), ε(t2), ε(t3), ε(t4)
)

satisfies

cum
(

ε(t1), ε(t2), ε(t3), ε(t4)
) =

{

κ4 if t1 = t2 = t3 = t4,

0 otherwise.

If Assumption 2.12 holds, the fourth-order spectral density Q̃X (ω1, ω2, ω3) of {X (t)}
becomes

Q̃X (ω1, ω2, ω3) = (2π)−3κ4A(ω1)A(ω2)A(ω3)A(−ω1 − ω2 − ω3). (2.31)

Thus, we obtain the following theorem.

Theorem 2.13 Suppose Assumptions 2.2, 2.7, 2.8 and 2.12 hold. As for the spectral
density f ∈ F (Θ), The distribution of

√
n(θ̂n − θ0) is asymptotically Gaussian with

mean 0 and variance H(θ0)
−1Ṽ (θ0)H(θ0)

−1, where

Ṽ (θ0) = 4π
∫ π

−π

(

fθ0(ω)α∂ fθ0(ω)

∫ π

−π

fθ0(λ)α+1dλ

− fθ0(ω)α+1
∫ π

−π

fθ0(λ)α∂ fθ0(λ)dλ
)

×
(

fθ0(ω)α∂ fθ0(ω)

∫ π

−π

fθ0(λ)α+1dλ

− fθ0(ω)α+1
∫ π

−π

fθ0(λ)α∂ fθ0(λ)dλ
)T

dω. (2.32)

Proof By the expression (2.31), we have

Q̃X (−ω1, ω2,−ω2) =
κ4

2πσ 4

( σ 2

2π

)2
A(−ω1)A(ω2)A(−ω2)A(ω1) = κ4

2πσ 4
fθ0(ω1) fθ0(ω2). (2.33)

By (2.33), the second term in (2.25) can be evaluated by
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2π
∫∫ π

−π

(

fθ0(ω1)
α−1∂ fθ0(ω1)

∫ π

−π

fθ0(λ)α+1dλ

− fθ0(ω1)
α

∫ π

−π

fθ0(λ)α∂ fθ0(λ)dλ
)

×
(

fθ0(ω2)
α−1∂ fθ0(ω2)

∫ π

−π

fθ0(λ)α+1dλ

− fθ0(ω2)
α

∫ π

−π

fθ0(λ)α∂ fθ0(λ)dλ
)T

Q̃X (−ω1, ω2,−ω2)dω1dω2

= κ4

σ 4

(∫ π

−π

fθ0(ω1)
α∂ fθ0(ω1)dω1

∫ π

−π

fθ0(λ)α+1dλ

−
∫ π

−π

fθ0(ω1)
α+1dω1

∫ π

−π

fθ0(λ)α∂ fθ0(λ)dλ
)

×
(∫ π

−π

fθ0(ω2)
α∂ fθ0(ω2)dω2

∫ π

−π

fθ0(λ)α+1dλ

−
∫ π

−π

fθ0(ω2)
α+1dω2

∫ π

−π

fθ0(λ)α∂ fθ0(λ)dλ
)T

= Od ,

where Od denotes the d × d zero matrix. This shows why the second term in Eq.
(2.25) vanishes when we take the prediction and interpolation error as a disparity. �

Assumptions 2.12 seems strong. However, for example, the Gaussian process
always satisfies Assumption 2.12. In practice, modeling a process is usually up to
second order. Making an assumption on simultaneous fourth-order cumulants covers
a sufficiently large family of models.

Let us compare Eq. (2.32) with Eq. (2.25) in Theorem 2.9. The term with the
fourth-order spectral density Q̃X (ω1, ω2, ω3) of {X (t)} vanishes. This fact is well
known for the case α = −1, i.e., theWhittle likelihood estimator is robust against the
fourth-order cumulant. We have shown that the robustness against the fourth-order
cumulant also holds for any α ∈ R \ {0}.

2.4.2 Asymptotic Efficiency

As shown in (2.28), the variance of the estimator θ̂n minimizing prediction error is
asymptotically F (θ0)

−1. Actually, it is well known in time series analysis that the
Fisher information matrix for the Gaussian process is

F (θ0) = 1

4π

∫ π

−π

f −2
θ0

(λ)∂ fθ0(λ)∂ fθ0(λ)Tdλ,
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which can be derived from the approximate maximum likelihood estimation. When
the asymptotic variance of the estimator θ̂n attaining the Cramer–Rao lower bound,
that is, the inverse matrix of Fisher information matrix F (θ)−1, the estimator θ̂n is
called asymptotically Gaussian efficient. We compare the asymptotic variances of
the estimator θ̂n based on the disparity (2.24) in the following. In addition, an analytic
lower bound for the estimator θ̂n is found in the following theorem.

Theorem 2.14 Suppose Assumptions 2.2, 2.7, 2.8 and 2.12 hold. We obtain the
following inequality in the matrix sense:

H(θ0)
−1Ṽ (θ0)H(θ0)

−1 ≥ F (θ0)
−1. (2.34)

The equality holds if α = −1 or the spectral density f (ω) is a constant function.

Proof Define

A(ω) = A1(θ0)B1(θ0) − A2(θ0)B2(θ0),

B(ω) = ∂ fθ (ω)

∣
∣
∣
θ=θ0

,

g(ω) = fθ (ω)2
∣
∣
∣
θ=θ0

.

Then the inequality of (2.34) in Theorem 2.14 holds from Lemma 2.2. According to
(2.19), the equality holds when

∫ π

−π

f α+1
θ (λ)dλ f α+1

θ (ω)∂ fθ (ω)

−
∫ π

−π

f α
θ (λ)∂ fθ (λ)dλ f α+2

θ (ω) − C∂ fθ (ω)

∣
∣
∣
θ=θ0

= 0 (2.35)

with a generic constant C .
When α = −1, then the left-hand side of (2.35) is

∫ π

−π

f α+1
θ (λ)dλ f α+1

θ (ω)∂ fθ (ω)

−
∫ π

−π

f α
θ (λ)∂ fθ (λ)dλ f α+2

θ (ω) − C∂ fθ (ω)

∣
∣
∣
θ=θ0

= 2π∂ fθ (ω) −
∫ π

−π

f −1
θ (λ)∂ fθ (λ)dλ fθ (ω) − C∂ fθ (ω)

∣
∣
∣
θ=θ0

.

From (2.26), we have
∫ π

−π

f −1
θ (λ)∂ fθ (λ)dλ

∣
∣
∣
θ=θ0

= 0.

If we choose C = 2π , then the equality holds.
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If α �= −1, then the equality in (2.34) does not hold in general. It is easy to see
that (2.19) holds if the spectral density f (ω) does not depend on ω. �

In the following, let us illustrate Theorem 2.14 with two examples. Especially,
we compare the asymptotic variance of the estimator θ̂n based on the disparity (2.24)
when α = −2 with that when α = −1.

Example 2.4 Let {X (t)} be generated by the AR(1) model as follows:

X (t) = θX (t − 1) + ε(t), |θ | < 1, ε(t) ∼ i.i.d.N (0, σ 2).

The spectral density fθ (ω) of {X (t)} is expressed as

fθ (ω) = σ 2

2π

1

|1 − θeiω|2 .

From Theorem 2.9, let α = −2 and we obtain

H(θ) = 2 · (2π)4(1 − θ2), V (θ) = 4 · (2π)8(1 − θ2)2.

Thus, the asymptotic variance when α = −2 is

H(θ)−1V (θ)H(θ)−1 = 1. (2.36)

On the other hand, by (2.28), it holds that

F (θ) = 1

1 − θ2
. (2.37)

Then comparing Eq. (2.36) with (2.37), we have

1 = H(θ)−1V (θ)H(θ)−1 ≥ F (θ)−1 = 1 − θ2. (2.38)

From (2.38), we can see that θ̂n is not asymptotically efficient except for θ = 0.

Example 2.5 Let {X (t)} be generated by the MA(1) model as follows:

X (t) = ε(t) + θ ε(t − 1), |θ | < 1, εt ∼ i.i.d.N (0, σ 2).

The spectral density fθ (ω) of {Xt } is

fθ (ω) = σ 2

2π
|1 + θeiω|2.

From Theorem 2.9, let α = −2 and we obtain

H(θ)−1V (θ)H(θ)−1 = 1 − θ4 = (1 − θ2)(1 + θ2). (2.39)
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On the other hand, by (2.28), it holds that

F (θ) = 1

1 − θ2
. (2.40)

Then comparing Eq. (2.39) with (2.40), we have

(1 − θ2)(1 + θ2) = H(θ)−1V (θ)H(θ)−1 ≥ F (θ)−1 = 1 − θ2.

Therefore θ̂n is not asymptotically efficient except for θ = 0.

2.4.3 Robustness Against Randomly Missing Observations

Not only robust against the fourth-order cumulant, the estimation by the disparity
(2.24) is also robust against randomly missing observations. This property is illus-
trated with some numerical simulations in Sect. 2.5. For conceptual understanding,
let us consider the amplitude modulated series, which is considered in Bloomfield
(1970). Let {Y (t)} be an amplitude modulated series, that is,

Y (t) = X (t)Z(t),

where

Z(t) =
{

1, Y (t) is observed

0, otherwise.

If we define P(Z(t) = 1) = q and P(Z(t) = 0) = 1 − q, then the spectral density
fY for the series {Y (t)} is represented by

fY (ω) = q2 fX (ω) + q
∫ π

−π

a(ω − α) fX (α)dα, (2.41)

where a(ω) = (2π)−1 ∑

r ar e
irω with ar = q−1Cov(Z(t), Z(t + r)). The spectral

density fY from Eq. (2.41) can be considered as the original spectral density fX
heavily contaminated by a missing spectral density

∫ π

−π
a(ω − α) fX (α)dα. (Basu

et al. 1998) used a similar minimum contrast estimator as a divergence for parameter
estimation for probability density function. They discussed in detail the trade-off
between robustness and efficiency in their paper. As pointed out in Fujisawa and
Eguchi (2008), the disparity has the robustness to outliers and contamination under
the heavy contaminated models.
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2.5 Numerical Studies

In this section, we perform two numerical simulation examples forminimum contrast
estimators based on our new disparity (2.17) for parameter estimation. The first
simulation in Sect. 2.5.1 is to see the relative efficiency and the second simulation in
Sect. 2.5.2 is to see the robustness of the estimator based on the disparity.

2.5.1 Relative Efficiency

In the first simulation, we investigate the empirical relative efficiency between the
different choices of α when the true model is specified. Let us consider the AR(1)
process

X (t) − bX (t − 1) = ε(t), (2.42)

where the innovation process {ε(t) : t = 1, 2, . . .} is assumed to be independent
and identically distributed random variables. The distributions of innovations are
assumed to be Gaussian, Laplace, and standard Cauchy. Laplace and Cauchy dis-
tributions are used as examples of a distribution with finite fourth-order cumulant
and with infinite variance, respectively. All distributions are symmetric around 0.
Gaussian distribution and Laplace distribution are set to have unit variance. We are
interested in estimating the coefficient b in the model (2.42) by the disparity (2.24)
with different values of α. The spectral density with parameter θ is assumed to be

fθ (ω) = 1

2π
|1 − θe−iω|−2. (2.43)

We generate 100 observations from the model (2.42) with coefficients b = 0 and
0.9. The estimation for θ by the disparity (2.24) is repeated via 100 Monte Carlo
simulations. Let θ̂ (i)

α be the estimate by the exotic disparity with α in i th simulation.
We define the empirical relative efficiency (ERE) by

ERE =
∑100

i=1(θ̂
(i)
−1 − b)2

∑100
i=1(θ̂

(i)
α − b)2

.

We use ERE as the benchmark since the Fisher information for the Gaussian process
is achieved when α = −1. The larger the index of ERE is, the better the performance
of the estimation is. EREs for b = 0 and 0.9 are reported in Tables 2.1 and 2.2,
respectively.

For the case b = 0, it is not difficult to see that the disparities achieve more than
74% in relative efficiency up to α = −3. Without innovations distributed as Cauchy,
the disparities with α = −4 achieve 44% in relative efficiency.



54 2 Parameter Estimation Based on Prediction

Table 2.1 The empirical relative efficiency of the AR(1) model when b = 0

α = −1 α = −2 α = −3 α = −4 α = −5 α = −6 α = −7 α = −8

Gaussian 1.000 0.955 0.853 0.447 0.091 0.061 0.043 0.038

Laplace 1.000 0.910 0.749 0.441 0.099 0.050 0.042 0.037

Cauchy 1.000 0.990 0.918 0.074 0.057 0.029 0.020 0.018

Table 2.2 The empirical relative efficiency of the AR(1) model when b = 0.9

α = −1 α = −2 α = −3 α = −4 α = −5 α = −6 α = −7 α = −8

Gaussian 1.000 0.604 0.203 0.097 0.067 0.051 0.042 0.037

Laplace 1.000 0.578 0.162 0.075 0.047 0.035 0.029 0.025

Cauchy 1.000 0.847 0.304 0.118 0.073 0.057 0.048 0.041

On the other hand, it seems that the relative efficiencies of the disparities inCauchy
case work better than the other two finite variance cases when b = 0.9. However,
the overall relative efficiencies are not as good as the case b = 0. Theoretically, the
estimation for larger |b| < 1 has smaller asymptotic variance so the approaches in
frequency domain are robust against unit root processes. Thus the Whittle estimator
(α = −1) has much better performance in this case. Nevertheless, the disparities
achieve more than 57% in relative efficiency up to α = −2.

2.5.2 Robustness of the Disparity

In the second simulation, we compare the robustness of the disparity (2.24) when
α takes different values. Let us consider the parameter estimation by the disparity
when the observations are randomly missing. To precisely formalize the problem, let
t ∈ {1, . . . , n} and we are interested in parameter estimation by partial observations
{X (ti ) : ti ∈ {1, . . . , n}} of the following models.

(i) The same model as (2.42), i.e.,

X (t) − bX (t − 1) = ε(t).

(ii) The following MA(3) model:

X (t) = ε(t) + 5

4
ε(t − 1) + 4

3
ε(t − 2) + 5

6
ε(t − 3). (2.44)

If we fit (2.43) to the model (2.44), the disparity (2.17) is minimized by θ = 0.7.
This procedure of the parameter estimation can be regarded as a model misspeci-
fication case. In these two models, we suppose the innovation process {ε(t) : t =
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1, . . . , n} is independent and identically distributed as the standard normal distribu-
tion and the standard Cauchy distribution as above.

First, we suppose that there are regularly missing points in our observations. Let
t1 = 1 and the observation period d = ti+1 − ti for all 1 ≤ i ≤ �n/d�. We evaluate
the robustness by the ratio ofmean squared error of all estimation procedurewithα =
−1,−2,−3,−4 and d = 2, 3, 4, where the ratio of mean squared error is defined
by

RoMSE =
∑100

i=1(θ̂
(i)
−1 − b)2

∑100
i=1(θ̂

(i)
α − b)2

.

The simulation results for the model (2.42) are reported in Tables 2.3, 2.4, 2.5 and
2.6. The estimates are also given in the parentheses for each case.

Tables 2.3 and 2.4 show the ratio of mean squared error of the AR(1) model when
b = 0.9 with the Cauchy and Gaussian innovations. It can be seen that the larger d
is, the less efficient the Whittle estimator is, compared with other choices of α.

Tables 2.5 and 2.6 show the ratio of mean squared error of the AR(1) model when
b = 0.1 with the Cauchy and Gaussian innovations. The similar aspect as in the case
of b = 0.9 can be found when the AR(1) model has infinite variance innovations. On
the other hand, when the innovations become Gaussian, the simulation results appear
better for the Whittle estimates. One reason for this feature can be explained by the
fact that the observations of AR(1) process for a long period are almost independent.

Next, we generated 128 observations from the model (2.42) and (2.44), respec-
tively. We randomly chose four sets of time points Ti ⊂ {1, 2, . . . , 128} as the
observed time points as follows. The length of Ti is 32 for i = 1, 2, 3, 4.

Table 2.3 The ratio of mean squared error and estimate (in parentheses) of the AR(1) model with
the Cauchy innovations when b = 0.9

Cauchy α = −1 α = −2 α = −3 α = −4

d = 2 1.000 (0.745) 1.248 (0.782) 0.757 (0.806) 0.457 (0.772)

d = 3 1.000 (0.648) 1.345 (0.717) 1.303 (0.786) 0.992 (0.778)

d = 4 1.000 (0.549) 1.195 (0.609) 1.257 (0.677) 1.143 (0.700)

Table 2.4 The ratio of mean squared error and estimate (in parentheses) of the AR(1) model with
the Gaussian innovations when b = 0.9

Gaussian α = −1 α = −2 α = −3 α = −4

d = 2 1.000 (0.727) 1.138 (0.784) 0.829 (0.796) 0.548 (0.772)

d = 3 1.000 (0.609) 1.194 (0.681) 1.088 (0.730) 0.835 (0.700)

d = 4 1.000 (0.511) 1.186 (0.585) 1.278 (0.651) 1.121 (0.642)
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Table 2.5 The ratio of mean squared error and estimate (in parentheses) of the AR(1) model with
the Cauchy innovations when b = 0.1

Cauchy α = −1 α = −2 α = −3 α = −4

d = 2 1.000 (0.455) 4.140 (0.721) 3.045 (0.992) 3.145 (0.998)

d = 3 1.000 (0.148) 1.049 (0.195) 1.086 (0.288) 1.118 (0.374)

d = 4 1.000 (−0.005) 1.004 (−0.001) 1.017 (0.041) 0.858 (0.024)

Table 2.6 The ratio of mean squared error and estimate (in parentheses) of the AR(1) model with
the Gaussian innovations when b = 0.1

Gaussian α = −1 α = −2 α = −3 α = −4

d = 2 1.000 (0.434) 2.783 (0.674) 4.449 (0.969) 4.377 (0.981)

d = 3 1.000 (0.122) 1.029 (0.138) 1.064 (0.226) 1.316 (0.366)

d = 4 1.000 (−0.038) 0.958 (−0.048) 0.749 (−0.089) 0.678 (−0.071)

Table 2.7 The ratio of mean squared error of the AR(1) model with the Cauchy innovations when
b = 0.9

Cauchy α = −1 α = −2 α = −3 α = −4

T1 1.000 1.192 1.149 1.007

T2 1.000 1.332 1.294 1.053

T3 1.000 1.182 1.158 0.948

T4 1.000 1.288 1.307 1.073

T1 = {1, 7, 9, 17, 19, 23, 26, 30, 34, 39, 44, 50, 54, 58, 59, 61, 66, 67,
74, 75, 79, 80, 81, 87, 101, 102, 104, 112, 118, 121, 125, 128},

T2 = {1, 2, 4, 6, 9, 13, 21, 22, 31, 36, 37, 38, 39, 42, 49, 50, 56, 71,
76, 77, 82, 85, 93, 96, 101, 110, 112, 113, 115, 117, 126, 127},

T3 = {1, 4, 5, 12, 14, 15, 18, 20, 23, 26, 27, 28, 33, 39, 41, 55, 56, 74,
78, 83, 84, 85, 88, 100, 104, 106, 107, 108, 109, 114, 115, 120},

T4 = {2, 4, 12, 14, 34, 38, 39, 41, 42, 43, 44, 49, 54, 55, 56, 59, 60, 63,
65, 70, 72, 78, 81, 94, 98, 100, 103, 107, 110, 119, 123, 126}.

We take observations on the sets Ti (i = 1, . . . , 4) for the parameter estimation by
the disparity (2.24) The ratio of mean squared errors via 100 simulations are given
in Tables 2.7, 2.8, 2.9 and 2.10.

From Tables 2.7 and 2.8, one can see that the mean squared errors of α = −2
and α = −3 for T1 – T4 are smaller than that of α = −1. Even α = −4, the mean
squared error is larger than α = −1 only for T3. In the misspecification case of model
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Table 2.8 The ratio of mean squared error of the AR(1) model with the Gaussian innovations when
b = 0.9

Gaussian α = −1 α = −2 α = −3 α = −4

T1 1.000 1.287 1.490 1.435

T2 1.000 1.181 1.220 1.199

T3 1.000 1.148 1.247 1.078

T4 1.000 1.230 1.395 1.125

Table 2.9 The ratio of mean squared error of the MA(3) model (2.44) with the Cauchy innovations

Cauchy α = −1 α = −2 α = −3 α = −4

T1 1.000 1.053 1.093 0.959

T2 1.000 1.107 1.107 1.230

T3 1.000 1.129 1.266 1.260

T4 1.000 1.068 1.078 0.961

Table 2.10 The ratio of mean squared error of the MA(3) model (2.44) with the Gaussian innova-
tions

Gaussian α = −1 α = −2 α = −3 α = −4

T1 1.000 1.061 1.140 1.181

T2 1.000 1.099 1.294 2.085

T3 1.000 1.136 1.605 1.533

T4 1.000 1.052 1.144 1.291

(2.44), α = −2 and α = −3 also perform better in the sense of mean squared error
than α = −1. In conclusion, an appropriate choice of α leads to robust parameter
estimation to randomly missing observations.



Chapter 3
Quantile Method for Time Series

Abstract In this chapter, we introduce a nonparametricmethod to statistically inves-
tigate stationary time series. We have seen that there exists a spectral distribution
function for any second-order stationary process. We define quantiles of the spectral
distribution function in the frequency domain and consider the quantile method for
parameter estimation of stationary time series. The estimation method for quantiles
is generally formulated by minimizing a check function. The quantile estimator is
shown to be asymptotically normal. We also consider the hypothesis testing problem
for quantiles in the frequency domain and propose a test statistic associated with our
quantile estimator, which asymptotically converges to the standard normal under the
null hypothesis. The finite sample performance of the quantile estimator is shown in
our numerical studies.

3.1 Introduction

Nowadays, the quantile-based estimation becomes a notable method in statistics. Not
only statistical inference for the quantile of the cumulative distribution function is
considered, the quantile regression, a method taking place of the ordinary regression,
is also broadly used for statistical inference. (See Koenker 2005.) In the area of
time series analysis, however, the quantile-based inference is still undeveloped yet.
A fascinating approach in the frequency domain, called “quantile periodogram” is
proposed and studied in Li (2008, 2012). More general methods associated with
copulas, quantiles, and ranks are developed in Dette et al. (2015), Kley et al. (2016)
and Birr et al. (2017). Especially, a quantile-based method for time series analysis is
discussed in Liu (2017b).

As there exists a well-behaved spectral distribution function for a second-order
stationary process, we introduce the quantiles of the spectral distribution and develop
a statistical inference theory for it. For a second-order stationary process with contin-
uous spectral distribution, we consider a quantile estimator defined by the minimizer

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
Y. Liu et al., Empirical Likelihood and Quantile Methods for Time Series,
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of check function based on the periodogram for estimation. The consistency and the
asymptotic normality of the estimator are shown under a natural assumption that
the spectral density is sufficiently smooth. We also propose a quantile test in the fre-
quency domain to test the dependence structure of second-order stationary processes,
since the spectral distribution function is uniquely determined by the autocovariance
function of the process. When the spectral distributions of processes considered are
quite different, the testing procedure works well.

