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Preface

Variety is perhaps the most amazing attribute of Nature, with an almost endless array of
different molecules and aggregates and tens of millions of distinct forms of life. Yet, in
spite of this bewildering diversity, there are some common patterns, henceforth called
“phenomenological universalities,” that are found over and over again in completely
different contexts. A quest for universalities is not only interesting per se, but can
also yield practical applications. If several fields share a common mathematical or
conceptual background, a cross-fertilization among them may lead to quick progress,
even if ultimately the specific details of any individual application must be considered
independently.

We all know that we live in a nonlinear world, although scientists have often tried
to linearize it, sometimes as a first step towards understanding its complexity, often
because, before the advent of ubiquitous high computational power, a linear approxi-
mation was the only viable alternative. In this book we use the term “nonclassical non-
linearity” with reference to a particularly intriguing kind of phenomenology, which
has been extensively investigated in the last decade in the fields of elasticity and geo-
materials and whose universality has been conjectured. Its signatures are hystereticity,
discrete memory, and other effects which, in the case of continuum mechanics, have
been called “fast” and “slow” dynamics.

Because what is currently “classical” in a field may still be considered nonclassical
in another, we purposedly omit here a general definition of nonclassical nonlinearity,
leaving it to be defined throughout the book in the context in which it is used. For
example, hysteretic phenomena have long been studied in ferromagnetism and cannot
certainly be called nonclassical there.

The first part of the book is devoted to a review of (nonclassical) nonlinearity in sev-
eral disciplines, ranging from physics and mechanics to biology, medicine, and social
sciences. It also includes a discussion of the general mathematical background. The
second and third parts refer to applications to nondestructive evaluation and ultrason-
ics. Part 2 is concerned with models and methods for performing numerical simula-
tions (e.g., of the ultrasonic wave propagation in heterogeneous and nonlinear media).
Part 3 describes experimental techniques and reviews specific applications of indus-
trial interest, for example, in the fields of aeronautics, geomaterials, civil engineering,
and NDE in general.
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2Fraunhofer Institut für zerstörungsfreie Prüfverfahren (IZFP), Universität, Geb. 37, 66123
Saarbrücken, Germany.
3To whom correspondence should be addressed: P.P. Delsanto, INFM – Politecnico di Torino,
Dipartimento di Fisica, C.so Duca degli Abruzzi 24,10129 Torino, Italy,
pier.delsanto@polito.it.

Abstract
Materials science or, more specifically, materials characterization represents an extremely vast
interdisciplinary research arena involving scientists with very different backgrounds working
at many different applications spanning more than ten orders of magnitude in the size of the
specimens. From their collective work, some general patterns have emerged, such as scaling,
nonclassical nonlinearity, and other “universalities.” A quest for universal laws is not only in-
teresting per se, but can also yield practical applications. If several fields share a common math-
ematical or conceptual background, cross-fertilization among them may lead to quick progress,
even if ultimately the specific details of any individual application must be considered inde-
pendently. The idea behind the proposed top-down approach is of course, not to replace, but
to complement current investigations by searching for solutions that often mutatis mutandis
already exist, but are confined to a different network of researchers.

In the present contribution we start from the conjecture, based on many experimental obser-
vations, of the existence of a nonlinear mesoscopic elasticity universality class. We search for
the basic mathematical roots of nonclassical nonlinearity, in order to explain its universality,
classify it, and correlate it with the underlying meso- or microscopic interaction mechanisms.
In our discussions we explicitly consider two quite different kinds of specimens: a two-bonded-
elements structure and a thin multigrained bar. It is remarkable that although the former includes
only one interface and the latter very many interstices, the same “interaction box” formalism can
be applied to both. The generality of the proposed formalism suggests that a similar approach
may be adopted in completely different contexts, for example, in biological, biomedical, and
social sciences.

Keywords: Cross-fertilization, fast dynamics, hysteresis, materials science, nonclassical non-
linearity, numerical simulations, scaling, slow dynamics, ultrasonic NDE, universality

1. Introduction

Materials science is undoubtedly one of the hottest research fields nowadays, inasmuch
as progress in mechanical or biomedical engineering often depends on the availability
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or development of more advanced (or cheaper) material components with optimized
properties and geometry. This is particularly true for nanostructured materials, which
represent a revolution of traditional material design, via atomic-level structural con-
trol to tailor the engineering properties. At the same time materials science is an ex-
tremely vast interdisciplinary research arena, involving scientists with very different
backgrounds working at an almost endless array of different applications spanning
more than ten orders of magnitude in the size of the specimens.

Therefore, the field of materials science has progressed mostly as a consequence of
the pursuit of specific applications or of the background of the researcher or of the
available facilities and/or other external factors. This bottom-up approach has been
extremely successful, not only for the wealth of applications which it has fostered, but
also for the many advances in the understanding of the materials’ properties and under-
lying physical laws. Among the most interesting findings we recall here the relevance
of scaling laws in the mechanics and physics of solids,1 the unexpected nonlinearity of
many phenomena,2 and the complexity, whether in the materials’ structure or in their
mechanical behavior.3

In this context many patterns have been discovered that are remarkably similar, al-
though they concern completely different phenomenologies. This is hardly surprising,
because often the background mathematics is the same. We call them “universalities”4

in the sense that they refer to a “transversal” generality (not to a uniformly general
behavior within a given class of phenomena). The inverse may also be true; that is,
we conjecture that for each mathematical niche some related effect may be found in
nature (whether in physics, chemistry, biology, or even sociological sciences) if only
one looks hard enough. Such a niche theory is commonplace in biology (where it is
explained as a consequence of evolution). However, many examples of its applicability
may be found in other fields as well. For example, in elementary particles physics, any
reaction that is not explicitly forbidden by some quantum mechanical rule does in fact
occur (even if at a minimal rate). Likewise in crystallography virtually any symmetry
class that is mathematically predictable is found to be represented in nature.

A quest for universal laws or, at least, more general patterns is not only interest-
ing per se, but can also yield practical applications. If several fields share a common
mathematical or conceptual background, a cross-fertilization among them may lead
to quick progress, even if ultimately the specific details of any individual application
must be considered independently.

The idea behind such a top-down approach is, of course, not to replace, but to
complement bottom-up investigations by searching for solutions that often mutatis
mutandis already exist, but are confined to another circle of researchers. By identify-
ing the common conceptual background among different problems, it becomes easier
to increase the communication and transfer of information. A specific example of the
proposed top-down approach is provided by the “Interaction Box Formalism,” which
is discussed in the next section. In the third section some assumptions are considered
that, if verified for the particular application being studied, may greatly increase the
predictive power of the formalism. Finally, in Section 4, the application of the pro-
posed approach to two problems of interest for nonlinear ultrasonic NDE is discussed.
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2. The Interaction Box Formalism

Let us consider any kind of nonlinear cause–effect relationship, in which both the
cause C(t) and the effect E(C(t)) are time dependent. The input C(t) may be, accord-
ing to the field of application, any kind of induced field, pulse, signal, excitation, or
perturbation. For simplicity we assume a harmonic time dependence of the cause

C(t) = A sin(ωt) (1.1)

with an initial phase ϕ0 = 0. In order to keep the treatment as general as possible, we
represent the correlation between E and C by means of an unspecified interaction box.
E(C(t)) represents the response of the system.4, 5

Because, due to some sort of Heisenberg principle, too much generality yields too
little information, we assume a certain periodicity in the system, for example, repre-
sented by the boundaries of the interaction box, which allows us to write E as a Fourier
expansion in the variable ωt ,

E (C(ωt)) = E0 +
∞∑

j=1

E j sin( jωt + ϕ j ). (1.2)

In Eq. (1.2) the amplitudes and phases, E j and ϕ j , of the various harmonics depend,
of course, on the input amplitude A. The Fourier expansion in the variable ωt implies
only higher, but not subharmonic generation. The latter can be easily included by an
extended expansion on the base of rational fractions of the variable ωt .6 It is clear from
Eq. (1.2) that E is a one-value function of t , but not of C . In fact by developing E as a
function of

x = C

A
= sin(ωt) (1.3)

one finds (see Appendix A)

E(x) = Eav + G(x) ± H(x), (1.4)

where

Eav = E0 +
∞∑

j=1

E2 j sin(ϕ2 j ), (1.5)

G(x) =
∞∑

n=1

∞∑

j=n

gnj Pj xn, (1.6)

H(x) =
√

1 − x2
∞∑

n=1

∞∑

j=n

hnj Q j x
n−1, (1.7)

Pj = E j cos(ϕ j ), Q j = E j sin(ϕ j ) if j is odd; and

Pj = E j sin(ϕ j ), Q j = E j cos(ϕ j ) if j is even. (1.8)
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The explicit expressions of gnj and hnj are reported in Appendix A.
If the input amplitude A is not too large, only a limited number N of harmonics are

nonnegligible in Eq. (1.2). For example, for N = 3 we have from Eqs. (A7) and (A8),

G(x) ≈ (P1 − 3P3)x − 2P2x2 − 4P3x3, (1.9)

H(x) ≈
√

1 − x2(Q1 + Q3 + 2Q2x − 4Q3x2). (1.10)

It is clear from Eq. (1.4) that E is, in general, a two-values function of x , which
results in a hysteretic loop in the plot E versus x of a complete cycle (i.e., that there
is a branching of the response at x = ±1 in two functions, thus generating a hys-
teretic cycle). From a mathematical point of view this is simply the consequence of
cos(ωt) = ±√

1 − x2. A physical interpretation of the hystereticity may be, according
to the harmonics involved, a trivial time delay between the input and the response,
or some kind of inertia in the system, which is dynamically affected by the input
excitation, or some combination of both. From Eq. (1.7) it is easy to see that the
no-hystereticity condition, H(x) = 0 for any value of x , requires that all Q j van-
ish. This implies that for all nonnegligible harmonics sin(ϕ j ) = 0 if j is odd and
cos(ϕ j ) = 0 if j is even. The term Eav in Eq. (1.4) represents the equilibrium point,
and thus ∆E = E − Eav is the deviation from it.

It may be interesting to see how the hysteretic loops change according to the val-
ues of the amplitudes and phases of the nonnegligible harmonics. Eight different
cases are reported here. In Figures 1.1a and 1.1b the response is linear because no
higher harmonics are present; in Figure 1.1a there is no delay between input and
output, whereas a time delay (ϕ1 �= 0) induces a (trivial) loop in Figure 1.1b. In
Figures 1.1c and 1.1d, a first-order nonlinearity, the second harmonic, is added to
the linear nonhysteretic response (E2 �= 0), in Figure 1.1c without a hysteretic loop
because the analyticity conditions are satisfied (see above) and in Figure 1.1d with a
hysteresis in the second harmonic because ϕ2 = π/4. Figures 1.1e and 1.1f are similar
to Figures 1.1c and 1.1d except that the nonlinearity is of the second order (i.e., in the
third harmonic). We note that if only the nth harmonic causes hysteresis, (n −1) nodes
are present in the loop (see Figures 1.1b, 1.1d, 1.1f, 1.1g). If more harmonics contribute
to the hysteretic behavior, however, some of the nodes may disappear and/or the char-
acteristic cuspidal shape may emerge at both ends of the loop (at x = ±1).

3. Input–Output Correlation

In order to obtain other explicit predictions from the interaction box formalism (be-
sides the hystereticity) one needs to introduce additional assumptions. We assume here
that the value of the function G for the same value of the cause C does not depend on
the input amplitude A, at least up to a certain value A.4, 5 The range of validity (and
physical interpretation) of this assumption depends of course on the special problem
considered. Thus any discussion of it is postponed to the next section, where a partic-
ular problem of interest in the field of materials science is discussed.

Considering only a finite number N of harmonics, the proposed assumption may be
written as [see Eq. (1.6)]



1 Top-Down Approach 7

∆E(x) ∆E(x)

−1 −0.5 0.5 1

−1

−0.5

0.5

1

−1 −0.5 0.5 1

−1

−0.5

0.5

1

a) E1 = 1, ϕ1 = 0. b) E1 = 1, ϕ1 = −π/16.

∆E(x) ∆E(x)

−1 −0.5 0.5 1

−1

−0.5

0.5

−1 −0.5 0.5 1

−1

−0.5

0.5

c) E1 = 1,ϕ1 = 0,E2 = 0.2, ϕ2 = π/2. d) E1 = 1, ϕ1 = 0, E2 = 0.2, ϕ2 = π/4 

∆E(x) ∆E(x)

−1 −0.5 0.5 1

−1

−0.5

0.5

1

−1 −0.5 0.5 1

−1

−0.5

0.5

1
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g) E1 = 1, ϕ1 = 0, E2 = 0.2, ϕ2 = π/4,
    E3 = 0.2, ϕ3 = π.

h) E1 = 1, ϕ1 = −π /16, E3 = 0.1, ϕ3 = 5/4 π 

Fig. 1.1. Plots of the response relative to the equilibrium point ∆E versus the excitation x for eight differ-
ent cases; the values of the amplitudes and phases of the contributing harmonics are: (a) E1 = 1, ϕ1 = 0,
(b) E1 = 1, ϕ1 = −π/16, (c) E1 = 1, ϕ1 = 0, E2 = 0.2, ϕ2 = π/2, (d) E1 = 1, ϕ1 = 0, E2 = 0.2,

ϕ2 = π/4, (e) E1 = 1, ϕ1 = 0, E3 = 0.2, ϕ3 = π , (f) E1 = 1, ϕ1 = 0, E3 = 0.2, ϕ3 = 5/4π , (g) E1 = 1,

ϕ1 = 0, E2 = 0.2, ϕ2 = π/4, E3 = 0.2, ϕ3 = π , (h) E1 = 1, ϕ1 = −π/16, E3 = 0.1, ϕ = 5/4π .
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N∑

n=1

N∑

j=n

gnj Pj

(
C

A

)n

=
N∑

n=1

N∑

j=n

gnj P j

(
C

A

)n

(1.11)

for any |C | < A, where A may be any input amplitude smaller than A. Here and in
the following we define P j , Q j , E j , ϕ j , and so on as the values of the corresponding
variables for A = A. Because Eq. (1.11) must hold for any |C | ≤ A, it follows

N∑

j=n

gnj Pj = yn
N∑

j=n

gnj P j , n = 1, . . ., N , (1.12)

where

y = A

A
. (1.13)

The system of Eqs. (1.12) is satisfied only for the set of solutions

Pn =
N∑

i=n

N∑

j=i

π
(n)
i j P j yi , n = 1, . . ., N , (1.14)

where π
(n)
i j are numerical coefficients that vanish unless both i and j have the same

parity as n. They can be easily calculated starting from the equation for n = N , then the
equation for n = N − 2, which after substituting the computed value of PN has
the only unknown PN−2, and so on. Likewise for PN−1, PN−3, and so on. For N = 3
the nonzero π

(n)
i j are

π(n)
nn = 1 for n = 1, 2, 3; π

(1)
13 = −π

(1)
33 = 3, (1.15)

so that
P1 = (P1 + 3P3)y − 3P3 y3, P2 = P2 y2, P3 = P3 y3. (1.16)

In the limit of no hysteresis (Qn = 0) we have En = |Pn| [Eqs. (1.8)]. Because we
do not expect any abrupt change when the phases ϕn approach the analyticity condi-
tion, we may assume the same functional dependence on y = A/A for En and conse-
quently also for Qn . A power series expansion in y and the interdependence between
Pn, Qn , and En lead to the results

Qn =
N∑

i=n

N∑

j=i

π
(n)
i j Q j yi , (1.17)

Qn

Qn
= Pn

Pn
, n = 1, . . ., N . (1.18)

4. Applications to Ultrasonic NDE

A case of special interest for applications of the interaction box formalism to ultrasonic
NDE is the propagation of ultrasound in heterogeneous media.5 Recent experiments



1 Top-Down Approach 9

on rocks and other materials, such as soil, cement, concrete, and damaged elastic mate-
rials, have led to the discovery of nonlinear hysteretic effects in their elastic behavior.7

These observations have suggested the existence of a nonlinear mesoscopic elasticity
universality class, to which all the aforementioned materials belong.2

We show in this section that such a universality of nonclassical nonlinear (NCNL)
effects may be explained in the framework of the interaction box formalism. For the
sake of clarity we define here as nonclassical the hysteretic behavior of the nonlinear
response of a specimen, when it is due to a variation of its material properties between
the phases of increasing and decreasing applied stress, and not to a trivial time delay
as discussed in Section 2. The same term (NC) may also be used for other kinds of
hysteretic cycles, such as strain versus temperature or humidity.8 The relevance of
NCNL elasticity for NDE purposes stems from the very large enhancement of NCNL
effects in the presence of small or even micro damages in the specimen.

In order to illustrate the applicability of the interaction box formalism to the analysis
of ultrasonic wave propagation, we consider two problems that are very different from
an experimental point of view, but may be analyzed, at least up to a certain extent, in a
unified fashion. The first one is the development of techniques to characterize the bond
quality (or strength) of adherent joints. Binding forces are nonlinear and cause a non-
linear modulation of transmitted and reflected ultrasonic waves. As a consequence, the
generated higher harmonics of an insonified monochromatic wave yield information
about the adhesive bonds and possible presence of flaws in the interface region.9

The second problem concerns the propagation of an ultrasonic wave through a multi-
grained material specimen.10 If the specimen consists of a thin bar, the problem can be
simplified by means of a one-dimensional schematization, in which longer segments
representing the grains alternate with shorter ones associated with the interstices. The
grains are usually assumed for simplicity to be linearly elastic, whereas all the nonlin-
earity (classical and nonclassical) is confined to the interstices, hence called Hysteretic
Mesoscopic Units (HMU). The HMUs behave either rigidly or elastically, depending
on the local pressure P . Thus the NCNL behavior of the specimen is solely attributed
to transitions (or jumps) between different interstitial states.

The two problems can be treated synoptically in the framework of the interaction
box formalism, assuming, for example, a monochromatic ultrasonic wave C(t) as in-
put. As a result of its interaction with the specimen (the two bonded elements in the first
case and the multigrained bar in the second), a certain output E(C(t)) is generated. If
the interactions are nonlinear, E includes, in addition to the fundamental harmonic,
also a number (in principle infinite) of higher harmonics. From the point of view
of our formalism, it is irrelevant whether E is obtained for transmission or reflection
(pulse–echo mode).

A completely different treatment of the two problems is possible in the framework
of the Local Interaction Simulation Approach (LISA)11, 12 or other finite difference or
finite element techniques.13 We do not report here the details of the LISA implemen-
tation nor the results, because they are discussed in later chapters.14 It is interesting,
however, to compare conceptually these two very different approaches, as we do in the
following.
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LISA or other virtual experiments solve a direct problem, in which the physical
properties of the interaction box are assumed to be known. Because they are not (in
fact a very large amount of effort is currently being devoted to the study of the un-
derlying molecular dynamics), a phenomenological approach based on the Preisach–
Mayergoyz (PM) space formalism15 is commonly adopted. This approach consists of
a completely arbitrary model, in which bistate transitions are assumed to occur under
preassigned conditions between the two adherent joints (in the first problem) or at a
very large number of arbitrarily distributed interstices (the HMUs) in the second one.
The arbitrariness of the model is, however, compensated in both cases by a large statis-
tics and parameter fitting. Taking the PM space parameters for a dynamic calculation
from an inversion of results of quasistatic experiments does not seem to us to be very
plausible, because the range of variation of stress is generally orders of magnitude
larger in quasistatic than in dynamic resonant experiments.

By contrast the proposed interaction box formalism aims at the solution of an in-
verse problem,16 that is, predicting the basic properties of the interaction box from
the knowledge of the effect, (i.e., the amplitudes and phases of the higher harmonics).
More realistically, the interaction box formalism may be thought of as another phe-
nomenological approach with a very small number of parameters, if only a few higher
harmonics need to be considered. Also, the amplitudes of the higher harmonics may be
easily measured experimentally. At the present stage, however, more assumptions need
to be introduced (e.g., about the loading and unloading history) before the interaction
box formalism may be considered as a tool for practical applications. Another open
question is the range of validity of the assumptions made in Section 3. Comparisons
with the results of real and/or virtual experiments are necessary before any realistic
conclusion may be reached. The assumptions may also greatly depend on the special
problem to be considered.

An application of the interaction box formalism which seems to be almost within
reach is the spectral analysis of the PM spaces, adopted by different competing models,
for the simulation of NCNL effects in nonlinear mesoscopic elastic materials. The cor-
responding formalism is described in Chapter 14 for the case of two bonded elements
with a single interface.

5. Conclusions

Out of a vast collection of experiments on the elastic behavior of rocks and other ma-
terials such as soil, cement, concrete, and damaged elastic materials, the conjecture
has emerged of a nonlinear mesoscopic elasticity universality class, to which all the
aforementioned materials belong. Common characteristics of all these materials are
two sets of nonclassical nonlinear effects called “fast” and “slow dynamics,” respec-
tively, to the study and exploitation of which most of Parts 2 and 3 of this book are
devoted.

We wish here to go two steps further. We conjecture first that all materials are, in
general, nonclassical nonlinear, except under special conditions (which are derived
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in Section 2), although in many applications NCNL effects may be totally negligible
for practical purposes. Second, we conjecture that similar NCNL effects are to be ex-
pected in the phenomenology of all sciences, for example, biology and social sciences.
Most of the other chapters of Part 1 are, in fact, concerned with the search and discus-
sion of NCNL effects in other fields.

In order to illustrate the conjectured universality, an interaction box formalism is
introduced, which, under a minimal amount of assumptions, demonstrates the hys-
tereticity of any cyclical excitation of a completely general (and unspecified) system
(the “box”). In Section 3 additional assumptions are introduced which, if verified for
a specific phenomenology, may provide an interesting new tool for the characteriza-
tion and/or classification of the system. If in a specific situation these assumptions
are not correct, others might be introduced that require suitable modifications of the
formalism.

Finally, the application of the interaction box formalism is discussed for two prob-
lems of NDE interest: the propagation of ultrasonic waves (a) across an interface be-
tween two adherent joints, and (b) along a thin bar of a multigrained material. Both
have been widely studied as direct problems in which the physical properties of the
propagation medium are assumed to be known. The models that have been proposed to
perform the numerical simulations based on different PM-space protocols are phenom-
enological and the results depend strongly on the choice of protocol and parameters
(most of which need to be fitted or fixed arbitrarily). However, the results are generally
good and reproduce well (at least qualitatively) most of the observed phenomenology.
Much of Part 2 of this book is devoted to the description of the various models and
corresponding results.

By contrast, the interaction box formalism is based on a priori considerations and
quite general assumptions. If few higher harmonics are nonnegligible (which is usually
the case in practical applications), very few parameters are needed (their amplitudes
and phases), and the amplitudes are easy to measure experimentally. Also, calcula-
tions are far easier and cheaper to perform. However, a great amount of top down
work (i.e., by introducing additional assumptions according to the specific problem
to be considered and investigating their consequences and model predictions) is still
necessary before the method may become useful for applications. The extension of the
interaction box formalism to predict the downwards shift of the resonance frequency17

and to bridge the gap among models at different levels (nano, meso, and macro)18

are currently in progress. Comparisons between the results of LISA simulations and
interaction box formalism calculations are also planned.
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A. Derivation of the Explicit Formulas for G(x) and H(x)

After suitable manipulations of well-known trigonometric formulas19 one can express
sin( jτ) and cos( jτ), both for odd and even values of j ≥ 1, as linear combinations of
powers of x = sin τ with or without a single factor c = cos(τ ) = ±√

1 − x2:

sin ((2 j − m)τ ) = c1−m
j−1∑

p=0

a2 j−m,px2p+1, m = 0, 1; (A1a)

cos ((2 j − m)τ ) = cm
j−1∑

p=0

b2 j−m,px2p, m = 0, 1; (A1b)
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where

a2 j−m,p = (−1)p22p−m+1
(

2 j − 1

j + p

)m (
j + p

2p + 1

)
, (A2a)

b2 j−m,p = (−1)p22p
(

j

j + p

)1−m (
j + p − m

2p

)
. (A2b)

These results substituted into Eqs. (1.2) and (1.8) yield (τ = ωt):

E(x) = E0 +
∞∑

j=1

[(
E j cos(ϕ j )

)
sin( jτ) + (

E j sin(ϕ j )
)

cos( jτ)
]

= E0 +
∞∑

j=1

[
Q2 j sin(2 jτ) + P2 j cos(2 jτ) + P2 j−1 sin ((2 j − 1)τ )

+Q2 j−1 cos ((2 j − 1)τ )
] = Eav + G(x) ± H(x), (A3)

where

Eav = E0 +
∞∑

j=1

P2 j b2 j,0, (A4)

G(x) =
∞∑

j=1

⎡

⎣P2 j

j∑

p=1

b2 j,px2p + P2 j−1

j−1∑

p=0

a2 j−1,px2p+1

⎤

⎦ =
∞∑

i=1

Pi

i∑

n=1

gni x
n,

(A5)

H(x) =
√

1 − x2
∞∑

j=1

⎡

⎣Q2 j

j−1∑

p=0

a2 j,px2p+1 + Q2 j−1

j−1∑

p=0

b2 j−1,px2p

⎤

⎦

=
√

1 − x2
∞∑

i=1

Qi

i∑

n=1

hni x
n−1, (A6)

and, from Eqs. (A2)

gnj = (−1)I P(n/2)2n j

j + n

(
( j + n)/2

n

)
, (A7)

hnj = (−1)I P((n−1)/2)2n−1 j

j + n

(
( j + n)/2 − 1

n − 1

)
, (A8)

if n and j have the same parity, otherwise gnj = hnj = 0. Here, I P(a) means the
integer part of a.

In Eq. (A4) the second term on the right-hand side corresponds to the contribution
of the missing term with P2 j in Eq. (A5) when p = 0. Because it does not depend on
x it is included in the equilibrium point Eav. With b2 j,0 = 1 from Eq. (A2b), Eqs. (A4)
and (1.5) are the same. Likewise Eqs. (A5) and (A6) yield Eqs. (1.6) and (1.7), and
Eqs. (1.9) and (1.10) easily follow from Eqs. (A5) to (A8) for the finite number N = 3
of contributing harmonics.
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Abstract
The goal of this chapter is to provide some elementary basic ideas about nonlinear wave motion
in complex elastic structures. The path consists of three steps: the basic concepts of the nonclas-
sical generalized continua, which encompass the theory of elasticity; the meaning of complexity
in the theory of elastic structures; and elastic nonlinear wave propagation. Microstructures and
waves in microstructured solids are introduced to provide a meaningful example of the general
scheme, whose results are of some interest in the theory and in the applications.

Keywords: Complex structures, generalized continua, microstructures, nonlinear elasticity,
nonlinear waves

1. Introduction

A mathematical theory of elasticity, which takes into account nonlinearity, complexity,
and nonlinear wave propagation, can be developed only if it would be encompassed in
a more general model of continua, that we can call a nonclassical theory of continua
or theory of generalized continua.

In fact, the nonlinear theory of elasticity ought more correctly to be called the exact
theory of elastic bodies and it is a part of the more general continuum mechanics as
developed in the 1950s and 1960s by Truesdell, Toupin, and Noll, in their monumental
books (1960, 1965). The mathematical theory of elasticity has been the explicit title of
many fundamental books, among whom we quote Love (1944, 4th ed.), and, almost
one century later, Marsden (1983), both of them giving the basis of the study of defor-
mation and strain in elastic continua, and Truesdell and Wang (1973), where a modern
general treatment of the theory of elasticity is presented, including the theory of wave
propagation.

The fact that it is usually called nonlinear elasticity is a heritage of the historical de-
velopment of physics, which is essentially linear because of the second law of Newton
(proportionality of the acceleration exploited to the force impressed) and the rule of the
parallelogram for the composition of forces. Moreover, the theory of linear elasticity
has been greatly successful for almost two centuries, both from a mathematical point
of view and the experiments and applications performed in engineering. Even now,
many researchers think of elasticity as a linear theory that sometimes can be extended
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to a nonlinear theory, ad hoc constructed. The problem of buckling of structures and of
propagation of waves in fluids pointed out that linear models were not sufficient to ex-
plain simple phenomena. The pioneering work of Murnaghan in The United States and
Signorini in Italy in the 1930s opened the way to the foundation of classical continuum
mechanics in the 1950s due mainly to Truesdell and his group.

In this framework, the exact theory of elasticity is based upon two well-known
assumptions.

(i) The deformation tensor (or strain tensor) is defined by

ε = 1

2
(∇u + ∇uT + ∇u∇uT )

or other similar tensors, where ∇u is the displacement gradient and the super-
pose T means transpose.

(ii) The stress–strain relations, namely, the constitutive equations, are given by

T = T (F, X),

where T is the Cauchy’s stress tensor, F the deformation gradient (F = ∇u +
I, I being the identity), and X a point of the body. Other similar expressions
can be obtained from this one, involving different stresses, such as Piola–
Kirchhoff’s stress. If there is no dependence on X, the material is said to be
homogeneous. It must be remarked that in general T is a nonlinear function
of its argument F . In some theories, such as materials with memory, T is not
even a function, but a functional. In some cases it can encompass also hysteretic
phenomena, such as in the theory of hypoelasticity.

Sometimes, the assumption (i) is referred to as geometrical nonlinearity and (ii) as
physical nonlinearity.

Obviously, the linear theory can be obtained via a linearization of the strain, by
means of the linear strain tensor and linearized constitutive equations:

e = 1

2
(∇u + ∇uT ); T = Ae.

The linear constitutive equations are called the generalized Hooke’s law, where A is
the elasticity tensor, namely, a fourth-order tensor whose elements are constant if the
material is homogeneous and in the isotropic case it depends only on two elastic con-
stants, for instance, the Lamè’s constants or other constants well known in the literature
such as Young’s modulus, Poisson’s ratio, and so on.

The study of free vibrations of solid bodies has been developed since Poisson,
Clebsch, Lamè, Cauchy, Green, Christoffel, and Lord Raleigh, mainly during the nine-
teenth century, and many succeeding scientists, but until more recent years, the model
was the linear theory of elasticity and waves were seen merely as vibrations, that is,
with small variations in deformations and stresses. Relevant developments were ob-
tained in the study of waves in fluids, electromagnetic waves, and optical waves, but
my task is restricted to the problem of waves in elastic bodies.
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Nonlinear wave propagation was introduced by the pioneering works of Hadamard,
Hugoniot, Rankine, and a long list of authors, but one modern approach, the singu-
lar surface method, is due mainly to Truesdell, as quoted both in CFT and in NFTM,
Thomas (1961), Chen (1973), Hayes (1963), Hayes and Rivlin (1972), Jeffrey (1976,
1980) and many others. According to this theory, a wave is a perturbation traveling
through a body and at each time the body is divided in two parts: the unperturbed
part and the perturbed part, the separation being a surface (the wave front) that moves
with a certain speed in the body. Different families of waves are classified according to
the fact that there are discontinuities across this surface of derivatives of the fields in-
volved: so we have acceleration waves, shock waves, or higher-order waves, as briefly
discussed in Section 4. It is noticeable that Christoffel probably was the first to discuss
wave propagation as the advance through the medium of a surface of discontinuity
(the wave front; see Love (1994), p. 18), which is the starting point to approach the
problem in nonlinear theories as briefly discussed above.

Another approach was introduced by Whitham (1974) and extensively used by En-
gelbrecht et al., as discussed in Chapter 3 of this volume, to which we refer for more
details. It consists mainly in the concept of a hierarchy of waves; namely, we choose
one or more scale parameters, such that when it (or they) vanishes or goes to infinity
different wave operators prevail on the other ones and from asymptotical analysis we
can point out the role of the different scale depending on the features. For instance, the
dispersive effects due to the microstructure can be examined, or how the waves, if we
choose the parameter as the ratio of the characteristic scale of the microstructure over
the wavelength of the excitation, are sensible to the influence of the micro- or of the
macrostructure when this parameter is small or large.

2. Nonclassical Continua

The work of Truesdell, Toupin, and Noll not only gave a firm framework to classical
continuum mechanics (even from the title of the monumental treatise by Truesdell
and Toupin (1960): The Classical Field Theories), but also opened new perspectives
toward the creation of new theories of generalized, or nonclassical, continua.

The origin of possible generalizations can be found in the works of Cauchy, Voigt,
Boltzman, and the Cosserat brothers, but surely, as said by Forest and Sievert (2003):
“The sixties have definitively been the Golden Age of the Mechanics of generalized
continua with the milestones [1]–[3] {Toupin, Mindlin, Eringen, . . . }” and “They pro-
vided us with a rigorous and almost exhaustive corpus of balance and constitutive
equations for generalized continua” [Forest and Sievert (2003), p. 71].

The problems that arise are: (i) what do we mean by generalized continua?; (ii)
which relation can be established with the theory of complexity?; what is the relevance
of wave propagation in this contest? In the following sections an attempt is made to
give a brief answer to such questions.

The first problem is not trivial and we refer to Maugin (20041,2) for a deeper
analysis. According to him, and we agree, “the notion itself of generalization depends
also (subjectivity) on the education and knowledge of the author” [Maugin (20041)].
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In the literature very often we read the statement: “the generalized Hooke’s law,” that
means the constitutive equations of an anisotropic homogeneous linear elastic body,
where the generalization is due to the anisotropy: a very weak generalization indeed.
A stronger generalization, even in the case of linear elasticity, is represented by the
assumption of inhomogeneity: in fact, the dependence of the elasticity coefficients on
the material point X of the body changes the nature of the problem substantially.

In classic continuum mechanics the Cauchy axiom on the tractions inside the body
implies the symmetry of the Cauchy stress tensor. This axiom has the physical meaning
that there are no internal couples and no internal microstructures that can be described
by additional internal degrees of freedom. There is another underlying axiom requiring
that the body be a flat manifold, or, equivalently a Euclidean space, as well as the
physical space. The flatness of the body manifold can be also seen as the consequence
of the requirement that the so-called compatibility conditions are satisfied such as to
ensure that the strain tensor is related to smooth displacement fields. These conditions,
in finite elasticity, imply that the Riemann tensor vanishes at each point; namely, the
curvature is zero everywhere. In linear elasticity the compatibility conditions are called
the St. Venant conditions and do not have a clear geometrical interpretation.

Again referring to Maugin (20042), generalization arises when we relax one or more
such assumptions. In this sense, not only the generalized Hooke’s law is weak, but also
linear piezoelectricity and linear thermodynamics are such, whereas inhomogeneity
and dissipation represent a step toward a stronger generalization.

As an example of continua, which do not satisfy the assumption of a flat material
body manifold, we can recall the theory of defects and specifically the theory of solids
with a continuous distribution of dislocations. This problem is strictly connected with
the theory of material inhomogeneities and we can deal with different mathematical
possibilities, each one related to different physical properties: we can assume that the
connection of the body manifold has a symmetric part that makes the curvature vanish,
and a skew-symmetric part that is responsible for the torsion of the manifold, as typical
in the theory of continuous distribution of dislocations, or that the body is an Einstein–
Cartan space equipped with both curvature and torsion, as in general relativity, which
can be seen as a theory of the second-order gradient of the space–time metric and the
body is the physical universe.

The symmetry of the Cauchy stress fails to be true if we assume the existence of
couple stresses, or if we introduce the concept of internal structures, adding internal
degrees of freedom, both of mechanical and nonmechanical nature. One talks of mi-
crostructures, granular media, Cosserat continua, micromorphic continua, ferroelectric
crystals, ferromagnetic media with intrinsic spin, and so on. Other kinds of generaliza-
tion have been introduced relaxing the assumption of locality, which is strictly related
to the Cauchy postulate, leading to the so-called nonlocal theories. In such models,
one can take into account the effects of edges, apex points through the hyperstress, the
capillarity effects, and resonance between length scales.

Two aspects must be put in evidence: from the mathematical point of view, in
nonclassical elasticity the constitutive functions depend not only on the gradient of
deformation F, but also on higher-order gradients or on gradients of the physical
fields coupled to the deformations. From the physical point of view, the existence of
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characteristic lengths in wave propagation is related to the rise of dispersive terms and
one can notice the “competition” between nonlinearity and dispersion.

Maugin, in several papers, proposed an intrinsic material formulation of contin-
uum mechanics, based on the notion of Eshelby’s stress tensor “since this formulation
automatically captures the relevant new ingredients” [Maugin (20042)].

I do not want to go further in this direction, in as much as, for our purposes, it
is enough to keep in mind that as the generalized theory of elasticity, or nonlinear
nonclassical elasticity, we mean the particular case of a generalized continuum where
the above-mentioned assumptions of classical theory are relaxed and in particular we
deal with bodies whose constitutive equations depend not only on F, but also on other
variables apt to describe the internal structure of the material; for instance, internal
scales can be taken into account, due to the presence of microstructures, the Cauchy
stress tensor is not symmetric, and couple stresses are present. These ingredients are
not necessarily present all together; the presence of one or more of them generates
different generalizations, as discussed in Maugin (20041,2).

3. Complex Materials

At this point the connection with the theory of complex structures is quite evident.
Even according to the Chambers dictionary, as reminded by Engelbrecht (1993)2,
“simple is that which consists of one thing or element, complex what is composed of
more than one or of many parts.” Hence we can say that a simple material is a classical
continuum, being constituted by a single structure. More exactly, according to Noll’s
theory, a simple material is a material such that the constitutive functionals reduce to
functions depending on the actual values of the deformation gradient, the temperature,
and the gradient of temperature. It is a material without memory and with a “simple”
internal structure. Elastic materials are particular cases of this one, when there is no
dependence on temperature and its gradient. When we deal with nonclassical general-
ized continua, the material is no simpler not in the sense of the dictionary, nor in the
sense of complexity, not even in Noll’s sense. Hence a body with some kind of inter-
nal structure is complex and if it is made of elastic material it is a nonclassical elastic
body. Let me remark that nonlinearity is always assumed.

More recently, the problem of complexity revealed its importance also in continuum
mechanics and, in particular, in nonlinearly elastic structures. The problem of scale-
depending phenomena became more and more relevant and different names have been
given according to the different microscales used: mesomechanics, nanomechanics,
and microstructure theory are terms widely used, sometimes with a kind of overlap-
ping of models. Let us call a complex system a material continuum that exhibits such
a structure and in this sense we can give the name of NCNL elasticity to the theories
that model complex elastic structures. The influence of micro- (or meso- or nano-)
structures on the behavior of the macrostructures is of great importance in applica-
tions in very different fields: fluids with bubbles, microcrack distribution in solids,
crystal fluids, dislocations and disclinations, granular solids, porous media, and so
on. In many cases the mathematical theory does not provide suggestions as to how to
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perform experiments in order to exhibit the existence, consistency, and influence of the
microstructure over the macrobody. In this sense we can talk of nonclassical nonlinear
elasticity, in the sense that some of the pillars of the classical exact theory of elasticity
are relaxed. For instance, as in our case, the Cauchy stress tensor is no longer symmet-
ric because of the presence of microstructures described by additional internal degrees
of freedom, which implies the presence of applied couples in bulk and at the surface.

4. Nonlinear Waves

There are two main approaches to the study of nonlinear wave propagation. The first,
much more general, is based on the theory of singular surfaces. This theory, though, as
already said, developed since the twentieth century by Christoffel and after by Duhem,
Hadamard, Hugoniot, Rankine, and many others, has been clearly established in an
exact contest for classical continua by Truesdell and Noll, hence by Thomas, Jeffrey,
Chen, and Hayes, just to recall a few names already quoted in the previous sections.

The idea is that when a wave travels through a body, two subregions can be identi-
fied: the unperturbed part, where the wave has not yet arrived, and the perturbed part,
where the perturbation is acting, separated by a surface, whose physical meaning is
that one of the wave fronts moves through the body with a certain speed. Mathemati-
cally, it is assumed that through this surface, at each time, some field derivatives, both
in space and time, have a discontinuity. If the second derivatives are discontinuous and
the first derivatives are continuous, we call the wave an “acceleration wave;” if the first
derivative is discontinuous we have a “shock wave.” We can even assume that the field
itself is discontinuous across the surface and is called a “dislocation wave,” but this
case is difficult to treat and beyond our goal.

Because the discontinuities must be somehow connected, because the body is not
going to break, the so-called geometrical and kinematical compatibility conditions
can be derived, introducing the speed of propagation and the amplitude of the wave,
which are the main features of the wave and they are unknowns and must be deter-
mined. In the case of acceleration waves, applying such conditions to the field equa-
tions one obtains the Hadamard–Hugoniot–Rankine–· · · conditions, namely, equations
involving the jumps, hence the wave speeds and amplitudes, such that the problem re-
duces to an algebraic eigenvalue problem; the eigenvalues and the eigenvectors are the
squares of the wave speeds and the amplitudes, respectively. Under suitable conditions
on the acoustic tensor, which appears naturally in nonlinear hyperelasticity as the set
of second-order derivatives of the strain energy function with respect to the coordi-
nates, it is in principle possible to evaluate those unknowns. Moreover, using each set
of eigenvalues and the corresponding eigenvectors, one can derive the equations of
evolution of the amplitudes and try to evaluate it along each wave.

This method is somehow similar to the method of characteristics of hyperbolic sys-
tems, but it is more general and we do not need to deal with hyperbolic systems; indeed
we say that the field equations system is hyperbolic if there exist exactly as many real
speeds as the number of equations, even if it is not hyperbolic in the sense of PDE
classification.
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Similarly, a general analysis for shock waves can be developed, as well as for wave
propagation in rods, shells, and plates. Actually, it seems feasible to apply this method
also to microstructured solids and to complex materials, as it shown in the next section.

Another approach, due mainly to Whitham (1974) and Engelbrecht (1983), and we
refer to Engelbrecht (19931,2) and to Chapter 3 of this volume for a more detailed dis-
cussion, consists in assuming nonlinear but explicit forms of the constitutive equations,
including dispersive and dissipative terms, such that the governing equations assume a
typical form [see Engelbrecht (19932) formula (2.30)], namely a system quasilinear in
the leading terms, but strongly nonlinear in the remaining parts, such that it should be
possible to find an associated linear, strictly hyperbolic system that would provide so-
lutions of the linearized problem useful for discussions of the corresponding solutions
of the nonlinear system. Let us remark that the famous KDV equation is encompassed
in this approach.

The nonlinear system in general cannot be solved by direct methods. One possibility
is to carry out an asymptotic analysis, as done by Taniuti and Nishihara (1983), or to
resort to other methods like the approximate equation method, as by Whitham (1974),
Engelbrecht (19931), the method of hierarchy of waves, again Whitham (1974), En-
gelbrecht (19931,1997), and in this volume).

These methods have been successfully applied to many different problems in solid
mechanics, in fluids, and in materials with different kinds of internal structures and
different dimensions, and, among other results, the possibility of existence of solitons
can be proved.

5. Nonlinear Waves in Microstructured Solids

In this section an example is provided of possible applications of the theory of non-
linear wave propagation in complex materials, within the framework of nonclassical
nonlinear elasticity.

The linear theory of elastic microstructured solids, including vibrations, has been es-
tablished by Mindlin (1964), thereafter by Eringen (1966) and Kunin (1983), whereas
general treatises on the theory of microstructures are due to Maugin (1980), Capriz
(1989), and Eringen (2000, 2002).

I restrict my example to the so-called vectorial microstructures, which can encom-
pass many relevant models, such as Cosserat media, granular solids, micromorphic
bodies, and solids with microcracks. Some interesting results have been obtained in
the one-dimensional case, when a scalar function describes the microstructure and
both dispersion and dissipation can be taken into account, within, obviously, the non-
linearity. A wide class of phenomena can be described by means of microstructural
models of solids and fluids, where the microstructure can be described by vector fields
over the body. In principle, there are no restrictions on the number of vector fields,
which are unknown variables of the problem, but there are obvious restrictions due to
the possible physical meaning of each vector field.

Let B be the body, as a manifold embedded in a three-dimensional affine space, X
a point of this body in its reference configuration C*, and x the corresponding point in
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the actual configuration C . As usual, the displacement is given, in terms of the position
vector r = r(Xh, t) = x – o, o a fixed point in the physical space and R = X – o, by
u = r – R. Commas denote partial derivatives with respect to Xh and superposed dots
denote partial derivatives with respect to time; for example,

r,h = ∂u
∂ Xh

; ṙ = ∂u
∂t

.

By microstructure we mean that at each point x ∈ C it is possible to apply a micro-
scope and discover a “small world.” We assume that this “small world” is a manifold
of dimension n, and we label this micromanifold Mx . By means of a mathematical
procedure, elsewhere called “magnification process” (see Pastrone (2005), one can
associate this microscopic world with a set of vectors,

dK = dK (Xh, t) K = 1, 2, . . . , N ,

which are a particular case of more sophisticated possible models, but general enough
for our purposes. Such vectors can be called “directors,” according to the usual lan-
guage of polar continua, and they are apt to provide a description of some properties
of the microstructure as they act at the macroscopic level. In fact, each director can
belong to a vector space of dimension 1, 2, . . ., according to which physical property
it is related and how we performed the magnification process.

The kinetic energy density of the body is defined as a quadratic form in the velocities
ṙ, ḋK :

T = 1

2
[ρ(Xh)ṙ · ṙ + ρ(Xh)I H K ḋH · ḋK ]. (2.1)

In Eq. (2.1), ρ is the usual three-dimensional mass density in the reference configura-
tion; I H K are the coefficients of the inertia terms. We assign a strain energy density
function

W = W (r,I ; d,J ; dJ,h; Xh) (2.2)

whose existence follows from the assumption that the total power PT is given by PT =
dW/dt and the total energy by:

E =
∫

B

(T − W )ρd X1d X2d X3 −
∫

B

ρWbd X1d X2d X3, (2.3)

where Wb is the potential of the external body forces, which depends on r and Xh only.
We avoid internal constraints and separate the problem of the boundary conditions.

The equations of motion can be derived as the Euler–Lagrange equations of the energy
functional
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E =
t1∫

t0

Edt : δE = 0 for any admissible motion ⇒
(

∂W

∂r,i

)

,i
− ∂W

∂r
= d

dt

∂T

∂ ṙ

(
∂W

∂dKi,

)

,i

− ∂W

∂dK
= d

dt

∂T

∂ḋK
.

(2.4)

We can also take account of the dissipation, but we refer to Pastrone (2005) for a more
detailed discussion.

In the following are a few general results that can be derived avoiding heavy calcula-
tions. We simplify the notation, introducing a Euclidean vector space E , of dimension
M , whose elements are given as ordered sets: p ∈ E, p ≡ {r, d1, . . . , dN}; hence E
is generated by the vectors r, dK and its dimension depends on the dimensions of the
spaces to which the directors belong. A useful inner product can be defined by:

∀ p1, p2 ∈ E, 〈p1, p2〉 ≡ r1 · r2 + δH K d1
H · d2

K . (2.5)

Now we deal briefly with wave propagation, according to the finite discontinuity
surface model recalled in Section 4. A surface Σ moving through the body B, of equa-
tion φi(Xi , t) = 0, is called an acceleration wave if the field p and its first derivatives
p,i and ṗ are continuous on Σ , but some second derivative has finite discontinuities
there.

We assume some familiarity with the theory of singular surfaces and the usual kine-
matical conditions of compatibility yield:

[∣∣p,i j
∣∣] = Ani n j , [|ṗ|] = Aν2, (2.6)

where the double brackets mean jump across the surface Σ , the vector field A repre-
sents the amplitude vector of the wave, ni are the components of the unit vector normal
to Σ , and ν the wave speed. If we apply the jump condition to the equation of motion
written in terms of the field variables p:

(
∂W

∂p,i

)

,i
− ∂W

∂p
= K p̈, (2.7)

where K is the linear transformation naturally induced by the kinetic energy we obtain
the Hugoniot–Hadamard conditions in the compact form:

QA = K Aν2, (2.8)

where Q is the acoustic tensor, given by:

Q ≡ ∂2W

∂p,i∂p, j
ni n j . (2.9)
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Because the acoustic tensor is symmetric, (2.8) represents an eigenvalue problem such
that, if Q is positive semidefinite, that is,

〈A,QA〉 ≥ 0, ∀A ∈ E, A 	= 0, (2.10)

the eigenvalues of (2.8) are M and all positive, hence there exist M real velocities
ν(S), S = 1, 2, . . . , M . If the condition (2.10) is valid for all directions, we recover
the so-called strong ellipticity condition in the static case. Hence we can claim that
the stability of equilibrium implies the acoustic tensor is positive semidefinite and
consequently we have exactly 12 acceleration wave speeds. Conversely, if the body
loses the ability to propagate some acceleration waves the corresponding equilibrium
configuration is unstable.

Exploring in more detail the general equations and conditions of this section, one
could obtain explicit results valid in many particular cases, some of which are encom-
passed in this model. Shock waves can also be investigated recovering some expected
results. For instance, using this formalism it is easy to find that in linear theory the
velocities of acceleration and shock waves are the same. Other results about infinitesi-
mal vibrations and normal modes can be reached but we choose to stop here.

6. The One-Dimensional Case

According to different assumptions on the geometry and kinematics of the microstruc-
tures one can recover many particular cases often discussed in the literature, usually
each one being introduced independently.

One-dimensional microstructured bodies have been extensively studied in a series
of papers [see Pastrone et al. (2004) and references cited therein] dealing with different
particular models. Their common general features can be easily derived in the present
contest. The body is a one-dimensional manifold, with a material coordinate x and
a unit vector e, such that the vector fields r and d can be written as r = r(x, t) e and
d = ψ(x, t)\e. Hence we deal with the scalar functions r = r(x, t), ψ = ψ(x, t)
only.

The strain energy function W = W (u, ux , ψ, ψx , x) is an assigned smooth function
and the kinetic energy is a quadratic form in u̇, ψ̇ :

T = 1

2
(ρu̇2 + I ψ̇2), (2.11)

where ρ = ρ(x, t) is a one-dimensional mass density and I an inertia term connected
with the microstructure, which can have different explicit forms according to the kind
of microstructure one can represent with this model (i.e., microcrack density, disloca-
tion density, voids, etc.). If we assume dissipation, we introduce dissipative stresses
such that the field equations take the form [see Pastrone et al. (2004)]:

ρutt =
(

∂W

∂ux

)

x
− ∂W

∂u
+ D1 (2.12)1

ρψt t =
(

∂W

∂ψx

)

x
− ∂W

∂ψ
+ D2, (2.12)2
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where u is a displacement field, the subscripts mean derivatives with respect to time
t or to the spatial coordinate x , and the terms D1, D2 summarize the dissipation. In
some cases it is assumed I = 0 (namely, the microstructure has no inertia). The case
with no dissipation (D = 0) has been studied in Engelbrecht and Pastrone (2003).

The particular choice of the strain energy function W gives rise to different nonlinear
models. The effects of nonlinearity, dispersion, and dissipation can be quite evident in
the evolution of traveling waves in complex structures and they have been analyzed in
some simpler cases [see Engelbrecht et al., (1999), Porubov and Pastrone (2004), and
Pastrone (2005)].

For instance, if we assume that W is given by [see Pastrone (2005)]:

W = 1

2
αu2

x + 1

3
βu3

x − Aψux + 1

2
Bψ2 + 1

2
Cψ2

x , (2.13)

where α, β, A, B, C, are material constants related to the usual elastic moduli in a
known way [see Porubov and Pastrone (2004)].

The field equations may be further simplified by the so-called slaving procedure,
namely, by considering some parameters that can dominate the behavior of the wave,
and can be in competition among themselves, such that nonlinearity, dissipation, and
dispersion can be taken into account with different weights. In other words, sometimes
they can be considered “negligibly small,” sometimes not, according to the different
effects we want to point out. Moreover we can eliminate the variable ψ in Eq. (2.12),
when the energy function (2.13) is used, such that we obtain the evolution equation.

vt t −vxx −εα1(v
2)xx −γα2vxxt +δ(α3vxxxx −α4vxxtt )+γ δ(α5vxxxxt +α6vxxtt t ) = 0,

(2.14)
where α1, . . . , α6 are material constants uniquely related to the previous ones; ε, δ, γ

are the leading scale parameters related to nonlinearity, dispersion, and dissipation,
respectively.

In Porubov and Pastrone (2004) and Pastrone et al. (2004) it has been proved
that if there is no dissipation and nonlinearity and dispersion are balanced, that is,
γ = 0, ε = O(δ), there exists a solution of the kind of a bell-shape solitary traveling
wave; if dispersion is weak and nonlinearity is balanced by the dissipation, that is,
δ < ε and γ = O(ε), there exists a kink-shaped traveling solution, and other similar
results can be proved.

The wave hierarchy approach can be also used, as proved in Engelbrecht et al. (2003)
and Pastrone et al. (2004); the typical form of the wave equations obtained in many
one-dimensional problems is

utt + λuxx = [N (u) + M(u)]xx + D, (2.15)

where u is a displacement field, the subscripts mean derivatives with respect to time t
or to the spatial coordinate x, N is the nonlinear part, M the dispersive part, and D is
the dissipation. Usually M and N are expressed in terms of second-order derivatives,
at least. For more details and a broader analysis we refer to Engelbrecht et al., (1999),
Engelbrecht and Pastrone (2003), and elsewhere in this volume).

The model equations demonstrate the fundamental influence of a microstructure on
the wave motion, the dispersive character of motion, and the influence of the scale
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parameters. This permits us to relate the experimental measurements directly to theo-
retically introduced parameters, as clearly shown by Berezovski in Engelbrecht (2004)
for the changes of the wave speeds.

Conclusions

Nonlinear elasticity as a mathematical well-established theory finds its origin in the
1930s and was completely developed during the 1960s, as briefly said in the first two
sections. Also nonclassical theory was known long ago to the community of scien-
tists working in this field, even if with slightly different names: generalized elasticity,
second-gradient theory, dislocation theory, microstructures, and so on. In this short
chapter I wanted to add a new ingredient: complexity. As I tried to explain, complexity
is a term that covers many different subjects; even the meaning can change accord-
ing to the field where it is used: informatics, biology, dynamical systems, economy,
or engineering. The example introduced in Sections 5 and 6 clearly shows the idea of
complexity as it can be introduced in materials science, in addition to the usual ap-
proach, and it is hoped that it has been shown that interesting results can be obtained
mixing all such ingredients such as nonlinear elasticity, nonclassical models, and com-
plexity, which, with the help of powerful tools such as wave propagation theory (but
one could also bring into this cake the bifurcation theory for further results), can give
rise to a framework of great generality and within the reach of actual and possible
results.
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Abstract
Wave propagation in microstructured materials is directly affected by the existence of inter-
nal space scales in the compound matter. To allow for microstructures the classical continuum
theory has to be generalized. In this chapter, the coupled balance laws for macro- and mi-
crostructure based on the Mindlin model are formulated. Using the slaving principles relating
macro- and microdisplacements, the governing equations are derived for single- and two-scale
(scale within scale) cases. These equations exhibit hierarchical properties assigning the wave
operators to internal scales. In terms of macrodisplacements, higher-order dispersive terms ap-
pear that are related to the scale of the microstructure and reflect the effects of microinertia. The
dispersion relations of propagating waves are established and compared with approximations
resulting from hierarchical models and also with some simplified models. Linear theory is based
on a quadratic free energy function, whereas in nonlinear theory cubic terms also are taken into
account. The corresponding governing equation includes nonlinearities in both macro- and mi-
croscale. This consistent modeling opens up new possibilities to NonDestructive Testing (NDT)
of material properties.
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1. Introduction

Materials used in contemporary advanced technologies are often characterized by their
complex structure satisfying many requirements in practice. This concerns polycrys-
talline solids, ceramic composites, alloys, functionally graded materials, granular ma-
terials, and the like. Often one should also account for damage effects; that is, materials
are still usable when they have microcracks. In all these materials there exists an in-
trinsic space-scale, such as the lattice period, the size of a crystallite or a grain, or the
distance between microcracks. This scale-dependence should be taken into account in
establishing the governing equations. The classical theory of continuous media is built
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up using the assumption of smoothness of continua. The continua (materials) we are
interested in contain irregularities with one or more internal scales and therefore the
notion “microstructured materials” is used. The complex dynamic behavior of such
microstructured materials cannot be explained by the classical theory of continua.

A more detailed description and distinction of classical and nonclassical theories of
continua is given by Pastrone in Chapter 2 of this volume. Here we restrict ourselves
to basic principles needed for modeling dynamical processes.

The cornerstones for describing dynamical processes of microstructured materials
at intensive and high-speed deformations are the following.

(i) Nonclassical theory of continua able to account for internal scales

(ii) Hierarchical structure of waves due to the scales in materials

(iii) Nonlinearities caused by large deformation, depending on the character of the
stress–strain relations

Within the theories of continua the problems of irregularities of media were pre-
dicted a long time ago by the Cosserats and Voigt, and more recently by Mindlin
(1964), Eringen (1966), and others. The elegant mathematical theories of continua
with voids or with vector microstructure, of continua with spins, of Cosserat or micro-
morphic continua, and so on have been elaborated since; see the overviews by Capriz
(1989) and Eringen (1999). Every irregularity (or inclusion) creates an additional stress
field around itself. Consequently the most general approach in modeling should be the
presentation of all the conservation laws and constitutive equations taking this stress
field into account.

The straightforward modeling of microstructured solids leads to assigning all the
physical properties to every volume element dV in a solid thus introducing the
dependence on material coordinates Xk . Then the governing equations implicitly in-
clude space-dependent parameters but, due to the complexity of the system, can be
solved only numerically. Another probably much more effective way is to separate
macro- and microstructure in continua. Then the conservation laws for both structures
should be separately formulated (Mindlin 1964; Eringen 1966; Eringen 1999), or the
microstructural quantities are separately taken into account in one set of conservation
laws (Maugin 1993). The last case uses the concept of pseudomomentum and material
inhomogeneity force. Separating the macro- and microstructure gives two possibilities:
either to consider both structures inertial or to suppose the microstructural quantities
to behave noninertially. The first case is exactly what has been done by Mindlin (1964)
and Eringen (1966, 1999); the second case leads to the formalism of internal variables
(Maugin 1990; Maugin and Muschik 1994).

The second pillar mentioned above is the hierarchy of waves. The concept of hier-
archy of waves is introduced by Whitham (1974).

High intensities of external forces and high deformation rates dictate the need to
consider nonlinearities in governing equations. One should distinguish between geo-
metrical (large deformation) and physical (stress–strain relation) nonlinearities; see
Engelbrecht (1997). Physical nonlinearities are also called material nonlinearities and
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may be described by the approximation of the strain energy including not only second-
order but also higher-order terms. These problems for microstructured solids have been
analyzed, for example, by Erofeyev (2003); see also references therein. The nonlinear
theory also needs a clear distinction between material and spatial coordinates.

In terms of wave characteristics, there are many physical effects due to microstruc-
ture and its possible structural changes in the wave field. In addition, the influence of
nonlinearities causes nonadditivity of other physical effects. Leaving aside more com-
plicated effects such as phase transition, kinetic localization of damage, shear bands,
and so on, even the basic dissipative and dispersive effects are strongly influenced
by nonlinearities. Stressing the importance of both dissipation and dispersion, in this
chapter we clarify the role of dispersion only.

Dispersive and nonlinear effects combined may lead to the celebrated solitary waves.
The Korteweg–de Vries equation includes quadratic nonlinearity and cubic dispersion
and has served for more than 100 years as a model case for the balance of dispersion
and nonlinearity. The soliton concept has formed a new paradigm in mathematical
physics. When we come to microstructured materials the situation is not so simple.
There still seem to be discrepancies between various mathematical models concerning
the dispersion relation. In this context the discrete modeling of crystal lattices is also
used (Brillouin 1953; Askar 1985; Maugin 1999). The continuum models (Erofeyev
2003; Porubov 2003) have been elaborated with various levels of accuracy.

We have previously analyzed dissipative effects in microstructured materials (En-
gelbrecht et al. 1999), nonlinearities in microscale (Engelbrecht and Pastrone 2003),
and general dispersive effects (Engelbrecht et al. 2004).

Here in this chapter we concentrate our attention on the description of dispersive
effects in microstructured solids following the consistent theory of nonclassical con-
tinua. This allows us to unite two important concepts, namely the influence of mi-
crostructure on dispersion from one side and the concept of hierarchies from another
side. The third pillar—nonlinearities—takes more space. Its consistent description will
be published elsewhere. Here we touch this problem only briefly.

The chapter is organized as follows. Section 2 involves the derivation of the basic
single-scaled model. Mindlin (1964) assumption on strain in microstructure is used and
the governing equations derived using the Euler–Lagrange formalism. It is shown that
the model is consistent within the framework of pseudomomentum (Maugin 1993).
Section 3 describes the modeling for the case of two-scale (scale within the scale)
microstructure. In Section 4 the hierarchy of waves is explained following Whitham
(1974) idea. Section 5 is devoted to the dispersion analysis of waves and Section 6 to
nonlinear models. A discussion and further prospects are given in Section 7.

2. The Basic Single-Scaled Model

2.1 Governing Equations

Here we follow Mindlin (1964) who has interpreted the microstructure “as a molecule
of a polymer, a crystallite of a polycrystal or a grain of a granular material.” This mi-
croelement is taken as a deformable cell. Note that if this cell is rigid, then the Cosserat
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model follows. The displacement u of a material particle in terms of macrostructure
is defined by its components ui ≡ xi − Xi , where xi , Xi (i = 1, 2, 3) are the com-
ponents of the spatial and material position vectors, respectively. Within each material
volume (particle) there is a microvolume, and the microdisplacement u′ is defined by
its components u′

i ≡ x ′
i − X ′

i , where the origin of the coordinates x ′
i moves with the

displacement u. The displacement gradient is assumed to be small. This leads to the
basic assumption of Mindlin (1964) that “the microdisplacement can be expressed as
a sum of products of specified functions of x ′

i and arbitrary functions of xi and t .” The
first approximation is then

u′
j = x ′

k ϕk j (xi , t). (3.1)

The microdeformation is
∂u′

j

∂x ′
i

= ∂ ′
i u

′
j = ϕi j . (3.2)

Furthermore we consider the simplest 1-D case and drop the indices i, j dealing with
u and ϕ only. The indices t and x used in the sequel denote differentiation.

The fundamental balance laws for microstructured materials can be formulated sep-
arately for macroscopic and microscopic scales (Eringen 1999). We show here how
the balance laws can be derived from the Lagrangian (Mindlin 1964; Pastrone 2003)

L = K − W, (3.3)

formed from the kinetic and potential energies

K = 1

2
ρu2

t + 1

2
Iϕ2

t , W = W (ux , ϕ, ϕx ), (3.4)

where ρ is the density and I the microinertia.
The corresponding Euler–Lagrange equations have the general form

(
∂L

∂ut

)

t
+

(
∂L

∂ux

)

x
− ∂L

∂u
= 0, (3.5)

(
∂L

∂ϕt

)

t
+

(
∂L

∂ϕx

)

x
− ∂L

∂ϕ
= 0. (3.6)

Inserting the partial derivatives

∂L

∂ut
= ρut ,

∂L

∂ux
= −∂W

∂ux
,

∂L

∂u
= 0,

∂L

∂ϕt
= Iϕt ,

∂L

∂ϕx
= − ∂W

∂ϕx
,

∂L

∂ϕ
= −∂W

∂ϕ
,

(3.7)

into Eqs. (3.5) and (3.6) we obtain the equations of motion

ρutt −
(

∂W

∂ux

)

x
= 0, Iϕt t −

(
∂W

∂ϕx

)

x
+ ∂W

∂ϕ
= 0. (3.8)
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Denoting

σ = ∂W

∂ux
, η = ∂W

∂ϕx
, τ = ∂W

∂ϕ
, (3.9)

we recognize σ as the macrostress (Piola stress), η as the microstress, and τ as the
interactive force.

The equations of motion (3.8) take now the form

ρutt = σx , (3.10)

Iϕt t = ηx − τ. (3.11)

These equations can be compared with the analogous equations deduced in a different
way by Capriz (1989).

The simplest potential energy function describing the influence of a microstructure
is a quadratic function

W = 1

2
αu2

x + Aϕux + 1

2
Bϕ2 + 1

2
Cϕ2

x (3.12)

with α, A, B, C denoting material constants. Inserting it into Eq. (3.9) and the result
into Eqs. (3.10) and (3.11) the governing equations take the form

ρutt = αuxx + Aϕx , (3.13)

Iϕt t = Cϕxx − Aux − Bϕ. (3.14)

Equations (3.13) and (3.14) with proper initial and boundary conditions form the basis
for further analysis.

2.2 Balance of Pseudomomentum

The analysis above is based on two balance laws of momentum, expressed by Eqs.
(3.10) and (3.11). Following Maugin (1993) we show that the balance of pseudomo-
mentum is a direct consequence of these equations.

We multiply Eq. (3.10) by ux and Eq. (3.11) by ϕx , add the equations, and obtain

ρutt ux + Iϕt tϕx = σx ux + ηxϕx − τϕx . (3.15)

Now the identical expressions

ρut uxt + Iϕtϕxt = 1

2

(
ρu2

t + Iϕ2
t

)

x
(3.16)

are added on either side, leading to the equation

(ρut ux + Iϕtϕx )t = 1

2

(
ρu2

t + Iϕ2
t

)

x
+ σx ux + ηxϕx − τϕx . (3.17)

On the left-hand side, the pseudomomentum

P = − (ρut ux + Iϕtϕx ) (3.18)
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is recognized, whereas the right-hand side of Eq. (3.17) can be expressed in terms of
the Lagrangian density

L = 1

2

(
ρu2

t + Iϕ2
t

)
− W (ux , ϕ, ϕx ). (3.19)

Its derivative with respect to x is, on account of Eqs. (3.9),

Lx = 1

2

(
ρu2

t + Iϕ2
t

)

x
− σuxx − ηϕxx − τϕx . (3.20)

Using these formulas Eq. (3.17) can be rewritten in the form

− Pt = Lx + (σux + ηϕx )x . (3.21)

In the dynamic setting the Eshelby stress is defined by

b = − (L + σux + ηϕx ) . (3.22)

Thus Eq. (3.21) can be represented in the form of balance of pseudomomentum

Pt − bx = 0. (3.23)

In the special case of the quadratic function (3.12), the Eshelby stress assumes the
form

b = −1

2

(
ρu2

t + Iϕ2
t + αu2

x − Bϕ2 + Cϕ2
x

)
. (3.24)

The balance equation (3.23), however, holds independently of the constitutive equa-
tion for the strain energy density. The essential assumption is that there is no direct
dependence of the strain energy density on the coordinate x , that is, that the material
is homogeneous. Otherwise an inhomogeneous term would show up on the right-hand
side of Eq. (3.23), thus turning it into an imbalance of pseudomomentum.

3. The Two-Scale Model

We follow the same idea as in Section 2 but generalize it for a two-scale situation.
In physical terms it means that every deformable cell of the microstructure includes
new deformable cells at a smaller scale. So instead of the system macrostructure–
microstructure, the material is supposed to be composed by the macrostructure includ-
ing microstructure 1 at a certain scale that includes microstructure 2 at some smaller
scale. A qualitative sketch of such a material is shown in Figure 3.1. The displacements
at the different scales are

u j = u j (xi , t), (3.25)

u′
j = x ′

k ϕk j (xi , t), (3.26)

u′′
j = x ′′

k ψ̄k j (x ′
i , t), (3.27)
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macrostructuremacrostructure microstructure 1 microstructure2

Fig. 3.1. Multiple scales of material structure.

respectively, where x ′
k , x ′′

k correspond to the local coordinates within respective cells.
As we are interested in motion on the macrolevel, we assume the relation (3.27) to be
replaced by

u′′
j = x ′′

k ψk j (xi , t). (3.28)

The gradients of these displacements,

∂u′
j

∂x ′
i

= ϕi j ,
∂u′′

j

∂x ′′
i

= ψi j (3.29)

represent the deformations on the microlevels.
In the 1-D case the indices i, j, k can be dropped. In generalization of Eqs. (3.10)

and (3.11) one has now the balance laws

ρutt = σx , (3.30)

I1ϕt t = η1x − τ1, (3.31)

I2ψt t = η2x − τ2, (3.32)

in which two microstresses η1, η2 and two interactive forces τ1, τ2 occur. The microin-
ertias at the two scales are I1, I2. All the stress components and forces are determined
from the free energy W by the relations

σ = ∂W

∂ux
, η1 = ∂W

∂ϕx
, η2 = ∂W

∂ψx
, τ1 = ∂W

∂ϕ
, τ2 = ∂W

∂ψ
, (3.33)

in generalization of Eq. (3.9).
In order to begin explaining the dispersive effects, we assume the quadratic free-

energy function

W = 1

2

(
αu2

x + 2A1uxϕ + B1ϕ
2 + C1ϕ

2
x + 2A2ϕxψ + B2ψ

2 + C2ψ
2
x

)
, (3.34)

where α and Ai , Bi , Ci (i = 1, 2) denote material constants. Introducing (3.33) and
(3.34) into (3.30)–(3.32), the governing equations assume the form

ρutt = αuxx + A1ϕx , (3.35)

I1ϕt t = C1ϕxx − A1ux − B1ϕ + A2ψx , (3.36)

I2ψt t = C2ψxx − A2ϕx − B2ψ, (3.37)

generalizing (3.13) and (3.14).
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4. Hierarchies of Waves

4.1 Preliminaries

Whitham (1974) has described certain complicated wave systems where a scale pa-
rameter δ plays an important role. Depending on its limit values, δ → ∞ or δ → 0,
one or another wave operator governs the process asymptotically. Thus, the full system
includes a hierarchy of waves with certain stability conditions; see Whitham (1974).
Here we show that waves in microstructured materials exhibit the hierarchical behavior
governed by a parameter that is the ratio of the characteristic scale of a microstructure
and the wavelength of the excitation.

4.2 Single Scale

Let the scale of the microstructure be l and the excitation characterized by its amplitude
U0 and wavelength L . Then we can introduce the following dimensionless variables
and parameters,

U = u

U0
, X = x

L
, T = c0t

L
, δ = l2

L2
, ε = U0

L
, (3.38)

where c2
0 = α/ρ. We also suppose that I = ρl2 I ∗, C = l2C∗, where I ∗ is dimension-

less and C∗ has the dimension of stress. Note that I is scaled against ρ, so that any
difference of densities is embedded in I ∗.

Next, the system (3.13), (3.14) is rewritten in its dimensionless form and then the
slaving principle (Christiansen et al. 1992; Porubov 2003) is used. It means, in princi-
ple, that we determine ϕ in terms of Ux using a series representation. Indeed, Eq. (3.14)
yields

ϕ = −ε A

B
UX − δ

B

(
α I ∗ϕT T − C∗ϕX X

)
. (3.39)

If we consider ϕ = ϕ0 + δϕ1 + · · · , we get

ϕ0 = −ε A

B
UX , (3.40)

ϕ1 = εαAI ∗

B∗ UXT T − ε AC∗

B2
UX X X . (3.41)

Inserting Eqs. (3.40) and (3.41) into the governing system in its dimensionless form we
get finally, in terms of U , the partial differential equation (Engelbrecht and Pastrone
2003)

UT T =
(

1 − c2
A

c2
0

)
UX X + c2

A

c2
B

(
UT T − c2

1

c2
0

UX X

)

X X

, (3.42)

where c2
1 = C/I, c2

A = A2/ρB, c2
B = BL2/I . Note that c2

B involves the scales L
and l, and c2

A includes the interaction effects between the macro- and microstructure
(through the parameter A). This means that

c2
A

c2
B

= δ I ∗ A2

B2
. (3.43)
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Equation (3.42) reflects the hierarchical nature of wave propagation in microstructured
solids: if c2

A/c2
B is small, then waves are governed by the properties of macrostructure.

If, however, c2
A/c2

B is large, then waves “feel” more microstructure. Note that in the
absence of the interaction between macro- and microstructure (i.e., when A = 0), the
wave operator in terms of U is simply UT T − UX X .

It is of interest to restore the dimensions in order to compare the various approxima-
tions. First, the system (3.13), (3.14) of two second-order equations can be represented
also in the form of one fourth-order equation

utt =
(

c2
0 − c2

A

)
uxx − p2

(
utt − c2

0uxx

)

t t
+ p2c2

1

(
utt − c2

0uxx

)

xx
, (3.44)

where p2 = I/B is an inherent time constant. Equation (3.42), however, can be rewrit-
ten as

utt =
(

c2
0 − c2

A

)
uxx − p2c2

A

(
utt − c2

1uxx

)

xx
. (3.45)

It is obvious that the approximated model (3.45), which displays the hierarchical struc-
ture, neglects uttt t completely and the influence of uttxx is different in (3.44) and
(3.45). What is important is that in this approximation the effects of inertia of mi-
crostructure and wave velocity in pure microstructure are taken into account. There
are certainly other approximations possible. From lattice theory (see, e.g., Maugin
1999), the governing equation in its simplest form is

utt = c2
0uxx + 1

12
c2

0a2uxxxx , (3.46)

where a is the distance between the particles. A similar equation for periodic structures
is obtained by Santosa and Symes (1991). The equation must be compared with

utt =
(

c2
0 − c2

A

)
uxx + p2c2

Ac2
1uxxxx (3.47)

resulting from Eq. (3.45) if the mixed derivative uttxx is discarded. If only the effect
of microinertia is retained (Wang and Sun 2002) then in our notations the governing
equation reads

utt =
(

c2
0 − c2

A

)
uxx − p2c2

Auttxx . (3.48)

The dispersion analysis below (Section 5) shows the difference between the various
models.

4.3 Multiple Scales

We apply now the same reasoning as above to the system (3.35)–(3.37), that is, the
balance laws in terms of the macrodisplacement u and the microstrains ϕ and ψ of the
two levels of microstructure. In order to do so, the following dimensionless variables
are introduced,

U = U

U0
, X = x

L
, T = c0t

L
, ε = U0

L
, δ1 = l2

1

L2
, δ2 = l2

2

L2
, (3.49)
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where U0 and L are the amplitude and the characteristic length of the excitation, and
l1 and l2 are the scales of the microstructures. The lengths l1, l2 control the order of
magnitude of the corresponding material parameters which, therefore, are chosen as

I1 = ρl2
1 I ∗

1 , I2 = ρl2
2 I ∗

2 , C1 = l2
1C∗

1 , C2 = l2
2C∗

2 , A2 = l2 A∗
2. (3.50)

Here I ∗
1 , I ∗

2 are dimensionless, and A∗
2, C∗

1 , C∗
2 have the dimensions of stress. Note that

I1 and I2 are scaled against ρ and possible differences on densities of microstructures
are embedded in I ∗

1 and I ∗
2 , respectively.

Substituting the parameters (3.49) and (3.50) into the governing equations (3.35)–
(3.37) we obtain

UT T = UX X + A1

εα
ϕX , (3.51)

ϕT T = C∗
1

α I ∗
1

ϕX X − 1

δ1

ε A1

α I ∗
1

UX − 1

δ1

B1

α I ∗
1

ϕ +
√

δ2

δ1

A∗
2

α I ∗
1

ψX , (3.52)

ψT T = C∗
2

α I ∗
2

ψX X − 1√
δ2

A∗
2

α I ∗
2

ϕX − 1

δ2

B2

α I ∗
2

ψ. (3.53)

The slaving principle (Christiansen et al. 1992; Porubov 2003) can now be used, taking
into account two independent small parameters δ1 and δ2. To this end, first the vari-
able ψ is determined from Eq. (3.53) and expressed in terms of φ and its derivatives.
Then Eq. (3.53) is used to express φ in terms of derivatives of U . This expression is
finally inserted into Eq. (3.51) resulting in a single differential equation for the dis-
placement U .

In the first step, from Eq. (3.53) the expansion

ψ = −√
δ2

A∗
2

B2

[
ϕx + δ2

α I ∗
2

B2

(
ϕT T − C∗

2

α I ∗
2

ϕX X

)

X

+ · · ·
]

(3.54)

is obtained. It is inserted into Eq. (3.52), which also is expanded and yields

ϕ = − ε A1

B1
UX + δ1

εαA1 I ∗
1

B2
1

(
UT T − C∗

1

α I ∗
1

UX X

)

X

+ δ2
ε A1(A∗

2)
2

B2
1 B2

[
UX X X − δ2

α I ∗
2

B2

(
UT T − C∗

2

α I ∗
2

UX X

)

X X X

+ · · ·
]

. (3.55)

Finally this expression is inserted into Eq. (3.51) resulting in the partial differential
equation

UT T =
(

1 − A2
1

αB1

)
UX X + δ1

A2
1 I ∗

1

B2
1

(
UT T − C∗

1

α I ∗
1

UX X

)

XX

+ δ2
A2

1(A∗
2)

2 I ∗
2

B2
1 B2

2

[
B2

α I ∗
2

UX X X X − δ2

(
UT T − C∗

2

α I ∗
2

UX X

)

X X X X

]
. (3.56)
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Equation (3.56) is the demanded hierarchical equation in terms of the macrodisplace-
ment U where the microstructures are reflected in special wave operators. In order to
compare the result with the basic system (3.35)–(3.37), and also with the results of
Section 4.2, we return to the original dimensional parameters. By resubstituting the
variables and parameters from Eqs. (3.49) and (3.50) the partial differential equation
is obtained in the form

utt =
(

c2
0 − c2

A1

)
uxx + p2

1c2
A1

[
utt −

(
c2

1 − c2
A2

)
uxx

]

xx

− p2
1c2

A1 p2
2c2

A2

(
utt − c2

2uxx

)

xxxx
, (3.57)

where the parameters

c2
1 = C1

I1
, c2

A1 = A2
1

ρB1
, p2

1 = I1

B1
, c2

2 = C2

I2
, c2

A2 = A2
2

I1 B2
, p2

2 = I2

B2
(3.58)

have been introduced. The parameters ci and cAi are velocities whereas the pi denote
time constants.

5. Dispersion

5.1 General

Internal scales of microstructured solids lead to dispersive effects. This is also quite
clear from the governing equation derived in Section 4. The presence of higher-order
derivatives in the governing equations indicates dispersion. Below we demonstrate
how the various combinations of material parameters and wave characteristics are re-
flected in dispersion relations. We start from the models with dimensions and then
introduce dimensionless wave number and frequency. The solution is assumed in the
form of a wave

u(x, t) = û exp[i(kx − ωt)], (3.59)

with wave number k, frequency ω, and amplitude û.

5.2 Single Scale

The corresponding mathematical models are presented in Section 4.2. Introducing now
(3.59) into Eq. (3.44), the dispersion relation

ω2 =
(

c2
0 − c2

A

)
k2 + p2

(
ω2 − c2

0k2
) (

ω2 − c2
1k2

)
= 0 (3.60)

is obtained. The parameters involved are a time constant p and three characteristic ve-

locities c0, c1, and cA. Instead of cA the velocity cR =
√

c2
0 − c2

A could be introduced
as a parameter because it has an obvious meaning for the given wave process. Waves
of very low frequencies (ω � p−1) are propagated at the velocity cR . The velocity cA

does not occur explicitly as a limit velocity.
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In order to reduce the number of independent variables we normalize the wave num-
ber, the frequency, and the propagation speeds by defining

ξ = pc0k, η = pω, γ1 = c1

c0
, γA = cA

c0
. (3.61)

Using these new quantities the full dispersion relation (3.60) assumes the form

η2 =
(

1 − γ 2
A

)
ξ2 +

(
η2 − ξ2

) (
η2 − γ 2

1 ξ2
)

. (3.62)

In the same way, the approximate differential equation (3.45) yields the dimensionless
dispersion relation

η2 =
(

1 − γ 2
A

)
ξ2 − γ 2

A

(
η2 − γ 2

1 ξ2
)

ξ2. (3.63)

Eventually the simplified differential equations (3.47) and (3.48) yield

η2 =
(

1 − γ 2
A

)
ξ2 + γ 2

Aγ 2
1 ξ4, (3.64)

η2 =
(

1 − γ 2
A

)
ξ2 − γ 2

Aη2ξ2, (3.65)

respectively.
The full dispersion relation (3.62) represents two branches which, in general, are

distinct (see Figures 3.2 and 3.3). The upper, or “optical” branch starts in the (ξ, η)-
plane at η = 1 with zero slope, and the lower, or “acoustical” branch starts at the origin
with slope γR = cR/c0. In the short wave limit ξ � 1 the branches asymptotically
approach the lines η = ξ and η = γ1ξ . In the exceptional case γA = 0, γ1 < 1 the
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Fig. 3.3. Dispersion curves for γ1 = 0.7 and γA = 0.9: ——— exact dispersion relation (3.62); •••• • •
approximate dispersion relation (3.63).

branches meet in one point. Because the free energy (3.12) should be positive definite,
we always have γA < 1. There is, however, no physical restriction on the magnitude
of γ1. Figures 3.2 and 3.3 show examples where γ1 < γR < 1 and γR < γ1 < 1,
respectively.

