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Preface

Over the past decades behavioral scientists have increasingly realized the potential
of longitudinal data to address specific research questions, in particular those of a
cause-effect nature. As a consequence, the methodology of longitudinal research
and analysis has made much progress and an increasing number of large-scale
longitudinal (time series and panel) data sets have become available for analysis.
However, in accordance with the way longitudinal data are collected, at a restricted
number of discrete time points, the statistical analysis is typically based on discrete
time models. As argued by the authors in the present book, a series of problems
is connected to this type of models, which make their results highly questionable.
One main issue is the dependence of discrete time parameter estimates on the
chosen time interval in dynamic modeling, which leads to incomparability of results
across different observation intervals and, if unaccounted for, may even lead to
contradictory conclusions.

Continuous time modeling, in particular by means of differential equations,
offers a powerful solution to these problems, yet the use of continuous time models
in the behavioral and related sciences such as psychology, sociology, economics,
and medicine is still rare. Fortunately, recent initiatives to introduce and adapt
continuous time models in a behavioral science context are gaining momentum. The
purpose of the book is to assess the state of the art and to bring together the different
initiatives. Furthermore, we emphasize the applicability of continuous time methods
in applied research and practice.

Bergstrom, one of the pioneers of continuous time modeling in econometrics,
credits Bartlett for the first significant contribution to the problem of estimating
continuous time stochastic models from discrete data. As Bartlett succinctly stated
in 1946: “The discrete nature of our observations in many economic and other
time series does not reflect any lack of continuity in the underlying series. . . . An
unemployment index does not cease to exist between readings, nor does Yule’s
pendulum cease to swing” (p. 31).

At the time of Bartlett’s contribution, intensive discussions took place in
econometrics on the interpretation, identification, and estimation of nonrecursive
simultaneous equations models. Simultaneity was considered by Bergstrom and
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vi Preface

others as an artifact from short-term causal effects between variables within
relatively long discrete time intervals (often years in economics), being in the
case of nonrecursive simultaneity reciprocal effects within such intervals. In his
1966 publication “Nonrecursive models as discrete approximations to systems of
stochastic differential equations,” Bergstrom further concretized this interpretation
of nonrecursiveness by describing the underlying causal effects by a system of
stochastic differential equations. In fact, he connected this system to the discrete
time data in two ways: the exact discrete model (EDM) and the approximate discrete
model (ADM). Whereas the EDM connects the system to the discrete time data by
highly nonlinear restrictions, the ADM uses the approximate linear restrictions of
a (recursive or nonrecursive) simultaneous equations model. This book is greatly
indebted to Bergstrom, as most of the chapters more or less explicitly continue and
elaborate on the kind of exact or approximate methods, started by Bergstrom.

To implement the exact approach, traditionally maximum likelihood by means
of filtering techniques, in particular Kalman filtering, is used and several of the
chapters apply these techniques. In behavioral science, the application of maximum
likelihood by means of structural equation modeling (SEM) became very popular
and several other chapters make use of this alternative procedure.

In total, the book contains 16 chapters which cover a vast range of continuous
time modeling approaches, going from one closely mimicking traditional linear
discrete time modeling to highly nonlinear state space modeling techniques. Each
chapter describes the type of research questions and data that the approach is most
suitable for, provides detailed statistical explanations of the models, and includes
one or more applied examples. To allow readers to implement the various techniques
directly, accompanying computer code is made available online.

The book addresses the great majority of researchers in the behavioral and related
sciences, who are interested in longitudinal data analysis. This includes readers
who are involved in research in psychology, sociology, economics, education,
management, and medical sciences. It is meant as a reference work for scientists
and students working with longitudinal data and wanting to apply continuous time
methods. The book also provides an overview of various recent developments for
methodologists and statisticians. Especially for PhD students it offers the means to
carry out analyses of longitudinal data in continuous time. Readers are supposed to
have knowledge of statistics as taught at Master’s or early PhD level.

We thank the authors for their willingness to contribute to the book, Eva Hiripi
of Springer for her help in realizing the project, and Yoram Clapper, Leonie Richter,
and Vincent Schmeits for their excellent typesetting work.

Breukelen, The Netherlands Kees van Montfort
Nijmegen, The Netherlands Johan H. L. Oud
Berlin, Germany Manuel C. Voelkle
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Chapter 1
First- and Higher-Order Continuous
Time Models for Arbitrary N Using SEM

Johan H. L. Oud, Manuel C. Voelkle, and Charles C. Driver

1.1 Introduction

This chapter is closely based on an earlier article in Multivariate Behavioral
Research (Oud et al. 2018). The chapter extends the previous work by the analysis
of the well-known Wolfer sunspot data along with more detailed information on the
relation between the discrete time and continuous time model in the so-called exact
discrete model (EDM). The previously published MBR article provides additional
information on the performance of CARMA(p, q) models by means of several
simulations, an empirical example about the relationships between mood at work
and mood at home along with a subject-group-reproducibility test. However, to
improve readability, we repeat the basic introduction to CARMA(p, q) modeling
in the present chapter.
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Time series analysis has a long history. Although the roots can be traced back to
the earlier work of statisticians such as Yule, Kendall, and Durbin (see the historical
overview in Mills 2012), it was the landmark publication “Time Series Analysis,
Forecasting and Control” by Box and Jenkins (1970) that made time series analysis
popular in many fields of science. Examples are Harvey (1989) and Lütkepohl
(1991) in economics or Gottman (1981) and McCleary and Hay (1980) in the social
sciences.

Time series analysis has greatly benefited from the introduction of the state space
approach. The state space approach stems from control engineering (Kalman 1960;
Zadeh and Desoer 1963) and sharply distinguishes the state of a system, which is
a vector of latent variables driven by the system dynamics in the state transition
equation, from the observations. The measurement part of the state space model
specifies the relation between the observed and the underlying latent variables.
It turns out that any Box-Jenkins autoregressive and moving average (ARMA)
model as well as any extended ARMAX model, in which exogenous variables
are added to the model, can be represented as a state space model (Caines 1988;
Deistler 1985; Harvey 1981; Ljung 1985). However, the state space representation
is much more flexible, allows one to formulate many time series models that cannot
easily be handled by the Box-Jenkins ARMA approach, and makes important state
space modeling techniques such as the Kalman filter and smoother accessible for
time series analysis (Durbin and Koopman 2001). Therefore, the ARMA model in
continuous time presented in this chapter, called a CARMA model (Brockwell 2004;
Tómasson 2011; Tsai and Chan 2000), will in this chapter be formulated as a state
space model.

Structural equation modeling (SEM) was introduced by Jöreskog (1973, 1977)
along with the first SEM software: LISREL (Jöreskog and Sörbom 1976). The
strong relationships between the state space approach and SEM were highlighted
by Oud (1978) and Oud et al. (1990). Both consist of a measurement part and
an explanatory part, and in both the explanatory part specifies the relationships
between latent variables. Whereas in the state space approach the latent explanatory
part is a recursive dynamic model, in SEM it is a latent structural equation model.
As explained in detail by Oud et al. (1990), SEM is sufficiently general to allow
specification of the state space model as a special case and estimation of its
parameters by maximum likelihood and other estimation procedures offered by
SEM. By allowing arbitrary measurement error structures, spanning the entire time
range of the model, SEM further enhances the flexibility of the state space approach
(Voelkle et al. 2012b).

An important drawback of almost all longitudinal models in SEM and time series
analysis, however, is their specification in discrete time. Oud and Jansen (2000),
Oud and Delsing (2010), and Voelkle et al. (2012a) discussed a series of problems
connected with discrete time models, which make their application in practice
highly questionable. One main problem is the dependence of discrete time results on
the chosen time interval. This leads, first, to incomparability of results over different
observation intervals within and between studies. If unaccounted for, it can easily
lead to contradictory conclusions. In a multivariate model, one researcher could



1 First- and Higher-Order Continuous Time Models for Arbitrary N Using SEM 3

find a positive effect between two variables x and y, while another researcher finds
a negative effect between the same variables, just because of a different observation
interval length in discrete time research. Second, because results depend on the
specific length of the chosen observation interval, the use of equal intervals in
discrete time studies does not solve the problem (Oud and Delsing 2010). Another
interval might have given different results to both researchers. Continuous time
analysis is needed to make the different and possibly contradictory effects in discrete
time independent of the interval for equal as well as unequal intervals.

The CARMA time series analysis procedure to be presented in this chapter is
based on SEM continuous-time state-space modeling, developed for panel data by
Oud and Jansen (2000) and Voelkle and Oud (2013). The first of these publications
used the nonlinear SEM software package Mx (Neale 1997) to estimate the
continuous time parameters, the second the ctsem program (Driver et al. 2017).
ctsem interfaces to OpenMx (Boker et al. 2011; Neale et al. 2016), which is
a significantly improved and extended version of Mx. In both publications the
kernel of the model is a multivariate stochastic differential equation, and in both
maximum likelihood estimation is performed via the so-called exact discrete model
EDM (Bergstrom 1984). The EDM uses the exact solution of the stochastic
differential equation to link the underlying continuous time parameters exactly to
the parameters of the discrete time model describing the data. The exact solution
turns out to impose nonlinear constraints on the discrete time parameters. Several
authors tried to avoid the implementation of nonlinear constraints by using approx-
imate procedures, although acknowledging the advantages of the exact procedure
(e.g., Gasimova et al. 2014; Steele and Ferrer 2011a,b). In an extensive simulation
study, Oud (2007) compared, as an example, the multivariate latent differential
equation procedure (MLDE; Boker et al. 2004), which is an extension of the
local linear approximation (LLA; Boker 2001), to the exact procedure. The exact
procedure was found to give considerably lower biases and root-mean-square error
values for the continuous time parameter estimates.

Instead of SEM, most time series procedures, particularly those based on the state
space approach (Durbin and Koopman 2001; Hannan and Deistler 1988; Harvey
1989), use filtering techniques for maximum likelihood estimation of the model.
Singer (1990, 1991, 1998) adapted these techniques for continuous time modeling
of panel data. In a series of simulations, Oud (2007) and Oud and Singer (2008)
compared the results of SEM and filtering in maximum likelihood estimation of
various continuous time models. It turned out that in case of identical models, being
appropriate for both procedures, the parameter estimates as well as the associated
standard errors are equal. Because both procedures maximize the likelihood, this
ought to be the case. Considerable technical differences between the two procedures,
however, make it nevertheless worthwhile to find that results indeed coincide. In
view of its greater generality and its popularity outside of control theory, especially
in social science, SEM can thus be considered a useful alternative to filtering.
Making use of the extended SEM framework underlying OpenMx (Neale et al.
2016), both SEM and the Kalman filter procedure, originally developed in control
theory, are implemented in ctsem.
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An argument against SEM as an estimation procedure for time series analysis
could be that it is known and implemented as a largeN procedure, while time series
analysis is defined for N = 1 or at least includes N = 1 as the prototypical case.
In the past, different minimum numbers of sample units have been proposed for
SEM, such as N ≥ 200, at least 5 units per estimated parameter, at least 10 per
variable, and so on, with all recommendations being considerably larger than N =
1. Recently, Wolf et al. (2013), on the basis of simulations, settled on a range of
minimum values from 30 to 460, depending on key model properties. For small N ,
in particular N = 1, leading to a nonpositive definite sample covariance matrix,
some SEM programs simply refuse to analyze the data or they change the input data
before the analysis. For example, LISREL gives a warning (“Matrix to be analyzed
is not positive definite”) and then increases the values on the diagonal of the data
covariance matrix S to get this matrix positive definite (“Ridge option taken with
ridge constant = . . . ”), before starting the analysis.

As made clear by Hamaker et al. (2003), Singer (2010), and Voelkle et al.
(2012b), however, the long-standing suggestion that a SEM analysis cannot be
performed because of a nonpositive definite covariance matrix S is wrong. Nothing
in the likelihood function requires the sample covariance matrix S to be positive
definite. It is the model implied covariance matrixΣ that should be positive definite,
but this depends only on the chosen model and in no way on the sample size N . For
the same reason, minimum requirements with regard to N do not make sense, and
N = 1 is an option as well as any otherN . The quality of the estimates as measured,
for example, by their standard errors, depends indeed on the amount of data. The
amount of data, however, can be increased both by the number of columns in the data
matrix (i.e., the number of time points T in longitudinal research) and by the number
of rows (i.e., the number of subjects N in the study). The incorrect requirement of a
positive definite S for maximum likelihood estimation (Jöreskog and Sörbom 1996)
may be explained by the modified likelihood function employed in LISREL and
other SEM programs. This contains the quantity log |S| (see Equation (3) in Voelkle
et al. 2012b), and thus these programs cannot handleN = 1 and N smaller than the
number of columns in S. By employing the basic “raw data” or “full-information”
maximum likelihood function (RML or FIML), OpenMx avoids this problem and (a)
allows any N , including N = 1, (b) permits the nonlinear constraints of the EDM,
(c) allows any arbitrary missing data pattern under the missing at random (MAR)
assumption, and (d) allows individually varying observation intervals in continuous
time modeling by means of so-called definition variables (Voelkle and Oud 2013).

Until now, however, the SEM continuous time procedure has not yet been applied
on empirical N = 1 data, although the possibility is discussed and proven to
be statistically sound by Singer (2010), and the software to do so is now readily
available (Driver et al. 2017). Thus, the aim of the present chapter is, first, to discuss
the state space specification of CARMA models in a SEM context. Second, to show
that the SEM continuous time procedure is appropriate for N = 1 as well as for
N > 1. Third, the proposed analysis procedure using ctsem will be applied on the
well-known Wolfer sunspot data. This N = 1 data set has been analyzed by several
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continuous time analysts before. The results from ctsem will be compared to those
found previously.

1.2 Continuous Time Model

1.2.1 Basic Model

In discrete time, the multivariate autoregressive moving-average model ARMA
(p, q) with p the maximum lag of the dependent variables vector yt and q the
maximum lag of the error components vector et reads for a model with, for example,
p = 2 and q = 1

yt = Ft,t−1yt−1 + Ft,t−2yt−2 + Gtet + Gt,t−1et−1. (1.1)

The autoregressive part with F-matrices specifies the lagged effects of the dependent
variables, while the moving-average part with G-matrices handles the incoming
errors and lagged errors. Assuming the errors in the vectors et , et−1 to be indepen-
dently standard normally distributed (having covariance matrices I) and Gt ,Gt,t−1
lower-triangular, the moving-average effects Gtet ,Gt,t−1et−1 get covariance matri-
ces Qt = GtG′

t ,Qt,t−1 = Gt,t−1G′
t,t−1, which may be nondiagonal and with

arbitrary variances on the diagonal. Specifying moving-average effects is no less
general than the covariance matrices. Any covariance matrix Q can be written as
Q = GG′ in terms of a lower-triangular matrix (Cholesky factor) G. In addition,
estimating G instead of directly Q has the advantage of avoiding possible negative
variance estimates showing up in the direct estimate of Q.

The moving-average part Gtet + Gt,t−1et−1 in Eq. (1.1) may also be written as
Gt,t−1et−1 + Gt,t−2et−2 with the time indices shifted backward in time from t and
t − 1 to t − 1 and t − 2. Replacing the instantaneous error component Gtet by the
lagged one Gt,t−1et−1 (and Gt,t−1et−1 by Gt,t−2et−2) could be considered more
appropriate, if the errors are taken to stand for the unknown causal influences on
the system, which need some time to operate and to affect the system. The fact
that the two unobserved consecutive error components get other names but retain
their previous values will result in an observationally equivalent (equally fitting)
system. Although equivalent, the existence of different representations in discrete
time (forward or instantaneous representation in terms of t and t−1 and backward or
lagging representation in terms of t−1 and t−2) is nevertheless unsatisfactory. The
forward representation puts everything that happens in between t and t − 1 forward
in time at t , the backward representation puts the same information backward in
time at t − 1. From a causal standpoint, though, the backward representation is no
less problematic than the forward representation, since it is anticipating effects that
in true time will happen only later.
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The ambiguous representation in discrete time of the behavior between t and
t − 1 in an ARMA(p, q) model disappears in the analogous continuous time
CARMA(p, q) model, which reads for p = 2 and q = 1

d2y(t)
dt2

= F0y(t)+ F1
dy(t)

dt
+ G0

dW(t)
dt

+ G1
d2W(t)

dt2
. (1.2)

Writing y(t) instead of yt emphasizes the development of y across continuous
time. The role of successive lags in discrete time is taken over by successive
derivatives in continuous time. The causally unsatisfactory instantaneous and
lagging representations meet, so to speak, in the derivatives, which instead of using
a discrete time interval �t = t − (t − 1) = 1, let the time interval go to zero:
�t → 0. Equation (1.2) is sometimes written as

F0y(t)+ F1
dy(t)

dt
+ F2

d2y(t)
dt2

= G0
dW(t)

dt
+ G1

d2W(t)
dt2

, (1.3)

with F2 = −I and opposite signs for G0,G1, making it clear that the CARMA(2,1)
model has F2 as the highest degree matrix in the autoregressive part and G1 as the
highest degree in the moving-average part.

The next subsection will show in more detail how discrete time and continuous
time equations such as (1.1) and (1.2) become connected as �t → 0. The
error process in continuous time is the famous Wiener process1 W(t) or random
walk through continuous time. Its main defining properties are the conditions
of independently and normally distributed increments, �W(t) = W(t) −
W(t − �t), having mean 0 and covariance matrix �tI. This means that
the increments with arbitrary �t are standard normally distributed for
�t = 1 as assumed for et , et−1 in discrete time. Likewise, the role of
lower-triangular G0,G1 in (1.2) is analogous to the role of Gt ,Gt,t−1
in discrete time. Derivative dW(t)/dt (white noise) does not exist in the
classical sense but can be defined in the generalized function sense, and
also integral

∫ t
t0
GdW(t) can be defined rigorously (Kuo 2006, pp. 104–

105 and pp. 260–261). Integrals are needed to go back again from the
continuous time specification in Eq. (1.2) to the observed values in discrete
time.

We will now show how the CARMA(2,1) model in Eq. (1.2) and the general
CARMA(p, q) model can be formulated as special cases of the continuous time
state space model. The continuous time state space model consists of two equations:
a latent dynamic equation (1.4) with so-called drift matrix A and diffusion matrix
G and a measurement equation (1.5) with loading matrix C and measurement error

1In this chapter we follow the common practice to write the Wiener process by capital letter W,
although it is here a vector whose size should be inferred from the context.
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vector v(t):

dx(t)
dt

= Ax(t)+ G
dW(t)

dt
, (1.4)

y(t) = Cx(t)+ v(t). (1.5)

In general, the variables in state vector x(t) are assumed to be latent and only
indirectly measured by the observed variables in y(t) with measurement errors
in v(t). The measurement error vector v(t) is assumed independent of x(t) and
normally distributed: v(t) ∼ N(0,R). For the initial state x(t0), we assume
x(t0) ∼ N(μx(t0),�x(t0)). Often, but not necessarily, it is assumed E[x(t0)] =
μx(t0) = 0. The latter would imply that the model has an equilibrium state:
E[x(t)] = E[x(t0)] = 0, and in case all eigenvalues of A have negative real part, 0
is the stable equilibrium state in the model.

In state space form, the observed second-order model CARMA(2,1) in Eq. (1.2)
gets a state vector x(t) = [x1(t)

′ x2(t)
′]′, which is two times the size of the

observed vector y(t). The first part x1(t) is not directly related to the observed
variables and thus belongs to the latent part of the state space model. This special
case of the state space model equates the second part to the observed vector:
y(t) = x2(t). Equation (1.2) then follows from state space model (1.4)–(1.5) by
specification

A =
[
0 F0

I F1

]

, G =
[
G0 0
G1 0

]

, C = [
0 I

]
, v(t) = 0. (1.6)

Applying (1.6) we find first

dx1(t)

dt
= F0x2(t)+ G0

dW(t)
dt

, (1.7)

dx2(t)

dt
= x1(t)+ F1x2(t)+ G1

dW(t)
dt

⇒

d2x2(t)

dt2
= dx1(t)

dt
+ F1

dx2(t)

dt
+ G1

d2W(t)
dt2

. (1.8)

Substituting (1.7) into the implication in (1.8) gives

d2x2(t)

dt2
= F0x2(t)+ F1

dx2(t)

dt
+ G0

dW(t)
dt

+ G1
d2W(t)

dt2
, (1.9)

which for y(t) = x2(t) leads to the CARMA(2,1) model in (1.2).
The specification in the previous paragraph can be generalized to find the

CARMA(p, q) model in state space form in (1.10), where r = max (p, q + 1).
G leads to diffusion covariance matrix Q = GG′, which has Cholesky factor-based
covariance matrices GiGi ′ on the diagonal and in case q > 0 off-diagonal matrices
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GiGj ′ (i, j = 0, 1, . . . , r − 1). In the literature one often finds the alternative
state space form (1.11) (see e.g., Tómasson 2011; Tsai and Chan 2000). Here the
moving average matrices G1,G2, . . . ,Gr−1 are rewritten as Gi = HiG0 in terms
of corresponding matrices H1,H2, . . . ,Hr−1, specified in the measurement part of
the state space

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 F0

I 0
. . . 0 F1

0 I
. . . 0 F2

...
...
. . .

...
...

0 0 . . . I Fr−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G0 0 · · · 0 0

G1 0
. . . 0 0

G2 0
. . . 0 0

...
...
. . .

...
...

Gr−1 0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [
0 0 0 · · · I

]
, v(t) = 0. (1.10)

model and G0. For two reasons we prefer (1.10) in the case of CARMA(p, q)
models with q > 0. The derivation of (1.11) requires the matrices Hi and
Fj to commute, which in practice restricts the applicability to the univariate
case. In addition, using the measurement part for the moving average specifica-
tion would make it difficult to specify at the same time measurement parame-
ters. For CARMA(p,0) models (all Hi = 0), we prefer (1.11), because each
state variable in state vector x(t) is easily interpretable as the derivative of
the previous one. The interpretation of the state variables in (1.7)–(1.8) is less
simple.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 I 0 · · · 0

0 0 I
. . . 0

...
...

...
. . .

...

0 0 0 . . . I
F0 F1 F2 · · · Fr−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · · 0

0 0 0
. . . 0

...
...
...
. . .

...

0 0 0 . . . 0
0 0 0 · · · G0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [
I H1 H2 · · ·Hr−1

]
, v(t) = 0. (1.11)

The fact that the general CARMA(p, q) model fits seamlessly into the state
space model means that all continuous time time series problems in modeling and
estimation can be handled by state space form (1.4)–(1.5). The state space approach
in fact reformulates higher-order models as a first-order model, and this will be
applied in the sequel.
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1.2.2 Connecting Discrete and Continuous Time Model
in the EDM

The EDM combines the discrete time and continuous time model and does so in an
exact way. It is by the EDM that the exact procedure in this chapter differentiates
from many approximate procedures found in the literature. We show how the exact
connection looks like between the general continuous time state space model and its
discrete time counterpart, derived from it. The first-order models ARMA(1,0) and
CARMA(1,0) in state space form differ from the general discrete and continuous
time state space model only in a simpler measurement equation. So, having made
the exact connections between the general state space models and thus between
ARMA(1,0) and CARMA(1,0) and knowing that each CARMA(p, q) model can be
written as a special case of the general state space model, the exact connections
between CARMA(p, q) and ARMA(p, q), where the latter is derived from the
former, follow. Next we consider the question of making an exact connection
between an arbitrary ARMA(p∗, q∗) model and a CARMA(p, q) model, where the
degrees p∗ and p as well as q∗ and q need not be equal.

Comparing discrete time equation (1.1) to the general discrete time state space
model in (1.12)–(1.13), one observes that the latter becomes immediately the
ARMA(1,0) model for yt = xt but is more flexible in time handling.

xt = A�txt−�t + G�tet−�t (1.12)

yt = Cxt + vt . (1.13)

Inserting arbitrary lag�t instead of fixed lag�t = 1 enables us to put discrete time
models with different intervals (e.g., years and months) on the same time scale and
to connect them to the common underlying continuous time model for �t → 0.

State equation (1.12) can be put in the equivalent difference quotient form

�xt
�t

= A∗�txt−�t + G�t
et−�t
�t

for A∗�t = (A�t − I)/�t implying A�t = I + A∗�t�t. (1.14)

So we have the discrete time state space model in two forms: difference quotient
form (1.14) and solution form (1.12). Equation (1.12) is called the solution of (1.14),
because it describes the actual state transition across time in accordance with (1.14)
and is so said to satisfy the difference quotient equation. Note that analogously the
general continuous time state space model (1.4)–(1.5) immediately accommodates
the special CARMA(1,0) model for y(t) = x(t) and can be put in two forms:
stochastic differential equation (1.4) and its solution (1.15) (Arnold 1974; Singer
1990):

x(t) = eA�tx(t −�t)+
∫ t

t−�t
eA(t−s)GdW(s). (1.15)
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In the exact discrete model EDM the connection between discrete and continuous
time is made by means of the solutions, which in both cases describe the actual
transition from the previous state at t − �t to the next state at t . The EDM thus
combines both models and connects them exactly by the equalities:

A�t = eA�t and Q�t =
∫ t

t−�t
eA(t−s)QeA

′(t−s)d(s) . (1.16)

While discrete time autoregression matrix A�t and continuous time drift matrix A
are connected via the highly nonlinear matrix exponential, the errors are indirectly
connected by their covariance matrices Q�t = G�tG′

�t and Q = GG′. In
estimating, after finding the drift matrix A on the basis of A�t , next on the basis
of G�t the diffusion matrix G is found.

The connection between discrete and continuous time becomes further clarified
by two definitions of the matrix exponential eA�t . The standard definition (1.17)

eA�t =
∑∞

k=0
(A�t)k/k!

= I + A�t +
(

1

2
A2�t2 + 1

6
A3�t3 + 1

24
A4�t4 + · · ·

) (1.17)

shows the rather complicated presence ofA in A�t and the formidable task to extract
continuous time A from discrete time A�t in an exact fashion. However, it also
shows that for�t → 0, the quantity between parentheses becomes arbitrarily small,
and the linear part I + A�t could be taken as an approximation of eA�t , leading
precisely to A∗�t in the difference quotient equation (1.14) as approximation of
A in the differential equation (1.4). Depending on the length of the interval �t ,
however, the quality of this approximation can be unduly bad in practice. An
alternative definition is based on oversampling (Singer 2012), meaning that the total
time interval between measurements is divided into arbitrary small subintervals:
δ = �t

D
for D → ∞. The definition relies on the multiplication property of

autoregression: xt = A0.5�txt−0.5�t and xt−0.5�t = A0.5�txt−�t ⇒ xt =
A0.5�tA0.5�txt−�t = A�txt−�t which is equally valid in the continuous time case:
xt = eA(0.5�t)eA(0.5�t)xt−�t = eA�txt−�t , leading to multiplicative definition:

eA�t = lim
D→∞

D−1∏

d=0

(I + Aδd) for δd = �t

D
. (1.18)

I + A�t in (1.17), becoming I + Aδ in (1.18), is no longer an approximation
of eAδ but becomes equal to eAδ for D → ∞ and δ → 0, while then A∗δ =
(eAδ − I)/δ in difference equation (1.14) becomes equal to drift matrix A in
differential equation (1.4). So, the formidable task to extract A from A�t is
performed here in the same simple way as done by just taking approximate A∗�t
from A�t in (1.14), but instead of once over the whole interval �t , it is repeated
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over many small subintervals, becoming for sufficiently large D equal to the exact
procedure in terms of (1.17). We write A∗�t ≈ A, but one should keep in mind
that by taking a sufficiently small interval in terms of the right-hand side of (1.18),
one can get A∗�t as close to A as wanted. An adapted version2 of the oversampling
procedure is described in Voelkle and Oud (2013).

Let us illustrate the connection between CARMA(1,0) and ARMA(1,0) by an

example. If A =
[−1.0 0.2

0.3 −1.5

]

, the exact connection in the EDM is for �t = 1

made by A�t=1 = eA�t = eA =
[

0.377 0.058
0.088 0.231

]

. A in the differential equation

may be compared to A∗�t=1 = (eA�t−I)/�t = eA−I =
[−0.623 0.058

0.088 −0.769

]

in the

difference equation for�t = 1. For�t = 0.1 we getA∗�t=0.1 = (eA×0.1−I)/0.1 =[−0.949 0.177
0.264 −1.390

]

which is much closer to A and for �t = 0.001, A∗�t=0.001 =

(eA×0.001 − I)/0.001 =
[−0.999 0.200

0.300 −1.499

]

becomes virtually equal to A.

Making an exact connection between an ARMA(p∗, q∗) model and a model
CARMA(p, q) such that the ARMA process {yt ; t = 0, t = �t, t = 2�t, . . .}
generated by ARMA(p∗, q∗) is a subset of the CARMA process {y(t);
t � 0} generated by CARMA(p, q) is called “embedding” in the literature.
The degrees p∗ and q∗ of the embedded model and p and q of the embedding
model need not be equal. Embeddability is a much debated issue. Embedding
is not always possible and need not be unique. Embedding is clearly possible
for the case of ARMA(1,0) model yt = A�tyt−�t + G�tet−�t derived from
CARMA(1,0) model dy(t)

dt = Ay(t) + G dW(t)
dt with A�t = eA�t , Q�t =

∫ t
t−�t eA(t−s)QeA

′(t−s)ds, Q�t = G�tG′
�t , Q = GG′ as shown above. The same

is true for the higher-order ARMA(p, q) model, derived from CARMA(p, q).
However, in general it is nontrivial to prove embeddability and to find the
parameters of the CARMA(p, q) model embedding an ARMA(p∗, q∗) process.
For example, not all ARMA(1,0) processes have a CARMA(1,0) process in
which it can be embedded. A well-known example is the simple univariate

2The adapted version uses (1.18A)

eA�t = lim
D→∞

D−1∏

d=0

[(
I − 1

2
Aδd

)−1(
I + 1

2
Aδd

)]
for δd = �t

D
, (1.18A)

which converges much more rapidly than (1.18). It is based on the approximate discrete model
(ADM), described by Oud and Delsing (2010), which just as the EDM goes back to Bergstrom
(1984). Computation of the matrix exponential by (1.18) or (1.18A) has the advantage over the
diagonalization method (Oud and Jansen 2000) that no assumptions with regard to the eigenvalues
need to be made. Currently by most authors the Padé-approximation (Higham 2009) is considered
the best computation method, which therefore is implemented in the most recent version of ctsem.
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process yt = a�tyt−�t + g�t et−�t with −1 < a�t < 0, because there
does not exist any a for which a�t = ea�t can be negative. However, Chan
and Tong (1987) showed that for this ARMA(1,0) process with −1 < a�t <

0, a higher order CARMA(2,1) process can be found, in which it can be
embedded.

Also embeddability need not be unique. Different CARMA models may embed
one and the same ARMA model. A classic example is “aliasing” in the case of
matrices A with complex conjugate eigenvalue pairs λ1,2 = α ± βi with i the
imaginary unit (Hamerle et al. 1991; Phillips 1973). Such complex eigenvalue
pairs imply processes with oscillatory movements. Adding ±k2π/�t to β leads for
arbitrary integer k to a different A with a different oscillation frequency but does not
changeA�t = eA�t and so may lead to the same ARMA model. The consequence is
that the CARMA model cannot uniquely be determined (identified) by the ARMA
model and the process generated by it. Fortunately, the number of aliases in general
is limited in the sense that there exists only a finite number of aliases that lead for
the same ARMA model to a real G and so to a positive definite Q in the CARMA
model (Hansen and Sargent 1983). The size of the finite set additionally depends
on the observation interval �t , a smaller �t leading to less aliases. The number of
aliases may also be limited by sampling the observations in the discrete time process
at unequal intervals (Oud and Jansen 2000; Tómasson 2015; Voelkle and Oud 2013).

An important point with regard to the state space modeling technique of
time series is the latent character of the state. Even in the case of an observed
ARMA(p, q) or CARMA(p, q) model of such low dimension as p = 2, we have
seen that part of the state is not directly connected to the data. This has especially
consequences for the initial time point. Suppose for the ARMA(2,1) model in state
space form (1.19)–(1.20),

[
x1,t−�t
x1,t

]

=
[

0 I
Ft,t−2�t Ft,t−�t

] [
x1,t−2�t

x1,t−�t

]

+
[
0 0
0 Gt,t−�t

]

et−�t ,

xt = A�t xt−�t + G�t et−�t , (1.19)

yt = [
0 I

]
xt , (1.20)

the initial time point, where the initial data are located, is t0 = t − �t . It means
that there are no data directly or indirectly connected to (the lagged) part of xt−�t .
The initial parameters related to this part can nevertheless be estimated but become
highly dependent on the model structure, and the uncertainty will be reflected in
high standard errors. It does not help to start the model at later time point t0 + �t .
That would result in data loss, since the 0 in (1.20) simply eliminates the lagged
part of xt−�t without any connection to the data. Similar remarks apply to the initial
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derivative dx1(t)/dt

[
dx1(t )

dt
d2x1(t )

dt2

]

=
[
0 I
F0 F1

] [
x1(t)
dx1(t )

dt

]

+
[
0 0
0 G0

]
dW(t)

dt
,

dx(t)

dt
= A x(t) + G

dW(t)
dt

, (1.21)

y(t) = [
I 0

]
x(t), (1.22)

in (1.21)–(1.22), which is not directly connected to the data and cannot be computed
at the initial time point. Again, the related initial parameters can be estimated
in principle. One should realize, however, that dependent on the model structure,
the number of time points analyzed and the length of the observation intervals,
these initial parameter estimates can become extremely unreliable. In a simulation
study of a CARMA(2,0) model with oscillating movements, Oud and Singer (2008)
found in the case of long interval lengths extremely large standard errors for the
estimates related to the badly measured initial dx1(t)/dt . This lack of data and
relative unreliability of estimates are the price one has to pay for choosing higher-
order ARMA(p, q) and CARMA(p, q) models.

1.2.3 Extended Continuous Time Model

The extended continuous time state space model reads

dx(t)
dt

= Ax(t)+ Bu(t)+ γ + G
dW(t)

dt
, (1.23)

yti = Cx(ti)+ Du(ti)+ κ + vti . (1.24)

In comparison to the basic model in (1.4)–(1.5), the extended model exhibits one
minor notational change and two major additions. The minor change is in the
measurement equation and is only meant to emphasize the discrete time character
of the data at the discrete time points ti (i = 0, . . . , T − 1) with x(ti) and
u(ti) sampling the continuous time vectors x(t) and u(t) at the observation time
points. One major addition are the effects Bu(t) and Du(t) of fixed exogenous
variables in vector u(t). The other is the addition of random subject effect
vectors γ and κ to the equations. While the (statistically) fixed variables in u(t)
may change across time (time-varying exogenous variables), the subject-specific
effects γ and κ with possibly a different value for each subject in the sample are
assumed to be constant across time but normally distributed random variables:
γ ∼ N(0,�γ), κ ∼ N(0,�κ). To distinguish them from the changing states,
the constant random effects in γ are called traits. Because trait vector γ is
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modeled to influence x(t) continuously, before as well as after t0, �x(t0),γ, the
covariance matrix between initial state and traits cannot in general be assumed
zero. The additions in state equation (1.23) lead to the following extended solu-
tion:

x(t) = eA(t−t0)x(t0)+
∫ t

t0

eA(t−s)Bu(s)d(s)

+ A−1[eA(t−t0) − I
]
γ +

∫ t

t0

eA(t−s)GdW(s).

(1.25)

1.2.4 Exogenous Variables

We have seen that the basic model in the case of stability (all eigenvalues of A
having negative real part) has 0 as stable equilibrium state. Exogenous effects Bu(t)
and Du(t) accommodate nonzero constant as well as nonconstant mean trajectories
E[x(t)] and E[y(t)] even in the case of stability. By far the most popular exogenous
input function is the unit function, e(s) = 1 for all s over the interval, with the effect
be called intercept and integrating over interval [t0, t) into

∫ t
t0

eA(t−s)bee(s)d(s) =
A−1[eA(t−t0) − I]be. In the measurement equation, the effect of the unit variable in
D is called measurement intercept or origin and allows measurement instruments to
have scales with different starting points in addition to the different units specified
in C.

Useful in describing sudden changes in the environment is the intervention
function, a step function that takes on a certain value a until a specific time point t ′
and changes to value b at that time point until the end of the interval: i(s) = a for
all s < t ′, i(s) = b for all s � t ′. An effective way of handling the step or piecewise
constant function is a two-step procedure, in which Eq. (1.26) is applied twice: first
with u(t0) containing the step function value of the first step before t ′ and next with
u(t0) containing the step function value of the second step.

x(t) = eA(t−t0)x(t0)+ A−1
[
eA(t−t0) − I

]
Bu(t0)

+ A−1
[
eA(t−t0) − I

]
γ +

∫ t

t0

eA(t−s)GdW(s).
(1.26)

In the second step, the result x(t) of the first step is inserted as x(t0). The relatively
simple solution equation (1.26) has much more general applicability, though, than
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just for step functions. It can be used to approximate any exogenous behavior
function in steps and approximate its effect arbitrarily closely by oversampling
(dividing the observation interval in smaller intervals) and choosing the oversam-
pling intervals sufficiently small.3

The handling of exogenous variables takes another twist, when it is decided to
endogenize them. The problem with oversampling is that it is often not known,
how the exogenous behavior function looks like in between observations. By
endogenizing the exogenous variables, they are handled as random variables, added
to the state vector, and in the same way as the other state variables related to
their past values in an autoregressive fashion. Advantages of endogenizing are its
nonapproximate nature and the fact that the new state variables may not only be
modeled to influence the other state variables but also to be reciprocally influenced
by them.

In addition to differentiating time points within subjects, exogenous variables
also enable to differentiate subjects in case of an N > 1 sample. Suppose the
first element of u(t) is the unit variable, corresponding in B with first column be,
and the second element is a dummy variable differentiating boys and girls (boys
0 at all-time points and girls 1 at all-time points) and corresponding to second
column bd . Supposing all remaining variables have equal values, the mean or
expectationE[x(t)] of girls over the interval [t0, t) will then differ by the amount of
A−1[eA(t−t0) − I]bd from the one of boys. This amount will be zero for t − t0 = 0,
but the regression-like analysis procedure applied at initial time point t0 allows
to distinguish different initial means E[x(t0)] for boys and girls. Thus, the same
dummy variable at t0 may impact both the state variables at t0 and according to the
state space model over the interval t − t0 the state variables at the next observation
time point.

1.2.5 Traits

Although, as we have just seen, there is some flexibility in the mean or expected
trajectory, because subjects in different groups can have different mean trajectories,
it would nevertheless be a strange implication of the model, if a subject’s expected

3A better approximation than a step function is given by a piecewise linear or polygonal
approximation (Oud and Jansen 2000; Singer 1992). Then we write u(t) in (1.23) as u(t) = u(t0)+
(t − t0)b(t0,t] and (1.26) becomes:

x(t) = eA(t−t0)x(t0)+ A−1[eA(t−t0) − I
]
Bu(t0)+

{
A−2[eA(t−t0) − I

] − A−1(t − t0)
}
Bb(t0,t]

+ A−1[eA(t−t0) − I
]
γ +

∫ t

t0

eA(t−s)GdW(s).

(1.26A)
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current and future behavior is totally dependent on the group of which he or she
is modeled to be a member. It should be noted that the expected trajectories are
not only interesting per se, but they also play a crucial role in the estimated latent
sample trajectory of a subject, defined as the conditional mean E[x(t)|y], where
y is the total data vector of the subject (Kalman smoother), or E[x(t)|y[t0, t]],
where y[t0, t] is all data up to and including t (Kalman filter). In a model
without traits, the subject regresses toward (in the case of a stable model) or
egresses from (in an unstable model) the mean trajectory of its group. The con-
sequences are particularly dramatic for predictions, because then after enough time
is elapsed, the subject’s trajectory in a stable model will be coinciding with its group
trajectory.

From solution equation (1.25), it becomes clear, however, that in the state-trait
model, each subject gets its own mean trajectory that differs from the group’s mean.
After moving the initial time point of a stable model sufficiently far into the past,
t0 → − ∞, the subject’s expected trajectory is

E[x(t)|γ] =
∫ t

−∞
eA(t−s)Bu(s)d(s)− A−1γ, (1.27)

which keeps a subject-specific distance −A−1γ from the subject’s group mean
trajectory E[x(t)] = ∫ t

−∞ eA(t−s)Bu(s)d(s). As a result the subject’s sample
trajectory regresses toward its own mean instead of its group mean. A related
advantage of the state-trait model is that it clearly distinguishes trait variance
(diagonals of �γ), also called unobserved heterogeneity between subjects, from
stability. Because in a pure state model (γ = 0) all subject-specific mean trajectories
coincide with the group mean trajectory, trait variance and stability are confounded
in the sense that an actually nonzero trait variance leads to a less stable model
(eigenvalues of A having less negative real part) as a surrogate for keeping the
subject-specific mean trajectories apart. In a state-trait model, however, stability is
not hampered by hidden heterogeneity.

It should be noted that the impact of the fixed and random effects Bu(t) and
γ in the state equation (1.23) is quite different from that of Du(ti ) and κ in
the measurement equation (1.24). The latter is a one-time snapshot event with
no consequences for the future. It just reads out in a specific way the current
contents of the system’s state. However, the state equation is a dynamic equation
where influences may have long-lasting and cumulative future effects that are
spelled out by Eq. (1.25) or (1.26). In particular, the traits γ differ fundamentally
from the nondynamic or “random measurement bias” κ, earlier proposed for panel
data by Goodrich and Caines (1979), Jones (1993), and Shumway and Stoffer
(2000).
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1.3 Model Estimation by SEM

As emphasized above, if the data are collected in discrete time, we need the EDM
to connect the continuous time parameter matrices to the discrete time parameter
matrices describing the data. The continuous time model in state space form
contains eight parameter matrices that are connected to the corresponding discrete
time matrices as shown in (1.28). In (1.28) ⊗ is the Kronecker product and the row
operator puts the elements of the Q matrix row-wise in a column vector, whereas
irow stands for the inverse operation.

While there are only eight continuous time parameter matrices, there may
be many more discrete time parameter matrices. This is typically the case for
the dynamic matrices A�ti,j ,B�ti,j ,Q�ti,j . The observation time points ti (i =
0, . . . , T − 1) may differ for different subjects j (j = 1, . . . , N) but also the
observation intervals �ti,j = ti,j − ti−1,j (i = 1, . . . , T − 1) between the
observation time points. Different observation intervals can lead to many different
discrete time matrices A�ti,j ,B�ti,j ,Q�ti,j but all based on the same underlying
continuous time matrices A,B,Q.

A A�ti,j = eA�ti,j

B B�ti,j = A◦
�ti,jB for A◦

�ti,j = A−1(eA�ti,j − I)

Q = GG′ Q�ti,j =
∫ t

t−�ti,j
eA(t−s)QeA

′(t−s)d(s)

= irow[A−1
# (eA#�ti,j − I)row Q]

for A# = A ⊗ I + I ⊗ A

C Cti,j = C

D Dti,j = D

R Rti,j = R

μx(t0) = E[x(t0)] = Bt0u(t0)

�x(t0) = E[(x(t0)− μx(t0))(x(t0)− μx(t0))
′]

(1.28)

The most extreme case is that none of the intervals is equal to any other interval,
a situation a traditional discrete time analysis would be unable to cope with but is
unproblematic in continuous time analysis (Oud and Voelkle 2014).

The initial parameter matrices μx(t0) and �x(t0) deserve special attention. In a
model with exogenous variables, the initial state mean may take different values
in different groups defined by the exogenous variables. Since the mean trajectories
E[x(t)] may be deviating from each other because of exogenous influences after
t0, it is natural to let them already differ at t0 as a result of past influences.
These differences are defined regression-wise by E[x(t0)] = Bt0u(t0) with Bt0u(t0)
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absorbing all unknown past influences. For example, if u(t0) consists of two
variables, the unit variable (1 for all subjects) and a dummy variable defining gender
(0 for boys and 1 for girls), there will be two means E[x(t0)], one for the boys
and one for the girls. If u(t0) contains only the unit variable, the single remaining
vector bt0 in Bt0 will become equal to the initial mean: E[x(t0)] = bt0 . Because the
instantaneous regression matrix Bt0 just describes means and differences as a result
of unknown effects from before t0, it should not be confused with the dynamic B
and as a so-called predetermined quantity in estimation not undergo any constraint
from B. Similarly, �x(t0) should not undergo any constraint from the continuous
time diffusion covariance matrix Q.

A totally new situation for the initial parameters arises, however, if we assume
the system to be in equilibrium. Equilibrium means first μx(t) = μx(t0) as well as all
exogenous variables u(t) = u(t0) being constant. Evidently, the latter is the case, if
the only exogenous variable is the unit variable, reducing B to a vector of intercepts,
but also if it contains additional gender or any other additional exogenous variables,
differentiating subjects from each other but constant in time. The assumption of
equilibrium, μx(t) = μx(t0),—possibly but not necessarily a stable equilibrium—
leads to equilibrium value

μx(t) = μx(t0) = −A−1Buc, (1.29)

with uc the value of the constant exogenous variables u(t) = u(t0) = uc. If we
assume the system to be stationary, additionally �x(t) = �x(t0) is assumed to be in
equilibrium, leading to equilibrium value

�x(t) = �x(t0) = irow[ − A−1
# row Q] . (1.30)

The novelty of the stationarity assumption is that the initial parameters are totally
defined in terms of the dynamic parameters as is clearly seen from (1.29) and (1.30).
It means, in fact, that the initial parameters disappear and the total number of
parameters to be estimated is considerably reduced. Although attractive and present
as an option in ctsem (Driver et al. 2017), the stationarity assumption is quite
restrictive and can be unrealistic in practice.

To estimate the EDM as specified in (1.28) by SEM, we put all variables and
matrices of the EDM into SEM model

η = B η + ζ with � = E(ζζ ′), (1.31)

y = �η + ε with � = E(εε′). (1.32)

The SEM model consists of two equations, structural equation (1.31) and mea-
surement equation (1.32), in terms of four vectors, η, ζ , y, ε, and four matrices,
B,�,�,�. From Eqs. (1.31)–(1.32), one easily derives the model implied mean μ
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and covariance matrix � and next the raw maximum likelihood equation (1.33) (see
e.g., Bollen 1989)

RML =
N∑

j=1

[
mj log(2π)+ log(|�j |)+ (yj − μj )

′�−1
j (yj − μj )

]
. (1.33)

The subscript j makes the SEM procedure extremely flexible by allowing any
number of subjects, including N = 1, and any missing value pattern for each of
the subjects j , as the number of variables mj (m = pT ), the data vector yj , the
mean vector μj , and the covariance matrix �j may all be subject specific. In case
of missing values, the corresponding rows and columns of the missing elements for
that subject j are simply deleted.

For obtaining the maximum likelihood estimates of the EDM, it suffices to show
how the SEM vectors η, y, ζ , ε, and matrices, B,�,�,� include the variables
and matrices of the EDM. This is done in (1.34). In the vector of exogenous
variables u(t) = [uc uv(t)], we distinguish two parts: the part uc, consisting of
the unit variable and, for example, gender and other variables that differ between
subjects but are constant across time, and the part uv(t) that at least for one
subject in the sample is varying across time. Exogenous variables like weight
and income, for example, are to be put into uv(t). We abbreviate the dynamic
errors

∫ ti,j
ti,j−�ti,j eA(ti,j−s)GdW(s) to w(ti,j −�ti,j ). The mean sum of squares and

cross-products matrix of uj over sample units is called �u, and the mean sum of
cross-products between x(t0,j ) − μx(t0,j ) and uj is called �x(t0),u. The latter must
be estimated, though, if the state is latent.

The traits γ and κ are not explicitly displayed but can be viewed as a special kind
of constant zero-mean exogenous variables uc,j in uj , whose covariance matrices
�γ and �κ in �u as well as �x(t0),γ and �x(t0),κ in �x(t0),u are not fixed quantities
but have to be estimated. These latent variables have no loadings in � and have
Bc,t0 = 0 in B. For γ the Bc,�ti,j in B are replaced by A◦

�ti,j (see (1.28)) and for κ

the Dc,ti,j in � by I.

η = [x′
j u′

j ]′ with xj = [x′(t0,j ) x′(t1,j ) · · · x′(tT−1,j )]′
and uj = [u′

c,j u′
v(t0,j ) u′

v(t1,j ) · · · u′
v(tT−1,j )]′,

ζ = [w′
j u′

j ]′ with wj = [x′(t0,j )− μ′
x(t0,j ) w

′(t1,j −�t1,j )

· · · w′(tT−1,j −�T−1,j )]′,
y = [y′

j u
′
j ]′ with yj = [y′(t0,j ) y′(t1,j ) · · · y′(tT−1,j )]′,

ε = [v′
j 0′]′ with vj = [v′(t0,j ) v′(t1,j ) · · · v′(tT−1,j )]′,
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B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 Bc,t0 Bv,t0 0 · · · 0
A�t1,j 0 · · · 0 Bc,�t1,j Bv,�t1,j 0 · · · 0
0 A�t2,j · · · 0 Bc,�t2,j 0 Bv,�t2,j · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · A�tT−1,j Bc,�tT−1,j 0 0 · · · Bv,�tT−1,j

0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�x(t0) 0 · · · 0 �x(t0),u

0 Q�t1,j · · · 0 0
...

...
. . .

...
...

0 0 · · · Q�tT−1,j 0
�′

x(t0),u
0 · · · 0 �u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ct0,j 0 · · · 0 Dc,t0,j Dv,t0,j 0 · · · 0
0 Ct1,j · · · 0 Dc,t1,j 0 Dv,t1,j · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · CtT−1,j Dc,tT−1,j 0 0 · · · Dv,tT−1,j

0 0 · · · 0 I 0 0 · · · 0
0 0 · · · 0 0 I 0 · · · 0
0 0 · · · 0 0 0 I · · · 0

0 0 · · · 0 0 0 0
. . . 0

0 0 · · · 0 0 0 0 · · · I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Rt0,j �cov 0
Rt1,j 0

�′
cov

. . .
...

RtT−1,j 0
0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(1.34)
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For the crucial property of measurement invariance, we need to specify

Ct0,j = Ct1,j = · · · = CtT−1,j = C,

Dc,t0,j = Dc,t1,j = · · · = Dc,tT−1,j = Dc,

Dv,t0,j = Dv,t1,j = · · · = Dv,tT−1,j = Dv,

Rt0,j = Rt1,j = · · · = RtT−1,j = R.

(1.35)

Although measurement invariance is important for substantive reasons, statistically
speaking, the assumption of strict measurement invariance may be relaxed if
necessary. An additional advantage of the SEM approach is the possibility of
specifying measurement error covariances across time in �cov. This can be done in
ctsem by the MANIFESTTRAIT option. Measurement instruments often measure
specific aspects, which they do not have in common with other instruments and
can be taken care of by freeing corresponding elements in �cov. In view of
identification, however, one should be very cautious in choosing elements of �cov
to be freed.

1.4 Analysis of Sunspot Data: CARMA(2,1)
on N = 1, T = 167

The Wolfer sunspot data from 1749 to 1924 is a famous time series of the number
of sunspots that has been analyzed by many authors. Several of them applied a
CARMA(2,1) model to the series, the results of which are summarized in Table 1.1
together with the results of ctsem. The sunspot data, which are directly available in
R (R Core Team 2015) by “sunspot.year,” are monthly data averaged over the years
1700–1988. The data from 1749 to 1924 are analyzed by the authors in Table 1.1 as
a stationary series. Stationarity means that the initial means and (co)variances are in
the stable equilibrium position of the model, which is defined in terms of the other
model parameters. An option of ctsem lets the initial means and (co)variances be
constrained in terms of these parameters. ctsem version 1.1.6 and R version 3.3.2
were used for our analyses.4

As shown in Table 1.1, differences in parameter estimates between ctsem and
previously reported analyses are small and likely caused by numerical imprecision.
The most recent estimates by Tómasson (2011) and our results are closer to
each other than to the older ones reported by Phadke and Wu (1974) and Singer
(1991). The results in Table 1.1 imply an oscillatory movement of the sunspot
numbers. Complex eigenvalues of the matrix A lead to oscillatory movements. The

4The programming code of the analysis is available as supplementary material at the book website
http://www.springer.com/us/book/9783319772189.

http://www.springer.com/us/book/9783319772189
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Table 1.1 Parameter estimates of CARMA(2,1) model on yearly sunspot data 1749–1924 by
several authors and ctsem; N = 1, T = 176

Parameter

f0 f1 g0 g1 μ

Phadke and Wu (1974) −0.359 −0.327 15.70 9.94 44.8

Singer (1991) −0.360 −0.330 15.72 9.94 44.6

Tómasson (2011) −0.357 −0.327 15.52 10.01 44.8

ctsem (Driver et al. 2017) −0.357 −0.327 15.52 10.02 44.9

eigenvalues of A =
[

0 1
f0 f1

]

are

λ1,2 = f1/2 ± j

√
−f 2

1 /4 − f0, (1.36)

where j is the imaginary number
√−1. The eigenvalues are complex, because

−f1
2/4 > f0 for all 4 sets of parameter estimates in Table 1.1. The period of the

oscillation Tp is computed by

Tp = 2π/
√

−f1
2/4 − f0 (1.37)

resulting in a period of 10.9 years for all 4 sets of parameter estimates, despite the
small differences in parameter estimates.

1.5 Conclusion

As noted by Prado and West (2010), “In many statistical models the assumption
that the observations are realizations of independent random variables is key. In
contrast, time series analysis is concerned with describing the dependence among
the elements of a sequence of random variables” (p. 1). Without doubt, SEM for
a long period took position in the first group of models, which hampered the
development of N = 1 modeling and time series analysis in an SEM context. The
present chapter attempts to reconcile both perspectives by putting time series of
independently drawn subjects in one and the same overall SEM model, while using
continuous time state space modeling to simultaneously account for the dependence
between observations in each time series over time. The present article explained in
detail how this may be achieved for first- and higher-order CARMA(p, q) models
in an extended SEM framework.

Attempts to combine time series of different subjects in a common model are rare
in traditional time series analysis and state space modeling. A first, rather isolated
proposal was done by Goodrich and Caines (1979). They call a data set consisting of
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N > 1 time series “cross-sectional,” thereby using this term in a somewhat different
meaning from what is customary in social science. They give a consistency proof for
state space model parameter estimates in this kind of data in which “the number T
of observations on the transient behavior is fixed but the number N of independent
cross-sectional samples tends to infinity” (p. 403). As a matter of fact, an important
advantage of N > 1 models is to not be forced to T → ∞ asymptotics, which
at least in the social sciences is often unrealistic. Arguably, there are not many
processes with, for example, exactly the same parameter values over the whole time
range until infinity. As argued by Yu (2014, p. 738), an extra advantage offered by
continuous time modeling in this respect is that asymptotics can be applied on the
time dimension, even if T is taken as fixed. Supposing the discretely observed data
to be recorded at 0,�t, 2�t, n�t(= T ), this so-called “in-fill” asymptotics takes
T as fixed but lets n → ∞ in continuous time. By letting N as well as n go to
infinity, a kind of double asymptotics results, which may be particularly useful for
typical applications in the social sciences, where it is often hard to argue that T will
approach infinity.
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Chapter 2
A Continuous-Time Approach
to Intensive Longitudinal Data: What,
Why, and How?

Oisín Ryan, Rebecca M. Kuiper, and Ellen L. Hamaker

2.1 Introduction

The increased availability of intensive longitudinal data—such as obtained with
ambulatory assessments, experience sampling, ecological momentary assessments,
and electronic diaries—has opened up new opportunities for researchers to inves-
tigate the dynamics of psychological processes, that is, the way psychological
variables evolve, vary, and relate to one another over time (cf. Bolger and Lau-
renceau 2013; Chow et al. 2011; Hamaker et al. 2005). A useful concept in this
respect is that of people being dynamic systems whose current state depends on
their preceding states. For instance, we may be interested in the relationship between
momentary stress and anxiety. We can think of stress and anxiety as each defining
an axis in a two-dimensional space, and let the values of stress and anxiety at each
moment in time define a position in this space. Over time, the point that represents a
person’s momentary stress and anxiety moves through this two-dimensional space,
and our goal is to understand the lawfulness that underlies these movements.
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There are two frameworks that can be used to describe such movements: (1) the
discrete-time (DT) framework, in which the passage of time is treated in discrete
steps, and (2) the continuous-time (CT) framework, in which time is viewed as a
continuous variable. Most psychological researchers are at least somewhat familiar
with the DT approach, as it is the basis of the vast majority of longitudinal
models used in the social sciences. In contrast, CT models have gained relatively
little attention in fields such as psychology: This is despite the fact that many
psychological researchers have been advocating their use for a long time, claiming
that the CT approach overcomes practical and conceptual problems associated with
the DT approach (e.g., Boker 2002; Chow et al. 2005; Oud and Delsing 2010;
Voelkle et al. 2012). We believe there are two major hurdles that hamper the
adoption of the CT approach in psychological research. First, the estimation of CT
models typically requires the use of specialized software (cf. Chow et al. 2007;
Driver et al. 2017; Oravecz et al. 2016) or unconventional use of more common
software (cf. Boker et al. 2010a, 2004; Steele and Ferrer 2011). Second, the results
from CT models are not easily understood, and researchers may not know how to
interpret and represent their findings.

Our goal in this chapter is twofold. First, we introduce readers to the perspective
of psychological processes as CT processes; we focus on the conceptual reasons
for which the CT perspective is extremely valuable in moving our understanding
of processes in the right direction. Second, we provide a didactical description of
how to interpret the results of a CT model, based on our analysis of an empirical
dataset. We examine the direct interpretation of model parameters, examine different
ways in which the dynamics described by the parameters can be understood and
visualized, and explain how these are related to one another throughout. We will
restrict our primary focus to the simplest DT and CT models, that is, first-order
(vector) autoregressive models and first-order differential equations.

The organization of this chapter is as follows. First, we provide an overview
of the DT and CT models under consideration. Second, we discuss the practical
and conceptual reasons researchers should adopt a CT modeling approach. Third,
we illustrate the use and interpretation of the CT model using a bivariate model
estimated from empirical data. Fourth, we conclude with a brief discussion of more
complex models which may be of interest to substantive researchers.

2.2 Two Frameworks

The relationship between the DT and CT frameworks has been discussed extensively
by a variety of authors. Here, we briefly reiterate the main issues, as this is vital
to the subsequent discussion. For a more thorough treatment of this topic, the
reader is referred to Voelkle et al. (2012). We begin by presenting the first-order
vector autoregressive model in DT, followed by the presentation of the first-order
differential equation in CT. Subsequently, we show how these models are connected
and discuss certain properties which can be inferred from the parameters of the
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model. For simplicity, and without loss of generalization, we describe single-subject
DT and CT models, in terms of observed variables. Extensions for multiple-subject
data, and extensions for latent variables, in which the researchers can account for
measurement error by additionally specifying a measurement model, are readily
available (in the case of CT models, see, e.g., Boker et al. 2004; Driver et al. 2017;
Oravecz and Tuerlinckx 2011).

2.2.1 The Discrete-Time Framework

DT models are those models for longitudinal data in which the passage of time
is accounted for only with regard to the order of observations. If the true data-
generating model for a process is a DT model, then the process only takes on values
at discrete moments in time (e.g., hours of sleep per day or monthly salary). Such
models are typically applied to data that consist of some set of variables measured
repeatedly over time. These measurements typically show autocorrelation, that is,
serial dependencies between the observed values of these variables at consecutive
measurement occasions. We can model these serial dependencies using (discrete-
time) autoregressive equations, which describe the relationship between the values
of variables observed at consecutive measurement occasions.

The specific type of DT model that we will focus on in this chapter is the first-
order vector autoregressive (VAR(1)) model (cf. Hamilton 1994). Given a set of V
variables of interest measured at N different occasions, the VAR(1) describes the
relationship between yτ , a V × 1 column vector of variables measured at occasion
τ (for τ = 2, . . . , N) and the values those same variables took on at the preceding
measurement occasion, the vector yτ−1. This model can be expressed as

yτ = c + Φyτ−1 + ετ , (2.1)

where Φ represents a V×V matrix with autoregressive and cross-lagged coefficients
that regress yτ on yτ−1. The V ×1 column vector ετ represents the variable-specific
random shocks or innovations at that occasion, which are normally distributed with
mean zero and a V ×V variance-covariance matrix Ψ . Finally, c represents a V × 1
column vector of intercepts.

In the case of a stationary process, the mean μ and the variance-covariance matrix
of the variables yτ (generally denoted Σ) do not change over time.1 Then, the
vector μ represents the long-run expected values of the random variables, E(yτ ),
and is a function of the vector of intercepts and the matrix with lagged regression

1The variance-covariance matrix of the variables Σ is a function of both the lagged parameters
and the variance-covariance matrix of the innovations, vec(Σ ) = (I − Φ ⊗ Φ)−1vec(Ψ ), where
vec(.) denotes the operation of putting the elements of an N ×N matrix into an NN × 1 column
matrix (Kim and Nelson 1999, p. 27).
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coefficients, that is, μ = (I − Φ)−1c, where I is a V × V identity matrix (cf.
Hamilton 1994). In terms of a V -dimensional dynamical system of interest, μ

represents the equilibrium position of the system. By definition, τ is limited to
positive integers; that is, there is no 0.1th or 1.5th measurement occasion.

Both the single-subject and multilevel versions of the VAR(1) model have fre-
quently been used to analyze intensive longitudinal data of psychological variables,
including symptoms of psychopathology, such as mood- and affect-based measures
(Bringmann et al. 2015, 2016; Browne and Nesselroade 2005; Moberly and Watkins
2008; Rovine and Walls 2006). In these cases, the autoregressive parameters φii are
often interpreted as reflecting the stability, inertia, or carry-over of a particular
affect or behavior (Koval et al. 2012; Kuppens et al. 2010, 2012). The cross-
lagged effects (i.e., the off-diagonal elements φij for i = j ) quantify the lagged
relationships, sometimes referred to as the spillover, between different variables
in the model. These parameters are often interpreted in substantive terms, either
as predictive or Granger-causal relationships between different aspects of affect or
behavior (Bringmann et al. 2013; Gault-Sherman 2012; Granger 1969; Ichii 1991;
Watkins et al. 2007). For example, if the standardized cross-lagged effect of y1,τ−1
on y2,τ is larger than the cross-lagged effect of y2,τ−1 on y1,τ , researchers may
draw the conclusion that y1 is the driving force or dominant variable of that pair
(Schuurman et al. 2016). As such, substantive researchers are typically interested in
the (relative) magnitudes and signs of these parameters.

2.2.2 The Continuous-Time Framework

In contrast to the DT framework, which treats values of processes indexed by
observation τ , the CT framework treats processes as functions of the continuous
variable time t: The processes being modeled are assumed to vary continuously with
respect to time, meaning that these variables may take on values if observed at any
imaginable moment. CT processes can be modeled using a broad class of differential
equations, allowing for a wide degree of diversity in the types of dynamics that are
being modeled. It is important to note that many DT models have a differential
equation counterpart. For the VAR(1) model, the CT equivalent is the first-order
stochastic differential equation (SDE), where stochastic refers to the presence of
random innovations or shocks.

The first-order SDE describes how the position of the V -dimensional system at a
certain point in time, y(t), relative to the equilibrium position μ, is related to the rate
of change of the process with respect to time (i.e., dy(t)

dt
) in that same instant. The

latter can also be thought of as a vector of velocities, describing in what direction
and with what magnitude the system will move an instant later in time (i.e., the
ratio of the change in position over some time interval, to the length of that time
interval, as the length of the time interval approaches zero). The first-order SDE can
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be expressed as

dy(t)

dt
= A(y(t)− μ)+ G

dW (t)

dt
(2.2)

where y(t), dy(t)
dt

and μ are V × 1 column vectors described above, y(t) − μ

represents the position as a deviation from the equilibrium, and the V ×V matrix A

represents the drift matrix relating dy(t)
dt

to (y(t)− μ). The diagonal elements of A,
relating the position in a certain dimension to the velocity in that same dimension,
are referred to as auto-effects, while the off-diagonal elements are referred to as
cross-effects. The second part on the right-hand side of Eq. (2.2) represents the
stochastic part of the model: W (t) denotes the so-called Wiener process, broadly
speaking a continuous-time analogue of a random walk. This stochastic element has
a variance-covariance matrix GG′ = Q, which is often referred to as the diffusion
matrix (for details see Voelkle et al. 2012).

The model representation in Eq. (2.2) is referred to as the differential form as it
includes the derivative dy(t)

dt
. The same model can be represented in the integral

form, in which the derivatives are integrated out, sometimes referred to as the
solution of the derivative model. The integral form of this particular first-order
differential equation is known as the CT-VAR(1) or Ornstein-Uhlenbeck model
(Oravecz et al. 2011). In this form, we can describe the same system but now in
terms of the positions of the system (i.e., the values the variables take on) at different
points in time. For notational simplicity, we can represent y(t)−μ as yc(t), denoting
the position of the process as a deviation from its equilibrium.

The CT-VAR(1) model can be written as

yc(t) = eAΔtyc(t −Δt)+ w(Δt) (2.3)

where A has the same meaning as above, the V ×1 vector yc(t−Δt) represents the
position as a deviation from equilibrium some time interval Δt earlier, e represents
the matrix exponential function, and the V × 1 column vector w(Δt) represents the
stochastic innovations, the integral form of the Wiener process in Eq. (2.2). These
innovations are normally distributed with a variance-covariance matrix that is a
function of the time interval between measurements Δt , the drift matrix A, and
the diffusion matrix Q (cf. Voelkle et al. 2012).2 As the variables in the model have
been centered around their equilibrium, we omit any intercept term. The relationship
between lagged variables, that is, the relationships between the positions of the
centered variables in the multivariate space, separated by some time interval Δt , is
an (exponential) function of the drift matrix A and the length of that time interval.

2Readers should note that there are multiple different possible ways to parameterize the CT
stochastic process in integral form, and also multiple different notations used (e.g., Oravecz et al.
2011; Voelkle et al. 2012).
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2.2.3 Relating DT and CT Models

It is clear from the integral form of the first-order SDE given in Eq. (2.3) that the
relationship between lagged values of variables is dependent on the length of the
time interval between these lagged values. As such, if the DT-VAR(1) model in
Eq. (2.1) is fitted to data generated by the CT model considered here, then the
autoregressive and cross-lagged effects matrix Φ will be a function of the time
interval Δt between the measurements. We denote this dependency by writing
Φ(Δt). This characteristic of the DT model has been referred to as the lag problem
(Gollob and Reichardt 1987; Reichardt 2011).

The precise relationship between the CT-VAR(1) and DT-VAR(1) effect matrices
is given by the well-known equality

Φ(Δt) = eAΔt . (2.4)

Despite this relatively simple relationship, it should be noted that taking the expo-
nential of a matrix is not equivalent to taking the exponential of each of the elements
of the matrix. That is, any lagged effect parameter φij (Δt), relating variable i and
variable j across time points, is not only dependent on the corresponding CT cross-
effect aij but is a nonlinear function of the interval and every other element of the
matrix A. For example, in the bivariate case, the DT cross-lagged effect of y1(t−Δt)
on y2(t), denoted φ21(Δt), is given by

a21

⎛

⎝e
1
2

(

a11+a22+
√
a2

11+4a12a21−2a11a22+a2
22

)

Δt − e

1
2

(

a11+a22−
√
a2

11+4a12a21−2a11a22+a2
22

)

Δt

⎞

⎠

√
a2

11 + 4a12a21 − 2a11a22 + a2
22

(2.5)

where e represents the scalar exponential. In higher-dimensional models, these
relationships quickly become intractable. For a derivation of Eq. (2.5), we refer
readers to Appendix.

This complicated nonlinear relationship between the elements of Φ and the time
interval has major implications for applied researchers who wish to interpret the
parameters of a DT-VAR(1) model in the substantive terms outlined above. In the
general multivariate case, the size, sign, and relative strengths of both autoregressive
and cross-lagged effects may differ depending on the value of the time interval used
in data collection (Deboeck and Preacher 2016; Dormann and Griffin 2015; Oud
2007; Reichardt 2011). As such, conclusions that researchers draw regarding the
stability of processes and the nature of how different processes relate to one another
may differ greatly depending on the time interval used.

While the relationship in Eq. (2.4) describes the DT-VAR(1) effects matrix we
would find given the data generated by a CT-VAR(1) model, the reader should note
that not all DT-VAR(1) processes have a straightforward equivalent representation
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as a CT-VAR(1). For example, a univariate discrete-time AR(1) process with a
negative autoregressive parameter cannot be represented as a CT-AR(1) process; as
the exponential function is always positive, there is no A that satisfies Eq. (2.4) for
Φ < 0. As such, we can refer to DT-VAR(1) models with a CT-VAR(1) equivalent
as those which exhibit “positive autoregression.” We will focus throughout on the
CT-VAR(1) as the data-generating model.3

2.2.4 Types of Dynamics: Eigenvalues, Stability,
and Equilibrium

Both the DT-VAR(1) model and the CT-VAR(1) model can be used to describe a
variety of different types of dynamic behavior. As the dynamic behavior of a system
is always understood with regard to how the variables in the system move in relation
to the equilibrium position, often dynamic behaviors are described by differentiating
the type of equilibrium position or fixed point in the system (Strogatz 2014). In
the general multivariate case, we can understand these different types of dynamic
behavior or fixed points with respect to the eigenvalues of the effects matrices A or
Φ (see Appendix for a more detailed explanation of the relationship between these
two matrices and eigenvalues). In this chapter we will focus on stable processes,
in which, given a perturbation, the system of interest will inevitably return to the
equilibrium position. We limit our treatment to these types of processes, because we
believe these are most common and most relevant for applied researchers. A brief
description of other types of fixed points and how they relate to the eigenvalues
of the effects matrix A is given in the discussion section—for a more complete
taxonomy, we refer readers to Strogatz (2014, p. 136).

In DT settings, stable processes are those for which the absolute values of
the eigenvalues of Φ are smaller than one. In DT applications researchers also
typically discuss the need for stationarity, that is, time-invariant mean and variance,
as introduced above. Stability of a process ensures that stationarity in relation to
the mean and variance hold. For CT-VAR(1) processes, stability is ensured if the
real parts of the eigenvalues of A are negative. It is interesting to note that the
equilibrium position of stable processes can be related to our observed data in
various ways: In some applications μ is constrained to be equal to the mean of
the observed values (e.g., Hamaker et al. 2005; Hamaker and Grasman 2015), while
in others the equilibrium can be specified a priori or estimated to be equal to some
(asymptotic) value (e.g., Bisconti et al. 2004).

3In general, there is no straightforward CT-VAR(1) representation of DT-VAR(1) models with
real, negative eigenvalues. However it may be possible to specify more complex continuous-time
models which do not exhibit positive autoregression. Notably, Fisher (2001) demonstrates how
a DT-AR(1) model with negative autoregressive parameter can be modeled with the use of two
continuous-time (so-called) Itô processes.
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We can further distinguish between dynamic processes that have real eigenvalues,
complex eigenvalues, or, in the case of systems with more than two variables, a
mix of both. In the section “Making Sense of CT Models,” we will focus on the
interpretation of a CT-VAR(1) model with real, negative, non-equal eigenvalues.
We can describe the equilibrium position of this system as a stable node. In the
discussion section, we examine another type of system which has been the focus
of psychological research, sometimes described as a damped linear oscillator (e.g.,
Boker et al. 2010b), in which the eigenvalues of A are complex, with a negative real
part. The fixed point of such a system is described as a stable spiral. Further detail
on the interpretation of these two types of systems is given in the corresponding
sections.

2.3 Why Researchers Should Adopt a CT Process
Perspective

There are both practical and theoretical benefits to CT model estimation over DT
model estimation. Here we will discuss three of these practical advantages which
have received notable attention in the literature. We then discuss the fundamental
conceptual benefits of treating psychological processes as continuous-time systems.

The first practical benefit to CT model estimation is that the CT model deals well
with observations taken at unequal intervals, often the case in experience sampling
and ecological momentary assessment datasets (Oud and Jansen 2000; Voelkle
and Oud 2013; Voelkle et al. 2012). Many studies use random intervals between
measurements, for example, to avoid participant anticipation of measurement
occasions, potentially resulting in unequal time intervals both within and between
participants. The DT model, however, is based on the assumption of equally spaced
measurements, and as such estimating the DT model from unequally spaced data
will result in an estimated Φ matrix that is a blend of different Φ(Δt) matrices for
a range of values of Δt .

The second practical benefit of CT modeling over DT modeling is that, when
measurements are equally spaced, the lagged effects estimated by the DT models
are not generalizable beyond the time interval used in data collection. Several
different researchers have demonstrated that utilizing different time intervals of
measurement can lead researchers to reach very different conclusions regarding the
values of parameters in Φ (Oud and Jansen 2000; Reichardt 2011; Voelkle et al.
2012). The CT model has thus been promoted as facilitating better comparisons of
results between studies, as the CT effects matrix A is independent of time interval
(assuming a sufficient frequency of measurement to capture the relevant dynamics).

Third, the application of CT models allows us to explore how cross-lagged effects
are expected to change depending on the time interval between measurements, using
the relationship expressed in Eq. (2.4). Some authors have used this relationship
to identify the time interval at which cross-lagged effects are expected to reach
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a maximum (Deboeck and Preacher 2016; Dormann and Griffin 2015). Such
information could be used to decide upon the “optimal” time interval that should
be used in gathering data in future research.

While these practical concerns regarding the use of DT models for CT processes
are legitimate, there may be instances in which alternative practical solutions can be
used, without necessitating the estimation of a CT model. For instance, the problem
of unequally spaced measurements in DT modeling can be addressed by defining
a time grid and adding missing data to your observations, to make the occasions
approximately equally spaced in time. Some simulation studies indicate that this
largely reduces the bias that results from using DT estimation of unequally spaced
data (De Haan-Rietdijk et al. 2017).

Furthermore, the issue of comparability between studies that use different time
intervals can be solved, in certain circumstances, by a simple transformation of the
estimated Φ matrix, described in more detail by Kuiper and Ryan (2018). Given
an estimate of Φ(Δt), we can solve for the underlying A using Eq. (2.4). This is
known as the “indirect method” of CT model estimation (Oud et al. 1993). However
this approach cannot be applied in all circumstances, as it involves using the matrix
logarithm, the inverse of the matrix exponential function. As the matrix logarithm
function in the general case does not give a unique solution, this method is only
appropriate if both the estimated Φ(Δt) and true underlying A matrices have real
eigenvalues only (for further discussion of this issue, see Hamerle et al. 1991).

However, the CT perspective has added value above and beyond the potential
practical benefits discussed above. Multiple authors have argued that psychological
phenomena, such as stress, affect, and anxiety, do not vary in discrete steps over time
but likely vary and evolve in a continuous and smooth manner (Boker 2002; Gollob
and Reichardt 1987). Viewing psychological processes as CT dynamic systems has
important implications for the way we conceptualize the influence of psychological
variables on each other. Gollob and Reichardt (1987) give the example of a
researcher who is interested in the effect of taking aspirin on headaches: This
effect may be zero shortly after taking the painkiller, substantial an hour or so
later, and near zero again after 24 h. All of these results may be considered as
accurately portraying the effect of painkillers on headaches for a specific time
interval, although each of these intervals considered separately represents only a
snapshot of the process of interest.

It is only through examining the underlying dynamic trajectories, and exploring
how the cross-lagged relationships evolve and vary as a function of the time interval,
that we can come to a more complete picture of the dynamic system of study.
We believe that—while the practical benefits of CT modeling are substantial—the
conceptual framework of viewing psychological variables as CT processes has the
potential to transform longitudinal research in this field.
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2.4 Making Sense of CT Models

In this section, we illustrate how researchers can evaluate psychological variables as
dynamic CT processes by describing the interpretation of the drift matrix parameters
A. We describe multiple ways in which the dynamic behavior of the model in
general, as well as specific model parameters, can be understood. In order to aid
researchers who are unfamiliar with this type of analysis, we take a broad approach
in which we incorporate the different ways in which researchers interested in
dynamical systems and similar models interpret their results. For instance, Boker
and colleagues (e.g., Boker et al. 2010b) typically interpret the differential form
of the model directly; in the econometrics literature, it is typical to plot specific
trajectories using impulse response functions (Johnston and DiNardo 1997); in the
physics tradition, the dynamics of the system are inspected using vector fields (e.g.,
Boker and McArdle 1995); the work of Voelkle, Oud, and others (e.g., Deboeck and
Preacher 2016; Voelkle et al. 2012) typically focuses on the integral form of the
equation and visually inspecting the time interval dependency of lagged effects.

We will approach the interpretation of a single CT model from these four angles
and show how they each represent complimentary ways to understand the same
system. For ease of interpretation, we focus here on a bivariate system; the analysis
of larger systems is addressed in the discussion section.

2.4.1 Substantive Example from Empirical Data

To illustrate the diverse ways in which the dynamics described by the CT-VAR(1)
model can be understood, we make use of a substantive example. This example
is based on our analysis of a publicly available single-subject ESM dataset (Kos-
sakowski et al. 2017). The subject in question is a 57-year-old male with a history of
major depression. The data consists of momentary, daily, and weekly items relating
to affective states. The assessment period includes a double-blind phase in which
the dosage of the participant’s antidepression medication was reduced. We select
only those measurements made in the initial phases of the study, before medication
reduction; it is only during this period that we would expect the system of interest
to be stable. The selected measurements consist of 286 momentary assessments
over a period of 42 consecutive days. The modal time interval between momentary
assessments was 1.766 h (interquartile range of 1.250–3.323).

For our analysis we selected two momentary assessment items, “I feel down”
and “I am tired,” which we will name Down (Do) and Tired (T i), respectively.
Feeling down is broadly related to assessments of negative affect (Meier and Robin-
son 2004), and numerous cross-sectional analyses have suggested a relationship
between negative affect and feelings of physical tiredness or fatigue (e.g., Denollet
and De Vries 2006). This dataset afforded us the opportunity to investigate the
links between these two processes from a dynamic perspective. Each variable was
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Table 2.1 Parameter
estimates from the
substantive example

Parameter Value Std. error

a11 −0.995 0.250

a21 0.375 0.441

a12 0.573 0.595

a22 −2.416 1.132

q11 1.734 0.612

q21 −0.016 0.650

q22 4.606 1.374

standardized before the analysis to facilitate ease of interpretation of the parameter
estimates. Positive values of Do indicate that the participant felt down more than
average, negative values indicate below-average feelings of being down and likewise
for positive and negative values of T i.

The analysis was conducted using the ctsem package in R (Driver et al.
2017). Full details of the analysis, including R code, can be found in the online
supplementary materials. Parameter estimates and standard errors are given in
Table 2.1, including estimates of the stochastic part of the CT model, represented by
the diffusion matrix Q. The negative value of γ21 indicates that there is a negative
covariance between the stochastic input and the rates of change of Do and T i; in
terms of the CT-VAR(1) representation, there is a negative covariance between the
residuals of Do and T i in the same measurement occasion. Further interpretation
of the diffusion matrix falls beyond the scope of the current chapter. As the analysis
is meant as an illustrative example only, we will throughout interpret the estimated
drift matrix parameter as though they are true population parameters.

2.4.2 Interpreting the Drift Parameters

The drift matrix relating the processes Down (Do(t)) and Tired (T i(t)) is given by

A =
[−0.995 0.573

0.375 −2.416

]

. (2.6)

As the variables are standardized, the equilibrium position is μ = [0, 0] (i.e.,
E[Do(t)] = E[T i(t)] = 0). The drift matrix A describes how the position of
the system at any particular time t (i.e., Do(t) and T i(t)) relates to the velocity or
rate of change of the process, that is, how the position of the process is changing.
The system of equations which describe the dynamic system made up of Down and
Tired is given by

[
E
[
dDo(t)
dt

]

E
[
dT i(t)
dt

]

]

=
[−0.995 0.573

0.375 −2.416

] [
Do(t)

T i(t)

]

(2.7)
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such that

E

[
dDo(t)

dt

]

= −0.995Do(t)+ 0.573T i(t) (2.8)

E

[
dT i(t)

dt

]

= 0.375Do(t)− 2.416T i(t) (2.9)

where the rates of change of Down and Tired at any point in time are both dependent
on the positions of both Down and Tired at that time.

Before interpreting any particular parameter in the drift matrix, we can determine
the type of dynamic process under consideration by inspecting the eigenvalues of A.
The eigenvalues of A are λ1 = −2.554 and λ2 = −0.857; since both eigenvalues
are negative, the process under consideration is stable. This means that if the system
takes on a position away from equilibrium (e.g., due to a random shock from the
stochastic part of the model on either Down or Tired), the system will inevitably
return to its equilibrium position over time. It is for this reason that the equilibrium
position or fixed point in stable systems is also described as the attractor point,
and stable systems are described as equilibrium-reverting. As the eigenvalues of the
system are real-valued as well as negative, the system returns to equilibrium with an
exponential decay; when the process is far away from the equilibrium, it takes on a
greater velocity, that is, moves faster toward equilibrium. We can refer to the type
of fixed point in this system as a stable node (Strogatz 2014).

Typical of such an equilibrium-reverting process, we see negative CT auto-
effects a11 = −0.995 and a22 = −2.416. This reflects that, if either variable
in the system takes on a position away from the equilibrium, they will take on
a velocity of opposite sign to this deviation, that is, a velocity which returns the
process to equilibrium. For higher values ofDo(t), the rate of change ofDo(t) is of
greater (negative) magnitude, that is, the velocity toward the equilibrium is higher. In
addition, the auto-effect of T i(t) is more than twice as strong (in an absolute sense)
as the auto-effect of Do(t). If there were no cross-effects present, this would imply
that T i(t) returns to equilibrium faster than Do(t); however, as there are cross-
effects present, such statements cannot be made in the general case from inspecting
the auto-effects alone.

In this case the cross-effects of Do(t) and T i(t) on each other’s rates of change
are positive rather than negative. Moreover, the cross-effect of T i(t) on the rate of
change of Do(t) (a12 = 0.573) is slightly stronger than the corresponding cross-
effect of Do(t) on the rate of change of T i(t) (a21 = 0.375). These cross-effects
quantify the force that each component of the system exerts on the other. However,
depending on what values each variable takes on at a particular point in time t ,
that is, the position of the system in each of the Do(t) and T i(t) dimensions, this
may translate to Do(t) pushing T i(t) to return faster to its equilibrium or to deviate
away from its equilibrium position and vice versa. To better understand both the
cross-effects and auto-effects described by A, it is helpful to visualize the possible
trajectories of our two-dimensional system.
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2.4.3 Visualizing Trajectories

We will now describe and apply two related tools which allow us to visualize the
trajectories of the variables in our model over time: impulse response functions and
vector fields. These tools can help us to understand the dynamic system we are
studying, by exploring the dynamic behavior which results from the drift matrix
parameters.

2.4.3.1 Impulse Response Functions

Impulse response functions (IRFs) are typically used in the econometrics literature
to aid in making forecasts based on a DT-VAR model. The idea behind this is to
allow us to explore how an impulse to one variable in the model at occasion τ will
affect the values of both itself and the other variables in the model at occasions τ+1,
τ +2, τ +3, and so on. In the stochastic systems we focus on in this chapter, we can
conceptualize these impulses as random perturbations or innovations or alternatively
as external interventions in the system.4 IRFs thus represent the trajectories of the
variables in the model over time, following a particular impulse, assuming no further
stochastic innovations (see Johnston and DiNardo 1997, Chapter 9).

To specify impulses in an IRF, we generally assign a value to a single variable
in the system at some initial occasion, yi,τ . The corresponding values of the other
variables at the initial occasion yj,τ , j = i are usually calculated based on, for
instance, the covariance in the stochastic innovations, Ψ , or the stable covariance
between the processes Σ . Such an approach is beneficial in at least two ways:
first, it allows researchers to specify impulses which are more likely to occur in
an observed dataset; second, it aids researchers in making more accurate future
predictions or forecasts. For a further discussion of this issue in relation to DT-VAR
models, we refer the reader to Johnston and DiNardo (1997, pp. 298–300). Below,
we will take a simplified approach and specify bivariate impulses at substantively
interesting values.

The IRF can easily be extended for use with the CT-VAR(1) model. We can
calculate the impulse response of our system by taking the integral form of the
CT-VAR(1) model in Eq. (2.3) and (a) plugging in the A matrix for our system,
(b) choosing some substantively interesting set of impulses y(t = 0), and (c)
calculating y(t) for increasing values of t > 0. To illustrate this procedure, we will
specify four substantively interesting sets of impulses. The four sets of impulses
shown here include y(0) = [1, 0], reflecting what happens when Do(0) takes
on a positive value 1 standard deviation above the persons mean, while T i(0) is
at equilibrium; y(0) = [0, 1] reflecting when T i(0) takes on a positive value of
corresponding size while Do(0) is at equilibrium; y(0) = [1, 1] reflecting what

4Similar functions can be used for deterministic systems (those without a random innovation part);
however in these cases the term initial value is more typically used.
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happens when Do(0) and T i(0) both take on values 1 standard deviation above the
mean; and y(0) = [1,−1] reflecting what happens when Do(0) and T i(0) take on
values of equal magnitude but opposite valence (1SD more and 1SD less than the
mean, respectively). Figure 2.1a–d contains the IRFs for both processes in each of
these four scenarios.

Examining the IRFs shows us the equilibrium-reverting behavior of the system:
Given any set of starting values, the process eventually returns, in an exponential
fashion, to the bivariate equilibrium position where both processes take on a value
of zero.

In Figure 2.1a, we can see that when T i(t) is at equilibrium and Do(0) takes on
a value of plus one, then T i(t) is pushed away from equilibrium in the same (i.e.,
positive) direction. In substantive terms, when our participant is feeling down at a
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Fig. 2.1 Impulse response function for the model in Eq. (2.7) for four different sets of impulses;
red solid line = Do(t) and blue dashed line = T i(t). (a) Do(0) = 1, T i(0) = 0, (b) Do(0) =
0, T i(0) = 1, (c) Do(0) = 1, T i(0) = 1, (d) Do(0) = 1, T i(0) = −1
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particular moment, he begins to feel a little tired. Eventually, both Do(t) and T i(t)
return to equilibrium due to their negative auto-effects. The feelings of being down
and tired have returned to normal around t = 4, that is, 4 h after the initial impulse;
stronger impulses (|Do(0)| > 1) will result in the system taking longer to return to
equilibrium, and weaker impulses (|Do(0)| < 1) would dissipate quicker.

Figure 2.1b shows the corresponding reaction of Do(t) at equilibrium to a
positive value of T i(0). We can further see that the deviation of Do(t) in Fig. 2.1b
is greater than the deviation of T i(t) in Fig. 2.1a: a positive value of T i(t) exerts a
greater push on Do(t) than vice versa, because of the greater cross-effect of T i(t)
on Do(t). In this case this strong cross-effect, combined with the relatively weaker
auto-effect of Do(t), results in Do(t) taking on a higher value than T i(t) at around
t = 1, 1 h after the initial impulse. Substantively, when our participant is feeling
physically tired at a particular moment (Fig. 2.1b), he begins to feel down over the
next couple of hours, before eventually these feelings return to normal (again in this
case, around 4 h later).

Figure 2.1c further demonstrates the role of the negative auto-effects and positive
cross-effects in different scenarios. In Fig. 2.1c, both processes take on positive
values at t = 0; the positive cross-effects result in both processes returning to
equilibrium at a slower rate than in Fig. 2.1a, b. In substantive terms this means
that, when the participant is feeling very down, and very tired, it takes longer for the
participant to return to feeling normal. Here also the stronger auto-effect of T i(t)
thanDo(t) is evident: although both processes start at the same value, an hour later
T i(1) is much closer to zero than Do(1), that is, T i(t) decays faster to equilibrium
than Do(t). In substantive terms, this tells us that when the participant is feeling
down and physically tired, he recovers much quicker from the physical tiredness
than he does from feeling down.

In Fig. 2.1d, we see that Do(0) and T i(0) taking on values of opposite signs
result in a speeding up of the rate at which each variable decays to equilibrium. The
auto-effect of Do(t) is negative, which is added to by the positive cross-effect of
T i(t) multiplied by the negative value of T i(0). This means thatDo(0) in Fig. 2.1d
takes on a stronger negative velocity, in comparison to Fig. 2.1a or c. A positive
value forDo(0) has a corresponding effect of making T i(0) take on an even stronger
positive velocity. Substantively, this means that when the participant feels down,
but feels less tired (i.e., more energetic) than usual, both of these feelings wear
off and return to normal quicker than in the other scenarios we examined. The
stronger auto-effect of T i(t), in combination with the positive cross-effect ofDo(t)
on T i(t), actually results in T i(t) shooting past the equilibrium position in the T i(t)
dimension (T i(t) = 0) and taking on positive values around t = 1.5, before the
system as a whole returns to equilibrium. Substantively, when the participant is
feeling initially down but quite energetic, we expect that he feels a little bit more
tired than usual about an hour and half later, before both feelings return to normal.
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2.4.3.2 Vector Fields

Vector fields are another technique which can be used to visualize the dynamic
behavior of the system by showing potential trajectories through a bivariate space.
In our case the two axes of this space are Do(t) and T i(t). The advantage of vector
fields over IRFs in this context is that in one plot it shows how, for a range of possible
starting positions, the process is expected to move in the (bivariate) space a moment
later. For this reason, the vector field is particularly useful in bivariate models with
complex dynamics, in which it may be difficult to obtain the full picture of the
dynamic system from a few IRFs alone. Furthermore, by showing the dynamics for
a grid of values, we can identify areas in which the movement of the process is
similar or differs.

To create a vector field, E[ dy(t)
dt

] is calculated for a grid of possible values for
y1(t) and y2(t) covering the full range of the values both variables can take on.
The vector field for Do(t) and T i(t) is shown in Fig. 2.2. The base of each arrow
represents a potential position of the process y(t). The head of the arrow represents
where the process will be if we take one small step in time forward, that is the
value of y(t + Δt) as Δt approaches zero. In other words, the arrows in this
vector field represent the information of two derivatives, dDo(t)/dt and dT i(t)/dt .
Specifically, the direction the arrow is pointing is a function of the sign (positive or
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Fig. 2.2 Vector field for Do(t) and T i(t), including blue and red nullclines



2 A Continuous-Time Approach to Intensive Longitudinal Data: What, Why,. . . 43

negative) of the derivatives, while the length of the arrow represents the magnitude
of this movement and is a function of the absolute values of the derivative(s).

If an arrow in the vector field is completely vertical, this means that, for that
position, taking one small step forward in time would result in a change in the
system’s position along the T i(t) axis (i.e., a change in the value of Tired), but not
along theDo(t) axis (i.e., dDo(t)/dt = 0 and dT i(t)/dt = 0). The converse is true
for a horizontal arrow (i.e., dDo(t)/dt = 0 and dT i(t)/dt = 0). The two lines in
Fig. 2.2, blue and red, identify at which positions dDo(t)/dt = 0 and dT i(t)/dt =
0, respectively; these are often referred to as nullclines. If the nullclines are not
perfectly perpendicular to one another, this is due to the presence of at least one
cross-effect. The point at which these nullclines cross represents the equilibrium
position in this two-dimensional space, here located at Do(t) = 0, T i(t) = 0.
The crossing of these nullclines splits the vector field in four quadrants, each of
which is characterized by a different combination of negative and positive values for
dDo(t)/dt and dT i(t)/dt . The top left and bottom right quadrants represent areas
in which the derivatives are of opposite sign, dDo(t)/dt > 0 & dT i(t)/dt < 0
and dDo(t)/dt < 0 & dT i(t)/dt > 0, respectively. The top right and bottom left
quadrants represent areas where the derivatives are of the same sign, dDo(t)/dt < 0
& dT i(t) < 0 and dDo(t)/dt > 0 & dT i(t) > 0, respectively.

By tracing a path through the arrows, we can see the trajectory of the system
of interest from any point in the possible space of values. In Fig. 2.2, we include
the same four bivariate trajectories as we examined with the IRFs. Instead of the
IRF representation of two variables whose values are changing, the vector field
represents this as the movement of one process in a two-dimensional space. For
instance, the trajectory starting at Do(t) = 0 and T i(t) = 1 begins in the top
left quadrant, where dDo(t)/dt is positive and dT i(t)/dt is negative; this implies
that the value of Down will increase, and the value of Tired will decrease (as
can be seen in Fig. 2.1b). Instead of moving directly to the equilibrium along
the T i(t) dimension, the system moves away from equilibrium along the Do(t)
dimension, due to the cross-effect of T i(t) onDo(t), until it moves into the top right
quadrant. In this quadrant, dDo(t)/dt and dT i(t)/dt are both negative; once in this
quadrant, the process moves toward equilibrium, tangent to the dDo(t)/dt nullcline.
The other trajectories in Fig. 2.2 analogously describe the same trajectories as in
Fig. 2.1a, c, d.

In general, the trajectories in this vector field first decay the quickest along the
T i(t) dimension and the slowest along the Do(t) dimension. This can be clearly
seen in trajectories (b), (c), and (d). Each of these trajectories first changes steeply
in the T i(t) dimension, before moving to equilibrium at a tangent to the red ( dDo(t)

dt
)

nullcline. This general property of the bidimensional system is again related to
the much stronger auto-effect of T i(t) and the relatively small cross-effects. In
a technical sense, we can say that Do(t) represents the “slowest eigendirection”
(Strogatz 2014, Chapter 5).
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2.4.4 Inspecting the Lagged Parameters

Another way to gain insight into the processes of interest is by determining the
relationships between lagged positions of the system, according to our drift matrix.
To this end, we can use Eq. (2.4) to determine Φ(Δt) for some Δt . For instance,
we can see that the autoregressive and cross-lagged relationships between values of
competence and exhaustion givenΔt = 1 are

Φ(Δt = 1) =
[

0.396 0.117
0.077 0.106

]

. (2.10)

For this given time interval, the cross-lagged effect of Down on Tired (φ21(Δt =
1) = 0.077) is smaller than the cross-lagged effect of Tired on Down (φ12(Δt =
1) = 0.117). However, as shown in Eq. (2.5), the value of each of these lagged
effects changes in a nonlinear way depending on the time interval chosen. To
visualize this, we can calculate Φ(Δt) for a range of Δt and represent this
information graphically in a lagged parameter plot, as in Fig. 2.3. From Fig. 2.3,
we can see that both cross-lagged effects reach their maximum (and have their
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Fig. 2.3 The elements of Φ(Δt) for the bivariate example (i.e., φ11(Δt), φ12(Δt), φ21(Δt),
φ22(Δt)) plotted for a range of values for Δt
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maximum difference) at a time interval of Δt = 0.65; furthermore, we can see
that the greater cross-effect (a12) results in a stronger cross-lagged effect φ12(Δt)

for a range of Δt . Moreover, we can visually inspect how the size of each of the
effects of interest, as well as the difference between these effects, varies according
to the time interval. From a substantive viewpoint, we could say that the effect of
feeling physically tired has the strongest effect on feelings of being down around
40 min later.

While the shape of the lagged parameters may appear similar to the shapes
of the trajectories plotted in the IRFs, lagged parameter plots and IRFs represent
substantively different information. IRFs plot the positions of each variable in
the system as they change over time, given some impulse (y(t) vs t given some
y(0)). In contrast, lagged parameter plots show how the lagged relationships change
depending on the length of the time interval between them, independent of impulse
values (eAΔt vs Δt). The lagged relationships can be thought of as the components
which go into determining any specific trajectories.

2.4.5 Caution with Interpreting Estimated Parameters

It is important to note that in the above interpretation of CT models, we have treated
the matrix A as known. In practice of course, researchers should take account of the
uncertainty in parameter estimates. For example, the ctsem package also provides
lagged parameter plots with credible intervals to account for this uncertainty.

Furthermore, researchers should be cautious about extrapolating beyond the
data. For instance, when we consider a vector field, we should be careful about
interpreting regions in which there is little or no observed data (cf. Boker and
McArdle 1995). The same logic applies for the interpretation of IRFs for impulses
that do not match observed values. Moreover, we should also be aware that
interpreting lagged parameter plots for time intervals much shorter than those
we observe data at is a form of extrapolation: It relies on strong model-based
assumptions, such as ruling out the possibility of a high-frequency higher-order
process (Voelkle and Oud 2013; Voelkle et al. 2012).

2.5 Discussion

In this chapter we have set out to clarify the connection between DT- and CT-
VAR(1) models and how we can interpret and represent the results from these
models. So far we have focused on single-subject, two-dimensional, first-order
systems with a stable node equilibrium. However, there are many ways in which
these models can be extended, to match more complicated data and/or dynamic
behavior. Below we consider three such extensions: (a) systems with more than two
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dimensions (i.e., variables), (b) different types of fixed points resulting from non-
real eigenvalues of the drift matrix, and (c) moving from single-subject to multilevel
datasets.