In the context of time series analysis, (Whittle 1952b) mentioned that “the search
for periodicities” constituted the whole of time series theory. He proposed an esti-
mation method based on a nonlinear model driven by a simple harmonic component.
After the work, to estimate the frequency has been a remarkable statistical analy-
sis. A sequential literature by Whittle (1952b), Walker (1971), Hannan (1973), Rice
and Rosenblatt (1988), Quinn and Thomson (1991), and Quinn and Hannan (2001)
investigated the method proposed by Whittle (1952b) and pointed out the misunder-
standings in Whittle (1952b), respectively. The noise structure is also generalized
from independent and identically distributed white noise to the second-order sta-
tionary process. On the other hand, statistical inference of the spectral density by
parametric form is considered by Dzhaparidze (1986) and the reference therein. In
our estimation procedure, we employ the check function to estimate quantiles, i.e.,
the frequencies of the spectral distribution function for second-order stationary pro-
cesses. The method is different from all the methods mentioned above. With the
order O(

√
n), the basic quantile estimators for continuous spectral distribution are

shown to be asymptotically normal. It is applicable to implement the quantile tests
in the frequency domain by our new consideration on the quantiles of the spectral
distribution.

3.2 Preliminaries

In this section,we discuss properties of the quantiles of the spectral distribution. From
Chap. 2, we have seen that the parametric spectral density fθ for linear processes
with finite variance (or power transfer function for linear processes with infinite
variance) can be consistently estimated via minimum contrast estimation. The merits
of estimating spectral quantiles can be summarized in the following points:

• A nonparametric method for statistical inference is more flexible than the para-
metric approach;

• A quantile-based estimation is simple in that the bandwidth choice is avoided,
compared with a fully nonparametric method such as kernel estimation;

• Two spectral distributions (or power transfer functions) are possible to be discrim-
inated by their own quantiles without any loss in the rate of convergence;

• The method is robust to outliners, especially in the sense that there are missing
observations of the process.
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The quantile λp in (1.10) can be equivalently defined as a minimizer of some
certain objective function as follows. Suppose {X (t) : t ∈ Z} is a zero-mean second-
order stationary process with finite autocovariance function RX (h) = Cov(X (t +
h), X (t)), for h ∈ Z. From Theorem 1.1 (Herglotz’s theorem), the process {X (t)}
has a spectral distribution FX (ω).

Let Λ be Λ = [−π, π ]. In the following, we show that the pth quantile λp in
(1.10) can be defined by the minimizer of the following objective function S(θ), i.e.,

S(θ) =
∫ π

−π

ρp(ω − θ)FX (dω), (3.1)

where ρτ (u), called “the check function” (e.g. Koenker 2005), is defined as

ρτ (u) = u(τ − 1(u < 0)),

where 1(·) is the indicator function.
Theorem 3.1 Suppose the process {X (t) : t ∈ Z} is a zero-mean second-order sta-
tionary process with spectral distribution function FX (ω). Define S(θ) by (3.1). Then
the pth quantile λp of the spectral distribution FX (ω) is a minimizer of S(θ) on Λ.
Furthermore, λp is unique and satisfies

λp = inf{ω ∈ Λ; S(ω) = min
θ∈Λ

S(θ)}. (3.2)

Proof First, we confirm the existence of the minimizer of S(θ). The right derivative
of S(θ) is

S′
+(θ) ≡ lim

ε→+0

S(θ + ε) − S(θ)

ε
= FX (θ) − p
X .

From (1.10), we have

S′
+(θ)

{
< 0, for θ < λp,

≥ 0, for θ ≥ λp.

Thus, the minimizer of S(θ) exists and S(λp) = minθ∈Λ S(θ). The uniqueness of λp

and the representation (3.2) follow from (1.10). �

The representation (3.2) of the pth quantile λp of the spectral distribution function
FX (ω) is useful when we consider the estimation theory of λp. From the definition
of the spectral distribution function, FX (ω) is uniquely determined by the auto-
covariance function RX (h) (h ∈ Z). Accordingly, the dependence structures of the
second-order stationary processes {X (t)} and {X ′(t)} can be discriminated by the pth
quantile λp since λp �= λ′

p if p �= 0, 1/2, 1, or X (t) �= cX ′(t), c ∈ R for all t ∈ Z.
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3.3 Quantile Estimation

In this section, we consider a method of quantile estimation for spectral distributions.
Suppose the process {X (t)} has the spectral density fX (ω), i.e.,

RX (h) =
∫ π

−π

e−ihω fX (ω)dω.

Denote by {X (t) : 1 ≤ t ≤ n} the observation stretch of the process. The parameter
space for the pth quantile λp is Λ. λp is in the interior of Λ. Let the periodogram
In,X (ω) of the observation stretch be defined at the Fourier frequencies ωs = 2πs/n,
ωs ∈ Λ, as

In,X (ωs) = 1

2πn

∣∣∣
n∑

t=1

X (t)eitωs

∣∣∣2.

For estimation problem, we define the sample objective function Sn(θ) as

Sn(θ) = 2π

n

∑
ωs∈Λ,s∈Z

ρp(ωs − θ)In,X (ωs), (3.3)

and the quantile estimator λ̂p as

λ̂p ≡ λ̂p,n = argmin
θ∈Λ

Sn(θ). (3.4)

Remark 3.1 As in (3.3), we define the minimization problem by the sum over all
Fourier frequencies ωs ∈ Λ. That is, for fixed n, the summation is over all integers
s satisfying −π ≤ (2πs)/n ≤ π . To simplify the notation, we use

∑
ωs∈Λ instead

of
∑

ωs∈Λ,s∈Z, where there should be no confusion. Henceforth, the sum
∑

ωs∈Λ is
always defined over all Fourier frequencies ωs .

Let us consider the asymptotic properties of the estimator λ̂p defined in (3.4) for
stationary process {X (t) : t ∈ Z} under the following assumptions.

Assumption 3.2 {X (t)} is a zero-mean, strictly stationary real-valued process, all
of whose moments exist with

∞∑
u1,...,uk−1=−∞

|cumX (u1, . . . , uk−1)| < ∞, for k = 2, 3, . . . ,

where cumX (u1, . . . , uk−1) denotes the joint cumulant of
(
X (t), X (t + u1), . . . ,

X (t + uk−1)
)
.

Under Assumption 3.2, the fourth-order spectral density is defined as
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QX (ω1, ω2, ω3) = 1

(2π)3

∞∑
t1,t2,t3=−∞

exp{−i(ω1t1 + ω2t2 + ω3t3)}cumX (t1, t2, t3).

First, we show the consistency of the estimator λ̂p under Assumption 3.2.

Theorem 3.3 Suppose the process {X (t) : t ∈ Z} satisfies Assumption 3.2 and the
pth quantile λp, defined by (1.10), satisfies fX (λp) > 0. If λ̂p is defined by (3.4),
then we have

λ̂p
P−→ λp.

Proof We first show the sample objective function Sn(θ) is convex in θ . That is, for
0 ≤ t ≤ 1,

Sn(tθ1 + (1 − t)θ2) ≤ t Sn(θ1) + (1 − t)Sn(θ2). (3.5)

The left-hand side of (3.5) has the following expression:

Sn(tθ1 + (1 − t)θ2)

=2π

n

∑
ωs∈Λ

1(ωs < θ1, ωs < θ2)
(
ωs − (tθ1 + (1 − t)θ2)

)

× (
p − 1(ωs < tθ1 + (1 − t)θ2)

)
In,X (ωs)

+ 2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)(
ωs − (tθ1 + (1 − t)θ2)

)

× (
p − 1(ωs < tθ1 + (1 − t)θ2)

)
In,X (ωs)

=S1n(t) + S2n (t), (say).

The inequality (3.5) holds if we show S1n(t) and S
2
n (t) have the corresponding expres-

sion, respectively.
We first consider S1n(t).

S1n (t) =2π

n

∑
ωs∈Λ

1(ωs < θ1, ωs < θ2)
(
t (ωs − θ1) + (1 − t)(ωs − θ2)

)

×
(
p − 1

(
0 < t (θ1 − ωs) + (1 − t)(θ2 − ωs)

))
In,X (ωs)

=2π

n

∑
ωs∈Λ

1(ωs < θ1, ωs < θ2)

× (
t (ωs − θ1) + (1 − t)(ωs − θ2)

)
(p − 1)In,X (ωs)

=2π

n

∑
ωs∈Λ

1(ωs < θ1, ωs < θ2)
(
t (ωs − θ1)(p − 1(ωs < θ1))

+ (1 − t)(ωs − θ2)
(
p − 1(ωs < θ2)

))
In,X (ωs)
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=t · 2π
n

∑
ωs∈Λ

1(ωs < θ1, ωs < θ2)ρp(ωs − θ1)In,X (ωs)

+ (1 − t) · 2π
n

∑
ωs∈Λ

1(ωs < θ1, ωs < θ2)ρp(ωs − θ2)In,X (ωs)

= S̃1n (t), (say).

Next, we consider S2n (t). Note that for any a, b ∈ R, 1(0 < a + b) ≤ 1(0 < a) +
1(0 < b). For 0 ≤ t ≤ 1,

S2n (t) = 2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)(
ωs − (tθ1 + (1 − t)θ2)

)

× (
p − 1(ωs < tθ1 + (1 − t)θ2)

)
In,X (ωs)

=2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)

×
{(

ωs − (
tθ1 + (1 − t)θ2

))
pIn,X (ωs) −

(
ωs − (

tθ1 + (1 − t)θ2
))

×
(
1
(
0 < t (θ1 − ωs) + (1 − t)(θ2 − ωs)

))
In,X (ωs)

}

≤2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)

×
{(

t
(
ωs − θ1

)+ (1 − t)
(
ωs − θ2

))
pIn,X (ωs)

−
(
t
(
ωs − θ1

)+ (1 − t)
(
ωs − θ2

))

×
(
1
(
0 < t (θ1 − ωs)

)+ 1
(
0 < (1 − t)(θ2 − ωs)

))
In,X (ωs)

}

≤t · 2π
n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)
(ωs − θ1)

×
(
p − (

1(0 < θ1 − ωs)
))

In,X (ωs)

+ (1 − t) · 2π
n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)
(ωs − θ2)

×
(
p − (

1(0 < θ1 − ωs)
))

In,X (ωs)

− 2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)
t
(
ωs − θ1

)
1
(
0 < θ2 − ωs

)
In,X (ωs)

− 2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)

× (1 − t)
(
ωs − θ2

)
1
(
0 < θ1 − ωs

)
In,X (ωs)



3.3 Quantile Estimation 65

≤t · 2π
n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)
ρp(ωs − θ1)In,X (ωs)

+ (1 − t) · 2π
n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)
ρp(ωs − θ2)In,X (ωs) (3.6)

= S̃2n (t), (say).

The last inequality (≤) of (3.6) holds since
(i) if (θ2 − ωs)(θ1 − ωs) ≤ 0, then it holds that

− 2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)
t
(
ωs − θ1

)
1
(
0 < θ2 − ωs

)
In,X (ωs)

− 2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)

× (1 − t)
(
ωs − θ2

)
1
(
0 < θ1 − ωs

)
In,X (ωs) ≤ 0, a.s.;

(ii) if (θ2 − ωs)(θ1 − ωs) > 0, then it holds

− 2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)
t
(
ωs − θ1

)
1
(
0 < θ2 − ωs

)
In,X (ωs)

− 2π

n

∑
ωs∈Λ

(
1 − 1(ωs < θ1, ωs < θ2)

)

× (1 − t)
(
ωs − θ2

)
1
(
0 < θ1 − ωs

)
In,X (ωs) = 0, a.s.

In summary, combining S1n(t) ≤ S̃1n(t) and S2n (t) ≤ S̃2n (t), the inequality (3.5)
holds. Hence, {Sn(θ), θ ∈ Λ} is a sequence of random convex functions in θ .

Now, let us consider the pointwise limit of Sn(θ). Actually, for each θ ∈ Λ,

|Sn(θ) − S(θ)|
≤
∣∣∣2π
n

∑
ωs∈Λ

ρp(ωs − θ)In,X (ωs) − E

(
2π

n

∑
ωs∈Λ

ρp(ωs − θ)In,X (ωs)

)∣∣∣

+
∣∣∣E
(
2π

n

∑
ωs∈Λ

ρp(ωs − θ)In,X (ωs)

)
−
∫ π

−π

ρp(ω − θ) fX (ω)dω

∣∣∣. (3.7)

From Theorem 7.6.1 in Brillinger (2001), it holds under Assumption 3.2 that

Var

(
2π

n

∑
ωs∈Λ

ρp(ωs − θ)In,X (ωs)

)
= O(n−1).
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The first term of the right-hand side in (3.7) converges to 0 in probability, which can
be shown by Chebyshev’s inequality.

Again, from Theorem 7.6.1 in Brillinger (2001), it holds under Assumption 3.2
that

E

(
2π

n

∑
ωs∈Λ

ρp(ωs − θ)In,X (ωs)

)
=
∫ π

−π

ρp(ω − θ) fX (ω) dω + o(1),

since the check function ρp(ω − θ) is of bounded variation. Hence, the second term
of the right-hand side in (3.7) converges to 0. Therefore, from (3.7), we see that for
each θ ∈ Λ,

Sn(θ)
P−→ S(θ).

By the Convexity Lemma in Pollard (1991), it holds that

sup
θ∈K

|Sn(θ) − S(θ)| P−→ 0, (3.8)

for any compact subset K ⊂ Λ.
Now, let us consider λp, which is the only minimizer of S(θ) since fX (λp) > 0.

Letm be theminimum of S(θ), and B(λp) be any open neighborhood of λp. From the
uniqueness ofminimizer of S(θ), there exists an ε > 0 such that infθ∈Λ\B(λp)|S(θ)| >

m + ε. Thus, with probability tending to 1,

inf
θ∈Λ\B(λp)

Sn(θ) ≥ inf
θ∈Λ\B(λp)

S(θ) − sup
θ∈Λ\B(λp)

|S(θ) − Sn(θ)| > m. (3.9)

Note that the second inequality follows that by (3.8) and the second term can be
chosen arbitrarily small, i.e.,

sup
θ∈Λ\B(λp)

|S(θ) − Sn(θ)| < ε.

On the other hand, with probability tending to 1,

Sn(λ̂p) ≤ m + ε∗ (3.10)

for any ε∗ > 0, by the pointwise convergence of Sn(λp) to S(λp)(= m) in probability.
By contradiction between (3.9) and (3.10), one sees that λ̂p ∈ B(λp)with probability
tending to 1, which completes the proof. �

The consistency of the estimator λ̂p is not difficult to expect. The result, however,
requires the continuity of the spectral distribution function FX (ω), a strong assump-
tion, if we stand on the estimator (3.4). It is possible to modify the estimator (3.4) by
smoothing to loose Assumption 3.2. The result will be elucidated in another work.
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Next, we investigate the asymptotic distribution of the estimator λ̂p. We impose
the following assumption on the process {X (t)} instead of Assumption 3.2, which is
stronger than Assumption 3.2.

Assumption 3.4 The process {X (t)} is a zero-mean, strictly stationary real-valued
process, all of whose moments exist with

∞∑
u1,...,uk−1=−∞

(
1 +

k−1∑
j=1

|u j |
)
|cumX (u1, . . . , uk−1)| < ∞, for k = 2, 3, . . . .

The asymptotic distribution of λ̂p is given as follows.

Theorem 3.5 Suppose {X (t) : t ∈ Z} satisfies Assumption 3.4 and the pth quantile
λp, defined by (1.10), satisfies fX (λp) > 0. If λ̂p is defined by (3.4), then we have

√
n (λ̂p − λp)

L−→ N (0, σ 2
p),

where

σ 2
p = fX (λp)

−2

[
4πp2

∫ π

−π

fX (ω)2dω

+ 2π(1 − 4p)
∫ λp

−π

fX (ω)2dω + 2π
∫ λp

−λp

fX (ω)2dω

+ 2π
{∫ λp

−π

∫ λp

−π

QX (ω1, ω2,−ω2)dω1dω2

+
∫ π

−π

∫ π

−π

p2QX (ω1, ω2,−ω2)dω1dω2

− 2p
∫ λp

−π

∫ π

−π

QX (ω1, ω2,−ω2)dω1dω2

}]
.

To prove Theorem 3.5, we need to apply Corollary 2 in Knight (1998). (See also
Geyer 1996.) To clarify the thread of the proof of Theorem 3.5, we list all the steps
here:

(i) We decide the order of convergence in Lemma 3.1.
(ii) To find the distribution of M(δ) in Corollary 2 in Knight (1998), we derive the

asymptotic joint distribution of quantities involved in Mn(δ).
(iii) Applying Slutsky’s theorem to derive the asymptotic distribution M(δ).

In Lemma 3.1, we consider the asymptotic variance of

Tn(λ) ≡ nβ ·
(
2π

n

∑
λ<ωs≤λ+n−β

In,X (ωs)

)
. (3.11)
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The asymptotic variance can be classified as in the following lemma.

Lemma 3.1 Suppose {X (t)} satisfies Assumption 3.4. Let Tn(λ) be defined as (3.11).
Then the asymptotic variance of Tn(λ) is given by

lim
n→∞Var(Tn(λ)) =

⎧⎪⎨
⎪⎩
0, if β < 1,

fX (λ)2, if β = 1,

∞, if β > 1.

Proof Let an := nβ . Divide Tn(λ) by

an

(
2π

n

∑
−π<ωs≤λ+an

In,X (ωs)

)
− an

(
2π

n

∑
−π<ωs≤λ

In,X (ωs)

)
.

The variances of both two parts and their covariance in asymptotics are given by

Var

{
an

(
2π

n

∑
−π<ωs≤λ+an

In,X (ωs)

)}

=a2n
n

2π
(∫ λ+a−1

n

−π

fX (ω)2dω

+
∫ λ+a−1

n

−π

∫ λ+a−1
n

−π

QX (ω1, ω2,−ω2)dω1dω2

)
+ lower order,

Var

{
an

(
2π

n

∑
−π<ωs≤λ

In,X (ωs)

)}

=a2n
n

2π
(∫ λ

−π

fX (ω)2dω +
∫ λ

−π

∫ λ

−π

QX (ω1, ω2,−ω2)dω1dω2

)
+ lower order,

and

Cov

⎛
⎝an

(
2π

n

∑
−π<ωs≤λ+an

In,X (ωs)

)
, an

(
2π

n

∑
−π<ωs≤λ

In,X (ωs)

)⎞
⎠

= a2n
n

2π
(∫ λ

−π
fX (ω)2dω +

∫ λ

−π

∫ λ+a−1
n

−π
QX (ω1, ω2, −ω2)dω1dω2

)
+ lower order.

As a result, the variance of Tn(λ) is



3.3 Quantile Estimation 69

Var(Tn(λ)) = a2n
n

2π
(∫ λ+a−1

n

λ

fX (ω)2dω

+
∫ λ+a−1

n

λ

∫ λ+a−1
n

−π

QX (ω1, ω2,−ω2)dω1dω2

−
∫ λ

−π

∫ λ+a−1
n

λ

QX (ω1, ω2,−ω2)dω1dω2

)
+ lower order. (3.12)

We can see the result from (3.12) by cases:

(i) if an = nβ where 0 < β < 1, then the limiting variance of Tn(λ) is

Var(Tn(λ)) → 0,

(ii) if an = nβ where β > 1, then the limiting variance of Tn(λ) is

Var(Tn(λ)) → ∞,

(iii) if an = nβ where β = 1, then the limiting variance of Tn(λ) is

Var(Tn(λ)) → fX (λ)2.

Thus, the conclusion holds. �

Remark 3.2 The result in Lemma 3.1 seems surprising at first glance, since it may
be expected that the asymptotic variance of (3.11) does not depend on the order of
factor nβ . However, the phenomenon can be explained in a heuristic way. Returning
back to the definition of Tn(λ), the quantity

2π

n

∑
λ<ωs≤λ+n−β

In,X (ωs). (3.13)

Looking at the number of periodograms In,X (ωs) with different Fourier frequencies
ωs , we can find that (3.13) depends on the order of the length n−β . If 0 < β < 1,
then more and more periodograms will be involved in the summation as n increases.
Conversely, if β > 1, then the interval for the frequency will be much smaller as
n increases. Only the case β = 1 keeps the same order between the number of
periodograms and the length of the interval, and therefore only one periodogram
In,X (ωs) is involved in the summation.

Following Lemma 3.1, the proof of Theorem 3.5 is given as follows.

Proof (Theorem 3.5) Consider the following process:

Mn(δ) = n
{
Sn
(
λp + δ√

n

)
− Sn(λp)

}
.
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By Knight’s identity (see (Knight 1998)), we have

Mn(δ) = −δ
√
n

⎧⎨
⎩

2π

n

∑
ω j∈Λ

(
p − 1(ω j < λp)

)(
In,X (ω j ) − fX (ω j )

)
⎫⎬
⎭

+2π

n

∑
ω j∈Λ

[∫ δ/
√
n

0
n
(
1(ω j ≤ λp + s) − 1(ω j ≤ λp)

)
ds

]
In,X (ω j ) + o(1)

= −δ
√
n

⎧⎨
⎩

2π

n

∑
ω j∈Λ

(
p − 1(ω j < λp)

)(
In,X (ω j ) − fX (ω j )

)
⎫⎬
⎭

+n
∫ δ/

√
n

0

(2π
n

∑
λp<ω j≤λp+s

In,X (ω j )
)
ds + o(1)

= Mn1(δ) + Mn2(δ) + o(1), (say). (3.14)

The asymptotic distribution of
√
n(λ̂p − λp) can be derived from the asymptotic

distribution of Mn(δ) by the argument of minimization. The asymptotic distribution
of Mn(δ) is determined by Slutsky’s theorem applying to the asymptotic joint dis-
tribution of (Mn1(δ), Mn2(δ))

T, where Mn1(δ) is asymptotically normal and Mn2(δ)

converges in probability.
Let us first consider Mn1(δ). From Theorem 7.6.1 in Brillinger (2001), it holds

that
Mn1(δ)

L−→ N (0, σ 2
p),

where σ 2
p is given by

σ 2
p = 4πp2

∫ π

−π

fX (ω)2dω + 2π(1 − 4p)
∫ λp

−π

fX (ω)2dω + 2π
∫ λp

−λp

fX (ω)2dω

+ 2π
{∫ λp

−π

∫ λp

−π

QX (ω1, ω2,−ω2)dω1dω2

+
∫ π

−π

∫ π

−π

p2QX (ω1, ω2,−ω2)dω1dω2

− 2p
∫ λp

−π

∫ π

−π

QX (ω1, ω2,−ω2)dω1dω2

}
.

Next, we consider Mn2(δ). From (3.12) in Lemma 3.1, it holds that for any
sequence an → ∞,

Var

⎛
⎝2π

n

∑
λ<ω j≤λ+a−1

n

In,X (ω j )

⎞
⎠ = O(a−1

n n−1).
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For a large enough constant C , it holds that

Var

⎛
⎝2π

n

∑
λ<ω j≤λ+a−1

n

In,X (ω j )

⎞
⎠ ≤ Ca−1

n n−1.