The important question is how the hierarchical model describes the situation. The
corresponding dispersion relation (3.63) provides an approximation for the acoustical
branch only. The curve starts at ξ = 0 with the slope γR and, for ξ → ∞, tends
asymptotically to the line η = γ1ξ provided γ1 < 1 and γA > 0 (see Figure 3.3).
The special feature of this approximation is that it can be used over the whole range of
wave numbers because it does not represent a short-wave or long-wave approximation.
The underlying assumption is that the influence of the microstructure is small. In the
case of Figure 3.3, the full and approximate dispersion relations agree pretty well.
The approximation gets worse if the parameter γA tends to zero and, for γA = 0,
degenerates to the nondispersive wave represented by η = ξ .

The simplified cases (3.64) and (3.65) give rather distorted results. The dispersion
curves deviate strongly from the correct course (see Figure 3.4).

5.3 Multiple Scales

The underlying mathematical model and its hierarchical approximation are presented
in Sections 3 and 4.3, respectively. Introducing now (3.59) into the full set of Eqs.
(3.35)–(3.37), we obtain the dispersion relation

(
c2

0k2 − ω2
) (

c2
1k2 − ω2 + ω2

1

) (
c2

2k2 − ω2 + ω2
2

)

− c2
A2ω

2
2k2

(
c2

0k2 − ω2
)

− c2
A1ω

2
1k2

(
c2

2k2 − ω2 + ω2
2

)
= 0, (3.66)
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.

where, for convenience, we have introduced the reciprocal time constants ω1 = 1/p1

and ω2 = 1/p2. In addition, the hierarchical governing equation (3.57) yields the
dispersion relation

(
c2

0 − c2
A1

)
k2 − ω2 + c2

A1

ω2
1

k2
[(

c2
1 − c2

A2

)
k2 − ω2

]

+ c2
A1c2

A2

ω2
1ω

2
2

k4
(

c2
2k2 − ω2

)
= 0. (3.67)

In the further analysis, the dimensionless quantities

ξ = p1c0k, η = p1ω (3.68)

are used. Introducing them into the exact dispersion relation (3.66) yields the dimen-
sionless form

(
ξ2 − η2

) (
γ 2

1 ξ2 − η2 − η2
1

) (
γ 2

2 ξ2 − η2 + η2
2

)

− γ 2
A2

(
η2

2/η
2
1

)
ξ2

(
ξ2 − η2

)
− γ 2

A1ξ
2
(
γ 2

2 ξ2 − η2 + η2
2

)
= 0, (3.69)

and the hierarchical approximation (3.67) is converted to
(

1 − γ 2
A

)
ξ2 − η2 + γ 2

A1ξ
2
[(

γ 2
1 − γ 2

A2

)
ξ2 − η2

]

+ γ 2
A1γ

2
A2

η2
1

η2
2

ξ4
(
γ 2

2 ξ2 − η2
)

= 0. (3.70)
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The parameters in (3.69) and (3.70) denote velocity ratios and dimensionless fixed
frequencies; viz.,

γ1 = c1

c0
, γ2 = c2

c0
, γA1 = cA1

c0
, γA2 = cA2

c0
, η1 = 1, η2 = ω2

ω1
. (3.71)

These parameters are chosen in accordance with the corresponding dimensionless
quantities of the single-scale case.

The full dispersion relation (3.69) now represents three branches, which are distinct
if the “coupling coefficients” γA1 and γA2 are nonzero. The lowest, or “acoustical”
branch starts at the origin whereas the two other branches in the long-wave limit rep-
resent standing waves of dimensionless frequencies η1 = 1 and η2. The approximate
dispersion relation (3.70) obtained by the slaving principle approximates the acoustic
branch. Figures 3.5 and 3.6 show two examples for different sets of the parameters.
In both cases the approximation is acceptable. This depends, however, severely on the
chosen parameters.

6. Nonlinearities

As said in the introduction, one should often account for large deformation or compli-
cated stress–strain relations that lead to nonlinear mathematical models. This means
that the full deformation tensor involves nonlinear terms and the free-energy function
W depends on higher-order terms. In this case dispersion effects as described in Sec-
tion 5 are combined with nonlinear effects. Here we present a brief description of the
nonlinear theory based on our earlier results (Engelbrecht and Pastrone 2003; Bere-
zovski et al. 2003; Janno and Engelbrecht 2004).
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The analysis is restricted to the single-scale model (3.10), (3.11). Based on esti-
mations (see Engelbrecht 1983) that physical nonlinearity is stronger than geometri-
cal, we limit ourselves to extending the free energy function. So instead of (3.12) we
assume

W = 1

2
αu2

x + Aϕux + 1

2
Bϕ2 + 1

2
Cψ2 + 1

6
Nu3

x + 1

6
Mϕ3

x , (3.72)

including nonlinearities on both the macro- and the microlevel. Using the relations
(3.9) for determining the macrostress, the microstress, and the interactive force, we
obtain the equations

ρutt = αuxx + Nux uxx + Aϕx (3.73)

Iϕtt = Cϕxx + Mϕxϕxx − Aux − Bϕ (3.74)

which now replace (3.13) and (3.14).
We introduce the same dimensionless variables and scaling as in Section 4 and, in

addition, M = M∗l3. Following the same scheme as before, we obtain the hierarchical
equation

UTT =
(

1 − c2
A

c2
0

)
UXX + 1

2
k1

(
U 2

X

)

X

+ c2
A

c2
B

(
UTT − c2

1

c2
0

UXX

)

XX

+ 1

2
k2

(
U 2

XX

)

XX
(3.75)

which generalizes (3.42). Here k1 = Nε/α, k2 = δ3/2(A3 M∗ε)/(αB3) are the
parameters expressing the strengths of physical nonlinearities on the macro- and
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microscale, respectively. It has been shown (Janno and Engelbrecht 2004) that this
model may exhibit the balance between nonlinear and dispersive effects, and therefore
solitary waves may exist. A similar situation arises for nonlinear waves in rods (Sam-
sonov 2001; Porubov 2003) when the governing equation is of the type (3.75) with
k1 	= 0, k2 = 0.

7. Discussion

Nonclassical theory of continua takes the internal scales into account and is therefore
able to describe microstructural effects. In the limit case we could intuitively under-
stand that the microstructure is composed of (different) particles and so we are actually
dealing with crystal lattices (Brillouin 1953; Maugin 1999). In crystal lattices the sim-
plest case with identical particles leads to a dispersion relation (Brillouin 1953)

ω(k) = 2c0

a

∣∣∣sin
a

2
k
∣∣∣ (3.76)

in our notation where, as in Eq. (3.46), the length a denotes the distance between the
particles. Comparing (3.76) with dispersion relations of Section 5, it is obvious that
our model grasps the essential convexity of the dispersion curve.

The model we have used for describing the microstructure is rather general: it is
based on Euler–Lagrange equations and it could be represented also in terms of the
balance of pseudomomentum (Maugin 1993).

The main value of the model is the explicit description of the hierarchy in Whitham’s
sense: the model is composed of two (or more) wave operators and, depending on the
characteristic length of the initial excitation, a certain wave operator predominates. The
dispersion curves (Section 5) demonstrate the transformation from one operator with
its wave speed to another. The presence of the microstructure reduces the dimension-
less wave speed to 1 − c2

A/c2
0, as can be seen from Eq. (3.42). Contrary to simplified

models, the double dispersion with different terms UTTXX and UXXXX is of importance
as in the case of waves in rods (Samsonov 2001; Porubov 2003). In physical terms, the
influence of the microstructure on the wave motion is twofold: both the inertia and the
elastic properties of the microstructure affect the dispersion of waves, in general. In
the lattice theories when turned to continuum models the inertia effects are missing.

The multiscale model (3.56) actually prolongs the hierarchical properties of the
single-scale model (3.42). Indeed, microstructure 1 is affected in the same way by
microstructure 2 as it affects the macrostructure itself.

Indeed, the wave operators macro versus micro 1 and micro 1 versus micro 2 are
related by similar sign convention, and the wave velocity in microstructure 1 is af-
fected by properties of microstructure 2 in a similar way as the wave velocity in
macro is affected by properties of microstructure 1. It is seen that higher-order dis-
persive terms UXXXX , UXXXXXX , . . . coincide with those derived from the lattice theory
(Maugin 1999), but again mixed derivatives UTTXX , UTTXXXX , . . . reflecting the role of
microinertias also enter the equations.

The proper modeling is certainly important for solving direct problems, given the
initial excitation and calculating the wave field. No less important are the inverse
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problems when from given excitation and measured wave field the material proper-
ties are to be determined. The methods of NonDestructive Testing (NDT) of materials
are all based on solving the inverse problems. Based on the essentially more accu-
rate mathematical model described in this chapter, it should be possible to determine
the properties of microstructured solids. The preliminary results in this direction are
obtained by Janno and Engelbrecht (2005) with regard to Eq. (3.42). It is possible to
determine three material parameters from three phase velocities measured at various
wavelengths.

The results above are also supported by numerical calculations (Berezovski et al.
2003; Engelbrecht et al. 2004) but there are many studies in progress.
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Abstract
Dynamic nonlinear elastic behavior, nonequilibrium dynamics, first observed as a curiosity in
earth materials has now been observed in a great variety of solids. The primary manifesta-
tions of the behavior are characteristic wave distortion, and slow dynamics, a recovery process
to equilibrium that takes place linearly with the logarithm of time, over hours to days after a
wave disturbance. The link between the diverse materials that exhibit nonequilibrium dynamics
appears to be the presence of soft regions, thought to be primarily “damage” at many scales,
ranging from order 10−9 m to 10−1 m at least. The regions of soft matter may be distributed as
in a rock sample, or isolated, as in a sample with a single crack. The precise physical origin of
the behavior is clear in some cases such as granular media where the source of the nonequilib-
rium dynamics, grain-to-grain interaction, is understood. In other materials, it appears that the
origin must be due fundamentally to shear sliding, related to crack and possibly dislocation dy-
namics, as well as less clear origins. Because the physical origins of the behavior are related to
damage, damage diagnostics in solids, Nonlinear NonDestructive Evaluation, follows naturally.
Nonequilibrium dynamics also plays a significant role in other areas such as earthquake strong
ground motion and potentially to earthquake dynamics.

Keywords: Nonlinear Elastic Wave Spectroscopy (NEWS), NRUS, NWMS, SDD, Time
Reversal, Earthquake triggering, nonlinear NDE, nonequilibrium dynamics, strong ground
motion

1. Introduction

Over the last two decades, studies of nonlinear dynamics in materials, known as non-
classical or anomalous that include rock, damaged materials some ceramics, sintered
metals, granular media etc., have increased markedly (Ostrovsky and Johnson, 2001,
Guyer and Johnson, 1999). These materials exhibit what we term nonequilibrium
dynamics at elevated strain amplitudes (>∼10−6). Specifically, when the material is
disturbed by a wave, the modulus decreases. We call this nonlinear fast dynamics. Fol-
lowing this, it takes tens of minutes to hours to return to its equilibrium state. This is
called slow dynamics (Johnson et al., 1996; TenCate and Shankland, 1996). Further,
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the apparent mixture of fast and slow dynamics known as conditioning that takes place
during nonlinear fast dynamics provides additional complexity not observed in mate-
rials whose nonlinearity is due to anharmonicity. The nonequilibrium dynamics is due
to mechanically “soft” inclusions (soft matter) in a “hard” matrix (e.g., Ostrovsky and
Johnson, 2001). For instance, a crack in a solid will induce nonequilibrium dynamics,
but a void will not; a sandstone exhibits nonequilibrium dynamics due to distributed
soft inclusions, also known as the bond system, but a bar of aluminium does not.
Experimental methods and theory have been developed to interrogate nonequilibrium
dynamics in solids.

In this paper we briefly address underlying theory, then provide an overview of the
primary methods to interrogate nonequilibrium dynamical behavior, termed Nonlinear
Elastic Wave Spectroscopy (NEWS) (Johnson, 1999). We outline Nonlinear Resonant
Ultrasound Spectroscopy (NRUS), Slow Dynamics Diagnostics (SDD), Nonlinear
Wave Modulation Spectroscopy (NWMS) and Time Reversal Nonlinear Elastic Wave
Spectroscopy (TR NEWS). Following the description of these methods, we will briefly
describe nonlinear imaging methods currently in development and then provide an
overview of new areas of research where nonequilibrium dynamics may be important.
Next we address unsolved problems related to the origin of elastic nonlinear behavior,
and briefly look into the future.

2. Theory

Fundamentally, elastic nonlinearity implies that the stress-strain relation (also known
as the equation of state, EOS) is nonlinear. For such a relation, the one-dimensional
stress (σ)-strain (ε) can be described by

σ = Koε(1 + βε + ∂ε2 + ...), (4.1)

where Ko is the linear modulus, and β and δ are the first and second order classical
nonlinear parameters, normally of order 1–10 in value. At low dynamic wave ampli-
tudes (strains of less than order 10−6 under ambient pressure), there is evidence that all
(or at least most) solids behave in a manner according to the above equation (TenCate
et al, 2004; Pasqualini, this volume). At ambient pressure and temperature conditions,
for wave amplitudes above approximately 10−6 strain, the material EOS is thought to
be hysteretic. A hysteretic EOS relation is,

σ = Koε

(
1 + βε + αε, f

(
∂ε

∂t

))
, (4.2)

where α is the hysteretic nonlinear parameter and is dependent on the strain derivative
∂ε
∂t due to the hysteresis (e.g., Guyer et al., 1997). Eq. (4.2) is a practical estimate
of the dynamics, especially for NDE applications, but does not capture the entirety
of nonequilibrium dynamics: the slow dynamics and material conditioning (TenCate
and Shankland, 1996; Johnson and Sutin, 2005) as outlined in Fig. 4.1. As previously
noted, slow dynamics means the material takes time to return to its rest state modulus
Ko relaxing as the logarithm of time. An example of conditioning is as follows: if a
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Fig. 4.1. Nonequilibrium dynamics for two types of forcing. The figure illustrates the full nonequilibrium
dynamics that includes nonlinear fast dynamics (also known as nonclassical or anomalous nonlinear dy-
namics), conditioning, and slow dynamics. Figures (a) and (b) show how nonequilibrium dynamics are
manifest when a low-amplitude, continuous-wave (cw) probe-wave is input into a sample in the presence
of a large amplitude vibration. One sees in (a) the undisturbed probe wave (time A) and the corresponding
time-average amplitude of the signal in (b) [“cw probe”]. At time B, a high-amplitude vibration begins and
the probe-wave amplitude changes due to material nonlinearity (see Slow Dynamics Diagnostics section of
this paper and Figure 4.5 for more). From the time the vibration is turned on until it is turned off, nonlinear
fast dynamics, including conditioning, take place (“Nonclassical Nonlinear Fast Dynamics NNFD” in (a)
and (b)). As soon as the large amplitude wave is terminated, one sees in (a) and (b) an instantaneous, partial
recovery of the amplitude, and then a longer term recovery that is linear with the logarithm of time where
slow dynamics is the sole process acting in the system. Figures (c-e) show the situation where the sample
is disturbed by an impact, such as a tap, in the presence of the probe (time B in (c)). Figure (d) shows a
zoom of (c) where one can observe the onset of the tap-induced vibration and its ring down (“NNFD” in
(d-e)). After the vibration energy has dissipated, slow dynamics is the sole process operating in the system,
the onset of which is shown in (c-d), and the long term behaviour is seen in (e).

rock sample is driven at fixed amplitude for a period of time, the modulus will decrease
immediately with the onset of the wave, but then continue to decrease slightly to a new
equilibrium value as long as the drive is maintained (TenCate and Shankland, 1996).
Conditioning is a small effect in most materials as can be seen in Fig. 4.1b. It may or
may not be correct to think of conditioning as a mix of fast and slow dynamics. In any
case, Eq. (4.2) has been applied broadly to describe the material elastic nonlinearity.
The rate-dependent effect of conditioning appears to have only a minor influence on
estimates of α (e.g., Johnson and Sutin, 2005).
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3. Nonlinear Elastic Wave Spectroscopy (NEWS)

3.1 Nonlinear Resonant Ultrasound Spectroscopy (NRUS)

Nonlinear Resonant Ultrasound Spectroscopy (NRUS) is based on the measurement
of resonance frequency shift and material damping as a function of resonance peak
amplitude for one or more resonance modes (e.g., Winkler et al., 1979; Johnson
et al., 1996; Johnson, 1999). This method is an extension of linear Resonant Ultra-
sound Spectroscopy (RUS) that is used in industrial NDE (Migliori and Sarrao, 1999).
In this type of measurement, the change in resonance frequency of a mode with
drive amplitude is a measure of the wavespeed and modulus change. For instance,
in a simple geometry such as a cylindrical bar driven at the fundamental mode, the
wavespeed c is,

c = f λ = 2 f L =
√

K
ρ

(4.3)

where f is resonance frequency of the fundamental mode, λ is the wavelength, L is
the bar length, K is modulus and ρ is density. The equation becomes correspondingly
more elaborate for more complicated sample geometries. A typical resonance experi-
mental configuration is shown in Fig. 4.2. Figure 4.3 shows an NRUS result from two
concrete samples, one virtually “intact” measured in the undamaged state, and one
damaged. The hysteretic nonlinear parameter α can be extracted from the change in
frequency with strain amplitude,

� f
f0

= αε (4.4)

where f0 is the equilibrium frequency, � f is the change in resonance frequency, α
is the nonlinear parameter in Eq. (4.2), and ε is strain. α ranges from approximately
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Fig. 4.2. (a) Typical NRUS experimental configuration and (b) resonance curves obtained from a nonclas-
sical material. The source drives at a sequence of frequencies stepping from below to above a resonance
mode. A lock-in amplifier is used to extract the time average amplitude of the detected signal. The drive
level is increased and the procedure is repeated over a number of drive levels.
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Fig. 4.3. NRUS measurements from intact and damaged concrete samples. Note that the undamaged sam-
ple exhibits a small amount of peak shift, meaning it is somewhat elastically nonlinear in its original state.
The damaged sample is significantly more nonlinear in that the peak shift is pronounced and the material
dissipation characteristics are increased, seen by an increase in the resonance peak width. The frequency
axis is normalized to the low amplitude, equilibrium (linear elastic) value (figure courtesy of L. Byers and
J. TenCate).

10-104. Simultaneous to modal frequency shift, nonlinear damping increases (e.g.,
Johnson and Sutin, 2005).

3.2 Slow Dynamics Diagnostics (SDD)

The phenomenon of slow dynamics (SD) were first observed in relatively homoge-
neously elastically nonlinear materials, such as rock and concrete, that have distributed
nonlinear sources e.g. (Johnson et al., 1996; TenCate and Shankland, 1996), and has
more recently been show to exist in a broad range of solids with both distributed and
localized nonlinear sources [cracks, delaminations] (Johnson and Sutin, 2005). The
process of SD recovery can be observed by applying RUS measurements at successive
times after large-amplitude wave excitation, as well as by observation of the pure tone
signal variation. Both methods are described below.

In the RUS variation of the SDD method we take advantage of both the amplitude
and frequency of the recovery of a sample mode. In SDD, the equilibrium, low ampli-
tude (linear) amplitude frequency response of the sample is first measured. The sample
is then driven at large strain amplitude (order 5 microstrains) to induce material soften-
ing. Immediately upon termination of the drive, the RUS measurement recommences
at very low strain amplitude (∼10−7) for probing the recovery. An example of SDD
in steel is shown in Fig. 4.4. We see in the left hand figure results from an undam-
aged sample. The results for the damaged sample are shown in the right-hand side of
Fig. 4.4, evident by the initial change in frequency and the successive recovery. The
sample recovery time shown is 141 seconds. Full recovery took approximately one
hour.

For quick application, a variation of the SDD method known as the slope amplifier
is useful. Figure 4.5 describes how the SDD slope amplifier works, and Fig. 4.6 shows
SDD, slope-amplifier results obtained from an automotive bearing cap.
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Fig. 4.5. Variation on the SDD technique: the slope amplifier. (a) A low-amplitude signal probes the sam-
ple near a modal peak. The signal amplitude [1] is controlled by the modal structure. The time-average
amplitude behavior of the time signal is shown in (b). The sample is disturbed by a large amplitude signal
induced by a tap for instance, and the modal peak shifts downward causing the probe wave amplitude to
change in amplitude to position [2] and (a) and (b). Slow dynamics keeps the modal peak diminished in
frequency and thus in amplitude. An actual example of SDD applied to a damaged solid is shown in (c).

One can follow the onset and partial or full recovery of a sample by applying the
slope amplifier, capturing more detail than RUS which requires a minute or more for
each resonance sweep. For example, Fig. 4.7 shows the onset and several hundred
seconds of recovery in four materials.
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3.3 Nonlinear Wave Modulation Spectroscopy (NWMS)

One of the simplest ways to evaluate nonlinear elastic properties of a material is
to measure the modulation of an ultrasonic wave by low-frequency vibration. This
method is termed here nonlinear wave modulation spectroscopy (NWMS) pioneered
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Fig. 4.8. NWMS test in an alternator housing. (a) Experimental configuration. (b) Result in undamaged
sample. (c) Result from the damaged sample.

by the group at the Institute of Applied Physics in Nizhny Novgorod, Russia. The fol-
lowing experiment demonstrates a variation of NWMS in testing an alternator housing.
The experimental setup is shown in Fig. (4.8a). Ultrasonic transducers were glued to
the sides of each sample, and low-frequency, broadband vibration was generated with
an instrumental hammer. The spectrum of the signal for an intact part is compared
with that from a part with a tiny crack in Figs. 4.8b and 4.8c. Clearly the modulation
(sideband components) identifies the damaged sample. Many groups have developed a
multitude of variations of the technique, for instance Solodov’s group at Moscow State
University who have focused on interfaces and disbonding.

Imaging Nonlinear Scatterers

3.4 Imaging Applying NWMS

Nonlinear imaging is in its infancy in solids. One method, the NWMS nonlinear
imaging method, described in detail in (Kazakov et al., 2002) is presented here fol-
lowed by a method based on Time Reversal. In the NWMS method, a low frequency,
continuous wave (cw) excitation is applied to the specimen simultaneous to a group
of high frequency tonebursts (rather than a cw probe as in NWMS). In the experi-
ment, the wavefield scattering from a hole, created by drilling, and a crack, created
by cyclic loading, were measured in a small steel plate (Fig. 4.9a). Ultrasonic pulses
with frequency 3MHz were used for imaging, and a low-frequency vibration of 10 Hz
was produced by a shaker. Figure (4.9b) shows how the method works. Figure (4.10)
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Fig. 4.10. Results of the pulse NWMS method in a sample of steel. The source and receiver are located
on the left side (the axis marked “distance”. (a) Image of crack applying the nonlinear method. Note hole
is not imaged. (b) Standard pulse-echo result showing hole (large amplitude response) and crack, which is
much smaller in amplitude do to the shadowing effect of the hole. Distance is obtained from the time axis
by using the wavespeed.
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shows the measurements, comparing a standard, pulse-echo measurement to the non-
linear method. The method provides the means to isolate a nonlinear scatterer. It has
not been demonstrated in three-dimensions, however.

3.5 Time Reversal Nonlinear Elastic Wave Spectroscopy (TR NEWS)

Much of the seminal research in Time Reverse Acoustics (TRA) has been carried out
by the group located at the University of Paris VII (Laboratoire Ondes et Acoustique,
ESPCI) (e.g., Fink, 1997). A significant aspect of TR in regards to elastic nonlinearity
is that it provides one the ability to focus an ultrasonic wave, regardless of the posi-
tion of the initial source and of the heterogeneity of the medium in which the wave
propagates. Currently, we are exploiting the focusing properties of TR and the elas-
tic nonlinear properties of cracks together to develop methods for crack and damage
location (e.g., Sutin and Johnson, 2005; Ulrich et al., 2006).

Figure 4.11 shows an experimental configuration for demonstration experiments of
TR conducted in a sample of sandstone, and TR NEWS in a glass parallelepiped sam-
ple (Sutin et al, 2004; Sutin and Johnson, 2004). The method is described as follows.
A pulse was applied to the first transmitter. The detected signal measured from the
opposite side of the sample was measured by a laser vibrometer. The recorded signal
was time reversed as shown in Fig. 4.12a. The TR signal was then re-radiated. The
TR focused signal was recorded by the laser vibrometer and analyzed. A typical TR
focused signal is shown in Fig. 4.12b. The spatial distribution of the focused signal is
shown in Fig. (4.12c).

The significant elastic nonlinearity due to the presence of a crack can be used for
crack location. By scanning the surface using the laser vibrometer in tandem with TR
focusing at each scan point, then analyzing for nonlinear response at that point, one
can determine if damage exists in the scanned area. The feasibility of this technique
was evaluated in an experiment where the TRA focusing was conducted along a single
line scan in the glass sample with and without damage present. Figure 4.13 presents
the results. A small, 3mm crack oriented parallel to the glass surface is located at the
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Fig. 4.11. TR NEWS experimental configuration.
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Sutin and Johnson, 2005).
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surface. For observation of nonlinear effects, narrow band filtering was used to detect
the second harmonic of the TRA focused signal (Fig. 4.13). It can be seen that that
the amplitude of the second harmonic of the signal detected above the crack is much
higher than the amplitude of the harmonic from the intact surface signal. This exper-
iment demonstrates the feasibility of the application of TR NEWS for crack imag-
ing (see Sutin et al., 2004, for details). Other methods of nonlinear imaging are in
development as well, in particular one using modal analysis (Van Den Abeele, this
volume).

4. Some New Areas of Study and Application

4.1 Granular Media and Strong Ground Motion

Much recent effort has gone into nonlinear studies of granular media by the group at
Université du Mans (France) and a collaborative effort between Los Alamos and Uni-
versité de Marne-la-Vallée (France). Granular media is another member of the large
class exhibiting nonequilibrium dynamics. It is interesting material from the perspec-
tive of earth processes, particularly strong ground motion and earthquake physics, and
because it is a much simpler system to understand than many others of the class: One
can apply Hertz-Mindlin theory (or some variation thereof) in order to understand its
elastic behavior.

In earthquake strong-ground-motion, broad-frequency band waves propagate from
hypocentral depths of order 10 km to the earth’s surface. Sediments at the surface,
composed of granular media, can respond by ringing at their resonance modes. The
shear modes are particularly dangerous because, if they couple into building (or other
structure) modes, damage or failure of the structure can take place.

Predicting the elastic linear and nonlinear behavior of near surface sediments dur-
ing an earthquake is a large field of study in itself. Some years ago, it was demon-
strated that significant elastic nonlinear behavior manifest by changes in surface-layer
resonances may take place during large earthquakes, due to nonlinear response. For
instance, a 75% decrease in resonance frequency was observed at one site in the Los
Angeles Basin during the 1994 Parkfield, California earthquake (Field et al., 1997).
The magnitude of this change came as a significant surprise to the seismic community.
Currently, in collaboration with the United States Geological Society, the University
of Memphis, the University of Texas at Austin, the University of Massachusetts at
Amherst and the Massachusetts Institute of Technology, we are applying an active,
large-vibrator source to in situ characterization of the near surface layers in an at-
tempt to induce and measure nonlinear response. We observe significant nonlinear re-
sponse of a near-surface layer from a recent, preliminary experiment at Garner Valley
California, located near the San Andreas Fault southeast of Los Angeles. Figure 4.14
shows results of one experiment where the vibrator source was driven in compression
in an NRUS-type experiment. A decrease in resonance frequency of order 25% over
a strain interval of approximately 10−6-10−4 was observed. Slow dynamics appeared
to be present as well; however due to experimental difficulties, the observation was
unconvincing. Future experiments are planned, and at least one follow-on experiment
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Fig. 4.14. NRUS field experiment at Garner Valley, California. The curves are more complex than in lab
studies; however, the dominant frequency peak shift is significant, from approximately 27 to 19.5 Hz over
a strain interval of about 10−6 to 10−4. The resonating layer is 3-m thick. The shear wave resonance shift
is even larger (from Pearce et al., 2004).

will have been completed by the time this paper goes to press. Note that the results
indicate that nonequilibrium dynamics takes place over frequencies from order 1 Hz to
hundreds of kHz if we compare them to laboratory experiments described above.

4.2 Granular Media and Earthquake Triggering

Recently, we speculated that a phenomenon known as dynamic earthquake triggering
(Gomberg et al. 2001; 2004) could be due, at least in part, by nonequilibrium dy-
namics (Johnson and Jia, 2005). Normally, an earthquake exhibits precursors known
as foreshocks, followed by a main shock (the magnitude of which is reported for an
earthquake—the associated smaller earthquakes are not normally reported to the pub-
lic), followed by aftershocks. Under certain, and apparently rare conditions (Gomberg
et al., 2001), some of the aftershocks can take place at hundreds of kilometers from a
mainshock at the time or soon after the seismic wave from the mainshock impinges on
a distant fault. This is the phenomenon of dynamic earthquake triggering. It has been
a puzzle for a number of years as to why dynamic triggering takes place because wave
strains at these distances tend to be order 10−6 and is it difficult to understand how
such small strains could be responsible for this phenomenon.

We speculate that if the conditions are right, triggering may be due to nonlinear
softening and weakening of the fault core (the gouge material, granular in nature, that
is created by a fault as it progressively slips over the history of the fault). Our con-
ceptual model is that the dynamic wave temporarily reduces the core modulus. The
modulus reduction is accompanied by a material strength reduction sufficient to induce
fault slip, thereby triggering events. Figure 4.15 shows how this may happen. Taking
Eq. 1, (or any nonlinear material softening theory for that matter) we relate the material
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softening to weakening. We consider the competent fault blocks containing the softer
fault core in Fig. 4.15a, and the effect of a seismic wave impinging on the system that is
in a critical state, near failure (Figs. 4.15b, 4.15c). In order for triggering to take place,
we speculate that the triggering conditions must be met: (a) experiments indicate that
strain amplitude must be above 10−6; (b) the fault must be in a critical state, near
failure; and (c) the confining pressure in the fault core must be small. Small confin-
ing pressures are shown to be necessary based on numerous tests that indicate elastic
nonlinearity decreases with confining pressure (e.g., Zinszner et al., 1997). Confining
pressures could be low at earthquake nucleation depths (order 10 km), if fluid pres-
sures are high. There is observational evidence that suggests this is the case in some
faults (e.g., Nur and Booker, 1992; Miller, 1996). We suggest that this is why most
seismic waves, even from large events, do not cause triggering (except near the earth-
quake source)—the triggering conditions are not met: their strain amplitudes tend to
be 10−7-10−6 at regional distances, and the other conditions may be quite rare. Only
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large events that focus sufficiently large strains cause triggering beyond what is tra-
ditionally deemed the aftershock zone. Field observations support this (J. Gomberg,
personal communication, 2005). In these cases, the fault core must meet the trigger-
ing conditions, where the fault core can be instantaneously taken through instability to
failure by the impingement of the seismic wave.

5. On the origin on Nonequilibrium Dynamics

5.1 Regimes of nonlinear dynamics

Many aspects of nonequilibrium dynamics remain to be understood. One aspect is the
process of slow dynamics and how it relates to nonlinear fast dynamics and condition-
ing. That issue is progressively being addressed by various groups (e.g., Tencate et al.,
2004; Pasqualini, this volume). We now understand that there are clear regimes of elas-
tic behavior, contrary to what was thought by some by some of us in the past. These
claims were based on the fact that no linear elastic regime seemed to be observed (e.g.,
Zinszner et al., 1997, Guyer and Johnson, 1999). This erroneous interpretation was
due to thermal contamination at very low strain levels that masked the dynamic elastic
behavior. In the lowest amplitude regime, the materials behave linearly—there is no
modulus dependence on strain amplitude (Pasqualini, this volume). In the next regime,
the materials act as a classical nonlinear oscillator that can be described by Landau the-
ory (up to strains of roughly 1-3x10−6 at ambient conditions), and above this, nonequi-
librium dynamics emerges. Figure 4.16 shows observations for many rocks over under
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nonequilibrium behavior exists (data taken by B. Zinszner M. Masson, P. Rasolofasoan and P. Johnson at
the Institut Francais du Petrole; Slate data from K. Van Den Abeele, Catholic University Leuven Campus
Kortrijk).
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many saturation conditions extracted from data presented in Johnson et al., (1996). The
regimes are material dependent as one might guess, and this is clear from Fig. 4.16
as well. This last and most interesting regime (nonequilibrium) remains to be care-
fully understood in terms of what is physically taking place (e.g., is it simply a mix
of nonlinear fast dynamics an slow dynamics?), and to develop a verifyable physics-
based theory that describes all aspects of it. The original P-M Space theory does not
account for conditioning or slow dynamics (e.g., Guyer et al., 1997). The variations
of the P-M space theory that include conditioning and slow dynamics, although ef-
fective at modeling observed behaviors, are ad hoc, based on thermal fluctuations
(e.g., Scalerandi et al., 2003). Physical based models such as a recently-proposed
ratchet-model (Vakhnenko et al., 2004) are physically-based but the physics are as yet
verified by experiment and will be hard to do so. Models indicating that thermal heat-
ing and diffusion are the source of nonequilibrium dynamics are questionable if one
invokes three dimensional thermal diffusion, which is the case (Zaitsev et al., 2002),
as shown by Pasqualini (in preparation, 2006).

Some have suggested that fluids are responsible for nonequilibrium dynamics. Van
Den Abeele et al. (2000) have shown that fluids act to modify the internal forces in
porous media and thereby influence the nonlinear behavior, but are not responsible for
the underlying behavior. In any case, some materials in the class are dry with no means
for fluid penetration (e.g., gray iron, alumina ceramic are two examples described in
Johnson and Sutin, 2005).

A very important issue that has not been explored experimentally is whether shear
sliding is the fundamental cause, at least in some cases, of nonequilibrium dynamics, as
some of us currently believe. Many controlled experiments have been conducted with
longitudinal or bulk modes. For instance, there is evidence suggesting the nonlinear
response in shear is larger than in bulk mode but experiments aimed at isolating shear
from other effects have not been conducted to our knowledge. Because I believe the
physical origin is shear sliding, such experiments would aid tremendously in helping
verify such a hypothesis and developing theory.

5.2 Slow and Nonlinear Fast Dynamics Including Dissipation

Results were recently reported of the first systematic study of nonlinear fast dynamics
and slow dynamics in a number of solids (Johnson and Sutin, 2005). Observations were
presented from seven diverse materials showing results of nonlinear fast dynamics and
slow dynamics (see Fig. 4.17). The materials include samples of gray iron, alumina ce-
ramic, quartzite, cracked Pyrex glas, marble, sintered metal, and perovskite ceramic. It
was shown that materials that exhibit nonequilibrium behavior have very similar ratios
of amplitude-dependent internal-friction to the resonance-frequency shift as a function
of strain amplitude. The ratios range between 0.28 and 0.63 (except for cracked Pyrex
glass, which exhibits a ratio of 1.1), and the ratio appears to be a material character-
istic. The ratio of internal friction to resonance frequency shift as a function of time
during slow dynamics is time independent, ranging from 0.23 - 0.43 for the materials
studied (within the error bars they are approximately the same). The above relations
relating nonlinear attenuation and frequency shift in slow and fast dynamics demand
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more study to see if the relation between nonlinear dissipation and frequency shift
(modulus change) are always material dependent, and what that implies for a theoreti-
cal description.

We note that some characteristics of slow dynamics have yet to be studied. The slope
amplifier offers a means to carefully study the recovery process. For instance, we may
see physical processes that could aid in theory development that have been overlooked
in the past. Figure 4.18 hints at one interesting behavior where we may be observing
something like isolated cascade slip events during recovery.

5.3 On developing a physics-based model of nonequilibrium dynamics

One suggested approach to addressing a generalized, physics-based model is to start
with specific systems and look for similarities in the underlying physics. For instance,
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low amplitude probe was applied at one end and detected at the other. A tap was introduced to induce slow
dynamics. The top two panels show the probe time-series and corresponding Fourier transform before the
tap. The bottom panels show the time and frequency response during, and for a number of milliseconds
after, the tap. Note the “humps” in amplitude. What are these? Could they be large slip events or some
other as yet, unidentified process that takes place during slow dynamics? This general topic requires more
study and may aid in a new theoretical description of nonequilibrium dynamics.

in granular media, Hertz-Mindlin theory can be applied as noted above; for cracks in
metals, crack dynamics and dislocation-point defect interaction may be applied. The
underlying shear-mechanisms may ultimately be related in a broader model. Incorpo-
rating in slow dynamics may be the most difficult aspect (see below). Such an approach
could presumably evolve to a generalized nonequilibrium theory for all, or most of the
materials in the class.

5.4 Universal behavior?

A discussion has taken place in the literature as to whether or not the observed be-
haviours of nonequilibtium dynamics are universal (see, e.g., Guyer and Johnson,
1999; Hirsekorn and Delsanto, 2004; Hirsekorn and Delsanto this volume). I and oth-
ers would argue that they are not in the sense of critical phenomena such as a phase
change, but they are in the sense that the nonlinear signatures are identical across a
large number of very different materials (Johnson and Sutin, 2005).
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6. Summary and Conclusions

In summary, we know much from experiments regarding the behaviours and the breath
of the class of materials that exhibit nonequilibrium dynamics. Fundamentally, we be-
lieve that the nonlinear response is attributable to the damage features in the material at
many scales. A proper theory containing the underlying physics is still to be addressed,
however. Nonetheless, many applications based on nonlinear methods, including ap-
plications to earthquake strong ground motion and elsewhere, but especially in regard
to NonDestructive testing have been developed. One can determine whether or not
a material exhibits nonequilibrium behaviour and simultaneously if it is damaged, if
there is disbonding, etc. However, without knowledge of the physical basis, the relation
between the nonlinear response (often in the form of the hysteretic nonlinear parameter
α ) and damage quantity or other features responsible for the nonlinearity as in gran-
ular media, must be obtained empirically. With a physics-based model we will have
the means to relate the nonlinear response to damage quantity, with the caveat that,
in solids with macroscale damage, only some portion actively contributes to the non-
linear response (we know this from the NWMS imaging experiment mentioned above
where crack tips seemed to make the primary contribution to the nonlinear response).
Imaging of nonlinear scatterers is in its infancy and should progress significantly in
the near future. Much work remains in regards to understanding the relation of slow
and fast dynamics, the details of slow dynamics. There are enormous and fascinating
opportunities for new research that can provide insight into nonequilibrium dynamics.
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Abstract
Rock mechanics is a rapidly evolving scientific discipline that is concerned with the devel-
opment of experimental and theoretical tools to study and predict the behavior of intact (or
damaged) and discontinuous (fractured) rocks under the influence of chemo-thermo-poro-
mechanical effects under static or dynamic conditions. Nonlinearity is inherent in many rock
mechanical problems. Some indicative examples are briefly listed herein. In physical nonlinear-
ity, few, if any, rocks are truly “elastic” and even fewer are “linear” or “Hookean.” Natural or
stress-induced nonlinear directional response (anisotropy) is possible. In addition, coupled ther-
mal, fluid flow, and mechanical effects or processes may give considerable nonlinearities in the
response of porous rocks. In geometric nonlinearity, many structures undergo very large defor-
mations in normal or in damaged conditions (e.g., buildings and other manmade structures after
major earthquakes (See chapter 4)). In constraints, nonlinearity, contact between deformable
rocks (e.g., contact of lips of faults), or rock structure may occur such that the common surface
is unknown. A central point of any rock mechanical problem is the constitutive description of
the rock. In this chapter the basic ingredients of a nonlinear constitutive mechanical theory for
rocks based on experimental evidence is outlined and tested by exploiting triaxial compression
experiments of a sandstone.

Keywords: Damage, fracture mechanics, hypoelasticity, Mohr–Coulomb, nonlinearity,
plasticity, rocks, sandstone, triaxial compression

1. Introduction

Rocks are granular, porous, heterogeneous, anisotropic natural materials formed un-
der certain geological processes (i.e., sedimentary, magmatic, or metamorphic) dur-
ing a rather extended (geological) time scale (Figures 5.1a,b), hence their behavior is
more complex as compared to concretes, ceramics, metals, and other manmade mate-
rials. Rocks are composed of a vast variety of minerals and occur in an almost infinite
range of conditions, from crystalline solids to aggregations of independent particles.
In general, rocks exhibit elasticity, plasticity, damage (Van den Abeele and Windels,
this volume), cracking, elastic hysteresis, and memory (Pascualini, this volume;
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Fig. 5.1. Typical granular microstructure (fabric) of rocks observed with an optical microscope: (a) het-
erogeneous Berea sandstone with pores and microcracks (Guyer and Johnson, 1999) and (b) low porosity
homogeneous Gioia marble rock microstructure with twins in calcite crystals (courtesy of P. Tiano).
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Fig. 5.2. Typical axial stress–axial strain curve of a rock in uniaxial tension–compression (Dionysos
marble) (courtesy of I. Vardoulakis).

TenCate et al., this volume), dilatancy, creep, pressure, and rate dependency, nonequi-
librium nonlinear dynamics (Johnson, this volume; TenCate et al., this volume), size
effects, and anisotropy, among others. Another important property of geologic mate-
rials that is attributed to the presence of healed or open microcracks, pore topology,
and other defects such as soft inclusions, is that their uniaxial tensile strength is much
smaller (one order of magnitude) than their uniaxial compressive strength (Figure 5.2).
This is a clear manifestation of “brittleness.” The convention of positive tension and
elongation is assumed unless stated otherwise.

Due to all these phenomena that accompany rock mechanical behavior, modern
rock mechanics should rely upon all the up-to-date developments of the fundamental
theories of continuum and discontinuum mechanics, elasticity, strength of materials,
damage mechanics, plasticity, and fracture mechanics in order to present robust models
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for rocks subjected to static or to dynamic loads. The linking of all these theories under
the umbrella of a unique theory capable of describing the rock mechanical behavior at
all scales (i.e., in the range of 1e 6 m to 1e 4 m) and boundary conditions encountered
in practice, is one of the fascinating challenges of the future.

In the following paragraphs a brief account of nonlinearities accompanying rock
behavior under static mechanical loads is given, and an example of calibration of
a new nonlinear mechanical model on a series of uniaxial and triaxial compression
experimental data of a heterogeneous sandstone is illustrated.

2. Elasticity and Plasticity of Rocks

The study of the elasticity of rocks is the first step towards the construction of robust
models. For easy reference a few definitions and basic properties of elastic, hyper-,
and hypoelastic constitutive equations are mentioned in this section [for an extensive
review see (Truesdell and Noll, 1965; Chen nad Han, 1988; Vardoulakis and Sulem,
1995)]. A material is called elastic if: (a) it possesses only one ground state, that is, a
state that is undeformed and is also stress-free, and if (b) the stress σi j is a function of

the deformation gradient or strain ε
(el)
kl , that is,

σi j = Ti j

(
ε
(el)
kl

)
, i, j, k, l = 1, 2, 3, (5.1)

wherein superscript (el) indicates elastic strains and the usual notation and rules for
tensors are followed (e.g., Frederick and Chang, 1972). The elastic material defined
by (5.1) is called a “Cauchy elastic material.” From this equation we observe that in
closed stress paths in stress space elastic materials are characterized by zero residual
strain. In the small-strain linear Cauchy elasticity in isothermal or adiabatic conditions,
the stress–strain relationship may be stated in the following way,

σi j = Ci jklε
(el)
kl , Ci jkl = constants (5.2)

More restrictive is the definition of the hyperelastic or Green elastic materials. In
hyperelasticity we postulate a strain energy density function

w(el) = w(el)(ε
(el)
i j ) (5.3)

such that,

σi j = ∂w(el)

∂ε
(el)
i j

. (5.4)

The above relationship means that the stress tensor is derived from the gradient of
the strain potential function, or alternatively that the stress is normal to the surface
w(el) = const . Thus we conclude that equation Eq. (5.2) for isotropic elastic materials
follows from the form (5.4) for hyperelastic materials. The converse is not generally
true. If the material is hyperelastic along a closed strain path the total specific work
done by the stresses is null. This is not generally true for (Cauchy) elastic materials.
However, in closed stress paths in stress space both elastic materials and hyperelastic
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materials are characterized by zero residual strain. We observe that both the constitu-
tive equations of isotropic elastic materials 5.3 and for isotropic hyperelastic materials
(5.6) lead through formal material time-differentiation to equations of the rate form

σ̇i j = C (el)
i jkl ε̇

(el)
kl , (5.5)

where the dot indicates differentiation w.r.t. time. Truesdell and Noll (1965) defined a
class of materials, which they call “hypoelastic materials”, that obey rate constitutive
equations like the one above, which are linear in ε̇

(el)
i j , with the additional restriction

that the corresponding fourth-order constitutive tensor is an isotropic tensor function
of the stress. Hypoelastic constitutive models are used to describe the mechanical be-
havior of a class of materials in which the state of stress depends on the current state
of strain as well as on the stress path followed to reach that state. Hypoelasticity equa-
tions are derived from hyperelasticity. In general, however, hypoelastic constitutive
equations are neither integrable to a finite form (5.1) nor connected to a strain energy
function through a constitutive equation of the form of (5.4). Thus, hypoelastic equa-
tions will lead in general to residual strain, if integrated along closed stress paths, and
to violations of the second law of thermodynamics if integrated along closed strain
paths.

In elastoplastic constitutive equations it is often assumed that the background elas-
ticity is a Hooke-hypoelasticity; that is,

C (el)
i jkl = G

{
δikδ jl + δilδ jk + 2ν

1 − 2ν
δi jδkl

}
(5.6)

with constant secant shear modulus G and constant secant Poisson’s ratio ν, where δik

is the Kronecker delta. The next modeling step is based on the study of rock plasticity
and strength. Incremental plasticity theory is based on a few fundamental postulates.
Plasticity models are written as rate-independent models or as rate-dependent models.
A rate-independent model is one in which the constitutive response does not depend
on the rate of deformation: the response of many rocks at low temperatures relative
to their melting temperature and at low strain rates is effectively rate independent. In
a rate-dependent model the response does depend on the rate at which the material
is strained. Examples of such models are the simple “creep” models and the rate-
dependent plasticity model that is used to describe the behavior of rocks at higher
strain rates. Because these models have similar forms, their numerical treatment is
based on the same technique. A basic assumption of elastic–plastic models is that the
deformation can be divided into an elastic part and an inelastic (plastic) part. This
decomposition can be used directly to formulate the plasticity model. Historically, an
additive strain rate decomposition is employed (Hill, 1950),

ε̇i j = ε̇
(el)
i j + ε̇

(pl)
i j , (5.7)

where the superscript pl indicates plastic strains. For rate-independent materials we
may use instead of the rate of deformation the incremental deformation; that is,

�εi j = ε̇i j . (5.8)
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The elastic part of the response is assumed to be derivable from an elastic model
presented previously. The cohesional, frictional, and dilatational properties of rocks
up to failure may be modeled within the frame of elastoplasticity theory with strain-
hardening yield surface and nonassociative flow rule. The yield surface F that defines
the limit to this region of purely elastic response and plastic potential Q that defines
the plastic part of strain may be expressed as follows,

F = F
(
σi j , ψ

)
, Q = Q

(
σi j , ψ

)
, (5.9)

in which ψ denotes a hardening parameter, that is, a measure of plastic deformation.
The hardening parameter or parameters are state variables that are introduced to allow
the models to describe some of the complexity of the inelastic response of real ma-
terials. In the simplest plasticity model ( perfect plasticity) the yield surface acts as a
limit surface and there are no hardening parameters at all: no part of the model evolves
during the deformation. Complex plasticity models usually include a large number of
hardening parameters.

Plastic strain rates are generated when the state of stress lies on the yield surface and
if loading of that yield surface is taking place, that is to say, the following “consistency
criterion” is satisfied,

F = 0, Ḟ > 0, and ψ̇ > 0. (5.10)

When the material is flowing inelastically the inelastic part of the deformation is
defined by the flow rule, which we can write in incremental form as follows,1

�ε
(pl)
i j = �ψ

∂ Q

∂σi j
, ψ ≥ 0. (5.11)

The rate form of the flow rule is essential to incremental plasticity theory, because
it allows the history dependence of the response to be modeled. The plastic potential
and the yield function may be identical, that is, Q = F , only if the measured dilatation
and strength responses of rock are identical. Such models are called associated flow
plasticity models. Associated flow models are useful for materials in which disloca-
tion motion provides the fundamental mechanisms of plastic flow when there are no
sudden changes in the direction of the plastic strain rate at a point. They are generally
not accurate for materials in which the inelastic deformation is primarily caused by
frictional mechanisms as in the case for geomaterials. For a plastic potential that is an
isotropic function of the stress tensor, Eq. (5.11) describes a co-axial flow rule; that is,
the principal axes of plastic strain rate coincide with the principal axes of stress.

The feature that distinguishes the inelastic behavior of nonmetallic porous materials,
such as concrete, rocks, and soils, from that of metals is the occurrence of plastic vol-
ume changes. Metals undergo no change in volume as a result of plastic deformation.
Rocks, on the other hand, may either dilate (increase in volume) or compact (decrease
in volume) as a result of plastic deformation. From the macroscopic point of view and

1 The inequality ψ ≥ 0 is essential in plasticity and defines the irreversible character of plastic
deformations.
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for granular media under shear, irreversible shear strains g(pl) and irreversible vol-
ume changes v(pl) are linked together. This is usually expressed by the well-known
phenomenological dilatancy constraint (Vardoulakis and Sulem, 1995)

v̇ (pl) = d
(

g(pl)
)

ġ(pl), v̇ (pl) = ε̇
(pl)
kk ; (5.12)

d
(
g(pl)

)
is called the “mobilized dilatancy coefficient.” That is to say, there is great

class of deformations where there is no need to treat irreversible volume changes sep-
arately from irreversible shear deformations. Within the frame of nonassociative flow
theory of plasticity one may chose the deviatoric plastic strain ġ(pl) as the hardening
parameter as proposed by Kachanov (1974), which can be interpreted as the average
interparticle slip. This strain invariant may be expressed as follows,

ġ(pl) =
√

2ė(pl)
i j ė(pl)

j i , ė(pl)
j i = ε̇

(pl)
j i − ε̇

(pl)
kk δi j/3. (5.13)

Thus, one may set
�ψ ≡ �g(pl). (5.14)

3. Experimental Evidence

In this work we employ a database of uniaxial and triaxial compression experiments on
Serena (or Firenzuola) sandstone intact cylindrical specimens with diameter D = 5 cm
and height H = 10 cm that were performed at SINTEF (Norway). The mineralogical
setup and basic physical properties of this type of sandstone are displayed in Table 5.1.
In all the tests carried out in the frame of this work a certain number of unloading–
reloading cycles were performed in order to study the elasticity of the test specimens.
During its test the axial force (F), the engineering axial strain (εa), and the engineering
radial (or lateral) strain (εr ) were recorded by LVDTs and stored on a computer. The
axial stress (σa) was computed from the formula

σa = F

π D2/4
. (5.15)

For the cylindrical samples subjected to axial loading and under small strains the vol-
umetric strain (εv) was computed from the formula

εv = (2εr + εa), (5.16)

where εr and εa are the axial and radial strains, respectively.
As illustrated in Figure 5.3 the tested rock exhibits strong stress dependence of the

elastic (unloading–reloading) curves, which are characterized by appreciable nonlin-
earity. Thus, the simple secant-modulus calibration procedure by virtue of relation
(5.6) with rather linear unloading–reloading curves cannot be readily applied. Var-
doulakis et al. (1998) developed a hypoelastic model for marble that accounts for
stress dependency of the Young’s modulus but assumes a constant Poisson ratio of
the marble. In a next section a new hypoelastic model based on damage mechanics
is developed that considers as variables a secant elastic modulus and Poisson ratio of
intact rocks.
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Fig. 5.3. Axial stress versus axial, radial, and volumetric strains for Serena sandstone specimen SS-TC-0
at zero confining stress (courtesy of E. Papamihos)

Table 5.1. Mineralogical and petrophysical properties of the tested Serena sandstone

Mineral or physical property Serena (Firenzuola) sandstone

Calcite [%] 21 – 8
Dolomite [%] 7 – 0
Quartz [%] 32 – 36
Potassium Feldspar [%] 7
Plagioclase [%] 13 – 15
Phylosilicates [%] 20 – 34
Total porosity [%] 9.76
Bulk density [Mg

/
m3] 2.57

In the sequel, the observed mechanical behavior of sandstone in Uniaxial Com-
pression (UC) and Triaxial Compression (TC) is described with simple mathematical
relations. Note that in this section we deviate momentarily from the assumed stress
sign convention and we assume compressive stresses as positive. First, by considering
only the loading branch of the UC data, the path of a rock sample to failure can be fol-
lowed by plotting the measured axial and radial strains versus the applied axial stress.
For example, the graphs of axial stress versus axial strain and radial strain versus axial
strain for the uniaxial compression test SS-TC-0 are displayed in the Figures 5.4a and
b, respectively. We remark here that the high unconfined compressive strength exhib-
ited by this sandstone is due to the high content of quartz (see Table 1). The data taken
from primary loading loops are fitted by polynomials of the form

σa = a1x + a2x2 + a3x3 + · · · ,

1000 · εr = b1x + b2x2 + b3x3 + · · · ,

x = 1000 · εa .

(5.17)
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sandstone specimen SS-TC-0 in UC and fitted polynomial curves.

The nonlinearity of sandstone is manifested by the dependence of the tangent modulus
of deformability and lateral strain factor on the applied stress. In fact, differentiating
formulae (5.17) with respect to x or εa we obtain the following expression for the
tangent moduli,

Et = ∂σa

∂εa
= a1 + 2a2x + 3a3x2 + · · · ,

νt = − ∂εr

∂εa
= −b1 − 2b2x − 3b3x2 + · · · .

(5.18)

In the case of test SS-TC-0 six unloading–reloading cycles were performed before the
peak stress at failure in order to infer its elastic properties. From the graphs displayed
in Figures 5.5a,b it may be observed that the unloading–reloading curves correspond-
ing to σa − ε

(el)
a and to ε

(el)
r − ε

(el)
a display nonlinearity and hysteresis. Neglecting

hysteresis for the sake of simplicity, each of these loops is best-fitted by second-degree
polynomials.

The recorded peak stresses during the four uniaxial and triaxial compression tests
are plotted in Figure 5.6a in the form of Mohr circles; that is,

σ = σ1 + σ3

2
+ σ1 − σ3

2
cos 2θ, τ = σ1 − σ3

2
sin 2θ, (5.19)

wherein σ1, σ3 denote the principal stresses at failure (i.e., axial and confining, re-
spectively) and θ is the angle subtended between the horizontal line and the outward
normal to the plane in which the normal and shear stresses (σ, τ ), respectively, act.
According to the celebrated Mohr–Coulomb (MC) linear failure criterion (Jaeger and
Cook, 1976),

|τ | = c + tan ϕσ, (5.20)
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Fig. 5.5. Unloading–reloading loops for Serena sandstone in UC: (a) σa − ε
(el)
a , (b) ε

(el)
r − ε

(el)
a .

where the cohesion c and the internal friction angle ϕ of Serena sandstone are derived
by passing a straight line that is tangent to all Mohr circles (e.g., Figure 5.6a). The
values of these properties have been found to be c = 23.5 MPa and ϕ = 53◦. The pho-
tos in Figure 5.6b illustrate the failure modes exhibited by three sandstone specimens
subjected to different confining pressures. The high friction angle of the sandstone is
manifested with the low angle subtended between the vertical axis and the shear crack
exhibited by the specimens at the moment of failure2 (Figure 5.6b).

2 As is well known this angle denoted by the symbol β is given by β = π/4 − ϕ/2.
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Fig. 5.6. (a) Mohr circles and fitted linear Mohr–Coulomb failure envelope; (b) photos of sandstone cylin-
drical specimens broken in uniaxial and triaxial compression tests (courtesy of E. Papamihos).
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n
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Fig. 5.7. Representative Elementary Volume (REV) of damaged rock.

4. Calibration of a Nonlinear Model on Experimental Data

4.1 A Hypoelastic-Damage Model for Sandstone

In this section a new hypoelastic theory for intact rocks is developed to account for this
stress dependency of both elastic moduli of Serena sandstone found in the experiments.

Elasticity of intact rocks is determined by the elastic stiffness of the uncracked rock
and the geometry (density and orientation) of microcracks. It may be assumed that the
geometry of microcracks—which may be approximated in any plane by the area of
intersections of cracks with that plane—can be modeled through a continuum variable
at the mesoscale (i.e., grain scale). In order to manipulate a dimensionless quantity the
crack area δAD is scaled with the size of the area of the Representative Elementary
Volume (RVE). This size is of primary importance in the definition of a continuous
variable in the sense of continuum mechanics. This continuum damage variable is
similar to the plastic strain of classical plasticity that at a given point represents the
average of many grain slips.

If the area δA with outward unit normal n j of the RVE with position vector xi of
Figure 5.7 is loaded by a force δFi the usual apparent traction vector σi = σi j n j is
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σi = lim
δA→S

δFi

δA
, i = 1, 2, 3, (5.21)

where S is the representative area of the intact rock. The value of the dimensionless
damage quantity D(ni , xi ) may be defined as follows,

D = δAD

δA
. (5.22)

At this point we may introduce an effective traction vector σ
(e)
i that is related to the

surface that effectively resists the load, namely,

σ
(e)
i = lim

δA→S

δFi

δA − δAD
, i = 1, 2, 3. (5.23)

From relations (5.21)–(5.23) it follows that

σ
(e)
i = σi

1 − D
, i = 1, 2, 3. (5.24)

According to the above definitions the elastic deformation of the intact rock can be
described with the following relations.

• The relation σ
(e)
i j − ε

(el)
i j which is obtained from elasticity

• The relation σi − σ
(e)
i which is obtained by employing the concept of damage

(Lemaitre, 1992).

It is convenient to decompose the stress tensor σi j into deviatoric and hydrostatic
parts as follows,

σi j = si j + pδi j , (5.25)

wherein si j denotes the stress deviator and p = σkk/3 is the mean pressure. Further-
more, we introduce the stress invariants

I1σ = σkk, J2s = 1

2
si j s ji , (5.26)

wherein I1σ is the first invariant of the spherical stress tensor and J2s is the second
invariant of the deviatoric stress tensor. The generalization of damage theory in three
dimensions may be performed by assuming that microcracks and pores reduce3 the
apparent distortional and hydrostatic intensities of the stress tensor according to the
relations

I1σ = (1 − Ds) · I (e)
1σ , T = (1 − Dc) · T (e), (5.27)

3 It may be noted here that a general theory must allow for both enhancement and degradation of
material properties due to mechanical loads. The former case corresponds to negative damage
measures and describes pore and microcrack closure (healing) due to hydrostatic pressure and
the latter corresponds to positive damage measures and describes microcrack opening and prop-
agation. Both degradation and enhancement of the properties of a solid may be embraced under
the term “material divagation” that is used to describe processes where the mechanical properties
of a material change in time or wander from the values that characterize the material in a refer-
ence configuration. In general, divagation can result from any thermal, mechanical, chemical, or
electrical process experienced by the material.
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where T = √
J2s denotes the deviatoric shearing stress intensity. In the above rela-

tions it is assumed that the scalar damage variables Ds, Dc are the spherical (hydrosta-
tic) and distortional intensities of the damage tensor Di j , respectively. From relations
(5.25) and (5.27) the apparent versus the effective stress tensor relationship may be
obtained:

σi j = (1 − Dc) · σ
(e)
i j + 1

3
· (Dc − Ds) · δi j · σ

(e)
kk . (5.28)

Next, we recall the finite-elasticity equations for the volumetric and deviatoric
strains

ε
(el)
kk = p

Ks
; e(el)

i j = si j

2Gs
(5.29)

and

e(el)
i j = ε

(el)
i j − 1

3
δi jε

(el)
kk , (5.30)

where Ks is the secant bulk modulus and Gs is the secant shear modulus of the rock
material that are related to the secant Young modulus Es and Poisson ratio νs through
the formulae

Ks = Es

3(1 − 2νs)
, Gs = Es

2(1 + νs)
. (5.31)

Alternatively, we may also find the relations,

νs = 3Ks − 2Gs

2(3Ks + Gs)
, Es = 9 Ks Gs

3Ks + Gs
. (5.32)

Equations (5.27) and (5.29) lead to the following relations,

Ks = K0 (1 − Ds) , Gs = G0 (1 − Dc) . (5.33)

From (5.29) and (5.30) one may derive rate-type elasticity (hypoelasticity) equations
that are obtained through formal material time differentiation

ṗ = Ks ε̇
(el)
kk + p

K̇s

Ks
; ṡi j = 2Gsė(el)

kk + si j
Ġs

Gs
, (5.34)

where e(el)
i j denotes the elastic strain deviator, and ε

(el)
kk is the elastic volumetric strain.

By recourse to formal differentiation of formulae (5.38)

K̇s

Ks
= − Ḋs

1 − Ds
; Ġs

Gs
= − Ḋc

1 − Dc
(5.35)

and relations (5.28) we extract the relation between the apparent stress and the elastic
strain increments

σ̇i j = 2Gs ε̇
(el)
i j +

(
Ks − 2

3
Gs

)
δi j ε̇

(el)
kk − si j

Ḋc

1 − Dc
− p δi j

Ḋs

1 − Ds
. (5.36)

The above incremental expression may be set into the equivalent compact form

σ̇i j = C (el)
i jkl ε̇

(el)
kl , (5.37)

where C (el)
i jkl is the “tangent elastic stiffness matrix” that according to the above damage

model is now an anisotropic fourth rank tensor.
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4.2 A Plasticity Model for Sandstone

Herein it is assumed that the “isotropic hardening rule” of rocks in compression is
the same as that in tension. That is, past the initial yield state, friction is mobilized
and increases as a function of plastic shear strain until it reaches saturation at some
peak value. This friction-hardening phase is consequently described as an isotropic
hardening phase as shown in Figure 5.8 [state i (initial yield) to state f (failure)] in
which q is the strength of the uncracked rock matter (it is called tensile limit of the
material).

The yield curves for this model are linear with their slopes to be steeper than the
initial i yield curve. This is expected because the mean orientation of the active cracks
f (g(pl)) is changing as the rock proceeds from initial yield to failure according to the
rough model of Figure 5.9. Thus f

(
g(pl)

)
represents a stress orientation coefficient in

terms of fracture mechanics or a friction coefficient in terms of MC yield criterion.
For the calibration of the MC yield surface based on the UC test results:

F = √
J2s

[
sin

(
αso + π

3

)
+ 1√

3
cos

(
αso + π

3

)
sin ϕm

]

−
(

q − 1

3
I1σ

)
sin ϕm = 0,

(5.38)

O
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1

(f)

T

1
f

f

f

Ci

Cf

q p

Fig. 5.8. Motion of the yield surface in (T –p) stress space. (i– f ) isotropic friction hardening phase with
constant q.

n atan(f)

σ

σ

Fig. 5.9. Physical meaning of the stress inclination parameter f , that is, the angle subtended between the
outward unit normal vector n on a straight microcrack with the tensile (or compressive) stress (σ ) axis.
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where αso is the stress invariant angle of similarity (i.e., the third stress invariant), we
set αso = π/3 (Chen and Han, 1988) which means

F = 0 ⇔ T

(√
3

2
− 1

2
√

3
sin ϕm

)
− (q − p) sin ϕm = 0, (5.39)

with the mean normal stress defined as follows (compressive stresses assumed here
negative)

p = 1

3
(2σr + σz) ⇒ p = 1

3
(−σa). (5.40)

The friction coefficient is denoted by the symbol fc and is defined by the ratio

F = 0 ⇒ fc = T

q − p
. (5.41)

The mobilized internal friction angle φm and the mobilized cohesion cm for the
constant q MC-model read as follows

sin φm = 3 fc

2
√

3 + fc
, cm = q tan φm . (5.42)

4.3 Constitutive Elastoplastic Model of Serena Sandstone

Returning to the sandstone UC test, in the uniaxial compression case we have (assum-
ing compressive stresses as positive)

p = 1

3
σa, sa = 2

3
σa, sr = −1

3
σa (5.43)

and the incremental stress–strain relations (5.36) take the form

dσa = 2Gsdε
(el)
a +

(
Ks − 2

3 Gs

) (
dε

(el)
a + 2dε

(el)
r

)

−sa
Ḋc

1−Dc
− p Ḋs

1−Ds
,

0 = 2Gsdε
(el)
r +

(
Ks − 2

3 Gs

) (
dε

(el)
a + 2dε

(el)
r

)

−sr
Ḋc

1−Dc
− p Ḋs

1−Ds
.

(5.44)

The empirical relations of bulk and shear secant moduli of Serena sandstone are
derived from the unloading–reloading test data and the above relations (5.44) (Fig-
ure 5.10a). The two “enhancing” functions at hand may be approximated in first order
for every loop by the linear relations

Ds

(
ε
(pl)
a

)
= −41.5

(
ε
(el)
a − ε

(pl)
a

)
,

Dc

(
ε
(pl)
a

)
= −30

(
ε
(el)
a − ε

(pl)
a

)
.

(5.45)
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Fig. 5.10. (a) Dependence of damage scalar variables of sandstone on axial strain in the second loop, and
(b) best exponential fit dependence of initial elastic moduli of each unloading–reloading loop on the axial
plastic strain.

Then based on the above damage theory the moduli of sandstone were expressed as a
function of the damage or enhancing functions as follows

Ks = K0

(
ε
(pl)
a

) [
1 − Ds

(
ε
(pl)
a

) ]
,

Gs = G0

(
ε
(pl)
a

) [
1 − Dc

(
ε
(pl)
a

) ]
,

(5.46)

where the initial elastic moduli were found to be negative exponential functions of the
axial plastic strain (Figure 5.10b),

K0 = 0.185 e-0.787 ε
(pl)
a ,

G0 = 0.704 e-2.093 ε
(pl)
a .

(5.47)
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Fig. 5.11. Determination of the tension limit by best fitting a straight line on the uniaxial and triaxial
compression test data at failure in the (p, T ) stress space and UC stress path.

It is worth noticing that the above relations indicate that enhancement is linked or
coupled with the plasticity exhibited by the sandstone.

The tension limit q of this type of the sandstone is found by fitting a straight line
on the uniaxial and triaxial compression test data in the p-P space, as it is displayed in
Figure 5.11. We can evaluate at each point of the stress–strain curves the plastic strains
and plot the friction coefficient, the mobilized friction angle, and the mobilized cohe-
sion as a function of the plastic shear strain intensity. The latter quantity is calculated
as follows,

ġ = ġ(el) + ġ(pl) = Ṫ

G
+ ġ(pl) ⇒ ġ(pl) = ġ − Ṫ

G
. (5.48)

For the flow rule, by assuming coaxiality of stresses and strains, we employ a MC
expression of the form

Q = T

(√
3

2
− 1

2
√

3
sin ψm

)
+ p sin ψm = 0. (5.49)

Hence, the mobilized dilatancy angle ψm is calculated from the following relationship,

sin ψm = 3d

2
√

3 + d
. (5.50)

An algorithm has been constructed based on the set of equations (5.44)–(5.47) de-
scribing the elasticity of the rock, as well as the set of equations (5.7)–(5.14), (5.17),
(5.18), (5.38)–(5.42) and (5.48)–(5.50) describing its plastic behavior, in order to cal-
culate the dependence of basic mechanical parameters on the amount of plastic shear
strain intensity that is used as a load parameter. Figure 5.12 displays the dilation re-
sponse, whereas Figure 5.13 shows the typical variation of the mobilized friction and
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Fig. 5.13. Plots of mobilized friction and dilatancy angles, axial stress, and mobilized cohesion of Serena
sandstone specimen SS-TC-0 in UC. The convention of compression positive is assumed.

dilatancy angles, cohesion, and axial stress as functions of the plastic shear strain in-
tensity for the Serena sandstone, that are predicted by the assumed elastoplastic model.
From the latter plot it may be seen that after some plasticity is developed in the spec-
imen, the mobilized friction and dilatancy angles coincide, indicating an associated
flow rule. Also, as was expected, the peak cohesion and peak internal friction angle
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predicted by this model are in good agreement with the respective values of these
strength properties derived from the linear MC failure envelope (e.g., Figure 5.6a.)

The predictability of the general model proposed above may be validated in a further
step against additional test data (e.g., from the triaxial tests and tension tests or others).
This validation procedure will reveal the weaknesses of the model that must be further
elaborated in an iterative manner, until we obtain its most general applicability.

5. Summary and Conclusions

Carefully designed simple rock mechanics experiments performed on sandstone re-
vealed their nonlinearity both in the elastic and plastic regimes. This necessitated the
formulation of a nonlinear theory based on elasticity, damage mechanics, and plasticity
theories. In a subsequent stage this theory was calibrated applying triaxial compression
tests on Serena sandstone. Future work will include validation of the proposed model
against more element or structural tests in the tensile and compressive regimes on the
same type of stone. The hysteresis displayed by the sandstone was not considered in
this first attempt. This is a topic of major interest that may be attacked by virtue of
the theory of fracture mechanics in the near future. Fracture mechanics may also be
used as a powerful tool to describe (a) the brittleness displayed by the rocks (i.e., their
approximate tenfold decrease in compressive strength properties when they are sub-
jected to tensile loads), and (b) the size effect that is manifested by the considerable
reduction of their strength with the increase of the size of the structure. That is to say,
modern rock mechanics should rely upon all the up-to-date developments of the funda-
mental theories of elasticity, strength of materials, damage mechanics, plasticity, and
fracture mechanics in order to present robust models for rocks subjected to static or to
dynamic loads. The linking of all these theories under the umbrella of a unique theory
capable of describing the rock mechanical behavior at all scales (i.e., in the range 1e-6
m—1e 4 m) and boundary conditions encountered in praxis, is one of the fascinating
challenges of the future.
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Abstract
The aim of this chapter is the investigation of the universal behavior of nonlinear vibrating
structures. The approach is formulated in terms of the black box interaction formalism, only
recently introduced (see Chapter 1), but including subharmonics and multidegrees of freedom.
As a prototype of the nonlinear box, we focus attention on a multicracked cantilever beam. The
cause of the vibration (i.e., the input in the box) is represented by a harmonic force excitation;
the effect (i.e., the output), by the tip displacement. Universality corresponds to zero-, high-, and
subharmonic generations, describing complex phenomena such as period doublings and transi-
tion towards deterministic chaos. Applications to damage detection and structural monitoring
seem to be promising.

Keywords: Chaos, complexity, cracks, dynamics, nonlinear, universality

1. Introduction

The study of the nonlinear dynamics of structures represents a powerful tool for dam-
age detection. Vibration-based inspection of structural behavior offers an effective tool
of nondestructive monitoring. The analysis of the dynamic response of a structure to
excitation forces and the monitoring of alterations, which may occur during its life-
time, can be employed as a global integrity-assessment technique to detect, for ex-
ample, the presence of a crack or play in joints. The damage assessment problem in
cracked structures has been extensively studied in the last decade [1–5], highlighting
that the vibration-based inspection is a valid method to detect, localize and quantify
cracks especially in one-dimensional structures. Dealing with the presence of a crack
in a beam, previous studies have demonstrated that a transverse crack can change its
state (from open to closed and vice versa) when the structure, subjected to an external
load, vibrates [3, 4]. As a consequence, a nonlinear dynamic behavior is introduced.

The aim of this chapter is the investigation of the universal behavior in the complex
oscillatory behavior of damaged nonlinear structures. In particular, we have focused
our attention on a cantilever beam with several breathing transverse cracks and sub-
jected to harmonic excitation perpendicularly to its axis. The method, that is an exten-
sion of the high-harmonic analysis presented in [4] to subharmonic and zero-frequency
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components, allows us to capture the complex behavior of the nonlinear structure, for
example, the occurrence of period doubling, as experimentally observed [5]. The ap-
proach is written in terms of the black box interaction formalism, recently developed
for high-harmonics (see [6] and Chapter 1), but including subharmonics and multide-
grees of freedom, as described in References [7, 8].

2. Nonlinear Dynamics of Structures

2.1 The Interaction Box Formalism

Consider a nonlinear structure, having several degrees of freedom and subjected to the
multicomponent cause {C} of the vibration, that is, a set of harmonic forces/couples
with multiple angular frequencies rather than a fundamental angular frequency ω. The
effect {E}, dual to the cause {C}, that is, the structural displacements (translations and
rotations), must satisfy:

[M]
{

Ë
} + [D]

{
Ė
} + [K ] {E} + {B ({E})} = {C} , (6.1)

where [M], [D], and [K ] represent the mass, damping, and stiffness matrices re-
spectively, and {B} is the nonlinear component of the box (or structure) [6]. See the
Appendix. For free vibrations {C} = {0}.

In general the cause {C} can be put in the following form,

{C} =
N∑

j=0

({CS} j sin j ωt + {CC } j cos j ωt
)
. (6.2)

Assuming as the period of the effect a multiple s of the period of the cause (usually
s = 1), and according to Fourier analysis, we can write:

{E (t)} =
N∑

j=0

(
{ES} j sin j

ω

s
t + {EC } j cos j

ω

s
t
)
, (6.3)

in which an s different from the unity parameter describes subharmonic generation
([7, 8]; s = 1 in [4] and [6]) and N should be large enough (theoretically infinite) to
reach a good approximation. Introducing the time dependence for {E (t)} of Eq. (6.3)
into the nonlinear box part {B (E)} yields:

{B (E (t))} =
N∑

j=0

(
{BS} j sin j

ω

s
t + {BC } j cos j

ω

s
t
)
, (6.4)

where
{

BS,C
}

are constants related to
{

ES,C
}
.

Introducing Eqs. (6.2–6.4) into Eq. (6.1) and balancing the harmonics with the same
angular frequency, would formally solve the problem, correlating cause and effect.
A algebraic system of nonlinear equations is derived in the form of
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⎡

⎢⎣
[K ] − j2ω2

s2 [M] − jω
s

[D]
jω
s

[D] [K ] − j2ω2

s2 [M]

⎤

⎥⎦
{ {ES} j

{EC } j

}
=
{ {CS} j

{CC } j

}
−
{ {BS ({ES} , {EC })} j

{BC ({ES} , {EC })} j

}
,

(6.5a)
or, in compact form:

[A ( j)] {E ( j)} = {C ( j)} − {B ( j)} , (6.5b)

where j = 0, 1, . . ., N .
For a monochromatic single cause:

Ci j = Cδ jsδi p, (6.6)

p being the node position corresponding to the point where the sinusoidal cause of
intensity C is applied.

Each of the N systems in Eqs. (6.5) can be easily solved numerically using an itera-
tive procedure, starting assuming {B ( j)} = {0} and then evaluating {B ( j)} according
to the solutions for {E ( j)} derived at the previous step, until a satisfactory conver-
gence is reached.

2.2 Application to Cracked Structures

To quantify universal behaviors in nonlinear dynamics of structures, we refer to a mul-
ticracked beam. The cracks “breathe” during the vibration and thus cause a variation of
the stiffness of the structure, that is, a nonlinearity. Mathematical details are reported
in [4, 7] and briefly summarized in the appendix. We consider here just two different
and simple cases: a weakly or a strongly damaged structure. An extensive parametrical
investigation can be found in [8]. Only in the latter case, the so-called period doubling
phenomenon, experimentally observed by Brandon and Sudraud [5], clearly appears.
The beam considered here is the same as that described in the mentioned experimental
analysis. It is 270 mm long and has a transversal rectangular cross-section of base and
height, respectively, of 13 and 5 mm. The material is UHMW-ethylene, with a Young’s
modulus of 8.61 × 108 N/m2 and a density of 935 kg/m3. We have assumed a modal
damping of 0.002. It is discretized with 20 finite elements. We have found that values
of s = 4 and N = 16 give a good approximation; that is, for larger values of s and
N , substantially coincident solutions are obtained. The first natural frequency of the
undamaged structure is fu = 10.6 Hz. A monochromatic cause, a force at the tip, is
considered. The effect is assumed to be the tip displacement.

For each of the two considered structures (Figures 6.1a and 6.2a) the time history of
the applied force and of the free-end displacement (Figures 6.1b and 6.2b), are shown
as well as the zero-, high-, and subharmonic components of the free-end displace-
ment (Figures 6.1c and 6.2c). Obviously, in a hypothetical linear (i.e., here undamaged)
structure, the response is linear by definition with only one harmonic component at the
same frequency of the monochromatic excitation (Case 0).

Case 1. In the weakly nonlinear structure of Figure 6.1a, the response converges
and it appears only weakly nonlinear, as depicted in Figure 6.1b. The harmonic com-
ponents in the structural response are the zero–one (presence of a negative offset in
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the displacement of the free-end, downwards in Figure 6.1a) and the superharmonic
ones (Figure 6.1c). No subharmonic components can be observed, suggesting that a
threshold value of the nonlinearity has to be reached for subharmonic generation.

Case 2. In the strongly nonlinear structure of Figure 6.2a the nonlinearity increases,
as depicted in Figure 6.2b. The harmonic components in the structural response are
the zero–one, the superharmonic as well as the subharmonic ones (Figure 6.2c). The
threshold nonlinearity has been reached. It should be emphasized that a strong pres-
ence of the ω/2 component causes the period doubling of the response. The free-end
vibrates practically with a period doubled with respect to that of the excitation.

3. Conclusions

From the reported numerical examples (for an extensive numerical parametrical inves-
tigation see [8]) a universal behavior emerges. Obviously, for a single monochromatic
cause, if the nonlinearity is zero, the effect can be caught with N = s = 1. On the
other hand, if a weak nonlinearity is considered, only offset and high-harmonic com-
ponents can be observed in the effect. As a consequence, for this case, the effect can
be easily caught using classical Fourier series (s = 1) with N > 1 [and large enough,
in the sense that effect (N ) ∼= effect(N ′ > N )]. Moreover, if the nonlinearity becomes
stronger, (i.e., larger than a given threshold), subharmonic generation appears. In this
case, the effect can be deduced by using a parameter s larger than 1 [s > 1 and N > 1
large enough, in the sense that effect (s, N ) ∼= effect(s′ > s, N ′ > N )]. Theoretically,
values of s tending to infinite (Fourier series become Fourier transforms) would allow
one to catch deterministic chaos and aperiodic effects.

A. Appendix

The mathematical model used for the considered beam of Leonhard Euler (1707–1783)
with several transverse one-side nonpropagating breathing cracks is based on the finite
element model. According to the principle of Ademare Jean-Claude Barré de Saint-
Vénant (1797–1886) the stress field is influenced only in the region adjacent to the
crack. The element stiffness matrix, with the exception of the terms that represent
the cracked element, may be regarded as unchanged under a certain limitation of the
element size. The additional stress energy of a crack leads to a flexibility coefficient
expressed by a stress intensity factor derived by means of the theorem of Carlo Alberto
Castigliano (1847–1884) in the linear elastic regime.

Neglecting shear action (Euler beam), the strain energy of an element without a
crack can be obtained as

W (0) = 1
2E I

l∫

0

(M + Pz)2dz = 1
2E I

(
M2 + P2l3/3 + M Pl2

)
, (A1)
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where E is the Young modulus of the material constituting the finite element; I =
bh3/12 is the moment of inertia of its cross-section, having base b and height h; and
M and P are the bending moment and shear load acting at the ends of the finite element
of length l. The additional energy due to the crack is:

W (1) = b

a∫

0

[(
K 2

I (x) + K 2
I I (x)

)
/E ′ + (1 + ν)K 2

I I I (x) /E
]

dx, (A2)

where E ′ = E for plane stress, E ′ = E/(1 + ν) for plane strain, and ν is the Poisson
ratio. K I,I I,I I I are the stress intensity factors for opening, sliding, and tearing-type
cracks, of depth a, respectively. Taking into account only bending (i.e., the predomi-
nant load):

W (1) = b

a∫

0

[
(K I M (x) + K I P(x))2 + K 2

I I P(x)
]
/E ′dx, (A3)

with:

K I M =
(

6M
/

bh2
)√

πaFI (w)

K I P =
(

3Pl
/

bh2
)√

πaFI (w) (A4)

K I I P = (
P
/

bh
)√

πaFI I (w) ,

where w = a
/

h and:

FI (w) = √
2/(πw) tan(πw/2)(0.923 + 0.199(1 − sin(πw/2)4))/ cos(πw/2)

FI I (w) = (3w − 2w2)(1.122 − 0.561w + 0.085w2 + 0.18w3)/
√

1 − w. (A5)

The term c(0)
ik of the flexibility matrix [C (0)

e ] for an element without a crack can be
written as

c(0)
ik = ∂2W (0)

∂ Pi∂ Pk
i, k = 1, 2 P1 = P, P2 = M. (A6)

The term c(1)
ik of the additional flexibility matrix [C (1)

e ] due to the crack can be obtained
as

c(1)
ik = ∂2W (1)

∂ Pi∂ Pk
i, k = 1, 2 P1 = P, P2 = M. (A7)

The term cik of the total flexibility matrix [Ce] for the damaged element is:

cik = c(0)
ik + c(1)

ik , (A8)

From the equilibrium condition
(

Pi Mi Pi+1 Mi+1
)T = [T ] ( Pi+1 Mi+1

)T
, (A9)
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where

[T ] =
[−1 −l 1 0

0 −1 0 1

]T

. (A10)

Applying the theorem of Enrico Betti (1823–1892), the stiffness matrix of the undam-
aged element can be written as

[Ke] = [T ]
[
C (0)

e

]−1
[T ]T , (A11)

or

[Ke] = E I
l3

⎡

⎢⎢⎣

12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

⎤

⎥⎥⎦ , (A12)

and the stiffness matrix of the cracked element may be derived as

[Kde] = [T ] [Ce]−1 [T ]T . (A13)

In order to evaluate the dynamic response of the cracked beam when acted upon
by an applied force, it is supposed that the crack does not affect the mass matrix.
Therefore, for a single element, the mass matrix can be formulated directly:

[Me] = [Mde] = ml
420

⎡

⎢⎢⎣

156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

⎤

⎥⎥⎦ , (A14)

where m is the mass for unity length of the beam.
Assuming that the damping matrix [D] is not affected by the crack, it can be cal-

culated through the inversion of the modeshape matrix [φ] relative to the undamaged
structure:

[D] =
(

[φ]T
)−1

[d] [φ]−1 , (A15)

where [d] is the following matrix,

[d] = 2

⎡

⎢⎢⎢⎢⎣

ζ1ω1 M1 0 0 . . . 0
0 ζ2ω2 M2 0 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 . . . . . . 0 ζnωn Mn

⎤

⎥⎥⎥⎥⎦
, (A16)

in which ζi is the modal damping ratio, ωi is the i th natural frequency and Mi is the
i th modal mass relative to the undamaged beam.