2.5.1 Beyond Two-Dimensional Systems

In the empirical illustration, we examined the interpretation of a drift matrix in the
context of a bivariate CT-VAR(1) model. Notably, the current trend in applications
of DT-VAR(1) models in psychology has been to focus more and more on the
analysis of large systems of variables, as typified, for example, by the dynamic
network approach of Bringmann et al. (2013, 2016). The complexity of these models
grows rapidly as the number of variables is added: To estimate a full drift matrix for
a system of three variables, we must estimate nine unique parameters, in contrast to
four drift matrix parameters for a bivariate system. In addition, we must estimate a
three-by-three covariance matrix for the residuals, rather than a two-by-two matrix.

The relationship between the elements of A and Φ(Δt) becomes even less
intuitive once the interest is in a system of three variables, because the lagged
parameter values are dependent on the drift matrix as a whole, as explained earlier.
This means that both the relative sizes and the signs of the cross-lagged effects may
differ depending on the interval: The same lagged parameter may be negative for
some time intervals and positive for others, and zero elements of A can result in
corresponding non-zero elements of Φ (cf. Aalen et al. 2017, 2016, 2012; Deboeck
and Preacher 2016). Therefore, although we saw in our bivariate example that, for
instance, negative CT cross-effects resulted in negative DT cross-lagged effects, this
does not necessarily hold in the general case (Kuiper and Ryan 2018).

Additionally, substantive interpretation of the lagged parameters in systems with
more than two variables also becomes less straightforward. For example, Deboeck
and Preacher (2016) and Aalen et al. (2012, 2016, 2017) argue that the interpretation
of Φ(Δt) parameters in mediation models (with three variables and a triangular
A matrix) as direct effects may be misleading: Deboeck and Preacher argue that
instead they should be interpreted as total effects. This has major consequences for
the practice of DT analyses and the interpretation of its results.

2.5.2 Complex and Positive Eigenvalues

The empirical illustration is characterized by a system with negative, real, non-equal
eigenvalues, which implies that the fixed point in the system is a stable node. In
theory, however, there is no reason that psychological processes must adhere to
this type of dynamic behavior. We can apply the tools we have defined already
to understand the types of behavior that might be described by other types of drift
matrices. Notably, some systems may have drift matrices with complex eigenvalues,
that is, eigenvalues of the form α ± ωi, where i = √−1 is the imaginary number,
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Fig. 2.4 Vector field for a stable spiral corresponding to a drift matrix with negative real part
complex eigenvalues

ω = 0, α is referred to as the real part, andωi as the imaginary part of the eigenvalue.
If the real component of these eigenvalues is negative (α < 0), then the system
is still stable, and given a deviation it will return eventually to a resting state at
equilibrium. However, unlike the systems we have described before, these types of
systems spiral or oscillate around the equilibrium point, before eventually coming to
rest. Such systems have been described as stable spirals, or alternatively as damped
(linear or harmonic) oscillators (Boker et al. 2010b; Voelkle and Oud 2013).

A vector field for a process which exhibits this type of stable spiral behavior is
shown in Fig. 2.4, with accompanying trajectories. The drift matrix corresponding
to this vector field is

A =
[−0.995 0.573

−2.000 −2.416

]

(2.11)

which is equivalent to our empirical example above but with the value of a21 altered
from 0.375 to −2.000. The eigenvalues of this matrix are λ1 = −1.706 + 0.800i
and λ2 = −1.706 − 0.800i. In contrast to our empirical example, we can see that
the trajectories follow a spiral pattern; the trajectory which starts at y1(t) = 1,
y2(t) = 1 actually overshoots the equilibrium in the T i(t) dimension before
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spiraling back once in the bottom quadrant. There are numerous examples of
psychological systems that are modeled as damped linear oscillators using second-
order differential equations, which include the first- and second-order derivatives
(cf., Bisconti et al. 2004; Boker et al. 2010b; Boker and Nesselroade 2002; Horn
et al. 2015). However, as shown here, such behavior may also result from a first-
order model.

Stable nodes and spirals can be considered the two major types of stable fixed
points, as they occur whenever the real part of the eigenvalues of A is negative, that
is, α < 0. Many other types of stable fixed points can be considered as special cases:
when we have real, negative eigenvalues that are exactly equal, the fixed point is
called a stable star node (if the eigenvectors are distinct) or a stable degenerate node
(if the eigenvectors are not distinct). In contrast, if the real part of the eigenvalues
of A is positive, then the system is unstable, also referred to as non-stationary or
a unit root in the time series literature (Hamilton 1994). This implies that, given a
deviation, the system will not return to equilibrium; in contrast to stable systems,
in which trajectories are attracted to the fixed point, the trajectories of unstable
systems are repelled by the fixed point. As such we can also encounter unstable
nodes, spirals, star nodes, and degenerate nodes. The estimation and interpretation
of unstable systems in psychology may be a fruitful ground for further research.

Two further types of fixed points may be of interest to researchers; in the special
case where the eigenvalues of A have an imaginary part and no real part (α = 0), the
fixed point is called a center. In a system with a center fixed point, trajectories spiral
around the fixed point without ever reaching it. Such systems exhibit oscillating
behavior, but without any damping of oscillations; certain biological systems, such
as the circadian rhythm, can be modeled as a dynamic system with a center fixed
point. Such systems are on the borderline between stable and unstable systems,
sometimes referred to as neutrally stable; trajectories are neither attracted to or
repelled by the fixed point. Finally, a saddle point occurs when the eigenvalues
of A are real but of opposite sign (one negative, one positive). Saddle points have
one stable and one unstable component; only trajectories which start exactly on
the stable axis return to equilibrium, and all others do not. Together spirals, nodes,
and saddle points cover the majority of the space of possible eigenvalues for A.
Strogatz (2014) describes the different dynamic behavior generated by different
combinations of eigenvalues of A in greater detail.

2.5.3 Multilevel Extensions

The time series literature (such as from the field of econometrics) as well as the
dynamic systems literature (such as from the field of physics) tends to be concerned
with a single dynamic system, either because there is only one case (N = 1) or
because all cases are exact replicates (e.g., molecules). In psychology however, we
typically have data from more than one person, and we also know that people tend
to be highly different. Hence, when we are interested in modeling their longitudinal
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data, we should take their differences into account somehow. The degree to which
this can be done depends on the number of time points we have per person. In
traditional panel data, we typically have between two and six waves of data. In this
case, we should allow for individual differences in means or intercepts, in order
to separate the between-person, stable differences from the within-person dynamic
process, while assuming the lagged relationships are the same across individuals (cf.
Hamaker et al. 2015).

In contrast, experience sampling data and other forms of intensive longitudinal
data consist of many repeated measurement per person, such that we can allow
for individual differences in the lagged coefficients. This can be done by either
analyzing the data of each person separately or by using a dynamic multilevel model
in which the individuals are allowed to have different parameters (cf. Boker et al.
2016; Driver and Voelkle 2018). Many recent studies have shown that there are
substantial individual differences in the dynamics of psychological phenomena and
that these differences can be meaningfully related to other person characteristics,
such as personality traits, gender, age, and depressive symptomatology, but also to
later health outcomes and psychological well-being (e.g., Bringmann et al. 2013;
Kuppens et al. 2010, 2012).

While the current chapter has focused on elucidating the interpretation of a
single-subject CT-VAR(1) model, the substantive interpretations and visualization
tools we describe here can be applied in a straightforward manner to, for example,
the fixed effects estimated in a multilevel CT-VAR(1) model or to individual-specific
parameters estimated in a multilevel framework. The latter would however lead to
an overwhelming amount of visual information. The development of new ways of
summarizing the individual differences in dynamics, based on the current tools, is a
promising area.

2.5.4 Conclusion

There is no doubt that the development of dynamical systems modeling in the field
of psychology has been hampered by the difficulty in obtaining suitable data to
model such systems. However this is a barrier that recent advances in technology
will shatter in the coming years. Along with this new source of psychological
data, new psychological theories are beginning to emerge, based on the notion
of psychological processes as dynamic systems. Although the statistical models
needed to investigate these theories may seem exotic or difficult to interpret at first,
they reflect the simple intuitive and empirical notions we have about psychological
processes: Human behavior, emotion, and cognition fluctuate continuously over
time, and the models we use should reflect that. We hope that our treatment of
CT-VAR(1) models and their interpretation will help researchers to overcome the
knowledge barrier to this approach and can serve as a stepping stone toward a
broader adaptation of the CT dynamical system approach to psychology.
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Appendix: Matrix Exponential

Similar to the scalar exponential, the matrix exponential can be defined as an infinite
sum

eA =
∞∑

k=0

1

k!A
k

The exponential of a matrix is not equivalent to taking the scalar exponential of each
element of the matrix, unless that matrix is diagonal. The exponential of a matrix
can be found using an eigenvalue decomposition

A = V DV −1

where V is a matrix of eigenvectors of A and D is a diagonal matrix of the
eigenvalues of A (cf. Moler and Van Loan 2003). The matrix exponential of A is
given by

eA = V eDV −1

where eD is the diagonal matrix whose entries are the scalar exponential of the
eigenvalues of A. When we want to solve for the matrix exponential of a matrix
multiplied by some constantΔt , we get

eAΔt = V eDΔtV −1 (2.12)

Take it that we have a 2 × 2 square matrix given by

A =
[
a b

c d

]

and we wish to solve for eAΔt . The eigenvalues of A are given by

λ1 = 1

2

(
a + d −

√
a2 + 4bc− 2ad + d2

)

λ2 = 1

2

(
a + d +

√
a2 + 4bc− 2ad + d2

)
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where we will from here on denote

R =
√
a2 + 4bc− 2ad + d2

for notational simplicity. The exponential of the diagonal matrix made up of
eigenvalues multiplied by the constant Δt is given by

eDΔt =
[
e

1
2 (a+d−R)Δt 0

0 e
1
2 (a+d+R)Δt

]

The matrix of eigenvectors of A is given by

V =
[
a−d−R

2c
a−d+R

2c
1 1

]

assuming c = 0, with inverse

V −1 =
[ −c
R

a−d+R
2R

c
R

−a+d+R
2R

]

.

Multiplying V eDV −1 gives us

eAΔt =
[
R−a+d

2R eλ1Δt + R+a−d
2R eλ2Δt b(−eλ1Δt+eλ2Δt )

R
c(−eλ1Δt+eλ2Δt )

R
R+a−d

2R eλ1Δt + R−a+d
2R eλ2Δt

]

(2.13)

Note that we present here only a worked out example for a 2 × 2 square
matrix. For larger square matrices (representing models with more variables), the
eigenvalue decomposition remains the same although the terms for the eigenvalues,
eigenvectors, and determinants become much less feasible to present.

References

Aalen, O., Gran, J., Røysland, K., Stensrud, M., & Strohmaier, S. (2017). Feedback and mediation
in causal inference illustrated by stochastic process models. Scandinavian Journal of Statistics,
45, 62–86. https://doi.org/10.1111/sjos.12286

Aalen, O., Røysland, K., Gran, J., Kouyos, R., & Lange, T. (2016). Can we believe the DAGs?
A comment on the relationship between causal DAGs and mechanisms. Statistical Methods in
Medical Research, 25(5), 2294–2314. https://doi.org/10.1177/0962280213520436

Aalen, O., Røysland, K., Gran, J., & Ledergerber, B. (2012). Causality, mediation and time: A
dynamic viewpoint. Journal of the Royal Statistical Society: Series A (Statistics in Society),
175(4), 831–861.

Bisconti, T., Bergeman, C. S., & Boker, S. M. (2004). Emotional well-being in recently bereaved
widows: A dynamical system approach. Journal of Gerontology, Series B: Psychological
Sciences and Social Sciences, 59, 158–167. https://doi.org/10.1093/geronb/59.4.P158

https://doi.org/10.1111/sjos.12286
https://doi.org/10.1177/0962280213520436
https://doi.org/10.1093/geronb/59.4.P158


52 O. Ryan et al.

Boker, S. M. (2002). Consequences of continuity: The hunt for intrinsic properties within
parameters of dynamics in psychological processes. Multivariate Behavioral Research, 37(3),
405–422. https://doi.org/10.1207/S15327906MBR3703-5

Boker, S. M., Deboeck, P., Edler, C., & Keel, P. (2010a). Generalized local linear approximation
of derivatives from time series. In S. Chow & E. Ferrar (Eds.), Statistical methods for modeling
human dynamics: An interdisciplinary dialogue (pp. 179–212). Boca Raton, FL: Taylor &
Francis.

Boker, S. M., & McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-
sectional and longitudinal data. Experimental Aging Research, 21, 77–93. https://doi.org/10.
1080/03610739508254269

Boker, S. M., Montpetit, M. A., Hunter, M. D., & Bergeman, C. S. (2010b). Modeling resilience
with differential equations. In P. Molenaar & K. Newell (Eds.), Learning and development:
Individual pathways of change (pp. 183–206). Washington, DC: American Psychological
Association. https://doi.org/10.1037/12140-011

Boker, S. M., Neale, M., & Rausch, J. (2004). Latent differential equation modeling with
multivariate multi-occasion indicators. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.),
Recent developments on structural equation models (pp. 151–174). Dordrecht: Kluwer.

Boker, S. M., & Nesselroade, J. R. (2002). A method for modeling the intrinsic dynamics of
intraindividual variability: Recovering parameters of simulated oscillators in multi-wave panel
data. Multivariate Behavioral Research, 37, 127–160.

Boker, S. M., Staples, A. D., & Hu, Y. (2016). Dynamics of change and change in dynamics.
Journal for Person-Oriented Research, 2(1–2), 34. https://doi.org/10.17505/jpor.2016.05

Bolger, N., & Laurenceau, J.-P. (2013). Intensive longitudinal methods: An introduction to diary
and experience sampling research. New York, NY: The Guilford Press.

Bringmann, L., Lemmens, L., Huibers, M., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the
dynamic network structure of the beck depression inventory-ii. Psychological Medicine, 45(4),
747–757. https://doi.org/10.1017/S0033291714001809

Bringmann, L., Pe, M., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W., . . . Kuppens,
P. (2016). Assessing temporal emotion dynamics using networks. Assessment, 23(4), 425–435.
https://doi.org/10.1177/1073191116645909

Bringmann, L., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, . . . Tuerlinckx, F.
(2013). A network approach to psychopathology: New insights into clinical longitudinal data.
PLoS ONE, 8, e60188. https://doi.org/10.1371/journal.pone.0060188

Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic
factor models: Some promising uses and extensions of ARMA time series models. In
A. Maydue-Olivares & J. J. McArdle (Eds.), Psychometrics: A festschrift to Roderick P.
McDonald (pp. 415–452). Mahwah, NJ: Lawrence Erlbaum Associates.

Chow, S., Ferrer, E., & Hsieh, F. (2011). Statistical methods for modeling human dynamics: An
interdisciplinary dialogue. New York, NY: Routledge.

Chow, S., Ferrer, E., & Nesselroade, J. R. (2007). An unscented Kalman filter approach to the
estimation of nonlinear dynamical systems models. Multivariate Behavioral Research, 42(2),
283–321. https://doi.org/10.1080/00273170701360423

Chow, S., Ram, N., Boker, S., Fujita, F., Clore, G., & Nesselroade, J. (2005). Capturing weekly
fluctuation in emotion using a latent differential structural approach. Emotion, 5(2), 208–225.

De Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L., & Hamaker, E. (2017). Discrete- versus
continuous-time modeling of unequally spaced ESM data. Frontiers in Psychology, 8, 1849.
https://doi.org/10.3389/fpsyg.2017.01849

Deboeck, P. R., & Preacher, K. J. (2016). No need to be discrete: A method for continuous time
mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23(1), 61–75.

Denollet, J., & De Vries, J. (2006). Positive and negative affect within the realm of depression,
stress and fatigue: The two-factor distress model of the Global Mood Scale (GMS). Journal of
Affective Disorders, 91(2), 171–180. https://doi.org/10.1016/j.jad.2005.12.044

Dormann, C., & Griffin, M. A. (2015). Optimal time lags in panel studies. Psychological Methods,
20(4), 489. https://doi.org/10.1037/met0000041

https://doi.org/10.1207/S15327906MBR3703-5
https://doi.org/10.1080/03610739508254269
https://doi.org/10.1080/03610739508254269
https://doi.org/10.1037/12140-011
https://doi.org/10.17505/jpor.2016.05
https://doi.org/10.1017/S0033291714001809
https://doi.org/10.1177/1073191116645909
https://doi.org/10.1371/journal.pone.0060188
https://doi.org/10.1080/00273170701360423
https://doi.org/10.3389/fpsyg.2017.01849
https://doi.org/10.1016/j.jad.2005.12.044
https://doi.org/10.1037/met0000041


2 A Continuous-Time Approach to Intensive Longitudinal Data: What, Why,. . . 53

Driver, C., Oud, J. H. L., & Voelkle, M. (2017). Continuous time structural equation modelling
with r package ctsem. Journal of Statistical Software, 77, 1–35. https://doi.org/10.18637/jss.
v077.i05

Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic modeling.
Psychological Methods. Advance online publication. http://dx.doi.org/10.1037/met0000168

Fisher, M. (2001). Modeling negative autoregression in continuous time. http://www.markfisher.
net/mefisher/papers/continuous_ar.pdf

Gault-Sherman, M. (2012). It’s a two-way street: The bidirectional relationship between parenting
and delinquency. Journal of Youth and Adolescence, 41, 121–145. https://doi.org/10.1007/
s10964-011-9656-4

Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal models. Child
Development, 58, 80–92. https://doi.org/10.2307/1130293

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral
methods. Econometrica, 37, 424–438. https://doi.org/10.2307/1912791

Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of the individ-
ual: Rationale and application of multivariate time series analysis. Multivariate Behavioral
Research, 40(2), 207–233. https://doi.org/10.1207/s15327906mbr4002_3

Hamaker, E. L., & Grasman, R. P. P. P. (2015). To center or not to center? Investigating inertia with
a multilevel autoregressive model. Frontiers in Psychology, 5, 1492. https://doi.org/10.3389/
fpsyg.2014.01492

Hamaker, E. L., Kuiper, R., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel
model. Psychological Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889

Hamerle, A., Nagl, W., & Singer, H. (1991). Problems with the estimation of stochastic differential
equations using structural equations models. Journal of Mathematical Sociology, 16(3), 201–
220. https://doi.org/10:1080=0022250X:1991:9990088

Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.
Horn, E. E., Strachan, E., & Turkheimer, E. (2015). Psychological distress and recurrent herpetic

disease: A dynamic study of lesion recurrence and viral shedding episodes in adults. Multivari-
ate Behavioral Research, 50(1), 134–135. https://doi.org/10.1080/00273171.2014.988994

Ichii, K. (1991). Measuring mutual causation: Effects of suicide news on suicides in Japan. Social
Science Research, 20, 188–195. https://doi.org/10.1016/0049-089X(91)90016-V

Johnston, J., & DiNardo, J. (1997). Econometric methods (4th ed.). New York, NY: McGraw-Hill.
Kim, C.-J., & Nelson, C. R. (1999). State-space models with regime switching: Classical and

Gibbs-sampling approaches with applications. Cambridge, MA: The MIT Press. https://doi.
org/10.2307/2669796

Kossakowski, J., Groot, P., Haslbeck, J., Borsboom, D., & Wichers, M. (2017). Data from
critical slowing down as a personalized early warning signal for depression. Journal of Open
Psychology Data, 5(1), 1.

Koval, P., Kuppens, P., Allen, N. B., & Sheeber, L. (2012). Getting stuck in depression: The roles
of rumination and emotional inertia. Cognition and Emotion, 26, 1412–1427.

Kuiper, R. M., & Ryan, O. (2018). Drawing conclusions from cross-lagged relationships: Re-
considering the role of the time-interval. Structural Equation Modeling: A Multidisciplinary
Journal. https://doi.org/10.1080/10705511.2018.1431046

Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and psychological malad-
justment. Psychological Science, 21(7), 984–991. https://doi.org/10.1177/0956797610372634

Kuppens, P., Sheeber, L. B., Yap, M. B. H., Whittle, S., Simmons, J., & Allen, N. B. (2012).
Emotional inertia prospectively predicts the onset of depression in adolescence. Emotion, 12,
283–289. https://doi.org/10.1037/a0025046

Meier, B. P., & Robinson, M. D. (2004). Why the sunny side is up: Associations between affect and
vertical position. Psychological Science, 15(4), 243–247. https://doi.org/10.1111/j.0956-7976.
2004.00659.x

Moberly, N. J., & Watkins, E. R. (2008). Ruminative self-focus and negative affect: An experience
sampling study. Journal of Abnormal Psychology, 117, 314–323. https://doi.org/10.1037/0021-
843X.117.2.314

https://doi.org/10.18637/jss.v077.i05
https://doi.org/10.18637/jss.v077.i05
http://dx.doi.org/10.1037/met0000168
http://www.markfisher.net/mefisher/papers/continuous_ar.pdf
http://www.markfisher.net/mefisher/papers/continuous_ar.pdf
https://doi.org/10.1007/s10964-011-9656-4
https://doi.org/10.1007/s10964-011-9656-4
https://doi.org/10.2307/1130293
https://doi.org/10.2307/1912791
https://doi.org/10.1207/s15327906mbr4002_3
https://doi.org/10.3389/fpsyg.2014.01492
https://doi.org/10.3389/fpsyg.2014.01492
https://doi.org/10.1037/a0038889
https://doi.org/10:1080=0022250X:1991:9990088
https://doi.org/10.1080/00273171.2014.988994
https://doi.org/10.1016/0049-089X(91)90016-V
https://doi.org/10.2307/2669796
https://doi.org/10.2307/2669796
https://doi.org/10.1080/10705511.2018.1431046
https://doi.org/10.1177/0956797610372634
https://doi.org/10.1037/a0025046
https://doi.org/10.1111/j.0956-7976.2004.00659.x
https://doi.org/10.1111/j.0956-7976.2004.00659.x
https://doi.org/10.1037/0021-843X.117.2.314
https://doi.org/10.1037/0021-843X.117.2.314


54 O. Ryan et al.

Moler, C., & Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review, 45(1), 3–49.

Oravecz, Z., & Tuerlinckx, F. (2011). The linear mixed model and the hierarchical Ornstein–
Uhlenbeck model: Some equivalences and differences. British Journal of Mathematical and
Statistical Psychology, 64(1), 134–160. https://doi.org/10.1348/000711010X498621

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic
difference equation model for affective dynamics. Psychological Methods, 16, 468–490. https://
doi.org/10.1037/a0024375

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2016). Bayesian data analysis with the bivariate
hierarchical Ornstein-Uhlenbeck process model. Multivariate Behavioral Research, 51(1),
106–119. https://doi.org/10.1080/00273171.2015.1110512

Oud, J. H. L. (2007). Continuous time modeling of reciprocal relationships in the cross-lagged
panel design. In S. M. Boker & M. J. Wenger (Eds.), Data analytic techniques for dynamic
systems in the social and behavioral sciences (pp. 87–129). Mahwah, NJ: Lawrence Erlbaum
Associates.

Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by means of
SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal research with latent
variables (pp. 201–244). New York, NY: Springer. https://doi.org/10.1007/978-3-642-11760-
2-7

Oud, J. H. L., & Jansen, R. A. (2000). Continuous time state space modeling of panel data by
means of SEM. Psychometrika, 65(2), 199–215. https://doi.org/10.1007/BF02294374

Oud, J. H. L., van Leeuwe, J., & Jansen, R. (1993). Kalman filtering in discrete and continuous
time based on longitudinal lisrel models. In Advances in longitudinal and multivariate analysis
in the behavioral sciences (pp. 3–26). Nijmegen: ITS.

Reichardt, C. S. (2011). Commentary: Are three waves of data sufficient for assessing mediation?
Multivariate Behavioral Research, 46(5), 842–851.

Rovine, M. J., & Walls, T. A. (2006). Multilevel autoregressive modeling of interindividual
differences in the stability of a process. In T. A. Walls & J. L. Schafer (Eds.), Models for
intensive longitudinal data (pp. 124–147). New York, NY: Oxford University Press. https://
doi.org/10.1093/acprof:oso/9780195173444.003.0006

Schuurman, N. K., Ferrer, E., de Boer-Sonnenschein, M., & Hamaker, E. L. (2016). How
to compare cross-lagged associations in a multilevel autoregressive model. Psychological
methods, 21(2), 206–221. https://doi.org/10.1037/met0000062

Steele, J. S., & Ferrer, E. (2011). Latent differential equation modeling of selfregulatory and
coregulatory affective processes. Multivariate Behavioral Research, 46(6), 956–984. https://
doi.org/10.1080/00273171.2011.625305

Strogatz, S. H. (2014). Nonlinear dynamics and chaos: With applications to physics, biology,
chemistry, and engineering. Boulder, CO: Westview press.

Voelkle, M., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time
intervals for oscillating and non-oscillating processes. British Journal of Mathematical and
Statistical Psychology, 66(1), 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x

Voelkle, M., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous
time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods,
17, 176–192. https://doi.org/10.1037/a0027543

Watkins, M. W., Lei, P.-W., & Canivez, G. L. (2007). Psychometric intelligence and achievement:
A cross-lagged panel analysis. Intelligence, 35, 59–68. https://doi.org/10.1016/j.intell.2006.04.
005

https://doi.org/10.1348/000711010X498621
https://doi.org/10.1037/a0024375
https://doi.org/10.1037/a0024375
https://doi.org/10.1080/00273171.2015.1110512
https://doi.org/10.1007/978-3-642-11760-2-7
https://doi.org/10.1007/978-3-642-11760-2-7
https://doi.org/10.1007/BF02294374
https://doi.org/10.1093/acprof:oso/9780195173444.003.0006
https://doi.org/10.1093/acprof:oso/9780195173444.003.0006
https://doi.org/10.1037/met0000062
https://doi.org/10.1080/00273171.2011.625305
https://doi.org/10.1080/00273171.2011.625305
https://doi.org/10.1111/j.2044-8317.2012.02043.x
https://doi.org/10.1037/a0027543
https://doi.org/10.1016/j.intell.2006.04.005
https://doi.org/10.1016/j.intell.2006.04.005


Chapter 3
On Fitting a Continuous-Time Stochastic
Process Model in the Bayesian
Framework

Zita Oravecz, Julie Wood, and Nilam Ram

3.1 Introduction

Process modeling offers a robust framework for developing, testing, and refining
substantive theories through mathematical specification of the mechanisms and/or
latent processes that produce observed data. Across many fields of application
(e.g., chemistry, biology, engineering), process modeling uses detailed mathematical
models to obtain accurate description and explanation of equipment and phenom-
ena, and to support prediction and optimization of both intermediate and final
outcomes. In the social and behavioral sciences, the process modeling approach
is being used to obtain insight into the complex processes underlying human
functioning. In particular, the approach offers a way to describe substantively
meaningful components of behavior using mathematical functions that map directly
to theoretical concepts. In cognitive science, for example, drift diffusion models
(see, e.g., Ratcliff and Rouder 1998) have been used to derive rate of information
accumulation, non-decision time, bias, and decision boundaries from observed data
on reaction time and correctness of response. Applied to data about individuals’
decisions in gambling tasks, process models are used to describe people’s tendency
to take risks, their response consistency, and their memory for payoffs (Wetzels
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et al. 2010). In sociology, multinomial tree-based process models have been used to
infer cultural consensus, latent ability, willingness to guess, and guessing bias from
individuals’ judgments on a shared knowledge domain (Oravecz et al. 2014). In
psychology, process models are proving especially useful for study of regulatory and
interpersonal processes. Process models based on principles governing thermostats
and reservoirs are being used to describe regulation of negative affect and stress
(Chow et al. 2005; Deboeck and Bergeman 2013), and process models based
on physical principles of pendulums are being used to describe interaction and
coordination between partners of a dyad (e.g., wife-husband, mother-child; see in
Chow et al. 2010; Ram et al. 2014; Thomas and Martin 1976). In this paper we
present and illustrate how a specific process model, a multilevel Ornstein-Uhlenbeck
model, can be used to describe and study moment-to-moment continuous-time
dynamics of affect captured in ecological momentary assessment studies.

Process modeling is, of course, sometimes challenging. Mathematically precise
descriptions of humans’ behavior are often complex, with many parameters, non-
linear relations, and multiple layers of between-person differences that require
consideration within a multilevel framework (e.g., repeated measures nested within
persons nested within dyads or groups). The complexity of the models often means
that implementation within classical statistical frameworks is impractical. Thank-
fully, the Bayesian statistical inference framework (see, e.g., Gelman et al. 2013) has
the necessary tools. The algorithms underlying the Bayesian estimation framework
are designed for highly dimensional problems with non-linear dependencies.

Consider, for example, the multilevel extension of continuous-time models
where all dynamic parameters are allowed to vary across people, thus describing
individual differences in intraindividual variation or velocity of changes. Driver
et al. (2017) offer an efficient and user-friendly R package for estimation of mul-
tilevel continuous-time models, cast in the structural equation modeling framework.
However, at the time of writing, person differences are only allowed in the intercepts
and not in the variance or velocity parameters. A flexible Bayesian extension of the
package that allows for all dynamics parameters to be person-specific is, though,
in progress (Driver and Voelkle 2018). Importantly, flexible Markov chain Monte
Carlo methods (Robert and Casella 2004) at the core of Bayesian estimation also
provide for simultaneous estimation of model parameters and regression coefficients
within a multilevel framework that supports identification and examination of
interindividual differences in intraindividual dynamics (i.e., both time-invariant and
time-varying covariates).

In the sections that follow, we review how process models are used to analyze
longitudinal data obtained from multiple persons (e.g., ecological momentary
assessment data), describe the mathematical details of the multilevel Ornstein-
Uhlenbeck model, and illustrate through empirical example how a Bayesian imple-
mentation of this model provides for detailed and new knowledge about individuals’
affect regulation.
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3.1.1 The Need for Continuous-Time Process Models
to Analyze Intensive Longitudinal Data

Psychological processes continuously organize behavior in and responses to an
always-changing environment. In attempting to capture these processes as they
occur in situ, many researchers make use of a variety of experience sampling,
daily diary, ecological momentary assessment (EMA), and ambulatory assessment
study designs. In EMA studies, for example, self-reports and/or physiological
measurements are collected multiple times per day over an extended period of
time (i.e., weeks) from many participants as they go about their daily lives—
thus providing ecological validity and reducing potential for reporting bias in the
observations (Shiffman et al. 2008; Stone and Shiffman 1994). The data obtained
are considered intensive longitudinal data (ILD, Bolger and Laurenceau 2013;
Walls and Schafer 2006), in that they contain many replicates across both persons
and time, and support modeling of interindividual differences in intraindividual
dynamics. ILD, however, also present unique analytical challenges. First, the
data are often unbalanced. The number of measurements is almost never equal
across participants because the intensive nature of the reporting means that study
participants are likely to miss at least some of the prompts and/or (particularly in
event contingent designs) provide a different number of reports because of natural
variation in exposure to the phenomena of interest. Second, the data are often
time-unstructured. Many EMA studies purposively use semi-random time sampling
to reduce expectation biases in reporting and obtain what might be considered a
representative sampling of individuals’ context. Although the in situ and intensive
nature of the data obtained in these studies provides for detailed description of the
processes governing the moment-to-moment continuous-time dynamics of multiple
constructs (e.g., affect valence, affect arousal), the between-participant differences
in data collection schedule (length and timing) make it difficult to use traditional
statistical modeling tools that assume equally spaced measurements or equal number
of measurements. Modeling moment-to-moment dynamics in the unbalanced and
time-unstructured data being obtained in EMA studies requires continuous-time
process models (see more discussion in Oud and Voelkle 2014b).

3.1.2 The Need for Continuous-Time Process Models
to Capture Temporal Changes in Core Affective States

To illustrate the benefits of a process modeling approach and the utility of
continuous-time process models, we will analyze data from an EMA study in which
participants reported on their core affect (Russell 2003) in the course of living
their everyday lives. In brief, core affect is a neurophysiological state defined by
an integral blend of valence (level of pleasantness of feeling) and arousal (level of
physiological activation) levels. Core affect, according to the theory of constructed
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emotion (see, e.g., Barrett 2017), underlies all emotional experience and changes
continuously over time. People can consciously access their core affect by indicating
the level of valence and arousal of their current experience. Our empirical example
makes use of data collected as part of an EMA study where N = 52 individuals
reported on their core affect (valence and arousal) for 4 weeks, six times a day
at semi-random time intervals. Specifically, participants’ awake time was divided
into six equal-length time intervals within which a randomly timed text prompt
arrived asking participants about their current levels of core affect (along with
other questions related to general well-being). The intensive longitudinal data,
obtained from four individuals, are shown in Fig. 3.1. Interval-to-interval changes
in arousal and valence are shown in gray and blue, respectively. Some individual
differences are immediately apparent: the four people differ in terms of the center
of the region in which their core affect fluctuates, the extent of fluctuation, and the
degree of overlap in arousal and valence. The process modeling goal is to develop a
mathematical specification of latent processes that underlie the moment-to-moment
dynamics of core affect and how those dynamics differ across people.

Based on reviews of empirical studies of temporal changes in emotions and
affect, Kuppens et al. (2010) proposed the DynAffect framework, wherein intraindi-
vidual affective dynamics are described in terms of three key elements: affective
baseline, homeostatic regulatory force, and variation around the baseline. Using
a process modeling approach, these features are translated into a mathematical
description of core affect dynamics—a continuous-time process model. Important
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general features of the mathematical parameterization include the following: (1)
the latent person-level temporal dynamics of core affect are explicitly mapped to
the substantive theory, (2) measurement noise in observed data is accommodated
through addition of a measurement model, and (3) simultaneous modeling of
person and population-level characteristics (e.g., organization of interindividual
differences) is accommodated within a multilevel framework. Previous studies using
similar process models have confirmed the utility of the approach for studying
interindividual differences in intraindividual dynamics. In particular, it has been
shown that people who score high on the neuroticism scale of Big Five personality
model show lower baseline pleasantness and increased fluctuation (Oravecz et al.
2011), people who tend to apply reappraisal as emotion regulation strategy show
higher levels of moment-to-moment arousal regulation (Oravecz et al. 2016), and
older people tend to have higher arousal baseline with less fluctuation (Wood et al.
2017). In this chapter we add new information about how interindividual differences
in the temporal dynamics of core affect are related to interindividual differences in
trait-level emotional well-being (i.e., relatively stable characteristics of individuals’
emotional patterns).

3.2 The Ornstein-Uhlenbeck Process to Describe
Within-Person Latent Temporal Dynamics

3.2.1 The Stochastic Differential Equation Definition
of the Ornstein-Uhlenbeck Process

As noted earlier, process modeling requires specification of a mathematical model
that describes the mechanisms and/or latent processes that produce observed data.
Here, three key features of the temporal dynamics of core affect are described by
using an Ornstein-Uhlenbeck process model (OU; Uhlenbeck and Ornstein 1930),
the parameters of which will be estimated using EMA data that are considered noisy
measurements of this latent process. Let us denote the position of the latent process
at time t with θ(t). The OU process can be defined as a solution of the following
first-order stochastic differential equation (Langevin equation):

dθ(t) = β(μ− θ(t))dt + σdW(t). (3.1)

Parameter θ(t) represents the latent variable evolving in time, and Eq. (3.1)
describes the change in this latent variable, dθ(t), with respect to time t . As
can be seen, changes in the latent state are a function of μ, which represents the
baseline level of the process, β, which represents attractor or regulatory strength,
W(t), which is the position of a standard Wiener process (also known as Brownian
motion; Wiener 1923) at time t , and σ , which scales the added increments (dW(t))
from the Wiener process (together, also called the innovation process). The Wiener
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process evolves in continuous time, following a random trajectory, uninfluenced by
its previous positions. If you consider Eq. (3.1) as a model for temporal changes in
a person’s latent core affect dynamics, μ corresponds to the baseline or homeostatic
“goal,” and β quantifies the strength of the regulation toward this goal.

The first part of the right-hand side of Eq. (3.1), β(μ − θ(t))dt , describes the
deterministic part of the process dynamics. In this part of the model, the degree
and direction of change in θ(t) is determined by the difference between the state
of the process at time t , θ(t), and the baseline, μ, which is scaled by an attractor
strength coefficient β (also called drift). We only consider stable processes here,
meaning that the adjustment created by the deterministic part of the dynamics is
always toward the baseline and never away from it. This is achieved in the current
parameterization by restricting the range of β to be positive.1 More specifically,
when the process is above baseline (θ(t) > μ), the time differential dt is scaled
by a negative number (μ − θ(t) < 0); therefore the value of θ(t) will decrease
toward baseline as a function of the magnitude of the difference, scaled by β.
Similarly, when the process is below baseline (μ > θ(t)), time differential dt part
is positive, and the value of θ(t) will increase toward baseline. As such, the OU
process is a mean-reverting process: the current value of θ(t) is always adjusted
toward the baseline, μ, which is therefore characterized as the attractor point of the
system. The magnitude of the increase or decrease in θ(t) is scaled proportional
to distance from the baseline by β, which defines the attractor strength. When β
goes to zero, the OU process approaches a Wiener process, that is, a continuous-
time random walk process. When β becomes very large (goes to infinity), the OU
process fluctuates around the baselineμwith a certain variance (stationary variance,
see next paragraph).

The second part of the right-hand side of Eq. (3.1), σdW(t), describes the
stochastic part of the process dynamics. This part adds random input to the system,
the magnitude of which is scaled by β and σ . Parameter σ can be transformed into a
substantively more interesting parameter γ , by scaling it with the regulation strength

β, that is γ = σ 2

2β . The γ parameter expresses the within-person fluctuation around
baseline due to inputs to the system-defined as all affect-provoking biopsychosocial
(BPS) influences internal and external to the individual. As such, γ can be viewed
substantively as the degree of BPS-related reactivity in the core affect system or
the extent of input that constantly alters the system. Parameter γ is the stationary
variance of the OU process: if we let the process evolve over a long time (t → ∞),
the OU process converges to a stationary distribution, a normal distribution with
mean μ and variance γ , given that we have a stable process (i.e., β > 0; see above).

Together, the deterministic and stochastic parts of the model describe how the
latent process of interest (e.g., core affect) changes over time: it is continuously
drawn toward the baseline while also being disrupted by the stochastic inputs.
Psychological processes for which this type of perturbation and mean reversion can
be an appropriate model include emotion dynamics and affect regulation (Gross

1More intricate dynamics with unrestricted range β include exploding processes with repellers.
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2002), semantic foraging (i.e., search in semantic memory, see Hills et al. 2012),
and so on. In our current example on core affect, the deterministic part of the
OU process is used to describe person-specific characteristics of a self-regulatory
system, and the stochastic part of the process is used to describe characteristics
of the biopsychosocial inputs that perturb that system—and invoke the need for
regulation.

To illustrate the three main parameters of the Ornstein-Uhlenbeck process, we
simulated data with different μ, γ , and β values, shown in Fig. 3.2. Baseline (μ)
levels are indicated with dotted gray lines. In the first row of the plot matrix, only
the baseline, μ, differs between the two plots (set to 50 on the left and 75 on the
right), and γ and β are kept the same (100 and 1, respectively). In the second row,
only the level of the within-person variance, γ , differs between the two plots (set to
100 on the right and 200 on the left), while μ and β are kept the same (50 and 1,
respectively). Finally, in the last row, we manipulate only the level of mean-reverting
regulatory force, with a low level of regulation set on the left plot (β = 0.1) and high
regulation on the right (β = 5). The baseline and the BPS-reactivity kept the same
(μ = 50 and γ = 100). As can be seen, the process on the left wanders away from
the baseline and tends to stay longer in one latent position. Descriptively, low β

(i.e., weak regulation) on the left produces θ with high autocorrelation (e.g., high
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Fig. 3.2 Six Ornstein-Uhlenbeck process trajectories. Each trajectory in the plot matrix consists
of 150 irregularly spaced data points. In the first row, the μ was set to 50 for the left plot and 75 for
the right plot, with γ kept at 100 and β at 1 for both plots. In the second row, μ and β were kept
the same (50 and 1), and γ was set to 100 for the right and 200 for the left. For the last row, μ and
γ were kept the same (50 and 100), and β-s were set to 0.1 for the left plot and 5 for the right plot
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“emotion inertia”), while high β (i.e., strong regulation) on the right produces θ
with low autocorrelation (e.g., low “emotion inertia”).

3.2.2 The Position Equation of the Ornstein-Uhlenbeck
Process

Once the temporal dynamics have been articulated in mathematical form, param-
eters of the model can estimated from empirical data. With the OU model,
however, the estimation algorithm for obtaining parameters in Eq. (3.1) would
require approximation of the derivatives from the data shown in Fig. 3.1, potentially
introducing some approximation errors. Instead, we take a different approach,
solving the stochastic integral in Eq. (3.1) and then estimating the parameters in
the integrated model directly from the actual observed data.

We can integrate over Eq. (3.1), to get the value of the latent state θ (i.e., the
position of the process) at time t , after some time differenceΔ:

θ(t) = μ+ e−βΔ(θ(t −Δ)− μ)+ σe−βΔ
∫ t

t−Δ
eβudW(u). (3.2)

The integral in Eq. (3.2) is a stochastic integral, taken over the Wiener process. For
the OU process, the above stochastic integral was solved based on Itô calculus (see,
e.g., Dunn and Gipson 1977), resulting in the conditional distribution of OU process
positions, more specifically:

θ(t) | θ(t −Δ) ∼ N(μ+ e−βΔ(θ(t −Δ)− μ), γ − γ e−2βΔ). (3.3)

Equation (3.3) is the conditional distribution of the position of the OU process,
θ(t), based on the previous position of the process at θ(t − Δ) after elapsed
time Δ and based on its three process parameters, μ, γ , and β, described earlier.
Equation (3.3) is a particularly useful representation of the OU process as it can
be used to formulate the likelihood function for the OU model without the need of
approximating derivatives in Eq. (3.1).

The mean of the distribution presented in Eq. (3.3) is a compromise between
the baseline μ and the distance of the process from its baseline (θ(t) − μ), scaled
by e−βΔ. The larger β and/or Δ is, the closer this exponential expression gets to
0, and the mean of Eq. (3.3) will get closer to μ. When β and/or Δ are small,
the exponential part approaches 1, and the mean will be closer to θ(t). In fact, β
controls the continuous-time exponential autocorrelation function of the process;
larger β-s correspond to lower autocorrelation and more centralizing behavior.
Naturally, autocorrelation also decreases with the passage of time (higher values of
Δ). Figure 3.3 shows a graphical illustration of the continuous-time autocorrelation
function of the OU process. Larger values of β correspond to faster regulation to
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Fig. 3.3 Continuous-time autocorrelation function of the OU process

baseline μ, therefore less autocorrelation in the positions of θ over time. Smaller β
values correspond to more autocorrelation over time.

The variance of the process presented in Eq. (3.3) is γ − γ e−2βΔ. We can re-
arrange this expression to the form of γ (1 − e−2βΔ). Now if we consider a large
Δ value (long elapsed time), the exponential part of this expression goes to 0.
Therefore γ represents all the variation in the process—it is the stationary (long
run) variance, as described above. The moment-to-moment variation is governed by
γ but scaled by the elapsed time and the attractor strength.

3.2.3 Extending the Ornstein-Uhlenbeck Process to Two
Dimensions

Thus far, we have presented the model with respect to a univariate θ(t). Many
psychological processes, however, involve multiple variables. Core affect, for
example, is defined by levels of both valence and arousal. Process models of core
affect, thus, might also consider how the two component variables covary. We can
straightforwardly extend into multivariate space by extending θ(t) into a multi-
variate vector, Θ , and the corresponding multivariate (n-dimensional) extension of
Eq. (3.1) is:

dΘ(t) = B(μ − Θ(t))dt + ΣdW(t), (3.4)
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where μ is an n×1 vector,B and Σ are n×nmatrices. The conditional distribution
of a bivariate OU process model based on this equation is (see, e.g, Oravecz et al.
2011):

Θ(t)|Θ(t −Δ) ∼ N2

(
μ + e−BΔ(Θ(t −Δ)− μ),Γ − e−BΔΓ e−BTΔ

)
. (3.5)

The latent state at time t is now represented in a 2 × 1 vector Θ . Parameter μ is
2 × 1 vector representing the baselines for the two variables (μ1 and μ2); Γ is a 2
× 2 stationary covariance matrix, with within-person variances (γ1 and γ2) in the
diagonal and covariance in the positions of the process in the off-diagonal, with
γ12 = γ21 = ργ

√
γ1γ2 = σ12

β1β2
. Drift matrix B is defined as a 2 × 2 diagonal

matrix with attractor strength parameters (β1 and β2) on its diagonals (T stands for
transpose).

It is straightforward to use Eq. (3.5) to describe positions for the latent process
dynamics for a single person p (p = 1, . . . , P ). Let us assume that we want to
model np positions for person p, at times tp,1, tp,2, . . . , tp,s , . . . , tp,np . The index
s denotes the sth measurement occasion of person p. Now elapsed time Δ can be
written specifically as elapsed time between two of these time points: tp,s − tp,s−1.
We let all OU parameters be person-specific, and then Eq. (3.5) becomes:

Θ(tp,s)|Θ(tp,s−1) ∼ N2
(
μp,s + e−Bp(tp,s−tp,s−1)(Θ(tp,s−1)− μp,s), (3.6)

Γ p − e−Bp(tp,s−tp,s−1)Γ pe
−BT

p(tp,s−tp,s−1)
)
,

where Θ(tp,s) = (Θ1(tp,s),Θ2(tp,s))
T and the rest of the parameters are defined as

before in Eq. (3.5).
We note here that our choice of notation of the OU parameters was inspired by

literature on modeling animal movements with OU processes (see, e.g., Blackwell
1997; Dunn and Gipson 1977). However, in time-series literature in many of the
works referenced so far, the following formulation of the multivariate stochastic
differential equation is common:

dη(t) = (Aη(t)+ b)dt +GdW(t),

A simple algebraic rearrangement of our Eq. (3.4) gives:

dΘ(t) = (−BΘ(t)+ Bμ)dt + ΣdW(t).

If we work out the correspondence between the terms, we find that differences
for the latent states (Θ(t) = η(t)) and the scaler for the effect of the stochastic
fluctuations (Σ = G) are only on the level of the notation. With respect to the drift
matrix across the two formulations,A = −B, the correspondence is straightforward
(the sign only matters when stationarity constraints are to be implemented). The
only real difference between the two formulations concerns the b and μ parameters:
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in the formulation introduced in this chapter, μ has a substantively interesting
interpretation, since it represents a homeostatic baseline to which the process most
often returns. In contrast, the b parameter, in the more typical SDE formulation, only
denotes the intercept of the stochastic differential equation. Our process baseline
parameter derives from the typical SDE formulation as μ = −A−1b.

3.2.4 Accounting for Measurement Error

In many social and behavioral science applications, it is reasonable to assume
that observed data are actually noisy measurements of the latent underlying
process. Therefore, we add a state-space model extension to link the latent OU
process variables to the observed data. Equation (3.6) is considered a transition
equation, describing changes on the latent level. The observed data is denoted as
Y(tp,s) = (Y1(tp,s), Y2(tp,s))

T at time point tp,s for person p at observation s. The
measurement equation is then specified as:

Y(tp,s) = Θ(tp,s)+ ep,s (3.7)

with the error in measurement distributed as ep,s ∼ N2(0, Ep), with the off-
diagonals of Ep fixed to 0, and person-specific measurement error variances, ε1,p
and ε2,p, on the diagonals.

3.3 A Multilevel/Hierarchical Extension
to the Ornstein-Uhlenbeck Process

The above sections have outlined how the OU model can be used to describe intrain-
dividual dynamics for a given person, p. Also of interest is how individuals differ
from one another—interindividual differences in the intraindividual dynamics, and
how those differences are related to other between-person differences. The multi-
level framework allows for inferences on the hierarchical (or population, or group)
level while accommodating individual differences in a statistically coherent manner
(Gelman and Hill 2007; Raudenbush and Bryk 2002). The multilevel structure of
the model parameters assumes that parameters of the same type share a certain
commonality expressed by their superordinate population distributions. In brief,
when estimating OU parameters for multiple personsp = 1, . . . , P in the multilevel
framework, we pool information across participants by placing the parameters into
a distribution with specific shape (e.g., Gaussian). Treating the person-specific
parameters as random variables drawn from a particular interindividual difference
distribution thus improves the recovery of the person-level parameters. Further,
the multilevel modeling framework allows for a straightforward way to include
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covariates in the model, without needing to resort to a two-stage analysis (i.e., first
estimating person-level model parameters, then exploring their association with the
covariates through correlation or regression analysis). We will include both time-
varying covariates (TVCs) and time-invariant covariates (TICs) in the model. The
modeling of process model parameters such as the regulatory (attractor) force as a
function of covariates has not yet been a focus in continuous-time models, although
in many cases it can be done in a straightforward manner. In the next paragraphs, we
outline how reasonable population distributions are chosen for each person-specific
process model parameter.

3.3.1 Specifying the Population Distribution for the Baseline

The two-dimensional baseline, μp,s , shown in Eq. (3.6), can be made a function of
both time-varying and time-invariant covariates. For the TICs, let us assume that
K covariates are measured and xjp denotes the score of person p on covariate
j (j = 1, . . . , k). All person-specific covariate scores are collected into a vector
of length K + 1, denoted as xp = (xp,0, xp,1, xp,2, . . . , xp,K)

T, with xp,0 = 1,
to allow for an intercept term. Regarding the TVCs, suppose that we repeatedly
measure person p on D time-varying covariates which are collected in a vector
zp,s = (zp,s,1, . . . , zp,s,D)

T, where index s stands for sth measurement occasion for
person p. In order to avoid collinearity problems, no intercept is introduced in the
vector zp,s .

For the applied example, we use time of the self-report (e.g., time of day) as an
indicator of timing within a regular diurnal cycle as TVC (zp,s). We expected that
some people will show low levels of valence and arousal in the morning, with the
baseline increasing and decreasing in a quadratic manner over the course of the day.
We also consider interindividual differences in gender and self-reported emotional
health as TICs (xp). We expected that person-specific baselines, regulatory force,
and extent of BPS input would all differ systematically across gender and linearly
with general indicators of individuals’ emotional health.

The level 2 (population-level) distribution of μp,s with regression on the time-
invariant and time-varying covariates person-specific random variation can be
written as follows:

μp,s ∼ N2
(
Δpμzp,s + Aμxp,Σμ

)
. (3.8)

The covariance matrix Σμ is defined as:

Σμ =
[
σ 2
μ1

σμ1μ2

σμ1μ2 σ 2
μ2

]

, (3.9)
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where σ 2
μ1

and σ 2
μ2

quantify the unexplained (by covariates) individual differences
in baseline values in the two dimensions (in our case valence and arousal), and
the covariance parameter σμ1μ2 describes how person-specific levels of valence and
arousal covary on the population level, that is, it provides a between-person measure
of covariation in the core affect dimensions. The TVC regression coefficient matrix
Δpμ has dimensions 2D × P , allowing between-person differences in the time-
varying associations. The TIC regression coefficient matrix Aμ is of dimensions
2 × (K + 1), containing the regression weights for the time-invariant covariates xp.

3.3.2 Specifying the Population Distribution for the Regulatory
Force

The regulatory or attractor force is parameterized as a diagonal matrix Bp, with
diagonal elements β1p and β2p representing the levels of regulation for the two
dimensions. By definition this matrix needs to be positive definite to ensure that
there is always an adjustment toward the baseline and never away from it, implying
that the process is stable and stationary. This constraint will be implemented by
constraining both β1p and β2p to be positive. The population distributions for these
two will be set up with a lognormal population distribution. For β1p this is,

β1p ∼ LN
(
xT
pαβ1, σ

2
β1

)
.

The mean of this distribution is written as the product of time-invariant covariates
and their corresponding regression weights, with the vector αβ1 containing the
(fixed) regression coefficients and parameter σ 2

β1
representing the unexplained

interindividual variation in the regulatory force, in the first dimensions. The
specification and interpretation of the parameters for the second dimension follow
the same logic.

3.3.3 Specifying the Population Distribution for the BPS Input

The 2 × 2 stationary covariance matrix Γ p models the BPS-related reactivity of the
OU-specified process and is formulated as:

Γ p =
[
γ1p γ12p

γ21p γ2p

]

. (3.10)

Its diagonal elements (i.e., γ1p and γ2p) quantify the levels of fluctuation due
to BPS input in the two dimensions, in our case valence and arousal. The off-
diagonal γ12p = γ21p quantifies how valence and arousal covary within-person.
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The covariance can be decomposed into γ12p = ργp
√
γ1pγ2p, where ργp is the

contemporaneous (i.e., at the same time) correlation of the gamma parameters on
the level of the latent process. The diagonal elements of the covariance matrix (γ1p
and γ2p), that is, the variances, are constrained to be positive. We will model the
square root of the variance, that is, the intraindividual standard deviation, and assign
a lognormal (LN) population distribution to it to constrain it to the positive real line:

√
γ1p ∼ LN

(
xT
pαγ1, σ

2
γ1

)
.

The mean of this population-level distribution is modeled via the product of time-
invariant covariates and their corresponding regression weights, in the same manner
that was described for the regulatory force above. The vector αγ1 contains the
(fixed) regression coefficients, belonging to the set of person-level covariates. The
first element of αγ1 relates to the intercept and expresses the overall mean level of
BPS-related reactivity. The parameter σ 2

γ1
represents the unexplained interindividual

variation in BPS-related reactivity in the first dimension. The specification and
interpretation of the parameters for the second dimension follow the same logic.

The cross-correlation ργp is bounded between −1 and 1. By taking advantage of

the Fisher z-transformationF(ργp) = 1
2 log

1+ργp
1−ργp , we can transform its distribution

to the real line:

F(ργp ) ∼ N
(
xT
pαργ , σ

2
ργ

)
.

Again, αργ contains K + 1 regression weights and xT
p the K covariate values for

person p with 1 for the intercept, and σ 2
ργ

quantifies the unexplained interindividual
variation. The first coefficient of αργ belongs to the intercept and represents the
overall population-level within-person (standardized) correlation between the two
dimensions. We note that while the model can capture covariation across the two
dimensions, the current implementation is limited in the sense that it does not
capture how the processes may influence each other over time (i.e., the off-diagonal
elements of Bp are not estimated).

3.4 Casting the Multilevel OU Process Model in the Bayesian
Framework

Estimation of the full model and inference to both individuals and the population are
facilitated by the Bayesian statistical framework. In brief, the Bayesian statistical
inference framework entails using a full probability model that describes not
only our uncertainty in the value of an outcome variable (y) conditional on
some unknown parameter(s) (θ ) but also the uncertainty about the parameter(s)
themselves. The goal of Bayesian inference is to update our beliefs about the likely
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values of model parameters using the model and data. The relationship between
our prior beliefs about the parameters (before observing the data) and our posterior
beliefs about the parameters (after observing the data) is described by Bayes’
theorem: p(θ |y) = p(y|θ)p(θ)/p(y), which states that the posterior probability
distribution, p(θ |y), of parameter(s) θ given data y is equal to the product of
a likelihood function p(y|θ) and prior distribution p(θ), scaled by the marginal
likelihood of the data p(y). With the posterior distribution, we can easily make
nuanced and intuitive probabilistic inference. Since in Bayesian inference we obtain
a posterior probability distribution over all possible parameter values, instead of
merely point estimates, we can use the posterior distribution to make probabilistic
statements about parameters (and functions of parameters) of interest. For example,
we can easily derive the probability that the parameter value lies in any given
interval.

To cast the described multilevel process model in Bayesian framework, we used
Eqs. (3.6) and (3.7) as our likelihood function, and we specified non-informative
prior distributions on all parameters. The posterior can be thought of as a compro-
mise between the likelihood and the prior distributions and describes the relative
plausibility of all parameter values conditional on the model being estimated.
In the Bayesian framework, parameter estimation and inference focuses on the
posterior distribution. For some simple models, posterior distributions can be
calculated analytically, but for almost all nontrivial models, the posterior has to be
approximated numerically. Most commonly, Bayesian software packages employ
simulation techniques such as Markov chain Monte Carlo algorithms to obtain
many draws from the posterior distribution. After a sufficiently large number
of iterations, one obtains a Markov chain with the posterior distribution as its
equilibrium distribution, and the generated samples can be considered as draws
from the posterior distribution. Checks that the algorithm is behaving properly are
facilitated by use of multiple chains of draws that are started from different initial
values and should converge to the same range of values.

3.5 Investigating Core Affect Dynamics with the Bayesian
Multilevel Ornstein-Uhlenbeck Process Model

3.5.1 A Process Model of Core Affect Dynamics Measured
in an Ecological Momentary Assessment Study

Data used in the current illustration of the process modeling approach were collected
at Pennsylvania State University in the United States from N = 52 individuals
(35 female, mean age = 30 years, SD = 10) who participated in an EMA study
of core affect and well-being. Participants were informed that the study protocol
consisted of (1) filling out short web-based survey via their own smartphones,
six times a day for 4 weeks, while going on with the course of their everyday
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life and (2) completing a battery of personality tests and demographics items
during the introductory and exit sessions. After consent, the participants provided
their phone number and were registered with a text messaging service. Over the
course of the next month, participants received and responded to up to 168 text-
message-prompted surveys. Compliance was high, with participants completing an
average of 157 (SD = 15) of the surveys. Participants were paid proportional to
their response rate, with maximum payment of $200. In addition to the core affect
ratings of valence and arousal from the repeated surveys, we make use of two
sets of covariates. Linear and quadratic representations of the time of day of each
assessment, which ranged between 7 and 24 o’clock (centered at 12 noon), were
used as TVCs. Select information from the introductory and exit batteries were
used as TICs, namely, gender (n = 35 female) and two measures of emotional
functioning: the emotional well-being (M = 74, SD = 18) and role limitations due
to emotional problems (M = 77, SD = 36) scales from the 36-Item Short Form
Health Survey (SF-36; Ware et al. 1993) (centered and standardized for analysis).

The parameter estimation for the multilevel, bivariate OU model described by
Eqs. (3.6) and (3.7), was implemented in JAGS (Plummer 2003) and fitted to the
above data.2 Six chains of 65,000 iterations each were initiated from different
starting values, from which the initial 15,000 were discarded (adaptation and
burn-in). Convergence was checked using the Gelman-Rubin R̂ statistic (for more
information, see Gelman et al. 2013). All R̂’s were under 1.1 which indicated no
problems with convergence.

3.5.2 Population-Level Summaries and Individual Differences
of Core Affect Dynamics

Table 3.1 summarizes the results on the population level by showing posterior
summary statistics for the population mean values and interindividual standard
deviation for each process model parameter. The posterior summary statistics are
the posterior mean (column 2) and the lower and upper ends of the 90% highest
probability density interval (HDI; columns 3 and 4), designating the 90% range of
values with the highest probability density. We walk through each set of parameters
in turn.

The valence and arousal baselines were allowed to vary as function of time of day
(linear and quadratic). The displayed estimates for the population mean baselines
therefore represent estimated baselines at 12 noon. As seen in the first line of
Table 3.1, average core affect at noon is somewhat pleasant (59.60 on the 0–100
response scale) and activated (57.63). Posterior means for the linear and quadratic
effects of time of day indicate practically no diurnal trend for valence (1.30 for

2Code and data used in this chapter are available as supplementary material at the book website
http://www.springer.com/us/book/9783319772189.

http://www.springer.com/us/book/9783319772189
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Table 3.1 Population-level results

Model parameter Posterior 90% HDI

Description Notation mean Low High

Valence

Baseline intercept α1,μ1 59.60 54.54 64.75

Interindividual SD in baseline σμ1 12.05 9.51 14.43

Linear time effect αδ1,L 1.30 0.92 1.74

Interindividual SD in linear time effect σδ1,L 0.19 0.08 0.30

Quadratic time effect αδ1,Q −0.04 −0.05 −0.02

Interindividual SD in quadratic time σδ1,Q 0.00 0.00 0.01

BPS-related reactivity intercept α1,
√
γ1 7.53 5.30 10.94

Interindividual SD in BPS-related reactivity σ√
γ1 4.94 2.50 9.46

Regulation intercept α1,β1 0.17 0.09 0.33

Interindividual SD in regulation σβ1 0.19 0.06 0.57

Arousal

Baseline intercept α1,μ2 57.63 51.07 64.23

Interindividual SD in baseline σμ2 16.13 12.70 19.32

Linear time effect αδ2,L 6.32 5.73 6.90

Interindividual SD in linear time effect σδ2,L 0.37 0.00 0.61

Quadratic time effect αδ2,Q −0.22 −0.23 −0.19

Interindividual SD in quadratic time effect σδ2,Q 0.02 0.02 0.03

BPS-related reactivity intercept α1,
√
γ2 13.58 11.08 16.69

Interindividual SD in BPS-related reactivity σ√
γ2 5.17 3.20 7.91

Regulation intercept α1,β2 0.44 0.25 0.80

Interindividual SD in regulation σβ2 0.39 0.14 1.04

Cross-effects

Within-person correlation intercept α1,ργ 0.99 0.90 1.00

Between-person correlation intercept σμ1μ2 0.68 0.53 0.84

linear time, −0.04 for quadratic time), but an inverted U-shaped pattern for arousal
(6.32 for linear, −0.22 for quadratic). The interindividual SDs for baselines and the
linear and quadratic time effects quantify the extent of between-person differences
in baseline throughout the day. These differences are illustrated in Fig. 3.4. As
can be seen, most of the interindividual differences are in the baseline intercepts
(differences in level at 12 noon) and not in the shape of the trajectories. For example,
the left panel shows that while there is remarkable inverted U-shaped trend in the
daily arousal baselines, this pattern is quite similar across people. Similarly, the
right panel shows the extent of between-person differences in level, and similarities
in shape of the daily trends, for valence.

The population-level estimates of the biopsychosocial input-related reactivity are
also summarized Table 3.1. The prototypical participant (male) had BPS input to
valence of γ1 7.53 and to arousal of γ2 = 13.58, with the amount of perturbation
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Fig. 3.4 Individual differences in changes in core affect over the day

differing substantially between-persons for both valence (SD = 4.94) and arousal
(SD = 5.17).3

The population-level estimates of regulatory force (β1 and β2) are also shown in
Table 3.1. These values quantify how quickly individuals’ core affect is regulated
back to baseline after perturbation. The prototypical participant had regulatory force
of β1 = 0.17 for valence and β2 = 0.44 for arousal, with substantial between-person
difference in how quickly the regulatory force acted (SD = 0.19 for valence, SD
= 0.39 for arousal). As noted above, these parameters control the slope of the
exponential continuous-time autocorrelation function of the process. Illustrations
of the differences across persons for both valence and arousal are shown in Fig. 3.5.

Finally, the population-level estimates of the cross-effects, within-person and
between-person covariation of valence and arousal, are shown in the bottom of
Table 3.1. For the prototypical participant (male), valence and arousal are very
strongly coupled within-person, r = 0.99, suggesting that valence and arousal
change in similar ways when BPS-related perturbations come in (but see also
covariate results regarding gender differences for this parameter in the next section).
Across persons, individuals with higher baselines in valence also tend to have higher
baselines in arousal, r = 0.68.

3Note that the means and standard deviations for this standard deviation parameter (
√
γ ) are based

on the first and second expectations of the lognormal distribution. Same applies for the regulation
(β) parameters as well.
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Fig. 3.5 Individual differences in the continuous-time autocorrelation functions for valence and
arousal

3.5.3 Results on the Time-Invariant Covariates

Selected results on the time-invariant covariates are shown in Table 3.2. Only the
TICs for which most of the posterior mass was positive or negative (90% highest
density interval did not contain 0) were selected, as these are the coefficients that
we consider remarkably different from 0. As mentioned before, γ (BPS-related
reactivity) and β (regulation) were constrained to be positive; therefore their log-
transformed values were regressed on the covariates; for these parameters relative
effect sizes are reported in Table 3.2 (instead of the original regression coefficients
that relate to the log scale). With regard to the covariates, gender was coded as 0 for
male and 1 for female, and higher values on the emotional well-being scale indicate
better well-being, while lower values on the role limitations due to emotional
problems scale indicate more difficulties.

As expected, results show that higher levels of emotional well-being were
associated with higher baseline levels of valence (α3,μ1 = 8.00) and higher baseline
levels of arousal (α3,μ2 = 6.54). Higher levels of emotional well-being were also
associated with greater BPS input into arousal: α3,

√
γ2 = 1.14. Again, the 1.14 value

here is a relative effect size that relates to the original scale of the BPS-related
reactivity and is interpreted the following way: consider a comparison point to be
at 1, then the relative effect size expresses how many percent of change in the
outcome (i.e., BPS-related reactivity) is associated with one standard deviation (or
one point in case of gender) change in the covariate. For example, if we consider the
association between emotional well-being and BPS-related reactivity, one standard
deviation increase in emotional well-being is associated with 14% (1.14 − 1 =
0.14) increase in BPS-related reactivity. Relative effect sizes related to regulation
are interpreted the same way.
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Table 3.2 Results on the covariates

Model parameter Person Posterior 90% HDI

Description Notation covariate mean Low High

Valence

Baseline α3,μ1 Emotional well-being 8.00 3.95 12.22

BPS-related reactivity α4,
√
γ1 Role limitations 0.79 0.64 0.97

BPS-related reactivity α2,
√
γ1 Gender (1: female) 1.46 1.05 2.04

Regulation α2,β1 Gender (1: female) 2.21 1.27 3.81

Arousal

Baseline α3,μ2 Emotional well-being 6.54 2.03 11.14

BPS-related reactivity α3,
√
γ2 Emotional well-being 1.14 1.01 1.29

Regulation α4,β2 Role limitations 0.73 0.53 0.98

Cross-effects

Synchronicity in changes α2,ργ Gender (1: female) −0.89 −0.99 −0.34

Greater role limitation due to emotional problems was associated with higher lev-
els of BPS-related valence reactivity (α4,

√
γ1 = 0.79; 21%) and stronger regulatory

force on arousal (i.e., quicker return to baseline; α4,β2 = 0.73; 27%). There were also
some notable gender differences: female participants tended to have higher levels of
BPS-related valence reactivity (α2,

√
γ1 = 1.46; 46%) and stronger regulatory force

for valence (α2,β1 = 2.21; 121%). This suggests that women participants experienced
both greater fluctuations in pleasantness over time and regulated more quickly
toward baseline. In line with the idea that females must contend with a more varied
and less predictable set of perturbations, they also have less synchronicity between
changes in valence and arousal (α2,ργ = −0.89).

Note that this is an exploratory approach of looking at associations between-
person traits and dynamical parameters. As can be seen, some coefficients in
Table 3.2 represent very small effect sizes with 90% highest density interval (HDI)
being close to 1 (the cutoff for the relative effect sizes). For more robust inference in
a follow-up study, we would recommend using a stricter criterion (e.g., 99% HDI)
or, more ideally, calculating a Bayes factor for these coefficients.

3.6 Discussion

In this paper we presented process modeling as a framework that can contribute
to theory building and testing through mathematical specification of the processes
that may produce observed data. We illustrated how the framework can be used to
examine interindividual differences in the intraindividual dynamics of core affect. In
conceptualization, core affect is a continuously changing neurophysiological blend
of valence and arousal that underlies all emotional experiences (Barrett 2017)—a
video. Measurement of core affect, however, requires that individuals consciously
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access their core affect and indicate their current level of pleasantness (valence) and
activation (arousal)—a selfie. The inherent discrepancy between the continuous-
time conceptualization of core affect and the moment-to-moment measurement
of core affect requires a framework wherein the parameters of process models
governing action in an individual’s movie biopic can be estimated from a series of
selfies that were likely snapped at random intervals (e.g., in an EMA study design).

Our illustration developed a mathematical description for the continuous-time
conceptualization of core affect based on a mean-reverting stochastic differential
equation, the OU model. From a theoretical perspective, this mathematical model
is particularly useful because it explicitly maps key aspects of the hypothesized
intraindividual regulatory dynamics (e.g., DynAffect model) of core affect, to
three specific parameters, μ, β, and γ , that may differ across persons. Expansion
into a bivariate model provides opportunity to additionally examine interrelations
between affect valence and affect arousal. A key task in tethering the mathematical
model to the psychological theory is “naming the betas” (Ram and Grimm 2015).
Explicitly naming the parameters facilitates interpretation, formulation and testing
of hypotheses, and potentially, theory building/revision. Here, we explicitly tethered
μ to a baseline level of core affect—the “goal” or attractor point of the system; β
to the strength of the “pull” of the baseline point—an internal regulatory force; and
γ to the variability that is induced by affect-provoking biopsychosocial inputs. This
content area-specific naming facilitated identification and inclusion into the model
of a variety of time-varying and time-invariant covariates—putative “causal factors”
that influence the intraindividual dynamics and interindividual differences in those
dynamics. In particular, inclusion of time-of-day variables (linear and quadratic)
provided for testing of hypotheses about how baseline valence and arousal change
across the day in accordance with diurnal cycles, and inclusion of gender and
indicators of emotional well-being provide for testing of hypotheses about how
social roles and psychological context may influence affective reactivity and
regulation. Generally, parameter names are purposively selected to be substantively
informative in order that theoretical considerations may be easily engaged.

Statistical considerations come to the fore when attempting to match the model
to empirical data, and particularly in situations like the one illustrated here, where
a model with measurement and dynamic equations is placed within a multilevel
framework that accommodates estimation of interindividual differences in intrain-
dividual dynamics from noisy ILD that are unbalanced and time-unstructured.
Our empirical illustration was constructed to highlight the utility of a multilevel
Bayesian statistical estimation and inference framework (Gelman et al. 2013). The
flexible Markov chain Monte Carlo methods provide for estimation of increasingly
complex models that include multiple levels of nesting and both time-varying
and time-invariant covariates. Specification of the full probability model, for
both the observed outcomes and the model parameters, provides for robust and
defensible probabilistic statements about the phenomena of interest. In short, the
Bayesian estimation framework offers a flexible alternative to frequentist estimation
techniques and may be particularly useful when working with complex multilevel
models.
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We highlight specifically the benefits of estimation for EMA data. Generally,
these data are purposively collected to be time-unstructured. Intervals between
assessments are kept inconsistent in order to reduce validity threats related to expec-
tation bias in self-reports. This is problematic when a discrete-time mathematical
model is used to describe the processes that may produce observed data, because
the data cannot be mapped (in a straightforward way) to relations formulated in
terms of θ(t) and θ(t − 1). As such, when working with EMA data, the model is
better formulated with respect to continuous time, θ(t) and dθ(t). Theoretically,
continuous-time models may also be more accurate to describe any measured
phenomena that do not cease to exist between observations: most processes in
behavioral sciences unfold in continuous time and should be modeled as such,
see more discussion in, for example, Oud (2002) and Oud and Voelkle (2014a).
In our case, core affect is by definition continuously changing and thus requires a
mathematical description based in a continuous-time model. The process modeling
framework stands taller and with more confidence when the data, mathematical
model, and theory are all continuously aligned.
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Chapter 4
Understanding the Time Course
of Interventions with Continuous Time
Dynamic Models

Charles C. Driver and Manuel C. Voelkle

4.1 Introduction

Time has often been given only limited consideration when assessing experimental
interventions or treatments, but as all such effects unfold over time, a genuine
understanding of the system in question is only possible with the full consideration
of the time course. How long does a treatment take to have maximum effect? Is the
effect then maintained or does it dissipate or perhaps even reverse? Do certain sorts
of people respond faster or stronger than others? Is the treatment more effective in
the long run for those that respond quickly? These are the sorts of questions we
should be able to answer if we truly understand an intervention and the system we
apply it to.

The randomised controlled trial is recognised as something of a gold standard
for the analysis of interventions, for good reason. Yet still, when it comes to
the direct knowledge of the world such a trial can provide to us, we learn only
about what happened to some subjects at a particular moment, or moments, of
observation. Going beyond such experimental knowledge in order to produce useful,
powerful and predictive inferences about the world requires some assumptions about
regularity and stability of the universe.
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For some experimental manipulations, it may be sufficient that we learn that there
tends to be an effect while the manipulation is occurring. In such cases we need only
the most basic assumptions of universal regularity for the knowledge to be useful at
later occasions—similar antecedents result in similar consequences. However there
are many effects which are only of interest because we assume they persist in some
sense outside the bounds of our observation window—a treatment for depression
would not be very useful if it only improved a person’s depression while being
evaluated! As such, whether we are explicitly conscious of it or not, we typically
rely on some model of temporal regularity.

In many cases such a model of temporal regularity may be vague and implicit—
something like ‘there is some sort of continuity in the observed effects even when
we are not observing the subjects’. This stance may be adequate if we know enough
about the nature of our system at the time scale we are interested in. For instance,
if we assess the effect of a treatment on the level of depression 90 days later,
we would also expect to know quite a lot about the effect of the treatment at 89
and 91 days, even though no observations were made on those days. But what
about the effect after 30 days or 180 days? Probably, most people would agree that
additional observations would be necessary. With multiple observations we could
then interpolate between and beyond them, but how should this be done? Simple
linear interpolation between the strength of an average treatment effect (across
subjects) at various occasions can be adequate for some situations and research
questions, but we can also do much better. In this work we endeavour to show that
adopting a dynamic systems approach cannot only yield improved estimates of the
effect of an intervention at unobserved times but can also help us better understand
the nature of the intervention and system more fully and improve possibilities for
personalised treatments.

Specifically, in this chapter we adopt a continuous time dynamic modelling
approach to the problem, based on linear stochastic differential equations. With this
approach, variability within a subject over time is partitioned into stochastic inputs
at the system level (latent process variance), deterministic changes based on earlier
states of the system, stochastic inputs at the measurement level (measurement error),
deterministic inputs of unknown origin (i.e. trends) and, then finally, deterministic
inputs of known cause—an intervention. In broad terms, the approach differs from
what could be done using latent growth curves by the inclusion of the system noise
and dynamics component. Thus, rather than sketching only a description of change
over time, to the extent possible, the generating process is also considered, even if
only in very broad terms. This can lead to more informative inferences, dependent
of course on the quality of the data, assumptions and modelling. For an introduction
to continuous time models in the field of psychology, see Voelkle et al. (2012), and
for more background, see Oud and Jansen (2000). The text from Gardiner (1985)
gives a detailed treatment of stochastic differential equations in general.

Interventions in a system dynamics context are already considered in fields such
as pharmacodynamics and pharmacokinetics for drug discovery and testing. There
they endeavour to describe processes on the causal path between blood plasma
concentration and effect, for multiple subjects (see for general and estimation-
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focused overviews, respectively Danhof et al. 2008; Donnet and Samson 2013).
Single-subject analysis, in which many measurements over time are required, has
been more commonly undertaken with such an approach (see, for instance, the
insulin dose and glucose monitoring work of Wang et al. 2014). In the realm of
psychology, Boker et al. (2016) discuss how certain inputs can lead to changes in
the equilibrium of a process. With respect particularly to continuous time models,
Singer (1998, 1993) and Oud and Jansen (2000) have detailed model specifications
that included time-varying parameters and exogenous inputs.

In the remainder of this work, we will first describe the continuous time
dynamic model used here in more depth, and then consider why and how various
deterministic input effects may be modelled, as well as mediation—how we may
be able to use interventions to understand relations between the processes—and
individual differences. We finish with a brief example demonstrating how, instead
of being a main focus, interventions can also be used to aid in system identification.
Throughout the work we will provide examples using the ctsem (Driver et al. 2017)
software package for R (R Core Team 2014), which interfaces to both the OpenMx
(Neale et al. 2016) and Stan (Carpenter et al. 2017) software.

4.2 The Model

The continuous time dynamic model we are interested in here is comprised of a
latent dynamic model and a measurement model. We have previously described
different approaches and software for estimating such models in either single- or
multiple-subject contexts; for a maximum likelihood-based specification with mixed
effects, see Driver et al. (2017), and for fully random-effects with a hierarchical
Bayesian approach, see Driver and Voelkle (2018). Note that while various elements
in the model depend on time, the fundamental parameters of the model as described
here are time-invariant. Note also that while subject-specific subscripts on the
parameters are possible, for simplicity they are not included at this point.

4.2.1 Latent Dynamic Model

The dynamic system is described by the following linear stochastic differential
equation:

dη(t) =
(

Aη(t)+ b + Mχ(t)

)

dt + GdW (t) (4.1)

Vector η(t) ∈ R
v represents the state of the latent processes at time t . The

matrix A ∈ R
v×v is often referred to as the drift matrix, with auto effects on the

diagonal and cross effects on the off-diagonals characterising the temporal dynamics
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of the processes. Negative values on the auto effects are typical of nonexplosive
processes and imply that as the latent state becomes more positive, a stronger
negative influence on the expected change in the process occurs—in the absence
of other influences, the process tends to revert to a baseline. A positive cross effect
in the first row and second column would imply that as the second process becomes
more positive, the expected change in the first process also becomes more positive.
The expected change for a given interval of time can be calculated and is shown in
Eq. (4.4).

The continuous time intercept vector b ∈ R
v provides a constant fixed input to

the latent processes η. In combination with A, this determines the long-term level
at which the processes fluctuate around. Without the continuous time intercept, the
processes (if mean reverting) would simply fluctuate around zero.

Time-dependent predictors χ(t) represent exogenous inputs (such as interven-
tions) to the system that may vary over time and are independent of fluctuations in
the system. Equation (4.1) shows a generalised form for time-dependent predictors
that could be treated a variety of ways depending on the predictors assumed time
course (or shape). We use a simple impulse form shown in Eq. (4.2), in which
the predictors are treated as impacting the processes only at the instant of an
observation occasion u. Such a form has the virtue that many alternative shapes are
made possible via augmentation of the system state matrices, as we will describe
throughout this work.

χ(t) =
∑

u∈U

xuδ(t − tu) (4.2)

Here, time-dependent predictors xu ∈ R
l are observed at measurement occasions

u ∈ U , where U is the set of measurement occasions from 1 to the number of
measurement occasions, with u = 1 treated as occurring at t = 0. The Dirac
delta function δ(t − tu) is a generalised function that is ∞ at 0 and 0 elsewhere
yet has an integral of 1, when 0 is in the range of integration. It is useful to model an
impulse to a system, and here is scaled by the vector of time-dependent predictors
xu. The effect of these impulses on processes η(t) is then M ∈ R

v×l . Put simply,
the equation means that when a time-dependent predictor is observed at occasion u,
the system processes spike upwards or downwards by Mxu.

W (t) ∈ R
v represents v-independent Wiener processes, with a Wiener process

being a random walk in continuous time. dW (t) is meaningful in the context
of stochastic differential equations and represents the stochastic error term, an
infinitesimally small increment of the Wiener process. Lower triangular matrix
G ∈ R

v×v represents the effect of this noise on the change in η(t). Q, where
Q = GG� represents the variance-covariance matrix of this diffusion process
in continuous time. Intuitively, one may think of dW (t) as random fluctuations
and G as the effect of these fluctuations on the processes. GdW (t) then simply
represents unknown changes in the direction of η, which are distributed according
to a multivariate normal with continuous time covariance matrix Q.
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4.2.2 Discrete Time Solution of Latent Dynamic Model

To derive expectations for discretely sampled data, the stochastic differential
equation (4.1) may be solved and translated to a discrete time representation, for
any observation u ∈ U :

ηu = A∗
Δtu

ηu−1 + b∗
Δtu

+ Mxu + ζ u ζ u ∼ N(0v,Q∗
Δtu
) (4.3)

The ∗ notation is used to indicate a term that is the discrete time equivalent of
the original, for the time interval Δtu (which is the time at u minus the time at
u− 1). A∗

Δtu
then contains the appropriate auto and cross regressions for the effect

of latent processes η at measurement occasion u− 1 on η at measurement occasion
u. b∗

Δtu
represents the discrete-time intercept for measurement occasion u. Since M

is conceptualized as the effect of instantaneous impulses x (which only occur at
occasions U and are not continuously present as for the processes η), its discrete-
time form matches the general continuous time formulation in Eq. (4.1). ζ u is the
zero mean random error term for the processes at occasion u, which is distributed
according to multivariate normal with covariance Q∗

Δtu
. The recursive nature of the

solution means that at the first measurement occasion u = 1, the system must be
initialized in some way, with A∗

Δtu
ηu−1 replaced by ηt0 and Q∗

Δtu
replaced by Q∗

t0.
These initial states and covariances are later referred to as T0MEANS and T0VAR,
respectively.

Unlike in a purely discrete-time model, where the various discrete-time effect
matrices described above would be unchanging, in a continuous time model,
the discrete-time matrices all depend on some function of the continuous time
parameters and the time interval Δtu between observations u and u − 1; these
functions look as follows:

A∗
Δtu

= eA(tu−tu−1) (4.4)

b∗
Δtu

= A−1(A∗
Δtu

− I )b (4.5)

Q∗
Δtu

= Q∞ − A∗
Δtu

Q∞(A∗
Δtu
)� (4.6)

where the asymptotic diffusion Q∞ = irow
( −A−1

# row(Q)
)

represents the latent
process variance as t approaches infinity, A# = A ⊗ I + I ⊗ A, with ⊗ denoting
the Kronecker product, row is an operation that takes elements of a matrix row wise
and puts them in a column vector, and irow is the inverse of the row operation.
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4.2.3 Measurement Model

While non-Gaussian generalisations are possible, for the purposes of this work, the
latent process vector η(t) has the linear measurement model:

y(t) = Λη(t)+ τ + ε(t) where ε(t) ∼ N(0c,Θ) (4.7)

y(t) ∈ R
c is the vector of manifest variables, Λ ∈ R

c×v represents the factor
loadings, and τ ∈ R

c represents the manifest intercepts. The residual vector ε ∈ R
c

has covariance matrix Θ ∈ R
c×c.

4.2.4 Between Subjects Model and Estimation

We will not go into detail on between subjects and estimation aspects here, as they
can be handled in various ways. A frequentist approach with random effects on
the continuous time intercepts and manifest intercepts, and fixed effects on other
model parameters, is presented in Driver et al. (2017), which also describes the
R (R Core Team 2014) package ctsem which can be used for estimating these
models. Driver and Voelkle (2018) extend the earlier work and ctsem software to
fully random effects with a hierarchical Bayesian approach. The majority of this
present work uses the frequentist approach for the sake of speed, but for an example
of the Bayesian approach, see Sect. 4.4.5.

4.3 Shapes of Input Effects

When we speak of the effect of an input, we mean the effect of some observed
variable that occurs at a specific moment in time. So, for instance, while a person’s
fitness is more easily thought of as constantly present and could thus be modelled
as a latent process, an event such as ‘going for a run’ is probably easier to consider
as a single event in time. We do not propose strict guidelines here; it would also
be possible to model a ‘speed of running’ latent process, and it is also clear that
all events take some time to unfold. However, we suggest it is both reasonable and
simpler to model events occurring over short time scales (relative to observation
intervals) as occurring at a single moment in time. Nevertheless, there may be cases
when events should be thought of as persisting for some finite span of time, and this
may also be approximated using the approaches we will outline.

So, although we speak of an input as occurring only at a single moment in time,
the effects of such an input on the system of interest will persist for some time and
may exhibit a broad range of shapes. While for the sake of clarity, we will discuss the
shape of an input effect on a process that is otherwise a flatline; what we really mean
by ‘shape of the effect’ is the difference between the expected value of the process
conditional on an input and the expected value of the process without any such input.
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Fig. 4.1 Possible shapes of effects resulting from impulse input affecting a mean-reverting
process, given various configurations of the state matrices. For the basic impulse effect, no
additional processes need to be modelled, while the other examples require either one or two
additional processes that are not directly observed

The shape of the effect could then be relative to a randomly fluctuating process, an
oscillation, exponential trend, etc. Some examples of possible input effect shapes
are shown in Fig. 4.1.

4.3.1 Basic Impulse Effect

As formalised by Eq. (4.2), the basic form of the effect, and fundamental building
block for more complex effects, is that an input at a singular moment in time causes
an impulse in the system at that moment, which then dissipates according to the
temporal dependencies (drift matrix) in the system. The effect of such an impulse
on a first-order, mean-reverting and non-stochastic process (i.e. a flatline with any
changes driven by deterministic inputs) is shown in the top left of Fig. 4.1. The effect
will take on a similar shape for any mean-reverting process; it is just not as easy to
see when the process is stochastic and/or oscillating.

Effects we might plausibly model in such a way are those where the observed
input is expected to have a sudden effect on the system, and that effect dissipates in
a similar way to the other, unobserved, inputs on the system that are modelled via
the stochastic term. An example of such could be the effect of encountering a friend
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in the street on ones’ mood. In such a situation, mood may rapidly rise, then decline
back to some baseline in much the same way as would occur for other random mood
shifting events throughout the day.

Though the equivalence is perhaps not obvious at first, when time-varying
covariates are included in a discrete-time cross-lagged or latent change score model,
and no temporal dependencies in the covariates are modelled, it is just such an
impulse effect that is being instantiated. As such, the approaches and thinking we
outline in this paper can also be used in the discrete-time case, though care should be
taken to consider divergences between the continuous and discrete-time approaches,
particularly when models greater than first order (such as those with oscillations) are
considered.

An example R script to simulate data from such a model, then fit, summarise,
and plot results (remove hashes in front of plot lines to use), is as follows.1

install.packages("ctsem")
library(ctsem)

nlatent=1 #number of latent processes
nmanifest=1 #number of manifest variables
tpoints=30 #number of measurement occasions
ntdpred=1 #number of time dependent predictors
TDPREDMEANS=matrix(0,ntdpred*tpoints,1)
TDPREDMEANS[floor(tpoints/2)]=1 #input after 50% of observations

genm=ctModel(Tpoints=tpoints,
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(-.2), nrow=nlatent, ncol=nlatent),
DIFFUSION=matrix(c(.8), nrow=nlatent, ncol=nlatent),
MANIFESTVAR=matrix(c(.8), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c(2), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0), nrow=nlatent, ncol=1),
TDPREDMEANS=TDPREDMEANS,
MANIFESTMEANS=matrix(c(0), nrow=nmanifest, ncol=1))

dat=ctGenerate(ctmodelobj=genm, n.subjects=50, burnin=50)
#ctIndplot(datawide=dat,n.subjects=10,n.manifest=1,Tpoints=tpoints)

fitm=ctModel(Tpoints=tpoints, type="omx",
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c("drift11"), nrow=nlatent, ncol=nlatent),
DIFFUSION=matrix(c("diffusion11"), nrow=nlatent, ncol=nlatent),
MANIFESTVAR=matrix(c("merror11"), nrow=nmanifest, ncol=nmanifest),
MANIFESTMEANS=matrix(c("mmeans_Y1"), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c("tdpredeffect21"), nrow=nlatent, ncol=ntdpred))

fit=ctFit(dat, fitm)
summary(fit)
ctKalman(fit, timestep=.1, subjects = 1:2, plot=TRUE,

kalmanvec=c(’y’,’ysmooth’))

1For the sake of simplicity, we generate and fit data without stable between-subjects differences,
but in real-world analyses of multiple subjects, it may be advisable to account for such effects.
With ctsem this can be done either via the MANIFESTTRAITVAR or TRAITVAR matrices
in frequentist configuration or by allowing individually varying parameters with the Bayesian
approach—discussed briefly in Sect. 4.4.5.
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The matrix forms of the model equations for a basic impulse affecting a first-
order process are as follows, with underbraced notations denoting the symbol used
to represent the matrix in earlier formulas, and where appropriate also the matrix
name in the R specification.
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4.3.2 Level Change Effect

In contrast to the impulse effect, some inputs may result in a stable change in
the level of a process. Such a change may occur near instantaneously or more
gradually. The top right of Fig. 4.1 shows the more gradual change. Often, we would
hope that treatments may generate such an effect. Consider, for instance, the effect
of an exercise intervention on fitness. In the intervention condition, subjects are
encouraged to increase the amount of exercise they do throughout the week. If the
intervention is successful, we then wouldn’t necessarily expect to see an immediate
improvement in fitness but would hope that people had begun exercising more in
general, which would slowly increase their fitness towards some new level.

There are various ways one could model such an effect. An intuitive approach
that may spring to mind would be to code the input variable as 0 for both
treatment and control prior to the intervention, then when treatment begins, code
the input variable of the treated group as one for all further observations. This
is somewhat problematic, however, as it will result in a series of impulses of the
same strength occurring at the observations, with the process declining as normal
after an observation, then jumping again with the next impulse. This is not at all
representative of a consistent change in level when we consider the process at both
observed and unobserved times, that is, between the observations. Nevertheless, if
observations are equally spaced in time, it is potentially adequate for estimating
the extent to which the treatment group exhibited a persistent change in their
level. For instance, as illustrated in Fig. 4.2, in the case of unequal observation
intervals, it is clear that both the underlying model and resulting predictions will
be very wrong when taking such an input variable coding approach. With the equal
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Fig. 4.2 Modelling a persistent level change via input variable coding. While strictly speaking the
underlying model is incorrect, nevertheless with equal time intervals (right panel) a level change
effect may be captured by a series of impulses, though this is only accurate at the exact moments of
observation. With unequal time intervals (left panel), the approach is not even heuristically useful

observation time intervals on the right of Fig. 4.2, however, we see that although
the underlying model is incorrect, predictions at the times when an observation
occurs (and the input variable is coded as 1) do gradually rise towards a new
level.

While possible in specific circumstances to model the level change via input
variable coding, we would in general argue for a more adequate model specification,
which is easily achievable. The approach we will take throughout this work is
to model additional, unobserved, processes, which have no stochastic component.
This might also be referred to as augmenting the state matrices. These additional
processes are affected by the impulse of the input variable and in turn affect the
actual process of interest, which we will refer to as the base process. What have we
gained by including such an intermediary? This intermediary, or input process, is
not restricted to an impulse shape but can exhibit a time course characterised by its
own auto effect parameter.

One way we might think of such an input process is that of directly characterising
the effect we are interested in. Consider, for instance, the effect of room temperature
on attention and an experimental situation in which room temperature was changed
at some point via a thermostat. We do not have direct experimental control or
measurements of temperature, rather, we simply know that the thermostat was
changed at some point. So we include ‘change of thermostat’ as our observed input
variable, which generates a gradual rise in an unobserved ‘temperature’ process,
which has some effect on attention that we are interested in.

Alternatively, we may have directly observed the manipulation we are interested
in, but its effect on the process of interest may occur via some unobserved
mediating process. Consider the example of fitness change in response to a cognitive
behavioural intervention to motivate exercise. We have a direct observation of
‘intervention that took place’, but know that the subjects must actually exercise
for any change in fitness to occur. Thus, we could include a dummy coded input
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variable of ‘intervention’, which generates an instantaneous and persistent change
on some unobserved input process that we could think of as something like ‘amount
of weekly exercise’, which in turn has an effect on our measure of ‘fitness’. We
do not propose any strong interpretation of the unobserved input process, as there
will always be many more mediators at many more time scales than we can model.
Rather, we propose to model the input process sufficiently such that the major
features of the causal chain, at the time scale we are interested in, can be adequately
captured. So, although we will not necessarily know what the causal links are, with
such a model, we can aim at least to understand that (a) there appears to be some
causal chain between our input and our process of interest, and (b) in the vicinity of
the values of the context we have observed, the time course of the effect is likely to
be similar to our estimated results.

Now, how to explicitly formulate such a level change model? Using ctsem, we
configure our model just as for the impulse specification but include an additional
latent process. For this process, we fix all input effects that do not stem from
the input predictor to 0. These input effects we fix include the stochastic effects
of the DIFFUSION and T0VAR matrices as well as intercept elements from the
T0MEANS and CINT matrices—these are fixed to 0 because the input process
should represent only the effect of our observed input variable. Because the
process is unobserved, we must identify its scale in some way, which can be
done either by fixing the effect of the input variable on the process (to any non-
zero value, though one would seem sensible) or by similarly fixing the effect of
the input process on our process of interest. The following script demonstrates
simulating and fitting such a model. Note that because zeroes on diagonals can
cause problems for matrix inversions, where necessary very small deviations from
zero are used instead, which has a negligible effect on the model at the time scale of
interest.

nlatent=2 #number of latent processes
nmanifest=1 #number of manifest variables
tpoints=30 #number of measurement occasions
ntdpred=1 #number of time dependent predictors
TDPREDMEANS=matrix(0,ntdpred*tpoints,1)
TDPREDMEANS[floor(tpoints/2)]=1 #intervention after 50% of observations

genm=ctModel(Tpoints=tpoints,
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(-.4, 0, 1, -0.00001), nrow=nlatent, ncol=nlatent),
DIFFUSION=matrix(c(.5, 0, 0, 0), nrow=nlatent, ncol=nlatent),
MANIFESTVAR=matrix(c(.5), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c(0, .4), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0, 0), nrow=nlatent, ncol=1),
TDPREDMEANS=TDPREDMEANS,
MANIFESTMEANS=matrix(c(0), nrow=nmanifest, ncol=1))

dat=ctGenerate(ctmodelobj=genm, n.subjects=50, burnin=0)
#ctIndplot(datawide=dat,n.subjects=10,n.manifest=1,Tpoints=tpoints)

fitm=ctModel(Tpoints=tpoints, type="omx",
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c("drift11", 0, 1, -0.0001), nrow=nlatent, ncol=nlatent),
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DIFFUSION=matrix(c("diffusion11", 0, 0, 0), nrow=nlatent, ncol=nlatent),
MANIFESTVAR=matrix(c("merror11"), nrow=nmanifest, ncol=nmanifest),
MANIFESTMEANS=matrix(c("mmeans_Y1"), nrow=nmanifest, ncol=nmanifest),
T0MEANS=matrix(c("t0m1",0), ncol=1),
T0VAR=matrix(c("t0var11",0,0,0), nrow=nlatent, ncol=nlatent),
TDPREDEFFECT=matrix(c(0, "tdpredeffect21"), nrow=nlatent, ncol=ntdpred))

fit=ctFit(dat, fitm)
summary(fit)
ctKalman(fit, timestep=.1, subjects = 1:2, plot=TRUE,

kalmanvec=c(’y’,’ysmooth’))

The matrix forms for a level change intervention affecting a first-order process
are as follows: with underbraced notations denoting the symbol used to represent
the matrix in earlier formulas and where appropriate also the matrix name in the
ctsem specification.
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4.4 Various Extensions

So far we have discussed two possible extremes in terms of effect shape, the sudden
and singular impulse and the slower but constant level change. These are both
somewhat restrictive in terms of the shape of the effects implied by the model, so
in many cases, it may be worthwhile to further free the possible shape of effects,
either as a comparison for the more restrictive model or directly as the model of
interest.

4.4.1 Dissipation

The most obvious and simplest relaxation is to take the level change model and free
the auto effect (diagonal of the drift matrix) for the input process. Then, the extent
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Fig. 4.3 Dissipating input effect, with different parameter values of the input process

to which the effect of the input persists is directly estimated, rather than assumed to
persist forever. As the auto effect takes on more negative values, the input effect
approaches the basic impulse type, and as the auto effect nears 0, the resulting
input process approaches the level change type. Values greater than 0 would suggest
that the input effect is compounding on itself with time, generating an explosive
process. Such explosive processes tend to be highly unrealistic for forecasting much
further into the future but may be an adequate characterisation over the time range
considered. Note that, although with a highly negative auto effect the input process
approaches the impulse shape, the value of the effect strength parameter will need to
be much larger in order to match the impulse form with no mediating input process.
This is shown in the top two plots of Fig. 4.3, while the bottom two show a slower
dissipation on the left and an explosive effect on the right.

Such a dissipative input is probably a very reasonable starting point for modelling
the effect of an intervention intended to have long-term consequences but where it
is unclear if the consequences really do persist forever. Were we to use the simple
impulse form, our estimated effect would only represent the magnitude of short-term
changes and may not represent the bulk of the effect. With the level-change form of
predictor, the estimated effect captures changes that persist for all later observations,
and thus if the effect actually declines over time, it may underestimate the size of the
effect at the short and medium term. Instead of these two extremes, it may instead
be the case that the intervention was somewhat successful, with change persisting
for some time but slowly dissipating. As the script for simulation and fitting of such
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a model is very similar to that for the level-change model (with the input process,
auto effect simply given a parameter name rather than a fixed value of near zero),
we do not repeat it here.

4.4.2 Multiple Time Scales and Oscillations

An additional flexibility that one could also consider is to take either the level-
change or dissipation type model specification and free the direct effect of the
input (via the TDPREDEFFECT matrix) on the base process itself. This will then
allow for estimating both an instantaneous impulse that dissipates according to the
base process and a more persistent input process, allowing for short-term effects to
differ markedly from longer term, potentially even in the opposite direction. Some
real-world examples of such could be the effect of various drugs, for which short-
term effects are often very different to longer-term effects, or, at a different time
scale, perhaps the effect of harshly disciplining a child—the child’s behaviour may
temporarily improve but with negative consequences later. A mild expansion of
this approach could involve the specification of two independent input processes,
each with a distinct effect on the base process (thus ensuring that dynamics of
the base process in general are not confounded with dynamics in response to the
intervention). Including parameters to try and tease apart different time-scale effects
will likely make interpretation and hypothesis testing somewhat more complex, and
empirical under identification may present an issue for convergence (at least when
using the frequentist approach). An approach to mitigate these difficulties may be
to revert to the level-change form (wherein the long-term persistence is fixed) rather
than estimating the persistence—at least to attain initial estimates.