Note that the integration interval for s in (3.14) is [0, δ/√n]. Thus, Mn2(δ) can be
evaluated by

Var(Mn2(δ))

= n2Var

⎧⎨
⎩
∫ δ/

√
n

0

(2π
n

∑
λp<ω j≤λp+s

In,X (ω j )
)
ds

⎫⎬
⎭

= n2
∫ δ/

√
n

0

∫ δ/
√
n

0
Cov

⎛
⎝ ∑

λp<ω j≤λp+s

In,X (ω j ),
∑

λp<ωk≤λp+t

In,X (ωk)dω

⎞
⎠ dsdt

≤ n2
∫ δ/

√
n

0

∫ δ/
√
n

0
Var

⎛
⎝ ∑

λp<ω j≤λp+s

In,X (ω j )

⎞
⎠

1/2

× Var

⎛
⎝ ∑

λp<ωk≤λp+t

In,X (ωk)

⎞
⎠

1/2

dsdt

≤ n2
∫ δ/

√
n

0

∫ δ/
√
n

0
C2s1/2t1/2n−1dsdt

= C2n ·
(2
3
δ3/2n−3/4

)2 → 0.

By Chebyshev’s inequality, it holds that

|Mn2(δ) − E(Mn2(δ))| P−→ 0. (3.15)

The expectation of Mn2(δ) can be evaluated as follows. From Theorem 4.3.2 in
Brillinger (2001),
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E(Mn2(δ)) = E

⎛
⎝n

∫ δ/
√
n

0

(
2π

n

∑
λp<ω j≤λp+s

In,X (ω j )

)
ds

⎞
⎠

= n
∫ δ/

√
n

0
E

(
2π

n

∑
λp<ω j≤λp+s

In,X (ω j )

)
ds

= n
∫ δ/

√
n

0

(∫ λp+s

λp

fX (ω)dω + O(n−1)

)
ds

= 1

2π

∑
h∈Z

RX (h)

∫ δ/
√
n

0

(∫ λp+s

λp

n e−ihωdω
)
ds + o(1).

Note that if we change ω by ω̃ = ω − λp, then it holds that

∫ λp+s

λp

n e−ihωdω = e−ihλp

∫ s

0
n e−ihω̃dω̃.

Thus, we have

E(Mn2(δ)) = 1

2π

∑
h∈Z

RX (h)e−ihλp

∫ δ/
√
n

0

(∫ s

0
n e−ihω̃dω̃

)
ds + o(1). (3.16)

Changing the order of integration of double integrals in (3.16), it holds that

E(Mn2(δ))

= 1

2π

∑
h∈Z

RX (h)e−ihλp

∫ δ/
√
n

0

(∫ δ/
√
n

ω̃

n e−ihω̃ds
)
dω̃ + o(1)

= 1

2π

∑
h∈Z

RX (h)e−ihλp

∫ δ/
√
n

0
e−ihω̃(δ

√
n − nω̃)dω̃ + o(1). (3.17)

For any h ∈ Z, by the definition of the derivative, as n → ∞,

∫ δ/
√
n

0
δ
√
n e−ihω̃dω̃ = δ

(√
n
∫ δ/

√
n

0
e−ihω̃dω̃

)
→ δ2. (3.18)

By L’Hospital’s rule and the definition of the second derivative, we have, for any
h ∈ Z, ∫ δ/

√
n

0
nw̃ e−ihω̃dω̃ → 1

2
δ2

d

dω̃

(
w̃e−ihω̃

)∣∣∣
w̃=0

= 1

2
δ2. (3.19)

By (3.18), (3.19) and the definition of spectral density, (3.17) can be evaluated by
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E(Mn2(δ)) → 1

2
δ2 fX (λp). (3.20)

Therefore, by (3.15) and (3.20) with the triangular inequality, it holds that

Mn2(δ)
P−→ 1

2
δ2 fX (λp).

Now, applying Slutsky’s theorem to the joint distribution of (Mn1(δ), Mn2(δ))
T, we

obtain

Mn(δ)
L−→ M(δ) = −δN + 1

2
δ2 fX (λp), (3.21)

whereN has mean 0 and variance σ 2
p. Note that the right-hand side in Eq. (3.21) is

minimized by δ = fX (λp)
−1N . By Corollary 2 in Knight (1998), the desired result

holds, i.e., √
n(λ̂p − λp)

L−→ N (0, fX (λp)
−2σ 2

p).

This completes the proof. �

3.4 Sinusoid Model

In this section,we consider amodifiedquantile estimator λ̂∗
p by smoothing for spectral

quantiles in the frequency domain. Asymptotic normality of λ̂∗
p is shown under

sinusoid models. Sinusoid models constitute a broader class than what we have
considered in Sect. 3.3.

First, let us introduce the sinusoid model

Y (t) =
J∑

j=1

R j cos(ω j t + φ j ) + X (t), (3.22)

where {X (t)} is a zero-mean second-order stationary process satisfying Assumption
3.4 as before. {φ j } is uniformly distributed on (−π, π), and is independent of {X (t)}.
The amplitude {R j } and the frequency {ω j } are real constants.

For the stochastic process {Y (t)}, the autocovariance function RY (h) of {Y (t)} is

RY (h) = 1

2

J∑
j=1

R2
j cos(ω j h) + RX (h). (3.23)

From (3.23), it is not difficult to see that {Y (t)} is also second-order stationary. From
(1.10), the spectral distribution function FY (ω) is represented by
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FY (ω) = 1

2

J∑
j=1

R2
jH (ω − ω j ) + FX (ω), (3.24)

where H (ω) is so-called Heaviside step function such that

H (ω) =
{
1, if ω ≥ 0,

0, otherwise.

Accordingly, the spectral densify fY (ω) is written by the generalized derivative as

fY (ω) = 1

2

J∑
j=1

R2
j δ(ω − ω j ) + fX (ω), (3.25)

where δ(ω) is the Dirac delta function.
In the following, we provide two figures of spectral distributions of the process

{Y (t)}. The frequency and the amplitude of one areω1 = π/2 and R1 = 1/2, and the
other are ω1 = π/6 and R1 = 1/2. The process {X (t)} is supposed to be the MA(1)
process with coefficient 0.9.

From Fig. 3.1, we see that the spectral distributions for the processes {X (t)} and
{Y (t)} are almost the same. However, the spectral distributions for the process {Y (t)}
are not continuous at the specific frequency of the trigonometric function.

Let us introduce a modified quantile estimator λ̂∗
p for the spectral distribution

function of the sinusoid model {Y (t)}. Let I ∗
n,Y (ω) be

I ∗
n,Y (ω) =

∑
|h|<n

CY
n (h) exp(−ihω), (3.26)

whereCY
n (h) is the sample autocovariance of {Y (t)}. We use a spectral window φ(ω)

to smooth I ∗
n,Y (ω) as follows. w(x) is the corresponding window function. That is,

Fig. 3.1 Spectral distributions of Sinusoid models
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f̂Y (ω) = 1

2π

∫ π

−π

φ(ω − λ)I ∗
n,Y (λ)dλ

= 1

2π

∑
|h|≤m

w
( h

m

)
CY
n (h)e−ihω.

Assumptions on the spectral window function φ(ω) are given as follows.

Assumption 3.6 Let φ(ω) satisfy

(i) m → ∞, m/n → 0 and m2/n → ∞, as n → ∞.
(ii) w(0) = 1.
(iii) w(−x) = w(x) and |w(x)| ≤ 1 for all x ∈ [−1, 1].
(iv) w(x) = 0 for |x | > 1.
(v) There exists a real constant c1 such that

∫ ∞

−∞
1

m
φ
( l

m

)
dl → c1,

as m → ∞.
(vi) The pair (φ, fY ) satisfies φ(·) fY (·) ∈ L u for some u, 1 < u ≤ 2, and suppose

that there exists c > 0 such that

sup
|λ|<ε

‖φ(·){ fY (·) − fY (· − λ)}‖u = O(εc)

as ε → 0.

Here,L p denotes the space of complex-valued functions on [−π, π ], equipped with
L p norm ‖g‖p, i.e., {

∫ π

−π
|g(ω)|pdω}1/p.

Now, let us introduce a modified quantile estimator λ̂∗
p. Let us define the objective

function S∗
n (θ) as

S∗
n (θ) =

∫ π

−π

ρp(ω − θ) f̂Y (ω)dω.

The modified estimator λ̂∗
p is

λ̂∗
p = argmin

θ∈Λ
S∗
n (θ). (3.27)

In addition, we add the following assumption for the quantile λp of the sinusoid
model since the spectral distribution FY (ω) has jumps.

Assumption 3.7 The spectral distribution function FY (ω) has a density fY (ω) in a
neighborhood of λp and fY (ω) is continuous at λp with 0 < fY (λp) < ∞.
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Theorem 3.8 Suppose the process {Y (t) : t ∈ Z} is defined by (3.22) with {X (t)}
satisfying Assumption 3.2. The pth quantile λp satisfies Assumption 3.7. If λ̂∗

p is
defined by (3.27) under Assumption 3.6, then we have

λ̂∗
p

P−→ λp.

To prove Theorem 3.8, we need the following lemma.

Lemma 3.2 Assume
∑∞

j1, j2, j3=−∞|cumX ( j1, j2, j3)|<∞. For any square-integrable
function φ(ω), ∫ π

−π

(
In,Y (ω) − E In,Y (ω)

)
φ(ω)dω

P−→ 0. (3.28)

Proof Let

φ̃(n) = 1

2π

∫ π

−π

φ(ω) exp(inω)dω.

From Hosoya and Taniguchi (1982) and Li et al. (1994), it holds that

Var

{∫ π

−π

(In,Y (ω) − E In,Y (ω))φ(ω)dω

}
=

1

n2

n∑
t1,t2,t3,t4=1

φ̃(t1 − t2)φ̃(t3 − t4)
{
RY (t3 − t1)RY (t4 − t2)

+ RY (t4 − t1)RY (t3 − t2) + QY (t2 − t1, t3 − t1, t4 − t1)
}

= 2π

n

∫ π

−π

(φ(ω)φ(ω) + φ(ω)φ(−ω)) fY (ω) fX (ω)dω

+ 2π

n

∫ π

−π

∫ π

−π

φ(ω1)φ(−ω2)QX (ω1, ω2,−ω2)dω1dω2.

Here, fY (ω) is defined in (3.25). From Chebyshev’s inequality, (3.28) holds. �

Now we provide the proof of Theorem 3.8.

Proof (Theorem 3.8)We only have to show the pointwise limit of S∗
n (θ) is S(θ). The

rest of the argument for the proof is similar to the proof of Theorem 3.3. Note that
f̂Y (ω) has a representation such that

f̂Y (ω) =
∫ π

−π

φ(ω − λ)I ∗
n,Y (λ)dλ.

Similarly, we have
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|S∗
n (θ) − S(θ)| ≤

∣∣∣
∫ π

−π

ρp(ω − θ)( f̂Y (ω) − E f̂Y (ω))dω

∣∣∣
+
∣∣∣
∫ π

−π

ρp(ω − θ)E( f̂Y (ω))dω −
∫ π

−π

(∫ π

−π

ρp(ω − θ)φ(ω − λ)dω
)
FY (dλ)

∣∣∣.

The first term in the right-hand side converges to 0 in probability, which can be seen
from Lemma 3.2. Under Assumption 3.6 (vi), we see that the second term in the
right-hand side converges to 0 from Theorem 1.1 in Hosoya (1997). �

Next, we consider the asymptotic distribution of the modified estimator λ̂∗
p.

Theorem 3.9 Suppose {Y (t) : t ∈ Z} is defined by (3.22) with {X (t)} satisfying
Assumption 3.6. The pth quantile λp satisfies Assumption 3.7. If λ̂∗

p is defined by
(3.27) under Assumption 3.6, then we have

√
n(λ̂∗

p − λp)
L−→ N (0, σ ∗

p
2
),

where

σ ∗
p
2 = fY (λp)

−2
[
4πp2

∫ π

−π

fY (ω) fX (ω)dω

+ 2π(1 − 4p)
∫ λp

−π

fY (ω) fX (ω)dω + 2π
∫ λp

−λp

fY (ω) fX (ω)dω

+ 2π
{∫ λp

−π

∫ λp

−π

QX (ω1, ω2,−ω2)dω1dω2

+
∫ π

−π

∫ π

−π

p2QX (ω1, ω2,−ω2)dω1dω2

− 2p
∫ λp

−π

∫ π

−π

QX (ω1, ω2,−ω2)dω1dω2

}]
.

Here, fY (ω) is the spectral density defined in (3.25).

Proof Consider the following process:

M∗
n (δ) = n

{
S∗
n

(
λp − δ√

n

)
− S∗

n (λp)
}
.

By Knight’s identity, we have

M∗
n (δ) = −δ

√
n

{∫ π

−π

(p − 1(ω < λp)) f̂Y (ω)dω

}

+
∫ π

−π

∫ δ/
√
n

0
n
(
1(ω ≤ λp + s) − 1(ω ≤ λp)

)
f̂Y (ω)dsdω

= M∗
n1(δ) + M∗

n2(δ), (say).
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Let us first evaluate the term M∗
n1(δ). Note that fY (ω) is continuous at λp, it holds

that ∫ π

−π

(p − 1(ω < λp)) fY (ω)dω = 0.

Thus, the term M∗
n1(δ) can be written as

M∗
n1(δ) = −δ

√
n

{∫ π

−π

(p − 1(ω < λp))( f̂Y (ω) − c1 fY (ω))dω

}

= −δ
√
n

{∫ π

−π

(p − 1(ω < λp))

×
(
(2π)−1

∫ π

−π

φ(ω − λ)I ∗
n,Y (λ)dλ − fY (ω)

)
dω

}

= −δ
√
n

{∫ π

−π

(p − 1(ω < λp))

×(2π)−1
∫ π

−π

φ(ω − λ)
(
I ∗
n,Y (λ) − fY (λ)

)
dλ dω

+
∫ π

−π

(
p − 1(ω < λp)

)

×
(
(2π)−1

∫ π

−π

φ(ω − λ) fY (λ)dλ − c1 fY (ω)
)
dω

}

= −δ
√
n(M∗

n11 + M∗
n12), (say).

Now, focusing on the part of I ∗
n,Y (λ) − fY (λ) in the term M∗

n11, we change variables
(ω, λ) �→ (η, λ) by setting η = m(ω − λ), so noting Assumption 3.6 (v), it holds
that

M∗
n11 =

∫ π

−π

[∫ m(π−λ)

m(−π−λ)

(
p − 1

(
λ + η

m
< λp

))
(2πm)−1φ

( η

m

)
dη

]

×(I ∗
n,Y (λ) − fY (λ)

)
dλ

= c1

∫ π

−π

(
p − 1

(
λ + η

m
< λp

))(
I ∗
n,Y (λ) − fY (λ)

)
dλ

+
∫ π

−π

[∫ m(π−λ)

m(−π−λ)

(
p − 1

(
λ + η

m
< λp

))
(2πm)−1φ

( η

m

)
dη

−c1
(
p − 1

(
λ + η

m
< λp

))](
I ∗
n,Y (λ) − fY (λ)

)
dλ

= M∗
n111 + M∗

n112, (say).

From Lemma A3.3 in Hosoya and Taniguchi (1982), we can see that

√
nM∗

n111
L−→ c1N (0, σ̄ 2

p),



3.4 Sinusoid Model 79

where σ̄ 2
p is

σ̄ 2
p = 4πp2

∫ π

−π

fY (ω) fX (ω)dω + 2π(1 − 4p)
∫ λp

−π

fY (ω) fX (ω)dω

+ 2π
∫ λp

−λp

fY (ω) fX (ω)dω + 2π
{∫ λp

−π

∫ λp

−π

QX (ω1, ω2,−ω2)dω1dω2

+
∫ π

−π

∫ π

−π

p2QX (ω1, ω2,−ω2)dω1dω2

− 2p
∫ λp

−π

∫ π

−π

QX (ω1, ω2,−ω2)dω1dω2

}
.

On the other hand, the following term R in the square brackets in M∗
n112 can be

evaluated by the triangular inequality as follows:

R =
∫ m(π−λ)

m(−π−λ)

(
p − 1

(
λ + η

m
< λp

))

×(2πm)−1φ
( η

m

)
dη − c1

(
p − 1

(
λ + η

m
< λp

))

≤
∣∣∣
∫ m(π−λ)

m(−π−λ)

(
p − 1

(
λ + η

m
< λp

))
(2πm)−1φ

( η

m

)
dη

−
∫ m(π−λ)

m(−π−λ)

(
p − 1

(
λ < λp

))
(2πm)−1φ

( η

m

)
dη

∣∣∣

+
∣∣∣
∫ m(π−λ)

m(−π−λ)

(
p − 1

(
λ < λp

))
(2πm)−1φ

( η

m

)
dη − c1

(
p − 1

(
λ < λp

))∣∣∣.

The first absolute difference can be evaluated by

∣∣∣
∫ m(π−λ)

m(−π−λ)

(
p − 1

(
λ + η

m
< λp

))
(2πm)−1φ

( η

m

)
dη

−
∫ m(π−λ)

m(−π−λ)

(
p − 1

(
λ < λp

))
(2πm)−1φ

( η

m

)
dη

∣∣∣

≤
∫ m(π−λ)

m(−π−λ)

∣∣∣1
(
λ + η

m
< λp

)
− 1

(
λ < λp

)∣∣∣(2πm)−1φ
( η

m

)
dη

≤
∫ m(π−λ)

m(λp−λ)

1
(
λ < λp

)
(2πm)−1φ

( η

m

)
dη

+
∫ m(λp−λ)

m(−π−λ)

1
(
λ > λp

)
(2πm)−1φ

( η

m

)
dη

→ 0,
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asm → ∞, by the definition of Lebesgue integration. The second absolute difference
can be shown to be asymptotically 0 by Assumption 3.6 (v).

Since the term (
√
nM∗

n112)
2 is uniformly integrable by Assumption 3.4, we see

that by Vitali’s convergence theorem, Var(
√
nM∗

n112) → 0, as n → ∞. In turn, it

holds that
√
nM∗

n112
P−→ 0.

Next, we evaluate the term M∗
n12 in M∗

n1(δ). From Theorem 10 in Hannan (1970),
page 283, we see, by Assumption 3.6, that

∣∣∣(2π)−1
∫ π

−π

φ(ω − λ) fY (λ)dλ − c1 fY (ω)

∣∣∣ = O(m−1).

Therefore,
√
nM∗

n12 = O(n1/2/m), which shows that
√
nM∗

n12 → 0 under Assump-

tion 3.6 (i). In summary, it holds that M∗
n1(δ)

L−→ −δc1N (0, σ̄ 2
p).

As for the second term M∗
n2(δ), we have

M∗
n2(δ) =

∫ δ/
√
n

0

∫ λp+s

λp

n f̂Y (ω)dωds

=
∫ δ

√
n

0

(∫ λp+t/n

λp

f̂Y (ω)dω
)
dt.

Now, note that Var( f̂Y (ω)) = O(m/n) uniformly in ω ∈ Λ under Assumption 3.6.
With similar computation in the proof of Theorem 3, we can see that

M∗
n2(δ)

P−→ 1

2
δ2c1 fY (λp).

Thus, by Slutsky’s theorem, we obtain

M∗
n (δ)

L−→ M∗(δ) = −δc1N + 1

2
δ2c1 fY (λp),

which is minimized by δ = fY (λp)
−1N . Therefore,

√
n(λ̂p − λp)

L−→ N (0, fY (λp)
−2σ̄ 2

p),

and the asymptotic variance σ ∗
p
2 in Theorem 3.9 is σ ∗

p
2 = fY (λp)

−2σ̄ 2
p . This com-

pletes the proof. �

From Theorems 3.3 and 3.9, we see that both quantile estimators λ̂p and λ̂∗
p have

asymptotic normality. Taking it into account, we consider the quantile test in the
frequency domain in the next section.
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3.5 Quantile Test

In this section, we consider quantile tests in the frequency domain. The hypothesis
testing problem is

H : λp = q versus A : λp �= q. (3.29)

Let λ̃p be λ̂p or λ̂∗
p and σ̃ 2

p be σ 2
p or σ ∗

p
2. For the testing problem (3.29), we define

the test statistic Tn as

Tn = λ̃p − q

σ̃p
. (3.30)

As what we considered in Sect. 3.2, Tn is applicable to discriminate second-
order stationary processes. One commonly considers testing problem for second-
order stationary process under Assumption 3.2, which guarantees the continuity of
the spectral density function. Therefore, our test statistic Tn has a broader range
of applications than the common one. It is possible to choose a proper quantile or
multiple quantiles as our interest to implement the hypothesis testing.

Now, let us provide the asymptotic distribution of the test statistic Tn , which is a
corollary of Theorems 3.5.

Corollary 3.1 Suppose the process {X (t)} satisfies Assumption 3.4 or the process
{Y (t)} is defined by (3.22) with {X (t)} satisfying Assumption 3.4. The pth quantile
λp satisfies Assumption 3.7. λ̃p is defined by (3.4) or (3.27) under Assumption 3.6.
Then for test statistic Tn, defined by (3.30), we have

(i) Under the null hypothesis H,
√
n Tn

L−→ N (0, 1);

(ii) Under the alternative hypothesis A,
√
n (Tn − λp−q

σ̃p
)

L−→ N (0, 1).

According to the significance level α, the hypothesis H is rejected if
√
n |Tn| >

Φ1−α/2, where Φ1−α/2 is the 1 − α/2 percentage point of a standard normal distri-
bution.

Remark 3.3 In practice, σ̃p is unknown.We have to estimate it in advance. It is possi-
ble to construct a consistent estimator for σ̃p. (For higher order cumulant estimation,
see Taniguchi 1982 or Keenan 1987.)

3.6 Numerical Studies

In this section, we implement the numerical studies to confirm the theoretical results
in Sects. 3.3 and 3.4.
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3.6.1 Finite Sample Performance

In this subsection, we first investigate the finite sample performance of the quan-
tile estimator λ̂p with different numbers of observations n = 100, 1000. The model
considered here is the Gaussian AR(1) model with coefficient −0.9. The standard
deviations σ of innovation processes are σ = 1. p in this simulation is set by p = 0.7.

In Fig. 3.2, we provide the Q–Q plots of
√
n(λ̂0.7 − λ0.7) when n = 100 and

n = 1000 in 200 simulations, respectively. It can be seen that the quantity is much
closer to the normal distribution when the sample size is as large as n = 1000. In
other words, the quantity may have a problem of approximating tails by normal
distribution when the sample size is small.

Also, this problem happens when the standard deviation of innovation processes
is small. In the following, we show theQ–Q plots of

√
n(λ̂0.7 − λ0.7) for the Gaussian

white noise model and the Gaussian AR(1) model with coefficient −0.9, with the
standard deviations σ = 0.08. λ̂p is estimated from n = 1000 observations. The
estimation procedures are repeated for 200 times to generate Q–Q plots.