Accordingly, the mass, damping, and stiffness matrices of the structure are deduced
by expansion and summation of the element matrices.

Regarding the nonlinearity imposed by the presence of the cracks:

{B(E)} =
∑

m

⌊
∆K (m)

⌋
f (m)({E}){E}, (A17)
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where [K ]+∑
m[∆K (m)] is the stiffness matrix of the undamaged beam and [∆K (m)]

is half of the variation in stiffness introduced when the mth crack is fully open (see [7]).
According to this notation, f (m) ({E}) ranges between −1 and +1 and models the
transition between the conditions of mth crack fully open and fully closed, depending
on the curvature of the corresponding cracked element [4]. Considering the function
f (m) ({E}) as linear versus the curvature of the corresponding cracked element [4, 7]
implies

f (m) ({E}) = Emk − Emh∣∣Emk − Emh

∣∣
max

= Λm
(
Emk − Emh

)
, (A18)

where the numerator reports the difference of the rotations for the mth element.
Correspondingly:

{B( j)} =
∑

m

[ [
K(m)] [0]
[0] [
K(m)]

]⎧⎨

⎩

{
H (m)

j

}

{
K (m)

j

}

⎫
⎬

⎭ , (A19)

where

H (m)
i j = �m

2

∑
j1, j2: j1+ j2= j

{(
ESmk j1 − ESmh j1

)
ECi j2

+ (
ECmk j1 − ECmh j1

)
ESi j2

} + �m

2

∑
j1, j2: j1− j2=± j

± {(
ESmk j1 − ESmh j1

)
ECi j2 − (

ECmk j1 − ECmh j1
)

ESi j2
}
, (A20a)

K (m)
i j = �m

2

∑
j1, j2: j1+ j2= j

{− (
ESmk j1 − ESmh j1

)
ESi j2

+ (
ECmk j1 − ECmh j1

)
ECi j2

} + �m

2

∑
j1, j2: j1− j2=± j

± {(
ESmk j1 − ESmh j1

)
ESi j2 − (

ECmk j1 − ECmh j1
)

ECi j2
}

. (A20b)
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Abstract
In the quest for universal laws underlying the behavior of living organisms it is necessary to
remember that all forms of life are the result of an endless evolutionary process. Evolution
itself (in an ever-changing environment) requires continuous cycles of random mutations and
selection of the fittest to the new environment. Selection means that for each winner there
will be many losers that will disappear. Competition for essential nutrients is the battlefield:
the winner will be able to take up enough nutrients to duplicate itself. Selection is an all or
none process. The single individual can prevail over the competitors and duplicate or not, but
it cannot duplicate partially. The whole picture is full of uncertainty: the amount of energy
required to duplicate depends on local factors such as nutrient concentration or the number
and strength of the competitors. Due to the limited energy and nutrient availability, any living
organism had to develop strategies to save energy and to afford duplication only in favorable
conditions. The knowledge of the environment as a tool for successful competition is a scale-
insensitive feature of living organisms. The evolutionary winner, the fittest, is the one that knew
most about the environment. Hysteretic behavior, as a memory of the more recent past, may
represent a significant advantage in the struggle for survival in our overcrowded environments.
A selection of examples of hysteretic behaviors at the cellular and molecular levels and their
chemical mechanisms are presented to support the hypothesis of universality of nonclassical
nonlinear phenomena.

Keywords: Competition, enzymes, evolution, hysteresis, living systems, universality

1. An Evolutionary Approach to the Role of Hysteresis in
Biological Systems

1.1 Introduction

Recently it has been claimed that a broad category of materials (rocks, soil, cement,
concrete, damaged materials, etc.) share nonclassical nonlinear elastic behavior in-
cluding stress–strain hysteresis and discrete memory in quasistatic experiments. These
materials have in common a heterogeneous structure with soft “bond” elements, where
the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The
bond system normally comprises a small fraction of the total material volume, and
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can be localized (e.g., a crack in a solid) or distributed (as in a rock). A model has
been presented in which the soft elements are treated as hysteretic or reversible elastic
units connected in a one-dimensional lattice to elastic elements (grains), which make
up the hard matrix.1 From the experimental point of view the hysteretic behavior of
these materials has been evidenced by the anomalous elastic effects due to mechanical
stresses and their dependence on temperature.2 By modeling the structure as a mixture
of grains and interstices it is possible to simulate to a good extent the behavior of these
materials.3

Pre-eminent features of a universality class are its applicability to a whole class of
objects with similar structure and its scale independence. In this chapter we argue in
favor of the applicability of this class to living systems on the basis of their heteroge-
neous chemical structure (comparable to a mixture of grains and interstices) and some
evolutionary considerations pointing to the great selective advantage of different forms
of hysteretic (memory-carrying) behaviors.

1.2 The General Features of Living Objects

The main difference between living organisms and inanimate objects resides in the fact
that living organisms are intrinsically fragile and have a finite lifespan. This apparent
disadvantage is fully compensated by a corresponding advantage: fragility also means
the opportunity to mutate their patterns of molecules (DNA or proteins); finite life-
span yields the ability of living organisms to reproduce themselves. The younger will
replace the older, in some cases with a higher fitness to the environment, and there-
fore death will not necessarily decrease the size of the population, which will depend
strictly on the ability of the local environment to supply enough nutrients for its growth
and survival. As our environment is populated by numberless species of living organ-
isms (from viruses to humans) all sharing the same physical space and competing for
the same essential nutrients, the whole picture is highly dynamic and knowledge of the
basic features of life has to be introduced to explain the role of hysteresis in biological
phenomena.

1.2.1 The Time Arrow/Dissipative Systems

All forms of life are dissipative, in the sense that life takes place only in environments
with an excess of energy: in our case, sunlight. This energy surplus is required to power
all of our functions, including the continuous replacement of degraded structural mole-
cules. Sunlight is restlessly flowing over us day after day and makes our life possible.
Sunlight follows a one-way flow and cannot go back; its irreversibility is the physical
basis for our time irreversibility. Dissipative systems, as they are continuously getting
energy from the environment and using it to do something (it doesn’t matter what), are
always asymmetric.4 We have to identify and quantify these intrinsic asymmetries and
then evaluate which are the environmental asymmetries (nutrients and oxygen) that
can supply enough energy to drive the intrinsic ones.

Ionic asymmetry is shared by all living organisms; it involves both cations such
as Na+, K+, Ca++, H+ and anions such as Cl−, Pi(HPO4

−−), and protein carboxyl
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groups.5 As biological membranes are not fully impermeable to ions, the ion gradi-
ents between the inner and outer compartments would spontaneously disappear. Their
persistence (with a very small shift from the average value) means that gradients are
sustained by an active process driven by different types of ion-sensitive-ATPases.6

ATP synthesis requires a supply of nutrients, both reducing (carbon skeletons:
monosaccharides, fatty acids (FA), amino acids (AA), or the light-dependent reduced
cofactors in photosynthetic organisms) and oxidizing (O2, nitrate, sulfate). As elec-
trons spontaneously flow from less (C, H) to more electronegative atoms such as oxy-
gen, life is possible wherever we have asymmetry in the electron distribution: more
electrons than expected from electronegativity on C or H (e.g., CH4 instead of CO2

and H2O), less on oxygen (e.g., O2 instead of H2O and CO2). For any given organism
it is always possible to identify the local conditions (reducing and oxidizing nutri-
ent availability) necessary for its life. After billions of years organisms have adapted
themselves to almost any environment, and have developed every type of machinery
(enzymes, organelles) to take advantage of the locally available nutrients; indeed no
form of life is possible in the absence of nutrients in whatever form. Identification of
nutrient type, concentration, and diffusion rate in the environment is therefore the first
step in the definition of any form of life.4

1.2.2 Competition

As biological systems tend to expand exponentially in a finite environment, they—
sooner or later—become limited in their growth by the scarcity of some essential factor
(nutrient) and the competition for the limiting nutrients will locally drive the selection.
Since life started to evolve billions years ago, all possible nutrient sources have been
exploited and life is now possible only at the expense of other forms of life. In a closed
environment, such as the earth’s crust, nutrients have to be considered always limit-
ing and available for a limited time Figure 7.1. Any molecular trick, able to improve
nutrient uptake, will be of great evolutionary advantage.

1.2.3 Selection

In a competitive world, at any time, somebody survives and somebody dies on the ba-
sis of its fitness to the local environment. The survivor is what we see and can describe.

Time

C
el

l n
um

be
r

Fig. 7.1. In a closed environment (e.g., bacteria in a flask) the cells grow until the nutrient supply becomes
limiting and growth stops. If more than one population is present, the efficiency in taking up nutrients
becomes a powerful evolutionary advantage.
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As the structure of living organisms is the structure of the fittest for any given envi-
ronment, a proper description of the niche where they live should be included when
dealing with their structures and metabolic pathways. As a matter of fact any other
environment will lead to the selection of a different set of organisms. The way dissipa-
tive systems can afford evolution is simple but expensive from the energetic point of
view. To cope with external changes, organisms have to change themselves, and they
can only do that randomly, using the limited local supply of nutrients to build up new
molecules instead of the older ones; afterwards, if the changes increase the fitness, the
organism will survive and spread, otherwise it will disappear and nobody will be able
to record its changes. If we assume that life is the final result of previous numberless
cycles of random changes/selection in a competitive world, where essential molecules
(nutrients) are limiting and energy is in excess, then it is quite clear that it is possible to
identify many “universal” behaviors shared by all organisms, the most efficient taking
up nutrients in a competitive environment.4

1.3 The Chemical Texture of Life

Although in materials such as rocks nonclassical nonlinear elastic behavior can be
demonstrated only when powerful stresses are applied, in biological systems the
strength of the bonds involved in structure stabilization is much lower, and therefore
nonclassical nonlinear elastic behavior should be the rule rather than the exception. We
describe briefly here the properties of molecules involved in cell and tissue formation.

Figure 7.2 shows a representative example of a biological structure and the type of
weak bonds involved in its stabilization. The membrane phospholipids double leaflet
is stabilized by van der Waals forces (<1 kcal mol−1) in the hydrophobic core and hy-
drogen bonds (1–7 kcal mol−1) with water at the inner and outer sides. The strength
of these bonds depends also on the ionic environment, which can change upon cell

Single base-pair deletion
(protein truncation

12 amino acids later)

Deletion: 1500 - F508

pore

S6
S5

S4S2

S1 S3

N470D

A561V

Nucleotide-binding domain Splicing error

CN

G628S

Out

In

Fig. 7.2. A schematic picture of a transmembrane protein showing the sites of genetic defects impairing
its function.
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activation. The conformation of transmembrane proteins depends on hydrogen bonds,
hydrophobic bonds (2–3 kcal mol−1), and ionic bonds (1−6 kcal mol−1). Charges re-
sponsible for ionic bonds depend on local pH and on the charge of surrounding groups:
charge changes can induce protein shape changes and vice versa (Figure 7.4). Usually
the protein configuration is stabilized by a complex pattern of weak bonds, and the
deletion or substitution of even one single amino acid, if involved in specific bonds,
may lead to significant configuration change and loss of function.

1.3.1 Asymmetry

Asymmetry in the cell is mostly linked to the existence of a cell membrane separating
the self from the not-self. Membrane asymmetries include a different content of phos-
pholipids in the inner and outer leaflets, a different electric charge (membrane poten-
tial), and an ionic asymmetry that involves both cations such as Na+, K+, Ca++, H+
and anions such as Cl−, Pi(HPO−−

4 ), and protein carboxyl groups.5

Biological membranes are not fully impermeable to ions, and the ion gradient be-
tween the inner and outer compartments drives a passive flux through specific chan-
nels (proteins) whose properties depend strongly on local conditions (pH, membrane
potential, cholesterol). See Figure 7.3. Mechanical and thermal stresses can also affect
permeability through these channels. As a matter of fact, ionic asymmetry is very
stable (with a very small shift from the average value), independently from ion in-
flux, due to a very active pumping process driven by different types of ion-sensitive-
ATPases.6 Both passive ion channels and active pumps show a hysteretic behavior.7, 8

Ca-pump
(ca-ATPase) Ca–Na exchange

ATP ATP

Ca2+

1.8 mM

Ca2+

10–7 M 2 Ca2+

2 Ca2+

1 Ca2+

3 Na2+

Ca2+

SRCa2+

Ca pump
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Na+
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Cl–
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150 mM
K+

4.5 mM

Cl–

100 mM
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3 Na+

2 K+

Na–K pump
(Na,K-ATPase)

Na+

145 mM

+

Fig. 7.3. Intracellular and extracellular ion distribution. ATP can drive active ions pumping against the
gradient, whereas passive flux according to the gradient is gated by channels modulated by voltage or
different ligands
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1.3.2 Context Sensitive

If heterogeneity and fragility can be regarded as defects in industrial materials, being
the source of unexpected and unwanted behaviors, in the case of biological structures
the main property of a living organism (from microbes to man) is its sensitivity to
the environment. Without the extreme sensitivity at our fingertips, our hand would
be continuously hurt, burnt, and unable to perform its tasks. This extreme sensitivity
is acquired through the use of very soft structures such as our organic molecules: nu-
cleic acids, proteins, lipids, and the complex structures derived from their combination.
Membranes, cell organelles, and tissues’ extracellular matrix all are made of different
mixtures of a limited number of molecules (glucose, amino acids, fatty acids), embed-
ded in 75 to 80% water. The shape stability of these molecules depends, as expected, on
the temperature. Homeothermic organisms like mammals guarantee a proper function-
ing of the body by keeping its temperature constantly around 37◦C. Fever over 39◦C
induces the unfolding of a group of proteins (HSP, Heat Shock Protein) with a dramatic
change of their function and mounting of the “inflammatory response.”9 A number of
local factors can modify protein folding as their tertiary structure (that is responsible
for their surface shape and of soft bonds between “grains”) relies on many weak bonds.
pH changes, ion binding (Ca++, Na+++, K+), and interactions with other proteins or
membranes can heavily modify the chemical properties of these molecules affecting
their binding to physiological substrates and ligands. In most cases protein conforma-
tional changes are reversible and depend on local conditions and ligand concentration.

Hemoglobin binds 02 in the lung (high p02) and releases it in the tissues (low p02),
undergoing every few seconds a shift from low to high (→) and from high to low
p02 (←) (Figure 7.4). Hemoglobin binding to 02 doesn’t show any hysteretic behavior
because any lag in the 02 release (←) would strongly impair the tissue’s 02 uptake and
function, and therefore would negatively affect the natural selection. In hemoglobin S
(HbS), on the contrary (see Figure 7.5), the hysteretic behavior is present, prompting
us to wonder about the selective advantage in this case. HbS in the deoxygenated
form can polymerize into long filaments; red cells assume a sickle (S) shape and stop
the blood flow in capillaries. In this case efficiency in 02 release means efficiency in
blocking blood flow. Therefore evolution has chosen a compromise: to reduce tissues’
oxygen release (via a hysteretic mechanism), but to avoid total ischemia secondary to
red cell sickling.11

1.3.3 Short Lived

The limited lifespan of living organisms is the result of the limited lifespan of all its
components: tissues, cells, and molecules. The half-life of a molecule (i.e., the time
needed to replace half of the molecules originally present) usually ranges from hours to
days for structural molecules such as proteins and from minutes to hours for metabolic
fuels such as glucose. Protein turnover rate is limited by specific constraints linked to
the complexity of protein synthesis, that requires DNA transcription to mRNA, mRNA
translation to a protein, and posttranslational modifications. As a whole, this process
takes about six hours, whereas protein degradation may be very fast (minutes). When-
ever a fast protein-mediated response is needed, as in the case of response to hypoxia
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mediated by HIF (hypoxia-induced factor), the protein is continuously and constitu-
tively synthesized, but the active protein level is kept very low by a continuous degra-
dation mediated by ubiquitination.12 The process is very active and the HIF half-life is
about five minutes. The process guarantees a timely correspondence between the local
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oxygen supply and the metabolic response of the cell, but it is very expensive. When-
ever possible, therefore, evolution has replaced the more expensive systems, where the
signaling protein is continuously replaced, introducing molecules with different types
of memory.

1.4 The Molecular Bases Of Cell Memory

Memory, as knowledge of the past that allows forecasts of the future, offers strong
selective advantages in relatively stable or repetitive environments but it could be a
disadvantage in rapidly and randomly changing environments. As a matter of fact,
recording past experience has an energetic cost; to be selected by evolution any type of
memory must have a cost lower than the advantages it offers in terms of better fitness.
For man, language, in its spoken or written forms, is the conscious form of memory,
but many additional unconscious forms of memory, spanning through different size
and time scales, exist.

1.4.1 DNA

DNA has existed for billions of years and contains all the information required to drive
the birth and the growth of a new organism. DNA is transcripted to mRNA and mRNA
is translated into proteins. With the same DNA it is possible to get many different
proteins through alternative splicing of mRNA, and proteins can undergo heavy post-
translational modifications. These two processes allow, for example, the development
of different organs in the same organism in response to different local environments.
DNA can change very slowly and anyway the changes will be incorporated into the
next generations according to the generation time (years for man, minutes for bacteria).
The genetic information for some higher organisms will therefore evolve too slowly to
cope with environmental changes, and survival will require migration or modification
of the environment (houses, heating, agriculture). The selection process at the gene
level requires short times (months, years) for viruses and bacteria but for complex
organisms may require a thousand years.

1.4.2 Internal Milieu

Multicellular organisms and the stability of their internal milieu (blood and extracel-
lular fluids, constant temperature) is one of the evolutionary tricks used to reduce the
need of DNA evolution when its rate cannot cope with the rate of external changes.
Stability of complex organisms includes the creation of stores of nutrients such as
intracellular glycogen (glucose store) or bone (phosphate store). In our experience
modeling cell life without such internal nutrient stores, because nutrient uptake is
usually a strong limiting factor, increases dramatically the amplitude of metabolic os-
cillations and therefore the cell death rate.13

Stability of the internal milieu avoids the need for the genetic evolution of a large
number of genes as a function of environmental changes. Keeping the internal milieu
stable means keeping the memory of the fittest environment and avoiding the cost of
multiple cycles of random mutation and selection of each of the proteins involved in
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basic cellular metabolism. Most of the physiological functions involved in the stability
of the metabolism of complex organisms are cyclic (because of feedback mechanisms)
over different time scales and include breathing, circulation, daily fat accumulation, fat
storage for hibernation, and menstrual cycle for females (nutrient accumulation for a
new life). The time scale is days or months.

1.4.3 Hormones, Cytokines, Receptors (Turnover)

After every meal blood glucose increases, peaks at two hours, and slowly decreases.
Insulin release from the pancreas follows the same kinetics. Insulin level is under the
strict control of blood glucose. Apparently glucose and insulin have the same informa-
tion content, but in vitro treatment of fibroblasts with glucose induces differentiation to
cartilage, with glucose + insulin to adipocytes.14 Insulin incorporates the information
that glucose will be supplied for at least some hours, and the cell, on the basis of this
information, will break down part of the excess glucose to transform part of the glucose
into fatty acids. Insulin belongs to the class of signaling molecules with polypeptide
structure. Many other hormones and cytokines (messengers for intercellular commu-
nication) and their cellular receptors have a similar structure. As the synthesis of this
sort of short protein requires at least four hours, they always carry the information that
the local conditions for their synthesis must be present for at least four hours. Because
the environment is the whole organism, the time scale is hours. These processes are
responsible for the circadian rhythms of many physiological functions.

1.4.4 Proteins’ Hysteretic Behavior

At the cellular level the time scale of the events is in the range from seconds (metabolic
oscillations) to milliseconds (membrane potentials, ion channels opening). Moreover,
at the microscopic level, cells are extremely heterogeneous and out of phase as far as
their electric and metabolic behavior is concerned.15 At this level the only possible
form of memory is a protein configuration change. As already described, the protein
tertiary structure and configuration is based on multiple very weak bonds sensitive
to pH, ion and ligand concentration, other proteins, posttranslational modifications,
membrane translocation, and so on (Figures 7.3 and 7.4). In Section 1.5 we describe
the current approach to the role of hysteresis in protein function and its future perspec-
tives, and in Section 1.6 we briefly describe its historical background.

1.5 The Advantage of Being Hysteretic

The memory of the past at any level has allowed evolution of life as we know it now,
preventing death due to unexpected local environmental changes. At the cellular level
a slow response to rapid changes in the microenvironment confers robustness to the
whole system preventing the interpretation of random local changes (noise) as signals.

1.5.1 From Dose–Response to a Switch

Most of the work done by biochemists on the kinetics of chemical reactions has
been performed on enzymes: soluble enzymes at the beginning and then polymeric
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enzymes, multienzymatic complexes, membrane-bound enzymes, and so on. All this
information applies to any protein interacting with some ligand (membrane receptor,
ion channels, ion pumps, etc.) through weak bonds. A preliminary assumption is that
any chemical reaction can be split in many steps and that with increasing the lig-
and concentration, the activity increases until it saturates all the protein binding sites
(maximal enzyme activity) and protein concentration becomes limiting (Figure 7.6a).
Enzymes are not able to change the reaction direction, which depends on the free
energy difference, �G, but can accelerate it simply by a factor of thousands. The need
for an efficient catalyst arises from the limited availability of nutrients in any environ-
ment, and at the beginning the species with the most efficient enzymes can overcome
all others.

According to Figure 7.6a the cell responds to every stimulus, even to one single
molecule: in the case where the local noise is oscillating from 1 to 5 molecules, any
cell that responds to any weak stimulus in this range would waste a lot of energy
following decoy stimuli. Let us assume that by genetic mutation some cells develop a
type b response with minimal sensitivity to 6, 9, and 12 molecules. The cell with the
highest sensitivity (6) will be able to sense 100% of the signals and the others (9,12)
will sense only part of them. This is a very strong selective advantage and after a while
the cell (6) will be the only survivor.

The molecular origins of sigmoid curves (Figure 7.6b) are usually complex and de-
pend on multiple interactions between similar or different proteins. In hemoglobin (a
tetrameric protein) the shift from T to R forms (Figure 7.7) depends on oxygen binding
to each monomer, leading to a conformational and affinity change of the adjacent sub-
units; in proteins such as membrane calcium channels (one pore with multiple trans-
membrane segments; Figure 7.2) the configuration change leading to channel opening
follows a type b kinetic with a very steep rise, configuring a switch response.17 This
type of response depends on calcium concentration and shows a threshold. It can be
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easily modeled by imposing a multistep configurational change and assuming an elas-
tic behavior of the protein: any hit with the ligand will shift the configuration towards
the open form; the R configuration will last for a fixed time, and then will return to
the previous state.18 Changing the ligand concentration and the relaxation time it is
possible to simulate any experimental result with this type of all-or-none channels
(Figure 7.8a).

The average calcium influx on thousands of cells (each with a thousand channels)
has lost the all-or-none response pattern and smoothly changes with time, showing
dose-dependence of the total calcium influx (Figure 7.8b).

A similar all-or-none behavior has been described in one step, the phosphorylation
mediated by Janus Kinase (JNK), of the complex cascade downstream of the TNF al-
pha receptor, regulating the cell fate in the sense of apoptosis or proliferation according
to local conditions (Figure 7.9).

Also in this case the average behavior over a large cell population displays a typical
sigmoid response to progesterone as a stimulus (completely superimposable to those
shown in Figure 7.4 for hemoglobin), but if we go down to the single-cell level we are
able to identify an all-or-none behavior19 of the single JNK molecule (Figure 7.10).

In the case of tissues such as muscle, where the function is cooperative and depends
on the average behavior of all cells together, the state of the single channels does not
affect the function too much, however, in the case of oocytes, the all-or-none switch
will force the cell into the replication cycle. It has recently been demonstrated that the
JNK system in these cells is hysteretic and bi-stable (Figure 7.6c) and that its behavior
doesn’t correspond to a very steep sigmoid curve (Figure 7.6b).19

1.5.2 Cell Cycle Oscillator/No Way Back

Forty years ago, Monod and Jacob hypothesized that bi-stable signaling systems might
provide cells with the sort of long-term memory required to maintain differentiation
long after a differentiation-inducing stimulus is removed.20 The work of Bagowski and
Ferrell (2001) indicates that, in oocytes, JNK activation is one such memory system.
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JNK activation in oocytes is physiologically triggered by progesterone, but JNK re-
mains active throughout early embryogenesis, long after the initiating progesterone
stimulus has ceased.19 The evidence presented in this paper provides a mechanistic
explanation for how this long-term activation of JNK is achieved. Other bi-stable sig-
naling systems are present in the oocyte. The Mos/MEK1/p42 MAPK cascade appears
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to be bi-stable,21 and, by virtue of its autocatalytic character, Cdc2-cyclin B may also
be part of a bi-stable system.22, 23 Thus, bi-stability and all-or-none signal transduc-
tion systems may be common, at least in processes such as oocyte maturation and
early embryogenesis that are driven by combinations of essentially digital, all-or-none
responses that arise out of interconnected bi-stable signaling pathways.

What it is of interest from the evolutionary point of view is that, although all the
systems share the same all-or-none behavior, the specific mechanisms through which
the feedback is produced and the bi-stability is achieved are all different and occur
on different time scales. In the case of p42 MAPK, the positive feedback is provided
by translational regulation;21 in the case of JNK, JNK activation is due to posttransla-
tional positive feedback; in the case of Cdc2, both translational and posttranslational
feedback may be important. Thus, it appears that nature has converged upon the same
basic scheme for producing decisive digital responses, but has done so through a vari-
ety of different specific mechanisms. This convergent evolution underscores the likely
importance of hysteresis and bi-stability as “universal” behavior in a very basic process
such as progression of a cell cycle, in addition to the many others cited in this chapter.

1.6 Hysteresis in Biochemistry: A Historical Survey

1.6.1 The Ancestor

The first paper where the word hysteresis was used in a biochemical context dates
back to 1970.24 “Hysteretic enzymes are defined as those enzymes which respond
slowly (in terms of some kinetic characteristic) to a rapid change in ligand, either
substrate or modifier, concentration. Such slow changes, defined in terms of their rate
relative to the over-all catalytic reaction, result in a lag in the response of the en-
zyme to changes in the ligand level.” Molecular mechanisms responsible for this be-
havior include ligand-induced isomerization of the enzyme, displacement of tightly
bound ligands by other ligands, or polymerization and depolymerization, membrane
translocation. Such enzymes frequently play a key role in metabolic regulation and the
knowledge of their behavior is of great value in discussing the regulation of complex
processes in vivo. This method of approach, however, at that time turned out to be of
limited usefulness “since the equations for complex systems can easily become much
too cumbersome to deal with.”24

At that time computers were not as widespread as now and were much less powerful
and therefore complex simulations were not possible. The main conclusion was that
any shift from the expected dependence on substrate concentration (hyperbolic) of an
enzymatic reaction should depend on some more complex interaction of the protein
with the environment (other small molecules, other proteins, or complex structures
such as membranes).

1.6.2 Examples on the Molecular Scale

With time, more and more proteins have been included in the “hysteretic” category,
but their inclusion relied mostly on the existence of a lag phase in the kinetic response
to substrate (sigmoid curve). They include:
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• Many key enzymes in main metabolic pathways: G6P phosphatase,25 liver fructose
1,6-bisphosphatase,26 dihydrofolate reductases,27 carnitine palmitoyltransferase,28

and so on.

• Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates,
plants, bacteria, and fungi. They can depress the freezing point of water (in the
presence of ice crystals) in a noncolligative manner by binding to the surface of
nascent ice crystals. The THPs comprise a disparate group of proteins with a vari-
ety of tertiary structures and often no common sequence similarities or structural
motifs. THPs represent one more example of parallel and convergent evolution
with different proteins being adapted for an hysteretic behavior.29

1.6.3 Examples on the Cellular Scale

In human erythrocytes it has recently been demonstrated that voltage-dependent
nonselective cation (NSVDC) channels exist in two states of activation depending on
the initial conditions for the activation. The hysteretic behavior, which in patch-clamp
experiments has been found for the individual channel unit, is thus retained at the
cellular level and can be demonstrated with red cells in suspension.8

1.6.4 Examples on the Tissue Scale

As molecular interactions between the cells share the same properties of those between
molecules inside the cells (cooperativity based on weak interactions) it is not surprising
that hysteretic behaviors have been described also at the level of tissue functions in:

Heart: Adaptation of QT interval to heart rate changes30

Eye: Accomodative hysteresis as a function of target-dark focus separation31

Lung: Lung and alveolar wall elastic and hysteretic behavior32

Brain: Robust persistent neural activity in a model integrator with multiple hysteretic
dendrites per neuron33

Ligament: Stress–strain responses under tensile and compressive loading
conditions34

1.6.5 Examples on the Whole Organism Scale

Most of the functions of living organisms, no matter how complex, display a circadian
rhythmicity that depends on networks of individual feedback between the environmen-
tal (night/day) signals and internal clocks. Training of internal clocks to a new envi-
ronment requires an adaptation time that varies from species to species and from tissue
to tissue.35 The hysteresis of internal clocks is at a higher level of complexity, but is
based on similar behavior at lower levels. Cell division, for example, in many mam-
malian tissues is associated with specific times of the day, but how the circadian clock
controls this timing has not yet been fully understood. It has been shown36 that in the
regenerating liver (of mice) the circadian clock controls the expression of cell cycle-
related genes that in turn modulate the expression of active Cyclin B1-Cdc2 kinase, a
key regulator of mitosis, whose behavior has already been described in Section 1.5.2.
Among the genes involved in this pathway, expression of wee1 is directly regulated by
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the molecular components of the circadian clockwork. In contrast, the circadian clock-
work oscillates independently of the cell cycle in single cells. Thus, the intracellular
circadian clockwork can control the cell-division cycle directly and unidirectionally in
proliferating cells.

The complex network of interactions (vessels, nutrition, hormones, circadian
rhythms) supporting the feeding of the single parts of an organism, or, for example,
a tumor, justifies the assumption of an oscillating nutrient supply to a tumor proposed
by Condat and coworkers in this book as one of the major determinants of hysteretic
behavior in cancer growth.37

2. Conclusions

Living systems, as a whole, show hysteretic behavior in many cases, but it is impos-
sible to find evidence for a strict structure–behavior relationship. In fact a tetrameric
protein can display any type of response (linear, sigmoid, bi-stable) according to small
molecular changes induced by selective pressure, and, when required, hysteretic be-
haviors can be developed at any level (molecular, intracellular, intercellular) and at
different time scales. In summary, although hysteretic behavior in materials depends
on their mesoscopic structure, in living organisms the structure has been selected by
evolution to fit the requirements for a hysteretic behavior. As most of the biological
structures (macromolecules, organelles, cells) have a mesoscopic structure stabilized
by weak bonds and are very sensitive to environmental (pH, ions, ligands) changes,
a hysteretic behavior may be easily induced. In conclusion: hysteretic behaviors exist
in living systems and are easily inducible, but the real question is in which cases they
offer an evolutionary advantage. In a world where on any scale all the events are inter-
connected and regulated by both positive and negative interactions, most of the local
conditions are not stable but oscillating. Whenever these oscillations are not harm-
ful for life they can be regarded as “noise” and a hysteretic behavior would be the best
choice, whereas when they reach a specific threshold they become a “signal,” requiring
a response. The hysteretic behavior at the molecular level seems to be the tool chosen
by evolution to set the threshold between noise and signal, and in a relatively stable
context as it is now on the earth’s crust to be “conservative” and relatively insensitive
to local changes can be an advantage.
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3Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos
Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129.
4To whom correspondence should be addressed; e-mail: cacondat@yahoo.com.

Abstract
Using a general growth model, based on scaling and energy conservation, we show results
which indicate that cancer growth belongs to the universality class of nonclassical nonlinear
phenomena. We introduce a generalized remanence, which permits us to evaluate the intensity
of nonclassical effects, with implications ranging from experimental to clinical cancer research.

Keywords: Cancer, cycles, hysteresis, mesoscopic, multicellular spheroid, nonclassical, non-
linear, remanence, scaling

1. Introduction

The concept of nonclassical nonlinear (NCNL) phenomena was first introduced in the
field of rock elasticity, where such unusual elastic properties as extreme nonlinear-
ity, hysteresis, and discrete memory were observed. In particular, modeling the elastic
properties of rocks requires the addition of nonanalytical terms to the correspond-
ing nonlinear wave equation [1]. The universal features of NCNL phenomena have
been very recently identified by Hirsekorn and Delsanto [2]. Here, we show that the
methods described in Reference [2] may also help us to better understand biomedical
grand challenges such as cancer growth and eventually may even allow us to design a
more successful treatment regimen. Certain mesoscopic models of cancer growth are
explicitly nonanalytic due to the use of thresholds for cellular proliferation and cell
death [3–5]. In this chapter we show that NCNL behavior is already present in a very
simple “macroscopic” model of cancer growth. Cautiously extrapolated to the biolog-
ical situation, this finding may support the notion that nonclassical nonlinearity is an
intrinsic feature of tumoral evolution.

And in fact, empirical evidence indicates that cancer growth is a strongly nonlin-
ear process [15, 16]. These nonlinearities have been incorporated into current models
[3–8]. To test the possible nonclassical aspects of cancer growth, we follow the pre-
scription in Reference [2], investigating the reaction of a neoplasm to a time-dependent
(e.g., diffusive) chemical “input” signal. In principle, this could be done by analyzing
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its evolution under the application of an antitumoral therapeutic course but, in practice,
accurate data could be difficult to obtain and interpret, due to the inherent complexities
of in vivo cancer growth. For this reason, we consider here a simplified problem, inves-
tigating the evolution of a multicellular tumor spheroid (MTS) when the availability
of nutrients and/or oxygen oscillates with time. An MTS is a spherical aggregation of
tumor cells grown in vitro under strictly controlled environmental conditions [9–13].

It is important to remark that, even though we focus our analysis on an experimen-
tal situation where the NCNL effects should be directly observable, oscillations in the
nutrient supply, due to local fluctuations in the blood flow, are natural features of the
environment into which the tumor grows. Moreover, a living organism is the result
of an ongoing selection process; therefore, we expect the tumor behavior to have al-
ready incorporated the fittest response to environmental oscillations. Other instances
of NCNL phenomena in living systems are discussed elsewhere in this book [14, 15].

We model the growing tumor using the general model for ontogenetic growth de-
veloped by West, Brown, and Enquist (WBE) [16], which has recently been applied
both to the growth of real cancers in vivo and MTSs [17, 18]. This model yields the
time dependence of the total mass of live MTS cells, which contain both transitory and
oscillating components. We identify the NCNL elements in the oscillatory component,
evaluating their meaning and relevance.

2. The Model

We start from the generalized version of the WBE model used in Reference [16] to
investigate MTS growth. In this model, the incoming rate B of energy flow, which
is assumed to depend only on the organism mass, is used both for cell maintenance
and proliferation. Here, we introduce an externally controlled time-dependent factor
F(t) in the incoming energy flow, and write B = (Ec/µo)F(t)m p, where Ec is the
metabolic energy needed to create a cell (= replication or proliferation) and µo is
the average tumor cell mass. Because dead cells neither consume nutrients nor repro-
duce, we take into account only live cancer cells. Under these conditions, the equation
describing the change in the live tumor mass m is,

dm

dt
= F(t)m p − b(t)m. (8.1)

Here the exponent p depends on the energy distribution mechanism: for instance,
p = 3/4 corresponds to a fractal-like distribution network [16], whereas p = 2/3
corresponds to pure diffusion. The power law nature of this term has been recognized
for a long time [19], although the value of the exponent is still the subject of contro-
versy [20, 21]. The last term represents the energy allocated to cellular metabolism or
maintenance; there the factor b(t) stands for the ratio between the metabolic rate of a
single cell and Ec. The difference between the first and second terms corresponds to
the energy being allocated to cell proliferation.

Equation (8.1) can be easily solved by making the transformation,

y(t) = 1 − [m(t)/M]1−p , (8.2)
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where M is a constant mass characteristic of the system under study. Transformation
(8.2) linearizes Eq. (8.1), which now reads,

dy

dt
+ (1 − p)by = (1 − p)b − 1 − p

M1−p
F(t). (8.3)

By writing α = (1 − p)b, and introducing the new function X (t),

y(t) = e−αt X (t), (8.4)

we can integrate Eq. (8.3),

X (t) = X (0) + (1 − p)

∫ t

0
eαt ′

[
b − M1−p F(t ′)

]
dt ′. (8.5)

Here X (0) = y(0) = 1−[m(0)/M]1−p. We can now investigate different forms for
the tumor’s nourishment “protocol” F(t). If F(t) is a constant, we obtain the universal
solution of Reference [16]. More useful to our purposes is to consider a sinusoidally
varying function, which allows us to discuss possible NLNC effects. The rationale for
choosing a sinusoidal form is to reflect periodic variation in the nutrient supply as
conferred through, for example, cardiac oscillations in vivo. Specifically, we choose

F(t) = a + c sin (ωt) , (8.6)

with c ≤ a. Because in an experiment the nourishment period T = 2π/ω will be
usually long compared with the typical diffusive times in the system, we can consider
that all cells are being nourished in phase. By substituting Eq. (8.6) into Eq. (8.5), we
obtain,

X (t) = X (0) + αc

a(α2 + ω2)

[
eαt (ω cos ωt + α sin ωt) − ω

]
. (8.7)

Therefore, the total mass evolves according to

m(t) = M

[
�(t) + 1 − αc

a(α2 + ω2)
(ω cos ωt + α sin ωt)

]1/1−p
, (8.8)

where �(t) is a transitory component that decays over a time τT = α−1,

�(t) =
{

αcω

a
(
α2 + ω2

) −
[

1 −
(

m(0)

M

)1−p
]}

exp

(
− t

τT

)
. (8.9)

The parameter τT is a characteristic time for the reaction of the tumor system to
perturbations in the nourishment protocol. The response to “slow” sinusoidal perturba-
tions whose frequencies ω satisfy ωτT � 1 will quasistatically follow the perturbation
and the growth pattern will closely match the modifications in the nourishment proto-
col. On the other hand, “fast” perturbations, such that ωτT � 1, cannot be followed
by the cell system and will generate a delay and an overall decrease in the magnitude
of the response. Below we discuss the impact of modifications in the factor ωτT on the
hysteretic cycle.
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Fig. 8.1. Total tumor mass as a function of time, for diffusive feeding (p = 2/3). Here we chose M = 1,

c/a = 0.1, and (a) ω/α = 1 and (b) ω/α = 0.1.

The mass evolution for a system with p = 2/3 is shown in Figure 8.1 for m(0) = 0.
We observe that for ω/d = 1 sharply defined oscillations appear in the total mass.
After the transitory has died down, the mass fluctuates as

m D(t) = M

⎡

⎣1 − αc

a(α2 + ω2)
1/2

sin(ωt + φ)

⎤

⎦

1/1−p

, (8.10)

with the phase φ = arctg(ω/α).
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2.1 Special Case: p = 2/3

The preceding description holds for arbitrary values of the parameter p in the interval
(0,1). The particular value we choose depends on the nutrient transport mechanism. In
the case of in vivo tumors, especially after the onset of angiogenic development, the
nutrients arrive through the “neo” vascular net, which, according to West and cowork-
ers, suggests p = 3/4 [16]. MTSs, on the other hand, directly absorb nutrients that
diffuse through the culture medium; for a nurturing process that occurs through nutri-
ent diffusion towards the tumor surface, p = 2/3 and α = b/3. In this case, the output
function (the mass) can be written as

m D (t) = m0 +
3∑

j=1

m j sin( jωt + ϕ j ). (8.11)

Here, ϕ j = jφ + (π/2)δ j2 (δi j is Kronecker’s symbol) and the m j s are given by

m0 = M

(
1 + 3B2

2

)
m1 = −3M B

(
1 + B2

4

)
(8.12a)

and

m2 = −3M B2

2
m3 = M B3

4
, (8.12b)

with
B = (c/a)(1 + ν2)−1/2. (8.13)

Here, we have introduced the dimensionless input frequency ν = ω/α (Note that
1/α = τT , the characteristic response time). Following Reference [2] we define x =
sin ωt and write the output relative to the equilibrium position as


m(x) = G(x) ± H(x), (8.14)

where
G(x) = x

[
P1 − 2x P2 + (3 − 4x2)P3

]
(8.15)

and
H(x) =

√
1 − x2

[
Q1 + 2x Q2 +

(
1 − 4x2

)
Q3

]
. (8.16)

The coefficients Pi and Qi can be readily evaluated yielding

P1 = −3Ma

c
B2

(
1 + B2

4

)
P2 = 3M

2
B2

[
1 − 2

(
aB

c

)2
]

(8.17a)

P3 = Ma

4c
B4

[
−3 +

(
2aB

c

)2
]

Q1 = −3Ma

c
νB2

(
1 + B2

4

)
(8.17b)

Q2 = 3Ma2

c2
νB4 Q3 = Ma

4c
νB4

[
3 − ν2

(
2aB

c

)2
]

. (8.17c)
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Fig. 8.2. Continued.

Large values of Q j are associated with a strong hysteretic response, but nonlinearity
becomes relevant only when there are one or more values of Pj or Q j ( j > 1) that are
nonnegligible when compared to the largest between P1 and Q1. Some typical cycles
are shown in Figure 8.2. In this figure we note the following.
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Fig. 8.2. Hysteretic response of a tumor to a sinusoidal feeding signal. Here p = 2/3, M = 1, c/a = 0.7,
and ω/α = 0.01 (a), 0.1 (b), 1 (c), and 10 (d). The dotted line corresponds to G(x); the upper and lower
solid lines correspond, respectively, to G(x)− H(x) (green upper line) and G(x)+ H(x) (blue lower line).
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There is a strong asymmetry between the positive and negative x regions. In the
quasistatic growth limit, ν � 1, the time-averaged live cell mass is much larger than
the stationary live cell mass in the absence of the oscillatory input. Note that a positive
value of x means an above-average nutrient/oxygen influx.

The width of the hysteretic cycle goes through a maximum at ν = 1 (please note the
different scales).

For small values of ν the cycle becomes very thin, which should have been expected,
in as much as the phase shift φ = arctg(ν) is very small. Nonlinearity is strong, though:
P2 ≈ 0.3P1.

For large values of ν the phase shift φ → π/2, which translates into the rounded
cycle shown in (d). Mass growth lags increased nutrient influx by π/2.

Hysteresis in the rounded ν = 10 case is mostly due to delays in the system re-
sponse: it is easy to see that Q1 is at least two orders of magnitude larger than the
remaining Pj , Q j . This agrees with the observation in Reference [2] that symmetric
hysteretic cycles can be usually associated with delays, not with NCNL effects.

One measure of the “nonclassical strength” of a system, that is, the magnitude of
its NCNL reaction to an external perturbation is the generalized remanence R, which
is the displacement of the output from equilibrium when the magnitude of the input
signal vanishes; that is, at x = 0,

R = |
m(0)| =
∣∣∣
∑

j=0
Q2 j+1

∣∣∣ . (8.18)

In the context of cancer growth, R is the excess live cancer cell mass when the
nutrient/oxygen input goes through its mean value. If we take p = 2/3 and write
M = (a/b)3 (the maximum attainable mass for the c = 0 case), we obtain

R(ν) = M
( c

a

) ν

1 + ν2

[
3 +

( c

a

)2
(

ν

1 + ν2

)2
]

. (8.19)

This is an important result. The hysteretic effects vanish in the ν → 0 and ν → ∞
limits, reaching a well-defined peak at ν = 1, that is, ω = α. See Figure 8.3, where
we plot the dimensionless ratio (b/a)3 R = R/M against ν. The maximum remanence
occurs when the input frequency equals the “internal” frequency α = (τT )−1, that is,
when ωτT = 1. Alternatively, we can state that the peak location is proportional to
the cell consumption rate b = 3α. It depends on this parameter alone. The maximum
remanence is

Rmax = R(ν = 1) = 3Mc

2a

[
1 + 1

12

( c

a

)2
]

. (8.20)

3. Discussion

By considering periodic oscillations in the nourishment protocol of a tumor, and ana-
lyzing its growth with a generalization of the WBE model, we have been able to show
that cancer growth has well-defined NCNL features; these are more obvious when
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Fig. 8.3. Generalized remanence as a function of dimensionless input frequency ν = ω/α for p =
2/3, a/c = 0.1 (solid line), and 0.7 (dotted line).

the input frequency is comparable with the inverse of the intrinsic response time of the
system (Figure 8.2c). For smaller frequencies, nonlinearity plays an important role, but
hysteresis is weak (Figures 8.2a,b), whereas for high frequencies, the wide hysteretic
cycles are associated with response delays, not with nonlinearity (Figure 8.2d).

In this chapter we propose that the NCNL features of MTS growth can be exper-
imentally identified by the use of a time-varying nourishment protocol as may be
attained through, for example, peristaltic pump systems. However, NCNL features
should be inherent to cancer growth and do not depend on whether we perturb the
tumor. There is an interesting byproduct of our model: by noting that the location of
the remanence peak is at ω = b/3, we observe that the proposed dynamical exper-
iment generates an independent value of the WBE “steady-state” parameter b. This
is not entirely unexpected, because the response to an oscillatory perturbation of a
physical system often yields information about a steady-state property.

The effects of a changing periodic input could be spontaneously present in can-
cer in vivo: some studies indicate that tumor growth is affected by circadian rhythms
[21, 23]. On the other hand, cancer evolution is likely to be insensitive to fast oscil-
latory processes, such as those associated with the pulsations of blood vessels. Such
processes will satisfy the inequality ωτT � 1: the external input changes too fast for
the system to respond and the hysteretic cycle becomes a circle of negligible radius.

The particular application we considered here corresponds to diffusion-controlled
feeding, but we can consider other energy input mechanisms. This may lead to
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different values for the exponent p and, consequently, to some quantitative changes
in our predictions, but the existence of nonclassical nonlinear features should be a
robust feature of cancer growth, completely independent of the value we select for p.

Cancer growth is a very complex phenomenon. Our model is extremely simplified,
but it clearly exhibits phenomena that are intrinsic to tumor growth. In a more re-
alistic model cell death and other cellular processes must be taken into account in
addition; nonetheless, we expect the central predictions of this chapter to survive the
introduction of further complexity. An approximation in our model is that we have not
introduced any explicit delay between changes in the input and cellular behavior (the
observed response delays are emergent properties of the model). This is a very good
approximation when ωτT < 1 (the cell system accommodates to the changing envi-
ronment), but it is probably a poor approximation if ωτT �1. In this case changes in the
nourishment pattern will average out before the cell system can respond. For instance,
we expect the sharp oscillations apparent in Figure 8.1b to be partially smoothed out.
Some preliminary calculations show, however, that the NCNL response is strengthened
by the introduction of explicit delays.

Finally, if cautiously extrapolated to a more clinically relevant situation, our model
may prove useful as well. For instance, chemotherapy treatment cycles are supposedly
administered in intervals sufficiently long to allow the tumor cell system to quasista-
tically follow the external changes. The possibility of using convenient variations of
the model presented here to predict optimal cycle lengths with regard to the regimen’s
antitumor efficacy is currently under study.
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Abstract
Ecological processes are often influenced by seasonal variations. These variations may generate
complex responses, which can be advantageously analyzed using the concept of nonlinear non-
classical universality. This procedure is illustrated by considering periodic fluctuations in single
species harvesting and seasonal changes in the environment carrying capacity. It is shown that
the ratio between the perturbation period and the reaction time of the associated autonomous
system plays a crucial role in the response, whose spectral components are investigated in detail.

Keywords: Carrying capacity, cycles, ecology, harvesting, hysteresis, nonclassical, nonlin-
earity, periodicity, recovery time, remanence, seasons

1. Introduction

The evolution of ecological phenomena is strongly influenced by seasonal variations,
which introduce periodically varying inputs. A challenge for the ecologist is to un-
derstand the response of a given system to these inputs. A host of single species and
competing species population models have been developed to predict how periodic
variations affect different biosystems [1, 2]. The literature on the dynamical behavior
of ecosystems subject to periodic perturbations is indeed quite extensive, ranging from
general environmental perturbations [3] to predator–prey models with a seasonal func-
tional response [4] to multistrain epidemic models [5]. Some biological species, such
as the flour beetle, have been subjected to very detailed experimental studies and mod-
eling in order to probe the influence of periodic oscillations in relevant environmental
parameters [2, 6].

Strongly nonlinear models for the evolution of interacting species lead to rich dy-
namical structures, but their complexity makes it convenient to enlarge as much as
possible the arsenal of analytical methods. In this connection, we note that the re-
cently discovered universality of nonclassical nonlinear (NCNL) phenomena offers a
potent alternative tool to investigate and predict phenomena related to periodic pertur-
bations [7]. Starting from the observation of nonlinear hysteretic effects in the elastic
behavior of rocks and other materials [8,9], Delsanto and Hirsekorn were able to define
a “nonlinear mesoscopic elastic universality class,” to which such materials as rock,
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soil, and concrete belong [7]. Using a “response box” formalism, they were able to
classify the response of NCNL systems according to their spectral contents.

The main objective of this contribution is to show that relevant ecological phenom-
ena belong in the NCNL universality class, even if their nature is completely different
from that of rock elasticity. We take advantage of universality to borrow hysteresis
diagrams and the concept of remanence from the theory of magnetism, and use these
elements to study two simple paradigms of ecological processes. First, we consider
the periodic harvesting of a single species, and then we investigate the evolution of a
population subject to a periodically varying carrying capacity.

Due to its obvious economic importance related to forest management, insect con-
trol, fisheries, and so on, the problem of harvesting has been the subject of many
studies in the past [1, 10]. With some modifications, these analyses can be adapted
to the associated problems of seeding and pest control. Here we obtain the spectral
response of the harvested population in the case of periodic harvesting, showing that
the strongest NCNL effects occur when the harvesting frequency is approximately the
inverse of the system recovery time. Similar results are obtained when it is the carrying
capacity that oscillates periodically, although the NCNL effects are stronger.

2. The Model

The evolution of a population subject to harvesting can be described using a modified
logistic equation,

d P

dt
= k P

[
1 − P

N (t)

]
− J (P, t), (9.1)

where P(t) is the total population of the species under consideration and k is a positive
constant. N (t) is the carrying capacity of the environment, which may be subject to
seasonal variations, and k(1− P/N ) is the per capita birth rate [1]. The harvesting rate
J (P, t) may depend explicitly on time and on the instantaneous population, although
in this work we assume that it depends only on t .

If N and J are both time- and population-independent, Eq. (9.1) is autonomous and
it is easy to find that there are two equilibrium solutions, P±

s ,

P±
s = 1

2

(
N ±

√
N 2 − 4N

k
J

)
. (9.2)

Because only real solutions are of our interest, there is a maximum limit JM = k N/4
for the harvesting rate. If J = JM , both solutions coalesce to P±

s = N/2. If J < JM ,
and P(0) > P−

s , the population evolves towards the effective carrying capacity P+
s

(< N ). However, if J < JM , but P(0) < P−
s , the population dies out.

After a small perturbation, the population returns to its equilibrium value P+
s over

the recovery time

τk =
√

N/k√
k N − 4J

. (9.3)
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This recovery time grows monotonically as the harvesting rate is increased, starting
from τk = 1/k for J = 0 (a higher harvesting rate leads to a slower population
recovery).

In this work we consider the effect of a periodicity either in the harvesting term
or in the carrying capacity. In this case, following Reference [7], we write the output
function (the instantaneous population) as a Fourier expansion,

P+(t) = P0 +
∑∞

j=1
Pj sin( jωt + φ j ). (9.4)

By defining x = sin ωt , we can write the output relative to the equilibrium position
as [7],

∆P(x) = P+(t) − P0 ≡ G(x) ± H(x), (9.5)

where
G(x) = x[S1 − 2x S2 + (3 − 4x2)S3 − · · ·] (9.6)

and
H(x) =

√
1 − x2[Q1 + 2x Q2 + (1 − 4x2)Q3 + · · ·]. (9.7)

The values of the coefficients Si and Qi depend on the details of the input signal:
Sn = Pn cos φn, Qn = Pn sin φn if n is odd, and Sn = Pn sin φn, Qn = Pn cos φn if
n is even [7].

3. Periodicity in Harvesting: Weak NCNL Effects

Suppose that the environment carrying capacity is constant, but the harvesting rate
J (t) contains a periodic component with period T [11],

J (t) = a + c sin(ωt). (9.8)

Here a and c are, respectively, the amplitudes of the constant and periodic harvesting
components, and ω = 2π/T , where T is the harvesting period. In this formulation
the harvesting yield is externally fixed; that is, it does not depend on the population.
We note that an alternative harvesting strategy would be to consider a population-
dependent yield, for example, writing J (t) = P(t)(a + c sin ωt).

If the harvesting period is much larger than the recovery time τk of the autonomous
(i.e., c = 0) problem, ωτk � 1, the system evolves quasistatically, and the time-
dependent solution will be well approximated by the stationary solution corresponding
to the instantaneous value of the harvesting term

P±
s (t) ≈ 1

2

(
N ±

√
N 2 − 4N

k
[a + c sin(ωt)]

)
. (9.9)

The square root can be expanded in a power series and then the powers of the sine
expressed as a combination of harmonics. Comparing with Eq. (9.4), we readily obtain
analytical expressions for the parameters Pj and φ j , which are valid in the ωτk � 1
regime. Defining
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M = N

2

√
1 − 4a

k N
(9.10)

and

ξ = 4c

k N − 4a
, (9.11)

the first few Pj s are, up to order ξ4,

P0 ∼= M

(
1 − 1

16
ξ2 − 15

1024
ξ4

)
(9.12a)

P1 ∼= − M

2

(
ξ + 3

32
ξ3

)
(9.12b)

P2 ∼= M

16

(
ξ2 + 5

16
ξ4

)
(9.12c)

P3 ∼= M

64
ξ3 . (9.12d)

We also obtain φ1 = φ3 = 0, and φ2 = φ4 = π/2. Note that as the amplitude c of
the periodic harvesting is increased, more intensity is transferred from P0 to the higher
Pi components.

If ωτk � 1, the internal dynamics of the system are too slow to respond to the
perturbation, and the solution is approximately given by Eq. (9.2). For arbitrary values
of ωτk , Eq. (9.1) must be solved numerically. Once the solution is obtained, it can be
Fourier-expanded and the coefficients Pj and φ j evaluated. We solve Eq. (9.1) by using
a simple Euler forward integration scheme, verifying that the results do not depend
on the time step selection. To obtain the parameters for the Fourier expansion of the
population P(t), we consider one period of the stationary solution, using the numerical
data to compute the sine and cosine fast Fourier transforms. It is then straightforward
to compute the amplitudes and phases Pj and φ j .

For all evaluations we have chosen N = 50 and k = 0.2. The results for the ampli-
tudes and phases are shown in Figure 9.1. In the limit ωτk � 1, the results are given
by Eqs. (9.12), although more terms in the expansion are needed to obtain a good
approximation for P3. The amplitudes Pj ( j > 0) decrease as ωτ increases, tending
to zero in the ωτk → ∞ limit: the system has no time to react to input changes and
the response amplitude averages to zero. The phase shift, on the other hand, increases
monotonically with the frequency of the applied signal. It is also clear that the delay
increases with j . The magnitude of NCNL effects results from a combination of high
values of Pj ( j > 1) and large phase shifts. Therefore, we expect NCNL effects to be
strongest at intermediate values of ωτk . To investigate this, we follow Reference [7]
and plot (see Figure 9.2) the hysteresis diagrams corresponding to various values of
the harvesting frequency.

The central lines in Figures 9.2a to 9.2c correspond to G(x), and the upper and
lower lines correspond, respectively, to G + H and G − H [see Eqs. (9.6) and (9.7)].
The diagram shapes can be interpreted using Figure 9.1. For instance, the coefficients
Pj ( j > 0) are comparatively large, whereas φ1 is very small, and φ2 ≈ 1 when
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Fig. 9.1. Amplitudes and phases of the response to a sinusoidal harvesting variation. Here N = 50, k =
0.2, a = 1.3, and c = 1. Eq. (9.12a) yields Lim(ω→0) P0 = 41.446. Note that the vertical scales for the
different panels are alternatively on the left and right hand sides of the figure.

ωτk = 0.14 (Figure 9.2a). The large value of x S1 = x P1 cos φ1 is responsible for the
high G(x) tilt, and the 2x2S2 = 2x2 P2 sin φ2 term is responsible for its bending. The
pearlike cycle shape is due to the high value of x Q2 = x P2 cos φ2 combined with
the small value of Q1. The decreasing value of the output �P(x) with increasing ωτk

is due to the monotonic decrease in Pj ( j > 0).
Figure 9.2b can be understood by noting that, because ωτk = 2.17, φ1 ≈ −2π/3.

Therefore, S1 ≈ −3 cos 2π/3 has less than half the value corresponding to the case
of Figure 9.2a, and the tilt of G is consequently smaller. On the other hand, Q1 ≈
3 sin 2π/3 is rather large, generating a very wide cycle, whose symmetry is guaranteed
by the smallness of Q j ( j > 1).

For Figure 9.2c, ωτk = 7.22, φ1 ≈ −π/2, and all Pj ( j > 1) are negligible. There-
fore G is very small and H ≈ (1 − x2)1/2. The three cases are shown together in
Figure 9.2d, which helps us to compare their features.

It is interesting to note that the hysteresis cycles have a negative tilt. This is at vari-
ance with the results presented in References [7] and [12] and simply indicates that
the oscillating harvesting term initially introduces a negative input in the system. The
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Fig. 9.2. Hysteresis diagrams corresponding to a sinusoidal harvesting variation. We used the parameters
of Fig. 9.1 and ωτ k = 0.14 (a), 2.17 (b), and 7.22 (c). The three results are presented together in (d).

problem of seasonal seeding (e.g., periodically seeding trout in a stream), can be mod-
eled by considering the coefficients a and c in Eq. (9.8) to be negative. In such a case
there is an initially positive input into the system and the hysteresis graphs are again
positively tilted.

As in the discussion of cancer growth [12], a suitable measure of the NCNL reaction
to an external perturbation is the generalized remanence R, which is defined as the
displacement of the output from equilibrium when the driving field vanishes; that is,
at x = 0,

R = |H(0)| =
∣∣∣
∑

j=0
Q2 j+1

∣∣∣ . (9.13)

The remanence is plotted in Figure 9.3 as a function of the dimensionless parameter
ωτk . We see a well-defined maximum when ωτk ≈ 1. It vanishes in the small and large
frequency limits, which correspond, respectively, to regions where the phase shift and
the amplitude of the higher components become negligibly small. For annual periodic
harvesting, the system goes through a cycle once a year, so that the remanence indi-
cates the population depletion three months after the collection reaches its maximum.
For a given value of ω, the magnitude of the remanence will depend on the recovery
time: intense harvesting results in a larger τk , and thus in a displacement towards the
right in Figure 9.3.

4. Periodicity in Carrying Capacity: Strong NCNL Effects

Next, we tackle the problem of an oscillating carrying capacity in the absence of har-
vesting,

d P

dt
= k P

[
1 − P

N0 + b sin(ωt)

]
, (9.14)
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Fig. 9.3. Remanence corresponding to a sinusoidal harvesting variation for the parameters of Fig. 9.1.

with b ≤ N0. It is easy to introduce harvesting, but we prefer to neglect it to keep the
interpretation as simple as possible. If b = 0, the equilibrium solution is Peq = N0.
The response time of the linearized system is simply τk = 1/k. Equation (9.14) is of
the Bernoulli type, and can be integrated using standard methods [13]. If the process
starts at t = 0, we obtain

P(t) = ekt
[

1

N0
+ k

∫ t

0

eks

N0 + b sin(ωs)
ds

]−1

. (9.15)

Although we can evaluate the integral numerically, we use instead the NCNL
methods, which permit a deeper analysis. Under quasistatic conditions, ωτk � 1,
the solution after the initial transitory is given by

P(t) ≈ N0 + b sin(ωt). (9.16)

Comparing with,
P(t) = P0 +

∑
Pn sin(nωt + φn), (9.17)

we find P0 = N0, P1 = b, Pn = 0 (n ≥ 1), and φ1 = 0. The population adapts
continuously to the instantaneous carrying capacity.

In the opposite limit, ωτk � 1, the system records an effective carrying capacity
Neff,

Nef f =
[

1

T

∫ T

0

dt

N0 + b sin(ωt)

]−1

=
√

N 2
0 − b2, (9.18)

which vanishes when b → N0: the rapid oscillations do not permit the system re-
covery, even if periodically the instantaneous carrying capacity reaches a large value,
N = 2N0.

The parameters Pn and φn for arbitrary values of ωτk are obtained numerically.
They are represented, for n < 4, in Figure 9.4, where we chose N = 50, k = 0.2, and
b = 20. We note immediately several important differences with Figure 9.1:



9 Seasonality and Harvesting, Revisited 139

46

48

50

0

5

10

15

20

–2

–1.5

–1

–0.5

0

–π/2

0

0.5

1

–6
–5
–4
–3
–2

−π/2
−2π

0

0.02

0.04

0.06

0.08

P3

P2

P1

P0

0.01 0.1 1 10 100

ω τk

–4

–2

0

φ3

φ2

φ1

–π/2
–3/2 π
–π

Fig. 9.4. Amplitudes and phases of the response to a sinusoidal variation in the carrying capacity. Here
N = 50, k = 0.2, and b = 20. Eqs. (9.15) and (9.16) yield Lim (ω →0) P0 = 50.

(a) P0 decreases with increasing ωτk . For large values of ωτk, P0 → Neff(≈ 45.83).

(b) P1 is positive and quite large for small values of ωτk . In particular, Limω→0 P1 = b,
because the periodic input directly translates into the output first harmonic.

(c) P2 and P3 are not monotonic, but exhibit well-defined maxima at intermediate
values of ωτk . This affects the shape of the hysteresis cycles.

(d) The phases φ1 and φ2 become more negative with increasing ωτk , but φ3 has a
hump about ωτk ≈ 1.

The hysteresis cycles are shown in Figure 9.5 for representative values of ωτk and
the parameter values used in Figure 9.4. As a consequence of the large value of P1

when ωτk = 0.1 (Figure 9.5a), we obtain a very steep growth of G(x): note that
x S1 = x P1 cos φ1 ≈ 20x . In Figure 9.5b we see that G(x) is markedly concave, the
concavity being due to the −2x2S2 ≈ −1.3x2 term. The large value of H(x)—and
the big remanence—follow from Q1 ≈ 8. For ωτk = 10 (Figure 9.5c), φ1 ≈ −π/2
and φ2 ≈ −2π . Consequently, G(x) is very small. The asymmetry in H(x) is due to
the relatively large value of Q2(≈ 0.2). Note that, as in Figure 9.2, the central lines
correspond to G(x), but, because H < 0, the upper lines correspond to G–H .
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Fig. 9.5. Hysteresis diagrams corresponding to a sinusoidal variation in the carrying capacity. We used the
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Fig. 9.6. Remanence corresponding to a sinusoidal variation in the carrying capacity for the parameters of
Fig. 9.4. Note the well-defined peak at ωτk ≈1.

Figure 9.5c clearly exhibits the strong dependence of the evolution of a population
subject to seasonal carrying capacity variations on its intrinsic response time τk . If
the system has a short recovery time, ωτk � 1, it follows the perturbation closely:
population variations are very strong and in phase with the carrying capacity oscil-
lations. As the species’ reaction time is increased, population variations weaken and
become more phase-shifted with respect to the input oscillations; the retardation in-
creases monotonically with the recovery time, reaching a maximum equal to T/4 when
τk � T . The maximum remanence (Figure 9.6) occurs at intermediate values of τk , for
which NCNL effects are strongest. Indeed, the maximum remanence occurs precisely
at ωτk = 1. It is qualitatively similar to the remanence in the harvesting problem, but
substantially larger.
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5. Discussion

The formalism developed in Reference [7] provides us with a general framework to
discuss the magnitude and relative importance of the various components of the re-
sponse of a complex nonlinear system to a periodic perturbation. In this chapter we
have shown that two common ecological phenomena can be described as belonging
to the nonclassical nonlinear universality class. We have therefore studied them using
the NCNL formalism, analyzing their spectral content and obtaining the correspond-
ing hysteresis cycles. In particular, we were led naturally to the concept of remanence,
which is well known in the study of magnetic materials, and which here quantifies the
changes remaining in the system population when the external signal vanishes.

The examples we have considered, which correspond to periodic variations in har-
vesting and carrying capacity, exhibit, respectively, weak and strong NCNL features.
The response strength is controlled by the parameter P1, which corresponds to oscil-
lations having the same frequency, although usually not the same phase, as the input
signal. The bending, deformation, and rotation of the hysteresis diagrams are related
to the coefficients P2, P3, and so on, of the higher harmonics and to the phase shifts.
Strong NCNL effects are characterized not only by a high remanence, but also by a
nonmonotonic dependence of P2, P3, . . . and φ3, . . . with the all-important parameter
ωτk .

We should bear in mind that the emergence of hysteretic cycles does not by itself
mean that the system behaves nonclassically. In some cases, the cycles result from
a simple, “classical,” response delay. A signature of nonclassical effect is the influ-
ence of higher harmonics on the cycle shape. In the cases analyzed in this chapter,
hysteresis vanishes in the limits ωτk → 0 and ωτk → ∞, but for moderately large
values of ωτk , although the cycle subsists, the influence of higher harmonics is weak
and, consequently, the system response is approximately classical. As we have shown,
nonclassical effects are maximized when the natural response time of the unperturbed
system is commensurate with the period of the perturbation, that is, when ωτk ≈ 1.

Of course, the models considered in this chapter offer only oversimplified descrip-
tions of real-life systems, but our goal was to choose simple paradigms to demonstrate
some of the possibilities opened by the inclusion of ecological problems in the NCNL
universality class. We conclude with two remarks.

The applicability of the concept of NCNL to living systems is not restricted to eco-
logical problems. Whenever nutrition or another key element for the survival of a given
species undergoes temporal oscillations, it is likely that the evolution of the resulting
population can be analyzed using the NCNL formalism. Work in this direction has
already started in the case of cancer cells [12]. The formalism could also be advan-
tageously applied to investigate cell processes occurring in the presence of natural
periodic variations, for example, intracellular calcium oscillations [14].

NCNL properties are explicitly brought out by the application of periodic perturba-
tions, but they should also be present in the case of other perturbations. More theoreti-
cal work is required to determine precisely the class of nonlinear problems that should
be expected to exhibit NCNL properties, which appears to be vast, and to develop the
tools to analyze the case of nonperiodic perturbations.
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Abstract
This chapter describes how economic theories approach the concept of nonlinearity and gives
several examples. Although economics is a complex nonlinear system, nonlinearity is a recent
concept in economics. Yet there are several phenomena that can be described only by nonlin-
ear models. Power law distributions, economic scaling, out of equilibrium systems, and self-
organizing criticality are evidences of nonlinearity. Different economic theories that deal with
nonlinearity are reported. These models are the first nonlinear models introduced in economics
and they are purely theoretical models without any connection to empirical evidence. Finally
some empirical evidence of nonlinearity and the recent nonlinear models based on them and on
bounded rational economic agents are described.

Keywords: Economics, linear and nonlinear models, neoclassical economics theory, nonlin-
ear dynamical systems, nonlinearity, power law, scale free distributions, scaling, self-organizing
criticality

1. Nonlinearity in Economics

Economics is a quite recent science. During the second half of the eighteenth century,
for the first time Adam Smith and Ricardo tried to explain the economical behavior
making economics a distinguished science. But it was only during the middle of the
nineteenth century that a mathematical formalism was used to explain economic prob-
lems. The mathematical tools developed and used in physics were applied directly to
economics. Physics concepts were also applied to economics, in particular the mech-
anistic worldview. According to this view if one knows the initial condition of a phe-
nomenon and the rules that govern it, then one can also determine the future dynamics
of the observed phenomenon. Unlike in physics, where the mechanistic approach was
overcome by quantum mechanics, in economics the mechanistic approach still exists
in present economics theory, known as mainstream or neoclassical economic theory.
Neoclassical economic theory is based on scientific determinism, where the economic
agents are rational, assessing all information, and they all behave in the same way
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maximizing their utility function. Based on these unrealistic hypotheses, this theory
is not able to describe real economic behaviors. Most of the models developed by
neoclassical economic theory are linear models and describe only time-independent
properties at the equilibrium. The general approach used by neoclassical economics in
model development is called the top/down approach: the models are pure mathemati-
cal and theoretical without any connection to empirical evidence. It was not until the
1980s and 1990s that neoclassical economic theory considered the dynamical proper-
ties of economic systems (Benhabib 1992 and Lorenz 1997), and started to develop
nonlinear models. Examples of these nonlinear models are presented in the next sec-
tion. The nonlinear models developed by neoclassical economics are just extensions
of existing linear models.

Unlike neoclassical theory, the starting point of all models developed by econo-
metrists is always empirical evidence. In econometrics the models are based on
empirical data and their goal is to reproduce real data. Although econometrists started
using simple linear models, they also built measurements and tools to determine if the
empirical data series have chaotic behavior. This interest in chaotic behavior led them
to use also nonlinear models to obtain short-term forecasts.

In the 1950s Herbert Simon introduced a big innovation. Unlike the neoclassical
economic theory, Simon introduced the concept of bounded rationality. He argued that
economic agents often fail to maximize profits, making decisions without assessing
all information and long-term effects, contrary to the neoclassical theory hypotheses.
These ideas are the foundations for the economy as a complex evolving system.

The next sections give some examples of how economics has been dealing with
nonlinearity. In particular I start with some models from neoclassical economic theory
such as Pohjola, Chiarella, and Day. I end up describing some empirical evidence of
nonlinearity and more recent nonlinear concepts, such as power law, scaling, and self-
organizing criticality.

2. From Linearity to Nonlinearity

Although most of the economics phenomena are complex and nonlinear, many of the
theoretical models used to describe these phenomena are linear. Only at the end of the
1980s did economists start to develop nonlinear models. These models are extensions
of linear dynamics models to which some nonlinear features are applied. Many of the
assumptions used in expanding linear models are very artificial and ad hoc.

An example of how economics moved from linear to nonlinear dynamical systems
is the extension of the Goodwin model (Goodwin 1967). In 1967 Goodwin introduced
a very simple, conservative, dynamical model based on the linear Lotka–Volterra
predator–prey model. Goodwin described a two-sector model: the first sector consists
of capitalists and the second one of workers. Workers spend all their income and cap-
italists save all their income. The employment rate represents the prey and the labor
income share is the predator. When there is no employment the labor income share
tends to zero, and vice versa: when the labor income share tends to zero, the employ-
ment rate increases. The resulting dynamics implies that the “capitalistic economy” is
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oscillating permanently. In 1981 Pohjola developed a discrete-time version of the orig-
inal model (Pohjola 1981). This extension of the linear Goodwin model is a nonlinear
model showing chaotic behavior. Chiarella (1990) introduced instead a lag structure
in the growth rate of real wages, transforming the model into a nonlinear dissipative
system.

Other examples are the standard neoclassical growth model (Day 1982), and the
IS-LM framework, in which the investment function possess some strange properties
(Day and Shafer 1991).

3. Hysteresis in Economics

Hysteresis is a phenomenon used not only in physics (e.g., see the first chapter in this
book), but also in economics. In economics hysteresis can be introduced at the micro
and macro levels. A classical example of hysteretic behavior in microeconomics is due
to the presence of sunk costs (Baldwin 1989). In order to enter a new market, a firm
has to pay an entry cost that cannot be recouped. This entry cost is treated as a sunk
cost by the firms that are already in the market. The firm will enter the market only
if the revenues cover the sunk cost. A price level above the sum of variable and sunk
cost will trigger the entry of new firms in the market. If a firm is active in the market
and the price decreases below the entry price level, the firm will not leave the market.
The firm will stay in the market until the price is greater than the variable production
cost. Thus the number of firms active in the market is a variable that depends not only
on current prices but also on the firm’s history.

A firm i decides at time t if it will produce one unit of output or none: xi,t ∈
0, 1. There are two different cost components for the production of an output unit: the
variable cost ci and the fixed cost fi . If the company has not produced in the previous
period, the company is subject to the fixed cost in the next period. So the unit cost Ci

at time t is Ci,t = ci if xi,t = xi,t−1 = 1, Ci,t = ci + fi if xi,t−1 = 0 and xi,t = 1, and
Ci,t = 0 if xi,t = 0. The firm i will decide to produce an output unit xi,t if the price
at time t exceeds the production cost: pt ≥ Ci,t . The supply function will follow the
hysteretic loop in Figure 10.1.

A B

CD

inactive

active1

0
pt

xi,t

ci ci+fi

Fig. 10.1. Supply with sunk-costs. The firm produces 0 or 1 unit of output, ci is the variable cost, and fi

is the fixed cost of market entry.
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At the macro level, the main economic problem is to aggregate the microbehavior
of heterogeneous firms i = 1, . . . , n. This can be done using the aggregation proce-
dure of Mayergoyz (1986) introduced to economics by Amable (Amable et al. 1991).
This procedure, developed in physics to model magnetic properties, has been used to
describe the hysteretic nonlinear behavior in rocks, as one can see in different chapters
in this book (Chapters 1, 4, 11). We call Ci the cost level that triggers the entry of the
firm in the market and ci the level that triggers the firm’s exit. Every firm is defined by
the pair (Ci , ci ); all possible combinations of C − i and ci cover the area above the 45
line in the first quadrant because Ci ≥ i . The combinations of Ci and c j on the 45 line
are the nonhysteretic firms with fi = 0.

Figure 10.2, panel 1, shows the PM-space when there is a price increase. The initial
condition is with price p = 0, therefore no firms are active in the market. Let Fa be
the set of active firms and Fi the set of inactive firms. A price increase triggers the
entry of new firms in the market expanding the grey area Fa of active firms. If there is
a subsequent price decrease firms start to leave the market. A firm leaves the market
if the price p is lower than its variable cost ci . Depicted in Figure 10.1 panel 2 is the
effect of the price decrease on the number of active firms Fa , the grey area. Panels 3
and 4 of Figure 10.2 show the effect of a successive price increase and price decrease

C

c

C = c C

c

C = c

C = cC = c

1) price increases
C

c c

C
2) price decreases

3) price increases again 4) price decreases again

Fa

Fi

Fa

FaFa

Fi

FiFi

Fig. 10.2. PM space. Each point represent a firm identified by the variable cost ci and the market entry
cost Ci .
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Fig. 10.3. Hystertic loop of firms’ aggregate output.

on the number of firms active in the market. The aggregation of microhysteretic be-
havior, such as the ones described for the single firm, leads to a hysteretic behavior at
the macro level. The firm distribution in the cost space is very important: a uniform
distribution implies a continuous macroeconomic loop such as shown in Figure 10.3.
Information on the density distribution determines the curvature of the branches in Fig-
ure 10.3. Hysteresis is a source of path-dependent multiple equilibria and multibranch
nonlinearity. In economics there are other examples of hysteretic systems such as the
work of Baldwin and Krugman (1989) on exchange rates, Cristophe (1997) on the
value of U.S. multinational corporations, and Ljungqvest (1994) on hysteresis in inter-
national trade. In empirical economic research an econometric model that attempts to
describe hysteretic macrodynamics was proposed by Piscitelli et al. (2000).

4. Scaling in Economics

In general, systems out of equilibrium and nonlinearity are associated with power law
distributions. This is valid also in economics where there is much empirical evidence
of power law distributions. A power law is a relation of the form f (x) = kx−α , where
x > 0 and k and α are constants. Power laws are a necessary and sufficient condi-
tion for scale free behavior. A scale free behavior suggests that the same underlying
mechanism is responsible for similar behavior at different scales.

Pareto introduced the first example of the power law in economics. He observed that
in Italy 80% of the land was owned by 20% of the population. This observation led
Pareto to investigate the phenomenon more in general and conclude that, in all coun-
tries, wealth distribution follows a power law, P(x) = kx−α (Pareto 1896). Figure 10.4
shows a rank plot of the annual income of the 500 richest people in the world for the
year 2002. The parameter α is close to −1. One model that can describe the Pareto
distribution is a simple nonlinear stochastic process: a multiplicative process with a
reflecting barrier, x(t + 1) = x(t)a(t), with x(0) and a(t) positive random numbers
and a barrier that reflects x(t) when it becomes negative.
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Fig. 10.4. World richest people wealth rank plot based on 2002 Forbes data. The power law exponent alpha
is close to −1.

Another famous power law is the Zipf law, named after the linguist George Zipf
(Zipf 1949, 1932 and Axtell 2001). He observed statistical regularity in the distribution
of words used in any large text. If we rank the words according to the frequency f of
their occurrence, as a function of the rank r we find a power law distribution (Zipf’s
law) f (r) ∼ r−α with α ∼ 1. Zipf also observed that a similar power law can describe
the distribution of cities’ sizes (Gabaix 1999). If we rank the cities by population size
and plot the rank versus their frequency in a log–log scale, we obtain a power law with
slope α = −1.

There are many examples of power laws in finance. The two most important ones
are the power laws in stock returns and cluster volatility. The autocorrelation function
of absolute price changes (volatility) is a long memory process that decays as τ−α

with 0.2 < α < 0.5 (Ding et al. 1993, Poon and Granger 2003, and Mantegna and
Stanley 1999). Signed prices are uncorrelated but absolute price changes are strongly
positively autocorrelated. Figure 10.5 shows the autocorrelation function of the ab-
solute difference of log prices for the “Vodafone” stock listed on the London Stock
Exchange. The autocorrelation coefficients follow a power law with exponent α close
to −0.4. This phenomenon is called cluster volatility. Cluster volatility is not consis-
tent with the mainstream economic equilibrium models and efficient market hypothesis
because price changes are supposed to occur in the presence of new information. But
Cutler et al. (1989) showed that there is no significant relation between news and price
changes.
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Fig. 10.5. Autocorrelation function of Vodafone log returns in double logarithmic scale. The power law
exponent α is close to −0.4.

Another example of the power law in finance is the returns distribution. We de-
fine returns as the log price changes, r(t) = log p(t − τ). Several empirical studies
(Ghashghaie et al. 1996, Fama 1965, Lux 1996, Mantegna and Stanley 1995 and 1999,
Mandelbrot 1963, and Plerou et al. 1999) show that returns on short time scales are
distributed as a power law with exponent 1.5 < α < 6.

The volatility long memory autocorrelation has an important consequence on risk
measures and option pricing. Risk can be estimated using a volatility measure. But
if the absolute returns are strongly correlated because of the cluster volatility, then
the estimated variance from the sample is lower than the real variance causing an
underestimation of risk. Option pricing is also affected by the power law distribution
of returns.

4.1 Process That Generate Power Law Distribution

There are many ways to generate power laws. Nonlinear stochastic processes can pro-
duce power laws. As we mentioned previously, the Pareto power law distribution can
be described by a multiplicative random process with reflecting barrier.

Another example is the preferential attachment process introduced by Yule, which
has been used to explain the power law of the node degree distribution in a graph. The
best known example of a graph with such properties is the World Wide Web (WWW),
where the distribution of the number of links that a page receives is distributed as a
power law (Barabasi et al. 1999). For this example a preferential attachment process
can be described in the following steps: we add a new Web page and we link it to the
Web pages present in the network randomly. Each Web page in the WWW has a prob-
ability to be chosen that is proportional to the number of Web pages that are pointing
to it. Therefore if many pages link a Web page, this page has a higher probability to
be chosen. In economics the firm’s growth follows a power law distribution (Gibrat’s
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law), and this process can be described using preferential attachment exactly in the
same way as the WWW example (Ijiri and Simon 1977).