For more complex shapes of effects due to an intervention, we will need to
change from a simple first-order input process to higher-order configurations. In the
vector form used in this work and the relevant estimation software, higher-order
processes are always modelled via additional first-order processes. Thus, whether
one thinks of a single higher-order system or multiple first-order systems that
interact makes no particular difference. A damped oscillation (as in Voelkle and
Oud 2013) is probably the simplest higher-order model and could be used in similar
circumstances to those of the above multiple time scales example, though the model
will have somewhat different properties. In the multiple time scales model above,
a strong interpretation of the model parameters would suggest that there were two
distinct and independent effect processes unfolding, one short and one longer term.
This is in contrast to the damped oscillation form, in which a single effect unfolds
in a more complex fashion, requiring two unobserved processes that are coupled
together.

Figure 4.4 plots an abstract example of the oscillation generating input effect,
as well as an input effect comprised of two independent input processes—one fast
and negative, the other slow and positive. The following R code generates and fits
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Fig. 4.4 Oscillating input effects. On the left the input process is a classic damped linear oscillator,
involving two processes that are deterministically linked, and the direct effect on the base process
occurring via input process 1. On the right, the two input processes are independent, with each
having a direct effect on the base process. A simpler variant of the latter may neglect to include the
short-term input process, instead having the input directly impact the base process

Fig. 4.5 Estimates of latent mean and covariance of base and input processes, for one subject,
along with observed data. Estimates are from the Kalman smoother, so conditional on the fitted
model and all time points. R code to obtain plots provided at top

a system with a single first-order process of interest (our base process), which is
impacted upon by an input effect that generates a dissipating oscillation. Figure 4.5
shows the fit of this oscillation model for one of the generated subjects.
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nlatent=3
nmanifest=1
tpoints=30
ntdpred=1
TDPREDMEANS=matrix(0,ntdpred*(tpoints),1)
TDPREDMEANS[floor(tpoints/2)]=1

genm=ctModel(Tpoints=tpoints,
n.latent=nlatent,
n.manifest=nmanifest,
n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 0, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(

-.3, 1, 0,
0, 0,1,
0,-2,-.1), byrow=TRUE, nrow=nlatent, ncol=nlatent),

DIFFUSION=matrix(c(
1, 0, 0,
0,0,0,
0,0,0), byrow=TRUE, nrow=nlatent, ncol=nlatent),

MANIFESTVAR=matrix(c(.5), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c(0, 0, 4), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0), nrow=nlatent, ncol=1),
TDPREDMEANS=TDPREDMEANS,
MANIFESTMEANS=matrix(c(0), nrow=nmanifest, ncol=1))

dat=ctGenerate(ctmodelobj=genm, n.subjects=100, burnin=50)

#ctIndplot(datawide=dat,n.subjects=10,n.manifest=1,Tpoints=tpoints)

fitm=ctModel(Tpoints=tpoints,
n.latent=nlatent,
n.manifest=nmanifest,
n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 0, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(

"drift11", 1, 0,
0, 0,1,
0,"drift32","drift33"), byrow=TRUE, nrow=nlatent, ncol=nlatent),

DIFFUSION=matrix(c(
"diffusion11", 0, 0,
0,0,0,
0,0,0), byrow=TRUE, nrow=nlatent, ncol=nlatent),

T0VAR=matrix(c(
"t0var11", 0, 0,
0,0,0,
0,0,0), byrow=TRUE, nrow=nlatent, ncol=nlatent),

TDPREDEFFECT=matrix(c(0, 0, "tdpredeffect31"), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0), nrow=nlatent, ncol=1),
T0MEANS=matrix(c("t0mean1",0,0),nrow=nlatent,ncol=1),
MANIFESTVAR=matrix(c("merror11"), nrow=nmanifest, ncol=nmanifest),
MANIFESTMEANS=matrix(c("mmeans_Y1"), nrow=nmanifest, ncol=1))

fit=ctFit(dat, fitm)
summary(fit)
ctKalman(fit, timestep=.1, subjects=1, plot=TRUE, kalmanvec=c(’y’,’etasmooth’))



4 Understanding the Time Course of Interventions with Continuous Time. . . 95

The matrix forms for an intervention effect that first rises and then oscillates back
to equilibrium, and which affects a first-order process, are as follows. Underbraced
notations denoting the symbol used to represent the matrix in earlier formulas and
where appropriate also the matrix name in the ctsem specification.
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4.4.3 Trends

So far we have been using models where the base process is assumed to be stationary
over the time window we are interested in (independent of any inputs). This means
that given knowledge of only the observation times (and not any of the values),
our expectations for the unobserved process states will always be the same, that is,
neither expectation nor uncertainty regarding our processes is directly dependent
on time. However, cases such as long-term development, as, for instance, when
observing from childhood to adulthood, are likely to exhibit substantial trends. If
unaccounted for, such trends are likely to result in highly non-Gaussian prediction
errors, violating the assumptions of our model. Furthermore, there may be cases
where influencing such a trend via an intervention is of interest, and we thus need
to be able to incorporate a long-term trend in our model and include any potential
effects of the input on the trend.
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Fig. 4.6 Input effects on a developmental trend. The intervention at time 6 increases the trend
slope temporarily

Let us consider an example of the influence of a health intervention on reading
ability, in children of the developing world. Such a health intervention might consist
of a short period involving health checks, treatment and education, with the idea
that better health may facilitate learning, both at school and elsewhere. For an
observation window of years with a limited observation frequency, the intervention
period can reasonably be treated as a singular event (Fig. 4.6).

To specify such a model, we specify our base process as usual, capturing short-
term fluctuations in our process of interest, reading ability. We then need to include
an additional process that captures the slow trend component. The initial state
(T0MEANS), temporal effects between the trend process and other processes and
stochastic input (DIFFUSION) of this trend process are fixed to zero (or near zero),
and in contrast to earlier models, we need to include a non-zero continuous-time
intercept parameter, to capture the unknown trend size.2 Other components are
estimated as usual. Then we include an input effect onto some form of input process
and have this input process affect the trend process. In this case, our measurement
model must reflect that our measurements are a summation of both base and trend
processes, so two elements of the LAMBDA matrix of factor loadings are now fixed
to 1.00, in contrast to prior examples where only one latent process ever directly
influenced the indicators (Fig. 4.7).

nlatent=3
nmanifest=1
tpoints=30
ntdpred=1
TDPREDMEANS=matrix(0,ntdpred*(tpoints),1)
TDPREDMEANS[floor(tpoints/2)]=1

genm=ctModel(Tpoints=tpoints,

2In a model with between subjects differences in the trend, variability in this parameter can
be accommodated via the TRAITVAR matrix (for frequentist ctsem) or by simply setting the
parameter to individually varying (in the Bayesian approach).
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n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 1, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(

-.5, 0, 0,
0, -.03,1,
0,0,-.1), byrow=TRUE, nrow=nlatent, ncol=nlatent),

DIFFUSION=matrix(c(
3, 0, 0,
0,0,0,
0,0,.0001), byrow=TRUE, nrow=nlatent, ncol=nlatent),

MANIFESTVAR=matrix(c(1), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c(0, 0, 4), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0,1,0), nrow=nlatent, ncol=1),
TDPREDMEANS=TDPREDMEANS,
MANIFESTMEANS=matrix(c(0), nrow=nmanifest, ncol=1))

dat=ctGenerate(ctmodelobj=genm, n.subjects=50, burnin=5)
#ctIndplot(datawide=dat,n.subjects=10,n.manifest=1,Tpoints=tpoints)

fitm=ctModel(Tpoints=tpoints,
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 1, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(

"drift11", 0, 0,
0, "drift22",1,
0,0,"drift33"), byrow=TRUE, nrow=nlatent, ncol=nlatent),

DIFFUSION=matrix(c(
"diffusion11", 0, 0,
0,0,0,
0,0,.0001), byrow=TRUE, nrow=nlatent, ncol=nlatent),

T0VAR=matrix(c(
"t0var11", 0, 0,
0,0,0,
0,0,.0001), byrow=TRUE, nrow=nlatent, ncol=nlatent),

TDPREDEFFECT=matrix(c(0, 0, "tdpredeffect31"), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0,"cint2",0), nrow=nlatent, ncol=1),
T0MEANS=matrix(c("t0mean1",0,0),nrow=nlatent,ncol=1),
MANIFESTVAR=matrix(c("merror11"), nrow=nmanifest, ncol=nmanifest),
MANIFESTMEANS=matrix(c("mmeans_Y1"), nrow=nmanifest, ncol=1))

fit=ctFit(dat, fitm)
summary(fit)

ctKalman(fit, timestep=.1, subjects=1:2, plot=TRUE,
plotcontrol=list(ylim=c(-5,50)), kalmanvec=c(’y’,’etasmooth’),
legendcontrol=list(x=’topleft’,bg=’white’))

ctKalman(fit, timestep=.1, subjects = 1:2, plot=TRUE,
kalmanvec=c(’y’,’ysmooth’), plotcontrol=list(ylim=c(-5,50)),
legend=FALSE)
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Fig. 4.7 Estimated trend with intervention model for two individuals. On the left, the individual
latent processes—base, trend and predictor—and observed data points are shown. On the right,
the latent processes are combined with the measurement model. Estimates are from the Kalman
smoother, so conditional on the fitted model and all time points. R code to obtain plots provided at
top

The matrix forms for an intervention effect on the long-term trend of a process
are as follows. Underbraced notations denote the symbol used to represent the
matrix in earlier formulas and where appropriate also the matrix name in the ctsem
specification.
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4.4.4 Mediation

Throughout this work, we have modelled a range of different shapes of input effects
by including additional processes in our system model, and these processes have
not been directly measured—regression strengths (i.e. elements of the LAMBDA
matrix in ctsem) directly from these additional processes to data have been zero,
in most cases. One possible interpretation of these unobserved processes is that
they represent some aggregate over all mediating processes that occur between the
measured input effect and our measured process of interest. While such processes
can simply be left unobserved, understanding the mediators of effects is a common
goal of psychological research, and the framework outlined here offers possibilities
for such.

Let us consider again the example of an experimental intervention to improve
fitness levels in a group of patients. A successful intervention is unlikely to generate
a sudden increase in fitness, rather, it could be expected to gradually rise towards
some new level, for which we have already discussed a modelling approach.
However, suppose we had also observed some measure of the amount of daily
exercise. Conditional on daily exercise, it seems unlikely that the intervention would
have any further effect on fitness. That is, we assume that daily exercise mediates
the effect of the intervention on fitness. We can test such a theory by comparing
a model which includes both mediated and direct effects on fitness, with one that
includes only the mediated effect. The following R script provides an example of
such a model, and compares a model with effects from the input to all processes, to
a restricted model where the input indirectly affects fitness via exercise. In order
to provide a fair comparison, the full model for fitting contains an unobserved
input process that is impacted by the input. In our example, however, the data
does not support such a model. Such an over-specified model can make attaining
convergence somewhat trickier, as multiple parameters must be estimated where
only one would suffice. To minimise these difficulties, we fit the full model using the
parameter estimates of the more restricted model as starting values. The mxCompare
function from OpenMx is used to compare the two fits and will show that there is
no significant difference between the model with the intervention directly affecting
fitness and the restricted model that contains only the intervention effect on exercise
rate.
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set.seed(4)
nlatent=3
nmanifest=2
tpoints=30
ntdpred=1
TDPREDMEANS=matrix(0,ntdpred*(tpoints),1)
TDPREDMEANS[floor(tpoints/2)]=1

genm=ctModel(Tpoints=tpoints,
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 0, 0, 1, 0, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(

-.2, .1, 0,
0, -.3,1,
0,0,-.0001), byrow=TRUE, nrow=nlatent, ncol=nlatent),

DIFFUSION=matrix(c(
1, 0, 0,
3,2,0,
0,0,.0001), byrow=TRUE, nrow=nlatent, ncol=nlatent),

MANIFESTVAR=matrix(c(1,0,0,1), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c(0, 0, 5), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0), nrow=nlatent, ncol=1),
TDPREDMEANS=TDPREDMEANS,
MANIFESTMEANS=matrix(c(0), nrow=nmanifest, ncol=1))

dat=ctGenerate(ctmodelobj=genm, n.subjects=50, burnin=50)
#ctIndplot(datawide=dat,n.subjects=10,n.manifest=2,Tpoints=tpoints)

nlatent=4 #because for our fit we include extra input process

fullm=ctModel(Tpoints=tpoints, #type="stanct",
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 0, 0, 0, 0, 1, 0, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(

"drift11", 1, "drift13", 0,
0, "drift22", 0, 0,
0, 0, "drift33", 1,
0, 0, 0, "drift44"), byrow=TRUE, nrow=nlatent, ncol=nlatent),

DIFFUSION=matrix(c(
"diffusion11", 0, 0, 0,
0, .0001, 0, 0,
"diffusion31", 0, "diffusion33", 0,
0, 0, 0, .0001), byrow=TRUE, nrow=nlatent, ncol=nlatent),

T0VAR=matrix(c(
"t0var11", 0, 0, 0,
0, 0, 0, 0,
"t0var31", 0, "t0var33", 0,
0, 0, 0, 0), byrow=TRUE, nrow=nlatent, ncol=nlatent),

TDPREDEFFECT=matrix(c("tdpredeffect11", "tdpredeffect21",
"tdpredeffect31", "tdpredeffect41"), nrow=nlatent, ncol=ntdpred),

CINT=matrix(c(0), nrow=nlatent, ncol=1),
T0MEANS=matrix(c("t0mean1", 0, "t0mean3",0),nrow=nlatent,ncol=1),
MANIFESTVAR=matrix(c("merror11",0,0,"merror22"), nrow=nmanifest, ncol=

nmanifest),
MANIFESTMEANS=matrix(c("mmeans_fit","mmeans_ex"), nrow=nmanifest, ncol=1))

mediationm=fullm
mediationm$TDPREDEFFECT[1:3,1]=0

mediationfit=ctFit(dat, mediationm)

fullfit=ctFit(dat, fullm,carefulFit=FALSE, #because we specify start values
omxStartValues = omxGetParameters(mediationfit$mxobj))

mxCompare(base = fullfit$mxobj, comparison = mediationfit$mxobj)
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The matrix forms for the full (not yet restricted) mediation model, with an
intervention affecting a measured first-order process that in turn affects another
measured first-order process, are as follows. Underbraced notations denote the
symbol used to represent the matrix in earlier formulas and where appropriate also
the matrix name in the ctsem specification.
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4.4.5 Individual Differences

While understanding how the average effect of an intervention develops over time
is useful, it has long been observed that any such average may not be representative
of the development in any single individual—the exercise intervention we have
discussed may be more effective for those who live near a park or recreational
space, for instance, as the barriers to following the intervention guidelines are lower.
An extreme approach to such a problem is to treat individuals as entirely distinct,
but this requires very many observations per subject if even moderately flexible
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Fig. 4.8 Posterior estimates of the latent mean and covariance of base and input processes, for
three subjects. Note the individual differences in the time spans of the input process (eta2). R code
to obtain plots at top

dynamic models are to be fitted and also raises questions as to how one should treat
individuals for which no observations exist. A benefit to this extreme view is that
modelling is simplified, and the previously discussed approaches suffice.

A more flexible approach to individual differences is that of random effects
(or hierarchical models). These approaches treat individuals as somewhat similar
and estimate the extent of this similarity. This allows for situations where some
individuals have been observed many times and others very few, with the resulting
model for those observed only few times relying more on the average model across
all individuals. For more extended discussion on such models in this context, see
Driver and Voelkle (2018). Both frequentist and Bayesian approaches for random
effects of observed input variables on latent processes are relatively straightforward;
however, random effects on the parameters of any unobserved input processes are
more complicated in the frequentist case. As such, we demonstrate the case of
individual differences using the Bayesian formulation of the ctsem software, which
can take longer to fit. In this case we have specified a minimal number of iterations,
and it takes roughly 5–10 min on a modern PC—for many problems more iterations
will be necessary (Fig. 4.8).

For this example, we will look how the strength and persistence of an intervention
varies in our sample and relate this variation to an observed covariate. For this
we will use the dissipative predictor model developed in Sect. 4.4.1 but allow
for variation in the strength (parameters of the TDPREDEFFECT matrix) and
persistence (the drift auto effect parameter of the unobserved input process).
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nlatent=2 #number of latent processes
nmanifest=1 #number of manifest variables
tpoints=30 #number of measurement occasions
ntdpred=1 #number of time dependent predictors
nsubjects=30 #number of subjects
TDPREDMEANS=matrix(0,ntdpred*tpoints,1)
TDPREDMEANS[floor(tpoints/2)]=1 #intervention after 50% of observations

genm=ctModel(Tpoints=tpoints,
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=matrix(c(1, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c(-.2, 0, 1, -.2), nrow=nlatent, ncol=nlatent),
DIFFUSION=matrix(c(.1, 0, 0, 0.00001), nrow=nlatent, ncol=nlatent),
MANIFESTVAR=matrix(c(.1), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c(0, .2), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0, 0), nrow=nlatent, ncol=1),
TDPREDMEANS=TDPREDMEANS,
MANIFESTMEANS=matrix(c(0), nrow=nmanifest, ncol=1))

library(plyr)
#generate data w random parameter in DRIFT
dat=aaply(1:nsubjects, 1, function(x){

tempm=genm
stdage=rnorm(1)
tempm$DRIFT[2, 2] = -exp(rnorm(1, -2, .5) + stdage * .5)
cbind(ctGenerate(ctmodelobj=tempm, n.subjects=1, burnin=50), stdage)})

#convert to long format used by Bayesian ctsem
datlong=ctWideToLong(datawide = dat, Tpoints = tpoints, n.manifest = nmanifest,

n.TDpred = ntdpred,n.TIpred = 1,manifestNames = c("Y1"),
TDpredNames = c("TD1"), TIpredNames=c("stdage"))

#convert intervals to abs time
datlong=ctDeintervalise(datlong)

fitm=ctModel(Tpoints=tpoints, type="stanct",
n.latent=nlatent, n.manifest=nmanifest,
n.TDpred=ntdpred, n.TIpred=1, TIpredNames = "stdage",
LAMBDA=matrix(c(1, 0), nrow=nmanifest, ncol=nlatent),
DRIFT=matrix(c("drift11", 0, 1, "drift22"), nrow=nlatent, ncol=nlatent),
DIFFUSION=matrix(c("diffusion11", 0, 0, 0.001), nrow=nlatent, ncol=nlatent),
MANIFESTVAR=matrix(c("merror11"), nrow=nmanifest, ncol=nmanifest),
MANIFESTMEANS=matrix(c("mmeans_Y1"), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c(0, "tdpredeffect21"), nrow=nlatent, ncol=ntdpred))

#only the persistence and strength of the predictor effect
#varies across individuals
fitm$pars$indvarying[-c(8,18)] = FALSE
#and thus standardised age can only affect those parameters
fitm$pars$stdage_effect[-c(8,18)] = FALSE

fit=ctStanFit(datlong, fitm, iter = 200, chains=3)
summary(fit)

ctKalman(fit, subjects = 1:3, timestep=.01, plot=TRUE,
kalmanvec=’etasmooth’, errorvec=’etasmoothcov’,
legendcontrol = list(x = "topleft"))
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Fig. 4.9 Measurement error combined with limited natural variation in the system can make
determining the relationships difficult. On the left, it is not clear which process is driving the other,
but with interventions on the right, it is clear that changes in process 2 lead to changes in process
1, and not vice versa

Now, the summary of fit gives an estimated population standard deviation of the
persistence and strength of the predictor effect (under $popsd) and also an estimate
of the effect of standardised age on these parameters (under $tipreds). In this case
there is no genuine effect of age on the effect strength, but it is important to allow for
this effect because of the strong dependence between the strength and persistence
parameters—it may be difficult to distinguish one rising from the other lowering in
some datasets.

4.4.6 System Identification via Interventions

In addition to focusing on how interventions unfold over time, the concepts and
modelling procedures we have discussed in this work can also be applied in a
context wherein interventions are used primarily with the goal for developing an
understanding of the underlying system—the intervention effect itself is not of
primary interest. Figure 4.9 shows a simple case where this may be useful, where
the natural state of the bivariate system exhibits limited variation and measurement
error is relatively high. In this context, estimates of the system dynamics can have
high uncertainty. By intervening on the system, first on one process and then later
on the other, shown on the right of Fig. 4.9, the relation between the two processes
becomes much more evident and more easily estimable. An R script is provided,
first fit using data without intervention effects and then with intervention effects—
in general the estimates of the dynamics should become more accurate, with lower
standard errors, when the interventions are included.
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set.seed(1)
nlatent=2 #number of latent processes
nmanifest=2 #number of manifest variables
tpoints=10 #number of measurement occasions
ntdpred=2 #number of time dependent predictors
TDPREDMEANS=matrix(0,ntdpred*tpoints,1)
TDPREDMEANS[c(3,tpoints+6)]=1 #intervention 1 at t3 and intervention 2 at t6

genm=ctModel(Tpoints=tpoints,
n.latent=nlatent, n.manifest=nmanifest, n.TDpred=ntdpred,
LAMBDA=diag(1,2),
DRIFT=matrix(c(-.4, 0, .1, -.3), nrow=nlatent, ncol=nlatent),
DIFFUSION=matrix(c(1, 0, 0, 1), nrow=nlatent, ncol=nlatent),
MANIFESTVAR=matrix(c(1, 0, 0, 1), nrow=nmanifest, ncol=nmanifest),
TDPREDEFFECT=matrix(c(0, 0, 0, 0), nrow=nlatent, ncol=ntdpred),
CINT=matrix(c(0, 0), nrow=nlatent, ncol=1),
TDPREDMEANS=TDPREDMEANS,
MANIFESTMEANS=matrix(c(0), nrow=nmanifest, ncol=1))

dat=ctGenerate(ctmodelobj=genm, n.subjects=20, burnin=20)

fitm=ctModel(Tpoints=tpoints, type="omx", n.latent=nlatent,
n.manifest=nmanifest, n.TDpred=ntdpred, LAMBDA=diag(1,2))

fit=ctFit(dat, fitm)
summary(fit)

#now with input effects
genm$TDPREDEFFECT[c(1,4)] = 10
interventiondat=ctGenerate(ctmodelobj=genm, n.subjects=50, burnin=20)
interventionfit=ctFit(interventiondat, fitm)
summary(interventionfit)

4.5 Discussion

The effect of some intervention or event on an ongoing process can manifest in
many forms over a range of time scales. We have shown that using an impulse
(the Dirac delta) as an exogenous input effect in continuous time dynamic models
allows a wide variety of possible shapes to be estimated by including additional
unobserved mediating processes. This allows for changes in subjects’ baseline levels
or trends that can happen either instantaneously or gradually. Such changes can
dissipate very rapidly, persist for the entire observation window or even build on
themselves over time. Changes at different time scales need not even be in the same
direction, as we have shown how one may model oscillations back to equilibrium or
alternatively an initial change with a slower recovery to a new equilibrium. Such an
approach can be used both to formulate and test hypotheses regarding the response
over time of individuals to some intervention or stimulus, or in a more exploratory
approach using a flexible initial specification or iterative model development. We
have demonstrated possibilities of formalising and testing mediation models, as well
as for examining relations between individuals’ specific traits and their response to
an intervention—a key component for personalised approaches.
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While the approach put forward here relies on an impulse input that may then be
transformed to a range of shapes via the drift matrix, alternative treatments of input
variables in continuous time have been proposed by Singer (1998) and Oud and
Jansen (2000). In such approaches, the input is conceived as occurring over some
time frame; a polynomial describes the temporal evolution, and some approximation
of the integral over time must be computed. Because such an approach does not
extend the state matrices, it may in some cases be computationally faster.

An aspect which has been implicit throughout the work so far is that of causal
inference. We do not think it is controversial to state that, to the extent that the
model is accurately specified and the observed input effects are exogenous to the
system processes, causal interpretations of the input effects and their time course
may be reasonable. While a fully explicated formal treatment of causality is beyond
the scope of this work, we will briefly discuss exogeneity of effects:

When input effects are not exogenous, as, for instance, when they are used to
model events in a person’s life that the person can have some influence over—as, for
example, when ending a relationship—it may still be helpful to model input effects
as discussed, but interpretation is far less clear. In such a case, the observed response
to a particular type of event may still be interesting, but the response cannot be
assumed to be due to the event specifically, as it may instead be due to antecedents
that gave rise to the event. Finding that those who choose to end a relationship
become happier does not imply that ending relationships is a useful intervention
strategy for people in general!

Amongst the benefits of the approach we have been discussing, there are also
some limitations to be considered: the timing of the start of the input effect must be
known, the value of the input variables must be known, non-linearities in the input
effect are not directly modelled and the input variable only influences states of the
processes, not parameters of the model. In the following paragraphs, we elaborate
on these limitations.

In the approach we have put forward, the timing of all observations, including
observations of input variables, are regarded as known and must be input as data.
This could be troublesome if (a) the timing of the intervention or event in question
is simply not well measured, or (b) there is some genuine lag time during which
the effect of the input or intervention on the process of interest is truly zero, before
suddenly taking effect. In both cases, when the possible error is small relative to
the observation time intervals, there are unlikely to be substantial ramifications for
model fitting and inference. The latter case may be somewhat trickier to determine,
so far as we can imagine, should be limited to situations involving physical stimuli
and very short time scales. For instance, a loud noise must travel from the source
to the person, and the person must engage in some low-level processing of the
noise, before any startle response would occur. For such situations, if the time-lag is
reasonably well known, the timing of the input variable can simply be adjusted. In
other cases, extending the model to include a measurement model of the observation
timing would seem to make sense, though we have not experimented with such.

Just as we may be uncertain about the exact timing, we may also be uncertain
about the exact values of the input variables. This latter case is more straightforward,
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however, simply requiring a measurement model on the input variables. This is not
explicitly available within ctsem at time of writing but could be achieved by treating
the input variable as an indicator of a regular process in the system and fixing the
variance and covariance of system noise (diffusion) for this process to near zero.
This configuration would result in a very similar model to the dissipating input effect
model we have described, wherein the auto effect could be freely estimated or fixed
if one wished explicitly for an impulse or level change effect. The strength of the
intervention effect would then need to be captured either by the factor loading or the
temporal effect in the drift matrix.

Throughout this paper, we have discussed a model in which the input effect is
independent of the current system state. So, although the input effect parameters
may depend in some way on the stable characteristics of the subject (either their
model parameters or included covariates), this effect does not change depending on
whether the subject is higher or lower on any processes. Taking the results from
such a model at face value could imply that the joy of receiving a chocolate bar
as a gift is independent of whether it is three o’clock in the afternoon or three in
the morning. So, some care in application and interpretation is certainly warranted.
This independence of effect from the system state may become more problematic
in situations with repeated administration of an intervention. In these situations, one
approach would be to include the repeated input effect as a distinct input variable
with its own set of parameters, rather than another occurrence of the same input
variable.

Such differential response to repeated inputs is similar to another potential issue,
that of non-linear response to dosage. An example of this could be caffeine, wherein
a moderate dose may improve performance on some tasks but too high a dose leads
to decrements. This non-linearity is a common modelling problem and not specific
to our continuous time approach to interventions. Possible ways of tackling the
issue in this context include the addition of quadratic and higher-order polynomial
versions of the input variables or binning together ranges of dosage levels and
treating these as distinct input variables.

The final limitation we will discuss is that input variables only affect process
states and may not alter the model parameters themselves. While a persistent
level change effect is equivalent to a persistent change in the continuous intercept
parameter matrix, there are no such analogues for the other parameter matrices
such as the temporal dynamics or system noise. In the case that an intervention
substantially changes the dynamics or measurement properties of the system, model
parameters estimated using this approach will represent some average over the
observation window. There is no cause (that we can see) to expect bias in either state
estimates or the expectation given some intervention, but estimates of uncertainty
may be inaccurate. In situations where one is concerned about the possibility of
a change in the model parameters induced by an intervention, an approach to
test for this could be to include a comparison model wherein the parameters are
allowed to change in an instantaneous fashion when the intervention occurs, as with
interrupted time-series approaches. This is relatively simple to implement and would
correspond to an instantaneous level-change-type effect on the model parameters
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themselves. A more realistic though more complex approach is to include any
relevant model parameters in the system state equations, which would require non-
linear filtering techniques.

The continuous-time dynamic modelling approach allows for inference with
regard to interventions in two important domains. The primary domain is that of
the effect of the intervention on any processes of interest—how long do the effects
take to manifest, do they vary in direction over time, and are there individual
differences in the effects? The second domain is that of the processes themselves—
by generating a substantial impulse of known cause, timing and quantity on the
processes, this may enable us to better estimate any causal and mediating relations
between processes.

So, just how long does a treatment take to reach maximum effect, how long
does the effect last, and what sorts of people is it most effective for? By adopting
a modelling framework such as we have proposed and developing an improved
understanding of the timing of interventions and their effects, we may be able to
better answer such questions.
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Chapter 5
Continuous-Time Modeling of Panel Data
with Network Structure

Nynke M. D. Niezink and Tom A. B. Snijders

5.1 Introduction

In many statistical models, the assumption of independent observations is key for
making inference. Such an assumption is likely to be valid in, for example, a survey
study among a random sample of people from a large population. If a group of
people fills out a survey every year, observations are no longer independent. They
are nested within individuals.

Temporal dependence is merely one form of dependence between observations.
A shared social context may be another reason to assume dependence, for example,
for students in a classroom or employees in an organization. When the crime rate
in neighboring areas is similar, we speak of spatial dependence. All these forms of
dependence between observations are based on some notion of shared context: the
individual, the social, and the location.

The interactions and relations between individuals within a social context intro-
duce another layer of dependence. They are the object of study in the field of social
network research (e.g., Kadushin 2012; Scott and Carrington 2011; Wasserman
and Faust 1994). Examples of social relations include friendship (among students),
collaboration (among firms), and advice seeking (among colleagues). The relations
in a group of social actors (e.g., students, firms, or colleagues) constitute a social
network. In this network, actors are represented by nodes and the relations between
actors by ties (directed edges between pairs of nodes).
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The definition of the group, the set of actors between whom the relation is
studied, is part of the design in network research. It is assumed that relations outside
this group may be ignored for the purpose of the analysis; this is of course always
only an approximation. This is called the problem of network delineation or the
“network boundary problem” (cf. Marsden 2005), and it is considered to have been
solved before embarking upon the analysis.

Social ties can change over time. They affect and are affected by the character-
istics of the actors. An employee can increase his or her performance by seeking
advice. At the same time, advice is more likely to be sought from high-performing
colleagues. As such, the advice-seeking network and the performance of a group of
colleagues may well develop interdependently (coevolve) over time.

A major reason for the fruitfulness of a network-oriented research perspective is
this entwinement of networks and individual behavior, performance, attitudes, etc.
of social actors. The effect of peers on individual behavior is a well-studied issue.
The composition of the social context of individuals influences their attitudes and
behaviors, and the choice of interaction partners is itself dependent on these attitudes
and behaviors. Studying the entwinement of networks and actor-level outcomes
is made difficult because of this endogeneity: the network affects the outcomes,
while the outcomes affect the network. One way to get a handle on this is to
model these dynamic dependencies in both directions in studies of the coevolution
of networks and nodal attributes. This is called the coevolution of networks and
behaviors, where for the nodal attributes in the role of dependent variables we use
the term “behavior” as a catchword that also can represent other outcomes such as
performance, attitudes, etc.

The coevolution of a social network and the attributes of network actors can
be studied based on network-attribute panel data. For the analysis of such data,
continuous-time models are a natural choice. Many social relations and individual
outcomes do not change at fixed-time intervals. Social decisions can be made
at any point in time. Moreover, continuous individual outcomes often reflect the
consequence of many decisions (Hamerle et al. 1991). Continuous-time models
allow us to model gradual change in networks and behavior and have the additional
advantage that their results do not depend on the chosen observation interval, as for
discrete-time models (Gandolfo 1993; Oud 2007).

In general, continuous-time models are fruitful especially for systems of vari-
ables connected by feedback relations and for observations taken at moments that
are not necessarily equidistant. Both issues are relevant for longitudinal data on
networks and individual behavior. Network mechanisms such as reciprocity and
transitive closure (“friends of friends becoming friends”) are instances of feedback
processes that do not follow a rhythm of regular time steps. The same holds for
how actors select interaction partners based on their own behavior and that of others
and for social influence of interaction partners on an actor’s own behavior. For this
reason, continuous-time models are eminently suitable for the statistical modeling
of network dynamics.
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The dependence structure in social network data is complex. Neither the actors
in the network, nor the ties between them are independent. The stochastic actor-
oriented model has been developed for the study of social network dynamics
(Snijders 2001) and deals with these intricate dependencies. It is a continuous-time
Markov chain model on the state space of all possible networks among a set of
actors. The model represents network dynamics by consecutive tie change decisions
made by actors. The network change observed in panel data is considered the
aggregate of many individual tie changes. The model is developed in the tradition of
network evolution models by Holland and Leinhardt (1977). Earlier models in this
tradition assumed that the pairs of actors (dyads) in a network evolve independently
(e.g., Wasserman 1980). The stochastic actor-oriented model does not impose this
assumption.

This chapter discusses a model for network-attribute panel data, in which the
attributes are measured on a continuous scale. Earlier extensions of the stochas-
tic actor-oriented model for network-attribute coevolution were suited for actor
attributes measured on an ordinal categorical scale (Snijders et al. 2007) or on
a binary scale representing whether or not an actor has adopted an innovation
(Greenan 2015). While those models can be entirely specified within the continuous-
time Markov chain framework for discrete (finite) outcome spaces, the model
presented here integrates the stochastic actor-oriented model for network dynamics
and the stochastic differential equation model for attribute dynamics. The probabil-
ity model is a combination of a continuous-time model on a discrete outcome space
(Kalbfleisch and Lawless 1985) and one on a continuous outcome space.

The model presented in this chapter was first discussed by Niezink and Snij-
ders (2017). While in that paper, we introduced the mathematical framework of the
model, here we focus on its applicability. In the next section, we elaborate the type of
research questions that the model can help to answer and describe the data necessary
to answer the questions. In Sect. 5.3, we formulate the model for the coevolution of
a social network and continuous actor attributes. Section 5.4 outlines the method of
moment procedure for parameter estimation.

The statistical procedures developed for the analysis of longitudinal network
and behavior data are implemented in the R package RSiena (Ripley et al. 2018).
Section 5.5 describes how this package can be used to estimate the class of models
described in this chapter. In Sect. 5.5, we also present a study of the coevolution
of friendship and school performance, in terms of mathematics grades, based on
the data from 33 school classes. We simultaneously consider the role of school
performance in how students select their friends and how friends influence each
other’s performance. The study is the first application of the coevolution model for
networks and continuous behavior based on multiple groups (networks). Section 5.6
concludes with a summary and a discussion of some potential directions for future
research.
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5.2 Background Context

Friends have been found to be more similar to each other than non-friends. For
example, adolescent friends are often similar in their cigarette and drug use (Kandel
1978) and show similar delinquent behavior (Agnew 1991). Formally, this type
of association with respect to individual characteristics of related social actors is
referred to as network autocorrelation. It can be caused by peer influence and by
homophilous selection, e.g., an adolescent could start smoking, because his friend
smokes, and a smoking adolescent could select a fellow smoker as his friend.

Steglich et al. (2010) review the network autocorrelation puzzle from a soci-
ological point of view. They present the stochastic actor-oriented model for
network-attribute coevolution as a way to disentangle selection and influence, based
on longitudinal data. Applications of the model include studies on the spread of
delinquent behavior (Weerman 2011) and moral disengagement (Caravita et al.
2014) in adolescent friendship networks and on the relationship between countries’
democracy and their formation of trade agreements (Manger and Pickup 2016).

While the model described by Steglich et al. (2010) assumes actor attributes
to be measured on an ordinal categorical scale, in this chapter, we focus on the
model for the coevolution of networks and continuous actor attributes (Niezink
and Snijders 2017). Many attributes of social actors, such as the performance of an
organization or the health-related characteristics of a person, are naturally measured
on a continuous scale. Apart from selection and influence processes, the stochastic
actor-oriented model can be used to study the effects of local network structures on
such attributes.

Vice versa, the effects of individual attributes on the dynamics of social networks
can be studied. We can also take into account the effect of covariates, measured on
the individual level (e.g., sex of a student) or on the dyad level (e.g., geographic
distance between two organizations). Finally, but very essentially, in the stochastic
actor-oriented model, the dynamic state of the network itself can affect network
change. Transitivity (the tendency to befriend the friends of one’s friends) is but one
endogenous network mechanism that has been shown to play an important role in
the evolution of social networks.

5.2.1 Data

To study a coevolution process as described above, we need repeated observations
of a complete social network among a set of actors I = {1, . . . , n} and of the
attributes of these actors. The social networks that are studied using stochastic actor-
oriented models typically include between 20 and 400 actors. Networks of this size
often still describe a meaningful social context for a group of actors. For very large
networks, such as online social networks, this is no longer true.
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Fig. 5.1 Two representations
of the same relational data (a)
The network. (b) The
adjacency matrix

1 3

2 4

5

(a)

⎛
⎜⎜⎜⎜⎝

0 1 1 0 0
0 0 1 1 0
0 1 0 0 1
0 0 0 0 1
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠

(b)

Complete social network data contains the information about all n(n − 1) tie
variables xij between the actors. The presence of a tie from actor i to actor j
is indicated by xij = 1 and its absence by xij = 0. Adjacency matrix x =
(xij ) ∈ {0, 1}n×n summarizes all tie variable information. Figure 5.1 shows an
example of a network and the corresponding adjacency matrix. Ties are assumed
to be nonreflexive, so xii = 0 for i ∈ I . Reflexive social ties would be either
conceptually different from the ties actors have with others (“being your own
friend”) or would make no sense (“asking yourself for advice”). We also assume ties
to be directed, so xij and xji are not necessarily equal. Friendship, advice seeking,
and bullying are examples of directed relations; even though i calls j his friend, j
may not call i his friend. Undirected relations, such as collaboration, can be studied
using the stochastic actor-oriented model as well (Snijders and Pickup 2016) but are
not the focus of this chapter.

The attribute values of all actors can be summarized in a matrix z ∈ R
n×p . In

Sect. 5.3, we present the network-attribute coevolution model for the case that actor
i has several coevolving attributes zi = (zi1, . . . , zip). The implementation in the
package RSiena currently only allows for one coevolving attribute, i.e., p = 1.

The network x(tm) and attributes z(tm) are measured at several points in time
t1, . . . , tM , not necessarily equidistant. For most longitudinal studies of networks
among people, the number of measurements M ranges between two and five.
Between the measurement moments, changes in the network and actor attributes
take place without being directly observed. Therefore, we assume the measurements
to be the discrete-time realizations of a continuous-time process. More specifically,
the networks x(tm) and attributes z(tm) are assumed to be realizations of stochastic
networks X(tm) and attributes Z(tm), embedded in a continuous-time stochastic
process Y (t) = (X(t), Z(t)), with t1 ≤ t ≤ tM . Non-stochastic individual and
dyadic covariates may also be part of this process but are left implicit in the notation.

The network changes between consecutive measurements provide the informa-
tion for parameter estimation and therefore should be sufficiently numerous. At the
same time, the number of network changes should not be too large. A very large
number of changes would contradict the assumption that the change process under
study is gradual or, in case the change is gradual, would mean that the measurements
are too far apart (Snijders et al. 2010b).

The Jaccard index quantifies the amount of network change between two
measurements. LetN11 denote the number of ties present at both measurements,N10
those present only at the first, andN01 those present only at the second measurement.
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The Jaccard index is defined as the proportion of stable ties

N11

N11 +N10 +N01
. (5.1)

For a stochastic actor-oriented model analysis, Jaccard indices should preferably
be higher than 0.3. If Jaccard indices are very low while the average degree of the
network actors is not strongly increasing, this indicates that the change process is
not gradual, compared to the measurement frequency (Ripley et al. 2018).

Collecting complete social network data is a considerable effort. Since complete
social network data are especially sensitive to missing data due to their complex
dependence structure (Huisman and Steglich 2008), a high response rate is very
important. Respondents in complete network studies often form a meaningful
group (e.g., a school class or the employees of an organization), which provides
a natural choice for the network boundary. Missing responses can therefore not be
compensated by the addition of a few randomly selected other individuals to the
study. At the same time, for the participants, answering multiple network questions
such as “who in this school is your friend/do you study with/do you dislike?” can be
a wearying task. We refer to Robins (2015) for guidance on collecting network data
and doing social network research.

5.3 Stochastic Actor-Oriented Model

The change observed in network ties and actor attributes between two measure-
ments, at time tm and tm+1, is the accumulation of the gradual change that has
taken place in the meantime. We model the gradual change in network-attribute
state Y (t) = (X(t), Z(t)) by a continuous-time Markov process: the continuous
attribute evolution is represented by a stochastic differential equation (Sect. 5.3.1)
and the network evolution by a continuous-time Markov chain (Sect. 5.3.2). In
Sect. 5.3.3, we present a simulation scheme for the network-attribute coevolution
process, which integrates both components. The simulation scheme is used for
parameter estimation (Sect. 5.4).

The M − 1 periods between consecutive observations tm and tm+1 do not
necessarily have equal length. Moreover, even in periods of equal length, the amount
of observed change can differ. For example, in the first month of a school year,
friendship ties among students may evolve more rapidly than in the fifth month.
In the specification of the stochastic actor-oriented model below, we take this into
account by including period-specific parameters that differentiate rates of change
per period (cf. Snijders 2001). We do assume that the change is governed by the
same social mechanisms over all periods. Therefore, the parameters indicating the
strength of these mechanisms are equal across periods.
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5.3.1 Attribute Evolution

The evolution of the attributes Zi(t) of actor i is modeled by the linear stochastic
differential equation

dZi(t) = τm[AZi(t)+ B ui(t)] dt + √
τm G dWi(t) (5.2)

for the period between two observation moments tm and tm+1. The drift matrix A ∈
R
p×p specifies how the change in the attributes Zi(t) depends on the state of the

attributes. The elements of input vector ui(t) ∈ R
r are called effects and can depend

on the state Y (t) of the coevolution process. Parameter matrix B ∈ R
p×r indicates

the strength of the effects in ui(t).
An example of an effect that depends on the network state X(t) is the number of

outgoing ties of actor i:

∑

j

Xij (t). (5.3)

Figure 5.2a shows the consequence of a positive outdegree effect: actor i has three
outgoing ties and therefore his attribute value increases. A corresponding hypothesis
could be “having friends has a positive effect on a person’s mood.” Figure 5.2b
visualizes a social influence process, a dependence of the attribute dynamics of actor
i on the attribute values of the actors to whom actor i has outgoing ties (his “alters”).
A corresponding hypothesis could be “a person’s mood is affected by the mood of
his friends.” In the figure, actor i takes on the average value of the attribute values
of his alters. Generally, social influence processes are modeled by the combination
of network and attribute information. The average alter effect of the kth attribute,
defined as

∑
j Xij (t)(Zjk(t)− z̄k) /

∑
j Xij (t), (5.4)

is one way to operationalize social influence. Here, z̄k denotes the overall observed
mean of attribute k. If actor i has no outgoing ties, the effect is set to 0. The effects
in ui(t) may also depend on individual and dyadic covariates.

i

=⇒
i

(a)

i

=⇒
i

(b)

Fig. 5.2 Two examples of network-related effects in input vector ui(t). Darker nodes represent
actors with a higher attribute value. (a) Outdegree effect. (b) Average alter effect
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Parameter τm in stochastic differential equation (5.2) is a period-specific param-
eter and accounts for potential heterogeneity in period length. The parameter
indicates how the equation scales in time. For s = τ t , a standard Wiener process
W(s) transforms as

W(s) = W(τ t) = √
τ Wτ (t), (5.5)

whereWτ (t) is again a standard Wiener process. This explains the
√
τm in Eq. (5.2).

Parameter τm in the deterministic part of the equation follows from ds/dt = τ . We
can assume that the time parameter t in our model runs between 0 and 1 for each
periodm, as the free—and to be estimated—parameter τm will absorb the true time
scale of the period.

Finally, to make model (5.2) identifiable, we assume that matrix G ∈ R
p×p is a

lower diagonal matrix with upper left entry equal to 1 (Niezink and Snijders 2017).
In case the number of observations is two, we can set τ1 = 1 instead.

5.3.2 Network Evolution

A characteristic assumption of the stochastic actor-oriented model (Snijders 2001)
is that actors control their outgoing ties. Changes in the network are modeled
as choices made by actors. We assume that, at any given moment, all actors act
conditionally independently of each other given the current state of the network
and attributes of all actors. Moreover, actors are assumed not to make more than
one change in their ties to other actors at any given time point. These assumptions
exclude, for example, the possibility for actors to coordinate their decisions but
have the advantage that they keep the model parsimonious and relatively simple.
Depending on the application, the assumptions will make more or less sense.

The network evolution model, given the attribute values, is a continuous-time
Markov chain with a discrete state space (Norris 1997). This means that at discrete
moments, the state “jumps” to a different value. The time between these jump
moments must have the exponential distribution because of the Markov property;
the assumptions made in the preceding paragraph imply that the new state differs in
exactly one tie variable from the old state.

In the network evolution model, the rate of network change or, more precisely,
the rate at which each actor in the network gets the opportunity to change one of
his outgoing ties is period-specific. In period m, the waiting time until the next
change opportunity is, for each actor, exponentially distributed with rate λm. The
minimum of these waiting times, i.e., the time until the next change opportunity for
any actor, is exponentially distributed with rate λ+ = nλm. The probability that a
particular actor i gets the opportunity to make a change is 1/n. The parameters λm
play a role similar to that of the parameters τm in the stochastic differential equation.
They account for heterogeneity in period length and allow us to model each period
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as having unit duration. For models with variable change rates across actors, see
Snijders (2001).

An actor i with the opportunity to make a tie change can choose to create a new
tie to one of the other actors, to dissolve one of his existing ties, or to make no
change. The probability distribution of the change made by actor i is determined
by objective function fi(x, z). This function can be interpreted as the value actor i
assigns to a particular network-attribute state (x, z), when making a network change.

Let x(±ij) denote the adjacency matrix equal to x, in which entry xij is changed
into 1 − xij , and let x(±ii) = x. Given that x is the current network state, the choice
probabilities for actor i are given by

P
{
x changes to x(±ij)

}
= pij (x, z) = exp(fi(x(±ij), z))∑n

h=1 exp(fi(x(±ih), z))
. (5.6)

These probabilities can be obtained as the result of actor i selecting the network
state x(±ij) (j = 1, . . . , n) for which

fi(x
(±ij), z)+ εi

is highest, where the εi are independently generated for each next actor choice and
follow a standard Gumbel distribution (McFadden 1974).

The objective function is defined as a weighted sum of effects sik(x, z),

fi(x, z) =
∑

k

βksik(x, z). (5.7)

Parameter βk indicates the strength of the kth effect, controlling for all other effects
in the model. The effects represent the actor-level mechanisms governing network
change, as the effects in ui(t) in Eq. (5.2) do for attribute change. Ripley et al.
(2018) provide an overview of the many effects that are currently implemented
for stochastic actor-oriented models. Examples are discussed in Sect. 5.5. As the
effects sik(x, z) are allowed to depend on the actor attributes z, we can model
selection based on attribute similarity (homophilous selection). We can also model
the differential tendency of actors with high attribute values to send (ego effect) or
receive (alter effect) more network ties.

For given actor attribute values z, the network evolution model reduces to a con-
tinuous-time Markov chain (Norris 1997) with transition rate matrix or infinitesimal
generator:

q(x, x ′) =
⎧
⎨

⎩

λm pij (x) if x ′ = x(±ij) and i = j,

−∑
i =j λm pij (x) if x ′ = x,

0 else.
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In the following section, we specify how the evolution of a network and the
continuous attributes of network actors can be simulated, in case their dynamics
are interdependent.

5.3.3 Coevolution

For linear stochastic differential equations, the transition density from one mea-
surement to the next can be expressed exactly in the so-called exact discrete
model (EDM) (e.g., Hamerle et al. 1991; Oud and Jansen 2000). This model is
the solution of the stochastic differential equation. For most specifications of the
stochastic actor-oriented model, it is not possible to express the transition density of
a network-attribute state explicitly. Therefore, we specify the coevolution model as
a simulation model.

In the coevolution model, we use the EDM to model the attribute change
not between measurements but between the (unobserved) tie changes. The EDM
expresses the discrete-time consequences of continuous-time model (5.2). Between
tie changes at times t and t +Δt , the attribute change for actor i is given by

zi,t+Δt = AΔt zi,t + BΔt ui,t + wi,Δt , (5.8)

wherewi,Δt is multivariate normally distributed with zero mean and covarianceQΔt
(Bergstrom 1984; Hamerle et al. 1991). The EDM exactly relates the continuous-
time parameters in (5.2) to the discrete-time parameters in (5.8) via

AΔt = eτmAΔt

BΔt = A−1(AΔt − Ip)B (5.9)

QΔt = ivec[(A⊗ Ip + Ip ⊗ A)−1(AΔt ⊗ AΔt − Ip ⊗ Ip) vec(GG�)],

in case the input ui(t) is constant between t and t + Δt . This is true if ui(t) only
contains effects that are a function of the covariates and the network state—the
network is constant between tie changes. However, social influence effects, such as
average alter effect (5.4), also depend on the attribute states of the actors. For this
case, Niezink and Snijders (2017) show in a simulation study that the approximation
error in the attribute values induced by setting ui,t constant between tie changes is
negligible.

Intuitively, the negligible approximation error can be understood by considering
Fig. 5.3. The periodsΔt between the unobserved tie changes are much smaller than
the time period between the measurements. In practice, in the coevolution scheme
presented hereafter, the number of simulated tie changes within one period often
easily tops a hundred. Repeatedly assuming ui(t) to be constant over a very small



5 Continuous-Time Modeling of Panel Data with Network Structure 121

t1 t2 t3

t1 t2 t3 t̃1

Period 1 Period 2

. . . . . .

Fig. 5.3 Time scales in network-attribute coevolution. The times Δt between consecutive tie
changes are very small compared to the lengths of the two observations periods (theΔt are depicted
larger for sake of visualization)

time span does not accumulate into large deviations in the actor attributes (Niezink
and Snijders 2017).

By combining the EDM with the network evolution model defined in the previous
section, we specify the network-attribute coevolution model in a simulation scheme
(see Algorithm 1). In this scheme, the following steps are repeated: after a waiting
time Δt until a next network change is drawn, the actor attributes are updated over
the Δt period, and an actor i makes a tie change to an actor j .

The simulation time length for the coevolution process between observation
times tm and tm+1 is set to 1. While this is an arbitrary choice, the actual duration of
periodm is accounted for by the network change rates λm and by the parameters τm
of the stochastic differential equation.

We condition the simulation of the coevolution process in periodm on the initial
observation of that period, the network x(tm) and attributes z(tm). Estimation is
carried out conditional on these initial states.

Data: network x(tm), attributes z(tm), and covariates.
Input: values for parameter matrices A, B, G and for τm, λm, and all βk .

set t = 0, x = x(tm), z = z(tm) and ui = ui(x, z) for all i ∈ I
sample Δt from an exponential distribution with rate nλm
while t +Δt < 1 do

for all i ∈ I : sample ci from a N (AΔt zi + BΔtui ,QΔt ) distribution
for all i ∈ I : set zi = ci
select actor i ∈ I with probability 1/n
select alter j ∈ I with probability pij (x, z)
set t = t +Δt and x = x(±ij), and ui = ui(x, z) for all i ∈ I
sample Δt from an exponential distribution with rate nλm

end
for all i ∈ I : sample ci from a N (A(1−t)zi + B(1−t)ui ,Q(1−t)) distribution
for all i ∈ I : set zi = ci

Algorithm 1: Simulating the network-attribute coevolution in period m
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5.4 Estimation

The parameters in a stochastic actor-oriented model represent the strengths of
the effects included in the model. To estimate the parameters, the method of
moment procedure (Snijders 2001) is most commonly used. Bayesian and maximum
likelihood estimation methods also have been proposed (Koskinen and Snijders
2007; Snijders et al. 2010a) but require much more computation time.

Let θ denote the vector containing all parameters in the model, and S(Y ) a vector
of statistics, one for each parameter, such that statistic Sk is sensitive to changes in
parameter θk . For example, for the reciprocity parameter, we select the number of
reciprocated ties at the observation moments as our statistic. The method of moment
estimate θ̂ is that value of θ for which the expected value of S(Y ) equals its observed
value s = S(y),

E
θ̂
(S(Y )) = s. (5.10)

Snijders (2001) proposed statistics for the network evolution parameters, and
Niezink and Snijders (2017) derived statistics for the attribute evolution parameters.
The latter are based on the sufficient statistics of an autoregression model, the
parameters of which can be linked to the continuous-time parameters via the EDM.

It follows from the delta method (e.g., Lehmann 1999, p. 315) that the covariance
matrix of θ̂ can be approximated as

cov(θ̂ ) ≈ D−1
θ covθ (S(Y ))(D

−1
θ )�, (5.11)

where

Dθ = ∂

∂θ
Eθ (S(Y )) (5.12)

and covθ (S(Y )) are evaluated at the estimate θ̂ .
The values of Eθ (S(Y )) and covθ (S(Y )) generally cannot be evaluated ana-

lytically, but they can be estimated based on simulations. To this end, for each
m = 1, . . . ,M − 1 the coevolution process Y (t) is simulated from time tm to
tm+1, given the observed initial value Y (tm) = y(tm) and parameters θ . We can
estimate Eθ (S(Y )) by the average of the statistics computed based on a large random
sample of simulated coevolution processes and covθ (S) by their covariance. Also
Dθ can be estimated based on simulated coevolution trajectories, using the score
function method described by Schweinberger and Snijders (2007) and elaborated
for continuous dependent variables by Niezink and Snijders (2017).

To find the solution θ̂ to Eq. (5.10), we use the multivariate version of the
Robbins-Monro (1951) stochastic approximation algorithm, a stochastic equivalent
of the Newton-Raphson method. Let SN denote the values of the statistics based on
the N th simulation of the coevolution process with θ = θN . The central iteration
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step in the algorithm is

θN+1 = θN − aN diag(D̂)−1(SN − s), (5.13)

where diag(D̂) is a an estimate of derivative matrix (5.12), in which the outer
diagonal entries have been multiplied by a constant between 0 and 1, and aN is
a sequence of positive numbers converging to zero at rate N−c, with 0 < c < 0.5,
controlling the convergence of the algorithm (Polyak 1990; Ruppert 1988).

The estimation procedure, implemented in the R package RSiena (Ripley et al.
2018), consists of three phases.

Phase 1. Given an initial parameter θ0, matrix D̂ is estimated based on a small
number n1 of simulations. Then the parameter value is updated once
using (5.13) with S0 = S, the mean of the statistics values based on the
n1 simulations.

Phase 2. The value of θ is estimated in n2 subphases of increasing length and with
aN constant per subphase. At the end of each subphase, θ is estimated
by the average of the θN values generated in the subphase, and aN is
reduced by a factor 0.5.

Phase 3. Given the final estimate of θ in Phase 2, a large number n3 of coevolution
processes is simulated. These are used to estimate covariance (5.11) and
to check the convergence of the algorithm.

For more details about the estimation procedure and convergence checking, see Snij-
ders (2001, 2005) and Ripley et al. (2018). After parameter estimation, the goodness
of fit of a model can be checked by evaluating whether, apart from the network
configurations and attribute effects explicitly fitted, also other aspects of the network
structure and attributes are adequately represented by the model (Ripley et al. 2018).
Examples of network structures that are often considered in goodness of fit analyses
are the in- and outdegree distribution and the triad census (all possible network
configurations on three actors) of a network.

5.5 Example: Coevolution of Friendship and Grades

To illustrate the method discussed in this chapter, we present a study of the
coevolution of the friendship ties between adolescents at the start of their secondary
education and their academic performance, in terms of mathematics grades. We
explore whether academic performance plays a role in the formation of friendship
between students and whether the performance of a student is influenced by
the performance of his friends. Although stereotypes about female inferiority
in mathematics still persist, actual performance differences favoring males are
generally not found (Hyde et al. 1990; Lindberg et al. 2010). In this study, we also
assess gender differences in the evolution of mathematical performance.
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The analysis is based on school class data collected by Knecht (2004). Parts
of these data were studied by Knecht (2010) and Knecht et al. (2011). In these
references, detailed information about the data and procedure is provided. In this
section, we analyze a subset of the classes in the original data, using the stochastic
actor-oriented model. Throughout the text, code snippets provide guidance on how
to analyze a single class using the R package RSiena. We aggregate the classroom
results in a meta-analysis (Cochran 1954; Snijders and Baerveldt 2003).

5.5.1 Data

The original sample (Knecht 2004) included over 3000 students from 120 class-
rooms in 14 secondary schools in the Netherlands, who were followed over their
first year at secondary school (2003/04). Data were collected four times, every 3
months. Friendship ties were assessed by asking students to nominate up to 12 best
friends in class. Mathematics grade information was only available at the last three
measurements. We will refer to these time points as time 1, time 2, and time 3.

The numbers of students in the classrooms ranged from 14 to 33. These numbers
challenge the feasibility of the method of moment estimation procedure. For a class
of size n, with no missing data, only n×3 grade observations are available, based on
which the grade dynamics have to be inferred. To avoid convergence issues due to
small class sizes or missing data, we selected the classes with grade data available
for more than 25 students at least two waves. The 39 selected classes ranged in
size from 27 to 33. By selecting classes of similar size, we also ensure that the
results based on the different classes are comparable. The Jaccard indices of the
friendship networks in the 39 classes ranged from 0.34 to 0.71. These values are
sufficiently high to consider the observed networks as part of an evolution process
(see Sect. 5.2.1).

The selected sample includes 1160 students, aged 11–13 at the beginning of the
school year. Table 5.1 presents some descriptives of the friendship networks and
mathematics grades at the three time points. Network density is defined as the ratio
of the observed number of ties to the total number of possible ties n(n − 1). The
networks in our selected sample have a low density, which is expected for networks
of best friendship nominations. Reciprocity in a network is defined as the number of
reciprocated (mutual) ties over the total number of ties. The reciprocity in the best
friendship networks is high.

The theoretical range of the mathematics grades is 10 to 100, and the minimum
passing grade is 55. Table 5.1 shows that the differences in average mathematics
grades between boys and girls are very small, especially given the large variation
within the groups. For the stochastic actor-oriented model analyses, the grades are
centered on the average grade 69.7 of the 1160 students and divided by 10. This
transformation does not affect the substantive conclusions of the analyses but does
ensure that the scale of the parameters in the stochastic differential equation and the
grade-related network parameters are not too small.
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Table 5.1 Descriptive statistics of the friendship networks and mathematics grades

Time 1 Time 2 Time 3

mean (sd) mean (sd) mean (sd)

Friendship

Density 0.13 (0.020) 0.14 (0.015) 0.12 (0.019)

Reciprocity 0.88 (0.032) 0.88 (0.035) 0.88 (0.026)

Missing (%) 16.7 (10.3) 13.2 (6.2) 16.4 (8.5)

Mathematics grades

Boys 69.6 (11.2) 70.2 (10.7) 70.1 (11.6)

Girls 69.2 (11.5) 69.6 (10.7) 69.9 (11.0)

Missing (%) 19.1 10.9 11.8

The network descriptives are computed on the network level (39 networks) and the grade
descriptives on the individual level (time 1, 938 students; time 2, 1033 students; time 3, 1023
students)

A network-attribute data set on 30 students can be read into the RSiena
framework as described below. The function sienaDependent defines the
coevolving dependent variables, based on the three observed 30 × 30 adjacency
matrices and the 30 × 3 matrix with mathematics grades. Gender is a constant
covariate (coCovar).

friends <-
sienaDependent(array(c(friend1, friend2, friend3),
dim=c(30,30,3), type="oneMode")
grades <- sienaDependent(gradeData, type="continuous")
sexM <- coCovar(sexData, center=FALSE)
mydata <- sienaDataCreate(friends, grades, sexM)

5.5.2 Model Specification

The specification of an actor-based model is given by the list of effects included
in the objective function (5.7) and the input vector ui(t) in stochastic differential
equation (5.2). The basic specification of the model, obtained from the command

myeff <- getEffects(mydata)

accounts for the density of the friendship network and the tendency of students to
reciprocate friendship ties,

fi(x, z) = β1

∑

j

xij + β2

∑

j

xij xji, (5.14)
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and includes an intercept term in the stochastic differential equation,

dZi(t) = τm[a Zi(t)+ b0] dt + √
τm dWi(t). (5.15)

For data collected at two measurement moments, the alternative specification of
differential equation (5.2), fixing τ1 to 1 instead of G, is obtained by including the
option onePeriodSde=TRUE in the function getEffects.

We add to this default model a selection of effects which represent social
mechanisms governing the friendship and grade dynamics. The manual for the
RSiena package provides an overview of all effects that are implemented for the
stochastic actor-oriented model (Ripley et al. 2018). It also provides some guidelines
on the practice of model specification.

In this study, we are interested in the interdependence between the dynamics
of friendship and mathematics grades. We model social influence on grades by the
average alter effect, specified in expression (5.4). We also assess the effect of gender
on the grade dynamics.

myeff <- includeEffects(myeff, name="grades", avAlt,
interaction1="friends")
myeff <- includeEffects(myeff, name="grades", effFrom,
interaction1="sexM")

For the function includeEffects, the parameter name specifies the dependent
variable, and interaction1 specifies the explanatory variable. The effects to
be included are designated by their short names avAlt and effFrom; the short
names are listed in the manual (Ripley et al. 2018).

The specification of the dynamics of the friendship network is done in line with
the usual recommendations for network dynamics, as given in Snijders et al. (2010b)
and Ripley et al. (2018). The effects of grades on friendship are modeled by a grade
ego and a grade alter effect, representing the differential tendency for students with
high grades to send or receive more friendship nominations. We also include an
interaction effect of ego’s and alter’s grade, measuring the differential attractiveness
of students with high grades for students with high grades. A positive grade ego ×
grade alter effect indicates that students with high grades tend to nominate friends
with high grades (i.e., homophilous selection based on grades). The three effects are
added to the objective function (5.14),

· · · + β3 zi
∑

j

xij + β4

∑

j

xij zj + β5 zi
∑

j

xij zj . (5.16)

myeff <- includeEffects(myeff, name="friends",
egoX, altX, egoXaltX, interaction1="grades")

Reciprocity is not the only endogenous network mechanism playing a role in
friendship dynamics. In friendship, people have a tendency toward transitive clo-
sure, i.e., to befriend the friends of their friends. As a tendency against reciprocation
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is generally found in transitive groups (Block 2015), we also account for the
interaction effect of reciprocity and transitivity. Moreover, we account for degree-
related effects on friendship. The outdegree activity effect represents the differential
tendency for students with a high outdegree to send friendship nominations. The
outdegree (indegree) popularity effect represents the tendency for students with
a high outdegree (indegree) to receive friendship nominations. A homophilous
selection effect based on gender is also included in the model. Let vi denote the
gender of student i (0 = female, 1 = male) and I {C} the indicator function for
condition C. We complete objective function (5.14) with

· · · + β6

∑

j,h

xij xihxhj + β7

∑

j

xij xji
∑

h

xihxhj + β8

(∑

j

xij

)2

+ β9

∑

j

xij
∑

h

xjh + β10

∑

j

xij
∑

h

xhj + β11I {vi = vj }. (5.17)

myeff <- includeEffects(myeff, name="friends",
transTrip, transRecTrip, outAct, outPop, inPop)
myeff <- includeEffects(myeff, name="friends", sameX,
interaction1="sexM")

5.5.3 Analysis

We estimate the model parameters using the method of moments in RSiena. The
estimation procedure requires little further implementation by the user. The function
sienaAlgorithm specifies an estimation algorithm with nsub subphases in
phase 2 and n3 iterations in phase 3. The default number of phase 2 subphases
is 4. Increasing this number can help in obtaining converged models but makes the
estimation procedure lasts longer. The default number of iterations in phase 3 is
1000. How to select the right number of iterations in phase 3 to obtain accurate
standard error estimates is the subject of ongoing research. Here we do 30,000
iterations. Several other parameters can be passed to the algorithm (Ripley et al.
2018). We set the random number seed to 123, to be able reproduce our results. As
students were asked to nominate up to 12 best friends, we set the maximum possible
outdegree in the friendship network to 12.

myalg <- sienaAlgorithmCreate(projname="analysis",
nsub=5, n3=30000, seed=123, MaxDegree=c(friends=12))
ans <- siena07(myalg, data=mydata, effects=myeff)

For 2 of the 39 classrooms, the estimation procedure did not reach convergence.
For four of the remaining classrooms, the models converged, but the standard errors
were estimated inadequately. Table 5.2 presents the results of the meta-analysis
based on the finally retained sample of 33 classes. In the meta-analysis, it is assumed
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Table 5.2 Results of meta-analysis of stochastic actor-oriented model analyses

Mean parameter Variation

μ̂θ s.e. σ̂θ p

Friendship dynamics

Rate period 1 5.09 0.30a 1.36 <0.001

Rate period 2 4.86 0.25a 1.02 <0.001

Density −1.70 0.11∗ 0.35 0.058

Reciprocity 2.25 0.082∗ 0.19 0.162

Transitivity 0.58 0.028∗ 0.10 0.025

Transitivity × reciprocity −0.28 0.031∗ <0.001 0.980

Outdegree activity −0.020 0.008∗ 0.026 0.011

Outdegree popularity −0.33 0.022∗ 0.085 <0.001

Indegree popularity 0.011 0.013 0.039 0.105

Same gender 0.65 0.054∗ 0.14 0.142

Grades ego 0.040 0.028 0.070 0.118

Grades alter −0.024 0.024 <0.001 0.671

Grades ego × grades alter 0.094 0.030∗ <0.001 0.726

Grade dynamics

Scale period 1 0.57 0.056a 0.19 0.001

Scale period 2 0.47 0.051a 0.20 <0.001

Feedback −0.58 0.047a 0.16 0.018

Intercept 0.099 0.070 0.27 0.001

Average alter 0.069 0.095 <0.001 0.991

Male 0.023 0.063 <0.001 0.948
∗p < 0.01
aThese effects are not tested, as the hypothesis H0 : θ = 0 is irrelevant. The mean parameter tests
are based on the t-ratio of the estimated mean parameter (μ̂θ ) to its standard error (s.e.). Estimate
σ̂θ denotes the estimated true between-classroom standard deviation; the p-value is based on a
chi-squared test (df = 32) for testing σ 2

θ = 0

that parameters may be different across classrooms and that they are the sum of
a mean parameter value μθ and a random deviation with mean 0 and standard
deviation σθ . Table 5.2 indicates the estimated mean parameter estimates μ̂θ (with
standard errors) and the estimated between-classroom standard deviations σ̂θ (with
p-values of the tests that variance σ̂ 2

θ is 0).

5.5.3.1 Results for Friendship Dynamics

The results indicate no evidence for a differential effect of grades on sending
friendship ties (grades ego effect), nor an effect of grades on the students’ popularity
(grades alter). We do find a significant effect of grade-based selection (grades ego
× grades alter), indicating that students with high grades are more likely to select
friends with high grades.
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The grade-related parameters can be interpreted as follows. When a student i
makes a single tie change, and xa and xb are two possible results of this change,
then

exp(fi(x
a, z)− fi(x

b, z)) (5.18)

is the odds ratio for choosing between xa and xb. So when a student who scores
20 points above the average creates a friendship tie, his odds ratio for nominating
a classmate who scores 20 points above the average (alter1), compared to one who
scores 10 points below the average (alter2), is

exp
( − 0.024 × ( 2

alter1
− −1

alter2
)+ 0.094 × 2

ego
× ( 2

alter1
− −1

alter2
)
) ≈ 1.64, (5.19)

when all else is equal. The latter means that in the two networks, induced by
selecting the high-performing and the low-performing classmate, respectively, the
contributions of all other effects to the objective function fi(x, z) are equal. We also
find strong evidence of gender homophily. Everything else being equal, students
are almost twice as likely (odds ratio = 1.92) to select same gender classmates as
friends.

As expected, Table 5.2 indicates strong evidence for reciprocity and transitivity.
Moreover, reciprocity is less likely to occur in transitive groups. Students who
already nominate many friends do not tend to nominate even more friends (negative
outdegree activity) and are less popular (negative outdegree popularity).

The right half of Table 5.2 provides insight in the differences across classrooms.
For the endogenous network effects of transitivity, outdegree activity, and outdegree
popularity, we find significant (p < 0.05) differences across classes. The substantive
conclusions drawn earlier for transitivity and outdegree popularity remain generally
valid, given the size of the variation in the parameters. For the outdegree activity
effect, we consider the approximate 95% prediction interval of the parameter β8,
given by

μ̂β8 ± t0.975,k−2

√(
s.e.(β̂8)

)2 + (
σ̂β8

)2
, (5.20)

where k is the number of classrooms in the meta-analysis (Borenstein et al. 2009).
This interval ranges from −0.076 to 0.035, thus containing both positive and
negative values.

5.5.3.2 Results for Grade Dynamics

Considering the grade dynamics, we do not find evidence of an influence effect of
peers on mathematics grades (average alter). Also, girls and boys do not significantly
differ in their grade evolution.
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Fig. 5.4 Visualization of the
grade dynamics: the mean
trajectories for boys with
initial grades ranging from 50
to 90 and average friends’
grades 50, 70, or 90
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Based on the estimated parameters, Fig. 5.4 visualizes the size of the nonsignif-
icant social influence effect, by showing the average grade dynamics for boys
between the first two measurements for various initial grade values and various
average friends’ grades. The analogous figure for girls (not depicted here) is very
similar. We can conclude from Fig. 5.4 that the performance level of a student’s
friends matters little for his or her grade evolution.

Table 5.2 shows a significant and substantive variation in the intercept parameter
across classrooms; the 95% prediction interval for the intercept parameter ranges
from −0.46 to 0.66. This indicates classroom-level variation in the development of
class averages.

5.6 Discussion

In this chapter, we have shown how the interdependent dynamics of a social network
and the continuous attributes of network actors can be modeled based on panel
data. The stochastic actor-oriented model presented here employs a continuous-time
approach, which allows us to model the unobserved network-attribute dynamics
between the measurement moments. The model combines a Markov chain model
for the network evolution and a stochastic differential equation for the attribute
evolution.

Continuous-time models are a natural representation of processes that occur
continuously in time. In our case, continuous-time modeling has the advantage
that it allows us to specify the coevolution model as a generative model. For non-
network panel data, autoregressive and cross-lagged models, with their limitations
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(e.g., Voelkle et al. 2012), constitute a classic alternative for stochastic differential
equations. For complete network panel data, similar regression-type alternatives,
representing the complex dependence structure of complete network data, did not
exist before the introduction of the stochastic actor-oriented model (Snijders 1996).

We account for irregularly spaced measurement moments by period-specific
parameters in the model. These parameters allow us to model each period as
having unit duration. This may not seem to be in the spirit of continuous-time
modeling, where the true time intervals do their work without the insertion of extra
parameters (e.g., Oud and Jansen 2000). However, in social network panel data,
the measurements are usually months apart, and the expected amount of change in
equal time intervals is not necessarily the same. In the first month of a school year,
friendship ties among high school students may evolve more rapidly than in the fifth
month. Therefore, instead of letting the amount of change depend on the product of
the true interval lengths and a single fixed change rate, we estimate the change rates
per period. The period-specific parameters thus also account for the heterogeneity
in change activity between periods.

Depending on their attributes or on positional characteristics such as network
outdegree, actors might change their social ties at different rates. For example, girls
may change their friendship ties more frequently than boys. Such differences can be
investigated by the parametrization of the rate into a so-called rate function (Snijders
2001). The stochastic actor-oriented model also allows for the differentiation
between tie creation and tie termination (Snijders 2001). In this chapter, we have
assumed that both processes are governed by the same social mechanisms to the
same extent. This assumption may not always be valid. For example, the difference
between a reciprocated and a non-reciprocated friendship may be larger in the
choice frame of losing a friend than in the frame of making a new friend.

The stochastic actor-oriented model is mostly applied to panel data with two to
five measurements. Theoretically, it could also be applied to time series data. In
case that all network changes and the time points at which these changes occur are
known, as well as the attribute values of the actors at these time points, the likelihood
corresponding to the model presented in this chapter can be formulated explicitly.
Parameters could then be estimated by maximizing this likelihood. Unfortunately,
fine-grained information of this sort about network evolution is hard to collect and
rarely available.

The stochastic actor-oriented model aims to model the change of a network state
over time, based on “snapshots” of this state. Stadtfeld (2012; see also Stadtfeld
et al. 2017) generalized the model to time-stamped event stream data. When people
make phone calls, send e-mails, or visit each other, these actions can be considered
as directed dyadic relational events. Stadtfeld (2012) models such events from an
actor-oriented perspective. The methodology has been applied on private message
communication in an online question and answer community of around 88,000
people over a 3-year time span (Stadtfeld and Geyer-Schulz 2011).

Stochastic actor-oriented coevolution models are often used with the aim to
disentangle selection and social influence processes. We studied these processes
in a secondary school context, exploring the relation between the friendship and
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academic performance, in terms of mathematics grades. Based on the data from 33
classrooms, we find evidence of friendship selection on grade similarity, but not of
peer influences on grades.

We combined the results of the 33 classrooms in a meta-analysis. For the study
of network dynamics based on multiple groups, a random coefficient model has
been implemented that combines the actor-oriented network model with the ideas
of hierarchical linear modeling (Ripley et al. 2018). Integrating the coevolving
attributes in this framework would be a natural extension of the method presented
in this chapter. This approach could mean an increase in statistical power compared
to the simple meta-analysis. This would make the method suitable for the analysis
of a collection of small networks (e.g., with fewer than 20 actors).
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Chapter 6
Uses and Limitation of Continuous-Time
Models to Examine Dyadic Interactions

Joel S. Steele, Joseph E. Gonzales, and Emilio Ferrer

6.1 Introduction

An important aspect of psychological research is a focus on how individuals change.
Modeling change has a long history in psychology (Cronbach and Furby 1970;
Meredith and Tisak 1990; Tucker 1958), and most experts would agree on two major
views of change: either discrete or continuous. This distinction is most relevant to
the theory of how a process evolves over time. While theoretically separate from
any specific computational method, ultimately, this distinction reflects a necessary
decision made through the selection of an appropriate method for modeling data.
However, when limited or unsuitable methods are the only approaches available,
researchers run the risk of augmenting their designs and hypotheses to conform to
the limits of a selected method. Often the process of data collection in psychology
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limits the density of measures that can reasonably be collected, making it seemingly
impossible to ask more theoretically sophisticated questions about continuously
evolving processes. The result is an extensive, perhaps over-reliance on panel studies
that comprise discrete snapshots of a process collected at either weekly, monthly, or
even yearly intervals.

Beyond an over-reliance on panel data, there is an equal over-reliance on panel
based methods for modeling change (e.g., Box 1950; Davidson 1972; O’Brien
and Kaiser 1985). Here time is often treated simply as a factor- or interval-based
measure—little attention is paid to the size of the interval so long as it is consistent.
While ostensibly a reasonable approach, there is a recognition in the field that not all
treatments of time are equal (Miller and Ferrer 2017). Rather, estimates from models
of the same process can differ dramatically depending on whether the process is
modeled in continuous or discrete time (e.g., Oud 2004; Singer 1991a; Voelkle
2017). This raises a genuine concern that, if the process is thought to evolve in
continuous time, then any statistical model fit to the data should reflect continuous-
time parameters. The remaining challenge then is in how to use discrete time panel
data for examining continuous-time phenomena?

In what follows we explore the use of the exact discrete model (EDM; Bergstrom
1988), a method for modeling continuous-time processes that are measured at
discrete time points, and apply this method to the study of change in daily affect
in romantic couples. In an attempt to present a broad and accessible view of
continuous-time methods, we organize what follows around three main goals: (a)
To examine some of the benefits and limitations of continuous-time models. (b)
To present the details of fitting continuous-time models to data. (c) To illustrate
the specification and interpretation of a continuous-time model through the use of
an empirical example. For this last point, we fit a model based on a theoretical
specification of dyadic interactions originally introduced by Felmlee and Greenberg
(1999) and present results from both simulated and empirical data.

6.2 The Promise of Continuous-Time Models

As methods and measures continue to advance, more examples emerge that incor-
porate a continuous-time perspective for studying change in social and behavioral
sciences (e.g., Boker 2001; Ferrer and Steele 2014; Singer 1991a; Steele et al. 2014;
Voelkle 2017). The basic assumption is similar to earlier approaches, in that time
is not viewed as the driving force of change, but rather it is seen as a requisite
component, or context, for observing change (Baltes et al. 1988; Coleman 1968).
Unique to continuous-time models, however, is that change can be specified in
such a way that expected differences can be computed for any interval of time.
In particular, through the use of differential equations, change can be modeled
instantaneously by considering smaller and smaller increments of time, until the
limit of change is considered when the increment is infinitely small. Equation (6.1)
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below illustrates this limit,

df

dt
= lim
Δt→0

f (t +Δt)− f (t)

Δt
. (6.1)

In Eq. (6.1), f (t) represents the original function for which instantaneous change
is to be computed, df

dt
represents the process of differentiation, and Δt represents

the interval of time considered. Metaphorically, this interval serves as the stage
upon which differences in the function are allowed to take shape. The difference
in the numerator, f (t +Δt)− f (t), represents change in the output of the function
on two occasions separated by the interval Δt . The ratio specified in Eq. (6.1) is
literally the rise over the run, or slope, of the function over the interval. As the
interval becomes infinitely small, this slope describes a line tangent to the original
function. This line describes the direction and rate of change of the function at
that instant. Therefore, the result of differentiation is another function that specifies
how the original function changes. If the observable shape of change is known,
differentiation can be used to describe how this trajectory behaves at any point in its
path. This result is illustrated in Fig. 6.1.

In Fig. 6.1 the function f (t) = t2 is plotted, and lines tangent to the function
at three different points are indicated. The slopes of these tangent lines represent
the result of the first derivative, or the instantaneous rate of change in the function,
which is equal to df

dt
= 2t . Depending on the function and the time point selected,

this change can be negative or positive. Importantly, once the derivative is known,
change in the original function can be computed for any amount of time. In practice,

Fig. 6.1 Plot of a function and the function of its first derivative. Note: In the figure f (t) = t2 was
evaluated at points t ∈ {−2.5,−1, 2}
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this means that the amount of time that elapses between measurement occasions can
be whatever suits the investigation.

One beneficial result of differentiation for applied research is that longitudinal
studies of the same process that use different time metrics become comparable.
For example, a study that collects measures daily can be compared to a study that
collects measures hourly, assuming the process can be adequately captured at each
interval.

6.3 Building an Intuitive Understanding of Continuous-Time
Methods

We shift the focus here toward building an understanding of how continuous-time
models are estimated in practice. We begin by presenting the state-space model
which explicitly separates the analytic specification of a continuously evolving
process into the smoothly evolving state and the discretely observed measurements
generated by it. This separation results in two levels of equations, referred to from
here on as the state equation and the measurement equation. Error can be added to
each of these equations, implying that estimation may be fallible in capturing the
true change of the process as well as in accurately accounting for its measurement.
A specification based on the work of Jazwinski (1970) is provided below:

dxt = [Axt + But ]dt +GdWt, (6.2)

yt = Hxt +Dut + εt . (6.3)

Equation (6.2) defines change in the process through state vector xt . This vector
contains all of the components of the continuous-time process and is determined by
a linear model involving previous states x, exogenous inputs u, and random error
Wt . The term A represents a matrix containing the direct influences of each state
variable on all other state variables. The B term is another matrix that permits the
influence of exogenous inputs into the system dynamics. These two components
of the equation combine to define the deterministic behavior of the process. The
final term, GdWt , by contrast, permits the inclusion of stochastic input or the state-
level error. In practice, stochastic influences are modeled by GdWt , the change in
continuous-time random walk or Wiener processWt , scaled by matrixG.

Equation (6.3) represents the measurement equation with observed values con-
tained in a vector yt . This specification defines the observed values as a combination
of the state-level process, scaled through the Hxt term, and exogenous influences
throughDut . Error at this level is represented through the εt term. Important to note
is that the errors at both the state and measurement levels are assumed to be Gaussian
distributed. Figure 6.2 presents a schematic path diagram of the state-space model.
This is similar to the latent and manifest models common in structural equations
models (Chow et al. 2010; MacCallum and Ashby 1986).
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Fig. 6.2 Diagram of state-space model. Note: In the diagram circles represent latent variables,
squares represent observed variables Paths are denoted according the representation in Eqs. (6.2)
and (6.3)

Fig. 6.3 Simulated SDE. (a) Process noise. (b) Process and measurement noise

The inclusion of state-level noise is noteworthy in that it specifies a source
of error in the smoothly evolving differential equation mentioned previously. The
inclusion of noise at this level results in a stochastic differential equation (SDE),
wherein changes are no longer determined solely by the differential equation.
Rather, the expected smooth trajectory may be perturbed over time. The influence
of this random source of input specified in an SDE is illustrated in Fig. 6.3a.
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Figure 6.3b presents the same SDE trajectory with the additional inclusion of
measurement level error. Both Fig. 6.3a, b present multiple realizations of the same
process. The only differences are due to the inclusion of state-level noise and
measurement noise.

6.3.1 The Kalman Filter Algorithm

Different approaches are available for estimating the parameter of the state-space
model (see Oud 2004, 2007; Singer 1991a). Among them, the Kalman filter
(Kalman 1960) is perhaps the most flexible and most widely used. The Kalman
filter algorithm estimates parameters of the state-space model by minimizing the
difference between where the observations are expected to occur versus their actual
values once observed, a process known as prediction error decomposition (PED).
The PED approach is common in time series analysis and is attractive since it takes
into account the fact that repeated measures of the same process are not independent
of each other but rather they are serially related (see Canova 2007; Singer 1991b,
for a thorough discussion of PED.)

A simplified explanation of the Kalman filter algorithm begins with a projection
of the state-level process forward in time. This prediction is based on the current
value of the state along with the corresponding system parameters that determine
how the state changes. The projected point is then compared against an actual
observation, recorded through the measurement equation, and the difference is
computed. The error between expected and observed values is used to update the
entire process before the next step of the system is projected. If the error is large,
the algorithm adapts to more closely match the observed measures. However, if the
forecast was close to the observed measures and the error is small, the filter relies
more on the process equation that produces each prediction.

By analogy, the algorithm makes an informed guess about where the system is
headed; it then compares this guess to an actual observation. If the initial guess was
close to what was observed, the process of informed guessing is more trusted and
used again to produce another guess. If not, the algorithm tunes the guessing process
to rely more heavily on the collected measures.

This trade-off is reflected through a term called the Kalman gain, which is
updated at each step and is used by the algorithm to tune the forecasting process. Its
value represents how much the algorithm relies on either the state model dynamics
or on the values of the collected observations. Mathematically, the Kalman gain can
be conceptualized as a measure of reliability of the state-level process, in which
state-level variance is divided by variance in both the state and measurement levels.
Values close to one represent a reliance on the state equation; values closer to zero
represent a more heavy reliance on the collected observations.

Through use of the PED approach, the state-space model parameters can be
estimated recursively via the Kalman filter algorithm. This algorithm can be used
for real-time forecasting as well as for parameter estimation. In short, the steps of
the algorithm include: (1) the computation of a forecast prediction of the future
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state, (2) an update of the expected error based on this forecast, (3) the collection of
an observation, (4) and the comparison of the observation to the forecast in order to
update the gain. This fairly intuitive process of forecast, observe, update, and repeat
is both robust and flexible.

6.3.2 The Discrete-Continuous Connection

The final step in connecting discrete time measures to continuous-time dynamics
is accomplished through the exact discrete model (Bergstrom 1988; Oud 2004;
Singer 1991a). The EDM accomplishes this connection by combining the analytic
solution of linear differential equations, with the formulation of stochastic process
error together in one framework. One major benefit of this approach is that it can
readily be accomplished using a state-space formulation.

The EDM provides an explicit solution to the state-level formulation in Eq. (6.2),
which can be formulated as a difference equation,

xt+Δt = A∗xt + B∗ut + υt , (6.4)

for t = {0, . . . , T −1} and υt ∼ N (0,Ω∗). The analytic solutions of the parameters
from Eq. (6.4) are

A∗ = eAΔt ,

B∗ =
∫ Δt

0
eA(Δt−s)Bx(ti + s)ds,

Ω∗ =
∫ Δt

0
eAsΩeA

T sds, Ω = GGT .

(6.5)

The term B∗ut represents the exogenous input, and, when not measured contin-
uously, its influence must be approximated if the model is to be estimated. This
approximation can be varied in form, yet it is most convenient to assume a step
function, in which the exogenous inputs have a constant level of impact for the
entire interval (see Singer 1991b). This leads to

B∗ = A−1(A∗ − I)B. (6.6)

The terms in Eqs. (6.5) and (6.6) provide the mean vector and covariance matrix of
the multivariate normal distribution of the latent variables at time t . They are used
to express the likelihood of the data for parameter estimation via the Kalman filter
(see Singer 1991b, for more detail on the estimation process).

The innovation of the EDM is the use of nonlinear constraints on the A∗ matrix
to provide an analytic solution to the parameters of the state-space model. In
practice these nonlinear constraints mirror the general solution to linear differential
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equations which take the form ezt , with Euler’s number e providing the model of
continuous growth, z the rate of change, and t representing time (cf. Coleman 1964,
1968).

As shown in Eq. (6.5), the same exponentiation process is applied to the Amatrix
from Eq. (6.2). Recall that the A matrix is a central component of the deterministic
portion of the state-space equation, in that it specifies how the prior values of
the state influence future values. It is often referred to as the transition matrix in
that it represents how the system transitions from time point to time point. This
exact analytic solution is where the model gets its name and provides a means for
integration of the system at any conceivable time.

Further inspection of Eq. (6.5) reveals the dependence of the system on the matrix
A∗. This dependence reflects the fact that the estimation of instantaneous change
through the A matrix is scaled in the available data by a factor of Δt . As can be
seen, both the impact of exogenous inputs and the scaling of the stochastic input
depend on this formulation of the A∗ matrix.

6.3.3 Suitable State-Level Error

There remains a question of how to account for noise or randomness in the process
of change. This randomness is reflected in process level by the termWt in Eq. (6.2).
Measurement error is reflected in the term εt in Eq. (6.3). This noise may not
reflect only aspects of poor measurement reliability but may also reflect sources
of error that are not accounted for in the model. Such differences, in the context of
differential equations, require that the infinitesimal accumulations of change should
also reflect randomness.

Integration of a random process in the classical way is not possible. However, a
solution was specified by Norbert Wiener and was later generalized by Koyashi Itô
in 1944. The Itô integral provides a mathematical means for integrating a random
process and has been widely used in such fields as physics, economics, and biology,
to model changes that are subject to error. The theoretical benefit of the Itô integral
is the specification of error in the change process.

It is important at this point to highlight some concerns that should be
acknowledged when fitting continuous-time models. Specifically, analysts and
researchers should consider the following: (a) the nature of the parameter estimation
techniques—either from continuous measures or discrete measures like those
common in psychological research, (b) the nature of the theoretical model that
specifies how changes progress—whether or not changes arise from linear or
nonlinear combinations of parameter, whether the model requires any parameter
constraints during estimation in order to accurately reflect the theory, and (c)
whether or not to include process-level error. We believe that these questions are
necessary before researchers select a method for fitting a continuous-time model.
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6.4 Application of SDEs and the EDM

Next we present the application of the EDM to model dyadic interactions. We begin
with the presentation of the theoretical model and proceed to outline how this model
can be specified in the EDM framework. The model specification is verified with
simulated data before it is fit to empirical data from romantic couples.

6.4.1 Theoretical Model of Dyadic Interactions

The model selected for the analyses represents a dynamic system of dyadic
interaction proposed by Felmlee and Greenberg (1999). Given the dyadic focus of
this model, there are two differential equations that make up the system describing
each partner’s changes. To help contextualize the presentation, the construct under
investigation is daily affect specific to one’s romantic relationship. The actual
measures to be used represent the average of eighteen ratings made specifically
about the relationship, nine were for positive affect and nine were for negative
affect. Since ratings were collected for each partner in the relationship each day, we
distinguish female and male ratings using f and m, respectively. The full system of
equations is presented below:

df

dt
= a1(f

∗ − ft )+ b1(mt − ft ),

dm

dt
= a2(m

∗ −mt)+ b2(ft −mt).

(6.7)

Here the terms df
dt

and dm
dt

represent the instantaneous change in levels of affect,
f and m, over time, for the female and male, respectively. The terms f ∗ and m∗
represent the ideal levels of affect for each individual and are explained in more
detail below. The terms containing a t subscript represent levels at time t .

In the original theory of the model, the terms f ∗ and m∗ represented ideal goals
set by each individual. Conceptually, these values represent how high or low on a
given dimension, either positive or negative affect, a participant would like to feel
about their relationship. As an example, a high level of f ∗ for positive affect would
reflect a goal of the female in the dyad to feel highly positive about her relationship.
These values could also be viewed as the emotional set point around which each
individual fluctuates. These goals were not explicitly measured in the data used for
these analyses, but their values can be estimated from the data.

From Eq. (6.7) we see that in this model, change is determined by the summation
of weighted differences, one between the individual’s ideal and their daily rating and
the other between the daily ratings of each partner. Assuming that all coefficients in
the model are positive, a daily rating lower than the ideal (e.g., f ∗ > ft ) results in an
upward driving force in affect for that individual. This is also the case for situations
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where the partner is expressing a level higher than the individual (e.g., mt > ft ).
Although both weighted differences contribute to change in overall affect over time
in Eq. (6.7), the components can be viewed as distinct contributions representing
self-regulation, in the first term, and co-regulation between partners, in the second
term. The combination of these self-regulatory and co-regulatory processes can
result in highly varied trajectories, though each is governed by the same underlying
process (see Felmlee 2006; Felmlee and Greenberg 1999; Ferrer and Steele 2014,
for full discussion).

6.5 The SDE Representation of the Theoretical Model

Let us now turn attention to the translation of the model in Eq. (6.7) into the
SDE/EDM framework. To start off, the model is reexpressed using the vector θ
to define the deterministic model parameters; thus θ = (a1, a2, b1, b2). This is done
mainly to avoid confusion with the matrices of the EDM. The reexpressed model
takes the form of

df

dt
= θ1(f

∗ − ft )+ θ2(mt − ft ),

dm

dt
= θ3(m

∗ −mt)+ θ4(ft −mt).

(6.8)

Given some algebraic distribution of terms and simplification, we arrive at the
following specification:

df = [−(θ1 + θ2)ft + θ2mt + θ1f
∗]dt,

dm = [θ4ft − (θ3 + θ4)mt + θ3m
∗]dt. (6.9)

It is important to note that the terms θ1f
∗ and θ3m

∗ are constant influences that
represent the individual ideal levels of affect unique to each member in the dyad.
One assumption of the model is that these ideal levels do not change over time.
Equation (6.9) is easily translated into matrix form as

d

[
f

m

]

=
[−(θ1 + θ2) θ2

θ4 −(θ3 + θ4)

] [
f

m

]

dt +
[
θ1f

∗
θ3m

∗
]

[1]dt. (6.10)

This matrix specification of the model mirrors the terms from the state-space
equations (6.2) and (6.3). In particular, the direct influences of affect on change
in affect are represented in the first term to the right of the equal sign which equates
to the A matrix. This is followed by the B matrix with again allows for exogenous
influences to impact the progression of the state process.
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Notice here that the constant terms are moved from the A matrix and placed in
the B matrix, which permits exogenous input to the system. The placement of these
terms in the B matrix enables the estimation of these terms solely from the observed
data. This differs from the theoretical definition of these terms presented originally,
in which these terms are assumed to be measured separately (Felmlee 2006). Their
estimation here requires an assumed constant influence u = 1 (this term is omitted
from Eq. (6.11)).

This specification fully characterizes the deterministic components of the model.
Note that the parameters in both the A matrix and the B matrix are specified
such that their estimation is constrained, specifically, as either a sum or a product
with other parameters in the model. The specification of these constraints may be
overcome analytically; however, within the modeling framework selected for these
analyses, these constraints can be directly specified in the model syntax. This is
illustrated in the syntax provided in Appendix 3.

Below we present the full specification with the addition of stochastic influences
dW

f
t and dWm

t ,

d

[
f

m

]

=
([−(θ1 + θ2) θ2

θ4 −(θ3 + θ4)

] [
f

m

]

+
[
θ1f

∗
θ3m

∗
])

dt

+
[
Ωf 0
0 Ωm

][
dW

f
t

dWm
t

]

.

(6.11)

Thus, the model above represents an SDE. The distribution of the dt term to
only the deterministic portion of the equation (on the right hand side) is necessary
because, in continuous time, the first derivative of a Wiener process, such as dWf

t

or dWm
t , does not exist. The final step in the translation involves the specification of

the observation-level equation given below:

[
zf

zm

]

=
[

1 0
0 1

] [
f

m

]

+
[
φf 0
0 φm

] [
ξf

ξm

]

. (6.12)

Notice that the D matrix and exogenous inputs u are lacking from this equation.
The omission of the inputs from the measurement equation was deliberate, based
on a theoretical interpretation of the model’s original presentation (Felmlee 2006;
Felmlee and Greenberg 1999). That is, change in affect is determined by a
combination of these constant terms with the daily measures, as in Eq. (6.7). The
inclusion of additional exogenous inputs has not been fully explored regarding
where in the model these influences would enter, either at the process or the
observation level.
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6.6 Methods

Historically, few frameworks were available to estimate parameters using the EDM
(see Oud and Jansen 2000; Oud and Singer 2008); however, with advancement in
software and methods, this is no longer the case. Numerous packages are available
for modeling dynamics systems as SDEs including freely available packages written
in R such as CTSMr (Juhl 2015), CTSEM (Driver et al. 2017), dse (Gilbert 2006),
OpenMx (Boker et al. 2015; Neale et al. 2016) via the SSCT expectation routine,
and many more. For this presentation, however, the linear stochastic differential
equations package (LSDE; Singer 1991b) written in SAS/IML® (SAS Institute Inc.
2002–2008) was selected. The reasoning behind this choice has to do with the ease
with which estimation could be accomplished even in the presence of parameter
constraints based on the model. Undoubtedly, similar constraints are possible in
many of the packages listed above. However, the LSDE package makes these
constraints fairly explicit, and thus it is possible to directly reflect the mathematical
specification of the model within the LSDE syntax. Appendix 3 provides example
syntax in LSDE for one of the models.

6.6.1 Verification of the Model Specification with Simulated
Data

To this point a specification that mathematically represents the hypothesized model
has been developed, and the technical aspects of the syntax needed have been
explained. Due to the complexity of the model and the package used to fit the
model, the specification was tested by fitting various sets of simulated data. Though
functions are available in the LSDE package for simulating data, the simulated data
used for verification was generated using the SAS/ETS® MODEL procedure (SAS
Institute Inc. 2002–2008). The simulated data were then fit using the LSDE package.
This was done to ensure that the translation of the model in Eqs. (6.11) and (6.12)
into the EDM framework was accurate.

Our goal in performing these simulation steps was simply to confirm the correct
specification of the model rather than to examine the behavior of the estimates;
therefore, differing sets of simulation values were not explored. The simulation
consisted of 100 replications of the same trajectory over 50 time points. Table 6.1
contains simulated and estimated values for a strictly deterministic system, that is,
a system without error.

As is evident in Table 6.1, the LSDE procedure clearly recaptures the true
parameter values. Given the constrained nature of the parameters that make up
the system, the recapturing of the simulated values was evidence of the correct
specification of the model. Therefore, the next step in the analysis was to fit the
model to the empirical data.
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Table 6.1 Simulated data,
no error model

Simulated Fitted values

Parameter True value Estimated

a1, θ1 0.001 0.001

b1, θ2 1.000 1.000

a2, θ3 1.000 1.000

b2, θ4 −2.000 −2.000

f ∗, β1 10.000 10.009

m∗, β2 5.000 5.000

f (0), μ1 15.000 15.000

m(0), μ2 12.000 12.000

Note: N = 100 replications, T = 50

6.6.2 Empirical Data

6.6.2.1 Sample and Measures

Participants

The data used are part of a project focused on the development of models to analyze
dyadic interactions (Ferrer and Steele 2011). Participants include couples involved
in a romantic relationship. As part of the overall project, participants were asked to
complete a daily questionnaire about their affect for up to 90 consecutive days. This
report presents data from 108 couples who had at least 50 days of complete data.