In Fig. 3.3, we can see even the observations n = 1000, the tail of
√
n(λ̂0.7 − λ0.7)

is not well captured by normal distribution when σ = 0.08 for both second-order

Fig. 3.2 Q–Q plots of
√
n(λ̂0.7 − λ0.7) with observations n = 100 and n = 1000

Fig. 3.3 Q–Q plots of
√
n(λ̂0.7 − λ0.7) for the Gaussian white noise models
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Table 3.1 The unbiased sample variance of
√
nλ̂0.7 for the Gaussian white noise models

Standard deviation of innovation process

n σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 σ = 1.0

200 4.675 4.538 4.569 4.453 5.088

400 5.372 4.652 4.689 4.785 4.516

600 5.594 5.093 4.772 4.665 4.711

800 6.300 5.833 5.007 5.038 4.702

1000 5.821 5.799 5.107 4.649 5.042

Table 3.2 The unbiased sample variance of
√
nλ̂0.7 for the Gaussian AR(1) models with

coefficient 0.9

Standard deviation of innovation process

n σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 σ = 1.0

200 0.379 0.362 0.337 0.358 0.343

400 0.441 0.324 0.387 0.303 0.348

600 0.369 0.363 0.356 0.351 0.356

800 0.353 0.376 0.349 0.393 0.394

1000 0.390 0.339 0.344 0.374 0.366

stationary models. The extreme value of
√
n(λ̂p − λp) sometimes could be very

large compared to the tail of a normal distribution.
Furthermore, to see the variance of quantile estimator λ̂p in finite sample case, we

generate the following unbiased sample variance of
√
nλ̂0.7 for the Gaussian white

noise models and the Gaussian AR(1) models with coefficient 0.9 when observa-
tions n = 200, 400, 600, 800, and 1000 by 1000 simulations in Tables 3.1 and 3.2.
The standard deviations of innovation processes are set to be σ = 0.2, 0.4, 0.6, 0.8,
and 1.0.

3.6.2 Numerical Results for Estimation

In this subsection, we first investigate the performance of the estimator λ̂p defined by
(3.4). As a benchmark, we fix the standard deviations of innovation processes as fol-
lows. The stochastic process considered here are second-order stationary processes,
including the Gaussian white noise model, the Gaussian MA(1) model with coeffi-
cient 0.9, the Gaussian AR(1) model with coefficient 0.9, and the Gaussian AR(1)
model with coefficient −0.9, whose standard deviations σ of innovation processes
are set to be σ = 1. The spectral distribution functions for these four models are
already given in Fig. 1.1. The dependence structures of them are obviously different.
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In Tables 3.3, 3.4, 3.5 and 3.6, we summarized the true value of λp, the mean
and the root mean squared deviation (RMSD) of the quantile estimator λ̂p for the
spectral distribution function of each model by 30, 50, and 100 observations for 1000
simulations. We set p as p = 0.6, 0.7, 0.8, 0.9.

From Tables 3.3, 3.4, 3.5 and 3.6, we can see that the quantile estimator λ̂p,n

has consistency for the true λp. As the size of observations becomes larger, the bias
between the estimator and the true value becomes smaller. RMSD also becomes
smaller as the observations increase.

Next, we compare the performance of λ̂∗
p with λ̂p. We consider the same models,

i.e., the Gaussian white noise model, the GaussianMA(1) model with coefficient 0.9,
the Gaussian AR(1) model with coefficient 0.9 and the Gaussian AR(1) model with
coefficient −0.9, whose standard deviations σ of innovation processes are set to be
σ = 1. For brevity, denote each model by WN, MA, AR1, and AR2, respectively.

Table 3.3 The true value of λp , the mean (RMSD) of the estimated quantiles λ̂p,n of the spectral
distribution of White noise model for 1000 simulations

White noise

p λp λ̂p,30 λ̂p,50 λ̂p,100

0.6 0.628 0.698 (0.284) 0.665 (0.233) 0.649 (0.170)

0.7 1.257 1.272 (0.370) 1.273 (0.289) 1.267 (0.208)

0.8 1.885 1.861 (0.368) 1.863 (0.294) 1.879 (0.211)

0.9 2.513 2.444 (0.297) 2.473 (0.225) 2.500 (0.168)

Table 3.4 The true value of λp , the mean (RMSD) of the estimated quantiles λ̂p,n of the spectral
distribution of MA(1) model with coefficient 0.9 for 1000 simulations

MA(1)

p λp λ̂p,30 λ̂p,50 λ̂p,100

0.6 0.318 0.388 (0.187) 0.364 (0.154) 0.337 (0.120)

0.7 0.653 0.705 (0.254) 0.682 (0.201) 0.667 (0.152)

0.8 1.032 1.067 (0.278) 1.038 (0.220) 1.037 (0.160)

0.9 1.520 1.545 (0.265) 1.528 (0.218) 1.513 (0.156)

Table 3.5 The true value of λp , the mean (RMSD) of the estimated quantiles λ̂p,n of the spectral
distribution of AR(1) model with coefficient 0.9 for 1000 simulations

AR(1) with coefficient 0.9

p λp λ̂p,30 λ̂p,50 λ̂p,100

0.6 0.034 0.099 (0.077) 0.075 (0.054) 0.058 (0.038)

0.7 0.076 0.178 (0.126) 0.136 (0.095) 0.108 (0.061)

0.8 0.145 0.304 (0.213) 0.237 (0.143) 0.192 (0.096)

0.9 0.321 0.604 (0.359) 0.501 (0.278) 0.414 (0.194)



3.6 Numerical Studies 85

Table 3.6 The true value of λp , the mean (RMSD) of the estimated quantiles λ̂p,n of the spectral
distribution of AR(1) model with coefficient −0.9 for 1000 simulations

AR(1) with coefficient −0.9

p λp λ̂p,30 λ̂p,50 λ̂p,100

0.6 2.820 2.563 (0.359) 2.656 (0.266) 2.732 (0.178)

0.7 2.997 2.834 (0.198) 2.909 (0.138) 2.950 (0.095)

0.8 3.065 2.963 (0.124) 3.003 (0.104) 3.034 (0.057)

0.9 3.107 3.046 (0.079) 3.067 (0.056) 3.081 (0.039)

Table 3.7 The true value of λp , the mean (RMSD) of the estimated quantiles λ̂0.6,100, and the mean
(RMSD) of the estimated quantiles λ̂∗

0.6,100 with bandwidthm = 20, 50, 80 for spectral distribution
in each model for 1000 simulations

λ̂∗
0.6,100 with bandwidth m

Model λ0.6 λ̂0.6,100 m = 20 m = 50 m = 80

WN 0.628 0.679 (0.175) 0.663 (0.142) 0.665 (0.153) 0.667 (0.157)

WN∗ 0.785 0.737 (0.189) 0.733 (0.153) 0.744 (0.171) 0.741 (0.179)

WN∗∗ 1.257 0.970 (0.360) 0.911 (0.378) 0.947 (0.357) 0.959 (0.353)

MA 0.318 0.364 (0.128) 0.355 (0.092) 0.346 (0.102) 0.351 (0.110)

MA∗ 0.362 0.370 (0.127) 0.397 (0.102) 0.392 (0.117) 0.389 (0.122)

MA∗∗ 0.499 0.439 (0.150) 0.466 (0.107) 0.461 (0.124) 0.461 (0.130)

AR1 0.034 0.088 (0.067) 0.095 (0.068) 0.095 (0.069) 0.091 (0.066)

AR1∗ 0.036 0.092 (0.070) 0.111 (0.079) 0.089 (0.064) 0.089 (0.066)

AR1∗∗ 0.041 0.097 (0.072) 0.121 (0.086) 0.096 (0.068) 0.095 (0.069)

AR2 2.820 2.737 (0.202) 2.569 (0.313) 2.634 (0.269) 2.666 (0.252)

AR2∗ 2.742 2.669 (0.254) 2.381 (0.419) 2.553 (0.293) 2.596 (0.273)

AR2∗∗ 1.925 2.381 (0.620) 2.092 (0.336) 2.253 (0.496) 2.295 (0.544)

In addition, we include all these models in the sinusoid model (3.22).

(i) Let J = 1. R1 and ω1 are set to be 1/2 and π/2. All these sinusoid models are
denoted by WN∗, MA∗, AR1∗, and AR2∗, respectively.

(ii) Let J = 1. R1 and ω1 are set to be 1 and π/2. All these sinusoid models are
denoted by WN∗∗, MA∗∗, AR1∗∗, and AR2∗∗, respectively.

We fix p = 0.6 in this simulation. λ̂p and λ̂∗
p are calculated from 100 observations

of each model. We use the Bartlett window as the lag window for the estimator λ̂∗
p.

We investigate the performance when the bandwidth m is m = 20, 50, 80 for 1000
simulations. The numerical results are shown in Table 3.7.

From Table 3.7, one can see that the modified estimator λ̂∗
0.6 is closer to the true

value and has smaller RMSD than the quantile estimator λ̂0.6 in the models WN
and MA. On the other hand, the quantile estimator λ̂0.6 outperforms the modified
estimator when the underlying model is AR1 or AR2. An adequate bandwidth could
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make the modified estimator λ̂∗ better than λ̂ in views of bias and RMSD but the
choice of an adequate bandwidth in practice is a difficult problem, which can be
found from this simulation study.

For the sinusoid models, the modified estimator λ̂∗
0.6 has a better performance

than the estimator λ̂0.6 in the sense of RMSD. The estimator λ̂0.6 sometimes has a
lower bias than λ̂∗

0.6 partly because there is a decrease in the autocorrelations of the
trigonometric function for finite samples. The remarkable case in all the models is
AR2∗∗. In this case, the true quantile is close to the point of the jump in the spectral
distribution. The modified estimator λ̂∗

0.6 with any bandwidth is much better than
λ̂0.6 in regard to bias and RMSE. We found that this property holds in general. In
particular, from (3.24) we can see that if the amplitudes R j become larger, then the
jumps become the dominant part in the spectral distribution. In the case, the modified
estimator λ̂∗ becomes a good alternative to the estimator λ̂.



Chapter 4
Empirical Likelihood Method for Time
Series

Abstract Empirical likelihood method is one of the nonparametric statistical meth-
ods, which is applied to the hypothesis testing or construction of confidence regions
for unknown parameters. This method has been developed for the statistical infer-
ence for independent and identically distributed random variables. To handle serial
correlation, an empirical likelihood method is proposed in the frequency domain for
second-order stationary processes. The Whittle likelihood is used as an estimating
function in the empirical likelihood. It has been shown that the likelihood ratio test
statistic based on the empirical likelihood is asymptotically χ2-distributed. We dis-
cuss the application of the empirical likelihood method to symmetric α-stable linear
processes. It is shown that the asymptotic distribution of our test statistic is quite
different from the usual one. We illustrate the theoretical result with some numerical
simulations.

4.1 Introduction

Not only parametric methods, nonparametric methods also have been developed
for the statistical inference for time series models. A remarkable nonparametric
method for the hypothesis testing and construction of confidence regions is called
empirical likelihood. Owen (1988) introduced the empirical likelihood method to
test the pivotal quantities for independent and identically distributed (i.i.d.) data. He
showed that the empirical likelihood ratio statistic is asymptotically χ2-distributed.
Afterward, the empirical likelihood is linked to the estimating function approach in
Qin and Lawless (1994). An extension to the dependent data in the time domain is
discussed in Kitamura (1997).

For the approach in the frequency domain, Monti (1997) discussed the empiri-
cal likelihood for the Whittle estimation and derived the asymptotic distribution of
the empirical likelihood ratio statistic. Ogata and Taniguchi (2010) developed the
empirical likelihood approach for a class of vector-valued non-Gaussian stationary
processes. The empirical likelihood is applied to the symmetric α-stable (sαs) pro-
cesses in Akashi et al. (2015).
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4.2 Empirical Likelihood in the Frequency Domain

In this section, we describe the empirical likelihood and the estimating function from
the Whittle likelihood in the frequency domain. Let us consider the following linear
model:

X (t) =
∞∑

j=0

ψ jε(t − j), t ∈ Z, (4.1)

whereψ0 = 1 and {ε(t) : t ∈ Z} is a sequence of i.i.d. randomvariableswith variance
σ 2. In addition, suppose the process (4.1) has the spectral density g(ω).

Let us review the h-step ahead linear prediction of a scalar stationary process
{X (t) : t ∈ Z}. An h-step ahead linear prediction problem is to predict X (t) by a
linear combination of {X (s) : s ≤ t − h}. Denote by X̂(t) the predictor and then

X̂(t) =
∞∑

j=h

φ j (θ)X (t − j),

where {φ j (θ)} is the coefficients of the prediction, driven by a parameter θ ∈ Θ ⊂
R

d , since it is unknown in advance. From Theorem 1.2, the spectral representation
of the process X (t) is

X (t) =
∫ π

−π

exp(−i tω)dζX (ω),

and the spectral representation of the predictor X̂(t) is

X̂(t) =
∫ π

−π

exp(−i tω)

∞∑

j=h

φ j (θ) exp(i jω)dζX (ω),

where {ζX (ω); −π ≤ ω ≤ π} is an orthogonal increment process satisfying

E
[
dζX (ω)dζX (μ)

] =
{
g(ω)dω (ω = μ)

0 (ω �= μ)
.

Then, the prediction error is

E |X (t) − X̂(t)|2 =
∫ π

−π

∣∣∣∣1 −
∞∑

j=h

φ j (θ) exp(i jω)

∣∣∣∣
2

g(ω)dω. (4.2)

The true parameter θ0 is the minimizer of the prediction error (4.2). Especially,
let us define f (ω; θ) as
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f (ω; θ) =
∣∣∣∣1 −

∞∑

j=h

φ j (θ) exp(i jω)

∣∣∣∣
−2

.

Then the true parameter θ0 is the minimizer of

∫ π

−π

f (ω; θ)−1g(ω)dω. (4.3)

A confidence region for the parameter θ0 can be constructed from the Whittle likeli-
hood if we have a nonparametric estimator for g(ω) in (4.3). The procedure mimics
the parameter estimation method in Chap. 2. Thus, we introduce the empirical like-
lihood ratio as the testing statistic as follows.

Let In,X (ω) denote the periodogram of the observations, that is,

In,X (ω) = 1

2πn

∣∣∣
n∑

t=1

X (t)eitω
∣∣∣
2
.

The empirical likelihood ratio statistic is defined as

R(θ) = max
w1,...,wn

{ n∏

t=1

nwt ;
n∑

t=1

wt m(λt ; θ) = 0,
n∑

t=1

wt = 1, 0 ≤ w1, w2, . . . , wn ≤ 1

}
,

(4.4)
where the estimating function m(λt ; θ) in R(θ) is defined as

m(λt ; θ) = ∂

∂θ

In,X (λt )

f (λt ; θ)
∈ R

d , λt = 2π t

n
∈ (−π, π). (4.5)

Suppose we are interested in the testing problem

H : θ = θ0.

Generally, the estimating function m of the parameter θ for the empirical likelihood
(4.4) is supposed to satisfy

E[m(θ0) ] = 0, θ0 ∈ Θ. (4.6)

In our case, the true parameter θ0 is the minimizer of (4.3) and thus the estimating
function (4.5) satisfies (4.6). The product

∏
wt can be regarded as an empirical

version of the likelihood when the estimating equation
∑n

t=1 wt m(λt ; θ) = 0 holds.
The empirical likelihood ratio R(θ) is the ratio of the empirical likelihood to the
likelihood (1/n)n .

Now we review the asymptotic results for the process {X (t)} with finite variance
innovations. Let us assume the following assumptions for the process {X (t)} and the
parametric model f (θ).
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Assumption 4.1 The process {X (t)} is a zero-mean, strictly stationary real-valued
process, all of whose moments exist. In addition,

(i) it holds that

∞∑

u1,...,uk−1=−∞

(
1 +

k−1∑

j=1

|u j |
)
|cumX (u1, . . . , uk−1)| < ∞, for k = 2, 3, . . . ,

where cumX (u1, . . . , uk−1)denotes the joint cumulant of
(
X (t), X (t + u1), . . . ,

X (t + uk−1)
)
;

(ii) let

Ck =
∞∑

u1,...,uk−1=−∞
|cumX (u1, . . . , uk−1)| < ∞

and it holds that ∞∑

k=1

Ckzk

k! < ∞

for any z in a neighborhood of 0.

Let F (Θ) be the family of parametric models.

Assumption 4.2 (i) The parametric models are defined as

F (Θ) =
{
g : g(ω) = σ 2

∣∣∣
∞∑

j=0

g j (θ) exp(−i jω)

∣∣∣
2
/(2π)

}
.

(ii) The parameter space Θ is a compact subset of Rd .
(iii) The parametric spectral density fθ (λ) is twice continuously differentiable with

respect to θ .

Theorem 4.3 (Ogata and Taniguchi 2010) Under Assumptions 4.1 and 4.2, if the
hypothesis H : θ = θ0 holds, then we have

−2 log R(θ0)
L−→ χ2

d .

as n → ∞, where χ2
d denotes a chi-square distribution with d degrees of freedom.

Proof See Ogata and Taniguchi (2010).

From Theorem 4.3, it is also possible to a construct confidence region for the
parameters θ ∈ Θ . Actually, if one needs to construct a confidence region at the
significant level q, then one can define the region as
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Cq,n = {θ ∈ Θ : −2 log R(θ) < cq},

where cq is the 1 − q percentage point of a chi-square distribution with d degrees of
freedom.

4.3 Empirical Likelihood for Symmetric α-stable Processes

In this section, we discuss the empirical likelihood method for sαs processes. We
consider the same linear model

X (t) =
∞∑

j=0

ψ j Z(t − j), t ∈ Z. (4.7)

but {Z(t) : t ∈ Z} is a sequence of i.i.d. sαs random variables with scale parameter
σ > 0. The characteristic function of the random variables is expressed as

E exp{iξ Z(1)} = exp{−σ |ξ |α}, ξ ∈ R.

In the case of α = 2, the process is Gaussian. On the other hand, when α is less than
2, the usual spectral density g(ω) is not well defined. Here, we assume that α ∈ [1, 2)
to guarantee probability convergence of important terms which will appear in proofs
later.

Now we state the notations. For any sequence {A(t) : t ∈ Z} of random variables,
let

γ 2
n,A = n−2/α

n∑

t=1

A(t)2,

In,A(ω) = n−2/α

∣∣∣∣
n∑

t=1

A(t) exp(i tω)

∣∣∣∣
2

,

Ãt = A(t)
(
A(1)2 + · · · + A(n)2

)1/2 , t = 1, · · · , n, (4.8)

and

Ĩn,A(ω) = In,A(ω)

γ 2
n,A

=
∣∣∣∣

n∑

t=1

Ãt exp(i tω)

∣∣∣∣
2

.

Ĩn,A(ω) is called a self-normalized periodogram of randomvariables A(1), · · · , A(n).
The process {X (t)} in (4.7) is well defined if we impose the following assumption.
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Assumption 4.4 For some δ satisfying 0 < δ < 1,

∞∑

j=0

| j ||ψ j |δ < ∞.

Under this assumption, the series of the right-hand side in (4.7) converges almost
surely. This is an easy consequence of the three-series theorem (c.f. Petrov 1975).
Furthermore, the process (4.7) has the normalized power transfer function

g̃(ω) = 1

ψ2

∣∣∣∣
∞∑

j=0

ψ j exp(i jω)

∣∣∣∣
2

, ψ2 =
∞∑

j=0

ψ2
j .

From the property of stable random variables,

X (t) =d

⎧
⎨

⎩

∞∑

j=0

|ψ j |α
⎫
⎬

⎭

1/α

Z(1),

which implies that the process {X (t)} does not have the finite second moment when
α < 2, so we cannot use the method of moments to make the statistical inference for
the process. The empirical likelihood approach is still useful when we deal with the
process {X (t)}. As discussed in Sect. 4.2, we define the parameter θ0 of interest as
the solution in

∂

∂θ

∫ π

−π

g̃(ω)

f (ω; θ)
dω

∣∣∣∣
θ=θ0

= 0, (4.9)

where θ ∈ Θ ⊂ R
d . It is easy to understand the correspondence between (4.9) and

(4.3). In the following, we give an example of the parameter θ0 of interest.

Example 4.1 Let the model f (ω; θ) be defined as

f (ω; θ) = |1 − θ exp(ilω)|−2,

for fixed l ∈ N. Then the left-hand side of (4.9) is

∂

∂θ

∫ π

−π

g̃(ω)

f (ω; θ)
dω = ∂

∂θ

∫ π

−π

|1 − θ exp(ilω)|2
{

1

ψ2

∣∣∣∣
∞∑

j=0

ψ j exp(i jω)

∣∣∣∣
2}

dω

= 1

ψ2

∞∑

j=0

∞∑

k=0

∫ π

−π

(
2θ − 2 cos(lω)

)
ψ jψk exp

(
i( j − k)ω

)
dω

= 1

ψ2

(
(4π)θ

∞∑

j=0

ψ2
j − (4π)

∞∑

j=0

ψ jψ j+l

)
. (4.10)
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The solution of Eq. (4.10) is

θ0 =
∑∞

j=0 ψ jψ j+l∑∞
j=0 ψ2

j

, (4.11)

where the right-hand side of (4.11) is the autocorrelation function of sαs process
{X (t)}. From Davis and Resnick (1986), the sample autocorrelation function ρ̂(l),
i.e.,

ρ̂(l) =
∑n−l

t=1 X (t)X (t + l)∑n
t=1 X (t)2

, (4.12)

is consistent to the autocorrelation function θ0 even for the sαs process. That is,

ρ̂(l)
P−→ θ0.

The consistency of (4.12) in Example 4.1 is crucial. It motivates us to use the
self-normalized periodogram Ĩn,X (ω) instead of the ordinary periodogram In,X (ω),
since the self-normalized periodogram can be regarded as a natural transformation
from the sample autocorrelation function ρ̂(l).

Let us define the empirical likelihood ratio statistic

R(θ) = max
w1,...,wn

{ n∏

t=1

nwt ;
n∑

t=1

wt m(λt ; θ) = 0,
n∑

t=1

wt = 1, 0 ≤ w1, w2, . . . , wn ≤ 1

}
,

(4.13)
with the following estimating function m(λt ; θ):

m(λt ; θ) = ∂

∂θ

Ĩn,X (λt )

f (λt ; θ)
∈ R

d , λt = 2π t

n
∈ (−π, π). (4.14)

Note that the estimating functionm(λt ; θ) of (4.5) and (4.14) shows the main differ-
ence between the empirical likelihood method for the processes with finite variance
innovations and infinite variance innovations. In addition to Assumption 4.2, we
impose the following assumption.

Assumption 4.5 For some μ ∈ (0, α) and all k = 1, · · · , d,

∞∑

t=1

∣∣∣∣
∫ π

−π

∂

∂θk

g̃(ω)

f (ω; θ)

∣∣∣∣
θ=θ0

cos(tω)dω

∣∣∣∣
μ

< ∞.

Assumption 4.5 is proposed in Klüppelberg and Mikosch (1996) for the sαs pro-
cesses. It is not so strong since the AR(p) stable processes satisfying Assumption
4.1 also satisfy this assumption.

Let us investigate the asymptotic properties of the empirical likelihood ratio statis-
tic R(θ) in (4.13) for the sαs processes (4.7). For brevity, let xn be the normalizing
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sequence as

xn =
(

n

log n

)1/α

, n = 2, 3, · · · .

The asymptotic distribution of R(θ0) under the null hypothesis H : θ = θ0 is
expressed in the following theorem.