Scale free distributions are also associated with out of equilibrium phenomena that
are close to particular phase-transition regimes or “critical points.” The parameters
of such systems have to be carefully tuned in order to reach the critical point, where
we observe that the system relaxes following a scale free distribution. An example in
physics is the power law distribution of water bubbles’ size at the boiling point. The
critical boiling point can be reached only if the value of the system temperature is
properly chosen.

There are, however, some systems that tune themselves to the critical point. At the
critical point there is no natural scale for the fluctuation’s size. The scale free fluctu-
ations arise while tuning in a self-organized manner: this phenomenon is called self-
organizing criticality (Bak et al. 1987). An example of a large nonlinear dissipative
system that shows self-organizing criticality is a sand pile. Imagine dropping sand
over a clean table. The sand is going to pile up until it starts creating avalanches and
falling off the table (dissipation). The avalanches’ sizes are distributed as a power law.

Economists have applied the self-organizing criticality concept to different fields
in economics. A well-known example is the Scheinkman and Woodford model
(Scheinkman and Woodford 1994). They used self-organizing criticality to explain
the fat tails in the inventory distributions of production chains. Nirei incorporated the
concept in a real business cycle model. There are also applications of self-organizing
criticality to financial markets, currency markets, and industrial organizations (Focardi
et al. 2002).

5. Conclusions

Economics is a complex nonlinear discipline in continuous evolution. Heterogeneity
among agents, simple nonoptimal behaviors, and complex interactions are perhaps the
real sources of nonlinearity of the observed data.

As described in this chapter, there are nonlinear models but they are not yet very
successful. The “failure” of these models is in part due to two facts. First, these models
are just extensions of already existing simple linear models. Second, the models are
developed without taking into account empirical observations. From the economic data
point of view it is very hard to establish the existence of deterministic chaos in the real
time series. If chaotic behavior is observed then long-term predictions are infeasible.
Vice versa, if we consider a short time scale, nonlinear models can provide better
predictions than linear ones.

Even very simple nonlinear dynamical systems generate very complex dynamics. If
we choose the right nonlinearity, then we can model almost any particular dynamical
phenomena. But data (over)fitting is not the goal of economics. The real goal is instead
the abstraction of complex phenomena in a parsimonious model.
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Abstract
In this chapter we present and discuss a physical mechanism of stress–strain hysteresis in
microcracked solids. Four steps are considered. Step 1: Starting from a random collection of
noninteracting microcracks with rough surfaces we built up an expression for the potential en-
ergy of such a particular system. This potential consists of three terms: adhesion energy of crack
surfaces, strain energy of the surrounding bulk material, and strain energy of local deformations
arising due to alterations of the crack apertures. Step 2: We examine and establish the conditions
under which this potential contains two separated minima, representing a bi-stable system. Step
3: Stress–strain hysteresis is found to result from transitions in the double-well potential due to
external impact. Finally, in Step 4, we show that the Preisach–Mayergoyz (PM) formalism can
be applied to the considered system, yielding predictions of static and dynamic nonlinearity.
The principal difference between the proposed approach and phenomenological models is that
the parameters of hysteretic elements and their distributions are not arbitrary but are deduced
from an analysis of the micro-geometry of the crack network.

Keywords: Double-well potentials, microcracked solids, stress–strain hysteresis

1. Introduction

It is reasonably safe to state that pure, uniform, and regular materials are exceptional
in common life. Ninety-nine percent of the time, mankind produces, treats, and uses
materials that have impurities, irregularities, inclusions, and defects that are inher-
ent properties of their microstructure. Most well-known examples are geomaterials,
such as volcanic (granite, basalt, etc.) and sedimentary rocks (sandstones and lime-
stones, slates, etc.), as well as artificial cementitious materials such as concrete, mortar,
and roofing slate used in construction. Polycrystalline metals and alloys constitute a
third exemplary class of materials with an outspoken grainy microstructure. In gen-
eral, all solids that are not single crystals can be regarded as materials with inherent
random structure at a mesoscopic scale, that is, at a scale which significantly exceeds
the atomic size but is still small compared to macroscopic dimensions.
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Internal defects can be roughly categorized in three types: 1-D dislocations, 2-D in-
ternal contacts/cracks, and 3-D pores/voids. Among these, the second type of defects
is by far the most essential in terms of material performance. Indeed, influence of dis-
locations is negligible if we speak about seismology or building construction, whereas
pores and voids usually contribute to the most interesting material properties much
less than cracks and contacts do (e.g., failure loads, acoustic and static nonlineari-
ties, sound attenuation, etc.). This makes microcracked solids an extremely important
class of materials, and justifies the fact that an accurate description of their mechanical
properties is critical.

2. State of the Art

Researchers working in the field of nonlinear elasticity and acoustics of microstruc-
tured solids can be conditionally classified into two groups. One group proposes basic
physical microscopic mechanisms that qualitatively explain experimentally discovered
macroscopic features. The other group tries to build phenomenological models without
asking what physics actually accounts for the declared properties, and seeks quantita-
tive signatures in the model–data comparison. The latter approach is close to a pure en-
gineering application. Both approaches have experienced a considerable breakthrough
in the last decades. An up-to-date review is presented by Ostrovsky and Johnson,1

Nazarov et al.,2 and also Chapter 4 of this book.

2.1 Physical Mechanisms of Nonlinearity

As early as 1960 to 1970, there was considerable interest in the mechanism behind
the nonlinear attenuation of seismic waves in rocks. The oldest explanation proposed
in classical papers by Walsh3 and others4, 5 consisted in hysteretic frictional sliding
between grain contacts and grain boundaries. For nearly 30 years hysteretic friction
was believed to be the dominant mechanism. In 1994, Tutuncu and coworkers pointed
out certain discrepancies of the traditional approach under high ambient pressure.6

The alternative explanation of Tutuncu et al. consists in adhesion hysteresis, and
accounts for hysteresis and losses even if the contacts are strongly compressed and no
intergranular friction is possible. The explanation was, however, only qualitative, and
the quantitative theory that predicts the shape of the stress–strain hysteresis from sta-
tistical data on microgeometry was not built. Along the same line, Pecorari7 recently
proposed an advanced model of adhesion hysteresis for an interface between two rough
surfaces (see also Chapter 19). These results offered a meaningful example of elemen-
tary bonds with a nonunique constitutive behavior resembling that of a two-state relay
used in phenomenological models, and with dynamics similar to the acoustic nonlinear
properties of rocks known from macroscopic experiments.

Even though appealing as such, adhesion hysteresis, as a microscopic mechanism,
can be dominant only for relatively small strains (acoustics), that is, when cracks acti-
vated in this process typically have apertures comparable to the atomic size. However,
as soon as the deformation achieves millistrains, much wider cracks will be opened



11 Micropotential Model 159

and closed, and therefore hysteretic jumps of a few nanometers induced by adhesion
will be negligible at these deformation levels.

Apart from adhesion hysteresis and friction, several alternative physical mechanisms
may also contribute to the specific hysteretic constitutive behavior of materials with
internal cracks. Examples are the stick–slip motion of asperities8 and the movement of
dislocations.9 The latter concept was used by Nazarov et al. in the late 1980s (recently
summarized2 in 2003) as an explanation of hysteresis of polycrystalline metals and
geomaterials. In addition, Kim et al.10 demonstrated that hysteresis in the stress–strain
relation may follow directly from the elastoplasic loading and elastic unloading of a
single rough contact.

In this chapter we present a supplementary approach for the description of nonlin-
earity both at small (acoustics) and high (static tests) strains (for details see Aleshin
and Van Den Abeele11). We combine a micromodel for adhesion with statistical data
on the microgeometry of a material. Doing so, we build up the potential energy of a
microcrack system as a function of a distribution of the crack apertures and the total
strain in the material. A detailed analysis of the potential shows that there are certain
conditions for which some of the microcracks have two minima, depending on the
external impact. The existence of hysteresis is attributed to transitions of the system
between these equilibrium positions. The double-well potential is the result of the sum
of the adhesion energy and the strain energy of the intact material, and causes the
macroscopic stress–strain hysteresis and nonlinear effects in microcracked materials.

2.2 Phenomenological Models

The more phenomenological approach to dealing with hysteresis and its effects on
macroscopic static and dynamic processes was brought into scope by Ortin12 and, in-
dependently, by Guyer et al.13 who applied the well-known formalism of the Preisach
space (proposed for ferromagnetics in 1935 by Preisach14 and generalized for a rate-
independent hysteresis of arbitrary nature by Krasnosel’skii and Pokrovskii15) to the
problem of elasticity of geomaterials. This phenomenological approach, referred to
as the PM-space formalism, uses a two-state relay for “open” and “closed” cracks. It
inspired a new wave of interest in the subject through a large number of papers on
the description and links between static and dynamic hysteresis,16 hysteretic acousti-
cal nonlinearity in damaged materials,17, 18 complicated triaxial static stress tests,19

and tensorial representation of stress–strain hysteresis.20 Without concentrating on the
physical nature of hysteresis and micromechanics, these studies solved certain practi-
cal problems of material characterization and produced plausible constitutive relations,
similar to those required by engineers to model static and dynamic processes in com-
plicated 3-D structures. However, the negligence of the underlying physical nature
of these materials and the disregard of the frictional and adhesion properties of the
contacts, inevitably led to a deficiency in the description of particular experimentally
observed features: temperature21 and humidity22 effects on the nonlinearity, slow dy-
namics,1, 21 and so on. This is obvious because phenomenological models are intended
to solve particular problems only and will never capture the whole picture.
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The methodology we present in this chapter leads to the construction of a PM-space
and its density, just as in the phenomenological approach. However, the parameters of
the elementary hysteretic units are not arbitrary. They can be calculated from statistics
of a realistic crack network. On the other hand, we use only one of the possible mech-
anisms for hysteresis and make some severe assumptions in the analysis, so that the
obtained description has a qualitative character only.

3. Typical Geometry of a Crack Network and Definition of
Its Statistics

Modern visualization techniques enable us to view crack networks in microcracked
materials via electron or optical microscopy. One of these techniques23 consists in fill-
ing the cracks with Wood’s metal and in subsequently polishing a section of a sample.
The quality of visualization is adequate for statistical analysis of the microgeometry
of the section, and corresponding methods of stereology yield 3-D parameters of the
crack network.24 Two parameters are of particular interest: the total area of crack SV

per unit of volume and the total length LV of all crack ends (tips) per unit of volume.
Typical values of SV were measured by Nemati and Stroeven24 for concrete. Values
of LV have never been measured, however, in principle, this parameter can be de-
duced from a similar analysis as well. Figure 11.1 illustrates the definition SV and LV

graphically.
Crack networks typically have a fractal nature, implying that their parameters de-

pend on the magnification. However, being a physical fractal, the fractal scaling law
breaks down for scales approaching the atomic size, and the definition of SV and LV

becomes unambiguous in that case.
At the highest magnification23 crack networks resemble a collection of plane cracks.

Of course, this may be attributed to the limitations of the experimental technique (i.e.,
Wood’s metal can not penetrate in too-narrow cracks). In spite of this, and even though

“rest ”state

current (deformed) state

ξ

tip point
forming LV

(line in 3D)

midpoints
forming SV

(surface in 3D)

Fig. 11.1. Illustration of the definition of the local rest aperture and the local deformed aperture for an
elementary quasiplane crack. The midpoints define the total crack area (per unit of volume) and the tip
points the total length LV of the tips (per unit of volume). Both are shown in gray.
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images of microcracks in other materials may look different, we assume that the small-
est cracks are almost plane and clearly separated one from another.

Having accepted this (rather severe) assumption of the existence of the elementary

quasiplain crack, we define its aperture as the separation vector
→
ξ (see Figure 11.1).

averaged over the elementary crack, and its roughness D as the standard deviation of its

modulus ξ =
∣∣∣∣
→
ξ

∣∣∣∣. Considering the case of pure uniaxial deformations, and neglecting

all shearing motions of the crack surfaces (another strong assumption), it is sufficient
to consider one projection of this vector only.

In order to construct the micropotential of an elementary crack we need information
about the following parameters: the current/actual crack aperture a, and the initial
crack roughness D and aperture A in the absence of adhesion and external forces (“rest
aperture”). The parameters A and D of an individual elementary crack are considered
to be its inherent characteristics. We assume that they may be different for different
elementary cracks and we therefore introduce a corresponding distribution f (A, D).
In the usual sense, f (A, D)d Ad D is the probability of finding the element in (A, A +
d A)×(D, D+d D) and

∫
f (A, D)d Ad D = 1. The distribution is regarded as a given

and unchanging characteristic of a material (which can be determined by visualization
techniques of crack networks).

4. Micropotential of an Elementary Crack

Now let us consider an individual elementary crack with inherent parameters A and D.
We build up an expression for its potential energy as a function of its actual aperture
a. Because some of the points belonging to opposite crack surfaces can be in atomic
contact, the adhesion energy of the crack will be changing with varying apertures.
Furthermore, aperture variations impose local deformation of the surrounding intact
material which yields a corresponding energy storage. We treat these two contributions
(adhesion potential and local strain energy) consecutively in the following subsections.

4.1 Adhesion Potential for Cracks with Rough Correlated Surfaces

The semiphenomenological consideration that we set out in this section is different
from the traditional contact mechanics of rough surfaces with adhesion, dating back to
the 1966 paper by Greenwood and Williamson.25 The reason for the difference is that
contact mechanics generally treats uncorrelated surfaces, whereas uncorrelated rough-
ness completely eliminates the effect of adhesion.26 In the case of internal cracks con-
sidered in this chapter, the surfaces are essentially correlated (conforming), because the
cracking originated, for instance, from processes of solidification, differential stresses,
or thermal loading where the faces or “coasts” of the crack up to that time formed
an intact entirety. For such contacts the adhesion effects and the pull-off forces are
substantial.

Instead of a proper development of the contact mechanics for correlated cracks,
we present an estimated calculation based on empirical facts. As a start, we recollect
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that researchers27, 28 have found that rock joints (another example of a contact with
correlated surfaces) possess a lognormal distribution of apertures.

For the adhesion energy per unit area of a quasiplain contact W (a) we can therefore
write that

W (a) =
∞∫

0

w(ξ)ϕ(ξ)dξ, (11.1)

where w(ξ) is the adhesion potential for a purely planar contact and ϕ(ξ) is the postu-
lated lognormal distribution:

ϕ(ξ) = eh/2

a
√

π h
exp

(
− 1

h ln2
(

ξ
a e3h/4

))
. (11.2)

Here h is a parameter that implicitly relates the standard deviation D to the current
aperture:

D = a e−3h/4
√

e2h − e3h/2. (11.3)

For the adhesion potential w(ξ) of parallel surfaces we use the expression given by
Israelachvili29 which is the result of integration of the Lennard–Jones potential (also
referred to as the 6–12 potential or the potential of the Van der Waals force):

w(ξ) = H

12π

(
− 1

ξ2
+ a6

0

60

1

ξ8

)
, (11.4)

with H the Hamaker constant of the material and a0 the atomic size. Bringing together
Eqs. (11.1)–(11.4) one simply obtains:

W (a) = H

12π
γ 3

(
− 1

a2
+ a6

0

60

γ 33

a8

)
, (11.5)

where γ = 1 + (D/a)2.
This primitive contact mechanics theory, despite its simplified character, reflects

some principal features of correlated contacts.

• The distribution ϕ(ξ) of the gap ξ is highly asymmetric at comparable a and D
(partial contact), implying that small separations are preferable to larger ones. This
means that the surfaces are statistically conforming.

• The implicit use of the potential for interacting planes also reflects the fact that we
deal with correlated contacting shapes, whereas the traditional contact mechanics,
following Greenwood and Williamson,25 treats interactions of spherical asperities
(Hertz problem).

• The resulting potential [Eq. (11.5)] always has one minimum; that is, there is al-
ways a nonzero pull-off force. Its value is largest for perfectly conforming contacts
(D = 0) and smaller for less and less correlated surfaces. The presence of the
pull-off force also means that the material is consolidated.
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• The minimum of the potential w(ξ) [Eq. (11.4)] or W (a) for D = 0 yields a
surface energy Γ = 151/3 H/(16πa2

0). Moreover, when we approximate the po-
tential w(ξ) at its minimum by means of a parabola, we can estimate the Young
modulus: E = 151/2 H/(πa3

0) for a material with perfect contacts (for instance,
a strongly consolidated geomaterial with weak stress-strain hysteresis). If we as-
sume a typical value for the Hamaker constant and the atomic size (H = 10−19 J
and a0 = 3 10−10 m), we obtain that Γ ≈ 5 · 10−2 J/m2 and E ≈ 5 · 109 Pa, which
are indeed reasonable values too.

4.2 Estimation of the Stabilizing Potential of Crack Tips

So far, we have simply modeled the crack network as a system of adhesive planes.
Such a representation inevitably leads to the following consequence: if all cracks are
widely open and the adhesive force is negligible, the material becomes unconsolidated
and is destroyed. However, in reality, the condition in which all cracks are open is not
sufficient for failure because the material is essentially held together as a whole by the
crack tips. More precisely, every applied tension that widens the crack aperture leads
to an increase of the potential energy due to the high stress concentration in the vicinity
of the crack tips and extra deformation parallel to crack surface. Figure 11.2 illustrates
this situation in a qualitative manner: tension applied to a sample tends to tear up the
material in near-tips zones and stretches the layers parallel to the crack surface (as well
as deforming them in the vertical direction).

The stress analysis of a nontrivial crack network is extremely complicated, and here
we limit ourselves to a simple and rough estimation for the additional potential energy,
based on the theory of Hertz contact (see, for instance, Landau and Lifshitz, 198630).

We consider the contact of two balls of radii R and R′, having elastic moduli E
and E ′ and Poisson ratios ν and ν′ respectively. Assuming a compression force F , the
radius of contact b between the two balls then is given by:

b = F1/3 (
K R R′/

(
R + R′))1/3

, (11.6)

Fig. 11.2. Qualitative scheme of tensile deformations in the neighborhood of an isolated crack.
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δ
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R ′

∆

Fig. 11.3. Modification of the Hertzian problem for interaction of an elastic half-space with a spherical
dent of depth � and a rigid sphere of a radius R′.

and the displacement of the balls’ centers by:

δ = F2/3K 2/3 (
1/R + 1/R′)1/3

, (11.7)

where
K = 3

4

((
1 − ν2

)
/E + (

1 − ν′2) /E
)
. (11.8)

In the usual Hertz theory, the radii R and R′ are considered to be constant and
the radius b of the contact is the variable parameter. For our purposes, the approach
is somewhat different. Here, we assume that the contact radius b remains constant
during the indentation. Furthermore, we assume E ′ = ∞ (rigid material), and consider
the radius R′ to be a function of δ such that b remains constant (see Figure 11.3).
This situation actually describes the interaction of a half-space containing a spherically
dented area of constant radius b, with a rigid sphere with variable radius R′. Combining
Eqs. (11.6)–(11.8), we obtain the following expressions for the force and the potential
energy:

F(δ) = 4

3

E

1 − ν2
b δ, P(δ) = 2

3

E

1 − ν2
b δ2. (11.9)

Note that all values related to the rigid sphere have disappeared. Consequently, the po-
tential energy characterizes the elastic deformation of a half-space with a dent of depth
� and surface area πb2, whose dent is slightly displaced in the direction perpendicular
to the surface over a distance δ.

Following elementary calculus, it is easy to verify that the average depth for a small
spherical dent equals 2/3 of its maximum depth. Because a crack is formed by two
half-spaces, we associate 2�/3 with A/2, 2(� + δ)/3 with a/2 and multiply P(δ)

by 2.
If a representative volume V contains n round cracks with radius b, the total surface

and perimeter length (tips length) amount to SV = nπb2/V and LV = 2nπb/V .
Hence, b = 2SV /LV and the concentration of cracks n/V equals L2

V /(4π SV ). As a
result, the total potential energy per unit of volume reads:

T (a) = 2P(δ)
n

V
= 3

8π

E

1 − ν2
LV (a − A)2 . (11.10)

This form can be used as a rough estimation of the extra potential energy associated
with the presence of tips in the crack network. Despite the ad hoc assumptions and its
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qualitative character, it describes the physical situation in a rather plausible way. Note
that the extra potential and the corresponding strengthening of the material associated
with the presence of tips are essentially proportional to LV . In fact, the above con-
sideration and derivation only provides evidence for the fact that an extra term in the
potential due to the tips should have the dependence T (a) ∼ LV (a − A)2.

In deriving Eq. (11.10) we assumed that the straining does not produce additional
damage (because crack radius b was a constant). This way, all considerations proposed
in this chapter are only valid at moderate stresses that do not change the degree of
damage of the material.

5. Lagrangian Formalism for a Material Containing Identical
Elementary Cracks

We first formulate the micropotential approach for the simple case when all elementary
cracks are identical (have identical A and D). After examining some principal features
in the evolution of such a system we proceed to a real case of a nontrivial distribution
f (A, D).

We introduce the displacement u(x, t) and the strain ∂u/∂x ≡ ε(x, t) as functions
of the spatial coordinate x and time t . The total deformation of the material can be ex-
pressed as the result of two mechanisms: deformation (strain ε∗) of the intact material
zones and changes of the crack apertures. Therefore we write:

ε = ε∗ + SV (a − A). (11.11)

Here S(a − A) is the change of the crack volume caused by the aperture variation,
summed over all cracks in the volume V (SV = S/V ). In the same equation, ε∗
denotes the mean (uniform) strain of the intact material in the zones away from the
cracks. In the vicinity of the cracks, the strain is largely distorted by the deformations
of the crack surfaces as discussed in the previous section. However, because we believe
the cracks to be rare events, we may assume that the zones of extra distortion are small
too. Assuming Hooke’s law for the intact material, the total potential energy � for a
representative unit of volume is then given by

� = 1
2 Eε∗2 + SV W (a) + T (a). (11.12)

We repeat that this form is reasonable only in those cases where the strain energy
1
2 Eε∗2 is distributed in the intact zones and strain energy T (a) is localized in the
vicinity of cracks. Only then is it permissible to sum up the two strain energies without
cross-terms.

Combining Eq. (11.11) and Eq. (11.12), we build up the Lagrangian of the system:

L (u, ux , ut , a, ax , at ) = 1
2ρ u2

t − 1
2 E (ux − SV (a − A))2−SV W (a)−T (a), (11.13)

where ρ is the equilibrium density. The Lagrange equations:
⎧
⎪⎨

⎪⎩

∂
∂t

(
∂L
∂ut

)
+ ∂

∂x

(
∂L
∂ux

)
− ∂L

∂u = 0

∂
∂t

(
∂L
∂at

)
+ ∂

∂x

(
∂L
∂ax

)
− ∂L

∂a = 0
, (11.14)
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hence yield: {
ρ utt = Euxx − E SV ax

∂L/∂a = 0
. (11.15)

The above evolution equations were obtained by means of a purely mechanical treat-
ment, that is, without taking into account temperature effects. The first equation is the
common wave equation modified for the presence of microcracks though SV . Because
A is considered to be an x-independent constant (identical crack opening at rest), and
the stress represents the generalized force corresponding to the generalized coordinate
u, we obtain the following expression for the stress–strain relation from Eq. (11.12),

σ = −∂L
/
∂ux = Eux − E SV (a − A). (11.16)

The second equation puts a constraint on the possible aperture values a of the cracks.
More specifically, we find that the aperture a must correspond to an extremum of the
function:

U (a) = W (a) + 1
2 E SV (1 + α)

(
a2 − 2Aa

) − Eux a, (11.17)

in which we have collected all a-dependent terms of the Lagrangian and introduced
the parameter α which incorporates the effects of the crack tips through LV :

α = 3

4π

1

1 − ν2

LV

S2
V

. (11.18)

However, because the proportionality constant in T (a) is only approximately known
(see previous Section 4.2), we regard α as a phenomenological constant.

Obviously, the extremum of Eq. (11.17) should be a minimum, otherwise the solution
will be unstable. Furthermore, the solution of the above system of Lagrangian equa-
tions [Eqs. (11.15)] also depends directly on the number of minima of U (a)(and their
values), where ux = ε can be considered as a parameter. A thorough investigation
of the minima of this expression is thus essential for the further interpretation of the
results.

Before we actually examine the occurrence of minima of U (a), we eliminate A
(which is constant for all elementary cracks) by introducing the new variable s:

s = ε + SV (1 + α) A. (11.19)

With this,
U (a) = W (a) + E SV (1 + α)a2

/
2 − Esa. (11.20)

The potential now only depends on the argument a and the parameters D [through
W (a), see Eq. 11.5] and s. All other values (E, SV , α, H, a0) are considered to be
material constants.

6. The Bi-Stable State of an Elementary Crack

The complicated form of the adhesion potential W (a) [Eq. (11.5)] forces us to analyze
U (a) numerically. Doing so, we come to the following observations.
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Fig. 11.4. Three possible configurations of the potential U (a) depending on the value of the strain: (a) the
occurrence of only the first minimum (in the adhesive zone) when s < sc; (b) the appearance of a double-
well potential with both first and second minima present when sc < s < so; (c) the existence of only
the second minimum when so < s. The system is said to be “closed” in case (a), always, and case (b), if
εt > 0. It is “open” in state (c), always, and (b), if εt < 0.

If the roughness parameter D exceeds a critical value Dcr , the potential U (a) has
only one minimum for any value of the “strain” s. Large values of D indeed corre-
spond to cracks with weak adhesion properties, and their contribution to the potential
is too weak to form an additional extremum. On the other hand, if the adhesion is
strong enough (D < Dcr ), one minimum or two minima may exist depending on the
magnitude of s(see Figure 11.4).

We consider the latter case in more detail. Let us first of all suppose that s is high
and negative (strongly compressed material, curve a in Figure 11.4). The contribution
of −Esa to the potential is large and results in the fact that there is only one minimum
located at small aperture values a (a ∼ amin of the adhesive potential; see Figure 11.3).
The system is said to be closed. If s increases and exceeds a critical value sc, the
contribution of the term −Esa becomes smaller and an additional minimum appears
(curve b in Figure 11.4). However, in our mechanical model described by Eq. (11.15),
the system stays in the first minimum (closed state), despite the fact that the second
state (open) is also possible. Actually this is true only if the thermal movement is
negligible compared to the typical potential barrier, otherwise random jumps to the
open state and back are possible (allowing transitions between two minima). When
increasing the strain further, above another critical value so, a situation is achieved
in which only the second minimum exists (Figure 11.4, curve c). The system now
switches to the open state and stays there for all higher strain values.

If we decrease the strain from highly positive to highly negative magnitudes, the
evolution of a behaves completely analogously to the case of a strain increase with
the only difference that in a two-well configuration the elementary crack remains
open (again, in reality only if the temperature is negligible) until the second minimum
disappears, and only the minimum at small aperture values exists.
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Fig. 11.5. Illustration of the s-dependence of the apertures a1 = a1(s, D) (thick black curve representing
the closed state) and a2 = a2(s, D) (thick gray curve representing the open state) of the U (a) potential’s
minima (assuming SV = 103 m−1, LV = 108 m−2) for two values of D: (a) D = 3.91 · 10−3 µ m,
(b) D = 7.25 · 10−3 µm. Here s = ε + SV (1 + α)A [Eq. (11.19)].

Because the aperture a directly influences the stress–strain relation Eq. (11.16), it is
interesting to carefully examine its strain dependence. As mentioned above, the aper-
ture a is always equal to either the value of the first minimum a1 or of the second min-
imum a2 of the potential U (a). Figure 11.5 illustrates the dependencies a1 = a1(s, D)

and a2 = a2(s, D) that were obtained numerically for two values of the roughness
parameter D. On the plot we identified the critical “strain” values sc and so, and the
hysteretic jumps �ao and �ac in the aperture of the crack (thin double arrows). In
the case where we considered a moderate roughness (case a, with D = 3.91·10−3 µm)
the difference in strains �s = so − sc equals 6.67 ·10−5, indicating that this is a
rather hard (or strong) element. In the case of high roughness (case b, with D =
7.25 · 10−3 µm) the difference �s = so − sc reduces to 3.64 ·10−8, representing a soft
(or weak) element. Here, the terms “hardness” and “softness” of an element actually
refer to its sensitivity to strain variations: a soft element can be switched by a small
variation and a hard one needs larger strain alterations to switch.

Figure 11.5 also shows the asymptotic dependencies amin (i.e., the coordinate of the
adhesion potential’s W (a) minimum) and s/(SV (1 +α)) for highly negative and posi-
tive strains, respectively (thin black lines for both asymptotes). Clearly, when a2 	 a1

(and correspondingly �s is large as in Figure 11.5a), the adhesion and the elastic com-
ponents of U (a) [Eq. (11.20)] can be minimized independently, and the resulting min-
ima are reasonable approximations for the true values; that is,

a1(s, D) ≈ amin(D), a2(s, D) ≈ s/
(

SV (1 + α)
)
. (11.21)

These asymptotic dependencies are only valid for cracks with large enough �s. In
Figure 11.5b we indeed notice a considerable deviation of the numerical results from
the asymptotes for low �s.

In addition, we can remark that the elementary hysteresis shown in Figure 11.5b
is quite similar to the one used by Scalerandi et al.31 discussed in Chapters 16 and
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Fig. 11.6. The dependencies of the closing and the opening strains (sc and so) on the roughness parameter
D. The difference so − sc (which is characteristic for the “strength” or “hardness” of a crack) diminishes
for increasing D. Elementary cracks with D > Dcr = 7.30 · 10−3 µm are not hysteretic at all because
�s = 0 and �ao = �ac = 0 (Figure 11.7).

17 of this book, where it appeared from rather intuitive considerations: elements in
a closed state are assumed to be rigid (horizontal line in the stress–strain curve) and
open elements have additional elasticity due to the soft interstices between the elastic
grains (resulting in an inclined line in the corresponding stress–strain relation). In the
present model, which is based on physical laws, a discontinuity is found to occur both
at opening and at closing, whereas Scalerandi et al. only treated the case of a stress–
strain jump at closure.

The dependencies of the critical strains sc and so on the roughness parameter D
are shown in Figure 11.6, whereas Figure 11.7 illustrates the hysteretic jumps �ao(D)

and �ac(D). Again, we remark that the difference �s = so − sc = εo − εc can
be interpreted as a characteristic of the “strength” of a crack: “weak” cracks switch
at small strain excursions and “strong” ones change states at large strain amplitudes.
The highest difference �s is reached for zero roughness (maximum �s ≈ 0.2 in our
example for the chosen parameters SV , LV , H, E). The more roughened the coasts
of a crack are, the weaker it is. When the roughness D exceeds a critical value Dcr

(which equals 7.30 · 10−3µm in our example), �s = 0 and �ao = �ac = 0, and
consequently the crack becomes nonhysteretic. In this case only the second minimum
of U (a) is present.

Returning again to the expression for the physical strain ux = ε = s − (1 + α)SV A
[Eq. (11.19)], we find the true opening and closing strains εo and εc for any given
parameters A and D by means of the following mapping.

εo(A, D) = so(D) − (1 + α) SV A, εc(A, D) = sc(D) − (1 + α) SV A.

(11.22)
The above discussion enables us to easily track the evolution of the crack system

[solution of Eqs. (11.15)]. Suppose we know the strain protocol ε(x, t), at any given
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Fig. 11.7. Roughness (D) dependence of hysteretic jumps �ao and �ac .

moment t for the current position x . If εt is positive (opening), then a = a1(s, D) if
ε < εo and a = a2(s, D) if ε > εo. On the other hand, if the strain decreases (i.e.,
εt < 0), then a = a2(s, D) if ε > εc and a = a1(s, D) if ε < εc. The resultant
value of a subsequently determines the stress by means of Eq. (11.16), and by solving
the wave equation [the first equation of Eqs. (11.15)] we can obtain the solution for the
next time layer t + �t .

7. Evolution of a System with a Statistical Ensemble of Different
Cracks

Returning now to the original problem of the dynamics of a system with all different
elementary cracks, we accept another strong assumption consisting in the complete in-
dependence of all cracks. This means that we can write the full Lagrangian as the sum
of partial Lagrangians that are related to the corresponding subsystems. It is possible
to show11 that the evolution equations in this case take on the form:

ρ utt = Euxx − E SV

∫
f (A, D)a AD

x d A d D, (11.23)

a AD is a minimum of U AD
(

a AD
)

= W (a AD) + 1
2 E SV (1 + α)

(
a AD2 − 2Aa AD

)

−E SV ux a AD, (11.24)

where a AD is the aperture of an elementary crack with parameters A and D. The min-
imization problem [Eq. (11.24)] is obviously the same as the minimization of the pre-
viously considered potential U (a) [Eq. (11.17)], and therefore all results of Section 6
hold.
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Equation (11.23) can be rewritten in the form ρutt = σx , where

σ = Eux − E SV

∫
f (A, D)

(
a AD − A

)
d A d D. (11.25)

For every crack with parameters A and D, and at every actual value of the strain ε =
ux we use the above-formulated evolution rules to find out whether its state is open or
closed: a crack opens if ε becomes larger than εo when the strain is increasing (εt > 0)
and closes for decreasing strains if ε < εc. The numerical analysis of the potential
U (a) outlined in the previous section enables us to compute the values εo(A, D),
εc(A, D), a1(A, D), and a2(A, D) with any desired precision. Taking a1 for the closed
state and a2 for the open one, we compute the integral in Eq. (11.25) and obtain the
stress–strain relation necessary to solve the evolution equation. If for a given crack
D > Dcr , only the solu0tion a2 is applicable.

At this point it becomes obvious that our microcracked system consisting of a
statistical ensemble of differing cracks amounts to a slight variation of the well-
known Preisach–Mayergoyz (PM) or, keeping the original terminology of Mayer-
goyz,33 Preisach–Krasnoselskii (PK) formalism. The principal difference is that all
parameters of the problem in our description are derived from the crack’s statistics,
albeit in a greatly simplified manner. There are several other differences of secondary
importance.

• In the present framework, we arrived at a (εo, εc) PM-space, whereas traditionally
(σo, σc) coordinates are used. Phenomenologically there is no preference between
these two approaches, even though our present study shows that (εo, εc)-spaces cor-
respond to completely independent cracks. The dynamics resulting from a (εo, εc)-
space were analyzed in Reference [17] in more detail.

• The shape of the hysteresis for an elementary unit (Figure 11.5) is different from
the traditional rectangular one32 (see also Chapters 12 and 21). Correspondingly, an
elementary unit always contributes to the force term σx in the evolution equation
ρutt = σx , whereas in the traditional case it has a nonzero contribution only if
switching. The hysteresis curves found here are similar to the ones assumed by
Scalerandi et al. (Chapters 16 and 17).

The latter consideration deserves a separate discussion. In the usual phenom-
enological models, the hysteretic stress–strain nonlinearity is supplemented with a
nonhysteretic (sometimes called classical) term, which is typically represented by a
polynomial expansion of the stress as function of the strain. This term is introduced,
in particular, to reflect the experimental fact that a microcracked material is stiffer at
higher compression. In the present approach this is satisfied automatically, because
elementary hysteretic curves (Figure 11.5) are more inclined in the open state than in
the closed one. As the nonzero strain-derivative contributes to dσ/dε with a minus
sign [Eq. (11.25)], the material becomes softer when more and more cracks are open.
The difference with the traditional models is, however, that we do not attribute this
feature to classical nonlinearity (anharmonicity of the interatomic potential in a single
crystal) but also to the contact nonlinearity in the same way as for the hysteresis itself.

Figure 11.8a illustrates the density distribution ρ(εo, εc) of the hysteretic elements
obtained using the above framework for a uniform distribution f (A, D), limited to
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Fig. 11.8. The density ρ(εo, εc) of hysteretic elements (PKM distributions): (a) general distribution
obtained in the framework of the micropotential model (only points with ε⊥ < 10−3 are plotted): (b) the
fragment of the PKM space in (a) with −10−6 < εo, εc < 10−6.

elements with ε⊥ < 10−3 (elements with ε⊥ < 10−3 are rare and most probably
not physical, because such high strains would definitely produce extra damage to the
material; see last comment of Section 4). Figure 11.8b represents a fragment of the
same PM-space with 10−6 < εo, εc < 10−6. This fragment is of particular interest for
dynamics, because elementary units in this sub-space will have a dominant contribu-
tion to the stress–strain relation for typical acoustical strains.

The PM distribution (with different underlying elementary hysteretic units) has been
used in many studies to describe a multitude of static and dynamic properties of non-
linear materials. However, it is clear that some recently observed universal features
of microcracked media cannot be attributed to hysteresis only. In particular, we men-
tion the observation of slow dynamics (see review by Ostrovsky and Johnson1 and
Chapter 4 of this book). Slow dynamics is manifested by a temporary increase of the
nonlinearity strength immediately after an intense dynamic excitation and by a subse-
quent logarithmic relaxation of the nonlinearity to its equilibrium value. The issue of
slow dynamics can, in principle, be explained in the framework of the present concept
in the following manner: the application of a high loading will generally lead to an ac-
tive destruction of the material in the vicinity of the crack tips, and therefore increases
SV . If we assume that the average enlargement of the linear dimensions of the cracks is
β (β > 1), the area increases β2 times, whereas the increase of LV is not larger than β

(it can even be smaller because the crack tip lines may straighten during this process).
Consequently, the combination SV (1 + α) ≈ SV α ∼ LV /SV in Eq. (11.24) decreases,
making the crack network weaker (which can be confirmed through an analysis of the
potential). As a consequence Dcr increases, and the sample therefore will have more
hysteretic cracks. In addition, we recall that the increased area SV is a proportionality
coefficient for the nonlinearity itself [Eq. (11.25)]. Thus, given the increase in SV and
a consequent weakening of the crack network, it is conceivable that the material be-
comes more nonlinear after high loading. Furthermore, if we conjecture that thermal
jumps and creep due to the adhesion force can heal and reunite the damaged crack tips
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again, it is also plausible that the material will relax again in the course of time to its
equilibrium state. Certainly, in the present form, our theory does not take into account
the effects of extra cracking and slow healing, but they can be thought of as a possible
future improvement of the model.

Another interesting and more or less universal feature concerns the typical excita-
tion amplitude dependence of the resonant frequency in sandstones, reported by Ten-
Cate et al.,33 in which the existence of two ranges of amplitudes is revealed (see also
Chapter 26): for small amplitudes (lower than about 10−6) the dependence is observed
to be quadratic and for higher strains (amplitude εA > 10−6) it becomes linear. In
the framework of the PM-space, a quadratic amplitude dependence of the resonant
frequency implies a linear increase of the density of the hysteretic contributions pro-
portional to ε⊥, whereas a linear decrease of the resonance frequency is obtained when
the density of the hysteretic elements is approximately constant. Such a situation ei-
ther requires a sparse concentration of elements just below the diagonal εc = εo, or the
occurrence of infinitesimally small hysteretic jumps for the elements located close to
the diagonal. However, both conditions are generally not found in the present model.
An alternative explanation for the existence of the quadratic regime may consist in
the presence of spontaneous thermal jumps, which constantly erase the memory of the
states of the elements near the diagonal. Such a model was proposed by Tournat and
Gusev34 (Chapter 21) as an extension of the PM approach for nonzero temperature.
In fact, at small strains the potential barriers distinguishing one metastable state from
another are small and can be comparable to kT .

8. Conclusions

The theory presented in this chapter deals with the development of a physics-based
model form for the potential energy of crack networks to explain the hysteretic elastic
behavior of microcracked materials. The most important geometrical parameters nec-
essary for this description are the average area of cracks per unit of volume, and the
distribution of asperities and rest apertures over the crack network. The resultant poten-
tial energy consists of three terms: the strain energy of the surrounding intact material,
the adhesive potential of the crack surfaces, and an additional stabilizing contribution
due to the crack tips.

Starting from the expression of the potential energy, the influence of microcracks
on material behavior was obtained using a purely mechanical approach (by means of
the Lagrange equations). Hysteresis in the stress–strain relation, usually introduced in
a phenomenological and artificial way, is attributed in the present description to the
occurrence of metastable states of the crack network, which follows from the double-
well potential of the system. As a result, a physical basis has been provided for the
general phenomenological theory of velocity-independent hysteresis (PM-formalism)
together with its typical consequences for statics and dynamics.

An explanation of related phenomena, such as slow dynamics and the existence
of several different ranges in the strain dependence of the nonlinearity (which are
strikingly universal for a wide range of materials) can be obtained by introducing a
nonzero temperature into the model and by considering damage evolution.
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As a final conclusion, we itemize the major assumptions made in the analysis.
Key assumptions (Rejection of either one of these assumptions is not possible in the

framework of the present theory).

• Existence of elementary cracks, for which averaging of the asperities and apertures
can be performed

• Independence of elementary cracks, additivity of partial potential energies

• Neglect of branching lines in the crack network

Important assumptions (These assumptions can be changed or rejected, but this will
require a major reconsideration of the theory’s components).

• The model of adhesion following the Lennard–Jones potential and the lognormal
distribution of apertures

• Account of crack tips using the modified theory of Hertzian contacts

• Localization of strain energy of tips in the vicinity of cracks

• Zero temperature

• Neglect of shear effects

• No additional damage during straining

• One-dimensional wave equation and disregard of crack orientation
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Abstract
The development of a numerical framework in support of observations of nonlinear elastic wave
spectroscopy is of high importance and may guide the analysis of nonlinear features towards
new imaging techniques. In this contribution, we outline and review a multiscale model for one-
and two-dimensional problems of wave propagation and resonance in microcracked materials.
At the microlevel, we simulate microcracks by triggerlike elements with a two-state nonlinear
stress–strain relation. We scale up the microscopic state relation on the mesoscopic level by
means of a scalar Preisach approach. For multidimensional hysteretic elasticity, this approach
is generalized by simply decomposing the stress-tensor into its eigenstress components. Finally
we use a staggered grid formulation to predict the macroscopic response to an arbitrary excita-
tion signal. Using this multiscale model, we investigate the influence of a microdamaged zone
on the resonance signatures (resonance frequency and damping), and on the propagation char-
acteristics (wave speed, generation of harmonics). Numerical results are presented for one- and
two-dimensional problems as a function of the excitation amplitudes of the input signal, and
for different geometries and distributions of the hysteretic properties within the microdamaged
zone. In 1-D, we specifically focus our attention on the influence of different Preisach-space
distributions on the nonlinear characteristics, thereby clearly illustrating the fact that the ex-
pected power law dependencies in the dynamic modulus–strain relation and in the generation
of higher harmonics are drastically altered by nonuniform PM-space distributions. In 2-D, we
illustrate numerical simulations for nonlinear Rayleigh wave propagation along the surface of a
microcracked solid and for the in-plane propagation of pulses in plates.

Keywords: Hysteresis, microdamage, nonlinear resonant ultrasound spectroscopy, nonlinear
wave propagation, nonlinearity



178 K. Van Den Abeele and S. Vanaverbeke

1. Introduction

Nonlinearity and hysteresis in the quasistatic stress–strain equation are instantly recog-
nizable manifestations observed in all damaged solids. It is reasonable to assume that
this manifestation has major consequences on the dynamics of microcracked solids as
well. In fact, several experiments conducted in the last decade have provided abundant
evidence for this. Apart from a selection of references in this chapter [1–7], we also
refer to Chapters 4, 5, 24–31 and the many references therein. In terms of modeling
the dynamics, the consideration of nonlinearity, and in particular hysteresis, presents
some significant challenges. In general, modeling the propagation of transient elastic
waves in linear solid media can already be very convoluted, and closed-form analytical
solutions can only be found for simple geometries and easy assumptions. If, on top of
mode conversions, anisotropy, inhomogeneities, inclusions, and boundaries, one also
takes into account the existence of nonlinear and nonunique state relations, it becomes
clear that only numerical modeling techniques can be used.

Various numerical models have been developed over the years to account for the
local inhomogeneous nature of solids. Finite element methods, boundary element
methods, finite difference methods, and finite integration techniques are well-estab-
lished techniques and are documented with impressive illustrations for the case of
linear wave propagation and resonance simulations. Only a few researchers have ac-
tually reworked the existing codes to include the presence of nonunique stress–strain
relations. However, many efforts in this field are currently limited to one-dimensional
simulations. For reference we mention the work of Nazarov et al. [1,8], Delsanto
and Scalerandi [9,10], Gusev and Aleshin [11], Schubert et al. [12,13], and Van
Den Abeele et al. [14,15]. The numerical simulations of the group of Delsanto and
Scalerandi are based on a nonlinear version of the Local Interaction Simulation Ap-
proach coupled to a spring model. The method is extensively illustrated for one-
dimensional problems of wave propagation and wave resonances (see Chapter 17 of
this book for an extensive overview), and the first results of particular two-dimensional
problems are discussed in Chapter 18 of this book. Schubert and Van Den Abeele use
the Elastodynamic Finite Integration Technique (EFIT) as the basis for their models.
EFIT was originally developed by Fellinger et al. [16] and is now well established for
2-D and 3-D simulations in linear solids [17–19]. The EFIT procedure uses the integral
form of the basic equations, and the discretization in terms of a staggered grid formu-
lation provides a very stable and efficient numerical code. Schubert has altered the 1-D
EFIT version for the inclusion of classical quadratic nonlinearity [12] and for the treat-
ment of a single crack closure and opening using a dynamic grid management [13].
Van Den Abeele et al. on the other hand coupled the 1-D EFIT model to the general
description of stress–strain hysteresis using a Preisach model [15] with a multiscale
approach. Just recently, Bou Matar et al. suggested a modification of the numerical
treatment of the multiscale approach by introducing a pseudospectral solver [20].

In this chapter, we first review the general description of stress–strain hysteresis us-
ing the PM approach and illustrate the impact of hysteretic nonlinearity on the wave
propagation and wave resonance behavior in the one-dimensional case. To do this, we
develop a multiscale approach: at the microlevel, microcracks and inhomogeneities are
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simulated by triggerlike elements with a two-state nonlinear stress–strain relation. The
microscopic state relation is then scaled up onto the mesoscopic level by means of the
Preisach-space model for hysteretic elasticity, and, finally, a staggered grid EFIT for-
mulation is used to predict the macroscopic response to an arbitrary excitation signal.

After discussing some particular examples of the one-dimensional nonlinear wave
propagation and resonance features, we extend the multiscale model to higher dimen-
sions by means of a generalization of the Preisach-space model for multidimensional
hysteretic elasticity. We illustrate the model by results of two-dimensional wave prop-
agation for nonlinear Rayleigh waves and in plane pulse propagation in media with
localized damage.

As a justification for this research, we mention that many historical monuments
throughout Europe are suffering from severe microdamage spreading inwards from
the stone surface and reaching several millimeters in depth. The investigation of the
linear and nonlinear behavior of Rayleigh waves may help in defining new techniques
to quantify and characterize in situ the extent and depth of the damage in comparison
to virgin material. Similarly, safety of aircraft is a high-priority issue and therefore the
development of appropriate quality control techniques for aeronautical components
is extremely important. In our opinion nonlinear ultrasonic methods will increase the
sensitivity for detecting incipient cracks at early stages of deterioration and fatigue
processes. Numerical models can help to interpret the results, define new strategies,
optimize detection positions, and the like. For more information on the above re-
search topics, sponsored by the European Union, see http://minelab.mred.tuc.gr/dias/
and www.kuleuven-kortrijk.be/AERONEWS.

2. PKM Model for Hysteretic Stress–Strain Behavior

The quasistatic stress–strain relation of a wide class of microinhomogeneous materials
generally exhibits the fact that the strain response to stress increase and stress decrease
is nonunique, even in the purely elastic (nonplastic) regime. As a consequence of this
type of mechanical hysteresis, interior loops can be observed with evidence for end
point memory [21]. It has also been observed that such hysteretic loops widen when
microdamage is progressively increasing [22], and that the shape of the loops may
depend on water saturation [23], temperature, external pressure, and so on. Because
the description of the hysteretic phenomena during a quasistatic experiment forms the
basis of our dynamic multiscale model, we review briefly the key elements of the
underlying theoretical model. The model is based on the work by Guyer et al. [24],
who translated the ideas of Preisach [25] and Mayergoyz [26] to the field of rock
elasticity and mechanics, ignoring rate dependence. An extension of this theoretical
approach to rate-dependent hysteresis can be found in Chapter 21 of this book.

Let us consider a representative cell (interval in one dimension, area or volume
in two and three dimensions) containing a large number of grains and bonds. We
assume that the bonds have a two-state behavior, which we can associate with be-
ing “open” or “closed” depending on the pressure. The grains are the hard ma-
terial portions and behave reversibly elasticly, with potential presence of “atomic”
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nonlinearity [acoustoelasticity, i.e., pressure dependence of the modulus Kg(P)].
Whereas the grains contribute to the overall strain (ε) in a traditional manner upon
an arbitrary pressure change (pressures P are positive in compression, stresses σ are
negative):

�εg = −
P+�P∫

P

d P ′

Kg(P ′)
=

−σ∫

−σ−�σ

dσ ′

Kg(σ ′)
, (12.1)

the bonds only contribute to a change in strain if they alter states from open to closed
or vice versa due to the imposed stress change. To quantify the contribution from the
bond system, we presume a simple phenomenological state relation in which the strain
contribution of each bond (also called unit) changes from zero to a finite (constant)
value γ depending on the actual pressure (P) [or stress (σ )] value and its history.
While increasing pressure, the strain in the unit is zero for P < Pc (σ > σc) (open
state), and −γ for P > Pc (σ < σc) (closed state). When decreasing the stress, the
strain equals −γ for P > Po (σ < σo) (closed state) and zero for P < Po (σ > σo)

(open state). Naturally, we have that Pc > Po. For simplicity we assume that only the
parameters Po and Pc (or σo and σc) can vary from unit to unit. As a consequence, each
unit within a representative cell can be represented in a stress–stress space according
to their values Po and Pc. This representation is commonly termed P(K )M-space, and
can be dealt with mathematically by its density distribution ρ(Pc, Po) [15,24,27,28].
If the representative cell has N bonds we can express the contribution of the full bond
system as

�εb = −γ̂ ( fc(P + �P) − fc(P)) = γ̂ ( fc(−σ) − fc(−σ − �σ)) (12.2)

with γ̂ = γN and fc(P) the fraction of units that are closed at pressure P , which can
be calculated as an integral of ρ over the area of closed units in the stress–stress space.
Using this notation, γ̂ clearly denotes the strain contribution of the bond system when
all units are in the closed state.

Using the infinitesimal (�P, �ε) relation,

�ε = �εg + �εb = −
P+�P∫

P

d P ′

Kg(P ′)
− γ̂ ( fc(P + �P) − fc(P)), (12.3)

it is straightforward to predict the strain response for a given pressure protocol and
known representations of the PKM density and acoustoelasticity. All is reduced to a
careful administration of the open and closed units in the PKM-space and a proper
numerical integration. Some examples are given in Figure 12.1 showing the influence
of different types of PKM-spaces. Hysteresis and end point memory clearly imply that
there can be an infinite number of stress–strain relations. One stress level corresponds
to an infinite number of possibilities for the corresponding strain values.

The (inverse) modulus follows from Eq. (12.3) as follows.

K −1 = lim
�σ→0

(
�ε

�σ

)
= 1

Kg(−σ)
+ γ̂

d fc

dσ
(−σ). (12.4)
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Fig. 12.1. PKM space densities and corresponding stress–strain relations for two types of protocols, shown
on top. The considered PKM-spaces are confined to −5MPa ≤ Po ≤ Pc ≤ 5 MPa. Gray scale corresponds
to the density: (A) empty PKM-space (no hysteresis); (B) uniform PKM-space; (C) shifted PKM-space
(offset = 1.5 MPa); (D) banded PKM-space (offset 1 = 0.5 MPa; offset 2 = 2 MPa); (E) split PKM-space;
(F) upper PKM-space; (G) nonuniform PKM-space (a = 0 MPa, b = 3 MPa; c = 0.5 MPa−1, m = 0);
(H) nonuniform PKM-space (a = 0 MPa, b = 3 MPa; c = 0.5 MPa−1, m = 1); (I) nonuniform PKM-
space (a = 0 MPa, b = 3 MPa; c = 0.5 MPa−1, m = 2). For Types G, H, I, we used the density given
by Eq. (12.9). In all cases (except obviously for type A) γ̂ = 0.001. The classical nonlinearity satisfies
Kg(P) = 1010(1 + tan h(0.5P)).

With reference to the PKM-space, the calculation of the modulus basically requires
the integration of the density at P(−σ) of those units that change state. For increasing
pressure this integration is performed at Pc = P over a vertical line interval; for
decreasing pressures the integration occurs at Po = P over a horizontal line interval.
The hysteresis in the modulus–stress relation obviously comes in through the second
term in Eq. (12.4). It is exactly the above relation that we use in the model for dynamic
wave propagation and wave resonance.



182 K. Van Den Abeele and S. Vanaverbeke

Po

Pc

−6

−4
−2

0

2

4

6

0

Po

Pc

Type E

Type F

Type G

Type H

Type I

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain

−6

−4
−2

0

2

4

2

4

2
Po

Po

Po

4

2

4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain
−6

−4
−2

0

2

4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain

−6

−4
−2

0

2

4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001
−4

−4

−2
−2

−4

−2

−4

−2

4
Pc

Pc

Pc

2

−4 −2 42

0

0

−4 −2 420

−0.0005 0.0010.0005 0.0015

strain
−6

−4
−2
0

2

4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain

−6

−4
−2

0

2

4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain
−6

−4
−2

0

2

4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain

−6

−4
−2

0

2
4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain
−6

−4
−2

0

2

4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain

−6

−4
−2

0

2

4

6

0

P
re

ss
ur

e 
[M

P
a]

−0.001 −0.0005 0.0010.0005 0.0015

strain

Fig. 12.1. Continued.

We remark that the PKM space described above is a static space, meaning that el-
ements do not switch by themselves, for instance, due to thermally activated random
transitions. Only “external” variations in stress impel the unit to change its state. A sec-
ond remark is that this current representation is rate independent implying that there
is no influence on the frequency of oscillation of the stress waves. However, some
researchers are trying to overcome this caveat by proposing a generalized Preisach–
Arrhenius approach (e.g., [29], and Chapter 21). And as a final remark, we mention
the work of Scalerandi (e.g., [9] and Chapter 17) who treated hysteretic nonlinearity
with a slightly different elementary unit, in which the two states of the unit can be
either elastic or rigid (see also Chapter 11). Yet, in the absence of underlying physics,
which should be provided by theories of molecular dynamics based on pseudopotential
energy approaches and atomistic models, we assume that the hysteretic part can be
modeled by the two-state (rigid–rigid) behavior, exactly as described above.
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3. The Multiscale Concept

The multiscale concept used in the model is schematically visualized in Figure 12.2.
We consider a macroscopic sample (for instance, a bar of 250 mm length) to be built up
by a finite number of representative material elements or cells. Each cell (i.e., an inter-
val in a one-dimensional representation) is composed of a large number of microscale
units that can be thought of as individual grains, separated by bonds, grain bound-
aries, interphase zones, microcracks, and the like. The microscopic units have a typi-
cal length of 0.1 to 100 microns. A material cell thus represents a mesoscopic entity in
between the macroscopic and the microscopic levels. Typical mesoscopic cell lengths
are of the order of a few mm.

At the microscale level, we assume that the strain response of individual units can
be grouped in two classes: the largest part of a unit behaves reversibly elastic, or “clas-
sical,” according to a classical nonlinear pressure–strain relation (including the acous-
toelastic characteristics), and a small section (about 1% in length of the elastic part)
follows a “nonclassical” behavior which includes hysteresis effects (see Figure 12.2).
Assuming the two-state rigid–rigid behavior for an elementary hysteretic unit, we can
express the classical and nonclassical contributions of a single unit as follows.

εc = −
P∫

d P ′

Kc(P ′)
εnc =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if P < Pc and Ṗ > 0

−γ if P > Pc and Ṗ > 0

−γ if P > Po and Ṗ < 0

0 if P < Po and Ṗ < 0

. (12.5)

Here, Kc (= Kg defined earlier) is usually expressed by means of a traditional nonlin-
ear powerlaw relation between modulus and pressure:

Kc(P) = Ko(1 + β P + δP2 + · · · ) (12.6)

      

Mesoscopic Cell

Microscopic Unit 

Macroscopic Object

Elastic
Component

Contact

Statistical Ensemble
of micro-entities

Grid of  
meso-entities

L1=1-5 mm

L2=250 

L0=1-10 µm

Mesoscopic 

Strain

S
tr

es
s

Po

Pc

Opening
Pressure

Closing 

ρ(Po,Pc)

Strain

g

StressPcPo

Microscopic 

Strain

Stress

Classical
Non-

+ 

Fig. 12.2. Multiscale concept used in the simulations, illustrating the macroscopic, mesoscopic, and
microscopic levels with the corresponding constitutive equations.



184 K. Van Den Abeele and S. Vanaverbeke

with Ko the linear modulus value, and β and δ combinations of third- and fourth-order
elastic constants defining the classical nonlinearity. The finite (constant) strain value
γ in the hysteretic component defines the degree of the hysteresis of a single unit.

As mentioned above, each material cell consists of a large number of elastic and
hysteretic components, with generally differing characteristics. However, using a mean
field approach, we can assume that all elastic parameters are equal in a material cell and
that only the parameters Po and Pc can vary from unit to unit. Thus, if a material cell
consists of N hysteretic units, Ko, β, δ, and γ̂ = Nγ are considered to be “effective”
material constants that are defined at the intermediate level. All hysteretic units within
a material cell can be represented in a pressure–pressure space by means of a density
distribution ρ(Pc, Po). The four effective constants, K0, β, δ, and γ , together with the
particular PKM-space-density form a unique signature of the material cell. However,
they may of course differ from cell to cell.

To calculate the strain (respectively, modulus) response of each material cell fol-
lowing a stress increase/decrease from P to P + �P , we can apply the incremental
relationship (12.3) [respectively (12.4)] that has been illustrated above. Note that the
difference in the microscopic stress–strain relation and the mesoscopic state relation is
clearly visible in Figure 12.2. Due to the statistical distribution, the discontinuous state
relation of the individual hysteretic units leads to a continuous state relation (with
discontinuous derivatives) on the intermediate level.

The scaling up from the mesoscopic (or element) level to the macroscopic (or sam-
ple) level can be performed through any type of finite difference or finite element
method. Here, we use the formalism of EFIT, which was originally developed by
Fellinger et al. [16]. Basically, the technique implements a discretization of the in-
cremental equation of state (Hooke’s law in linear elastic systems) and of the equation
of motion. In general 3-D problems, the EFIT procedure uses the integral form of
these basic equations, not the differential form, and performs the integration over cer-
tain control volumes or integration cells. The diagonal stress component integration
cells coincide with the material cells defined in the multiscale concept. Velocities are
calculated at the surfaces of the material cell. In this chapter, we explicitly deal with
the 1-D and 2-D problems.

4. Multiscale Approach for Simulating Wave Dynamics in the
Presence of Hysteretic Nonlinearity: One-Dimensional Case

4.1 1-D NL-EFIT

For the one-dimensional case, the equation of motion reads

ρ
∂ν

∂t
= ∂σ

∂x
− ρ

ω

Q
ν + F(x, t), (12.7)

where ρ is the (constant) mass density, ν = ∂u/∂t the particle velocity, σ the stress,
and x the space coordinate in 1-D. Frequency-dependent (ω = 2π f ) attenuation is
taken into account and is assumed to be proportional to the velocity; Q is the quality
factor (inverse attenuation). F is an arbitrary external force as a function of x and
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t , which generally is located at one of the two edges of the sample (at x = 0 or
x = L).

The stress rate equation can be derived by calculating the temporal derivative of
the equation of state that describes the stress–strain relation at the intermediate level.
As mentioned above, the mesoscopic stress–strain relation contains contributions from
classical (linear and nonlinear) elastic elements and from nonclassical hysteretic units
within a material cell. The strain response due to a variation of pressure is given by
Eq. (12.3). In this framework, the strain response is clearly a function of the previous
stress history, σhis. Using ∂ε/∂t = ∂ν/∂x , we then rewrite the stress rate equation as
follows.

∂σ

∂t
= ∂σ

∂ε

∂ε

∂t
= K (σ, σhis)

∂ε

∂t
= K (σ, σhis)

∂ν

∂x
, (12.8)

where ∂σ/∂ε = K (σ, σhis) is the nonlinear elastic modulus in the presence of hys-
teresis [cfr. Eq. (12.4)]. As mentioned before, the function fc(σ ) used in Eq. (12.4)
represents the fraction of the PKM-space area occupied by closed units. This function
is highly dependent on the previous history of the stress, and its derivative (essentially
a line integral) needs to be updated at each time step taking into account previous
maxima and minima of the local stress excursions.

Let us return to Eqs. (12.7) and (12.8) which are the basic velocity–stress equations
needed for the EFIT discretization procedure. The EFIT discretization uses a staggered
grid formalism, in which velocity and stress are determined at different positions in-
side a certain grid cell. If �x denotes the representative length of the material cells, we
calculate the stress at (m + 1/2)�x , that is, in the middle of the material cells,
whereas the velocity is determined at m�x , that is, at the edges of each cell, with
m = 0, 1, 2, 3, . . . , L/�x . Likewise, we also implement a staggered temporal grid.
The velocity is calculated at full-time steps k�t , whereas stress is calculated at half-
time steps (k + 1/2)�t with k = 0, 1, 2, 3, . . ..

Assuming the external force is a sinusoidal force acting at x = 0, the time discretiza-
tion procedure of the 1-D EFIT code then yields the following sequence of steps.

• Step 0: Suppose ν[k−1] and σ [k−1/2] are known at t = (k − 1)�t and t =
(k − 1/2)�t .

• Step 1: Express the temporal change of v at time k − 1/2 using Eq. (12.7):

ν̇[k−1/2] = 1

ρ

(
∂σ

∂x

)[k−1/2]
− ω

Q

(
ν[k] + ν[k−1]

2

)
+ Fo

ρ
sin(ωt) · δ(x = 0).

• Step 2: Update ν at time k : ν[k] = ν[k−1] + ν̇[k−1/2]�t .

• Step 3: Express the temporal change of σ at time k using Eq. (12.8):

σ̇ [k] = K [k]
(

∂ν

∂x

)[k]
.

• Step 4: Update σ at time k + 1/2 : σ [k+1/2] = σ [k−1/2] + σ̇ [k]�t .
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This scheme looks extremely simple. Nonetheless, to calculate the modulus K as
a function of stress (and stress history), K [k] = K (σ [k], σ [k]

his ), the use of σ [k] as
an argument is required, that is, the stress value at time k�t . Because stress is only
determined at half-time steps of �t , it is necessary to use an appropriate interpolation
procedure; for example, σ [k] = 0.5(σ [k−1/2] + σ [k+1/2]). The problem is, however,
that σ [k+1/2] is not yet available because it has to be calculated in Step 4.

To solve this problem, there are two possible solutions: we can use the approxima-
tion σ [k] ≈ σ [k−1/2] in Step 3 thereby reducing the accuracy of the numerical scheme
to first order. Or, as a second solution, which avoids the loss of accuracy, we calculate
K as a function of strain (and strain history) instead of stress (and stress history). Still,
because Eq. (12.4) is expressed as function of stress increase (due to the PKM-space
which is expressed in terms of pressures), the calculation of K for a certain strain
increase/decrease �ε needs to be performed in an iterative manner starting from an
initial guess of �σ . Unless the PKM-space is expressed in terms of “opening strains”
and “closing strains,” this requires more calculation time which is a major disadvan-
tage of using the second solution over the first.

After updating the stress components in Step 4, we can jump back to Step 1 and
continue the leapfrog scheme with another iteration in time.

In the following section we discuss simulation results of the multiscale EFIT method
for longitudinal wave propagation in a one-dimensional rod of infinite length, and for
longitudinal resonances in a 1-D system of finite length L . We consider cases with ei-
ther spatially uniform or localized nonlinearity. The nonlinearity is introduced through
mesoscopic level PKM-spaces for which the density distribution may depend on the
location (a zero density distribution represents a piece of linear or classically nonlinear
material). Results are shown for various types of PKM density distributions of hys-
teretic units (types B to I, as in Figure 12.1) and are compared with linear calculations
(empty PKM-space, type A).

As an initial condition, we assume that the material is at a certain ambient pressure
(usually taken to be zero, i.e., rest-state), and that there is no initial velocity distribution
in the rod at t = 0.

The boundary condition at one end of the rod (x = 0) is prescribed by a sinusoidal
forcing with amplitude F and frequency f . For wave propagation simulations (high
frequencies) we use a continuous wave excitation at 100 kHz, and implement an ab-
sorbing boundary layer at the other end of the rod to avoid reflections. The calculated
signals are analyzed as a function of the forcing amplitude at a fixed distance from the
source, and as a function of distance for variable forcing amplitudes.

For wave resonance simulations, at much lower forcing frequencies than for wave
propagation, we consider a stress-free boundary at x = L , and use a continuous
wave excitation. We study the steady-state response of the sample as a function of the
frequency and the forcing amplitude.

4.2 Simulations for One-Dimensional Wave Propagation

In all simulations discussed in this section, we model an infinite bar as a bar of 500 mm
length consisting of 5000 mesoscopic cells of 0.1 mm length each. To avoid reflec-
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tions in the study of wave propagation, we extended the bar with 250 cells that form a
perfectly matched absorbing boundary layer. The spatial distribution of density and
(linear) modulus of the material cells is uniform: ρ = 2600 kg/m3, and K0 = 10 GPa.
The quality factor is set to a high value in order not to unnecessarily complicate
the analysis with the influence of attenuation (Q = 8000). Furthermore, we re-
strict the analysis to the influence of hysteresis, and ignore the contribution of clas-
sical nonlinearity; that is, Kc(P; x) = K0 for all pressure excursions and at all x .
The properties of hysteresis are defined by the parameter γ (x) and the PKM density
distribution ρPKM(Pc, Po; x). If these properties are independent of x we speak about
spatially uniform hysteresis. In that case, we take γ (x) = γ = 2 · 10−18. Otherwise,
we consider spatially localized hysteresis, and we assume a gradual distribution of the
hysteretic strength γ (x) = 2 · 10−18 exp(−((x − 0.045)/0.015)2), simulating a local-
ized zone of nonlinearity centered at 45 mm in the bar. In any case, the PKM-space
is constrained to finite pressure values ranging from −5 MPa to 5 Mpa, implying that
there are no hysteretic units with characteristic values of Pc or Po outside these stress
limits. To show the influence of the PKM distribution on the dynamics, we consider
various cases of nonuniform distributions of PKM densities:

ρPKM(Pc, Po; x) = R(Pc, Po; x)

NPKM(x)
with NPKM(x) =

∫∫
R(Pc, Po; x) d Po d Pc

(12.9)
and

R(Pc, Po; x) = exp

[
−

(
(Pc + Po) − a(x)

b(x)

)
− c(x) (Pc − Po)

]
(Pc − Po)

m(x)

(
m(x)
c(x)e

)m(x)
.

The parameters a, b, c, and m may in general depend on x . However, here, we use
the same values for all cells. Expression (12.9) enables us to vary the PKM-distribution
(Pc > Po) from a uniform density distribution (type B in Figure 12.1 for a = 0, b =
∞, and m = 0) to a fairly localized density distribution (see type G (m = 0), H
(m = 1), I (m = 2) in Figure 12.1). The constants a and b determine the center and
the width of the density distribution parallel to the diagonal. The constant c and the
power m define the distribution away from the diagonal. The normalization constant
NPKM can be determined by requiring that the density over the entire PKM-space
(−5 MPa < σc < 5 MPa and −5 MPa < σo < σc) be equal to unity.

Apart from the material parameters, we also need to specify the forcing frequency
and amplitude. We assume a source located at x = 0 which produces a 100 kHz sinu-
soidal signal of which the amplitude may vary over three orders of magnitude in the
simulations. The numerical time step is 1/200 of the wave period. Finally, the virtual
receiver is located at 100 mm from the source.

The numerical model calculates the spatial distribution of stress and velocity over
the bar at each step in time according to the staggered scheme discussed above. Sub-
sequent to a transitional process, the steady-state response of the sample is usually
reached after a finite number of cycles of excitation. For the analysis, we perform a
Fourier transformation on the steady-state response of the velocity signal (using ex-
actly eight periods) at the receiver position, and we store the values of the fundamental
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velocity amplitude, and its harmonics (of order two up to five) as a function of the
forcing amplitude. Strains can be deduced from the particle velocity by dividing by
the linear wave speed (co = 1961.16 m/s). With this, we can quantify the generation
of harmonics as a function of the fundamental component, and the loss of energy due
to hysteresis.

At first, we have verified that a spatially uniform hysteretic bar with uniform PKM
distribution (type B) assures results consistent with previously reported analytical,
quasianalytical, and numerical results [9,28,30]. There is no sign of even harmon-
ics; all odd harmonics vary linearly with distance, quadraticles in strain, and linearly
in frequency. Attenuation is increasing linearly with strain and distance.

Figure 12.3 illustrates the influence of the PKM distribution on the generation of the
third harmonic for a spatially uniform hysteretic bar (all cells have the same nonlin-
earity). We considered Type A, B, C, D, G, H, and I distributions. For Type C, the shift
was 550 Pa. For Type D, the band extends between 300 Pa and 9300 Pa, and for G, H,
I, a = 0 Pa, b = 104 Pa, and c = 10−4 Pa−1.

The results for the linear case (no hysteresis, dashed line) indicate the noise floor
for the discrete Fast Fourier transform (the harmonics are down by at least 160 dB).
The open squares (Type B) show the quadratic behavior of the third harmonic for the
uniform PKM-spaces. In Figure 12.3a, we clearly observe the onset of nonlinearity in
the shifted (Type C) and banded (Type D) PKM-space distributions, and the presence
of a saturation level for the banded PKM space. Figure 12.3b also illustrates a satura-
tion level for the nonuniform PKM-spaces at high strains (Types G, H, and I), and a
clear nonquadratic dependence (rather order three or four) of the third harmonic for
m = 1 and m = 2, corresponding to distributions with lesser units near the diagonal
than away from the diagonal.

In addition, we considered the case of a localized zone of hysteresis situated between
the source and the receiver. The nature of the PM-space distributions is identical for
all elements, but the strength of the microscopic units varies according to a Gaussian
function between 20 mm and 70 mm, centered at 45 mm. Figure 12.4 illustrates the
growth of the third harmonic with distance for four PKM types and for three values of
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from the source) versus distance for three different source amplitudes and for various PKM space distrib-
utions: Type B, Type G, Type H, and Type I.

the excitation. We observe that the third harmonic growth is limited to the nonlinear
zone, and that the nonuniform PKM-spaces with m = 1 and m = 2 show evidence of a
threshold phenomenon. The nonquadratic amplitude dependence of the third harmonic
is again visible from the comparison of these graphs, as well as the saturation of the
growth at large excitation levels.

4.3 Simulations for One-Dimensional Wave Resonance

Most of the above-used simulation parameters apply also for the simulations of wave
resonances. However, we now assume a bar of finite length (L = 250 mm) with a
free boundary at x = L . To achieve steady-state responses, we introduced a uniform
quality factor Q = 80 (inverse attenuation). Because the frequencies for wave reso-
nances are much lower, we can significantly increase the spatial grid size. The EFIT
discretization parameters for simulations of the fundamental longitudinal resonance
are taken as follows: �x = L/120, and �t = 1/(384 f ).

Starting from the initial rest state, and implementing the forcing at x = 0 as the
boundary condition, we use the numerical model to calculate the spatial distribution
of stress and velocity over the bar at each step in time. Subsequent to a transitional
process, the steady-state response of the sample is usually reached after a finite num-
ber of cycles of excitation. Here, we have taken 5Q cycles as a rule of thumb, with
Q the quality factor. The following eight cycles of the steady-state velocity signal at
the position x = L are then used for the analysis. Using a Fast Fourier transform, we
calculate and store the values of the fundamental velocity amplitude and its harmonics
(of order two up to five) as a function of forcing frequency and forcing amplitude.
With this information, we plot (fundamental and harmonic) resonance response curves
at various driving forces, and perform subsequent analysis of the data. On one hand,
we determine the peak coordinates and the width of the resonance line for each fun-
damental resonance curve (i.e., each sweep in frequency at a fixed forcing amplitude).
The peak amplitude gives the maximal response amplitude ν1r (F) for the given forc-
ing F ; the peak frequency is the resonance frequency fr (F) of the system at that
forcing. The width of the peak at half power w(F) can be translated into a value of
Q(= fr (F)/w(F)) which may also vary as a function of F . By plotting the relative
changes in the resonance frequency (i.e., ( fr (F0) − fr (F))/ fr (F0) = � fr (F)/ fr (F0)

with F0 an extremely small value that yields the linear resonance response) and the
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Fig. 12.5. Typical resonance curves of the fundamental and of the third harmonic strain response for a
spatially uniform distribution of the hysteresis parameters along the bar (Type B PKM-space).

changes in the quality factor (i.e., (Q(F0) − Q(F))/Q(F0) = �Q(F)/Q(F0)) as a
function of the peak amplitude ν1r (F) measured at the same forcing, we can quantify
the effect of hysteresis and nonlinearity on the modulus and the attenuation. The sec-
ond part of the analysis is to determine the harmonic amplitudes νir (F) (i = 2, 3, 4, 5)

at the resonance frequency fr (F) for the different forcing values. Plotting these val-
ues against the peak amplitude ν1r (F) of the fundamental component in the response
quantifies the effect of hysteresis and nonlinearity on the generation of harmonics.

Figure 12.5 illustrates the typical resonance curves of the fundamental and of the
third harmonic strain response, obtained by the multiscale approach for a spatially
uniform distribution of the hysteresis parameters along the bar. Note that the even
harmonics are not generated in purely hysteretic systems, because we ignored the
classical nonlinearity contribution. Several sweeps were calculated at progressively
increasing forcing amplitudes. We assumed a uniform PKM-space density distribu-
tion (Type B) for each material cell, that is, a = 0, b = +∞, c = 0, and m = 0
independent of x . The parameter γ equals 2 · 10−18.

Figure 12.6 illustrates the outcome of the usual analysis of the resonance curves for
the relative change in frequency and in quality factor as well as for the third harmonic.
We considered various types of PKM distributions (B, G, H, and I).

We remark that the Type B (uniform) PKM-space is giving us the expected behavior
of a relative frequency shift and attenuation increase which are both linearly propor-
tional to the strain. The third harmonic is quadratic in the strain [15,27,28]. The strain
proportionality of the relative frequency shift is related to the fact that the ratio of the
number of units that is activated, over the strain amplitude, is linear in the strain. For
Type G distributions, with nonzero diagonal density, but decaying away from the di-
agonal, we observe a saturation in the observations at large excitation amplitude. It is
even possible that the nonlinearity signature decreases with excitation. This is due to
the fact that, relatively speaking, we activate more units at low amplitude than at high
amplitude. Again, type H and I (with a zero diagonal density) clearly show a deviating
power law dependence, which starts out as quadratic or even cubic, then changes to
quasilinear before it finally turns over to saturation and decrease.
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This proves that even a purely hysteretic system can produce a quadratic strain de-
pendence of the relative frequency shift at low strains which turns into a linear shift
at high strains (see Chapter 26 of this book), provided the PM-space distribution is
nontrivial and accurately specified.

For an investigation and discussion of the influence of the localization and the extent
of nonlinear zones, we refer to Chapter 23 of this book where we have compared
the 1-D resonance results from the present multiscale model to analytical expressions
obtained using the normal mode solution.

5. Multiscale Approach for Simulating Wave Dynamics in the
Presence of Hysteretic Nonlinearity: Two-Dimensional Case

5.1 2-D NL-EFIT

The starting point of the two-dimensional EFIT method is again the Cauchy equa-
tion of motion together with the stress-rate equation. In 2-D problems, they can be
expressed in terms of two-particle velocity components (νx and νy) and three stress
components (Txx , Tyy , and Txy) as follows.

ρν̇x = ∂Txx

∂x
+ ∂Txy

∂y
; ρν̇y = ∂Txy

∂x
+ ∂Tyy

∂y
(12.10a)

Ṫxx = K1
∂νx

∂x
+ K2

∂νy

∂y
; Ṫyy = K1

∂νy

∂y
+ K2

∂νx

∂x
; Ṫxy = µ

(
∂νy

∂x
+ ∂νx

∂y

)
.

(12.10b)
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Here ρ is again the material density, and K1, K2, and µ are representations for elastic
moduli in 2-D (in the isotropic case K1 = λ + 2µ, K2 = λ with λ and µ the Lamé
constants).

Following the suggested discretization of Fellinger et al. [16] for the case of inho-
mogeneous media, the solid medium is then split in material cells of size �x by �y in
such a way that the diagonal components of the stresses (Txx and Tyy) are calculated
in the center of the cell, Txy is calculated at each of the four corners, and the particle
velocity components (νx and νy) are determined and updated at the parallel sides of the
cell in the x- and y-directions. Figure 12.7 exactly illustrates a set of four neighboring
fundamental material cells used for the 2-D EFIT implementation.

If we consider a square grid (�x = �y), the EFIT equations take on the following
form.

ν̇(n,m)
x (t) = 1

�x

2

ρ(n,m) + ρ(n+1,m)
(T (n+1,m)

xx (t) − T (n,m)
xx (t) + T (n,m)

xy − T (n,m−1)
xy )

(12.11a)

ν̇(n,m)
y (t) = 1

�x

2

ρ(n,m) + ρ(n,m+1)
(T (n,m+1)

yy (t) − T (n,m)
yy (t) + T (n,m)

xy − T (n−1,m)
xy ).

(12.11b)

Ṫ (n,m)
xx (t) = 1

�x
K (n,m)

1

[
ν(n,m)

x (t) − ν(n−1,m)
x (t)

]

+ 1

�x
K (n,m)

2

[
ν(n,m)

y (t) − ν(n,m−1)
y (t)

]
(12.11c)

Ṫ (n,m)
yy (t) = 1

�x
K (n,m)

1

[
ν(n,m)

y (t) − ν(n,m−1)
y (t)

]

+ 1

�x
K (n,m)

2

[
ν(n,m)

x (t) − ν(n−1,m)
x (t)

]
(12.11d)
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Fig. 12.7. Set of four elementary mesoscopic cells used in the 2-D EFIT model.
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Ṫ (n,m)
xy (t) = µHar

�x

[
ν(n,m+1)

x (t) − ν(n,m)
x (t) + ν(n+1,m)

y (t) − ν(n,m)
y (t)

]

(12.11e)

with
1

µHar
= 1

4

(
1

µ(n,m)
+ 1

µ(n+1,m)
+ 1

µ(n,m+1)
+ 1

µ(n+1,m+1)

)
.

The update of the velocities and stresses is performed using central differences for
the time derivatives yielding a common leapfrog scheme:

ν
(n,m)
i (t) = ν

(n,m)
i (t − �t) + �t ν̇

(n,m)
i

(
t − �t

2

)
for i = x, y (12.12a)

T (n,m)
i j

(
t + �t

2

)
= T (n,m)

i j

(
t − �t

2

)
+ �t Ṫ (n,m)

i j (t) for i, j = x, y

(12.12b)

As in the one-dimensional case, this scheme is straightforward for linear elastic
solids. Yet, when microdamage is considered within the material cells, the stress–strain
rate relations become more complicated and the moduli K1, K2, and µ may depend on
the actual values of the three stress components acting on a material cell and on their
history. The obvious extension of the scalar Preisach model to a vectorial Preisach
model was turned down by Helbig because it is unable to account for the Poisson
effect [31,32]. Helbig therefore suggested to reformulate the elastic tensor in terms
of its eigensystem (eigenstiffnesses and eigenstrains). The eigenvectors correspond to
the particular configuration in which the corresponding eigenstrain vector is perfectly
collinear with the corresponding eigenstress vector. Indeed, by defining the volumetric,
deviatoric, and shear stresses and strains:

TV = Txx + Tyy

2
; TD = Txx − Tyy

2
; TS = Txy,

(12.13)
εV = εxx + εyy

2
; εD = εxx − εyy

2
; εS = εxy

the rate equations become

ṪV = KV ε̇V ; ṪD = K D ε̇D; ṪS = KS ε̇S

with KV = K1 + K2

2
; K D = K1 − K2

2
; and KS = µ. (12.14)

In general, one could imagine that the new moduli KV , K D , and KS may depend
on any of the three components of the stress and their history. As a first approx-
imation, however, we can assume that they only depend on the actual value and
the history of the eigenstress component which appears in the scalar equations,
that is, KV (TV , TV,his), K D(TD, TD,his), and KS(TS, TS,his). Doing so, the three
rate equations can be treated as scalar equations and the updates can be performed
individually using the scalar Preisach model (as in the one-dimensional case) by
attributing a statistical distribution of microscopic triggerlike units to each pair of
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eigenstress/eigenstrain. Helbig showed that, up to a certain strain level, the eigen-
stress/eigenstrain system resulting from available measurement data do not substan-
tially change [31]. Therefore one may assume that the output strain response of each
stress projection is still collinear with the corresponding eigenstress/eigenstrain vec-
tor. A similar assumption was made by McCall et al. for the analysis of measurements
of axial and radial strain responses to complicated mean stress and shear stress proto-
cols [33].