Relationship-Specific Affect

The questionnaire was intended to examine day-to-day fluctuations in affect specific
to one’s relationship. As part of this questionnaire, 18 items were intended to tap
into the participants’ positive and negative emotional experiences specific to their
relationship. Participants were asked to complete these items responding to the
instructions “Indicate to what extent you have felt this way about your relationship
today.” The nine positive items included (1) emotionally intimate, (2) trusted, (3)
committed, (4) physically intimate, (5) free, (6) loved, (7) happy, (8) loving, and
(9) socially supported , whereas the nine negative mood items included (1) sad, (2)
blue, (3) trapped, (4) argumentative, (5) discouraged, (6) doubtful, (7) lonely, (8)
angry, and (9) deceived.

For all items, participants were asked to respond using a five-point Likert-type
scale ranging from one (very slightly or not at all) to five (extremely). For all
analyses, daily averages for positive and negative affect, for each person, were
computed using all of the items in the scales. The reliability of change was computed
within person using generalizability analysis (Cranford et al. 2006). The reliability
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Table 6.2 DDIP summary
statistics

Mean SD Min Max

f+ 3.542 0.858 1.000 5.000

f− 1.299 0.495 1.000 4.889

m+ 3.566 0.802 1.000 5.000

m− 1.316 0.501 1.000 4.778

Note: N = 108 dyads, t = 50 days

coefficient was computed as

ρΔ = σ 2
p×d

σ 2
p×d + σ 2

e

m

Where p × d represents the person by day interaction, e represents error, and m
represents the number of indicators. The resulting reliability coefficients for positive
and negative affect were 0.85 and 0.87 for females and 0.82 and 0.85 for males.
Summary statistics for relationship affect measures are reported in Table 6.2.

6.7 Results

Investigation of Model Starting Values
Through the simulation process, the sensitivity of the LSDE procedure to

starting values became apparent. Deviations from the true values of the simulated
data, which may be considered small in other modeling frameworks, led to large
deviations in parameter estimates; at times such deviations resulted in a lack of
model convergence. This sensitivity is a by-product of the nonlinear estimation
procedure and can result in estimation difficulties including the production of a
nonpositive definite Hessian matrix.1 In such instances, extensive prior investigation
may be necessary to identify suitable starting values for the model. When fitting
the empirical data, estimation of suitable starting values became necessary for the
positive affect model specifically. We estimated starting values for this model using
the PROC MODEL procedure, which fit a strictly deterministic version of the model
from Eq. (6.7).

Additionally, alternative model specifications were not investigated in these
analyses; therefore model comparisons are lacking. For this reason, the likelihood
values for the models are omitted, but parameters estimates, standard errors, and
the ratio of the estimate to the standard error, which represents the t value of the
parameters, are reported. The standard error values are available only if the model

1 This matrix is used to estimate the Fisher information matrix which is in turn used to estimate
standard errors of the model parameters.
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Hessian matrix is positive definite, which implies that a maximum of the likelihood
function was found.

6.7.1 Positive Affect

Results from fitting the model to positive and negative affect are listed in Table 6.3.
For positive affect, all parameter estimates were greater than zero and at least twice
the magnitude of their standard errors. Theoretically, this may represent a coop-
erative system of dyadic interactions in which discrepancies between partners as
well as between ideal and observed levels for the individual are minimized (Felmlee
2006; Steele et al. 2014). Among the control parameters, the self-regulation controls
were slightly smaller in magnitude than the co-regulatory controls, a1 = 0.190
versus b1 = 0.290 for females; and a2 = 0.236 versus b2 = 0.250 for males.
Also of interest are the estimates of the ideal levels of affect. These were similar
to the average values for each measure, f̂ ∗+ = 3.502, compared to f̄+ = 3.542;
and m̂∗+ = 3.590, compared to m̄+ = 3.566. In previous work, these values were
not estimated but were set to the mean level of affect to represent the idealized
level (Steele et al. 2014). The estimates obtained here serve to confirm the previous
selection. Also evident from the model estimates is an appreciable amount of
process-level variance for both measures (εdf = 0.702 and εdm = 0.663). This
variance may reflect the exclusion of separate estimates for observation-level noise.
Observation-level noise is not included in the models due to lack of convergence.
Additional estimates are reported in Table 6.3.

Table 6.3 Relationship-specific affect estimates

Positive Negative

Est SE Est/SE Est SE Est/SE

a1, θ1 0.190 0.015 12.939 0.592 0.031 19.168

b1, θ2 0.290 0.018 15.819 0.546 0.034 16.037

a2, θ3 0.236 0.014 16.751 0.556 0.030 20.070

b2, θ4 0.250 0.016 15.489 0.373 0.032 11.519

f ∗, β1 3.502 0.052 67.958 1.278 0.016 78.924

m∗, β2 3.589 0.039 91.648 1.320 0.016 82.934

εdf ,Ω1 0.702 0.010 69.254 0.654 0.012 54.478

εdm,Ω3 0.663 0.009 71.112 0.618 0.010 60.496

f (0), μ1 3.615 0.072 50.362 1.413 0.060 23.799

m(0), μ2 3.621 0.067 53.881 1.424 0.051 28.052

SDf (0),Σ1 0.556 0.076 7.347 0.381 0.052 7.347

SDm(0),Σ2 0.488 0.066 7.347 0.278 0.038 7.346

Note: N = 108, T = 50
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6.7.2 Negative Affect

For negative affect, all parameter estimates were greater than zero and over two
times as large as the estimated standard errors, as was the case for positive affect.
The estimates of these control parameter were higher in absolute magnitude than
those obtained from the positive affect models (e.g., a1+ = 0.190 vs. a1− = 0.592
and b1+ = 0.290 vs. b1− = 0.546). This might reflect a tendency for couples to
reconcile differences between their own feelings and those of their partners more
quickly regarding negative affect as compared to positive affect.

Within negative affect, the control parameters of the self-regulation terms were
higher in magnitude than for the co-regulation terms, a1 = 0.592 versus b1 = 0.546
for females; and a2 = 0.556 versus b2 = 0.373 for males. This difference was
greatest for males in the sample and may indicate a fairly autonomous system of
negative affect regulation for males. Within this dimension, the estimates of the
ideal point also resembled the mean values reported in Table 6.2, f̂ ∗− = 1.278
compared to f̄− = 1.299 and m̂∗− = 1.320 compared to m̄− = 1.316. These
values were considerably lower than those from positive affect. This was expected
because the means of negative affect ratings tend to be lower than those for positive
affect, and the negative affect ratings tend to be less variable overall (Ferrer and
Steele 2011; Steele and Ferrer 2011). These items may be more difficult to endorse
than the positive affect items. This trend was also evident in the estimates of the
variability in initial conditions, ̂SDf (0)+ = 0.556 compared to ̂SDf (0)− = 0.381

and ̂SDm(0)+ = 0.488 compared to ̂SDm(0)− = 0.278. These parameters represent
one important aspect of interindividual variability. Not all dyads follow the exact
same trajectory. For negative affect, the estimates were smaller than those for
positive affect, indicating that, overall, there was less variability in the negative
affect measures. Additional estimates are reported in Table 6.3.

6.7.3 Expected System Behavior

The comparison of parameter magnitudes is somewhat informative, but the inter-
pretability of these parameters independently is limited. The system described in
Eq. (6.7) represents a model of change in affect rather than a description of the
absolute levels. Thus, the interpretation of the model estimates does not mirror the
interpretation in traditional regression. Specifically, the effects of a given parameter
are not independent of the influences of other parameters in the model (see Nielsen
and Rosenfeld 1981). Restrictions imposed on the parameter estimates further alter
the interpretation of the parameters, as described in Eq. (6.10). For example, the
combined scaling of the a1 and b1 parameters on previous values of f determines
their effect on the instantaneous change. Put another way, the influence of f on
change in f over time is scaled by the combined effects of self-regulation and co-
regulation.
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Fig. 6.4 Positive affect solution, deterministic portion. Note: Dashed line represents male affect;
solid line represents female affect

The examination of the different systems that arise from unique sets of the
parameters in this model has been presented previously (see Felmlee 2006; Felmlee
and Greenberg 1999; Ferrer and Steele 2011). These presentations were constructed
to simplify the interpretation of the model and illustrate salient classes of possible
outcomes that can arise from this specification of dyadic interactions. However,
the examples may not represent real-life behaviors. Based on these presentations,
one may be led to think that the reported estimates in Table 6.3 are indicative
of cooperative systems. Theoretically, this seems reasonable; however, the deter-
ministic solutions to both positive and negative affect are indicative of independent
systems dynamics. This is evident when the solutions are plotted. Simulated results
are presented in Figs. 6.4 and 6.5.

In Fig. 6.4, the trajectories for both males and females quickly approach an
asymptotically stable solution. Although this solution is stable, it does not match
the expected trajectories presented previously (see Felmlee 2006; Ferrer and Steele
2011; Steele et al. 2014), in which both partners approached a common asymptote
due to their cooperation.

Figure 6.5 presents a trajectory that converges quickly to a stable solution. It
should be noted that the coefficients reported in Table 6.3 are all positive, which
according to the theory should reflect a cooperative systems. Notably, however, the
expected trajectories based on the model estimates appear to be independent.

The difference between the simplified expected behavior and the resultant
trajectories may be reconciled when the solution is investigated analytically. It is
important to note that the following is relevant only to the deterministic portion
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Fig. 6.5 Negative affect solution, deterministic portion. Note: Dashed line represents male affect;
solid line represents female affect

of the system. The dynamic solution to the system in Eq. (6.7) takes the following
form:

ft = αeλ1t + βeλ2t

mt = δeλ1t + γ eλ2t
(6.13)

where the terms α, β, δ, and γ represent constants of integration. The term λ1, λ2
represent eigenvalues of the system and take on the form of the solution to the
quadratic equation:

λ = −b ± √
b2 − 4(ac)

2
.

In the context of the model in Eq. (6.7), this solution can be expressed as

−(a1 + b1 + a2 + b2)±
√
(a1 + b1 + a2 + b2)

2 − 4[(a1 + b1)(a2 + b2)− b1b2]
2

(6.14)

and represents the eigenvalues of the transition matrix from the deterministic portion
of the system specification presented in Eq. (6.10) (see Felmlee and Greenberg
1999).

The values of λ represent eigenvalues of the equation and determine the behavior
of the resultant solutions. If they are both real and negative, the solution converges
to an equilibrium point. If, however, one or both are positive, the solution explodes.
In the situation that the value under the radical sign is negative, complex roots result.
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This can lead to additional types of solutions showing various patterns of oscillation
over time.

For positive affect, the tendency is for both males and females to approach
independent equilibrium points. This is also illustrated in the computed eigenvalues
of this solution, λ+

1 = −0.214 and λ+
2 = −0.752, which are both real and negative

indicating an asymptotically stable solution. Again, the equation above applies to
the eigenvalues of a deterministic form of the original model and does not account
for the influence of stochastic input at the process level. Therefore, these values and
plotted solution in Fig. 6.4 are for illustrative purposes only.

This last point is also evident when examining the negative affect solution relative
to the systems eigenvalues and trajectory depicted in Fig. 6.5. For negative affect, the
computed roots are λ−

1 = −0.570 and λ−
2 = −1.497, which indicate an asymptotic

approach to equilibrium according to the theory. Appendix 4 provides syntax in the
R statistical software for plotting these trajectories.

6.7.4 Assessing Model Fit

Naturally, as with any statistical model, some indication of how well the model
fit the data is desired. The assessment of model fit from the LSDE package
mirrors methods commonly found in time series analysis. Namely, the residuals
of the model are inspected for some indication of a remaining structure which
would imply that some aspect of the data generation process was not included in
the model specification. This is accomplished either through computation of the
auto-covariance function to determine whether lagged residuals show significant
dependence for small lags, visual inspection of residual plots, or calculation of
formal statistics to test for independence among the model residuals.

For univariate tests, the most common test on the residuals is either the Box-
Pierce test or the more robust Ljung-Box test (Box and Pierce 1970; Ljung and
Box 1978), both of which are occasionally referred to as portmanteau tests. These
tests provide an assessment of independence in the residual of a fitted model. If the
statistic is significant, the residuals are not strictly independent. Figure 6.6 provides
a plot of the proportion of significant results of a series of univariate Box-Pierce
test run for each partner, male and female, on each dimension, positive and negative
separately. In Fig. 6.6, it is apparent that few of the models produce residuals with
remaining structure. These results present an encouraging, perhaps overly rosy,
view of model fit. Whether these tests are appropriate for multivariate systems
is questionable. Below we present a multivariate-based assessment of the model
residuals.

A multivariate extension of the portmanteau test, proposed by Hosking (1980),
also was fit to the residuals of each dyadic bivariate model, male and female, for
each dimension of affect, positive and negative, respectively. Figure 6.7 presents
the proportion of the multivariate portmanteau tests that were significant at different
levels of lag. The test is used to determine if the residuals of a multivariate time
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Fig. 6.6 Proportion of significant Box-Pierce test statistics by lag value. Note: Univariate Box-
Pierce tests were run for each partner, male and female, on each dimension, positive and negative
separately

series model differ from a white-noise process. This is accomplished by computing
the sum of covariances among the residuals for a specified number of lags referred
to as the MaxLag. The resulting sum is compared against a χ2 distribution with
degrees of freedom equal to k2(l − o), where k represents the dimension of the
process, l represents the lag, and o the order of the model fit.2 There are few
guidelines available for selecting the value of the MaxLag, but one rule of the
thumb is that MaxLag should be set to the lesser of either half the length of the
series minus 2 or a value of 40. In Fig. 6.7, the test was run with MaxLag set from
7 to 40. As can be seen in Fig. 6.7 when the MaxLag term is equal to half the
series, less than half of the dyadic models produced residuals that differ from white
noise. While not a traditional assessment of model fit, this does indicate that the
SDE is adequately capturing the trajectories of the majority of dyadic time series.
When researchers are interested in building a model in practice, numerous model
specifications could be compared via likelihood ratio tests to determine the best
fitting model to the data. In our example no such alternative specifications were
explored. In this situation we believe a direct examination of the residuals as well as
a summary of the portmanteau test is a sufficient approach for assessing model fit.
Were this model to be used for forecasting purposes, more work would be necessary

2For the Felmlee-Greenberg specification o = 6.
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Fig. 6.7 Proportion of significant Portmanteau test statistics by MaxLag value. Note: Dashed line
represents negative affect; solid line represents positive affect

to identify poorly fitting series, and alternative model specifications may need to be
explored.

6.8 Discussion

Much is to be gained from modeling dynamical systems as stochastic differential
equations using the exact discrete model. In the present work, the benefits emerged
through the estimation of the parameters governing change as well as estimation
of idealized levels specified in the original model. Additionally, the estimation of
initial conditions and their variability is very beneficial, as this variability represents
interindividual differences and conveys useful information about the system.

What is lacking in this application, however, is a straightforward means to
interpret the estimated parameters. These parameters determine change in the
observed values rather than differences in relative levels. To this end we encourage
users to combine visualization of the solution with analytic examination of the
stability of the system that is estimated. Related to this point is the formulation
of the model used for parameter estimation, in which the parameters are combined
in the drift matrix. The estimates from this matrix influence every other aspect of
the model, including the levels of stochastic input.

Additionally, we would like to reiterate the promise of continuous-time methods,
that being that once the parameters are adequately estimated, the interval of discrete
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observations can be whatever suits the study. This assumes that the process can be
adequately captured. To this point, the importance of continuous-time methods can
be illustrated by plotting the behavior of the estimates from the drift matrixA∗ from
Eq. (6.5) for different time intervalsΔt .

The impacts of the time interval on the magnitude and direction of the estimates
from the drift matrix may be more pronounced depending on the system under
study. For example, assume a model is fit that results in the following values of
the estimated A matrix:

A =
⎡

⎣
−0.65 0.00 1.7
0.00 −0.85 1.0

−3.50 −1.50 0.0

⎤

⎦ .

If the system were fit using discrete time methods, these parameter estimates would
depend on the size of the interval between measures. Changes in the diagonal
elements of this matrix dependent on the interval size are illustrated in Fig. 6.8. As
can be seen in Fig. 6.8, both the magnitude and the sign of the elements of the drift
matrix change depending on the interval adopted for measurement. This presents an
important caveat for researchers conducting longitudinal analysis and highlights the
importance of continuous-time methods.

Not all estimates will show such dramatic fluctuations based on interval size.
Figures 6.9 and 6.10 present the magnitude of each element of the A∗ matrix from
the models estimated for our empirical examples. These plots trace the magnitude
of the expected effects that would be estimated from the system for a given time
interval of observation.

Fig. 6.8 Expected discrete time coefficients from the EDM drift matrix
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Fig. 6.9 Expected discrete time coefficients from the EDM drift matrix for positive affect

Fig. 6.10 Expected discrete time coefficients from the EDM drift matrix for negative affect
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The trajectories presented in Figs. 6.9 and 6.10 appear to converge rather quickly.
It is important to keep in mind that these plots represent the magnitude of the
estimated parameters that would result if the same system were measured discretely
at different intervals. These plots provide ostensible evidence that the system
of interactions may not be identifiable at larger intervals between measurements
since some of the parameters approach zero. Again, this effect may be more
pronounced for different systems; our estimates presented here are indicative of
largely independent dynamics.

The main benefit of the use of the EDM concerns the connection of the discrete
measurements to the underlying continuous-time process. Affective dynamics are
most certainly constantly evolving. This important aspect of these social processes
is not easily captured by other methods. The use of the analytic solution provided by
the EDM accomplishes discrete to continuous translation. While not a trivial task,
the specification of a differential equation model and the use of the LSDE package
for modeling in continuous time can be worthwhile. The preceding represents a
methodological step in translating theory into practice.

Appendix 1: McDonald-Swaminathan Matrix Differentiation

The specification of an LSDE model in the SAS/IML® framework requires the
specification of matrix derivatives. Matrix differentiation is specified for each
of the matrices that make up the state-space specification and is evaluated with
respect to the parameters that make up each element. The implementation of matrix
differentiation used by the LSDE package is based on the work of McDonald and
Swaminathan (1973) which outlines how matrix differentiation can be performed.
Given a matrix Y that is n × m in size, with elements that represent some function
of the elements of another matrix X, which is p× q in size, the differentiation of Y
with respect to X in the McDonald-Swaminathan rules would result in a matrix of
partial derivatives ∂Y

∂X
that is n(m)× p(q) in size.

As an example, imagine Y is a 2 × 2 matrix and is to be differentiated base on
another matrix X that is also 2 × 2. The result of differentiation is a 4 × 4 matrix of
partial derivatives. Specifically, each of the rows of Y are arranged into a single row
vector that is 1 × n(m) in size,

Y =
[
y11 y12

y21 y22

]
row−−→ [

y11 y12 y21 y22
]
. (6.15)
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The same process is performed for the matrixX and transposed to produce a column
vector of elements that is p(q)× 1 in size,

X =
[
x11 x12

x21 x22

]
row−t ranspose−−−−−−−−−→

⎡

⎢
⎢
⎣

x11

x12

x21

x22

⎤

⎥
⎥
⎦ . (6.16)

The differentiation is arranged as the outer product of these vectors, resulting in a
p(q)× n(m) matrix of partial derivatives,

∂Y

∂X
=

⎡

⎢
⎢
⎢
⎣

∂y11
∂x11

∂y12
∂x11

∂y21
∂x11

∂y22
∂x11

∂y11
∂x12

∂y12
∂x12

∂y21
∂x12

∂y22
∂x12

∂y11
∂x21

∂y12
∂x21

∂y21
∂x21

∂y22
∂x21

∂y11
∂x22

∂y12
∂x22

∂y21
∂x22

∂y22
∂x22

⎤

⎥
⎥
⎥
⎦
. (6.17)

An example drawn directly from the original paper is presented below. These
equations are a reproduction of equations 3–5 in McDonald and Swaminathan
(1973). Assume we are given a matrix Y ,

Y =
[

ex11x12 sin(x11 + x12)

log(x11 + x12 + x21) x11x12x21x22

]

(6.18)

with elements that are a function of another matrix X,

X =
[
x11 x12

x21 x22

]

. (6.19)

The derivative of Y with respect to the elements of X would result in

∂Y

∂X
=

⎡

⎢
⎢
⎢
⎣

x12e
x11x12 cos(x11 + x22)

1
x11+x12+x21

x12x21x22

x11e
x11x12 0 1

x11+x12+x21
x11x21x22

0 0 1
x11+x12+x21

x11x12x22

0 cos(x11 + x22) 0 x11x12x21

⎤

⎥
⎥
⎥
⎦
. (6.20)

Appendix 2: Matrix Differentiation of the Felmlee–Greenberg
Model

Next we illustrate how the steps outlined above are performed using the two matrices
A andB, from our model from Eq. (6.11). These matrices represent the deterministic
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portion of the state equation for Felmlee–Greenberg model Felmlee and Greenberg
(1999). Below we differentiate these matrices with respect to a parameter vectorΘ .

To begin, we reparameterize the model and place the f ∗ and m∗ terms in the
parameter vector; thus Θ = (a1, b1, a2, b2, f

∗,m∗). This allows us to express the
A and B matrices as

A =
[−(θ1 + θ2) θ2

θ4 −(θ3 + θ4)

]

, B =
[
θ1θ5

θ3θ6

]

.

The derivative of the matrix A with respect to the parameter vectorΘ is

∂A

∂Θ
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 0
−1 1 0 0
0 0 0 −1
0 0 1 −1
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For the matrix B, the result is

∂B

∂Θ
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ5 0
0 0
0 θ6

0 0
θ1 0
0 θ3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This example is only a portion of what is required in the LSDE syntax for this
model. Please see Appendix 3 for a complete listing of the LSDE syntax required to
fit the model for positive affect.
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Chapter 7
Makes Religion Happy or Makes
Happiness Religious? An Analysis of a
Three-Wave Panel Using and Comparing
Discrete and Continuous-Time
Techniques

Heiner Meulemann and Johan H. L. Oud

7.1 Introduction

Application of continuous-time methods in behavioural science is still rare. The
analysis of longitudinal data almost always takes place in discrete time. In this
chapter we explain in detail the serious problems connected with a discrete-time
analysis and how to solve these problems by continuous-time modelling. We do
this by means of an empirical example, the effect of religiosity on life satisfaction,
which has been the subject of several discrete-time analyses in the past. In the
next paragraphs, we discuss the theoretical background of the example, previous
discrete-time studies and the discrete-time model adapted from Meulemann (2017).
It is this model that will first be estimated in discrete time and next criticized and
improved from a continuous-time perspective.
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As human beings die and are aware of being mortal, they must distinguish
between This World and the World Beyond. Every human being has to get along
with what this world is for and whether and what is beyond this world. Traditionally,
religion promises to provide answers to these kinds of questions. It explains bad
luck and injustice showing up in every human life within an overarching order. It
provides a “sacred canopy” which “nomizes” life (Berger 1967). It is a resource to
cope with life. The religiosity of a person is supposed to increase his or her life
satisfaction. This is called the nomization hypothesis.

However, the more one is satisfied with life, the more one looks optimistically
at it and takes it as it is. The more one is inclined to take the answers given by
religion for granted, the more one will choose a religious belief that justifies and a
religious community that reinforces one’s satisfaction. In brief, the more one will
become religious. This self-selection of satisfied people into religiosity is called the
optimism hypothesis.

The nomization hypothesis has been examined longitudinally in four panel
studies. First, in 16 yearly waves of the German Socio-Economic Panel (GSOEP),
a fixed effects regression—that is, a regression of the change of the dependent
variable on changes of the independent variables—shows a positive impact of
the frequency of church attendance on the general life satisfaction (Headey et al.
2008, p. 18). Second, in a 1-year panel in the USA, regressions controlling for
the former level of the dependent variables (yet not for the former levels of the
independent variables) show a positive impact of the frequency of church attendance
on general life satisfaction. However, a real effect is doubtful, because in the short
time interval of 1 year, church attendance and life satisfaction change only slightly
(Lim and Putnam 2010, p. 924). Third, in a further 1-year panel in the USA, not
church membership but assessment of the importance of religion in life increases
a specific life satisfaction—namely, with the family (Regnerus and Smith 2005,
pp. 39–40). Fourth, in a 12-year panel study controlling for the former dependent
variables, neither public nor private religious practices have an effect on general
life satisfaction (Levin and Taylor 1998). We conclude that a positive impact of
religiosity on life satisfaction has been confirmed strictly—over a longer time span
and by the appropriate means of a fixed effects regression—only once: In the
GSOEP study. As plausible as the nomization hypothesis seems to be, it is not yet
strongly founded empirically. To our knowledge the optimism hypothesis as a causal
hypothesis has never been examined empirically.

At first sight the nomization and optimism hypotheses seem to contradict
each other. However, both could also be operating simultaneously in a reciprocal
relationship across time. Whether the effect is in one of the two directions, in both
directions or in none, and whether the sign of the effect is positive or negative can
only be tested, if both are measured more than once—that is, longitudinally. In the
following, how religiosity and life satisfaction measured at age 30 affect each other
at age 43 and how religiosity and life satisfaction measured at age 43 affect each
other at age 56 are examined. Thus, stabilities and cross-effects of life satisfaction
and religiosity are analysed across time. At all three ages, 30, 43 and 56, religiosity
is split up in its two main dimensions, practice and belief—measured as church
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Fig. 7.1 Religiosity as church attendance (CHURCH) and Christian world view (WOLRDV) and
life satisfaction (LSAT) at ages 30, 43 and 56

attendance and Christian worldviews. Thus, there are three variables measured three
times, and the path diagram of the hypothesized causal system is given in Fig. 7.1.

In this so-called Markov chain model, causal hypotheses connect neighbour time
points only. We suppose that at each time point, only experiences of the preceding
period can have an impact. Impacts of earlier periods are supposed to be mediated
and controlled by the immediately preceding ones. LSAT30, for example, can have
no impact on LSAT56 that has not been already taken up by its impact on LSAT43
and the two stabilities in between. Stated differently, at each time point, the variables
contain all information relevant to predict the future, and previous time points do not
improve prediction.

As a structural equation model, the model has the rather simple recursive
structure. The model structure would have been nonrecursive (interdependent), if
in addition to lagged reciprocal effects (e.g. CHURCH30 to WORLDV43 and
WORLDV30 to CHURCH43) also instantaneous reciprocal effects would have been
specified (e.g. CHURCH43 to WORLDV43 and WORLDV43 to CHURCH43). In
cross-sectional research, such a nonrecursive structure would be the only possibility
to analyse reciprocal effects. In longitudinal research, often both lagged and
instantaneous effects (instead of correlated residuals) are specified, in particular
when the observation intervals between waves are big (e.g. Abele et al. 2011).
We did not do this, because it leads to special problems that can be avoided by
continuous-time analysis techniques.

The causal system in Fig. 7.1 has been analysed by Meulemann (2017). He
used discrete-time (DT) structural equation modelling (Bollen and Brand 2010),
controlled for unobserved heterogeneity by a random person factor, and used full
information maximum likelihood (FIML) estimation, which takes care of arbitrary
missing values based on the so-called missing-at-random (MAR) assumption
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(Wothke 2009). In the following, we reanalyse the same data using continuous-
time (CT) structural equation modelling (Oud and Delsing 2010; Oud and Jansen
2000) in order to show exemplarily the added value of CT over DT. In Meulemann
(2017) the effects of some exogenous variables were also part of the model. To ease
comparison, in this chapter, we skip both in DT and CT exogenous effects and limit
the model to the relationships between the three endogenous variables. However,
as in Meulemann’s DT model, a single random person factor or “trait” for all three
endogenous variables simultaneously was added to the CT model. A single trait not
only saves degrees of freedom, but controlling for a general level in these variables
with similar standardized score scale (see next section) was considered sufficient.

After presenting in the next section more specific information about the data and
measurement, we report in Sect. 7.3 detailed results of the DT model. Section 7.4
explains the essence and advantages of CT over DT, while the CT results are given
in Sect. 7.5. The DT analysis has been done by SAS-CALIS (SAS Institute Inc.
2013), the CT analysis by the R package CT-SEM (Driver et al. 2017).1

7.2 Data and Measurement

The sample is the Cologne High School Panel (Kölner Gymnasiastenpanel, KGP).
Tenth grade high school students in the German federal state Northrhine-Westfalia
have been first interviewed in written form in their classroom about their life plans
in 1969 and reinterviewed orally three times in 1984, 1997 and 2010 about their
life career between early and late midlife. The modal ages of the respondents in the
reinterviews were 30, 43 and 56. Of the 3240 respondents in 1969, 1301 (40.1%)
have been reinterviewed at ages 30, 43 and 56. However, time intervals between
interviews were not for all respondents exactly equal to 13 years. The exact time
intervals for each individual subject were known and will be used in the CT analysis.
The sample is socially selective, because it has been drawn from students from the
highest stratum of the German tripartite secondary school system.

The frequency of church attendance (CHURCH) has been measured by a
single question with six options. The Christian worldview (WORLDV) has been
ascertained by three statements of an inventory of Felling et al. (1987): “Life has
meaning for me only because there is a God”, “Life has a meaning because there
is something after death” and “I believe that human existence has a clear meaning
and follows a specific plan”. For each statement, there were five response options;
responses have been averaged. Life satisfaction (LSAT) has been measured on a
scale from 0 to 10 as follows: “How satisfied are you nowadays altogether with
your life” with a numbered response scale from 0 to 10, the extremes of which
were labelled “totally unsatisfied” and “totally satisfied”. Means were considerably

1The programming code of the analyses is available as supplementary material at the book website
http://www.springer.com/us/book/9783319772189.

http://www.springer.com/us/book/9783319772189
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above the middle point and increased between the first and third observation
time point slightly from 7.6 to 7.7; standard deviations decreased from 1.5 to
1.4. Detailed information about the data set is given in Weber (2017). For all
three variables, values have been transformed into the standardized scores of the
cumulative frequencies under the normal distribution (z-scores). This was done for
the cumulative distribution of the three time points combined, so that the differences
between them have been kept.

7.3 DT Model Results

As shown in Fig. 7.1, the model has 9 variables, that is, 54 nonidentical elements
in the augmented moment matrix. Of our 1301 subjects, 1262 have complete
information; 39 subjects have in total 107 missing values, which are taken care of
by the missing value procedure of FIML. The model starts off at age 30 with the
three initial means and six (co)variances, in total nine parameters, of three so-called
predetermined variables. At age 43, the same variables are endogenous, and each
depends on every other one at age 30. Thus, 9 regression parameters are needed; and,
just as at age 30, 9 parameters for intercepts and residual (co)variances—resulting in
altogether 18 parameters. At age 56, the model is exactly the same as at age 43 such
that in a DT analysis, one normally would use again 18 parameters. It is customary
in DT to test for equality of each of the corresponding parameters and set them
equal if the test is passed. From a CT perspective, this is already questionable in
the frequent case of unequal intervals, because then significant differences would
show up in DT even if the underlying parameters are equal. In CT, however, time-
varying parameters would not be handled stepwise at each of the discrete time
points separately but by a function covering the whole time range of the model.
In order to make the DT analysis comparable to the CT analysis, therefore, we set
all parameters at age 56 equal to the respective ones at age 43. That is, there are no
additional parameters: The model specified in both cases is time-invariant. Finally,
one parameter for the trait variance is added which shows up in each of the six
equations.

Altogether, the model has 28 parameters—leaving 26 degrees of freedom. The
DT model has a −2×Log-Likelihood (−2LL) of 26,563.86. The Chi-square value
of 176.04 for testing the model against the saturated model is for 26 degrees of
freedom significant.2 This is expected, however, for such a big sample. The popular
fit measure RMSEA (Browne and Cudeck 1993) with value 0.067 indicates that the
model fits “reasonably”. The results are presented in Table 7.1.

2The fact that the degrees of freedom left is a positive number, so making the Chi-square test
possible, is only a necessary condition for identification of the model. A sufficiency proof of the
identification of both the DT and the CT version of the model for as few as three observation time
points is given in Appendix B of Angraini et al. (2014).
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Table 7.1 Church attendance, Christian worldview and life satisfaction at ages 30, 43 and 56 in
DT model

Initial parameters (age 30)

Means (Co)variances

CHURCH WORLDV LSAT

CHURCH 0.0819∗∗∗ 0.4751∗∗∗

WORLDV −0.0436 0.1903∗∗∗ 0.5024∗∗∗

LSAT −0.0541 −0.1076∗∗∗ −0.0437∗ 0.8847∗∗∗

Dynamic parameters (ages 43, 56)

Intercepts Regressions

CHURCH WORLDV LSAT

CHURCH −0.0516∗∗ 0.4892∗∗∗ −0.0279 −0.1188∗∗∗

WORLDV 0.0235 −0.0244 0.4432∗∗∗ −0.1117∗∗∗

LSAT 0.0318 −0.2049∗∗∗ −0.1410∗∗∗ 0.2591∗∗∗

Residual (co)variances

CHURCH WORLDV LSAT

CHURCH 0.3074∗∗∗

WORLDV 0.0468∗∗∗ 0.4679∗∗∗

LSAT −0.0589∗∗∗ −0.0741∗∗∗ 0.6339∗∗∗

Trait variance 0.2051∗∗∗

−2LL = 26,563.86; Chi-square = 176.04 with df = 26; RMSEA = 0.067
∗∗∗p<0.001, ∗∗p<0.01, ∗p>0.05

The results are similar to the ones in Meulemann (2017), although no exogenous
variables are taken into consideration. First, all autoregressions are significantly
positive, but church attendance and Christian worldviews turn out to be more
persistent properties than life satisfaction. They can be seen as internalized early
in life and held upright fairly well against shocks from outside. Also, there is
substantial autoregression of life satisfaction, but this seems to be more susceptible
to outside influences such as success and failure in life than religiosity.

Contrary to expectation, neither church attendance nor Christian worldviews
have a positive effect on life satisfaction, nor life satisfaction on church attendance
or Christian worldviews. Rather, all cross-regressions between religiosity and life
satisfaction are significantly negative. On the one hand, religiosity seems to be
rather a cost than a benefit in terms of life satisfaction. It costs time to go to
church, and it may cost self-actualization to believe. On the other hand, neither is
there a tendency of satisfied people to become religious. Moreover, the two cross-
regressions between the two dimensions of religiosity are also negative but only
slightly negative and not significantly. Practice and belief do not buttress each other.

The residual variances are found in conformity with the autoregressions to be
smaller for the two religiosity dimensions than for life satisfaction. Finally, there is
a strong trait variance representing unobserved heterogeneity. This may stem from
private and occupational life success but also from personality factors and from
socialization in family and school.
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7.4 Discrete-Time Modelling Problems Solved by
Continuous-Time Modelling

The first problem of a discrete-time model is that it ignores the processes taking
place in continuous time between the measurement time points. The path diagram
in Fig. 7.1 makes this clear. The arrows jump from one point in time to the
next one, assuming that nothing happens between measurements. In fact, the
discrete-time autoregression coefficients (horizontal arrows) and cross-regression
coefficients (nonhorizontal arrows) in Fig. 7.1 are complicated mixtures of underly-
ing continuous-time auto- and cross-effects in a constant interchange and dependent
on the chosen observation interval. So, the true underlying auto- and cross-effects in
continuous-time (CT) coefficients should be differentiated from the resulting auto-
and cross-regressions in discrete-time (DT) coefficients. A variable with a high auto-
effect, meaning that there is a strong tendency to sustain its value over time, tends
also to retain the influence of other variables better and over a longer time interval
than a variable with a low auto-effect. So, even a relatively small CT cross-effect can
result in a relatively high DT cross-regression coefficient, if the variable influenced
has a high auto-effect. But the converse can also be true: A relatively strong CT
cross-effect having only small impact over a discrete-time interval (low DT cross-
regression coefficient) because of a rather low auto-effect in the dependent variable.

Oud and Delsing (2010) show that, going in this way from DT to the underlying
CT results, paradoxical changes can take place: Equal DT coefficients become
different in CT, the strength order of coefficients reverses from DT to CT (e.g.
if in DT the effect of CHURCH on WORLDV is larger than in the opposite
direction, it becomes the other way around in CT), and nonzero coefficients in
DT vanish or even change sign in CT. So, the first contribution of a CT analysis
is to disentangle the true underlying CT auto- and cross-effects from the DT
mixtures. One finds these mixtures in the autoregression matrix A�t (autoregression
coefficients on the diagonal and cross-regression coefficients off-diagonally) in
discrete-time equation (7.1), which further contains the DT intercepts b�t and
prediction errors et−�t . The observation interval �t as a subscript of A�t and
b�t reminds that the discrete-time mixtures may differ for different observation
intervals.

xt = A�txt−�t + b�t + et−�t (7.1)

dx(t)
dt

= Ax(t)+ b + e(t) (7.2)

The so-called drift matrix A in CT equation (7.2) analogously has the underlying
CT auto-effects on its diagonal and the underlying CT cross-effects off-diagonally.
Differential equation (7.2) explains the derivative dx(t)/dt or change in x at t for the
interval �t going to zero: �t → 0. Because of �t → 0, A and the CT intercepts
b do not depend on the interval �t any more. Oud and Delsing (2010) show how
the DT mixtures A�t and b�t arise from the underlying CT A and b and explain
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in detail how a CT analysis gets the true underlying A and b back again from the
mixtures. Autoregression matrix A�t in Eq. (7.1) and drift matrix A in Eq. (7.2)
relate by the matrix exponential function as given in Eq. (7.3). It is by the highly
nonlinear character of this relation that most of the paradoxical differences between
DT and CT results can be explained. For the relation between DT and CT intercepts
b�t and b as well as between errors et−�t and e(t), we refer to Oud and Delsing
(2010).

A�t = eA·�t (7.3)

CT modelling can also be approached from the perspective of the lagged and
instantaneous effects mentioned earlier. A big time lag is expected to result in
relatively low values of the lagged coefficients (in any case in the autoregression
coefficients but after some time interval also in the cross-regression coefficients),
leading for many analysts to the correct feeling that lagged coefficients alone are
not sufficient and to the decision to add the corresponding instantaneous effects
to give a more appropriate picture of the underlying effects. However, Oud and
Delsing (2010) describe a second problem of DT modelling and call it the lagged
and instantaneous effects dilemma. It consists in the fact that the corresponding
lagged and instantaneous coefficient values give quite different results and that
in general the longer the lag, the higher the instantaneous coefficients become
in comparison to the lagged ones. In the study by Vuchinich et al. (1992), for
example, the dilemma was whether to choose for instantaneous or lagged effects
between parental disciplinary behaviour and child antisocial behaviour. The authors
found significant instantaneous effects but no significant lagged effects between
these variables. Another example is in Becker et al. (2017), who related church
attendance and education. When relating these variables instantaneously, they found
a highly significant positive effect of education on church attendance. However,
the lagged effects of education on church attendance were significantly negative.
The dilemma is solved by Bergstrom (1966) in a nonrecursive model that imposes
such restrictions on both types of coefficients—lagged and instantaneous—that
one combined set of values results which approximates the true underlying CT
coefficients (see details in Oud and Delsing 2010). In fact, Bergstrom presented his
DT approximation of underlying differential equation (7.2) as a justification of the
very use of nonrecursive models in economics. Instead of Bergstrom’s approximate
procedure, we use an exact procedure, but both solve the lagged and instantaneous
effects dilemma of DT modelling.

The consequence of CT modelling to solve both problems described is that we
should not causally interpret the DT autoregressions and cross-regressions in A�t
and intercepts in b�t of Eq. (7.1) nor the instantaneous coefficients discussed in
the previous paragraph but the CT auto-effects and cross-effects in drift matrix
A and the intercepts in b of differential equation (7.2). This does not mean
that the autoregression and cross-regression coefficients are useless. They tell a
quite important but different story. Autoregressions and cross-regressions give the
response over specific intervals for a unit impulse at the starting point. In particular,
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autoregression tells what after a specific interval �t is left from a unit quantity in
the variable at the starting time point. A cross-regression tells what after specific
interval �t the increase is in the dependent variable as a result of a unit increase in
the independent variable at the starting point. However, a DT analysis gives these
resulting quantities only for one specific interval�t .

A third contribution of a CT analysis is that it provides the entire autoregression
and cross-regression functions over the whole continuous time scale, that is, for all
intervals, by modelwise interpolating between and predicting after the observation
time points. An autoregressive function enables to answer, for example, after which
interval only half of the unit value is left. A cross-regression function starts at zero
for a zero interval (a causal effect needs some time to operate), then goes to a
maximum at some point on the time scale and finally converges to zero again in
a stable model. It enables to answer, for example, at what interval the maximal
effect of the independent variable is reached and at what interval the effect becomes
virtually zero. In addition to the autoregression and cross-regression functions, CT
also provides the mean and covariance functions and so displays the means and
variances/covariances not only for the discrete observation time points in the study
but for all points in continuous time.

One main problem is the dependence of DT results on the chosen time interval.
This leads to incomparability of results over different observation intervals within
and between studies. If unaccounted for, it can easily lead to contradictory conclu-
sions. In a multivariate model with three or more variables, one researcher could
find a positive effect between two variables x and y, while another researcher, again
in DT, finds no or a negative effect between the same variables, just because of a
different observation interval length. This might well be the case, for example, in
our study. After 13 years an originally strong effect of religiosity on life satisfaction
might have faded away. Because results depend on the specific length of the chosen
observation interval, even the use of equal intervals in DT studies does not solve
the problem (Oud and Delsing 2010). Another interval might have given different
results to both researchers as we discussed in the first problem of a discrete-time
model.

A fourth contribution of CT analysis is therefore making the different and
possibly contradictory effects in DT independent of the interval for equal as well
as unequal intervals. So, by reporting the CT results instead of or in addition to the
DT results, one enables other researchers with different or equal intervals to make a
correct comparison with one’s own results.

The last but not the least important contribution of CT analysis is in missing data
handling (Oud and Voelkle 2014). In its attempt to limit the quantity of missing
data, a DT analysis classifies the data in a restricted number of equidistant time
groups: 1, 2, 3,. . . . The implication is that all data in one such group come from
exactly the same time point. This is seldom the case. Measurements differ almost
always in time, be it hours or even minutes. By putting data actually coming from
different time points in the same group, the results of the analysis will become
at least inaccurate and possibly unacceptable. Some missing value patterns can be
handled in DT by so-called phantom variables, but this approach is limited to rather
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simple cases. For example, suppose one has a panel data set with four waves, 2 years
between wave 1 and 2 and between wave 2 and 3 but only 1 year between wave 3 and
4. In DT one could choose time groups 1, 2, 3, 4, 5 and 6 and use phantom variables
for totally missing groups 2 and 4. In CT the missing data problem is translated into
an unequal measurement interval problem, and the missing data vanish. Each datum
gets exactly the treatment it needs by combining it with its exact time interval. In this
way, even a data set with all subjects having different measurement time points and
different intervals is unproblematic. The use of different intervals is advocated by
Voelkle and Oud (2013). While the previously mentioned advantages and solutions
of CT do not lead to a different model fit, if no extra restrictions are imposed,
giving data their exact time intervals in CT for each subject separately instead of
the approximate equidistant ones in DT will change the data and therefore also lead
to a different model fit in CT.

7.5 CT Model Results

The CT model results are reported in Table 7.2. The table contains also the model
implied DT dynamic parameter values. The small differences of those values as
well as of the initial parameters and −2LL with the ones in Table 7.1 are exclusively
caused by the fact that CT inserts for all subjects individually the exact measurement
intervals, while DT assumes equal intervals for all subjects.

When interpreting the values of the dynamic parameters in Table 7.2, it should be
kept in mind that the scale range of autoregression from 1 (maximum autoregression
in a stable model, no decay) to 0 (minimum autoregression, no predictability at all)
translates to a range from 0 to −∞ for the auto-effect in the CT drift matrix. So, the
autoregression of 0.4892 for CHURCH in Table 7.1, which is highly significantly
deviating from minimum 0 (p < 0.001), corresponds to the auto-effect −0.0647,
also deviating significantly from 0 but which in this case is from the maximum
value in a stable model. The story to be told for the autoregressions/auto-effects
in general turns out similar in DT and CT. CHURCH is the most persistent and
predictable variable, followed by WORLDV and LSAT, respectively. As in Table 7.1
also, all cross-effects are negative. Of course, the implied DT dynamic parameters
in Table 7.2, which are easily calculated by the matrix exponential in Eq. (7.3)
for �t = 13, do not differ much from the ones in Table 7.1, because they only
improve on the inexact measurement time points used in Table 7.1. If formally
tested, the differences between the results in Table 7.1 and the implied DT results
in Table 7.2 would in this case probably not be significant. Also the CT auto-
effects and the sign of the CT cross-effects resemble those in Table 7.1. But,
different from Table 7.1, the relatively low negative cross-effects between CHURCH
and WORLDV turn out to be significant in CT (p < 0.05). Different also from
Table 7.1 is that the strength order of reciprocal effects between CHURCH and
WORLDV reverses in CT, the effect of WORLDV on CHURCH becoming more
negative than in the opposite direction. Interesting is that all diffusion (co)variances
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Table 7.2 Church attendance, Christian worldview and life satisfaction at ages 30, 43 and 56 with
exact time intervals in CT model

Initial parameters

Means (Co)variances

CHURCH WORLDV LSAT

CHURCH 0.0802∗∗∗ 0.4750∗∗∗

WORLDV −0.0453 0.1903∗∗∗ 0.5024∗∗∗

LSAT −0.0558 −0.1076∗∗∗ −0.0437∗∗ 0.8447∗∗∗

Dynamic parameters

Intercepts Drift coefficients

CHURCH WORLDV LSAT

CHURCH −0.0054∗ −0.0647∗∗∗ −0.0110∗ −0.0313∗∗∗

WORLDV 0.0029 −0.0128∗ −0.0704∗∗∗ −0.0316∗∗∗

LSAT 0.0037 −0.0538∗∗∗ −0.0403∗∗∗ −0.1293∗∗∗

Diffusion (co)variances

CHURCH WORLDV LSAT

CHURCH 0.0482∗∗∗

WORLDV 0.0123∗∗∗ 0.0776∗∗∗

LSAT 0.0179∗∗∗ 0.0174∗∗∗ 0.1630∗∗∗

Trait variance 0.2083∗∗∗

Implied DT dynamic parameters for �t = 13 years

Intercepts Regressions

CHURCH WORLDV LSAT

CHURCH −0.0541 0.4813 −0.0276 −0.1189

WORLDV 0.0229 −0.0255 0.4363 −0.1136

LSAT 0.0315 −0.2068 −0.1425 0.2474

Residual (co)variances

CHURCH WORLDV LSAT

CHURCH 0.3089

WORLDV 0.0454 0.4761

LSAT −0.0636 −0.0785 0.6377

Trait variance 0.2083

−2LL = 26,579.13
∗∗∗p<0.001, ∗∗p<0.01, ∗p>0.05

are positive, but because of the effects in the rest of the model, this results in
negative values for the covariances of CHURCH and WORLDV with LSAT in
DT (−0.0589 and −0.0741 in Table 7.1 and −0.0636 and −0.0785 in Table 7.2).
Again, differences in interpretation between DT and CT in this case should not be
exaggerated. Nevertheless, it is important to realize that, being independent of any
specific interval, it is more reliable to interpret CT results than DT or implied DT
results.

Beyond the more fundamental model specification and especially its indepen-
dence of a specific DT time interval, CT has the advantage over DT of clearly
depicting the process over the total period. Figures 7.2, 7.3, 7.4 and 7.5 display for
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Fig. 7.3 Cross-regression functions

increasing intervals in continuous time over 26 years the estimated autoregressions
and cross-regressions as well as the expected means and (co)variances in the studied
group of subjects. Figure 7.2 shows that the autoregression is for CHURCH highest
over the whole CT time scale and such that after 12 years still half of its value is
left and after 26 years still more than 20%. Predictability of Christian worldview
(WORLDV) on the basis of its previous value is at all intervals less, but the
difference with CHURCH is small: after 11 years half of its value and about 20%
after 26 years. Predictability of LSAT is considerably lower: half of its value only
after 6 years and about 10% after 26 years.

All cross-regressions between the three variables in Fig. 7.3 turn out to be
negative until the final interval of 26 years. However, not much is happening
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Fig. 7.5 Variances/covariances across continuous time

between CHURCH and WORLDV, neither in the short term nor in the long term.
There are more substantial negative contributions from LSAT to these variables and
from these variables to LSAT. Biggest is the negative contribution from CHURCH
to LSAT, which reaches its maximum of −0.208 after 11 years, followed by
the negative contribution from WORLDV to LSAT with maximum −0.146 after
10 years. The cross-regression functions in the opposite direction from LSAT to
CHURCH and WORLDV, respectively, are almost identical and reach both their
negative maxima of −0.120 and −0.116 after 11 years. It should be noted that these
substantial contributions do not fade away rapidly, because after 26 years none of
them is less negative than −0.075.
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It will be no surprise that the CHURCH mean in Fig. 7.4 decreased over the
26 years period. However, WORLDV and LSAT showed a small increase over the
same period. While in Fig. 7.5 the variances of CHURCH and LSAT kept being
rather stable across time, the variance in WORLDV increased somewhat over the
26 years. There is a small positive correlation between CHURCH and WORLDV,
which decreases somewhat across time. The other variables show small negative
correlations across time.

7.6 Conclusion

We all lead our lives without really noticing how time passes by. Yet time and again
we stop and look back. We register what has happened in the meantime—in our
lives as well as in the lives of our fellow men. We notice the differences between
some former and some current state; but we do not notice what has happened in
between. We wonder how a difference could come up. If we are untroubled, we
stick to contrasting former and current states. If we are pensive, we try to imagine a
process that has led step by step from there to here. We live in continuous time, but
we reflect upon our lives in discrete time.

Research on life histories, which is a reflection upon other people’s life, cannot
but do the same. It asks what people think and do at different times, it notices
stabilities or differences and it tries to explain them. If it follows conventional
wisdom, it takes the differences as given and looks for factors that may have
determined them; time is split up into a sequence of discrete snapshots. If it is
sophisticated, it assumes a process that has led from this to that value and constructs
the values in between according to the rules of the process. In this chapter, we have
compared two modelling approaches with the very same question and data. The
question how religiosity and life satisfaction determine each other over a life span
of 26 years of 1301 persons has been modelled by structural equations in discrete
and in continuous time.

If we compare the results of the actual discrete-time analysis, supposing the
data are collected at exactly the same discrete time points for all people, with
the discrete-time results as implied by the parameters of continuous-time analysis,
which accounts of the true individual measurement time points and intervals, the
differences are small. Both analyses agree in three points. First, church attendance
and Christian worldviews have stronger autoregressions than life satisfaction; the
former seem to be habits of action and thought internalized early in life and the
latter more easily subject to shocks from outside. Second, there are—contrary to
expectation—negative rather than positive impacts of religiosity on life satisfaction
and vice versa. In fact, both questions in the title should be answered negatively, on
the basis of the discrete time as well as the continuous-time analysis. Religiosity,
on the one hand, behaves rather as a cost than as a benefit in terms of life
satisfaction. On the other hand, there is no self-selection of satisfied people into
religiosity. Third, there is also a small negative reciprocal impact between the two
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dimensions of religiosity. Practice and belief interfere rather with one another than
that they reinforce each other. Obviously, inconsistent patterns of both dimensions in
cross-sectional population surveys which have often been interpreted as “believing
without belonging” (Davie 2010) also show up in the longitudinal perspective on
life histories.

Over and above these common results, the continuous-time analysis provides
insights from the drift and the diffusion matrix that have no counterpart in discrete
time; moreover, continuous-time analysis enables to depict the course of parameters,
including means and variances/covariances, over time instead of only at a few
specific discrete time points. The drift matrix in Table 7.2 reveals the underlying
process and its realization across time in Figs. 7.2 and 7.3. The drift and diffusion
matrix provided two main new insights into our specific data set. First, while the
discrete-time dynamic parameters in Table 7.1 as well as in Table 7.2 showed that
worldviews have a stronger negative impact on church attendance than vice versa,
the corresponding drift parameters in Table 7.2 reversed this order. In addition, while
both effects in Table 7.1 are nonsignificant, in Table 7.2 both are significant. So,
practice seems to precede belief in a sense. Second, while the discrete-time residual
covariances in Table 7.1 as well as in Table 7.2 between the two dimensions of
religiosity and life satisfaction are negative, the respective diffusion covariances in
Table 7.2 were positive. In both cases, the causal system as displayed in Fig. 7.1
is controlled for by unobserved heterogeneity—a person factor or trait. So, omitted
effects seem to impact religiosity and life satisfaction in the same direction.
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Chapter 8
Mediation Modeling: Differing
Perspectives on Time Alter Mediation
Inferences

Pascal R. Deboeck, Kristopher J. Preacher, and David A. Cole

8.1 Introduction

This chapter proceeds in three parts. In Part I we discuss and differentiate discrete
and continuous time perspectives on time using structural equation modeling (SEM)
diagram conventions. In Part II we introduce a substantive example, in which we
demonstrate a mediation model in continuous time and contrast it with a more
familiar longitudinal mediation model in discrete time. In Part III we build on the
prior sections to consider the implications of continuous time models for mediation
modeling and provide an agenda for future work in mediation research.

8.2 Part I: Discrete and Continuous Time Perspectives
on Data

8.2.1 Discrete Longitudinal Mediation

In line with a growing trend in the mediation literature, we assume that longitudinal
data are necessary for making the types of inferences common to mediation analyses
and that the same inferences are rarely (if ever) justified using cross-sectional
data (Cole and Maxwell 2003; Gollob and Reichardt 1991; Preacher 2015; Selig
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and Preacher 2009). Imagine, therefore, the collection of data on three variables
(X,M, Y ), over three waves of measurement, on n subjects. In the mediation
literature, the most common approaches to modeling such data seem to be variations
of a cross-lagged panel model (CLPM; Cole and Maxwell 2003; Gollob and
Reichardt 1987, 1991; MacKinnon 2008; Maxwell and Cole 2007).

All CLPMs are defined by two necessary elements. First, repeated measures on
the same variable are regressed on themselves at earlier occasions. It is common
practice for an observation XT to be regressed on the prior observation XT−1, but
one could also consider additionally regressingXT onto XT−2. The paths depicting
regressions of variables on the same variables at different times, or autoregression,
are often repeated for all variables (Fig. 8.1, black dashed arrows). Second, one
or more variables are regressed on different variables at a prior observation; these
effects are called cross-lags (Fig. 8.1, gray arrows). The number of these cross-lags
differs in CLPMs, but in a mediation model, there would be a minimum of two
regressions: YT onto MT−1 and MT−1 onto XT−2. Taken together, they represent
the indirect effect of X on Y via the mediator M . In addition, a direct effect of
X on Y is often included by regressing YT onto either XT−1 or XT−2. For the
latter regression, methodologists disagree as to whether one should regress YT on
the prior observation (XT−1), as would be commonly done in related time series
models, or two observations prior (XT−2), based on the thinking that the indirect
effect requires two observation intervals for X to have an effect on Y through M

XT-2 XT-1

MT-2 MT-1

YT-2 YT-1

XT

MT

YT

Fig. 8.1 Example of a common cross-lagged panel model used for testing mediation hypotheses.
Later values (T ) of each variable (X,M, Y ) are predicted by proceeding values (T − 1) of the
variables. In this model, X affects Y both directly (path X → Y ) and indirectly (X → M → Y ).
Thus, M is a mediator of the relation between X and Y



8 Mediation Modeling: Differing Perspectives on Time Alter Mediation Inferences 181

(i.e.,XT−2 → MT−1 → YT ). Variations of the CLPM can include additional cross-
lags, a measurement model, and random intercepts to account for time-invariant
differences in variables (Hamaker et al. 2015).

8.2.2 A Continuous Time Perspective

Figure 8.1 is incomplete from a continuous time perspective, as it represents only
those discrete observations that were actually made. From the continuous time
perspective, time does not exist in discrete quantities, and therefore Fig. 8.1 fails to
give attention to the times that occur between sampling occasions. One way to see
this perspective more clearly is to represent the unobserved occasions by depicting a
large number of latent variables (Fig. 8.2, circles) between the observation occasions
(Fig. 8.2, squares). Whereas latent occasions are depicted for only four additional
times, the ellipses indicate that an infinite number of latent occasions actually exist.
Contrasting Figs. 8.1 and 8.2 throws into relief the principal difference between
common CLPMs and the continuous time perspective: that the continuous time
perspective assumes that constructs that underlie variables and people continue
to exist even when not being observed and could (in theory) have been sampled.
Because of this ongoing existence of constructs, the two figures differ in terms of
their relations between variables. In Fig. 8.1, MT is regressed onto XT−1, where
one unit of time separates waves. This lag may constitute weeks, months, or even
years. This regression requires the researcher to make the implicit assumption that

XT-1 XT

MT-1 MT

YT-1 YT

XT-1+dt

MT-1+dt

YT-1+dt

XT-1+2dt

YT-1+2dt

XT-2dt

MT-2dt

YT-2dt

XT-dt

MT-dt

YT-dt

MT-1+2dt

Fig. 8.2 A continuous time perspective on Fig. 8.1. Occasions at which no observations are being
made are represented by latent variables (circles). Ideally, an infinite number of latent variables
would be drawn between Times 1 and 2; for clarity, the infinite number of circles is represented by
ellipses
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the variables do not continue to have effects on one another during the intervening
interval. This may be a tenable assumption when the rate at which observations
are sampled is high relative to the rate at which the constructs underlying the
variables are changing. In much of the social, behavioral, and medical sciences,
however, constructs may change at rates much faster than the rate of observation.
In Fig. 8.2, MT is regressed on XT−dt , where dt is a period of time much smaller
than the observation interval. Smaller and smaller intervals of dt could be used,
such that dt approaches (but never reaches) zero. That is, MT depends on the
value of X that exists an infinitesimally small moment (dt) before T , denoted with
subscript T −dt . The variables at the prior moment are themselves dependent on the
variables at a prior moment T −2dt , which are dependent on the variables at a prior
moment, and so forth. This assumes not only the continued existence of constructs
but ongoing effects between them from one moment to the next. The two figures,
and perspectives, can be differentiated in that they make different assumptions about
whether or not one can aggregate the momentary changes of variables over time.

The CLPM in Fig. 8.1 can be labeled a discrete time model because the
progression of time is only implicitly expressed based on the ordering of the
observations (Voelkle et al. 2012). Neither the autoregressive nor cross-lagged
relations express precisely the interval occurring between observations. Although
model diagrams may include indicators of time, these time indices exist only on the
diagrams and are not incorporated into the mathematical model. Whether the first
and second occasions of measurement are separated by 6 months or 12 months, the
regressions are performed the same way although the resulting parameter estimates
will differ.

The regressions in Fig. 8.1 do not specify how variables change from one
observation to the next; many different patterns of change can produce the same
regression coefficients. The model in Fig. 8.2 is not yet a truly continuous time
model. To complete the continuous time model started in Fig. 8.2, we must specify
a model that describes how variables change from one moment to the next and
how they will affect each other, even when not being observed. That is, rather
than allowing many possible patterns of change by fitting the model in Fig. 8.1,
a very specific change dynamic is specified within the continuous time perspective.
Figure 8.3 builds upon Fig. 8.2 by including (1) latent variables dX/dt , dM/dt , and
dY/dt which express the change in each of the variables of interest with respect to
time (first derivative) and (2) paths labeled dt , expressing an elapsed period of time.
With these additions, time becomes explicit in the model, as each subsequent value
of a variable (e.g., XT ) is equal to the prior value (XT−dt ), plus the rate at which
change was occurring (dX/dt) multiplied by the elapsed time dt .

The question then becomes, what affects the latent change variables dX/dt ,
dM/dt , and dY/dt? That is, how do the unobserved constructs change from one
moment to the next, and how do they affect each other? Figure 8.3 depicts one
differential equation model that is relatively common, a first-order stochastic differ-
ential equation. Each of the latent change variables depicted has three components:
(1) a path from the level of the variable to the velocity of the same variable (e.g.,



8 Mediation Modeling: Differing Perspectives on Time Alter Mediation Inferences 183

XT-1 XT

MT-1 MT

YT-1 YT

dX/dt

dM/dt

dY/dt

dM/dt

dX/dt

dY/dt

MT-1+dt

XT-1+dt

YT-1+dt

dM/dt

dX/dt

dY/dt

XT-1+2dt

YT-1+2dt

1

dt

1

1

1

1

1

dt

dt dt

dt dt

MT-1+2dt

dM/dt

dX/dt

dY/dt

XT-dt

YT-dt

MT-dt

dt

dt

dt

1

1

1

Fig. 8.3 A continuous time model. The change (first derivative) for each variable
(dX/dt, dM/dt, dY/dt) is represented, in addition to the level (zeroth derivative) for each
construct (X,M, Y ). The gray arrows allow the level of variables to affect how other variables
are changing; this is one of many possible mediation models that could be tested. Time becomes
explicit in the model due to the dt path. The variables at each subsequent moment in time are equal
to the prior values (path = 1) plus the rate of change (e.g., dY/dt) times the elapsed time (dt).
Covariances between first derivative are omitted to reduce visual clutter

X → dX/dt), (2) a path from the level of other variables (e.g., X → dY/dt), and
(3) a double-headed arrow (dX/dt ↔ dX/dt).

The first component, the level-velocity path within the same variable, allows
for the velocity (change) of a variable to be related to the momentary level of the
same variable. This may occur, for example, when individuals regulate toward some
homeostatic level (e.g., levels of X negatively correlated with dX/dt). The second
component, the level-velocity relations between variables, allows the level of X to
be related to the velocity of Y (i.e., dY/dt). This is similar to the CLPM which
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allows variance in Y not accounted for by the prior observation of Y (which will be
related to changes in Y ) to be predicted by the level of X.

These relations can be more formally expressed as

dX
dt

= AX + ε

where X is a matrix representing all three variables (X, M , and Y ), A is a 3×3
matrix expressing the level-velocity relations, and ε represents error. The within-
variable regressions fall along the diagonal of A and are called autoeffects (Voelkle
et al. 2012). The between-variable regressions fill the off-diagonal and are called
cross-effects. The resemblance of the naming of these effects to the autoregressive
and cross-lagged effects of the CLPM is because of the mathematical relation that
exists between the first-order stochastic differential equation model and the CLPM.
If autoregressive and cross-lagged effects are arranged in the same manner as A,
such that

XT = A�XT−1 + ε�

then

A� = eA∗�,

where the subscript � is used to indicate a dependency of the values on the
interval between occasions of measurement and � also represents the interval
between measurement occasions. This equation states that the autoregressive and
cross-lagged effects in the CLPM (A�) are equal to the matrix exponential (e)
of the continuous time auto- and cross-effects (A) multiplied by the interval
between observations (�). Because of this correspondence between the discrete and
continuous time models, the path X → dY/dt can be defined as the direct effect
of X on Y . Similarly, the combination of the paths X → dM/dt and M → dY/dt

constitutes the indirect effect of X on Y (Deboeck and Preacher 2015).
The third component, the double-headed arrow, allows the variance of the

velocity to be nonzero. If only the first two paths were included in the model,
the model would be deterministic, as if there were no perturbations to the system;
later observations would be perfectly predicted by prior observations. The double-
headed arrows represent residual variances that allow for stochastic perturbations
to the system. These perturbations differ from measurement error, as they perturb a
system from deterministic dynamics, and affect future observations. Conceptually,
the perturbations can be thought of as representing the unpredictable events that
occur constantly in social, behavioral, and medical systems and are true changes
in the latent variables. The combination of differential equations with stochastic
perturbations, stochastic differential equations, represents a landmark opportunity.
As stochastic differential equations include a stochastic process, integration of
stochastic differential equations produces a distribution of possible trajectories over
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time. This is unlike the integration of more common (deterministic) differential
equations, which produce only a single trajectory over time.

8.3 Part II: Substantive Example

A continuous time approach requires a specific mathematical model of how people
change from one time to the next, even if that path is probabilistic rather than
deterministic. Ideally, a series of competing models would be explored to consider
different ways in which X affects Y and different ways in which M could mediate
those relations. In this section, a substantive example is presented to facilitate
comparisons of this modeling framework to more common longitudinal mediation
approaches such as the CLPM.

8.3.1 Data

Drawn from a larger data set, the data consist of a longitudinal sample of 291
children in grades 3, 4, and 5 (Cole et al. 1999a, 1997, 1999b). In this sample,
children were assessed on anxiety, depression, and social competence. Each of
the three variables was assessed by self-report of the children at each occasion.
The anxiety scale was the Revised Children’s Manifest Anxiety Scale (RCMAS:
Reynolds and Richmond 1985), a self-report measure of the frequency and severity
of anxiety symptoms including worry, oversensitivity, physiological reactivity, and
concentration problems. The depression measure was the Children’s Depression
Inventory (CDI: Kovacs 1981, 1982) a 27-item self-report measure of cognitive,
affective, and behavioral symptoms of depression. The social competence measure
was the social acceptance subscale of Harter’s (1985) Self-Perception Profile for
Children (SPPC). In this example, a continuous time mediation model is built
on literature suggesting that both anxiety (X) and depression (M) affect social
competence (Y ) but that anxiety (X) is often a precursor to depression (M) (Cole
et al. 1998; Dobson 1985; Kendall and Brady 1995). Within the sample, 33.6%
of observations were missing (880 observations missing out of 291 participants
by 9 indicators). Full information maximum likelihood was utilized to make use
of all available data. Possible predictors of missing observations, which could
improve adherence to the missing-at-random assumption, were not explored for
these analyses.
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8.3.2 Model: Discrete Time

To provide a basis for comparison, a more commonly used discrete time mediation
model was fit to the data. This model, shown in Fig. 8.4, is a variation of the CLPM.
The CLPM can be seen in the time-varying level of each variable and includes cross-
effects from anxiety to depression, anxiety to social competence, and depression to
social competence. Per recommendations in the literature (Hamaker et al. 2015), and
the expectation that the variables consist of both time-varying and time-invariant
components, a time-invariant latent variable (i.e., random intercept) was included
for each of the variables.

A
nx

ie
ty

Time-Varying
Level

Total

Time 
Invariant

D
ep

re
ss

io
n

Time-Varying
Level

Time 
Invariant

S
oc

ia
l

C
om

pe
te

nc
e

Time-Varying
Level

Time 
Invariant

Path Fixed to 1
Legend

Total

Total

Initial
Var/Covar

Grade 3 Grade 4 Grade 5

Fig. 8.4 Cross-lagged panel model. In this model, variables are regressed onto prior observations
of the same variables (autoregressive effects) and prior observations of other variables (cross-
lagged effects). Time-invariant components are included for each variable (random intercepts),
to account for differences in mean values for each individual. The cross-effects allow for a direct
effect of anxiety onto social competence, as well as an indirect effect through depression
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8.3.3 Models: Continuous Time Model

Within-Variables To specify a continuous time model, we first consider how people
change from one time to the next within each of the variables: anxiety, depression,
and social competence. How are later observations on variable XT dependent (or
not) on one or more prior observations of X? For the present example, we began by
specifying that each of the variables is equal to its prior value, plus some linear (first
derivative) change multiplied by dt:

XT = XT−dt + (dt)
dXT−dt
dt

.

This is similar to latent difference score models (McArdle 2009) and is also depicted
in Fig. 8.3. In this model, however, the inclusion of additional latent states (ellipses)
between observations allows the interval dt to be smaller than the observed interval;
when a large number of latent states is introduced, dt will approach zero, and
the model parameters will approach an analytic continuous time model solution
(Deboeck and Boulton 2016). The first derivative dXT−dt

dt
was allowed to have a

nonzero residual variance, dXT−dt
dt

∼ N(0, σ 2), to allow for stochastic perturbations.
Although not explored here, a model with higher-order derivatives could also be
considered.

Two additional sets of parameters are specified for each of the three variables.
First, a random intercept was included for each variable, so as to allow variables
to consist of a composite of a time-invariant component (i.e., random intercepts)
over the interval of the study, and a time-varying component. The time-invariant
components were allowed to correlate. Second, the velocity (first derivative) of each
variable was regressed on the level (zeroth derivative, position relative to one’s
intercept) of the same variable. These autoeffects allow for modeling parts of the
time-varying variance. The autoeffects are typically negative, as in such a case the
velocity is in a direction opposite to the current level of the variable. Consequently,
when negative, this relation allows for regulation toward one’s time-invariant level.
That is, people who are above their intercept will tend to have decreasing scores
and people who are below their intercept will tend to have increasing scores—if the
autoeffects are negative.

Between-Variables By allowing for correlated random intercepts, part of the rela-
tion between variables will already be explained. Above and beyond those relations,
questions can be posed about how the time-varying levels (zeroth derivative) and
velocity (first derivative) of the variables are related at any given moment. These
questions include: Do higher levels of anxiety relate to the rate of change (velocity)
of depression? Are the velocities correlated such that change in anxiety also leads
to change in depression, regardless of the levels of each? Or is it perhaps some
combination of both? (Deboeck et al. 2015) Admittedly, the literature is sparse
concerning the momentary dynamics between variables and the relations between
derivatives of variables. Like other modeling frameworks, competing models can
be established, but strong theories become increasingly essential to explore the
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parameter space. In this example, we have greatly simplified the parameter space by
assuming that higher-order derivatives are not required, but it is difficult to support
this assumption with the present literature.

Admittedly, the choices for between-variable relations tested in this chapter are
more exploratory and are primarily informed by a common first-order stochastic
differential equation model. First, a set of level-to-velocity relations were examined.
Informed by prior research, the level of anxiety was allowed to affect the velocities
of both depression and social competence. The level of depression was also allowed
to affect the velocity of social competence. Second, the velocities of each of the
three variables were allowed to correlate. This will allow the stochastic perturbations
to have nonzero correlations. This could occur if there are events or unmeasured
variables that affect the rate of change of more than one variable.

Full Model In the full model, the observed variables at each occasion (Fig. 8.5,
Total rows) consist of the sum of the time-invariant and time-varying contributions
of the model. The time-varying level and velocity rows depict the within- and
between-variable relations specified above. The model was fit by introducing
a number of latent steps between observation occasions, so as to approximate
continuous time parameter estimates (Deboeck and Boulton 2016); the additional
latent steps are replaced by ellipses in Fig. 8.5.

8.3.4 Analysis

The full model was fit to the data using OpenMx (version 3.2.4; Neale et al. 2016),
a package available in R (version 3.2.1; R Core Team 2015). Twelve theoretically
plausible variations of the full model were run, each removing either a within-
or between-variable parameter previously discussed. Models Within1, Within2,
and Within3 sequentially tested fixed intercepts, rather than random intercepts
for anxiety, depression, and social competence, respectively. Related covariances
between random intercepts were also removed as appropriate. Models Within4,
Within5, and Within6 sequentially removed the autoeffect parameters for each of
the three variables. Models Between1, Between2, and Between3 removed the effect
of the level of one variable on the velocity of another (A →�Dep, A →�Soc,
D →�Soc, respectively, where � is a symbol indicating “change in”). Models
Between4, Between5, and Between6 removed the covariances between velocities
(�Anx ↔�Dep, �Anx ↔�Soc, �Dep ↔�Soc, respectively).

8.3.5 Results and Discussion

Table 8.1 presents parameter estimates, and selected significance tests, for the
discrete and continuous time models. Starting from the top of the table, it can be
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Fig. 8.5 Full model. This model is a variation of a first-order stochastic differential equation
model. As with the CLPM, a time-invariant component is included for each of the variables. The
time-varying component consists of a first-order stochastic differential equation, where the velocity
at each time is related to the level of the same variable, the levels of other variables, and stochastic
perturbations (velocity residual variance). The variance of the stochastic perturbations and relations
between latent variables were constrained to be equal over time

seen that the estimated means, variances, and covariances for the time-invariant
effects were essentially the same for the two models. The covariances between the
time-invariant effects were not significantly different from zero.

The next set of results presents the initial variance/covariance estimates for the
time-varying portion of the data. These parameter estimates were also essentially
the same in both discrete and continuous time. The similarity of the time-invariant
effects and initial time-varying variances/covariances can be expected based on the
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similarities in the models specified in Figs. 8.4 and 8.5. The covariances between
the time-invariant effects were all significantly different from zero, with anxiety
and depression being positively correlated and social competence being negatively
correlated with both anxiety and depression. Although it is tempting to interpret
these relations, these covariances offer only a snapshot at the initial wave of
observations, and do not actually reflect whether changes in the variables are related.

The key differences between Fig. 8.4 (the discrete time model) and Fig. 8.5 (the
continuous time model) become more apparent in the remaining sets of results in
Table 8.1. The results for the residuals (discrete time) and stochastic perturbations
(continuous time) show little resemblance. The same is true for the autoregressive
effects (discrete time) and autoeffects (continuous time) and the cross-lags (discrete
time) and cross-effects (continuous time). These dissimilarities are because the
two models partition the time-varying variance differently. The results have been
presented in groups, however, because these pairs are related. Actually, these models
are transformations of each other under specific conditions, a fact that becomes
apparent when examining the fit of the models (Deboeck and Preacher 2015). The
discrete time model showed good fit to the data (RMSEA = 0.069, CFI = 0.966,
χ2(27) = 64.3), as did the continuous time model (RMSEA = 0.070, CFI = 0.965,
χ2(27) = 65.1). The small discrepancy is related to the CLPM, in this instance,
producing a negative estimated value of the autoregressive effect of depression that
cannot be replicated by the current continuous time model.1

The relation between the discrete time residual variances and stochastic pertur-
bations (change residual variances) is beyond the scope of this chapter (see Oud
and Jansen 2000). However, it should be noted that from the continuous time
perspective, the covariances of the stochastic perturbations represent correlations
among the velocities of variables. In the discrete time model, the equivalents of
stochastic perturbations get the unflattering name of “residuals”; however, in the
continuous time model, the covariances between the latent change variables suggest
whether stochastic perturbations to the variables are correlated. In the present
example, the stochastic covariances were not significantly different from zero. Had
they been different from zero, we would have been unable to disentangle whether
the velocity of one of these variables results in a corresponding velocity for the
other variable or whether there is a mutual third variance (e.g., events) that resulted
in both variables changing.

The remaining estimates in Table 8.1 represent the autoregressive and cross-
lagged effects for the discrete time model and the autoeffects and cross-effects for
the continuous time model. The discrete time model and the autoregressive and
cross-lagged effects represent the expected relations for a particular interval between
observations—in this example, 1 year. These estimates can vary for different

1In the current continuous time model, the autoeffects (continuous time) typically range from
minus infinity to zero, which corresponds to an autoregressive effect (discrete time) of 0-1. The
continuous time model specified does not allow for the equivalent of a negative autoregressive
effect. When the CLPM is constrained to produce autoeffects between 0 and 1, the −2LL for the
constrained CLPM and continuous time model are equivalent to at least three decimal places.
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intervals of time. The continuous time parameters, on the other hand, represent
the instantaneous (i.e., as dt goes to zero) effects between the derivatives of the
variables. Although interpreting continuous time parameters can be challenging,
as presented in Table 8.1, through integration, the effects can be summed for
any desired interval of time. This produces estimates of parameters such as the
autoregressive and cross-lagged effects in a CLPM. The primary difference is
that rather than estimating these parameters for only a single interval between
observations present in the data, the continuous time model can yield estimates of
these effects for any observation interval of interest (lags), to give an impression of
how the variables affect each other over differing time intervals.

Figure 8.6 depicts the autoregressive and cross-lagged effects expected from the
continuous time model for lags varying from 0 to 2 years; the maximum interval
of 2 years was selected based on the maximal interval observed in the data. The
lines, corresponding to the results of the continuous time model, are produced by
integrating the differential equation model2 for a range of lags, which produces the
expected discrete time parameters for a range of lags. Solving for the indirect and
direct effects requires constraining the model parameters, prior to integration, so as
to allow only for one effect at a time. Details on these calculations are available
in Deboeck and Preacher (2015). It should be noted that one can integrate the
differential equation model for any lag, including lags that are not well supported
by the data. It is consequently important when looking at this figure to be cognizant
of the fact that data are present to support the results at lags of 1 and 2 years, but
estimates of relations at lags of much less than 1 year or much greater than 2 years
extrapolate beyond the available data.

The points in the plots represent the 1-year interval parameter estimates produced
by the discrete time model. Figure 8.6 panels a and b represent the results
produced by the discrete and continuous time models. If these models were perfect
transformations of each other, the points would fall on the lines. In this example,
there is some misfit because the continuous time model cannot produce negative
autoregressive estimates as currently specified (see depression in panel a), but
the discrete and continuous time models still produced similar estimates for a
1-year interval for Anx→Dep, Dep→Soc, and the total effect of Anx→Soc.
Figure 8.6 panels c and d show the CLPM results when the autoregressive effects
are constrained to be between 0 and 1; this, and the equivalent log-likelihoods (see
footnote 1), highlight that under some conditions, the discrete and continuous time
models examined here are transformations of each other. Comparing the results from
the two models, one difference that is immediately apparent is that the discrete time
model provides only a single “snapshot” of the relations among the variables, as the

2The full model parameters are used, as removal of the nonsignificant relations began producing
continuous time parameter estimates outside the typically expected range. For example, the social
competence continuous time autoeffect became equivalent to a CLPM autoregressive effect greater
than 1. This may suggest that the effect of anxiety on social competence may be important to
incorporate into the model, although it was not significantly different from zero.
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Fig. 8.6 Plots of the relations between variables expected for a variety of intervals between
observations. The continuous lines are based on integrating the continuous time differential
equation model for differing intervals of time. The gray points are the single interval estimates
produced by the discrete time CLPM when unconstrained (panels (a) and (b)) and when
autoregressive effects are constrained to be between 0 and 1 (panels (c) and (d)). The Anx→Soc
relation plotted for the CLPM is the cross-lag that is interpreted as the direct effect of anxiety on
social competence. Differences in the discrete and continuous time model estimates occur in panels
(a) and (b), as the autoregressive effect of depression is less than zero, although not significantly
different from zero (estimate=−0.106, s.e.=0.108). The differences in panel (b) are also much
smaller than the standard errors of the CLPM estimates (0.080, 0.037, 0.070 for Anx→Dep,
Anx→Soc, and Dep→Soc, respectively). The discrete and continuous time models provide an
equivalent fit to the data, panels c and d, when autoregressive effects of the CLPM are constrained
to be between 0 and 1. The models differ, however, in the effect that would be considered the
direct effect (panels (b) and (d)); contrast the circle representing the discrete time direct effect of
Anx → Soc with the continuous line labeled ‘Anx → Soc direct.’

parameter estimates are specific to a single observation interval (e.g., 1 year, as in
the running example).

Whereas the specific results require further investigation, this substantive exam-
ple was intended to contrast discrete and continuous time modeling. These models
began with consideration of ways to model the dynamics of within-variable change,
followed by specification of the dynamics of between-variable change. The possible
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ways of specifying each part are numerous and were limited in this example due
only to the assumption that derivatives beyond velocity were unnecessary (i.e., that
a first-order model would be a sufficient initial step with these data). We discussed
three different ways to consider the between-variable relations: (1) the covariances
between time-invariant random intercepts, (2) coupled stochastic perturbations
(correlated change), and (3) level-velocity relations. The latter are the source of the
relations plotted in Fig. 8.6, which gave an impression of how the effects between
variables may change for different intervals of observation. Moreover, this potential
wealth of information is available from a relatively modest data set, consisting of
only three waves of observation.

8.4 Part III: Implications, Questions, and the Future
of Mediation

Having introduced the idea of continuous time modeling and having seen how a
substantive example differs in this modeling framework relative to a more traditional
approach, we now consider three topics common to mediation.

8.4.1 Direct and Indirect Effects

It would seem that direct and indirect effects should be concepts that are defined
independent of the method or model being used to assess these effects and should
transcend particular methodologies. Returning to Fig. 8.1, the effect from XT−1 to
YT is commonly considered a direct effect, whereas XT−2 to MT−1 to YT is an
indirect effect of X on Y .

Figure 8.2 calls into question this interpretation, however, as between T − 1
and T , there are ongoing transactions between the variables. The consequence is
that from the continuous time perspective, the purported direct effect in Fig. 8.1
actually represents a summation of both direct and indirect effects. Figure 8.6 from
the substantive example represents the effects expected from the continuous time
model for a variety of intervals; CLPM typically provides us only a single vertical
slice of Fig. 8.6, unless a researcher fits the CLPM for several differing intervals.
The line in this figure labeled “Anx→Soc Total” represents the results produced
by the CLPM, which in discrete time models would be labeled the direct effect
(Deboeck and Preacher 2015). From a continuous time perspective, however, the
discrete time interpretation of direct and indirect effects is fundamentally flawed,
as the discrete time direct effect is actually a blending of direct and indirect
effects.

This blending of direct and indirect effects may be better understood using the
diagraming techniques in Part I and tracing rules. In Fig. 8.7, we can take the
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Fig. 8.7 The direct effect in the CLPM (panel (a)) bears an interpretation different from a direct
effect in a continuous time perspective. The continuous time perspective can be understood by
inserting a set of latent variables between observations (panel (b)). The paths in panel (c) represent
the paths one would combine when using tracing rules on panel (b) to solve for the direct effect in
panel (a). Thus, from a continuous time perspective, the direct effect in the CLPM is a combination
of both direct and indirect effects

CLPM (panel a) and insert an unobserved set of latent variables between the two
observations (panel b). Using Fig. 8.7 panel b, tracing rules can be applied to solve
for the direct effect of XT−1 on YT , depicted in Fig. 8.7 panel a. If such a latent
observation exists, the purported direct effect in Fig. 8.7 panel a will consist of
the paths depicted in Fig. 8.7 panel c, which include indirect effects through the
occasions at whichX,M , and Y are not observed. Thus, the direct effect in CLPMs,
from the continuous time perspective, is a combination of direct and indirect effects;
this will lead the CLPM estimate of the indirect effect to be attenuated. The
continuous time model can be conceptualized as including an infinite number of
these additional latent variables, such that the moment-to-moment accumulation of
the direct effect can be separated from the indirect effect.

For the continuous time model, the equivalents of direct and indirect effects are
represented in the paths from level to velocity. The equivalent for the direct path is
the X → dY/dt relation, and the equivalent for the indirect path is the combination
of the X → dM/dt and M → dY/dt paths. The substantive example highlights
that, based on the Between2 model, there was no instantaneous effect of levels of
anxiety on changes in social competence, which could be considered the lack of a
significant direct effect. The use of the term “direct effect,” however, perhaps should
be discouraged. Although the parallel to direct and indirect effects seems close,
these effects are dependent on the differential equation model that is selected. To the
degree that a model is approximately correct, labeling the level-velocity relations
“direct” and “indirect” effects may be useful, but clearly, the opposite is true for
poorly specified models. Thus, the degree to which continuous time models capture
these effects depends, like models of all real-world processes, on unknowable
assumptions that can be explored through the testing of competing models.

Taking both discrete and continuous time perspectives into consideration pro-
vides no clear resolution for how to disentangle direct and indirect effects in a
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particular model. The continuous time perspective suggests that the labeling of
direct and indirect effects in the CLPM is flawed, but the use of the terms for
continuous time parameters requires a strong assumption about the degree to which
the correct model has been selected. Rather, the dual perspectives highlight the need
for definitions of these terms that supersede any particular model and that applying
the label in the context of a particular model may be as inaccurate as when a label
is applied to a latent variable. Concepts of “direct effects” and “indirect effects”
are necessarily conceptual abstractions, representing all possible (linear, nonlinear,
accelerating, etc.) effects of a particular sort. Given that any estimable model will
likely neglect some aspects of these effects, they all run the risk of inaccurately
estimating these effects to some degree or another.

8.4.2 Complete Mediation

The term “complete mediation,” as used in discrete time models, has questionable
value regardless of whether it is used to describe the importance of the effect or to
suggest the lack of room for additional mediators (Preacher and Kelley 2011). Many
desirable properties of effect size measures are not conveyed by the use of terms
like “complete” and “partial.” The continuous time perspective offers yet another
set of reasons why these terms are of dubious value. Focusing on the level-velocity
relations, the substantive example presents two ways of thinking about the relations
between variables. One pertains to the continuous time parameters that are estimated
and tested in Table 8.1. The second pertains to the effects that are expected to be
observed for specific observation intervals, as shown in Fig. 8.6.

First, the continuous time parameters that are estimated and tested offer one natu-
ral way to conceptualize complete mediation. One could examine the level-velocity
relation between anxiety and social competence with and without depression and
demonstrate whether the relation is completely mediated by depression. Is it
sufficient, however, for the level-velocity relations to be equal to zero to demonstrate
complete mediation, or would all possible relations have to be equal to zero?
Would the level→level, level→velocity, and velocity→velocity relations all have
to demonstrate the desired pattern to be considered complete mediation, or would it
be sufficient for only some of these to equal zero?

For a model to meet the requirements of mediation, it seems necessary for one or
more derivatives representing change to be incorporated into a model (e.g., velocity,
acceleration, etc.). If, for instance, the level→velocity and velocity→velocity
relations were equal to zero, this would indicate a lack of related change scores
but could still allow for correlated levels of the variables. While this may seem
a relatively plausible task, a Pandora’s box of possible change relations exists, as
higher-order derivatives could be considered. This is not to say that models with
higher-order derivatives lack utility, are beyond substantive theory, or cannot be fit to
data (Deboeck et al. 2015). However, the existence of higher-order derivative models
presents a problem for creating a definition of complete mediation that transcends
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a specific model. How many higher-order derivatives must be considered before
mediation can be considered complete? Demonstrating a lack of all change relations
in order to demonstrate complete mediation may be a task worthy of Sisyphus.

Second, the effects that are expected for a variety of observation intervals (as
in Fig. 8.6) also raise problems for the definition of complete mediation. Although
not the case in our substantive example, with relatively simple continuous time
models, the relation between the same variables can produce effects that are negative
for some intervals, indistinguishable from zero for other intervals, and positive
for yet other intervals. It seems undesirable for the term complete mediation to
apply only to specific observation intervals. It can be anticipated that for many
possible differential equation models, at very short and very long lags, the total
(i.e., unmediated) effect of X on Y will almost certainly be indistinguishable from
zero, as in one case, not enough time is allowed for a detectable effect to accumulate
and, in the other, so much time occurs that the influence of many other factors would
contribute enough additional variance to render the effect undetectable. One could
judiciously apply “complete mediation” only when the direct effect becomes zero,
after inclusion of the mediator, for all possible lags. But this is not how the concept
is commonly employed. Applications of the CLPM typically produce relations for
only a single lag, rather than all (or even many) possible lags. Even then, such
judicious application does not address the issue raised in the prior paragraph; in
combination, the issues raised by the continuous time perspective suggest that
“complete mediation” is a widely misapplied term in the current application of
CLPMs.

8.4.3 What Is a Mediation Model?

Since Baron and Kenny’s (1986) classic paper, mediation has often been concep-
tualized as a single model applied to cross-sectional data. The mediation literature
is moving from cross-sectional data toward emphasizing the need for longitudinal
data. Articles concerning longitudinal mediation often replace the single Baron and
Kenny mediation model with another relatively limited set of models, variations of
the CLPM. In the present chapter, the substantive example began by discussing the
need to consider modeling dynamic temporal variations in the relations between
variables. Some variation of models was considered, including combinations of
both deterministic and stochastic model components, as well as multiple ways in
which observed variables could be related. The present chapter explored a relatively
small subset of models, running the risk of replacing one narrow set of models with
another. The full set of continuous and discrete time models that could be specified
is much wider than has been expressed here. Naturally, models with higher-order
lags could be explored in discrete time, and models with higher-order derivatives
could be explored in continuous time. Even with models that incorporate higher-
order relations, however, there would still be differences between the discrete and
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continuous time models paralleling those presented in this chapter with the CLPM
and first-order stochastic differential equation models.

For some variables, models will reveal very small stochastic components, akin
to the developmental trajectories specified by growth curves. For other variables,
models may reveal substantial stochastic components that describe frequent per-
turbations to variables. Although some variables may consist entirely of additive
stochastic perturbations (e.g., a random walk), others may regulate toward some
homeostatic value. Such regulation can take different forms, such as the exponential
decay toward homeostasis of a first-order differential equation or the sinusoidal
curving toward homeostasis of a second-order differential equation. Moreover, these
characteristics may occur around a changing homeostatic value, which could be
described using any number of variations on growth curve models. This barely
begins to outline the possible variations that can be considered.

Between variables, there are similar considerations. Many relations can be
considered, but a first step might be to consider the linear relations between the
first 2–3 derivatives of pairs of variables. The first three derivatives of each variable
would constitute the 0th (level, a horizontal line describing a single value over
time), 1st (velocity, straight-line change), and 2nd (acceleration, quadratic curve
change). For a given variable (e.g., Y ), the question could be posed whether it is
the level, velocity, or acceleration of X that results in acceleration (changes in the
rate of change) of Y . In many cases, it may be not only the level of X that is a
predictor of Y but also X’s recent rate of change, or it could be that the rate of
change in Y is changing (Deboeck et al. 2015); one potential practical example
is that acceleration in a child’s externalizing symptomatology may be related not
only to the level of parental marriage problems but also to recent changes in
marriage problems (velocity). Consideration of multiple possible relations between
derivatives of variables is uncharted territory for many domains of research. But
the exploration of these derivative relations would help to nuance what is coupled
when two variables are “related” while also highlighting variables that have merely
correlated levels rather than correlated changes.

8.5 Future Directions

In presenting the reader with both discrete and continuous time perspectives,
models, and results in a book about continuous time modeling, it may appear that
we aim to reignite the often heated debate about whether discrete or continuous time
models are better. The future of mediation analyses, however, is not dependent on
universal agreement about the usage of discrete and continuous time models. Rather,
its future depends to a large extent on the understanding that these processes could
be modeled using different perspectives on time. As highlighted in the discussion of
Part III, the perspective one takes (through the model that is used) has implications
for fundamental concepts in mediation.
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The first fundamental step will be to create more precise, consensual definitions
of mediation concepts that transcend the selection of specific models. For direct
and indirect effects consensual definitions may readily be obtainable, as these
terms are dependent on the variables present in a model and the relations specified
between three or more variables. The direct effect could continue to be defined
as the “causal effects that are not mediated by any other variables in the model”
(Cohen et al. 2003). Building consensus on the definition of complete mediation,
however, may be more challenging and of questionable value, as the term “complete
mediation” refers to something that is not present. If testing for mediation required
only the fitting of a small number of prespecified models, demonstrating evidence
for the nonexistence of an effect would be straightforward; but with an expansive
number of possible models and observation intervals, establishing consensus on
what constitutes reasonable proof for a nonexistent effect seems a quixotic pursuit.

It will also be necessary to develop widespread consensus on what constitutes
a mediation model. Many descriptions of mediation directly state the need for
causal relations between variables. Mathematically, this could be understood as a
requirement that one observe not simply two variables changing in tandem, but one
variable producing change in another variable—that the level of one variable results
in the change in level of another variable, the velocity of one variable results in
the change in velocity of another variable, and so forth. This suggests that, for a
model to be a mediation model, the derivatives of the purported cause should be
related to a higher order of derivative in the variable that is being affected. This
idea is already present in the mediation literature on the CLPM, which highlights
that by regressing a variable on itself (e.g., YT−1 → YT ), the levels of other
variables (e.g., XT , MT ) are logically limited to explaining the variance that is
not stable—that is, the portion of the dependent variable that is changing with
respect to time (Preacher 2015). Both the discrete time and continuous time models
presented in this chapter would qualify as mediation models under this definition.
Models with only single measures of X, M , and Y over time, even if individually
measured at differing times, would not meet this definition as they would be unable
to demonstrate that antecedent variables are related to changes in the consequent
variables.

The second fundamental step is to realize the limitations of the models used to
test mediation. Although it is clear that no model ever fully describes real processes,
researchers rarely consider how well a model captures the ideal definition of a direct
or indirect effect. This chapter has highlighted that different models, perspectives
on time, and observation intervals all affect the simple concept of a direct effect.
From the continuous time perspective, there are many cases in which the CLPM will
overestimate the purported direct effect and return an attenuated indirect effect. This
bias, however, depends on factors such as the rate at which samples are collected
over time. Conversely, continuous time models are predicated on an assumption
about processes that occur when observations are not being made. No doubt there
are conditions which will bias estimates of direct effects for these models. The
limitations of our models go beyond saying that “all models are wrong” (Box 1976).
Even when all necessary variables and the directionality of their relations are known,
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the data and model selected can lead to limitations on the generalizability of the
inference that is made. Inferences are limited to the interval of observations in the
data, and some models (e.g., CLPM) may offer only biased approximations of ideals
such as direct and indirect effects.

The final step is to realize the undiscovered that already exists in our literature
and many, many existing data sets. By adopting both discrete and continuous time
perspectives in this chapter, we show that (1) much of our “mediation” literature
may not actually be supported with “mediation models” because of the lack of
consideration of change, (2) common longitudinal mediation models have offered
estimates of effects that are biased from a continuous time perspective, (3) many
of our estimates are limited to specific observation intervals and do not consider
how these effects may change as a function of observation intervals, and (4) unlike
continuous time models, the CLPM does not define a specific model of change over
time. This is not intended to be discouraging. Instead, we have intended to show that
the understanding of mediation processes is advancing and to highlight the potential
for new ways of understanding old data. The substantive example, and Fig. 8.6 in
particular, highlights the potential for understanding data in a completely novel way.
We hope that file drawers of old data are reexamined using the perspectives offered
in this chapter.

8.6 Conclusion

This chapter was not so much about the time points in our studies when data
are collected. It was more about the in-between time points when data are not
collected. Most longitudinal approaches in the mediation literature are implicitly
based on an assumption of discrete time. This assumption was contrasted with
a perspective in which time is sampled from a continuous set of possible times.
In Parts I and II, a foundation for discussion was presented, primarily aimed at
introducing continuous time concepts and demonstrating a continuous time model
that can be considered a mediation model. Part III presented three questions which
are easily addressed when mediation is considered with cross-sectional data or using
a discrete time model such as the CLPM: What are direct and indirect effects?
What is complete mediation? What is a mediation model? All were intended to be
fundamental and simple enough questions that their answers would involve concepts
that transcend specific modeling approaches. The answers began with difficulty
in labeling parameters from either discrete or continuous time model “direct”
effects. The difficulty continued with confronting the fact that the continuous time
perspective further undermines the use of terms such as “complete” mediation
because of the way relations between variables can vary with the observation
interval. Finally, we raised more questions than answers with respect to “What
is a mediation model,” as mediation analysis can never be thought of as fitting a
particular model or set of models. The possibilities are as varied as the possible
ways in which change can occur. The questions raised in Part III serve as a reminder
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that time is unlike any other variable that is collected, and our perspective is limited
if time is considered only implicitly.
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Chapter 9
Stochastic Differential Equation Models
with Time-Varying Parameters

Meng Chen, Sy-Miin Chow, and Michael D. Hunter

9.1 Introduction

The world we live in is full of complexities, and we as humans are no exception.
Our bodies are composed of trillions of cells, and yet we each function as an
integrated unit. We move, think, learn, socialize, and thrive. Our actions could reflect
a conscious effort, or an emergent reaction to—or interaction with—changes in the
environment (Gottlieb et al. 1996; Newtson 1993; Newtson et al. 1987). In other
words, our minds and bodies are capable of self-organization.

Self-organization is a process through which orderliness emerges from seeming
disorderliness (Bosma and Kunnen 2011; Kelso 1995a; Lewis and Ferrari 2001;
Magnusson and Cairns 1996). For instance, a simple motion of the human body
involves approximately 102 muscles, 103 joints, and 1014 cells, yet the physical
movement of the human body can be characterized by relatively few dimensions
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(Bertenthal 2007; Turvey 1990). Thus, our body organizes complex systems into
simple patterns described by comparatively few elements. Mathematically, the
notion of self-organization may be represented as a process through which a system
transitions through qualitatively distinct patterns through continuous changes in the
parameters that govern the system. One possibility for modeling self-organization
in a dynamic system is to allow critical parameters that lead to disparate dynamics
in the system to show continuous variations over time (e.g., continuous changes
in the angle of an individual’s elbows to allow the individual to lift a heavy
object). Kitagawa (1998) used the term “self-organizing” models to describe models
displaying such properties.

9.1.1 Continuous-Time Models with Time-Varying Parameters
(TVPs) as a Way to Represent Self-Organization and
Multi-Time Scale Processes

Dynamical systems modeling offers a framework for studying processes that
undergo self-organization. The key characteristic of any dynamical system is that
the complex behaviors that the system manifests can be captured with relatively
simple rules or patterns (Nowak and Lewenstein 1994). This line of thinking has
considerable appeal to social and behavioral scientists. In this chapter, we propose
a stochastic differential equation (SDE) modeling framework with time-varying
parameters (TVPs) as a way to capture self-organizational dynamical systems in
continuous time.