Theorem 4.6 Let α ∈ [1, 2). Suppose that Assumptions 4.2, 4.4, and 4.5 hold.
Under the null hypothesis H : θ = θ0, we have

− 2x2n
n

log R(θ0)
L−→ V TW−1V , (4.15)

where V and W are q × 1 random vector and q × q constant matrix, respectively.
The j th and (k, l)th element of the vector V and the matrix W are expressed as

Vj = 1

π

∞∑

t=1

St
S0

{∫ π

−π

∂ f (ω; θ)−1

∂θ j

∣∣∣∣
θ=θ0

g̃(ω) cos(tω)dω

}
,

Wkl = 1

2π

∫ π

−π

∂ f (ω; θ)−1

∂θk

∂ f (ω; θ)−1

∂θl

∣∣∣∣
θ=θ0

2g̃(ω)2dω

with independent random variables S0, S1, S2, · · · . Here, S0 is a positive α/2-stable
randomvariable and {Sj : j = 1, 2, · · · } is a sequence of symmetricα-stable random
variables.

To prove Theorem 4.6, we need the following preparation. For the sequence of
random variables {A(t) : t ∈ Z} and h = 1, · · · , n − 1, let ρn,A(h) be

ρn,A(h) =
n−h∑

t=1

Ãt Ãt+h,

where Ãt is defined in (4.8). Let Tn,A(ω) be

Tn,A(ω) = 2
n−1∑

h=1

ρn,A(h) cos(hω).

Lemma 4.1 Let α ∈ (0, 2]. For the sequence of i.i.d. symmetric α-stable random
variables {Z(t)}, the following results hold.

(i) ETn,Z (ω) = 0,
(ii) As n → ∞, it holds that
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ETn,Z (ω)2 →
{
1, if ω �= 0 mod π,

2, if ω = 0 mod π.
(4.16)

Proof We first prepare for the asymptotic moments of the normalized random vari-
able Z̃t . Note that the normalized random variable Z̃t is bounded almost surely.
E Z̃t exists and is equal to 0 since Z(t) is symmetric. From the definition of
Z̃1, Z̃2, · · · , Z̃n , it always holds that

n∑

t=1

Z̃2
t = 1 a.s.. (4.17)

In addition, Z̃1, Z̃2, · · · , Z̃n are identically distributed and thus E Z̃2
1 = 1/n. Using

Chebyshev’s inequality, we can see

Pr
{
|Z̃1| < ε−1/2n−1/2

}
> 1 − ε

for any ε > 0. Thus we have
√
n Z̃2

1 = Op(n−1/2) and
√
n Z̃2

1 converges to 0 in
probability. Therefore, by Taylor’s theorem, there exists a constant c such that

E exp{iξ√
n Z̃2

1} = 1 − ξ2

2
nE Z̃4

1 + ξ3 sin(ξc)

6
n3/2E Z̃6

1 + i Im
[
E exp{iξ√

n Z̃2
1}
]
.

(4.18)
On the other hand, by Lévy’s continuity theorem, it holds that

E exp{iξ√
n Z̃2

1} → 1. (4.19)

From (4.18) and (4.19), we can conclude that

nE Z̃4
1 → 0 (4.20)

as n → ∞. Note that from (4.17), it holds that

n∑

t=1

Z̃4
t +

∑

t �=s

Z̃2
t Z̃

2
s = 1 a.s. (4.21)

Taking expectations on both sides of (4.21), we have

n(n − 1)E Z̃2
1 Z̃

2
2 → 1, (4.22)

as n → ∞.
(i) Now let us evaluate ETn,Z (ω).
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ETn,Z (ω) = 2E
n−1∑

h=1

ρn,Z (h) cos(hω)

= 2E
n−1∑

h=1

n−h∑

t=1

Z̃t Z̃t+h cos(hω)

= 0,

since Z(1), Z(2), · · · , Z(n) are symmetric and independent.
(ii) Next, let us evaluate Tn,Z (ω)2. It holds that

ETn,Z (ω)2 = n(n − 1)E Z̃2
1 Z̃

2
2 + 2nE Z̃2

1 Z̃
2
2

n−1∑

h=1

cos(2hω) − 2E Z̃2
1 Z̃

2
2

n−1∑

h=1

h cos(2hω).

(4.23)
The first term of the right-hand side of (4.23) converges to 1 as n → ∞ from (4.22).
If ω = 0 mod π , then

2nE Z̃2
1 Z̃

2
2

n−1∑

h=1

cos(2hω) − 2E Z̃2
1 Z̃

2
2

n−1∑

h=1

h cos(2hω) = n(n − 1)E Z̃2
1 Z̃

2
2 → 1.

If ω �≡ 0 mod π , we use the following two identical equations:

n−1∑

h=1

cos(2hω) = cos
(
2(n − 1)ω

) + cos(2ω) − cos(2nω)

2
(
1 − cos(2ω)

) , (4.24)

n−1∑

h=1

h cos(2hω) = n cos
(
2(n − 1)ω

) − (n − 1) cos
(
2nω) − 1

2(1 − cos(2ω)
) . (4.25)

From Eqs. (4.24) and (4.25), we obtain that

2nE Z̃2
1 Z̃

2
2

n−1∑

h=1

cos(2hω) − 2E Z̃2
1 Z̃

2
2

n−1∑

h=1

h cos(2hω) → 0.

Hence we conclude (4.16). �
Next, we evaluate the covariance of the self-normalized periodogram at the dif-

ferent Fourier frequencies.

Lemma 4.2
∑∑

k �=l Cov{ Ĩn,Z (λk)
2, Ĩn,Z (λl)

2} = O(n).

Proof Let dn,Z (λk) = ∑n
t=1 Z̃t exp(i tλk). From Brillinger (2001),

Cov{ Ĩn,Z (λk)
2, Ĩn,Z (λl)

2} =
8∑

ν:p=1

p∏

j=1

cum{dn,Z (λk j ); k j ∈ ν j },
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where the summation is taken over all indecomposable partitions ν = ν1 ∪ · · · ∪ νp,
p = 1, · · · , 8, of the following table.

k k −k −k
l l −l −l

(4.26)

Note that cum{dn,Z (λk1), · · · , dn,Z (λkm )} = 0 for odd m.
For even m, let us first consider partitions for p = 4. We can evaluate the second-

order cumulant as

cum{dn,Z (λk), dn,Z (λl)} = E Z̃2
1

n∑

t=1

exp
(
i t (λk − λl)

)

= 1

n

n∑

t=1

exp

(
i t
2π(k − l)

n

)

=
{
1, (k − l = 0 mod n),

0, (k − l �= 0 mod n).
(4.27)

From (4.27), the partitions for p = 4 can be evaluated as

cum{dn,Z (λk1), dn,Z (λk2)} · · · cum{dn,Z (λk7), dn,Z (λk8)}

=
{
1, (k1 − k2, · · · , k7 − k8 ≡ 0 mod n)

0, otherwise.

Thus, when p = 4, it holds that

∑

k �=l

4∏

j=1

cum{dn,Z (λk j ); k j ∈ ν j } = O(n) (4.28)

for any indecomposable partition of (4.26).
Next, we consider the following five types of partitions:

p = 1 : (k, k,−k,−k, l, l,−l,−l),
p = 2 : (k,−k, l,−l) ∪ (k,−k, l,−l),

(k,−k) ∪ (k,−k, l, l,−l,−l),
(l,−l) ∪ (k, k,−k,−k, l,−l)

p = 3 : (k,−k) ∪ (l,−l) ∪ (k,−k, l,−l).

(4.29)

We introduce generic residual terms R(1)
n (k, l), R(2)

n (k, l), and R(3)
n (k, l) as follows.

The fourth-order joint cumulant on (λk,−λk, λl ,−λl) is represented as
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cum{dn,Z (λk), dn,Z (−λk), dn,Z (λl), dn,Z (−λl)}
= nE Z̃4

1 + n(n − 1)E Z̃2
1 Z̃

2
2 − 1 + R(1)

n (k, l). (4.30)

From (4.20) and (4.22), (4.30) becomes

cum{dn,Z (λk), dn,Z (−λk), dn,Z (λl), dn,Z (−λl)} = R(1)
n (k, l) + o(1). (4.31)

Note that the following identities hold:

(∑n

t=1
Z̃2
t

)(∑(∗)

t,s
Z̃2
t Z̃

2
s

)
=

∑(∗)

t,s
Z̃2
t Z̃

2
s = 2

∑(∗)

t,s
Z̃4
t Z̃

2
s +

∑(∗)

t,s,u
Z̃2
t Z̃

2
s Z̃

2
u,

(∑n

t=1
Z̃2
t

)(∑n

t=1
Z̃4
t

)
=

∑n

t=1
Z̃4
t =

∑(∗)

t,s
Z̃4
t Z̃

2
s +

∑n

t=1
Z̃6
t .

From (4.17), we have

∑n

t=1
Z̃8
t + 4

∑(∗)

t,s
Z̃6
t Z̃

2
s + 3

∑(∗)

t,s
Z̃4
t Z̃

4
s

+ 6
∑(∗)

t,s,u
Z̃4
t Z̃

2
s Z̃

2
u +

∑(∗)

t,s,u,v
Z̃2
t Z̃

2
s Z̃

2
u Z̃

2
v = 1, a.s.,

where
∑(∗)

t1,··· ,tm is a summation taken over all t1, · · · , tm , which are different from
each other. By the similar argument as above, we obtain that

cum{dn,Z (λk), dn,Z (−λk), dn,Z (λl), dn,Z (λl), dn,Z (−λl), dn,Z (−λl)}
= R(2)

n (k, l) + o(1),
(4.32)

and the eighth-order joint cumulant as

cum{dn,Z (λk), dn,Z (−λk), dn,Z (λk), dn,Z (−λk),

dn,Z (λl), dn,Z (λl), dn,Z (−λl), dn,Z (−λl)}
= 2n2E Z̃4

1 Z̃
4
2 − 6n3E Z̃4

1 Z̃
2
2 Z̃

2
3

+ n4E Z̃2
1 Z̃

2
2 Z̃

2
3 Z̃

2
4 − (

n2E Z̃2
1 Z̃

2
2

)2 + R(3)
n (k, l) + o(1), (4.33)

With a similar argument as (4.27), it is possible to show that
∑∑

k �=l R
(η)
n (k, l) =

O(n) for η = 1, 2, 3. From (4.28), (4.29), (4.31), (4.32), and (4.33), we see that

∑

k �=l

8∑

ν:p=1

p∏

j=1

cum{dn,Z (λk j ); k j ∈ ν j } = O(n).

We omit the detailed proof for the reader. �
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Let Pn(θ0) and Sn(θ0) be defined as follows.

Pn(θ0) = 1

n

n∑

t=1

m(λt ; θ0) and Sn(θ0) = 1

n

n∑

t=1

m(λt ; θ0)m(λt ; θ0)
T.

Lemma 4.3 Under Assumption 4.2,

Sn(θ0)
P−→ W

as n → ∞. Here W is defined in Theorem 3.1.

Proof We first make use of the decomposition of the periodogram in Klüppelberg
and Mikosch (1994) as follows, i.e.,

Ĩn,X (ω)2 =g̃(ω)2 Ĩn,Z (ω)2 + op(1) (4.34)

=g̃(ω)2

{
1 + 2

n−1∑

h=1

ρn,Z (h) cos(hω)

}2

+ op(1)

=g̃(ω)2{1 + 2Tn,Z (ω) + Tn,Z (ω)2} + op(1).

From Lemma 4.1, we obtain that

E [Sn(θ0)] = 1

n

n∑

t=1

∂ f (λt ; θ)−1

∂θ

∂ f (λt ; θ)−1

∂θ T

∣∣∣∣
θ=θ0

E Ĩn,X (λt )
2

→ 1

2π

∫ π

−π

∂ f (ω; θ)−1

∂θ

∂ f (ω; θ)−1

∂θ T

∣∣∣∣
θ=θ0

2g̃(ω)2dω = W .

Let us define hθ0(ω) jk as

hθ0(ω) jk = ∂ f (ω; θ)−1

∂θa

∂ f (ω; θ)−1

∂θb

∣∣∣∣
θ=θ0

g̃(ω)2.

From Lemma 4.2, Assumption 4.2, and (4.34), we have
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Cov
(
Sn(θ0) jk, Sn(θ0)lm

)

= 1

n2

n∑

t=1

n∑

s=1

hθ0(λt ) jkhθ0(λs)lmCov
(
Ĩn,Z (λt )

2, Ĩn,Z (λs)
2
)

= 1

n2

n∑

t=1

hθ0(λt ) jkhθ0(λt )lmVar
(
Ĩn,Z (λt )

2)

+ 1

n2
∑

t �=s

hθ0(λt ) jkhθ0(λs)lmCov
(
Ĩn,Z (λt )

2, Ĩn,Z (λs)
2
) + o(1)

→ 0

for j , k, l, m = 1, · · · , d. The result implies the convergence of Sn(θ0) in
probability. �

In the following, we prove Theorem 4.6.

Proof (Theorem 4.6) By Lagrange’s multiplier method, the weights w1, · · · , wn

maximizing the objective function in R(θ) are given by

wt = 1

n

1

1 + φTm(λt ; θ0)
, t = 1, · · · , n,

where φ ∈ R
d is the Lagrange multiplier which is defined as the solution of d-

restrictions

Jn,θ0(φ) = 1

n

n∑

t=1

m(λt ; θ0)

1 + φTm(λt ; θ0)
= 0. (4.35)

First of all, let us derive the asymptotic order of φ. Let Yt be

Yt = φTm(λt ; θ0).

From (4.35), we have

0 = 1

n

n∑

t=1

m(λt ; θ0)

1 + Yt

= 1

n

n∑

t=1

{
1 − Yt + Y 2

t

1 + Yt

}
m(λt ; θ0) (4.36)

= Pn(θ0) − Sn(θ0)φ + 1

n

n∑

t=1

m(λt ; θ0)Y 2
t

1 + Yt
.

Hence, φ can be expressed as



4.3 Empirical Likelihood for Symmetric α-stable Processes 101

φ = Sn(θ0)
−1

{
Pn(θ0) + 1

n

n∑

t=1

m(λt ; θ0)Y 2
t

1 + Yt

}

≡ Sn(θ0)
−1Pn(θ0) + ε (say). (4.37)

LetMn beMn = max1≤k≤n‖m(λk; θ0)‖. Under Assumption 4.2,Mn can be evaluated
by

Mn = max
1≤t≤n

∥∥∥
∂ f (λt ; θ)−1

∂θ

∣∣∣∣
θ=θ0

Ĩn,X (λt )

∥∥∥

≤ max
1≤t≤n

∥∥∥
∂ f (λt ; θ)−1

∂θ

∣∣∣∣
θ=θ0

∥∥∥ max
1≤t≤n

|In,X (λt )| 1

γ 2
n,X

≤ max
ω∈[−π,π]

∥∥∥
∂ f (ω; θ)−1

∂θ

∣∣∣∣
θ=θ0

∥∥∥ max
ω∈[−π,π]|In,X (ω)| 1

γ 2
n,X

= max
ω∈[−π,π]

∥∥∥
∂ f (ω; θ)−1

∂θ

∣∣∣∣
θ=θ0

∥∥∥ max
ω∈[−π,π]|g(ω)|maxω∈[−π,π]‖In,X (ω)‖

maxω∈[−π,π]|g(ω)|
1

γ 2
n,X

≤ max
ω∈[−π,π]

∥∥∥
∂ f (ω; θ)−1

∂θ

∣∣∣∣
θ=θ0

∥∥∥ max
ω∈[−π,π]|g(ω)| max

ω∈[−π,π]

∣∣∣
In,X (ω)

g(ω)

∣∣∣
1

γ 2
n,X

= C max
ω∈[−π,π]

∣∣∣
In,X (ω)

g(ω)

∣∣∣,

where C is a generic constant. By Assumption 4.4 and Corollary 3.3 of Mikosch
et al. (2000), we obtain

Mn = Op(β
2
n ),

where

βn =
{

(log n)1−1/α, when 1 < α < 2,

log log n, when α = 1.

Here, we discuss the case of 1 < α < 2. The case of α = 1 can be considered by
a parallel argument. From Ogata and Taniguchi (2010), there exists a unit vector u
in Rd such that φ = ‖φ‖u and

‖φ‖ {uTSn(θ0)u − uTMn Pn(θ0)
} ≤ uTPn(θ0). (4.38)

Actually, note that uT Jn,θ0(φ) = 0. From (4.36), it also holds that

uTPn(θ0) = uT

(
1

n

n∑

t=1

φTm(λt ; θ0)

1 + Yt
m(λt ; θ0)

)

and by φ = ‖φ‖u, we have
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‖φ‖uTSn(θ0)(1 + Yt )
−1u = uTPn(θ0). (4.39)

By (1 + Yt )−1 = 1 − Yt/(1 + Yt ), we obtain (4.38) from (4.39).
To determine the order of the term φ, we first discuss the asymptotics of the term

Pn(θ0). Lemma P5.1 of Brillinger (2001) allows us to write xn Pn(θ0) as

xn Pn(θ0) = 1

2π
xn

∫ π

−π

∂ f (ω; θ)

∂θ

∣∣∣∣
θ=θ0

Ĩn,X (ω)dω + Op

( xn
n

)

= 1

2π

1

γ 2
n,X

xn

∫ π

−π

∂ f (ω; θ)

∂θ

∣∣∣∣
θ=θ0

{
In,X (ω) − Tnψ

2 g̃(ω)
}
dω + Op

( xn
n

)
,

where

Tn = 1

2π

∫ π

−π

In,X (ω)

ψ2g̃(ω)
dω.

By Proposition 3.5 of Klüppelberg and Mikosch (1996) and Cramér–Wold device,
we have

⎛

⎜⎜⎜⎜⎝

γ 2
n,X

xn
∫ π

−π

∂ f (ω;θ)

∂θ1

∣∣
θ=θ0

{
In,X (ω) − Tnψ2g̃(ω)

}
dω

...

xn
∫ π

−π

∂ f (ω;θ)

∂θq

∣∣
θ=θ0

{
In,X (ω) − Tnψ2g̃(ω)

}
dω

⎞

⎟⎟⎟⎟⎠

L−→

⎛

⎜⎜⎜⎜⎜⎝

ψ2S0
2
∑∞

t=1 St
{∫ π

−π

∂ f (ω;θ)

∂θ1

∣∣
θ=θ0

ψ2 g̃(ω) cos(tω)dω
}

...

2
∑∞

t=1 St
{∫ π

−π

∂ f (ω;θ)

∂θq

∣∣
θ=θ0

ψ2 g̃(ω) cos(tω)dω
}

⎞

⎟⎟⎟⎟⎟⎠
.

Therefore, as n → ∞, it holds that

xn Pn(θ0)
L−→ V , (4.40)

where V is defined in Theorem 4.6. Thus, Pn(θ0) = Op(x−1
n ).

Now let us evaluate the orders of each term in (4.38) as follows:

Op(‖φ‖) [Op(1) − Op
{
(log n)2−2/α

} · Op(x
−1
n )

] ≤ Op(x
−1
n ). (4.41)

Note that, as n → ∞, the following holds:
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(log n)2−2/αx−1
n = (log n)2−2/α

(
log n

n

)1/α

= 1

(log n)1/α

(log n)2

n1/α

→ 0.

Therefore, from (4.41), we see that

Op(‖φ‖) ≤ Op(x
−1
n ). (4.42)

Next, we evaluate the term ε.

1

n

n∑

t=1

‖m(λt ; θ0)‖3 = 1

n

n∑

t=1

‖m(λt ; θ0)‖‖m(λt ; θ0)‖2

≤ 1

n

n∑

t=1

Mn m(λt ; θ0)
Tm(λt ; θ0)

= Mn tr {Sn(θ0)}
= Op

{
(log n)2−2/α

}
. (4.43)

From (4.42) and (4.43), ε in (4.37) can be evaluated as

‖ε‖ ≤ 1

n

n∑

t=1

‖m(λt ; θ)‖3‖φ‖2|1 + Yt |−1.

Thus, we have

Op(‖xnε‖) = Op

{
(log n)2−1/α

n1/α

}
= op(1). (4.44)

Last, we consider the asymptotics of the empirical likelihood ratio statistic R(θ0).
Remember that

R(θ) = max
w1,...,wn

{ n∏

t=1

nwt ;
n∑

t=1

wt m(λt ; θ) = 0,
n∑

t=1

wt = 1, 0 ≤ w1, w2, . . . , wn ≤ 1

}
.

Under H : θ = θ0, −2(x2n/n) log R(θ0) can be expanded as
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−2
x2n
n

log R(θ0) = −2
x2n
n

n∑

t=1

log nwt

= 2
x2n
n

n∑

t=1

log(1 + Yt )

= 2
x2n
n

n∑

t=1

Yt − x2n
n

n∑

t=1

Y 2
t + 2

x2n
n

n∑

t=1

Op(Y
3
t ).

The first term can further be expanded as

2
x2n
n

n∑

t=1

Yt = 2
x2n
n

n∑

t=1

φTm(λt ; θ0)

= 2
x2n
n

{
Sn(θ0)

−1Pn(θ0) + ε
}T

n∑

t=1

m(λt ; θ0)

= 2x2n
{
Pn(θ0)

TSn(θ0)
−1 + εT

}
Pn(θ0)

= 2 {xn Pn(θ0)}T Sn(θ0)
−1 {xn Pn(θ0)} + 2(xnε)T {xn Pn(θ0)} .

The second term can further be expanded as

x2n
n

n∑

t=1

Y 2
t = x2n

n

n∑

t=1

{
φTm(λt ; θ0)

}2

= x2nφ
TSn(θ0)φ

= x2n
{
Pn(θ0)

TSn(θ0)
−1 + εT

}
Sn(θ0)

{
Sn(θ0)

−1Pn(θ0) + ε
}

= {xn Pn(θ0)}T Sn(θ0)
−1 {xn Pn(θ0)}

+ (xnε)T Sn(θ0) (xnε) + 2 (xnε)T {xn Pn(θ0)} .

The last term can be evaluated as

x2n
n

∣∣∣∣
n∑

t=1

Op(Y
3
t )

∣∣∣∣ ≤ x2n
n

∃c
n∑

t=1

|Yt |3

= x2n
n
c‖φ‖3E

n∑

t=1

‖m(λt ; θ0)‖3E

= x2n
n
Op(x

−3
n ) · Op{n(log n)2−2/α)}

= Op

{
(log n)2−1/α

n1/α

}

= op(1).
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Hence, noting (4.44), by (4.40) and Lemma 4.3, we have

−2x2n
n

log R(θ0) = {xn Pn(θ0)}T Sn(θ0)
−1 {xn Pn(θ0)} + op(1)

L−→V TW−1V ,

which completes the proof of Theorem 4.6. �
To apply the result in Theorem 4.6 in practice, we have to pay attention to the

following remarks.

Remark 4.1 The limiting distribution (4.15) depends on the characteristic exponent
α of the sαs random variables and unknown normalized power transfer function
g̃(ω).

For the characteristic exponent α, we can construct an appropriate consistent
estimator for it. For example, it is shown that Hill’s estimator

α̂Hill =
{
1

k

k∑

t=1

log
|X |(t)

|X |(k+1)

}−1

is a consistent estimator of α, where |X |(1) > · · · > |X |(n) is the order statistic of
|X (1)|, · · · , |X (n)| and k = k(n) is an integer satisfying some regularity conditions.
(e.g., see Resnick and Stărică (1996) and Resnick and Stărică (1998).)