Once the eigenstress components (TV , TD, TS) are updated, it is easy to recalculate
the Cartesian stress components (Txx , Tyy, Txy), and one can proceed with the common
leapfrog scheme for the calculation of the dynamic nonlinear and hysteretic response.

In order not to complicate the analysis too much, we have limited ourselves in this
chapter to the case in which the hysteretic nonlinearity is only affecting the volumetric
stress–strain relation, and not the deviatoric or shear relations. We consider two ex-
amples. In the first example, we simulate the propagation of a Rayleigh wave through
a medium with a localized surface deterioration. The second example deals with an
in-plane investigation of localized damage in a plate using pulsed ultrasound.

5.2 Simulations for Two-Dimensional Nonlinear Rayleigh Wave Propagation

In this first example, we consider a solid medium measuring 120×50 mm2, with a den-
sity of 1000 kg/m3, an overall longitudinal velocity of 2000 m/s, and a shear velocity
of 1155 m/s. No linear attenuation mechanism is assumed within the body. The top
side of the medium is considered to be free (air). The solid body (SB) is surrounded by
three absorbing boundary layers (left, right, and bottom) to avoid artificial reflections
from the numerical boundaries. The source S is located on the free surface, at the left-
hand upper corner of the solid body. Two receivers R1 and R2 are located at 20 mm
and 100 mm from the source (see Figure 12.8). A surfacial zone (Zone), centered at
60 mm from the source, is considered to be microdamaged. Everywhere else the solid
body is linear elastic (λSB = 1.332 GPa, µSB = 1.334 GPa, and γSB = 0).

The excitation signal is modeled as an apodized sinusoidal force Fy with frequency
ranging from 50 to 200 kHz, and is treated as a local source term for the vy component
in Eq. (12.11b) at position S on the free surface.

R1 R2S 

120 mm

50 mm

y 

x

Solid Body

Zone

Fig. 12.8. Geometry of the 2-D Rayleigh wave propagation simulation.
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Experimental work on progressively damaged materials has shown that microdam-
age can result in a reduction of the linear moduli, and/or an increase of the nonlinearity
on the other hand [2,5–7]. We have investigated these effects in the model simulations
by considering various cases with gradually varying linear and nonlinear hysteretic
parameters in the “microdamaged” zone near the surface. In order to avoid reflections
from discontinuous transitions in parameters between layers, we assume generalized
Gaussian distributions for the shear modulus µ and of the hysteresis parameter γ in
the following form.

µ(x, y) = µSB(1 − µR e
− 1

P

[
x−xs
Wx

]p−
[

y−ys
Wy

]2

), γ (x, y) = γMAXe
− 1

P

[
x−xs
Wx

]p−
[

y−ys
Wy

]2

.

(12.15)
For the calculations, we considered distributions of µ and γ that are centered in the
x-direction at 60 mm from the source(xs = 60 mm) with a width equal to Wx =
12 mm, and centered in the y-direction at the surface (ys = 0) with variable width
Wy . The parameter p was set to 8. The maximum reduction of the modulus in the
damaged zone (at the surface) is 20% (µR=0.2). The maximum strength of the hys-
teretic nonlinearity at the surface corresponds to γMAX = 2 · 10−18. The stress–strain
relation of the material cells in the damaged zone is updated in the assumption of a
uniform PM-distribution and only volumetric hysteresis is considered. Other possible
driving scenarios for the hysteresis in 2-D are suggested in Chapter 18. No classical
nonlinearity is assumed.

We investigated the influence of hysteresis and/or modulus reduction in two ways.
First, we examined the effect on the phase velocity of the Rayleigh wave component
along the surface. We determined the phase velocity at different excitation frequencies
( f ) from the difference of the phase spectra at R1 and R2 following the method de-
scribed in Aki and Richards [34]. This procedure was repeated for various cases with
and without modulus reduction, and with and without hysteresis.

The results of this investigation led to the following twofold conclusion (figures are
omitted for sake of brevity): (a) the wave speed of a Rayleigh wave is highly dependent
on the stiffness of the near-surface layers, and a modulus gradient introduces disper-
sion or frequency-dependent wave speeds. This is well known in seismology [34] and
NDT as linear depth profiling, and is attributed to the difference in penetration depth of
the Rayleigh wave at different frequencies. (b) The (microscopic) nonlinearity has lit-
tle or no “measurable” extra effect on the wave speed of a propagating Rayleigh wave.
This latter observation can also be readily explained by recalling that the nonlinear-
ity is a second-order effect on the modulus reduction which is typically below 0.1%
(e.g., Figure 12.6) [1–7]. The effect on the Rayleigh wave velocity is thus minimal,
and extremely hard to measure in situ.

In the second set of simulations, we concentrated on the nonlinear properties of
Rayleigh wave propagation by analyzing the level of the third harmonic spectral com-
ponent of the Rayleigh wave’s out-of-plane particle velocity vy along the surface. It
is well known that the third harmonic in a one-dimensional hysteretic nonlinear bar
(in the absence of attenuation) accumulates linearly with distance, and is quadratic in
the amplitude of the fundamental component [28]. We have found the same dependen-
cies for the out-of-plane particle velocity of the Rayleigh wave (not shown for brevity)
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propagating along the surface in 2-D. With regard to the frequency dependence, the
displacement amplitude u3 f is generally quadratic in the driving frequency [28]. Tak-
ing into account the extra frequency dependence for velocity components (v = ωu),
we may expect a cubic frequency dependence for the third harmonic particle velocity
vy,3 f at a fixed position and for a fixed excitation level.

In Figure 12.9a, we compare the results of layered hysteresis without modulus re-
duction for different depths of the microdamage region (by assuming different para-
meters for the width Wy). The results first of all show the predicted cubic relationship
with frequency. As can be expected, we observe that the third harmonic component
diminishes with decreasing depth of the microdamaged zone. However, Figure 12.9b
(a normalized version of Figure 12.9a) clearly illustrates that the reduction is highly
frequency dependent. Compared to the value at Wy = 2.5 mm, the third harmonic for
Wy = 0.2 mm reduced by more than 80% at 50 kHz and only by 45% at 200 kHz.
This is again an expected result related to the frequency-dependent penetration depth
of Rayleigh waves.

This yields a second conclusion: the amplitude of the third harmonic of a Rayleigh
wave is highly sensitive to the microscopic nonlinearity of the near-surface layers and
a nonlinearity gradient introduces a new type of dispersion on the harmonics.
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Fig. 12.9. (a) Frequency dependence of the third harmonic particle velocity component vy in the Rayleigh
wave propagation for different depths of the microdamaged zone without modulus reduction; (b) same
results as in Figure 12.9a, but plotted in normalized form as function of the depth; (c) frequency dependence
of the third harmonic particle velocity component vy in the Rayleigh wave propagation for different levels
of modulus reduction.
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Finally we consider a modulus reduction on top of a hysteretic nonlinearity. Fig-
ure 12.9c illustrates the frequency dependence of vy,3 f at R2 for a zone with hysteretic
nonlinearity and different levels of modulus reduction. A reduction of the modulus in
the microdamaged zone leads to a reduction in the observation of the third harmonic
of the particle velocity vy too.

5.3 Simulations for Two-Dimensional In-Plane Wave Propagation

In this second 2-D example, we consider a solid plate of aluminum with a density
of 2700 kg/m3, an overall longitudinal velocity of 6198 m/s, and a shear velocity of
3122 m/s. Again, no linear attenuation mechanism is assumed within the medium. The
dimensions of the plate are 30 × 50 cm (Figure 12.10). The damaged zone is modeled
by imposing an 80% reduction of the shear modulus and a hysteretic modulus–stress
relation with uniform (Po, Pc)-distribution and hysteretic parameter γ = 2 · 10−18,
uniformly distributed over a square region of 3 × 3 cm, centered in the middle of
the plate. Everywhere else, the medium is assumed to be linearly elastic. Again,
we limit ourselves to the case in which the hysteretic nonlinearity is only affecting
the volumetric stress–strain relation, and not the deviatoric or shear relations. This
time we apply rigid boundary conditions at the boundaries of the plate. The excita-
tion signal is introduced in Eq. (12.11a) as an external time-apodized stress, with a
2-D spatial Gaussian distribution applied over a region of 10 × 50 mm centered at
(xs = 125 mm, ys = 150 mm).

Figure 12.11, for instance, shows the Txx stress component at the location of the
receiver over a timescale of 2.25 · 10−4 s for a source amplitude A = 2 · 105 Pa.
The response for A = 5 · 104 Pa looks very much the same, and from the normalized
signals it is not easy to discern the effects of the nonlinearity. The nonlinear signatures
can only be disclosed by analyzing the signals in the frequency domain, either in their
entire form, partially, or by using moving windows.

For a quick preview of the harmonic generation, we prefer to analyze the harmonic
content of the time signals by windowing them with a Gaussian apodization func-
tion with maximum at t = 5.48 · 10−5 s. This isolates the part of the signals that

x

y

Source

Defect

Receiver

500 mm

300 mm

Fig. 12.10. Geometry of the 2-D simulations.
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corresponds to the first arrival of the longitudinal wave at the receiver. The Fourier
transforms for Gaussian windowed signals at A = 5 · 104 and A = 2 · 105 Pa are
shown in figure 12.12b. In Figure 12.12b we have also added the FFT of the signal
for a linear simulation at 5 · 104 Pa. The generation of harmonics is clearly evident.
Note that hysteretic nonlinearity creates only odd harmonics in the time signals and
that the well-known quadratic dependence of the harmonics on the amplitude of the
fundamental holds [28].

A more detailed, time-resolved picture of the development of nonlinearity can be
obtained through wavelet analysis [35]. Wavelet analysis decomposes a function into
a sum of shifted and scaled copies of a suitably chosen wavelet kernel. The wavelet
theory covers the limitations in Fourier analysis by windowing the signal into variable-
sized regions, using long time intervals for information on low frequencies and shorter
intervals for high frequencies. The result of applying the continuous wavelet transform
on a given time signal is a wavelet map in which the amplitude of the wavelet coeffi-
cients is plotted as a function of time and the pseudofrequency of the wavelets [35,36].
We calculated the continuous wavelet transform of the stress signals at the receiver
position for A = 5 · 104 Pa and A = 2 · 105 Pa using the complex Morlet wavelet [36].
The results of this calculation are illustrated in Figure 12.12. The two upper panels (a)
and (b) display the wavelet maps for A = 5 · 104 Pa and A = 2 · 105 Pa resulting
from simulations without hysteresis in the defect region. The corresponding wavelet
maps for simulations including the hysteretic stress–strain relation are shown in plots
(c) and (d) respectively. Panels (e) and (f) show the absolute value of the difference be-
tween the wavelet maps for the linear and nonlinear simulations at A = 5 · 104 Pa and
A = 2 · 105 Pa. In order to facilitate comparison, all plots are on the same logarithmic
scale from 0 to 8.

The goal of Figure 12.12 is to illustrate the changes in the received time signals
that are brought about by the introduction of hysteresis. When comparing figures (e)
and (f), we can clearly observe the presence of the third and fifth harmonics of the
fundamental at 600 and 1000 KHz in the first two to three pulse arrivals and in the
last one. The increase in the strength of the harmonics is about one order of magnitude
(factor 16) according to the quadratic dependence on fundamental amplitude.
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Fig. 12.12. Continuous wavelet transform of the stress signals at A = 5 · 104 Pa (left) and A = 2 · 105 Pa
(right) for simulations without hysteresis (a) and (b) and including hysteresis (c) and (d). Figures (e) and
(f) show the absolute value of the difference between the wavelet at A = 5 ·104 Pa (c–a) and A = 2 ·105 Pa
(d)–(b). All plots are on the same logarithmic scale from 0 to 8.

In the second half of the time window, one observes a temporary decrease in the
amplitude of the harmonics. This reduction is a consequence of the arrival of shear
waves at the receiver which are generated through mode conversion in the defect region
and because of wave reflection at the boundaries of the computational domain. Shear
waves are less affected by the nonlinearity because we did not include shear hysteresis
in our simulation. We are currently further investigating the influence of the various
types of hysteresis on 2-D wave propagation.
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6. Conclusions

We have illustrated a multiscale approach to model wave propagation and resonance
phenomena in materials containing hysteretic (multibranch, or nonunique) stress–
strain relations. At the microlevel, we have simulated microcracks by triggerlike
elements with a two-state nonlinear stress–strain relation. On the mesoscopic level
we have used a scalar Preisach approach with a continuous but nontrivial statistical
distribution to achieve the stress–strain relations of a representative volume in terms
of its eigenstresses and eigenstrains. Finally, a staggered grid formulation is imple-
mented to predict the macroscopic response to an arbitrary excitation signal.

Using this multiscale model, we investigated the influence of a microdamaged zone
on the resonance signatures, and on the propagation characteristics for one- and two-
dimensional problems. In 1-D, we illustrated the influence of a nontrivial PM-space
distribution on the expected power law dependencies in the dynamic modulus–strain
relation and in the generation of higher harmonics. It turns out that the existence of
a nontrivial PM distribution may serve as an alternative explanation of the typical
experimental results discussed in Chapter 26, in cases where no slow dynamical effects
are to be considered.

In 2-D, the numerical simulations for nonlinear Rayleigh wave propagation along
the surface of a microcracked solid showed that the effect of nonlinearity is not partic-
ularly critical on the wave velocities. On the other hand, the results encourage the use
of depth profiling methods based on the analysis of the generated harmonic content as
function of frequency.

From the example of in-plane propagation of pulses in plates, we conclude that the
nonlinear effects are definitely of second order, and that, even though two signals may
look alike, the comparison of the wavetrains in terms of spectral content or wavelet
analysis can be extremely clarifying.

We are perfectly aware of the fact that the model implemented here is a basic model
which uses the simplest double rigid states model, without fancy transitions, and the
like. Many additional features such as conditioning and recovery of material para-
meters during and after high strains can be added by slight modifications of the ele-
mentary assumptions (see, for instance, Chapters 16–18). However, in view of their
practical use in inverse modeling, we believe that the current models already put very
high limitations on achievability because of the many parameters that can be varied
in direct modeling. For real NDT applications one should primarily focus on effect of
the main parameters on the nonlinear signatures without overloading the models with
third-order effects.
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Abstract
A thermodynamically consistent finite-volume numerical algorithm for thermoelastic phase-
transition front propagation is described. A simple mathematical model of martensitic phase
transition front propagation is considered. The phase transition front is viewed as an ideal math-
ematical discontinuity surface. The problem remains nonlinear even in this simplified descrip-
tion that requires a numerical solution. A nonequilibrium description of the process is provided
by means of nonequilibrium jump relations at the moving phase boundary, which are formu-
lated in terms of contact quantities. The same contact quantities are used in the construction of
a finite-volume numerical scheme. The additional constitutive information is introduced by a
certain assumption about the entropy production at the phase boundary. Results of numerical
simulations show that the proposed approach allows us to capture experimental observations in
agreement with theoretical predictions in spite of the idealization of the process.

Keywords: Finite volume methods, martensitic phase transformations, moving phase bound-
ary, thermomechanical modeling

1. Introduction

The propagation of waves and phase-transition fronts in thermoelastic media is
governed by the same field equations and equations of state (at least in the integral
formulation). However, although these equations are sufficient for the description of
thermoelastic waves, that is not the case for the phase transition fronts. It is well known
that initial boundary value problems, formulated according to the usual principles of
continuum mechanics, can suffer from a lack of uniqueness of the solution when the
body is composed of a multiphase material.1 The solution in this case involves a prop-
agating phase boundary that separates the austenite from the martensite; the speed VN

of this interface remains undetermined by the usual continuum theory.
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Fig. 13.1. Experimental stress–strain relation for Cu–Zn–Al shape-memory alloy.4

The propagation of phase interfaces in shape-memory alloys under applied stress is
an experimentally observed phenomenon.2, 3 It is also connected with a superelastic
effect. Originally in the austenitic phase, martensite is formed, upon loading, beyond
a certain stress level, resulting in the stress plateau shown in Figure 13.1. The cause
of stability of martensite at sufficiently high temperature is the applied stress, and
therefore upon unloading martensite becomes unstable and reverts to its parent phase
gaining its undeformed shape. This effect, which causes the material to be extremely
elastic, is known as pseudoelasticity or superelasticity. Therefore, the propagation of
phase interfaces results in a nonclassical nonlinear behavior of shape-memory alloys.

The simplest possible formulation of the stress-induced phase transition front prop-
agation problem is given by Abeyaratne et al.5 in the case of an isothermal uniaxial
motion of a slab in small-strain approximation. The phase front is represented by a
jump discontinuity separating the different austenite and martensite branches of the
N-shaped local stress–strain curve. A shift of the martensitic branch of the curve is
provided by the incorporation of a transformation strain, which is considered as an
experimentally determined material constant.

From a thermodynamic point of view, a phase transition is a nonequilibrium process;
entropy is produced at the moving phase boundary at a rate fSVN .6 The entity fS is
called the driving force and may be expressed in terms of the limiting stress, deforma-
tion gradient, and free-energy on the two sides of the interface.1, 5–8 The uniqueness of
the solution is provided by the introduction of two additional constitutive relations: a
kinetic law for a driving force that establishes the speed of the transformation front

VN = φ( fS), (13.1)

where a constitutive function φ provides the continuum theory with a suitable descrip-
tion of the lattice transformation mechanism, and a nucleation criterion.1, 6, 9

The prescription of the kinetic relation, of the nucleation criterion, and of the
transformation strain means that the material behavior is completely known, and the
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numerical simulation is needed only for adjusting the values of coefficients of the
model. In the considered model, the local equilibrium approximation is exploited in
spite of the irreversibility of the phase transformation process. Moreover, to perform
simulations of practical examples we need to move to a numerical approximation. In
this case, we face a nonequilibrium behavior of finite-size discrete elements or com-
putational cells. It is clear that the local equilibrium approximation is not sufficient to
describe such a behavior.

Therefore a nonequilibrium description of the stress-induced phase-transition front
propagation is preferable. To do this we need to choose an appropriate nonequilibrium
theory. Our choice is influenced by numerical aspects of the modeling. This means that
we need to have not only the nonequilibrium description of states of (finite volume)
computational elements, but also the description of their interactions. In our opinion,
the best possibility is provided by the thermodynamics of discrete systems.10 In this
theory, in addition to usual local equilibrium quantities, so-called contact quantities are
introduced to provide the description of interactions between the systems. Therefore,
the thermodynamic state space is extended.

The next step is to establish the nonequilibrium jump conditions at the phase inter-
face. Each model of the stress-induced martensitic phase-transition front propagation
uses its own jump relations.11–15 All of them differ from the classical equilibrium jump
relations, which consist in the case of thermoelastic solids in the continuity of temper-
ature and chemical potential and the continuity of the normal Cauchy traction at the
phase boundary.16, 17

We apply the nonequilibrium jump relations,18 which should be fulfilled for each
pair of adjacent discrete elements. Supplementary constitutive information is intro-
duced by means of certain assumptions about the entropy production at the phase
boundary.

In order to include the nonequilibrium jump relations in the simulation, we apply
a procedure which is similar to that proposed in,19 but with a completely different
numerical algorithm, based on the wave-propagation method.20, 21 However, we have
made certain essential improvements to be able to apply it in the case of moving phase
boundaries, for example. In effect, we reformulate the algorithm in terms of contact
quantities and nonequilibrium jump relations. The nonequilibrium jump relations are
different for processes with and without entropy production.22, 23 This gives us the
possibility to apply distinct nonequilibrium jump relations in the bulk (for the wave
propagation without the entropy production) and at the phase boundary (where en-
tropy is produced, because the phase transition is dissipative). The latter plays the role
of a kinetic relation without an explicit specification. A thermodynamic criterion of
initiation of the phase transition process follows from the simultaneous satisfaction of
both distinct nonequilibrium jump relations at the phase boundary.

The chapter is organized as follows. The governing equations and jump relations
for the simplest problem of a uniaxial phase transition front propagation in a slab are
given in Section 2. A discrete representation of the formulated problem is presented
in Section 3. Nonequilibrium jump relations at the phase boundary are introduced in
Section 4. The finite volume numerical scheme is discussed in Section 5. The algo-
rithm is presented in terms of contact quantities. We describe in detail how the contact
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quantities can be computed in bulk and at the phase boundary. Results of numerical
simulations and a comparison with available experimental data are given in Section 6.
Finally, main conclusions are presented in Section 7.

2. Simple Example: Uniaxial Motion of a Slab

In order to explain some of the key ideas with minimal mathematical complexity, it is
convenient to work in an essentially one-dimensional setting. Following Abeyaratne
et al.,5 we consider a slab, which in an unstressed reference configuration occupies the
region 0 < x1 < L , −∞ < x2, x3 < ∞, and assume an uniaxial motion of the form

ui = ui (x, t), x = x1, (13.2)

where t is time, xi are the spatial coordinates, and ui are the components of the dis-
placement vector. In this case, we have only three nonvanishing components of the
strain tensor

ε11 = ∂u1

∂x
, ε12 = ε21 = 1

2

∂u2

∂x
, ε13 = ε31 = 1

2

∂u3

∂x
. (13.3)

Particle velocities associated with Eq. (13.2) are

vi (x, t) = ∂ui

∂t
. (13.4)

Without loss of generality, we can set ε13 = 0, v3 = 0 because of zero initial and
boundary conditions for these components. Then we obtain uncoupled systems of
equations for longitudinal and shear components that express the balance of linear mo-
mentum and the time derivative of the Duhamel–Neumann thermoelastic constitutive
equation, respectively,22, 23

∂(ρ0(x)v1)

∂t
− ∂σ11

∂x
= 0,

∂

∂t

(
σ11

λ(x) + 2µ(x)

)
− ∂v1

∂x
= m(x)

∂θ

∂t
, (13.5)

and
∂(ρ0(x)v2)

∂t
− ∂σ12

∂x
= 0,

∂

∂t

(
σ12

µ(x)

)
− ∂v2

∂x
= 0, (13.6)

which are complemented by the heat conduction equation

C(x)
∂θ

∂t
= ∂

∂x

(
k(x)

∂θ

∂x

)
. (13.7)

Here σi j is the Cauchy stress tensor, ρ0 is the density, θ is temperature, and C is
the heat capacity per unit volume for a fixed deformation. The dilatation coefficient
α is related to the thermoelastic coefficient m, and the Lamé coefficients λ and µ by
m = −α(3λ + 2µ). The indicated explicit dependence on the point x implies that the
body is materially inhomogeneous in general.

The above description is well known and these systems of equations can be solved
separately. We focus our attention on the system of equations for shear components
[Eq. (13.6)] because the martensitic phase transformation is expected to be induced by
shear.
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2.1 Jump Relations

To consider the possible irreversible transformation of a phase into another one, the
separation between the two phases is idealized as a sharp discontinuity surface S
across which most of the fields undergo finite jumps. Let [A] and < A > denote
the jump and mean value of a discontinuous field A across S , the unit normal to S
being oriented from the “minus” to the “plus” side:

[A] := A+ − A−, < A >:= 1

2
(A+ + A−). (13.8)

Let Ṽ be the material velocity of the geometrical points of S . The material velocity
V is defined by means of the inverse mapping X = χ−1(x, t), where X denotes the
material points24

V := ∂χ−1

∂t

∣∣∣∣∣
x

. (13.9)

The phase transition fronts considered are homothermal (no jump in temperature;
the two phases coexist at the same temperature) and coherent (they present no defects
such as dislocations). Consequently, we have the following continuity conditions.25, 26

[V] = 0, [θ] = 0 at S. (13.10)

Jump relations associated with the conservation laws in the bulk are formulated ac-
cording to the theory of weak solutions of hyperbolic systems. Thus the jump relations
associated with the balance of linear momentum and balance of entropy read25, 26

ṼN [ρ0v2] + [σ12] = 0, ṼN [S] +
[

k

θ

∂θ

∂x

]
= σS ≥ 0, (13.11)

where S is entropy, ṼN is the normal component of the material velocity of the points
of S , and σS is the entropy production at the interface. As shown in References25, 26

the entropy production can be expressed in terms of the driving force fS such that the
dissipation at the interface reads

fS ṼN = θSσS ≥ 0, (13.12)

where θS is the temperature at S . In addition, the balance of material forces at the
interface between phases is found in the form25, 26

fS = −[W ]+ < σi j > [εi j ], (13.13)

where W is the free energy per unit volume.

2.2 Dynamic Loading

In a dynamic problem we look for piecewise smooth velocity and stress fields v2(x, t),
σ12(x, t) for inhomogeneous thermoelastic materials, which obey the following initial
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and boundary conditions,

σ12(x, 0) = v2(x, 0) = 0, for 0 < x < L , (13.14)

v2(0, t) = v0(t), σ12(L , t) = 0, for t > 0, (13.15)

and satisfy the following field equations

∂(ρ0(x)v2)

∂t
− ∂σ12

∂x
= 0,

∂

∂t

(
σ12

µ(x)

)
− ∂v2

∂x
= 0, (13.16)

and jump conditions

ṼN [ρ0v2] + [σ12] = 0, [V] = 0, [θ] = 0 at S, (13.17)

fS = −[W ]+ < σi j >
[
εi j

]
, fS ṼN ≥ 0. (13.18)

It should be noted that Eqs. (13.17) and (13.18) are useless unless we can determine
the value of the velocity of the phase boundary. A possible solution is the introduction
of an additional constitutive relation between the material velocity at the interface
and the driving force in the form of a kinetic relation.1, 6, 9 Because the nonlinearity
of the formulated problem due to the moving phase boundary requires a numerical
solution, we postpone the introduction of the supplementary constitutive information
to the numerical approximation.

3. Discrete Representation

3.1 Integral Balance Laws for Discrete Elements

Following the main ideas of finite volume numerical methods,21 we divide the body in
a finite number of identical elements of elementary volume 
x . Integration over the
finite volume element of Eq. (13.16) yields the following set of integral forms.

∂

∂t

∫


x
ρ0v2dx = (σ12)

right − (σ12)
left , (13.19)

∂

∂t

∫


x
σ12dx = (µv2)

right − (µv2)
left . (13.20)

3.2 Averaged Quantities and Fluxes

Introducing averaged quantities at each time step

v̄2 = 1


x

∫


x
v2dx, σ̄12 = 1


x

∫


x
σ12dx, (13.21)

and numerical fluxes at the boundaries of each element

F ≈ 1


t

∫ tl+1

tl
σ12 dt, G ≈ 1


t

∫ tl+1

tl
µv2 dt, (13.22)
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we are able to write a finite volume numerical scheme for Eqs. (13.19) and (13.20) for
a uniform grid (n) in the form (l denotes time steps)

(v̄2)
l+1
n − (v̄2)

l
n = 
t

ρn
x

(
(Fright)l

n − (Fleft)l
n

)
, (13.23)

(σ̄12)
l+1
n − (σ̄12)

l
n = 
t


x

(
(Gright)l

n − (Gleft)l
n

)
. (13.24)

The main difficulty in the construction of a numerical scheme is the proper de-
termination of the numerical fluxes F, G.21 In fact our discrete elements are not in
equilibrium, especially in the presence of phase transformation. Even if we can asso-
ciate the averaged quantities with local equilibrium parameters, we still need to have a
description of the nonequilibrium states of discrete elements. Moreover, we need also
a description of interaction between these nonequilibrium elements, because classical
equilibrium conditions are not valid in the case of fast propagation of sharp phase in-
terfaces through the material during a stress-induced martensitic phase transformation.

4. Nonequilibrium Jump Conditions at the Phase Boundary

We start with the classical equilibrium conditions at the phase boundary. The classical
equilibrium conditions at the phase boundary consist, for single-component fluidlike
systems, in the equality of temperatures, pressures, and chemical potentials in the two
phases; that is,

[θ] = 0 or

[(
∂U

∂S

)

V,M

]
= 0, (13.25)

[p] = 0 or

[(
∂U

∂V

)

S,M

]
= 0, (13.26)

[µ] = 0 or

[(
∂U

∂ M

)

S,V

]
= 0, (13.27)

where U is the internal energy, M is mass, V is volume, p is pressure, and µ is the
chemical potential.

In the considered homothermal case, the continuity of temperature at the phase
boundary still holds, and the continuity of the chemical potential can be replaced by
the expression for the nonzero driving force [Eq. (13.18)]. What we need is to change
the equilibrium condition for pressure [Eq. (13.26)]. In nonequilibrium, we expect that
the value of internal energy of an element differs from its equilibrium value27

U = Ueq + Uex , (13.28)

where the excess energy Uex is the difference between the nonequilibrium and equi-
librium values. Therefore, we can make a direct generalization of classical equilibrium
condition for pressure using the excess energy
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[(
∂(Ueq + Uex )

∂V

)

S,M

]
= 0. (13.29)

However, the obtained jump relation corresponds to a fixed entropy at the boundary.
At the same time, it is well understood that the martensitic phase transformation is a
dissipative process, which involves entropy change. Therefore, we propose to replace
the jump relation [Eq. (13.29)] by another nonequilibrium jump relation. Our choice
of the fixed variables is influenced by the stability conditions for single-component
fluidlike systems28

[(
∂(Ueq + Uex )

∂V

)

θ,M

]
= 0,

[(
∂(Ueq + Uex )

∂V

)

p,M

]
= 0. (13.30)

The last two jump relations differ from Eq. (13.29) only by fixing different variables
in the corresponding thermodynamic derivatives.

To be able to exploit the jump relations, we need to have a more detailed descrip-
tion of nonequilibrium states than by only introducing the energy excess. The most
convenient description of the nonequilibrium states may be obtained by means of
the thermodynamics of discrete systems,10 where the thermodynamic state space is
extended by means of so-called contact quantities.

4.1 Contact Quantities

We still deal with single-component fluidlike systems. A discrete system10 is consid-
ered as a domain separated from its equilibrium environment by a contact surface.
In a Schottky system per se, the interaction between the system and the environment
consists of heat, work, and mass exchanges. These exchange quantities allow us to
define so-called contact quantities. For instance, considering the heat exchange Q̇, the
contact temperature Θ is defined by the inequality10

Q̇

(
1

Θ
− 1

T ∗

)
≥ 0 (13.31)

for vanishing work and mass exchange rates. Here T ∗ is the thermostatic temperature
of the equilibrium environment. From Eq. (13.31) it follows that Q̇ and the bracket
always have the same sign. We now suppose that there exists exactly one equilibrium
environment for each arbitrary discrete system for which the net heat exchange be-
tween them vanishes. Then Eq. (13.31) determines the contact temperature Θ of the
system as the thermostatic temperature T ∗ of the system’s environment for which this
net exchange vanishes. The dynamic pressure p and chemical potential, µ are defined
analogously:10

V̇ (p − p∗) ≥ 0, Ṁ(µ∗ − µ) ≥ 0, (13.32)

where V̇ is the time rate of volume, and Ṁ is the time rate of mass.
The contact quantities so defined together with common local equilibrium variables

provide a complete thermodynamic description of nonequilibrium states of a separated
discrete system.
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In the required extension to the thermoelastic case, the state of each element is
identified with the thermodynamic state of a discrete system associated with it, each
element being assumed in local equilibrium. In thermoelasticity, in addition to Θ and
Eq. (13.31), which governs heat exchange, we must define a contact dynamic stress
tensor Σi j . Analogously to Eq. (13.31) that holds for ε̇i j = 0 we have

∂εi j

∂t
(Σi j − σ ∗

i j ) ≥ 0, (13.33)

for vanishing heat and mass exchange rates. Here σ ∗
i j is the Cauchy stress tensor in the

environment.
In the thermoelastic case, the thermodynamic derivatives that we should exploit

instead of (∂U/∂V )θ and (∂U/∂V )p are:28

(
∂ Ē

∂εi j

)

θ

= −θ̄

(
∂σ̄i j

∂θ

)

ε

+ σ̄i j ,

(
∂ Ē

∂εi j

)

σ

= θ̄

(
∂ S̄

∂εi j

)

σ

+ σ̄i j , (13.34)

where E is the internal energy per unit volume and overbars denote the local
equilibrium values.

Contact quantities are assumed to be connected with the excess energy in a similar
way

(
∂ Eex

∂εi j

)

θ

= −Θ

(
∂Σi j

∂θ

)

ε

+ Σi j ,

(
∂ Eex

∂εi j

)

σ

= Θ

(
∂Sex

∂εi j

)

σ

+ Σi j , (13.35)

where the interaction entropy Sex is still undetermined. Using Eqs. (13.34) and
(13.35) we obtain from Eq. (13.30) that the parameters of the adjacent nonequilibrium
elements of a thermoelastic continuum should satisfy the thermodynamic consistency
conditions, the first of which is valid for all processes with no entropy production

[
−θ̄

(
∂σ̄i j

∂θ

)

ε

+ σ̄i j − Θ

(
∂Σi j

∂θ

)

ε

+ Σi j

]
· N j = 0, (13.36)

and the second one corresponds to any inhomogeneity accompanied by entropy pro-
duction [

θ̄

(
∂ S̄

∂εi j

)

σ

+ σ̄i j + Θ

(
∂Sex

∂εi j

)

σ

+ Σi j

]
· N j = 0. (13.37)

Here N j are components of the unit normal at the boundary of a discrete element. Now
we are able to describe the nonequilibrium states of discrete elements and to exploit
the nonequilibrium jump relations, if we can determine the values of contact quantities,
which can be done at least numerically.

5. Finite Volume Numerical Scheme

5.1 Contact Quantities in the Bulk

We now need to solve the system of equations [Eq. (13.16)]. First we apply Eq. (13.36)
to determine the values of the contact quantities in the absence of phase transformation.
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Because shear components of the stress tensor are independent of temperature, Eq.
(13.36) reduces to

[σ̄12 + Σ12] = 0. (13.38)

In the uniaxial case we have at the interface between elements (n − 1) and (n),

(Σ+
12)n−1 − (Σ−

12)n = (σ̄12)n − (σ̄12)n−1. (13.39)

This relation should be complemented by the kinematic condition between material
and physical velocity,24 which in the small-strain approximation become

[v + V] = 0. (13.40)

Assuming that the jump of the contact velocity is determined by the second term of
Eq. (13.40),

[V] = [V], (13.41)

we obtain in the uniaxial case

(V+
2 )n−1 − (V−

2 )n = (v̄2)n − (v̄2)n−1. (13.42)

At this step we need to introduce constitutive relations between contact stresses
and contact velocities. Our choice is motivated by the possible reduction to the wave-
propagation algorithm. In fact, introducing the relations between contact stresses and
contact velocities

(V−
2 )n = − (Σ−

12)n

ρncn
, (V+

2 )n−1 = (Σ+
12)n−1

ρn−1cn−1
, c =

√
µ

ρ
, (13.43)

we then obtain a linear system of equations for the unknown contact velocities

(V+
2 )n−1 − (V−

2 )n = (v̄2)n − (v̄2)n−1, (13.44)

(V+
2 )n−1ρn−1cn−1 + (V−

2 )nρncn = (σ̄12)n − (σ̄12)n−1. (13.45)

The corresponding numerical scheme (13.23), (13.24) can be represented as

(σ̄12)
l+1
n − (σ̄12)

l
n = 
t


x
µn((V+

2 )l
n − (V−

2 )l
n), (13.46)

(v̄2)
l+1
n − (v̄2)

l
n = 
t


x

1

ρn
((Σ+

12)
l
n − (Σ−

12)
l
n). (13.47)

The two relations [Eqs. (13.44) and (13.45))] together express a characteristic prop-
erty for the cell-centered numerical fluxes in the conservative wave-propagation algo-
rithm,29 whose advantages we can therefore exploit. However, phase transitions are
always accompanied by the production of entropy. Hence we need to apply another
nonequilibrium jump relation at the phase boundary.
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5.2 Contact Quantities at the Phase Boundary

Suppose that the interface between two thermoelastic phases is placed between ele-
ments numbered (p − 1) and (p). For the left element adjacent to the phase boundary,
the contact quantities (Σ−

12)p−1 at the left boundary of the element can be determined
within the above-described numerical procedure. However, we need a more careful
consideration for values of the contact stresses (Σ+

12)p−1 at the right side of the element
which corresponds to the phase boundary. Similarly, for the right element adjacent to
the phase boundary, we need to determine the values of (Σ−

12)p. The corresponding
procedure is based on the nonequilibrium jump relation [Eq. (13.37)] that is specified
in the isothermal uniaxial case to be

[
θ̄

(
∂ S̄

∂ε12

)

σ

+ σ̄12 + Σ12

]
= 0. (13.48)

Here we should make a certain assumption about the entropy production at the phase
boundary. The simplest one is the continuity of contact stresses at the phase boundary

[Σ12] = 0. (13.49)

Another relation follows from the coherency conditions for the material velocity
[Eq. (13.10)] which can be expressed in the small-strain approximation as follows,

[V2] = 0. (13.50)

In terms of the contact stresses, Eq. (13.50) yields

(Σ+
12)p−1

ρp−1cp−1
+ (Σ−

12)p

ρpcp
= 0. (13.51)

It follows from Eqs. (13.49) and (13.51) that the values of contact stresses vanish at
the phase boundary

(Σ+
12)p−1 = (Σ−

12)p = 0. (13.52)

Now all the contact quantities at the phase boundary are determined, and we can
update the state of the elements adjacent to the phase boundary.

The material velocity at the interface is determined by means of the jump relation
for linear momentum [Eq. (13.17)]1

V 2
N = [σ̄12]

< ρ0 > [ε̄12] . (13.53)

The direction of the front propagation is determined by the positivity of the entropy
production [Eq. (13.12)],

σS = fSVN

θS
≥ 0. (13.54)

The obtained relations at the phase boundary are used in the described numerical
scheme for the simulation of phase-transition front propagation.
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6. Numerical Simulations

6.1 Interaction of a Plane Wave with Phase Boundary

As a first example, we consider the interaction of a plane wave with a phase bound-
ary to confirm the results of phase-transition front propagation in the one-dimensional
case.30–32 The geometry of the problem is shown in Figure 13.2. The wave is
excited at the left boundary of the computation domain by prescribing a time varia-
tion of a component of the stress tensor. Upper and bottom boundaries are stress-free;
the right boundary is assumed to be rigid. The time-history of loading is shown in
Figure 13.3. If the magnitude of the wave is high enough, the phase transformation
process is activated at the phase boundary. The maximal value of the Gaussian pulse
is chosen as 0.7 GPa. Material properties correspond to Cu-14.44Al-4.19Ni shape-
memory alloy33 in austenitic phase: the density ρ = 7100 kg/m3, the elastic modu-
lus E = 120 GPa, the shear wave velocity cs = 1187 m/s, the dilatation coefficient
α = 6.75 · 10−6 1/K.

It was recently reported34 that elastic properties of the martensitic phase of Cu–
Al–Ni shape-memory alloy after impact loading are very sensitive to the ampli-
tude of loading. Therefore, for the martensitic phase we choose, respectively, E =
60 GPa, cs = 1055 m/s, with the same density and dilatation coefficient as above. As
a first result, the stress–strain relation is plotted in Figure 13.4 at a fixed point inside
the computational domain which was initially in the austenitic state. As we can see in
Figure 13.4, the stress–strain relation is at first linear corresponding to elastic austenite.
Then the strain value jumps along a constant stress line to its value in the martensitic
state due to phase transformation. Afterwards both loading and unloading correspond
to elastic martensite. The value of the strain jump between straight lines, the slope of
which is prescribed by material properties of austenite and martensite, respectively, is
determined by the value of stress, which conforms to the critical value of the driving
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Fig. 13.4. Stress–strain behavior at a fixed point if the transformation strain is taken into account.

force, in agreement with the barrier of potential that we have to overcome to go from
one phase to the other. Therefore, the stress value corresponding to the critical value
of the driving force can be associated with the transformation stress, and the value of
the strain jump corresponds to the transformation strain. We should then take into ac-
count that martensite can exist only in the deformed state; that is, the martensitic line
should start from a nonzero value of the transformation strain. The result shown in the
Figure 13.4, looks very much like the stress–strain dependence given in Reference 5.

The obtained stress–strain relation at any fixed point results in overall pseudoelastic
response of a specimen. The overall stress–strain behavior can be compared with the
dynamic experiment provided in Reference34 after adjusting the applied pulse width
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Fig. 13.6. Stress–strain behavior at a fixed point with full recovering of austenite.

and shape (see Figure 13.5) with an excellent agreement in the phase transformation
region.

6.2 Hysteretic Behavior

Up to now it was supposed that austenite is not recovered after unloading which
is not the case if the value of the reference temperature is above the onset of the
reverse transformation temperature. The inverse phase transformation should occur
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Fig. 13.7. Stress–strain relation at the phase boundary: comparison with experimental data from
Reference 4.

immediately when the actual deformation of martensitic elements becomes less than
the transformation strain. Because the inverse transformation is governed by a condi-
tion other than the direct transformation, we obtain a hysteretic stress–strain behavior
(Figure 13.6). Again, the overall stress–strain dependence can be compared with ex-
perimental data. See Figure 13.7, where the experimental data of a quasistatic loading
of a similar material with relatively high applied loading rate (1 MPA/s) from Refer-
ence4 are given. The applied stress in this case was linearly increased and the duration
of the impulse was chosen to fit the experimental data.

7. Conclusions

Attempts at numerical simulations of moving phase boundaries in solids meet the prob-
lems with constitutive modeling of the nucleation criterion and kinetic relation at the
phase boundary, as well as with the construction of a proper numerical algorithm. In
spite of the accuracy and stability of the wave propagation method for inhomogeneous
media, its application to the phase-transition problems is impossible unless we can
predict the values of numerical fluxes at the phase boundary. We have proposed to
determine all the needed quantities by means of nonequilibrium jump relations at the
phase boundary, which are presented by means of contact quantities derived from the
thermodynamics of discrete systems. In this case the construction of the algorithm
is complemented by the development of a thermodynamic model of phase-transition
front propagation.

Results of numerical simulations show that the proposed approach allows us to
reproduce experimental observations, in spite of the idealization of the process.
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Abstract
Experiments on diverse materials, such as rocks, soil, cement, concrete, and damaged metals,
have revealed evidence for nonlinearity, hysteresis, and discrete memory in their elastic behav-
ior. A variety of nonlinear effects in quasistatic as well as dynamic measurements was observed,
for example, the resonance-frequency downwards shift with increasing excitation amplitude, the
generation of higher harmonics, the so-called slow dynamics, and so on. For the simulation of
these effects on the propagation of ultrasonic waves, various models have been proposed. They
usually assume the presence of a large number of soft interstitial regions, which are taken to
be responsible for the nonlinear and hysteretic behavior of the material specimen. In order to
simplify the treatment, a so-called “PM-space” of pairs of preassigned interstice strain states
and corresponding pressure values at which transitions from one state to the other are assumed
to take place, is often considered. The relationship between the choice of the PM-space and the
consequent nonlinearity is, however, inferred only phenomenologically. Starting with the case
of only one interstice, the interdependence among the parameters of the model, the input exci-
tation, and the spectral contents of the specimen’s response are derived analytically. The results
are related to the strains and restoring forces as present in thin bonded interfaces and discussed
with regard to the inverse problem and the classification of defects and weak bonds.

Keywords: Classification, harmonics, hysteresis, interstice, phenomenology, PM-space, spec-
tral analysis, theory, ultrasound, wave propagation

1. Introduction

Experimental investigations of diverse materials such as rocks, soil, cement, concrete,
damaged metals, etc have revealed evidence for nonlinearity, hysteresis, and discrete
memory in their elastic behavior. These discoveries suggest the existence of a nonlin-
ear mesoscopic elasticity (NME) universality class, to which all the aforementioned
materials, as well as many others, belong.1 Hence the appearance of a variety of non-
linear effects in both quasistatic and dynamic experiments such as, for example, the
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resonance-frequency downwards shift with increasing excitation amplitude, the gener-
ation of higher harmonics, the so-called slow dynamics, and so on. To simulate these
effects on the propagation of ultrasonic waves in nonlinear mesoscopic elastic ma-
terials1–7 various models have been developed on the base of a statistical Preisach–
Mayergoitz space.8–10 These models assume the presence of a large number of soft
interstices, which are taken to be responsible for the nonlinear and hysteretic behav-
ior of the material.2–5 In order to simplify the treatment, the so-called “PM-space” of
pairs of preassigned interstice strain states and corresponding pressure values at which
transitions from one state to the other are assumed to take place, is considered. The
relationship between the choice of the PM-space and the consequent nonlinearity is,
however, inferred only phenomenologically. The investigation of the binding forces in
adherent joints, in which the interface between bonded elements is the primary source
of the nonlinearity11–13 and the general theoretical analysis of the background14, 15

may allow more detailed and realistic conclusions about the originating forces of non-
classical nonlinear (NCNL) effects and may lead to classification methods of weak
bonds and defects.

Starting with the case of only one interstice described as a hysteretic mesoscopic
elastic unit (HMEU) in a homogeneous linear elastic material, the interdependence
among the parameters of the PM model, the input excitation, and the spectral contents
of the specimen’s response is derived analytically. The calculations were carried out
for a rectangular16 as well as rhombic HMEU. The results are related to the strains and
restoring forces as present in thin bonded interfaces and discussed with regard to the
inverse problem and the classification of defects and weak bonds.

2. The Spectral Response of a Single Rectangular Hysteretic
Mesoscopic Elastic Unit (HMEU)

A sample of a linear elastic substrate material containing one adherent joint, the soft
interstice which is the source of the nonlinearity, is considered. In the first instance, the
bonded interface, contrary to References,11–13 is described by a rectangular hysteretic
mesoscopic elastic unit (HMEU) as defined, for example, in Reference9 (Figure 14.1a).
The interface width may have only two stable values lc and lo, lc < lo, which corre-
spond to a so-called closed and open state, respectively. If the HMEU is initially in
its closed state lc and a decreasing external pressure (tension) is applied, the interface
remains in the closed state until the pressure Po is reached, at which point the interface
width changes abruptly to its open state lo. Further decrease of the applied pressure
(increase in tension) no longer changes the interface width. If now the pressure is in-
creased again, the HMEU remains open until the pressure Pc ≥ Po is reached, where
it jumps back into its closed state and remains there even if the pressure is further in-
creased. The HMEU shows hysteresis if Pc > Po; no hysteresis occurs if Po = Pc.
Because of the force balance, the external pressure is equal to the restoring forces in
the interface referred to in References,11–13 but of opposite sign. Corresponding con-
siderations hold if the starting position of the interface is its open state. Both cases
are described in detail in Reference.16 Here, only the results with the closed state as
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Fig. 14.1. Schematic sketch of the stress–displacement relation of a hysteretic mesoscopic elastic unit of
(a) rectangular shape as used in the PM–space model9 and of (b) rhombic shape similar to the model used
in Reference,17 respectively.
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Fig. 14.2. One-dmensional model of a HMEU embedded in a linear elastic substrate material: (a) inital
state, closed without external load; (b) open state because of external tensile load.

starting point are repeated briefly and used as a base of interpretation and discussion
in the context of the classification of the elastic behavior of bonds.

Figure 14.2 shows a one-dimensional model of the HMEU with an initially closed
state embedded in a linear elastic substrate. The HMEU is excited by an external sinu-
soidal force per area; the pressure is

P = f (τ ) = − f0 sin τ. (14.1)

Here, τ = ωt is the normalized time, and ω is the excitation angular frequency. The
phase is chosen in agreement with the description in References,11–15 that is, the exci-
tation starts with a tension force to increase the interface width. The resulting restor-
ing force in the interface is F = −P . The force amplitude f0 of the excitation has
to be larger than the absolute values of the opening and closing pressures Po and
Pc (i.e., f0 ≥ |Po|, f0 ≥ |Pc|) to guarantee a continual alternation between the two
states closed and open. The opening and closing pressures Po and Pc are related to
opening and closing times τo and τc with, for an initially closed state, τo ≤ τc within
a vibration cycle:

Po = − f0 sin τo,
d f (τ )

dτ

∣∣∣∣ τ = τo
= − f0 cos τo ≤ 0, (14.2a)

Pc = − f0 sin τc,
d f (τ )

dτ

∣∣∣∣ τ = τc
= − f0 cos τc ≥ 0; (14.2b)
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that is, 0 ≤ τo ≤ π/2, π/2 ≤ τc ≤ 3π/2 in the first cycle. Of course, opening and
closure occur respectively for decreasing and increasing pressure.

The interstice is embedded in the linear elastic substrate. Hence the transfer from
one state to the other, the jump in interstice width, acts against the elastic forces of the
substrate. Thus, because of the balance of forces, the opening and closing pressures Po
and Pc cannot be independent of the substrate stiffness. For example, if the substrate
is infinitely stiff, the opening tensile force (negative pressure) for an initially closed
interstice will be infinite also; that is, it is not possible to cause the jump. This case is
excluded in the following considerations.

The excitation of the HMEU generates elastic waves in the joined linear elastic
matrix material. We consider the transmission into the positive x-direction. As in Ref-
erences,13–16 the strain of the transmitted waves, the response, can be represented as a
Fourier series:

εt (X, τ ) = ε0 +
∞∑

n=1

εn sin(nτ − nX + ϕn), (14.3)

where X = kx is the normalized length coordinate, k = ω/vL is the wave number,
and vL the sound velocity in the substrate. The amplitudes εn and phases ϕn of the
transmitted waves can be determined by the boundary conditions at the interface, as
carried out in the following.

The HMEU is located at the position X = 0. The interstice width and the ultrasonic
wavelength are assumed to be small compared to the length of the substrate; the jump
in the interstice width must not cause a parallel translation of the whole substrate, and
the stresses have to be continuous. As long as the interface distance is rigid, the si-
nusoidal force f (τ ) is directly transferred into the elastic material. An abrupt change
in strain of the amount �l/ lc occurs for an initially closed interface when a transi-
tion between the two interface states takes place, �l = lo − lc being the difference
in the interface width between both states. Thus, in the PM-space unit the strain is
either 0 or �l/ lc. In the substrate the strain is caused either only by the external force
f (τ ) or by the external force and in addition by the force acting on the substrate be-
cause of the induced interstice strain. In the linear substrate the stress is related to the
strain by Hooke’s law; that is, the ratio is the elastic constant of the substrate c11, and
the stress in the substrate at the interface (i.e., at X = 0) during the first vibration
cycle is

cεt
11(X = 0, τ ) =

f0 sin τ

f0 sin τ − c11�l/ lc
if

0 ≤ τ ≤ τo, τc ≤ τ ≤ 2π

τo ≤ τ ≤ τc
, (14.4)

c11 = ρv2
L is the elastic constant, and ρ is the density in the linear elastic substrate.

From the spectral representation (14.3) of the strain at X = 0 and Eq. (14.4) the am-
plitudes εn and the phases ϕn of the response can be calculated using the orthogonality
relations of the trigonometric functions sin(nτ) and cos(nτ). The results are
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ε0 = −�l
lc

τc − τo

2π
, (14.5a)

εn sin ϕn = − 2�l
nπlc

cos
n(τc + τo)

2
sin

n(τc − τo)

2
, (14.5b)

εn cos ϕn = f0

c11
δn1 − 2�l

nπlc
sin

n(τc + τo)

2
sin

n(τc − τo)

2
. (14.5c)

Equations (14.5) show that in general the response of a sinusoidally excited rectan-
gular HMEU contains the incident frequency, all of its higher harmonics, and a static
part. The amplitudes εn and phases ϕn of the transmitted waves contain the amplitude
of the excitation as a parameter indirectly via the opening and closure times τo and
τc. The parameters of the transmitted fundamental frequency additionally depend on
the ratio of the excitation amplitude and the elastic constant c11 in the substrate. The
static part ε0 is below zero if the initial state of the interface is closed; that is, the static
force pushes apart the surfaces forming the HMEU, and the mean interface distance
increases during insonification, which causes a decrease in strain in the substrate. The
amplitudes of the higher harmonics εn decrease as do the elements of a harmonic series
with 1 over the order n. That is, a truncation of the Fourier series (3) considering only
a finite number of higher harmonics cannot be a good approximation of the response
of a rectangular HMEU.

If Pc = Po no hysteresis occurs, and Eqs. (14.5b) and (14.5c) yield, in agreement
with the general result,11–15 two possibilities for the phase of each of the transmitted
waves:16

ε2n+1 sin ϕ2n+1 = 0, n = 0, 1, 2, . . . ; i.e., cos ϕ2n+1 = ±1,

ϕ2n+1 = 0, π; (14.6a)
ε2n cos ϕ2n = 0, n = 1, 2, 3, . . . ; i.e., sin ϕ2n = ±1,

ϕ2n = π/2, 3π/2. (14.6b)

The amplitudes of the higher harmonics in the response of a rectangular HMEU
depend on the difference of opening and closure times within a vibration cycle, and
the phases depend on the sum [Eqs. (14.5b,c)]. This entails that the information about
hysteresis in the stress–strain relation is mainly contained in the phases, whereas the
amplitudes inform about the general shape. This prediction may be confirmed by the
calculation of the response of a rhombic, that is, a somehow “smoothed” rectangular,
HMEU.

3. The Spectral Response of a Single Rhombic Hysteretic Mesoscopic
Elastic Unit (HMEU)

The adherent joint embedded in the linear elastic substrate material, the soft interstice
which is the source of the nonlinearity, is now described by a rhombic HMEU similar
to the model used in Reference17 (Figure 14.1b). The interface width still may have
only two stable values lc and lo, lc < lo, corresponding to a so-called closed and
open state, respectively. However, the transition between the two interface states no
longer takes place abruptly, but linearly with the decrease or increase of the applied
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pressure within a certain pressure range �P . If the HMEU is initially in its closed state
lc and a decreasing external pressure (tension) is applied, the interface remains in the
closed state until the pressure Po+�P/2 is reached. Then, the interface width changes
linearly with the decrease in pressure and reaches its open state lo at the pressure value
Po − �P/2. A further decrease of the applied pressure (increase in tension) does not
change the interface width anymore. If now the pressure is increased again, the HMEU
remains open until the pressure Pc − �P/2, Pc ≥ Po, is reached. Then, its width
changes linearly with increasing pressure and reaches its closed state lc again at the
pressure value Pc +�P/2. The interface remains in its closed state even if the pressure
is further increased. The HMEU shows hysteresis if Pc > Po, and no hysteresis if
Po = Pc. Corresponding considerations hold if the interface starts in its open state.

The HMEU is excited by an external sinusoidal force, the pressure P of Eq. (14.1).
The force amplitude f0 of the excitation now has to be larger than the absolute values
of the end points of the opening and the closing process Po − �P/2 and Pc + �P/2,
respectively; that is, f0 ≥ |Po − �P/2|, f0 ≥ |Pc + �P/2|, to guarantee a con-
tinual complete alternation between the two states lc and lo. Along the lines of Eqs.
(14.2), the pressures describing the opening and the closing process are related to the
corresponding times within a vibration cycle:

Po = − f0 sin τo, Po ± �P/2 = − f0 sin τo1,o2,
d f (τ )

dτ

∣∣∣∣ τ = τo1,o,o2
= − f0 cos τo1,o,o2 ≤ 0, (14.7a)

Pc = − f0 sin τc, Pc ± �P/2 = − f0 sin τc2,c1,
d f (τ )

dτ

∣∣∣∣ τ = τc1,c,c2
= − f0 cos τc1,c,c2 ≥ 0, (14.7b)

with 0 ≤ τo1 ≤ τo ≤ τo2 ≤ π/2 ≤ τc1 ≤ τc ≤ τc2 ≤ 3π/2 in the first cycle if the
initial state is closed.

As in the case of a rectangular HMEU, the strain of the waves transmitted into the
joined linear elastic substrate material, the response to the excitation of the HMEU,
can be represented as a Fourier series, as in Eq. (14.3). The boundary conditions at the
interface, which determine the amplitudes εn and phases ϕn of the transmitted waves,
have to be modified following the rhombic stress–strain relation. Again, as long as the
interface distance is rigid, the sinusoidal force is directly transferred into the elastic
material. The additional change in strain during the opening and closing process of the
interface is linear with the change in the applied pressure and with the maximum strain
present in an initially closed interface �l/ lc, �l = lo − lc. The strain in the substrate
at the interface (at X = 0) during the first vibration cycle is

εt (X = 0, τ )= f0

c11
sin τ − �l

lc

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
f0

�P (sin τ − sin τo1)

1
f0

�P (sin τ − sin τc2)

if

0 ≤ τ ≤ τo1, τc2 ≤ τ ≤ 2π

τo1 ≤ τ ≤ τo2

τo2 ≤ τ ≤ τc1

τc1 ≤ τ ≤ τc2

.

(14.8)
Equations (14.3) and (14.8) and the orthogonality relations of the trigonometric func-
tions sin(nτ) and cos(nτ) yield the amplitudes εn and the phases ϕn of the response:
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ε0 = − �l
2πlc

{
τc1 + τc2 − τo1 − τo2

2
+ Po

�P
(τo2 − τo1) + Pc

�P
(τc2 − τc1) (14.9a)

+ fo

�P
(cos τo1 − cos τo2 + cos τc1 − cos τc2)

}

ε1 sin ϕ1 = �l
πlc

Pc − Po

fo
, (14.9b)

ε1 cos ϕ1 = fo

c11
+ �l

πlc

{
Po

2�P
(cos τo2 − cos τo1) + Pc

2�P
(cos τc2 − cos τc1)

(14.9c)

+ cos τc1 + cos τc2 − cos τo1 − cos τo2

4
− fo

2�P
(τo2 − τo1 + τc2 − τc1)

}
,

εn sin ϕn = �l
π(n − 1)(n + 1)lc

{
sin nτc1 + sin nτc2 − sin nτo1 − sin nτo2

2n
(14.9d)

+ Po

n�P
(sin nτo2 − sin nτo1) + Pc

n�P
(sin nτc2 − sin nτc1)

− fo

�P
(cos nτo2 cos τo2 − cos nτo1 cos τo1 + cos nτc2 cos τc2 − cos nτc1 cos τc1)

}
,

εn cos ϕn = �l
π(n − 1)(n + 1)lc

{
cos nτo1 + cos nτo2 − cos nτc1 − cos nτc2

2n
(14.9e)

− Po

n�P
(cos nτo2 − cos nτo1) − Pc

n�P
(cos nτc2 − cos nτc1)

− fo

�P
(sin nτo2 cos τo2 − sin nτo1 cos τo1+sin nτc2 cos τc2 − sin nτc1 cos τc1)

}
.

Equations. (14.5) present a special case of Eqs. (14.9) and therefore can be obtained
by a limiting procedure. One has to carry out τc1 → τc, τc2 → τc, τo1 → τo, and
τo2 → τo, using Po, Pc, and �P from Eqs. (14.7). Note, that there are two different
equations for the �P related to Po and Pc, respectively.

In general, the response of a sinusoidally excited rhombic HMEU also contains the
incident frequency, all of its higher harmonics, and a static part changing the mean in-
terface width during insonification. The amplitudes εn and phases ϕn of the transmitted
waves depend on the excitation amplitude f0 as well as on the parameters of the open-
ing and closure process, Po, Pc, �P, lo, and lc. In the limit condition Po = Pc (i.e., no
hysteresis); Eqs. (14.9) yield the general results for the phases as given in Eqs. (14.6).
In contrary to a rectangular HMEU, where the transitions between the two interface
states take place abruptly, now the amplitudes of the higher harmonics εn decrease
with 1/n2, where n is the harmonic order; that is, smoothing the interface stress–strain
relation entails in the response a faster decrease of the higher harmonics amplitudes in
dependence on their order.

The results, Eqs. (14.9), are too complex for a more detailed interpretation of pa-
rameter dependencies and additional analytical investigations of further smoothing
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effects on the output, but nevertheless clearly show that the spectral analysis of the
response gives information of the interface behavior and can be used as a character-
ization tool. Especially, the significance of the phases in the spectral contents of the
response, which contain different information than the amplitudes, is shown.

4. Strains and Restoring Forces in Thin Bonded Interfaces

For thin bonded interfaces in components, which can be approximately described by
interaction forces only without explicitly taking into account the material properties of
the adhesive, measured amplitudes and phases of the transmitted ultrasonic waves may
be used to determine the force–distance curve in the interface11–13, or the equivalent,
its stress–strain relation. In the preceding sections, the opposite was carried out. The
force–distance relation of a thin bonded interface in a linear elastic substrate material
was described by the elastic behavior of a rectangular and of a rhombic HMEU. For
both cases, the response to a monochromatic compressional excitation, the amplitudes
and phases of the waves generated in transmission, were calculated.

The results given in Eqs. (14.5) and (14.9) show that even the rough description
of the force–distance relation in the interface as a rectangular HMEU yields the gen-
eral behavior of a nonlinear interface as the generation of higher harmonics and the
change in the mean interface width during insonification. But contrary to our experi-
ments on nonlinear ultrasonic transmission through thin bonded interfaces, where we
have measured amplitudes of higher harmonics discernable from noise only up to the
third order,11–13 the amplitudes of the higher harmonics generated by a rectangular
PM-space unit (Figure 14.1a), especially for high order, seem to be much too large
to describe realistic interstices and decrease with 1/n, n being the order, only [Eqs.
(14.5)]. This overestimation of the higher harmonics is due to the unrealistic edges in
the force–distance relation. The effect was already reduced by using a rhombic (Fig-
ure 14.1b) instead of a rectangular HMEU as the description for the elastic behavior
of the bond, which is equivalent to smoothing the force–distance relation. This is in
agreement with the fact that the PM-space model yields good results in the simulation
of wave propagation in materials with a large number of nonlinear HMEUs and a con-
venient distribution of different pairs of opening and closure pressures and interface
distances (e.g. Reference7). The integration over a large number of different HMEUs
has a smoothing effect.

For low excitation amplitudes that are not capable of causing a transition out of the
initial state, a rectangular as well as a rhombic HMEU do not reproduce the reflection
of waves at interfaces with a linear elastic behavior different from that of the substrate,
but behave as a perfect bond. Likewise, if the amplitude of the excitation force is
very large so that it exceeds the maximum of the restoring force in the interface11–13, a
description by a HMEU such as presented in the models in Figure 14.1 can no longer be
used, because those models do not include a possible breaking of the joint. The effect
of those features on the spectral parameters of the output still has to be investigated.
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5. Summary

The spectral contents of the response to a sinusoidal excitation of a rectangular and
of a rhombic HMEU in a linear elastic material was derived analytically. The results
were related to strains and restoring forces as present in thin bonded interfaces. It was
shown that the amplitudes as well as the phases of the spectral components contained
in a response give information about the elastic behavior of bonds and contacts and
might be used for their characterization and evaluation. An important result is that the
information contained in the amplitudes and in the phases are complementary; that
is, only amplitude and phase measurements of the ultrasonic response may allow a
complete characterization of defects and weak bonds.
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Abstract
Adhesive bonds in composite structures influence the mechanical behavior of components and
limit their load capacity. Consequently, the investigation of the interaction forces in adhesive
joints is an important task in nondestructive testing. For this purpose the nonlinear stress–strain
relation of adhesive joints for high-amplitude excitation resulting in higher and/or subharmon-
ics generation can be exploited. This contribution discusses ultrasonic transmission through
samples consisting of two plates joined together by a thin adhesive layer. It also describes the
calibration procedure of the input and output wave parameters in order to obtain absolute values
of the forces acting within the interface . Numerical simulations assist in the interpretation and
evaluation of the experimental data.

Keywords: Adhesive, bond, interface, measurement, numerical simulation, theory, transmis-
sion, ultrasound

1. Introduction

Bonded interfaces in composite materials significantly influence the mechanical
behavior of components and limit their load capacity. Consequently, the investigation
of interaction forces in adhesive joints and the development of techniques to evalu-
ate the bond quality are important tasks in nondestructive testing. As in all materi-
als, the nonlinear part of the stress–strain relation of adhesive joints becomes more
and more important with increasing strain.1 This property causes a nonlinear modu-
lation of ultrasonic waves resulting in the generation of higher harmonics and maybe
also subharmonics at the interface, both in reflection and transmission, provided the
strain of the excitation is large enough. A large amount of research has been carried
out with the objective of relating the generation of higher harmonics in ultrasonic
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transmission through bonded structures to the quality of the bonds.2–9 Commonly used
are the nonlinearity parameter β, a measure of the second harmonic generation,2 and
the distortion factor K , a measure of the total nonlinear contents in the response.7

Thin bonded interfaces can be approximately described by binding forces without tak-
ing directly into account the material properties of the adhesive.3, 7–9 Then, the local
interaction forces, which may induce damping and hysteretic effects, can be probed by
the measured amplitudes and phases of the ultrasonic waves transmitted through the
interface.

Potential errors in characterizing bonded interfaces by nonlinear transmission of ul-
trasound are due to the fact that nonlinear signals may be caused not only by the inter-
face but also by the measuring system (transmitting probes, amplifiers, etc.), the cou-
pling medium, the bonded components themselves, frequency-dependent ultrasonic
damping in the sample, and so on. These contributions are often larger than the effect
stemming from the nonlinear interaction force in the bond. Therefore, it is necessary to
improve the significance of the experimental data by separating the nonlinear effects of
the interface from the errors, reducing the error effects, or calibrating the experimental
results by measuring data from similar samples without bonded interfaces. Computer
simulations of the experiments10 serve as a powerful tool for the evaluation of the er-
ror magnitude in the measured data caused by unwanted nonlinear effects, even if their
origin is not known in detail.

In this chapter, the ultrasonic transmission through samples consisting of two alu-
minum plates joined together by a thin epoxy layer is discussed. Contrary to recent in-
vestigations on similar samples,5, 6 which are restricted to the generation of the second
harmonics, the third harmonics and the phases of the transmitted waves are also con-
sidered. These parameters contain valuable information especially for high-amplitude
ultrasonic loading. In order to obtain absolute values of the forces in the interface,
the input and output wave parameters must be calibrated capacitatively or interfero-
metrically.11, 12 The calibration procedure is described in detail in Section 3. The ex-
periments are numerically simulated using the Local Interaction Simulation Approach
LISA13 (see Section 4). The results confirm that the measured nonlinearity originates
from the bonded interface.

2. Binding Forces in Thin Bonded Interfaces

We consider a sample of two plates of the same material bound together by a thin ad-
hesive layer of static equilibrium width as . It is assumed that the interface is so thin
that it can be described by binding forces only, without explicitly taking into account
the material properties of the adhesive layer. The binding force in the interface F(a) is
a nonlinear function of the interface width a, its static equilibrium value being F(as).
The elastic behavior of the two plates is assumed to be linear within the amplitude
range covered by the ultrasonic waves in the experiments. A monochromatic compres-
sional wave

εin = εI sin (ωt − kx) (15.1)
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of circular frequency ω, wave number k, and strain amplitude εI is injected on one
side of the specimen and arrives perpendicularly to the interface, modulating its width
sinusoidally with the same frequency. In conditions of dynamic equilibrium (i.e., after
transient phenomena have relaxed), the resulting time-dependent interaction force can
be represented as a sum of sinusoidal forces of the incident frequency and its higher
harmonics.3 The general form

F (a (t)) = F0 +
∞∑

n=1

Fn sin (nωt + ϕn) (15.2)

contains the force amplitudes Fn and phases ϕn as parameters. This is a special ap-
plication of the general problem of nonclassical nonlinear response of a system to an
arbitrary excitation (see Chapter 1 of this book and References14, 15). Here, the “cause”
is the sinusoidal incident ultrasonic wave (15.1), and the “effect” is the restoring force
in the bonded interface (15.2). In the following, the general formalism is shortly re-
called for application to the special case considered.

The sinusoidal forces Fn sin(nωt+ϕn) generate the transmitted (and reflected) ultra-
sonic waves, so that the phases ϕn are transferred directly to the transmitted waves of
fundamental frequency and to its higher harmonics. Their strain amplitudes εn multi-
plied by the elastic constant C11 relevant for the propagation of the waves in the plates
are equal to the force amplitudes Fn(Fn = C11εn). These ultrasonic waves addition-
ally modulate the interface width. The constant part F0 causes a static distortion of the
interface; that is, the mean interface width ae during insonification is, in the case of
nonlinear interaction forces, not equal to the static equilibrium interface width as . The
modulation by higher harmonics and the change in mean width are effects of higher
order provided that Fn < F1. The linear interface modulation

a (t) = aS (1 + εB I sin ωt) = aS + a0 sin ωt (15.3)

has the amplitude a0 determined by the interface strain amplitude εB I . In general, the
interface vibration is phase-shifted relative to the incident wave in Eq. (15.1), depend-
ing on the amplitudes and phases of the reflected and transmitted waves of fundamental
frequency at the interface. This phase-shift is referred to later in the calibration analy-
sis and the numerical simulations of the experiments [see Eq. (15.5c)]. Due to the
nonlinearity of the interaction force F(a), the relation between the strain amplitudes
of the incident wave in the components εI and in the interface εB I is expected to be
nonlinear.

During the cycle ν, the interface width reaches two times the value as (at t+ = 2πν

for increasing and at t− = (2ν+1)π for decreasing width). From Eq. (15.2), we obtain

F (a(t) = aS) = F0 ±
∞∑

n=0

F2n+1 sin ϕ2n+1 +
∞∑

n=1

F2n sin ϕ2n, (15.4)

and the average value of F(a = as) within one cycle, the static equilibrium interstice
force is

F (aS)av = F0 +
∞∑

n=1

F2n sin ϕ2n. (15.5)
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Likewise, within the same cycle a(tmax / min) = amax / min for tmax = (2ν + 1
2 )π, tmin =

(2ν + 3
2 )π , and

F
(
amax / min

)−F (aS)av =±
∞∑

n=0

F2n+1 (−1)n cos ϕ2n+1+
∞∑

n=1

F2n((−1)n − 1) sin ϕ2n.

(15.6)
These formulae include hysteresis because of the different values of the interaction

force at the static interface width as . The forces in the interface relative to the static
equilibrium are

�F (a (t)) = F (a (t))−F (aS)av =
∞∑

n=1

Fn sin (nωt + ϕn)−
∞∑

n=1

F2n sin ϕ2n. (15.7)

The results are independent of the static part F0; that is, these relative binding forces
can be determined by the measured amplitudes and phases of the transmitted ultra-
sonic waves of the incident frequency and its higher harmonics. No hysteresis occurs
if the time-dependent force acting within the interface during insonification fulfills the
symmetry conditions in time

F (a (tmax + �t)) = F (a (tmax − �t)) and F (a (tmin + �t)) = F(a(tmin − �t)).
(15.8)

This restricts the phases in Eq. (15.2) to two values each and thus reduces the two
values of the forces at the static equilibrium interface width in Eq. (15.4) to one; that is,
Fnh(as) = F(as)av. The index nh indicates “no hysteresis.” In the considered example
of nonlinear ultrasonic transfer through a thin bonded interface, the input is the incident
ultrasonic wave. If nonlinear interface modulations are neglected, the deviation �a of
the interface width from its static equilibrium value as can be considered as input as
well [Eq. (15.3)]. The output is the restoring force in the interface [Eq. (15.7)], which
has to tend to infinite repulsive values if the interface width approaches zero. This leads
to a further restriction of the phases in the nonhysteretic nonlinear case, and we get

ϕ2n = nπ − π
2 and ϕ2n = nπ, for n = 1, 2, 3, . . . . (15.9)

These phases inserted into Eq. (15.7) yield the relative binding forces as function of
time for a monochromatic ultrasonic excitation and a nonhysteretic response

�Fnh (a (t)) = F1 sin ωt + F2 (cos 2ωt − 1) − F3 sin 3ωt + · · · . (15.10)

For the maximum interface width during a vibration cycle, this equation reduces to

�Fnh (amax) = Fnh (amax) − Fnh (aS) = F1 − 2F2 + F3 + F5 − 2F6 ± · · · . (15.11)

So far, this approximate equation has been used to estimate the local relative binding
forces in thin bonded interfaces from measured amplitudes of transmitted ultrasonic
waves.3, 8, 9

The relative binding forces in the general case [Eq. (15.7)] as well as in the non-
hysteretic approximation [Eq. (15.10)] can easily be represented as a function of the
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normalized linear interface width modulation �aN (t) = (a(t)−aS)/a0 = sin ωt ; that
is, −1 ≤ �aN ≤ 1 [Eq. (15.3)]:

�F(�aN ) = F1

(
�aN cos ϕ1 ±

√
1 − �a2

N sin ϕ1

)

+F2

(
±2�aN

√
1 − �a2

N cos ϕ2 − 2�a2
N sin ϕ2

)

+F3

((
3 − 4�a2

N

)
�aN cos ϕ3

)
±

(
1 − 4�a2

N

)√
1 − �a2

N + · · · ,

(15.12)

�Fnh (�aN ) = F1�aN − 2F2�a2
N − F3

(
3 − 4�a2

N

)
+ · · · . (15.13)

We restrict ourselves to harmonics up to the third order because, up to now, in our
experiments the measured amplitudes of harmonics beyond third order have always
been below noise level. Positive and negative signs correspond to increasing and de-
creasing interface width, respectively. Of course, in the nonhysteretic approximation,
there is no difference between the forces for increasing and decreasing interface width.

The maximum interface width during a vibration cycle is reached at �aN = 1. This
value inserted into Eqs. (15.12) and (15.13) yields the corresponding relative binding
force in the hysteretic and in the nonhysteretic cases, respectively,

�F (amax) = F1 cos ϕ1 − 2F2 sin ϕ2 − F3 cos ϕ3 + · · · , (15.14)

�Fnh (amax) = F1 − 2F2 + F3 + · · · . (15.15)

The result in the nonhysteretic case (15.15) is, of course, equal to Eq. (15.11).

3. Calibration of the Measurement Data

3.1 Calibration of the Transmitted Ultrasonic Amplitudes

For the calibration procedure11, 12 we use a plate of the same material and thickness as
the one at the receiver side of the sample under investigation. We inject monochromatic
compressional waves of various amplitudes from the side of the plate, which in the
composite sample is bonded to the second plate. The displacement amplitude at the
backwall is measured interferometrically as a function of the incident wave amplitude
(known as voltage amplitude at the sending probe). The measurements are carried
out for the injected frequency and then repeated successively for the second and third
harmonics. The same measurements at the same excitation amplitudes and frequencies
are repeated using a piezoelectric transducer at the receiver side. This yields a relation
between the absolute amplitude of the transmitted wave in case of a free backwall and
the voltage this wave generates in the piezoelectric transducer. Due to the coupling
of the receiver to the backwall of the plate the latter is no longer free, which requires
further evaluation of the calibrated values.

Throughout the calibration measurements, a sending probe causes a sinusoidal force

Fin,n (t) = Fn sin (nωt + ϕn) , with Fn = C11εn, (15.16)
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at the intromission side of the plate at x = 0 (x is the coordinate in the thickness
direction). εn is the strain amplitude generated at the surface of the plate, and C11 is
its elastic constant (here C11 = C11,Al = 107.8 GPa). We assume that the bonded
interface is located at x = 0 and Eq. (15.16) corresponds to the nth harmonic of
the restoring force in the interface. Ultrasonic reflections at the plate surfaces cause
forward and backward propagating waves,

ε I,R
pl,n (t) = ε I,R+

n sin
(

nωt + ϕ I,R+
n − knx

)
+ ε I,R−

n sin
(

nωt + ϕ I,R−
n + knx

)
,

(15.17)

uI,R
pl,n (t) = ε I,R+

n

kn
cos

(
nωt + ϕ I,R+

n − knx
)

− ε I,R−
n

kn
cos

(
nωt + ϕ I,R−

n + knx
)

,

(15.18)

for the strain εpl and displacement u pl , respectively. kn = nω/νL is the wave number
of the nth harmonic of the insonified frequency, and νL is the compressional sound
velocity in the plate. The indices I and R indicate amplitudes and phases in the case of
interferometric and piezoelectric receiver probe measurements, respectively. At x = 0
we have the boundary condition

ε I,R+
n sin

(
nωt + ϕ I,R+

n

)
+ ε I,R−

n sin
(

nωt + ϕ I,R−
n

)
= εn sin (nωt + ϕn) . (15.19)

During the interferometric measurements the backwall of the plate at x = D (D is the
plate thickness) is free and fulfills the boundary condition

ε I+
n sin

(
nωt + ϕ I+

n − kn D
)

+ ε I−
n sin

(
nωt + ϕ I−

n + kn D
)

= 0. (15.20)

Eqs. (15.17), (15.18), and (15.20) lead to

ε I+
n = ε I−

n , ϕ I+
n = ϕ I−

n + π, and uI
pl (x = D) = 2ε I+

n

kn
. (15.21)

The displacement amplitude uI
pl (x = D) at the free backwall is measured interfero-

metrically. Consequently, the two measurement series described above yield a relation
between the strain amplitude ε I+

n of the forward propagating wave in the case of a free
sample backwall and the voltage this wave generates at the oil coupled receiver probe.
The relation between the measured strain ε I+

n and the strain εn from Eq. (15.16) results
from Eqs. (15.19) to (15.21):

εn = 2 |sin (kn D)| ε I+
n . (15.22)

In our case (two aluminum plates of 4 mm thickness joined together by a 30µm thick
epoxy layer, fundamental frequency f = 2.25 MHz, sound velocity in aluminum
νL = 6318.7 m/s), the calibrated measured amplitudes ε I+

n have to be multiplied
by 2| sin kn D| = 0.915, 1.628, and 1.979 for the transmitted fundamental frequency
and its second and third harmonics, respectively, in order to yield the force amplitudes
Fn = C11εn acting within the interface.
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3.2 The Phases of the Transmitted Ultrasonic Waves

The measured signal in the experiments on the composite samples is the AC-voltage
generated at the receiving probe. Its Fourier transformation yields the amplitude and
phase spectra. The force amplitudes in the interface follow from the voltage amplitudes
by the calibration measurements described in the preceding section. A relation between
the phases of the waves of different frequencies at the transducer ϕt,n to those of the
force components in the bonded interface ϕn can be derived as follows.

When the transmitted wave is detected by a receiver probe, the backwall of the sam-
ple is no longer free. In the coupling layer of thickness d both forward and backward
propagating waves are generated, whereas in the transducer only the former occur.

εc,n(t) = ε+
c,n sin

(
nωt + ϕ+

c,n − kc,n(x − D)
)

+ε−
c,n sin

(
nωt + ϕ−

c,n + kc,n(x − D)
)
, (15.23)

uc,n(t) = ε+
c,n

kc,n
cos

(
nωt + ϕ+

c,n − kc,n(x − D)
)

−ε−
c,n

kc,n
cos

(
nωt + ϕ−

c,n + kc,n (x − D)
)
, (15.24)

εt,n (t) = εt,n sin
(
nωt + ϕt,n − kt,n (x − D − d)

)
, (15.25)

ut,n (t) = εt,n

kt,n
cos

(
nωt + ϕt,n − kt,n (x − D − d)

)
(15.26)

are the corresponding strains and displacements, the indices c and t stand for cou-
pling medium and transducer, respectively. Instead of (15.20) we obtain the boundary
conditions

C11,Al�εR+
n sin

(
nωt + ϕR+

n − kn D
)

+ εR−
n sin

(
nωt + ϕR−

n + kn D
)
�

= C11,c�ε+
c,n sin

(
nωt + ϕ+

c,n

) + ε−
c,n sin

(
nωt + ϕ−

c,n

)�, (15.27)

εR+
n

kn
cos

(
nωt + ϕR+

n − kn D
)

− εR−
n

kn
cos

(
nωt + ϕR−

n + kn D
)

= ε+
c,n

kc,n
cos

(
nωt + ϕ+

c,n

) − ε−
c,n

kc.n
cos

(
nωt + ϕ−

c,n

)
, (15.28)

C11,c�ε+
c,n sin

(
nωt + ϕ+

c,n − kc,nd
) + ε−

c,n sin
(
nωt + ϕ−

c,n + kc,nd
)�

= C11,tεt,n sin
(
nωt + ϕt,n

)
, (15.29)

ε+
c,n

kc,n
sin

(
nωt+ϕ+

c,n −kc,nd
)− ε−

c,n

kc,n
sin

(
nωt+ϕ−

c,n + kc,nd
) = εt,n

kt,n
sin

(
nωt + ϕt,n

)
.