Incorporating TVPs into a dynamic model of choice provides one way of
representing self-organization as well as multi-time scale processes in that the
TVPs generally change at distinct time scales from the time scales of other key
variables (i.e., endogenous variables) in the system. The notion of a multi-time
scale dynamic process is by no means novel to researchers in the physical, social,
and behavioral sciences. Indeed, changes happening in the human body can be
captured at multiple levels and across multiple time scales: from neural networks
that fire every few milliseconds to cognitive and behavioral processes that progress
in seconds, to even longer-term processes like personality traits that develop through
the life span. To this end, Newell (1990) proposed a time scale of human actions
that organized topics of interest in the field of psychology into a hierarchy of
levels of analysis (see Table 9.1). According to Newell (1990), the biological band
consists of neural activities, which happen on the scale of milliseconds. In the
cognitive band, cognitive operations—such as recognizing a person approaching
in order to engage in a conversation—happen on the scale of seconds. The next
hierarchy consists of the rational band with tasks such as decision-making, which
span minutes or hours. At the highest level, the social band encompasses social
processes such as interactions with others and forming relationships, which may
unfold over days, weeks, months, or even longer (Bertenthal 2007). Individual and
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Table 9.1 Newell’s table:
time scale of human action

Scale (s) Time units System World (theory)

107 Months Social band

106 Weeks

105 Days

104 Hours Task Rational band

103 10 min Task

102 Minutes Task

101 10 s Unit task Cognitive band

100 1 s Operations

10−1 100 ms Deliberate act

10−2 10 ms Neural circuit Biological band

10−3 1 ms Neuron

10−4 100 μs Organelle

life span development, too, can be conceived as a multi-time scale process that
interweaves more gradual developmental changes and short-term fluctuations or
intraindividual variability (Baltes and Nesselroade 1979; Kelso 1995b; Ram and
Gerstorf 2009)—a process described by Nesselroade (1991) as the warp and woof
of the developmental fabric.

Due in part to the scarcity of data that span multiple bands and methodological
difficulties in integrating multiple processes with distinct time scales, applications of
dynamical systems concepts in the behavioral sciences have hitherto been limited to
the representation of phenomena and activities within a particular band in Newell’s
table (see, e.g., Vallacher and Nowak 1994). Data availability, however, is no longer
an insurmountable hurdle. The past decade has evidenced an increased popularity
of studies aimed at collecting ecological momentary assessments. In these studies,
participants are measured in real time in their natural environment and often for
many repeated occasions (Shiffman et al. 2008). This, along with advances in data
collection technology such as wearable assessment tools and smartphone-based
surveys, affords renewed opportunities for modeling multi-time scale processes as
they unfold in continuous time.

In continuous-time models, time is denoted by real numbers, as opposed to inte-
gers. Although conceptualizing and representing dynamic phenomena in discrete
time has many practical advantages from a computational standpoint, modeling a
dynamical process in continuous time offers several other advantages (Molenaar
and Newell 2003; Oud and Singer 2008; Voelkle and Oud 2013). One of these
advantages is that a continuous representation of time mirrors the phenomena of
interest: time and human behaviors that unfold in time are continuous in nature. That
is, even though empirical measurements of human dynamics are always observed at
discrete time points, human behaviors do not cease to exist between successive mea-
surements. Changes are unfolding at any particular time point even when observed
data may not be available at those time points. Another important advantage of
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continuous-time modeling is that it can readily accommodate irregularly spaced
observations (Chow et al. 2016; Oud 2007b; Voelkle and Oud 2013).

Extant applications involving models with TVPs have been restricted to for-
mulation in discrete time. Examples of models with TVPs in the discrete-time
modeling framework include time-varying autoregressive moving average model
(Bringmann et al. 2017; Tarvainen et al. 2006; Weiss 1985), the local linear trend
model (Harvey 2001), stochastic regression model (Pagan 1980), time-varying
cyclic models (Chow et al. 2009), and dynamic factor analysis models with TVPs
(Chow et al. 2011; Del Negro and Otrok 2008; Molenaar 1994; Molenaar et al.
2009; Stock and Watson 2008). In the continuous-time realm, Oud and Jansen
(2000) illustrated possibilities of incorporating TVPs into continuous-time models
formulated as structural equation models. However, the TVPs are constrained to
show deterministic (i.e., predictable), piecewise functions of time, as opposed to
stochastic changes with uncertainties, as assumed in the present chapter. Overall,
work for representing TVPs in continuous time remains scarce.

In sum, our work thus extends previous work on dynamical systems modeling in
a number of ways. First, we extend the damped oscillator model—a benchmark
dynamical systems model of human behaviors with time-invariant parameters
(Boker and Graham 1998; Oud 2007a)—by allowing the parameters to be time-
varying. Second, we propose and discuss several approximation functions that can
be used to represent the dynamics of TVPs even when their underlying change
mechanisms are unknown. Third, we present a continuous-time framework and
provide several illustrative examples of how TVPs may be represented in continuous
time. Fourth, we present a set of algorithms based on the continuous-discrete
Kalman filter (Bar-Shalom et al. 2001; Chow et al. 2017; Kulikov and Kulikova
2014; Kulikova and Kulikov 2014) that allows the simultaneous estimation of
the dynamics of a system and all associated TVPs and time-invariant parameters.
Finally, we illustrate how our proposed models can be fitted using a statistical
package, dynr (Dynamic Modeling in R; Ou et al. 2016, 2017), in R.

The remainder of this chapter is organized as follows. We begin by describing
the SDE framework on which our proposed continuous-time models with TVPs are
based. We then present several time-varying extensions of the stochastic damped
linear oscillation model (Oud and Singer 2008; Voelkle and Oud 2013), with some
hypothetical scenarios of why and how TVPs may be used to capture multi-time
scale oscillatory processes in continuous time. Illustrative simulation results are
then used to highlight the importance of incorporating TVPs and the utility of the
proposed approach. We then present results from a formal Monte Carlo simulation
study in which the performance of the proposed estimation approach is examined
in further detail and the usefulness of information criterion measures such as the
Bayesian information criterion (Schwarz 1978) and the Akaike information criterion
(Akaike 1973) as model selection tools in models with TVPs is investigated. Finally,
we include a brief illustration of the code for specifying the proposed TVP models
in dynr.
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9.2 A Stochastic Differential Equation Framework

Differential equation models capture a system’s change processes in terms of rates
of change involving variables and their derivatives. Our hypothesized system of
SDEs is assumed to be in the general form of:

dηi (t) = f
(
ηi (t), t, xi (t)

)
dt + GdWi (t). (9.1)

This system is represented by a deterministic part, f
(
ηi (t), t, x i (t)

)
dt , and a

stochastic part, GdW(t), where i is the smallest independent unit of analysis (e.g.,
person, dyad; i = 1, . . ., n), t is an index for time that can take on any real number,
ηi is a vector of latent system variables, xi represents the set of covariates that
may influence the system, and f is a vector of drift functions that governs the
deterministic (i.e., predictable given perfect knowledge of the previous states of
the system and the true parameters) portion of the changes in the system variables.
Without the stochastic part, the system reduces to an ordinary differential equation
(ODE) model. The term Wi denotes a vector of standard Wiener processes (referred
to herein as the process noise) whose differentials, dWi (t), over the time interval,
dt , are Gaussian distributed and are characterized by variances that increase linearly
with increasing dt . G is a diffusion matrix containing matrix square root of the
process noise variance-covariance matrix. Thus, the SDE model in (9.1) can be used
to represent latent processes that develop and fluctuate over time.

The initial conditions (ICs) for the SDEs are defined explicitly to be the latent
variables at an initial time point, t1 (e.g., the first observed time point), denoted as
ηi (ti,1) and are specified to be normally distributed with means μη1

and covariance
matrix, Ση1

. The time interval between time ti,j and ti,j+1 is denoted by Δti,j =
ti,j+1 − ti,j .

The corresponding measurement model, which specifies the relations between
the underlying latent processes and their observed manifestations measured at
discrete and person-specific occasion j , ti,j (j = 1, . . ., Ti ; i = 1, . . ., n) is
expressed as:

yi (ti,j ) = τ + Ληi (ti,j )+ Axi (ti,j )+ εi (ti,j )

εi (ti,j ) ∼ N (0,R) , (9.2)

where τ is a vector of intercepts, Λ is the factor loading matrix, A is the regression
matrix associated with the vector of covariates xi , and εi (ti,j ) is a vector of Gaussian
distributed measurement errors.

Although both follow a Gaussian distribution, the process noise in W is different
from the measurement noise in ε in several important ways. As noted, the former
contains “dynamical” or “process” noise, and it captures stochastic shocks to
the system variables that continue to influence the underlying states of these
variables over time. The latter comprises “measurement” errors whose influences
are restricted to one and only one measurement occasion, namely, at time ti,j . As
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such, the process noise—but not the measurement noise—helps capture additional
sources of uncertainties that affect the latent dynamics of the system at the current
as well as future time points. In the study of individual development and more
broadly in behavioral sciences as a whole, it is unreasonable to assume that we
have collected information about all the factors that influence a certain dynamic
process. Referring back to Table 9.1, any change on any level of analysis is subjected
to the influence of all the other levels in the system. The additional process noise
component under the SDE framework, compared to the ODE framework, allows for
the possibility of incorporating the influence of other unknown and unmodeled (by
the deterministic drift functions, f (.)) sources of disturbances to the system.

9.3 Estimation Procedures

The proposed SDE models with TVPs were fitted using a set of algorithms based
on the continuous-discrete extended Kalman filter (CDEKF; Kulikov and Kulikova
2014) available in dynr (Chow et al. 2017; Ou et al. 2017). The model fitting pro-
cedure can be summarized into three steps: a filtering step, a parameter estimation
step, and a smoothing step. Estimates of ηi (ti,j ) obtained with observations from
up to time ti,j−1, up to time ti,j , and the entire time string ti,T are referred to as the
predicted, filtered, and smoothed latent variable estimates. We define the following

terms: (1) Yi (ti,j )
Δ= {yi (ti,1). . . . , yi (ti,j )}, all observed measurements from ti,1,

. . . , up to ti,j ; (2) ηi (ti,j |ti,j−1)
Δ= E(ηi (ti,j )|Yi (ti,j−1)), the predicted means

of the latent variables at time ti,j conditional on Yi (ti,j−1); (3) Pi (ti,j |ti,j−1)
Δ=

Cov[ηi (ti,j )|Yi (ti,j−1)], the covariance matrix of the latent variables at time ti,j

conditional on Yi (ti,j−1); (4) ηi (ti,j |ti,j ) Δ= E(ηi (ti,j )|Yi (ti,j )), the filtered mean

of the latent variables at time ti,j conditional on Yi (ti,j ); and (5) Pi (ti,j |ti,j ) Δ=
Cov[ηi (ti,j )|Yi (ti,j )], filtered covariance matrix of the latent variables at time ti,j
conditional on Yi (ti,j ). If the entire time series of observations is available prior
to model fitting, as is often the case in the study of human behavior, then all
observations from each time string across all time points, Yi (Ti), can be used to
perform smoothing on the latent variable estimates to yield estimates of the means
and covariance matrix of ηi (ti,j ) conditional on all observations in Yi (Ti), namely,
E(ηi (ti,j )|Yi (Ti)) and Pi (ti,j |Ti) = Cov[ηi (ti,j )|Yi (Ti)].
Step 1. Filtering The CDEKF is a nonlinear, continuous-time counterpart of the
Kalman filter which assumes that the underlying dynamic processes unfold in
continuous time but the associated empirical measurements are taken at discrete
time points, and are used to estimate the latent variables η in Eqs. (9.1)–(9.2). For
this step, the parameter values are assumed to be known and fixed (θ̂ ). Parameter
estimation for θ through optimizing a log-likelihood function is described in Step
2. Following the general procedure of the Kalman filter, the CDEKF involves a
series of prediction steps and correction steps over all subjects and time points to



9 Stochastic Differential Equation Models with Time-Varying Parameters 211

yield filtered estimates ηi (ti,j |ti,j ) and Pi (ti,j |ti,j ). Unlike the traditional prediction
step in the discrete-time extended Kalman filter (EKF), the first step in the CDEKF
integrates the SDE model from time ti,j−1 to the next measured time ti,j by means
of numerical integration, which in dynr, the specific R software package used for
model estimation in the present chapter, is done with a fourth-order Runge–Kutta
method. This is an approximation process in which the predicted means of the latent
variables of interest in continuous time are obtained by “interpolating” changes at
several intermediate, discrete, and equally spaced time points. That is, to deduce the
changes that occur from time ti,j−1 to the next measured time at ti,j , interpolations
(i.e., or intermediate values of the latent variables) are obtained at four equally
spaced time intervals and then smoothing over the changes that occur over these
four time intervals (Chow et al. 2007). This process yields numerical solutions to
the following ODEs, with ηi (ti,j−1|ti,j−1) and Pi (ti,j−1|ti,j−1) as the respective
initial conditions:

d η̂i (t)

dt
= f

(
η̂i (t), t, x i (t)

)
, (9.3)

dPi (t)
dt

= F(t, η̂i (t))Pi (t)+ Pi (t)F(t, η̂i (t))
� + Q. (9.4)

Here η̂i (t) is the vector of predicted latent variables for subject i at time t ; Pi (t)
is the covariance matrix of prediction errors on the latent variables at time t ,
Cov[ηi (t) − η̂i (t)]. F(t, η̂i (t)) is the Jacobian matrix that consists of first-order
partial derivatives of f with respect to each element of the latent variable vector,
ηi (t), evaluated at ηi (ti,j−1|ti,j−1), and Q = GG�.

The correction step follows the equations below:

vi (ti,j ) = yi (ti,j )−
(
τ + Ληi (ti,j |ti,j−1)+ Ax(ti,j )

)
, (9.5)

Vi (ti,j ) = ΛPi (ti,j |ti,j−1)Λ
� + R, (9.6)

ηi (ti,j |ti,j ) = ηi (ti,j |ti,j−1)+ K(ti,j )vi (ti,j ), (9.7)

Pi (ti,j |ti,j ) = Pi (ti,j |ti,j−1)− K(ti,j )ΛPi (ti,j |ti,j−1), (9.8)

where vi (ti,j ) is a vector of prediction errors and Vi (ti,j ) is the prediction error
covariance matrix, and K(ti,j ) = Pi (ti,j |ti,j−1)Λ

�[Vi (ti,j )]−1 is the Kalman gain
function. The latent variable estimates are updated after the correction step, yielding
ηi (ti,j |ti,j ) and Pi (ti,j |ti,j ). Note that the filtering step as described here involves
using the CDEKF for latent variable estimation purposes. As such, the EKF is
used in the correction step described in Eqs. (9.5)–(9.8). Other alternatives that do
not require the computations of Jacobian matrices, such as the unscented Kalman
filter, may also be used (Chow et al. 2007; Julier and Uhlmann 2004; Julier et al.
1995; Wan and Van der Merwe 2001). However, these alternative derivative-free
approaches still involve appropriate selection of tuning parameters to optimize
model estimation, which may or may not be intuitive to some researchers.
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Step 2. Parameter Estimation Parameter estimation is performed by maximizing
a log-likelihood function known as the prediction error decomposition (PED)
function, computed using vi (ti,j ) and Vi (ti,j ) as (Chow et al. 2007; Schweppe
1965):

log[f (Y; θ)] = −1

2

n∑

i=1

Ti∑

j=1

[
p log(2π)+ log |Vi (ti,j )|

+ vi (ti,j )
�Vi (ti,j )−1vi (ti,j )

]
(9.9)

with an optimization procedure of choice, where p is the number of observed
variables. Standard errors associated with θ are computed from the observed
information matrix, obtained by computing the negative numerical Hessian matrix
of log[f (Y|θ)], a matrix of numerical second derivatives of log[f (Y|θ)] with
respective to the parameters. Wald-type confidence intervals for parameter estimates
based on the standard errors an also be obtained.

Information criteria measures such as the AIC (Akaike 1973) and BIC (Schwarz
1978) can then be computed using log[f (Y|θ)] as (see Harvey 2001, p. 80):

AIC = −2 log[f (Y|θ)] + 2q

BIC = −2 log[f (Y|θ)] + q log

(
n∑

i

Ti

)

,

where q is the number of time-invariant parameters in a model.

Step 3. Smoothing Kalman filtering occurs recursively forward in time by pre-
dicting and updating estimates. However, doing so only produces conditional
latent variable estimates at a particular time point, ti,j , and their corresponding
covariance matrix, based on observed information up to time ti,j . Since data are
usually completely collected in social and behavioral sciences before analyses,
these filtered estimates can be further refined using information from the entire
observed time series, namely, {yi (ti,j ); j = 1, . . . , Ti}. The fixed interval smoother,
in particular, occurs recursively backward in time by incorporating all available
information from person i up to time Ti into the updated estimates. Using
ηi (ti,j |ti,j−1),Pi (ti,j |ti,j−1), ηi (ti,j |ti,j ), and Pi (ti,j |ti,j ), the smoothing procedure
can be implemented for ti,j = Ti − 1, . . . 1 and i = 1, . . . n as (Bar-Shalom et al.
2001; Chow et al. 2017; Harvey 2001; Shumway and Stoffer 2000):

ηi (ti,j |Ti) = ηi (ti,j |ti,j )+ P̃i (ti,j )(ηi (ti,j+1|Ti)− ηi (ti,j+1|ti,j )),
Pi (ti,j |Ti) = Pi (ti,j |ti,j )+ P̃i (ti,j )(Pi (ti,j+1|Ti)− Pi (ti,j+1|ti,j ))̃Pi (ti,j ),

(9.10)
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where P̃i (ti,j )
Δ= Pi (ti,j |ti,j )F(t, η̂i (t))�[Pi (ti,j+1|ti,j )]−1. Examination of the

smoothed latent variable estimates provides some indication of the dynamics of the
latent variables. This step is particularly relevant to the explorations of TVPs, as the
TVPs are now incorporated into the dynamic models as latent variables (as will be
discussed in the next section), and researchers may not always have fully informed
conceptualizations of how exactly the TVPs vary over time.

9.4 Motivating Model

One of the better-known and widely applied differential equation models in
psychology is the damped linear oscillator model, a second-order ODE expressed
as (Boker and Graham 1998):

d2η1i (t)

dt2
= ω[η1i (t)− μ] + ζ

dη1i(t)

dt
, (9.11)

where η1i (t) denotes a univariate, latent process of interest for unit i at any arbitrary

time t , dη1i(t )
dt

denotes the process’s first derivative at time t , and d2η1i (t )

dt2
denotes

the second derivative at time t . The parameter ω governs the frequency of the
oscillations, μ is the set point around which the system oscillates (usually set to
0), and ζ is a damping (when ζ < 0) or amplification (when ζ > 0) parameter
that governs changes in the magnitude of the oscillations over time. The oscillatory
properties of this model make it suitable for representing intraindividual variability,
where the changes are described as “more or less reversible” (Nesselroade 1991,
p.215). The damped oscillator model has been used to represent dynamic processes
such as emotions (Chow et al. 2005; Deboeck et al. 2008), self-regulation in
adolescence substance use (Boker and Graham 1998), and mood regulation in recent
widows (Bisconti et al. 2004), among many other examples. In the illustrative
examples in this chapter, we consider SDE variations of the damped linear oscillator
model with TVPs. The TVPs considered include both the set point parameter,μ, and
the damping parameter, ζ .

Every higher-order ODE (i.e., involving higher-order derivatives than just the
first derivatives) can be expressed as a system of first-order ODEs. As a special
case, the damped oscillator model can also be expressed as a system of two first-
order ODEs. In particular, the SDE form of Eq. (9.11) is typically expressed as two
first-order differential equations involving ηi (t) = [

η1i (t) η2i (t)
]′

in Itô form as:

dη1i (t) = η2i (t)dt

dη2i (t) =
(

ω
(
η1i (t)− μ

)
+ ζη2i (t)

)

dt + σpdW(t)
(9.12)
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where dη1i is the first-order differential and dη2i is the second-order differential
of the scalar latent process η1 associated with unit i. dW(t) is the differential of a
univariate standard Wiener process (i.e., the process noise component in this model),
and σp is the standard deviation of the process noise. This way of expressing higher-
order ODEs as multiple first-order ODEs is a standard practice in ODE modeling
to aid expression of higher-order ODEs in first-order vector form. This formulation
also is in accordance with the model specification implemented in dynr.

The dynamic functions in (9.12) are assumed in the present context to be
identified using a single manifest indicator measured at discrete but possibly
irregularly spaced time points as:

yi(ti,j ) = η1i (ti,j )+ εi(ti,j ),

εi (ti,j ) ∼ N
(

0, σ 2
ε

)
, (9.13)

namely, a univariate special case of Eq. (9.2) where τ is zero and Λ contains
only a single scalar loading fixed at unity on the latent process η1 with the other
loadings fixed at zero, and there are no covariates. Here, yi(ti,j ) is the observed
manifest indicator for unit i at discrete time, ti,j ; and εi(ti,j ) is the corresponding
measurement error with variance σ 2

ε .
To model the dynamics of the TVPs, we treat the TVPs as unknown latent

variables to be inserted into ηi (t) and estimated with other latent variables in the
system. Doing so would, in most cases, entail SDEs that are nonlinear because
they involve the interaction between at least two latent variables. For instance, in
Illustrative Example 3, we consider the scenario of time-varying damping/amplifi-
cation parameter ζ(t). In such a scenario, even when the true model is known and is
fitted directly to the data, the latent variable vector now includes a TVP as ηi (t) =[
η1i (t) η2i (t) ζi (t)

]′
, and Λ becomes

[
1 0 0

]
. Consequently, the revised Eq. (9.12),

when written in the form of Eq. (9.1), now involves the interaction between two
latent variables, ζi(t) and η2i (t). Thus, the dynamic model of interest now becomes
nonlinear in ηi (t), even though the damped oscillator function, conditional on ζi(t),
is linear in form. The CDEKF algorithm as implemented in dynr, the R package
used for model fitting purposes in the present study, can readily handle this form of
nonlinearity.

The CDEKF algorithm can also handle any linear or nonlinear multivariate
latent processes as alternatives to the damped oscillator model shown in Eqs. (9.11)
and (9.12), provided that the functions are at least first-order differentiable with
respect to the latent variables and are characterized by Gaussian-distributed process
noises. These latent processes, in turn, are allowed to be apprehended through
multiple observed indicators, but the measurement functions have to be linear, with
Gaussian-distributed measurement errors. The fact that the measurement model is
linear with Gaussian-distributed measurement noise also renders the one-step-ahead
prediction errors, vi (ti,j ), Gaussian-distributed conditional on values of ηi (ti,j ).
Thus, estimation of the remaining time-invariant parameters in the extended damped
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linear oscillator model with TVPs can be performed by optimizing the prediction
error decomposition function in (9.9).

9.5 Approximation Functions for TVPs

Across many scientific disciplines, it is often impossible to know the true underlying
model for the phenomenon of interest (MacCallum 2003). Devising models for
TVPs is even more challenging due to the scarcity of knowledge from the literature
on plausible forms of their functional dynamics. Here we propose two flexible
models as approximations for any TVP. The approximation functions considered
include an Ornstein–Uhlenbeck (O-U) model and a stochastic noise model.

The O-U process, which is represented by a first-order SDE (Eq. (9.14)) maybe
viewed as a continuous-time counterpart of a first-order autoregressive model in
discrete-time modeling, and has been utilized to represent processes such as emotion
regulation (Oravecz et al. 2009), which have the tendency to show exponential return
to an equilibrium or “home base” after they are moved away from it by some random
shocks or process disturbances. The O-U model for a TVP θ(t) is expressed as

dθi(t) = β(θi(t)− θ0ou)dt + σoudW(t) (9.14)

where θ0ou is the equilibrium or attractor of the O-U process; β, constrained to be
greater than or equal to 0, is the velocity that the process returns to θ0ou ; and σou is
the diffusion parameter that governs the standard deviation of the random process
noise.

Another approximation function considered in the present chapter is the stochas-
tic noise model, written as:

dθi(t) = σsdW(t). (9.15)

In this model, no deterministic drift function is included. Instead, any changes in θ
are posited to be driven completely by the random shocks captured in dW(t). Thus,
this function may be suited for capturing processes that show ongoing, noise-like
shifts without the tendency to return to an equilibrium.

Both the O-U model and the stochastic noise model have specialized features
that render them well-suited for representing change phenomena with particular
characteristics. First, both functions are relatively simple. Second, both are built
on the notion that the true value of the TVP, though unknown and possibly varying
over time, is likely to vary much more gradually than the other latent processes
in ηi (t). In particular, they both include as a special case the possibility of a
completely stable, time-invariant parameter when there is no process noise in the
system (namely, when σou = σs = 0). In the O-U model, if θi(t) is a time-invariant
parameter, its value may be set to equal its initial condition (IC) value, θi(ti,1),
with θ0ou , β, σou, and the corresponding variance for θi(ti,1) in the IC covariance
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matrix, Ση1 , all set to 0. Consequently, θ would just be a freely estimated (time-
invariant) parameter, denoted herein as μθ1 . μθ1 is one of the entries in the IC latent
variable vector, μη1

, and its value is estimated by optimizing the prediction error
decomposition function. Other less restrictive special cases of the O-U process with
β > 0 allow for transient deviations from an otherwise stable value as captured
by θ0ou . In a similar vein, a time-invariant parameter would be represented in the
stochastic noise model by the value of μθ1 in μη1

, with σs and the corresponding IC
variance of θi(ti,1) in Ση1 set to 0.

Despite the fact that the O-U model and the stochastic noise model are likely
imperfect or misspecified functions of the true change mechanisms of the TVPs,
the smoothing procedures summarized in Eq. (9.10) can still be used to provide
smoothed estimates of the TVPs conditional on the observed data. Visual inspection
of such smoothed estimates can, in turn, provide insights into the nature and over-
time dynamics of the TVPs, as we show in the context of three illustrative examples.

9.6 Model Fitting via dynr

The model fitting was done in R (R Core Team 2016) through the package dynr
(Ou et al. 2016). The dynr package provides an interface between R and the C
language, where the models can be specified in R and the computations are carried
out in C. The following components need to be provided for successful model fitting:
the measurement model (with prep.measurement()), the measurement and
dynamic noise components (with prep.noise()), the initial values of the latent
state variables and their covariance matrix (with prep.initial()), and the
dynamic model (with prep.formulaDynamics()). Once all these components
are specified, they are combined into a dynr model object with dynr.model()
for parameter estimation with this estimation done using the dynr.cook()
function. There are also options to include transformation functions for parameters
with restrictive ranges and upper/lower bounds of plausible estimated values. Once
the estimation and smoothing procedures are complete, summary statistics can be
extracted using the summary() command. It is also possible to extract parameter
estimates using coef() and AIC or BIC measures using AIC() or BIC(). A
sample script for one of the illustrative examples is included in the supplementary
materials.
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9.7 Illustrative Examples

9.7.1 Example 1: Stagewise Shifts in Set Point

For the first example, let us consider a variation of the damped oscillator model
with distinct stagelike shifts in the set point parameter μ as the true data generation
model. That is, μ in Eq. (9.11) or (9.12) is now expressed as μ(t), and its value
is hypothesized to undergo two stagewise shifts. Denoting the first stage as the
“reference stage,” we consider a three-stage model for μ(t) as:

μi(t) = μ1 + c2(t)μ2 + c3(t)μ3 (9.16)

where c2(t) and c3(t) are time-dependent and binary indicators of stages 2 and 3
of the TVP values, while μ2 and μ3 are the differences in equilibria of stages 2
and 3 compared to that of stage 1 (μ1). If the stage indicators, c2(t) and c3(t), are
known and observed with perfect knowledge, then modeling of the time-varying set
point, μ(t), is relatively trivial. However, such knowledge is not always available,
and other approximation functions such as the O-U model and the stochastic noise
model may have to be used.

Figure 9.1 illustrates the proposed continuous-time process with stagewise
changes in set points around which the system of interest oscillates. One example
of such a process would be mood swings in individuals with bipolar I or II disorder.
Bipolar disorder (I or II) is a severe chronic disorder that is characterized by
clear shifts in mood and energy levels between mood episodes, namely, alternating
episodes of depression and (hypo)mania. During a depressive episode, an individual
would feel sad and unmotivated and have low levels of energy. During a manic

Fig. 9.1 Simulated observed and latent trajectory for one hypothetical subject generated using the
damped oscillator model with stagewise shifts in set point considered in illustrative example 1
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episode, the individual would feel elevated and excited and have high levels of
energy (The National Institute of Mental Health 2016). Thus, on the episodic
level, there is a sharp, stagewise change in mood (set point); within each episode,
however, the individual’s mood would fluctuate from moment to moment (or on
an hourly or daily basis) around a set point as a result of environmental stimuli or
daily events (Larson et al. 1990; Silk et al. 2011). This process, as well as other
stagewise processes mentioned in this chapter, has some similarities to regime-
switching models often used to capture psychological effect, in that they both
allow the dynamics within each stage/regime to evolve in a continuous fashion,
but the changes between stages/regimes are considered to be discrete (Chow et al.
2017; Hamaker and Grasman 2012). However, one key difference between the two
approaches is that in modeling stagewise processes as a TVP, one does not need to
model the probability of stage shifts explicitly.

Data were simulated for 10 subjects, each with 241 time points (ti,0 = 0,
ti,T = 30,Δt = ti,j+1 − ti,j = 0.125 for all i ∈ {1, . . . , 10} and j ∈ {1, . . . , 240}),
using the parameter values specified in Table 9.2 under the assumption that the
process of interest follows 3 stages. The sample size configuration was determined
from a range of possible combinations of number of subjects and number of time
points seen in literature of human behavioral dynamics. Of the studies we reviewed,
the number of time points ranged from 50 time points per person in studies involving
multiple participants’ self-reports over time (e.g., Chow et al. 2004; Chow et al.
2005; Krone et al. 2016) to automated measures for assessing “micro-fluctuations”

Table 9.2 Parameter recovery in illustrative example 1 obtained from fitting the true data
generation model and the two approximation models

Estimate (SE)

Parameter
True
values

Stage-wise
model (True) O-U model

Stochastic
noise model

Time invariant
model

μ1 0 −0.038 (0.044) – – –

μ2 6 5.979 (0.043) – – –

μ3 10 10.083 (0.044) – – –

ω −2 −2.000 (0.010) −1.813 (0.030) −1.823 (0.031) −0.845 (0.038)

ζ −0.1 −0.086 (0.007) −0.084 (0.022) −0.088 (0.023) −0.276 (0.043)

σ 2
p 0.25 0.254 (0.046) 1.191 (0.431) 0.514 (0.416) 12.182 (0.706)

σ 2
ε 1 1.031 (0.031) 1.023 (0.031) 1.026 (0.032) 0.987 (0.031)

μ – 5.509 (0.243)

β – – 0.036(0.016) – –

θ0ou – – 14.707 (4.593) – –

σ 2
ou – – 1.166 (0.208) – –

σ 2
s – – – 1.525 (0.233) –

AIC 7195.03 7781.24 7809.23 8376.09

BIC 7235.54 7821.75 7838.17 8405.03

Computational
time

49.74 s 53.75 s 23.25 s 24.31 s
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that unfold over a few hundred (e.g., McCarthy et al. 2015) to over 10,000 time
points per person (e.g., Kim et al. 2013). Table 9.2 summarizes the model fitting
results with the true and approximation models. For illustrative purposes, Table 9.2
also includes results from fitting a stochastic damped oscillator model without
TVPs (Eqs. (9.12)–(9.13)). As expected, fitting the true data generation model
using the CDEKF and associated algorithms led to satisfactory recovery of all
time-invariant parameters. The two approximation models performed reasonably
well in recovering most of the parameters, except for an overestimation of the
process noise variance, σ 2

p . The assumption of time invariance in parameters led
to distorted parameter estimates. For example, the estimated frequency parameter
ω and damping parameter ζ were estimated to be −0.360 and −0.761, which were
far from the true value of −1 and −0.1, and indicated a very damped process with
much slower oscillation compared to the true process. This again highlights the
importance of considering TVPs.

The AIC and BIC both indicated that the true data generation model was
preferred over the other approximation models. The smoothed estimates of the TVP
trajectory for one arbitrary subject based on the three fitted models are plotted in
Fig. 9.2a. It can be seen that the O-U and stochastic noise models, despite being
misspecified compared to the true data generation model, still do a reasonable job in
capturing the overall patterns of change in μ(t). For comparison purposes, the root-
mean-square error (RMSE) obtained from each function for the plotted subject is
also included in Fig. 9.2a. RMSE with respect to a TVP of interest θ(t) is calculated
as follows for modelm and subject i:

RMSEi,m =
√∑Ti

j=1[θ̂m(ti,j )− θ(ti,j )]2

Ti
(9.17)

Fig. 9.2 Estimated TVP trajectories for one hypothetical subject in illustrative example 1: (a)
estimated and true trajectories, with the corresponding RMSEs, (b) biases in the estimated TVP
values in comparison with the true values
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where θ̂m is the estimated process of θ by model m. Figure 9.2b shows the biases
of the TVP estimates, (θ̂ (ti,j )− θ(ti,j )), for that particular subject at each available
time point.

Interestingly, even though the stagewise changes in μ(t) posited in the data
generation model were somewhat distinct from the dynamics postulated in the O-
U model (e.g., dictating a return to the home base), the smoothed estimates from
the O-U model still yielded reasonable approximations of the true trajectory of
μ(t), with only a minor increase in the RMSE in the estimates for μ(t). Inspection
of the parameter estimates from the O-U model in Table 9.2, particularly the
high estimated value of θ0ou , suggested the time-varying μ(t) was estimated as
a process that was trying to approach its equilibrium but was not quite there yet
by the end of the observations. Because both of the approximation models have
stochastic components, the sudden jumps were captured as part of the influence of
the process noise, thus resulting in overestimation of the process noise variance, σ 2

p

(see Table 9.2).

9.7.2 Example 2: Logistic Growth in Set Point

For the second example, we model the set point parameter,μ(t), as a logistic growth
curve:

dμi(t) = rμi(t)
(

1 − bμi(t)
)
dt. (9.18)

A logistic growth curve is used to model population growth with limited resources.
In Eq. (9.18), b is the inverse of the carrying capacity (i.e., maximum population size
allowed by limited resources), and r defines the growth rate. When the population
size is small (i.e., μi(t) close to 0), the per capita growth rate r(1 − bμi(t))

will be close to r . On the other hand, when the population size approaches the
carrying capacity (i.e., μi(t) gets close to 1

b
), the per capita growth slows down,

and eventually the growth rate approaches 0. The logistic growth curve thus takes
an elongated “S” shape and has the following two characteristics. First, the system
develops in a monotonically increasing fashion. That is, the process does not regress.
Second, the system has identifiable upper and lower bounds (Grimm and Ram
2009). Note that the logistic growth model is expressed here in ODE form. An
alternative and arguably more familiar way of formulating Eq. (9.18) is to express
it as the solution to the ODE in Eq. (9.18), as is used in many standard nonlinear
growth curve models (Browne and Du Toit 1991).

An illustration of a damped oscillator whose set point is undergoing logistic
growth is shown in Fig. 9.3. Given their characteristics, the logistic curve can
thus serve as a reasonable model for many learning and life span developmental
processes (Grimm and Ram 2009). Take the scenario of hormonal changes around
puberty as an example. There is a shift of overall level of sex hormones from before
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Fig. 9.3 A simulated set of observed and latent trajectories generated under the scenario of logistic
growth as in example 2

to after the onset of puberty, though the change may unfold in a gradual way during
puberty. On a faster time scale, however, the level of sex hormones has been shown
to fluctuate from moment to moment, as subjected to the influence of factors such
as time of day and day in the menstrual cycle (Liening et al. 2010; Marceau et al.
2011).

Similar to the previous example, data were simulated for 10 subjects, each
with 241 time points (ti,0 = 0, ti,T = 30, Δt = 0.125), using the parameter
values specified in Table 9.3. As in illustrative example 1, both the AIC and BIC
preferred the true model to the other approximation models (see Table 9.3). The
true parameters were recovered very well when the true data generation model was
fitted; the two approximation models also performed reasonably well in recovering
all other parameters except for the process noise variance σ 2

p . The model with
time-invariant parameters performed badly in parameter estimates. The smoothed
estimates of the TVP for one arbitrary subject obtained using the three models
are plotted in Fig. 9.4. Compared to the smoothed estimates obtained from fitting
the true data generation model, the estimated set point trajectories from the two
approximation models still captured the overall sigmoid-shaped changes in μ(t)
reasonably accurately. Greater biases were observed in the TVP estimates obtained
using the approximation models between time t of 0 and 15, during which the set
point showed more pronounced rises in value as dictated by the logistic growth
curve function (see Fig. 9.4). The overall patterns of changes in set point were well
approximated, however, despite these biases in TVP estimation.
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Table 9.3 Parameter recovery in illustrative example 2 obtained from fitting the true data
generation model and the two approximation models

Estimate (SE)

Parameter
True
values

Logistic model
(True) O-U model

Stochastic noise
model

Time invariant
model

ω −1 −1.000 (0.003) −0.995(0.015) −0.984 (0.020) −0.360 (0.037)

ζ −0.1 −0.090 (0.003) −0.129 (0.017) −0.153 (0.024) −0.761 (0.097)

b 0.1 0.100(0.000) – – –

r 0.5 0.500 (0.002) – – –

σ 2
p 0.01 0.006 (0.003) 0.000 (0.000) 0.000 (0.000) 6.493 (0.826)

σ 2
ε 1 1.009 (0.030) 1.008 (0.030) 1.007 (0.030) 0.989 (0.031)

μ – – – – 7.833 (0.436)

β – – 0.053 (0.009) – –

θ0ou – – 13.286 (1.282) – –

σ 2
ou – – 0.334 (0.043) – –

σ 2
s – – – 0.647 (0.081) –

AIC 6910.26 7331.19 7427.44 7729.81

BIC 6944.99 7371.70 7456.37 7758.75

Computational
time

51.46 s 52.44 s 35.40 s 22.82 s

Fig. 9.4 Estimated TVP trajectories for one hypothetical subject in illustrative example 2: (a)
estimated and true trajectories, with the corresponding RMSEs, (b) biases in the estimated TVP
values in comparison with the true values

9.7.3 Example 3: Stagewise Shifts in Damping

In the last example, we allow the damping/amplification parameter, ζ , to undergo
time-varying dynamics as:

ζi(t) = ζ1 + c2ζ2 + c3ζ3 (9.19)
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Fig. 9.5 Simulated observed and latent trajectory for one hypothetical subject generated using
the damped oscillator model with stagewise shifts in ζ as considered in illustrative example 3.
Damping = the damping/amplification parameter, ζi (t)

This model assumes two stagewise shifts in the TVP as in example 1 but in the
damping/amplification as opposed to the set point parameter. c2 and c3 are again
indicators of stage 2 and stage 3. ζ1, ζ2, and ζ3 represent, respectively, the value of
the damping/amplification parameter in stage 1 and differences between the stage
1 value and the values in the two subsequent stages. Figure 9.5 shows a simulated
example of such a case, in which the process goes through an oscillatory phase
with no alterations in amplitude (ζi(t) = 0), followed by a phase with amplification
(ζi(t) > 0), and ending with a phase with damping (ζi(t) < 0).

Allowing the damping/amplification parameter to be time-varying provides a
mathematical model for describing processes that undergo transient periods of
increased/decreased fluctuations or instabilities. Consider again the bipolar disorder
scenario. Some researchers have noted that the transitions between the depressive
and manic episodes are often interspersed with a period of mood instability (Bonsall
et al. 2011). Our proposed model with stagewise shifts in the damping/amplification
parameter, as illustrated in Fig. 9.5, provides one way of representing such a
transitional phase of increased mood instability. We did not allow the set point
parameter to show concurrent stagewise shifts in the present illustration to ease
presentation, but we should add that allowing for stagewise shifts in both the set
point and the ζ parameter would be more consistent with the scenario of bipolar
disorder described here.

For illustration purposes, data were simulated for 10 subjects, each with 241 time
points (ti,0 = 0, ti,T = 30, Δt = 0.125), using the parameter values specified
in Table 9.4. The first stage has no damping effect (ζ1 = 0), followed by an
amplification stage (ζ2 = 0.3) and a damping stage (ζ3 = −0.2). Based on the
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Table 9.4 Parameter recovery in illustrative example 3 obtained from fitting the true data
generation model and the two approximation models

Estimate (SE)

Parameter
True
values

Stage-wise
model (True) O-U model

Stochastic noise
model

Time invariant
model

ζ1 0 0.010 (0.009) – – –

ζ2 0.3 0.327 (0.004) – – –

ζ3 −0.2 −0.175 (0.003) – – –

ω −2 −2.004 (0.003) −1.987 (0.005) −1.984 (0.004) −0.360 (0.037)

σ 2
p 0.25 0.167 (0.036) 0.094 (0.047) 0.104 (0.005) 6.493 (0.826)

σ 2
ε 1 1.030 (0.031) 1.019 (0.032) 1.020 (0.031) 0.989 (0.031)

ζ – – – – −0.761 (0.097)

β – – 0.225 (0.004) – –

θ0ou – – 0.020 (0.044) – –

σ 2
ou – – 0.026 (0.004) – –

σ 2
s – – – 0.019 (0.003) –

AIC 7193.59 7572.04 7596.46 7729.81

BIC 7228.31 7606.76 7619.61 7758.75

Computational
time

33.43 s 31.99 s 17.13 s 24.37 s

model fitting results in Table 9.4, the true parameter values were recovered well
when the correctly specified model was fitted to the data. The O-U model performed
slightly better than the stochastic noise model in yielding smaller parameter biases,
RMSE, AIC, and BIC compared to the stochastic noise model. However, both
approximation models performed better compared to the model without TVPs,
which resulted in very biased parameter estimates.

The smoothed estimates of the TVP trajectory for one arbitrary subject are
shown in Fig. 9.6a. Fitting the correctly specified model recovers the three values
of damping. By comparison, estimates from the two approximation models show
less salient transitions across the stages. Rather, the TVP trajectories as estimated
using the approximation functions convey the shifts from stage 1 to stage 2 more as
a gradually increasing linear trend as opposed to a discrete shift. This set of results,
compared to that from example 1, suggests that time-varying damping/amplification
parameter may be more difficult to estimate than time-varying set point parameter
and requires more replications of complete cycle to reliably distinguish discrete
from other more gradual shifts in parameter value.
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Fig. 9.6 Estimated TVP trajectories for one hypothetical subject in illustrative example 3: (a)
estimated and true trajectories, with the corresponding RMSEs, (b) biases in the estimated TVP
values in comparison with the true values

9.8 Simulation Study

When TVPs are included as additional latent variables in an ODE or SDE model,
the resultant model, more often than not, would become a model that is nonlinear
in the expanded set of latent variables. Even though the performance and features
of the AIC and BIC as model comparison measures are well-known and well-
investigated in the context of other models, their performance as model selection
tools in the presence of such nonlinearity is unknown. In particular, the use of the
CDEKF for handling estimation of the latent variable scores involves the use of
Taylor series expansions in which higher-order terms are truncated. As such, the by-
products used to compute the log-likelihood function—and by extension, the AIC
and the BIC—may also contain truncation errors that may compromise the viability
of using these measures as model comparison measures. A targeted Monte Carlo
(MC) simulation study was performed to investigate the performance of the AIC and
BIC in selecting the true TVP models. In addition, we also sought to evaluate the
performance of the proposed estimation approach under conditions with correctly
specified vs. incorrectly specified models.

We generated data using the oscillator model as shown in Eq. (9.11), with the
corresponding set point (μi(t)) following one of the three possible models: (1)
a logistic growth process (Eq. (9.18)), (2) an O-U process (Eq. (9.14)), and (3)
a stochastic noise process (Eq. (9.15)), each with 500 replications. Within each
replication, data were fitted through each of the three processes to obtain parameter
estimates as well as AIC and BIC. Starting values of parameter estimates were
randomly sampled from distributions of possible parameter values. Boundaries were
set for the parameters with variance parameters constrained within (e−100, e2.5) and
other parameters constrained within (−10, 10), with the exception of θ0ou having an
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upper bound of 20 when the data-generating model follows a logistic curve process
based on inspection of data.

In the case of a model non-convergence, as indicated by nonpositive-definite
Hessian matrix or parameter values at boundary values, another set of starting
values were generated, and the model was reevaluated. If a model did not converge
after five sets of random starting values, that particular replication was classified
as a non-convergent trial. Convergence rates were tallied and reported in the result
tables (Tables 9.5, 9.6, and 9.7). Also reported in the tables are (a) MC mean and
medians of parameter estimates, (b) average SE estimates across MC replications
(aSE), (c) standard deviations of parameter estimates within the MC sample (SD),
(d) average confidence interval estimates across MC replications (aCI),1 (e) MC
sample percentile-based confidence intervals (MCCI), (f) average AIC and BIC
from fitting each model (correctly specified and misspecified), and (g) percentage
of the AIC/BIC successfully distinguishing the true data-generating models (i.e.,
AIC/BIC is the lowest for the true data generation models).

The computations were performed with R version 3.4.0, dynr package ver-
sion 0.1.11-28, and Sim.DiffProc package version 3.7. Results show that all
parameter estimates were recovered satisfactorily when the true data-generating
models were fit. The MC means and medians were very close to the true parameter
values. Both the aCIs and MCCIs included the true parameter values, and aCIs and
MCCIs were similar. When models were misfitted, when the misfitted model was
the O-U or stochastic noise model, the time-invariant dynamic parameters were still
recovered well. However, when the misfitted model was the logistic growth model,
the parameter estimates showed huge biases (Tables 9.6 and 9.7).

The AIC and BIC were mostly reliable in picking the true data-generating models
(lowest AIC and BIC for the true model more than 98% of the time when the
true mechanism was the logistic growth or O-U model). However, when the true
data-generating model followed a stochastic noise process, the AIC (79.58% suc-
cessfully distinguished) behaved less well compared to the BIC (99.1% successfully
distinguished). Further inspection revealed that the AIC showed slightly higher
instances of selecting the O-U model over the stochastic noise model even when
the latter was the true data-generating model (AICs from the stochastic noise model
were lower than those of the logistic growth model for 95.50% of times). These
results were concordant with the AIC’s general tendency to prefer overly complex
models, especially since the stochastic noise process may also be obtained as a
special case of the O-U model when β = 0 (see Eq. (9.14)). The simulation results
from fitting the logistic growth model when the true data-generating model was
the O-U model showed that it is inappropriate to use the logistic growth model
as an approximation model, most likely due to the model’s relatively restrictive

1The current version of dynr outputs Wald-type confidence intervals based on the standard errors
of the (transformed) parameters. Wald-type confidence intervals are known to be inaccurate for
variance parameters, particularly when the variance is near zero. The dynr team is working on
options of other types of confidence interval estimates.
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constraints (i.e., in imposing a very specific form of change and does not allow for
stochasticity via the inclusion of a process noise component). That is, estimates for
dynamic parameters such as ω and ζ were far from their true values. This highlights
some of the detrimental consequences of using inappropriate models to represent
TVPs.

9.9 Discussion

In this chapter, we proposed an SDE modeling framework with TVPs as a way
to capture multi-time scale and self-organizing processes in continuous time. We
considered several variations of the damped oscillator model in the illustrative
examples: two with time-varying set points and one with time-varying damp-
ing/amplification. We also performed an MC study that included several variations
of time-varying set point processes. Furthermore, we presented and evaluated
the use of two functions—the O-U model and the stochastic noise model—as
plausible functions for approximating changes in the TVPs in the absence of further
knowledge concerning their true change mechanisms.

We showed in all three of the illustrative examples considered and in the MC
simulation study that the TVPs can be recovered very well and the smoothed
estimates provided accurate reflections of the underlying dynamic processes when
the true models were fitted to the simulated data. Approximating the true models
of TVP with the O-U model and the stochastic noise model yielded satisfactory
estimates of other time-invariant parameters, but assuming time invariance in the
parameters when they did in fact vary over time resulted in substantial biases
in the parameter estimates in the process model. The smoothed estimates of the
TVP trajectories from these two approximation models also revealed the general
change patterns of the true TVP processes reasonably well, though not as accurately
as the smoothed estimates obtained from fitting the true models. Overall, our
results confirmed the plausibility of using these functions as approximations for
model and data exploration purposes. We further showed that the smoothed latent
parameter estimates can be inspected to facilitate later confirmatory modeling of the
trajectories of the TVP.

Our simulation study offered some initial results validating the utility of the
AIC and BIC as model selection tools for continuous-time models with TVPs. As
noted earlier, because models with TVPs incorporated as latent variables become
nonlinear in nature, the log-likelihood function used for parameter estimation
purposes involves approximations stemming from the use of the EKF to linearize
nonlinearities in the model. By extension, computations of the AIC and the BIC,
which capitalize on the same log-likelihood function, now also involve approxima-
tions due to the linearizations. No previous work has systematically investigated
whether the AIC and BIC computed under such approximations are still viable as
model selection tools. Our simulation results confirmed their utility, indicating that
both the AIC and BIC are still reliable in selecting the true data-generating models
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in most instances, except in one special case in which the AIC tended to select an
overly complex model (the O-U model) over the simpler true data-generating model
(the stochastic noise model).

The stochastic noise model, as briefly mentioned in simulation results, can be
obtained as a special case of the O-U model if the β parameter is 0. However,
apart from that, the stochastic noise model is also a special case of any other model
wherein the deterministic portion of the model (the drift function) is equal to 0. This
model imposes the notion that there is no regularity or predictability in a process
over time. Hence, if the stochastic noise model is preferred over other models that
do impose some form of regularity in the process, this has implications on the nature
of whether and how the TVPs vary over time.

Although not considered in one of the illustrative examples in this chapter, it is
also possible to allow the frequency parameter, ω, to be modeled as a TVP. Our
preliminary results (not shown here) suggested that similar results and modeling
conclusions would still hold in scenarios involving a single, time-varying frequency
parameter. Relatedly, even though we only considered examples that are extensions
of the well-known damped oscillator process, the procedures we proposed are, in
principle, readily generalizable to other dynamic processes of similar characteristics
to those considered in the chapter. The relative flexibility of the CDEKF algorithms
and the modeling interface provided as part of the dynr package make such
generalizations viable and potentially very doable.

Our illustrations and explorations of SDEs with TVPs are far from comprehen-
sive. More MC studies should be conducted to evaluate the performance of the
CDEKF algorithms, the AIC, and the BIC in fitting and facilitating the selection of
SDEs with TVPs under different SDE models and parameters of different natures,
over various effect size and sample size settings. Also worth the investigation is the
signal-to-noise ratio this proposed data exploration scheme can tolerate. In fitting an
approximation model such as the O-U model or stochastic noise model, the “true”
noise in the data can manifest in more than one place through one or several of
the process noise parameters in the approximation models. Hence, it is important to
know to what extent the approximation models could still capture the underlying
changes in the TVPs with increased process and measurement noise. Such MC
studies can also help us determine the extent of impact if TVPs are modeled as
fixed and approaches researchers could take in data exploration phase when it is not
obvious if or how many parameters are time-varying.

When it is not apparent of which parameters might be reasonably allowed to
be time-varying, one plausible strategy would be to allow all parameters to be
TVPs but only to the extent that the resultant model still satisfies the observability
and controllability conditions needed to identify the latent variables and recover
the parameters accurately (Bar-Shalom et al. 2001). In brief, the TVPs are not
linked directly to observed indicators but rather, are identified indirectly through
other latent variables with direct indicators. Thus, one may run into identifiability
issues if more latent variables (specifically, TVPs) are defined than there is sufficient
information from the data to identify them.
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In this chapter, our examples of TVPs are all proposed to have more gradual
changes than other latent system (endogenous) variables. In order to achieve a
TVP process on a slower time scale, the process variances of the TVPs in all our
data generation conditions were set to be much smaller than those of other latent
variables. This constraint—or rather, assumption—in the data generation process is
similar to the assumption imposed in Molenaar et al. (2009), in which the authors
used a random walk model to represent the TVPs. This assumption of slow-varying
TVPs is necessary to ensure that the data are of sufficient density to identify the
dynamics of the TVPs, the failure of which would also result in failure to identify
the dynamics of the system as a whole. However, the relative differences in time
scales between the TVPs and other system variables are still very much an active
area of research and likely depend on characteristics and nature of the model and
TVPs of interest. For instance, if the TVP is a “trend” or time-varying intercept,
then this parameter may change at similar time scales as other system variables. In
contrast, if the TVP of interest is the frequency or damping parameter in the damped
oscillator model, a variance parameter, or any other parameters whose effects on the
dynamics of the system can only be reliably observed over multiple replications
of the process, then sufficient number of replications and data density are needed
to allow these parameters to be recovered accurately. Thus, even though it is not
always necessary to dictate that the time scales of the TVPs be much slower than
the time scales of the latent variables, we find it noteworthy to state this at least as a
cautionary constraint for the reader to consider.

Throughout, we assumed the process noises of the TVPs to be Gaussian
distributed. This assumption may not be tenable for certain parameters, for instance,
variance parameters whose permissable values are always positive. One way to
circumvent this issue is to apply transformations to the TVPs and specify the
unconstrained TVPs (e.g., the log of a variance parameter), as opposed to the
constrained parameters (e.g., the exponent of the log variance parameter), to be
characterized by Gaussian-distributed process noises. In dynr, there are multiple
ways in which such transformations can be specified. One way is to use the
function “prep.trans” to specify transformation functions to be applied to any of the
parameters in the model. An alternative route is to capitalize on dynr’s flexibility
in handling nonlinear functions of the latent variables to specify the required
constraints explicitly as part of the dynamic functions of the TVPs. We did not
apply any of these parameter transformation approaches in the illustrative or MC
examples, but it is worthwhile to examine the relative performance of the proposed
estimation approach in the presence of such transformations in future studies.

Our work in this chapter is closely related to that of Bringmann et al. (2017)’s
where they implemented discrete-time autoregressive models with TVPs under
the generalized additive modeling framework with smooth regression splines. The
smoothing procedure inherent to the approach by Bringmann et al. (2017) has added
utility in “smoothing” out noisy fluctuations in the TVPs as well as system variables
and can be readily used to represent changes in modeling parameters over other
specified observed variables (e.g., spatial variables). However, the implemented
approach is currently restricted to one special case of a discrete-time model and only
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handles missingness via case deletion, as opposed to using raw data (approximate)
maximum likelihood as in the present approach. It would be interesting to consider
extensions of generalized additive modeling framework to continuous-time models,
or incorporation of smoothing features into the proposed approach.

Several limitations of the proposed estimation procedures should be noted. First,
due to the use of a Jacobian matrix F in the prediction step in (9.4), only drift
functions that are at least first-order differentiable with respect to elements in ηi (t)

may be used in the dynamic model. This requirement, however, is not met for
some dynamical systems, for instance, examples that show sudden shifts in the
TVP, similar to the stagewise true model used in our illustrative examples. When
preexisting indicators of the exact change points are available (e.g., as reflected
in how we fit the true model to the simulated data), estimation can be handled
in a straightforward manner. When direct indicators of these change points are
not available, we resorted to using other differentiable functions, such as the O-
U model, as an approximation for such discrete shifts. For better approximation
results, we may need to utilize some other filtering methods, such as iterated particle
filtering (Ionides et al. 2015), the unscented Kalman filter (Chow et al. 2007), or
other regime-switching extensions (Chow et al. 2017) as alternatives for systems
that are not first-order differentiable.

A fourth-order Runge–Kutta procedure is used to solve the two ODEs in
Eqs. (9.3) and (9.4) in the prediction step of the CDEKF—namely, to obtain
conditional expectations of the latent variables for time ti,j given the estimates from
up to time ti,j−1, that is, E

(
ηi (ti,j |Yi (ti,j−1)

)
and Cov

(
ηi (ti,j |Yi (ti,j−1)

)
. Using

numerical solvers such as the Runge–Kutta procedure opens up more possibilities
of fitting ODE/SDE models that do not have closed-form solutions. In exchange
for this added flexibility, however, is the need to select appropriate Δt or time step
for the numerical integration as the truncation errors embedded in the numerical
solutions are direct functions ofΔt .Δt that is too large would yield poor estimation
results; in contrast, Δt that is too small can be computationally inefficient and
may also lead to other numerical problems. For the examples given in this chapter,
Δt was fixed at 0.125 throughout all the examples. The exact same observations
with a Δt of 1 would return inaccurate inferred model dynamics and associated
parameter estimates, even with the same model fitting procedures and specifications.
In some cases, rescaling of the time units—for example, recoding time from seconds
to minutes—may be necessary. Other alternatives, such as adaptive ODE solvers
(Kulikov and Kulikova 2014; Kulikova and Kulikov 2014) and multiple shooting
methods (Gander and Vandewalle 2007; Kiehl 1994; Stoer and Bulirsch 2013), may
also be used in place of the fourth-order Runge–Kutta procedure to improve the
robustness of the estimation procedures to choices of Δt . In addition, the CDEKF
algorithms as currently implemented in dynr rely on the use of first-order Taylor
series expansion to approximate the uncertainties implicated in P(ti,j ). When the
system is highly nonlinear, retaining only the first-order terms in the Taylor series
expansion may be inadequate, and higher-order terms may have to be incorporated
instead (Bar-Shalom et al. 2001).
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The smoothing algorithm used in the present study can also be improved in
a number of ways. First, in the illustrative examples considered, the smoothed
estimates of the TVP obtained from the approximation models generally recovered
the true patterns of the TVPs reasonably well. However, there were noticeable delays
in recovering the true values of the TVPs around all the transition points in the
stagewise examples. One way to circumvent this estimation delay is to reverse the
time ordering of the data (so that the last time of observation T now becomes the
first time point t1 and so on), repeat the model fitting procedure, and generate a
set of refined smoothed estimates as a weighted average of the smoothed estimates
obtained from forward and reverse smoothing. This revised smoothing procedure
is similar in principle to the zero-phase noncausal filtering utilized in the field of
engineering (Kormylo and Jain 1974; Powell and Chau 1991). Finally, the prediction
error decomposition function used for parameter optimization purposes in (9.9)
uses only the one-step-ahead prediction errors and associated covariance matrix
from the prediction step. One alternative, which replaces the PED function with
a penalized log-likelihood function (Fahrmeir and Wagenpfeil 1997) constructed
using an iterated extended Kalman filter (e.g., Bar-Shalom et al. 2001, p. 404), may
be used to improve the quality of the parameter estimates and, consequently, the
quality of the smoothed estimates.

In conclusion, modeling in continuous time using SDEs with TVPs provides
renewed possibilities for capturing self-organization across different levels of
analysis and time scales. In cases where the true underlying mechanisms of interest
are unknown, we have illustrated the viability of several approximation models
for representing TVP processes that unfold on much slower time scales compared
to the changes manifested by other system variables. We hope our subset of
examples provides a starting point for researchers to pursue other modeling ideas
and applications involving self-organizing phenomena in continuous time.
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Chapter 10
Robustness of Time Delay Embedding
to Sampling Interval Misspecification

Steven M. Boker, Stacey S. Tiberio, and Robert G. Moulder

10.1 Introduction

Real-world applications of intensively sampled longitudinal data often have unequal
intervals between observed data points. For instance, experience sampling methods
may have data collection methods that randomize the time of day when prompts
are given to participants on their mobile devices (e.g., Dufau et al. 2011; Hektner
et al. 2006). Daily diary studies may collect data in the morning and the evening,
but these intervals may differ as much as 3 or 4 h from 1 day to the next (e.g.,
Erbacher et al. 2012). Long-term cognitive aging studies may schedule to gather
yearly observations, but practicalities of contacting and scheduling may result in
observation intervals that differ by 3 or 4 months from 1 year to the next (e.g.,
Salthouse et al. 2004; Salthouse and Tucker-Drob 2008). The problem of sampling
interval misspecification has been addressed in a variety of contexts including latent
growth curve analysis, autoregressive modeling, and continuous-time autoregressive
modeling. This chapter addresses the question of misspecification of sampling
interval in the context of time delay embedding.
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This problem can be particularly acute when using discrete-time autoregressive
models including cross-lag panel models. Discrete-time forward prediction models
such as auto- and cross-regressive models are susceptible to time interval misspec-
ification since the auto- and cross-regressive parameters are a function of the time
interval between observations. This is often ignored in discrete-time modeling by
assuming that the lag (i.e., time interval between observations) is equal to one. This
essentially ignores the time interval problem, but does not solve it.

Continuous-time models remove the dependence of model parameters on the
sampling interval. Analysts can be tempted to use the mean time interval between
observations when estimating the continuous-time parameters. Or, it may be that
the original data collection did not save individual intervals between observations,
and so a mean or planned interval is all that is available. Others have addressed the
problems that can occur when the sampling interval is ignored in continuous-time
autoregressive models (e.g., Delsing and Oud 2008; Oud 2007).

Some authors addressing time interval misspecification in latent growth curve
and continuous-time autoregressive models have used a technique in which the
actual time interval is retained as a variable at each observation for each participant
and used to modify the model for each data row (e.g., McArdle and Woodcock
1997). Then a full information maximum likelihood optimization can be used to
correct for the model sampling interval misspecification. This row-wise loading
correction can be accomplished reasonably easily using software such as OpenMx
using its definition variable functionality (Neale et al. 2016).

A second method that has been used when estimating models from time interval
misspecified data: interpolation splines with resampling (e.g., Klump et al. 2013).
This method fits a spline through the data, and then the values of the spline at equal
time intervals are used as input to the model estimation software. While this method
can be effective in some cases, there are pathological cases where the method can
go seriously awry, producing effects that are artifacts of what boils down being a
longitudinal imputation technique. As in any imputation technique if the imputation
model is misspecified, effects can be produced by imputation that do not actually
exist in the data.

Another commonly used technique for correcting for sampling interval mis-
specification is the method of planned missingness (McArdle 1994; McArdle and
Woodcock 1997). The argument is that the data could have been sampled at equal
intervals, and so if one chooses a planned sampling interval that is sufficiently small,
one can restructure existing data to have approximately equal sampling intervals by
inserting missing observations in between existing observations.

We decided to use a Monte Carlo simulation to compare degree of combined
bias and increased parameter variability produced when using uncorrected sampling
intervals in a time delay embedding method for estimation of parameters of differ-
ential equations from interval misspecified data. We used latent differential equation
(LDE) models (Boker 2007; Boker et al. 2010, 2004) to compare uncorrected time
delayed data to the three methods of sampling interval correction described above
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when estimating parameters for two common differential equation models.
The results of the Monte Carlo simulation were counterintuitive. Time delay

embedding is surprisingly robust to misspecifications of sampling intervals in
commonly used sampling designs. The current chapter explores these conditions
and points out why this robustness occurs. While we did not explore other parameter
estimation techniques for continuous-time modeling (e.g., Oud 2007; Oud and
Jansen 2000; Voelkle and Oud 2013), we believe that the time delay embedding
approach could be usefully applied by those estimation approaches as something
like a hybrid of the state space and SEM versions of the exact discrete method.

At this point, it should be noted that neither time delay embedding nor any
of the other methods described above protect a model from bias induced by
missingness conditioned on the outcome variable (Little and Rubin 1989, i.e., when
data are missing not at random). If the reason that unequal intervals exist between
observations is that a participant chose not to respond conditioned on their response,
then parameter bias due to missingness is still likely to exit. One must be mindful
of this possibility, which is outside the boundary of the intention of the current
chapter. Here, we will consider the case where the time interval misspecification is
independent of the values of the variables for which the model is estimated. One
important and common example of independent time interval misspecification is
when an irregular sampling interval is part of the experimental design.

10.1.1 Time Delay Embedding

Time delay embedding is a technique by which a time series is reorganized so
that short time-ordered sections of the time series appear as rows of a matrix.
When the embedding dimension, D, is chosen appropriately, Takens’ embedding
theorem (Takens 1985) guarantees that the dynamics of the time series will be
represented in the rows of this matrix. While this sounds complicated, in practice
it is straightforward. Suppose we have a time series [x1, x2, . . . , xp−1, xp], and
then we can construct a time delay embedded matrix with an embedding dimension
D = 5 as

X(5) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1 x2 x3 x4 x5

x2 x3 x4 x5 x6

x3 x4 x5 x6 x7
...

...
...

...
...

xp−4 xp−3 xp−2 xp−1 xp

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (10.1)

Each row of this matrix contains five columns of time-ordered values. Takens’
theorem guarantees that if the embedding dimension D has at least the number
of degrees of freedom in the generating equation plus one, the time dynamics of
the generating equation will be captured. For the purposes of this chapter, we will
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be considering first- and second-order differential equations with error. For the
second-order equation, we would need, at a minimum, four columns in our time
delay embedded matrix. What is the maximum number of columns we could use?
Suppose our second-order system describes an oscillation with a period of 1 week.
Once the total elapsed time between the first and last column equals the period of
the oscillation, then we exceed what is commonly known as the Nyquist limit (e.g.,
Jagerman and Fogel 1956), and the time delay embedding no longer captures the
dynamics of interest. If our experiment sampled once per day and we wanted to
capture a weekly cycle with time delay embedding, we could not have more than
six columns in the matrix. However, if we had sampled once per hour, we could use
many more columns without running into the Nyquist limit. While rules of thumb
for choosing D have been in use for decades (Sauer et al. 1991), recent work has
suggested that one may estimate an optimal embedding dimension for a particular
model applied to a particular data set (Hu et al. 2014). For the purposes of our
simulation, we will choose an embedding dimension of 5 and parameters for the
equations that will simulate data that would reasonably correspond to a time delay
embedding of 5.

10.1.2 Latent Differential Equations

One way that a time delay embedded matrix is useful is that it preprocesses
the time series in such a way that convolution filtering can be quickly applied
to it. Convolution filtering is an operation in which a kernel is multiplied with
subselections of a data set (Savitzky and Golay 1964). The kernel is a matrix that
is chosen in order to perform some useful operation. In computer graphics, kernels
exist for operations such as smoothing, sharpening, edge detection, and blending
(Goldman 1983). In the case of LDE, we choose a kernel such that its convolution
with the data will produce estimates of derivatives of the time series. If we time
delay embed the time series, a simple matrix multiplication of the time delay
embedded matrix and the kernel matrix corresponds to a convolution operation. This
allows the LDE method to be computationally efficient and to be estimated using
standard structural equation modeling (SEM) software. The LDE models used in the
simulations are presented in path diagram form and described later in the chapter.

10.2 Methods

Monte Carlo simulations were performed in R (R Core Team 2016) using both
univariate and multivariate first- and second-order continuous-time differential
equations with parameters selected to be useful in studies of behavioral and
psychological regulation. Each parameter was allowed to take on two values: one at
the slower end of the typical range and one at the faster end of the range. Thus, there
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was a slow and a fast exponential decay system for the first-order equation. Similarly
there were slow and fast oscillating systems each with slow and fast damping. Thus
data for six model and parameter conditions were simulated.

“Slow” and “fast” are relative to the chosen time scale, so these parameters were
selected to exhibit behavior that was appropriate for the time interval that would
represent the average elapsed time from the first to the last column of the time delay
embedding. As an example, one might be interested in weekly cycles in affect and
were using a time delay embedding dimension of 5. One might have measured once
a day, and so one would have seven observations per cycle. This oscillation would be
fast relative to the time delay embedding given that the total elapsed time from the
first column to the last column of the time delay embedding comprises 5/7 = 0.7
of a cycle. However, suppose one measures once per hour and still is interested in
the 7-day cycle. In that case, the oscillation would be relatively slow given that a
time delay embedding dimension of 5 would only comprise 5/(24 × 7) = 0.03 of a
cycle.

Given these parameter choices (two cases for the first-order system and four cases
for the second-order system), numerical integration was used to create full data sets.
1000 data sets were simulated for the first-order system (500 for each parameter
condition) and 1000 data sets for the second-order system (250 for each parameter
condition). Then, each resulting data set was degraded by removing all but a target
number of observations according to three degradation strategies. For each Monte
Carlo iteration, this created three data sets that were identical other than their time
interval misspecification. For each Monte Carlo iteration, each data set was then
fit by one of the four time interval correction strategies: (1) time delay embedding
with no correction, (2) time delay embedding with row-wise loading correction, (3)
insertion of latent variables to create a “planned missingness” data set which was
then time delay embedded and no further correction, and (4) interpolation splining
with fixed time interval resampling which was then time delay embedded with no
further correction.

The 1000 simulated data sets by 2 order conditions by 2 uni-/multivariate
conditions by 2 error conditions by 3 degradation conditions by 4 time-correction
conditions (in all, 96,000 models) were fit in OpenMx (Neale et al. 2016) using the
appropriate LDE model with a time delay embedding dimension of 5. The three
time interval degradation methods and four misspecification correction methods are
described in detail in the next two sections followed by a description of the two
models.

10.2.1 Simulation Methods

For each of 1000 Monte Carlo iterations, we first chose parameters for the target
differential equation model: either a first-order or second-order linear system with
process (time-dependent) error or measurement (time-independent) error. Next,
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we numerically integrated the selected system at a high time resolution using the
ode() function in R, producing a densely time-sampled simulated data matrix
with T = 1000 observations. There were two data simulation model types: first-
order univariate linear and second-order linear differential equations. Each of these
had a univariate versus multivariate condition as well as measurement error versus
a measurement error plus process noise condition.

The first-order univariate linear system with measurement error (time-
independent white noise) was specified as

Ḟi = ζFi (10.2)

xi = Fi + ei

where Ḟi is the first derivative of F with respect to time at time index i and ei is
a residual term drawn from a normal distribution with mean μ = 0 and standard
deviation σ = 0.25. The scores for xi were saved, in a T × 1 matrix, X, resulting
in a densely sampled univariate time series. For each Monte Carlo iteration, the
parameter ζ was drawn from the set {−0.02,−0.04}.

The first-order multivariate simulation with measurement error consisted of a
simulated error-free latent variable that was indicated by three manifest variables
with independent error terms

Ḟi = ζFi (10.3)

xi = b1Fi + eix

yi = b2Fi + eiy

zi = b3Fi + eiy

where ei is a residual term drawn from a normal distribution with mean μ = 0 and
standard deviation σ = 0.25. The scores x1, x2, and x3 were stored into a T × 3
matrix, X, resulting in a densely time-sampled multivariate time series. For each
Monte Carlo iteration, the parameter ζ was drawn from the set {−0.02,−0.04}.

The first-order systems with process noise were simulated in the same way
except that process error ε was added to the latent variable F during the numerical
integration, resulting in

Ḟi = ζFi + εi (10.4)

xi = Fi + ei

where εi was drawn from a normal distribution with mean μ = 0 and standard
deviation σ = 0.25. The first-order multivariate system was modified in the same
way, adding a process error εi to the latent variable F and then proceeding as in
Eq. (10.3).
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The second-order differential equations were simulated in a similar manner
so that, for instance, the second-order linear system with measurement error was
specified as

F̈i = ζ Ḟi + ηFi (10.5)

xi = Fi + ei

where F̈i is the second derivative of Fi with respect to time at time index i. For each
Monte Carlo iteration, the parameter ζ was drawn from the set {−0.01,−0.03},
and η was drawn from the set {−0.0632,−0.2527}. The multivariate and process
error conditions were specified by modifying Eq. (10.5) in the same way that
the equivalent first-order equation (10.2) was modified to produce Eqs. (10.3)
and (10.4). Thus, a data set was simulated for each of the 2 × 2 × 2 simulation
conditions. This process was repeated 1000 times, and each of these densely
time-sampled data sets was degraded in three ways to produce the time sampling
misspecifications described in the next section.

10.2.2 Normally Distributed Time Interval Misspecification

There are several reasons why time intervals are irregular in real data. Most common
is that intended target observation intervals are not achieved due to scheduling
problems. In order to simulate this condition, we first simulated a full data set with a
very small time interval between samples and with process error and measurement
error. We then selected a fixed long target time interval to approximate the target
sampling interval of the experiment. For each target observation time, we drew a
normally distributed random number with mean 5.5 and standard deviation σ =
6.75 as an offset from the target time and then selected the appropriate sample from
the full data set while keeping track of the actual time of observation. This results
in a data set with time interval misspecification that is normally distributed about
a fixed interval similar to a daily diary study where samples were not measured at
exactly the same time of day or a yearly longitudinal study where samples were not
measured at the same day of the year.

10.2.3 Missing Sleep Intervals

In longitudinal methods variously called experience sampling (Csikszentmihalyi
and Larson 1987), ecological momentary assessment (Shiffman et al. 2008; Stone
and Shiffman 1994), and ambulatory assessment (Trull and Ebner-Priemer 2013),
participants are commonly beeped at randomized intervals throughout the day, but
are not disturbed during normal sleeping hours. To simulate this type of sampling
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misspecification, we created a degraded data set with normally distributed time
interval misspecification as in the previous method, and then we further removed
blocks of one third of the target observations for each simulated day. Thus if the
target data sampling interval was 1 h, a block of eight target observations per day
were designated as missing values (NAs) in the same time block every simulated
day.

10.2.4 Rectangularly Distributed Time Interval
Misspecification

A worst case scenario for time interval misspecification is when the time of each
occasion of measurement is drawn from a rectangular distribution of the numbers
between zero and the time of the end of the study. In this case, there is no
planned target interval between samples. At each moment during the study, there
is a probability that a measurement would occur, and thus time intervals between
samples can range very widely. To simulate this, we chose a target number, N ,
of samples and then drew a vector of integers from a rectangular distribution on
the interval from 1 to the total number of numbers in the full simulated data set.
Duplicated integers were removed, and then this vector was sorted and used to select
a degraded data set.

10.2.5 Time Interval Correction Methods

For each Monte Carlo iteration and for each time interval degradation method,
we fit a latent differential equation (Boker 2007; Boker et al. 2004) model to
the time interval misspecified data. In order to isolate the effects of time interval
misspecification, we fit the same model using full-information maximum likelihood
and the same time delay embedding dimension,D = 5, for every correction method
described below.

10.2.5.1 No Correction

In this condition, we ignored the time interval misspecification and proceeded with
the time delay embedding as if there were a fixed interval between samples that was
equal to the mean interval between all samples in the target degraded data set. Note
that the no correction method retains missing values due to a sleep cycle. Thus,
if a 1-h sampling interval was planned but eight observations were missing from
each day, eight NAs were retained in the data set as placeholders for the missing
observations.
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10.2.5.2 Row-Wise Loading Correction

Row-wise loading correction produces a fixed factor loading matrix for each row of
the time delay embedded data. The loadings are corrected to account for the intervals
actually existing on each row of the data. If row i in a time delay embedded matrix
with five columns has observation times {t1, t2, t3, t4, t5}, then the 5 × 3 loading
matrix Li can be constructed by subtracting half the interval between t1 and t5 from
each value so that the filter is centered around the full interval and the elapsed basis
for the linear part reflects the actual elapsed time between each observation. Thus,
Li becomes

Li =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 t1 − ((t5 + t1)/2) (t1 − ((t5 + t1)/2))2

1 t2 − ((t5 + t1)/2) (t2 − ((t5 + t1)/2))2

1 t3 − ((t5 + t1)/2) (t3 − ((t5 + t1)/2))2

1 t4 − ((t5 + t1)/2) (t4 − ((t5 + t1)/2))2

1 t5 − ((t5 + t1)/2) (t5 − ((t5 + t1)/2))2

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (10.6)

By using the definition variablemethod of OpenMx, one may insert a loading matrix
into the model that is correct for each row. R code to accomplish this is included in
supplementary material.

10.2.5.3 Planned Missingness

One popular method for accounting for unequal intervals in longitudinal data is the
method of planned missingness (Graham et al. 2006; McArdle 1994). This method
inserts missing values into the data set when the interval between observations is
longer than some specified interval. In order to apply this method, we found the
smallest interval s between observations in the target degraded data set, then divided
the interval between first and last observations into p equal intervals of length s, and
created a vector Y of p missing values (NAs). For each observation in the degraded
data set xi with elapsed time of observation ti , we found the index, j , into Y such that
s(j − 1) ≤ ti ≤ s(j) and the set yj = xi . In this way we created a data vector with
approximately fixed interval sampling. The new vector was time delay embedded
and fit with the model in the same manner as the other correction methods.

10.2.5.4 Interpolation Spline

Sometimes the data are appropriate for splining. Interpolation splines with resam-
pling from the predicted values of the spline have been used as a method for
producing equal interval time series (e.g. Hu et al. 2014; Klump et al. 2013). To
implement this method, we used the na.spline() function from the R zoo
package. We submitted the degraded vector to the interpolation spline function and
then sampled predicted values of the interpolation spline at the median interval
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as found in the degraded data. In this way, we created a time series with true
fixed intervals, but with estimated values at the fixed intervals. In a way, the
interpolation spline method is the obverse of the planned missingness method.
Interpolation splines give exactly equal intervals but with an estimated value of
the variable, whereas planned missingness gives exact values of the variables but at
approximately equal intervals. The interpolated data were then time delay embedded
and fit with the model in the same manner as above.

10.2.6 Structural Equation Models

Each data set was fit using an LDE structural equation model appropriate to the
simulated data. Thus first-order simulated data was fit with a first-order LDE.
Path diagrams of first- and second-order univariate models are shown in Fig. 10.1.
The models for both measurement error and process error simulations were the
same, where measurement error is estimated by residual variances of the manifest
variables and process error is estimated by the residual variance labeled V eḞ in the
first-order model in Fig. 10.1a and V eF̈ in the second-order model in Fig. 10.1b.

Path diagrams of first- and second-order multivariate models are shown in
Fig. 10.2. Note that the embedding dimension is the same as it was in the univariate
models, but since there are now three variables being embedded, each line of the
time delay embedded matrix has 15 columns.

Boker et al. (2016) present an example of OpenMx code and an extensive
discussion of each of these models. Supplementary material has example code that
creates simulated data conforming to this chapter and implements the row-wise time
correction. Note that supplementary material relies on the GLLAfunctions.R source
file from Boker et al. (2016).
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Fig. 10.1 Univariate latent differential equation (LDE) path models used to fit the time misspeci-
fied data. (a) First-order linear univariate LDE. (b) Second-order univariate linear LDE
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Fig. 10.2 Multivariate latent differential equation (LDE) path models used to fit the time
misspecified data. (a) First-order linear multivariate LDE. (b) Second-order multivariate linear
LDE

10.3 Results

For each parameter in each simulation, misspecification, and correction condition,
the root-mean-square error (RMSE) in parameter estimation was calculated as

RMSE =
√√
√
√1/N

N∑

i=0

(pi − psim)2 (10.7)

where N is the number of iterations in the Monte Carlo simulation, pi is an
estimated parameter for iteration i, and psim is the parameter value used to create
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Fig. 10.3 Root-mean-square error (RMSE) of the decay parameter, ζ , for 100 simulated first-order
trajectories for each misspecification method and each correction method. (a) Univariate indicator
and no process error. (b) Univariate indicator with process error. (c) Multivariate indicators and
no process error. (d) Multivariate indicators with process error. In each graph, the black bar plots
RMSE values from a baseline model with equal interval data. On the horizontal axis, X is uniform
distribution misspecification, U ∼ (1, 1000); Y is normally distributed misspecification, N ∼
(μ = 5.5, σ = 6.75); and Z is sleep misspecification

the simulated data. Figure 10.3 plots the RMSE of the estimated ζ parameter
for each first-order differential equation condition. Note that both the row-wise
correction and no-correction conditions produce approximately the same RMSE
as the estimates using the full data set for every misspecification condition, both
error types and both uni- and multivariate data. The planned missingness correction
produced a small increase in the RMSE in every condition. The interpolation
spline produced the worst performance, with RMSE much larger than any of the
other methods of correction. For first-order processes where the spline interpolation
correction was used, the degree of bias in the estimated decay parameters was
greatest for uniform time interval degradation relative to the normal and sleep time
interval degradation methods, whereas the degree of bias in the estimated decay
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Fig. 10.4 Root-mean-square error (RMSE) of the (a, c, e, g) η and (b, d, f, h) ζ parameters for
100 simulated first-order trajectories for each misspecification method and each correction method.
(a, b) Univariate indicator and no process error. (c, d) Univariate indicator with process error. (e,
f) Multivariate indicators and no process error. (g, h) Multivariate indicators with process error.
In each graph, the black bar plots RMSE values from a baseline model with equal interval data.
On the horizontal axis, X is uniform distribution misspecification, U ∼ (1, 1000); Y is normally
distributed misspecification, N ∼ (μ = 5.5, σ = 6.75); and Z is sleep misspecification

parameters was nearly equivalent for normal versus sleep time interval degradation
methods.

Figure 10.4 plots the RMSE of the estimated ζ and η parameters for each
second-order differential equation condition. Again, the uncorrected and row-wise
correction performed the best, and RMSE of the parameter estimates was nearly
identical to each other in almost all conditions. However, when estimating ζ in the
univariate case and sleep misspecification, the uncorrected version performed worse
than the row-wise corrected version. The planned missingness correction performed
better for the second-order models than it did for the first-order models, although



252 S. M. Boker et al.

when estimating η in the multivariate condition, it performed somewhat worse than
either the row-wise corrected or uncorrected versions. When the spline interpolation
correction was used to estimate the ζ parameter in the second-order processes, the
greatest to least amount of bias in the RMSE was observed for the uniform, normal,
and sleep time interval degradation methods, respectively, across all conditions
(i.e., uni- and multivariate data, with or without process error). On the contrary,
no discernible pattern emerged in RMSE estimates for the estimation of η in the
first-order processes using the spline interpolation correction across conditions.

In order to understand if the RMSE was significantly worse than baseline for
each condition, we performed a regression analysis, and the results are shown in
Tables 10.1 and 10.2. From these tables, it is clear that the interpolation method is
always significantly worse than baseline. On the other hand, no correction and row-

Table 10.1 Significance levels from regression results predicting RMSE difference from baseline
for first-order models combining the conditions with and without process error

RMSE estimating ζ

Correction Normal Uniform Sleep

Univariate

None ns ns ns

Row-wise 0.04 0.001 ns

Interpolation <0.001 <0.001 <0.001

Planned missing 0.02 <0.001 0.02

Multivariate

None ns ns ns

Row-wise ns ns ns

Interpolation <0.001 <0.001 <0.001

Planned missing ns ns ns

Table 10.2 Regression results predicting RMSE difference from baseline for second-order
models combining the conditions with and without process error

RMSE estimating η RMSE estimating ζ

Correction Normal Uniform Sleep Normal Uniform Sleep

Univariate

None ns ns ns ns ns 0.03

Row-wise ns ns ns ns ns ns

Interpolation <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Planned missing 0.01 ns ns ns ns ns

Multivariate

None ns 0.009 0.003 ns ns ns

Row-wise ns ns 0.02 ns ns ns

Interpolation <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Planned missing 0.03 <0.001 <0.001 ns ns ns
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wise correction are almost always comparable to the performance of the baseline
model fit to equal interval data.

10.4 Discussion

The results of the simulation are surprising but convergent. When using time delay
embedding, ignoring time misspecification when fitting LDE first- and second-order
models almost always performed as well as the best correction method: row-wise
loading correction using full-information maximum likelihood. When we started
this work, we had planned to warn users not to ignore a violation of the assumption
of equal interval sampling and show the consequences of that mistake. But after
the simulation, we found we needed to answer a different question: Why is time
delay embedding so robust to violations of equal interval sampling? Our explanation
involves two characteristics; one due to time delay embedding and one due to the
ipsative nature of time interval misspecification.

10.4.1 Effect of Time Delay Embedding

Previous work has shown that time delay embedding improves precision of esti-
mates in first- and second-order latent differential equations due to induced can-
celing effects (von Oertzen and Boker 2010). A graphical illustration of why this
happens is shown in Fig. 10.5a. When a perturbation is added to a single value of
the true scores for a sine curve, estimates of the frequency are biased in one direction
when the perturbation is to the right of center of the time delay embedded matrix,
X(5), and are biased by an equivalent amount when the perturbation is to the left
of center of X(5). The reason that this cancelation of bias occurs is because the
convolution filter values, i.e., the loadings of L in Eq. (10.6), are symmetric about
the center column of X(5). Thus equal bias is applied with a positive and negative
sign as the convolution filter is applied to the data.

Similarly, consider the time misspecification illustrated in Fig. 10.5b. In this
example, a perturbation of the time interval occurs such that two observations, x5
and x6, were not recorded so that the time series skips directly from x4 to x7, thereby
violating the assumption of equal time intervals between samples. This longer time
interval first is at the rightmost column of the time delay embedded matrix,X(5), and
then in each subsequent row, the perturbation moves one column to the left. When
the time perturbation is at the right of the center in X(5), the estimated wavelength
of the sine is biased to be longer, but when the time perturbation is to the right of
the center, the bias is toward shorter wavelengths. In this way, the bias induced by
the time interval misspecification tends to cancel.
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x1 x2 x3 x4 x7

x2 x3 x4 x6x7

x3 x4 x9x8x7

x4 x10x8 x9x7

x11x8 x9 x10x7

X(5)

x1 x2 x3 x4 x5+e

x2 x3 x4 x6x5+e

x3 x4 x7x6x5+e

x4 x8x6 x7x5+e

x9x6 x7 x8x5+e

X(5)

a b

Fig. 10.5 Graphical depiction of error cancelation induced by time delay embedding. (a) Example
of a single perturbation, e, canceling its own bias. The true signal sine curve (solid line) and the
biased estimate (dotted line) resulting at each row of a five-dimensional time delay embedding
X(5). When the perturbation is to the right of the center column, estimates are biased toward longer
wavelength, and when the perturbation is to the left of the center, estimates are biased toward
shorter wavelengths. (b) Example of time interval misspecification where observations x5 and x6
are skipped. When the longer interval is to the right of the center, estimates are biased toward
longer wavelengths, and when the longer interval is to the left of the center, estimates are biased
toward shorter wavelengths
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10.4.2 Effect of Ipsative Time Interval Misspecification

The previous section provides an explanation that relies on bias cancelation. This
explanation would fail if, for instance, time intervals were ever increasing and one
took the reference time interval to be the first interval encountered. In this case, one
would always have asymmetric effects of time perturbation, leading to a positive
bias and therefore a large RMSE. In the method presented here, the reference time
interval is taken to be the total elapsed time between the first and last observation in
the time series divided by the total number of observations in the time series minus
one.

Using the mean time interval as the reference time interval creates an interesting
balance. If the source of the time misspecification is missing data, then the mean
time interval becomes longer. Suppose 20 observations are missing from a full time
series consisting of 101 observations sampled at regular interval t . This results in
a time series of 80 intervals in which dynamics are happening that really occurred
over an elapsed time of 100t . As long as the first and last observations are still
present, the total elapsed time in the degraded data set is still 100t . So when we
choose a reference time interval of 100t/80 = 1.25t , we are automatically rescaling
time so that the total elapsed time evolution of the dynamics is not affected by
the missingness. Thus, one can maintain a constant scale for time when we are
estimating our parameters.

Suppose now that one does not have a missing data problem. We have 101
observations that occur over a time interval of 100t . But now, suppose just one of
the observations, x50, is sampled too early by an amount of time ε. Thus, the interval
between x49 and x50 is t − ε, but it follows that the interval between x50 and x51
must be t + ε. This is what is meant by the ipsative nature of time misspecification.
Holding the total elapsed time and number of observations constant, every interval
that is smaller than the average produces a “time debt” that must be paid by a
longer interval or intervals somewhere else in the time series. Conversely, longer
intervals produce a “time surplus” that must be balanced by the “time debt” from
other intervals. It has become apparent to us that the combination of the ipsative
nature of time misspecification along with the bias canceling properties of time
delay embedding has produced the observed surprising robustness.

10.4.3 Problems and Limitations

While this chapter explored a large number of conditions (2 × 2 × 2 × 3 × 4) that
could reasonably be expected to be encountered in intensive longitudinal studies,
not every possible condition was explored. For instance, we did not consider short
time series. Given a close examination of Fig. 10.5, one may see that when the
full time series is embedded, the first four and last four rows of X(5) can contain
bias that is not canceled. This problem is known as a boundary effect or edge
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effect in the convolution literature. The shorter the time series and the larger the
embedding dimension, the greater is this boundary effect. Further work needs to be
done to understand how to compensate for these boundary effects. It is likely that
the row-wise correction method will turn out to be a significant improvement over
no correction in time series with few observations.

Another potential problem that was not addressed by this chapter is the effect of
so-called Nyquist limit violations. When there is time interval misspecification and
the mean interval is greater than half the wavelength of the smallest feature that one
wishes to recover, does the sampling theorem hold? There are hints from computer
vision that the noisy intervals can do better than what would be expected by the
sampling theorem (Cook 1986; Hennig and Wörgötter 2004). Our intuition is that
randomized intervals may allow one to recover features that equal interval sampling
may miss (see Voelkle and Oud 2013).

This chapter does not address questions of multi-time scale analyses. The
simulations were not mixtures of source signals with differing time scales. This is
an active area of research, and it will be important to address problems in non-equal
time interval data when such mixtures are suspected.

10.5 Conclusions

Time delay embedding combined with convolution filtering is a surprisingly robust
way of estimating dynamics from time series. This chapter simulated common time
misspecifications and fits common models using one of the popular convolution
filtering techniques, latent differential equations. For almost all of the 96 conditions
explored in the simulation, row-wise correction of time misspecification and just
simply ignoring the time misspecification resulted in root-mean-squared error that
was not significantly different from estimates made using the full time series.

Interpolation splining should be used with caution. In almost every condition,
interpolation splines performed significantly worse: RMSE effect sizes were mostly
larger by a factor of 10 or more than those of row-wise correction and no correction.
It is apparent that interpolation splines can induce bias into the estimation procedure.
The method of planned missingness uniformly performed slightly worse than row-
wise correction as evidenced by a slightly larger RMSE in almost every condition. In
most conditions, other than when fitting univariate first-order models, the increased
RMSE due to the method of planned missingness was not statistically significant.

Overall, in only 3 out of 18 time misspecification and modeling conditions did the
RMSE of row-wise correction differ from the RMSE of the same model fit to equal
time interval data. Likewise, in only 3 out of 18 conditions was the RMSE of no
correction significantly different from the RMSE of the same model fit to equal time
interval data. We can comfortably recommend using row-wise corrections for time
misspecification. However, sometimes actual sample intervals are not available, but
the overall elapsed time of the experiment is available. In this case, we recommend
using a time delay embedding approach with continuous-time modeling due to
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its robustness to time interval misspecification. However, uncorrected time delay
embedding may not be appropriate for short time series due to boundary effects.

We would like to conclude by reminding the readers that only by using some
form of continuous-time modeling can one obtain parameter estimates that are
invariant with respect to the sampling interval. Equal interval data does not remove
the problem of time interval dependency in discrete-time models.
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Chapter 11
Recursive Partitioning in Continuous
Time Analysis

Andreas M. Brandmaier, Charles C. Driver, and Manuel C. Voelkle

11.1 Introduction

In psychological research, the analysis of large-scale data sets has been gain-
ing increasing importance and bears novel challenges for empirical researchers.
Such “big” data sets arise, for example, through affordable and diverse internet-
based sampling, integrative data analysis, or intensive collection methods (e.g.,
day reconstruction, Kahneman et al. 2004, or momentary experience sampling,
Mehl and Conner 2012). In the context of longitudinal assessment, “big” data
with many measurement occasions have also been called intensive longitudinal
data (ILD; Walls and Schafer 2006). ILD reflects quantitative data, usually from
multiple individuals at a large number of time points, often irregularly sampled
at various intervals and different numbers per person. Longitudinal data analysis,
whether considered “big” or not, plays an increasing role in empirical psychological
research, especially within developmental and life span psychology. Longitudinal
data sets of human development and aging are specifically characterized by their
inherent heterogeneity of between- and within-person changes, which challenge
the very interpretability of averaged data. Walls and Schafer (2006) noted the
complexity and variety of individual trajectories in intensive longitudinal data sets
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and emphasized the need to move beyond simple time-graded population average
effects. Only rarely does it seem plausible that a single model should hold for
everybody, and we often expect large differences between persons. For example,
while one person may appear quite stable in a measure of emotion regulation,
another may reveal highly erratic behavior, and a third person may show a rather
quick return to equilibrium after disturbances through exogenous shocks to their
emotion regulation system. The discrepancy or even inconsistency between person-
specific and group-average models has long been criticized and dates back to the
observation that average learning curves must not represent the learning curve of
any single individual (Tucker 1966). Although it has been argued repeatedly that the
privileged unit of analysis in psychology should be the individual (Nesselroade et al.
2007), many analyses rely solely on average effects. Thus, there is a dire need for
formal treatments of heterogeneity in longitudinal data analysis. Continuous time
models are a useful device to address the issue of heterogeneity of measurement
occasions in complex research designs, where the exact timing of measurement
occasions may vary both within and between persons. In addition, heterogeneity
may also appear at the level of parameter estimates, that is, some persons or groups
of persons may be better represented by different dynamics than others. If the
reasons for such heterogeneity are unobserved, a hierarchical modeling approach
may be useful, in which between-person differences in parameters are explicitly
modeled using distributional assumptions, or a mixture modeling approach may
be useful to retrieve unobserved group membership. If heterogeneity is observed,
that is, if there are variables that may explain differences, for example, mean
differences in latent or observed variables, their effects can be explicitly tested
by either including them in the model or by adding them to a multiple group
model as group indicators. However, how to proceed if there is a large number
of potentially relevant variables, whose roles (e.g., moderators, predictors of mean
differences, higher-order interaction terms) in the model are unknown, and it is
difficult to hypothesize about them? Here, SEM trees (Brandmaier et al. 2013b)
and forests (Brandmaier et al. 2016), which are a combination of decision trees
and structural equation models (SEM), offer a viable approach to deciding which
variables to select by choosing those variables that add the largest predictive power
to a multivariate model.

11.2 Decision Trees

The history of decision trees can be traced back to the late 1950s, but their popularity
only started growing with the automatic interaction detector (AID) by Morgan and
Sonquist (1963). The method’s fame culminated with the seminal work of Breiman
et al. (1984) and Quinlan (1986). The idea behind a decision tree is simple. A
tree is a set of decision nodes that are connected by branches, with a root node
at which the decision process starts and a set of end nodes (“leaves”), at which
the decision process ends and a prediction is made. The decision nodes along
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the way determine which branch to take next. This allows one to formalize the
association of different patterns of decisions (or predictors) and a prediction (or
outcome). Learning a decision tree from data is achieved by growing the tree in a
stepwise fashion. The sample is subdivided according to one out of potentially many
predictors such that it best explains differences between the resulting subdivisions
with respect to an outcome of interest. One proceeds by independently examining
the subdivisions again for a best predictor and, again, continues in the resulting
subdivisions. Stepwise procedures that divide data and “reapply” themselves to their
results are referred to as “recursive” in computer science, and, thus, the decision
tree paradigm is also known as recursive partitioning. The fact that the approach of
recursively splitting data can be represented in a tree structure gave rise to the name
decision trees. Figure 11.1 shows a simple decision tree with two binary predictors
and a binary outcome.
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Fig. 11.1 A decision tree that selected predictors according to maximal reduction in entropy in
self-reported mood according to the data presented in Table 11.1 created with R packages rpart
(Therneau et al. 2015) and partykit (Hothorn and Zeileis 2015)
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Table 11.1 A hypothetical
data set of a researcher’s
self-reported mood
(happy/sad) after having
visited a scientific conference

Food Content Fees Mood

Bad Good Low Happy

Good Bad Low Happy

Good Good Low Sad

Bad Bad Low Sad

Good Good High Happy

Good Bad High Happy

Bad Good High Happy

Bad Good High Sad

Bad Bad High Sad

Bad Bad High Sad

Predictors of the researcher’s dichotomous mood
rating (“mood”) are binary ratings of three con-
ference properties: quality of the scientific content
(“content”), food quality at the preconference din-
ner (“food”), and level of conference fees (“fees”)

11.2.1 Cross-Sectional Decision Trees

In the following, we illustrate how decision trees, such as the one in Fig. 11.1,
are learnt from data. Table 11.1 shows a hypothetical data set of a researcher’s
self-reported mood (with either positive or negative valence) after having visited
scientific conferences around the globe. Here, conferences are distinguished by the
researcher’s dichotomous ratings of their scientific quality (“content”), the quality
of the restaurant in which the preconference dinner took place (“food”), and the
conference fees (“fees”). What conference features are most important to maximize
the researcher’s happiness? A decision tree provides a systematic approach to
creating a predictive model to answer this question. The decision tree algorithm
proceeds as follows. First, we determine the amount of uncertainty in the outcome
(mood), and then we proceed by recursively selecting predictors that best reduce
uncertainty in the outcome. To this end, we need to select a measure of uncertainty.
A generic measure for quantifying uncertainty from information theory is Shannon’s
entropy. Entropy is defined as shown in Eq. (11.1):

I = −
M∑

i=1

pi logpi (11.1)

with pi being the probability of an outcome i (e.g., being happy) among all possible
outcomes M (i.e., happy vs. sad, then M = 2). Entropy is larger with more
unpredictable outcomes and zero for perfectly predictable outcomes. To start, all
pair-wise associations of mood and any of the potential predictors (content, food,
and fees) are examined, and we select the one that best reduces uncertainty in the
outcome, that is, the one that maximally decreases entropy. Unconditional entropy in



11 Recursive Partitioning in Continuous Time Analysis 263

mood is − 5
10 log 5

10 − 5
10 log 5

10 = 0.69.1 If we split the data set into two subgroups
according to the predictor “food,” we obtain an entropy for mood conditional on
“bad” food of − 2

6 log 2
6 − 4

6 log 4
6 = 0.64 and an entropy for mood conditional on

“good” food of − 1
4 log 1

4 − 3
4 log 3

4 = 0.56. In the first condition, entropy was higher,
and thus prediction was less reliable than in the second condition. However, in both
conditions, uncertainty in the prediction was lower than in the unconditional model.
To obtain the total reduction of uncertainty, or put differently, the information gain,
we compute the difference between the unconditional entropy and the conditional
entropies weighted by sample size:

0.69 −
(

6

10
· 0.64 + 4

10
· 0.56

)

= 0.082

We find that conditioning on a conference’s food quality does indeed reduce entropy
in the outcome by 0.082 nats.2 Now, when we evaluate the other predictors, we find
that both have a lower reduction of uncertainty. The reduction of uncertainty in
mood conditional on scientific content is:

0.69 −
(

5

10
· 0.67 + 5

10
· 0.67

)

= 0.02

and the reduction of uncertainty in mood conditional on fees is zero, because the
entropy (i.e., uncertainty about the outcome) is identical in both resulting leaves:

0.69 −
(

4

10
· 0.69 + 6

10
· 0.69

)

= 0

Hence, “food” will eventually be selected as the first split (see Fig. 11.1). This
approach to selecting predictors is now applied in each of the resulting branches
until a stopping criterion is reached. This criterion may either be a minimum number
of cases, a maximum height (respectively, depth) of the tree, thresholds such as a
certain entropy or a test statistic exceeding a critical value, or simply the fact that no
predictors are left to predict with.