For the unknown normalized power transfer function g̃(ω), one can estimate it
by the smoothed self-normalized periodogram Ĩn,X with an appropriate weighting
function Wn(·). It is weekly consistent to the normalized power transfer function.
That is, for any ω ∈ [−π, π ],

J̃n,X (ω) =
∑

|k|≤m

Wn(k) Ĩn,X (λk)
P−→ g̃(ω), λk = ω + k

n
, |k| ≤ m,

where the integerm = m(n) satisfiesm → ∞ andm/n → 0 as n → ∞. (See Klüp-
pelberg and Mikosch (1993), Theorem 4.1.) One possible choice of the weighting
functionWn(·) and m = m(n) areWn(k) = (2m + 1)−1 and m = [√n] ([x] denotes
the integer part of x). We use this weighting function in Sect. 4.4 for numerical
studies.

Remark 4.2 The confidence region for θ can be constructed in the similar way as
described in Sect. 4.2. At the significant level q, one can define the region as

Cq,n =
{
θ ∈ Θ ; −2x2n

n
log R(θ) < cq

}
, (4.45)

where cq is the 1 − q percentage point of the distribution of V TWV , which can be
obtained numerically.
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4.4 Numerical Studies

In this section, we give the numerical simulation results for Theorem 4.6. Suppose
that the observations X (1), · · · , X (n) are generated from the following scalar-valued
stable MA(100) model:

X (t) =
100∑

j=0

ψ j Z(t − j), (4.46)

where {Z(t) : t ∈ Z} is a sequence of i.i.d. sαs random variables with scale σ = 1
and coefficients {ψ j : j ∈ N} are defined as

ψ j =

⎧
⎪⎨

⎪⎩

1 for j = 0,

b j/j for 1 ≤ j ≤ 100,

0 otherwise.

The process (4.46) cannot be expressed as the AR model or the ARMA models
by finite coefficients without the trivial case. It is suitable to apply the empirical
likelihood approach to making the statistical inference.

As described in Example 4.1, let us consider the estimation of the autocorrelation
at lag 2 by the sample autocorrelation (SAC) method, i.e., from Davis and Resnick
(1986), we have

ρ̂(2) =
∑n−2

t=1 X (t)X (t + 2)∑n
t=1 X (t)2

P−→ ρ(2). (4.47)

The asymptotic distribution of ρ̂(2) in (4.47) can be found from the following general
result. From Theorem 12.5.1 of Brockwell and Davis (1991), for fixed l ∈ N,

xn{ρ̂(l) − ρ(l)} L−→ S̃1
S̃0

⎧
⎨

⎩

∞∑

j=1

|ρ(l + j) + ρ(l − j) − 2ρ( j)ρ(l)|α
⎫
⎬

⎭

1/α

,

where ρ̂(l) = ∑n−l
t=1 X (t)X (t + l)/

∑n
t=1 X (t)2, S̃0 and S̃1 are α/2 and α-stable ran-

dom variables, respectively.
On the other hand, the normalized power transfer function of the process (4.46)

is given as

g̃(ω) =
∣∣∑100

j=0 ψ j exp(i jω)
∣∣2

∑100
j=0 ψ2

j

.

If we set the model f (ω; θ) as f (ω; θ) = |1 − θ exp(2iω)|−2, then we obtain
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Table 4.1 90% confidence intervals (and length) for the autocorrelation with lag 2. Sample size is
300 and α = 1.5. b = 0.5 in case 1 and b = 0.9 in case 2

θ0 ≈ E.L SAC

Case 1. 0.1168 −0.0761 0.1930 (0.2691) −0.0676 0.2481 (0.3157)

Case 2. 0.3603 0.1320 0.4765 (0.3445) 0.1388 0.5304 (0.3916)

Table 4.2 90% confidence intervals (and length) for the autocorrelation with lag 2. Sample size is
300 and b = 0.5

α E.L SAC

Case 3. 1.0 −0.1583 0.3335 (0.4918) −0.1342 0.3891 (0.5233)

Case 4. 1.5 −0.0761 0.1930 (0.2691) −0.0676 0.2481 (0.3157)

Case 5. 1.9 −0.0465 0.1329 (0.1794) −0.0450 0.1365 (0.1815)

Table 4.3 90% confidence intervals (and length) for the autocorrelation with lag 2. b = 0.5, α =
1.5, and θ0 ≈ 0.1168

n E.L SAC

Case 6. 50 −0.2397 0.4313 (0.6710) −0.2477 0.5629 (0.8106)

Case 7. 100 −0.3125 0.2228 (0.5353) −0.3476 0.2218 (0.5694)

θ0 =
∑100

j=0 ψ jψ j+2
∑100

j=0 ψ2
j

= ρ(2). (4.48)

Thus, it is natural to define the estimating function m(λt ; θ) with this f (ω; θ) for
the empirical likelihood for ρ(2).

In the numerical study, we construct a 90% confidence interval for θ0 in (4.48)
by the method of (4.45). The characteristic exponent α of sαs random variables is
supposed to be known. We use the consistent estimator J̃n,X (ω) with a weighting
function Wn as described in Sect. 4.3 to estimate g̃(ω), and the cut-off point c10, the
90 percentage point of the distribution V TWV , is computed via the Monte Carlo
simulation for 105 times. Under this setting, we construct confidence intervals of
θ0 = ρ(2) from both the SAC method and the empirical likelihood method, and
compare confidence intervals constructed by them. The numerical results are given
in the following cases.

(i) n = 300, α = 1.5, b = 0.5 in case 1 and b = 0.9 in case 2. From Table 4.1,
we see that the length of the confidence intervals obtained by the empirical
likelihood method is shorter than that by the SAC method.

(ii) n = 300 and b = 0.5. α = 1.0 (Cauchy) in case 3, 1.5 in case 4 and 1.9 (near
Gaussian) in case 5. From Table 4.2, we see that the larger α is, the better
performance both methods show. In particular, the empirical likelihoodmethod
makes better inferences for θ0 than the SAC method does in all cases.
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Table 4.4 Coverage errors of
confidence intervals for the
parameter θ0 in (4.48)

Coverage errors

E.L. SAC

Case 1. 0.082 0.087

Case 2. 0.089 0.096

Case 3. 0.094 0.098

Case 4. 0.082 0.087

Case 5. 0.053 0.056

Case 6. 0.092 0.095

Case 7. 0.086 0.090

(iii) b = 0.5 and α = 1.5. n = 50 in case 6 and 100 in case 7.We consider the small
sample cases in the setting (iii). From Table 4.3, we see that even the sample
size n is small, the empirical likelihood method still works better than that the
SAC method in all cases.

At the end of Chap. 4, we focus on the coverage error to evaluate the performances
of the above confidence intervals. Let θU and θ L be the endpoints of a confidence
interval. The coverage error is defined as

|Pr[{θ0 < θ L} ∪ {θU < θ0}] − 0.1|. (4.49)

We constructed the confidence intervals constructed for θ0 by the Monte Carlo sim-
ulations for 1000 times. The coverage error (4.49) is evaluated by the empirical one.
Let (θ L

l , θU
l ) be the confidence intervals for l = 1, · · · , 1000 in our simulations. For

each case above, we compute the following empirical coverage error:

∣∣∣
∑1000

l=1 1 {θ0 /∈( θ L
l , θU

l )}
1000

− 0.1
∣∣∣,

where 1 denotes the indicator function.
From Table 4.4, we see that the confidence intervals constructed by the empirical

likelihood are more accurate than those by the SACmethod. Especially, it seems that
both methods give the coverage probabilities close to the nominal level when α is
near 2 (case 5). In addition, as n increases (from case 6 and case 7 to case 1), we can
see that the coverage error is decreasing.



Chapter 5
Self-weighted GEL Methods for Infinite
Variance Processes

Abstract This chapter focuses on an alternative robust estimation/testing proce-
dure for possibly infinite variance time series models. In the context of inference for
heavy-tailed observation, least absolute deviations (LAD) estimators are known to be
less sensitive to outliers than the classical least squares regression. This section gen-
eralizes the LAD regression-based inference procedure to the self-weighted version,
which is a concept originally introduced by Ling (2005) for AR processes. Using
the self-weighting method, we extend the generalized empirical likelihood (GEL)
method to possibly infinite variance process, and construct feasible and robust estima-
tion/testing procedures. The former half of this chapter provides a brief introduction
to the LAD regression method for possibly infinite variance ARMA models, and
construct the self-weighted GEL statistic following Akashi (2017). The desirable
asymptotic properties of the proposed statistics will be elucidated. The latter half of
this chapter illustrates an important application of the self-weighted GEL method to
the change point problem of time series models.

5.1 Introduction to Self-weighted Least Absolute
Deviations Approach

In this section, we review the self-weighted least absolute deviations (LAD) method
by Ling (2005). Let us consider the following stationary ARMA (p, q) model:

X (t) =
p∑

j=1

b j X (t − j) +
q∑

j=0

a jε(t − j), (5.1)

where {ε(t) : t ∈ Z} is a sequence of i.i.d. random variables and a0 = 1. Here we
assume med{ε(t)} = 0 but do not assume any moment conditions at this stage. Now,
let us denote b = (b1, ..., bp)

T, a = (a1, ..., aq)
T for general b j , a j ∈ R and set d =

p + q. We also define θ0 = (b01, ..., b0p, a01, ..., a0q)
T, where b0 j ( j = 1, ..., p) and

a0 j ( j = 1, ..., q) are the true values of coefficients b j and a j . To guarantee the
stationarity of the model (5.1), we impose the following regularity conditions.
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Assumption 5.1 (i) The characteristic polynomials φ(z; b) = 1 − b1z − · · · −
bpz p andψ(z; a) = 1 + a1z + · · · + aq zq have no common zeros, and all roots
of φ(z; b) and ψ(z; a) are outside the unit circle for all (bT, aT)T ∈ Θ , where
Θ is a compact subset of Rd .

(ii) θ0 ∈ Int(Θ).
(iii) The innovations {ε(t) : t ∈ Z} have zero median and a bounded density f with

E[|ε(t)|τ ] < ∞ for some τ > 0.

The problem concerned in this section is estimation problem of θ0 and testing
problem for a linear hypothesis of the form

H : Rθ0 = c, (5.2)

where R and c are, respectively, an r × d matrix and an r × 1 vector (r ≤ d). By
choosing appropriate R and c, the hypothesis (5.2) includes various important prob-
lems. We introduce two examples as follows.

Example 5.1 (Test for serial correlation) If we choose R = [Oq×p, Iq ] and c = 0q ,
then (5.2) is equivalent to H : a1 = · · · aq = 0. Therefore, we can test the model has
nonzero-serial correlation or not.

Example 5.2 (Variable selection) Suppose that we want to test H : b j = 0 for all
j ∈ { j (1), ..., j (r)}, where { j (1), ..., j (r)} is a subset of {1, ..., p}. This problem
is captured by our framework (5.2) if we set R = [K , Or×q ] and c = 0r , where
K = [u j (1), ..., u j (r)]T and u j is the j th unit vector of Rp.

Asmentioned in the previous sections, if themodel has heavy-tailed error term, the
limit distributions of estimator and test statistics become intractable. As a result, it is
often infeasible to determine cut-off points for confidence intervals or critical values
for test statistics. To make classical statistics be robust, Ling (2005) considered, for
the AR(p) model, the self-weighted LAD estimator for θ0, which minimizes

n∑

t=p+1

wt−1

∣∣X (t) − θTXt−1

∣∣ ,

where Xt−1 = (X (t − 1), ..., X (t − p))T. The weightswt−1, t = p + 1, ..., n are of
the form wt−1 = w(X (t − 1), ..., X (t − p)), where w : Rp → R is a measurable
function of Xt−1. The central roll of the self-weights is to control the leverage points
X (t) produced by ε(t). Under some mild moment conditions of ε(t), Ling (2005)
showed asymptotic normality of the self-weighted LAD estimator for AR(p) models
with possibly infinite variance. Motivated by the notion of self-weighting, Pan et al.
(2007) extended Ling (2005)’s model to the ARMA model. Let us define
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ε(t; θ) =
{
0 (t ≤ 0)
X̃(t) −∑p

j=1 b j X̃(t − j) −∑q
j=1 a jε(t − j; θ) (1 ≤ t ≤ n)

, (5.3)

X̃(t) =
{
0 (t ≤ 0)
X (t) (t ≥ 1)

. (5.4)

By the truncations (5.3) and (5.4), note that ε(t; θ0) �= ε(t) a.e. Pan et al. (2007)
proposed the self-weighted LAD estimator for ARMA model (5.1) as

θ̂LAD := argmin
θ∈Θ

n∑

t=u+1

w̃t−1 |ε(t; θ)| , (5.5)

where u ≥ max{p, q} + 1 and w̃t−1 is the self-weight for ARMA model defined as

w̃t−1 =
(
1 +

t−1∑

k=1

k−γ |X (t − k)|
)−2

(5.6)

with γ > max{2, 2/τ } and the same τ as in Assumption 5.1.1 Under Assumption
5.1 and some regularity conditions for f , Pan et al. (2007) showed that the self-
weighted LAD estimator (5.5) has asymptotic normality, and the Wald test statistic
based on θ̂LAD converges to a standard χ2 distribution. Since the limit distributions
of the statistics proposed by Ling (2005) and Pan et al. (2007) are pivotal, it is easy
to detect the critical values for the test statistics even though the thickness of the
innovation term is unknown.

5.2 Self-weighted GEL Statistics

As seen in the precious subsection, the self-weighting method proposed by Ling
(2005) enables us to do the hypothesis test for possibly infinite variance processes.
However, the Wald test statistics proposed in Ling (2005) and Pan et al. (2007)
contain kernel-type estimators of the density function of the innovation process, and
the choice of the bandwidth parameter is not clear. To avoid such involved problem,
this section introduces the self-weighted GEL estimator for θ0 and a test statistic for
the hypothesis (5.2). To construct the robust GEL method for ARMA model (5.1),
let us define the followings:

1Pan et al. (2007) proposed another self-weight of more general form w̃t−1 = (1 +∑t−1
k=1 k−γ (log k)δ |X (t − k)|)−α (γ > 2, α ≥ 2, δ ≥ 0). However, the optimal choice of the param-

eters in self-weights is highly nontrivial, so we confine ourselves to the self-weight of the form (5.6)
to keep the focus of this section.
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At−1(θ) = ∂ε(t; θ)

∂θ
and Bt−1(θ) =

(
At−1(θ)

ϕt−1

)
,

where ϕt−1 is an s-dimensional measurable function of {X (i) : i ≤ t − 1}. We can
choose the function ϕt−1 arbitrarily provided that the following condition is satisfied.

Assumption 5.2 supt=u+1,...,n ‖w̃t−1ϕt−1‖ ≤ c for some c > 0.

Motivated by the definition of the LAD estimator (5.5), we consider the subgradient
of the object function in the right-hand side of (5.5), i.e.,

g∗
t (θ) := w̃t−1sign{ε(t; θ)}Bt−1(θ). (5.7)

To see the motivation of (5.7), let us consider the purely AR(p) model and set s = 0
(we call the moment function (5.7) with s = 0 and s > 0, respectively, the just-
and over-identified moment function). By a simple calculation, we get ε(t; θ) =
X (t) − θTXt−1 for t ≥ u + 1 and

E[g∗
t (θ)] = −2E

[{
F((θ − θ0)

TXt−1) − 1

2

}
w̃t−1Xt−1

]
, (5.8)

where F is the distribution function of ε(t). Since we assume zero median of ε(t)
(F(0) = 1/2), (5.8) is equal to zero at θ = θ0. Therefore, we can construct the empir-
ical likelihood ratio statistic based on the moment function (5.7) as

Rn(θ) = sup
{∏n

t=u+1 vt :∑n
t=u+1 vt = 1,

∑n
t=u+1 vt g∗

t (θ) = 0m
}

{1/(n − u)}n−u
,

where we define m = p + q + s. By the Lagrange multiplier method, we get the
log-empirical likelihood function at θ as

−2 log Rn(θ) = 2 sup
λ∈ΛEL(θ)

n∑

t=u+1

log
{
1 − λTg∗

t (θ)
}
, (5.9)

where ΛEL(θ) = {λ ∈ R
m : λTg∗

t (θ) < 1, t = u + 1, . . . , n}. Motivated by the rep-
resentation (5.9), the self-weighted GEL test statistic for the linear hypothesis (5.2)
is naturally defined as

r∗
ρ,n = 2

[
inf

Rθ=c
sup

λ∈Λ̂n(θ)

P∗
n (θ, λ) − inf

θ∈Θ
sup

λ∈Λ̂n(θ)

P∗
n (θ, λ)

]
, (5.10)

where

P∗
n (θ, λ) =

n∑

t=u+1

ρ
{
λTg∗

t (θ)
}
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for a certain continuous and concave function ρ on its domain Vρ and

Λ̂n(θ) = {λ ∈ R
m : λTg∗

t (θ) ∈ Vρ, t = u + 1, . . . , n
}
.

We also consider the maximum GEL estimators for θ0 and the Lagrange multiplier
as

θ̂∗ = argmin
θ∈Θ

sup
λ∈Λ̂n(θ)

P∗
n (θ, λ) and λ̂∗ = arg max

λ∈Λ̂n(θ̂∗)
P∗

n (θ̂∗, λ),

respectively.

Remark 5.1 Note that the proposed test statistic r∗
ρ,n contains important statistics in

econometrics such as the empirical likelihood (Owen 1988), the continuous updating
GMM (Hansen et al. 1996) and the exponential tilting method (Kitamura and Stutzer
1997). In particular, the above three methods are included in the Cressie–Read power
divergence family (Cressie and Read 1984), which is defined as

ρCR(ν) = − 1

c + 1

{
(1 + cν)(c+1)/c − 1

} =
⎧
⎨

⎩

log(1 − ν) (c → −1)
1 − exp(ν) (c → 0)
−(ν + 2)ν/2 (c = 1)

.

Generally, we can choose ρ arbitrarily according to the following condition.

Assumption 5.3 ρ is twice continuously differentiable, concave onVρ , and satisfies
ρ(0) = 0 and ρ ′(0) = ρ ′′(0) = −1.

To derive the limit distributions of θ̂∗, λ̂∗ and r∗
ρ,n , we need some additional

conditions.

Assumption 5.4 (i) θ0 is a unique solution to E[g∗0
t (θ)] = 0m , where g∗0

t (θ) =
δt−1sign{ε(t, θ)}Bt−1(θ) and δt−1 = (1 +∑∞

k=1 k−γ |X (t − k)|)−2.
(ii) Ω = E[δ2t−1Qt−1QT

t−1] is nonsingular and G = G(θ0) is of full-column rank.
Here

G(θ) = ∂ E[g∗0
t (θ)]

∂θ� ,

Qt−1 = (Ut−1, . . . , Ut−p, Vt−1, . . . , Vt−q , ϕ
T
t−1)

T, {Ut : t ∈ Z} and {Vt : t ∈ Z}
are autoregressive processes defined as φ(B; b0)Ut = ε(t) and ψ(B; a0)Vt =
ε(t).

The condition (i) in Assumption 5.4 guarantees consistency of the GEL estimator.
The latter condition requires the self-weights to satisfy additional moment condition,
and is used to control the stochastic order of some remainder terms. Under the
assumptions, we get the following result.
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Theorem 5.5 Suppose that Assumptions 5.1–5.4 hold.

(i) n1/2((θ̂∗ − θ0)
T, λ̂∗T)T is asymptotically normal with mean 0d+m and variance

[
Ωθ Od×m

Om×d Ωλ

]
,

where Ωθ = (GTΩ−1G)−1 and Ωλ = (Im − Ω−1G(GTΩ−1G)−1GT)Ω−1.
(ii) Under H : Rθ0 = c, r∗

ρ,n → χ2
r in law as n → ∞.

Remark 5.2 Regardless of whether the model has finite variance or not, the limit
distribution in (ii) of the GEL test statistic is invariant, i.e., the test based on r∗

ρ,n is
asymptotically independent of the thickness of the error distribution or the choice
of the self-weights. As seen in the previous section, it is often difficult to detect tail
behavior of real data correctly. Therefore, this robust feature of the self-weighted test
statistic is desirable in practice.

Before the proof of Theorem 5.5, let us impose two important lemmas. The first
one shows the uniform convergence of the sum of the moment functions. To show
the consistency of the GEL estimators, it is often required to show the uniform
convergence ‖ĝ∗

n(θ) − ḡ∗
n(θ)‖ = op(1) uniformly in θ ∈ Θ , where

ĝ∗
n(θ) = 1

n − u

n∑

t=u+1

g∗
t (θ) and ḡ∗

n(θ) = E
[
ĝ∗

n(θ)
]
.

Since ĝ∗
n(θ) contains nonsmooth part with respect to θ , it is not easy to use Corol-

lary 2.2 of Newey (1991). It is also hard to show the stochastic equicontinuity
of {ĝ∗

n(θ) : n ≥ 1} directly. Therefore, we need to generalize the methodology of
Tauchen (1985), which is based on Huber (1967) to dependent case, and get the
following lemma.

Lemma 5.1 supθ∈Θ ‖ĝ∗
n(θ) − ḡ∗

n(θ)‖ = op(1).

The second lemma shows that P∗
n (θ, λ) is well approximated by some smooth

function near its optima. Let us define

L∗
n(θ, λ) = −n{G(θ − θ0) + ĝ∗(θ0)}Tλ − n

2
λTΩλ.

Furthermore, hereafter we define

θ̂ L = argmin
θ∈Θ

sup
λ∈Rm

L∗
n(θ, λ) and λ̂L = arg max

λ∈Rm
L∗

n(θ̃ , λ).

Lemma 5.2 P∗
n (θ̂∗, λ̂∗) = L∗

n(θ̂
L , λ̂L) + op(1).

The proofs of Lemmas 5.1 and 5.2 are relegated to the last section of this chapter.
By using these lemmas, we get Theorem 5.5 as follows.
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Proof of Theorem 5.5. Throughout this chapter, C will denote a generic positive
constant that may be different in different uses and “with probability approach-
ing one” will be abbreviated as w.p.a.1. First, we show the assertion (i) by estab-
lishing the relations n1/2(θ̂∗ − θ̂ L) = op(1) and n1/2(λ̂∗ − λ̂L) = op(1). For θ̂∗, by
L∗

n(θ̂
∗, λ̂∗) − L∗

n(θ̂
L , λ̂∗) = op(1) (see the statement (ii) in the proof of Lemma 5.2),

we have

op

(
1

n

)
= 1

n
(L∗

n(θ̂
∗, λ̂∗) − L∗

n(θ̂
L , λ̂∗)) = −

(
θ̂∗ − θ̂ L

)T
GTλ̂∗.

SinceG is of full rank and λ̂∗ = Op(n−1/2) byLemmas 5.6 and 5.8,we get θ̂∗ − θ̂ L =
op(n−1/2). For λ̂∗, from (iii) in the proof of Lemma 5.2, (5.42) and (5.43), we obtain

op

(
1

n

)
= 1

n
(L∗

n(θ̂
L , λ̂∗) − L∗

n(θ̂
L , λ̂L)) = −1

2

(
λ̂∗ − λ̂L

)T
Ω
(
λ̂∗ − λ̂L

)
.