(15.30)

The boundary condition (15.19) is, of course, still valid. From these equations a rela-
tion between the phases ϕn of the forces at the bonded interface and the phases ϕt,n
measured at the receiver can be derived:
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tan ϕn =
sin

(
ϕ+

c,n − ϕR+
nD

)
sin

(
ϕR−

nD − kn D
)

− A sin
(
ϕ+

c,n − ϕR−
nD

)
sin

(
ϕR+

nD + kn D
)

sin
(
ϕ+

c,n − ϕR+
nD

)
cos

(
ϕR−

nD − kn D
)

− A sin
(
ϕ+

c,n − ϕR−
nD

)
cos

(
ϕR+

nD + kn D
) ,

(15.31)

sin
(
ϕ+

c,n −ϕR±
nD

)
=cos

(
kc,nd

) tan ϕ+
t,n + tan

(
kc,nd

) − (
1 − tan ϕ+

t,n tan
(
kc,nd

))
tan ϕR±

nD√
1 + tan2 ϕ+

t,n

√
1 + tan2 ϕR±

nD

,

(15.32)

sin
(
ϕR±

nD ± kn D
)

= cos (kn D)
tan ϕR±

nD ± tan (kn D)
√

1 + tan2 ϕR±
nD

, (15.33)

cos
(
ϕR±

nD ± kn D
)

= cos (kn D)
1 ∓ tan ϕR±

nD tan (kn D)
√

1 + tan2 ϕR±
nD

, (15.34)

tan ϕR±
nD = B± tan ϕt,n + tan

(
kc,nd

)

B± − tan ϕt,n tan
(
kc,nd

) , (15.35)

ϕR±
nD = ϕR±

n ∓ kn D, (15.36)

A = Ipl − Ic

Ipl + Ic
, B± =

(
Ipl ± It

)
Ic

Ipl It + I 2
c

. (15.37)

Here, Ipl = ρνL , Ic = ρcνL ,c, and It = ρtνL ,t are the acoustic impedances, ρ, ρc,
and ρt are the densities, and νL , νL ,c, and νL ,t are the compressional sound velocities
of the aluminum substrate, the coupling medium, and the receiver, respectively. The
results show that, in general, the phases measured at the receiver are not the same as
those at the interface.

In some limit cases the Eqs. (15.31)–(15.37) simplify remarkably. If B± � tan(kc,nd),
Eq. (15.35) becomes

tan ϕR±
nD ≈ 1

tan ϕt,n
, (15.38)

and, with the additional assumption Ic � Ipl , Eq. (15.31) yields

tan ϕn ≈ tan ϕt,n. (15.39)

For very thin coupling layers (d ≈ 0), we may get B± � tan(kc,nd) (depending on
the numerical values of B±), and Eq. (15.35) becomes

tan ϕR±
nD ≈ tan ϕt,n. (15.40)

Then, the additional assumption Ic � Ipl leads to

tan ϕn ≈ − 1

tan ϕt,n
= tan

(
ϕt,n − π

2

)
. (15.41)

In our experiments, the thickness of the coupling layer (about 2 µm) yields
tan(kc,nd) = 0.0195, 0.0390, and 0.0585 for the fundamental frequency and its second
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and third harmonics, respectively. The numerical evaluation was carried out with the
density ρc = 1.17 g/cm3, sound velocity νL ,c = 1450 m/s, and the resulting acoustic
impedance Ic = 1.697 · 106 kg/m2s (material parameters of the oil). For the numeri-
cal evaluation of B+ and B− from Eq. (15.37), the material parameters of aluminum
(density ρ = 2.7 g/cm3, compressional sound velocity νL = 6318.7 m/s, resulting
acoustic impedance Ipl = 17.06 · 106 kg/m2s) and the acoustic impedance of the
receiver probe (ceramic) of It ≈ 31 · 106 kg/m2 s were used yielding B+ ≈ 0.153 and
B− ≈ −0.0449; that is, neither of the considered limiting cases apply.

3.3 Calibrated Ultrasonic Input Strain Amplitudes

In order to calibrate absolutely the ultrasonic amplitudes incident onto the bonded
interface, we perform similar measurements as described in Section 3.1 for a plate of
the same material and thickness as the one at the intromission side of the composite
sample under investigation. Again, the ultrasonic backwall vibration amplitudes are
measured interferometrically. However, because only the fundamental frequency is
insonified into the plate, measurements at higher harmonics are not necessary. The
excitation voltage at the sending probe causes the sinusoidal force

Fi (t) = C11εi sin (ωt) (15.42)

at the intromission side of the plate. Here, εi is the strain amplitude generated at the
surface of the plate. The phase of the force (15.42) is assumed to be zero, which can
be obtained by a convenient tuning of the excitation voltage. The relation between
the phase of the excitation voltage ϕt and the phase of the sinusoidal force at the
intromission side of the plate (here equal to zero) can be derived from the conditions
of continuous displacements and stresses at the boundaries between sending probe,
coupling medium, and plate:

tan ϕt = Ic

It
tan (kcd) . (15.43)

Ic and It are the acoustic impedances of the coupling medium and sending probe, re-
spectively; kc = ω/νL ,c is the wave number, νL ,c is the sound velocity in the coupling
layer, and d is its thickness. For the same data as before, we get tan ϕt = 0.00107;
that is, the phase of the excitation voltage is in a very good approximation equal to the
phase of the exciting force at the intromission side of the sample.

Due to ultrasonic reflections at both surfaces of the plate, the excitation force Fi (t)
causes forward and backward propagating waves in the plate with strain and displace-
ment

ε I,R
i (x, t) = ε I,R+

i sin
(
ωt + ϕ I,R+

i − kx
)

+ ε I,R−
i sin

(
ωt + ϕ I,R−

i + kx
)

,

(15.44)

uI,R
i (x, t) = ε I,R+

i

k
cos

(
ωt + ϕ I,R+

i − kx
)

− ε I,R−
i

k
cos

(
ωt + ϕ I,R−

i + kx
)

.

(15.45)
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ε I,R+
i , ϕ I,R+

i and ε I,R−
i , ϕ I,R−

i are the strain amplitudes and phases of the forward and
backward propagating waves, respectively. At the intromission surface, we have

ε I,R+
i sin

(
ωt + ϕ I,R+

i

)
+ ε I,R−

i sin
(
ωt + ϕ I,R−

i

)
= εi sin ωt. (15.46)

During the calibration measurements, the boundary condition at the free backwall is

ε I+
i sin

(
ωt + ϕ I+

i − k Di

)
+ ε I−

i sin
(
ωt + ϕ I−

i + k Di

)
= 0, (15.47)

where Di is the thickness of the plate. In the composite sample, the boundary condition
at the backwall of the intromission plate is determined by the forces at the interface;
that is,

εR+
i sin

(
ωt+ϕR+

i −k Di

)
+εR−

i sin
(
ωt+ϕR−

i +k Di

)
= ε1 sin(ωt + ϕ) (15.48)

for the excitation frequency. In general, the phase ϕ in Eq. (15.48) is not equal to the
phase ϕ1 defined in Eq. (15.31), because ϕ is related to the phases ϕR+

i and ϕR−
i of the

incoming wave, and ϕ1 is related to the phases ϕt,n
+ of the transmitted waves measured

at the receiver probe. However, by tuning the phase of the excitation voltage we can
adjust the phase of the excitation force, so that it is the same in all the measurements.
Then ϕ = ϕ1. In the following we consider this case.

The interferometric calibration measurements yield the amplitude of the free plate
backwall vibration, that is, the amplitude uI

i (Di , t), and consequently a relation be-
tween the strain amplitude ε I+

i and the excitation voltage at the sending probe. Eqs.
(15.46) and (15.47) relate the amplitudes and phases of the calibration signal and of
the signal at the intromission surface of the plate,

2 |sin (k Di )| ε I+
i = εi , (15.49)

tan ϕ I+
i = − cot (k Di ) = tan

(
k Di + π

2

)
. (15.50)

In the experiments on the composite sample, Eqs. (15.46) and (15.48) lead to

4 sin2 (k Di )
(
εR+

i

)2 = ε2
1 + ε2

i − 2ε1εi cos (ϕ1 − k Di ) , (15.51)

tan
(
ϕR+

i

)
= −ε1 cos ϕ1 − ε1εi cos (k Di )

ε1 sin ϕ1 − ε1εi sin (k Di )
. (15.52)

In the limiting case of very weak bonding, the backwall of the intromission plate
is almost free, because the amplitude of the transmitted wave ε1 is small compared
to the amplitude εi generated at the sample surface. Then, approximately, the strain
amplitude of the wave incident onto the bonded interface is equal to the amplitude
measured by the interferometric calibration, and the phase of the transmitted wave is
given by the plate thickness,

εI = εR+
i ≈ ε I+

i , tan ϕ1 = tan (k Di ) . (15.53)

For a strong joint, when the insonified ultrasonic wave is transmitted almost com-
pletely through the bonded interface, that is, the amplitude εR−

i of the reflected beam
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is small compared to the amplitude εR+
i incident onto the bonded interface, we get

approximately

εI = εR+
i ≈ ε1 ≈ εi = 2 |sin (k Di )| ε I+

i , tan ϕ1 = − tan (k Di ) . (15.54)

In our measurements, neither of the limiting cases was a good approximation, hence
the amplitudes εR+

i are determined by Eq. (15.51). We define α as the ratio of the
transmitted amplitude ε1 and the calibrated measured amplitude ε I+

i , and β as the ratio
of the strain amplitude incident onto the bonded interface in the experiment εI = εR+

i

and the calibrated measured amplitude ε I+
i ,

ε1 = αε I+
i , εI = εR+

i = βε I+
i . (15.55)

Equation (15.51) yields

β2 = 1 + α2

4 sin2 (k Di )
− α

|sin (k Di )| cos (ϕ1 − k Di )
. (15.56)

The ratio α can be calculated from the experimental data. Equations (15.39) for
α = 0 is the limit (15.53); that is, the amplitudes measured in the calibration are
approximately equal to the amplitudes incident onto the bonded interface in the sample
(β = 1). For α = 2| sin(k Di ), the limit (15.54) is obtained; that is, β = 2| sin(k Di )|,
which leads to εI = εR+

i ≈ ε1 ≈ εi . Equations (15.39) allow the determination of the
ratio β from measured data.

3.4 The Phase of the Interface Vibration

The interface vibration is sinusoidal if interface distortions by generated higher harmonics
and the static part are neglected. In general, the interface vibration is phase-shifted rel-
ative to the excitation (15.30):

�a (t) = a (t) − aS = aSεB I sin (ωt + ϕ0) . (15.57)

In addition, a phase-shift between the interface vibration and the transmitted ultra-
sonic wave of fundamental frequency may occur, which results in hysteretic interac-
tion forces even in the linear case (e.g., caused by damping). The interface modula-
tion �a(t) is the difference of the ultrasonic displacements of the two surfaces of the
bonded aluminum plates

�a (t) = u R
pl,1 (x = 0, t) − u R

i (x = Di , t) . (15.58)

The displacements u R
pl,1 (x = 0, t) and u R

i (x = Di , t) follow from Eqs. (15.18) and
(15.45), respectively. Using the boundary conditions for the strains at the intromission
surface (15.46) and at the interface (15.19) and (15.48) as well as Eq. (15.35), the
displacements u R

i (x = Di , t) and u R
pl,1 (x = 0, t) are expressed in terms of measured

data from the calibration and/or experiments by the equations
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u R
i (x = Di , t) = εi − ε1 cos ϕ1 cos (k Di ) sin ωt − ε1 sin ϕ1 cos (k Di ) cos ωt

k sin (k Di )
,

(15.59)

u R
pl,1 (x = 0, t) = εR+

1

k
cos

(
ωt + ϕR+

1

)
− εR−

1

k
cos

(
ωt + ϕR−

1

)

= εR+
1 cos ϕR+

1 − εR−
1 cos ϕR−

1

k
cos ωt − εR+

1 sin ϕR+
1 − εR−

1 sin ϕR−
1

k
sin ωt,

(15.60)

εR+
1 cos ϕR+

1 − εR−
1 cos ϕR−

1 = tan ϕR−
1 + tan ϕR+

1 − 2 tan ϕ1

tan ϕR−
1 − tan ϕR+

1

ε1 cos ϕ1, (15.61)

εR+
1 sin ϕR+

1 − εR−
1 sin ϕR−

1 = cot ϕR−
1 + cot ϕR+

1 − 2 cot ϕ1

cot ϕR−
1 − cot ϕR+

1

ε1 sin ϕ1. (15.62)

Equations (15.58)–(15.62) yield the interface vibration �a(t) in the form

�a (t) = C1 cos ωt + C2 sin ωt. (15.63)

The constants C1 and C2 can be calculated from the measurement data. Comparison of
Eqs. (15.63) and (15.57) yields a relation of these constants to the phase of the interface
vibration, which no longer contains the unknown static equilibrium interface distance
as and the measure εB I of the strain amplitude in the interface during vibration:

aSεB I cos ϕ0 = C2 and aSεB I sin ϕ0 = C1 ⇒ tan ϕ0 = C1

C2
. (15.64)

This relation allows us to relate the phase of the interface vibration in ultrasonic trans-
mission experiments to the phase of the excitation voltage, and thus, with the results
from Section 3.2, the phase shifts of the transmitted ultrasonic waves compared to the
interface vibration ϕn − nϕ0, n = 1, 2, 3, · · · . The important role of these phases is
discussed in Section 3.2.

The calibration and evaluation procedure of the experimental data allows for a sim-
ple simulation of the experiments, such as the one described in the following section.
The numerical simulations do not have to take into account the finite thickness of the
two plates and, as a consequence, forward and backward propagating waves.

4. A One-Dimensional Simulation Model

Due to its symmetry in the direction normal to the wave propagation, the geometry
of the experiment suggests the application of a 1-D model for its numerical simula-
tion. The 1-D approach is applicable if we focus on the interstice deformation in an
area at the center of the specimen, whose transversal section is much smaller than
the specimen length. Because we simulate linear elastic wave propagation except for
a very localized nonlinearity (the interstice) we use the Local Interaction Simulation
Approach (LISA).13 Its local character makes it particularly suitable for our exper-
iment. We only have to replace the linear relation between stress and strain at the
bonding by a nonlinear one.
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interfacealuminum aluminum

Fig. 15.1. Discretization of the specimen for the LISA simulations.

4.1 Derivation of the Iteration Equations for Numerical Simulations

The LISA code is similar to the formalism of Finite Difference Equations (FDE). The
specimen is divided into a number of equally sized homogeneous cells (of length δ and
cross-section α), whose masses are concentrated in a node, labeled with an index j .
The bonding is located at j = i (see Figure 15.1). The elastic behavior of the material
is described by springs connecting neighboring nodes. The equation of motion for a
node j is given by

m j ü j = σ+
j − σ−

j , (15.65)

where m j = ρ jδ is the mass of the material cell per its cross-section α, u j is its
displacement from equilibrium, σ−

j and σ+
j are the stresses in the contiguous cells to

the left and to the right of node j , respectively. According to Hooke’s law the stresses
within each aluminum plate are

σ±
j = C11

∂u j

∂x

∣∣∣∣±
. (15.66)

The x-derivative of u j is calculated within the material cell to the left (−) or to the
right (+) of the node. Using a finite difference scheme, the discretized equation of
motion becomes

ρ jδü j (t) = ρ jδ
u j,t+1 − 2u j,t + u j,t−1

τ 2
= −C11

δ

(
u j,t − u j−1,t

)

+C11

δ

(
u j+1,t − u j,t

) = σ+
j − σ−

j . (15.67)

Within the adhesive layer (i.e., between the nodes i and i + 1), the linear stress–strain
relation is no longer valid. Therefore we replace the linear stresses between the nodes
i and i + 1 by a nonlinear function f (�at ), where �at = ui+1,t − ui,t is the deviation
of the interface width from its static equilibrium at the time t . Under the assumptions
that the contribution of higher harmonics to the interface oscillation is negligible [Eq.
(15.57)], that the forces are nonlinear but not hysteretic, and that no conditioning oc-
curs, the interstice stress as a function of �a/a0 is given by Eq. (15.13). The amplitude
of the interstice width oscillation a0 depends on the strain amplitudes and phases of
the injected, reflected, and transmitted wave. As discussed below, these assumptions
are valid up to a certain threshold of the excitation. A further increase of the input
amplitude requires explicitly taking into account the phases of the transmitted waves
and using the interstice stress function given by Eq. (15.12) for numerical simulations
of the experiments.
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4.2 Derivation of the Amplitude of the Interstice Width Vibration

In order to simplify the derivation of the amplitude a0 of the interstice width vibra-
tion we again use the assumptions that the contributions of the higher harmonics to
the interstice vibration are much smaller than the one of the fundamental frequency.
Thus, the interstice vibration can be considered as almost sinusoidal. We express the
incoming ui , reflected ur , and transmitted ut wave as monochromatic waves of the
input frequency (2.25 MHz in our experiment) with phase angles relative to the phase
φ0 of the interstice vibration. The origin x = 0 is set to the center of the interstice.
Hence, for finite interstice width, the displacement oscillation at the interstice borders
are phase shifted by 1

2 ki aS with respect to φ0. ki is the wave number correspondent
to the input frequency in the adhesive, and as is the static equilibrium width of the
interstice. The obtained wave equations are

ui (x, t) = ai cos
(
ωt − k

(
x + 1

2 aS

)
+ ϕ0 + ϕi

)
, for x ≤ − 1

2 aS, (15.68a)

ur (x, t) = ar cos
(
ωt + k

(
x + 1

2 aS

)
+ ϕ0 + ϕr

)
, for x ≤ − 1

2 aS, (15.68b)

ut (x, t) = at cos
(
ωt − k

(
x − 1

2 aS

)
+ ϕ0 + ϕt

)
, for x ≥ + 1

2 aS, (15.68c)

where k is the wave number corresponding to the input frequency in the sample mate-
rial. The stress waves within the sample material are obtained from the displacement
waves by deriving by x and multiplying with the elastic constant C11. The stress within
the interstice F(t) is assumed sinusoidal as well, but may have another phase

F (t) = F1 sin (ωt − ki x + ϕ0 + ϕ1) , for − 1
2 aS ≤ x ≤ + 1

2 aS. (15.69)

Because the stresses must be continuous at the boundaries between the aluminum slab
and the bonding, we obtain for the right border (x = 1

2 aS),

C11kat sin (ωt + ϕ0 + ϕt ) = F1 sin
(
ωt − 1

2 ki aS + ϕ0 + ϕ1

)
, (15.70)

which yields

F1 = C11kat , (15.71)

ϕt = ϕ1 − 1
2 ki aS. (15.72)

The continuity of stresses on the left border (x = −1
2 aS) yields

C11kai sin (ωt + ϕ0 + ϕi ) − C11kar sin (ωt + ϕ0 + ϕr )

= F1 sin
(
ωt + 1

2 ki aS + ϕ0 + ϕ1

)
, (15.73)

and thus after time derivation and using Eqs (15.71) and (15.72)

ai cos (ωt + ϕ0 + ϕi ) − ar cos (ωt + ϕ0 + ϕr ) = at cos
(
ωt + ϕ0 + ϕ1 + 1

2 ki aS

)
.

(15.74)
The deformation of the interstice is then calculated as the difference between the
displacements at the right border and at the left border of the bonding
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�a (t) = at cos (ωt + ϕ0 + ϕt ) + at cos
(
ωt + ϕ0 + ϕ1 + 1

2 ki aS

)

−2ai cos (ωt + ϕ0 + ϕi ) = at cos
(

1
2 ki aS

)
cos (ωt + ϕ0 + ϕ1)

−2ai cos (ωt + ϕ0 + ϕi ) . (15.75)

Using Eq. (15.57) and the orthogonality of sine and cosine we obtain

0 = a0 cos
(−π

2

) = 2at cos
(

1
2 ki aS

)
cos (ϕ1) − 2ai cos (ϕi ) (15.76)

−a0 = a0 sin
(−π

2

) = 2at cos
(

1
2 ki aS

)
sin (ϕ1) − 2ai sin (ϕi ) . (15.77)

The amplitude of the interstice vibration is then given by

a0 = 2

√
a2

i − a2
t cos2

(
1
2 ki aS

)
cos2 (ϕ1) − 2at cos

(
1
2 ki aS

)
sin (ϕ1) , (15.78)

or expressed in terms of the strain amplitudes εI = ai/k and ε1 = at/k in the sample
material

a0 = 2

k

(√
ε2

I − ε2
1 cos2

(
1
2 ki aS

)
cos2 (ϕ1) − ε1 cos

(
1
2 ki aS

)
sin (ϕ1)

)
. (15.79)

For very thin interstices ( 1
2 ki aS << 1), Eq. (15.79) simplifies to

a0 = 2

k

(√
ε2

I − ε2
1 cos2 (ϕ1) − ε1 sin (ϕ1)

)
. (15.80)

If there is no phase shift between the interstice deformation and the resulting stress
and vice versa (i. e., instantaneous reaction of the material on applied forces), a0 is
calculated by

a0 = 2

k

√
ε2

I − ε2
1 cos2

(
1
2 ki aS

)
aS→0−→ 2

k

√
ε2

I − ε2
1. (15.81)

This formula is a good approximation to experiments in which no linear hysteresis
occurs. The results presented in the following section are obtained using a0 of Eq.
(15.81).

It is interesting to check the limit when the sample does not contain a bonded inter-
face, that is, when this cell is equal to all other cells. Then, the complete incident wave
is transmitted, and we obtain the displacement amplitude in aluminum. In fact, in this
case it is

a0 = 2εI

k
sin

(
1
2 ki aS

) ki aS<<2≈ εI aS. (15.82)

4.3 Results of the LISA Simulations

The calibrated measurements have been carried out for a sample consisting of two
aluminum plates of 4 mm thickness bound together by an epoxy layer of less than
0.03 mm thickness.11, 12 The calibration procedure transforms the measured data from
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the receiver and the input transducer into the strain amplitudes and the phases of the
fundamental and higher harmonics of the incoming and transmitted waves. Waves re-
flected from the borders of the aluminum slabs are eliminated. Therefore, in our LISA
simulations we assume infinite aluminum slabs at both sides of the bonding. This is
realized using a Perfectly Matching Layer (PML) of absorbing boundaries at both ends
of the specimen.16 We choose the discretization step δ equal to the static equilibrium
width of the bonding as (approximately 0.03 mm). A monochromatic compressional
wave with a frequency of 2.25 MHz is injected at the left end of the specimen. Its
wavelength in aluminum is about 100 times the discretization step, ensuring a suffi-
ciently smooth description of the wave and that the effects due to finite propagation
time of the wave through the interstice are negligible.

The values F1, F2, and F3 in Eq. (15.13) are derived from the experimental data at
the largest forcing amplitude for which hysteresis is negligible (εin = 109 · 10−6 for
the first and εin = 130 · 10−6 for the second sample)10–12, that is, in both cases from
one measuring point only. We calculate numerically the transmitted wave for input
strain amplitudes below and above the reference measuring point. Figure 15.2 shows
the numerical results as well as the experimental data10 of the first, second, and third
harmonic as a function of the input strain. Both simulations yield a very good agree-
ment up to the threshold when hysteresis sets in. For larger excitation amplitudes the
second and third harmonics show large discrepancies, suggesting that the aforemen-
tioned assumptions are no longer valid. Nonclassical effects, such as hysteresis of the
higher harmonics, which are not included in the model, are responsible for these differ-
ences. Because these effects generally occur in the presence of defects in the bonding,
the discrepancies may give a measure of the bonding quality. The agreement between
theoretical and experimental results up to the nonclassicity threshold is a good indica-
tor of the quality of the calibration procedure and shows that the measured nonlinearity
actually stems from the adhesive interface. In fact, simulations performed from uncali-
brated measurements (data not shown for brevity) yield a much poorer agreement with
the experimental data.

5. Discussion

Our measurements were carried out for samples of two aluminum plates joined to-
gether by thin adhesive epoxy layers, which are typical bonds in the aircraft indus-
try. They are good examples of our theoretical description of thin bonded interfaces
by interaction forces without taking into account explicitly the material properties of
the adhesive. The ultrasonic waves transmitted through the bonded interface show a
threshold behavior. Up to a certain point, their amplitudes depend on the excitation
following the power series expansion of a quasistatic interaction force curve (Figure
15.2), and the phases vary little (within the measurement accuracy).11, 12 Then, an-
other regime sets in. The amplitudes of the second and third harmonic grow stronger
than the second and third power of the excitation strain, respectively, and the phases
of the transmitted waves change dramatically.11, 12 From a slightly higher threshold
on (εin = 160 · 10−6 in both samples), the amplitude of the transmitted fundamental
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Fig. 15.2. Experimental and numerical strain amplitudes of the first three harmonics of the transmitted
wave.

frequency (Figure 15.2) as a function of the excitation amplitude changes from linear
to a smaller slope. Conversely, the increase of the strain amplitude in the interface be-
comes larger than linear. These thresholds, which are characteristic quantities of the
bonding and might be used for its quality evaluation, indicate a complete change in its
dynamic behavior. Above these thresholds, the approximation “no hysteresis and no
conditioning” is no longer valid. The evaluation of the transmitted waves to yield the
restoring forces in the interface and the simulation of the experiments have to take into
account explicitly the phases of the waves. The measurement data at the first threshold
yield an interface vibration amplitude of a0 ≈ 0.2 µm. With an interface thickness
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of about 30µm, this corresponds to a strain of about 10−2. At these strain values the
transition from elastic to viscoelastic/plastic behavior of epoxy in quasistatic tension
experiments occurs.1

Contrary to the experimental and simulation results presented here, in several pa-
pers17–20 a quadratic behavior of the third harmonic with the increase of the excitation
amplitude was considered. This behavior refers to an effect which is evidently not
dominant in our experiments. Equation (8) in Reference17 and Eq. (1) in Reference18

clearly show that in the cited publications and related work a theory is developed to
describe wave propagation in overall nonlinear bulk materials. This theory does not
describe a localized nonlinearity in a linear bulk material as in the case of two com-
ponents of linear elastic materials bound together by a more or less weak adhesive
interface. References19 and20 describe resonance experiments in a rock bar. For this
purpose, the theory of References17 and18 is applied to the one-dimensional resonance
case with standing waves. This allows the assumption that the dominant terms in the
equation of motion are those that feed back into the driving frequency.19 Therefore,
in a first-order approximation, terms proportional to β (the second-order nonlinearity)
and ±α∂u/∂x (hysteresis) are negligible. With these assumptions, the quadratic am-
plitude dependence of the third harmonic is predicted [Eq. (3) in Reference20]. That
is, the quadratic behavior of the third harmonic is caused by end point memory, which
corresponds to the contribution to the strain amplitude and strain rate dependent mod-
ulus [Eq. (1b) of Reference20] that remains if hysteresis is neglected. The numerical
results plotted in Figure 15 of Reference18 show for strains larger than 10−7 that the
quadratic behavior of the third harmonic is not valid in general, even not in the case of
bulk nonlinearity.

So far, phase measurements have not been very accurate due to a large signal-to-
noise ratio. Nevertheless, the results11, 12 show that, at least below a certain thresh-
old, hysteresis is only a small effect in our experiments. This was also observed in
experiments on rocks. The numerically determined PM-space densities in Barea sand-
stone show that the hysteretic mechanical elements (those off the diagonal in the PM-
space) have a much lower density than the nonhysteretic elements (those on the diag-
onal).21, 22

Samples like ours were investigated with a different method by the research groups
of Prof. S. I. Rokhlin, Ohio State University, Columbus, Ohio, U.S.A., and Prof. L.
Adler, Adler Consultants, Columbus, Ohio, U.S.A. Their ultrasonic spectroscopy does
not determine binding forces, but the effective interface stiffness, which in our method
corresponds to the slope of the interaction force curve if no hysteresis occurs. Re-
cently, nonlinearity was included into ultrasonic spectroscopy by means of a pressure
dependent interface stiffness.23

The relation between the amplitudes and phases of the transmitted ultrasonic waves
and the forces acting in the interface, which we use for the evaluation of our experi-
mental data, is only valid for thin bonded interfaces, which do not require a description
by an adhesive layer of finite thickness with all its material properties. Thick bonded
interfaces can be modeled by interaction forces between the surfaces of the two plates
and the surfaces of the adhesive layer, whereas the latter is described as a more or
less viscous medium. The description may become rather complicated and may entail
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difficulties when trying to extract parameters of interest in NDE problems from mea-
sured transmitted or reflected ultrasonic waves. In this case as well, LISA simulations
may provide an important tool for the validation of such an extended model and in the
development of practical application methods and techniques.
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Abstract
Several models have been proposed to describe the propagation of elastic waves in nonlin-
ear hysteretic media, most of them based on an implementation of the Preisach–Mayergoyz
approach. Here, we present a phenomenological model, in which interstitial regions between
material grains or at adhesive bondings, are treated as bi-stable harmonic oscillators. Different
PM-space implementations are proposed. The model, which may be solved analytically, is used
to predict the elastic response of an interstitial region under different conditions and to different
applied stresses.

Keywords: Elastic behavior, harmonic oscillator, hysteretic media, interfaces, PM models,
virtual experiments

1. Introduction

In the last decades, several experiments have shown evidence of nonlinear hysteretic
elastic response of many different materials to an external loading. Among them, rocks
[1–3], concrete [4], structural materials [5], ceramics [6], composites [7], and so on.
Nonlinear effects in the acoustic wave propagation are one of the first indications of
damage progression in such materials [8], with the resulting wealth of applications in
the field of quantitative nondestructive evaluation.

For this purpose, an accurate comprehension of the basic properties of the materials
employed in the industrial processes or products is required and their behavior under
changes of environmental conditions, component interactions, and the like must be un-
derstood. Unfortunately, the understanding of the physical origin of elastic nonlinearity
is still an open question, in particular when it cannot be described within the frame-
work of the traditional Landau theory [9]. In recent years, a tremendous amount of
research work has been carried out in order to study the microscopic structure and dy-
namics of various materials, using molecular dynamics techniques [10], including ab
initio calculations, pseudopotential energy approaches [11], atomistic models, and so
on. A purely microscopic description is, however, not sufficient to predict the response
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of a macroscopic system, because in general, it neglects the collective behavior emerg-
ing from global interactions.

An alternative approach is offered by modeling and numerical simulations at the
mesoscopic level [12], which provide a natural and powerful approach to exploiting
the advances of molecular dynamics for applications in nondestructive evaluation,
material science, seismic studies, and engineering. As a result, several phenomeno-
logical models have been developed in the last years to describe hysteretic elasticity in
materials [13–22].

Such different approaches reflect the richness and variety of phenomenological ob-
servations, ranging from the formation of higher-order harmonics with anomalous
rates [23], anomalous elastic behavior under temperature changes [24], relaxation
and slow dynamics phenomena [25], modulation and self-induced transparency [26],
anomalous resonance-frequency shifts [27], plastic behavior under fatigue cycling
[28], and so on. It is, however, surprising that not much attention has been given to
emphasizing the common features shared by the various effects, which suggest the
possibility to speak of a “universal behavior” for some classes of nonlinear elastic
materials [23, 29].

The search for such a universality cannot set aside the fact that elastic nonlinearity,
in its various forms, always stems from the complexity of the system. Here, complex-
ity is not intended simply as “complicated,” but rather, in the sense given by Holland.
It conveys the meaning that damage, its dynamics and interaction with elastic waves,
are emergent phenomena, deriving from interactions of a large number of simple con-
stitutive units on a lower space scale. It is therefore important to identify the basic
features shared by such systems, which make them complex from an elastic point of
view: multiscaling, feedback, fractality, irreversibility, sensibility to the initial condi-
tions, and so on.

In this contribution, we propose a model based on the Local Interaction Simulation
Approach (LISA) [30], applied in conjunction with a spring model [31], of nonlinear
hysteretic elasticity, using the Preisach–Mayergoyz (PM) space [32] formalism. After
a brief review of the existing models, we present our approach in Section 3. Then, in
Section 4, we present a few results that are obtained analytically. A more extensive
review of the applications to experimental observations are given in Chapter 17 of this
book [33].

2. Models of Elastic Nonlinear Systems

As remarked in the introduction, a large number of phenomenological models were
proposed in the past years to describe elastic hysteresis under dynamic conditions.
This section contains a brief overview on a few continuous models and a more detailed
description of discrete approaches based on a Preisach–Mayergoyz formalism.

As far as continuous models are concerned, several authors have approached the
problem of the nonlinearity arising at the interface between two surfaces in contact
when damage is present in the bonding region. Delsanto et al. [34] derived the interface
forces between two aluminum slabs agglutinated with epoxy, starting from a spectral
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analysis of the experimentally measured transmitted signal. Kim et al. [35] proposed
an elastoplastic micromechanical model, based on noninteracting single asperity con-
tacts, using different springs during the loading and unloading part of a stress cycle.
The approach was used to describe the plasticity-induced hysteresis in the ultrasoni-
cally measured interfacial stiffness during loading–unloading cycles. Rough surfaces
in contacts were studied [36] using normal and transverse stiffness for different inci-
dent angles and considering both elastic and adhesive forces [37].

Van den Abeele et al. [15] introduced a continuum formulation (based on a sort
of mean-field approach) with modulus discontinuities, in which the dynamic modu-
lus differs between increasing and decreasing strains. A similar approach was pro-
posed by Nazarov et al. [38], who adopted a stress–strain relation, which corresponds
qualitatively to the hysteresis of the modified Granato–Lucke model. More recently,
Vakhnenko et al. [19] proposed a model in which fast subsystems, identified with the
field of rapid longitudinal displacements, are interacting with slow subsystems, rep-
resenting, for example, the concentration of defects in intergrain contact bonds. Their
approach also allows the description of relaxation phenomena, such as slow dynamics.

In the Preisach–Mayergoyz approach [32] the specimen is considered as a system
of many simple parts, either with (Hysteretic Elastic Elements—HEE) [17, 18, 20]
or without (Hysteretic Mesoscopic Units—HMU) [15, 16, 21, 22] elastic properties.
The macroscopic behavior results from the collective behavior of a large number of
HMU/HEEs. The relevant material properties (e.g., the modulus) are extracted from
their statistical behavior.

The approaches based on a PM-space have in common that each unit may be in
two states (called “open” and “closed” in the following), characterized by different
equations of state. The transition between the states is driven by an external variable P ,
which is usually chosen as stress or strain. For each unit a pair of parameters (Pc, Po)
is defined such that at P < Pc the unit is in the open state up to P = Pc, after which
it switches to the closed state. For decreasing P , the unit is in the closed state for
P > Po. At P = Po, it switches back to the open state. The state transition protocol is
schematized in Figure 16.1. It follows that the unit is always in the closed (open) state
if P > Pc(P < Po), whereas in the intermediate pressure range (Po < P < Pc) the
unit may be in one state or the other depending on the previous stress history. It is then
possible to consider, in the latter region, thermally activated random transitions (with
transition rates q1 and q2) between the two states [18, 20]. The parameter pairs are

Fig. 16.1. Bi-state representation of a traditional PM protocol, as discussed in the text.
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distributed statistically in the (Pc, Po)-plane (the PM-space), accounting for nonlinear
hysteretic elasticity and memory effects.

A basic difference between the various PM approaches is whether the two states
have different elastic properties (HEE) or not (HMU). Van den Abeele et al. [21] in-
troduced a multiscale approach, in which the HMUs may be in two different states with
different strains. The macroscopic modulus is calculated from the total strain change
due to the elastic deformation of the material and the HMU state transitions, induced
by an infinitesimal stress change. A PM-space implementation was also proposed by
Gusev et al. [16], who assumed that the stress depends not only on the strain, but also
on the variation of a parameter responsible for the hysteretic behavior of the medium.
Likewise, Capogrosso Sansone and Guyer [22] recently proposed an approach based
on a chain of bi-stable springs, in which the two states differ in the spring rest-length.

Parallel to these approaches, models based on HEEs (i.e., considering explicit differ-
ent elastic behaviors) were proposed [17, 18, 39]. In particular, we proposed a model,
in which linear elastic portions are alternated with nonlinear ones. The latter may be
either in a rigid or in a poroelastic state [17]. In our approach fast dynamics observa-
tions (e.g., the resonance frequency shift) are a consequence of conditioning [18, 20],
that is, of the change in the material structure induced by the propagating wave, which
increases with the excitation amplitude. This assumption seems to be in agreement
with recent experimental observations [40]. As a consequence, an approach based on
HEEs rather than HMUs is, to our knowledge, the only PM-based model capable of
describing slow dynamics [18]. Our approach is discussed partly in the following sec-
tions and more in detail in Chapter 17 [33].

3. A Bi-Stable Oscillator Model for Interstitial Regions

3.1 From the Equations of State to the Equation of Motion

We consider the interstitial regions (called HE in the following and representing
regions between grains in granular materials, bonding regions between surfaces in
contact, cracked regions in extensively damaged materials, etc.) as poroelastic viscous
media, composed of a matrix of fluid and a solid portion. Then, we define phenom-
enologically (with some analogy to Biot theory: see, for example, Eqs. 2.1 and 2.2 in
[41]) the total stress tensor τ as

τ = σ + p f , (16.1)

where
σ = K ε + αdε/dt (16.2)

is the usual viscoelastic stress tensor of the solid portion (Kelvin–Voigt constitutive
equation). Here K is the material elastic constant, α the dynamic viscosity tensor, and
ε the interstice strain.

The term p f in the stress equation corresponds to the contribution to the volumetric
pressure due to the fluid, which is proportional to the applied pressure P : p f =
−γ P . The constant γ depends, among others, on the saturation and porosity density
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and the applied pressure P is due to the external forces F± applied to the right and
left tips delimiting the HE (labeled with the index ±): P = −(F+ − F−)/2Σ Note
that we assume the forces to be orthogonal to the interstice cross-section Σ (which
is correct when symmetries allow a 1-D treatment). In the following P > 0 indicates
compression.

It follows that the HEs behave as damped linear springs (of rest-length δ0 equal
to the interstice thickness and elastic constant β = KΣ/δ0) with a point mass m±
at each end of the spring. In the following, we assume the two masses to be equal:
m = m+ = m−. The term p f in Eq. (16.1) can be in fact included in an effective
external forcing, acting on each of the tips:

F
± = F± ∓ γ

2
(F+ − F−). (16.3)

The equation of motion of the point masses at the ends of the springs is then:

m
d2x±

dt2
= F

± ∓ KΣ
x+ − x−

ε0
− αΣδ0

ω2

v2
0

dx±

dt
, (16.4)

where x± are the positions of the point masses and (x+−x−)/δ0 is the HE deformation
(strain) δ. Here, ω and v0 are the wave frequency and speed. The attenuation term
[last on the right of Eq. (16.4)] has been derived assuming the approximation of a
sinusoidal behavior of the displacement. It follows that the second space derivative of
the displacement is equal to k2x±, where k = ω/v0 is the wave number.

Subtracting the two equations and introducing the HE volume V = Σδ0, we obtain
the equation of motion for δ as

m
d2δ

dt2
+ η

dδ

dt
= (1 − γ )

δ0

(
F+ − F−) − 2βδ, (16.5)

where η = αV ω2/v2
0. From now on, η is considered as the damping parameter char-

acterizing the HE.

3.2 A PM Representation for a Bi-State System

The parameters {γ, β, η} completely define the elastic behavior of the HE. Follow-
ing a PM-space representation, as discussed in the previous section, we assume that
different states (also called phases) are allowed at different pressure ranges. In other
words, pressure is considered as the control parameter driving the transition between
the states, even though other state variables (e.g., strain or temperature) may be chosen
without changing the validity of our approach.

Besides the general poroelastic state (labeled in the following PE) defined by arbi-
trary values of the parameters, we can define three limit states with a specific physical
interpretation:

• State R: γ = 1.0, β = 0. We call this state “rigid,” because the interstice defor-
mation is independent of the applied pressure [see Eq. (16.5)], although the strain
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may evolve with time to a steady value, which no longer contributes to the interstice
stress τ [see Eq. (16.5)]. Once equilibrium is reached, the interstice is no longer de-
formed, hence the interstice does not play any role in the propagation of an elastic
wave and an incident wave is completely transmitted through the interstice without
time delay.

• State B: γ = 0, β = 0, η = 0. This is called the “broken state.” In fact, the inter-
stice stress is zero [see Eqs. (16.1) and (16.2)] and the two edges of the interstice
move independently from each other [see Eq. (16.4)].

• State VE: γ = 0, β > 0. The interstice behaves as a solid viscoelastic medium
described by a Young’s modulus K .

Note that other states may also be introduced but are not of interest here.
Likewise, the protocols describing transitions between the two states may be defined

in various ways, following the traditional PM-space description discussed in the pre-
vious section. Here, we propose four alternative protocols, which are discussed in the
next subsection and applied to specific stress protocols in the following section.

1. The simplest protocol accounts for random transitions between the states; that
is, it assumes that both states are allowed for any value of the state variables
(strain–stress–temperature) of the system. As we show, however, such a protocol,
called in the following a random protocol, does not introduce any nonlinearity
(see Figure 16.2a).

2. The transition occurs at a fixed value of pressure. Introducing for each state a
chemical potential µ, which is a function of the pressure applied to the interstice,
the temperature and other state variables (e.g., the strain), transitions occur if the
chemical potentials of the two phases have the same values (see Figure 16.2b).
Such a protocol, called a deterministic protocol, accounts for nonlinearity but not
for hysteresis.

3. The third alternative is the traditional PM approach (hysteretic protocol); see Fig-
ure 16.2c. Here, the HE is in the open state if P < Po and in the closed state
if P > Pc. In the intermediate region, the state depends on the previous stress
history. Such a protocol is obtained if the chemical potential depends explicitly
on the strain (e.g., as proposed in Reference [42] for a surface chemical potential
that depends on the surface curvature) or if different chemical potentials are de-
fined for increasing and decreasing state variable. A review of results using this
protocol is reported in [17, 33, 43].

4. A similar protocol (randomized protocol) can be introduced by allowing meta-
stable states. As in the deterministic case, the transition takes place for a given
value of the relevant state variable, that is, when the chemical potentials of the
two phases are equal. However, one state may remain “stable” beyond the tran-
sition point, even if its chemical potential is larger (i.e., the free energy of the
system is not minimized: see Figure 16.2d). If the HMU is in a metastable state,
the transition occurs randomly due to thermal fluctuations. The transition rate
depends on the difference between the chemical potentials.
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Fig. 16.2. Representation of different transition protocols as discussed in the text. a) Random protocol:
chemical potentials µ are the same for the two states and transitions between them occur randomly.
b) Deterministic protocol: chemical potentials are different for open (solid line) and closed (dots) states.
Transition occurs at the intersection of the chemical potentials. c) Hysteretic protocol: in addition to b)
chemical potentials for the open state are different when the state variable increases (dashed line) or de-
creases (solid line). d) Randomised protocol: in addition to b), transitions occur randomly around the point
of intersection between the chemical potentials.

3.3 Behavior of the Transition Protocols

To discuss the significance of the four protocols, we consider a numerical experiment,
in which a sinusoidal forcing with unit amplitude (in arbitrary units) and frequency
1 MHz is applied to a single HE. The chemical potentials for the various phases should
of course be defined starting from physical considerations. Here, due to the lack of a
realistic description of the mechanisms responsible for elastic hysteresis, we choose
them arbitrarily. For protocol 3, we have chosen Pc = 0.1, Po = 0.01. For protocols
2 and 4, we have selected chemical potentials that depend linearly on the external
pressure only (i.e., strain dependencies are neglected): µo,c = a + bo,c(P − Pc) for
the open/closed states. The numerical value of bo,c has been set to 0.05. Furthermore,
random transition probabilities from the open to the closed state (and vice versa) are
po−c = pc−o = 0.001 events/s (for the random protocol) and

po−c = p1
1

1 + e−(bo−bc)(P−Pc)/d

pc−o = p2
1

1 + e(bo−bc)(P−Pc)/d
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Fig. 16.3. Occupancy of the rigid state as a function of time for a sinusoidal forcing: a) random protocol;
b) hysteretic protocol; c) deterministic protocol; d) randomised protocol.

(for the randomized protocol), with p1 = p2 = 0.001 and d = 0.01(bo − bc). These
formulas have been introduced in order to account for a dependence of the transition
rates from the chemical potential differences between the two states. d plays the role
of a generalized temperature. Note that the values of a, bo, and bc are not relevant for
our simulations.

In Figure 16.3, the state of the HE as a function of time is reported for the four pro-
tocols (the applied forcing is reported for reference as a thin solid line). Except for
the random protocol, transitions between the states occur always close to Pc and Po.
Because the difference between Po and Pc is very small compared to the forcing am-
plitude, in Figure 16.3c hysteresis is not visible (although it is evident in Figure 16.4).
Conversely, the effects of metastable states in the randomized protocol are observable
in Figure 16.3d: the transitions at t = 15 and 25 s are delayed with respect to the time
at which P = Pc,o and repeated closed–open transitions occur at about 32 s.

We then calculate the average occupancy of the closed state, distinguishing between
occupancy during loading and unloading. For this purpose, we sample the loading part
of each period T of the applied pressure in J (J = 50) intervals of duration �t =
T/2J . (The period of the loading phase is half the period of applied pressure). Then,
we consider M = 500 sinusoidal cycles, resulting in C = J M intervals, covering a
time interval CT . To each interval (labeled with an index j = 1 . . . C) we associate
the variable r j , which assumes the value 1 if, in the corresponding time interval, the
HE was in the closed state (and 0 otherwise). The relative time Tclosed spent by the HE
in the PE state is then given as
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Tclosed =

C∑
j=1

r j�t

T
.

The same is done to calculate the average occupancy during unloading. The results
for the four protocols are reported in Figure 16.4. Additional details of the protocol
implementation are reported in Section 4.1.

3.4 Combinations of Hysteretic Elements

As already remarked, the macroscopic behavior results from the collective behavior of
a large number of HEs. In fact, a single HE is nonlinear only in correspondence with
the state transition and hysteretic only in a small pressure range around the transition
values. Therefore it cannot account sufficiently for the nonlinearity of the system. For
each of the HE, the chemical potentials of the two states and the other relevant para-
meters are defined independently. State transitions occur at different pressures for the
various HEs, providing very large statistics, from which the macroscopically observed
nonlinear response is obtained. Different arrangements of HEs (or eventually combi-
nations) can then be chosen to describe extended (e.g., in multigrain or extensively
damaged materials) or localized (e.g., defects, interfaces, etc.) nonlinearities.

In previous papers [18, 20, 33], serial arrangements of HEs have been used by al-
ternating interstices consisting of a single HE only and linear material grains. Such an
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approach introduces a specific spatial scale for the nonlinear region, because N HE oc-
cupy the space of N grains plus N interstices. Also, separation of nonlinear from linear
zones is implicit. Such a choice is particularly suitable if the nonlinearity is present in
a large number of small interstices, which are located between elastic regions (grains).
It is not convenient if the nonlinearity is present in a zone that is small compared to
the total specimen dimension. This case is not discussed further here (for details see
Chapter 17 of this book).

However, more complex arrangements may be introduced. In fact, the nonlinear
portions of the specimen can be considered as representative volumes, each of which
is described by a large number of HEs. The behavior of the representative volume is
obtained by averaging over the behavior of the various HEs. We propose two different
methods for averaging.

(a) The same external pressure is assumed to act on each HE in the representative
volume, but their strains are independent of each other. The strain of the volume
is defined as the average of the strains of the HEs. This approach yields residual
strains at zero stress (as observed in some experiments) due to the HEs that become
rigid during the loading/unloading process.

(b) The representative volume is considered as a single element in a state defined by
parameters {γ, β, η}, given by the average of the parameters calculated for a large
number of virtual HEs subject to the external pressure applied to the interstice.
This approach is adopted in the case where one of the two states is broken. In
fact, strain cannot be defined for a broken HE. Hence, averaging over strains is
meaningless.

4. Results and Discussions

In this section we give a few numerical examples of application of the proposed model,
limiting ourselves to consider parallel arrangements of HEs for different choices of the
applied forcing and different choices of the allowed states.

Equation (16.5) is solved analytically for a given external force F . For simplicity we
assume F+ = F− = F . Depending on the values of γ, β, and η, the different solutions
(under, over, and critically damped) of the harmonic oscillator are found. The solutions
are valid for each of the N HEs in the interstice. For each HE the solution has to be
calculated at intervals of constant state, imposing continuity of the strain δ and velocity
dδ/dt when a state change occurs. Furthermore, in each time interval, different HEs
may be in different states, hence described by different values of the parameters. Their
arrangement is then treated as discussed in the previous subsection.

The following cases are considered.

• Case 1: Stress loading–unloading allowing a poroelastic (open) and a rigid (closed)
state

• Case 2: Sinusoidal stress allowing a poroelastic and a broken state

• Case 3: Stress loading allowing two poroelastic states with different elastic con-
stants
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The applied stresses as a function of time are reported in Figure 16.5, where the
stress is P = F/Σ . Here we assume positive stresses corresponding to compression.

4.1 Case 1: Transitions Between Poroelastic (PE) and Rigid (R) States

The response of a system containing 200 HE to repeated loading–unloading cycles
(see Figure 16.5a) is reported in Figure 16.6. The parameters of the poroelastic state
are K = 90 Gpa, η = 2 GPa · s, and γ = 0.8. Four different state transition protocols
are examined.

(a) Random protocol: Transitions from one state to the other occur at a rate of p =
0.001 events/s.

(b) Hysteretic protocol: Po and Pc are distributed statistically between −0.12 and 0.12
GPa.

(c) Deterministic protocols: The chemical potentials for the PE (R) states are chosen
as linearly dependent from the applied pressure P:

µo,c = xo,c + yo,c P.
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Fig. 16.5. Applied stress protocols (stress vs. time). (a): repeated loading-unloading cycles. (b): sinusoidal
stress. (c): loading applied stress.
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From µo = µc follows Ptrans = Pc = Po = (xo − xc)/(yc − yo). The distribution
of the random parameters xo,c and yo,c is chosen to ensure Pc lies between −0.12
and 0.12 GPa.

(d) Randomized protocols: the same chemical potentials are adopted as in (c). Further-
more, transitions from P E to R (or from R to P E) occur with the stress-dependent
probabilities given in Section 3.3.

The strain and the number of HEs in the rigid state as a function of time, and the
stress as a function of strain are shown in Figure 16.6. The solid lines represent the
linear response, that is, if no transitions to the rigid state are allowed. For the four
protocols, the strain follows the applied stress with a delay due to attenuation. The
consequence is the formation of a loop in the stress–strain curve already in the linear
case. At zero stress, the strain returns to zero only in the deterministic case. In the
other cases (only slightly visible for the randomized case), units with Pc or Po smaller
than zero cause the appearance of residual strains, which slowly disappear with time
(as discussed in Reference [17]).

The two cases with random terms (random and randomized protocols in the first
and last column, respectively) show a remarkable increase of the delay, particularly
during the unloading phase. The stress–strain loops are highly deformed and wider
(indicating larger attenuation than in the linear case). In the hysteretic/deterministic
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Solid lines represent the linear case in which all HE are constrained in the PE state.
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(second and third column) cases, the increase in delay with respect to the linear case
is less evident. More important is that the strain does not reach the same maximum
as in the linear case, due to the fact that most HEs (about 50%) became rigid already
at about t = 5 s (see second row), that is, at stresses of the order of 0.09 GPa. In
both cases, hardening occurs if the applied stress increases (as shown by the increase
in the slope of the stress–strain curve with respect to the linear case), but only in the
hysteretic case an increased attenuation is observed, by means of the widening of the
gap between up-going and down-going curves.

In both hysteretic and randomized protocols, the stress–strain curves exhibit dif-
ferent slopes during loading and unloading at any given stress value. This provides
evidence of the presence of hysteresis, manifested in the different elastic properties
during loading/unloading. No similar effect is generated in the random and the deter-
ministic protocol. Furthermore, the random protocol does not induce distortion of the
stress–strain curve, only rotation and widening. Hence the random protocol does not
account for nonlinearity, as is also demonstrated in Figure 16.7.

4.2 Case 2: Transitions Between Poroelastic (PE) and Broken (B) States

Here we consider an interstice containing N = 200 HE, with a PE state described
by the same parameters as in Subsection 4.1. and a B state. We consider the same
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protocols for the state transitions as discussed above and the sinusoidal stress protocol
represented in Figure 16.5b.

The response of the system is reported in Figure 16.7 for random, hysteretic, and
randomized protocols, respectively, in the three columns. The strain as a function of
time is reported in the first row for the full signal and zoomed to a shorter time window
in the second row. In the random protocol, the signal amplitude is randomly modulated,
but not distorted. The interstitial region is linear elastic, as is confirmed by the absence
of higher-order harmonics in the fast Fourier transform spectrum (third row).

Indications of nonlinearity and hysteretic effects are visible in the other two cases.
Both show a strong deformation of the signal, with formation of a typical triangu-
lar profile (indication of hysteresis), which is reflected in a considerable content of
higher-order harmonics in the FFT spectrum. Also, in both hysteretic and randomized
protocols the mean of the signal is larger than zero (corresponding to a net contraction
of the interstice).

4.3 Case 3: Acoustic Emission

As a final example, we consider an interstice composed of a single HE with two PE
states (differing only in the parameter K = 90 GPa and 70 GPa for the two states).
A loading is applied to the interstice and kept constant (see Figure 16.5c). Figure 16.8
shows the strain response (upper row), the state of the interstice (second row: 1 denotes
the state with K = 70 GPa) and the displacement velocity response (third row).

As expected, the strain is very sensitive to changes in state of the HE. In fact, af-
ter the stress has reached its maximum value, random transitions in either direction
between the two PE states, as occur for random and randomized protocols (shown in
the first and last columns of Figure 16.8) cause a variation of the interstice elastic-
ity (softening or hardening), with a resulting change in the equilibrium strain value.
Furthermore, the abrupt change in modulus is followed by a relatively long transient
(about 5 s), in which damped oscillations bring the system to the new equilibrium con-
ditions. The absence of any event in the hysteretic case is hardly surprising, because
in this case the transitions between the two states are defined deterministically; that is,
state transitions cannot occur at constant stress.

Similar effects are observed in experiments, in which Acoustic Emission (AE)
events occur at constant stress, for example, due to local changes of the elastic

Fig. 16.8. Response of the interstice to a loading stress as reported in Fig. 5c for random (first column),
hysteretic (second) and randomised (third) protocols. The plots show strain (first row), state (second row)
and displacement velocity (third row) as a function of time. State 1 corresponds to the softer state. Vertical
lines indicate transitions.
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properties (in general associated with damaging). In these measurements, the change
in strain is normally hardly measurable, because the AE events occur only in a very
small portion of the specimen. Therefore, the strain velocity is usually used for char-
acterizing and counting the number of events. The signal simulated here (last row of
Figure 16.8, where a proper time window has been selected) is qualitatively similar to
signals observed in experiments [44]. Note that the time length of the signal repro-
duced in the present simulations is not comparable with experimental data, because its
frequency and its duration are determined by the properties of the interstitial region
(i.e., its modulus, damping, contact quality parameter, and length). Here the topic is
not discussed further, because it is still the subject of investigation [45].

5. Conclusions

We have proposed a simple bi-state model to describe interstitial regions as superposi-
tions of linear damped harmonic oscillators, allowed to jump between different elastic
states. Introducing different transition protocols, we have shown that we can describe
random phenomena, deterministic transitions (leading to nonhysteretic nonlinearity),
and hysteretic protocols (both the traditional Preisach–Mayergoyz approach and its
randomized variation).

The proposed approach allows us to obtain an analytical solution for the response
of the interstice to different kinds of applied stresses. Besides reproducing features
typical of traditional models (e.g., hysteresis loops, generation of harmonics, etc.),
it allows us also to model additional phenomena, such as acoustic emission [45] or
damage progression [47].

The validation of the model is given in Chapter 17 of this book [33].
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Abstract
Models at a mesoscopic level may be useful tools to support data interpretation and the design
of experimental setups. They may even help to provide a better understanding of the physical
mechanisms responsible for hysteresis in damaged elastic media. Of course, they should prove
capable of reproducing at least most of the observed phenomenology in which the anomalous
elastic behavior of various materials under applied stresses manifests itself. In this contribu-
tion, we briefly describe a phenomenological model based on a Preisach–Mayergoytz space
approach and we review its application to simulate quasistatic, fast dynamic, and slow dynamic
experiments.

Keywords: Elastic behavior, frequency shift, hysteretic media, numerical simulation, relax-
ation, virtual experiments

1. Introduction

Evidence has been shown in the past decade of the importance of the nonlinear elastic
response of materials to an external loading, in particular to predict the mechanical
integrity of materials such as rocks [1], concrete [2], structural materials [3], ceram-
ics [4], composites [5], and so on. Nonlinear features are indeed the first manifestation
of damage progression [6], for example, crack propagation [7]. On the other hand, the
material intrinsic nonlinearity may be seen as the cause of fatigue and, eventually, lead
to the healing of specimens subjected to cyclic loading, for example, during operation.
As a consequence, a detailed understanding of the physical origin of elastic nonlin-
earity and the consequent modeling of the nonlinear response to applied stresses is a
prerequisite for the prediction of mechanical failure of materials.
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The huge amount of experimental data gathered on the subject shows that nonlinear-
ity emerges particularly when mesoscopic features (i.e., on a space scale of the order
of few microns) are present in the material, even though the origin of the response of
such elements has ultimately to be traced back to microscopic details. Furthermore, a
wide phenomenology is observed, such as the formation of temperature gradients [8],
relaxation phenomena [9], creep [10], and so on. All these features suggest that it is
possible to speak of a “universal behavior” of nonlinear elastic materials [11, 12].

Among the various observations, an anomalous elastic behavior has been observed
in several materials (especially rocks, sandstone, concrete, and damaged materials)
and has been traced back to the presence of elastic hysteresis. A very first peculiarity
of the phenomenon is that a huge nonlinearity manifests itself over a wide range of
strain levels, and is remarkable already at low strains (about 10−8).

In the high-strain regime, quasistatic experiments have been conducted and mea-
surements have shown the existence of hysteretic loops in the stress–strain curves with
end point memory [13]. In the low-strain regime (10−7 to 10−5), resonance frequency
shift (with anomalous dependence on the strain amplitude) [14], strong dependence on
humidity/temperature [15], and generation of higher-order harmonics (with nonclassi-
cal rates) [16] have been observed, together with anomalous modulation effects, both
as far as sideband generation [17] and attenuation [18] are concerned.

Recent experimental data have shown that most of the effects listed above (classified
under the term “fast dynamics”) are due to the simultaneous presence of nonlinearity
and nonequilibrium dynamics [19]. The latter manifests itself in the so-called condi-
tioning effect, that is, the memory effect due to the “temporary” modification of the
elastic properties of the material induced by the excitation wave. This effect, known to
be due to large amplitude disturbances [20], has been shown not to be separable from
fast dynamics even at low strains [19]. Also, very recently it has been proved that con-
ditioning, at least in materials such as damaged ceramics, is not instantaneous, rather
occurs on a time scale of the order of a few seconds [21].

As remarked, such “temporary” conditioning is fully reversible, in the sense that the
elastic properties of the material slowly recover their unperturbed values [1, 22]. This
phenomenon is usually called slow dynamics and takes place on a time scale ranging
from a few hours to several days.

Several models have been developed to attempt an understanding of this phenom-
enology [23–30]. Most of them are based on a Preisach–Mayergoyz (PM) approach
[31]. For a detailed description of the latter, see Chapter 16 in the present book [32].

In particular, in past years we have proposed a model, based on the Local Interaction
Simulation Approach (LISA) [33], applied in conjunction with the spring model [34]
and a PM representation [31]. We have shown that several of the features observed
in nonlinear hysteretic and nonclassical systems may be well reproduced by introduc-
ing a bi-state constitutive equation for the nonlinear features, with adequately driven
transitions between two states with different elastic properties [24, 25].

In this contribution, after a brief discussion of the model, we review most of the
results obtained to show how our approach is capable of capturing a good part of
the phenomenology observed in either quasistatic [24], fast dynamics [25, 35], and
relaxation [25, 36] experiments.
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2. The Model

Let us consider a multigrained material specimen. If it consists of a thin bar (of length
L and cross section Σ � L2), as is the case in most experimental setups, we can
simplify the problem with a 1-D schematization, in which N grains alternate with
N − 1 interstices. Grain portions are much larger than interstices, of the order of 10–
20 µm versus 1 µm, respectively. For simplicity, we assume that at equilibrium (i.e.,
in the absence of external forces and at some given temperature T0) all grains have
the same rest length λ0, the same elastic constant K and the same mass m = ρ Σλ0,
where ρ is the mass density. We consider as negligible both the interstice rest length
δ0 and its mass.

Under an external perturbation F(t), the length of each grain (labeled with an index
i) and each interstice [λi (t)and δi (t), respectively] are time dependent and can be
determined once the equation of state for both grains and interstices are given. The
index i and the time dependence are omitted in the following, whenever no confusion
can arise.

As discussed elsewhere [24, 25], we assume the hysteretic nonlinearity to be con-
fined to the interstice region. Therefore grains follow the usual thermoelastic the-
ory [36,37] and their constitutive equations (i.e., the relation between stress and strain)
at a given temperature T are given as

σ(t) = K ε(t) − Kα (T − T0) , (17.1)

where α is the thermal expansion coefficient of the specimen and ε(t) = ∂u/∂x ≈
(λ − λ0)/λ0, u being the displacement.

In addition to Eq. (17.1), the state of the grain is determined by the 1-D thermal
conduction equation:

C
∂T

∂t
= k

∂2T

∂t2
− αK

∂

∂t

∂ε

∂x
, (17.2)

where k is the thermal conductivity and C is the specific heat.
The constitutive equation for interstices should take into account nonclassical non-

linear effects and has already been discussed in another chapter of this same book [32].
We assume the stress τ on the interstice to be given as

τ(t) = 2a1 P(t) + a2η(t) + a3
·
η(t) + a4
T, (17.3)

where a dot denotes a time derivative, P(t) is the pressure applied on the interstice
under consideration and η(t) corresponds to the intersticial region strain. 
T is the
temperature difference between the interstice tips. For simplicity, we assume here that
the temperature is uniform along the interstice. Hence 
T = 0. Such an assump-
tion is a reasonable first approximation (due to the short length of the interstice and
the 1-D treatment adopted), even though an explicit thermoelastic equation similar to
Eq. (17.2) for the interstice itself may help to capture additional experimentally ob-
served features.

We remark again that Eq. (17.3) is only a phenomenological equation which, as we
show, captures most of the phenomenology, but should be modified according to the
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eventually emerging knowledge of interaction mechanisms taking place at the molec-
ular or mesoscopic level, for example, dislocations theory [38], Biot theory [39], glass
transitions [40], and so on.

To introduce nonlinearity in the linear system of Eqs. (17.1)–(17.3), following a
Preisach–Mayergoyz approach [31], we assume that the interstice may be in two dif-
ferent linear states, the nonlinearity being only due to sudden transitions from one
state to the other. In the first state, labeled r = 1, the interstice is rigid (a1 = 0.5,
a2 = 0, a3 = a3R) and any disturbance travels across the interstice without further
straining it; the other (r = 2) is a linear elastic state, where the values given to the
parameters an(n = 1, 2, 3) are constants and their ratio to the rigid state values de-
fine the level of hysteretic nonlinearity. Other states are also possible, as discussed in
References [32, 41].

The rules for the transition from the rigid to the elastic state (and vice versa) are
defined as follows: we define for each interstice a parameter pair (Pc, Po) with Po < Pc

and starting for any given interstice at a given pressure P < Pc, we assume that the
interstice length varies elastically up to P = Pc, at which point it becomes rigid.
Conversely, when P decreases, the interstice remains rigid up to the value P = Po,
where it becomes elastic again.

It follows that the interstice is always in the rigid (elastic) state if P > Pc(P < Po),
whereas in the intermediate pressure range (Po < P < Pc) the two states coexist and
the interstice is in one state or the other depending on the previous stress history. It
is then natural to consider, in the latter pressure region, thermally activated random
transitions (with rates qc and qo) between the two linear states. Because it is reason-
able to assume that the rigid state is more stable than the elastic one (the rigid–elastic
transition implies the rupture of a sort of “static bond”), we require for the thermally
activated transition rates that qc > qo. Clearly, these hopping transition rates increase
with temperature, but in the present context this dependence is not explicitly included.
Likewise, any other dependence of the rates on, for example, the applied pressure P is
neglected.

It is well known that hysteretic nonlinearity depends strongly on the initial state of
the specimen; that is, it depends on the previous stress history. Hence, the definition
of the initial conditions is, at least in the presented approach, a key point. We assume
therefore that before starting the “virtual experiment” the specimen is completely re-
laxed; that is, a long time has passed since the last perturbation of the specimen, either
thermal or mechanical. This can amount to several hours in real experiments. Also, we
assume that the specimen is initially kept at atmospheric pressure (the pressure scale
is chosen so that atmospheric pressure is scaled to zero) and room temperature. It fol-
lows that the state of each interstice is defined as follows: elastic state (r = 2) for all
interstices with Po > 0 and rigid state (r = 1) for interstices with Pc < 0. The state
of the remaining interstices cannot be deterministically defined, because both states
are possible. It follows that they are statistically distributed according to the thermal
relaxation probabilities qc/o defined above, where the probabilities of being in an elas-
tic/rigid state are given by qc/o/(qc + qo).

In addition, the distribution of the (Pc, Po) pairs for the various interstices is very
important and should be derived from inversion of experimental data [42]. Here, for
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simplicity, we always adopt a uniform distribution in the Pc − Po space, provided
Po < Pc.

Once the constitutive laws are given, the equations of motion can be easily obtained.
Denoting with u±

i the displacements of the right and left tips of the i th interstice,
Newton’s law becomes

ρ

2

d2u±
i

dt2
= σ±

i ∓ τi − γ
du±

i

dt
, (17.4)

where γ accounts for attenuation and σ±
i are the stresses supported by the grains ad-

jacent to the i th interstice, which, in turn, supports a strain τi , as defined in Eqs. (17.1)
and (17.3). Equation (17.4) can be solved numerically (e.g., through finite differences)
together with Eq. (17.2) to give the response to an external loading of the specimen as
a function of time.

3. Results and Discussion

In the course of the experiments, several macroscopic effects have been observed, as
discussed in the introduction, for very different strain ranges and different excitation
types. In this section, we show how the proposed approach is capable of reproducing
most of the observations reported in the literature. In particular we discuss:

(a) The existence of hysteretic loops and discrete memory in the stress–strain relation,
deriving from quasi-static experiments, that is, when the forcing applies a large
slowly varying strain to the specimen, so that the system is considered to be in
equilibrium at all times. This effect is called “quasistatic hysteresis”.

(b) Existence of “mechanical” interactions which induce softening of the effective elas-
tic moduli of the specimen, shown mostly in dynamic experiments where a rapidly
varying sinusoidal forcing is applied. We call this effect “fast dynamics”.

(c) Existence of stress-history effects, leading to variations in the dynamic moduli
which do not immediately disappear when the disturbance (both mechanical and
thermal) is removed. In other words, the specimen is ”conditioned”, that is, the
elastic properties at a fixed amplitude depend on the history of the specimen.

(d) Existence of relaxation processes, which render the conditioning fully reversible;
that is, after the change in the elastic properties due to a large amplitude distur-
bance, the latter slowly recover their equilibrium state. The effect is generally
called “slow dynamics”.

In all the experiments reported in the following we have chosen a bar of length L =
61.02 mm and cross section Σ = 10 mm2, with a damaged region extending along its
entire length. Grain and interstice lengths are 0.75 mm and 1.5 µm, respectively. We
have assumed for the specimen a bulk modulus K = 23210 MPa and a linear Q factor
of 600.
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3.1 Quasistatic Experiments

We consider first quasistatic experiments, in which the external stress σext(t) =
F(t)/Σ , acting on both edges of the bar, is varied with time according to a certain
protocol, but always leaving sufficient time between successive steps for the stress to
distribute itself homogeneously through the specimen. Thus, the system can be as-
sumed to be in equilibrium at all times, all time derivatives can be set to zero, and the
results are independent of damping. Quasistatic conditions can be easily achieved, be-
cause the time for an ultrasonic pulse to cross the entire bar (whose length is assumed
to be < 1 m) is of the order of 10−4 s, whereas several seconds (or even minutes)
elapse between successive loading steps.

In the following, we consider virtual compression experiments performed with a
certain protocol, in which the applied stress varies from 0 to a given σmax and back
to zero. At each time step, because the system is in equilibrium, the known applied
stress is uniformly distributed along the bar and Eqs. (17.1)–(17.3) provide the strain
at each node and interstice. Note that for rigid interstices the strains at a given time are
unchanged from the values at the preceding time step.

A sinusoidal protocol with exponentially increasing amplitude, as reported in the
inset, is considered in Figure 17.1, where a stress–strain plot is reported. The stress cy-
cles generate stable and closed hysteretic loops (note that conditioning effects during
quasistatic experiments, not shown here, may also be described by our model as re-
ported in [24]). It is interesting to remark that the curvature is always facing upwards;
that is, the stiffness increases with the applied stress, although less so in the up-going
branch, in agreement with experimental observations in rocks. Also, it is noticeable
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Fig. 17.1. Stress–strain curves for the applied stress protocol reported in the inset.
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Fig. 17.2. Stress–strain curves for the applied stress protocol reported in the inset.

that the up-going branch is unchanged through successive cycles, whereas the down-
going branch is affected by the maximum previously achieved strain amplitude. Fi-
nally, a typical feature of our model is the change in the average slope as a function of
the maximum amplitude. Indeed it can be noted that, increasing the applied maximum
stress, the average elastic constant increases (hardening with increasing amplitude).

Figure 17.2 shows the stress–strain curve for a triangular protocol with nested small
amplitude loops, as shown in the inset. The curvature is the same as that in Figure 17.1,
pointing to the same hardening effect. The plot also illustrates the discrete or end point
memory effect: during loading each of the smaller loops terminates on the same load-
ing curve; that is, the stress–strain curve always follows the same path and during
each loading cycle the specimen “remembers” its past history. The same phenomenon
also takes place during the unloading phase. Additionally, it is interesting to note that
smaller loops occuring at increasing applied stresses correspond to exciting a more
rigid specimen; that is, the specimen hardens at higher confining pressures, in agree-
ment with experiments [14].

3.2 Fast Dynamics Experiments

To simulate a dynamic experiment, we consider a bar with a forced edge and free
boundaries on the opposite tip. In particular, we assume that monochromatic waves
of driving amplitude F0 and varying frequency ω are injected in a rod-shaped spec-
imen by a transducer attached to one end of the specimen. The signal is recorded
by an accelerometer attached to the other end. At any given excitation level, the fre-
quency is swept through the fundamental resonance mode ωR of the specimen and the
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Fig. 17.3. Resonance curves for different driving amplitudes. The resonance frequency (i.e., the frequency
corresponding to the peak amplitude) shifts downward and attenuation increases with increasing driving
amplitudes. Here a1 = 0.495, a2 = 6.5 × 10−5 and a3 = 7.

time-averaged acceleration amplitude A (in stationary conditions) is recorded. This
procedure of resonance curve tracking is repeated for several different levels of exci-
tation or under different environmental conditions.

Here the applied stress is σext(t) = σ0 cos(ωt) = F0 cos(ωt)/Σ .
In particular, the experiments reported in this subsection are presented to support the

claim that several mechanisms may equivalently cause a larger level of nonlinearity
in the specimen, manifested in an increasing softening of the material. In particular
we consider here softening of the material due to the increase in driving amplitude
(Figure 17.3), the increase in the damage level (Figure 17.4), and abrupt temperature
changes (Figure 17.5).

The resonance frequency shift is analyzed in Figure 17.3, where the average veloc-
ity recorded on the free edge of the bar is plotted versus frequency for several values
of the driving amplitude. Velocities are normalized to the respective input amplitude.
In agreement with experimental results, the resonance frequency ωR is shifted down-
wards for increasing driving amplitudes. Note also a nonlinear attenuation effect due
to hysteretic loops: the peak amplitude is not proportional to the driving amplitude Fo

and the width of the resonance curve becomes larger with Fo. The resonance frequency
shift is linear with the peak amplitude, in agreement with observations.

A very similar behavior is obtained when the driving amplitude is kept fixed but
one of the nonlinear indicators ai is varied. In agreement with experimental results,
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Fig. 17.4. Resonance curves for different damaged states and a forcing amplitude σ0 = 700 Pa. Here
a2 = 6.5 × 10−5and a3 = 7.

a larger nonlinearity (e.g., smaller a1 in Figure 17.4, farther from the rigid value of
0.5) corresponds to a larger resonance frequency shift and a stronger attenuation. It is
interesting to notice the sensitivity of the resonance frequency on the parameter a1: a
change of approximately 2% in the parameter causes an 8% change in the resonance
frequency.

As a last example of a dynamic experiment, we report the resonance curves at a
fixed amplitude for decreasing temperature values, as shown in Figure 17.5. Here the
experiment has been conducted by modifying the temperature after each resonance
curve measurement (i.e., without allowing the system to relax). Temperature changes
are reported in the plot legend. As discussed in [36, 43], the stresses generated in the
material by the temperature change induce a softening which is shown in Figure 17.5,
and also a large contribution to attenuation. As a result, the shift with decreasing tem-
perature is downward, with an anomalous behavior: in fact, in a linear case, materials
are expected to become stiffer with decreasing temperature. Indeed, a right shift is ob-
served if conditioning is removed by letting the system relax after each temperature
change before measuring the resonance curve (not reported for brevity).

3.3 Conditioning

As previously mentioned, conditioning consists of a temporary variation of the elastic
constants after a large amplitude perturbation has been applied. To show the effect, the
following virtual experiment has been performed.

• The resonance curve is measured at a small excitation amplitude (σ0 = F0/Σ =
235 Pa).
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Fig. 17.5. Resonance curves for different temperatures and a forcing amplitude σ0 = 700 Pa. Here a1 =
0.495, a2 = 6.5 × 10−5 and a3 = 7. Note that the output velocity here is not normalized to the input
amplitude.

• The measurement is repeated with a large excitation amplitude (σ0 = F0/Σ =
1730 Pa).

• A further measurement is performed at the same large amplitude.

• The resonance curve is measured again at the lower excitation amplitude.

Results in the aforementioned four cases are reported in Figure 17.6, where the fol-
lowing can be noted.

• The resonance angular frequency ω1 for the first large amplitude measurement
is shifted downward (as expected from the observations reported in the previous
subsection) with respect to the low-amplitude resonance frequency ω0.

• Both the resonance frequency and distortion of the curves measured at large am-
plitude are slightly different (ω2 �= ω1); in particular, the material is softer during
the repetition of the measurement at large amplitude, evidence of further condi-
tioning (in the softening direction) of the material. Something similar is reported
in Reference [21].

• When the large amplitude perturbation is removed, the resonance frequency of the
material remains close to ω2, that is, the material elastic properties have temporar-
ily been changed even though the forcing amplitude is small. Similar experimental
results are reported in Reference [22].
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Fig. 17.6. (a) Resonance curves corresponding to two different levels of forcing amplitude; each amplitude
is applied twice. (b) Angular resonance frequencies obtained from Figure 17.6a using a Lorentz-fit: ω0

corresponds to the first curve at σ0 = 235 Pa; ω1 and ω2 are obtained after conditioning at σ0 = 1730 Pa,
and ω3 is obtained after recovery at σ0 = 235 Pa.
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Fig. 17.7. Resonance frequency recovery after a mechanical perturbation at t = 0.

3.4 Relaxation Experiments

Relaxation consists in the recovery by a material of the original elastic condition af-
ter large amplitude driving has been applied. A recovery experiment is performed as
follows.

• The resonance frequency is measured at a low amplitude level.

• Large amplitude loading is applied and as a result, the material is conditioned.

• After having removed the perturbation, the resonance frequency at fixed low
driving amplitude is tracked in time.

Results are presented here to support the claim that the proposed model predicts,
in agreement with experimental data, a log time recovery of the resonance frequency.
Also, we wish to show that mechanical perturbations (Figures 17.7 and 17.8) or ther-
mal shocks (Figure 17.9) produce similar results. Indeed, as discussed in [36, 43], a
thermal shock causes mechanical deformations in the specimen that are responsible
for a nonlinear softening superimposed to the usual softening/hardening due to varia-
tions of the elastic constants with increasing/decreasing temperature [14].

In Figure 17.7, the resonance frequency versus time is shown in the case when con-
ditioning is caused by a large amplitude elastic wave (forcing amplitude σ0 = F0/Σ =
800 Pa) propagating in the specimen. The angular resonance frequency before condi-
tioning (about 150.8 KHz) suddenly drops as soon as the large amplitude driving is
applied to 149.5 KHz. The recovery process takes place in about three hours, a reason-
able time scale if compared to experiments [1].

The same plot is shown in Figure 17.8, using a log scale for time. Here, the log
time recovery is quite evident at least up to 7000 s. At later times, saturation inevitably
occurs.
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Fig. 17.9. Resonance frequency recovery after a thermal perturbation at time t = 0. Circles: 
T = −5◦K;
squares
T = +5◦K.

An altogether similar behavior is observed when a change in temperature is ap-
plied, as shown in Figure 17.9. Here, the resonance frequency at ambient temperature
(T = 300◦K) is about 150.8 KHz. When a temperature variation of 
T = ±5◦ K is
introduced, the resonance frequency suddenly drops, more so in the case of cooling.
At subsequent time steps, the resonance frequency relaxes back to the value expected
in the linear case, with a slightly larger value than the original case when cooling
occurs (due to the hardening of the elastic constant with a temperature decrease) and
smaller value when heating occurs. For more details see [36,43] and experimental data
in [17, 22].
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4. Discussion

The review of results presented here demonstrates the capability of the proposed model
to reproduce, at least qualitatively, most of the observed phenomena in quasistatic, fast,
and slow dynamics experiments. The main feature of the PM-space implementation
adopted herein is indeed the possibility of simulating the whole set of experiments.
This is done by considering two intersticial states with different elastic properties [24,
25, 36, 43], rather than two rigid states, as done in other PM-space-based approaches
[23, 27–29].

The model adopted herein has been the first successful attempt to describe condi-
tioning of the material [25] induced by low applied strains as recently observed [19].
To our knowledge, up to now only the approach recently presented by Vakhnenko
et al. [30] is capable of capturing slow-dynamics phenomenology, although starting
assumptions are different.

As a result of using elastic units in the PM description, a different interpretation of
the origin of nonlinearity is suggested here. Indeed, fast-dynamics effects (in particular
the resonance frequency shift) are not only due to continuous changes of state in time
of some constitutive elements, from closed to open and vice versa. Rather, condition-
ing is more important, that is, the fact that perturbations induce changes in the material
structure. In our approach, any mechanical stress with −Pmax < σ < Pmax, whatever
its cause, produces a state change that relaxes back only because of slow dynamics, in-
dependently of the applied loading. This corresponds to the generation of a nonequilib-
rium configuration of some of the interstices, namely the ones with −Pmax < Po < 0
and 0 < Pc < Pmax. These interstices only slowly recover the equilibrium condition
once the perturbation is removed, giving rise to slow dynamics [36, 43].

As we have shown in Section 3.2, the change in elastic properties at the scale level
of the units used to implement the PM space, may be equivalently achieved by varying
driving amplitude or temperature, or by directly changing the nonlinear parameters.
In other words, the frequency shift due to increasing excitation amplitude is medi-
ated through the conditioning of the specimen caused by the forcing itself, in a sort
of feedback process. Our claim is that conditioning and fast dynamics are not only al-
ways present together, but are linked to the same mechanism, in agreement with recent
experimental observations [19].

Furthermore, other features, which agree with experimental observations, are typ-
ical of a bi-elastic equation of state, and are not reproduced by classical PM-space
approaches as reported in the literature. Among these is the change, with respect to
the rigid (intact) case, of the resonance frequency and attenuation factor in the zero
amplitude limit. In other words, the limit of the resonance frequency when the forcing
amplitude goes to zero is different from the frequency of the undamaged sample.

Of course, the model presented so far is still limited by being a phenomenological
model and a connection between the so-called “damage indicator parameters” {ai } and
the structural integrity of the specimen is needed, requiring a deep understanding of
the physical origin of nonlinearity [44]. Specifically, it would be desirable to link the
nonlinear parameters of our approach with the output of existing damage progression
models [45].
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Likewise, efforts are currently being made to implement additional features into
our approach, which are typical of the complexity and intrinsic to the structure of the
material under investigation. Among them, the following aspects are currently being
studied.

(a) Multiscaling: We introduce a sort of hierarchy from an upper (macroscopic) to a
lower level. Each intermediate level can be regarded as a statistical ensemble of ba-
sic units and the behavior of each of these is estimated as the collective or averaged
behavior of a statistical ensemble defined on the lower hierarchical level. In this ap-
proach, we are considering the implementation of transitions to irreversible states,
typical of plastic transitions or mechanical failure or fracture [46]. This would en-
able us to consider Acoustic Emission (AE) effects [47] and, in particular, to ex-
plore the eventual correlation between AE and slow dynamics [48].

(b) Thermodynamics of the system: Implementation of the transition between states as
stochastic events, for example, driven by the minimization of the free energy of the
system, is in progress [32]. Such an approach will allow the definition of the “heat”
released during the “phase transition” and its influence on the thermal equilibrium
(feedback).

(c) Frequency dependence: Transitions driven not only by the magnitude of the applied
pressure (as in the approach so far developed), but also by the rate of the pressure
variation and other features will be considered in the future. In particular, to ac-
count for the fractal microstructure of the media analyzed, power law distributions
(with noninteger exponents) will be chosen for both the transition rates and their
correlation [47].
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Abstract
A technique is proposed to expand existing 1-D spring models for the simulation of nonlinear
hysteresis attributed to interstitial regions between linearly elastic material grains to 2-D. Spe-
cial emphasis is given to the explicit formulation of the approach in order to provide the tools
for the development of specialized models and for the implementation on numerical simulation
codes.