The simplified case of binary predictors and binary outcomes can easily be
extended to other variable types. For example, if predictors are ordinal or contin-
uous, decision trees select a dichotomous split for each variable, such that we can
adhere to the binary tree scheme. For categorical variables, the decision tree may
also select the best partition of all categories into two sets; however, with categorical
variables, the number of tests to perform for selection of the best split within a

1Often, entropy is normalized by dividing by logM such that maximal entropy is 1. Here, we
report raw entropy values.
2Natural unit of information (nat) is a unit of entropy based on natural logarithms, similar to bits
that are based on base 2 logarithms.
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categorical variable grows exponentially with the number of categories and is thus
only advisable for categorical variables with few categories.

When outcome variables are continuous, we need to change the criterion for
selecting best fit. For example, in CART (Classification and Regression Tree),
a criterion of variance reduction is typically applied, that is, the predictor that
maximally decreases variance in the outcome is selected. This is consistent with
the notion that when selecting between models, those with the highest explained
variance (typically measured as R2) are preferred. Furthermore, variance reduction
conforms with the idea of uncertainty reduction because the entropy of a normally
distributed variable is proportional to the logarithm of its variance.

11.2.2 SEM Trees

To allow for multivariate outcomes in decision trees, univariate decision trees can
be extended to multivariate trees. This can be achieved by requiring the a priori
specification of a multivariate model of the multiple outcomes of interest. To this
end, we divide our variables into two distinct sets, one set for which we have
strong theory-driven assumptions (the parametric outcome model) and another
set for which we have no or only weak assumptions (the potential predictors
for which we learn a nonparametric association with the outcome model). Using
the same logic as in classic decision trees, recursive partitioning then proceeds
such that predictors are selected that best describe differences with respect to the
multivariate outcomes model. One particularly useful instance of this idea is based
on SEM as a formal language for specifying multivariate outcomes. SEM is a
general modeling technique that encompasses many statistical models of normally
distributed variables. The resulting SEM trees (Brandmaier et al. 2013b) can be
conceived as trees in which each leaf is a SEM with a different set of parameter
estimates. The decision nodes of such a tree represent a hierarchical structure
describing properties of cases (in the social sciences typically persons) that are best
described by the respective leaf of the tree. With these model-based trees, we achieve
a great flexibility in modeling, because we can examine predictors and interactions
of predictors in a variety of latent variable models such as latent factor models,
latent growth curve models, latent difference score models, or any other type of
model representable via SEM.

SEM trees evaluate split candidates, that is, the set of all potential predictors,
using a likelihood-ratio criterion. For each potential split variable, a likelihood-
ratio test is performed that compares the likelihood of the presplit model, that is,
the model for the complete sample in a particular node of the tree, with that of
the postsplit model, that is, a multi-group model in which the two resulting groups
are independently modeled. This corresponds to a null hypothesis that there are no
differences between the groups resulting from a given split. The corresponding test
statistic has a χ2-distribution with degrees of freedom corresponding to the number
of free parameters in the outcome model. This criterion can also be considered from
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an information-theoretic perspective. One can show that the expected log-likelihood
ratio between the presplit and postsplit model corresponds to the Kullback-Leibler
divergence, which is a measure of relative entropy or information gain achieved
if the postsplit model is used over the presplit model (also see Brandmaier et al.
2013a).

Trees are especially useful for finding structures in high-dimensional data
because they are relatively simple to understand and interpret. Decision trees
visualize a hierarchy of decisions that can either be read as a hierarchy of conditional
effects describing a sample or as a hierarchical set of rules that can simply be
traced along all decision nodes from the root to a leaf yielding specific predictions.
Generally, trees are regarded as a robust technique in the sense that they require
less data preprocessing (e.g., trees are invariant to standardization of variables
and work in principle for all types of scales) and fewer assumptions about the
predictors than many other techniques. Trees are nonparametric estimators of
predictors’ associations with the outcome and make no specific assumptions about
the predictors’ distribution.

SEM trees have been gaining increasing momentum in psychological research.
Brandmaier et al. (2013b) described an application of SEM trees to modeling
learning curves of a verbal and performance composite score in the Wechsler
Intelligence Scale for Children and in a factor model of verbal intelligence from the
Wechsler Adult Intelligence Scale. The method was also used to explore correlates
of individual differences in trajectories of declining cognitive functioning in old age
(Brandmaier et al. 2013a). Kuroki (2014) explored different pathways to decline
in episodic memory using diverse predictors, including genetic variants, based on
data from the Wisconsin Longitudinal Study. Brandmaier et al. (2017) demonstrated
an application of SEM trees in combination with quadratic latent growth curve
models to explore constellations of correlates of terminal decline in well-being using
data from the German Socio-Economic Panel. Ammerman et al. (2017) used SEM
trees to develop an empirical diagnostic criteria for non-suicidal self-injury (NSSI)
disorder. They used trees to find optimal cutoffs in NSSI behavior frequency such
that participants were maximally different with respect to a common factor model
of various symptomatology and cognitive-affective deficits. Jacobucci et al. (2016)
presented a theoretical and empirical comparison of SEM trees and finite mixture
models as complementary approaches to uncovering heterogeneity in latent variable
models. A recent simulation study by Usami et al. (2017) examined the method’s
sensitivity to misspecification in longitudinal models.

11.2.3 Latent Growth Curve SEM Trees

To illustrate SEM trees and how they may help us select important variables
from a set of variables for which we may have little or no prior knowledge on
how they relate to the outcome of interest, we apply them to a latent growth
curve model (LGCM). Within SEM, LGCMs are widely used to capture changes
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in longitudinal data, for example, on human development (Meredith and Tisak
1990; Brandmaier et al. 2015; Muthén and Curran 1997; Ferrer and McArdle
2010). The latent growth curve model assumes individual parametric trajectories
of change for each individual and allows individuals to vary in the parameters of
the trajectory. In contrast to continuous time models, which will be introduced
in the next paragraph, LGCMs can be said to model the overall shape of change
rather than the dynamics of change. Generally, LGCMs are an important statistical
approach to analyze longitudinal data that allows us to capture interindividual
variability in intraindividual change over time or, in other words, between-person
differences in within-person changes. LGCMs can be regarded as factor models of
repeated indicators over time. The fact that the factors represent evolving temporal
processes is why they are also referred to as chronometric factor models (following
the term psychometric factor models in which the indicators are psychological
measurements; McArdle and Epstein 1987). Fixed factor loadings encode different
shapes of change over time; by default a latent intercept factor with constant
loadings and a latent slope factor with loadings represent a linear increase over time.
However, other types of change are possible including polynomial, exponential, or
piecewise definitions of factors; and finally, in fully latent curve models, the loadings
can also be estimated from the data (McArdle 1988; Meredith and Tisak 1990). By
conditioning on hypothesized time-invariant predictors, we can test to what extent
predictors may serve as explanations of individual differences in level or change. For
example, we can explicitly test whether a hypothesized vascular risk factor explains
variance in change of perceptual speed by regressing the latent slope factor on the
risk factor in a LGCM of repeated assessments of perceptual speed.

Here, we use a simple model of linear change to illustrate the utility of SEM trees
to explore predictors of interindividual differences in change. SEM trees and forests
are implemented in the R package semtree by Brandmaier and Prindle (2017),which
can be freely downloaded from the package website (http://brandmaier.de/semtree)
or from CRAN (https://cran.r-project.org/). The package implements all functions
used in this chapter. First, we load some simulated demonstration data shipped
with the semtree package. This data set contains five repeated measurements of
400 persons, of which half were younger (agegroup = 0) and half were older adults
(agegroup = 1). One half of each age group participated in a training program,
whereas the other half served as no-contact control group. The following R code
demonstrates how the semtree package and the example data set can be loaded:

require(semtree)
data(lgcm)
head(lgcm)

The first five rows of the complete data set are shown in Table 11.2.

http://brandmaier.de/semtree
https://cran.r-project.org/
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Table 11.2 First five rows of simulated data provided in the semtree package

o1 o2 o3 o4 o5 Agegroup Training Noise

4.49 3.32 2.71 1.31 0.38 0 1 1

4.91 5.19 4.76 4.85 4.93 0 1 0

4.51 3.49 2.41 0.24 −1.01 0 1 1

4.91 5.19 4.95 4.68 4.72 0 1 0

4.96 5.12 5.39 4.56 4.44 0 1 0

The following code shows how a simple linear LGCM with equidistant measure-
ments (see Fig. 11.2 for an illustration) can be specified using OpenMx:

require(OpenMx)

manifests<-c("o1","o2","o3","o4","o5")
latents<-c("icept","slope")

model <- mxModel("Unnamed_Model",
type="RAM",manifestVars = manifests, latentVars = latents,
mxPath(from="icept",to=manifests,free=FALSE, value=1.0, arrows=1,

connect="single"),
mxPath(from="slope",to=manifests, FALSE,arrows=1,

connect="single", values=0:4 ),
mxPath(from="one",to=latents,TRUE, value=1, arrows=1, label=c

("mu_icept","mu_slope"), connect="single" ),
mxPath(from=latents,connect = "unique.pairs", free=TRUE, value

=1.0, arrows=2, label=c("var_icept" ,"cov_icept_slope","
var_slope") ),

mxPath(from=manifests,to=manifests, connect = "single",
free = TRUE, label="var_residual", arrow=2, value=.1),

mxPath(from="one",to=manifests, free=FALSE, value=0, arrows=1,
connect="single") ,
mxData(observed=lgcm, type="raw") )

In the above model, free parameters are the intercept mean (mu_icept) and
variance (var_icept) and linear slope mean (mu_slope) and variance
(var_icept) and the covariance of intercept and slope (cov_icept_slope)
and the residual error variance (var_residual). Tree construction is simply
done by passing the specified SEM and a data.frame object containing the data
to the semtree()-function:

tree <- semtree(model=model, data=lgcm)

A more fine-grained control over meta-parameters guiding the tree creation process
can be gained by using a control object:

control <- semtree.control(min.N = 50, bonferroni = TRUE, max.
depth = 3, exclude.heywood = TRUE)

tree2 <- semtree(model=model, data=lgcm, control=control)
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Fig. 11.2 Path diagram of a linear LGCM corresponding to the OpenMx model specification.
The model has six free parameters, the intercept mean (μI in the path diagram or mu_icept in
code) and variance (σ 2

S or var_icept), the slope mean (μS or mu_slope) and variance (σ 2
S

or var_slope), the intercept-slope-covariance (σIS or cov_icept_slope), and the residual
error variance (σ 2

e or var_residual). The slope loadings are indicated as definition variables
(labelled T1 to T5), allowing for person-specific intervals between measurement occasions

If no control object is given, the default constructor is invoked. In the above
example, some defaults are overridden: a minimum number of 50 cases is required
to be in a leaf to continue splitting (min.N), Bonferroni correction is applied at
each level when split variables are evaluated for further splitting (bonferroni),
the tree is grown to a depth3 of 3 (max.depth), and Heywood cases, that is, those
in which variances were estimated to be negative, are not considered as valid splits
(exclude.heywood). The semtree package offers various facilities to plot or
print a tree. Useful commands are:

3Computer scientists like to grow trees from top to bottom, so height as a property of a tree is
simply replaced by depth.



11 Recursive Partitioning in Continuous Time Analysis 269

plot(tree)
plot(prune(tree,max.depth=1))
print(tree)
summary(tree)

For large trees, the prune() command is particularly useful as it prunes a tree back
to a desired height given by parameter max.depth. A tabular representation of the
hierarchical decisions encoded in a tree can be obtained with toTable() (e.g., see
Table 5 in Brandmaier et al. 2017), and for LATEXusers, a script-based representation
of a tree based on the pstricks package can be obtained with commandtoLatex().
The resulting tree is illustrated in Fig. 11.3, where we have replaced the numerical

Fig. 11.3 LGCM SEM Tree using sample data from the semtree package. Simulated persons differ
in whether they are young or old and whether they participated in a training intervention. Training
is only predictive of mean differences for old people and shows up as a difference in mean slope,
whereas the age group predicts differences in both intercept and slope
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parameter estimates by randomly drawn trajectories from the leaf models. We can
see from the tree that simulated participants differ in whether they are young or older
and whether they participated in a training intervention. Training is only predictive
of mean differences for older persons and shows up as a difference in mean slope,
whereas the age group predicts differences in both intercept and slope.

Further ways to represent results of SEM trees were shown by Brandmaier et al.
(2017), who presented an empirical application of SEM trees with growth curve
models with both a linear and a quadratic trend to examine terminal decline in
self-reported well-being. Using data from the German Socio-Economic Panel, they
found that health-related and psychosocial factors are most strongly predictive of
individual differences in terminal decline of well-being.

11.3 Continuous Time Modeling

Continuous time models are dynamic models for the analysis of longitudinal data
that adequately account for unequal assessment intervals within as well as across
individuals. As such, they can be considered a generalization of discrete time
models, such as the popular autoregressive and cross-lagged model presented in
Eq. (11.2), in which time is assumed to proceed in discrete steps of Δt = 1 for all
measurement occasions u= 1,. . ., U.

ηu = A∗ · ηu−1 + ζ u (11.2)

The vector ηu ∈ R
v represents v latent variables at measurement occasion u. A∗ ∈

R
v×v denotes the autoregressive and cross-lagged matrix with autoregressive effects

on the main diagonal and cross-lagged effects in the off-diagonals, while ζ u ∈ R
v

represents the discrete time dynamic error term at measurement occasion u.
In contrast to discrete time equation (11.2), time is considered a continuous

variable that ranges over the entire range of real numbers t = 1, . . . , T ∈ R in
continuous time models. The corresponding continuous time equation is obtained
by taking the derivative of vector η(t) with respect to time dη(t)

dt , so that after
multiplication with dt:

dη(t) = (A · η(t)) dt + G · dW(t). (11.3)

Vector η(t) ∈ R
v represents the state of the v latent variables at time point t and

A constitutes the so-called drift matrix, which is the continuous time analog to
the autoregressive and cross-lagged matrix A∗. W(t) denotes the famous Wiener
process, the limiting form of the discrete time random walk, with a continuous time
covariance matrix Q = GGT. Solving Eq. (11.3) for any arbitrary time interval
Δt = t − t0 and starting point t0 yields:

η(t) = exp(A ·Δt) · η(t0)+
∫ t

t0

exp(A · (t − s)) · G · dW(s) (11.4)
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As described elsewhere (Driver et al. 2017; Voelkle et al. 2012; Oud and Jansen
2000), Eqs. (11.3) and (11.4) can be extended easily in various ways, such as
the inclusion of intercepts, time-invariant predictors, or time-varying predictors.
Furthermore, η(t) may be directly observed or may be latent with standard
(LISREL) measurement model:

y(t) = �η(t)+ τ + ε(t) (11.5)

where y(t) ∈ R
c denotes c manifest variables, � ∈ R

c×v the factor loading matrix,
τ ∈ R

v the vector of manifest intercepts, and ε(t) ∈ R
v the manifest error terms.

As illustrated above and discussed in more detail in Voelkle et al. (2012) and Oud
and Delsing (2010), discrete and continuous time models can be formulated easily
as structural equation models. Although in principle any SEM software with basic
programming functionality, such as the matrix exponential function, may be used
to fit continuous time models, the R package ctsem (Driver et al. 2017) provides a
particularly user-friendly way for model specification and estimation, along with
additional features to ease the process. The ctsem package interfaces either to
OpenMx (Neale et al. 2016), a powerful package for extended SEM, or to the Stan
software (Stan Development Team 2016) for Bayesian estimation. For the purpose
of the present paper, we will focus on the SEM implementation via OpenMx. As
will be demonstrated in the next section, this makes it possible to apply the SEM
Tree algorithms implemented in the package semtree to continuous time models
specified via ctsem.

11.4 Continuous Time SEM Trees

Combining the benefits of continuous time models and SEM trees allows us
to explore predictors of differences in dynamics. In practice, the combination
of continuous time modeling and SEM trees is straightforward, because both
approaches rely on model specifications in OpenMx (among available alternatives,
such as lavaan specification in semtree or Stan in ctsem). Using the strengths of
both R packages, we can relatively easily set up CT SEM trees in the following
way. First, we use the ctsem package as frontend for model specification. Then, we
unwrap the internal OpenMx model specification and pass it to the semtree package
as a template model. In the following, we illustrate how this can be done using a
simple example.

First, we create a model for an univariate Gaussian process with a single indicator
measured repeatedly at 100 time points.

model <- ctModel(n.latent = 1, n.manifest = 1, Tpoints=100,
+ LAMBDA = diag(1));
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With n.latent=1, we specify a single process, measured with a single manifest
variable (n.manifest) and loading fixed to one (LAMBDA=diag(1)). Freely
estimated parameters in this model are the residual error variance, the drift
parameter (corresponding to the autoregression in discrete models), the process
mean and variance at first occasion of measurement, and the diffusion parameter
(variance of the innovation term in discrete models).

Note that naming conventions in ctsem require wide-format data columns to
adhere to a format, in which the repeatedly measured variable name is followed
by an underscore and “T,” followed by an integer denoting the index of the
measurement occasion, where the first measurement occasion has the index 0.

We estimate parameters for the complete sample from some data (assumed to be
in a data.frame called data) by running:

result <- ctFit(data, model, transformedParams=FALSE)

Setting transformedParams=TRUE adds internal parameter transformations
such as logarithmic transformations of variances so that variances are always larger
than zero. When parameters are transformed, SEM Tree results will constrain the
transformed parameters in the leaves, that is, parameters must be retransformed
manually. Second, it is important that the data contain only columns corresponding
to the observed time points and time lags (see Driver et al. 2017, for a tutorial on
preparing data for ctsem). Next, we unwrap the OpenMx model specification, the
data as processed by ctFit, and merge the data with the potential predictors (here
assumed to be in a data.frame called covariates):

semtree.model <- result$mxobj
semtree.data <- semtree.model$data@observed
semtree.data$id <- rownames(semtree.data)
merge(semtree.data, covariates, by="id")

Finally, we run the semtree as described before:

tree <- semtree(model = semtree.model, data = semtree.data)

11.5 CT SEM Trees to Explore Dynamics in Perceptual
Speed

To illustrate the utility of CT SEM trees, we applied CT SEM trees to data from the
COGITO study (Schmiedek et al. 2010). In this study, the authors examined whether
intensive cognitive training in one hundred daily sessions would enhance broad
cognitive abilities. In the study, 101 younger (age, 20–31 years; M = 25 years)
and 103 older participants (age, 64–80; M = 71 years), practiced multiple tests
of perceptual speed, working memory, and episodic memory in 100 daily sessions,
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Fig. 11.4 Measurement density in the COGITO study. The x-axis displays time in days relative to
the start of the study; the y-axis displays the individual participants. Time intervals considerably
differ within and between persons. Also note the large gap common to all participants caused by
the Christmas break. Continuous time models readily account for such unequal time intervals in
the statistical analysis

each lasting 1 h. Participants performed 12 tasks in each session assessing working
memory, episodic memory, and perceptual speed. To balance cognitive challenge
and motivation, difficulty levels were adapted based on pretest performance. The
COGITO data illustrate the exigent need for appropriate modeling of individual time
points of measurement. Figure 11.4 shows all 204,000 individual measurements
distributed over time. We can observe large differences between and within persons,
with some individuals’ 100 measurements stretched over up to 500 days. By the
same token, there are stretches of time with no or few measurements, for example,
the Christmas break, which appears as a clearly visible gap in Fig. 11.4 along with
other regular gaps corresponding to weekends or holidays.

For this chapter, we focus on the perceptual speed comparison tasks, which
were presented in three different perceptual domains: figural, spatial, and numerical.
Participants had to indicate as quickly as possible whether two presented items were
identical. Figure 11.5 (left panel) shows three exemplary reaction time trajectories
aligned to the first day of measurement for three different participants. Here,
we examine the question to what extent individual differences in response time
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Fig. 11.5 Left: response time dynamics of three different participants in the COGITO study in
deciseconds. Trajectories were derived as mean response times across all trials from a single day.
Note the pronounced differences in time lags between measurement occasions and across persons.
Right: three randomly sampled trajectories from the dynamic continuous time model we used to
fit the COGITO data. The model includes three latent processes, which capture the within-person
dynamics, stable between-person differences, and a saturating trend

dynamics over the course of 100 days of cognitive training can be predicted by sex
(0 = men), age group, personality (Big Five), positive or negative affect (PANAS;
see Watson et al. 1988), or stress (see Cohen et al. 1983). We aggregated response
times as median response time over all trials of each day. From this response time
trajectory, we performed a person-specific outlier removal procedure that removed
days for which the median response time over trials was more than three standard
deviations below the mean response time across all days. We also removed all days
on which the median response time over trials was lower than a fixed threshold
of 250 ms. Before model fitting, we rescaled response times by a factor of 1/100
such that reported parameter estimates are in units of deciseconds (i.e., to obtain
estimates in milliseconds, one needs to multiply estimates by 100). Individual sum
scores were computed for all ten positive affect items, all ten negative affect items,
and all stress items.

Computation time can be reduced by requiring ctsem to use OpenMx’s state
space representation, which allows parameter estimation with the more efficient
Kalman filter (see Driver et al. 2017). To speed up processing, we discretized
predictors based on quartiles of their distributions, which reduced computation time
by an approximate factor of 30 but, of course, comes at the risk of missing more
informative split points in each variable. The longitudinal dynamics are modeled as
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a superposition of three latent processes: the first process captures the within-person
dynamics, the second process stable between-person differences, and the third
process models a saturating trend. The latter is necessary to account for the general
decline in the overall response times across the entire study period. In the model
specification provided below, the first process, daily fluctuations, is represented by
a diffusion parameter (diffusion1), a drift parameter (drift1), and an initial
variance parameter (stationary). The initial variance parameter is not estimated,
but deterministically set to ensure stationary variance for this process, avoiding
potential overfitting issues. The second process has no drift and no diffusion,4

but encodes stable interindividual differences, that is, the process is equivalent
to a random intercept term (traitvar). The third process is represented by a
drift coefficient (trenddrift), no diffusion, an average trend (trend_cint),
and individual differences in this trend (t0trendvar). Furthermore, the trend
and trait process are allowed to covary (traittrendcov). The right-hand panel
in Fig. 11.5 illustrates the dynamics of this model with three selected individual
trajectories.

model<-ctModel(type='omx',Tpoints=100,n.latent=3,n.manifest=1,
manifestNames="rt",

DIFFUSION=matrix(c('diffusion1',0,0,
0,.0001,0,
0,0,.0001),3,3),

DRIFT=matrix(c('drift1',0,0,
0,-.00001,0,
0,0,'trenddrift'),3,3),

T0MEANS=matrix(c(0,0,0),ncol=1),
CINT=matrix(c(0,0,'trend_cint'),ncol=1),
T0VAR=matrix(c('stationary',0,0,

0,'traitvar','traittrendcov',
0,0,'t0trendvar'),3,3),

LAMBDA=matrix(c(1,1,1),ncol=3))

Figure 11.6 shows the resulting SEM Tree. We find that age group is at the
root and is thus the most informative unconditional split. Conditional on the
first split, we find extraversion for the younger and positive affect for the older
participants to be the most informative next splits. Further conditioning on low
and moderate extraversion (leftmost branch in Fig. 11.6), sex is the next best
predictor for young adults, whereas conditional on high extraversion, positive affect
is the next best predictor for young adults. For older adults with low positive
affect, conscientiousness is the next best predictor, and for those with high positive
affect, extraversion is the best predictor. It can be seen that four of the eight leafs
(node ids #7, #8, #14, #15) are determined by participants’ age, positive affect,
and extraversion, which seem to contribute largely to predictions of individual
differences in dynamics. For the remaining four leafs (node ids #4, #5, #11, #12),
it is either extraversion or positive affect and sex or conscientiousness. As further

4For numerical reasons, zero diffusion and drift parameters are fixed to very small non-zero values.
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Table 11.3 Parameter estimates across the leaves of the CT SEM Tree

4 5 7 8 11 12 14 15

drift1 −0.005 −0.003 −0.132 −0.020 −0.009 −0.008 −0.009 −0.018

trenddrift −0.682 −0.412 −0.016 −0.679 −0.379 −0.862 −0.095 −0.908

manifestvar_rt_rt 2.340 1.533 8.398 1.485 1.304 0.987 2.032 1.308

diffusion1 0.121 0.054 0.633 0.149 0.055 0.053 0.099 0.079

traitvar 1.234 0.547 19.031 7.022 9.397 9.338 0.000 6.608

traittrendcov −1.456 −1.148 −20.304 −1.754 −0.643 −1.865 0.000 0.877

t0trendvar 1.719 2.411 30.436 0.438 6.368 2.865 4.454 1.380

trend_cint −0.945 −0.511 −0.063 −0.824 −0.065 −0.573 0.013 −0.310

manifestmeans_rt 14.249 13.831 16.967 13.427 22.021 21.071 22.479 21.312

Rows correspond to parameters and columns correspond to numbered leafs

apparent from the parameter estimates given in Table 11.3, we obtain subgroups
with differences in all model parameters. Maybe most striking are the rather
high within-person temporal dependencies in reaction times across study days
as evidenced by drift1 coefficients close to zero. So, when subjects deviate
from their general trend, they tend to remain that way. In this regard, only young
adults with high levels of extraversion but low levels of positive affect are a slight
exception. As compared to the others, this group exhibits a substantial amount
of variability, not only at the within-person level (manifestvar_rt_rt and
diffusion1) but also at the between-person level (traitvar). Given this
specific combination (young adults, high levels of extraversion and low levels of
positive affect), a greater variability in reaction times seems reasonable. However,
we hasten to add that the present analyses are primarily for illustrative purposes and
that further research is necessary before the resulting pattern of parameter estimates
can be interpreted substantially.

11.6 From Trees to Forests

A particular challenge with decision trees that was identified early on is their
potential instability. Instability refers to the observation that decision trees may
vary slightly and are sometimes considerably different if the sample at hand is only
marginally changed. We saw this effect, when we (Brandmaier et al. 2013b) looked
at longitudinal data obtained with the Wechsler Scale of Intelligence (McArdle
and Epstein 1987). We created a SEM tree to discover predictors of developmental
differences in children’s verbal performance. After we created a SEM tree using a
linear LGCM, we bootstrapped the original data and created a tree on each bootstrap
iteration. The individual bootstrapped trees looked slightly different each time.
Whereas mother’s education was the strongest predictor in the original tree using
the complete sample, father’s education would sometimes show up as first split, and
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mother’s education would either be a subsequent predictor or not show up at all.
Generally, when highly correlated predictors compete for a split in the tree, only
one of them can be chosen, which may lead to situations where the other predictor
does not even show up in any of the subsequent splits. Second, by using a “greedy”
(i.e., locally optimal) search strategy to retrieve optimal predictors, a tree finds one
particular conditional structure although alternative tree structures may explain the
outcome equally well or even better (the locally optimal strategy may not represent
the global optimum). How can we handle this problem in a sensible way? Recently,
Brandmaier et al. (2016) extended SEM trees to SEM forests to address the issue of
tree instability. The idea behind SEM forests is again simple and straightforward,
drawing upon the seminal work on random forests by Leo Breiman (2001). In
random forests, instead of relying on a single tree, multiple trees from random
samples of the original data set are created. In machine learning, this is referred
to as an ensemble technique. The random samples create diversity among the trees.
To further increase diversity, one further subsamples the available predictors each
time the tree is branched. Therefore, all variables (independent of their total impact
on the outcome or on their interrelation with other predictors) have a chance to enter
some of the trees, at least occasionally. Brandmaier et al. (2017) demonstrated the
utility of model-based forests for modeling terminal decline in well-being. They
used data from the nationwide German Socio-Economic Panel (SOEP) to explore
the association of constellations of diverse survey variables with changes of well-
being in the last years of life. The authors used a latent growth curve model,
similar to the one in our simulation, with an additional latent factor representing
acceleration in change by setting factor loadings such that they represent quadratic
change and thus curvature of well-being trajectories. In a single tree, they found
objective health-related indicators interacting with social participation (frequency
of involvement in social and cultural activities). The single tree allowed plotting
of group-average trajectories based on health and social participation status, and
the forest corroborated these results when the importance of predictors was rank-
ordered. Growing SEM forests can be done with the semforest()-function of
the semtree package:

forest <- semforest(model = semtree.model, data = semtree.data)

SEM forests usually consist of hundreds or thousands of individual trees. This
makes their visual inspection and interpretation more difficult, if not impossible.
Instead, one typically relies on aggregate measures such as variable importance
(Brandmaier et al. 2016). Variable importance is based on random permutations
of the out-of-bag samples of the individual trees (i.e., the part of the data not used
to build each particular tree) and quantifies, for each variable, the average reduction
of uncertainty about the model-predicted distribution after permutation. If a certain
predictor is not important for predicting the multivariate outcome, permutations of
that predictor should only marginally increase the uncertainty about the outcome,
whereas the permutation of important predictors will show a large increase of
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uncertainty (expressed as model misfit in a χ2-metric). For a given forest, variable
importance is computed and plotted as follows:

vim <- varimp(forest)
plot(vim)

11.7 Conclusions

SEM trees and forests address the problem of variable selection (or “feature
selection” in machine learning parlance). The central premise in feature selection
approaches is that the full data set contains irrelevant variables that can be ignored
because they add no information to answer a particular prediction problem. A typical
goal in feature selection is to select a small subset of variables from a large set
while granting optimal (up to some threshold) predictive accuracy of the model.
The overarching, more general theme is model selection that is the general problem
of selecting between different models (that may or may not differ in the number
of variables they rely on, but may be further distinguished by fit functions or other
statistical properties of the method). Trees and even more so (random) forests have
proven a useful data-analytic tool in practice. When comparing a large number
of data-driven statistical learning approaches (including support vector machines,
linear discriminant analysis, regularized regression), Fernández-Delgado et al.
(2014) found that, on average, random forests had the best performance in predicting
outcomes when no prior information was available. Like any other exploratory
method, however, trees make certain assumptions that limit the approach. For
example, the recursive approach to growing a tree makes locally optimal selections
(i.e., splits are selected that are optimal given the current structure of conditional
effects), but a set of locally optimal selections does not necessarily yield the globally
optimal result. In other words, there may be trees that perform better in some chosen
metric (e.g., R2 or Kullback-Leibler divergence to the population distribution), but
they may feature variables along the way that are not locally optimal. However,
searching all possible trees is a combinatorially difficult problem that in most
practical cases can only be approximated but never solved exactly. Second, with
their focus on interactions, trees are an inefficient structure if there are only weak
interactions and/or many independent main effects. Relatedly, if there is only a
conditional effect of two variables but no unconditional effect (in ANOVA language,
an interaction but neither of the two main effects), a single tree will not be able to
recover the structure since it will select neither of the two variables in the first place.
Third, trees can, in theory, approximate arbitrary, nonlinear, and even noncontinuous
associations between predictors and outcomes; however, if the association is linear,
the hierarchical approximation with a set of dichotomous splits is inefficient, and the
underlying linearity is hard, if not impossible, to guess from a given tree structure.
All of the above problems are mitigated in random forests and SEM forests due
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to the resampling of trees, which allows one to search a much larger space of
alternative hypotheses.

When embarking upon data-driven, that is, exploratory data analysis, researchers
need to make sure that they do not overfit the data and thus jeopardize the gener-
alizability of their findings. When we carefully adjust for the level of overfitting
to the data (e.g., Brandmaier et al. 2013a,b), SEM trees provide a formal venue
to search large sets of heterogeneous predictors from different domains for the
most influential effects on a hypothesized model while maintaining generalizable
results. Statistical control for overfitting is possible in various ways, including
cross-validation (i.e., using independent subsets of the original data for hypothesis
generation with a tree and hypothesis confirmation with the resulting SEM),
conservative statistical tests with correction for multiple testing, or pruning of
overfitted trees using a holdout set. Generally, we advise researchers to report results
of a SEM Tree as exploratory, and we recommend validating exploratory results on
an independent data set, preferably custom-tailored to the hypothesized effect.

In the process of scientific inquiry, trees and forests support researchers in
generating novel hypotheses and challenging established theory-driven models (see
Brandmaier et al. 2016). The flexibility of SEM as a general modeling framework
for various research designs and hypotheses, and the flexibility of trees and forests to
account for diversity of predictors, makes the method suitable as an “off-the-shelf”
tool for exploratory data analysis after a first step of theory-driven, confirmatory
modeling.

In the present chapter, we have shown how to combine recursive partition-
ing techniques with dynamic continuous time models. This combination became
possible because of two recent developments: first, by the extension of recursive
partitioning techniques to the broad class of structural equation models (i.e., SEM
trees) and the possibility to formulate and estimate continuous time models as
SEM and, second, through recent software developments to fit SEM trees/forests
and continuous time models (i.e., semtree and ctsem). Since both approaches
operate in the same SEM framework and can interface to a common software
package (OpenMx), the combination is theoretically straightforward and easy to
implement. While the present chapter is the first to introduce continuous time
SEM trees to the literature, additional testing of the method will be necessary
in future work. Both SEM trees and SEM-based continuous time models can be
computationally challenging, and their combination is likely to exacerbate this
problem. Nevertheless, we believe continuous time SEM trees hold a lot of potential
for applied research targeting better understanding of mechanisms of change in
heterogeneous samples. The door is open to explore this potential.
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Chapter 12
Continuous versus Discrete Time
Modeling in Growth and Business Cycle
Theory

Omar Licandro, Luis A. Puch, and Jesús Ruiz

12.1 Introduction

The time dimension is of fundamental importance for macroeconomic theory, since
most macroeconomic problems deal with intertemporal trade-offs. In modeling
time, economists move from discrete to continuous time according to their method-
ological needs, as if both ways of representing time were equivalent. For example,
growth theory is mainly written in continuous time, but business cycle theory is to a
large extent written in discrete time. However, they refer to each other as being two
pieces of the same framework.

The view that continuous and discrete time representations are equivalent is
mainly supported by limit properties: the discrete time version of the standard
dynamic general equilibrium model does converge to its continuous time represen-
tation when the period length tends to zero. However, this view hides a fundamental
problem of timing. In continuous time, investment at time t becomes capital at time
t+dt . The discrete time equivalent is that period t investment transforms into capital
at period t+1. Thus, the speed at which investment becomes capital depends directly
on the length of the period, and this is of fundamental importance as far as one deals
with intertemporal trade-offs. Also, there is the issue of self-fulfilling prophecies in
dynamic equilibrium models for which business cycle fluctuations may be driven by
beliefs or animal spirits. A sunspot shock can be defined over the parametric space
for local indeterminacy of equilibria, which in turn may critically depend on the time
dimension as far as we set empirically plausible parameterizations for the model.
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Our discussion in this paper is mostly related to these two issues in macroeconomic
dynamics.

Several authors have exploited these fundamental differences to study the
properties of discrete versus continuous time models. The classical references
discuss differences between discrete and continuous time representations arising
from uncertainty (cf. Burmeister and Turnovsky 1977) or adjustment costs (cf.
Jovanovic 1982). Later on, Carlstrom and Fuerst (2005) focus on determinacy in
monetary models, or Hintermaier (2003) and Bambi and Licandro (2005) on the
dependency of the conditions for indeterminacy on the frequency of the discrete
time representation of the model of Benhabib and Farmer (1994). Key ingredients
for local indeterminacy typically relate to some form of market friction such as
either imperfect competition (increasing returns to scale in production or market
power in trade) or externalities (own production or consumption depends on other
agents’ in the same or the other side of the market).

Finally, there is a literature that looks to models in continuous time with discrete
elements. Benhabib (2004) builds upon distributed lag structures to make the pure
continuous time and discrete time frameworks emerge as special cases of a system
of differential equations with delays. Anagnostopoulos and Giannitsarou (2013)
propose a general continuous time model where certain events take place discretely,
whereas Licandro and Puch (2006) use optimal control theory with delays to
characterize the gap between discrete and continuous time models. As these authors,
we discuss next a general framework where the pure continuous time and discrete
time representations emerge as special cases. Different from them, we stress the
unified framework provided by optimal control with delays. See Kolmanovskii and
Myshkis (1998) and recent applications by Boucekkine et al. (2005), Licandro et al.
(2008), and others.

Before using optimal control with delays, we introduce continuous and discrete
time representations in a standard macroeconomic framework. We start with a
baseline description of continuous versus discrete time modeling in growth and
business cycle theory. To this purpose, we introduce the Solow growth model and
the Ramsey model of the business cycle together with a description of the economic
equilibrium. This description follows selected sections in Farmer (1999) or Novales
et al. (2008). Then we turn to the issue of local indeterminacy in a canonical growth
model of the environment which is subject to a pollution externality building upon
Fernández et al. (2012). We show with a simple illustration that the time period of
the model critically modifies its parameterization and thus the empirically plausible
space for local indeterminacy. This leads to differences in transitional dynamics that
are quantitatively meaningful. Finally, with a time-to-build example, we show that
the discrete time representation of the standard optimal growth model implicitly
imposes a particular form of time-to-build to the continuous time representation.
Time-to-build in discrete time is analyzed by Kydland and Prescott (1982). An
alternative version with this assumption in continuous time is in Asea and Zak
(1999) and Collard et al. (2008). Here we show that the discrete time version is a
true representation of the continuous time problem under some sufficient conditions.
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The organization of the paper is as follows. We start by introducing a simple
dynamic system that has proven useful to discuss questions in economic growth
theory. Thus, Sect. 12.2 describes the Solow growth model in continuous and
discrete time and their uses. Then we move forward to the use of optimal control
theory and the concept of competitive equilibrium. Doing so, we describe the
Ramsey model for the business cycle in Sect. 12.3, and the description is both in
continuous and discrete time. Section 12.4 discusses some of the consequences of
the differences in the time dimension for indeterminacy, and we focus on steady
states and transitional dynamics. In Sect. 12.5, we propose a time-to-build extension
of the theory by using optimal control theory with delays. Section 12.6 concludes.

12.2 The Solow Growth Model

The workhorse of economic growth theory is the Solow model in discrete time (cf.
Solow 1956). The Solow growth model is characterized by the following set of
equations:

Yt = F(Kt ,AtLt ),

Kt+1 = (1 − δ)Kt + It , K0 = K̄0,

It = s Yt , 0 < s < 1,
At = γ tA0, γ ≡ 1 + g > 1, A0 = Ā0,

Lt = 1, (might be Lt = γ t
L L0).

(12.1)

The key assumptions are (1) savings (equal to investment, It ) are a constant fraction,
s, of output, Yt , and (2) F(•) is a neoclassical production function in capital,
Kt, and labor, Lt, where At represents the state of the production technology. In
particular, let kt = Kt

AtLt
and F(•) homogenous of degree one; then the equilibrium

of the model is described by

γ kt+1 = (1 − δ)kt + s f (kt ), (12.2)

a first-order nonlinear difference equation. Note F(•) neoclassical implies f ′(k) >
0, f ′′(k) < 0, ∀k > 0, and we further assume lim

k→∞ f ′(k) = 0 , lim
k→0

f ′(k) =
∞. Figure 12.1 summarizes the equilibrium of the Solow growth model written in
efficiency units, k,withA0 = 1 so that yt = kαt corresponds to Yt = Kα

t (AtLt )
1−α .

Even in this simple representation of an economic model with dynamics induced
by the accumulation of a stock (of physical capital Kt in this case), there is already
an important approximation. Such an approximation comes from the fact that the
definition of the capital stock is primarily established from cumulative investment
in continuous time and not in discrete time. Therefore

K(t) =
∫ t

−∞
I (s) e−δ(t−s)ds, (12.3)
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Fig. 12.1 The steady-state solution and the dynamics of the Solow growth model in discrete time,
with kt+1 = η

[
(1 − δ) kt + s kαt

] ≡ g(kt ), where η = 1/(1 + g) and k∗ = kss

with the additional simplifying assumption here that investment in different capital
vintages can be added up at an exponential price q(s) ≡ e−δ(t−s), a simplification
that is labeled the law of permanent inventory and corresponds to the assumption of
exponential depreciation at the rate δ.

If this is the case, the accumulation of physical capital in continuous time is
described by

K ′(t) = I (t) − δK(t), (12.4)

a differential equation whose solution is the integral equation (12.3) above, as it can
be obtained from direct differentiation of the integral equation. With (12.4) rather
thanKt+1 = (1− δ)Kt + It , one arrives at the continuous time version of the Solow
model, with all the rest of the system (12.1) remaining the same as above, provided

A(t) = A(0) eg t , g > 0, note above γ = (1 + g),

L(t) = 1 for instance, and with the assumptions above,

are defined correspondingly. Consider further again k(t) = K(t)
A(t) L

. Then

k′(t) = s f (k(t))− (δ + g) k(t) (or k̇t = s f (kt )− (δ + g) kt , with k̇t ≡ k′(t)),
(12.5)

describes now the equilibrium of the model in continuous time: a first-order
nonlinear differential equation. Notice the use of the two alternative notations in
continuous time (more on this below).

Regarding the solution of the equilibrium representation in (12.5), we know
that under f (k(t)) = k(t)α, and with defined z(t) ≡ k(t)1−α, it is obtained that
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z(t) = (z(0)− z̄) eφ t , φ = −(1 − α) (δ + g), by guessing z(t) = c eφ t + z̄,

with z̄ = s/(δ + g). Unfortunately, there is no exact solution for the discrete time
case. Thus, the discrete time assumption involves not only a key approximation in
the specification of the model but also an approximation in obtaining the solution
of (12.2) either recursively from an initial condition or by linearizing about the
steady state.

All in all, dynamic economic models in continuous time form the basis for
economic growth theory, as far as those models are more analytically tractable
that their discrete version counterparts. However, the discrete time version of the
models has a clear advantage when it comes to the issue of bringing the model to
the data. The full characterization of the dynamics in discrete time often involves
linear approximation about the steady-state solution though. Precisely, the steady-
state kss is found from solving Eq. (12.2) irrespective of time:

(γ + δ − 1)kss = s f (kss).

Notice that if kt converges to kss, then Kt converges to a trend. One can then
(log-)linearize around kss to obtain (one may further consider linearization versus
log-linearization):

k̂t+1 � (1 − δ)+ s fk(kss)

γ
k̂t ,

where k̂t ≡
(
kt−kss
kss

)
� log kt−log kss , and therefore, backward substitution implies

(from an approximated convergence result as before)

log kt+1 − log kss � at (log k0 − log kss),

where a = (1−δ)+s fk(kss)
γ

(a < 1 since f (•) is concave). Figure 12.2 illustrates
again the equilibrium relation, g(k), as it corresponds to representation (12.2) above,
together with a linear approximation around its steady state. Richer approximations
will allow us to characterize equilibrium dynamics of growth models also in a
stochastic environment and with arbitrary precision. Indeed, one can consider a
version of system (12.1) above, but now stochastic with,

Yt = υt F (Kt ,AtLt ), υt ∼ D [A,B] ,

whereD [A,B] represents the probability distribution of υt . The equilibrium of the
stochastic growth economy is then

γ kt+1 = (1 − δ)kt + υt s f (kt),

and (γ + δ − 1)kss = ῡ s f (kss) is the steady state, provided ῡ ≡ E [υt ].
Further parameterization of the shock process υt may be required for business
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Fig. 12.2 The policy function g(k),with kt+1 = η
[
(1 − δ) kt + s kαt

] ≡ g(kt ),where η = 1/(1+
g) and k∗ = kss , and a linear approximation

cycle purposes. For instance, Fig. 12.3 depicts simulated output under θt kαt with
θt = θ̄1−ρ θρt−1 εt , so that log εt ∼iid N(0, σ 2

ε ) and ρ is the persistence parameter
of the process. The example suggests that it makes sense to think of fluctuations
as caused by shocks to productivity of a neoclassical growth economy, in a richer
environment though.

Summarizing, we have presented here the basic framework of the Solow growth
model to show that the issue of continuous versus discrete time representation arises.
We have also revised the basic methodology to deal with the model and its solution,
introducing the issue of linear approximation to nonlinear models in discrete time
around stable steady states. The interested readers may refer to Farmer (1999)
and Novales et al. (2008) for further details. Next we introduce optimization and
economic equilibrium in the framework of the Ramsey growth model as the building
blocks of modern business cycle theory while focusing on the consequences for
policy functions and equilibrium determination of changes in the frequency of
decisions in the model.
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Fig. 12.3 An example of output fluctuations in the stochastic Solow model: output values around
the deterministic steady state over 500 periods. Parameters: α = 0.36, g = 0.02, δ = 0.1, s =
0.25, ρ = 0.95, σε = 0.01

12.3 The Ramsey Model and the Business Cycle

Rather than assuming that savings are a constant fraction of income as in the Solow
model, now it is assumed that there exists a representative household that confronts
a consumption-saving trade-off in discrete time. Moreover, it is assumed that such a
representative household orders infinite sequences of consumption streams by using
a well-behaved felicity function given by U(ct ), such that U ′(ct ) > 0, U ′′(ct ) <
0, ∀ct > 0, according to

∞∑

t=0

βtU(ct ), β ∈ (0, 1),

where β is the subjective discount factor of the household and captures its degree
of impatience in discrete time. Again we abstract from population growth, and we
consider L = 1. Also, we abstract from exogenous technical progress At, and
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we assume that technology frontier is given by some f (kt ), under the regularity
conditions above.

Without loss of generality, let us specify the problem of a representative
household that takes the decision to invest in physical capital in a centralized
framework. Thus,

kt+1 − kt = f (kt )− ct − δkt , (12.6)

and therefore, the decision problem of the social planner in discrete time can be
written as

max{ct , kt+1}
∞∑
t=0

βtU(ct )

subject to (12.6), and given k0.

(12.7)

The assumption of a representative household is more general than it first appears,
and there are conditions under which the market allocation with many agents
can be achieved by a social planner. This result can be established by using the
two fundamental theorems of welfare economics (cf. Debreu 1959). At this point,
however, it just allows us to focus on quantities and abstract from market prices.
Later on, when necessary, we will be more precise on the type of market economy
that supports the centralized problem at hand. This implies, in the case of the
economy we are describing here, that a social planner maximizes the preferences
of the representative household subject to the feasibility constraint of the economy.

The key issue here is that the dynamic optimization approach breaks the tight
connection between output and savings in the short run, the one that we had in the
Solow growth model. The discrete time framework allows us to bring the model to
the data. These two elements have made some elaborated extensions of the model
in (12.7) to form the basis for the theory of business cycles. Thus, according to
modern business cycle theory, if productivity shocks are persistent and of the right
magnitude, business cycle fluctuations are what growth theory predicts. It is the case
though that, for a given volatility of the exogenous state and then of the endogenous
state, the volatility of the control variable differs with the frequency of decisions in
the model. Next, we illustrate this issue in the basic Ramsey model in continuous
versus discrete time.

Let us characterize further the problem (12.7) above. The first-order conditions
of this problem are given by

U ′(ct ) = λt ,

λt = λt+1β
[
f ′(kt+1)+ 1 − δ

]
,

lim
T→∞ λt+T kt+T+1 = 0,
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all t ≥ 0, where λt is the shadow price in utility units of a unit of capital at time t .
From the first-order conditions, the standard Euler equation condition is obtained:

U ′(ct )
βU ′(ct+1)

= 1 + r(kt+1) (12.8)

where we are assuming that the return to capital is just the extra output that the
economy gets from an extra unit of capital, that is, r(k) = ∂[f (k)−δk]

∂k
= f ′(k)− δ.

The continuous time version of the problem basically involves the discount
factor, β = 1/(1 + ρ), where now ρ is the subjective discount rate, and the
approximation of first differences by derivatives, that is,

U ′(ct+1)− U ′(ct ) � U ′′(ct ) ċt , since lim
dt→0

U ′(ct+dt )−U ′(ct )
dt

= U ′′(ct ) ċt ,
kt+1 − kt � k̇t .

Here we are introducing as in (12.5) the notation ẋt ≡ x ′(t) that we will use for
the rest of the paper and that correspondingly substitutes the notation x(t) by the
notation xt to be used both in continuous and discrete time, except for Sect. 12.5
below where we combine both ẋt and x(t − d).

Consequently, the Euler equation (12.8) and the aggregate resource con-
straint (12.6) are, respectively, transformed into

1

β(1 + r)
= 1 + U ′′(ct )

U ′(ct )
ċt →︸︷︷︸

1
β(1+r)= 1+ρ

1+r �1+ρ−r

U ′′(ct )
U ′(ct )

ċt = ρ − r (12.9)

k̇t = f (kt)− ct − δkt , (12.10)

where we assume that ρ and r are “small.” Clearly though, the smaller the time
period, the worse the approximation. However, given the approximations above,
Eqs. (12.9) and (12.10) are exactly the optimality conditions of the continuous time
problem

max{ct }
∫ ∞

0 e−ρt U(ct )dt

subject to (12.10), and given k0,
(12.11)

and obtained from direct application of optimal control theory in problem (12.11).
Beyond the precision of the approximation, the policy function of the discrete

time version of the problem can be quite different from the policy function of the
continuous time version. We can consider as an example the analytical case, that
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is, the case of full depreciation (δ = 1), and logarithmic utility, U(c) = log c. We
further retain the assumption of a quasi-Cobb-Douglas production function in k,
that is, f (kt ) = Akαt . Under such a parameterization, in the discrete time version of
the model, it is immediate to obtain the policy function, which is of the form

ct = (1 − αβ)Akαt . (12.12)

On the other hand, by implementing a linear approximation around the steady-
state solution to the optimality conditions of the discrete time problem, the policy
function would be

ct = css +
(

1
β

− μ2

)
(kt − kss),

where kss = (Aαβ)
1

1−α , css = (1 − αβ)Akαss, μ2 =

(
1+α2β
αβ

)

−
[(

1+α2β
αβ

)2

−4 1
β

]1/2

2 .

(12.13)

Such a policy function is obtained by imposing the stability condition that cancels
the eigenvector associated to the unstable eigenvalue of the dynamical system
formed by the linear approximation around the steady state of the aggregate resource
constraint and the Euler equation. Also, notice that the solution to the Ramsey
problem for the feasible parameter space is of the saddle form, that is, it is a
determinate solution.

Finally, by implementing a linear approximation around the steady-state solution
to the optimality conditions of the continuous time problem, the policy function
obtained from eliminating the unstable manifold is

ct = css − h
μ2
(kt − kss)

where kss = (Aαβ)
1

1−α , css = (1 − αβ)A kαss, h = 1+ρ−α
α

(1 − α)(1 + ρ),

μ2 = ρ−[
ρ2+4h

]1/2

2 .

(12.14)

Figure 12.4 depicts all three representations of the policy function in a phase
diagram. The differences between the solutions in discrete versus continuous time
are apparent. In particular, it is shown that at a given volatility in the state variable,
the control variable fluctuates more in continuous time than in discrete time.
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12.4 Indeterminacy of Equilibria in Continuous and Discrete
Time

The dynamic properties in discrete time versions of continuous time models can
fundamentally differ, particularly when the time domain at which agents take
decisions differs. Convergence speeds to long-run equilibrium significantly differ
between continuous and discrete time versions, the shorter the model period. This
section builds upon Fernández et al. (2012) to show that transitional dynamics of
pollution differ significantly, the model being written in either continuous or discrete
time and in the latter case with the amplitude of the model period.



294 O. Licandro et al.

12.4.1 A Model of the Environmental Kuznets Curve

Fernández et al. (2012) study the existence of an environmental Kuznets curve
(EKC), the hypothesis being that with development pollution goes up first and
then down, associated to a neoclassical growth model with a pollution externality.
The pollution externality goes into the utility function of the households, and it
is shown that the non-separability in household preferences for consumption and
pollution is crucial for the indeterminacy result to arise. Moreover, it is necessary for
indeterminacy that the concern for the environment is large enough. Thus, both non-
separability and enough environmentalism are needed for an environmental Kuznets
curve pattern to be present.

The EKC result implies that economic growth could be compatible with envi-
ronmental improvement if appropriate policies are taken. But before adopting a
policy, it is important to understand the nature and causal relationship between
economic growth and environmental quality, where the key question is whether
economic growth can be part of the solution rather than the cause of environmental
problem. In this section, we sketch the environment in Fernández et al. (2012) and
their main result, with a focus on the fact that the predictions of the theoretical
model vary substantially with the length of the model period which is typically
large, particularly when analyzing climate issues in economic models.

In the model economy, there is a continuum of identical competitive firms that
maximize profits from operating a neoclassical technology. Thus,

max{nt ,kt }
yt − ωtnt − rtkt − τP kt

subject to yt = Akαt n
1−α
t , α ∈ (0, 1),

with A being the state of technology, yt the aggregate output, and kt , nt the two
production factors: capital and labor. Firms rent capital from households at the
interest rate rt , pay wages wt on labor, and pay a constant pollution tax τP on the
level of the capital stock. Moreover, notice that with the presence of the pollution
externality, it turns out that equilibria of the representative agent economy are
no longer Pareto optimal (as the solution of the social planner is). Therefore, we
have to specify the market economy and, as a consequence, have to deal with the
determination of market prices in an environment here with continuum of identical
firms and identical households. In addition, the existence of the externality may
preclude the property that equilibria are (at least locally) uniquely determined by
preferences and technology, and therefore determinate, in the sense of being isolated
from their neighbors.

Environmental pollution, Pt , is a side product of the capital stock used by
the firms but can be reduced by means of abatement activities made by the
government, zt :

Pt = k
χ1
t

z
χ2
t

, χ1, χ2 > 0. (12.15)
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The households solve

max{ct ,nt }
∫ ∞

0 e−ρ t
[(

ct P
−η
t

)1−σ−1

1−σ − γ ht

]

dt , γ, σ > 0,

subject to ct + k̇t + δkt = (1 − τ )(ωtht + rtkt )+ Tt , given k0,

where ct is private consumption, Pt aggregate pollution, and ht the labor supply.1

σ is the inverse of the intertemporal elasticity of substitution of consumption, η is
the weight of pollution in utility and γ the marginal disutility of work. Households
receive income from labor and capital that can be used to consume, save, and pay
taxes at a constant rate τ ∈ (0, 1) on the two sources of income. Finally, households
receive lump-sum transfers from the government, Tt .

The problem faced by the households in the discrete time version of the economy
is

max{ct ,nt ,kt+1}
∞∑
t=0

βt

[(
ct P

−η
t

)1−σ−1

1−σ − γ nt

]

subject to ct + kt+1 − (1 − δ)kt = (1 − τ )(ωtnt + rt kt )+ Tt , given k0.

The government sector in turn chooses an income tax rate τ and an environmental
tax τP , and it uses these revenues to finance abatement activities, zt , and transfers
to households, Tt , balancing its budget every period. Thus, the instantaneous
government budget constraint is

Tt + zt = τ (ωtnt + rtkt )+ τP kt , (12.16)

where

zt = φ [τ (ωtnt + rtkt )+ τP kt ] , φ ∈ [0, 1], (12.17)

φ being the ratio that defines the allocation of government spending to abatement
activities.

12.4.2 Transitional Dynamics

It can be shown that the dynamics of the economy in continuous time is described by

[
k̇t

λ̇t

]

=
[
μ1 Ω

0 μ2

] [
kt − kss

λt − λss

]

, (12.18)

1We assume indivisible labor as in Hansen (1985). In equilibrium, ht = nt .
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whereas in discrete time it is

[
kt+1 − kss

λt+1 − λss

]

=
[
μ̃1 Ω̃

0 μ̃2

] [
kt − kss

λt − λss

]

, (12.19)

where λ(t)/λt is the co-state/multiplier associated to the household’s budget
constraint. Both dynamic systems are a linear approximation around the steady state,
and therefore, {μ1, μ2,Ω} and {μ̃1, μ̃2, Ω̃} are nonlinear functions of structural
parameters of the model.

As far as the transition matrices are triangular, the elements in the main diagonal
are the eigenvalues of the dynamical systems. Since one of the variables in the
system is predetermined (kt ) and the other is free (λt ), indeterminacy of equilibria
arises only when the two roots {μ1, μ2} have negative real parts or {μ̃1, μ̃2} ∈
(0, 1). Fernández et al. (2012) show that indeterminacy will arise, if and only if
σ + (ξ1 −ξ2)η(1−σ) < 0. Under indeterminacy, they show that when the economy
is initially placed on the steady state and the agents eventually coordinate to choose
a level of labor above its steady-state value, the capital stock begins to increase
in the following period and continues rising for several periods, but at an ever-
decreasing rate; after reaching the turning point, the capital stock begins to decrease
toward the steady state. The same behavior will be exhibited by labor, output, and
abatement activities. The pollution exhibits an overshooting in the first periods of
the transition, leading to an inverted U-shaped pattern, the same pattern followed by
the CO2 emissions by some developed economies.

To compute the dynamic response of pollution, we do the following:

Step 1 Given structural parameters, we solve for the systems (12.18) and (12.19)
above

Continuous time:

{
λt = λss + eμ2 t (λ0 − λss) , where “ss” denotes steady state
kt = kss + eμ1 t (k0 − kss)+ Ω

μ2−μ1
(λ0 − λss)

(
eμ2 t − eμ1 t

)
,

Discrete time:

{
λt = λss + μ̃ t2 (λ0 − λss) ,

kt = kss + μ̃ t1 (k0 − kss)+ Ω̃
μ̃2−μ̃1

(λ0 − λss)
(
μ̃ t2 − μ̃ t1

)
.

Step 2 With the expressions above, together with (12.15)–(12.17) above, we obtain
a path for pollution for k0 = kss and λ0 such that initial employment is h0 = nss .
Indeed, transition paths to the long-run indeterminate equilibrium can be indexed
by the initial conditions in the control variable employment.

Figure 12.5a–c shows the transitional dynamics for pollution in the theoretical
economy with parameters chosen for a model period of a quarter, a year, and 5 years.
The figures illustrate that overshooting is bigger the smaller the model period, and
the speed of convergence is slower in the discrete versus the continuous version of
the model.



12 Continuous versus Discrete Time Modeling in Growth and Business Cycle Theory 297

Annual frequency
40

35

30

25

20

15

10

5

0

−5

−10

−15
0 2 4 6 8 10 12 14 16 18 20 22

Years

24 26 28 30 32 34 36 38 40 42 44

D
ev

ia
tio

ns
 w

ith
 r

es
pe

ct
 to

 th
e

st
ea

dy
 s

ta
te

 (
%

)

Continuous time version Discrete time version

−20
0 2 4 6 8 10 12 14 16 18 20 22 24

Five-Years
26 28 30 32 34 36 38 40 42 44

−10

0

10

20

30

40

50

60

D
ev

ia
tio

ns
 w

ith
 r

es
pe

ct
 to

 th
e

st
ea

dy
 s

ta
te

 (
%

)

Continuous time version Discrete time version

Quinquennial frequency

Quarterly frequency
35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

−5.00

−10.00
0 2 4 6 8 10 12 14 16 18 20 22

Quarters

Continuous time version Discrete time version

D
ev

ia
tio

ns
 w

ith
 r

es
pe

ct
 to

 th
e

st
ea

dy
 s

ta
te

 (
%

)

24 26 28 30 32 34 36 38 40 42 44

a

b

c

Fig. 12.5 Indeterminacy case with n0 > nss . (a) Parameters quarterly: α = 0.33, χ1 = 1.3, χ2 =
0.6, τP = 4%, τ = 20%, σ = 2.5, η = 3.5, A = 1, φ = 0.1, δ = 0.025 (10% per year), ρ = 0.01
(4% per year); γ is chosen to match nss , and n0 = 0.4. (b) Parameters yearly: parameters above,
but for δ = 0.1 (10% per year), ρ = 0.04 (4% per year). (c) Parameters 5-year: parameters above,
but for δ = 0.5 (10% per year), ρ = 0.2 (4% per year)
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12.5 A Continuous Time Model with Time-to-Build

Continuous time methods in economic dynamics have proven useful to give rise
to substantial progress in modern growth theory and business cycle theory. The
advantages of continuous time modeling are mainly technical, as far as continuous
time systems turn out to be more tractable from the point of view of mathematical
convenience. However, there is a crucial limitation of continuous time representa-
tions which is related to bringing the model to the data and the estimation of the
structural parameters of dynamic models. An important subset of those parameters
is key for economic policy design and evaluation.

Several approaches have been taken in the literature to approximate continuous
time systems by discrete time systems. Also, inference in continuous time has
developed substantially in recent years. The goal of this section is to illustrate
the potential of using optimal control theory with delays to bridge the gap
between continuous and discrete time representations in economic dynamics. We
characterize the link between the two representations with a simple example of a
growth economy with time-to-build.

12.5.1 The Environment

Let us primarily recover the centralized description of the economy as in Sect. 12.3,
when we are under the conditions that the market allocation can be achieved by
a social planner. Let us assume that time is continuous and introduce a simple
time-to-build technology in an otherwise standard one-sector growth model. For
simplicity, all variables are in per capita terms. Let d > 0 be the planned horizon of
an investment project, i.e., the time-to-build delay. The technology to produce one
unit of the investment good available at time t + d requires a flow of 1

d
units of the

final good in the time interval [t, t + d]. Consequently, the only relevant decision
at time t is the amount of planned investment i(t), which will become operative at
time t + d .

The stock of planned capital at time t ≥ −d is given by

k(t) = k (−d)+
∫ t

−d
i(s)ds. (12.20)

The implicit assumption of zero depreciation makes i (t) to be net investment. By
definition of i(t), k(t) becomes operative at time t + d . Initial conditions need to be
specified: k(−d) = k̄ > 0 and i(t) = i0(t) ≥ 0 for all t ∈ [−d, 0]. Consequently,
k (t) = k0 (t) for all t ∈ [−d, 0] is computed using (12.20).
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Final output is produced using a standard neoclassical technology f (k), assumed
to beC2, increasing and concave for k > 0 and verifying Inada conditions (cf. Inada
1963; Uzawa 1963). Operative capital at time t was already planned at time t − d ,
implying that production at time t is f (k(t − d)).

The production of the final good is allocated to consumption c(t) and to net
investment expenditures x(t). At time t ≥ 0, the amount of the final good employed
in the production of investment goods is given by

x(t) = 1

d

∫ t

t−d
i(s) ds. (12.21)

It corresponds to investment expenditures associated to all active investment
projects. Under these assumptions, the feasibility constraint for t ≥ 0 takes the
following form:

f (k(t − d)) = c(t)+ x (t) . (12.22)

12.5.2 The Planner’s Problem

As in Sect. 12.3 above, in the described environment, the solution of a benevolent
social planner is the competitive equilibrium allocation. Let such a planner maxi-
mize the utility of the representative household

max
∫ ∞

0
u (c (t)) e−ρt (P)

subject to (12.22) and

ẋ(t) = 1

d
(i(t)− i(t − d)) , (12.23)

k̇(t) = i (t) . (12.24)

Constraints (12.23) and (12.24) result from time differentiation of (12.21)
and (12.20), respectively. The initial conditions are x (0) = x0 = 1

d

∫ 0
−d i0(s)

ds, k (t) = k0 (t), and i(t) = i0(t) for all t ∈ [−d, 0], as specified previously. The
instantaneous utility function u(t) is C2, increasing and concave for c > 0, and
verifies Inada conditions.
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Using optimal control theory with delays (cf. Bambi et al. 2014; Boucekkine
et al. 2005; Kolmanovskii and Myshkis 1998), necessary first-order conditions for
this problem are

u′(c (t)) = φ (t) , (12.25)

λ (t)+ 1

d
μ (t) = 1

d
μ (t + d) e−ρd, (12.26)

− φ (t + d) f ′ (k (t)) e−ρd = λ̇ (t)− ρλ (t) , (12.27)

φ (t) = μ̇ (t)− ρμ (t) , (12.28)

and the transversality conditions

lim
t→∞ k (t) λ (t) e−ρt = 0, (12.29)

lim
t→∞ x (t) μ (t) e−ρt = 0. (12.30)

The Lagrange multiplier φ (t) is associated to constraint (12.22), and the co-
states λ (t) and μ (t) are associated to the states k (t) and x (t), respectively.
Advanced terms appearing in (12.26) and (12.27), related to the delays in (12.23)
and (12.24), make explicit the trade-offs. Marginal investment at time t has three
different effects on utility. Firstly, it increases planed capital, which marginal value
is λ (t). Secondly, it rises investment expenditures, with marginal costs μ(t)

d
. Finally,

when the project will be finished at t + d , investment expenditures will end.

12.5.3 Discrete Time as a Representation of Continuous Time

In this section, we establish the correspondence between the proposed continuous
time model with a time-to-build delay in Sect. 12.5.2 and the discrete time represen-
tation of the neoclassical growth model in Sect. 12.3. Let us assume that the initial
function i0 (t) is piecewise continuous and that feasible trajectories i (t), for t ≥ 0,
belong to the family of piecewise continuous functions.

Proposition 12.1 Under d = 1, the optimal conditions (12.25)–(12.30) of prob-
lem (P) become

k(t)− k (t − 1) = f (k (t − 1))− c (t) (12.31)

u′ (c (t))
u′ (c (t + 1))

= β
(
1 + f ′ (k(t))

)
, (12.32)

where β ≡ e−ρ .
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Proof From (12.20) and (12.21), under d = 1, we get x (t) = k (t) − k (t − 1).
The feasibility constraint (12.31) results from substituting the relation between x
and k on Eq. (12.22). Differentiating (12.26) and substituting λ̇ and μ̇ by (12.27)
and (12.28), after some rearrangements, we get (12.32).

The equilibrium path of the neoclassical growth model is indeed represented
by (12.31) and (12.32) for given initial conditions. Notice the correspondence
with system (12.6) and (12.8) in Sect. 12.3 under the assumption here of zero
depreciation, that is, δ = 0.

Corollary 12.1 The steady-state solution of (12.31) and (12.32) is saddle-path
stable for t ≥ 0.

Corollary 12.1 implies that for every s ∈ [0, 1), the optimal sequence {cs+i , ks+i}
for i = {0, 1, 2, 3 . . .} is the solution of the discrete time neoclassical Ramsey
growth model of Sect. 12.3, given k(−1) = k0(−1). However, in continuous time
with delay d = 1, the steady-state solution involves the solution path for all
s ∈ [0, 1), which depends on the boundary function k0(t), for t ∈ [−1, 0) , defining
initial conditions (cf. Collard et al. 2008).

Corollary 12.2 Under d = 1 and k(t) = k0 > 0 for t ∈ [−1, 0), the optimal
solution k(t), c (t) of problem (P) is constant in the interval [i − 1, i) for i =
{1, 2, 3 . . .}, and it corresponds to the stable brand of the discrete problem in
Proposition 12.1.

Corollary 12.2 states the dynamic properties of the neoclassical growth model
in its correspondence with the continuous time representation with delays. All in
all, the example illustrates the particular form of a delay in the continuous time
model that the discrete time model imposes. The recent literature on continuous time
with delays should help to take advantage of the analytical tractability of models in
continuous time while providing precise quantitative statements about the issues of
interest.

12.6 Concluding Remarks

In this paper, we have explored the differences arising from modeling time as
discrete or continuous. This has been done in the basic framework of dynamic
macroeconomic models and focusing on appropriate approximation, dynamic inde-
terminacy, and delays. We have shown that the differences between continuous
and discrete representations arise from investment decisions at time t that become
productive at a time that depends on the model period. Agents are then committed
to their decisions until the period when the return of their investments is realized.
This modifies not only the structure and the solution of the models but also the
economic interpretation of the results. The recent literature on continuous time
models with delays should help to bridge the gap between continuous and discrete
time representations in economic dynamics.
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Chapter 13
Continuous Time State Space Modelling
with an Application to High-Frequency
Road Traffic Data

Siem Jan Koopman, Jacques J. F. Commandeur, Frits D. Bijleveld,
and Sunčica Vujić

13.1 Introduction

We present a practical treatment of continuous time state space modelling. The
main features of the analysis are highlighted and explored in some generality. We
further present and discuss the main results of an empirical study related to road
safety analysis. This application of the continuous time methodology in time series
analysis shows how it can be used in practice.

A time series is a set of observations which are sequentially ordered over time.
In a discrete time state space analysis, the time series observations are assumed
to be equally spaced in time. Although missing data may give rise to different
time gaps between available observations in discrete time series also, these time
gaps are then always multiples of the time unit specific to the time series at hand
(e.g. a year for annual data, a month for monthly data, etc.). In this chapter, on
the other hand, we concentrate on the continuous time state space model and
some of its special cases. In continuous state space models, the time gaps between
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consecutive observations of a series are typically allowed to vary freely from one
pair of consecutive observations to the next. The expositions in this chapter rely
mostly on the textbooks by Harvey (1989) and by Durbin and Koopman (2012).
For an introduction to state space time series analysis, we refer to Commandeur and
Koopman (2007).

The literature on continuous time modelling in statistics and econometrics is
extensive. It is beyond the scope of this paper to present a full review of this
literature. A major and key reference to continuous time models in econometrics
is the review of Bergstrom (1984) where various results on parameter estimation for
dynamic structural models in continuous time are provided. The many benefits of
continuous time modelling are also illustrated. In the statistics literature, there is a
considerable focus on smoothing methods that are formulated in continuous time.
For example, a standard treatment using the continuous time approach is developed
by Green and Silverman (1994). But also the earlier contributions of Wahba (1978)
and Silverman (1985) have been of key importance in the development of signal
extraction and spline smoothing in continuous time. The connections between spline
smoothing and continuous time state space analysis are first established in the work
of Wecker and Ansley (1983).

In this review chapter, we provide a detailed account of a continuous time state
space approach to time series analysis. The outline of this chapter is as follows.
In Sect. 13.2 we formulate the general continuous time state space model and
discuss two well-known special cases. Section 13.3 discusses the estimation of
the unobserved states together with the unknown model parameters. Finally, in
Sect. 13.4 we apply the methodology to an empirical example consisting of road
traffic speed data.

13.2 A Continuous Time Modelling Framework

Let tτ denote the time point at which observation τ in the series was measured,
τ = 1, 2, . . . , T . Note that τ is an integer denoting the number of the observation in
the time series, while tτ is the time at which this observation was made. Thus, unlike
τ , tτ can be any non-negative number, for example, 10 years, 200 days, 300.405 ms,
etc. The only requirement is that t1 < t2 < t3 < · · · < tT . The general linear
Gaussian state space model for the T -dimensional observation sequence y1, . . . , yT
is given by

yτ = Zτατ + ετ , ετ ∼ NID(0,Hτ ), (13.1)

ατ+1 = Tτατ + Rτητ , ητ ∼ NID(0,Qτ ), τ = 1, . . . , T , (13.2)
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where ατ is the state vector, ετ and ητ are disturbance vectors and the system
matricesZτ , Tτ , Rτ ,Hτ andQτ are fixed and known. A selection of the elements of
the system matrices may depend on an unknown parameter vector. Equation (13.1)
is referred as the observation or measurement equation, while Eq. (13.2) is called
the state or transition equation. The p × 1 observation vector yτ contains the p
observations at time point tτ , and them×1 state vector ατ is unobserved. The p×1
irregular vector ετ has zero mean and p × p variance matrix Hτ .

The p×m matrix Zτ links the observation vector yτ with the unobservable state
vector ατ and may consist of regression variables. The m× m transition matrix Tτ
in (13.2) determines the dynamic evolution of the state vector. The r×1 disturbance
vector ητ for the state vector update has zero mean and r×r variance matrixQτ . The
observation and state disturbances ετ and ητ are assumed to be serially independent
and independent of each other at all time points. In many standard cases, r = m and
matrix Rτ is the identity matrix Im. In other cases, matrix Rτ is a m × r selection
matrix with r < m. Although matrixRτ can be specified freely, it is often composed
of a selection from the first r columns of the identity matrix Im. It further implies
that often we can treat the matrix Rτ as a constant matrix that does not vary with τ .
Similarly, all system matrices are assumed to be (deterministically) varying with τ ,
but in many cases of practical interest, most system matrices are fixed for all τ .

The initial state vector α1 is assumed to be generated as

α1 ∼ NID(a1, P1),

independently of the observation and state disturbances ετ and ητ , where initial
mean a1 and initial variance P1 can be treated as given and known in almost all
stationary processes for the state vector. For nonstationary processes and regression
effects in the state vector, the associated elements in the initial mean a1 can be
treated as unknown and need to be estimated. For an extensive discussion of
initialisation in state space analysis, we refer to Durbin and Koopman (2012,
Chapter 5).

13.2.1 Local Level and Local Linear Trend Models

By appropriate choices of the vectors ατ , ετ and ητ , and of the matrices Zτ , Tτ ,
Hτ , Rτ and Qτ , a wide range of different continuous time state space models
can be derived from (13.1) and (13.2). Here we focus on the continuous time
equivalents of the discrete local level and local linear trend models. Other model
formulations can be considered as well since our state space framework allows for
many different linear dynamic specifications that are commonly used in time series
analysis. However, the arguments for continuous time formulations are similar, and
therefore our treatment below remains relatively general.
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Let δτ = tτ − tτ−1 denote the amount of time elapsed between two consecutive
observations τ and τ − 1. Also defining

ατ = μτ , ητ = ξτ , Zτ = Tτ = Rτ = 1, Hτ = σ 2
ε , Qτ = δτ σ

2
ξ ,

(all variables are scalars) for τ = 1, . . . , T , model (13.1) and (13.2) reduces to the
univariate continuous local level model as given by

yτ = μτ + ετ , ετ ∼ NID(0, σ 2
ε ),

μτ+1 = μτ + ξτ , ξτ ∼ NID(0, δτ σ 2
ξ ), (13.3)

for τ = 1, . . . , T . Note that (13.3) reduces to the discrete local level model when
the observations are equally spaced, i.e. when δτ = tτ − tτ−1 = 1, say, for all
τ = 1, . . . , T .

The local level model can be regarded as the most basic version of a state
space model. It is intuitive as it can be interpreted as a model representation
for yτ that is generated by the normal distribution with a time-varying mean μτ
and a fixed variance σ 2

ε . The continuous time formulation only applies to the
dynamic process of the time-varying mean. The local level model also provides a
statistical specification for the exponentially weighted moving average (EWMA)
forecasting method that is very popular amongst professional practitioners. The
forecast function of the local level model is equivalent to the EWMA, but the state
space treatment also provides statistical standard errors to the point forecasts; see
the discussion below. A full discussion and treatment of the local level model is
provided by Harvey (1989) and Durbin and Koopman (2012, Chapter 2).

By defining

ατ =
(
μτ

ντ

)

, ητ =
(
ξτ

ζτ

)

, Tτ =
[

1 δτ
0 1

]

, Zτ = (
1 0

)
,

Hτ = σ 2
ε , Var(ητ ) = Qτ = δτ

[
σ 2
ξ + 1

3δ
2
τ σ

2
ζ

1
2δτ σ

2
ζ

1
2δτσ

2
ζ σ 2

ζ

]

, and Rτ =
[

1 0
0 1

]

,

the scalar notation of (13.1) and (13.2) leads to

yτ = μτ + ετ , ετ ∼ NID(0, σ 2
ε ),

μτ+1 = μτ + δτ ντ + ξτ , (13.4)

ντ+1 = ντ + ζτ ,

for τ = 1, . . . , T , and we obtain the univariate continuous local linear trend model.
Unlike in the discrete local linear trend model, we see that the disturbances of the
level and the slope component are correlated through the off-diagonal elements
1
2δ

2
τ σ

2
ζ in matrix Qτ in the continuous local linear trend model. However, as
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mentioned by Harvey (1989, p. 487), “this difference is unlikely to be of any great
importance”.

The treatment above for the local linear trend model has many connections with
the statistical literature on spline smoothing. Reviews of methods related to spline
smoothing are given in Silverman (1985), Wahba (1990) and Green and Silverman
(1994, Chapter 2). Some of these connections with the approach given above and
the more traditional methods are given by Wahba (1990) but are also discussed in
Wecker and Ansley (1983). These connections are also highlighted in Durbin and
Koopman (2012, Chapter 3).

13.2.2 Multivariate Continuous Time State Space Models

The treatments as set out for univariate time series above can be easily extended to
multivariate time series. This is one of the advantages of the state space approach
since multivariate spline smoothing methods are not widespread.

In case we let yτ denote a p×1 vector of observations, a multivariate local linear
trend model can be applied to the p time series simultaneously:

yτ = μτ + ετ , ετ ∼ NID(0,Σε),

μτ+1 = μτ + ητ , ητ ∼ NID(0,Ση),
(13.5)

for τ = 1, . . . , T , where μτ , ετ , and ητ are p × 1 vectors, Σε is a p × p variance
matrix, and

Ση = δτ

[
Σξ + 1

3δ
2
τΣζ

1
2δτΣζ

1
2δτΣζ Σζ

]

is a 2p × 2p matrix, Σξ and Σζ being the p × p variance matrices of the level and
the slope disturbances, respectively.

13.3 State Space Methods for Continuous Time Models

The model formulations as discussed above are all special cases of the general linear
Gaussian state space model. We can therefore rely on the associated methods for
signal extraction, parameter estimation and forecasting. The most important and
well-known method for this class of state space models is the Kalman filter that
allows the (predictive and filtered) estimation of the unobserved state vector ατ
when the system matrices have given values. It also enables the computation of the
log-likelihood function of the model, for a given parameter vector, via the prediction
error decomposition. It allows the maximisation of the log-likelihood function with
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respect to the parameter vector, in order to obtain its maximum likelihood estimate.
On the basis of these parameter estimates, signal extraction and forecasting can
take place. We next provide more details of this central part of the state space
methodology.

In a similar way as in discrete state space models, in continuous state space
models for given values of all system matrices—and for known initial conditions
a1 and P1—the state vector can be estimated in three different ways, yielding what
are known as the filtered, the predicted and the smoothed state vector. Depending
on the types of state estimates required in the analysis, the estimates of the state
vector can be obtained by performing one or two passes through the observed time
series:

1. A forward pass, from τ = 1, . . . , T , using a recursive algorithm known as
the Kalman filter enables the computation of filtered and predicted states and
prediction errors, including their variances; from the prediction error and their
variances, we can compute the log-likelihood function of the given continuous
state space model;

2. A backward pass, from τ = T , . . . , 1, using all filtered and associated variables
from the Kalman filter and using recursive algorithms known as state and
disturbance smoothers enables the computation of smoothed estimates of states
and disturbances; it requires the storage of the Kalman filter variables.

In continuous time state space models, the standard Kalman, state and distur-
bance smoothing filters can be used; see Durbin and Koopman (2012, Chapter
4) for technical details. A specific difference of substance between discrete and
continuous time models is that the variance matrix Qτ in Eq. (13.2) of the state
space formulation of the model (containing the variances of the state disturbances) is
typically time-invariant in the discrete case while it becomes a time-varying matrix
for continuous time state space models.

We have discussed these continuous time state space methods above as if the
disturbance variances are given and known. In practice, of course, these parameters
are unknown, and they have to be estimated. Just as in the discrete time series
situation, the parameter estimates are obtained via maximum likelihood methods
which are discussed in Durbin and Koopman (2012, Chapter 7). It requires an
optimisation algorithm, and for this purpose quasi-Newton methods are typically
used. Each time new parameter values are proposed by the search-for-the-maximum
algorithm, the Kalman filter is used to compute the log-likelihood function. In many
applications, it is found that the maximum is found quickly and the estimation
process does not take much computing time.
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13.4 An Application in Road Safety and Traffic Control

We consider our continuous time modelling approach to a full day of measurements
of the speed of passing motor vehicles on a fixed location in the right lane of a Dutch
motorway, starting at midnight and ending at midnight of the following day. For our
analysis of this interesting and important time series for road safety studies, we
have considered the continuous time models and methods as set out in the previous
sections. All computations are implemented in the OxMetrics object-oriented
programming environment of Doornik (2013) together with the SsfPack library
of state space routines of Koopman et al. (2008). Initial analyses are carried out by
means of the discrete time versions of our models using the STAMP software of
Koopman et al. (2007).1

There is a total of 25,539 passages in this series meaning that we also have
25,539 observations. The time of each passage is measured as the number of
milliseconds elapsed since the start of the measurements and the difference between
the time of the last and the first observation of the series, i.e. tT − t1, is 86,396 ms
which indeed corresponds to a full 86,396/602 = 24 h. The average time lapse
between consecutive observations in the series is 3.383 ms with a minimum of
0.038 ms and a maximum of 1417.4 ms. The variance of the time lapses δτ is
230.170.

From the perspective of road safety, it is of interest to analyse passages of cars at
different speed levels. In our analyses, we consider two groups of speed levels: slow
passages with a speed of less than 100 km/h (but faster than 75 km/h as we discard
very slow passages which may be due to measurement failings) and fast passages
with a speed of higher than 120 km/h. These two different groups constitute a total
of 14,435 passages (9010 slow and 5425 fast passages).

The analyses of the two series are based on the continuous time local linear trend
model (13.4). To enforce a smoother evolving signal in this highly noisy time series
of speed passages, we restrict the variance of the level component to be zero. The
remaining variances are estimated by the method of maximum likelihood (ML).
We yield the following estimation results. At convergence of the ML process, the
parameter estimates for the variance of the slope disturbances and the measurement
errors are, respectively, given by σ 2

ζ = 1.061 × 10−6 and σ 2
ε = 31.966 for the slow

passages and σ 2
ζ = 5.434 × 10−6 and σ 2

ε = 43.295 for the fast passages.
The recorded speed levels of the passages for the slow and the fast groups are

presented in Figs. 13.1 and 13.3, respectively, together with their estimated trend
components which are also presented separately in Figs. 13.2 and 13.4, respectively.
We learn from these graphs that the number of passages of motor vehicles on the
motorway diminishes during the night. It is especially observable for the fast-speed
passages, between roughly 8000 ms after midnight (i.e. around half past three in the

1The programming code of our analyses is available as supplementary material at the book website
http://www.springer.com/us/book/9783319772189.

http://www.springer.com/us/book/9783319772189
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Fig. 13.1 Slow-speed passages: speed measures (in km/hour) of slow passages of motor vehicles
during a full day on a fixed location in the right lane of a Dutch motorway (in tiny dots) together
with the smoothed estimated trend component (solid line) from the continuous time local linear
trend model. The horizontal x-axis represents the time index measured in seconds of a full day
starting at midnight 0:00 h
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Fig. 13.2 Slow-speed trend: the smoothed estimated trend component from the continuous time
local linear trend model. The horizontal x-axis represents the time index measured in seconds of a
full day starting at midnight 0:00 h
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Fig. 13.3 Fast-speed passages: speed measures (in km/hour) of fast passages of motor vehicles
during a full day on a fixed location in the right lane of a Dutch motorway (in tiny dots) together
with the smoothed estimated trend component (solid line) from the continuous time local linear
trend model. The horizontal x-axis represents the time index measured in seconds of a full day
starting at midnight 0:00 h
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Fig. 13.4 Fast-speed trend: the smoothed estimated trend component from the continuous time
local linear trend model. The horizontal x-axis represents the time index measured in seconds of a
full day starting at midnight 0:00 h
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morning) and 20,000 ms after midnight (i.e. around six o’clock in the morning), that
the number of passages is clearly much smaller. At the same time, we can conclude
that the speed of the fast group increases somewhat as it is quiet on the motorway
during these night hours. In contrast, somewhat later in the night and up to the early
morning hours, the speed of the slow group diminishes to clearly lower speed levels
which is possibly due to a relatively intensified presence of more heavy trucks that
generally drive slower and on the right lane of the road. This possible explanation
can be investigated in more detail since our data set has information on following
distances between two passing vehicles. In future research we plan to formally
test such hypotheses by using statistical procedures based on the continuous time
modelling framework developed in this chapter (Figs. 13.1 and 13.3).

We have shown in our current analysis that the unequal time lapses between
consecutive vehicles can be handled effectively using our continuous time trend
model. In this particular application that is highly relevant for road safety studies,
there are several directions in which the results of our analysis can be improved.
Diagnostic tests on the one-step ahead prediction errors indicate that neither the
assumption of independence nor the assumption of normality of the residuals is
satisfied: the Box-Ljung statistic for independence has values forQ(10) that are too
high; their values should be smaller than 16.95 in order to be non-significant at the
usual 5% level. Also, the values for the Bowman-Shenton test for normality are too
high; their values should be smaller than 5.99 to be non-significant.

Although our reported initial findings are highly interesting, the continuous time
trend model appears to be somewhat away from a correct model specification for the
analysis of traffic speed data. Further research can be conducted in order to obtain a
more satisfactory model that is capable of capturing the remaining autocorrelation
and non-normality of the data. However, this research falls outside the scope of our
current review on continuous time state space modelling.

13.5 Conclusions

We have discussed the basic principles of a model-based continuous time approach
using the state space methodology. The methodology is especially designed for
the analysis of irregularly spaced data. We have highlighted the potential of this
approach in an illustration of high-frequency intra-daily time series of speed
measures from vehicles that pass a certain point at a motorway.

Acknowledgements We thank Rijkswaterstaat, The Netherlands (WVL), for providing us with
the data set.
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Chapter 14
Continuous Time Modelling Based
on an Exact Discrete Time
Representation

Marcus J. Chambers, J. Roderick McCrorie, and Michael A. Thornton

14.1 Introduction

Time series modelling in the social sciences often involves data that are generated
in finer time intervals than the sampling interval pertaining to the available data.
In economics, for example, macroeconomic time series represent the aggregation
of a large number of decisions made by microeconomic agents within the chosen
sampling interval. Even today, however, the issues in macroeconomics addressed
using aggregate time series data almost never tie models or conclusions to param-
eters governing the pre-aggregated behaviour of economic agents. Instead, at best,
agents’ preferences are modelled through a so-called representative agent.

On the other hand, when estimating and making inferences about parameters
of interest, econometrics has tended to embody and adapt developments in the
statistical analysis of time series. Notably, its response to Box-Jenkins models,
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which as ‘black-box’ forecasting models in the 1960s and 1970s outperformed
structural econometric models that incorporated restrictions based on economic
theory, was to create a unit root/cointegration paradigm that embodied the best
features of both approaches. Even so, the one pervasive characteristic of time series
econometrics has been its use of linear-in-variables discrete time series models, such
as autoregressive (AR) or autoregressive moving average (ARMA) models and their
vector counterparts, as the basis of model specification.

One aim of this chapter is to draw attention to a modelling issue that still perhaps
does not take on the importance it deserves: the potential incompatibility of using
such linear time series models, if naïvely specified, in a context where the data are
generated in finer time intervals than the interval pertaining to the available data.
This is because linear discrete time models are not time-invariant, meaning that,
on a strict interpretation, parameter estimates are tied only to a particular sampling
frequency. Such discrete time models therefore do not readily admit an economic
interpretation in the absence of a treatment of temporal aggregation bias. One
potential remedy to this problem is to formulate a structural model in continuous
time with the property that equidistant data generated from its solution satisfy a
linear discrete time model. The essence of the method relies on the derivation of
a system of stochastic difference equations that satisfy exactly a linear stochastic
difference equation system with constant coefficients. Such a discrete time model
is called an exact discrete time model, and, through it, the structural AR or ARMA
specification can be embodied in statistical inference independently of the sampling
interval.1

The approach based on an exact discrete time model has been historically
associated with A.R. (Rex) Bergstrom2 who, perhaps more than any other econome-
trician, presaged the advent of continuous time models in econometrics and finance;
see, for example, Bergstrom (1966, 1983), although it was Phillips (1972) who
provided the first implementation of the methods discussed in this chapter.3 There
are, however, some costs in following this approach, notably that in multivariate
models, identifying the parameters of the structural continuous time model on
the basis of discrete time data is considerably more challenging than identifying the
parameters of an (albeit time-varying) discrete time model using the same data (see
Sect. 14.2.2 below). This chapter discusses the development of, and issues arising

1McCrorie (2009) lists a number of contributions that use an exact discrete time model.
2Rex Bergstrom spent over 20 years of his academic career at the University of Essex and had
both direct and indirect influences on the current authors. He taught both Marcus Chambers
and Roderick McCrorie at the Masters level and supervised the PhD thesis of Chambers (1990).
Chambers, in turn, was the PhD supervisor of McCrorie (1996) and Thornton (2009).
3This paper was based on Phillips’s M.A. dissertation supervised by Bergstrom at the University
of Auckland in 1969. It represented the first of many contributions by Phillips on continuous time
econometrics; Yu (2014) provides a survey of this work.
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in, the formulation of structural continuous time models and the estimation of their
parameters using an exact discrete time model, in a way that we hope will facilitate
future applications in interdisciplinary areas.

Throughout this chapter, we focus mainly on continuous time models specified
as systems of linear stochastic differential equations, although in Sect. 14.4 we
also briefly discuss non-linear systems in the macroeconomic modelling literature
that have antecedents in linear-in-variables approaches. Recent developments have
enabled non-linear systems to be estimated directly; see Wymer (1997, 2012) for
details. Discussion of non-linear diffusion-type models in finance, which appear in
the survey by Aït-Sahalia (2007), is outside the scope of this chapter.4 See Aït-
Sahalia and Jacod (2014) for a comprehensive treatment of this topic.

The advantages of formulating econometric models in continuous time, over
and above the issue of embodying an ARMA-type specification independently of
the sampling frequency, were discussed by Bergstrom (1990, 1996), inter alios.
Specifically, continuous time models can take account of the interaction among
variables during the observation interval; they permit a more accurate representation
of the partial adjustment processes in dynamic disequilibrium models, as discussed
in Sect. 14.4.3 below; they allow a proper distinction to be made in estimation
between stock variables (measured at points in time) and flow variables (measured
as integrals of a rate of flow over the observation period); and they can be used to
generate forecasts of the (unobservable) continuous time paths of the variables.

In view of the backgrounds and expertise of the authors, this chapter is written
from the viewpoint of economics and, more specifically, econometrics. It therefore
mostly neglects the treatment of the estimation of continuous time models in
other areas of the social sciences and science more generally, such as engineering.
Material relevant to other disciplines can be found in other contributions to this
volume. The plan of this chapter is as follows. Section 14.2 is broadly concerned
with continuous time methods in econometrics and contains seven subsections.
The first lays the groundwork for subsequent subsections and explains how an
exact discrete time model corresponding to a linear continuous time system can
be obtained and provides a worked example for a second-order differential equation
system. Section 14.2.2 deals with the fundamental problem of identification of the
parameters of a continuous time system from discrete time data, and Sect. 14.2.3
discusses how the process of temporal aggregation can distort inferences relating to
Granger causality. Section 14.2.4 explores various issues of nonstationarity that are
important when analysing economic and financial time series, while Sect. 14.2.5
summarises recent work that enables the information contained in observations
made at different sampling frequencies to be used in the estimation of a continuous

4Most non-linear models are not directly amenable to the derivation of exact discrete time
representations and typically result in transition densities that have no closed-form solution. See,
however, Phillips and Yu (2009), Fergusson and Platen (2015) and Thornton and Chambers (2016),
for examples where a closed-form density is apposite.
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time system. The remaining two subsections deal with Gaussian estimation as well
as alternative (frequency domain) methods.

The final sections of the chapter have a more practical aim. Section 14.3 is
devoted to computational issues and reports the results of a small simulation exercise
(the code for which is contained in Appendix), while Sect. 14.4 is concerned
with empirical applications. Sects. 14.4.1 and 14.4.2 contain new applications to
consumer prices and inflation and to oil prices and the macroeconomy, respectively,
while Sect. 14.4.3 discusses applications of the continuous time methodology in
the arena of macroeconometric modelling. Section 14.5 contains some concluding
comments.

14.2 Continuous Time Models in Econometrics

14.2.1 Linear Continuous Time Systems and Exact Discrete
Time Models

We will be concerned with an n×1 vector of variables, denoted x(t), whose dynamic
evolution is determined by a stochastic differential equation system in continuous
time. Bergstrom (1983, 1984) provided a rigorous foundation for the specification
of such systems and pioneered the development of the exact discrete time approach
for first- and second-order systems, subsequently extended by Chambers (1999) to
systems of order greater than two. A higher-order system is specified as

d[Dp−1x(t)] = [Ap−1D
p−1x(t)+ . . .+ A1Dx(t)+ A0x(t)]dt + ζ(dt), t > 0,

(14.1)

where Ap−1, . . . , A0 are n × n parameter matrices, D denotes the mean square
differential operator satisfying

lim
δ→0

E

∣
∣
∣
∣
xi(t + δ)− xi(t)

δ
−Dxi(t)

∣
∣
∣
∣

2

= 0, i = 1, . . . , n,

x(0), . . . ,Dp−1x(0) are a set of initial conditions,5 and ζ(dt) is an n × 1 vector
of random measures with E[ζ(dt)] = 0, E[ζ(dt)ζ(dt)′] = Σdt (Σ being an n ×
n symmetric positive definite matrix), and E[ζ(Δ1)ζ(Δ2)

′] = 0 for any disjoint

5The initial conditions are usually assumed to be fixed which imparts a type of nonstationarity on
an otherwise stable system. This is a different type of nonstationarity to that which has dominated
the econometrics literature in recent years and which we discuss in Sect. 14.2.4.
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intervals,Δ1 andΔ2, on the real line −∞ < t < ∞.6 Under these assumptions, the
random measure vector ζ(dt) is similar to vector white noise, and the system (14.1)
can be regarded as a continuous time autoregressive system of order p, which we
shall denote CAR(p). The system could be extended to include a deterministic linear
trend function with the addition of a term of the form [γ0 +γ1t]dt on the right-hand
side of (14.1), where γ0 and γ1 are n × 1 vectors of unknown parameters, or to
include exogenous variables, but to do so would result in additional complexity that
we wish to avoid here. The system (14.1) is interpreted as meaning that x(t) satisfies
the stochastic integral equation

Dp−1x(t)−Dp−1x(0) =
∫ t

0
[Ap−1D

p−1x(r)+ . . .+A1Dx(r)+A0x(r)]dr +
∫ t

0
ζ(dr)

for all t > 0; see Bergstrom (1983) for further details.
The objective is to estimate the elements of the matrices Ap−1, . . . , A0 and

Σ from a sample of data observed at discrete points in time, i.e. not observed
continuously. The elements of these matrices will often be known functions of
an underlying vector of structural parameters although we avoid emphasising such
dependencies here for reasons of notational simplicity.7 The exact representation
approach derives the law of motion for the observations that is consistent with
their having been generated by the stochastic differential equation system (14.1).
The nature of the observations themselves depends on the form of variables that
comprise the vector x(t). In the most general (mixed sample) case, the vector x(t)
can be partitioned into an ns × 1 subvector of stock variables (xs) and an nf × 1
subvector of flow variables (xf ), where ns + nf = n, so that

x(t) =
(
xs(t)

xf (t)

)

.