Since Ω is nonsingular, λ̂∗ − λ̂L = op(n−1/2). As in the proof of Lemma 1 of Li
et al. (2011) and by Assumption 5.2, we have

n1/2 ĝ∗(θ0) − 1

n1/2

n∑

t=u+1

g∗
t = op (1) ,

where g∗
t = δt−1sign(ε(t))Qt−1. Since g∗

t is a stationary ergodic square-integrable
sequence of martingale differences with respect to Ft = σ {es : s ≤ t}, we get
n−1/2∑n

t=u+1 g∗
t → N (0m,Ω) in law by Theorem 3.2 of Hall and Heyde (1980).

Therefore, we have n1/2 ĝ∗
n(θ0) → N (0m,Ω) in law and get the desired result from

(5.45).
Second, we show the assertion (ii). By Lemma 5.2, we expand the second part of

(5.10) as

2P∗
n (θ̂∗, λ̂∗) = 2L∗

n(θ̂
L , λ̂L) + op(1)

= nĝ∗(θ0)T
(
Ω − Ω−1GΣGTΩ−1

)
ĝ∗(θ0) + op(1)

= {n1/2Ω−1/2 ĝ∗(θ0)
}T

Λ
{
n1/2Ω−1/2 ĝ∗(θ0)

}+ op(1), (5.11)

where Λ = Im − Ω−1/2GΣGTΩ−1/2. On the other hand, by the same argument as
above,

2 inf
Rθ=c

sup
λ∈Λ̂n(θ)

P∗
n (θ, λ) = 2L∗

n(θ̂
L ,r , λ̂L ,r ) + op(1),

where θ̂ L ,r = argminRθ=c supλ∈Rm L̂n(θ, λ) and λ̂L ,r = argmaxλ∈Rm L̂n(θ̂
L ,r , λ). By

the Lagrange multiplier method for L∗
n(θ̂

L ,r , λ̂L ,r ), we get the expansion
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2 inf
Rθ=c

sup
λ∈Λ̂n(θ)

P∗
n (θ, λ) = {n1/2Ω−1/2 ĝ∗(θ0)

}T
Λr
{
n1/2Ω−1/2 ĝ∗(θ0)

}+ op(1),

(5.12)

where Λr = Im − Ω−1/2G Pr GTΩ−1/2 and Pr = Σ − Σ RT(RΣ RT)−1RΣ .
By (5.11) and (5.12), r∗

ρ,n admits the expansion

r∗
ρ,n = {n1/2Ω−1/2 ĝ∗

n(θ0)
}T

(Λr − Λ)
{
n1/2Ω−1/2 ĝ∗

n(θ0)
}+ op(1).

It is also easily shown that (Λr − Λ)2 = Λr − Λ and rank(Λr − Λ) = r . Therefore,
r∗
ρ,n → χ2

r in law as n → ∞ by Rao and Mitra (1971). �

5.3 Application to the Change Point Test

An important application of Theorem 5.5 is the change point detection problem of
infinite variance ARMA models. Suppose that an observed stretch {X (1), ..., X (n)}
is generated from the process (5.1) with a time-varying coefficient

θt,n := (bt,n,1, ..., bt,n,p, at,n,1, ..., at,n,q)
T.

To describe the change point problem, we assume that the coefficient vector θt,n

satisfies

θt,n =
{

θ1 (t = 1, ..., t0)
θ2 (t = t0 + 1, ..., n)

with some fixed vectors θ1, θ2 ∈ R
d . Here t0 is the unknown change point satisfying

t0 = �u0n with a fixed real number u0 ∈ (0, 1). Under this setting, the change point
problem is described by the hypothesis testing

H : θ1 = θ2 = ∃θ0 against A : θ1 �= θ2. (5.13)

To test (5.13), Akashi et al. (2018) defined the empirical likelihood statistic as

Ln,k(θ1, θ2) := sup

⎧
⎨

⎩

(
k∏

i=1

vi

)⎛

⎝
n∏

j=k+1

v j

⎞

⎠ : (v1, ..., vn) ∈ Pn,k ∩ Mn,k(θ1, θ2)

⎫
⎬

⎭ ,

where Pn,k and Mn,k(θ1, θ2) are subsets of the cube [0, 1]n defined as

Pn,k :=
⎧
⎨

⎩(v1, ..., vn) ∈ [0, 1]n :
k∑

i=1

vi =
n∑

j=k+1

v j = 1

⎫
⎬

⎭
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and

Mn,k(θ1, θ2) :=
⎧
⎨

⎩(v1, ..., vn) ∈ [0, 1]n :
k∑

i=1

vi g
∗
i (θ1) =

n∑

j=k+1

v j g
∗
j (θ2) = 0m

⎫
⎬

⎭ .

To simplify the problem and avoid complicity, we confine the moment function for
the GEL statistics within the just-identified case, i.e.,

g∗
t (θ) := w̃t−1sign{ε(t; θ)}At−1(θ) = w̃t−1sign{ε(t; θ)}∂ε(t; θ)

∂θ

and hence m = d = p + q. Note that the unconstrained maximum empirical likeli-
hood is represented as

Ln,k,E := sup

{
n∏

i=1

vi : (v1, ..., vn) ∈ Pn,k

}
= k−k(n − k)−(n−k),

and hence, the logarithm of the empirical likelihood ratio statistic is given by

− log
Ln,k(θ1, θ2)

Ln,k,E
(5.14)

= − log sup

⎧
⎨

⎩

(
k∏

i=1

kvi

)⎛

⎝
n∏

j=k+1

(n − k)v j

⎞

⎠ : (v1, ..., vn) ∈ Pn,k ∩ Mn,k(θ1, θ2)

⎫
⎬

⎭

=
[
sup

λ

k∑

t=1

log
{
1 − λTg∗

t (θ1)
}+ sup

η

n∑

t=k+1

log
{
1 − ηTg∗

t (θ2)
}
]

. (5.15)

The former part of the quantity (5.15) is regarded as the negative empirical likelihood
ratio for the observation {X (1), ..., X (k)} at θ1, while the later one is for {X (k +
1), ..., X (n)} at θ2. Motivated by the concept of GEL, we define the GEL statistic at
θ1 and θ2, respectively, before and after a plausible change point t = k, as

lρn,k(θ1, θ2) =
[
sup

λ

k∑

t=1

ρ
{
λTg∗

t (θ1)
}+ sup

η

n∑

t=k+1

ρ
{
ηTg∗

t (θ2)
}
]

. (5.16)

Based on the GEL statistic (5.16), we finally define the test statistic for the change
point problem (5.13). Since the maximum GEL under H at a plausible change point
t = k is given by

Pρ

n,k := inf
θ∈Θ

{lρn,k(θ, θ)},

one may define the empirical likelihood ratio test statistic by
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T ρ
n := 2 max�r1n≤k≤�r2n Pρ

n,k,

where 0 < r1 < r2 < 1 for fixed constants. Note that we do not consider the maxi-
mum of {Pρ

n,k : k = 1, . . . , n} as Pρ

n,k cannot be estimated accurately for small and
large values of k.

Remark 5.3 Note that our definition of Pρ

n,k is different from that in some literature.
The numerator in (5.14) represents the empirical likelihood under the assumption
that “the plausible change does not occur at t = k.” The denominator represents
the empirical likelihood under the assumption that “the plausible change occurs at
t = k.” We do not put any restriction between the parameters before and after the
change under the alternative. Thus, our approach differs from a part of the literature,
which considers the statistic

supθ Ln,k(θ, θ)

supθ1,θ2
Ln,k(θ1, θ2)

(5.17)

(see Chuang and Chan 2002, or Ciuperca and Salloum 2015). In other words, we
workwith amore general alternative that yields substantial computational advantages
because the calculation of the supremum in the denominator of (5.17) corresponds
to a 2d-dimensional optimization problem, which has to be solved for each k.

To show the convergence of the test statistic, we need an additional condition for
the dependence structure of the model as follows.

Assumption 5.6 (i) There exists a constant ι > 2 such that E[‖g∗
t (θ0)‖ι] < ∞.

(ii) The sequence {δt−1sign(ε(t))Qt−1 : t ∈ Z} is strong mixing with mixing coef-
ficients αl that satisfy

∑∞
l=1 α

1−2/ι
l < ∞.

In this case, the maximum GEL estimator θ̂n,k is defined by

θ̂n,k = argmin
θ∈Θ

{ln,k(θ, θ)},

and the consistency with corresponding rate of convergence of this statistic is given
in the following theorem.

Theorem 5.7 Suppose that Assumptions 5.1–5.4 and 5.6 hold and define k∗ := rn
for some r ∈ (0, 1). Then, under the null hypothesis H, we have, as n → ∞, θ̂n,k∗ −
θ0 = Op(n−1/2).

As seen from Theorem 5.7, T ρ
n is not accurate for small k and n − k as the result does

not hold if k/n = o(1) or (n − k)/n = o(1). In addition, the empirical likelihood
ratio statistic is not computable for small k and n − k. For this reason, hereafter, we
consider the trimmed and weighted version of empirical likelihood ratio test statistic,
defined by
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T̃ ρ
n := 2 max

k1n≤k≤k2n

h

(
k

n

)
Pρ

n,k, (5.18)

where h is a given weight function, k1n := r1n, k2n := r2n and 0 < r1 < r2 < 1. If T̃n

takes a significant large value, we have enough reason to reject the null hypothesis H
of no change point. We also need a further assumption to control a remainder terms
in the stochastic expansion of T̃ ρ

n .

Assumption 5.8 sup0<r<1 h(r)2 < ∞.

With this additional assumption, the limit distribution of the test statistic (5.18) can
be derived in the following theorem.

Theorem 5.9 Suppose that Assumptions 5.1–5.4, 5.6 and 5.8 hold.

(i) Under the null hypothesis H of no change point,

T̃ ρ
n → T̃ := sup

r1≤r≤r2

{
r−1(1 − r)−1h(r) ‖B(r) − r B(1)‖2} (5.19)

in law as n → ∞, where {B(r) : r ∈ [0, 1]} is a d-dimensional vector of inde-
pendent Brownian motions.

(ii) Under the alternative A : θ1 �= θ2, we have T̃n → ∞ in probability as n → ∞.

The proofs of Theorems 5.5, 5.7 and 5.9 share a lot of similar argument, so we omit
the detail. The proof is obtained by a slightmodification ofAkashi et al. (2018). A test
for the hypotheses in (5.13) is now easily obtained by rejecting the null hypothesis
in (5.13) whenever

T̃ ρ
n > q1−α, (5.20)

where q1−α is the (1 − α)-quantile of the distribution of the random variable T̃
defined on the right-hand side of equation (5.19). The statement (ii) in Theorem 5.9
shows that the power of the test (5.20) approaches 1 at any fixed alternative. In other
words, the test is consistent.

5.4 Numerical Studies

This section illustrates the finite sample performance of the GEL change point test
(5.20), and compares the goodness of the proposed method with CUSUM-type test
byQu (2008) via simulation study. Suppose that an observed stretch {X (1), ..., X (n)}
is generated from the AR(1) model

X (t) = bt,n X (t − 1) + ε(t) (t = 1, ..., n), (5.21)
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where the parameter bt,n satisfies

bt,n =
{

b1 (t = 1, ..., �u0n)
b2 (t = �u0n + 1, ..., n)

,

and the unknown change point parameter is set as u0 = 0.5 and 0.8. The coefficient
b1 is fixed as b1 = 0.3, and we tried simulations with various values of b2 shown in
tables below. The innovation ε(t) follows one of i.i.d. standard normal, t2 and Cauchy
distributions. Throughout this simulation, the nominal level is chosen as α = 0.05.
To calculate the self-weighted GEL statistics, we use the weight function proposed
by Ling (2005), which is defined as

w̃t−1 =
{
1 (dt−1 = 0)
(c0/dt−1)

3 (dt−1 �= 0)
,

where dt−1 = |X (t − 1)|I(|X (t − 1)| > c0) and c0 is the 95% quantile of {X (1), ...,
X (n)}. Under the settings, we generate samples from the model (5.21) with length
n = 100, 200, 400, and calculate the simulated rejection rate based on 1000 times
iteration. The results are shown inTables 5.1, 5.2 and 5.3. The simulated rejection rate
based on CUSUM-type test by Qu (2008) is labeled as “SQ”. The same tables also
display the results by the GEL test (5.20) with uniform weight function h(u) ≡ 1.

From the simulation, we observe that the rejection rate of the SQ-test is slightly
conservative (see the cases of b2 = 0.3, i.e., the case that the model has no change
point). On the other hand, the simulated type-I error rate of GEL test (5.18) approxi-
mates the true nominal levelwell overall, and the accuracy of theGEL test is improved
as the sample size grows. Especially, the type-I error rate of the self-weighted GEL
test is less sensitive to the thickness of the tail distribution of the error terms than
SQ-test.

Table 5.1 Simulated rejection rate of SQ and T̃ ρ
n test with normal-distributed innovations (b1 =

0.3)
u0 = 0.5 b2 −0.3 0.0 0.3 0.6 0.9 u0 = 0.8 b2 −0.3 0.0 0.3 0.6 0.9

n = 100 SQ 0.422 0.090 0.024 0.069 0.203 n = 100 SQ 0.104 0.040 0.028 0.079 0.444

T̃ ρ
n 0.327 0.087 0.040 0.084 0.248 T̃ ρ

n 0.140 0.058 0.050 0.134 0.597

n = 200 SQ 0.794 0.254 0.049 0.228 0.713 n = 200 SQ 0.291 0.081 0.049 0.183 0.847

T̃ ρ
n 0.731 0.235 0.075 0.205 0.729 T̃ ρ

n 0.328 0.069 0.061 0.232 0.861

n = 400 SQ 0.991 0.507 0.044 0.565 0.994 n = 400 SQ 0.682 0.142 0.029 0.329 0.989

T̃ ρ
n 0.973 0.433 0.053 0.467 0.993 T̃ ρ

n 0.754 0.168 0.030 0.393 0.984
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Table 5.2 Simulated rejection rate of SQ and T̃ ρ
n test with t2-distributed innovations (b1 = 0.3)

u0 = 0.5 b2 −0.3 0.0 0.3 0.6 0.9 u0 = 0.8 b2 −0.3 0.0 0.3 0.6 0.9

n = 100 SQ 0.572 0.138 0.028 0.158 0.409 n = 100 SQ 0.129 0.046 0.029 0.113 0.592

T̃ ρ
n 0.480 0.147 0.049 0.186 0.498 T̃ ρ

n 0.202 0.059 0.050 0.228 0.795

n = 200 SQ 0.916 0.466 0.027 0.532 0.783 n = 200 SQ 0.357 0.080 0.029 0.278 0.912

Tn 0.910 0.384 0.055 0.440 0.817 T̃ ρ
n 0.531 0.125 0.051 0.424 0.978

n = 400 SQ 0.985 0.847 0.026 0.911 0.950 n = 400 SQ 0.682 0.240 0.029 0.593 0.977

T̃ ρ
n 0.997 0.719 0.056 0.842 0.988 T̃ ρ

n 0.909 0.317 0.054 0.709 0.998

Table 5.3 Simulated rejection rate of SQ, and T̃ ρ
n test with Cauchy-distributed innovations (b1 =

0.3)
u0 = 0.5 b2 −0.3 0.0 0.3 0.6 0.9 u0 = 0.8 b2 −0.3 0.0 0.3 0.6 0.9

n = 100 SQ 0.317 0.126 0.029 0.220 0.429 n = 100 SQ 0.069 0.043 0.023 0.171 0.537

T̃ ρ
n 0.448 0.172 0.062 0.341 0.724 T̃ ρ

n 0.242 0.085 0.060 0.355 0.819

n = 200 SQ 0.539 0.300 0.029 0.499 0.567 n = 200 SQ 0.147 0.052 0.024 0.306 0.736

T̃ ρ
n 0.774 0.490 0.061 0.731 0.862 T̃ ρ

n 0.522 0.148 0.070 0.616 0.966

n = 400 SQ 0.665 0.512 0.029 0.633 0.667 n = 400 SQ 0.235 0.095 0.028 0.422 0.809

T̃ ρ
n 0.937 0.841 0.055 0.938 0.928 T̃ ρ

n 0.824 0.395 0.052 0.900 0.996

As the tail distribution of the innovation process becomes heavier, the powers of
the SQ-test (see the cases of b2 �= 0.3(= b1)) become slightly worth. On the other
hand, the GEL test keeps higher power than SQ-test even when the model has heavy-
tails. Thus, we observed the advantage of the self-weighted GEL test.

5.5 Auxiliary Results

This section gives the proofs of Lemmas 5.1, 5.2 and supporting lemmas for the main
results. Throughout this section, we assume all conditions of Theorem 5.5.

Proof of Lemma 5.1. Let us define

ht (θ, τ ) = sup
‖θ ′−θ‖<τ

∥∥g∗
t (θ

′) − g∗
t (θ)

∥∥

and show that ht (θ, τ ) → 0 almost surely as τ → 0. However, it suffices to show
that g∗

t (θ) is continuous at each θ with probability one, and from the definition of
ε(t; θ), sign{ε(t; θ)} is continuous at each θ with probability one. Hence, we get
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ht (θ, τ ) → 0 almost surely as τ → 0. Thus by the dominated convergence, for any
ε and each θ , there exists τ(θ) such that E[ht (θ, τ )] ≤ ε/4 for all τ ≤ τ(θ). Next,
define B(θ, τ ) = {v ∈ Θ : ‖v − θ‖ < τ }. By the compactness, there exist θ1, ..., θK

such that {B(θ1, τ (θ1)), ..., B(θK , τ (θK ))} is a finite open covering of Θ . Let τk =
τ(θk) and μk = E[ht (θk, τk)]. By the definition of τk , it follows that μk ≤ ε/4 for
all k = 1, ..., K . Now, for any θ , without loss of generality, let Bk contain θ . Then

∥∥ĝ∗
n(θ) − ḡ∗

n(θ)
∥∥ ≤

(
1

n − u

n∑

t=u+1

∥∥g∗
t (θ) − g∗

t (θk)
∥∥− μk

)
+ μk

+
∥∥∥∥∥

1

n − u

n∑

t=u+1

g∗
t (θk) − ḡ∗

n(θk)

∥∥∥∥∥+ ∥∥ḡ∗
n(θk) − ḡ∗

n(θ)
∥∥

≤
(

1

n − u

n∑

t=u+1

ht (θk, τk) − μk

)
+ μk

+
∥∥∥∥∥

1

n − u

n∑

t=u+1

g∗
t (θk) − ḡ∗

n(θk)

∥∥∥∥∥+ ∥∥ḡ∗
n(θk) − ḡ∗

n(θ)
∥∥ .

By the ergodicity, (n − u)−1∑n
t=u+1 ht (θk, τk)

a.s.−→ μk as n → ∞. Therefore, for
any ε > 0, there exists n1k(ε) ∈ N such that ‖(n − u)−1∑n

t=u+1 hi (θk, τk) − μk‖ ≤
ε/4 a.s. for all n ≥ n1k(ε). Similarly, there exists n2k(ε) ∈ N such that ‖(n −
u)−1∑n

t=u+1 g∗
t (θk) − ḡ∗

n(θk)‖ ≤ ε/4 a.s. for all n ≥ n2k(ε). Furthermore,

∥∥ḡ∗
n(θk) − ḡ∗

n(θ)
∥∥ = ∥∥E[g∗

t (θk) − g∗
t (θ)]∥∥

≤ E[∥∥g∗
t (θk) − g∗

t (θ)
∥∥]

≤ E

[
sup

‖θ−θk‖<τk

∥∥g∗
t (θk) − g∗

t (θ)
∥∥
]

= E[ht (θk, τk)]
= μk

≤ ε/4.

Finally, let nk(ε) = max{n1k(ε), n2k(ε)}. Then for any ε > 0, it holds that

∥∥ĝ∗
n(θ) − ḡ∗

n(θ)
∥∥ ≤ ε for all n ≥ nk(ε) a.s.

Thus, we obtain

sup
θ∈Θ

∥∥ĝ∗
n(θ) − ḡ∗

n(θ)
∥∥ ≤ ε for all n ≥ n(ε) a.s.,

where n(ε) = max{nk(ε) : k = 1, ..., K }. Hence, we get the desired result. �
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To prove Lemma 5.2, we impose Lemmas 5.3–5.8 below. The following lemma
is equivalent to Assumption 2.2 (d) of Parente and Smith (2011).

Lemma 5.3 For any τn → 0 as n → ∞,

sup
‖θ−θ0‖≤τn

n1/2‖ĝ∗
n(θ) − ĝ∗

n(θ0) − ḡ∗
n(θ)‖

1 + n1/2‖θ − θ0‖ = op(1).

Proof The proof is almost similar as Parente and Smith (2011, Proof of Theorem
E.2, page 113), so we omit the proof here. �

On the other hand, the following lemmas are essentially due to Newey and Smith
(2004).

Lemma 5.4 Let Λn = {λ ∈ R
m : ‖λ‖ ≤ c0n−1/2} for some c0 ∈ (0,∞). Then,

sup
θ∈Θ,λ∈Λn

max
u+1≤t≤n

∣∣λTg∗
t (θ)

∣∣ = op(1)

and w.p.a.1, Λn ⊂ Λ̂n(θ) for all θ ∈ Θ .

Proof We first show that the quantity ‖wt−1 At−1(θ)‖ is bounded by a constant
which is independent of t uniformly in θ ∈ Θ . Denote the lth element of At−1(θ) by
Al,t−1(θ) (l = 1, . . . , m) hereafter. FromAssumption 5.1, we have, for l = 1, . . . , p,

Al,t−1(θ) = −ψ(B; a)−1 X̃(t − l) =
∞∑

k=0

κ
(1)
k (a)X̃(t − l − k) =

t−l−1∑

k=0

κ
(1)
k (a)X (t − l − k),

where {κ(1)
k (a) : k ∈ Z} satisfy |κ(1)

k−l(a)| ≤ clr k
l for some cl > 0 and rl ∈ (0, 1) uni-

formly in a. Therefore, we have

∣∣∣w1/2
t−1Al,t−1(θ)

∣∣∣ ≤
∑t−l−1

k=0 |κ(1)
k (a)||X (t − l − k)|

1 +∑t−1
k=1 k−γ |X (t − k)|

=
∑t−1

k=l |κ(1)
k−l(a)||X (t − k)|

1 +∑t−1
k=1 k−γ |X (t − k)|

≤
∑t−1

k=l |κ(1)
k−l(a)||X (t − k)|

1 +∑t−1
k=l k−γ |X (t − k)|

≤ cl

∑t−1
k=l r k

l |X (t − k)|
1 +∑t−1

k=l k−γ |X (t − k)| (by |κ(1)
k−l(a)| ≤ clr

k
l )

≤ cl

∞∑

k=1

kγ rk
l , (5.22)
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where the right-hand side of (5.22) is independent of t , and w
1/2
t−1 ≤ 1. Therefore,

it is shown that |wt−1Al,t−1(θ)| is bounded by a constant which is independent of t
uniformly in θ ∈ Θ . By the same argument and the definition (5.3), it is also shown
that |wt−1Ap+ j,t−1(θ)| is bounded by a constant for all j = 1, . . . , q uniformly in
θ ∈ Θ and t . Furthermore, by Assumption 5.2, ‖wt−1ϕt−1‖ is bounded by a con-
stant which is independent of t . Hence, ‖g∗

t (θ)‖ is bounded by a constant which is
independent of t and θ . Therefore, we get

sup
θ∈Θ,λ∈Λn

max
u+1≤t≤n

∣∣λTg∗
t (θ)

∣∣ ≤ Cn−1/2 = op(1),

so w.p.a.1, λTg∗
t (θ) ∈ Vρ for all θ ∈ Θ and ‖λ‖ ≤ c0n−1/2. �

Lemma 5.5 Suppose that there exists θ̄ ∈ Θ such that θ̄ → θ0 in probability. Then,

∥∥∥∥∥
1

n − u

n∑

t=u+1

g∗
t (θ̄)g∗

t (θ̄)T − Ω

∥∥∥∥∥ = op(1).