Keywords: Grain interstice model, hysteresis, nonlinear elasticity, PM-space, two dimensions

1. Introduction

For the application to NonDestructive Evaluation (NDE) of structures that are used in
such diverse artifacts as aircraft fuselage and historic buildings, the development of
2-D and 3-D models is indispensable. In this chapter we describe in detail a recently
proposed expansion to 2-D [1] of a 1-D spring model that uses the PM concept for
the description of NCNL effects of small interstices between much larger grains with
classical elastic behavior [2]. Special emphasis is placed on the explicit formulation of
interstice and grain stresses and strains in the applied discretization scheme. A tech-
nique for numerical simulation of elastodynamics that is particularly suited for the im-
plementation of local effects is the Local Interaction Simulation Approach (LISA) [3].
It has been developed for linear elasticity in 1-D [4], 2-D [5], and 3-D [6], and then
expanded to simulate classical nonlinearity [7].

In Section 2 we summarize briefly the 1-D interstice model for heterogeneous ma-
terials, using the physical parameters relevant for an approach in 2-D and 3-D. The
passage from 1-D to 2-D is performed in Section 3. In order to simplify the model,
we express the formalism in terms of eigenstresses and eigenstrains (Section 3.3).
Under the assumption of an orthotropic interstices the number of parameters reduces
significantly. Then, the PM protocol of the 1-D model [2, 8] can be easily included
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(Section 5). Finally, we exemplify the potential of the 2-D model by means of some
simple simulations (Section 6).

2. A 1-D Interstice Model

The 1-D model that is used as basis for the development of the 2-D model is described
in [8] and [9]. There, a stress–strain relation of the interstice is proposed that includes
an elastic term depending on the interstice deformation, a damping term accounting
for viscoelastic effects and a pressure term, which depends on the forces applied to
the interstice by the surrounding grains. The latter term originates from a “contact
quality parameter” introduced in the model in order to account for imperfect contacts
between material grains [2,10]. The reasons for the introduction of this term are purely
practical. Basically, it only rescales the elastic constant and the damping term of the
interstice. However, it allows for an easy simulation of viscoelastic and rigid (i.e., of
infinite elastic modulus) interstices within the same approach. The interstice stress is
hence given by

σ = −a P + K ε + ηε̇, (18.1)

where K is the elastic constant and η the dynamic viscosity parameter of the interstice.
a is the parameter identified with the contact quality of the grains contiguous to the
interstice.

Recently, Gliozzi et al. [8] discovered that the stress–strain relation (18.1) resembles
the stress–strain relation of liquid saturated porous media derived from the theory of
Biot [11]. They called it therefore the “poroelastic” interstice model. It is not yet clear
under which conditions a stress–strain relation in the form of Eq. (18.1) really can
be derived from Biot’s theory of poroelasticity, but because NCNL elasiticy has been
found in particular in porous media [12] this approach seems to be promising.

2.1 External Stress

In the intended 2-D treatment, it is convenient to use external stresses rather than pres-
sures. The total pressure on the interstice is equal to the sum of the external forces that
act on the interstice divided by the total area, on which they act. We call F̄− and F̄+
the forces acting on the subnodes at the left and right side of the interstice, respectively.
The forces are defined to be positive if they act in the positive x direction. Hence, the
interstice pressure is given by

P = F̄− − F̄+

2εyεz
. (18.2)

In order to eliminate the arbitrary sizes of a material cell (εy and εz) in the directions
that are not considered in the 1-D case (i.e., y and z), we use in the following force
densities,

F̄ = εxεyεz F, (18.3)

where εi , i ∈ {x, y, z} is the size of a material cell in the i direction. The external forces
are due to stresses in the material cells contiguous to the interstice. Stress is defined as



18 A 2-D Nonlinear Hysteretic Spring Model 289

force divided by the area, on which the force acts. Note that positive stresses in the left
material cell (i.e., if it is under tension) cause a force in the negative x direction on the
left subnode, and vice versa. Hence,

± σ± = 1
εyεz

F̄± = εx F±, (18.4)

where σ± are the stresses in the material cells contiguous to the interstice in the pos-
itive (+) and negative (−) x direction. From this we obtain for the external interstice
pressure

P = −σ+ + σ−

2
. (18.5)

2.2 Time Evolution of the Interstice Strain

The equation of motion on each subnode is obtained from Newton’s second law

m±ü± = F̄± + f̄ ±, (18.6)

where f̄ ± are the internal forces due to the interstice stress. The internal forces divided
by the area, on which they act, yield the internal interstice stress σ .

∓ σ = 1
εyεz

f̄ ± = εx f ±, (18.7)

in analogy with the definition of external force densities. We assume the interstice to
be of zero mass, which is a good approximation for interstices that are much thinner
than the material cells (interstice width δx � εx ). Then the mass of each subnode is
equal to half the mass of the contiguous material cell; that is,

m± = 1
2
εxεyεzρ

±, (18.8)

where ρ± are the densities of the material cells to the right (+) and to the left (−) of
the interstice.

The interstice strain is given by the difference of the subnode displacement divided
by its equilibrium width δx .

ε̈ = ü+ − ü−

δx
= 2

δxεx

(
σ+

ρ+ + σ−

ρ− − σ

ρ+ − σ

ρ−

)
. (18.9)

We simplify this relation defining the reduced and average densities

1
ρred

= 1
2

(
1

ρ+ + 1
ρ−

)
ρav = 1

2
(ρ+ + ρ−), (18.10)

and the external stress

σ ext := 1
2
ρred

(
σ+

ρ+ + σ−

ρ−

)
= ρ−σ+ + ρ+σ−

2ρav
, (18.11)
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and obtain

ε̈ = 4
δxεxρred

(σ ext − σ). (18.12)

Note that in homogeneous media, the external stress is equal to the mean of the stresses
in the contiguous material cells. For inhomogeneous media, we define the external
stress differently, in order to obtain a driven damped harmonic oscillator relation for
the interstice strain as in the case of homogeneous media [Eq. (18.1)]. Interpreting
the external pressure as the negative external stress yields the following differential
equation for the time dependence of the interstice strain,

ε̈ = 4
δxεxρred

(
(1 − a)σ ext − K ε − ηε̇

)
. (18.13)

2.3 Rigid Interstice

We define as rigid an interstice whose strain is constant with time and thus does not
depend on the external stress. To fulfill this, we have to set the parameter a in Eq.
(18.13) to 1. A constant strain rate ε̇ is guaranteed by a zero elastic parameter K . If both
conditions are satisfied, the interstice is permanently rigid. In a nonlinear hysteretic
model (see Section 5), an interstice is not permanently rigid, but may be subject to state
transitions from, for example, viscoporoelastic to rigid. In this case, ε̇ is in general not
zero when the interstice becomes rigid. Then the parameter η in Eq. (18.13) is related
to the time τ needed by the interstice to become rigid by

η = δxεxρred

4τ
. (18.14)

2.4 Equation of Motion of the Interstice Mass Center

The displacement of the interstice mass center is obtained from the average of the
weighted displacement of the subnodes

umc = m+u+ + m−u−

m+ + m− = ρ+u+ + ρ−u−

2ρav
. (18.15)

Its acceleration is then calculated using Eq. (18.6),

ümc = σ+ − σ−

εxρav
. (18.16)

This is equivalent to the equation of motion for a completely linear material as used
for the simulation of linear wave propagation [4]. However, because the stresses in the
linear material cells are calculated from the displacements of the contiguous subnodes
(not of the mass center), the NCNL effects created in the interstice propagate through
the material.
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3. From 1-D to 2-D

In a 2-D model, we split the specimen into rectangular cells of linear elastic material
and rectangular NCNL interstices, which connect the linear material cells at their cor-
ners (see Figure 18.1a). The interstice is now represented by the four subnodes at its
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Fig. 18.1. (a): 1-D schematization of the nodes (black dots) and the force terms (springs) of four material
cells (gray areas) and the connecting interstice. (b): Locations where the elastic stresses in a material cell
are calculated. The mass of the cell is shared by the four contiguous subnodes.
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corners (displacement vectors �u++, �u−+, �u−−, and �u+−). Each subnode is also part of
one of the contiguous material cells. Therefore, the total force that acts on a subnode
is due to the interstice stress and the stress in the respective material cell.

3.1 External Forces

The components of the total external force on a subnode are given by the sum of all
stress components in the contiguous material cell that tear in the respective direction
multiplied by the area, on which they act. Figure 18.1b shows where the material cell
stresses are calculated. The external force densities on the four subnodes in terms of
the material cell stresses are
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3.2 Internal Forces

A way to express the internal forces on the subnodes is to divide the total internal force
on a subnode into three terms representing the contribution of the other subnodes (see
Figure 18.1a); that is,

�f (n) =
∑

k

�f (nk), n, k ∈ {++, −+, −−, +−}. (18.18)

Each of these terms can then be described by a tensorial spring. In [2], the tensors
describing the behavior of the springs are assumed to be diagonal. This means that the
differences in the displacement components in Cartesian coordinates are uncoupled;
that is, for example, a relative displacement in y of the (++) node with respect to the
(−+) node would move the (−+) node only in the y but not in the x direction. In
general, this cannot be true. The most general model therefore has to assume tensorial
springs.

Because the sum of the internal forces in the interstice must be equal to zero, we
obtain

f (nk) = − f (kn), n, k ∈ {++, −+, −−, +−} (18.19)

for the tensorial springs of the interstice. This means that in this model we have to con-
sider 6 (springs) times 4 (tensor components) times 3 [parameters of the viscoporoelas-
tic stress–strain relation, Eq. (18.1)], that is, 72 parameters for a complete description
of a 2-D viscoporoelastic interstice in the most general case. These parameters, how-
ever, are not all independent. In fact, because the interstice is described completely by
the four subnodes, its effect on the subnodes is described completely by 4 (subnodes)
times 2 (components), that is, 8 independent forces. In Cartesian coordinates, however,
a single subnode and also the displacement difference of two subnodes cannot be ex-
pressed independently of the other subnodes. It is therefore convenient to regroup the
subnode displacements into physically meaningful interstice deformations.
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3.3 Interstice Eigenstrains

In the 1-D model, the static interstice is completely described by the displacement of
the two subnodes. Therefore, apart from the displacement of the mass center, there is
only one independent variable: the interstice strain. In the 2-D model, however, we
have 4 subnodes with 2 independent displacement components each. Therefore, we
have 8 independent variables: 2 mass center displacement components, and 6 indepen-
dent strain components. We choose three of them to be the volumetric, deviatoric, and
shear eigenstrain of the interstice (see Section 4), calculated at the center of the inter-
stice. The other three strains are chosen such that the displacement difference between
two arbitrary subnodes can be expressed in a unambiguous way in terms of the inter-
stice strains. They can be interpreted as eigenstrain differences, that is, the change of
the eigenstrains if calculated at different locations in the interstice (see Appendix A.1),
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Hence, the displacement of each subnode can be expressed in terms of these 6 strains
and the displacement of the interstice’s mass center (see Appendix A.1). In order to
analyze the time dependence of these interstice strain components, we proceed as in
Section 2.2 for the 1-D case, and obtain equivalent relations

ε̈i = 16
(δx + δy)(εx + εy)ρred

(σ ext
i − σi )

(18.21)
¨̃εi = 16

(δx + δy)(εx + εy)ρred
(σ̃ ext

i − σ̃i ),

where i ∈ {V, D, S} indicates the eigenstrain and eigenstress components as defined
in Eq. (18.20) and Appendix A.2. A detailed derivation of these equations and the defi-
nitions of the external and internal stresses can be found in Appendix A.2. The inverse
relations are also derived, which permit us to express the total internal and total exter-
nal forces on a single subnode in terms of these internal and external stresses.
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3.4 Equation of Motion of the Interstice Mass Center in 2-D

The mass center displacement of the 2-D interstice is given by

�umc =
∑

n

m(n)�u(n)

m
=

∑

n

ρ(n)�u(n)

ρav
, n, ∈ {++, −+, −−, +−}. (18.22)

Hence, its acceleration in terms of external and internal force densities is

�̈umc =
∑

n

�F (n)

ρav
+

∑

n

�f (n)

ρav
, n, ∈ {++, −+, −−, +−}. (18.23)

The total sum of the internal forces on all subnodes must be equal to zero. Thus, the
interstice acceleration is given by the sum of the external force densities divided by
the average density of the contiguous material cells. The motion of the mass center is
completely independent of what happens in the interstice.

4. A 2-D Interstice Model

With Eqs. (18.21) we are able to compute the interstice strain dependence, if we know
the external and internal force densities. The external force densities are easily ob-
tained from the stresses in the surrounding linearly elastic material cells, whereas the
internal force densities depend on the assumptions of the physical properties of the
interstice that we introduce in our model. In this work, we assume the interstice stress–
strain relation of Eq. (18.1) [8,13]; that is, the internal interstice stresses depend on the
external stresses, the interstice strain, and strain rate. In the most general case, any in-
ternal force component of any subnode may depend on any component of the external
force on that subnode, and any component of displacement and displacement velocity
of the other subnodes relative to the considered subnode.

We assume that the interstice is orthotropic in its internal behavior. In this case
the eigenvectors of the stress–strain relation are the volumetric εV , deviatoric εD , and
shear εS strain, as defined in Eq. (18.20). These eigenvectors are independent of each
other; that is, in these coordinates the matrix parameters become diagonal. Initially
we assume that the eigenstrain differences ε̃V , ε̃D , and ε̃S as defined in Eq. (18.20)
are also independent of each other and independent of the eigenstrains. With these
assumptions, the number of independent parameters of the model is reduced to 18.
The viscoporoelastic relations for the internal stresses are then given, in analogy to the
1-D case, by

σi = aiσ
ext
i + Kiεi + ηi ε̇i σ̃i = ãi σ̃

ext
i + K̃i ε̃i + η̃i ˙̃εi , (18.24)

with i ∈ {V, D, S}. From Eq. (18.21) we obtain the differential equations for the time
dependence of the interstice strains

ε̈i = 16
(δx + δy)(εx + εy)ρred

(
(1 − ai )σ

ext
i − Kiεi − ηi ε̇i

)

¨̃εi = 16
(δx + δy)(εx + εy)ρred

(
(1 − ãi )σ̃

ext
i − K̃i ε̃i − η̃i ˙̃εi

)
.

(18.25)
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Note that for each eigenstrain we have obtained the relation of a driven damped har-
monic oscillator, as in the 1-D case for the interstice strain [Eq. (18.13)].

In our model we have assumed that the interstice is much thinner than the material
cells. Therefore, in a good approximation, the interstice eigenstrain differences ε̃V , ε̃D ,
and ε̃S are zero (see Appendix A.1). This condition is realized if we impose the con-
dition for a rigid interstice in 1-D (Section 2.3) on the internal eigenstress differences
and set the interstice strain differences and its first derivative to zero at the beginning of
the simulations. For the interstice parameters, this means imposing the values ãi = 1
and K̃i = 0 for all i ∈ {V, D, S}. Because the rigid condition is imposed permanently,
the damping parameters η̃V , η̃D , and η̃S have no influence on the interstice behavior
and can be eliminated. Thus, the behavior of a 2-D viscoporoelastic interstice is de-
scribed by nine independent parameters. If state transitions are allowed, the damping
parameter of an interstice that becomes rigid within a time τ , is obtained, analogously
to the 1-D case, by

ηi = (δx + δy)(εx + εy)ρred

16τ
. (18.26)

5. A Two-State Hysteretic Protocol

Nonclassical Nonlinear (NCNL) effects, such as hysteresis, end point memory, slow
dynamics effects, and so on, may be introduced into the interstice behavior by defining
a minimum of two different states for the interstices (here, we choose the simplest case
of two different states [9,14]). The nonlinearity of the interstice emerges as a result of
phase transitions between the two states. In the 1-D model, the external stress on the
interstice has been chosen as driving parameter for the state transitions. Other possible
choices are the internal stress or the interstice strain.

For distinction we call the two states “open” and “closed” [8]. The names suggest
the necessary conditions for the driving parameter being that the interstice is in a cer-
tain state. The closed state is the state that is reached if the external stress falls under
a certain “closure stress” σ c (negative stress corresponds to compression of the inter-
stice, therefore closed state). The open state is reached if the stress rises over a certain
“opening stress” σ o (tension of the interstice). Hysteresis occurs, if the opening stress
is larger than the closure stress. In this case, if the external stress σ ext on the interstice
is larger than σ o, the interstice is always open. If σ ext < σ c the interstice is always
closed. If the external stress lies between opening and closure stress σ c < σ ext < σ o,
the state of the interstice is determined by the history of the external stress; that is, it
remains in the state that has most recently been imposed. Figure 18.2a shows a schema-
tization of the state transition protocol. The opening and closure stresses can be iden-
tified as coordinates in the so-called PM-space (Preisach–Mayergoyz space) [8]. In
our case of a viscoporoelastic interstice, the two coordinates of the PM-space are the
opening and the closure stress, defining the state transitions of the interstice (see Fig-
ure 18.2b). In a NCNL elastic material, there are a large number of these hysteretic
interstices, whose opening and closure stresses are statistically distributed over the
PM-space. Relaxation phenomena, such as creep and the so called “slow dynamics,”
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Fig. 18.2. (a): Illustration of the state transition protocol. Dashed arrows indicate random transitions that
may occur at any external stress σ ext with σ c < σ ext < σ o. (b): Sample distribution of open and closed
states in a PM-space. The elements that have a closure stress σ c > σ ext are closed, the elements with
opening stress σ o < σ ext are open. The state of the elements with σ c < σ ext < σ o depends on the history
of σ ext .

are taken into account if we permit thermal state transitions [8]. These thermal transi-
tions occur randomly if the external stress lies between opening and closure stress.

Because in contrast to 1-D, in 2-D there is more than one independent stress–strain
relation (three in our model), the choice of an appropriate driving parameter and its
associated state transitions is not straightforward. An intuitive choice is to assume that
the state transitions of the eigenstress–eigenstrain relations [Eq. (18.24)] are indepen-
dent of each other and driven by the respective eigenstress. For example, if the exter-
nal volumetric stress σ ext

V rises over a certain volumetric opening stress σ o
V , only the

parameters of the interstice associated to the volumetric stress–strain behavior (i.e.,
aV , KV , and ηV ) change. The deviatoric and shear parameters are not affected. An-
other possibility is to assume that the state transitions of every eigenstress–eigenstrain
relation are strictly connected. In this case, changes in the elastic behavior of the in-
terstice under volumetric, deviatoric, and shear stresses are driven by the same driving
parameter (e.g., σV ) and occur therefore always simultaneously. The advantage of this
description is the great reduction of independent parameters to only three. These as-
sumptions describe a very special case of NCNL elasticity, but facilitate the analysis of
the model predictions. The simulations presented in the following section are carried
out using this simplified hysteretic protocol.

Detailed experimental investigations have to show whether one of these assumptions
correctly describes the behavior of NCNL materials. Most probably, neither of them
will be correct for anisotropic media. In isotropic media, however, the analysis of a
potential coupling between applied stresses and stress–strain relations of other eigen-
states (e.g., a change in the shear modulus due to a volumetric stress) may be of great
relevance for the analysis and characterization of different defect types.

In the following, we define the closed state as “rigid” in the sense of Section 4.
This choice is arbitrary and corresponds to the simplest case of a hysteretic protocol.
Other choices may be two elastic states with different parameters [15], two rigid states
with different strains; that is, strain jumps occur at the state transitions [16]. Broken
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states may be introduced easily in this model [8]. In the 2-D case, however, we have to
distinguish if the interstice behaves as a broken interstice with respect to volumetric,
deviatoric, shear, or any kind of external stress.

6. Numerical Simulations

In order to illustrate the model, we perform a set of 2-D simulations on a linearly
elastic material specimen with an NCNL inclusion. As material properties we use the
values of aluminum (Lamé constants λ = 58.5 GPa, µ = 26.0 GPa, material density
ρ = 2700 kg/m3). The specimen size is 12 mm in x and 6 mm in y. A plane wave
is injected in the x-direction at the border of the specimen. In order to account for a
perfectly plane incident wave, we implement periodic boundary conditions in y; that is,
the simulated specimen is a section of a material slab, which is infinitely extended in y
where in the simulated section is periodically repeated. The boundary condition at the
incidence side is given by the forcing that produces the injected wave. The boundary at
the opposite side is free (zero stress). The specimen is discretized using a spatial grid
of square cells with a side length of εx = εy = 0.02 mm. The temporal discretization
step is τ = 2.8 ns, which fulfills the condition of numerical stability ε

τ > c, where c is
the maximum wave propagation velocity of the materials present in the simulation.

The linearly elastic part of the specimen is simulated by imposing rigid contact to
the interstices between the material grains (identified with the grid cells). Approxi-
mately in the center of the specimen (centered at x = 5.5 mm and y = 3.0 mm), we
include a squared zone of NCNL elasticity (side length 3 mm = 150 grid cells), where
state transitions of the interstices are allowed from rigid to elastic and back again. The
dimensions of the interstices are δx = δy = 10−5 m. The contact quality parameter of
the elastic state is ai = 0.95, i ∈ {V, D, S}, the elastic moduli Ki 0.01 times the elas-
tic moduli of the material grains, and the damping parameters ηi = 0.95 Pa s, which
corresponds to a relaxation time of 2τ [see Eq. (18.26)]. These parameters yield strong
nonlinear behavior without causing numerical instability problems during the simula-
tions. The interstice opening and closure are driven by the external volumetric stress.
The state transition values are distributed homogeneously in a PM-space of minimum
stress σmin = 10 kPa and maximum stress σmax = 10 kPa. This corresponds to about
68% coverage of the PM-space at maximum amplitude (5.5µm) in the simulations
described in the following.

In the first simulation we inject a plane sinusoidal wave of frequency f = 0.3 MHz
and displacement amplitude A = 5 µm in x . The displacement as a function of time is
recorded at different locations at the right boundary (at y = 3.0 mm, 1.5 mm, 1.0 mm,
and 0.6 mm from the boundary) over 30,000 time steps (corresponding to 84 µs). The
Fourier transform of the signal is compared to the linear case (all interstices in the
specimen fixed to the rigid state), in which the elastic wave propagates unaffectedly.
Figure 18.3 shows the differences between the displacement spectrum of the specimen
with the nonlinear inclusion and the spectrum without inclusion, normalized by the
longitudinal displacement spectrum of the specimen without inclusion. In the longitu-
dinal spectrum (left graph of Figure 18.3), the amplitude of the fundamental frequency
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Fig. 18.3. Results of the Fast Fourier Transform (FFT) of the displacement time signal recorded at
y = 3.0 mm (receiver 1), 1.5 mm (2), 1.0 mm (3), and 0.6 mm (4). The difference between the spectrum
obtained from the specimen with NCNL inclusion and the linear specimen without inclusion are normal-
ized by the longitudinal linear spectrum. The left graph shows the comparison for the longitudinal, the
right graph for the shear displacement component.

is reduced with respect to the linear specimen. This is partially due to reflection of the
wave from the defect, and partially due to energy conversion from the fundamental
frequency to higher harmonics, which can be clearly observed in the spectrum. In the
inset, the peaks of the second harmonic are shown more in detail.

At the central receiver (at y = 3.0 mm), the shear displacement is much smaller than
at the other receivers (right graph of Figure 18.3). This is due to the geometric symme-
try of the experiment. In a deterministic experiment, the symmetry should elimininate
completely the shear displacement component along the symmetry axis. However, in
the NCNL inclusion, the rigid and elastic states are distributed statistically, causing a
slight asymmetry. In material characterization, such symmetries can be of great impor-
tance, because they it may hide NCNL effects even if they are present in the material.

In order to analyze the dependence of the creation of higher harmonics on the am-
plitude of the incident wave, we repeated the simulation for different excitation am-
plitudes A (from 0.5 µm to 5.5 µm in steps of 0.5 µm). The displacement is recorded
at y = 1.0 mm, because there the symmetry effects are minimized. The time depen-
dence of the longitudinal and the shear wave component are shown in Figures 18.4a
and b, respectively. The longitudinal wave is dominated by the fundamental frequency
component. Hence, its shape seems to be always sinusoidal. In the shear wave, the con-
tribution of higher harmonics is much stronger compared to the fundamental frequency
component, causing a visibly distorted wave form. The Fourier transforms of the sig-
nal are shown in Figures 18.4c and d. The amplitude of the higher harmonics increases
with increasing A. From the spectra it can be seen that its increase is much larger than
the increase of the amplitude of the fundamental component, which is almost linear
with A. This is due to the fact that a higher amplitude causes state transitions of more
interstices in the PM-space. As a consequence, the nonlinearity increases.

Figure 18.5 shows the amplitudes of the second and third harmonics as a function
of the amplitude of the fundamental frequency of the transmitted wave in a double-
logarithmic plot. The fitted lines show that the dependence follows a power law with
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an exponent between 2 and 3. The lines are almost parallel; that is, the second and
third harmonic follow the same power law, which is a nonclassical effect.

Finally, in order to visualize the 2-D effects of the simulations, we injected a tran-
sient Gaussian pulse of displacement amplitude A = 5 µm in x and full time width
at half maximum 	t = 84 ns. Figure 18.6 shows the displacement contour of the
specimen at different time steps for a square and a circular (diameter 3 mm) NCNL
inclusion. The wave is slowed down within the NCNL zone, indicating a softening of
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Fig. 18.6. Displacement amplitude in the specimen at different time steps during the passage of a Gaussian
pulse. The maximum amplitude is represented by the white color.

the material. In the reflected pulse, two maxima can be distinguished clearly. This in-
dicates a mode conversion from longitudinal to shear wave components, which occurs
also in the case of a circular inclusion. This mode conversion is due to the difference
between the effective modulus of the linear specimen and the inclusion (indicated by
the lower pulse propagation velocity in the inclusion). Because the interstices in the
NCNL zone are in different states (depending on its opening and closure stresses), the
inclusion is not homogeneous. This causes multiple reflections within the inclusion
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and is responsible for the grainy shape of the pulse within the inclusion and of the
transmitted and reflected pulses.

7. Conclusions

The approach presented in this chapter gives a basic idea of how to generally de-
velop a 2-D expansion of the 1-D interstice model proposed in [2]. The utilization
of eigenstress–eigenstrain constitutive relations allows for an easy implementation of
the phenomenology of the 1-D model in a 2-D or 3-D context under conservation of
the material symmetries. Here, the approach is presented for orthotropic materials,
because the derivation of eigenstress–eigenstrain relations is straightforward and the
expressions are simple. Analogous relations can be derived for any kind of anisotropic
materials.

The case of isotropic materials is not as simple as it seems. In 2-D there are only two,
in 3-D only three different eigenvalues of the constitutive equation. The corresponding
eigenvectors (eigenstrains and eigenstresses) are degenerate (e.g., in 2-D, the devia-
toric and the shear strain are degenerate). Hence, a change in the shear stress–strain
relation (that implies a change in the shear modulus) should also change the deviatoric
stress–strain relation. This coupling between degenerate eigenstates has not yet been
included in the model.

Moreover, it is not yet clear, whether the stress–strain relations associated with dif-
ferent eigenvalues are independent of each other. In Section 5 we presented two differ-
ent approaches: one with independent eigenstress–eigenstrain relations and one with
fully coupled relations. Experimental investigations have to be carried out in order to
examine possible coupling. If present, such a coupling may also cause a change of the
eigenstates. It then has to be clarified how to interpret the stress history associated with
the eigenstresses.

A similar procedure for the development of a 2-D model for NCNL elasticity is pre-
sented in [16]. The fundamental difference between the approaches is the use of two
rigid states with a constant strain jump at state transitions compared to one elastic and
one rigid state in the present model. Such a protocol yields a symmetric hysteresis in
the stress–strain protocol, which implies the generation of only odd harmonics. How-
ever, material conditioning is not considered for brevity. In fact, in order to account
for material conditioning in a simple PM space model, at least two states of different
elastic behavior have to be permitted. Quasistatic and dynamic experimental investi-
gations have to show which approach is best suited for which kind of materials. A
possible intermediate approach would be a PM protocol with two states of different
elastic behavior (e.g., one rigid and one elastic state), including strain jumps at the
state transitions.

At present, damping is accounted for by a term proportional to the displacement
velocity. Such a term with a constant damping factor yields a quality factor that de-
creases inversely proportional to the wave frequency. In most materials, however, a
quality factor almost constant with frequency has been observed over wide frequency
ranges [17]. The implementation of viscoelasticity proposed by Robertsson et al. [18]
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is therefore preferable. Bou Matar et al. [19] have implemented this viscoelasticity
approach in their model for the NCNL elasticity simulation. They also use, as well
as de Van Den Abeele et al. [16], a continuous PM-space implementation rather than
a statistic one. The continuous PM-space overcomes the shortcomings due to lim-
ited statistics if only a finite number of HE are used. Such an approach is partic-
ularly useful if the zone of NCNL elasticity is very localized. It allows us to put
the effects of a whole PM-space with an infinite number of elements into a single
interstice.

The most urgent future work should aim at an extensive experimental study of
NCNL materials with set-ups that are particularly designed for the analysis of 2-D
effects. In collaboration between the groups that developed the cited models, the re-
spective advantages will be combined, and the models will be adapted to simulations
of particular applications.
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A. Appendix

A.1 Interstice Strains

In this appendix we illustrate the definition of interstice strains in Section 3.3. We start
from the Cartesian strain components, which are defined as

εxx = ∂ux

∂x
εyy = ∂uy

∂y
εxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
. (A.1)

We have two possibilities to calculate the diagonal components of the strain tensor
from the subnode displacements,

ε+
xx = u++

x − u−+
x

δx
and ε−

xx = u+−
x − u−−

x

δx
, (A.2)

ε+
yy = u++

x − u+−
x

δy
and ε−

yy = u−+
x − u−−

x

δy
. (A.3)
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The diagonal strain tensor components at the center of the interstice are given by the
mean of these two strains,

εxx = u++
x − u−+

x + u+−
x − u−−

x

2δx
εyy = u++

y − u+−
y + u−+

y − u−−
y

2δy
. (A.4)

The differences between the strains are

ε̃xx = −u++
x + u−+

x + u+−
x − u−−

x

2δx
ε̃yy = −u++

y + u+−
y + u−+

y − u−−
y

2δy
. (A.5)

These strains tend to zero for infinitesimally thin interstices, where the approximation
of uniform stress throughout the interstice is valid.

The volumetric and deviatoric eigenstrains of the interstice are calculated from these
strain components as follows.

εV = δxεxx + δyεyy

δx + δy
εD = δxεxx − δyεyy

δx + δy
. (A.6)

We also define the volumetric and deviatoric strain differences:

ε̃V = δx ε̃xx + δy ε̃yy

δx + δy
ε̃D = δx ε̃xx − δy ε̃yy

δx + δy
. (A.7)

From these equations we obtain the interstice strains as defined in Eq. (18.20).
The shear strain in terms of the displacement of the subnodes states

εS = u++
x + u−+

x − u−−
x − u+−

x + u++
y − u−+

y − u−−
y + u+−

y

2(δx + δy)
. (A.8)

The shear strain difference

ε̃S = u++
x + u−+

x − u−−
x − u+−

x − u++
y + u−+

y + u−−
y − u+−

y

2(δx + δy)
(A.9)

corresponds to

εxy = 1
2

(
∂ux

∂y
− ∂uy

∂x

)
, (A.10)

which in an infinitesimal interstice becomes zero.
Inversion of these strain relations yields well-defined expressions for the subnode

displacement components
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u++
x = u(mc)

x + δx +δy
8ρav

[ + (ρ−+ + ρ−−)εV − (ρ−+ + ρ+−)ε̃V + (ρ−+ + ρ−−)εD

− (ρ−+ + ρ+−)ε̃D + (ρ−− + ρ+−)εS + (ρ−− + ρ+−)ε̃S
]

u−+
x = u(mc)

x + δx +δy
8ρav

[ − (ρ++ + ρ+−)εV + (ρ++ + ρ−−)ε̃V − (ρ++ + ρ+−)εD

+ (ρ++ + ρ−−)ε̃D + (ρ−− + ρ+−)εS + (ρ−− + ρ+−)ε̃S
]

u−−
x = u(mc)

x + δx +δy
8ρav

[ − (ρ++ + ρ+−)εV − (ρ−+ + ρ+−)ε̃V − (ρ++ + ρ+−)εD

− (ρ−+ + ρ+−)ε̃D − (ρ++ + ρ−+)εS − (ρ++ + ρ−+)ε̃S
]

u+−
x = u(mc)

x + δx +δy
8ρav

[ + (ρ−+ + ρ−−)εV + (ρ++ + ρ−−)ε̃V + (ρ−+ + ρ−−)εD

+ (ρ++ + ρ−−)ε̃D − (ρ++ + ρ−+)εS − (ρ++ + ρ−+)ε̃S
]

u++
y = u(mc)

y + δx +δy
8ρav

[ + (ρ−− + ρ+−)εV − (ρ−+ + ρ+−)ε̃V − (ρ−− + ρ+−)εD

+ (ρ−+ + ρ+−)ε̃D + (ρ−+ + ρ−−)εS − (ρ−+ + ρ−−)ε̃S
]

u−+
y = u(mc)

y + δx +δy
8ρav

[ + (ρ−− + ρ+−)εV + (ρ++ + ρ−−)ε̃V − (ρ−− + ρ+−)εD

− (ρ++ + ρ−−)ε̃D − (ρ++ + ρ+−)εS + (ρ++ + ρ+−)ε̃S
]
,

u−−
y = u(mc)

y + δx +δy
8ρav

[ − (ρ++ + ρ−+)εV − (ρ−+ + ρ+−)ε̃V + (ρ++ + ρ−+)εD

+ (ρ−+ + ρ+−)ε̃D − (ρ++ + ρ+−)εS + (ρ++ + ρ+−)ε̃S
]

u+−
y = u(mc)

y + δx +δy
8ρav

[ − (ρ++ + ρ−+)εV + (ρ++ + ρ−−)ε̃V + (ρ++ + ρ−+)εD

− (ρ++ + ρ−−)ε̃D + (ρ−+ + ρ−−)εS − (ρ−+ + ρ−−)ε̃S
]
,

(A.11)

where �u(mc) is the mass center displacement of the interstice, given by

4ρavu(mc)
x = ρ1u++

x + ρ2u−+
x + ρ3u−−

x + ρ4u+−
x

4ρavu(mc)
y = ρ1u++

y + ρ2u−+
y + ρ3u−−

y + ρ4u+−
y .

(A.12)

A.2 Interstice Strain Time Dependence in 2-D
A.2.1 Internal and External Stresses

In Section 3.3 and Appendix A.1 we have defined six independent interstice strains. We
now derive their time dependence in a manner analogous to the 1-D case (Section 2.2).
Then, we apply Newton’s second law to the second time derivative of Eq. (18.20) in
order to express the subnode accelerations in terms of the applied forces. We call �F (n)

the external force density due to the stresses in the material cell, which is represented
by the subnode (n) (see Section 3.1), and �f (n) the total internal force density on the
subnode (n) due to the viscoporoelastic interstice. The mass of the subnode (n) is
equal to a quarter of the mass of the material cell contiguous to (n),

m(n) = εx
2

εy
2 εzρ

(n), n, ∈ {++, −+, −−, +−}. (A.13)

The acceleration of the subnodes is then given by

�̈u(n) = 4
�F (n) + �f (n)

ρ(n)
, n, ∈ {++, −+, −−, +−}. (A.14)
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Inserting these expressions into the second time derivative of Eq. (18.20) yields the
strain accelerations in terms of external and internal force densities. The combinations
of terms containing internal force density components correspond to the internal eigen-
stresses and eigenstress differences with analogous definitions as for the eigenstrains
and eigenstrain differences in Appendix A.1. Thus, we obtain six independent internal
stresses in place of the single internal stress in the 1-D case.

σV =εx + εy

8
ρred

(
− f ++

x

ρ++ + f −+
x

ρ−+ + f −−
x

ρ−− − f +−
x

ρ+− − f ++
y

ρ++ − f −+
y

ρ−+ + f −−
y

ρ−− + f +−
y

ρ+−

)

σ̃V =εx + εy

8
ρred

(
+ f ++

x

ρ++ − f −+
x

ρ−+ + f −−
x

ρ−− − f +−
x

ρ+− + f ++
y

ρ++ − f −+
y

ρ−+ + f −−
y

ρ−− − f +−
y

ρ+−

)

(A.15)

σD =εx + εy

8
ρred

(
− f ++

x

ρ++ + f −+
x

ρ−+ + f −−
x

ρ−− − f +−
x

ρ+− + f ++
y

ρ++ + f −+
y

ρ−+ − f −−
y

ρ−− − f +−
y

ρ+−

)

σ̃D =εx + εy

8
ρred

(
+ f ++

x

ρ++ − f −+
x

ρ−+ + f −−
x

ρ−− − f +−
x

ρ+− − f ++
y

ρ++ + f −+
y

ρ−+ − f −−
y

ρ−− + f +−
y

ρ+−

)

(A.16)

σS =εx + εy

8
ρred

(
− f ++

x

ρ++ − f −+
x

ρ−+ + f −−
x

ρ−− + f +−
x

ρ+− − f ++
y

ρ++ + f −+
y

ρ−+ + f −−
y

ρ−− − f +−
y

ρ+−

)

σ̃S =εx + εy

8
ρred

(
− f ++

x

ρ++ − f −+
x

ρ−+ + f −−
x

ρ−− + f +−
x

ρ+− + f ++
y

ρ++ − f −+
y

ρ−+ − f −−
y

ρ−− + f +−
y

ρ+−

)
.

(A.17)

For a better understanding of the constant factor and the signs in these equations,
we derive the volumetric internal stress at the center of the interstice for homogeneous
material (constant ρ) and quadratic material cells (εx = εy). The σxx component of
the internal stress tensor is obtained by the sum of all internal forces that act in the
x-direction divided by the total area on which they act. The sign of the force terms
is given by the direction of the normal vector of the area. If it points in the positive
x-direction, the x-component of the force causes a positive contribution to σxx . The
normal vectors of the area on which internal forces act are always directed towards the
interstice. Hence,

σxx = ε3(− f ++
x + f −+

x + f −−
x − f +−

x )

2ε2 . (A.18)

Analogously the σyy component states

σyy = ε3(− f ++
y − f −+

y + f −−
y + f +−

y )

2ε2 . (A.19)
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The volumetric stress is then given by

σV = σxx + σyy

2
, (A.20)

which is in terms of the internal force densities,

σV = ε+ε
8 (− f ++

x + f −+
x + f −−

x − f +−
x − f ++

y − f −+
y + f −−

y + f +−
y ). (A.21)

In analogy to the 1-D case we define the external stresses in the same way. The expres-
sions in terms of external force densities have the same form as Eqs. (A.15)– (A.17),
but with opposite signs in the force terms and after replacing the internal force density
by the external force density on the same subnode. With these stresses, we obtain Eqs.
(18.21).

Note that external “eigenstresses” on the interstice do not correspond to the eigen-
stresses in the material cells. It is therefore erroneous to identify the external volumet-
ric stress on the interstice (i.e., the part of the external stress that provokes a volumetric
deformation of the interstice) with the mean of the volumetric stresses in the material
cell. Quite the contrary, if in the material cells only volumetric stresses are present,
but they differ between the cells that are in contact with the interstice, in general also
deviatoric and shear deformations of the interstice occur due to these stresses.

A.2.2 Inverse Relations

In the same way as the subnode displacement has been expressed in terms of the mass
center displacement and the interstice strains, we can express the total internal and
external force densities on a subnode in terms of the derived stress relations. For the
internal force densities we obtain, for example,

f ++
x

ρ++ = 1
2(εx + εy)ρred

[
+ ρ−+ + ρ−−

ρav
σV − ρ−+ + ρ+−

ρav
σ̃V + ρ−+ + ρ−−

ρav
σD

− ρ−+ + ρ+−

ρav
σ̃D + ρ−− + ρ+−

ρav
σS + ρ−− + ρ+−

ρav
σ̃S

]
.

(A.22)

The relations for the other internal force density components are omitted for brevity.
They may be easily derived from Eq. (A.11) by substituting strains by stresses and
changing the constant factor in the same way as has to be done to obtain Eq. (A.22)
from the expression for u++

x in Eq. (A.11).
The expressions for the external force densities have the same form, but with op-

posite signs in the stress terms and an additive term of the form (
�Fmc
i

ρav
)(i ∈ {x, y}),

where
Fmc = F++ + F−+ + F−− + F+− (A.23)

is the sum of the external force densities which is equal to the total force density on
the mass center of the interstice (see Section 3.4), in analogy with the terms u(mc)

i in
Eq. (A.11).
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Abstract
In this chapter, theoretical analysis and experimental results on nonlinear acoustic wave inter-
action at the interface between solid surfaces in partial contact are presented. In the first section,
the nonlinear macroscopic dynamic behavior of the interface is studied on the basis of three dis-
tinct mechanisms, controlling the interaction of asperities in contact at the microscopic level.
They include Hertzian nonlinearity of two spheres in contact in response to the normal force
applied to them, the nonlinear dynamics of two spheres in contact subjected to an oscillating
tangential force, and the effect of adhesion forces of Van der Waals type. In each of the afore-
mentioned cases, the solution of the nonlinear scattering problem is presented and the nonlinear
responses of the interface to longitudinal and shear waves are calculated. In the latter two cases
the results predict a nonclassical nonlinear behavior of the higher harmonics caused by elastic
hysteresis and end point memory. Phenomenology and experimental verification of nonlinear
dynamics of an interface with intermittent contact are considered in the second section. In this
case, the two basic mechanisms of contact nonlinearity that are analyzed are associated with sur-
face clapping and friction force nonlinearity. Nonclassical features of higher harmonic spectra
in both cases are demonstrated by calculations and experimentally verified. A variety of mixed
nonlinear signatures, which we propose for application to nonlinear nondestructive evaluation
(NDE), is observed in realistic materials with flaws.

Keywords: Adhesion, clapping, contact, friction, higher harmonics, hysteresis, interface,
nondestructive evaluation, nonlinearity

1. Introduction

In dealing with the characterization of bond quality, a major problem that the NDE
community is confronted with is the similarity of the acoustic response of partial and
kissing bonds. A possible criterion to distinguish the two types of bond was proposed
by Nagy,1 who suggested using the ratio between the interface reflection coefficients
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for shear and longitudinal waves. In fact, for an interface between identical materials,
this ratio is close to one for kissing bonds, and it approaches two if the bond is partial.
Nagy’s criterion is useful when the effect of the interface imperfections on the linear
acoustic response of the interface itself is easily measurable.

On the contrary, the quality of a bond between materials with very dissimilar
acoustic properties is very difficult to assess. Equally difficult is the assessment of
the interface integrity when the closure of a kissing bond makes such an interface be-
tween identical materials nearly transparent to an inspecting wave. Another example
in which linear measurements may fail to detect and identify the nature of a defect
appears when a partially closed crack, possibly of small dimensions, is surrounded by
a medium with coarse microstructure. In this case, in fact, the linear response of the
crack may be hidden by the incoherent field scattered by the microstructure, or may be
confused with coherent signals scattered by surrounding geometrical irregularities of
the complex structure of the system.

To overcome such problems, researchers have lately focused their efforts on exploit-
ing nonlinear phenomena arising from the interaction of ultrasonic waves with imper-
fect interfaces, and, in particular, with interfaces between rough surfaces in contact.
The interest in the latter system stems from their role as prototypical models of real
kissing bonds. It has been experimentally shown that the spectrum of a wave scattered
by such a discontinuity is characterized by higher harmonic components and other fea-
tures that may be considered as the fingerprints of cracklike discontinuities. Nonlinear
scattering phenomena, therefore, appear to offer new tools for inspecting materials and
engineering components in search of cracks.2–7

In spite of the great wealth of laboratory results, the theoretical understanding of
the mechanisms responsible for the generation of nonlinear effects has lagged behind
the progress marked on the experimental front. In this chapter, a review of some re-
cent results concerning the nonlinear acoustic properties of rough surfaces in contact
is presented. The subsequent material presented is divided in two main sections. The
first one considers the phenomena involving an interface between two rough surfaces
in constant partial contact; that is to say, there are always portions of the surfaces
in contact with each other. For this to happen, the amplitude of the total acoustic
field to which the interface is subject is assumed to be sufficiently small compared
to the roughness of the two surfaces in contact. Thus, perturbation approaches may
be adopted to treat the scattering phenomena of interest. Micromechanical models of
the characteristic dynamics of these systems are also presented. They stem from well-
known results developed in the field of contact mechanics, the validity of which has
been extensively confirmed by independent experiments. The second part deals with
phenomena that appear as the amplitude of the external excitation increases to the point
that the stresses generated at the interface by the total field overcome the compressive
stress field, if any, which keeps the interface partially closed. The detailed mathemat-
ical description of such nonlinear vibrations presents a conspicuous challenge that is
still waiting for a satisfactory solution. In this chapter, therefore, a phenomenological
treatment is followed, which provides an intuitive framework within which the pre-
sented experimental observations are considered.



19 Nonclassical Nonlinear Dynamics of Interface 311

2. Nonlinear Scattering by Interfaces: Permanent Contact

In the framework of the spring model the macroscopic mechanical properties of an
interface and, among these, its nonlinearity, are accounted for by suitable distributions
of normal and tangential springs having stiffness constants KN and KT . The stiffness
constants link the relevant components of the total stress field, σ33 and σ31, to the com-
ponents of the extra-opening displacement of the interface, �u1 and �u3, as follows:8

σ33(x3 = 0+) = KN (�u3)�u3, (19.1)

σ31(x3 = 0+) = KT (�u1, �u3)�u1. (19.2)

In Eqs. (19.1) and (19.2), the interface is assumed to lie in the plane x3 = 0, and
the stiffness constants KN and KT to be functions of the variation of the interface
opening displacement ��u = (�u1, �u3). Such dependence must be derived from
micromechanical models of asperities in contact.

In the following, three possible macroscopic dynamic behaviors are investigated,
which aim at describing the nonlinear macromechanics of a kissing bond. The first
mechanism is described by the Hertz law, which relates the relative displacement be-
tween the centers of two spheres in contact with the normal force applied to them.8 The
second mechanism concerns the dynamics of two spheres in contact, which are subject
to a tangential oscillating force.8 Finally, the third mechanism includes the effect of
adhesion forces of the Van der Waals type.9 In each of the aforementioned cases, the
solution of the scattering problem is presented, along with some details concerning the
adopted methodology.

2.1 Elastic Interface

The normal stiffness KN of an interface formed by two rough elastic surfaces in con-
tact is given by8

KN = n
〈

E
1 − ν2

〉 〈
R1/2

〉 δ∫

0

(δ − z)1/2 ϕ(z; N )dz. (19.3)

In Eq. (19.3), n is the number of contacts per unit area, E and ν are the Young mod-
ulus and the Poisson ratio of the material, respectively, R is the radius of curvature of
the asperities, and ϕ is the height distribution of the asperities of the composite sur-
face. The latter is defined by a linear combination of the profiles of the two surfaces,
which maps the actual contacts of the interface onto the asperities of the composite
surface. Following Brown and Scholz,11 this function is properly modeled by an in-
verted chi-squared distribution that depends on an integer parameter, N ≥ 2, known
as the “number of degrees of freedom.” The integration variable z is defined by the
transformation z = Zo − z′, where Zo is the coordinate of the highest asperities of the
composite surface, and z′ is the actual coordinate of the asperity measured from the
surface mean plane. Finally, δ is the relative approach between the mean planes of the
rough surfaces; it is null when no pressure is applied to the interface.
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The nonlinear nature of the dependence of KN on the relative approach δ can be
accounted for by considering the expansion of KN in powers of the variation �δ in
which only the first-order term is retained,

KN (δ + �δ) = KN (δ) + ∂KN

∂ δ
�δ = KN ,0 + KN ,1�δ. (19.4)

In Eq. (19.4), the constant KN ,0 = KN (δ) can be evaluated by means of Eq. (19.3),
and KN ,1 is given by

KN ,1 = ∂KN

∂ δ
= n

2

〈
E

1 − ν2

〉 〈
R1/2

〉 δ∫

0

(δ − z)−1/2ϕ(z; N )dz. (19.5)

The boundary conditions that control the scattering of a longitudinal plane wave at
normal incidence on a interface with nonlinear stiffness can be conveniently cast in
nondimensional form as follows.

∂U+

∂ X
= K̄N ,0

κ2 (�U − εN �U 2), (19.6a)

∂U+

∂ X
= ∂U−

∂ X
. (19.6b)

The superscripts + and − refer to the half-spaces for which the X -coordinate is pos-
itive or negative, respectively. To obtain these equations, the particle displacement is
normalized with respect to the amplitude of the incident wave, Ain, u = Ain U . Sim-
ilarly, new nondimensional space and time variables are introduced by means of the
following definitions: X = kT x , where kT is the wavenumber of the shear wave, and
τ = ωt , where ω is the angular frequency of the incident wave. The normalized stiff-
ness is defined by K̄N ,0 = KN ,0

/
ZT ω, where ZT is the shear acoustic impedance of

the medium, and the nonlinear parameter εN = Ain KN ,1
/

KN ,0. Except for interfaces
that are nearly open, for which KN approaches 0, εN is always much smaller than 1,
and decreases as the interface stiffens. Therefore, a perturbation approach to find the
solution of the normalized boundary value problem can be employed.

The solutions of the zeroth-order system describe waves with the same angular fre-
quency as the incident wave, and complex amplitudes that are proportional to the well-
known complex reflection R and transmission T coefficients for an imperfect linear
interface.8 The solutions of the first-order system include a term that is proportional to
exp( j 2τ), and their complex amplitude is given by

A(2ω) = −εN

4
j K̄N ,0

κ

1 − j K̄N ,0
κ

(T − 1 + R)2. (19.7)

Figure 19.1 illustrates the dependence of the second harmonic amplitude A(2ω) on
the normalized interfacial stiffness. The interface is formed by two steel rough sur-
faces with parameters given in Table 19.1, where M = 2

3 n
〈
E

/(
1 − ν2)〉 〈

R1/2〉. As
expected, after reaching a maximum value in the neighborhood of K̄N ,0 = 1, the
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Fig. 19.1. Amplitude of the second harmonic components, A(2 ω), versus the normalized interfacial stiff-
ness for the two interfaces characterized by the parameter of Table 19.1.

Table 19.1. Statistical parameters of the interfaces

Roughness (µm) M (GPa/(µm3/2)) Degrees of Freedom

Interface 1 0.68 5.4 3
Interface 2 0.23 76.8 5

nonlinear response of the interface is drastically reduced as the interface becomes
stiffer. For the interface with smaller roughness, A(2 ω) reaches values that are only
30 dB below that of the incident wave.

The tangential stiffness of two rough surfaces held together by an external pressure
can be derived using the model by Mindlin and Deresiewicz8 for two elastic spheres
in contact and subjected to an oscillating tangential force, Ftan. This model describes
a hysteretic loop, the origin of which rests in the relative partial slipping of the con-
tacting spheres. Within the framework of the Greenwood and Williamson approach,
the normalized nonlinear boundary conditions enforced at the interface when a shear
wave impinges upon it at normal incidence are

∂U+

∂ X3
= K̄T

[
�U − εT

2

[
sgn

(
∂�U
∂τ

)
(�U 2 − �U 2

max) + �U �Umax

]]
, (19.8a)

∂U+

∂ X3
= ∂U−

∂ X3
. (19.8b)

Here again, the perturbation parameter εT = Ain KT,1
/

KT,0, where KT,0, and KT,1
are defined by expressions similar to those obtained for longitudinal incidence.8 The
solution is sought by following again the same perturbation approach used earlier.

Figure 19.2 presents plots of the first and higher harmonics generated by the
smoother interface of Table 19.1 versus the normalized transverse stiffness. Only
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Fig. 19.2. Amplitude of the first three odd harmonic components, A(n ω), n = 1, 3, 5, versus the normal-
ized interfacial shear stiffness for Interface 2 of Table 19.1.

harmonics of odd order are generated. The reduced nonlinear response of this kind
of interface to a shear excitation, compared to the response to a longitudinal wave, can
be partly explained by the manifestation of the first-order nonlinearity in the third and
higher odd-harmonics, and partly by the magnitude of the coefficient εT compared to
εN . These results indicate that the magnitude of the nonlinear response of interfaces
formed by rough surfaces in contact with a longitudinal wave exceeds that of a shear
wave by about 20 dB.

2.2 Interface with Adhesion

In this section, the role of adhesion on the scattering of a longitudinal wave insonifying
an interface at normal incidence is examined. The force law controlling the contact be-
tween two spheres is described by the Greenwood–Johnson model,10 and Figure 19.3
offers a typical example.

The relationship between the applied pressure P and the relative approach, �,
between the mean planes of the rough surfaces in contact can be again written
as

P(�) = 2π n R �γ

�∫

0

F (� − t |µ) ϕ(t) dt. (19.9)

In Eq. (19.9), F is the force law between asperities, which depends on the normalized
relative approach, �, as well as on the Tabor parameter. Following Fuller and Tabor,12

all the contacts are assumed to have the same composite radius of curvature, R. Having
brought the two surfaces to a maximum normalized approach �max at the end of the
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Fig. 19.3. Normalized force-displacement relationship for a contact between Perspex and steel spheres
according to the Greenwood and Johnson model. The arrows indicate the path followed by the force as the
relative approach varies.9

loading phase of the first cycle, the relationship between the applied pressure P and
the normalized relative approach � during unloading is given by

P(�) = 2π N R�γ

�+D∫

0

F (� − t |µ) ϕ(t)dt, (19.10)

where D = �max − �, if 0 < �max − � < δ̄ and D = δ̄, if �max − � > δ̄. The
inclusion of D in the upper limit of integration accounts for the stretching of the peaks
that have been formed last during the preceding loading phase of the cycle.

The main interest of this investigation is in the dynamic behavior of the interface
when it is subject to a cyclic loading. Thus, if �min is the relative approach at the end
of the unloading phase of the cycle, the pressure–approach relationship during all the
following loading phases is given by

P(�) = 2π N R�γ

�+D∫

0

F (� − t |µ) ϕ(t)dt, (19.11)

where D = δ̄−�+�min, if 0 < �−�min < δ̄ and D = 0, if �−�min > δ̄. The upper
limit of integration accounts for the effect of contacts that are under tension at the end
of the unloading cycle, and are now progressively set under increasing compression
again during the current compressive phase of the cycle.

The effect of adhesion is to introduce hysteresis with end point memory in the rela-
tionship between pressure and relative approach.

The interaction between a longitudinal wave with amplitude Ain and an interface of
the type just discussed is described by the following boundary conditions.
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Fig. 19.4. Normalized spectrum of nonlinear waves that are scattered forward and backward by a
Plexiglas–steel interface, which is characterized by a normalized linear component of the interface stiffness
K0/

(
Z−ω

) = 1.29.

k−(λ+ + 2 µ+)
∂ U+

∂ η
= K0�U − K1 Ain�U 2 − K ′

2

[
H

(
sgn

(
∂ �U
∂ τ

))

H(�U + �Umax − �̄) + θ H
(

sgn
(

−∂�U
∂τ

))
H(�Umax − �̄ − �U )

]
�U,

(19.12a)

(λ+ + 2 µ+)
∂ U+

∂ η
= (λ− + 2 µ−)

∂ U−

∂ η
. (19.12b)

in which U−,+(z, t) = u−,+(z, t)
/

Ain , η = k− z, where k− is the longitudinal wave
number in the negative half-space, and τ = ω t . Furthermore, �̄ has been redefined as
�̄ = �̄

/
Ain ,θ = K ′′

2
/

K ′
2, and the Lamé constants λ− and µ−, and λ+ and µ+ refer

to the negative and positive half-space, respectively.
The solutions are sought in the form of a perturbation series in two small parame-

ters, ε1 = K1 Ain
/

K0and ε2 = K ′
2 Ain

/
K0. Figure 19.4 illustrates an example of

normalized spectrum of the higher harmonics generated upon scattering of an incident
wave with amplitude Ain = 2 nm, frequency f = 1 MHz, and propagating in the
Perspex half-space. The material of the second half-space is steel. The amplitude of
the incident wave is used as normalization constant. The Perspex–steel interface has a
composite roughness σ = 30 nm, and a probability distribution density with a number
of degrees of freedom N = 10. The normalized stiffness is equal to 1.29. To the first-
order approximation, and when hysteresis is activated, the amplitude of all the higher
harmonics is a function of A2

in , as experimentally verified in damaged materials, at
least for the third harmonic component.13

It is important to point out the remarkable resemblance between the spectra in Fig-
ure 19.4 and those predicted by Van Den Abeele et al.14 in their theoretical investiga-
tion on nonlinear propagation of acoustic waves in nonlinear media, in which the P-M
model was used to characterize the type and degree of nonlinearity. Meegan et al.15

reported measured spectra of waves propagating in sandstone, which bear a strong
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resemblance to those of Figure 19.4. In particular, the slow decay of the amplitude of
the higher harmonics together with the dominant presence of the odd components seem
to constitute the acoustic signature of an hysteretic interface with end point memory.

3. Nonlinear Scattering by Interfaces: Intermittent Contact

3.1 “Clapping” Nonlinearity

Let us assume now that the amplitude of acoustic excitation is high enough to produce
alternating stresses that exceed static stress of the originally closed interface. For nor-
mal traction developed at normal incidence of the longitudinal incident acoustic wave,
it results in clapping of the surfaces in contact. To find out the basic features of such a
“clapping” nonlinearity we consider a simple model of an acoustically driven clapping
interface between flat surfaces. To this end, the nonlinearity comes from asymmetri-
cal dynamics of the contact stiffness: the latter is, apparently, higher in a compression
phase than for tensile stress when the contact (crack) is assumed to be supported only
by the edge-stresses. Such a behavior of a clapping interface can be approximated by
a piecewise stress (σ )-strain (ε) relation3 (Figure 19.5):

σ = C I I [1 − H(ε)(�C/C I I )]ε, (19.13)

where H(ε) is the Heaviside unit step function, �C = [C I I − (dσ/dε)ε>0], and C I I

is the intact material second-order (linear) stiffness.
For ε = ε(t) − ε0, where ε(t) = ε0 cos ν0t and ε0 is the static contact strain, the

stiffness modulation H(ε0 cos ν0t − ε0)(�C/C I I ) = �C(t) is a pulse-type function
of period T = 2π/ν0 (Figure 19.5). The spectrum of the nonlinear part in Eq. (19.13)
σ N L(t) = �C(t)[ε(t) − ε0] can be easily found using the modulation theorem and
the stress amplitude of the nth harmonic (n = 0, 1, 2, 3 . . .) then takes the form:

S(ε)

εo

εo ε

ε

S(∆C)

A∆C(t)

S(σNL)

σ

t

f

f

f

t

t

t

Fig. 19.5. Phenomenological model of clapping interface: piecewise stress-strain relation (left) and for-
mation of higher harmonic spectrum (right).
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Fig. 19.6. Dynamic characteristics of higher harmonic generation by clapping interface.

An = �C�τε0[sinc((n + 1)�τ) − 2 cos(π�τ)sinc(n�τ) + sinc((n − 1)�τ)],
(19.14)

where �τ = τ/T (τ = (T/π)Arc cos(ε0/ε0) is the normalized modulation pulse
length.

The spectrum of the nonlinear oscillations (19.14) is illustrated in Figure 19.5 and
contains a number of both odd and even higher harmonics arising simultaneously as
soon as ε > ε0 (threshold of clapping). Due to the pulse-type stiffness variation, the
harmonic amplitudes are always modulated by the sinc envelope function. Its argument
depends on τ : as the wave amplitude ε0 increases, τ grows from 0 to T/2 accompanied
by corresponding “compression” of the envelope function (shown by arrows in Fig-
ure 19.5). This affects dynamic characteristics of the higher harmonics (Figure 19.6):
beyond the threshold, the amplitudes of all harmonics increase monotonically followed
by oscillations due to the spectrum “compression” effect, unless finally (ε0 >> ε0) all
odd harmonics are suppressed (because τ = T/2). Such spectral features of the “clap-
ping” nonlinearity are summarized in an unusual waveform distortion (Figure 19.5):
the interface acts as a mechanical diode with a half-period rectified output instead of
the sawtoothlike profile found in classical materials.

For further comparison with classical material nonlinearity, we assume �C(t) =
(C I I I /2C I I )ε0 cos ω0t + (C I V /6C I I )(ε0 cos ω0t)2 in Eq. (19.13) to obtain tra-
ditional power laws for the second (u2ω ∼ ε2

0) and third (u3ω ∼ ε3
0) harmon-

ics, respectively. The higher-order elastic moduli vary insignificantly for all materi-
als available, so that: C N ∼ 10C N−1. As a result, even for intense acoustic waves
(ε0 ∼ 10−5 − 10−4) the relative change in stiffness (�C/C I I ) is negligibly small and
one cannot expect any substantial higher harmonics generated locally in the classical
case.
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Fig. 19.7. Stress-strain relation and stiffness variation for sliding friction coupled surfaces in contact.

3.2 Friction Force Nonlinearity

Consider now the nonbonded interface between two friction coupled surfaces sub-
jected to an oscillating tangential traction (shear wave scattering) strong enough to
cause their sliding.16 For a harmonic shear wave strain ε, transition between static and
kinematic friction makes such a nonbonded contact to follow the hysteretic stress–
strain relation shown in Figure 19.7. The contact stiffness changes between Cs (for a
stick phase) and zero (slide phase) twice over the input strain period according to the
relation:

C(t) = (CS/2) { 1 − sign(
.
ε)sign[ε + sign(

.
ε)ε1] } . (19.15)

Unlike asymmetrical dynamics of the stiffness for the “clapping” mechanism, the fric-
tion force nonlinearity causes a symmetrical variation of tangential interface stiffness
as a function of time (Figure 19.7). By integrating Eq. (19.15) on strain one obtains
σ as a double valued linear function of ε with the integration constant providing its
continuity:

σ(t) = C(t)ε(t) + C(t)ε1sign(
.
ε) + (Cs/2)(ε0 − ε1)sign(

.
ε). (19.16)

Because C(t) is a 2ν0-function, none of the terms in Eq. (19.16) contain even-order
higher harmonics. The lack of even harmonics is also substantiated by the fully recti-
fied output waveform observed in this case (Figure 19.7). The amplitudes of the odd
harmonics are found from the spectrum of Eq. (19.16) as follows.

BN = Csε0[�τ f (sinc(N − 1)�τ f + sinc(N + 1)�τ f

−2�εsinc N�τ f ) − 0.5(1 − �ε) | sinc N/2|], (19.17)

where �ε = ε1/ε0, �τ f = (1/2π)Arc cos(�ε) and N = 2n + 1 (n = 0, 1, 2, 3 . . .).
Spectrum (19.17) is shown in Figure 19.8 and features obvious evidence for the
friction-dependent sinc-modulation. From Eq. (19.17), no friction force nonlinearity
is observed for the surfaces with very low (�ε → 1) and high friction (�ε → −1). In
the latter case, the interface is in a permanent contact and its nonlinearity is due to the
mechanism of nonlinear tangential stiffness described in Section 2.1.



320 C. Pecorari and I. Solodov

0.030

0.025

0.020
∆ε = 0.7

0.015

0.010

0.005

0.000
s 1s 2s10 20

Harmonic number

N
or

m
al

iz
ed

 h
ar

m
on

ic
 a

m
pl

itu
de

s

30

Fig. 19.8. Typical higher harmonic spectrum for friction force nonlinearity.

3.3 Experimental Verification and Opportunities for Nonlinear NDE

The nonclassical higher harmonic generation described above is expected to accom-
pany nonlinear scattering of acoustic waves in imperfect materials with internal inter-
faces either intrinsic to the material structure or formed by fractured defects (cracks,
delaminations, impacts, etc.). Because diverse internal boundaries are supposed to dis-
play different nonlinear behavior, some important NDE applications can be developed
by solving the inverse problem of material (or defect) characterization by its nonlin-
ear signature. However, in realistic materials with flaws, the latter, apparently, are not
confined to the two basic nonlinear responses shown above to be characteristic of the
intermittent contact. A few nonlinear interface signatures given below for specific ex-
perimental situations illustrate a variety of modified modes one should be aware of to
interpret the results of the nonlinear NDE.

Figures 19.9a,b show the spectrum and the vibration pattern in the delamination area
of a carbon fibre-reinforced composite plate (CFRP) subject to 20 kHz 10 W-acoustic
excitation. The sinc-modulation of the higher harmonics (both odd and even orders)
and half-period rectified waveform clearly reveal the above-predicted features of the
“clapping” nonlinearity. An intact CFRP is a quite linear material so that the average
level of the higher harmonics observed is an indicator of overall damage in the sample.

In polymers and natural composites, such as wood, acoustic wave propagation is
accompanied by a viscous deformation associated with molecular or fiber internal fric-
tion. Figure 19.10a shows a typical single-spot nonlinear vibration spectrum measured
in an intact soft wood material (spruce). An evident odd harmonic domination reflects
the symmetry in nonlinear stiffness of the intact material caused by partial slip and
adhesion mechanisms similar to those discussed in Sections 2.1 and 2.2. The situa-
tion is different, however, for local nonlinearity of compliant areas caused by flaws in
wood (e.g., cracks, delaminations, knots, etc.). A weak bonding in such areas results
in micro- or even macroclapping of internal boundaries in defects that brings about
the higher harmonics of even orders (Figure 19.10b). The change from symmetrical to
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Figs. 19.9 a, b. Higher harmonic spectrum (a) and vibration pattern (b) measured in delaminated area of
carbon fibre-reinforced composite.
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Figs. 19.10 a, b. Measured higher harmonic vibration spectra in wood: intact specimen (a) and sample
with delamination (b).

asymmetrical nonlinearity enables us therefore, to use the even-order harmonic signa-
ture for discerning and imaging flaws in wood and wood composites.17

Another example of symmetrical nonlinearity is shown in Figure 19.11 for cellulose
fiber-reinforced gypsum compound. An exclusive odd harmonic spectrum measured
for a 20 kHz acoustic excitation (Figure 19.11) confirms symmetrical stiffness varia-
tion of the intact material. A sample of this porous material was then subject to a static
tensile load of about 3 MPa superimposed on a low frequency (5 Hz) cyclic stress of
0.1–0.2 MPa amplitude. As the number of cycles increased, the material nonlinearity
changed from symmetrical to asymmetrical with even harmonics of the low-frequency
stress growth shown in Figure 19.12.18 Similar to the above, such a transition may be
associated with the clapping mechanism due to internal microcracking induced by the
low-frequency fatigue of the material. Instructively, the higher harmonics reached their



322 C. Pecorari and I. Solodov

3.0

2.0

1.0

N
or

m
al

iz
ed

 h
ar

m
on

ic
am

pl
itu

de
s

0
0 50 100

Frequency (kHz)
150 200

Fig. 19.11. Higher harmonic vibration spectrum observed in cellulose fibre-reinforced gypsum compound.
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Fig. 19.12. Development of second- and fourth harmonics cellulose fibre-reinforced gypsum compound in
low-frequency cyclic fatigue test.

maxima a few thousand cycles before material fracture, which shows another oppor-
tunity of nonlinear NDE in evaluation of material endurance.

Besides the higher harmonic generation, the asymmetry of the “clapping” nonlinear-
ity also manifests in the DC-nonlinear response.19 The lower stiffness of the interface
in the tensile phase makes the contact extension dominate, resulting in acoustically in-
duced expansion of the average contact gap against the pressure keeping the surfaces in
contact. For a pulsed acoustic excitation, the gap expansion will cause transient “DC”-
acoustic compression pulses in both media across the interface. Similarly, closing of
the gap by the trailing edge of the acoustic excitation will produce tensile strain pulses
in the adjacent materials. Such a bipolar “DC”-nonlinear response of the glass–YZ–
LiNbO3 interface, supported by a static contact pressure, is shown in Figure 19.13.
The calibration of the receiver confirmed that the negative polarity of the signal in Fig-
ure 19.13 complied with the gap expansion, that is, the “DC”-acoustic displacement
directly opposite to the static contact force.

The asymmetric stiffness variation was assumed to exist for acoustic stress normal to
the interface whereas the tangential stress was supposed to produce symmetrical stiff-
ness change. The latter was based on the symmetry in the friction force response due to
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Fig. 19.13. “DC”-acoustic compression pulses observed for glass-YZ-LiNbO3 interface driven by 15-MHz
acoustic excitation.

Fig. 19.14. Positions of the neighboring asperities on the rough interface for two opposite directions of
tangential biasing external force applied to the interface.

statistically homogeneous distribution of the asperities along the interface. However,
such a generally reasonable assumption may not always be valid. This can be seen
from Figure 19.14, which sketches the positions of the neighboring asperities on the
rough interface for two opposite directions of static tangential biasing force ( �FB I AS)

applied to the interface. It can be easily observed that for the biased contact, the friction
force and tangential stiffness are asymmetrical: the contact is stiffer when the driving
shear traction has the same orientation as the biasing force and softer in the opposite
phase. As a result, the friction force mechanism acquires the features of the asymmet-
rical nonlinearity and, similarly to the clapping mechanism, can produce the higher
harmonics of even order (in particular, zero-order or DC-field).

The latter is illustrated in Figure 19.14: due to the stiffness asymmetry the inter-
face shear displacement against the biasing force ( �U−) dominates and thus �U− > �U+.
Similarly to the clapping interface, this forces the DC-shear displacement ( �UDC ) to be
always in the direction opposite to the bias applied, and hence in the same direction as
the static friction force it triggers. In pulse mode, the onset and release of a harmonic
driving stress will produce a rectified shear acoustic pulse with polarization dependent
on the direction of the contact biasing force. The experimentally measured “DC”-
shear responses of the tangentially biased glass–YZ–LiNbO3 interface are shown in
Figure 19.15; the follow-up behind the first rectified pulse in the pictures is due to
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Fig. 19.15. Shear wave “DC”-nonlinear response of glass-YZ-LiNbO3 interface driven by 15-MHz
acoustic excitation for two opposite orientations of tangential biasing force.

“ringing” of the receiving transducer. It can be seen that the polarity of the rectifica-
tion response changes to the opposite as the interface bias inverses. The transducer
calibration proved that the “DC”-shear pulses observed are actually polarized along
the friction force induced by biasing. It is worth recalling that in classical materials the
polarization of the DC-acoustic field is fixed by the sign of the material nonlinearity
parameter.20 To this end, the nonlinearity of nonclassical media which comprise rough
interfaces can be made positive or negative by varying the direction of the tangential
biasing force applied to the interface.

4. Summary

Interfaces with no strength but finite stiffness may respond to an interrogating acoustic
wave in a nonlinear fashion. Three mechanisms have been considered here, which
determine such a behavior. They all involve micromechanics of individual contacts
that is determined by well-known interaction laws between asperities. In particular,
it is shown that an interface between asperities in Hertzian contact is characterized
by a response in which the second harmonic component dominates the spectrum of
the nonlinear scattered waves. On the other hand, mechanisms such as partial slip and
adhesion produce a cascade of higher-order harmonics, with the odd harmonics domi-
nating over the even ones. Indeed, when an interface between rough surfaces in contact
is excited by a shear wave at normal incidence, only odd harmonics are generated by
its nonlinear response. When adhesion becomes significant, the amplitude distribution
of the nonlinear components in the spectrum of the scattered waves closely resembles
that found in geomaterials and materials with distributed damage. In all cases, the am-
plitude of the scattered waves has been shown to decrease with increasing roughness.

The strength of the interface bonding is a crucial factor for development of non-
linear acoustic phenomena in imperfect materials. A weakly bonded interface driven
by an intense acoustic wave displays a specific nonlinear dynamics of the intermittent
contact, associated with either asymmetrical or symmetrical stiffness variation when
driven by normal or tangential tractions, respectively. As a result, a full-scale integer
multiple higher harmonic spectrum in the former case of clapping interface is changed
by the odd harmonic domination for the friction force nonlinearity. Both nonlinear
spectra exhibit nonclassical features such as threshold onset, unconventional wave-
form distortion, sinc-envelope modulation, and nonclassical dynamic characteristics.
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In realistic materials with flaws, the nonlinear interface signatures are not confined
to the two distinctive nonlinear responses characteristic of intermittent contacts. In
particular, fractured defects or mechanical bias, with a static load in the friction force-
driven nonlinear materials, result in the transition to asymmetrical nonlinearity, and
thus the even-order harmonic signature induced can be used for material characteriza-
tion and nonlinear NDE of flaws. Another implication of the asymmetrical interface
stiffness variation is manifested in the rectification effect accompanied by the DC-
elastic response. For mechanically biased contacts, the interface nonlinearity always
works against the biasing stress and provides the DC-displacements on the interface
polarized opposite to the biasing force applied. As compared with molecular nonlin-
earity of classical materials, nonclassical media comprising internal interfaces exhibit
a unique degree of flexibility in shaping their nonlinear signatures by mechanical im-
pact.
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Gräsvik, 371 30 Karlskrona, Sweden email: claes.hedberg@bth.se.

Abstract
This short review is about nonlinear behavior in granular materials. We have selected particular
behaviors relevant to the main topic of this book which is the nonlinearity relation between the
microscale and macroscale properties of a material. At the mesoscale, granular material present
intricate physical processes such as dynamical arches formations.

The conductivity in the proximity of the conductivity threshold depends exponentially on a
universal criterion that only depends on the dimensionality of the problem. We present a model
based on 1-D flow equations whose solution is a universal attractor representing an exponen-
tially increasing stress with the solidity field at a critical value about 0.5.

Granular avalanches present segregation mechanisms making large grains move to the front
of the avalanche, and the smaller grains to the tail. One can also observe nonlinear upwards-
propagating dispersed shock waves.

We give a stress–strain relationship typical for granular media with mesoscopic inho-
mogeneities. From the vibration of two grains the solution is generalized to a distributed
fluid-saturated grainy medium. When the wave velocity is equal to the speed of sound, a wave
resonance phenomenon can be located in a layer at a particular depth.

Keywords: Fluid-saturated granular media, grain fluidization, grain vibration, granular
avalanches, inertia nonlinearity, multiscale nonlinearity, universal criteria

1. Introduction

The global behavior of a large number of grains that only interact through collisions
and friction is typically nonlinear and different from any other standard and familiar
forms of matter as solids, liquids, and gases. Vibrated granular materials are perfect
examples of such multiscale nonlinearity. Density waves may have intricate patterns
that oscillate between one symmetrical pattern to its inverse in resonancelike states.
Granular materials are often referred as a new form of matter on their own. Granular
materials present different scales of interest. At the microscale (i.e., at the scale of a
few grains) a granular material behaves as an inelastic solid.
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At the macroscale, granular material behaves very much as does a liquid or a gas de-
pending of the density of grains (e.g., [1]). But it is at the mesoscale of 5–7 grain sizes,
that granular materials show intricate mechanisms. The existence of such mesoscale
was estimated by P. Martinet in the context of internal erosion of earth dams [2]. The
same critical value of 5 grains was more precisely recalculated by Koenders et al. [3]–
[5] who also demonstrated the reality and existence of the mesoscale range in granular
media.

Biot [6] in 1955 developed a theory of dynamic deformation of media with a solid
and a fluid phase. He stated that there exist two pressure waves, and one displacement
wave. In the laboratory Paterson in 1955 [7] measured two pressure waves in marine
sands. He found a fluid wave, and one frame wave which he believed to be the pres-
sure wave of second type of Biot, its velocity increases with pressure, and velocity
decreases with fluid increase. The Biot-based models correspond relatively well with
measurements [8].

Marine sands are homogeneous in grain sizes, sorted by natural processes. In ex-
periments an ultrasound pulse separates in propagation into two parts: one high fre-
quency with high velocity (fast wave), and one low frequency with low velocity (slow
wave) [9]. The fast wave has the same frequency as the excitation, and the slow wave-
frequencies depend on the nonlinear interaction in the sand internal structure. The
slow longitudinal wave was confirmed in water-saturated glass beads by Plona [10].
The slow wave exists also when the fluid is air [11]– [13]. A mathematical model of
this phenomena was developed by Nikolaevskii [14], [15] which reduced the problem
to Korteweg-de-Vries, Burgers, or a fourth-order equation. In sands with low fluid sat-
uration (less than approximately 15%) only the slow wave with velocity 200–300 m/s
was found. For fully fluid-saturated sands only the fast wave with velocities of 1600
m/s was found. In sands with 17–20% saturation, both kinds of waves appeared. As
the velocity of the slow wave (the frame wave) increases with pressure, it might reach
the same velocity as the fast wave at higher depths. A peculiar behavior is that the dis-
sipative coefficient of an acoustic wave decreases with increasing amplitude [16]. This
dissipative coefficient is sensitively dependent on the moisture content. An increase
in the static pressure results in high-frequency pulses in wave velocity increases, and
amplitude increases because the attenuation decreases [17].

A perfect saturation is difficult to attain as even a few tenths of a percent of air
change the sound velocity from 1800 m/s (for fully saturated) to 200 m/s [18]. The
cause is the same that stands as a fundament in the phenomena in this book: very small
soft partitions are introduced between the harder bulk part of the material leading to a
major change in the macroscopic behavior.

The elastic waves that propagate through the frame part of a fluid–grain material
are well described by the grain contact mechanics [18], such as the Hertz contact de-
scription. The idea to replace the real sandlike medium by a model of packed spherical
grains was used many years ago to describe the properties of seismic waves prop-
agating in geological structures. An exhaustive review of these works is given by
White [19]. More recent studies devoted to nonlinear properties of such models are
reviewed in Reference [20].
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2. Vibrated Granular Materials

Under vertical vibrations granular materials behave following two different processes:
a fast motion due to the collision of the grains with the vibrated plane and a slow
convective motion located in the bulk of the material.

For shallow granular beds that are confined inside a regular shape, surface waves
may appear and, typically, produce square patterns. These waves correspond to vari-
ations in the local density and are also called density waves. In general, the waves
oscillate between two different patterns at a frequency f/2 where, f is the frequency
of the vertical vibration [21]. See Figure 20.1.

3. Solidification and Fluidization

Solidification and fluidization are two mechanical processes that have both tremendous
industrial and scientific implications. The flow equations for highly compacted granu-
lar materials that are externally stressed present strong non-linearities. One example is
non-linear consolidation. A first-order quantitative estimate was done by Koenders [4].
The result gives a clue on how semistable filtration takes place. The model is based on
1-D flow equations that are continuity equations for the solid and liquid phases and
the force equilibrium equations. Two critical values for the velocity are obtained and,
very reasonably, agree with measured values. The presence of waves in the medium
is required by the presence of exponentially increasing solutions of the characteristic
equation for the first-order term of the linearized system of equations. A universal at-
tractor is found and the solutions represent an exponentially increasing stress with the
solidity field at a critical value about 0.5. If the granular flow appears in narrow pipes

(a) (b)

Fig. 20.1. Snapshots of fivefold symmetry in resonancelike states of shallow granular beds vibrating verti-
cally (a) and the inverse symmetry after one period (b). (a) Conductivity σ as a function of the probability
p to have a grain that is a conductor. (b) Infinite conductive cluster in a granular material with a proportion
of p conductive grains and (1–p) isolated grains.
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periodical clogging and declogging appear spontaneously [22]. In the case of a sand-
clock this effect give rise to a “tic tac”-like sound that is a combination of fluidization
and solidification of the thin colon of sand located along the narrow canal.

4. Granular Avalanches

If the slope of a sandpile is less than the angle of repose, the friction between the
grains is larger than the gravitational forces and the granular material behaves as a
solid. If the slope is higher than the angle of repose, a fluidlike motion appears that
we called granular flow. In contrary to a classical fluid, the motion is limited to the
top layer. For simple binary granular materials that contain only two sorts of grains
with two different sizes, observations show granular avalanches with two different
waves: typical roll waves and upwards-propagating dispersed shock waves [23] (see
Figure 20.2). Segregation (i.e., size separation) is one of the first observed behaviors
of granular materials and is often referred to as the Brazil nut effect. It is a simple
mechanical process that inhabits the large grains that are obliged to move upward. In
avalanches, segregation results in a front of large grains moving downward with the
front of the avalanche.

5. Universal Criteria

If a granular material is compressed, a nonuniform stress field composed of “back-
bones” appears [24], [25]. The density threshold between the rigid and nonrigid phase
is a first-order transition because there is discontinuity in the backbone density. With
ε = p− pc being the distance to the critical point representing the the density threshold
pc, the correlation length ξ diverges as ε goes to zero as

ξ ≈ ε−ν,

(a) (b)

v

uh

l

Fig. 20.2. (a) Typical roll wave in granular avalanche. The large grains (white) overlie the small grains
(dark). (b) Upwards-propagating shock wave. The grains below the shock are almost at rest whereas the
grains above are flowing rapidly downslope.
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Fig. 20.3. (a) Conductivity σ as a function of the probability p to have a grain that is a conductor. (b) In-
finite conductive cluster in a granular material with a proportion of p conductive grains and (1–p) isolated
grains.

where ν is a universal correlation length exponent. Inside regions that have a size
smaller than the correlation length ξ , mean values depend on the size of the system
and homogeneous approaches cannot be applied.