Stock variables are assumed to be observable at equally spaced discrete points in
time of length h, resulting in the sequence

{
xsth = xs(th)

}T
t=0 = {xs0, xsh, . . . , xsT h},

6The use of a vector of random measures to specify the disturbance vector in a continuous time
model in the econometrics literature is due to Bergstrom (1983) who built on the work of Rozanov
(1967). A common alternative is to replace ζ(dt) with Σ1/2dW(t) where dW(t) denotes the
increment in a vector of Wiener processes and Σ1/2(Σ1/2)′ = Σ . Note, though, that the latter
specification imposes Gaussianity on the system, whereas the distribution of ζ(dt) is unspecified
beyond its first two moments.
7Such dependencies are, however, emphasised in Sect. 14.2.2 where we discuss issues of identifi-
cation.
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while flow variables are observable as an integral of the underlying rate of flow over
the sampling interval of length h, yielding the sequence

{

x
f

th = 1

h

∫ th

th−h
xf (r)dr

}T

t=1
=

{
1

h

∫ h

0
xf (r)dr, . . . ,

1

h

∫ T h

T h−h
xf (r)dr

}

.

Examples of stock variables in economics include the money stock, exchange rates,
interest rates and other asset prices, all of which are observable (at least in principle)
at points in time. Examples of flow variables include consumers’ expenditure,
income, exports, imports and cumulative rainfall in Brazil, each of which is
measured as the accumulation of a rate of flow over a time interval (corresponding
with the sampling interval). Although we assume that the observations are equally
spaced, it is possible to extend the setup to allow for irregularly spaced observations.
This can be achieved by introducing an index i = 1, . . . , N , where N denotes
sample size, and denoting the sampling intervals by hi = ti − ti−1. For notational
convenience, however, we shall assume that the observations are equally spaced.
Also, for the purposes of clarity, we will, for the time being, assume that x(t) =
xs(t) so that all n variables are of the stock variety. The consequences of relaxing
this assumption will be discussed in due course.

The first step in deriving an exact discrete time representation is to write the
model in a suitable state space form. In order to do this, we can define the np × 1
state vector

y(t) = [x(t)′,Dx(t)′, . . . ,Dp−1x(t)′]′,

which satisfies the first-order stochastic differential equation system

dy(t) = Ay(t)dt + φ(dt), t > 0, (14.2)

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 I

A0 A1 A2 . . . Ap−2 Ap−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, φ(dt) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
...

0
ζ(dt)

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

The solution to (14.2) is given by

y(t) = eAty(0)+
∫ t

0
eA(t−r)φ(dr), t > 0, (14.3)
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where y(0) denotes the vector of initial conditions and the matrix exponential is
defined by its series expansion

etA = I + tA+ 1

2!(tA)
2 + . . . =

∞∑

j=0

(tA)j

j ! .

Noting that y(th) contains the observable vector x(th), the solution (14.3) can be
manipulated to relate y(th) to y(th − h) and thereby x(th) to x(th − h). This is
achieved by rewriting the system at the observation points as

y(th) = eAthy(0)+
∫ th−h

0
eA(th−r)φ(dr)+

∫ th

th−h
eA(th−r)φ(dr)

= eAh
[

eA(th−h)y(0)+
∫ th−h

0
eA(th−h−r)φ(dr)

]

+
∫ th

th−h
eA(th−r)φ(dr).

The term in square brackets is simply y(th− h) which results in the following first-
order stochastic difference equation for y(th):

y(th) = Fy(th− h)+ εth, t = 1, . . . , T , (14.4)

where F = eAh and

εth =
∫ th

th−h
eA(th−r)φ(dr)

is an i.i.d. random vector with mean vector zero and covariance matrix

Σε =
∫ h

0
eAsΣφe

A′sds,

Σφdt being the covariance matrix of φ(dt).8

Although the system (14.4) implicitly embodies the dynamics of the observable
vector xth = x(th), the remaining elements of y(th) are unobservable. The
Bergstrom approach derives the exact discrete time model by eliminating the
unobservable elements from this system using appropriate substitutions.9 This
process results in the ARMA(p,p − 1) representation

xth = F1xth−h + . . .+ Fpxth−ph + ηth, t = p, . . . , T , (14.5)

8In fact, Σφ is an np × np matrix of zeros except for the n × n bottom right-hand corner block
which is equal to Σ .
9Wymer (1972) provided the first treatment of higher-order systems in the econometrics literature
using the framework (14.1)–(14.4) but subsequently derived an approximate discrete model.
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where ηth is an MA(p − 1) process. Note that this equation holds only for period
p onwards owing to the first available observation being x0 = x(0) (recall that we
are assuming that x comprises purely stock variables at this point). It is, however,
possible to derive an additional p − 1 equations that relate xh, . . . , xph−h to the
lagged values and to x0; see, for example, Theorem 2.2 of Bergstrom (1986) for the
mixed sample case when p = 2 and Theorem 2 of Chambers (1999) also for the
mixed sample case but for p ≥ 2.

To see how this approach works in practice, consider the case where p = 2. The
observable vector is x(th), and the unobservable vector in this case is Dx(th), the
equations for which from (14.4) are

x(th) = F11x(th− h)+ F12Dx(th− h)+ ε1,th, (14.6)

Dx(th) = F21x(th− h)+ F22Dx(th− h)+ ε2,th, (14.7)

where the Fij (i, j = 1, 2) are the n× n submatrices of F and εth = (ε′
1,th, ε

′
2,th)

′.
The objective is to eliminateDx(th−h) from (14.6) using the information in (14.7),
and for this purpose, Bergstrom (1983, Assumption 4) assumes that the matrix F12
is nonsingular. From (14.6), we obtain, using this assumption,

Dx(th− h) = F−1
12

[
x(th)− F11x(th− h)− ε1,th

]
, (14.8)

while lagging (14.7) by one period yields

Dx(th− h) = F21x(th− h)+ F22Dx(th− 2h)+ ε2,th−h. (14.9)

Substituting the right-hand side of (14.8) forDx(th−h) in (14.9) and the one-period
lag of (14.8) for Dx(th− 2h) in (14.9) results in

xth = F1xth−h + F2xth−2h + ηth, t = 2, . . . , T , (14.10)

where F1 = F11 + F12F22F
−1
12 , F2 = F12[F21 − F22F

−1
12 F11], and the disturbance

vector is given by ηth = ε1,th − F12F22F
−1
12 ε1,th−h + F12ε2,th−h which is clearly

seen to be MA(1) due to εth being an i.i.d. process.
Although the ARMA(2,1) representation in (14.10) holds for t = 2, . . . , T , it is

possible to supplement it, for purposes of computing the unconditional likelihood
function, with an equation that relates xh to x0. In the case of the second-order
system considered here, the relevant equation is given by (14.6) evaluated at t = 1,
giving

xh = F11x0 + F12Dx(0)+ ε10. (14.11)

Note that this equation also includes the unobservable componentDx(0), and there
are two main ways of treating it. The first is to make an assumption about its value,
an example being Dx(0) = 0, which implies that, at time t = 0, the system
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was in equilibrium. Alternatively the n × 1 vector Dx(0) can be treated as part
of the unknown parameter vector whose value is estimated by maximisation of the
likelihood function, although in this case it is not possible to obtain a consistent
estimator of its value.10

As mentioned earlier, not all variables are observed as stocks, and so the above
techniques have to be modified in the presence of flow variables or mixtures of
stocks and flows. This is particularly important in macroeconometric modelling
where many variables, such as consumers’ expenditures and national income, are
measured as flows. Early contributions dealing with the problems associated with
flow variables can be found in Phillips (1974) and Wymer (1976). In subsequent
work, Bergstrom (1984, Theorem 8) presented an exact discrete time model for a
first-order system, while an exact discrete model for flow variables when p = 2 was
derived by Bergstrom (1983, Theorem 3) and extended to the mixed sample case by
Bergstrom (1986, Theorems 2.1 and 2.2).11 In these cases, the exact discrete time
model can be shown to be an ARMA(p,p) system, the presence of flows increasing
the order of the moving average disturbance by one. These results were subsequently
extended to the general p ≥ 2 case by Chambers (1999).

A feature of the results cited above is that all require an assumption of
invertibility of certain matrices; for example, Bergstrom (1983) requires A0 to be
nonsingular in addition to F12. The nonsingularity of A0 rules out important cases
such as unit roots and cointegration (see Sect. 14.2.4), but can be relaxed as follows.
Our demonstration applies to the case p = 2 but can be generalised to larger
values of p. Recalling the definition of the observed flow variables, xfth, we can
integrate (14.6) and (14.7) over the interval (th − h, th] to obtain

x
f
th = F11x

f
th−h + F12zth−h + v1,th, (14.12)

zth = F21x
f

th−h + F22zth−h + v2,th, (14.13)

where we have defined

zth =
∫ th

th−h
Dxf (r)dr = xf (th)− xf (th− h),

vth =
(
v1,th

v2,th

)

=
∫ th

th−h

∫ s

s−h
eA(s−r)φ(dr)ds.

10Note that this inconsistency arises owing to no new information on Dx(0) becoming available
as T → ∞.
11Bergstrom (1986) also includes results for a system that contains exogenous stock and flow
variables.
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The vector zth is unobservable and can be eliminated from the system using the
same steps that led to (14.10), the result being

x
f
th = F1x

f
th−h + F2x

f

th−2h + η
f
th, t = 2, . . . , T , (14.14)

where F1 and F2 are defined following (14.10) and ηfth = v1,th − F12F22F
−1
12

v1,th−h+F12v2,th−h is now an MA(2) process which follows by noting that vth can
be written under the white noise assumption as the sum of a pair of single intervals
with respect to ζ(dr) over the intervals (th−2h, th−h] and (th−h, th]; details can
be found in McCrorie (2000). Although the autoregressive matrices remain the same
functions of the underlying parameters as in the case of stock variables, the presence
of flows affects the serial correlation properties of the disturbance vector, increasing
the moving average order by one, a feature which needs to be incorporated in any
estimation algorithm.

Although autoregressive models, in both discrete and continuous time, dominate
the time series econometrics literature, there has been considerable interest in
continuous time ARMA (CARMA) processes in the statistics literature, where
the focus has been on state space approaches rather than exact discrete time
representations. Results on maximum likelihood estimation based on an appropriate
state space model are contained in Zadrozny (1988), while a survey of recent results
on CARMA processes can be found in Brockwell (2014). It is, however, possible to
derive an exact discrete time model corresponding to a CARMA system. Chambers
and Thornton (2012) extend (14.1) to the CARMA(p, q) system

Dpx(t) = Ap−1D
p−1x(t)+ . . .+ A0x(t)+ u(t)+Θ1Du(t)+ . . .+ΘqD

qu(t),

(14.15)

for t > 0, where u(t) is an n × 1 continuous time white noise process and
A0, . . . , Ap−1 and Θ1, . . . ,Θq are n× n matrices of coefficients.12 The interpreta-
tion of a white noise process in continuous time can be problematic (see, e.g., the
discussion and results in Bergstrom 1984), but the interpretation of u(t) in (14.15)
is that it satisfies E[u(t)] = 0 and, for t2 > t1, has autocovariance properties

E

[∫ t2

t1

u(r)dr

∫ t2

t1

u(s)′ds
]

= Σ (t2 − t1) ,

E

[∫ t2

t1

u(r)dr

∫ t2

t1

u(τ + s)′ds
]

= 0, |τ | > t2 − t1,

whereΣ is an n× n positive definite symmetric matrix.

12The coefficient matrix multiplying u(t) is set to an identity in order to identify the parameters of
the model in view of u(t) having covariance matrix Σ .
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The presence of the MA component in (14.15) means that a different state space
form is more useful in deriving the exact discrete model than the one defined
in (14.2). Chambers and Thornton (2012) employed the state space representation
used by Zadrozny (1988) in which the np × 1 state vector is defined as w(t) =
[w1(t)

′, . . . , wp(t)′]′ and with w1(t) = x(t). The state space form is based on the
following set of p equations in the derivatives of the components of w(t), given by

Dw1(t) = Ap−1w1(t)+w2(t)+Θp−1u(t), (14.16)

Dw2(t) = Ap−2w1(t)+w3(t)+Θp−2u(t), (14.17)

...
...

Dwp−1(t) = A1w1(t)+wp(t)+Θ1u(t), (14.18)

Dwp(t) = A0w1(t)+ u(t), (14.19)

in which we define Θj = 0 for j > q . Combining the expressions forDw1(t), . . . ,

Dwp(t) above, the relevant state space form can be written as

Dw(t) = Cw(t) +Θu(t), (14.20)

where

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ap−1 I 0 . . . 0
Ap−2 0 I . . . 0
...

...

A1 0 0 . . . I
A0 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Θp−1

Θp−2
...

Θ1

I

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

Utilising this state space model, Chambers and Thornton (2012) show that the exact
discrete time model for a vector of stock variables is of ARMA(p,p − 1) form,
while, for a vector of flow variables or mixed sample data, it is of ARMA(p,p)
form. The presence of the continuous time MA disturbance therefore does not affect
the MA order of the exact discrete time model. This means, in effect, that there
are additional parameters in the CARMA model that can be used to pick up the
dynamics in the discrete time model that are not present in a CAR representation, a
feature that has been shown to have empirical content by Chambers and Thornton
(2012).

More recently, Thornton and Chambers (2017) have shown that exact dis-
crete time representations corresponding to CARMA systems are not unique.13

The discrete time representations for CAR(p) systems with mixed sample data,

13Hence the presence of the phrase ‘an exact discrete time representation’ rather than ‘the exact
discrete time representation’ in the title of this chapter.
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developed in Bergstrom (1983) and in Chambers (1999), rely on differencing
the stock variables and are of ARMA(p,p) form. Once the stock variables are
reintegrated (or ‘undifferenced’), these representations correspond to a discrete time
ARMA(p + 1,p) process. Thornton and Chambers (2017), however, work with
an augmented state space form14 that more naturally incorporates both stock and
flow variables and show that the differencing of the stock variables identifies the
representation among a wider class of ARMA(p+1,p) processes and that the more
parsimonious ARMA(p,p) is also among this class.

14.2.2 Identification

To a large extent, we motivated the formulation of continuous time models as linear
stochastic differential systems because equispaced data generated by such systems
satisfy ARMA specifications that are typical in time series analysis but whose
parameters, unlike those in naïvely specified discrete time models, are not tied to
the sampling interval. The principal counterpoint to this advantage of estimating
the parameters of structural continuous time models on the basis of discrete data is
that one can ‘join up the dots’, as Robinson (1992) described it, in an uncountably
infinite number of ways. The problem is multivariate in character and can be
illustrated using the following simple example for a stock variable.15 Suppose that
the n × 1 finite-variance vector x(t) satisfies the stochastic differential equation
system

dx(t) = A(θ)x(t)dt + ζ(dt), t > 0, (14.21)

subject to the initial condition x(0) = y0, where A is an n × n matrix whose
elements are now explicitly assumed to be known functions of a p × 1 vector θ
of unknown parameters (p ≤ n2), y0 is a non-random n × 1 vector, and ζ(dt) is
an uncorrelated vector random measure of the type described in Sect. 14.2.1 with
covariance matrix Σ(μ)dt , the elements of Σ being known functions of a q × 1
vector μ of unknown parameters (q ≤ 1

2n(n + 1)). The exact discrete time model
is obtained from the solution of (14.21) subject to the initial condition, giving a
sequence of equispaced discrete time data x(0), x(h), . . . , x(T h) that satisfies the

14The state space form in (14.20) is augmented by an additional nf elements in a vector y0(t) that
corresponds to the aggregated or observed flow variables.
15This identification problem is therefore different in nature and on top of the classical identifica-
tion problem which seeks to avoid observational equivalence through model and estimator choice;
see, for example, Chambers and McCrorie (2006). In open systems, namely, systems involving
exogenous variables, the solution of the stochastic differential equation depends on a continuous
time record of the exogenous variables and so some sort of approximation of the time paths is
necessary to achieve identification; see, in particular, Bergstrom (1986), Hamerle et al. (1991,
1993) and McCrorie (2001) for explicit discussion of this issue.
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stochastic difference equation system

x(th) = F(θ)x(th− h)+ εth, t = 1, . . . , T , (14.22)

where F(θ) = eA(θ)h and εth is white noise with covariance matrix

Ωε(θ, μ) = E(εthε
′
th) =

∫ h

0
eA(θ)rΣ(μ)eA(θ)

′rdr;

see Bergstrom (1984, Theorem 3).
In the context of (14.21), the identification problem relates directly to the fact

that there are, in principle, many different matrices that share the same exponential
F in (14.22); see, for example, Phillips (1973), Hansen and Sargent (1983) and
Hamerle et al. (1993). These matrices are aliases of A in the sense that, through
taking the place of A in (14.21), they generate the same equidistant discrete time
data. The aliasing problem of identifying structural continuous time parameters
on the basis of discrete time data is clearly more severe than simply identifying
the parameters of discrete time models (but, to reiterate, there is a trade-off in
that naïvely specified discrete time models suffer from a lack of time invariance).
If Gaussianity is assumed, the problem in the context of (14.21) is to find a
necessary and sufficient condition such that the pair [A(θ),Σ(μ)] is identifiable
in [F(θ),Ωε(θ, μ)]. In any particular application, the forms ofA andΣ are heavily
governed by the role of the parameter vectors θ and μ, although for the purpose of
simplifying the discussion that follows, the dependence of A andΣ on θ and μ will
be suppressed.

McCrorie (2003) offered a framework for the identification problem by consid-
ering the following Hamiltonian matrix M that allows the pair [A,Σ] to be treated
together: if

M =
(−A Σ

0 A′
)

,

then, as an application of Van Loan (1978, Theorem 1),

eMh =
(
F−1 F−1Ωε

0 F ′
)

.

The following theorem (McCrorie 2003), which is a consequence of Theorem 2 of
Culver (1966), contains the basic result on identification in terms of when the matrix
exponential mapping is bijective in general.

Theorem 14.1 For the prototypical model (14.21), [A,Σ] is identifiable in [F,Ωε]
if the eigenvalues ofM are strictly real and no Jordan block ofM belonging to any
eigenvalue appears more than once.
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Note that the eigenvalues of M are simply the eigenvalues and reverse eigen-
values of A, and so if A has no complex eigenvalues and there is no confluence
in its eigenvalues, the aliasing problem reduces essentially to a univariate problem
involving the exponential function which, when viewed as real-valued, is bijective.
Unfortunately, both restrictions are not generally appropriate for economic time
series: they rule out plausible cyclical behaviour resulting from complex eigenvalues
and plausible trend behaviour resulting from multiple unit roots (multiple zero
eigenvalues of A). In the complex eigenvalue case, several authors achieve identi-
fication through additional restrictions: Phillips (1973) uses Cowles Commission-
type restrictions (see also Blevins 2017), and Hansen and Sargent (1983) show
there are restrictions inherent in the requirement that Ωε be positive semidefinite.
Hansen and Sargent (1991) use cross-equation restrictions implied by the rational
expectations hypothesis. Bergstrom et al. (1992) and Bergstrom and Nowman
(2007) use prior bounds on the parameters as a means of achieving identification, in
the way researchers do for large-scale structural VAR models today. The results
of Hansen and Sargent (1983) show that without importing a priori restrictions
beyond the problem in hand, identification can only be local; see Appendix 1
of McCrorie (2009) for some examples. In practice, one has jointly to solve the
aliasing identification problem and the classical identification problem of avoiding
observational equivalence through model and estimator choice. In the context given
here, the general problem relates not to the matrices A and Σ but to the underlying
parameter vectors θ and μ. The incorporation of exogenous variables in open
systems can be useful (e.g. Hamerle et al. 1993; Bergstrom et al. 1992), as can
the aspect that the matrices in terms of the underlying parameter vectors are often
heavily restricted. Nevertheless, finding necessary and sufficient conditions to solve
the identification problem for estimating continuous time models on the basis of
discrete data remains open even for the most basic of models.

14.2.3 Granger Causality

Formulating a structural model in continuous time offers a means of resolving
the problem that discrete time models, whose estimated parameters are tied to the
sampling frequency, do not readily lend themselves to economic interpretation. A
parallel problem that has also been downplayed in the econometrics literature is the
tendency for naïvely specified discrete time models to generate spurious Granger
causality relationships when the time intervals in which the data are generated
are finer than the sampling interval.16 To define (global) Granger non-causality
between two variables x1(t) and x2(t), let Ij (t) (j = 1, 2) denote the sigma algebra
generated by xj (t) up to time t (this is interpreted as an information set), let Ī (t)

16McCrorie and Chambers (2006, Section 3.1) outline and discuss the concept of Granger causality
in the context of continuous and discrete time models.



14 Continuous Time Modelling Based on an Exact Discrete Time Representation 331

denote all other information up to time t , and let E(A|B) denote the conditional
expectation of A given B. Then x2 does not Granger cause x1 if

E(x1(t + k)|I1(t), I2(t), Ī (t)) = E(x1(t + k)|I1(t), Ī (t)) (14.23)

for all t and k > 0; see Florens and Fougère (1996) and Comte and Renault (1996).
If the above condition does not hold, then x2 is said to Granger cause x1. A brief
survey and discussion of the literature of Granger causality in continuous time can
be found in McCrorie and Chambers (2006, Section 3).

In the context of temporal aggregation, a coarsely sampled process, omitting
information useful for predicting an economic time series, will exhibit bidirectional
Granger causality with another coarsely sampled process provided that they are
correlated, even if there is only unidirectional causality in the finer time interval.
Inferences made about the underlying behaviour of economic agents from observed
time series can, therefore, be distorted. For example, Christiano and Eichenbaum
(1987) find evidence for the money stock Granger-causing output with quarterly
US data that seems to be overturned when moving to a finer sampling interval.
Some authors, for example, Marcellino (1999) and Breitung and Swanson (2002),
have tried to approach the temporal aggregation problem through the lens of fixed-
interval time aggregation; however, this approach relies on constructing corrections
to estimates through knowing the time unit in which the data are generated.
Otherwise, a distortional effect owing to temporal aggregation will remain.17

Specifying a structural continuous time model allows a priori restrictions to
be imposed on the observed discrete data independently of the sampling interval,
enabling Granger causality relationships to be preserved, and thereby facilitates
obtaining efficient estimates of the structural parameters that are devoid of temporal
aggregation bias. Such considerations matter materially in empirical work. For
example, Harvey and Stock (1989) find evidence, using US data, of the money
stock not Granger-causing output on the basis of a continuous time model but
obtain a strong reversal of this conclusion when temporal aggregation is ignored
in discrete time VARs. McCrorie and Chambers (2006) also consider the issue of
money-income causality in discrete time models where the temporal aggregation
restrictions were imposed exactly, approximately and not at all. They find that
accounting for temporal aggregation restrictions can have an important bearing on
Granger causality tests, even when the restrictions are only approximately imposed.
In an application to exchange rates, Renault et al. (1998) used a continuous time
model, and the methods of this chapter to distinguish between ‘true’ and ‘spurious’
causality and on the basis of their data suggested that there was a ‘discrete time
illusion’ of spurious causality observed between the German mark and the Swiss
franc at certain sampling frequencies.

17Thornton and Chambers (2013) provide a recent discussion of temporal aggregation in macroe-
conomics with continuous time models in view.
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The above discussion motivates formulating continuous time models as a way
of countering the problem that some observed Granger causality relationships in
naïvely specified discrete time models are spurious. In practice, there exists a trade-
off between preserving a priori information on Granger causality relationships in
estimation with solving the problem of identifying the parameters of a structural
continuous time model on the basis of discrete time data as discussed in Sect. 14.2.2.
Both issues are in the background regardless of the model formulated. For example,
naïvely specifying a discrete time model on its own, common throughout economet-
ric time series analysis, is insufficient as it gives no reference point to assess whether
the magnitude of temporal aggregation is important.

14.2.4 Nonstationarity

Economic time series data are inherently nonstationary, and the nonstationarity can
manifest itself in a variety of forms. A second-order stationary time series is one for
which the mean, variance and autocovariances are time-independent. Examination
of the solution to the state space representation of the continuous time system given
in (14.3) shows immediately that the mean depends on time because E[y(t)] =
eAty(0), assuming y(0) is fixed. This is the form of nonstationarity referred to in the
title of Bergstrom (1985). However, in recent years, nonstationarity has come to be
associated with a different concept, namely, that of unit roots and stochastic trends,
which are consistent with the earlier observation of Granger (1966) concerning the
shape of the spectral density function at the origin.

A discrete time process, xth (t = 1, . . . , T ), is said to have a unit root if it has
the representation

Δhxth = uth, t = 1, . . . , T , (14.24)

where Δhxth = xth − xth−h and uth is a second-order stationary random process.
Solving the difference equation from an initial value x0 yields the representation for
the level process in the form

xth = x0 +
t∑

j=1

ujh, t = 1, . . . , T , (14.25)

where the partial sum of the stationary process uth represents the stochastic trend.
One way of thinking about a unit root is that the process requires differencing once
to become stationary, as in (14.24), while the stochastic trend representation (14.25)
leads to the levels process being described as integrated of order one, often denoted
I(1).

In continuous time, the equivalent representation to (14.24) is

Dx(t) = u(t), t > 0, (14.26)
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where u(t) is a second-order stationary continuous time process and x(0) will be
taken to be fixed. In this case, the process x(t) requires differentiating once to
become stationary, and the stochastic trend representation for the level is given by

x(t) = x(0)+
∫ t

0
u(r)dr, t > 0, (14.27)

assuming the integral (which represents the continuous time stochastic trend) exists.
If x(t) is observed as a discrete time process at integer values of t at intervals of
length h, then integrating (14.26) once over the interval (th− h, th] reveals that

x(th) = x(th− h)+
∫ th

th−h
u(r)dr

and hence the discrete time process has a unit root. This is also true of an observed
flow variable obtained by a further integration of the model above.

Following Phillips (1987), a large literature has emerged on unit root processes
in discrete time, and much effort has been expended in the search for tests for a
unit root that have good properties. Many economic time series have been found
to display unit root-type properties, but one of the challenges facing economics in
the mid-1980s was how to reconcile economic theory with these apparent features.
In particular, individual series with unit roots can wander freely over time, driven
by the stochastic trends, whereas much of economics implies the existence of
stable relationships among variables (an example being consumers’ expenditure and
income). The solution to this apparent dichotomy, proposed by Engle and Granger
(1987), was the concept of cointegration. An n× 1 vector, xth, of I(1) series is said
to be cointegrated if there exist a set of 1 ≤ r < n linear combinations of the form
β ′xth that are stationary, where β is an n × r matrix of cointegrating parameters
whose columns are the r cointegrating vectors. Cointegration has subsequently
become an essential concept in the analysis of multivariate nonstationary economic
time series.

In terms of continuous time processes, Phillips (1991) showed that a vector
process that is cointegrated in continuous time is also cointegrated in terms of
the discrete time observations.18 This is an important result because it implies that
discrete time methods can be used to test for cointegration even if the researcher is
interested in formulating a model in continuous time. If evidence of r cointegrating
vectors is found, let m = n− r and partition x(t) = [x1(t)

′, x2(t)
′]′, where x1(t) is

r×1 and x2(t) ism×1. Then there exists an r×mmatrix,B, of cointegrating vector
such that x1(t) − Bx2(t) is a stationary continuous time process. Note that these
cointegrating relationships have been normalised on x1(t), which is an identification
condition. The continuous time model can then be represented in terms of an error

18Stock (1987) had earlier provided an example that cointegration as a property was invariant to
temporal aggregation.
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correction model (ECM) of the form

Dx(t) = −JAx(t)+ u(t), t > 0, (14.28)

where J = [Ir , 0r×m]′, A = [Ir ,−B] and u(t) is a stationary process. The ECM
representation (14.28) embodies two key features of the cointegrated system. The
first r equations are of the form

Dx1(t) = −[x1(t)− Bx2(t)] + u1(t), t > 0,

in which x1 is responding to the disequilibrium (or error) depicted by x1(t)−Bx2(t).
Such systems are often motivated by x1(t) = Bx2(t) representing an equilibrium or
optimal level of x1 given the level of x2. The remaining m equations in (14.28) are
the stochastic trends driving the system; they are given by

Dx2(t) = u2(t), t > 0,

subject to an initial value x2(0).
In continuous time cointegrated systems of the form (14.28) interest centres on

estimation of the matrix B. Equispaced discrete time observations generated by this
system satisfy

x(th) = e−JAhx(th− h)+ v(th), v(th) =
∫ th

th−h
e−JA(th−r)u(r)dr, t = 1, . . . , T .

Using the fact that AJ = Ir , the infinite series representation for the matrix
exponential can be used to show that e−JAh = In − f JA where f = 1 − e−h.
It then follows that x(th) satisfies the discrete time ECM

Δhx(th) = −JAx(th− h)+w(th), w(th) = v(th)+ e−hJAx(th− h), t = 1, . . . , T ,

where w(th) is a stationary disturbance vector in view of Ax(th) = x1(th) −
Bx2(th) being stationary. Phillips (1991) recommended the use of spectral regres-
sion estimators that treat the dynamics nonparametrically. Such methods exploit
the stationary nature of u(t) to the full without requiring any particular parametric
form for the dynamics and were shown to have good finite sample properties in
the simulation study of Chambers (2001). Frequency domain methods can also be
used in cointegrated systems in which the dynamics are modelled parametrically,
for example, in CAR(p) models such as (14.1) that embed cointegration by setting
A0 = CA, where A is defined following (14.28) and C is an n × r matrix of
rank r . Chambers and McCrorie (2007) show that maximisation of a frequency
domain likelihood function leads to estimates of B that are asymptotically mixed
normal and to estimates of the autoregressive parameters that govern the dynamics
that are asymptotically normal. As is the case with cointegrated systems in discrete
time, the estimates of B converge to the limiting distribution at rate T , while those
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of the autoregressive parameters converge at rate
√
T . The exact discrete model

corresponding to a first-order cointegrated system with mixed sample data was
derived by Chambers (2009), and such models can be estimated based on the time
domain Gaussian likelihood outlined earlier.19 The effects of sampling frequency
in the context of cointegrated continuous time CAR systems were also analysed by
Chambers (2011).

14.2.5 Mixed Frequency Data

Time series data in economics are available at a variety of frequencies. Observations
on macroeconomic aggregates, such as consumers’ expenditure, investment and
national income, are typically available quarterly; variables such as the money
supply and price indices used to compute measures of inflation are usually observed
monthly, while financial variables, such as asset prices (interest rates, exchange
rates, stock prices, etc.), can be observed almost continuously, but daily closing
prices are often used. The extant approach to dealing with observations at different
frequencies is to aggregate all variables to the lowest frequency, thereby potentially
throwing away information contained in the high-frequency observations that could
be exploited for gains in modelling. For example, it might be possible to use high-
frequency financial variables to predict fluctuations in real economic activity before
the low-frequency observations are available. In recent years, a number of advances
in the analysis of mixed frequency data have been made, and the topic has assumed
added significance following the financial crisis of 2008.

In the context of continuous time models, an often overlooked but nevertheless
important contribution that incorporates observations at different frequencies was
made by Zadrozny (1988). He considered the general problem of estimating a
CARMA(p, q) system with mixed sample data available at mixed frequencies and
recommended the use of state space forms and the Kalman filter for constructing
the Gaussian likelihood function. More recently, and in keeping with the exact
discrete time modelling approach, Chambers (2016) derived the exact discrete
model corresponding to a CAR(1) system with mixed sample data observed at mixed
frequencies. Suppose, for simplicity, that there are two vectors of stock variables,
a low-frequency one, x2 (n2 × 1), observed at unit intervals of time, and a high-
frequency vector, x1 (n1 × 1), observed at time intervals of length 0 < h < 1
where it is convenient to assume that k = h−1 is an integer. For example, if x2 is
observed quarterly and x1 monthly, then h = 1/3 and x1 is observed k = 3 times
more frequently than x2. Then, for each integer t , the (kn1 + n2)× 1 vector

Xt = [x ′
1t , x

′
1,t−h, x ′

1,t−2h, . . . , x
′
1,t−(k−1)h, x

′
2t ]′, t = 1, . . . , T ,

19Other time domain approaches to cointegrated models in continuous time can be found in Comte
(1999) and Corradi (1997).
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can be defined. The underlying continuous time model is assumed to be a CAR(1)
system in the n× 1 vector x(t) = [x1(t)

′, x2(t)
′]′ of the form

dx(t) = Ax(t)dt + ζ(dt), t > 0,

where ζ(dt) is defined following (14.1). The objective is to use the mixed frequency
data to estimate the n × n matrix A and the 1

2n(n + 1) elements of the covariance
matrix, Σ , of ζ(dt). Theorem 1 of Chambers (2016)20 shows that the discrete time
observations satisfy the exact discrete time model

x1t = B11,1x1,t−h + . . .+ B11,kx1,t−1 + B12,0x2,t−1 + η1t ,

x1,t−h = B11,1x1,t−2h + . . .+ B11,k−1x1,t−1 + B12,1x2,t−1 + η1,t−h,
...

...

x1,t−(k−1)h = B11,1x1,t−1 + B12,k−1x2,t−1 + η1,t−(k−1)h,

x2t =
k∑

j=1

B21,j x1,t−jh + B22x2,t−1 + η2t ,

where theBij,k matrices are of dimension ni×nj (i, j = 1, 2) and the (kn1+n2)×1
vector

ηt = [η′
1t , η

′
1,t−h, η′

1,t−2h, . . . , η
′
1,t−(k−1)h, η

′
2t ]′

is a vector white noise process. It is important to stress that all of the autoregressive
matrices in the mixed frequency discrete time representation are only functions of
the elements of the matrix A, while the covariance matrix of ηt depends only on A
and Σ . By way of comparison, a discrete time vector autoregression in the vector
Xt would be significantly over-parameterised.

Similar exact discrete time models can be derived for the cases where both the
high- and low-frequency observations are on flow variables and where they are
mixtures of stocks and flows. The main difference when flow variables are present is
that the disturbance vector becomes an MA(1) process but the parsimony over unre-
stricted VAR and VARMA systems remains. Simulation results in Chambers (2016)
for stationary and cointegrated systems show that utilising the mixed frequency
data reduces bias and mean squared error of Gaussian estimates compared with
the situation where high-frequency variables are aggregated to the low frequency.
Furthermore, in an empirical application testing long-run purchasing power parity
restrictions between the UK and the USA, inferences are found to be unfavourable
to the restrictions when using the information in daily frequency exchange rates, but

20The model considered by Chambers (2016) also includes a vector of intercepts and deterministic
trends.
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the restrictions are not rejected when the exchange rates are aggregated to weekly
and monthly frequencies. A possible explanation for this finding is that the estimates
of the two key parameters of interest have large standard errors using the aggregated
series but are more precisely determined when using the high-frequency data.

14.2.6 Gaussian Estimation Using an Exact Discrete Model

The exact discrete time model in the form of (14.10), allied with an additional set
of p − 1 conditions relating the initial observations to the initial state vector in the
case of stock variables or p such conditions in the case of flows or a mixed sample,
provides a basis for the construction of the likelihood function. It is usually assumed
that the nT × 1 vector η = (η′

h, . . . , η
′
T h)

′ is Gaussian with mean vector zero and
covariance matrix Ωη = E(ηη′), which is equivalent to specifying ζ(dt) in (14.1)
to be the increment in a Brownian motion process. Under such an assumption the
log-likelihood is of the form

logL(θ) = −nT
2

log 2π − 1

2
log |Ωη| − 1

2
η′Ω−1

η η, (14.29)

where θ denotes the parameter vector of interest (i.e. the elements of the autoregres-
sive matrices A0, . . . , Ap−1 and the covariance matrix Σ). Section 14.3 discusses
computational aspects associated with (14.29).

The asymptotic properties of estimates obtained by maximising (14.29) depend,
of course, on the set of assumptions made concerning the model (14.1). Bergstrom
(1983) provided a set of conditions that ensures that the vector, θ̂ , that max-
imises (14.29) is almost surely consistent and, furthermore, that

√
T (θ̂ − θ) is

asymptotically normal and efficient in the Cramer sense. These conditions include
such things as identification of θ in a closed bounded setΘ over which maximisation
takes place, stationarity and ergodicity of x(t) and continuity and differentiability
of the autoregressive matrices and covariance matrix of (14.1) in cases where the
elements of these matrices may depend, possibly non-linearly, on an underlying
parameter vector of smaller dimension. The issue of identification has an added
dimension in continuous time models owing to the phenomenon of aliasing which
was discussed in Sect. 14.2.2.

In finite samples, the problem of estimation bias has the potential to beset all
Gaussian/maximum likelihood (ML) methods including those based on the exact
discrete time model. It is particularly relevant when estimating mean reversion
parameters, as demonstrated in Phillips and Yu (2005) and Yu (2012). In a sampling
experiment using a common interest rate model, Phillips and Yu (2009) showed
that the estimation bias can be more important than the bias arising from using an
approximate rather than an exact solution of the continuous time model. Wang et al.
(2011) decompose the overall bias into separate terms arising from estimation and
from discretisation, finding that when using Euler and trapezoidal approximations
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to the exact discrete model, both approximate methods dominate the exact method
for empirically realistic cases. They also show that the sign of the discretisation
bias is opposite to that of the estimation bias in such cases, meaning that the
bias in the approximate methods is less than for estimation based on the exact
discrete model. In addition the asymptotic variance of the estimator based on the
Euler approximation is smaller than for the ML estimator of the mean reversion
parameter in the exact discrete model, supporting a conclusion that the Euler
approximation would be preferred to ML estimation of the exact discrete model in
certain circumstances, such as when mean reversion in a univariate linear diffusion
is slow.

It should be borne in mind that the exact discrete model is the only model
that exactly incorporates restrictions implied by economic theory and other a
priori information on the observed discrete data, and methods have been proposed
to reduce finite sample estimation bias. Phillips and Yu (2005, 2009) propose
jackknife techniques and a simulation-based indirect inference method and show
they are successful in reducing finite sample bias in univariate diffusion models.
Jackknife methods can also be expected to work successfully in higher-order and
multivariate continuous time models, as indicated by the results of Chambers (2013)
for stationary autoregressions and Chambers and Kyriacou (2013) in unit root
models. The application of such techniques to more general continuous time systems
is worthy of further investigation.

14.2.7 Alternative Approaches

Although we have emphasised the exact discrete time modelling approach to the
estimation of continuous time systems, it is not the only suitable method. As
mentioned above, Zadrozny (1988) has shown how Kalman filtering techniques
can be used to compute the Gaussian likelihood function in CARMA systems
with mixed sample and mixed frequency data that can also include exogenous
variables. State space forms and the Kalman filter were also used in a sequence of
contributions by Harvey and Stock (1985, 1988, 1989) that built on earlier work
by Jones (1981) and focused on CAR systems that may contain integrated and
cointegrated variables. Singer (1995) also proposed a filtering method and used
analytic derivatives to facilitate computing the likelihood function. The evaluation
of the likelihood function using the exact discrete model approach treats the entire
observation vector simultaneously, whereas the Kalman filter is a recursive method
that is usually defined stepwise from observation to observation. However, both
methods should produce the same value for the likelihood function. Bergstrom
(1985) offers some comparison between the methods, as do Singer (2007) and Oud
and Singer (2008) though for methods extended to deal with panel data.

The main advantage of these approaches is that it is not necessary to derive the
full exact discrete time model, merely the first-order difference equation satisfied
by the state vector that includes unobservable components as well as the observed
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variables. Another advantage of this approach is that the Kalman filter produces
optimal estimates of the unobservable components of the state vector which may be
of interest in certain applications. A disadvantage is that it is less readily comparable
to alternative discrete time models, a shortcoming that is clearly not shared by the
exact discrete time representation. Furthermore, Bergstrom (1985) provided some
arguments as to why the exact discrete time approach has computational advantages
over the Kalman filter approach, although no formal testing of these claims appears
to have been conducted and will, no doubt, depend on a whole variety of factors.21

Alternative frequency domain methods can also be used to estimate stationary
CARMA systems. The spectral density matrix of the continuous time process x(t)
in (14.15) is given by

F(λ) = 1

2π
A(−iλ)−1Θ(−iλ)ΣΘ(iλ)′[A(iλ)′]−1, −∞ < λ < ∞, (14.30)

where i2 = −1,

A(z) = zpIn − Ap−1z
p−1 − . . .− A1z− A0,

Θ(z) = In +Θ1z+ . . .+Θq−1z
q−1 +Θqz

q.

Assuming that x(t) is comprised of stock variables, the spectral density matrix of
the discretely observed vector xth is given by

Fd(λ) = 1

h

∞∑

j=−∞
F

(
λ+ 2πj

h

)

, −π < λ ≤ π,

the so-called folding formula. Robinson (1993) provides formulae that enable
Fd(λ) to be computed exactly so that a frequency domain version of the Gaussian
likelihood function (or Whittle likelihood) can be constructed. Flow variables are
also easily handled within this framework, as are mixed samples. Suppose x(t) =
[xs(t)′, xf (t)′]′, and we partition F(λ) as

F(λ) =
(
Fss(λ) F sf (λ)

Ff s(λ) Fff (λ)

)

.

21Such factors include, but are not restricted to, the order of the continuous time system, the
dimension of the vector x(t), the sample size, the way in which the likelihoods are programmed
and the optimisation algorithm used.
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Then the spectral density matrix of the continuous time process

X(t) =
⎛

⎜
⎝

xs(t)

1

h

∫ t

t−h
xf (r)dr

⎞

⎟
⎠

is given by Robinson (1993) as

FX(λ) =

⎛

⎜
⎜
⎝

Fss(λ)
1 − e−ihλ

ihλ
F sf (λ)

eihλ − 1

ihλ
Ff s(λ)

4 sin2 hλ/2

h2λ2 Fff (λ)

⎞

⎟
⎟
⎠ , −∞ < λ < ∞.

The terms multiplying components of the spectral density matrix involving flow
variables arise through the frequency response function of the integral determining
the observed process (and the squared frequency response function for Fff (λ)).
The spectral density of the process observed at discrete points in time, i.e. forX(th)
(t = 1, 2, . . .), is then subject to the folding formula yielding

FdX(λ) = 1

h

∞∑

j=−∞
FX

(
λ+ 2πj

h

)

, −π < λ ≤ π.

Fourier methods for the estimation of even more general continuous time systems
were earlier proposed by Robinson (1976).

14.3 Computational Issues

Except in the simplest cases, estimates of the parameters of continuous time
models do not have closed-form solutions and typically require optimisation using
programmable statistical software such as R, Matlab or Gauss. Fortunately, the
growth in computing power has expanded the scope and the dimension of feasible
models, provided the sparse nature of many of the matrices involved in computing
the likelihood and the possibility of in-sample convergence is exploited.

Firstly, the translation of an autoregressive model in continuous time to a
discrete time model free of dependence on any sampling frequency involves the
calculation of a matrix exponential, as in Eq. (14.3), and functions thereof. Owing
to results by Van Loan (1978), the functions of the exponential can be computed
as products of submatrices of a single, larger dimensional matrix exponential.
Chambers (1999), McCrorie (2000) and Thornton and Chambers (2016) provide
expressions pertaining to the exact discrete time model, while Harvey and Stock
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(1985) and Zadrozny (1988) provide similar expressions for application of the
Kalman filter.

Moler and Van Loan (1978), in a celebrated article in the numerical analysis
literature,22 showed that computation of the matrix exponential is a notoriously
ill-conditioned problem, to the extent that of 19 methods considered, only 3 or
4 were potentially suitable in general, including a scaling and squaring method
that employs Padé approximation to the scalar exponential (see Higham 2009).
Jewitt and McCrorie (2005) discuss the computational issues behind computing
matrix exponentials and their functions with continuous time econometrics in view.
Standard methods are not always robust. For example, taking the partial sums of the
Taylor series following Eq. (14.3) can be ill-conditioned because round-off error
can propagate in computing higher and higher powers in a way that eventually
dominates analytical convergence. A popular alternative is to exploit an eigenvalue
decomposition when A is diagonalisable, i.e. when A is similar to a diagonal matrix
Λ containing the eigenvalues of A. If A = QΛQ−1, then eA = QeΛQ−1, where
eΛ is, conveniently, a diagonal matrix whose elements are exponentials of the
corresponding elements ofΛ. The method relies, however, on an a priori assumption
that the matrix A is diagonalisable, which is inconsistent with the property of
cointegration that economic data plausibly satisfy. It is also possible that Q itself
is ill-conditioned; see, for example, Higham and Al-Mohy (2010, Section 4). The
main recommendation of Jewitt and McCrorie (2005) is that, for the type of matrices
liable to be seen in econometric modelling, the problem is not likely to be ill-
conditioned should any of the three standard methods discussed therein, including
the scaling and squaring method also recommended by Zadrozny (1988), be used
and supported by calculations made to at least standard IEEE double precision.

Hereafter, computation of the likelihood using the exact discrete representation
diverges from calculation using the Kalman filter. The Kalman filter may be
applied to Eq. (14.4) in association with an observation equation that synthesises the
observed series, xth, from the state vector, y(th). Well-known methods have been
developed to cope with irregularly spaced data and with observation noise; see, for
example, Harvey (1989). The likelihood is often evaluated using the T prediction
error vectors for the observed series, which, being optimal linear predictions, are
uncorrelated. Such routines have the advantage/incur the expense, depending on
requirements, of estimating the full state vector at the observation time points.

The evaluation of the likelihood in Eq. (14.29), in contrast, does not attempt an
optimal prediction of xth but rather models the time dependence between the ηth
vectors parametrically. The computation of (14.29) is potentially troublesome as it
involves the calculation of the determinant and inverse of the nT × nT covariance
matrixΩη. However, the MA nature of ηth ensures thatΩη is a sparse block-Toeplitz
matrix with no more than n(2p− 1) non-zero elements in any row or column in the
case of stocks and no more than n(2p+ 1) non-zero elements in any row or column
when flows are present. This sparsity can be exploited for computational advantages

22This paper was reprinted 25 years later with an update as Moler and Van Loan (2003).
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including speed and accuracy. LetM denote the nT ×nT lower triangular Cholesky
matrix with typical elements mij satisfying MM ′ = Ωη, and let ξ = M−1η with
typical element ξi . Then η′Ω−1

η η = ξ ′ξ and |Ωη| = |MM ′| = |M|2 so that the
log-likelihood can be written as

logL(θ) = −nT
2

log 2π − 1

2
log |M|2 − 1

2
ξ ′ξ

= −nT
2

log 2π −
nT∑

i=1

logmii − 1

2

nT∑

i=1

ξ2
i , (14.31)

which follows because |M| = ∏nT
i=1mii . Bergstrom (1983) showed that the

elements of ξ can be computed recursively from the system Mξ = η, while
Bergstrom (1990, chapter 7) showed that the elements of M converge rapidly to
fixed limits as computations proceed within the matrix, resulting in savings in
computational storage requirements.

One of the important features of a continuous time model is that the form of
an exact discrete time representation is invariant to the sampling frequency of the
observations. We are able to illustrate this aspect in the context of a small simulation
exercise using a simple first-order stochastic differential equation in a scalar random
variable x(t), given by

dx(t) = ax(t)dt + ζ(dt), t > 0, (14.32)

where we take x(0) = 0 for convenience and E[ζ(dt)2] = σ 2dt . Assuming
x(t) to be a stock variable, suppose that the sequence x0, xh, x2h, . . . , xT h is
observed, where h denotes the sampling interval and T is the number of discrete
time observations. Then the exact discrete time model satisfied by the sequence of
observations is a discrete time AR(1), regardless of the sampling interval; it is given
by

xth = fhxth−h + ηth, t = 1, . . . , N, (14.33)

where fh = eah and ηth is white noise with variance σ 2
η = σ 2(e2ah − 1)/(2a).

Acknowledging that xth is subject to temporal aggregation means that we focus on
estimating a and σ 2 regardless of the sampling interval. However, ignoring this
feature means that fh would be estimated directly and estimates would suggest
differing degrees of serial correlation depending on the value of h. Associated
patterns of variation would also be observed in estimates of σ 2

η owing to its
dependence on h.
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In order to assess these features, we consider values of h ∈ { 1
12 ,

1
6 ,

1
4 ,

1
3 ,

1
2 , 1}

and a ∈ {−2,−1,−0.5,−0.1} with σ 2 = 1. A total of 100,000 replications of
each parameter combination were conducted, and we set the data span equal toN =
T h = 100; this is the number of observations when h = 1. As the sampling interval
falls, the number of observations, T = N/h, rises to a maximum of 1200 when
h = 1/12. The data are generated at this highest frequency (h = 1/12), and then the
lower-frequency observations are selected, so that, for example, the observations for
h = 1/6 correspond to every second observation in the h = 1/12 sequence, while
those for h = 1 correspond to every twelfth observation. The maximum likelihood
estimator of a can be shown to be equal to

âML = 1

h
log f̂h,

where f̂h denotes the ordinary least squares (OLS) estimator of fh in the autoregres-
sion (14.33). Clearly this is only feasible if f̂h > 0, and it is only for smaller values
of fh and T that it becomes a problem. In fact, the only cases where f̂h < 0 were for
a = −1 and a = −2 when T = 100, where the proportions of replications affected
were 0.00016 and 0.091, respectively. In these cases, the estimates were removed,
and the summary statistics were computed with the remainder of the replications. In
view of the results of Wang et al. (2011), we also compute an estimate of a based
on the Euler approximation given by

(xth − xth−h) = ahxth−h + uth,

where uth is a serially uncorrelated random disturbance with variance σ 2h. We
denote the estimate of a obtained using this approximation by âE .

The results appear in Table 14.1 in which, for each value of a, the mean values
and standard errors (across the replications) of âML and âE are reported, as well
as the means and standard errors of f̂h. In the latter case, we also report the actual
values of fh. It can be seen clearly from Table 14.1 that the estimates of a using
âML, although slightly biased as expected, are all stable across the range of values
of h, and although âE has smaller bias than âML when a = −0.1, its performance in
terms of bias deteriorates as a becomes more negative. This is in accordance with the
results of Wang et al. (2011). It can also be seen that âE has a smaller standard error
than âML in all cases. The estimates of the discrete time autoregressive parameter fh
using f̂h can be seen to depend clearly on the value of h. Although f̂h is a reasonably
good estimator of fh, the implications for the dependence properties of the variable
x depend very much on the sampling interval chosen; the same is not true when the
temporal aggregation is taken into account.
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Table 14.1 Simulation results: means and standard errors of estimators

h âML âE f̂h fh âML âE f̂h fh

a = −0.1 a = −0.5

1 −0.1213 −0.1127 0.8873 0.9048 −0.5292 −0.4050 0.5950 0.6065

(0.0591) (0.0504) (0.0504) (0.1452) (0.0814) (0.0814)

1/2 −0.1206 −0.1163 0.9418 0.9512 −0.5235 −0.4578 0.7711 0.7788

(0.0567) (0.0524) (0.0262) (0.1217) (0.0909) (0.0460)

1/3 −0.1203 −0.1174 0.9609 0.9672 −0.5219 −0.4772 0.8409 0.8465

(0.0559) (0.0530) (0.0177) (0.1153) (0.0957) (0.0319)

1/4 −0.1202 −0.1181 0.9705 0.9753 −0.5214 −0.4875 0.8781 0.8825

(0.0555) (0.0534) (0.0133) (0.1125) (0.0979) (0.0245)

1/6 −0.1201 −0.1186 0.9802 0.9835 −0.5207 −0.4979 0.9170 0.9200

(0.0551) (0.0537) (0.0090) (0.1097) (0.1000) (0.0167)

1/12 −0.1200 −0.1193 0.9901 0.9917 −0.5203 −0.5088 0.9576 0.9592

(0.0548) (0.0541) (0.0045) (0.1072) (0.1024) (0.0085)

a = −1.0 a = −2.0

1 −1.0581 −0.6388 0.3612 0.3679 −2.1249 −0.8667 0.1333 0.1353

(0.3030) (0.0934) (0.0934) (0.8435) (0.0988) (0.0988)

1/2 −1.0291 −0.7989 0.6006 0.6065 −2.0554 −1.2716 0.3642 0.3679

(0.1951) (0.1140) (0.0570) (0.3853) (0.1318) (0.0659)

1/3 −1.0247 −0.8644 0.7119 0.7165 −2.0343 −1.4698 0.5101 0.5134

(0.1746) (0.1225) (0.0408) (0.2986) (0.1488) (0.0496)

1/4 −1.0234 −0.9003 0.7749 0.7788 −2.0291 −1.5861 0.6035 0.6065

(0.1662) (0.1275) (0.0319) (0.2682) (0.1597) (0.0399)

1/6 −1.0217 −0.9377 0.8437 0.8465 −2.0244 −1.7148 0.7142 0.7165

(0.1583) (0.1327) (0.0221) (0.2420) (0.1716) (0.0286)

1/12 −1.0208 −0.9777 0.9185 0.9200 −2.0219 −1.8590 0.8451 0.8465

(0.1513) (0.1386) (0.0115) (0.2205) (0.1858) (0.0155)

14.4 Empirical Applications

There have been many applications of the methods of this chapter, most notably
in the area of macroeconomic modelling to which, because it drove much of the
early work, we devote Sect. 14.4.3 below. Representative papers include, in the
areas of asset allocation, Campbell et al. (2004); consumers’ demand, Bergstrom
and Chambers (1990) and Chambers (1992); uncovered interest parity, Diez de los
Rios and Sentana (2011); exchange rates, Renault et al. (1998); short-term interest
rate models, Nowman (1997), Yu and Phillips (2001) and Phillips and Yu (2011);
and empirical finance in general, Thornton and Chambers (2016). It is quite clear
that, perhaps now more than ever, economic activity occurs continuously around the
clock and yet, such is the undertaking required to measure this activity, published
statistics cannot hope to provide real-time information. Here we introduce two
applications within macroeconomics which are illustrative of the use of an exact
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discrete representation to resolve this tension. One involves a univariate time series,
namely, consumer price inflation in the UK, while the other explores the important
relationship between gross domestic product (GDP) in the USA and crude oil
prices. As mentioned in Sect. 14.2, the impact of time aggregation is to induce
serial correlation in the disturbances, ηt , and so the ability of a continuous time
specification to explain the observed serial correlation adequately is an important
test of its suitability. In order to address this issue, Bergstrom (1990, chapter 7)
proposed a portmanteau-type test statistic based on the n × 1 vectors of standard
normal variates ξth (t = 1, . . . , T ). Bergstrom’s statistic is defined by

Sl = 1

n(T − l)

l∑

r=1

(
T∑

t=l+1

ξ ′
thξth−rh

)2

,

which has an approximate chi-squared distribution with l degrees of freedom (the
number of lags used) under the null hypothesis that the model is correctly specified.
For robustness, we also report the Schwarz Bayesian model selection criterion
(SBC) for each model. Each of these models is deliberately narrow in their focus.
Modern economies are, of course, large, complex and interconnected systems and
so we finish with an overview of some of the large-scale macroeconomic modelling
carried out in continuous time.

14.4.1 Consumer Prices and Inflation

In a continuous time setting, price inflation can be defined as the instantaneous rate
of change of the price level, i.e. π(t) = D logp(t). Consider the continuous time
ARMA(2,1) model for logp(t) given by

D2 logp(t) = γ0+A1D logp(t)+A0 logp(t)+u(t)+θDu(t), t > 0, (14.34)

where γ0, A1, A0 and θ are scalars and u(t) is a mean zero uncorrelated process
with variance σ 2

u . Under the condition that A0 = 0, i.e. that logp(t) has a zero root
in continuous time (and a unit root in discrete time), the implied law of motion for
inflation becomes

Dπ(t) = γ0 + A1π(t)+ u(t)+ θDu(t), t > 0. (14.35)

Hence π(t) satisfies a continuous time ARMA(1,1) process which corresponds to a
continuous time ARIMA(2,1,1) process for logp(t).

Estimates of (14.34) with A0 = 0 were obtained using monthly data for the UK
consumer price index over the period January 1996 to March 2014, a total of 219
observations. The results are given in Table 14.2. The estimates of the parameters in
the CARMA(2,0) are well determined, and there is no evidence of misspecification,
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Table 14.2 Estimates for
inflation

CARMA(2,0) CARMA(2,1)

γ0 0.0261 0.0013

(0.0038) (0.0006)

A1 −14.8432 −0.7362

(0.0046) (0.3425)

θ 0.0000 −1.9916

(0.9772)

σu 0.0562 0.0020

(0.0027) (0.0010)

logL 909.8639 913.0956

SBC −1803.5607 −1804.6349

S4 0.4427 0.9942

Standard errors in parentheses; entries for
S4 are p-values

at least as measured by Bergstrom’s S4 statistic. However, addition of the MA(1)
component results in a statistically significant increase in the value of the maximised
log-likelihood function—the likelihood ratio statistic for testing the null hypothesis
that θ = 0 is equal to 6.4634 with a marginal probability of 0.0110. The p-value of
the S4 statistic is far from significant, suggesting that the inclusion of the statistically
significant MA(1) component yields an improved fit; this is also the inference drawn
from a comparison of the SBC values for the two models.

14.4.2 Oil Prices and the Macroeconomy

Next, we explore the relationship between US output, as measured by real GDP
in tens of billions of chained 2009 dollars, and the oil price, as measured by
the price of West Texas Intermediate in dollars per barrel. The data are quarterly
ranging from 1986 to 2013 quarter 3 from the Federal Reserve Bank of St. Louis. In
common with most authors who have examined these series, for example, Hamilton
(1996), we find that both processes show strong evidence of unit root behaviour,
with augmented Dickey-Fuller test statistics of −0.609 and −0.318 for GDP and
the oil price, respectively, but find no evidence of a cointegrating relationship.
Nonstationary but non-cointegrated data are consistent with the specification in
Eq. (14.15) with A0 = 0. We define the 2 × 1 vector x(t) = [GDP(t), Oil(t)]′.

We consider two candidate models nested within a continuous time ARMA(2,1)
model, the continuous time ARIMA(1,1,0) which has A0 = 0, p = 2 and q = 0
and the continuous time CARIMA(1,1,1), which has q = 1. The exact discrete
representation of both models is an ARIMA(1,1,1),

Δhxth = f0 + F1Δxth−h + ηth, t = 3, . . . , T , (14.36)
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where Δhxth = xth − xth−h as in (14.24), with the CARIMA(1,1,1) offering more
flexibility in modelling the autocovariance structure of the discrete time disturbance
ηth.

Results for the two models are presented in Table 14.3. The CARIMA(1,1,1) is
preferred by the SBC, and the likelihood ratio test fails to reject the CARIMA(1,1,1)
in favour of the CARIMA(1,1,0), with a test statistic of 24.566. The moving average
coefficients in the first column of Θ are significant, reflecting the impact of lagged
shocks to GDP on both GDP and oil prices. Both models have values for the
Bergstrom S1 and S4 statistic in the acceptable region.

The literature has focussed on the question of whether changes in the oil price
lead to changes in GDP, reflected in the top right element of the matrix A1. It
is noticeable that in the CARIMA(1,1,0), neither of the coefficients on the rate
of change of GDP or on the oil price is significant in the equation determining
the other variable. When a moving average error is introduced to capture more
complicated dynamics, however, the t-ratio on the top right element of A1 is −2.36,
indicating that growth in oil prices slows GDP, while that on the bottom left is 1.975,
suggesting that growth in GDP accelerates oil price growth.

As a by-product of the estimation, to aid comparison with other models, the
intercept vector, f0, and autoregressive matrix, F1 of the exact discrete time
representation are also reported. These reinforce the point that the CARIMA(1,1,1)
model predicts a stronger reaction from one series to lagged changes in the other.

14.4.3 Macroeconometric Modelling

While many of the applications of continuous time models and methods occur
today in the area of empirical finance, much of the literature’s early develop-
ment was driven through the desire to make advances in the area of large-scale
macroeconometric modelling. This was in no small part due to Rex Bergstrom
who, in collaboration with a student, Clifford Wymer, produced in Bergstrom and
Wymer (1976) the first continuous time macroeconometric model, the formulation
and estimation of which represents one of the landmarks in the development of
modern econometrics. The economy-wide model, which comprised 13 equations
(10 structural equations and 3 identities) in 35 key parameters, served as a prototype
for later developments in macroeconomic modelling and the modelling of financial
and commodity markets. It had innovative features beyond simply being formulated
in continuous time: it was formulated as a dynamic disequilibrium model23 involv-
ing a system of partial adjustment equations in the form of continuous time error
correction equations, where each causally dependent variable continually adjusts in

23See Hillinger (1996) for a discussion of the history and conceptual foundations of such models
in macroeconometric modelling and Wymer (1996) for a similar discussion that focuses on
continuous time.
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response to the deviation from its partial equilibrium level; it embodied the intensive
use of economic theory and other a priori information to support a parsimonious
representation in the model parameters; and its design facilitated an analysis of its
steady-state and stability properties using methods developed earlier by Bergstrom
(1967).24

An earlier comprehensive survey of continuous time macroeconomic modelling
can be found in Bergstrom (1996), which includes the various stages of the Italian
continuous time model of Gandolfo and Padoan (1984, 1990),25 the economy-wide
models contained in the volume edited by Gandolfo (1993) and, not least, the
model by Bergstrom et al. (1992) which signified the next stage of development.
This model was the first to incorporate the exact methods that are the focus of
this chapter; it used more realistic, second-order partial adjustment equations using
the method for higher-order systems pioneered by Bergstrom (1983) and described
in Sect. 14.2.1 above; and, unlike the Bergstrom and Wymer (1976) model, it
incorporated exogenous variables. Estimating this model, which comprised 14
equations with 63 parameters and 11 exogenous variables, required around a day’s
computing time on a CRAY X-MP/48 supercomputer, which at the time represented
the cutting edge of computer technology. The Italian model was further developed
into a system including non-linear equations by Gandolfo et al. (1996), although
estimation was facilitated through a linear approximation about sample means; see
Wymer (1993) for details of the underlying estimation method. Wymer (1993, 1997,
2012) has developed a direct, full-information maximum likelihood approach to
the estimation of such non-linear systems although, given the development of this
literature, the properties of this estimator must currently be inferred from those
of the estimator based on a linear approximation about sample means. Starting
values for the procedure are readily obtained from applying the method of maximum
likelihood to this linear approximation.

The theoretical basis for what could be seen as a third-stage continuous time
model was provided by Bergstrom (1997), where unobservable stochastic trends are
incorporated within the system of stochastic differential equations to take advantage
of insights gained from the development of unit root econometrics that occurred in
the discrete time literature. The project was finally brought to fruition in a book
by Bergstrom and Nowman (2007) that was published after Bergstrom’s death in
2005. The model comprised a system of 18 mixed first- and second-order non-
linear differential equations with 63 structural parameters, 33 long-run parameters,
27 speed of adjustment parameters and 3 drift parameters. Its linearisation about
sample means results in precisely the model considered by Bergstrom (1997).
The parameter estimates and speed of adjustment parameters were all plausible,
and the model was seen, through an examination of its steady-state and stability
properties, to generate plausible long-run behaviour. Its post-sample forecasting

24See Gandolfo (1981) for a textbook treatment.
25At the time of writing (July 2017), Pier Carlo Padoan is Italy’s Minister of Economy and Finance,
a position he has held since February 2014.
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performance also compared favourably with a second-order VAR model with
exogenous variables. The book provided a retrospect of what Rex Bergstrom
achieved over a lifetime of research in the area of continuous time econometrics;
a brief survey of this contribution with an emphasis on macroeconomic modelling
is provided by Nowman (2009).

14.5 Concluding Comments

This chapter has aimed to provide a survey of methods of continuous time modelling
based on an exact discrete time representation. Such an approach is synonymous
with the name of Rex Bergstrom whose pioneering contributions were instrumental
in attracting the current authors to the field. Our survey has attempted to highlight
the techniques involved with the derivation of an exact discrete time represen-
tation of an underlying continuous time model, providing specific details for a
second-order linear system of stochastic differential equations. Issues of parameter
identification, causality, nonstationarity and mixed frequency data have also been
addressed, all of which are important to consider in applications in economics and
other disciplines. Although our focus has been on Gaussian estimation of the exact
discrete time model, we have also discussed alternative time domain (state space)
and frequency domain approaches. Computational issues have also been explored,
where here the focus is on the exploitation of sparse matrices and the computation
of the matrix exponential. Two new empirical applications have been included along
with a discussion of applications in the field of macroeconometric modelling. While
our focus is, of necessity, oriented towards economics and econometrics, we hope
that the material contained in this chapter will be of interest in the social and
behavioural sciences more widely.
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Appendix

The Gauss code below was used in the simulation exercise. Note that n is used in
the code as the data span and t is the sample size, whereas, in the text in Sect. 14.3,
it is T and N , respectively, that are used for these quantities.
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/* Simulation of continuous time AR(1) process
at different frequencies */

new;
a=-1.0; /* Continuous time AR parameter */
hv=1|1/2|1/3|1/4|1/6|1/12;/* Discrete time sampling intervals*/
n=100; /* Data span */
x0=0; /* Initial value */
nreps=100000; /* Number of replications */
s2=1; /*Continuous time innovation variance*/
rndseed 6665; /* seed for random numbers */

rhv=rows(hv);
tv=n./hv;
maxt=maxc(tv);
hmin=minc(hv);
hrel=hv/hmin;
eahm=exp(a*hmin);
e2ahm=exp(2*a*hmin);
eahv=exp(a*hv);
s2m=s2*(e2ahm-1)/(2*a);
sm=sqrt(s2m);
cta=zeros(nreps,rhv); /* nreps times number of h values */
dta=cta; eta=cta; nogood=0;

for i (1,nreps,1);
u=sm*rndn(maxt,1);
xm=datagen(u); /* maxt times 1 */
for hi (1,rhv,1);

h=hv[hi,1];
t=tv[hi,1];
xh=reshape(xm,tv[hi,1],hrel[hi,1]);
x=xh[.,hrel[hi,1]];
bhat=x[2:t,1]/x[1:t-1,1];
if bhat le 0; ahat=0; nogood=nogood+1;
else; ahat=ln(bhat)/h;
endif;
ehat=(x[2:t,1]-x[1:t-1,1])/(h*x[1:t-1,1]);
cta[i,hi]=ahat;
dta[i,hi]=bhat;
eta[i,hi]=ehat;

endfor;
endfor;

stop;

proc datagen(e);
local x;
x = recserar(e, x0, eahm);
retp( x );

endp;
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Chapter 15
Implementation of Multivariate
Continuous-Time ARMAModels

Helgi Tómasson

15.1 Introduction

Many natural phenomena are processes that evolve over time. Treating observa-
tions of such processes as observations of a random sample is therefore usually
misleading. The concept of covariance between two variables is more complex
in a time-series context because the two variables are actually a set of variables
defined at each time point. The covariance between two time series is therefore
much more than just a number; it is a function. The aim of time-series analysis
is to analyse the dynamics of the underlying data generating process. Multivariate
analysis is a formal tool for capturing dependency between variables. Multivariate
time-series analysis is the simultaneous analysis of dynamics and the relations
between variables.

There is an abundance of time-series textbooks for the discrete equispaced case
(e.g. Box and Jenkins 1976; Brockwell and Davis 1991). For the multivariate case,
there are also available textbooks (e.g. Lütkepohl 1991). The modern financial
literature for continuous-time treats the mathematics of continuous-time stochastic
dynamics (e.g. Björk 1998). Øksendal (1998) gives a rigorous treatment of the
mathematics of stochastic differential equations. In recent years, treatment of
stationary continuous-time ARMA models has become popular (e.g. Brockwell and
Marquardt 2005; Garcia et al. 2011). Many of those papers have a high mathematical
focus. For a summary see, e.g., Schlemm and Stelzer (2012), Fasen and Fuchs
(2013), Brockwell (2014) and Kawai (2015). For a more computational approach,
see, e.g., Singer (1992, 1995), Iacus and Mercuri (2015) and Tómasson (2015).
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The CARMA models are a natural parameterisation of a continuous-time
version of the discrete-time ARMA models which are the main subject of many
textbooks on time series. The mathematical dynamics in discrete time is based
on difference equations and in continuous time the corresponding mathematics
is based on differential equations. The discrete-time ARMA and the continuous-
time CARMA models are linear difference/differential equations for describing
stochastic dynamics. Linear differential equations of higher order can be written
in state-space form as multivariate differential equations of order one.

Modelling in continuous time is in a sense closer to reality if the underlying
variables evolve continuously in time. The parameterisation in continuous time is
not a function of the sampling frequency as is the case in discrete-time time-series
analysis. Missing observations are not an issue, and irregularly spaced observations
are treated in an objective way. At each observation time point, the model gives an
expected value and a prediction variance. The observed value can be compared with
its expected value and a scaled deviation calculated. Oud and Voelkle (2014) give
some illustrations.

This chapter summarises briefly the underlying mathematics for the setup of
a multivariate time-series model. The approach is based on the idea of dynamic
system given by a linear differential equation. In this chapter, only stationary models
are considered. The contribution of the chapter is to derive, by use of non-rigorous
intuitive mathematics, the main features of multivariate CARMA models from basic
calculus, linear algebra and Fourier transforms, shown in, e.g., Kreyszig (1999), as
well as elementary regression theory as shown, e.g., in Greene (2012). The approach
is easily implemented into statistical software.

The data is supposed to be points on solution paths of stochastic differential
equations. A basic knowledge of ordinary differential equations, linear algebra,
rules on mean and variance of multivariate vectors and a brief encounter with
Fourier theory is sufficient for following the derivations. Expressing an ordinary
linear differential equation in state-space form is a useful tool which is briefly
reviewed. For understanding a multivariate CARMA model, some understanding
of the univariate CARMA is necessary. Therefore a brief review of the univariate
case is given. Some aspects of interpretation of CARMA and MCARMA models
are discussed. The computations are implemented in R packages, ctarmaRcpp for
the univariate case and mctarmaRcpp for the multivariate case. The estimation is
based on numerically maximising the log-likelihood. The log-likelihood function is
calculated by use of the Kalman-filter recursions (see, e.g., Harvey 1989). As an
illustration, a simple dependency structure in two dimensions based on simulated
data is given. A real data set of non-synchronous measurements of temperature and
CO2 for the past 800,000 years is briefly analysed. Spectral theory concepts such as
coherence and phase offer an interpretation of lag structure and correlation.
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15.2 Preliminaries

The conditional expected value and the corresponding conditional variances are
useful concepts in prediction. If the future is denoted by the vector U and the past
by the vector V , and the respective expected values and covariance matrices, by
E(U) = μU , E(V ) = μV , V (U ) = �U , V (V ) = �V and Cov(U ,V ) = �UV .
Expressions for the conditional expectation and variance are given in textbooks (e.g.
Greene 2012, formulas B-102a and B-102b, p. 1082):

E(U |V ) = μU +�UV�
−1
V (V − μV ) (15.1)

V (U |V ) = �U − �UV�
−1
V �′

UV . (15.2)

The expression �UV�
−1
V is the regression coefficient of the future, U , onto past,

V . The conditional expected value is the optimal predictor, and the variance in
expression (15.2) is the mean square error of prediction.

15.2.1 State-Space Representations of a Differential Equation

The state-space idea is often a convenient way of expressing a higher-order linear
dynamic system. The high-order dynamic system is transformed into a high-
dimensional first-order linear differential equation. For example, a second-order
differential equation

y ′′ + a1y
′ + a2y = 0

can be written as a first-order two-dimensional system

z′ = Az, z =
[
y

y ′
]

, A =
[

0 1
−a2 −a1

]

,

which is perhaps the best known state-space representation of a differential equation.
The literature of time-series analysis in discrete time contains many different rep-
resentations of a given system. There are many possible state-space representations
of a differential equation. An example of an equivalent representation of the system
above is

z′ = Az, z =
[

y

a1y + y ′
]

, A =
[−a1 1

−a2 0

]

.
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The idea is easily generalised to higher dimensions. Given a two-dimensional
differential equation of the form:

y ′′
1 + a11y

′
1 + a12y1 = 0

y ′′
2 + a21y

′
2 + a22y2 = 0

Define:

z =

⎡

⎢
⎢
⎣

y1

y2

a11y1 + y ′
1

a21y2 + y ′
2

⎤

⎥
⎥
⎦ , A =

⎡

⎢
⎢
⎣

−a11 0 1 0
0 −a21 0 1

−a12 0 0 0
0 −a22 0 0

⎤

⎥
⎥
⎦ (15.3)

A possible state-space representation is given by

z′ − Az = 0.

Given an initial vector, z(t0), the solution of a multivariate, nonhomogeneous,
first-order linear differential equation:

z′ = Az + g(t),

is given by

z(t) = eA(t−t0)z(t0)+
∫ t

t0

eA(t−u)g(u)du, (15.4)

where e is the matrix-exponential function. This approach is the key idea for the
computational setup of the computational framework of this chapter.

15.2.2 The Univariate CARMA(p, q)

The underlying concept of the CARMA model is that the dynamics are based on a
linear differential equation. A common notation is as follows, starting with a linear
p-th-order differential equation:

yp(t)+ α1y
p−1 + · · · + αp−1y

′(t)+ αpy(t) = 0, (15.5)

or in polynomial form,

α(D)y(t) = 0
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with Dy(t) = y ′(t), D(p)y(t) = y(p)(t) denotes the p-th derivative, and

α(z) = zp + α1z
p−1 + · · · + αp−1z+ αp.

A stochastic version of (15.5) is implemented by replacing the zero on the right-
hand side of (15.5) with a stochastic concept. A standard approach is to write:

α(D)y(t) = β(D)DW(t),

β(z) = 1 + β1z+ · · · + βqz
q. (15.6)

HereW(t) denotes the Wiener process, and the symbolDW(t) is named white noise
(d/dtW(t)). The model defined by (15.6) is the Gaussian CARMA(p, q) model.
The discrete-time ARMA model is:

Yt = φ1Yt−1 + · · · + φpYt−p + εt − θ1εt−1 − · · · − θqεt−q, (15.7)

or in polynomial form:

�(B)Yt = �(B)εt , BYt = Yt−1,

�(z) = 1 − φ1z− · · · − φpz
p,

�(z) = 1 − θ1z · · · − θqz
q,

where Yt is the observed process and εt is the unobserved innovation process.
Among typical assumptions about the distribution is that the εt ’s are independent,
identically distributed, zero-mean normal or a white noise with finite variance.

Equations (15.6) and (15.7) look similar, and that similarity is reflected in the
spectral density functions:

fc(ω) = σ 2

2π

β(iω)β(−iω)
α(iω)α(−iω) ,

in the continuous-time case, and in the discrete-time case:

fd(ω) = σ 2

2π

�(exp(iω))�(exp(−iω))
�(exp(iω))�(exp(−iω)) .

The overall variance in the stationary CARMA(p, q) process is the integrated
spectrum,

V (Y (t)) =
∫ ∞

−∞
fc(ω)dω,
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and a similar formula holds for the stationary ARMA(p, q). Graphical inspection of
the spectral functions gives an idea of the range of frequencies which are the most
important contributors to the variance of Y (t). A virtue of fitting ARMA models
to time-series data is that the spectral function is a rational function and therefore
knowledge of the parameters gives an easy way to calculate the spectrum.

The introduction of the polynomials α and β , in the continuous-time case, and
the polynomials � and �, in the discrete-time case, serves the purpose of defining
the dynamic nature of the process. Just as in the case of deterministic differential
equation, the roots of the polynomials describe characteristic features. If the roots
of α are complex, then that represents a particular cyclical structure. A real-data
example of the application of CARMA models for describing the cyclical nature of
an electricity market is given by Garcia et al. (2011).

15.3 The Multivariate CARMA Model

In order to understand a complicated model, it is helpful to analyse a simple special
case. The continuous-time version of the AR(1) model is the CAR(1). The simplest
differential equation is the first-order linear case. The stochastic counterpart is the
Ornstein-Uhlenbeck:

dY (t) = −αY (t)dt + σdW(t), α > 0, σ > 0.

Conditional on a starting value, y(t0), the solution is:

Y (t) = exp(−α(t − t0))y(t0)+ σ

∫ t

t0

exp(−α(t − s))dW(s),

E(Y (t)|Y (t0) = y(t0)) = exp(−α(t − t0))y(t0),

V (Y (t)|Y (t0) = y(t0)) = −σ 2

2α
(exp(−2α(t − t0))− 1).

Here W(t) is assumed to be a standard Wiener process, but the only feature of
the Wiener process used in this intuitive example is the property of independent
increments, andE(W(0)) = 0, and V (W(t)) = t . That is, normality, and continuity,
of sample paths is not used. Stationarity implies that α > 0, and α is interpreted
as the speed of reversion to the unconditional mean, 0. If the process is far from
equilibrium, i.e. |Y (t0)| is large, then a large step towards equilibrium is expected.
If the value of α is small, it will take a long time for the process to approach its
overall mean.

When considering two processes, Y1(t) and Y2(t), it is possible to suspect that:

dY1(t) = α11Y1(t)dt + α12Y2(t)dt + σdW(t), α11 < 0,



15 Implementation of Multivariate Continuous-Time ARMA Models 365

i.e. the value of Y2(t) affects the speed of Y1(t)’s reversion to its mean (zero). In this
case, one could say that Y2(t) has a causal impact on Y1(t). A causal formulation of
this type can be in both directions. A two-dimensional Ornstein-Uhlenbeck can be
written as:

dY1(t) = α11Y1(t)dt + α12Y2t + σ1dW1(t), (15.8)

dY2(t) = α21Y1(t)dt + α22Y2t + σ2dW2(t),

E(dW1(t)dW2(t)) = ρσ1σ2dt.

Equation system (15.8) is more conveniently written in matrix form:

dY (t) = AY (t)dt + dW (t), E(dW (t)dW (t)′) = �dt,

� =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]

, A =
[
α11 α12

α21 α22

]

.

The dependency structure, the autocorrelation, in a two-dimensional CAR(1)
depends on the causal parameters, α12 and α21, and the correlation, ρ, between
the innovations. A generalisation of the univariate CARMA model to a multivariate
CARMA can be written formally as:

y(p)(t) = A1y
(p−1)(t)+ · · · + Apy(t)+ dW (t)+ B1dW

(2)(t)+ · · ·
+BqdW (q+1)(t), V (dW (t)dW (t)′) = �dt,

with:

Ai =

⎡

⎢
⎢
⎢
⎣

α11,i α12,i · · · α1d,i

α21,i α22,i · · · α2d,i
...

...
. . .

...

αd1,i · · · · · · αdd,i

⎤

⎥
⎥
⎥
⎦
, i = 1, . . . , p,

Bj =

⎡

⎢
⎢
⎢
⎢
⎣

β11,j · · · · · · β1d,j

β21,j · · · . . . ...
...

...
. . .

...

βd1,j · · · · · · βdd,j

⎤

⎥
⎥
⎥
⎥
⎦
, j = 1, . . . , q.

The parameters are p + q d × d matrices, the Ai’s and Bj ’s, and (d(d + 1)/2)
parameters in the covariance matrix of the innovations�. The number of parameters
that describe the covariance structure in the system is thus pd2 + qd2 + d(d +
1)/2. The use of polynomials in the differential operator is less tractable in the
multivariate case. The derivation of second moment properties such as spectrum
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and autocorrelation function is easier using a state-space representation. State-
space representations are also useful for getting some intuition of interpretation
of the parameters, the AR parameters, Ai ; the moving-average (MA) parameters,
Bi ; and � the covariance matrix of the innovations. For the simple Ornstein-
Uhlenbeck, CARMA(1,0), the interpretation is easy, the parameter α describes
the force towards equilibrium (the mean) and σ is the standard deviation of the
innovation process. In higher-order CARMA(p, q), the AR parameters play the
same role as the coefficient in a differential equation. Direct interpretation is
non-intuitive, but the roots of the characteristic polynomial will describe cyclical
properties of the solution pattern. The MA parameters can be interpreted as the
impact of the innovation on the derivatives of the solution pattern. Again values of
the parameters are not easily interpreted. Each CARMA(p, q) is nested (has exactly
the same auto-covariance and spectrum) in a CARMA(p+1,q+1). The latter might
have very different parameter values. The multidimensional case is illustrated in
Eq. (15.8). From (15.8), it is seen that an off-diagonal element ofA1 will capture the
impact of a level in one coordinate on change in another coordinate. Similarly the
off-diagonal element in the MA parameters will describe the impact of an innovation
in one coordinate on a derivative of another. Therefore the solution pattern of a true
CARMA(p, q) will be less smooth than the solution pattern of a pure AR model.
The off-diagonal elements of � are the covariances of the innovations. For � two
special cases are of interest, that is, off-diagonal elements zero and off-diagonal
elements representing a correlation coefficient 1 between elements of the innovation
vector. If the correlation of some of the coordinates in the innovation vector is 1, the
matrix � is not of full rank, i.e. the observation vector is of higher dimension than
the innovation vector. Such a case could be termed a dynamic factor model.

15.3.1 Scaling Issues

In discrete time, the scaling of the time is given. The time points are equispaced and
the time variable is a sequence of integers. The sampling frequency will affect the
values of the ARMA parameters in discrete time. In continuous time, the sampling
frequency does not affect the parameter values of the ARMA representation, but the
definition of the time will. That is, when time is transformed from, say, seconds
to minutes, the parameter values of the ARMA representation will be affected.
The impact of transformations of the time scale is best understood by studying the
spectral density. The spectral density of a particular CARMA process is:

f (ω) = σ 2

2π

β(iω)β(−iω)
α(iω)α(−iω) dω. (15.9)
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Table 15.1 Impact of scaling
of time on CARMA
parameters

α1 α2 β1 σ

Original time-scale 2 40 0.15 8

Time multiplied by 10 0.2 0.4 1.5 0.253

Time multiplied by 0.1 20 4000 0.015 252.98

The units of ω are radians per time unit. If the time scale is multiplied by a constant
c, i.e. ω∗ = c ω, then the spectral density of the time-transformed process will be

f (ω∗) = σ∗2

2π

β∗(iω∗)β∗(−iω∗)
α∗(iω∗)α∗(−iω∗)

dω∗. (15.10)

The vectors α∗ and β∗ in Eq. (15.10) are derived by solving for the corresponding
powers of ω in (15.9). Solving for the (βj )∗’s is straightforward, (βj )∗ = cjβj .
The (αj )∗’s have to be scaled such that the coefficient of the highest power of the
polynomial in the denominator is one, i.e. (αj )∗ = c−jαj . Then σ∗ = c−(p−1/2)σ .
The term −1/2 in the scaling transform of σ is due to the Jacobian of the transform.
An example of the impact of scaling of a simple CARMA(2,1) model is shown in
Table 15.1. In numerical work, a proper scaling of the time axis can be helpful.

In the univariate model, scaling of the observed variable will affect the numerical
value of σ . Scaling of the observations can influence the numerical manageability
of σ . The multivariate model contains the covariance matrix of the innovations.
Numerical improvement can be obtained by scaling the observed variables such that
the innovation standard deviations of each dimension are of similar magnitude.

15.4 Linear Stochastic Differential Equations

Suppose that the dynamics of a pd × 1 state vector, X(t), are given by:

dX(t) = AX(t)dt + RdW (t), (15.11)

E(dW(t)dW ′(t)) = �dt.

The first part of this equation corresponds to the deterministic differential equation
referred to in (15.4). The second part, RdW (t), is a residual stochastic component.
In this chapter, W (t) is supposed to be a multivariate Wiener process, but the
arguments apply to all uncorrelated increment processes with V (dW (t)) = �dt .

Conditional on the value at time s, X(s), the solution (compare with (15.4)) of
the stochastic differential equation (15.11) is:

X(t) = eA(t−s)X(s)+
∫ t

s

eA(t−u)RdW(u), e matrix exponent,

E(X(t)|X(s)) = eA(t−s)X(s), t > s. (15.12)
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Equation (15.12) is a regression. The regression coefficient (see (15.1)) is equal to:

Cov(X(t),X(s))(V (X(s))−1 = �X(t − s)�X(0)
−1.

It is therefore clear that the auto-covariance function of X(t) is �X(τ ) = eAτ�X(0),
where τ = t − s and �X(0) is the stationary covariance matrix of X(t). Basic rules
on variance give:

V (X(t)) = eA(t−s)V (X(s))eA(t−s)′ + V

(∫ t

s

eA(t−u)RdW (u)

)

︸ ︷︷ ︸
V (X(t)|X(s))

i.e. as is also clear from (15.2),

V (X(t)|X(s)) = �X(0)− eA(t−s)�X(0)eA(t−s)′.

The unconditional stationary variance, �X(0), solves the equation system:

A�X(0)+ �X(0)A′ = −R�R,

which, by using standard results on Kronecker products, can be transformed into:

((I ⊗ A)+ (A ⊗ I))vec(�X(0)) = −vec(R�R′). (15.13)

15.5 Derivation of Spectrum

For convergence reasons, it is convenient to define the Fourier transform of a
stochastic process X(t) over a finite interval as:

FX(ω) = 1√
2π

1√
2T

∫ T

−T
X(t) exp(−iωt)dt

and the corresponding spectral density as:

fX(ω) = lim
T→∞E(FX(ω)FX(ω)),

fX(ω) = 1

2π

∫ ∞

−∞
exp(−iωτ)�X(τ )dτ.

Equation (15.11) can be rewritten as:

dX(t)− AX(t)dt = RdW (t),

(Ipd×pdD − A)X(t) = RdW (t), (15.14)



15 Implementation of Multivariate Continuous-Time ARMA Models 369

where D is the differential operator. Using a basic rule from calculus (Kreyszig
1999), FdX(ω) = iωFX(ω), and taking Fourier transform of (15.14) gives:

(iωIpd×pd − A)FX(ω) = RFdW (ω).

The spectrum can be interpreted as the variance of the Fourier transform. So,
using standard results on Fourier transform of the Dirac-delta function (the auto-
covariance of white noise) shows the fact that:

lim
T→∞E(FdW (ω)FdW (ω)) = �

2π
,

and the spectrum of X(t) is therefore:

fX(ω) = (iωIpd×pd − A)−1 R�R′

2π
(−iωIpd×pd − A′)−1.

Another way of deriving the spectrum is to use the fact that E(X(t + h)X(t)′) =
eAh�X(0), and E(X(t − h)X(t)′) = �X(0)eAh

′
, for h > 0. The Laplace transform

of eAt is
∫ ∞

0 e−steAt dt = (sIpd×pd − A)−1. Using that, it is straightforward to
show:

fX(ω) = 1

2π

(
(−iωIpd×pd − A)−1�X(0)+ �X(0)(iωIpd×pd − A′)−1

)
.

The diagonal of the matrix fX(ω) contains the spectral functions of each series.
The off-diagonal element, the cross-spectrum, is a measure of covariance in the
frequency domain. If fij (ω) is the cross-spectrum between coordinates i and j , the
coherence is given by:

cohij (ω) = |fij (ω)|2
fii (ω)fjj (ω)

,

and the phase is given by:

phaseij (ω) = atan(−Im(fij (ω)/Re(fij (ω)))

where Im and Re give the imaginary and real part of a complex number, respectively.
Elementary Fourier theory shows that if X2(t) is a lagged version of X1(t), i.e.
X2(t) = X1(t − l), then

f12(ω) = exp(−ilω)f11(ω).

It is therefore clear that if one coordinate is the lagged version of the other, the
coherence is one, and the phase is lω.
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15.5.1 Interpretation of the Spectrum

Interpretation of covariances and autocorrelations is in general hard. In addition, the
estimators of the various AR and MA parameters will typically be very correlated,
so the direct interpretation of the estimated CARMA parameters is also hard. The
visual interpretation of the spectrum is much easier. In one dimension, a peak in the
spectrum at a certain frequency ω0 (radians per unit of time) is interpreted as a large
proportion of variation due to cycle of length 2π/ω0 units of time. In the multivariate
case, the coherence can be interpreted as a squared correlation of frequencies, i.e. a
high coherence at a particular frequency suggests that cycles of the corresponding
frequency tend to stick together. The slope of the phase function suggests lagging
of particular frequencies. For example, if the phase function has constant slope, one
variable is largely a lagged version of another, i.e. a lag at all frequencies. The value
of the slope is the lag.

15.5.2 Choice of State-Space Representation

There are many possible state-space representations of a multivariate CARMA
model (see, e.g., Schlemm and Stelzer 2012). Here a state-space representation
based on (15.3), described in Zadrozny (1988), is used. This representation is chosen
because the untransformed MA parameters enter the dynamic state equation (15.16).
The representation in Zadrozny (1988) is:

y(t) = CX(t), C pd × d (15.15)

dX(t) = AX(t)dt + RdW , C =

⎡

⎢
⎢
⎢
⎣

Id×d
0d×d
...

0d×d

⎤

⎥
⎥
⎥
⎦

(15.16)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 Id×d 0d×d · · · · · · 0d×d
A2 0d×d Id×d 0d×d · · · 0d×d
... 0d×d 0d×d

. . .
...

...

Ap−1 0d×d 0d×d · · · · · · Id×d
Ap 0d×d 0d×d · · · · · · 0d×d

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, R =

⎡

⎢
⎢
⎢
⎣

Bq
...

B1

Id×d

⎤

⎥
⎥
⎥
⎦
.

A useful property of this state-space representation is that restrictions on the MA
parameters can be applied at the state-space level. An example of restrictions on the
parameter space is, e.g., putting some parts of the Ai’s and Bj ’s equal to zero.
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Looking at the state-space representation of the CARMA model offers an
intuitive interpretation. The AR parameters give a direct causal interpretation similar
to the parameters of a deterministic differential equation. A plausible interpretation
of the MA parameters is that the innovation shock affects the slope/derivative of
possibly all coordinates of the system. The covariance matrix of the innovation can
be interpreted as the size and connection between the various coordinates of the
innovation process. In the case of estimation from data, the parameter estimates are
likely to be highly correlated so it is hard to give a clear interpretation based on
estimates.

The conditional expected values, and corresponding covariances, at discrete
non-synchronous time points can be calculated by the Kalman-filter algorithm
and repeated application of Eqs. (15.1) and (15.2). The spectrum of y t is readily
calculated as a function of the spectrum for Xt :

fy(ω) = CfX(ω)C
′.

The non-synchronous case is solved by letting the C matrix depend on the
sampling. That is, if coordinate i is observed, the C matrix consists of nothing but
zeros except for coordinate ii which is set to one. The measurement equation (15.15)
with that particular C reflects that coordinate i is measured at that particular time
point.

With this setup, the implementation of the Kalman filter is straightforward.
Solving Eq. (15.13), for �X(0), can be numerically problematic. In some cases, it is
possible to derive explicit algorithms to calculate �X(0) (see, e.g., Tsai and Chan
2000). In practice, it is worthwhile to observe that A and I are both sparse matrices,
so sparse-matrix algorithms can be used to invert (I×A)+(A×I). Implementation
of the Kalman filter is sketched in Appendix 1.

15.5.3 Computer Packages for Data Analysis

In the univariate case, a data set is of the form (y(t1), . . . , y(tn)). In statistics,
all data analysis is seen through a particular kind of model or family of models.
The univariate CARMA parameters are a set of AR and MA parameters defining
the dynamic nature of the process and a parameter describing the scale of the
innovations. It is practical to keep the data, the values of the observations, the timing
of the observations and the model parameters together in a bundle. In programming
languages such as R, this is easily accomplished by defining this bundle as an
object. The calculations used in this chapter have been bundled into an R package
ctarmaRcpp for the univariate case and mctarmaRcpp for the multivariate case. The
multivariate version is analogous to the univariate one and designed to be logically
compatible. The initial multivariate object is a set of univariate objects of type
ctarma which are merged into a multivariate object of the type mctarma, where
the initial parameter values in the multivariate object are such that the coordinates
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of the observed series are assumed uncorrelated. The interface of the R packages is
briefly shown in Appendix 2.

15.6 Illustration of Multivariate CARMA Estimation

The parameter space of a stationary multivariate ARMA model is complicated.
Estimation of parameters is based on numerical maximisation of the likelihood
function. First each coordinate is estimated with a univariate CARMA model. Then
the estimates of the univariate model are used as a starting value of the multivariate
model.

15.6.1 An Example of Coherence and Phase

Consider an Ornstein-Uhlenbeck (CARMA(1,0)), X1(t):

dX1 = −αX1dt + σdW,

and a l (l > 0) time-period lagged version of X1(t), X2(t), is defined as:

X2(t) = X1(t − l).

The auto-covariance function of X1 and X2 is:

γ (τ) = σ 2 exp(−2ατ)

2α
,

and the cross-covariance:

γX1,X2(τ ) = σ 2 exp(−2α(τ + l))

2α
, τ > −l,

γX1,X2(τ ) = σ 2 exp(−2α(−τ − l))

2α
, τ < −l.

Calculation of the Fourier transform gives the spectrum:

fX1(ω) = fX2(ω) = σ 2

2π

1

α2 + ω2 ,

and the cross-spectrum:

fX1,X2(ω) = σ 2

2π

exp(−ilω)
α2 + ω2 .
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Because |fX1,X2(ω)| = fX1(ω), it is clear that coh(ω) = 1 and the phase:

phase(ω) = atan

(

− Im(fX1,X2(ω))

Re(fX1,X2(ω))

)

= lω.

It is of interest to see how well this lag structure can be captured with a realisation
of a multivariate ARMA model.

15.6.2 An OU Process and a Lagged Copy

An OU processX1 was simulated over a period of 100 units of time. The coefficient
α was chosen such that exp(−α) = 1/2 (α � 0.69), i.e., that half-life is one time
period. The intervals between observations are i.i.d. exponential with mean 1/10,
i.e. on average 10 observations per time period. TheX2(t) process was then defined
as the same numbers as X1(t − l), i.e. the observation time points of X2 are one
period later (l = 1) than X1. The first time point where X1 observed is t = 0.070
and X1(0.070) = −0.75, and the first time point whereX2 is observed is t = 1.070
and X2(1.070) = −0.75.

First a few ctarma objects containing X1 and X2 are created using the
ctarmaRcpp package.

set.seed(12345689)
a=log(2)
sigma=1
nn=1000
tt1=cumsum(rexp(nn,1))/10
b=1

y1=carma.sim.timedomain(tt1,a,b,sigma)

y2=y1
tt2=tt1+1

my1=ctarma(ctarmalist(y1,tt1,a,b,sigma))
my2=ctarma(ctarmalist(y2,tt2,a,b,sigma))

my1e=ctarma.maxlik(my1)
my2e=ctarma.maxlik(my2)

Now the objects my1e and my2e contain the maximum-likelihood estimates of
the CARMA(1,0) model. The log-likelihood is calculated by:

> ctarma.loglik(my1e)
[1] 52.61891
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There are many ways such that the CARMA(1,0) can be embedded in a higher-order
CARMA. The function ctarma.new creates an equivalent object with one more
AR term and one more MA term.

> ctarma.loglik(ctarma.new(my1e))
[1] 52.61891

Using this feature repeatedly,

my2=ctarma.new(my1e)
my2e=ctarma.maxlik(my2)
my3=ctarma.new(my2e)
my3e=ctarma.maxlik(my3)
my4=ctarma.new(my3e)
my4e=ctarma.maxlik(my4)

higher-order CARMA models can be fitted. The estimated ARMA parameters and
log-likelihood for CARMA(4,3) are:

> my4e$ahat
[1] 3.237786 5.369379 6.158908 1.837239
> my4e$bhat
[1] 1.0000000 1.1202398 0.7557877 0.2705627
> my4e$sigma
[1] 3.673917
> ctarma.loglik(my4e)
[1] 53.04228

The nature of the overfitting is illustrated in Fig. 15.1. When the true order, one
AR parameter, is estimated, (p = 1, q = 0), the shape of the spectral curve is the
expected smoothly decaying function. When a more complex model is estimated,
the extra effort of the more complicated model results in a more irregular shape of
the estimated spectrum at low frequencies. It is clear that the uncertainty is located at
the low frequencies, i.e. we can inherently only observe few low-frequency cycles.

In the multivariate package mctarmaRcpp, a multivariate object is created
by merging two univariate objects. For example, a multivariate CARMA(4,3)
was created using two estimated univariate CARMA(4,3) objects. The estimated
univariate models are nested in an initial multivariate object. That multivariate
object is then used as a starting point for estimating the multivariate model.