Proof By the definition, we can write (n − u)−1∑n
t=u+1 g∗

t (θ̄)g∗
t (θ̄)T as

1

n − u

n∑

t=u+1

g∗
t (θ̄)g∗

t (θ̄)T = 1

n − u

n∑

t=u+1

w2
t−1

(
At−1(θ̄)At−1(θ̄)T At−1(θ̄)ϕT

t−1
ϕt−1 At−1(θ̄)T ϕt−1ϕ

T
t−1

)
.

(5.23)

We shall show the consistency of each submatrix in (5.23) in succession.
First, we focus on the (l, j)th element of the first m × m-submatrix of (5.23). For

simplicity, we adopt the notation Āl,t−1 = Al,t−1(θ̄) and A0
l,t−1 = Al,t−1(θ0). Then,

we have the following decomposition:

1

n − u

n∑

t=u+1

w2
t−1 Āl,t−1 Ā j,t−1 = (Ω̄n,A − Ωn,A

)+ (Ωn,A − Ωn,S
)+ Ωn,S, (5.24)

where

Ω̄n,A = 1

n − u

n∑

t=u+1

w̃2
t−1 Āi,t−1 Ā j,t−1,

Ωn,A = 1

n − u

n∑

t=u+1

δ2t−1 A0
i,t−1A0

j,t−1,

Ωn,S = 1

n − u

n∑

t=u+1

δ2t−1Si,t−1Sj,t−1

and Si,t−1 is the i th element of St−1 = (Ut−1, . . . , Ut−p, Vt−1, . . . , Vt−q)
T.
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For the first part of (5.24), the expansion Āl,t−1 = A0
l,t−1 + (∂θ Ā0

l,t−1)
T(θ̄ − θ0)

holds, where ∂θ Ā0
l,t−1 = (∂ Al,t−1(θ)/∂θ)|θ=θ̄0

, and θ̄0 is on the line joining θ̄ and θ0.
So the first term of (5.24) is decomposed as

Ω̄n,A − Ωn,A = 1

n − u

n∑

t=u+1

δ2t−1

(
Āl,t−1 Ā j,t−1 − A0

l,t−1 A0
j,t−1

)

+ 1

n − u

n∑

t=u+1

(
w̃2

t−1 − δ2t−1

)
Āl,t−1 Ā j,t−1

= 1

n − u

n∑

t=u+1

δ2t−1

(
A0

l,t−1(∂θ Ā0
j,t−1)

T + A0
j,t−1(∂θ Ā0

l,t−1)
T
)
(θ̄ − θ0)

(5.25)

+ (θ̄ − θ0)
T 1

n − u

n∑

t=u+1

δ2t−1(∂θ Ā0
l,t−1)(∂θ Ā0

j,t−1)
T(θ̄ − θ0) (5.26)

+ 1

n − u

n∑

t=u+1

(
w̃2

t−1 − δ2t−1

)
Āl,t−1 Ā j,t−1. (5.27)

By the similar argument as in the proof of Lemma 5.4, the summands in (5.25)
and (5.26) are bounded by some constants with probability one. From this fact and
θ̄ − θ0 → 0 in probability , the terms (5.25) and (5.26) converge to zero in probability
as n → ∞. On the other hand, we have

∣∣∣∣∣
1

n − u

n∑

t=u+1

(
w̃2

t−1 − δ2t−1

)
Āl,t−1 Ā j,t−1

∣∣∣∣∣

≤ 1

n − u

n∑

t=u+1

|w̃t−1 − δt−1||w̃t−1 + δt−1|
∣∣ Āl,t−1

∣∣ ∣∣ Ā j,t−1

∣∣

≤ 2

n − u

n∑

t=u+1

|w̃t−1 − δt−1|
∣∣∣w̃1/2

t−1 Āl,t−1

∣∣∣
∣∣∣w̃1/2

t−1 Ā j,t−1

∣∣∣ (by δt−1 ≤ wt−1 ≤ 1)

≤ C

n − u

n∑

t=u+1

|w̃t−1 − δt−1| → 0 (in probability). (5.28)

Therefore, the term (5.27) converges to zero in probability as n → ∞.
For the second part of (5.24), we have |A0

l,t−1 − Sl,t−1| ≤ ξt from Lemma 1 of
Pan et al. (2007), where ξt = c

∑∞
k=t r k |yt−k | for some c′ ∈ (0,∞) and r ∈ (0, 1).

Obviously, ξt = op(1) as t → ∞ and hence Ωn,A − Ωn,S = op(1).
For the third part of (5.24), it is easy to see thatΩn,S converges to the first m × m-

submatrix of Ω by the ergodicity of St−1.
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Second, we consider the last d × d-submatrix of (5.23). For l, j ∈ {1, . . . , d},
consider the decomposition

1

n − u

n∑

t=1

w̃2
t−1ϕl,t−1ϕ j,t−1 = 1

n − u

n∑

t=1

δ2t−1ϕl,t−1ϕ j,t−1 (5.29)

+ 1

n − u

n∑

t=1

(w̃2
t−1 − δ2t−1)ϕl,t−1ϕ j,t−1. (5.30)

Note that (5.29) converges to E[δ2t−1ϕl,t−1ϕ j,t−1] a.e. from

E[|δ2t−1ϕl,t−1ϕ j,t−1|] ≤ E[|w̃2
t−1ϕl,t−1ϕ j,t−1|] < ∞

byAssumption 5.2, stationarity and ergodicity of δ2t−1ϕl,t−1ϕ j,t−1. On the other hand,
it is shown that (5.30) converges to zero in probability as n → ∞ by the same
argument as (5.28) and Assumption 5.2.

Third, we show the consistency of the off-diagonal part of (5.23). For l ∈
{1, . . . , m} and j ∈ {1, . . . , d}, we have

1

n − u

n∑

t=u+1

w̃2
t−1 Āl,t−1ϕ j,t−1 = 1

n − u

n∑

t=u+1

δ2t−1A0
l,t−1ϕ j,t−1 (5.31)

+ 1

n − u

n∑

t=u+1

(w̃2
t−1 − δ2t−1)A0

l,t−1ϕ j,t−1 (5.32)

+ 1

n − u

n∑

t=u+1

w̃2
t−1(∂θ Ā0

l,t−1)
T(θ̄ − θ0)ϕ j,t−1.

(5.33)

Again from Lemma 1 of Pan et al. (2007), (n − u)−1∑n
t=u+1 δ2t−1{A0

l,t−1 − Sl,t−1}
ϕ j,t−1 = op(1) and hence (5.31) converges to E[δ2t−1Sl,t−1ϕ j,t−1] in probability. On
the other hand, (5.32) and (5.33) converge to zero in probability by the Cauchy–
Schwarz inequality and the same arguments above. Thus, we get the desired
result. �

Lemma 5.6 Suppose that there exists θ̄ ∈ Θ such that θ̄ → θ0 in probability and
ĝ∗(θ̄) = Op(n−1/2). Then,

λ̄ = arg max
λ∈Λ̂n(θ̄ )

P∗
n (θ̄ , λ)

exists w.p.a.1, λ̄ = Op(n−1/2) and P∗
n (θ̄ , λ̄) = Op(1).

Proof Since Λn is a closed set, λ̌ = argmaxλ∈Λn P∗
n (θ̄ , λ) exists with probability

one. From Lemma 5.4, P∗
n (θ̄ , λ) is continuously twice differentiable w.p.a.1 with
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respect to λ. So by a Taylor expansion around λ = 0m , there exists λ̇ on the line
joining λ̌ and 0m such that

0 = P∗
n (θ̄ , 0m)

≤ P∗
n (θ̄ , λ̌)

= −nλ̌T ĝ∗(θ̄) + n

2
λ̌T

[
1

n − u

n∑

t=u+1

ρ̄ ′
t g

∗
t (θ̄)g∗

t (θ̄)T

]
λ̌, (5.34)

where ρ̄ ′
t = ρ ′{λ̇Tg∗

t (θ̄)}. Furthermore, by Lemmas 5.4 and 5.5,

Ω̄ρ
n = − 1

n − u

n∑

t=u+1

ρ̄ ′
t g

∗
t (θ̄)g∗

t (θ̄)T → Ω

in probability, and therefore the minimum eigenvalue of Ω̄
ρ
n is bounded away from

0 w.p.a.1. from (ii) of Assumption 5.4. Then, it holds that

0 ≤ −λ̌T ĝ∗(θ̄) − 1

2
λ̌TΩ̄ρ

n λ̌ ≤ ‖λ̌‖‖ĝ∗(θ̄)‖ − C‖λ̌‖2 (5.35)

w.p.a.1. Dividing both side of (5.35) by ‖λ̌‖, we get ‖λ̌‖ = Op(n−1/2), and hence
λ̌ ∈ Λn w.p.a.1. Again by Lemma 5.4, concavity of P∗

n (θ̄ , λ) and convexity of Λ̂n(θ̄),
it is shown that λ̄ = λ̌ exists w.p.a.1 and λ̄ = Op(n−1/2). These results and (5.34)
for λ̌ = λ̄ also imply that P∗

n (θ̄ , λ̄) = Op(1). �

Lemma 5.7 ĝ∗(θ̂∗) = Op(n−1/2) as n → ∞.

Proof We define ˆ̂g = ĝ∗(θ̂∗) and λ̃ = −n−1/2 ˆ̂g/‖ ˆ̂g‖.
First, by a quite similar argument as in the proof of Lemma 5.6, and by noting

that ρ ′{λ̃Tg∗
t (θ)} ≥ −C uniformly in t and θ w.p.a.1. from Lemma 5.4, we have

P∗
n (θ̂∗, λ̃) ≥ n

(
n−1/2‖ ˆ̂g‖ − C

2
λ̃T

[
1

n − u

n∑

t=u+1

g∗
t (θ̂

∗)g∗
t (θ̂

∗)T
]

λ̃

)

≥ n
(

n−1/2‖ ˆ̂g‖ − C‖λ̃‖2
)

=
(

n1/2‖ ˆ̂g‖ − C
)

(5.36)

w.p.a.1. Second, by the definition of λ̂∗,

P∗
n (θ̂∗, λ̂∗) = max

λ∈Λ̂n(θ̂ )

P∗
n (θ̂∗, λ) ≥ P∗

n (θ̂∗, λ̃). (5.37)
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Third, note that the central limit theorem yields ĝ∗(θ0) = Op(n−1/2). Then by
applying Lemma 5.6 for θ̄ = θ0, we get supλ∈Λ̂n(θ0)

P∗
n (θ0, λ) = Op(1). Thus we

obtain

P∗
n (θ̂∗, λ̂∗) = min

θ∈Θ
sup

λ∈Λ̂n(θ)

P∗
n (θ, λ) ≤ sup

λ∈Λ̂n(θ0)

P∗
n (θ0, λ) = Op(1). (5.38)

Finally, from (5.36)–(5.38), n1/2‖ ˆ̂g‖ = Op(1),which implies the assertion of this
lemma. �

Lemma 5.8 θ̂∗ − θ0 = Op(n−1/2).

Proof It follows from the triangular inequality, Lemmas 5.1 and 5.7 that

‖ḡ∗
n(θ̂

∗)‖ ≤ ‖ḡ∗
n(θ̂

∗) − ĝ∗
n(θ̂

∗)‖ + ‖ĝ∗
n(θ̂

∗)‖
≤ sup

θ∈Θ

‖ḡ∗
n(θ) − ĝ∗

n(θ)‖ + ‖ĝ∗
n(θ̂

∗)‖ = op(1).

Since ḡ∗
n(θ) − E[g∗0

t (θ)] = op(1) uniformly in θ and E[g∗0
t (θ)] has a unique zero

at θ0 by Assumption 5.4, ‖ḡ∗
n(θ)‖ must be bounded away from zero outside any

neighborhood of θ0. Therefore, θ̂∗ must be inside any neighborhood of θ0 w.p.a.1.
Then, θ̂∗ → θ in probability .

Next, we show that θ̂∗ − θ0 = Op(n−1/2). By Lemma 5.7, ĝ∗
n(θ̂

∗) = Op(n−1/2)

and by the central limit theorem, ĝ∗
n(θ0) is also Op(n−1/2). Further, from Lemma 5.3,

‖ĝ∗
n(θ̂

∗) − ĝ∗
n(θ0) − ḡ∗

n(θ̂
∗)‖ ≤ (1 + n1/2‖θ̂∗ − θ0‖)op(n

−1/2). (5.39)

Therefore,

‖ḡ∗
n(θ̂

∗)‖ ≤ ‖ĝ∗
n(θ̂

∗) − ĝ∗
n(θ0) − ḡ∗

n(θ̂
∗)‖ + ‖ĝ∗

n(θ̂
∗)‖ + ‖ĝ∗

n(θ0)‖
= (1 + n1/2‖θ̂∗ − θ0‖)op(n

−1/2) + Op(n
−1/2).

In addition, by the similar argument as Newey and McFadden (1994, p. 2191) and
differentiability of ‖ḡ∗

n(θ)‖, ‖ḡ∗
n(θ̂

∗)‖ ≥ C‖θ̂∗ − θ0‖ w.p.a.1. Therefore, we get

‖θ̂∗ − θ0‖ = (1 + n1/2‖θ̂∗ − θ0‖)op(n
−1/2) + Op(n

−1/2)

and hence ‖θ̂∗ − θ0‖ = Op(n−1/2)/{1 + op(1)} = Op(n−1/2). �

Now, we get the proof of Lemma 5.2 as follows.
Proof of Lemma 5.2. It is suffice to show the following three relationships:

(i) P∗
n (θ̂∗, λ̂∗) − L∗

n(θ̂
∗, λ̂∗) = op(1),

(ii) L∗
n(θ̂

∗, λ̂∗) − L∗
n(θ̂

L , λ̂∗) = op(1),
(iii) L∗

n(θ̂
L , λ̂∗) − L∗

n(θ̂
L , λ̂L) = op(1).
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For (i), Taylor expansion yields

P∗
n (θ̂∗, λ̂∗) = −nλ̂∗T ĝ∗(θ̂∗) + n

2
λ̂∗T
[

1

n − u

n∑

t=u+1

ρ ′{λ̄Tg∗
t (θ̂

∗)}g∗
t (θ̂

∗)g∗
t (θ̂

∗)T
]

λ̂∗,

where λ̄ is on the line joining 0m and λ̂∗. Then

∣∣∣P∗
n (θ̂∗, λ̂∗) − L̂n(θ̂∗, λ̂∗)

∣∣∣ ≤
∣∣∣∣−n

(
ĝ∗(θ̂∗) − ĝ∗(θ0) − G(θ̂∗ − θ0)

)T
λ̂∗
∣∣∣∣ (5.40)

+
∣∣∣∣∣∣
n

2
λ̂∗T

⎡

⎣ 1

n − u

n∑

t=u+1

ρ′{λ̄Tg∗
t (θ̂∗)}g∗

t (θ̂∗)g∗
t (θ̂∗)T + Ω

⎤

⎦ λ̂∗
∣∣∣∣∣∣
.

(5.41)

Since θ̂∗ → θ0 in probability by Lemma 5.8, we can apply Lemma 5.6 for θ̄ = θ̂∗
and hence λ̂∗ = Op(n−1/2). Then, by recalling (5.39), the quantity (5.40) becomes

∣∣∣∣−n
(

ĝ∗(θ̂∗) − ĝ∗(θ0) − G(θ̂∗ − θ0)
)T

λ̂∗
∣∣∣∣

≤ n
{∥∥∥ĝ∗(θ̂∗) − ĝ∗(θ0) − g∗(θ̂∗)

∥∥∥+
∥∥∥g∗(θ̂∗) − G(θ̂∗ − θ0)

∥∥∥
} ∥∥∥λ̂∗

∥∥∥

=
{(

1 + n1/2
∥∥∥θ̂∗ − θ0

∥∥∥
)

op(n
−1/2) + Op

(∥∥∥θ̂∗ − θ0

∥∥∥
2
)}

Op(n
1/2)

= op(1).

Moreover, (5.41) is op(1). Hence, we get
∣∣∣P∗

n (θ̂∗, λ̂∗) − L∗
n(θ̂

∗, λ̂∗)
∣∣∣ = op(1).

To get (ii), we first show |P∗
n (θ̂ L , λ̂∗) − L∗

n(θ̂
L , λ̂∗)| = op(1). Note that L∗

n(θ, λ)

is smooth in θ and λ. Then, the first-order conditions for an interior global maximum,

0d = ∂L∗
n(θ, λ)

∂θ
= −nGTλ, (5.42)

0m = ∂L∗
n(θ, λ)

∂λ
= −n

{
G(θ − θ0) + ĝ∗(θ0) + Ωλ

}
(5.43)

are satisfied at (θ̂ LT, λ̂LT)T. The conditions above are stacked as

(
Od×d GT

G Ω

)(
θ̂ L − θ0

λ̂L

)
+
(

0d

ĝ∗(θ0)

)
= 0d+m . (5.44)

By denoting Σ = (GTΩ−1G)−1, H = Ω−1GΣ and P = Ω−1 − HΣ−1HT, (5.44)
is equivalent to
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(
θ̂ L − θ0

λ̂L

)
= −

(
Σ −HT

−H −P

)(
0d

−ĝ∗(θ0)

)
=
(−HT ĝ∗(θ0)

−Pĝ∗(θ0)

)
, (5.45)

so both θ̂ L − θ0 and λ̂L are Op(n−1/2). Therefore, by the same arguments as (i)
in this proof, |P∗

n (θ̂ L , λ̂∗) − L∗
n(θ̂

L , λ̂∗)| = op(1). This relationship and the fact
that (θ̂T, λ̂∗T)T and (θ̂ LT, λ̂LT)T are, respectively, the saddle points of P∗

n (θ, λ) and
L∗

n(θ, λ) imply that

L∗
n(θ̂

∗, λ̂∗) = P∗
n (θ̂∗, λ̂∗) + op(1) ≤ P∗

n (θ̂ L , λ̂∗) + op(1) = L∗
n(θ̂

L , λ̂∗) + op(1).
(5.46)

On the other hand,

L∗
n(θ̂

L , λ̂∗) ≤ L∗
n(θ̂

L , λ̂L)

≤ L∗
n(θ̂

∗, λ̂L) = P∗
n (θ̂∗, λ̂L) + op(1)

≤ P∗
n (θ̂∗, λ̂∗) + op(1) = L∗

n(θ̂
∗, λ̂∗) + op(1). (5.47)

Thus, (5.46) and (5.47) yield L∗
n(θ̂

∗, λ̂∗) − L∗
n(θ̂

L , λ̂∗) = op(1).
We can prove (iii) similarly, i.e.,

L̂n(θ̂
L , λ̂L) ≤ L∗

n(θ̂
∗, λ̂L) = P∗

n (θ̂∗, λ̂L) + op(1)

≤ P∗
n (θ̂∗, λ̂∗) + op(1)

≤ P∗
n (θ̂ L , λ̂∗) + op(1) = L∗

n(θ̂
L , λ̂∗) + op(1)

and L∗
n(θ̂

L , λ̂∗) ≤ L∗
n(θ̂

L , λ̂L). That is, L∗
n(θ̂

L , λ̂∗) = L∗
n(θ̂

L , λ̂)L + op(1). �
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A
ARMA process, 8, 30, 106, 109–111, 116
AR process, 33, 51, 53–57, 82–85, 93, 106,

109, 110, 112, 119
Asymptotically normal, 44, 60, 80
Autocovariance function, 3

C
Characteristic function, 2
Check function, 59–61, 66
Confidence region, 87, 89, 90, 105

confidence interval, 107, 108
Consistency, 47, 60, 63, 66, 84, 93
Contamination, 18, 52
Contrast function, 29–32
Cumulant, 42, 47–49, 52, 53, 62, 81, 90, 97,

98
CUSUM, 119, 120

D
Dirac delta function, 74
Disparity, 30–39, 42, 44–47, 49–54, 56

location disparity, 31
scale disparity, 31

E
Efficiency, 29, 47, 49, 52–54
Empirical likelihood, 87–89, 91–93, 103,

106–108
Extrapolation problem, 1, 9–12, 18–22

F
Fisher information, 45, 49, 50, 53

Frequency domain, 1, 5, 11, 54, 59, 60, 73,
80, 81, 87, 88

G
Gaussian process, 2, 29, 30, 32, 45, 49, 53,

82–84
Generalized empirical likelihood, 109

GEL, 109, 111–114, 117–121

H
Hardy space, 12, 13
Heaviside step function, 74
Herglotz’s theorem, 4, 61
Hill’s estimator, 105
Hypothesis, 59, 81, 87, 90, 94, 110–112

change point hypothesis, 116, 118, 119

I
Independent and identically distributed, 9,

11, 36, 46, 88, 91, 94
Infinite variance, 9, 29, 39, 46, 47, 53, 55, 93
Interpolation problem, 1, 9–11, 16–20, 22,

24–26, 32–34, 36, 49

J
Joint distribution, 1–3, 29, 67, 70, 73
Jump, 75

K
Kolmogorov’s formula, 6, 15, 35
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L
Least absolute deviations, 109

LAD, 109–112
Least favorable, 19, 21, 23–25, 27
Lebesgue measure, 19, 22, 36
Linear isomorphism, 5
Linear process, 46, 87

M
MA process, 51, 54, 57, 74, 83, 84, 106
Mean square error, 5, 11, 18
Minimax, 18, 19, 21, 22
Monte Carlo simulation, 53, 108

N
Nonparametric estimator, 30, 31, 89

O
Optimality, 5, 18
Outer function, 12

P
Parameter estimation, 29, 30, 32, 36, 39, 42,

52–54, 56, 57, 59, 89
Periodogram, 30, 32, 42, 46, 59, 60, 62, 69,

89, 93, 99
Power transfer function, 46, 47, 92, 105, 106
Prediction problem, 1, 5, 6, 10, 11, 21, 29,

32, 88
Predictor, 5, 22, 27, 38, 88
Probability space, 1

Q
Quantile, 8, 59–63, 67, 73–77, 80–85

R
Randomly missing, 29, 47, 52, 54, 57

Robust, 1, 18, 22, 27, 29, 30, 32, 47–49, 52–
55, 57

S
Sample autocorrelation, 93, 106
Self-adjoint operator, 4
Self-normalized periodogram, 46, 91, 93, 96,

105
Self-weight, 109–114, 120, 121
Sinusoid model, 73–75
Spectral density, 6–8, 10, 12, 18–27, 29–33,

36, 41, 43, 48–53, 60, 62, 72, 77, 81,
88, 90, 91

fourth-order spectral density, 42, 62
Spectral distribution, 4, 5, 8, 10, 11, 22, 30,

59–62, 66, 73–75, 83–85
Spectral representation, 4, 5, 11, 88
Stable distribution, 2, 9
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