The two univariate CARMA(4,3) my14e and my24e objects are merged into a
bivariate non-synchronous CARMA(4,3) object by:

cc=cbind(as.list(my14e),as.list(my24e))
library(mctarmaRcpp)
mct4=mctobjnonsync(cc)
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Log-spectrum of an estimated CARMA(1,0)
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Fig. 15.1 The log-spectrum and approximate confidence intervals based on estimates of several
CARMA models for a simulated Ornstein-Uhlenbeck process

The only difference between the objects, my14e and my24e, is that the time
has been translated one time unit, as X2 is just a lagged copy of X1. This bivariate
CARMA(4,3) object, mct4, is composed of two estimated univariate CARMA(4,3)
objects. The parameterisation of this bivariate CARMA(4,3) object reflects the
assumption of independence of the two coordinates (X1,X2). The log-likelihood
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value of the bivariate object is therefore the sum of the log-likelihood of univariate
objects:

> mctarmanonsync.loglik(mct4)/2
[1] 53.04228

The multivariate (non-synchronous) object contains the observed series, time point
of observation and which coordinate of the vector is observed:

> cbind(mct4e$y,mct4e$tt,mct4e$z)[13:19,]
[,1] [,2] [,3]

[1,] -0.9942879 1.391931 2
[2,] -1.1332209 1.536528 2
[3,] 0.6258719 1.564668 1
[4,] -0.9815641 1.564864 2
[5,] -0.6691930 1.608199 2
[6,] 0.5880817 1.610724 1
[7,] 0.6950109 1.739455 1

That is, the 13th row is observed at time 1.391931, has the value −0.9942879
and is an observation of X2. The 15th row is from series X1. The initial bivariate
CARMA(4,3) object contains the matrices of the parameters: A, R and �. These
are based on the univariate estimates. In this case, the parameters describing the
dynamics of X1 are exactly the same as those describing the dynamics of X2,
because X2 is just a lagged version of X1. Non-trivial parts of these matrices in
the initial (assuming two uncorrelated series) value of the multivariate object are in
this case:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3.24 0
0 −3.24

−5.37 0
0 −5.37

−6.16 0
0 −6.16

−1.84 0
0 −1.84

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.27 0
0 0.27

0.76 0
0 0.76

1.12 0
0 1.12
1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, � =
[

13.50 0.00
0.00 13.50

]

The X1 andX2 contain exactly the same values; the time increments are exactly the
same, so that the univariate estimates are exactly the same. The covariance structure
between X1 and X2 is then estimated by maximising the log-likelihood.

mct4e=mctarmanonsync.maxlik(mct4)

Now this new mctarma object, mct4e, contains the maximum-likelihood estimate
of the bivariate CARMA(4,3) model. The log-likelihood values of the models
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assuming independence and the bivariate model are

> mctarmanonsync.loglik(mct4)
[1] 106.0846
> mctarmanonsync.loglik(mct4e)
[1] 633.7593

The number of parameters in the two univariate models is 16, and in the bivariate
model, it is 31. A substantial increase in the log-likelihood by the addition of
15 parameters reflects the fact that X1 and X2 are highly related. The coherence
function based on the estimated CARMA(4,3) is shown in Fig. 15.2. The estimated
coherence is close to true value of 1 in large parts of the low-frequency range. The
scale is in radian per time period, i.e. 2π � 6.3 is about one cycle per time unit.
Figure 15.3 shows the estimated phase of the estimated CARMA(4,3). In the low
frequencies, the slope of the phase curve is close to the theoretical value 1, reflecting
(the fact) that X2(t) is lagged version of X1(t).

In this example, all frequencies were lagged equally, i.e. the whole X2(t) was
a delayed version of X1(t). The bivariate CARMA approach is able to capture
this delay (in this case) to a high degree. This is clear from studying the phase
and coherence graphs. This two-dimensional system is driven by a one-dimensional
innovation. One coordinate is just a lagged version of the other. This is captured by
�̂, the estimated covariance matrix of innovations. The correlation in this matrix is
in this case very close to 1 (0.999999). In this case, it will not add much to estimate
a model of a higher degree. If in practice such a simple relation, as a one period lag,
was suspected, perhaps, a more natural way would be to estimate the lag directly.

Estimated coherence
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Fig. 15.2 Estimated coherence of a CARMA(1,0) and its lagged version. The estimates are based
on estimates of a CARMA(4,3)
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Fig. 15.3 The estimated phase of CARMA(1,0) and its lagged version. The estimates are based
on estimates of a CARMA(4,3)

15.6.3 A Real-Data Example

Data for the illustration are the 800,000-year historical series of temperature and
CO2. The series are non-synchronous and unevenly spaced in time. The data are
given in Jouzel et al. (2007) and Luthi et al. (2008). The temperature series consists
of 5788 observations. The average time between measurements is 138 years, and
the standard deviation is 173 years. For the CO2, we have 1095 observations. The
average time between observations is 730 years, and the standard deviation is 672
years. Both series were detrended with a regression line. The temperature series has
virtually no trend, but there is a slight trend in the CO2 series. The time series are
shown in Fig. 15.4.

A feature of the R package ctarmaRcpp is that it is possible to create a ctarma
object that contains the data, series and time of observation and the set of parameters
in a univariate CARMA model. This chapter only deals with stationary models.
That is, the real part of the eigenvalues of the A matrix is negative. For numerical
optimisation, a valid starting value of the parameters is necessary. The complexity
of the parameter space therefore requires caution in choice of starting values.

Therefore a stepwise-forward procedure is implemented in the ctarmaRcpp
package. The stepwise-forward approach is based on the fact that the CARMA(p, q)
model is nested in the CARMA(p + 1, q + 1) model. So each estimated
CARMA(p, q) model can be (at least) equally well fitted by a CARMA(p+1, q+1)
model. By using starting values in a CARMA(p + 1, q + 1) model based on an
existing CARMA(p, q), it is ensured that a more complicated model will always
give a better fit. A stepwise-backward approach based on Belcher et al. (1994) is
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Fig. 15.4 Evolution of temperature and CO2 in the last 800,000 years

also feasible. That approach was also implemented in an earlier version, the ctarma
package used for calculations in Tómasson (2015).

First, the data series and observation time point are combined in a ctarma object,
for example, in a CARMA(1,0) (Ornstein-Uhlenbeck) object with α = 1 and σ = 1.
That is, the start can be

library(ctarmaRcpp)
m1=ctarma(ctarmalist(y,tt,1,1,1))

And then the CAR(1) model is estimated:

m1e=ctarma.maxlik(m1)

Now the object m1e contains the original series and the maximum-likelihood
estimate of the CARMA(1,0) model. Then an equivalent CARMA(2,1) model is
created:

m2=ctarma.new(m1e)
> ctarma.loglik(m1e)
[1] -8580.44
> ctarma.loglik(m2)
[1] -8580.44

The object m2 represents a CARMA(2,1) with exactly the same auto-covariance
as the estimated CARMA(1,0). The m2 object gives sensible starting values for
estimation of a CARMA(2,1). The log-likelihood value based on the maximum-
likelihood estimate of CARMA(1,0) is exactly the same as of this particular
CARMA(2,1). Using the ctarma.maxlik function, one can calculate the maximum-
likelihood estimate of CARMA(2,1).

m2e=ctarma.maxlik(m2)
> ctarma.loglik(m2e)

[1] -5696.489
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Fig. 15.5 The log spectrum of an estimated CARMA(6,5) for temperature

Fig. 15.6 The log spectrum of an estimated CARMA(6,5) for CO2

Now the object m2e contains the maximum-likelihood estimate of the
CARMA(2,1). This procedure is repeated just as in the illustration example of
CARMA(1,0). The logs of the spectral density based on estimates of CARMA(6,5)
models are shown in Figs. 15.5 and 15.6.
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Fig. 15.7 A low-frequency view of the scaled spectrum of temperature and CO2

The main feature of both series is the high spectrum at low frequency. Taking a
closer look at the scaled estimated spectrum at low frequencies, Fig. 15.7 suggests
that the variation of the CO2 is more concentrated at lower frequencies than of the
temperature. The peak of theCO2 suggests a cycle of about 100,000 years. Similarly
the figure suggests that the cycle of the temperature is about 80,000 years. Not only
is the peak of the spectrum for CO2 at a lower frequency, but a relatively larger
share of the variance of the CO2 seems due to frequencies close to zero. That might
be a result of improper modelling of the trend in the CO2. The estimated spectrum
at low frequencies is sensitive to model choice, indicating a high level of uncertainty
at low frequencies.

The most prominent features of the estimated multivariate model (Figs. 15.8
and 15.9) reflect those of the two univariate series. The high values of the spectrum
are concentrated at the low frequencies. The coherence suggests some correlation at
low frequencies, but the phase does not give a clear impression on which series is
leading. Taking the slope of estimated phase at the frequency range, 0.5 < ω < 2.5
(cycle of 2500–12,500 years), suggests temperature lags 200 years (the slope is 0.2)
based on the CARMA(4,3) and that CO2 lags 2 (virtually zero) years based on the
CARMA(6,5). At this frequency band, the coherence is low, so that the possible
impact of one series on the other at those frequencies is little. The high coherence
is concentrated at the very low frequencies. The estimated correlation of the
innovations is 0.6 based on the CARMA(4,3) and 0.1 based on the CARMA(6,5).

The physical interpretation is that these data reveal very little information on an
eventual causality in the relation between CO2 and temperature.
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Fig. 15.8 Coherence between temperature and CO2 estimated with CARMA(4,3) and
CARMA(6,5) models
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models
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15.7 Discussion

In this chapter, the relationship between the statistical background of ARMA time-
series models and the general linear model was reviewed. By use of state-space
representation, a generalisation to higher dimensions is straightforward. The dynam-
ics captured by linear differential equations is extended by introducing a stochastic
component. The solution of such differential equations yields a continuous-time
stochastic process with prescribed properties. These properties are defined by
three matrices, the autoregressive (AR) parameters, A; the moving-average (MA)
parameters, R; and � the covariance matrix of the innovation process. This
covariance matrix can be interpreted precisely as any other covariance matrix, i.e.
square roots of diagonal are standard deviations, and correlations of the innovations
can be calculated off-diagonally. It is conceivable that � is not of full rank, that is,
we are dealing with the situation that the innovation process has a lower dimension
than the observed process. In such case, we can talk about a dynamic stochastic
factor model.

As in the univariate case, direct interpretation of AR and MA parameters is
non-trivial. One can say that the AR parameters have a meaning similar to that
in a differential equation; e.g. an off-diagonal element in Ai suggests some causal
impact. Likewise the MA parameters suggest a pathway from the innovations
to derivatives of the solution of the stochastic differential equation. However,
the numerical values of the ARMA parameters are hard to interpret. Therefore
the spectral approach is important. The spectral concept was briefly reviewed,
introducing interpretable concepts such as coherence and phase.

Data analysis based on estimates of a statistical model requires computational
procedures. Calculating the maximum-likelihood estimates requires numerical opti-
misation. Such procedures are sensitive to starting values, and therefore a sequence
of nested models has been designed and implemented in R programs. The design is
based on the creation of R objects which can be sequentially used. The multivariate
ARMA is much more complicated. The creation of the multivariate R object is
based on importing univariate R objects. That multivariate R object gives a valid
starting point for maximisation of the log-likelihood of the multivariate model.
The final multivariate R object will contain maximum-likelihood estimates of the
multivariate model, and an objective statement on the covariance in a multivariate
model is possible.

The concept Nyquist frequency is used in discrete-time time-series analysis.
It describes how informative data can be on certain frequencies in the spectrum.
Variations at frequencies higher than the Nyquist frequency will be mapped to a
lower frequency just because of the sampling frequency. This is called aliasing in
time-series textbooks. When time points are sampled randomly, the continuous-time
approach is alias-free. However, as is clear from the examples, the informative value
of data will depend on the density and range of the sampled time points. If a precise
estimate of the nature of a particular cycle is wanted, it is necessary to observe
several cycles. The very low frequency (ω � 0) reflects a very long cycle, i.e. a
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kind of trend, so that data will typically only represent a fraction of that cycle.
Similarly, if precise information of variations at very high frequencies is wanted,
high-frequency data is needed. That is, some sequences of observation which are
measured densely in time are needed.

The CARMA approach described in this chapter is basically a technical
approach. The theoretical covariances, i.e. coherence/phase functions, are
approximated by the CARMA parameterisation. As with all parametric models,
the interpretation makes most sense within some limits of data. The spectral
interpretation offers a straightforward interpretation. If some of the coordinates
are overfitted, i.e. the p + q value is large, there is a risk for non-smooth spectral
estimates at some frequencies.

The real-data example in this chapter introduces an objective way of giving a
statement on the correlation of temperature and CO2. It is clear that a more precise
statement could be given, if more data were available. The observation period,
800,000 years, may seem to be a long time. However, in the context of time series,
we are measuring cyclical characteristics of a process. If precise information of
cycles is wanted, we shall need to observe many cycles. If information on high-
frequency properties is wanted, high density sampling is needed. In the climate data
of the last 800,000 years, we see essentially 10–12 large cycles. Comparing the
real-data example with the simulation analysis, it seems clear that the relationship
between temperature and CO2 is weak with no signs of a simple lag structure. The
multivariate CARMA approach described in this chapter assumes stationarity. For
implementing a particular trend structure, further studies are required.

Appendix 1: Implementation of Kalman Filter

The likelihood function is calculated by use of the Kalman-filter recursions. The
dynamics are defined by Eqs. (15.15) and (15.16). The sample selection matrix C

contains 1 at coordinate ii when coordinate i is observed at time point ti and is zero
otherwise. Given information at time ti−1,the optimal estimate of the state vector is
X(ti−1|ti−1) and the corresponding variance matrix PX(ti−1|ti−1). The prediction
step is:

X(ti |ti−1) = eA(ti−ti−1)X(ti−1|ti−1),

P (ti |ti−1) = eA(ti−ti−1)P (ti−1|ti−1)e
A′(ti−ti−1)

+�X(0)− eA(ti−ti−1)�X(0)eA
′(ti−ti−1),

F (ti |ti−1) = C(ti)P (ti |ti−1)C
′(ti ),

ŷ(ti |ti−1) = C(ti)X(ti |ti−1).
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The corresponding updating equations:

X(ti |ti) = X(ti |ti−1)+ P(ti |ti−1)C(ti)F
∗(ti |ti−1)(y(ti)− ŷ(ti |ti−1)),

P (ti |ti) = P(ti |ti−1)− P(ti |ti−1)C(ti)F
∗(ti |ti−1)C

′(ti )P (ti |ti−1).

Here F ∗(ti |ti−1) denotes a generalised inverse of F (ti |ti−1). The normal likelihood
is easily calculated in the non-synchronous case, because at each time point,
observed data are essentially univariate. The observed value is compared to its
predicted value. The corresponding variance is the non-zero element of element
of F (ti |ti−1)).

Appendix 2: A Brief Description of the R Packages

The R packages are based on objects. In the ctarmaRcpp package, a ctarma
object contains the observed series, y=y(t1), . . . , y(tn); the time points of obser-
vations, tt=t1, . . . , tn; the AR parameters, a=(α1, . . . , αp); the MA parameters
b=(β1, . . . , βq); and the standard deviation of the innovations, sigma=σ .

names(ctarma1)
[1] "y" "tt" "a" "b" "sigma"
>ctarma1$y[1:5]
[1] -1.330619311 0.215559470 0.218091305 -0.004512067
-0.124261787
>ctarma1$tt[1:5]
[1] 0.08360339 0.51537932 0.65898476 0.77687963 0.86278019
>> ctarma1$a
[1] 2 40
> ctarma1$b
[1] 1.00 0.15
>ctarma1$sigma
[1] 8

The package ctarmaRcpp contains functions on ctarma objects for, e.g., calculating
and maximising the log-likelihood. Spectral densities can also be calculated and
plotted.

In the multivariate mctarmaRcpp, a second compatible (same number of AR and
MA coefficients) ctarma object ctarma2 can be merged with ctarma1 into a
bivariate mctarma object.

> cc=cbind(as.list(ctarma0),as.list(ctarma2))
> mctobj=mctobjnonsync(cc)
> mctobj$A [,1] [,2] [,3] [,4]
[1,] -2 0 1 0
[2,] 0 -2 0 1
[3,] -40 0 0 0
[4,] 0 -40 0 0
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> mctobj$R
[,1] [,2]

[1,] 0.15 0.00
[2,] 0.00 0.15
[3,] 1.00 0.00
[4,] 0.00 1.00
> mctobj$sigma

[,1] [,2]
[1,] 64 0
[2,] 0 64

That is, the multivariate object mctobj now contains the matrix of AR parameters
A, the matrix of MA parameters R and the variance matrix of the innovations �.
The object also contains a vector measurements y, an ordered vector of time points
of measurements tt and a vector z denoting which coordinate of the y vector was
observed.

cbind(mctobj$y,mctobj$tt,mctobj$z)[1:5,]
[,1] [,2] [,3]

[1,] -0.6597594 0.03740642 2
[2,] -1.3306193 0.08360339 1
[3,] 0.9946577 0.27623398 2
[4,] 1.1272836 0.31624703 2
[5,] 1.2388762 0.32568241 2

The observations are non-synchronous, i.e. only one coordinate of the y vector is
observed at each time point. Observations 1 and 3–5 are of coordinate 2; the second
is of coordinate 1.
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Chapter 16
Langevin and Kalman Importance
Sampling for Nonlinear
Continuous-Discrete State-Space Models

Hermann Singer

16.1 Introduction

Nonlinear models occur, when interactions between variables (including self-
interactions) are considered. For example, the relation between depression scores
and cognitive variables may be influenced by life events (Singer 1986). In the
simplest case, one obtains product terms, which may be viewed as first-order
approximations of a general nonlinear interaction function, expanded by a mul-
tidimensional Taylor series. Generally, nonlinear interactions result from linear
specifications, when the parameters of the linear model depend on the variables.

The well-known chaotic Lorenz model, an approximate three-variable model of
turbulence (Lorenz 1963; Schuster and Just 2006), contains simple product terms
and yet generates a complicated motion, where the influence of the initial condition
is very strong. Thus, even in a deterministic system, prediction is only possible for
short time periods, since the initial condition must be represented as a localized
random distribution, determined by the measurement error. Additionally, random
equation errors must be added, since the dynamical equation is usually only an
approximation to the true motion. Moreover, data frequently cannot be collected
continuously.

There are many examples in the literature. For example, Thomas and Martin
(1976) consider a continuous-time nonlinear model of mother-child interaction,
in which the dynamics of the dyad are both self-regulatory and interactive. The
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difference in behavioral levels1 serves as state-dependent interaction parameter.
This in turn yields multiplicative interaction terms. However, the empirical analysis
relies on discrete-time models, where derivatives are replaced by differences.
This approximate approach, which is widespread, only works for small sampling
intervals and may be strongly biased. Moreover, only deterministic models are
specified, and the error term is added in an ad hoc manner to the discrete model.
However, in the course of an exact discretization, the error term contains the
dynamics of the original specification.

A nonlinear model for oscillatory finger motions is presented in Molenaar
and Newell (2003). Similar to the Ginzburg-Landau model (see Sect. 16.5.2), the
dynamics for the variable “relative phase” (a so-called order parameter) are given
by the gradient of a potential function, where the number of stable states depends
on the ratio of free parameters, leading to a bifurcation when the ratio crosses a
critical value. The dynamic model is given in continuous time, including a random
equation error (white noise), but the fitting of the unknown parameters to empirical
data is done by a discrete-time state-space model. Again, the transition between the
continuous-time model and the discrete-time data is not a seamless process, since
the discrete-time model is a complicated, explicitly unknown function of the original
dynamics. Even in linear systems, the derived “exact discrete model” (EDM) is
a linear model with complicated nonlinear parameter restrictions. Starting with
Åström (1970) and Bergstrom (1976a), there is a rich literature on the estimation of
sampled continuous linear systems. Even more so in nonlinear systems, one cannot,
in most cases, compute exact discrete models or the transition density between
measurement times explicitly. A multiplicative EDM is discussed in Sect. 16.5.1.

Therefore, maximum likelihood parameter estimation, and filtering and smoo-
thing (state estimation), of sampled linear and nonlinear stochastic differential
equations is of high practical importance, since most data sets are only collected at
discrete, often large sampling times, especially in economics and the social sciences
(Bergstrom 1976b; Doreian and Hummon 1976; Newell and Molenaar 2014).

Continuous-time models have the advantage in that no artificial time discretiza-
tion must be introduced. For example, in conventional time series and panel
analysis, the dynamical specification is determined by the sampling interval of the
measurement scheme, which is arbitrarily given by the research design. However,
the dynamics should be formulated independent of the measurements (Bartlett
1946).

Discrete-time measurements can be treated by joining a measurement model to
the continuous process model (continuous-discrete state-space model, cf. Jazwinski
1970). Thus, the state, dependent on continuous time, is only observed at certain,
possibly unequally spaced, measurement times. Moreover, only parts of the state
vector may be observed and are superposed by measurement noise. Nevertheless,

1Mother behaviors—look at infant, smile, vocalize, touch, or hold infant. Infant behaviors—look
at mother, smile, vocalize, touch or hold mother, fuss/cry.



16 Langevin and Kalman Importance Sampling for Nonlinear Continuous-. . . 391

exact ML estimation is possible, if one can compute the transition density between
the sampling intervals.

In the linear case,2 the approach was pioneered by Bergstrom (1983, 1988),
who introduced the “exact discrete model,” an exact autoregressive scheme valid
at the measurement times, but with nonlinear parameter restrictions due to discrete
sampling. From this difference equation, the Gaussian likelihood function can be
computed.

In applications, a measurement model is convenient, which includes observation
noise and a linear transformation of the latent states to the measurements, in analogy
to factor analysis. In this case, the likelihood function can be computed recursively
either with Kalman filter methods (Hamerle et al. 1991; Harvey and Stock 1985;
Jones 1984; Jones and Tryon 1987; Singer 1990, 1993, 1995, 1998), or by
representing the dynamic state-space model as a structural equation model (SEM)
(Oud and Jansen 2000; Oud and Singer 2008; Singer 2012). In both approaches, the
parameter matrices of the discrete-time model are nonlinear matrix functions of the
original parameters of the continuous-time model. One can also formulate the EDM
on a latent time grid which is finer than the sampling interval. Then, the nonlinear
parameter functions can be linearized, and their values over the whole sampling
interval are implicitly generated either by the filter (cf. Singer 1995) or by the SEM
equations. With this so-called oversampling device, also linear3 SEM software can
be used (for a comparison of linear and nonlinear oversampling, see Singer 2012).
Clearly, the introduction of latent states between the measurement times enlarges
the structural matrices which may lead to a slowing down of computations or large
approximation errors in the likelihood function (Singer 2010).

In the nonlinear case, the transition density cannot be computed analytically in
general and is explicitly known only for some special cases, e.g., the square root
model (Feller 1951). Therefore, in general one must use numerical methods to
obtain approximate transition densities or moments thereof, for the sampling times
determined by the measurements.

There are a variety of approaches to obtain approximations, e.g., Kalman filtering
(Arasaratnam et al. 2010; Ballreich 2017; Chow et al. 2007; Särkkä et al. 2013;
Singer 2002, 2011), analytical approximations (Aït-Sahalia 2002, 2008; Chang and
Chen 2011; Li 2013), Monte Carlo methods (Beskos et al. 2006; Chow et al. 2016;
Elerian et al. 2001; Fuchs 2013; Girolami and Calderhead 2011; Pedersen 1995;
Särkkä et al. 2013; Singer 2002; Stramer et al. 2010), and numerical solutions of the
Fokker-Planck equation (Risken 1989; Wei et al. 1997). In this chapter, only a few
comments are in order.

The algorithms based on Kalman filtering use a recursive computation of the
a priori density (time update) and the a posteriori density (measurement update).

2In order to avoid misunderstandings, one must distinguish between (non)linearity in the
continuous-time dynamical specification (differential equation) w.r.t. the state variables, and in
the derived “exact discrete model” w.r.t. the parameters.
3W.r.t. the parameters.
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The likelihood function is obtained as normalizing constant of the posterior in
the Bayes formula, which incorporates the new measurements. The main problem
in continuous time is the computation of the transition density over the (large)
measurement interval. One can insert intermediate time slices in the time update
and use a short-time approximation (Euler density). The resulting high-dimensional
integral can be simulated. The posterior distribution is obtained from the a priori
samples by using an importance resampling procedure. This is a simple example of
particle filtering methods. Unfortunately, the resampling introduces noise leading to
nondifferentiable likelihood surfaces (cf. Pitt 2002). One can use a modified resam-
pling based on the cumulative distribution function approximated as a polygonal
line, which yields a much smoother likelihood surface (Malik and Pitt 2011).

Alternatively, the Fokker-Planck equation, which is a partial differential equation
for the transition density, can be solved numerically over the sampling interval
(see Sect. 16.4.2). The formal solution, which involves the operator exponential
function, can also be treated by using computer algebra programs. This leads to
analytical expressions, but one must assume state-independent diffusion functions or
the possibility of an appropriate transform. Instead of treating the densities directly,
one can consider moment equations. These may be solved using Taylor expansions
or numerical integration. These approaches are widespread in the engineering
literature. Their drawback is frequently the restriction to the first two moments (but
see Singer 2008a).

Another approach is the direct Bayesian sampling of the parameters from the
posterior distribution. Clearly, one needs the distribution of the measurements given
the parameters (likelihood). Again, one can insert latent states and use analytical
approximations for the transition density. A well-known problem is the decline of
acceptance rates for volatility parameters when inserting too many latent variables.
In this case, one can use transformations or use better approximations for the
transition density. Alternatively, the likelihood can be approximated by particle
filtering and inserted into a Metropolis-Hastings algorithm (Flury and Shephard
2011).

In this paper, the likelihood function is computed nonrecursively by integrating
out the latent variables of the state-space model, such that only the marginal
distribution of the measurements remains. This task is performed by using a
Langevin sampler (Apte et al. 2007, 2008; Hairer et al. 2007, 2009, 2005; Langevin
1908; Roberts and Stramer 2001, 2002) combined with importance sampling.
Alternatively, Gaussian integration is used, based on the output of a Kalman
smoother. This results in a smooth dependence on the parameters, facilitating quasi-
Newton algorithms for finding the maximum likelihood estimate. The unknown
importance density is estimated from the sampler data in several ways.

We derive a conditional Markov representation which is estimated using kernel
density and regression methods. Alternatively, the true importance density is
replaced by an estimated Gaussian density. From this, new data are generated
which have the same second-order properties (mean and covariance function) as the
original Langevin data. As a variant, the mean and covariance function are directly
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computed by a Kalman smoother, avoiding Langevin sampling. This approach will
be called extended Kalman sampling (EKS).

Alternatively, the likelihood is calculated by numerical integration, using Euler
transition kernels and transition kernels derived from the Fokker-Planck equation
(finite differences and integral operator approach).

In Sect. 16.2, the continuous-discrete state-space model is introduced. Then,
Langevin path sampling is discussed in a finite-dimensional approach. We analyti-
cally compute the negative gradient of the potential − logp(η|z) [log probability
density of latent states given the data], which serves as the drift function of a
Langevin equation. It is not assumed that the diffusion function of the state-
space model is state independent. Section 16.4 discusses the maximum likelihood
approach and the determination of the likelihood function. In Sect. 16.4.1, two
methods for computing the importance density are discussed, namely, an estimation
approach and a reference measure method. Then, in Sect. 16.4.2, the likelihood is
calculated by numerical integration. In Sect. 16.5, applications such as the model
of geometrical Brownian motion and the bimodal Ginzburg-Landau model are
considered, and the Fokker-Planck and the importance sampling Monte Carlo
approach are compared with each other. In two appendices, analytical drift functions
and a continuum limit for the Langevin sampler are considered.

16.2 Continuous-Discrete State-Space Model

Continuous-time system dynamics and discrete-time measurements (at possibly
irregular measurement times ti , i = 0, . . . , T ) can be unified by using the nonlinear
continuous-discrete state-space model (Jazwinski 1970, ch. 6.2)

dY (t) = f (Y (t), x(t), ψ)dt +G(Y(t), x(t), ψ)dW(t) (16.1)

Zi = h(Y (ti ), x(ti), ψ) + εi; i = 0, . . . , T . (16.2)

In (16.1), the state vector Y (t) ∈ R
p is a continuous-time random process and the

nonlinear drift vector and diffusion matrix functions f : R
p × R

q × R
u → R

p

and G : Rp × R
q × R

u → R
p × R

r depend on a u-dimensional parameter vector
ψ . Furthermore, x(t) ∈ R

q are deterministic exogenous (control) variables. The
system errors in (16.1) are increments dW(t) = W(t + dt) −W(t) of the Wiener
process W(t) ∈ R

r . Its formal derivative is Gaussian white noise ζ(t) = dW(t)/dt

with zero mean and covariance function E[ζρ(t)ζρ′(s)] = δρρ′δ(t − s); ρ, ρ′ =
1, . . . , r , where δ(t − s) is the Dirac delta function (cf. Lighthill 1958), and δρρ′ is
the Kronecker delta symbol.4 Thus the process errors are independent for the times
t = s and the components ρ = ρ′.

The random initial condition Y (t0) is assumed to have a density p0(y,ψ) and is
independent of dW(t). The nonlinear state equation (16.1) is interpreted in the sense

4One has
∫
δ(x − x′)φ(x′)dx′ = φ(x) and

∑
ρ′ δρρ′φρ′ = φρ .
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of Itô. This means that the multiplicative noise term G(Y(t))dW(t), as it stands, is
only a symbol without mathematical meaning. In this paper, it is assumed that it can
be interpreted as G(Y(t))[W(t + dt) − W(t)] (the increments are directed to the
future), but there are other possibilities. For a discussion of these subtle questions, I
refer to the literature (Arnold 1974; Van Kampen 1981).

Finally, the error term εi ∼ N(0, R(x(ti ), ψ)) in the measurement equa-
tion (16.2) is a discrete-time white noise, independent for the times of measurement.
It is assumed to be independent of the system error dW(t) (cf. Jazwinski 1970,
pp. 209–210). The measurement (output) function h maps the state to the observa-
tions. For example, only the strength (modulus) of Y may be observed. Thus, (16.2)
may be interpreted as dynamic nonlinear factor analysis.

In contrast to linear systems, an analytical solution of (16.1) cannot be found in
general. Some solvable equations are listed in Kloeden and Platen (1992, ch. 4.4).
In most cases, one must resort to numerical approximations.

16.3 Langevin Path Sampling: Finite-Dimensional Approach

16.3.1 Likelihood and Langevin Equation

In order to obtain finite-dimensional probability densities of the state Y (t) w.r.t.
Lebesgue measure and a numerically feasible approach, the SDE (16.1) is first
replaced by the Euler-Maruyama approximation

ηj+1 = ηj + f (ηj , xj , ψ)δt +G(ηj , xj , ψ)δWj (16.3)

:= ηj + fj δt + gj δWj

on a temporal grid τj = t0 + jδt; j = 0, . . . , J = (tT − t0)/δt (cf. Kloeden
and Platen 1992, chs. 10.2, 14.1 and Stuart et al. 2004). Thus the stochastic
differential equation (16.1) is approximated by a difference equation. This kind
of approximation is constructed in analogy to deterministic differential equations.
One can show that the approximation ηj converges to the state Y (τj ) for small
discretization interval δt (Kloeden and Platen 1992, ch. 9). The approximation error
of the Euler scheme could be displayed by a superscript ηδtj , but this is dropped for
simplicity.

The process noise in (16.3) is given as δWj = zj
√
δt, zj ∼ N(0, Ir ), i.i.d., and

the control variables are xj = x(τj ). The state variables ηj are measured at times
ti = τji , ji = (ti − t0)/δt according to

Zi = h(ηji , xji , ψ)+ εi. (16.4)

Since ηj+1|ηj is conditionally Gaussian, the finite-dimensional density of the latent
states η = {ηJ , . . . , η0} is given by [for clarity dropping the parameter and the
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exogenous variables; setting η̃ := {ηJ , . . . , η1}]

p(η) =
J−1∏

j=0

p(ηj+1|ηj ) p(η0) = p(η̃|η0)p(η0) (16.5)

:= Z−1e−S p(η0) (16.6)

S = 1
2

J−1∑

j=0

(ηj+1 − ηj − fj δt)
′(Ωjδt)−1(ηj+1 − ηj − fj δt) (16.7)

Z =
J−1∏

j=0

|2πΩjδt|1/2, (16.8)

whereΩj = gjg
′
j is assumed to be nonsingular.5 In order to compute the likelihood

function of the measured data z = {zT , . . . , z0}, one can augment the density
function of states ηji at measurement times ti with imputed variables, e.g., the latent
states between measurements, leading to the integral representation

p(z) =
∫
p(z|η)p(η)dη. (16.9)

This has the advantage in that the density p(η) can be computed explicitly by
the simple Euler density (16.5). A disadvantage is the introduction of many latent
variables, since δt must be small. To improve the density approximation for larger
δt , one could use the methods of (Aït-Sahalia 2002, 2008) and Li (2013) to obtain
an analytical asymptotic expansion of p, or the so-called local linearization (LL)
method, which is exact for linear systems (Shoji and Ozaki 1998a). The latter
method has the advantage that the density approximation integrates to unity (cf.
Stramer et al. 2010).

The resulting high-dimensional integration will be accomplished by Monte Carlo
methods and, in comparison, by numerical integration. A direct approximation
of (16.9) by the mean

p(z) ≈ N−1
N∑

l=1

p(z|ηl)

is extremely inefficient, since the unconditional random vectors ηl ∼ p(η)

in the sum are mostly suppressed by the measurement density p(z|η) =

5Otherwise, one can use the singular normal distribution (cf. Mardia et al. 1979, ch. 2.5.4, p. 41).
In this case, the generalized inverse of Ωj is used and the determinant | · |, which is zero, is
replaced by the product of positive eigenvalues. Singular covariance matrices occur, for example,
in autoregressive models of higher order, when the state vector contains derivatives of a variable.
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∏T
i=0 φ(zi , h(ηji ), Ri). This may be thought of defining windows in phase space

where the trajectories ηl must pass through (cf. Kac 1980). Using the idea of
importance sampling, one can rewrite (16.9) as

p(z) =
∫
p(z|η)p(η)
p(η|z) p(η|z)dη, (16.10)

where p(η|z) is the optimal importance density (Kloeden and Platen 1999, p. 519).
Thus one must be able to draw conditional trajectories ηl |z, a task which can be
accomplished by the Langevin approach (Parisi and Wu 1981).

Introducing a (J + 1)p-dimensional random process η(u) = ηjα(u); j =
0, . . . , J, α = 1, . . . , p and a potential Φ(η) := − logp(η), one may consider
a Langevin equation (Langevin 1908) in the fictitious (artificial) time dimension u

dη(u) = −∂ηΦ(η)du+ √
2 dW(u), (16.11)

where W is a (J + 1)p-dimensional Wiener process and ∂η := ∂
∂η

is the gradient.
The physical time dimension t occurring in (16.1) is enfolded in the components
ηjα(u); j = 0, . . . , J of the state. The concept of a potential stems from physics,
where gravitational or electric fields are described by negative gradients of scalar
functions. In the present context, one considers an abstract space defined by the
variables ηj . For example, if the density p is a normal distribution N(0, 1),
− logp ∝ 1

2η
2, and one considers the random motion in a quadratic potential well.

Clearly, the Euler density (16.5) generates a complicated diffusion process.
Under the assumption of ergodicity,6 the (autocorrelated) trajectory η(u) asymp-

totically (u → ∞) is in equilibrium and draws data from the stationary distribution

pstat(η) = e−Φ(η) = p(η).

This may be seen by considering the stationary Fokker-Planck equation

∂up(η, u) =
∑

jα

∂ηjα [(∂ηjαΦ(η))p(η, u)+ ∂ηjα p(η, u)] = 0 (16.12)

for the density p(η, u) (see, e.g., Risken 1989, chs. 5.2, 6.0). Of course, one can
directly draw independent vectors η from (16.3). The advantage of (16.11) is the
possibility of drawing from the posterior p(η|z), by using

Φ(η|z) = − logp(η|z) = −[logp(z|η)+ logp(η)− logp(z)] (16.13)

6In statistical mechanics, one assumes the equivalence of time averages and ensemble averages
(cross sections of identical systems).
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as potential. The last term, which is the desired quantity (16.10), drops out by
computing the gradient. Keeping a continuum limit δt → 0 for Eq. (16.3) in mind
(see Appendix 2), the partial derivatives in the Langevin equation are scaled by the
time discretization interval δt , leading to

dη(u) = −δηΦ(η|z)du+ √
2 dW(u)/

√
δt . (16.14)

Here we set δη := ∂
∂ηδt

:= δ
δη

in view of the functional derivative δ
δη(t)

.

16.3.2 Drift Function

In order to obtain an efficient sampling algorithm, the drift function in (16.14)

δη logp(η|z) = δη[logp(z|η)+ logp(η)]

must be computed analytically. For details, see Appendix 1, in particu-
lar (16.44), (16.52). Consider the term logp(η) (cf. Eq. (16.5)). The Lagrangian
(16.7), also called Onsager-Machlup functional (Onsager and Machlup 1953) may
be rewritten as

S = 1

2

J−1∑

j=0

δη′
j (Ωjδt)

−1δηj (16.15)

−
J−1∑

j=0

f ′
jΩ

−1
j δηj + 1

2

J−1∑

j=0

f ′
jΩ

−1
j fj δt (16.16)

:= S0 + S1 + S2,

δηj := ηj+1 − ηj . In a system without drift (f = 0), only the first term S0 remains,
corresponding to a random walk.7 Therefore, the density p(η) can be factorized as
p(η) = p0(η) α(η) where

α(η) = p(η)

p0(η)
= exp

⎧
⎨

⎩

J−1∑

j=0

f ′
jΩ

−1
j δηj − 1

2

J−1∑

j=0

f ′
jΩ

−1
j fj δt

⎫
⎬

⎭
(16.17)

7In the case of a state-dependent diffusion matrix, ηj+1 = ηj +G(ηj , xj , ψ)δWj generates a more
general martingale process. Expression (16.16) remains finite in a continuum limit (see Appendix
2).
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is the density ratio and p0(η) = Z−1 exp(−S0)p(η0) is the density of the driftless
process including the initial condition. Thus one has the decomposition logp(η) =
− logZ − S0 − S1 − S2 + logp(η0).

16.4 Maximum Likelihood Estimation

16.4.1 Monte Carlo Approach

In Sect. 16.3.1, conditional path sampling was motivated by computing the density
function (16.9) of the data z efficiently. Considering L(ψ) = p(z;ψ) as a function
of the parameter vector ψ , the maximum likelihood estimator is obtained as ψ̂ =
arg maxψ L(ψ) (cf. Basawa and Prakasa Rao 1980). In Eq. (16.10), namely,

p(z) =
∫
p(z|η)p(η)
p(η|z) p(η|z)dη := E[g(η, z)|z], (16.18)

the expectation over the invariant (stationary) distribution may be estimated as
fictitious-time average

p̂(z;U) = U−1
∫ U

0
g(η(u), z)du ≈ N−1

N−1∑

l=0

g(ηl , z) := p̂(z; δu,N) (16.19)

if η(u) is ergodic. The sum results as an approximation of the integral with grid
size δu,U = Nδu, ul = lδu, ηl = η(ul). In (16.19), the importance (smoothing)
density p(η|z) is unknown, whereas conditional trajectories ηl ∼ p(η|z) can be
drawn from the Langevin equation (16.14) in equilibrium. One could also simulate
independent replications ηl(u), l = 0, . . . , N − 1, evaluated at large u.

The Langevin equation for the simulation of η(u) in the fictitious time dimension
u is a nonlinear Itô equation with (J + 1)p components. It can be solved
approximately using several numerical schemes, e.g., the Heun method or a fourth-
order Runge-Kutta scheme (Gard 1988; Kloeden and Platen 1999; Rümelin 1982).
Here we use an Ozaki scheme (Ozaki 1985) with Metropolis mechanism (Hastings
1970) in order to ensure a correct stationary distribution. This scheme is exact for
linear drift functions.

In order to improve the relaxation of the Langevin equation to equilibrium, it can
be scaled with a positive definite kernel matrixK . The transformed equation

dη(u) = −KδηΦ(η|z)du+ √
2K1/2 dW(u)/

√
δt, (16.20)

K = K1/2(K1/2)′ yields the same stationary distribution, as may be seen from the
stationary Fokker-Planck equation (16.12). The kernel may be even time and state
dependent, i.e., K = K(η, u) (cf. Okano et al. 1993; Parisi and Wu 1981), but then



16 Langevin and Kalman Importance Sampling for Nonlinear Continuous-. . . 399

additional terms and convolution integrals are required. In the constant case, one has
(setting ∂jα := ∂ηjα and summing over double indices)

0 = ∂jαKjα;lβ(∂lβΦ)p + ∂jα∂lβK
1/2
jα;uγK

1/2
uγ ;lβp

= ∂jα

{
Kjα;lβ(∂lβΦ)p +Kjα;lβ∂lβp

}
= divJ

Therefore, setting the probability current J = 0, one obtains the equilibrium
distribution pstat(η|z) = e−Φ(η|z), independent of K (see, e.g., Risken 1989,
chs. 5.2, 6.0). If the Langevin equation (16.14) were linear with drift Hηδt (i.e.,
Φ = 1

2η
′(−H)ηδt2 with symmetric negative definite H ), one can use K = −H−1

as kernel to obtain an equation with decoupled drift components dη = −(ηδt)du+√
2K1/2 dW(u)/

√
δt . For example, the leading term (16.40) is linear. If the linear

drift is differentiated w.r.t η, one obtains the matrixH = δη(Hηδt). In the nonlinear
case, the idea is to compute the Hessian matrix Hjα;j ′α′ = −δηjα δηj ′α′Φ(η|z) at a

certain point η(u0) and use K = −H−1 as kernel.

16.4.1.1 Determination of the Importance Density

For computing the likelihood function (16.18), the importance density p(η|z) must
be determined. Several approaches have been used:

1. Approximation of the optimal p(η|z) by a density estimator p̂(η|z), using kernel
density or regression methods.

One can use a density estimate

p̂(η|z) = N−1
N∑

l=1

κ(η − ηl;H), (16.21)

where κ is a kernel function and H is a suitably chosen smoothing parameter. In
this article a multivariate Gaussian kernel κ(y,H) = φ(y; 0, h2S) is used, where
e = 1/(p + 4), A = (4/(p + 2))e; h = An−e and S is the sample covariance
matrix (Silverman 1986, p. 78 ff.).

The density estimate (16.21) seems to be natural, but the dimension of η is
very high, namely, (J + 1)p, J = (tT − t0)/δt . It turns out that the estimation
quality is not sufficient. Therefore the Markov structure of the state-space model
must be exploited first. We use the Euler-discretized state-space model (16.3)

ηj+1 = f (ηj )δt + g(ηj )δWj

zi = h(yi)+ εi,



400 H. Singer

(where the dependence on xj and ψ is dropped for simplicity) in combination
with the Bayes formula

p(η|z) = p(ηJ |ηJ−1, . . . , η0, z) p(ηJ−1, . . . , η0|z).

Now it can be shown that ηj is a conditional Markov process

p(ηj+1|ηj , . . . , η0, z) = p(ηj+1|ηj , z). (16.22)

To see this, we use the conditional independence of the past zi = (z0, . . . , zi )

and future z̄i = (zi+1, . . . zT ) given ηj = (η0, . . . , ηj ). One obtains

p(ηj+1|ηj , zi , z̄i) = p(ηj+1|ηj , z̄i ) = p(ηj+1|ηj , z̄i)
p(ηj+1|ηj , zi , z̄i) = p(ηj+1|ηj , z̄i)

ji ≤ j < ji+1

since

(i) The transition density p(ηj+1|ηj , zi , z̄i) is independent of past measure-
ments, given the past true states, and only the last state ηj must be considered
(Markov process).

(ii) The transition density p(ηj+1|ηj , zi , z̄i) is independent of past measure-
ments.

Thus we have proved p(ηj+1|ηj , zi, z̄i ) = p(ηj+1|ηj , zi , z̄i) �
With the representation (16.22), it is sufficient to estimate the density function

p(ηj+1|ηj , z) with a low-dimensional argument ηj instead of the full η =
(η0, . . . , ηJ ). The estimation can be accomplished by using either

a. Density estimation methods as in (16.21), or by
b. Regression methods.

In the latter case, the Euler density is modified to the form

p(ηj+1, δt|ηj , z) ≈ φ(ηj+1; ηj + (fj + δfj )δt, (Ωj + δΩj )δt) (16.23)

where the correction terms are estimated using the data ηj ≡ ηj |z from the
Langevin sampler. It is assumed that the conditional states fulfill the Euler-
discretized SDE (cf. 16.22)

δηj+1 = [f (ηj )+ δfj (ηj )]δt + [g(ηj )+ δgj (ηj )]δWj (16.24)

with modified drift and diffusion functions. This functions can be estimated by
parametric specifications (e.g., δf (x) = α + βx + γ x2) or nonparametrically.
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The introduction of drift corrections was derived analytically in Singer (2002,
2014).

2. Another approach is the choice of a (in general suboptimal) reference density
p0(η|z) = p0(z|η)p0(η)/p0(z), where the terms on the right-hand side are
known explicitly. This yields the representation

p(z) = p0(z)

∫
p(z|η)
p0(z|η)

p(η)

p0(η)
p0(η|z)dη. (16.25)

In this paper we use a conditional Gaussian density

p0(η|z) = φ(η|z) = φ(η;E[η|z], V [η|z]) (16.26)

where the conditional moments are estimated from the

a. Langevin sampler data ηl = ηl |z. Alternatively, one can use a
b. Kalman smoother

to obtain approximations of the conditional moments. We use algorithms based
on the Rauch-Tung-Striebel smoother with Taylor expansions or using inte-
gration (unscented transform or Gauss-Hermite integration; see, e.g., Jazwinski
1970; Särkkä 2013, ch. 9).

In both cases, one must (re)sample the data from p0 = φ(η|z) to compute the
likelihood estimate

p̂(z) = N−1
∑

l

p(z|ηl)p(ηl)
p0(ηl |z) (16.27)

ηl ∼ p0.

16.4.1.2 Score Function

The score function s(z) := ∂ψ logp(z) (dropping ψ) can be estimated by using a
well-known formula of Louis (1982). One can write

s(z) = ∂ψ log
∫
p(z, η)dη = p(z)−1

∫
s(z, η)p(z, η)dη

= E[s(z, η)|z], (16.28)

s(z, η) := ∂ψ logp(z, η) = ∂ψp(z, η)/p(z, η), with the estimate

ŝ(z) = N−1
∑

l

s(z, ηl). (16.29)
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From this a quasi-Newton algorithm, ψk+1 = ψk + F−1
k ŝk(z) can be implemented.

For example, one can use BFGS secant updates for Fk .

16.4.1.3 Bayesian Estimation

A full Bayesian solution to the estimation problem can be obtained by the
decomposition of the posterior

p(η,ψ|z) = p(z, η,ψ)/p(z) = p(z|η,ψ)p(η|ψ)p(ψ)/p(z). (16.30)

From logp(η,ψ|z), one obtains a system of Langevin equations of the form (see
Eq. (16.14))

dη(u) = δη logp(η,ψ|z)du+ √
2 dW1(u)/

√
δt (16.31)

dψ(u) = ∂ψ logp(η,ψ|z)du+ √
2 dW2(u), (16.32)

where W1 : (J + 1)p × 1 and W2 : u × 1 are independent Wiener processes.
For large “time” u, one obtains correlated random samples from p(η,ψ|z). The
drift term ∂ψ logp(η,ψ|z) coincides with the score s(z, η) except for the prior term
∂ψ logp(ψ), since p(η,ψ|z) = p(z, η|ψ)p(ψ)/p(z).

16.4.2 Numerical Integration Approach

The Monte Carlo approach will be compared with a method based on Riemann
integration combined with transition kernels, which are computed in three different
ways, namely, by using (1) the Euler transition kernel and the matrix exponential of
the Fokker-Planck operator, which is represented (2) as a matrix of finite differences
or (3) as an integral operator.

16.4.2.1 Transition Kernel Approach

The (J +1)p-dimensional integral in the likelihood p(z) = ∫
p(z|η)p(η)dη can be

computed without Monte Carlo integration, at least for small dimensions p of ηj .
One can write

p(z) =
∫ T−1∏

i=0

⎡

⎣p(zi+1|ηji+1)

ji+1−1∏

j=ji
p(ηj+1|ηj )

⎤

⎦p(z0|η0)p(η0)dη,
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by using the conditional independence of Zi |η and the Markov property of η (see
Eqs. (16.3)–(16.4)). The likelihood expression can be represented recursively by the
Kalman updates (time update, measurement update, conditional likelihood)

p(ηji+1 |Zi) =
⎡

⎣
ji+1−1∏

j=ji

∫
p(ηj+1|ηj )dηj

⎤

⎦p(ηji |Zi)

p(ηji+1 |Zi+1) = p(zi+1|ηji+1)p(ηji+1 |Zi)/p(zi+1|Zi)

p(zi+1|Zi) =
∫
p(zi+1|ηji+1)p(ηji+1 |Zi)dηji+1

i = 0, . . . , T

with initial condition p(η0|Z0) = p(z0|η0)p(η0)/p(z0);p(z0) = ∫
p(z0|η0)p(η0)

dη0 and Zi := {zi , . . . , z0} (data up to time ti ). Thus one has the prediction error
decomposition

p(z) =
T−1∏

i=0

p(zi+1|Zi)p(z0)

by the Bayes formula. Actually, the Kalman representation is more general since
it is also valid for densities p(ηj+1|ηj , Zi), p(zi+1|ηji+1 , Z

i) depending on lagged
measurements (cf. Liptser and Shiryayev 2001, vol. II, ch. 13).

The p-dimensional integrals will be approximated as Riemann sums (or using
Gauss-Legendre integration)

∫
p(ξ |η)p(η|ζ )dη ≈

∑

k

p(ξ |ηk)p(ηk |ζ )δη ≈
∑

k

p(ξ |ηk)p(ηk |ζ )wk

on a p-dimensional grid of supporting points ηk , i.e., k = {k1, . . . , kp}, kα =
0, . . . ,Kα is a multi-index, and ηk = {ηk1 , . . . , ηkp } is a p-vector inside a p-
dimensional interval [a, b] = [a1, b1] × . . .× [ap, bp], with coordinates

ηkα = aα + kαδηα (16.33)

ηKα = bα, α = 1, . . . , p, and volume element δη = ∏p

α=1 δηα .

16.4.2.2 Euler Transition Kernel

The Euler transition kernel p(ξl |ηk) for the difference equation (16.3) can be viewed
as a matrix Tlk. It is given by the normal density φ(ξ; η + f (η)δt,Ω(η)δt) on the
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grid points ξl , ηk . The dependence on the time index j , the exogenous variables
xj = x(τj ), and the lagged data Zi is omitted here.

A better approximation of the true transition kernel p(yj+1, τj+1|yj , τj ) of the
original SDE (16.1) can be achieved through an expansion of the drift function using
Itô’s lemma (Shoji and Ozaki 1997, 1998b; Singer 2002)

f (y) ≈ f (yj )+ fy(yj )(y − yj )+ 1

2
fyy(yj )Ω(yj )(t − tj ). (16.34)

The approach is known under the label local linearization (LL). Inserting (16.34)
into the moment equations , one obtains the linear differential equations μ̇ =
E[f ] ≈ fj +Aj(μ− yj )+ cj (t − tj ), Σ̇ = AjΣ +ΣA′

j +Ωj with the Jacobian

terms Aj := fy(yj ), cj := 1
2fyy(yj )Ω(yj ) (for details, see Singer 2002). The

second-order term cj only leads to contributions of order δt2. Thus an improved
transition kernel is given by

p(ηj+1|ηj ) = φ(ηj ;μj+1,Σj+1)

μj+1 = ηj + A1jfj + A−1
j [−Iδt + A1j ]cj

row Σj+1 = (Aj ⊗ I + I ⊗ Aj)
−1(A∗

j ⊗ A∗
j − I)row Ωj,

A∗
j := exp(Aj δt), A1j := A−1

j (A
∗
j −I), where row is the row-wise vector operator.

For small δt , one recovers the Euler terms μj+1 = ηj + fj δt;Σj+1 = Ωjδt . The
approaches are denoted as ETK and LLTK in the sequel.

16.4.2.3 Fokker-Planck Equation

The transition kernel can also be obtained as a short-time approximation to the
solution of the Fokker-Planck equation

∂tp(y, t|yj , τj ) = −∂α[fαp(y, t|yj , τj )] + 1

2
∂α∂β [Ωαβp(y, t|yj )]

:= F(y)p(y, t|yj , τj )

with initial condition p(y, τj |yj , τj ) = δ(y − yj ). A summation convention
over doubly occurring indices α, β is supposed. Formally, one has p(yj+1, τj+1|
yj , τj ) = exp[F(yj+1)δt] δ(yj+1 − yj ), if the system is autonomous, i.e.,
x(t) = x. In this case, the measurement time interval Δti := ti+1 − ti may
be bridged in one step p(yi+1, ti+1|yi, ti ) = exp[F(yj+1)Δti] δ(yi+1 − yi). For
equally spaced data, only one kernel must be computed. In the nonautonomous
case, a time-ordered exponential must be considered. In this paper, it is assumed
that x(t) = xj is constant in the interval [τj , τj+1), so p(yj+1, τj+1|yj , τj ) =
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exp[F(yj+1, xj )δt] δ(yj+1 − yj ). In this section, two approximations are consid-
ered:

1. First, the spatial (y) derivatives are replaced by finite differences on a multidi-
mensional grid yk.

2. Second, the differential operator F is rewritten as an integral operator, and the
integrals are approximated as sums.

The time dimension t is kept continuous. Such mixed approaches are called lattice
approximation, semi-discretization or method of lines (cf. Jetschke 1991; Schiesser
1991; Yoo 2000). In both cases, one obtains a linear matrix differential equation
which can be solved by the matrix exponential function.

Finite Differences Using finite differences, one may write

−∂α[fαp(y)] ≈ −δk1l1 . . .∇kαlα . . . δkplp [fα(yl)p(yl)]

with multi-index l = {l1, . . . , lp}, yl = {yl1, . . . , ylp } = a + lδy (see 16.33) and
two-sided differences ∇kαlα = (δkα+1;lα − δkα−1;l)/(2δyα). The diffusion term is

1

2
∂α∂β [Ωαβp(y)] ≈ 1

2
δk1l1 . . .∇kαlα . . .∇kβ lβ . . . δkplp [Ωαβ(yl)p(yl)]

with the replacement (diagonal terms α = β): ∇2
kαlα

→ Δkαlα = (δkα+1;lα−2δkαlα+
δkα−1;lα )/(δy2

α) (centered second difference). Thus the Fokker-Planck operator is
replaced by the matrix

Fkl = −δk1 l1 . . .∇kαlα . . . δkp lpfα(yl)+ 1

2
δk1 l1 . . .∇kαlα . . .∇kβ lβ . . . δkplpΩαβ(yl). (16.35)

Usually the multi-indices are flattened to aK = ∏
α Kα-dimensional index. Clearly,

one obtains a high-dimensional matrix problem. The transition kernel on the grid
points is written as matrix (possibly depending on xj )

p(ηj+1;k|ηjl) = [exp(F (xj )δt)]kl/δη

where the matrix exponential function may be evaluated using several methods,
including Taylor series and eigen methods (Moler and Van Loan 2003)

Integral Operator Alternatively, the differential operator F(y) can be represented
as integral operator

F(y)p(y) =
∫
F(y, y ′)p(y ′)dy ′

with integral kernel F(y, y ′) = F(y)δ(y − y ′) = L(y ′)δ(y − y ′) = L(y ′, y)
(Risken 1989, p. 69). Here L(y) = F ∗(y) is the backward operator, and δ(y − y ′)
is the Dirac delta function (cf. Lighthill 1958). The differential operation q(y) =
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F(y)p(y) = ∫
F(y, y ′)p(y ′)dy is thus transformed to an integral operation. It may

be approximated on the p-dimensional grid yk as matrix-vector product

q(yk) =
∑

l

F (yk, yl)p(yl)δy

F (yk, yl) = F(yk)δ(yk − yl) := Fkl/δy.

Explicitly, one obtains the distribution (cf. 16.35)

F(y, y′) = −δ(y1 − y′
1) . . . ∂yα δ(yα − y′

α) . . . δ(yp − y′
p)fα(y)

+1

2
δ(y1 − y′

1) . . . ∂yα δ(yα − y′
α) . . . ∂yβ δ(yβ − y′

β) . . . δ(yp − y′
p)Ωαβ(y).

The delta function is interpreted as a function sequence δn(y) with the property
limn→∞

∫
δn(y − y ′)φ(y ′)dy ′ = φ(y) for any test function φ (Lighthill 1958).

In numerical applications, one must use a certain term of this delta sequence with
appropriate smoothness properties, leading to a free parameter n of the numerical
procedure. For example, one can use the series δn(y−y ′) = ∑n

m=0 χm(y)χm(y
′) for

a complete orthonormal system χm or the truncated Fourier transform δn(y − y ′) =∫ n
−n exp(2πi(y − y ′)k)dk.

If one writes F(y)p(y) = F(y)
∫
δ(y − y ′)p(y ′)dy, the term p(y, δn) =∫

δn(y − y ′)p(y ′)dy may be interpreted as a functional. In this guise the procedure
was called DAF (distributed approximating functional; cf. Wei et al. 1997) using
Hermite functions (oscillator eigenfunctions) χm.

If the delta functions on the grid points ykα , ylα are replaced by δ(ykα − ylα ) →
δkαlα /δyα, δ′(ykα−ylα ) → (δkα+1,lα−δkα−1,lα )/(2δy

2
α), δ

′′(ykα−ylα ) → (δkα+1,lα−
2δkαlα+δkα−1,lα )/δy

3
α, one recovers the finite difference approximation (16.35). This

choice corresponds to the delta sequence δδy(y) = χA(y)/δy,A = [−δy/2, δy/2]
whereχA(x) is the indicator function of the setA. In this case the free parameter n =
δy is naturally given by the spatial discretization interval δy. The Euler transition
kernel does not require the choice of free parameters (it is naturally given by the
time discretization δt). The spatial discretization should be of order

√
Ωδt .

16.5 Applications

16.5.1 Geometrical Brownian Motion (GBM)

The SDE

dy(t) = μy(t)dt + σy(t) dW(t) (16.36)

is a popular model for stock prices, used by Black and Scholes (1973) for modeling
option prices. It contains a multiplicative noise term y dW and is thus bilinear. The
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form dy(t)/y(t) = μdt + σ dW(t) shows that the simple returns are given by a
constant value μdt plus white noise. For the log returns, we set x = log y, and use
Itô’s lemma to obtain dx = dy/y + 1/2(−y−2)dy2 = (μ− σ 2/2)dt + σdW . This
shows that the log returns contain the Wong-Zakai correction, i.e., μ̃ = μ − σ 2/2.
From this, we obtain the exact solution

y(t) = y(t0)e
μ̃(t−t0)+σ [W(t)−W(t0)], (16.37)

which is a multiplicative exact discrete model with log-normal distribution. The
exact transition density is thus

p(y, t|y0, t0) = y−1φ
(

log(y/y0); μ̃(t − t0), σ
2(t − t0)

)
(16.38)

The model was simulated using μ = 0.07, σ = 0.2 and δt = 1/365. Only monthly
data were used (Fig. 16.1).

The Langevin sampler output is displayed in Fig. 16.2. Due to a convergence
kernel (inverse Hessian of the potential Φ), all trajectories relax to equilibrium at

Fig. 16.1 Geometrical Brownian motion GBM: trajectory and log returns. Vertical lines: measure-
ment times

−1200

−0.2

−1220

−1240

−1260

−1280

16.5

1.3

1.2

1.1

1.0

0.9

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0

1.3

1.2

1.1

1.0

0.9

1.0

0.8

0.6

0.4

0.2

0.0

1.0
{0.689264}

0.630217

0.8

0.6

0.4

0.2

0.0

50 100 150 200 250 300 350

16.0

15.5

15.0

14.5 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 7000 100 200 300 400 500 600 700

Fig. 16.2 Langevin sampler. Conditionally Gaussian importance density p̂2 =∏
j φ(ηj+1, ηj |z)/φ(ηj |z). From top, left: (1,1): trajectory ηjl over l (replications), (1,2):

autocorrelation of ηjl , (1,3): trajectories ηjl over j , (2,1): convergence of estimator p̂(z), (2,2):
potential logp(ηjl ) over l, (2,3): average acceptance probability and rejection indicator for
Metropolis algorithm
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Fig. 16.3 Likelihood (left) and score (right) as a function of σ − 0.2, p̂2 = conditional kernel
density. Thin lines: exact log-likelihood

Fig. 16.4 Likelihood and score, p̂2 = full kernel density

Fig. 16.5 Likelihood and score, p̂2 = conditionally Gaussian transition density

about the same rate, and the autocorrelation is small (first row, second columnn).
We sampled M = 2000 trajectories, dropping 30% at the beginning to avoid non-
stationarity and used only every second one (thinning). This reduces autocorrelation
in the sample. Thus the effective sample size is M ′ = 700 (Figs. 16.3 and 16.4).

We obtain a smooth likelihood surface with small approximation error
(Figs. 16.5, 16.6, 16.8, 16.9, 16.10). Clearly, the usage of the full kernel
density (16.21) yields bad results (Fig. 16.4). In contrast, the conditional Markov
representation (16.22) works well (Fig. 16.3). One can also use a conditional
Gaussian density in (16.22) or a linear GLS estimation of the drift correction
δfj and diffusion correction δΩj (Fig. 16.6; see Eq. (16.23)). If the diffusion
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5

Fig. 16.6 Likelihood and score, p̂2 = linear GLS estimation of drift and diffusion corrections
δfj , δΩj (Eq. (16.23))

Fig. 16.7 Likelihood and score, p̂2 = linear GLS, diffusion matrix without correction

Fig. 16.8 Likelihood and score, Langevin/Gauss-resampling

matrix is not corrected (δΩj = 0), the likelihood function just increases and
does not attain a maximum (Fig. 16.7). Slightly better results are obtained using the
Langevin sampler with subsequent Gauss-resampling (Fig. 16.8; see Eq. (16.26),
(a)). Importance sampling using an extended Kalman smoother (extended Kalman
sampling EKS, see (16.26)) yields very good results (Fig. 16.9). Finally, the
transition kernel filter (TKF) with an Euler transition kernel is displayed, where
the integration range is {y0, y1, dy} = {0.7, 1.5, 0.0025}. This leads to a 321 × 321
transition matrix with 103,041 elements (see Sect. 16.4.2.2). However, entries
smaller than 10−8 were set to 0, and only 15,972 values were stored in a sparse
array. Again, the results are very accurate. In this one-dimensional example, the
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Fig. 16.9 Likelihood and score, extended Kalman sampling

Fig. 16.10 Likelihood and score, transition kernel filter with Euler transition kernel

TKF is most efficient, while the EKS takes four times more CPU time. The methods
based on the conditional Markov property take much more CPU time, especially
when using a kernel density estimate for p(ηj+1|ηj , z) (see 16.22). In a higher-
dimensional state-space R

p, however, the grid-based TKF soon gets infeasible,
since we have Kp supporting points ηk, k = (k1, . . . , kp) in R

p. The transition
kernel matrix is even of dimensionKp ×Kp (Fig. 16.10).

16.5.2 Ginzburg-Landau Model

The Ginzburg-Landau model

dY = −[αY + βY 3]dt + σdW(t) (16.39)

with measurement equation Zi = Yi + εi at sampling times ti is a well-known
nonlinear benchmark model, since the stationary distribution

p0(y) ∝ exp[−(2/σ 2)Φ(y)], Φ(y) := 1
2αy

2 + 1
4βy

4

can exhibit a bimodal shape (see Fig. 16.11; Särkkä et al. 2013; Singer 2002, 2011).
Originally arising from the theory of phase transitions in physics, it can also be used
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1
0
- 1
- 2
- 3
- 4

Fig. 16.11 Ginzburg-Landau model. Left: plot of potential Φ as function of order parameter y for
several α = 1, 0, . . . ,−5. For positive α values, one minimum at y = 0 occurs. Two minima and
one maximum for negative values. Hopf bifurcation at α = 0. Right: pitchfork diagram over α (3
extrema for α < 0)

0
0.25
0.5
1
1.5

Fig. 16.12 Potential V (y) = −a cos(y) − b cos(2y) of a model for human hand movement. The
value b/a controls the number of stable minima. Below b/a = −0.25, only one minimum occurs

as a model in economics and the social sciences for bistable systems (Herings 1996).
The minima of the “potential” Φ may be interpreted as stable states of the variable
y (a so-called order parameter), describing collective properties of an interacting
system (Haken 1977; Weidlich and Haag 1983). Indeed, a Taylor expansion of
the potential used in Haken et al. (1985); Molenaar and Newell (2003) gives a
quadratic-quartic form near y = 0 (see Fig. 16.12). The negative gradient −∂yΦ(y)
of the potential (a force) is the drift function in the dynamic equation (16.39). If the
parameter α varies from negative to positive values, at the critical value α = 0 a
qualitative change (phase transition) of the system occurs, namely, the two minima
at ±√−α/β merge into one minimum at 0 (Fig. 16.11). The true parameters were
set to the values ψ0 = {α0, β0, σ0} = {−1, 0.1, 2}, R = Var(εi) = 0.01, and the
trajectories were simulated with a discretization interval δt = 0.1 using an Euler-
Maruyama approximation (cf. Kloeden and Platen 1999). The data were sampled at
times ti ∈ {0, 2, 4, . . . , 20}.

Figures 16.13 and 16.14 show the simulated likelihood surface as a function of
parameter σ − σ0 using a Gaussian distribution as approximate importance density.
The mean E(ηj |Z) and covariance matrix Cov(ηj |Z), j = 0, . . . , J = 200 were
computed either using an extended or an unscented Kalman smoother. For the
conditional covariance matrix Cov(ηj , ηj ′ |Z) : (J+1)p×(J+1)p, two variants of
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Fig. 16.13 Ginzburg-Landau model. Extended Kalman sampling, M = 1000. Likelihood (left)
and score (right) as function of σ −σ0. Reference trajectory = smoother solution. First row: Brow-
nian bridge. Second row: extended Kalman smoother. Third row: unscented Kalman smoother.
Line without error bars: transition kernel filter with Euler transition kernel

the linearization can be used: computation of the Jacobians ∂f (y)/∂y and ∂h(y)/∂y
either along the filtered or along the smoothed trajectory. Furthermore, one can set
f ≡ 0 in the smoother, which corresponds to a Brownian bridge (cf. Durham and
Gallant 2002). The error bars were obtained using ten likelihood surface replications
with different random seeds. Clearly, the Brownian bridge performs best, and the
likelihood surface is smooth as a function of the parameter (Figs. 16.13 and 16.14,
first line, right). This is in contrast to methods based on particle filters (cf. Pitt 2002;
Singer 2003). In this case, a modified resampling method must be applied (Malik
and Pitt 2011). It should be noted that not only the mean over the likelihood surfaces,
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Fig. 16.14 Ginzburg-Landau model. Extended Kalman sampling, M = 10,000. Likelihood
(left) and score (right) as function of σ − σ0. Reference trajectory = smoother solution. First
row: Brownian bridge. Second row: extended Kalman smoother. Third row: unscented Kalman
smoother. Line without error bars: transition kernel filter with Euler transition kernel

but also each single one is a smooth curve, which facilitates the usage in Newton-
type algorithms or in Langevin samplers for Bayesian estimation.

The superiority of the Brownian bridge sampler can be understood from
Fig. 16.15. The Kalman smoother (first line, left) tends to predict values in the
potential wells of Φ(y) (cf. Singer 2005, 2008b), whereas the exact smoothing
solution computed from the Langevin sampler (first line, second column,N = 2000
replications) predicts more or less straight lines between the measurements. This
behavior is exactly produced by the Brownian bridge (second line), since here the
drift was set to f = 0. The unscented Kalman smoother also gives a conditional
mean similar to the Langevin sampler (third line, left and middle). Also, it can be
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Fig. 16.16 Ginzburg-Landau model. Likelihood of TKF, EKF, UKF, and GHF as function of σ −
σ0

seen that the estimated conditional covariance matrix from the sampler data is quite
noisy (Fig. 16.15, right column).

Thus, the conditional mean given by the Brownian bridge and the unscented
Kalman smoother is (at least in this example) nearer to the exact smoothing solution
(Langevin sampler) than the Kalman smoother, producing a better approximate
importance density (16.26). This, in turn, improves the importance sampling results.

Since the extended Kalman sampler is based on an extended Kalman smoother,
it is interesting to inspect the likelihood surfaces produced by the EKF and other
integration-based filters, such as the unscented Kalman filter (UKF) and the Gauss-
Hermite filter (GHF). The comparison with the exact TKF/ETK is displayed in
Fig. 16.16. It is seen that the integration-based filters are superior to the Taylor-based
EKF. Still, the likelihood surfaces strongly deviate from the exact TKF solution.

As noted above, the EKF moment equation μ̇ = E[f (y)] ≈ f (μ) gives
solutions in the minima of Φ(y). This does not happen for the integration-based
equation μ̇ = E[f (y)] ≈ ∑

αlf (ηl), where μ tends to zero (cf. Singer 2005,
2008b). Therefore, an integration-based smoother should give better results, as is
the case.

Table 16.1 serves to compare the ML estimates given by the several estimation
methods with the reference solution TKF/ETK. The likelihood function was
maximized using a quasi-Newton algorithm with numerical score and BFGS secant
updates. Convergence was assumed when the score ‖sk‖1 and the step ‖ψk+1−ψk‖1
were both smaller than ε = 10−2. The standard errors were computed using
the negative inverse Hessian (observed Fisher information) after convergence. The
results of the Kalman sampler with M = 10,000 replications are very similar to
the reference solution TKF/ETK. A smaller sample size (M = 1000) gives good
results for the Brownian bridge sampler, the unscented Kalman sampler, and the
Gauss-Hermite sampler. The extended Kalman smoother leads to bad results in
this case. The integration-based filters UKF and GHF produce somewhat biased
ML estimates, whereas the EKF, again, performs worst, especially for parameter α.
Clearly, these findings are only preliminary. In a simulation study with S = 100
replications, the methods
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Table 16.1 ML estimates for several estimation methods

TKF/ETK EKF UKF, κ = 0 GHF, m = 3

True est std est std est std est std

−1 −0.5005 0.5407 −0.1039 0.2432 −0.349 0.7421 −0.349 0.7421

0.1 0.0609 0.0568 0.0364 0.0415 0.0406 0.0642 0.0406 0.0642

2 1.6157 0.4739 1.543 0.3801 1.7353 0.7355 1.7353 0.7355

EKS BBS UKS, κ = 0 GHS, m = 3

est std est std est std est std

Extended Kalman sampling, M = 1000

−1 −1.0676 0.3985 −0.4176 0.4457 −0.4176 0.4457 −0.4762 0.4357

0.1 0.1166 0.0439 0.0518 0.0464 0.0518 0.0464 0.0572 0.0424

2 1.73 0.3122 1.5631 0.4245 1.5631 0.4245 1.5969 0.4239

Extended Kalman sampling, M = 10,000

−1 −0.4864 0.4659 −0.4908 0.5061 −0.4501 0.4449 −0.4498 0.4468

0.1 0.0581 0.0437 0.06 0.0533 0.0555 0.0454 0.0554 0.0454

2 1.5882 0.4169 1.6101 0.4606 1.5899 0.4352 1.5888 0.4286

The transition kernel filter with Euler transition kernel (TKF/ETK) (top, left) serves as reference
value. EKF extended Kalman filter, UKF unscented Kalman filter, GHF Gauss-Hermite Kalman
filter, EKS extended Kalman sampler, BBS Brownian bridge sampler (f = 0), UKS unscented
Kalman sampler, GHS Gauss-Hermite sampler

1. Kalman filtering (extended Kalman filter, unscented Kalman filter),
2. Numerical integration with transition kernels filters: Euler (TKF/ETK), finite

differences (TKF/FD), integral operator (TKF/INT)
3. Kalman smoother sampling (extended Kalman smoothing EKS, Brownian bridge

(BBS). and unscented Kalman smoothing (UKS)

are compared (Table 16.2). The data were simulated as described above and sampled
with intervals Δt = 1, 2. Thus the data sets are of length T + 1 = 11, 21.

The sample statistics of the approximate ML estimators are presented in
Table 16.2. Generally, for the smaller sampling interval, the estimates display

smaller bias and root-mean-square error, computed as RMSE =
√

bias2 + std2,

where bias = ¯̂
ψ − ψ0 is the difference of the sample mean of ML estimator ψ̂ and

the true value, and std2 is the sample variance.
In terms of speed, the Kalman filter methods are fastest, followed by the

transition kernel filter and the Kalman sampler. However, in higher dimensions p
of the state space, the performance of the grid-based approach declines, since one
has an exponential increase of sample points (see Sect. 16.4.2), whereas the sampler
works with matrices of order Jp × Jp. Generally, the estimates of parameters β
and σ are weakly biased. However, parameter α, which controls the bimodality of
the potential (see Fig. 16.11), is more difficult to estimate. For the EKF, the mean
is near the true value, but the standard error is large, leading to high RMSE values.
An inspection of the histogram and other statistics reveals a skewed distribution.
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Indeed, the median is far from the true value α0 = −1. The performance of the
UKF is disappointing. Again, the distribution of α̂ is strongly left-skewed. There
are some samples with very low estimates. Slightly better results are obtained for
the Gauss-Hermite filter (not reported).

The transition kernel filter as well yields biased estimates for α, again with a left-
skewed distribution. The finite difference and the integral operator method perform
very similar. An inspection of the median shows that it is near to the true values.

The best results are obtained with the Kalman smoother sampling. From
Table 16.1 and Figs. 16.13 and 16.14, a sample size of M = 1000 is not
sufficient to give a good approximation of the likelihood surface. Therefore, for
the Brownian bridge sampler, simulations with M = 2000, 5000, 10,000 were
performed. Especially for the large sampling interval Δt = 2, the bias could be
reduced with increasing M . One must keep in mind, however, that the data sample
size is small, so the (unknown) exact ML estimator may be biased as well.

Other estimation methods for the importance density, such as Langevin sampling
with kernel density or regression methods, are very time-consuming when a
reasonable approximation for the likelihood surface should be achieved. These
methods are presently under further study.

16.6 Conclusion

We analytically computed the drift function of a Langevin sampler for the
continuous-discrete state-space model, including a state-dependent diffusion
function. In the continuum limit, a stochastic partial differential equation is
obtained. From this, we can draw random vectors from the conditional distribution
of the latent states, given the data. This sample can be used for the estimation of the
unknown importance density and in turn to the determination of a variance-reduced
MC estimator of the likelihood function. Moreover, one obtains a numerical solution
of the optimal smoothing problem.

The unknown importance density was estimated from the sampler data using
kernel density and regression methods. Alternatively, a Gaussian reference density
with suboptimal properties but known analytical form was used. Methods based on
transition kernels and the Fokker-Planck equation generally gave good results but
seem to be restricted to low-dimensional state spaces. In the geometrical Brownian
motion model, well known from finance, all methods gave encouraging results.

However, in a strongly nonlinear system (Ginzburg-Landau model), estimation
methods for the importance density based on kernel density and regression methods
performed disappointingly, whereas the extended Kalman sampler EKS (using a
Gaussian importance density determined by extended Kalman smoothers) gave
smooth likelihood surfaces near to the true ones.

In further work, the methods will be tested with further simulation studies and
extended to higher-dimensional models such as the three-dimensional Lorenz model
well known from chaos theory.
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More generally, one can compute variance-reduced estimates of functionals
involving Itô processes such as the Feynman-Kac formula used in finance and
quantum theory (Singer 2016).

Appendix 1: Langevin Sampler: Analytic Drift Function

Notation

In the following, the components of vectors and matrices are denoted by Greek
letters, e.g., fα, α = 1, . . . , p, and partial derivatives by commas, i.e., fα,β :=
∂fα/∂ηβ = ∂βfα = (fη)αβ . The Jacobian matrix ∂f/∂η is written as fη and its βth
column as (fη)•β . Likewise, Ωα• denotes row α of matrix Ωαβ and Ω•• = Ω for
short.

Latin indices denote time, e.g., fjα = fα(ηj ). Furthermore, a sum convention
is used for the Greek indices (i.e., fαgα = ∑

α fαgα). The difference operators
δ = B−1 − 1, ∇ = 1 − B, with the backshift Bηj = ηj−1 are used frequently. One
has δ · ∇ = B−1 − 2 + B := Δ for the central second difference.

Functional Derivatives

The functional Φ(y) may be expanded to first order by using the functional
derivative (δΦ/δy)(h) = ∫

(δΦ/δy(s))h(s)ds. One has Φ(y + h) − Φ(y) =
(δΦ/δy)(h)+O(‖h‖2).

A discrete version is Φ(η) = Φ(η0, . . . , ηJ ) and Φ(η + h)− Φ(η) =∑
j [∂Φ(η)/∂(ηjδt)]hj δt + O(‖h‖2). As a special case, consider the functional

Φ(η) = ηj . Since ηj + hj − ηj = ∑
(δjk/δt)hkδt one has the continuous analogue

y(t)+ h(t) − y(t) = ∫
δ(t − s)h(s)ds, thus δy(t)/δy(s) = δ(t − s).

State-Independent Diffusion Coefficient

First we assume a state-independent diffusion coefficient Ωj = Ω , but later we set
Ωj = Ω(ηj , xj ). This is important, if the Lamperti transformation does not lead to
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constant coefficients in multivariate models.8 In components, the term (16.15) reads

S0 = 1

2

J−1∑

j=0

(ηj+1;β − ηjβ)(Ωβγ δt)
−1(ηj+1;γ − ηjγ ),

Note that (Ωβγ δt)−1 ≡ [(Ωδt)−1]βγ and the semicolon in ηj+1;β serves to separate
the indices; it is not a derivative. Differentiation w.r.t. the state ηjα yields (j =
1, . . . , J − 1)

∂S0/∂(ηjαδt) = −Ω−1
αγ δt

−2(ηj+1;γ − 2ηjγ + ηj−1;γ ) (16.40)

In vector notation, we have ∂S0/∂(ηj δt) = −Ω−1δt−2Δηj . On the boundaries
j = 0, j = J we obtain

∂S0/∂(η0αδt) = −Ω−1
αγ δt

−2(η1γ − η0γ )

∂S0/∂(η0αδt) = Ω−1
αγ δt

−2(ηJγ − ηJ−1;γ )

Next, the derivatives of logα(η) are needed. One gets

∂S1/∂(ηjαδt) = −δt−1[fjβ,αΩ−1
βγ δηjγ −Ω−1

αγ (fjγ − fj−1;γ )]

or in vector form, using difference operators

∂S1/∂(ηjαδt) = −δt−1[f ′
j•,αΩ−1δηj −Ω−1δfj−1], (16.41)

where fj•,α is column α of the Jacobian fη(ηj ). The second term yields

∂S2/∂(ηjαδt) = ∂/∂ηjα
1

2
[fjβΩ−1

βγ fjγ ] = fjβ,αΩ
−1
βγ fjγ

= f ′
j•,αΩ−1fj . (16.42)

Finally, one has to determine the drift component corresponding to the measure-
ments, which is contained in the conditional density p(z|η). Since it was assumed

8 These are called irreducible diffusions. A transformation z = h(y) leading to unit diffusion for
z must fulfil the system of differential equations hα,βgβγ = δαγ , α, β = 1, . . . , p; γ = 1, . . . , r .
The inverse transformation y = v(z) fulfills vα,γ (z) = gαγ (v(z)). Thus vα,γ δ = gαγ,εvε,δ =
vα,δγ = gαδ,εvε,γ . Inserting v, one obtains the commutativity condition gαγ,ε gεδ = gαδ,ε gεγ ,
which is necessary and sufficient for reducibility. See Kloeden and Platen (1992, ch. 10, p. 348),
Aït-Sahalia (2008).
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that the error of measurement is Gaussian (see 16.2), we obtain

p(z|η) =
T∏

i=0

p(zi |ηji ) =
T∏

i=0

φ(zi; hi, Ri),

where φ(y;μ,Σ) is the multivariate Gaussian density, hi = h(ηji , xji ) is the output
function and Ri = R(xji ) is the measurement error covariance matrix. Thus the
derivative reads (matrix form in the second line)

∂ logp(z|η)/∂(ηjαδt) =
T∑

i=0

hiγ,αR
−1
iβγ (ziβ − hiβ)(δjji /δt)

=
T∑

i=0

h′
i•,αR

−1
i (zi − hi)(δjji /δt) (16.43)

The Kronecker symbol δjji only gives contributions at the measurement times ti =
τji . Together we obtain for the drift of the Langevin equation (16.14)

δη logp(η|z) = δη[logp(z|η)+ logp(η)]
= (16.43) − (16.40 + 16.41 + 16.42)+ δη logp(η0). (16.44)

Here, p(η0) is an arbitrary density for the initial latent state.

State-Dependent Diffusion Coefficient

In the case ofΩj = Ω(ηj , xj ) the expressions get more complicated. The derivative
of S0 now reads

∂S0/∂(ηjαδt) = δt−2[Ω−1
j−1;αβδηj−1;β −Ω−1

jαβδηjβ (16.45)

+1

2
δηjβΩ

−1
jβγ,αδηjγ ],

Ω−1
jβγ,α ≡ (Ω−1)jβγ,α. A closer relation to expression (16.40) may be obtained by

the Taylor expansion

Ω−1
j−1;αβ = Ω−1

jαβ +Ω−1
jαβ,γ (ηj−1;γ − ηjγ )+O(‖δηj−1‖2) (16.46)
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leading to

∂S0/∂(ηjαδt) = −Ω−1
jαβδt

−2(ηj+1;β − 2ηjβ + ηj−1;β)

−Ω−1
jαβ,γ δt

−2δηj−1;βδηj−1;γ +O(δt−2‖δηj−1‖3)

+1

2
Ω−1
jβγ,αδt

−2δηjβδηjγ . (16.47)

In the state-dependent case, also the derivative of the Jacobian term logZ−1 =
− 1

2

∑
j log |2πΩjδt| is needed. Since the derivative of a log determinant is

∂ log |Ω |/∂Ωαβ = Ω−1
βα ,

one obtains

∂ logZ−1/∂(ηjαδt) = −1

2
δt−1Ω−1

jβγΩjβγ,α = −1

2
δt−1tr[Ω−1

j Ωj,α],

Ωj,α = Ωj••,α for short. Using the formula ΩjΩ
−1
j = I ;Ωj,α = −ΩjΩ−1

j,αΩj ,
we find

∂ logZ−1/∂(ηjαδt) = 1

2
δt−1tr[Ω−1

j,αΩj ]. (16.48)

The contributions of S1 and S2 are now (see 16.16)

∂S1/∂(ηjαδt) = (16.49)

−δt−1[fjβ,αΩ−1
jβγ δηjγ − (Ω−1

jαγ fjγ −Ω−1
j−1;αγ fj−1;γ )+ fjβΩ

−1
jβγ,αδηjγ ]

∂S2/∂(ηjαδt) = fjβ,αΩ
−1
jβγ fjγ + 1

2
fjβΩ

−1
jβγ,αfjγ . (16.50)

It is interesting to compare the terms in (16.45, 16.49, 16.50) depending on the
derivativeΩ−1

jβγ,α, which read in vector form

1

2
δt−2tr[Ω−1

j,αδηj δη
′
j ] − δt−1tr[Ω−1

j,αδηj f
′
j ] + 1

2
tr[Ω−1

j,αfj f
′
j ],

and the Jacobian derivative (16.48). The terms can be collected to yield

1

2
δt−2tr{Ω−1

j,α[Ωjδt − (δηj − fj δt)(δηj − fj δt)
′]}, (16.51)

as may be directly seen from the Lagrangian (16.7).
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In summary, the Langevin drift component (jα), j = 0, . . . J ; α = 1, . . . , p is
in vector-matrix form

δηjα logp(η|z) = δηjα [logp(z|η)+ logp(η)] (16.52)

=
T∑

i=0

h′
i•,αR

−1
i (zi − hi)(δjji /δt)

+δt−2[Ω−1
jα•δηj −Ω−1

j−1;α•δηj−1]
+δt−1[f ′

j•,αΩ
−1
j δηj − (Ω−1

jα•fj −Ω−1
j−1;α•fj−1)]

−f ′
j•,αΩ

−1
j fj

+1

2
δt−2tr{Ω−1

j,α[Ωjδt − (δηj − fj δt)(δηj − fj δt)
′]}

+δηjα logp(η0).

Here, hi•,α is column α of Jacobian hη(ηji ), Ω
−1
jα• is row α of Ω(ηj )−1, Ω−1

j,α :=
Ω−1
j••,α, and fj•,α denotes column α of Jacobian fη(ηj ).

Appendix 2: Continuum Limit

The expressions in the main text were obtained by using an Euler discretization
of the SDE (16.1), so in the limit δt → 0, one expects a convergence of ηj to
the true state y(τj ) (see Kloeden and Platen 1999, ch. 9). Likewise, the (J + 1)p-
dimensional Langevin equation (16.14) for ηjα(u) will be an approximation of the
stochastic partial differential equation (SPDE) for the random field Yα(u, t) on the
temporal grid τj = t0 + jδt .

A rigorous theory (assuming constant diffusion matrices) is presented in the
work of Reznikoff and Vanden-Eijnden (2005); Hairer et al. (2005, 2007); Apte
et al. (2007); Hairer et al. (2011). In this section it is attempted to gain the terms,
obtained in this literature by functional derivatives, directly from the discretization,
especially in the case of state-dependent diffusions. Clearly, the finite-dimensional
densities w.r.t. Lebesgue measure lose their meaning in the continuum limit, but the
idea is to use large but finite J , so that the Euler densities p(η0, . . . , ηJ ) are good
approximations of the unknown finite-dimensional densities p(y0, τ0; . . . ; yJ , τJ )
of the process Y (t) (cf. Stratonovich 1971, 1989, Bagchi 2001 and the references
cited therein).
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Constant Diffusion Matrix

First we consider constant and (nonsingular) diffusion matrices Ω . The
Lagrangian (16.15) attains the formal limit (Onsager-Machlup functional)

S = 1

2

∫
dy(t)′(Ωdt)−1dy(t) (16.53)

−
∫
f (y)′Ω−1dy(t)+ 1

2

∫
f (y)′Ω−1f (y)dt. (16.54)

If y(t) is a sample function of the diffusion process Y (t) in (16.1), the first
term (16.53) does not exist, since the quadratic variation dy(t)dy(t)′ = Ωdt is of
order dt . Thus we have dy(t)′(Ωdt)−1dy(t)= tr[(Ωdt)−1 dy(t)dy(t)′] = tr[Ip] =
p. Usually, (16.53) is written as the formal expression 1

2

∫
ẏ(t)′ Ω−1ẏ(t)dt , which

contains the (nonexisting) derivatives ẏ(t). Moreover, partial integration yields

− 1

2

∫
y(t)′Ω−1ÿ(t)dt (16.55)

so that C−1(t, s) = Ω−1(−∂2/∂t2)δ(t − s) is the kernel of the inverse covariance
(precision) operator of Y (t) (for drift f = 0; i.e., a Wiener process). Indeed, since

∂2/∂t2 min(t, s) = −δ(t − s), (16.56)

the covariance operator kernel C(t, s) is

C(t, s) = Ω(−∂2/∂t2)−1δ(t − s) = Ω min(t, s).

Thus, p(y) ∝ exp[− 1
2

∫
y(t)′Ω−1ÿ(t)dt] is the formal density of a Gaussian

process Y (t) ∼ N(0, C).
In contrast, the terms in (16.54) are well defined and yield the Radon-Nikodym

derivative (cf. 16.17)

α(y) = exp
{ ∫

f (y)′Ω−1dy(t)− 1

2

∫
f (y)′Ω−1f (y)dt

}
. (16.57)

This expression can be obtained as the ratio of the finite-dimensional density
functions p(yJ , τJ , . . . , y1, τ1|y0, τ0) for drifts f and f = 0, respectively, in
the limit δt → 0 (cf. Wong and Hajek 1985, ch. 6, p. 215 ff.). In this limit, the
(unkown) exact densities can be replaced by the Euler densities (16.5). Now, the
terms of the Langevin equation (16.14) will be given. We start with the measurement
term (16.43), α = 1, . . . , p

δ logp(z|y)/δyα(t) =
T∑

i=0

h′
i•,αR

−1
i (zi − hi)δ(t − ti) (16.58)
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where the scaled Kronecker delta (δjji /δt) was replaced by the delta function (see
Appendix 1). Clearly, in numerical implementations, a certain term of the delta
sequence δn(t) must be used (cf. Lighthill 1958). Next, the term stemming from
the driftless part (16.40) is

−δS0/δyα(t) = Ω−1
α• ÿ(t) = Ω−1

α• ytt (t),

orΩ−1ytt (t) in matrix form, which corresponds to (16.55). The contributions of S1
are (cf. 16.41)

−δS1/δyα(t) = f (y)β,αΩ
−1
βγ dyγ (t)/dt −Ω−1

αγ dfγ (y)/dt.

The first term is of Itô form. Transformation to Stratonovich calculus (Apte et al.
2007, sects. 4, 9) yields

hαβdyβ = hαβ ◦ dyβ − 1

2
hαβ,γΩβγ dt (16.59)

dfα = fα,βdyβ + 1

2
fα,βγΩβγ dt = fα,β ◦ dyβ (16.60)

Thus, we obtain

−δS1/δyα(t) = f (y)β,αΩ
−1
βγ ◦ dyγ (t)/dt − 1

2
f (y)β,αβ

−Ω−1
αγ f (y)γ,δ ◦ dyγ (t)/dt

= (f ′
yΩ

−1 −Ω−1fy) ◦ yt (t)− 1

2
∂y [∂y · f (y)]

where ∂y · f (y) = fβ,β = div(f ). Finally we have (cf. 16.42)

−δS2/δy(t) = −f ′
yΩ

−1f

and δy(t) logp(y(t0)) = ∂y0 logp(y0)δ(t − t0). Putting all together, one finds the
Langevin drift functional (in matrix form)

−δΦ(y|z)
δy(t)

:= F(y|z)

=
T∑

i=0

h′
iy(y)R

−1
i (zi − hi(y))δ(t − ti)

+Ω−1ytt + (f ′
yΩ

−1 −Ω−1fy) ◦ yt
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−1

2
∂y [∂y · f (y)] − f ′

yΩ
−1f

+∂y0 logp(y0)δ(t − t0)

and the SPDE (cf. Hairer et al. 2007)

dY (u, t) = F(Y (u, t)|z))du+ √
2 dWt(u, t), (16.61)

where Wt(u, t) = ∂tW(u, t) is a cylindrical Wiener process with E[Wt(u, t)] = 0,
E[Wt(u, t) Ws(v, s)

′] = Ip min(u, v)δ(t − s), and W(u, t) is a Wiener field
(Brownian sheet). See, e.g., Jetschke (1986); Da Prato and Zabczyk (1992, ch.
4.3.3). The cylindrical Wiener process may be viewed as continuum limit of
Wj(u)/

√
δt , E[Wj(u)/

√
δt W ′

k(v)/
√
δt] = Ip min(u, v)δt−1δjk .

State-Dependent Diffusion Matrix

In this case, new terms appear. Starting with the first term in (16.47), one gets

−Ω−1
jαβδt

−2(ηj+1;β − 2ηjβ + ηj−1;β) → −Ω(y(t))−1 ◦ ÿ(t).

The second term in (16.47) contains terms of the form hj (ηj − ηj−1) which
appear in a backward Itô integral. Here we attempt to write them in symmetrized
(Stratonovich) form. It turns out that the Taylor expansion (16.46) must be carried
to higher orders. Writing (for simplicity in scalar form)

Ω−1
j−1δηj−1 −Ω−1

j δηj := hj−1δηj−1 − hj δηj

and expanding around ηj

hj−1 = hj +
∞∑

k=1

1

k!hj,k(ηj−1 − ηj )
k

one obtains

hj−1δηj−1 − hj δηj = hj (δηj−1 − δηj )+
∞∑

k=1

(−1)k

k! hj,kδη
k+1
j−1. (16.62)

To obtain a symmetric expression, hj,k is expanded around ηj−1/2 := 1
2 (ηj−1 +ηj ).

Noting that ηj − ηj−1/2 = 1
2δηj−1, we have

hj,k =
∞∑

l=0

( 1
2 )
l

l! hj−1/2,k+lδηlj−1 (16.63)
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and together

hj (δηj−1 − δηj )+
∞∑

k=1,l=0

(−1)k( 1
2 )
l

k! l! hj−1/2,k+lδηk+l+1
j−1 . (16.64)

Multiplying with δt−2 and collecting terms to orderO(δt2), one gets the continuum
limit

−Ω−1 ◦ ÿ −Ω−1
η ◦ ẏ2 − 1

24Ω
−1
ηηηΩ

2. (16.65)

The last term in (16.47) is absorbed in the expression (16.51).
The continuum limit of the first two terms in the derivative of S1 (see (16.49) is

−f (y)β,αΩ(y)−1
βγ dyγ (t)/dt + d[Ω(y)−1

αγ fγ (y)]/dt.

Transforming to Stratonovich calculus (16.59–16.60) yields

− {f (y)β,αΩ(y)−1
βγ − [Ω(y)−1

αβ fβ(y)],γ } ◦ dyγ (t)/dt (16.66)

+1

2
[f (y)β,αΩ(y)−1

βγ ],δΩγ δ.

Equation (16.50) yields

δS2/δyα(t) = f (y)β,αΩ(y)
−1
βγ f (y)γ + 1

2
f (y)βΩ(y)

−1
βγ,αf (y)γ . (16.67)

The last term to be discussed is (16.51). Formally,

1

2
δt−2tr {Ω−1

,α [Ωdt − (dy − f dt)(dy − f dt)′]} (16.68)

= 1

2
tr{Ω−1

,α [Ωδt−1 − (ẏ − f )(ẏ − f )′]}.

From the quadratic variation formula (dy − f dt)(dy − f dt)′ = Ωdt , it seems
that it can be dropped. But setting δηj − fj δt = gj zj

√
δt (from the Euler scheme,

see (16.3)), one gets

X := 1

2
δt−1tr{Ω−1

j,αΩj (I − zj z
′
j )}

In scalar form, one has X := 1
2δt

−1Ω−1
j,αΩj (I − z2

j ) which is χ2
1 -distributed,

conditionally on ηj . One has E[1 − z2] = 0; Var(1 − z2) = 1 − 2 + 3 = 2,
thus E[X] = 0 and Var[X] = 1

2δt
−2E[Ω−2

j,αΩ
2
j ].
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Therefore, the drift functional in the state-dependent case is

−δΦ(y|z)
δy(t)

:= F(y|z)
= (16.58)− (16.65)− (16.66)− (16.67)+ (16.68)

+∂y0 logp(y0)δ(t − t0)

Discussion

The second-order time derivative (diffusion term w.r.t. t) Ω−1ytt in the
SPDE (16.61) resulted from the first term (16.53) in the Lagrangian corresponding
to the driftless process (random walk process). Usually this (in the continuum limit),
infinite term is not considered and removed by computing a density ratio (16.17)
which leads to a well-defined Radon-Nikodym density (16.54). On the other hand,
the term is necessary to obtain the correct SPDE. Starting from the Radon-Nikodym
density (16.57) for the process dY (t) = f dt +GdW(t) at the outset, it is not quite
clear how to construct the appropriate SPDE. Setting for simplicity f = 0 and
dropping the initial condition and the measurement part, Eq. (16.61) reads

dY (u, t) = Ω−1 Ytt (u, t)du+ √
2 dWt (u, t).

This linear equation (Ornstein-Uhlenbeck process) can be solved using a stochastic
convolution as (A := Ω−1∂2

t )

Y (u, t) = exp(Au)Y (0, t)+
∫ u

0
exp(A(u− s))

√
2 dWt (s, t).

(cf. Da Prato 2004, ch. 2). It is a Gaussian process with mean μ(u) =
exp(Au)E[Y (0)] and variance Q(u) = exp(Au)Var(Y (0)) exp(A∗u) +∫ u

0 exp(As)2 exp(A∗s)ds where A∗ is the adjoint of A. Thus the stationary
distribution (u → ∞) is the Gaussian measure N(0,Q(∞)) with Q(∞) =
−A−1 = −Ω ·[∂2

t ]−1, sinceA = A∗. But this coincides withC(t, s) = Ω min(t, s),
the covariance function of the scaled Wiener process G · W(t) (see (16.56);
Ω = GG′). Thus, for large u, Y (u, t) generates trajectories of GW(t). More
generally (f = 0), one obtains solutions of SDE (16.1). A related problem occurs
in the state-dependent caseΩ(y). Again, the term

∫
dy ′(Ωdt)−1dy yields a second-

order derivative in the SPDE, but after transforming to symmetrized Stratonovich
form, also higher-order terms appear (16.64), (16.65).

Moreover, the differential of Ω−1 in the Lagrangian (16.53)–(16.54) imports a
problematic term similar to (16.53) into the SPDE, namely, 1

2 (ẏ−f )′(Ω−1)y(ẏ−f ),
which can be combined with the derivative of the Jacobian (cf. 16.68). Formally, it
is squared white noise where the differentials are in Itô form. A procedure similar
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to (16.63), i.e.,

hj,k =
∞∑

l=0

(− 1
2 )
l

l! hj+1/2,k+lδηlj (16.69)

can be applied to obtain Stratonovich-type expressions. Because of the dubious
nature of these expressions, only the quasi-continuous approach based on approxi-
mate finite-dimensional densities and Langevin equations is used in this paper.
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