An example of such critical behavior is given by the classical experiment of a mix-
ture of isolated and conductive mono-size grains. At a critical density pc of conductive
grains the entire medium becomes conductive (σ = 1) because an infinite conductive
cluster appears in the medium. The value of the critical density is a universal parameter
that only depends on the dimensionality of the problem. See Figure 20.3

6. Vibration of Grains

The typical nonlinear responses of grainy media are based on nonlinear stress–strain
relationships typical for solids containing mesoscopic inhomogeneities or defects in
their structure (see, e.g., chapters in this book and the reviews [20]– [26]). However,
there exists a different type of nonlinearity that manifests itself due to inertial forces
between grains, appearing if a system of interacting particles is placed into a vibrating
fluid. Structural internal forces are caused by a nonuniform mass distribution. In the
following, a model of grainy medium is developed that first deals with two grains, and
then with an ensemble of grains, immersed into a vibrating fluid. The inertial attractive
forces have a hydrodynamic origin, and the repulsive forces are caused by deformation
of colliding grains.

6.1 Vibration of a Pair of Grains

Let us consider two bodies immersed in an ideal fluid, being in contact during part of
the period of an acoustic wave. We consider here two spherical bodies with different
densities ρ1, ρ2 and volumes V1, V2. The coordinates x1, x2 indicating their center of
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mass satisfy the coupled system of equations

(ρ0 + 2ρ1)
d2x1

dt2
= 3ρ0

dv
dt − 2

V1
[F(x2 − x1) − F0] (20.1)

(ρ0 + 2ρ2)
d2x2

dt2
= 3ρ0

dv
dt + 2

V2
[F(x2 − x1) − F0]. (20.2)

Here v̄ is the velocity of the fluid, m0 = ρ0V is the mass of fluid displaced by the
body, F is a repulsive force depending on the distance between centers, and F0 is a
constant external holding (clamping) force. For the difference ξ = x2 − x1 one can
derive from (20.1) and (20.2) the inhomogeneneous nonlinear equation [27],

d2ξ

dt2
− a[F(ξ) − F0] = b

dv

dt
, (20.3)

where

a = 2
V1(ρ0 + 2ρ1) + V2(ρ0 + 2ρ2)

V1V2(ρ0 + 2ρ1)(ρ0 + 2ρ2)
, b = 6ρ0

ρ1 − ρ2

(ρ0 + 2ρ1)(ρ0 + 2ρ2)
. (20.4)

According to Hertz’s theory, and for a harmonic fluid vibration caused by a mono-
chromatic acoustic wave, a nondimensional equation is obtained [27]:

d2 y

dτ 2
+ β2[y3/2Θ(y) − 1] = D · cos(τ ). (20.5)

Here y = h/h0, τ = ωt, β2 = α2/ω2√h0, D = bv0/ωh0, h = R1 + R2 − (x2 −
x1), α

2 = aE
√

R1 R2/R1 + R2, and Θ is the Heaviside step-function. The constants
v0 and ω are the amplitude and the frequency of vibrational velocity of the fluid, and
h = h0 is the equilibrium position of the spheres defined by the equation

α2h3/2
0 = aF0 . (20.6)

In Figure 20.4 the position, velocity, and the amplitude of the frequency content
of the velocity are shown for β = 1 and D = 2. The usual nonlinear generation of
higher harmonics takes place, and the appearance of low-frequency spectra is well
pronounced. These low frequencies do not depend on the driving frequency of the
acoustic source. The transformation of energy to low frequencies is connected with
the high amplitude of negative displacement and the long time spent by particles in
free motion between collisions. After each short collision the particles move slowly
away from their neighbors and then back, leading to a very broad spectrum. Such
spectral broadening for a harmonic input signal during its propagation through grainy
media is a well-known phenomenon.

7. A Distributed Fluid-Saturated Grainy Medium

We consider a more general distributed one-dimensional nonlinear model. The struc-
ture has periodically located nonlinear elements that form an infinite discrete chain.
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Each element of this chain is an aggregate of two spherical particles, like those studied
in the preceding section. One can pass now to the continuum leading to an inhomoge-
neous nonlinear wave equation in the displacement ξ [28]:

∂2ξ

∂t2
= c2

(
1 − 2ε

∂ξ

∂x

)
∂2ξ

∂x2
+ 3m0

2m

∂v

∂t
. (20.7)

The velocity c of wave propagation and the nonlinear parameter ε in Eq. (20.7) are
given by

c = L(
3

2m
)1/2

(
R

2
E2 F0

)1/6

, ε = L

4

(
RE2

2F2
0

)1/3

. (20.8)

Here R is the radius of the particle, m = ρV + m0/2 is the mass of the sphere with
account for the associated mass, m0 = ρ0V of the liquid, and vn is the velocity of liq-
uid flowing around the nth particle. At clamping force F0 tending to zero the velocity
c also tends to zero but the nonlinear parameter ε tends to infinity. So, at small F0 we
deal with a slow but strongly nonlinear wave.

Let us now return to one problem of special interest for geophysics and nonlinear
wave theory. Let the vibration of the surrounding liquid be caused by a propagating
acoustic wave. In this case the velocity in Eq. (20.7) varies according to the law v =
v(t − x/c0), where c0 is the velocity of sound. One can control the velocity c (20.8)
of wave propagation through the chain of grains by varying the clamping force F0.
By increasing F0, one can increase c to be approximately equal to c0. If the condition
c ≈ c0 is fulfilled the acoustic wave will excite a wave in the chain of grains most
efficiently; this is a so-called wave resonance phenomenon [29]. The wave resonance
phenomenon described here is of interest for geophysical applications. Let a wave
propagate in water along a horizontal bottom surface. The subbottom layers consist of
water-saturated sand or other grains moved around by a vibrating liquid. The pressure
pressing the grains together increases with depth into the sediment. Therefore, at a
specific depth the clamping force—the pressure increasing with depth—will lead to the
equality of velocity of wave propagation (20.8) and the speed of sound at that depth.
Consequently, wave resonance occurs at this depth, and waves in the sediment will be
excited with high efficiency only in this layer. The existence of resonant frequencies
of vibration of grains was discovered more than 20 years ago (see, e.g., review [30]).
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Abstract
Contribution of hysteretic mechanical elements to the stress/strain relationship of microin-
homogeneous material is analyzed within the framework of the Preisach–Arrhenius model
where the transitions between the different mechanical states of the individual elements in
addition to acoustic loading can be induced by thermal fluctuations. The model provides an
explanation of why with increasing wave amplitude a transition from a behavior, which is
quasi-independent of wave amplitude, to another, characterized by the dominance of nonclassi-
cal hysteretic quadratic nonlinearity, takes place in microinhomogeneous materials. Analytical
evaluation of the Preisach–Arrhenius model for the acoustic hysteresis confirms the expecta-
tion that thermal relaxation effects are capable of recovering the dependence of the nonlinear
acoustic properties of the material on acoustic wave frequency. The theory predicts the bound-
aries for an intermediate interval of frequencies where hysteretic quadratic nonlinearity domi-
nates in microinhomogeneous materials. Outside this interval (at sufficiently low or sufficiently
high frequencies) the nonlinearity significantly diminishes. However the width of the frequency
interval for the hysteretic quadratic nonlinearity depends on the acoustic wave amplitude and
increases with the increasing wave amplitude. The low-frequency cutoff of the interval dimin-
ishes with increasing wave amplitude and the high-frequency cutoff increases. As a result, if
the system manifests linearity or quasinonhysteretic nonlinearity at sufficiently low acoustic
amplitudes, sooner or later with increasing wave amplitude it will manifest hysteretic quadratic
nonlinearity.

Keywords: Dispersion of nonlinearity, hysteretic nonlinearity, microinhomogeneous mate-
rials, nonclassical nonlinearity, Preisach–Arrhenius model, rate-dependent hysteresis, thermal
relaxation

1. Introduction

The objective of nonlinear acoustics is the evaluation of material nonlinearity, that
is to say, of a deviation of the material mechanical behavior from the Hooke’s law,
by application of low-amplitude (acoustic) strain waves. Typical amplitude values of
periodic strain waves do not exceed 10−5 and the nonlinear contribution to the material
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stress/strain relationship is small. Currently there exists a consensus, according to
which the nonlinear mechanical properties of microinhomogeneous materials (such as
rocks, polycrystalline metals, and ceramics, e.g.) are dominated by nonclassical hys-
teretic nonlinearity,1–4 as opposed to the nonlinearity of the interatomic interactions
and the kinematic nonlinearity.5, 6 Hysteretic nonlinearity is understood phenomeno-
logically in terms of the nonlinear hysteretic motion of the mesoscopic mechanical
elements such as dislocations, intergrain contacts, or defects, for example, with the
dimensions exceeding interatomic distances but significantly smaller than the acoustic
wavelength.1, 2 As a mathematical tool for the description of hysteresis in nonlinear
mechanical properties, the Preisach–Mayergoyz (PM) model of hysteresis7–10 can be
applied. Even in its simplest formulation the PM model explains what is, perhaps, the
best known and the most common manifestation of the hysteretic nonlinearity, that is
to say, the shift of the resonance frequency of a solid microinhomogeneous bar pro-
portional to the wave amplitude in the bar.1–4, 11 However, the PM model does not
explain either experimentally observed dependence of the nonlinear phenomena on
frequency12, 13 or the absence of the hysteretic quadratic nonlinearity at very low am-
plitudes of the acoustic loading.14–16

We note here that the Preisach (Preisach–Mayergoyz) formalism7–10 attributes
hysteresis in the nonlinear stress/strain relationship to combined behavior of indi-
vidual bistable (two-level) hysteretic mechanical units, sometimes referred to as hys-
terons.17, 18 The transitions (Barkhausen jumps10) between two possible states (i.e.,
energy levels) are assumed to take place instantaneously and exactly at some critical
levels of varying stress (strain). For different individual mechanical elements, the lev-
els are different. This model of the hysteretic nonlinearity is essentially dispersionless,
that is to say, it is frequency-independent, because there are no characteristic scales of
either time or length in the model. The PM model does not take into account that hys-
teresis is always a dynamic phenomenon. If thermal fluctuations are taken into account
in the description of the mesoscopic elements, then there will be no hysteresis in the
static limit because the thermal fluctuations are always pushing the system to a unique
equilibrium state. In quasistatic experiments, hysteresis will appear at frequencies for
which thermal fluctuations have insufficient time to force the system during a wave
period in a state having free energy at its absolute minimum value. Instead, the system
will be in a state in which its free energy is in a local minimum, that is to say, in a
metastable state. Consequently, the nonlinear mesoscopic mechanical elements, in re-
ality, are nonhysteretic in the static limit and hysteretic only in their dynamic behavior.
In the theory of magnetism, the Preisach–Mayergoyz model is considered as a zero-
temperature limit for rate-independent hysteresis,10 because the thermal fluctuations
are not included and because the stress/strain relation depends only on the sign of the
strain rate but not on its magnitude.

The Preisach–Arrhenius (PA) model for the description of thermally activated relax-
ation, or “after-effect,” in magnetic materials10, 18 takes into account that the transitions
between the energy levels of the system can be thermally activated and that the prob-
ability of the transition is controlled by the Boltzmann factor exp(−�E/kB T ), where
�E is the difference in energy levels, or some activation energy, kB is the Boltzmann
constant, and T is the absolute temperature. The thermally controlled transition is not
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instantaneous statistically. Rather, there is a characteristic time scale for each indivi-
dual mechanical element that can be estimated by τ0 exp(�E/kB T ) as defined by the
Arrhenius formula for the transition time, where τ0 is some characteristic attempt time
associated with the Barkhausen jump between the energy levels.10 Consequently, dis-
persion in the acoustic nonlinearity is expected in the Preisach–Arrhenius model. In the
rate-independent approximation assumed by the PM model the external action on the
system remains nearly unchanged during the time needed to complete the Barkhausen
jump. Thus, the external field creates the conditions for the system instability and spon-
taneous (or thermally initiated) Barkhausen jumps from one local energy minimum to
the next. Therefore, when appreciable variations of an external action take place dur-
ing individual Barkhausen jumps, then rate-independence no longer applies. At high
frequency and weak acoustic wave amplitude the characteristic time for a thermally
stimulated transition to occur can significantly exceed the acoustic wave period. Thus,
the individual elements have insufficient time to modify their state even when loading
makes it for some time allowed by energy considerations.10

The acoustic wave affects the system through the modulation of the difference �E
between the energy levels, and in doing so, renders the thermally activated relaxation
processes amplitude dependent. Qualitatively speaking, the Preisach–Arrhenius model
describes nonlinear temperature-dependent relaxation of the hysteretic mechanical el-
ements. Consequently it might be expected that the nonlinearity of the system is due
not only to the intrinsic nonlinearity of the bistable hysteretic elements but also due to
the nonlinearity of the relaxation process.

2. Preisach–Arrhenius Model for Acoustic Response of
Microinhomogeneous Media

There exists a consensus that microinhomogeneous materials may contain some me-
chanical elements that are mesoscopic (with the dimensions exceeding the atomic
scale but significantly smaller than the acoustic wavelength) and hysteretic (such as
reversible Griffith cracks8 or contacts with adhesion, e.g.). The hysteresis in the be-
havior of an individual mechanical element might be imagined in the simplest way as
being related to the possibility for the element to be in different states under the same
mechanical loading. In which state the mechanical element is actually a function of
the acoustic loading history. Both in the Preisach–Mayergoyz7–10 and the Preisach–
Arrhenius10, 18, 19 models it is assumed that the mechanical elements have two states
(two energy levels) and that the contribution σ ′ of an element to the macroscopic stress
in material depends on its state. This phenomenological description assumes that the
free-energy of the material, which possesses multiple local minima reflecting the com-
plexity of the mutual interactions among the system’s components, can be represented
as a linear superposition of two-level bi-stable contributions.10 In the PM theory the
transition of an element from state 1 to state 2 takes place when ∂ε/∂t > 0, ε = ε2,
and the inverse transition takes place when ∂ε/∂t < 0, ε = ε1 < ε2 (Figure 21.1).
The difference between the critical switching strains ε2 and ε1 (ε2 �= ε1) is at the ori-
gin of the hysteretic nature of these elements. If the notation f (ε1, ε2) is introduced
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Fig. 21.1. Contribution σ ′ of an individual mechanical element to stress in the framework of the Preisach–
Mayergoyz model. Arrowheads indicate direction of strain variation in time.
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Fig. 21.2. Presentation of mechanical element distribution at Preisach–Mayergoyz plane (ε2, ε1), where
ε2 and ε1 are the critical strain values for switching the elements between the levels. A distribution, limited
in PM plane by ε⊥ ≡ (ε2 − ε1)/2 ≤ εmax⊥ and εmin

// ≤ ε// ≡ (ε2 + ε1)/2 ≤ εmax
// , is presented in gray as an

example.

to represent the distribution function of the elements in the plane (ε2, ε1) then the
contribution of all the elements to the stress is given as

σ =
∫ ε2

−∞
dε1

∫ ∞

ε1

dε2σ
′(ε1, ε2, ε) f (ε1, ε2). (21.1)

Here f (ε1, ε2)dε1dε2 is the number of the elements with critical strains belonging to
the intervals (ε1, ε1 + dε1) and (ε2, ε2 + dε2) of the PM plane (ε2, ε1). Due to the
assumed condition ε2 > ε1 the integration in the PM plane is in the sector to the right
of the diagonal ε2 = ε1 (Figure 21.2). The arguments of the function σ ′(ε1, ε2, ε)

indicate that, in general, the contribution of an element to the total stress depends on
its position in the PM plane and the loading history as it is presented in Figure 21.1. An
important feature of the PM model is that hysteresis in the mechanical behavior of the
individual elements exists independently of the magnitude of the strain rate, because
the transitions at critical levels ε2 and ε1 are assumed to be instantaneous. It is assumed
that the transition 1 ⇒ 2 always happens when the strain ε(∂ε/∂t > 0) exceeds ε2

independently of how fast ε returns back to the region ε < ε2. From a physics point
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of view, in the PM model the acoustic loading not only creates the conditions for the
transition but also induces the change of the state.

The physical nature of σ ′(ε1, ε2, ε) in the Preisach–Arrhenius model is very dif-
ferent. In fact, the acoustic field is no longer the only physical actor that can induce
transitions between the states 1 and 2. There are also thermal fluctuations that statis-
tically can cause the same transitions. In the PA model, the transition from state 1 to
state 2, for example, can occur during a finite time interval and at values of ε that do
not strictly satisfy the conditions ε = ε2 (∂ε/∂t > 0). At finite values of the tem-
perature, the elements can overcome the energy barrier by thermal activation at lower
strains as long as there is a second (local) energy minimum in which they can jump.
Qualitatively speaking, thermal fluctuations accelerate the transitions below the criti-
cal level of strain ε2. At the same time, above the critical strain ε2, thermal fluctuations
induce inverse transitions (from state 2 to state 1), which are completely forbidden in
the zero-temperature model. The picture of the inverse transitions 2 → 1 near the
critical strain ε1 is similar.

In the Arrhenius model for thermally initiated transitions, the transition time τ12

from level 1 to level 2 is equal to τ12 = τ0 exp [d(ε2 − ε)/kB T ], where d measures
the variation of energy difference �E12 between states 1 and 2 caused by an applied
unit strain (deformation potential). Accordingly the transition time τ12 diminishes ex-
ponentially with increasing strain when the applied strain exceeds the critical level ε2.
Similarly, the time τ21 of the inverse transition is τ21 = τ0 exp [d(ε − ε1)/kB T ]. The
transition times τ12 and τ21 control the probabilities W1 and W2 to find the element in
states 1 and 2, respectively,

∂W1/∂t = −W1/τ12 + W2/τ21,

∂W2/∂t = W1/τ12 − W2/τ21, (21.2)

W1 + W2 = 1.

These equations are sufficient to describe the variation of stress in response to
acoustical loading. Actually the average level of σ ′(ε1, ε2, ε) in the absence of the
acoustic wave does not contribute to dynamic stress in Eq. (21.1). Thus it is useful
to evaluate the variations of σ ′(ε1, ε2, ε) relative to the average level (σ ′

1 + σ ′
2)/2,

where σ ′
1 and σ ′

2 are the contributions to stress when the element is in positions 1
and 2, respectively. Then the contributions of states 1 and 2 to stress that can be
modified by acoustic excitation are described as (σ ′

1 − σ ′
2)/2 = �σ ′(ε1, ε2) and

(σ ′
2 − σ ′

1)/2 = −�σ ′(ε1, ε2), respectively. Taking into account the probabilities
of finding the element in the corresponding states, the wave-dependent contribution
σ ′′(ε1, ε2, ε) to σ ′(ε1, ε2, ε) can be presented as

σ ′′(ε1, ε2, ε) = �σ ′(ε1, ε2)W1 − �σ ′(ε1, ε2)W2

= �σ ′(ε1, ε2)(W1 − W2) ≡ �σ ′(ε1, ε2)Q. (21.3)

The relations (21.2) lead to a single equation describing the dynamics of the func-
tion Q, which has been introduced in Eq. (21.3) to characterize the asymmetry of the
element distribution between the two levels,

∂ Q/∂t + (1/τ21 + 1/τ12)Q = (1/τ21 − 1/τ12). (21.4)
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An obvious but important conclusion based on Eq. (21.4) is the absence of the
hysteresis in the contribution of an element to stress under the static conditions. For
∂/∂t → 0 (zero frequency of the acoustic action) the solution of Eq. (21.4) is

Q0 = − tanh

[
d

(
ε − ε1 + ε2

2

)
/kB T

]
. (21.5)

Thus, in contrast to the PM model the hysteresis in the PA model is a dynamic
phenomenon due to the finite rate of acoustic loading (compare the solutions in
Figure 21.1 and in Figure 21.3).

For the following analysis the characteristic strain ε0 = kB T/d, which provides a
scale for the amplitude of acoustic loading necessary for significant (e times) modifi-
cation of the relaxation times τ12 and τ21, is introduced. All the strains are normalized
to this level (ε/ε0 ≡ ε, ε1,2/ε0 ≡ ε1,2). Two new variables ε// = (ε2 + ε1)/2 and
ε⊥ = (ε2 − ε1)/2 are then introduced. Qualitatively speaking

∣∣ε//

∣∣ characterizes the
average energy of the mechanical element (from the acoustics point of view), and ε⊥
characterizes the separation of the energy levels 1 and 2 in the absence of acoustic
loading. On the other hand, ε// and ε⊥ have a clear geometrical interpretation: with
reference to the diagonal ε2 = ε1 in the PM plane, they are proportional to the co-
ordinates measured along that line and the direction orthogonal to it, respectively10

(Figure 21.2).
In the introduced notations, Eq. (21.4) takes the form

∂ Q/∂θ + (2/F) exp(−ε⊥) cosh(ε(t) − ε//)Q = −(2/F) exp(−ε⊥) sinh(ε(t) − ε//).

(21.6)
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Fig. 21.3. Contribution σ ′′ of an individual mechanical element to stress in the framework of the
Preisach–Arrhenius model in the case of infinitely low frequency of acoustic action. In accordance with
Eqs. (21.3) and (21.5) the element behaves in response to strain variation as a two-level but a nonhysteretic
unit.
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Here the time is normalized to the period TA of acoustic loading (θ = t/TA), and the
parameter F = τ0/TA is the normalized frequency of the acoustic action. The integral
relation (21.1) for the evaluation of the stress becomes

σ = −ε2
0

∞∫

0

dε⊥
∞∫

−∞
dε//�σ ′(ε⊥, ε//) f (ε⊥, ε//)Q(ε⊥, ε//, ε(t)). (21.7)

To investigate the acoustic properties of the Preisach–Arrhenius model, Eq. (21.6) is
integrated. The exact solution subjected to the conditions of periodicity (Q(θ + 1) =
Q(θ)) is

Q = −
∫ θ+1
θ dθ ′gs(θ

′) exp
[
− ∫ θ+1

θ ′ gc(θ
′′)dθ ′′

]

1 − exp
[
− ∫ θ+1

θ gc(θ ′′)dθ ′′
] , (21.8)

where gs = (2/F) exp(−ε⊥) sinh(ε(θ)−ε//), gc = (2/F) exp(−ε⊥) cosh(ε(θ)−ε//).
The formulae (21.7) and (21.8) with an appropriate modeling of the distributions

�σ ′(ε⊥, ε//) and f (ε⊥, ε//) are sufficient for the description of the acoustic response
of materials in the frame of the PA model. Here the results of the analysis are pre-
sented for the simplest variation of �σ ′(ε⊥, ε//) and f (ε⊥, ε//) in the PM plane
(ε⊥, ε//). For this purpose the product �σ ′(ε⊥, ε//) f (ε⊥, ε//) is estimated by its
characteristic value (�σ ′ f )0 and the extent of the element distribution in the PM
plane is assumed to be limited by the boundaries 0 ≤ ε⊥ ≤ εmax⊥ , εmin

// ≤ ε// ≤
εmax
// (εmin

// < 0, εmax
// > 0) (Figure 21.2). It is worth mentioning that the assump-

tion �σ ′(ε⊥, ε//) f (ε⊥, ε//) ≈ const is rather common in the applications of the
Preisach–Mayergoyz model to acoustics, because only a small area of the PM plane
with the dimensions ∝ εAεA/2 (where εA is the amplitude of the acoustic wave) inter-
acts with sound in the PM model.2, 3, 9 In this case the details of the �σ ′ f distribution
outside this small area play no role. In the Preisach–Arrhenius model the situation
is different because the acoustic wave perturbs the relaxation of all the elements of
the PM plane and it may appear of considerable relevance (in particular, for the case
of low-frequency acoustic loading) that the distribution of the elements is somehow
limited (i.e.,

∣∣�σ ′ f
∣∣ diminishes when ε⊥ → ∞ and

∣∣ε//

∣∣ → ∞).
In Figure 21.4 the results of the numerical evaluation of the hysteresis stress/strain

loops predicted by Eq. (21.7) and Eq. (21.8) are presented19 for the particular case of
a sinusoidal strain variation and a homogeneous element distribution inside the rec-
tangular area ε⊥ ≤ εmax⊥ = 10, −10 = εmin

// ≤ ε// ≤ εmax
// = 10. Modification of

the hysteresis loop with increasing wave amplitude at intermediate nondimensional
frequency F = 1 is demonstrated in Figure 21.4a. The transformation of an elliptical
loop, which is typical for linear hysteresis in a stress/strain relationship, to a nonel-
liptical loop, which is typical of nonlinear hysteresis, with increasing wave amplitude,
is clearly seen. Figure 21.4b demonstrates the opening of the hysteresis loop with
increasing frequency, indicating the dynamic nature of hysteresis phenomena captured
by the Preisach–Arrhenius model.
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Fig. 21.4. Numerically obtained normalized stress/strain hysteretic dependences in the case of homoge-
neous element distribution inside the rectangular ε⊥ ≤ 10, −10 ≤ ε// ≤ 10. The path of the material state
variation is directed clockwise along the loops. Modification of the hysteresis loop with increasing wave
amplitude at fixed frequency F = 1 (a). Modification of the hysteresis loop with increasing frequency for
the fixed wave amplitude εA = 1 (b).

3. Transition from Rate-Dependent to Rate-Independent Hysteresis

From the qualitative analysis of the validity limits of the Preisach–Mayergoyz model
(presented in Section 1) it could be concluded that the PM regime should be located
between the quasiequilibrium and the quasifrozen limits of the Preisach–Arrhenius
model. From physical considerations, the PM regime is absent at very low frequencies,
because there are nearly no hysteresis phenomena. In fact, an element has sufficient
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time both during loading and unloading to assume the same equilibrium configura-
tion (see Figure 21.4b). At very high frequencies, the role of hysteresis is expected
to be nearly negligible because the elements have no time to switch from one level
to another. The numerical analysis of Section II has also confirmed that the transi-
tion from linear to nonlinear hysteresis tends to occur with increasing wave amplitude
(see Figure 21.4a). These qualitative arguments are supported by the analytical esti-
mates of the nonlinear contribution to the elastic modulus, which can be obtained19

in the frame of the mathematical formalism presented in Eqs. (21.7) and (21.8). The
so-called secant modulus20 〈E〉 ≡ σ(ε = εA)/εA, which is one of the possible forms
of presenting the modulus defect, was estimated analytically under the assumption of
the infinite extension of the homogeneous distribution of the elements in the PM plane
(in other words, εmax⊥ → ∞, εmax

// → ∞, εmin
// → −∞), and by approximating the

sinusoidal strain variation in the acoustic wave by a sawtooth profile.
The analysis has demonstrated that the linear decrease of the modulus defect with

the acoustic wave amplitude 〈E〉 ∝ −εA, which is characteristic of rate-independent
hysteresis in the frame of the PM model, can be realized only at high amplitudes of
the acoustic loading (εA  1). However, the latter should be in the region of the
homogeneity of the elements’ distribution (formally εmax⊥ → ∞, εmax

// → ∞, εmin
// →

−∞, when εA  1). Three different frequency regimes can be identified.
In the high-frequency regime, determined by the inequality F  FH ≡ exp(2εA)/

(4εA), the contribution to the modulus (which, in the following, is normalized by
(�σ ′ f )0ε

2
0) is very small

|〈E〉| ≈
[
1/(4Fε2

A)
]

[ln(F/FH )/(F/FH )] � 1. (21.9)

The significant values of 〈E〉 with the dominant contribution, which is linear in
strain, have been found only in the intermediate frequency regimes exp(εA)/(4εA) ≡
FI � F � FH ≡ exp(2εA)/(4εA) and exp(−εA/2)/(4εA) ≡ FL � F � FI ≡
exp(εA)/(4εA), where the secant modulus varies as 〈E〉 ≈ −4εA + [ln(4FεA)]2 /εA

and 〈E〉 ≈ −εA + 2 ln(4FεA), respectively. Linear dependence of the modulus on
strain amplitude disappears in the low-frequency regime defined by the inequality
F � FL ≡ exp(−εA/2)/(4εA), where the dependence of the modulus on the strain
amplitude is logarithmically weak

〈E〉 ≈ −2 ln [1/(4FεA)] . (21.10)

The obtained estimates correlate with the qualitative expectations. First, the
Preisach–Mayergoyz regime, in which 〈E〉 ∝ −εA, has been recovered as a partic-
ular case of the Preisach–Arrhenius model. It is predicted that the PM regime can be
obtained for εA  1 in a wide frequency interval

exp(−εA/2)/(4εA) ≡ FL � F � FH ≡ exp(2εA)/(4εA). (21.11)

Note that for εA  1 we have FL � 1, whereas FH  1. The theory predicts that
acoustic nonlinearity grows with increasing frequency of a high-amplitude excitation
(εA  1) in the low-frequency domain F � FL , that it weakly (logarithmically)
depends on the frequency in the intermediate domain FL � F � FH of quadratic
hysteretic nonlinearity, and that it falls in the high-frequency domain F  FH .
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Second, in accordance with the derived formulae in transition from the low-
frequency regime F � FL to the intermediate-frequency regime FL � F � FH ,
the dominant contribution to the secant modulus changes from being nearly strain
independent to having a linear dependence on the strain. So, for a material loaded
by high-amplitude acoustic waves, the critical frequency FL can be identified as a
transition frequency from the regime where its elements behave as if they were in
quasiequilibrium (Figure 21.3), to the regime where they behave as bi-stable units
(Figure 21.1).

Third, in accordance with the derived formulae, in the transition from the
intermediate-frequency regime FL � F � FH to the high-frequency regime F  FH ,
there is a significant diminishing in secant modulus magnitude that is accompanied by
the disappearance of the contribution which is linear in strain amplitude. Consequently,
the critical frequency FH can be identified as a transition frequency from the regime
where the mesoscopic mechanical elements behave as bi-stable units, to the regime
where they behave as quasifrozen ones.

In accordance with the obtained results, if the dominant contribution to the modulus
defect in experiment is linear in wave amplitude, this necessitates the strong inequality
sA  1. In other words, the dimensional acoustic strain amplitude should significantly
exceed the characteristic strain s0 = kB T/d of the material. In this limiting case,
the theory predicts that the dispersion of the nonlinearity, which is accompanied by
the deviation from the 〈E〉 ∝ −εA law, might be expected in the frequency ranges
F ≤ FL and F ≥ FH .

It should be also noted that the obtained results correlate well with the experimen-
tally observed dependence of the modulus defect on the wave amplitude.14 For the
comparison it should be taken into account that in the high-amplitude regime the de-
pendence of the critical frequencies on the wave amplitude is exponentially strong [see
Eq. (21.11)]. For example, if for the initial amplitude of the acoustic excitation with
εA  1 the system is in the low-frequency regime F � FL , then with increasing εA

the characteristic frequency FL ≡ exp(−εA/2)/(4εA) diminishes and sooner or later
the opposite condition FL � F will be fulfilled. This corresponds to the transition of
the system with increasing wave amplitude from the low-frequency quasilinear regime
(21.10) to the intermediate-frequency regime characterized by 〈E〉 ∝ −εA typical of
PM model.

If for the initial amplitude of the acoustic excitation with εA  1 the system is in the
high-frequency regime F  FH , then with increasing εA the characteristic frequency
FH ≡ exp(2εA)/(4εA) increases and sooner or later the opposite condition F �
FH will be fulfilled. This corresponds to the transition of the system with increasing
wave amplitude from the high-frequency quasifrozen regime (21.9) to the intermediate
frequency regime characterized by 〈E〉 ∝ −εA typical of PM model.

Taking into account that the PA model naturally describes quasilinear behavior of the
microinhomogeneous material at weak amplitudes of acoustic loading (εA � 1; see
Figure 21.4a), it can be also concluded that the developed theory predicts the transition
from the amplitude-independent modulus defect to the law 〈E〉 ∝ −εA (typical of
hysteretic quadratic nonlinearity) with acoustic amplitude increasing from εA � 1 to
εA  1.
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4. Discussion

Prior to drawing any conclusion from the work presented above,it should be clearly
stated that the thermal relaxation Preisach–Arrhenius model does not include all the
effects producing rate-dependence of the hysteresis. See, for comparison, the descrip-
tion of rate-dependent hysteretic phenomena in magnetism.10 The rate-dependence
may also appear due to the fact that the acoustic field cannot, in principle, transform
the state of a mechanical element infinitely fast.10, 21 In other words, an individual me-
chanical element cannot change its configuration instantaneously either due to direct
effect of the acoustic field or due to thermal fluctuations. In the Preisach–Arrhenius
model, the finite transition time appears only statistically in averaging over all the
elements, whereas each of the elements still exhibits instantaneous transitions as in
the zero-temperature (PM) model. To introduce finite transition times for the individ-
ual elements, either a micromechanical model of the transition between the different
states should be formulated,10, 22 or the finite transition times could be introduced phe-
nomenologically as a temperature-independent relaxation process.21 Surely, the gen-
eralized theoretical model of hysteresis should include a correct description of the
time evolution of both the transitions caused by thermal fluctuations and of those di-
rectly induced by the acoustic forces. The development of a generalized model would
be highly desirable for the quantitative interpretation of the experiments,12, 13, 15, 16, 23

where the dependence of the acoustic nonlinearity of the microinhomogeneous mate-
rials on frequency has been observed.

5. Conclusions

The evaluation of the Preisach–Arrhenius model for the acoustic hysteresis demon-
strates that thermal effects are capable of inducing a dependence on wave frequency of
the nonlinear acoustic properties of microinhomogeneous materials. Thermal effects
can also lead to an amplitude-dependent behavior of the material which differs from
that predicted by the Preisach–Mayergoyz model in several important aspects. The
Preisach–Arrhenius model of rate-dependent acoustic hysteresis also explains the pos-
sible transition in acoustic behavior of microinhomogeneous materials with increasing
wave amplitude from a linear one to another characterized by dominance of the hys-
teretic quadratic nonlinearity. From the physics point of view this is due to the fact that
the higher the amplitude of the material mechanical loading, the more difficult for the
thermal fluctuations to retain the system in a unique quasiequilibrium state.
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Abstract
Inverse problems are omnipresent in natural and engineering sciences, for example, in material
characterization. Impressive results have been obtained by applying analytical–numerical tech-
niques to their solution; however, in many practical cases these methods present drawbacks,
which impede their application. In this scenario, Genetic Algorithms (GAs) arise as interesting
alternatives, especially for the solution of complicated inverse problems, such as those result-
ing from the modeling and characterization of complex nonlinear systems, such as in particular
materials with nonlinear elastic behavior. In this chapter, we present a brief introduction to in-
verse problem solution, highlighting the difficulties inherent in the application of traditional
analytical–numerical techniques, and illustrating how genetic algorithms may in part obviate
these problems.

Keywords: Elastic wave propagation, genetic algorithms, inverse problems, materials char-
acterization, model fitting

1. Introduction to Inverse Problems

When seeking to model a physical system or phenomenon, one wishes to determine
mathematical models describing the relationship between the excitation introduced in
the system (input) and its related response (output). A Forward Problem (herefore
denoted as FP) consists in the prediction of the response of the system, once the exci-
tation and/or the internal properties are known, whereas an Inverse Problem (herefore
denoted as IP) aims at reconstructing the excitation and/or internal structure, start-
ing from the response. In various important applications, such as tomography, model
fitting, image analysis, geophysics, and many others, the input of the system is not
directly accessible, but can be somehow recovered by measuring its output.

According to the original definition, solving an IP corresponds to reconstructing a
vector of values, named image �i , given a data vector �d. The discrete or continuous
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nature of the image and data spaces determines the type of IP and particularly of the
forward operator Â, which maps a point of the image space into a point of the data
space:

Â(�i) = �d. (22.1)

The associated IP can thus be solved by determining the vector �i for which Eq.
(22.1) is satisfied, knowing the data �d and the operator Â. In many important appli-
cations, however, the image �i is actually known, whereas the input includes boundary
conditions and/or the parameters describing the transfer function Â, which can only
be indirectly determined starting from the knowledge of �i and �d . These two types of
problems, however, are closely related; in the following, we adopt a general definition
of IP, denoting as “input” any kind of information one wishes to determine, unless
otherwise stated.

In this section, classical theory about IPs is briefly revised, and the concept of ill-
posedness and ill-conditioning introduced. Dealing with ill-posedness and noise is an
important aspect because most IPs of practical interest are not well-posed. However
we show that, even in this case, useful information may still be extracted. An extensive
literature on IPs theory is available; for more detailed information; see for instance the
works of Kirsh,1 Sabatier,2 Tarantola,3 and Tan and Fox.4

1.1 Ill-Posedness and Approximated Solutions

Given the FP, solving the IP involves finding the image �i for given data �d. Inde-
pendently of whether �i and �d are continuous or discrete in nature, the IP is termed
well-posed5 if it satisfies the following conditions.

1. Existence: A solution exists for any data �d in data space.

2. Uniqueness: The solution is unique in image space.

3. Continuity: The inverse mapping �d → �i is continuous.

The first two requirements simply state that the operator Â should have a well-
defined inverse Â−1, with codomain equal to the entire data space, whereas the third
is a necessary, yet not sufficient, condition for the stability of the solution.

A solution can be considered stable if a small deviation � �d in the data vector results
in a small deviation ��i of the corresponding image point. An important quantity for
characterizing the stability of an IP is the condition number, cond ( Â), which can be
defined as

cond( Â) = ‖ Â‖‖ Â−1‖, (22.2)

where ‖ Â‖ means the norm of the operator Â and Â−1indicates the inverse (or
pseudoinverse in the case the inverse doesn’t exist) of the same operator. It can be
shown that

‖��i‖
‖�i‖ ≤ cond( Â)

‖� �d‖
‖ �d‖ , (22.3)
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where ‖� �d‖ is the variation of �d and ‖��i‖ the corresponding variation of �i . Equa-
tion (22.2) entails that the condition number controls relative error propagation from
the data to the solution, so that the IP admits stable solutions only if it is also well-
conditioned, that is, the condition number is not too large. It is clear that the definition
of ill-conditioned problems is rather vague, compared to that of ill-posed ones. How-
ever, it should be noted that ill-conditioned problems can show properties very similar
to those of ill-posed ones, in terms of sensitivity to noise and high-frequency pertur-
bations.

In practical applications, data �d are collected through measurements, and thus are
affected by noise. Usually, measured data can be represented as the superposition of the

“true” data vector �̃d, which can be obtained through the forward process as formulated
in Eq. (22.1), and a stochastic variable �n representing the noise process; the IP thus
becomes:

Â(�i) = �d = �̃d + �n. (22.4)

However, after adding random noise, this equation may no longer admit a solution:
the IP must therefore be reformulated as an optimization problem, where the quantity
to be minimized is the misfit C(�i) between the measured data �d , and the data calculated
from a given image �i . Thus, an approximated solution can be found by minimizing the
following function,

C(�i) = ‖�d − Â(�i)‖. (22.5)

In the presence of noise and ill-conditioned problems, the invertibility of the
operator Â turns out to be an issue of relatively little interest: even if the problem can
be exactly solved from a mathematical point of view, the effects of noise amplification
can be disruptive to the point that the solution is actually determined by the noise itself,
rather than by relevant measurement information. Due to the uncertainty introduced by
noise, the global minimum of C(�i) could be not the optimal solution, whereas better
results can be obtained by considering a feasible set of solutions [specifically those
satisfying the condition C(�i) < C0, with C0 depending on the level of noise] which
can be considered consistent with the observed data.

Even if experimental data were noise-free, the IP could still admit multiple feasible
solutions because of its indetermination, either due to the lack of available experi-
mental data or because the forward operator, failing conditions 1 and 2, is not exactly
invertible. When multiple potential solutions are available, and minimizing the misfit
function may lead to instability, a compromise between stability and accuracy of the
solution can be reached by including a priori information.

In fact, one usually has an idea of what a good solution should “look like”, that is,
of which properties it should reasonably possess. In the IP field, techniques employed
to take into account such a priori information are known as regularization techniques.
Common methods include Tikhonov’s, Levenberg’s, and Levenberg–Marquardt’s reg-
ularization techniques.6 Although an exhaustive discussion is beyond the scope of this
chapter, a brief explanation of at least the most common and widely known technique,
Tikhonov’s regularization, is deemed essential.
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Let �i0 be the default solution for a given IP and let L̂ be a linear operator. For
instance, �i0 could be determined according to a priori information, when available, or
can be simply set equal to the null solution �0. The Tikhonov’s regularization scheme
consists in minimizing, instead of the quantity given in Eq. (22.5), the following
function,

�(�i) = λ2 · �(�i) + C(�i) = λ2‖L̂(�i − �i0)‖2 + ‖�d − Â(�i)‖2. (22.6)

Two competing terms are thus jointly minimized: the former is the misfit function,
and the latter penalizes solutions “distant” from the default solution, according to the
operator L̂ . In the simplest case (i.e., with �i0 = �0 and L̂ equal to the identity operator),
this term simply reduces to the norm of the solution. The weight parameter λ controls
the amount of regularization of the solution: by adjusting its value, one can regulate the
sensitivity of the solution to measured data, and therefore to the noise therein, in order
to counterbalance the effect of perturbations. It is thus clear that the optimal value for
λ is noise dependent. A soft computing method for the choice of λ is briefly illustrated
in Section 6.1.

1.2 Classical Methods: A Brief Overview and Related Difficulties

Many techniques have been proposed for solving IPs, which are often domain-specific
and exploit the peculiarities of a given problem. However, even in this variegated sce-
nario some common characteristics can be identified.

In some problems, the unknown image and the data can be related by an invertible,
although generally nonlinear, operator, so that Eq. (22.1) can be exactly solved. This
approach is suitable only for restricted classes of IPs, because these methods are unable
to deal with ill-posedness, ill-conditioning, data uncertainty, and underdetermination.

As previously mentioned, IPs are usually reformulated as optimization problems.
Supposing that an analytical representation of the forward operator is available, a
formal solution can often be readily found. In the simplest case, Â is a linear operator,
and the problem is reduced to zeroing the derivatives of the misfit function C(�i) with
respect to �i and solving an (often large) system of coupled linear equations. In the
most general case, however, that is, when the operator is nonlinear, an analytical so-
lution of this system may not be available. Unless the problem is somehow simplified
(e.g., by linearization), we have to resort to iterative methods for multidimensional,
nonlinear optimization, such as the steepest descent algorithm (belonging to the set of
conjugate gradient methods) or the Gauss–Newton method. Such methods are based
on the exploration of the “search space,” starting from an initial guess for the solution
and then moving towards a local minimum based on the values of the derivates in the
current point. These optimization techniques represent a valid method in the solution
of IPs. However, they may suffer from various drawbacks. In particular, they tend to
be computationally intensive and liable to the presence of local minima, issues that
may be particularly critical when the error landscape tends to present many local op-
tima. Furthermore, these techniques require an analytical formulation of the objective
function to be minimized, for example, C(�i), which is generally not possible.
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Novel techniques such as Genetic Algorithms (GAs) emerge in this scenario as an
interesting alternative, due to the fact that they do not require an analytical formulation
of the objective function, and are intrinsically parallel in conception, and thus naturally
adequate to parallel implementations, which may allow a viable solution of otherwise
impractically burdensome problems from a computational point of view. Last but not
least, they are relatively robust to a poor initialization and in general to the presence of
local minima.

2. Genetic Algorithms and Inverse Problems

Genetic Algorithms (GAs) are a popular Soft Computing (SC) technique, a term which
denotes an ensemble of methodologies that “differ from conventional (hard) comput-
ing in that, unlike hard computing, they are tolerant of imprecision, uncertainty and
partial truth” in order to “achieve tractability, robustness and low solution cost.”7 Some
of these methodologies can be collected in the so-called “biologically inspired com-
puting” class: borrowing features and abilities of biosystems, which seem to be partic-
ularly adept at solving precisely those classes of computationally hard problems that
do not seem to lend themselves well to classical algorithmic approaches.

Genetic algorithms in particular mimic the evolutionary process by creating a pop-
ulation of solutions, which evolve through principles inspired by the natural selec-
tion criterion. They are very effective in search and optimization when the underlying
search (parameters) space is large, multidimensional, and characterized by compli-
cated and unknown landscapes, often characterized by the presence of local optima.
Excellent references in the field are the books by Goldberg8 and Michalewicz.9

In this section, we briefly review the basic principles of GAs in order to illustrate
their application and their advantages in solving IPs. Examples of interest in ultra-
sonics and NDE/NDT are presented in the following section.

The first step in a genetic algorithm consists in the definition of an initial “popula-
tion” of solutions. In our specific case, each solution corresponds to a determined set
of values of the input parameters of the system, that is, the components of the vector �i
as introduced in Section 1 (see Figure 22.1). Each member of the population is termed
chromosome or genome and is composed of genes. The correspondance between genes
and parameters may be biunivocal, with each real parameter encoded by a single real-
valued gene (direct genotype-to-phenotype mapping), or else each parameter may be
associated with a string of genes assuming values from a finite alphabet (typically a
binary alphabet), whose members are termed alleles (Figure 22.2).The initialization of
the population may be random, although the use of supplementary information may be
quite useful in accelerating convergence.

Once the population is defined, a process of selection is enacted, in order to guar-
antee the survival of the genetic heritage of the fittest individuals. The definition of
fitness is related to the value of the objective function corresponding to the individual.
It is worth noting that the definition of the objective function is a fundamental step
in the implementation of a GA because it is at this point that the generic problem is
reinterpreted as an optimization one. Furthermore, the effectiveness and the efficiency
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of the algorithm are strongly related to the measure in which the objective function
quantifies the fitness of the solutions. In our particular case, the degree of fitness is re-
flected by the error between the observed data and the computed output of the system
characterized by the parameters associated to the individual.

Having defined the fitness function, it is now necessary to explicate how the selec-
tion is implemented. Different schemes are proposed in the literature, but the most
common are the roulette-wheel selection, the ranking selection, and the stochastic bi-
nary tournament selection (Figure 22.3). In the roulette-wheel selection, each individ-
ual is selected with a probability proportional to its degree of fitness. There are many
kinds of ranking selection; perhaps the most common selects n copies of the N/n
fittest individuals as the successive generation, where N is the number of elements in
the population. The value of n determines the greediness of the algorithm; high values
of n ensure a rapid convergence, but may likewise imply an inadequate exploration
of the parameter space. Finally, in the stochastic binary tournament selection, pairs of
individuals are randomly chosen among the population and the winner (i.e., the fittest
individual in the pair) is then selected. This technique apparently converges faster than
both the roulette-wheel and ranking schemes.

After the selection process has been completed, the chosen individuals undergo a
process, whose objective is to create new hybrid individuals, which combines desirable
properties of the “parent” individuals. This process is named crossover (Figure 22.3),
and consists in randomly choosing two individuals and substituting them with proba-
bility pcross with their children, that is, two new individuals obtained by crossing the
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genes of the parents. This process is particularly important in the search for the optimal
solutions, as the new individuals represent new solutions, which combine properties of
individuals known to possess a relatively high degree of fitness. Specifically, in the
most common variant of crossover known as single-point crossover, the chromosomes
are divided in two parts at a specific point termed the locus, and the corresponding
halves of the two parents are switched to create the children. Other variants of the
crossover scheme exist, whose aim is to to allow a greater versatility in the change, for
example, avoiding that genes on different ends are always separated during a crossover.
For example, in uniform probability crossover, each gene is exchanged among parents
with uniform probability.

Finally, the last operation applied to the population is mutation. Mutation is a tech-
nique applied in order to ensure a certain degree of variety in the genetic heritage of
the population of solutions and thus avoid premature convergence of the population.
It consists in the perturbation with probability pmut of each gene of each individual of
the population.

The genes that are the result of the selection–crossover–mutation process, often
termed offspring, may completely or in part replace the original population. The new
population thus derived is consequently termed the new generation and constitutes the
successive “guess” on the input of the system. The succession selection–crossover–
mutation–replacement is iterated until a threshold on the number of iterations, on the
value of the objective function, or on the convergence of the genetic heritage is at-
tained.

Though intuitively the concepts underlying the GAs’ efficacy are evident, a formal
treatment of the methodology capable of explaining and predicting their behavior is
still largely incomplete. Existing theories developed in particular for binary-coded,
roulette-wheel selection, single-point crossover variants are based principally on the
concept of schemata, that is, similarity templates. In particular a schema is a set of
chromosomes that share identical values of corresponding genes. For example, the
schema **1*0*** corresponds to the set of (8 bit, binary-coded) chromosomes, that
have the third gene set to one and the fifth gene set to zero and don’t-cares in all the
other positions. Two important results in the theory of schemata are the schema theo-
rem, which affirms that short, low-order schemata corresponding to genes with above-
average objective function values will receive exponentially increasing representation
in the successive generations, especially when the defined bits are contiguous, and the
implicit parallelism theorem, which states that the GA treats O(N 3) schemata in each
generation. Upon the first result is built the so-called building block hypothesis, which
states that a GA seeks near-optimal performance through the juxtaposition of short,
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low-order, high-performance schemata, hence referred to as “building blocks.” Under
this hypothesis, the importance of the gene encoding process becomes clear, and in
fact it is advisable to encode the chromosomes in such a way as to guarantee as far
as possible that similar individuals have similar error objective function values. On
the other hand, the second theorem indicates that doubling the population may more
than halve the runtime, so that if the objective function evaluation is not excessively
computationally intensive, the use of a large population is recommended.

Theoretical considerations aside, a certain number of practical indications have been
developed due to experience gathered by an intensive use of GAs. In particular, typical
values for crossover and mutation rates in binary-coded GAs commonly found in the
literature10 are respectively 0.6 < pcross < 0.9 and 0.001 < Pmut < 0.01. This
mutation probability corresponds to the mutation of at most a couple of alleles per
chromosome and a couple of chromosomes for generation. In general, in any case,
real-valued parameters are better managed with real-valued encoding. Furthermore,
stochastic binary tournament selection works faster than roulette-wheel and ranking
selection and has fewer problems of convergence.

3. Inverse Problems in NDE/NDT

In this section, we present a brief overview of different examples of interest in ultra-
sonics NonDestructive Evaluation (NDE), which require the solution of IPs in order
to characterize the elastic properties of a specimen and to discern its internal compo-
sition. The respective IPs have been tackled using both classical methods and genetic
algorithms.

See also the works of Windels and Van Den Abeele11 and of Prevorovsky et al.12

in this book for other examples related to the ones shown here. Other IPs in the
NDE/NDT domain include, for example, acoustic emission sources localization and
identification11 and the description and modeling of nonclassical nonlinear elastic ma-
terials via a Preisach–Mayergoyz approach to elastic hysteresis.12, 14

3.1 Measurements of the Elastic Constants of a Solid Specimen

3.1.1 Resonant Ultrasound Spectroscopy

The determination of the elements of the second-order elastic constants tensor, Ci jkl ,
of a 3-D finite body (under the approximation of linear viscoelastic behavior) is a type
of IP very well known in ultrasonics and NDE/NDT.15 It can be solved in different
ways, depending on the choice of the specific model for the associated FP.

One of the most common formulations of this problem is based on the measure-
ments of the resonant frequencies of a body, which vibrates in accordance to specific
eigenmodes. The resonant responses of viscoelastic bodies depend on their shape, elas-
tic constants, crystallographic orientation, mass density, and anelastic behavior (dissi-
pation). Thus, the measurement of eigenfrequencies may yield information on these
parameters.
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Continuous-Wave (CW) methods15 are based on the excitation of eigenmodes of vi-
bration through the injection of plane elastic waves. The use of plane waves yields sev-
eral experimental difficulties, among which we mention the necessity of large samples
in order to obtain quasiplane traveling waves and to avoid diffraction and scattering,
the use of transducers with a diameter much greater than the ultrasound wavelength,
but much smaller than the linear sample dimension, which implies a reduction in the
amplitude and an increase in wave distorsion of the signals from/to the electronic mea-
surement chain.

The excitation of eigenmodes of vibration through plane waves leads to a sim-
ple formulation of the FP. After choosing a particular direction of propagation re-
lated to the crystallographic orientation of the specimen, a plane wave solution of the
initial/boundary value conditions (Cauchy–Dirichlet) problem for the elastodynamic
wave equation leads to a set of algebraic linear equations with variables given by
a subset of the elastic constants tensor. The squares of phase velocities are known
(Christoffel eq.s)16, considering that the phase velocities are exactly related to the par-
ticular modes (i.e., eigenfrequencies) of vibration, so they can be estimated from the
resonance spectrum after mode identification.16 This procedure involves many mea-
surement sessions, using distinctly prepared specimens, in order to analyze wave prop-
agation along the different directions: the number of sessions must be at least equal to
the number of independent components of Ci jkl in order to obtain a complete estima-
tion of the elastic constants tensor, implying that the estimation of elastic constants of
low-symmetry materials15 may be a cumbersome procedure.

A second methodology, called Resonant Ultrasound Spectroscopy (RUS),17, 18 tries
to extract more information from a single resonance spectrum. Instead of repeatedly
injecting plane waves to excite eigenmodes of different types in the specimens, the
experimental protocol of RUS involves only one measurement. The specimen (usu-
ally with a parallelepipedlike shape) is held lightly at two of its corners between two
transducers, in order to excite eigenmodes with low-amplitude contact forces. Under
this protocol, the FP can be formulated with good accuracy as a free-boundary value
problem with the elastodynamic wave equation.19 It has been shown that the Cartesian
components of the displacement vector field minimize the Lagrangian of the system.20

The problem of recovering the displacement vector field becomes then a variational
problem that can be solved through the Rayleigh–Ritz method.21 The three displace-
ment components are substituted by their expansion in a suitable basis of a functional
space, of which we wish to determine the coefficients. Minimizing the Lagrangian
reduces to solving a generalized eigenvalue problem, where the eigenvalues are pro-
portional to the squares of the resonance frequencies and the matrices involved depend
on the parameters, and in particular on the density and the elastic constants.

In this case, the formulation of the forward operator Â consists in a complicated
set of mathematical procedures leading to the generalized eigenvalue problem. This
is precisely an example of an inverse operator that cannot be analytically determined.
However, the solution to the corresponding IP can be obtained in many cases through a
conjugate gradient approach to the least squares optimization problem (model fitting),
as described in Section 1.2.17, 22
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3.1.2 Elastic Constants Estimation for a Monoclinic Crystal Through
a Dedicated GA

The estimation of the second- and third-order stiffness tensors of a crystal of caesium
di-hydrogen phosphate (CeH2PO4) obtained by Chiroiu et al.23 is reviewed here as an
example of the solution of an IP by the use of a GA.

CeH2PO4 is a crystalline material with ferroelectric behavior. Ferroelectric crystals
are used in the fabrication of memory devices in the microelectronic and nanoelec-
tronic industry.24 The detection of internal defects through elastic waves has increas-
ingly obtained great importance. The estimation of both second- and third-order elastic
constants is fundamental for the determination of the size, shape, and localization of
defects through the analysis of classical nonlinear effects such as high-order harmonics
generation.25, 26

In their work,23 Chiroiu et al. derived the linear algebraic equations relating the
squares of phase velocities, based on experimental data, and the linear combinations
of elastic constants, as discussed in the continous wave approach presented in Sec-
tion 3.1.1.

In order to take into account the nonlinear generation of harmonics effect, the solu-
tion for the Cauchy–Dirichlet problem for the elastodynamic equation was formulated
as a sum of plane wave (along a fixed direction) displacement fields, each of which was
characterized either by the fundamental frequency or by one of its integer multiples.
This formulation and the use of a nonlinear stress–strain equation involving the third-
order stiffness tensor leads to the corresponding Christoffel equations with eigenvalues
proportional to the squared phase velocities and matrix elements depending on linear
combinations of both second- and third-order elastic constants.

CeH2PO4 has a monoclinic symmetry, so the total number K of independent elastic
constants is 45 (13 of second order and 32 of third order). For each fixed direction of
plane wave propagation, a FP of the previously cited type can be formulated and three
possible solutions can be obtained, one quasilongitudinal (qP) and two quasishear (qS)
with respective phase velocities. The total number N of experimental velocity mea-
surements must be greater than K in order to avoid problems of numerical instability
during the inversion, so the total number of selected directions of propagation is very
high, as typical for CW methods.27

The inverse problem was formulated as an optimization problem (specifically a
model identification in the least squares sense), where

ε(C) =
N∑

l=1

(vm
l − vc

l (C))2 + δ2 (22.7)

is the objective function to be minimized, C is a collective symbol identificating
the set of all the independent elastic constants, vm

l is the measured phase velocity,
∀l = 1, . . . , N , and vc

l is the corresponding one calculated by resolving the forward
problem using a guess for C . Finally, δ is a correction connected to the choice of the
specific boundary value conditions.

Instead of using conjugate gradient methods as reported in Section 2.1, in this case
the authors exploited a GA approach for the determination of the value of the elastic
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constants corresponding to the minimum of ε(C). The fitness function (which has to
be maximized) was expressed as follows,

F = χ2

ε(C)
, (22.8)

where χ2 is the sum of the squared measured phase velocities.
The subsequent fundamental step was the coding of the parameter space: each of

the 45 elastic constants was considered as a real-valued parameter belonging to the
interval [−100; +100] GPa; that interval was subdivided into 3 * 106 subintervals
in order to guarantee an estimation error of about 10−4 GPa. Each parameter was
then coded as a binary string (b j

21b j
20 . . . b j

2b j
1b j

0)(∀ j = 1, . . ., 45) of 22 bits rep-
resenting an integer number between 1 and 3 * 106 corresponding to each subinter-
val. The concatenation of the gene strings thus constituted the individual chromosome
(b1

21b1
20 . . . b1

2b1
1b1

0b2
21b2

20 . . . b2
2b2

1b2
0 . . . b45

21b45
20 . . . b45

2 b45
1 b45

0 ). In this way, the 45-
dimensional parameter space was mapped onto a 45 * 22-dimensional Boolean space.

The GA was then implemented as described in Section 2, using a roulette-wheel
selection operator. An intermediate new step in the algorithm was moreover intro-
duced after the application of the mutation operator: a fluctuation operator was used,
whose aim was the improvement of the search in the neighborhood of the current fittest
genome. The iterations were stopped when the fitness function F achieved a stationary
value.

The total number N of chosen experimental data was 57, with 22 velocity values for
qP waves and 35 for qS ones; the directions for which the measured phase velocities
were very low were not considered, nor did the increase in the number of input values
lead to a significant improvement in the accuracy of the estimated elastic constants.
The GA achieved convergence after about 400 iterations. The authors showed that it
was able to estimate the elastic constants with a good accuracy and with less computing
time with respect to conjugate gradient methods.

3.2 Acoustic Tomography

3.2.1 Introduction

Tomography is a typical example of IP that, thanks to its vast range of potential ap-
plications, has always raised a great interest in the scientific community. Generally,
tomography refers to the cross-sectional imaging of an object obtained from signals
detected in various locations. Depending on the type of source (e.g., X-ray, magnetic
radiofrequency pulses, ultrasounds), one can obtain highly accurate maps of different
physical parameters of the object being imaged.

From a mathematical point of view, classic tomographic techniques deal with the
reconstruction of an image from its projections, which can be rigorously defined as the
integrals of the image in the directions specified by different angles. For instance, in
X-ray imaging, the attenuation experienced by an X-ray traveling through the object
is proportional to the line integral of the object density along that path. Various recon-
struction algorithms have been defined for recovering the image from these integrals.
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In the case of nondiffracting and nonrefracting sources (i.e., when energy source
rays travel along straight rays), well-established algorithms, such as filtered backpro-
jection or direct Fourier transform methods, are available. These methods are based on
the assumption that integrals are calculated along straight rays, and exploit the proper-
ties of transforms (such as the Radon or Fourier transforms) to obtain fast and accurate
reconstruction.

Ultrasonic Tomography (UT) employs N transmitters and M receivers, located
along the border of the object being imaged, to record the Times of Flights (TOFs) or
amplitudes of an ultrasonic pulse from each transmitter to each receiver, and exploits
this information to recover the physical properties of the object (e.g., attenuation or
wave speed in transmission tomography and acoustic impedance mismatch in reflec-
tion tomography, respectively). It constitutes a viable alternative to other tomographic
techniques, such as X-ray tomography, particularly when avoiding the use of ionizing
radiation is desirable, or when a propagation velocity map is more meaningful than an
attenuation map.

However, in the UT case, the assumption that ultrasonic waves propagate along
straight lines does not hold, due to the refraction of acoustic paths. When inhomo-
geneities in the object cause significant scattering of the wave field, one must take
diffraction into account and resort to specific reconstruction algorithms for diffracting
and/or refracting sources.

Iterative procedures, capable of taking into account irregular sampling geometry and
ray bending, include Algebraic Reconstruction Technique (ART),28 and Simultaneous
Iterative Reconstruction Technique (SIRT).29 These techniques are very demanding
from a computational point of view, compared to transform-based methods. Although
in principle capable of solving general tomographic problems, they often cannot lead
to a good and reliable solution in a reasonable time.

Basically, these algorithms iteratively adjust the estimated slowness values in order
to provide the best match between computed tp and measured Tp times of arrival.30, 31

Such iterative methods thus require an initial estimate, which is usually set to a uni-
formly gray image, that is, to a constant stiffness (although other techniques have also
been reported in the literature).

For instance, the ART method seeks to estimate the optimal slowness value for each
ray p (i.e., for each receiver–transmitter pair). Let us suppose that the image is dis-
cretized in grid cells with slowness value si j = 1/ci j . Then, at each iteration, the ART
algorithm calculates the time of arrival along each path, by summing the contributions
of all cells lying in the path itself, and compares this sum to the measured time. The
difference is calculated, and the adjustment is distributed among the cells belonging
to that path. The procedure is iteratively repeated for all paths until convergence is
reached (according to the established convergence criterion). This iterative method ap-
plies to nondiffracting, nonrefracting sources, as well as diffracting and/or refracting
ones. Note that, to account for ray bending, paths can no longer be assumed to be
straight lines, but instead a suitable ray tracing method must be used to determine the
actual path between each transmitter–receiver pair. The SIRT method is based on the
same principle, but differs from ART in that it uses an average correction for all rays
applied to each tomography cell, instead of working on a ray-by-ray basis.
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3.2.2 Applications of GAs to Ultrasonic Tomography

Tomographic techniques, and specifically ultrasonic tomography, have been intro-
duced in the previous section as an important class of IPs, with a wide range of poten-
tial applications. As therein mentioned, although iterative methods for solving general
UT problems are available, their burdensome computational requirements often make
their use impractical as the number of transmitters and/or receivers increases. In this
scenario, GAs emerge as an interesting alternative to other IP-solving techniques, es-
pecially when some a priori information about the specimen is available. For instance,
Delsanto et al.32 have addressed a tomographic problem in which the specimen is as-
sumed to be homogeneous, except for a homogeneous inclusion of arbitrary shape,
of which they wish to predict the geometry. The elastic properties of both regions are
assumed to be known.

Although these assumptions are rather restrictive, there are many important applica-
tions for which the nature of the inclusion is well known. Moreover, the approach can
be easily extended to take into account a higher number of inclusions with different
characteristics, or even to predict the physical properties of the entire specimen (after a
suitable discretization), albeit at the expense of a higher computational load. However,
the intrinsic parallelism of GAs can at least partially compensate for this increase in
computation requirements by allowing a straightforward implementation on parallel
hardware architectures.

To design the GA, a model for the propagation of ultrasonic pulses is required.
In order to allow an easy and fair comparison between GAs and other techniques,
a very simple model based on Snell’s law has been considered, rather than a full-
field simulation. In any case, a more realistic model of ultrasonic pulse propagation is
not expected to strongly affect the convergence properties of the GA-based inversion
technique.

Simply stated, times of flights are estimated by determining the ray path first, and
then calculating the TOF ti j for each transmitter i and receiver j . The agreement be-
tween estimated and experimental TOFs is then evaluated through the misfit function
�, defined as

� =
N∑

i=1

M∑

j=1

(ti j−t̃i j
)2

ti j t̃i j
, (22.9)

where t̃i j represent the experimentally determined TOFs.
Each genome encodes a discretized m × n grid representing the specimen as a 2-D

array. Thanks to the simplifying assumption of homogeneous specimen and inclusion,
a binary encoding can be used. Nevertheless, the number of possible configurations is
still very large, and increases exponentially with the grid dimension. Because the size
of the initial population required for convergence depends on the dimensionality of
the search space, for nontrivial grid dimensions the increase in computational require-
ments would make this approach infeasible in practice, unless a method for reducing
the number of possible configurations is available.

The number of configurations, as well as population size, is related to the number
of schemata. Due to the rather compact and homogeneous nature of both specimen
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and inclusion, solving the problem on a coarser grid should give the large-scale struc-
ture of the inclusion, suggesting a schemata to which all the strings in the finer grid
must belong. A multistep, multiresolution GA approach was thus followed, solving
the problem on a very coarse grid first and then doubling the dimension of the grid at
each step, until the desired resolution was achieved. At each step, each cell completely
surrounded by similar cells is frozen, so that the number of possible configurations is
strongly reduced. The size of the population is still dependent on the grid dimension; a
careful experimental investigation has shown that, for a 160 × 160 grid, the size of the
initial population can be reduced to 60–100 elements, thanks to the adopted multistep
approach.

An important issue in the design of a GA is the selection of suitable operators.
A “good” operator for a specific problem should, in general, favor the identification of
valuable schemata, while avoiding the disruption of fit individuals. For this problem,
an extension of the standard two-point crossover for 2-D arrays was selected, in which
the two children are generated by swapping a submatrix.

On the contrary, usual mutation operators, which normally operate on isolated genes,
are almost useless for this specific problem. In order to favor even further compact con-
figurations, a variant of this operator was thus devised, assigning a randomly selected
cell, along with its nearest neighbors, to be either all inclusion or specimen (according
to the majority of the cells in the block).

Finally, it is worth noticing that, although crossover and mutation points are usually
chosen at random, sometimes other approaches can be more efficient. In this case,
random selection has proven to be very efficient in finding the bulk structure of the
inclusion. On the contrary, to obtain precise border definition, it is convenient to force
crossovers and mutations including cells on the border. Numerical experiments have
shown that the best results are obtained if random and controlled selection iterations
are alternated.

This method has been tested on a variety of synthetic data, showing that the GA-
based method is much more efficient than ART, both in terms of quality of reconstruc-
tion and CPU time. In fact, it gives satisfactory results even for nontrivial configura-
tions, including noncompact, concave, nonsimply connected inclusions, whereas ART
requires, in such cases, a strong increase in the number of transmitters, leading to CPU
times that are unaffordable with a PC. The higher performance of the GA technique
demonstrates its superior ability to exploit available a priori information.

4. Genetic Algorithms in the Solution of Ill-Posed
Inverse Problems

In the previous sections we have briefly explained the principles underlying GAs and
illustrated a few examples of GAs applied to the NDE/NDT field. We have not, how-
ever, considered specifically how GAs may be applied to the solution of ill-posed IPs.
We show in this section that GAs may prove useful both as aid to classical techniques
for the treatment of ill-posed IPs,33 as well as independently when used to resolve
indetermined IPs, especially in the model-fitting domain.
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In Section 1.1 ill-posed problems are formally defined and we have showed how
Tikhonov’s regularization may help obviate the problem. However, a question that is
still open is the choice of the regularization parameter λ. An interesting approach to
this problem that exploits GAs has been recently proposed by Mera et al.34, 35 In this
work, the authors propose a multipopulation GA, where each population resolves the
considered IP for a different value of λ chosen within a possible set of λ j values, ∀ j =
1, . . . Npop (where Npop is the total number of populations), yielding the solution �iλ j .

The solution is then given by the �iλ j with minimum j such that

‖ �̃d − Â
(�iλ j

)
‖ ≤ c δ; (22.10)

according to Morozov’s discrepancy principle.36 The populations may be allowed
to evolve independently or else they may share some individuals through a process
termed migration, which involves the sharing of the best individuals among neigh-
boring populations (in this case populations’ neighbors are given by the populations
with values of λ j immediately greater and lesser). However, in the work it is demon-
strated that a cooperative effort is rewarded with a faster convergence, with values of
fitness in the independent evolution case still lesser after 1000 generations than the
corresponding fitness obtained in 100 generations by the joint evolution strategy.

This example is interesting, as it shows how GAs may be combined with regulariza-
tion schemes in the solution of ill-posed IPs. Regularization techniques, however, are
in general appropriate only in those cases in which, either through previous knowledge
of the system or through physical considerations, a priori information is possessed,
as explained in Section 1.1. In many cases, and especially when the information one
wishes to obtain by resolving the IP is the value of the parameters regulating a system
(i.e., in model fitting), this may not be the case. Model-fitting problems, furthermore,
often are ill-posed in the sense that they are undetermined, as many parameters are
known to have an impact on system evolution, yet little information is known as out-
put. Even in this case, though, GAs have often been shown to be useful, as an atten-
tive study of the convergence rate of the parameters can yield insight into the relative
impact on the evolution of the system, and thus help understand the behavior of the
solutions.

In an interesting study37 focused on the determination of the velocity and dispersiv-
ity parameters in a groundwater contaminant transport model, the authors generated
pseudoexperimental data with a Monte Carlo-based simulation model, assuming spe-
cific values for the parameters, and successively tried to reconstruct them through a
GA. Because the values of the constants were known, the authors were able to assess
exactly the genetic algorithm’s capability in their determination. Specifically, although
the data computed with the reconstructed parameters always converged to the observed
data, only four out of six parameters converged correctly to the true value of the psue-
doexperimental data, thus demonstrating that multiple solutions were compatible with
the data. The authors also noted that the parameters which converged first tended to
be those with the strongest influence on the system behavior. Hence, a temptative sen-
sitivity analysis of the system based on the rapidity of convergence of the different
parameters was proposed.
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Also based on this approach was a study on tumor growth proposed by Delsanto
et al.38 In this study, the authors tried to determine the relative impact of eight dif-
ferent parameters on the growth of multicellular tumor spheroids. The true value of
the parameters was not determinable, as some of these constants jointly modeled the
influence of different biological variables, and others were simply very difficult to
determine experimentally. However, the relative convergence rate of the different pa-
rameters did seem to reflect the different impact of the parameters on the system; for
example, the death rate of the cells had very little impact on the solution, a conclusion
that was perfectly compatible with the modeling hypotheses, which did not take explic-
itly into account the tumor spheroid composition (the percentage of dead, quiescent,
and proliferant cells).

It is worth noting that the imposition of additional conditions may allow discrim-
ination between the different solutions. The difficulty in this case is due to the fact
that in practice this coincides with a multiobjective optimization, and it is not always
clear how the different objectives should be combined to perform the optimization.
The treatment of multiobjective optimization is beyond the scope of this chapter; how-
ever, one of the most interesting branches of research in GAs is focused specifically
on this subject; the interested reader is referred to the work of Fonseca and Fleming39

for a comprehensive overview of the topic.
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Abstract
We present a nonlinear version of the Resonance Ultrasound Spectroscopy (RUS) theory by
extending the formalism to the treatment of damage in the form of nonlinearity. General ana-
lytical equations are derived for the one-dimensional case (a 1-D bar), describing the excitation
amplitude-dependent shift in the resonance frequency and the harmonic interaction between bar
modes due to the presence of either localized or volumetrically distributed nonlinearity. The so-
lutions are obtained for the case in which the damage area is represented by a cubic nonlinearity,
as well as for the more interesting case in which hysteretic nonlinearity ought to be considered.
The results are compared to numerical calculations from a multiscale model, described in de-
tail in Chapter 12 of this book, showing excellent agreement. Finally the obtained formulae are
exploited to infer critical information about the damage position, the degree of nonlinearity and
the width of the damage zone either from the shifts in resonance frequency occurring at differ-
ent excitation modes, or from the shift and the harmonics predicted at a single mode. Unlike
other techniques, the NRUS method does not require a spatial scan to locate the defect, as it lets
different excitation modes, with different vibration patterns, probe the structure.

Keywords: Hysteresis, inverse method, microdamage, nonlinear resonant ultrasound spec-
troscopy, nonlinearity

1. Introduction

“Can we ‘hear’ the shape of a drum?” is one of the most famous questions in physics
that was posed by the mathematician Mark Kac in 1966 [Kac, 1966]. The answer is
yes. If perfect, the drum will have a family of vibration modes, also known as reso-
nances, and upon analyzing these modes, we are able to describe the physical parame-
ters of the drum.

Now, suppose we make a hole in the drumhead using a hole punch. “Can we then
‘hear’ the location of the hole?” The answer is again yes. The hole is a localized
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perturbation in the drumhead, and causes a shift in some of the resonance frequencies
depending on the corresponding motion of the drumhead at the location of the hole.
If the hole is located in a place where a particular mode has a node, that mode will
not show a frequency shift. If it is situated in a place at an antinode, that mode will
show a frequency shift relative to the perfect drumhead. The information about the
location of the hole is thus encoded in the frequency shifts of the spectral modes that
are affected by the local perturbation. Standard tomographic inversion routines can be
used to invert this information for the location of the hole.

Suppose we replace the hole in the drumhead with a very small defect such as a tear
or a crack that is only visible with the aid of a magnifying glass. “Can we hear the
location of the microdefect?” This is exactly the question that we would like to answer
in this chapter, at least for the simple case of a localized defect in a one-dimensional
(1-D) bar. The methodology to do this is based on an extension of the formalism of (lin-
ear) Resonance Ultrasound Spectroscopy (RUS) to Nonlinear Resonance Ultrasound
Spectroscopy (NRUS).

Resonance Ultrasound Spectroscopy (RUS) [Visscher et al., 1991] is a bench-top
measurement technique used to determine the full linear elastic tensor of a sample
from the combined information contained in its resonance frequencies, its geometry,
and its density. A self-consistent explanation of the fundamental details of linear RUS
can be found in Chapter 22. RUS is very accurate when it is applied to samples hav-
ing a well-defined geometry and homogeneously distributed linear elastic constants.
Nevertheless, it has been successfully applied to determine the elastic constants of
anisotropic media, to study thermoelectric materials, rocks, and the like. [Keppens
et al. 1998; Ulrich et al. 2002; Ogi et al. 2002; Nakamura et al. 2004; Ichitsubo et al.
2002].

Microcracks caused by incipient damage will affect the resonance spectrum of a
sample only very slightly. In many cases the effect is masked by the resolution of the
frequency spectrum. Therefore, a standard RUS analysis may not be able to determine
the presence of damage at early stages. However, this does not mean that we are not
able to hear damage at all. We simply need to operate in a slightly different manner. It
is known that damage produces a nonlinear relation between stress and strain and that
the nonlinearity can be put into evidence by analyzing the response of the system at
increasing excitation amplitudes. The more damage, the larger is the level of nonlin-
earity, and the sooner it can be picked up in the analysis. Several studies have shown
that the sensitivity of the variation of the nonlinearity with increasing damage is far
better than what can be obtained from the evolution of the linear material parameters
[Nagy, 1998; Van Den Abeele et al. 2000a,b].

The above considerations underline the need for a nonlinear version of RUS: Non-
linear RUS or NRUS. Rather than only limiting the analysis to finding the location of
resonances in the spectrum and comparing them to the spectrum of an intact sample,
NRUS investigates and analyzes the amplitude dependence of certain resonance fre-
quencies and uses this information to quantify the location and degrees of nonlinearity.

Several experimental techniques have been developed that exploit the principle of
nonlinearity. Some are based on the nonlinear analysis of resonance modes, others are
using the amplitude-dependent interaction of two-component signals. Examples are
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Single Mode Nonlinear Resonant Ultrasound Spectroscopy (SIMONRUS) [Nazarov
et al. 1988; Nazarov and Sutin 1989; Zimenkov and Nazarov 1995; Johnson et al.
1996; Van Den Abeele et al. 2000b, 2001; Van Den Abeele and De Visscher 2000],
Nonlinear Wave Modulation Spectroscopy (NWMS) [Antonets et al. 1986; Sutin and
Donskoy 1998; Van Den Abeele et al. 2000a], nonlinear wave propagation [Morris
et al. 1979; Cantrell and Yost 1994; Krohn et al. 2002], nonlinear time of flight spec-
troscopy [Kazakov et al. 2002], slow dynamics [TenCate and Shankland 1996, Ten-
Cate and thers. 2000], and others. Additional references can be found in several other
chapters included in this book related to nonlinear NDT application. Among them we
mention Chapters 04, 12, 15, 24, 27–29 and 31.

In this chapter we focus on the theoretical support of SimonRUS and present a
means to use this technique for the characterization and localization of damage. This
development works in a two-way direction.

First, on the level of the direct problem, we study and predict the nonlinear sig-
natures of the resonances from the given nonlinear elastic constants inside the sam-
ple. Over the last years, many researchers have developed numerical models to pre-
dict these effects using numerical methods such as the multiscale model or the local
simulation approach (e.g., Chapters 12, 17, and 18 of this book and their references).
However, in order to preserve the computational simplicity of linear RUS where the
resonances can be directly determined as matrix eigenvalues [Visscher et al. 1991], we
should avoid the use of numerical models, and return to analytical formulations. So
from the viewpoint of computational speed and physical insight, a nonlinear variant of
the analytical theory behind RUS would be highly desirable. Of course this can only
be realized under certain limiting conditions.

Secondly, a simple solution of the direct problem always makes it easier to solve
the inverse problem. From this perspective, it is clear that an analytical version of the
NRUS model for the direct problem will be far more advantageous than its numerical
counterpart in terms of inverse characterization of nonlinearity because of the calcula-
tion speed and the transparency of the formulas.

In this chapter, we limit ourselves to the derivation of analytical NRUS formulas for
the case of a one-dimensional bar with distributed damage features. The chapter is built
up as follows. In Section 2, we recall the semianalytical version of the nonlinear wave
equation for nonlinear and nonunique equations of state, and comment on the general
solution procedure in terms of normal modes. In Section 3, we treat the particular case
in which the damage can be represented by a classical nonlinear perturbation in the
local stress–strain relation, and we derive the solutions for the resonant frequency shift,
and the harmonic amplitudes as a function of the nonlinear characteristics of defect and
its position. In Section 4, we repeat this for a nonclassical representation of damage
using a hysteretic stress-strain perturbation. In the fifth section, we address the inverse
problem of damage characterisation and location using NRUS. Our study shows that
the different vibration patterns of different modes probe different parts of the structure
giving rise to mode-dependent nonlinear signatures/quantification, which can be used
to solve the inverse problem. This has many advantages: the use of information from
different modes eliminates the need for a laborious scanning apparatus as is used in
traditional (linear and nonlinear) damage localization techniques [Kazakov et al. 2002;
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Krohn et al. 2002; Stoessel et al. 2002; Ballad et al. 2004]. The detector and excitation
source can therefore remain fixed (as in linear RUS), and the modes themselves do the
scanning job.

2. General Equation and Solution

2.1 General Nonlinear 1-D Equation

In this section, we consider the wave equation for a one-dimensional bar in the pres-
ence of damage that is represented by a nonlinear and nonunique stress–strain equa-
tion. As a first approximation, classical nonlinearity and hysteresis in the stress–strain
relation can be accounted for by assuming the following stress–strain relation [Landau
and Lifshitz, 1969; Van Den Abeele et al. 1997; Guyer et al. 1998],

σ = K (1 +β ε + δ ε2 +· · · ) ε + K
α

2

[
sign(∂tε) ((�ε)2 − ε2) − 2(�ε)ε

]
, (23.1)

where K is the linear stiffness constant (modulus), ε = ∂x u the strain, and �ε the
strain amplitude. The parameters β and δ are combinations of third- and fourth-order
elastic constants representing the atomic anharmonicity or acoustoelasticity. The para-
meter α is the strength of the hysteresis. This latter parameter quantifies the opening
of the stress–strain loop and is therefore also related to extra damping. The loop area
is 4Kα(�ε)3/3.

We focus on the description of “forced” wave resonances in a one-dimensional bar
of length L , with stress-free boundaries. The excitation is supplied by a sinusoidal
force with amplitude F̃ and circular frequency � at one end of the bar. The response
is measured at the other end. Attenuation is accounted for by considering a damping
term proportional to the velocity, containing a frequency-independent quality factor.
However, other models are also possible. With the above representation of the stress–
strain relation, the 1-D nonlinear equation for the displacement u(x, t) as a function of
space and time coordinates, including attenuation and external sinusoidal excitation,
then becomes (ρ denotes the density, and δx,0 is the continuous Kronecker symbol
indicating that the force is located at at x = 0):

ρ ∂2
t t u = ∂x

{
K ∂x u(1 + β ∂x u + δ (∂x u)2 + · · · )

+ K
α

2

[
sign(∂t∂x u)((�∂x u)2 − (∂x u)2) − 2(�∂x u)∂x u

]}

− ρ
�

Q
∂t u + F̃ cos(�t) δx,O . (23.2)

2.2 General Solution

We seek the solution of Eq. (23.2) by decomposing the physical field u into a sum of
products, separating the variables x and t [Pohit et al. 1999].

u (x, t) =
∑

i

ψi (x) zi (t), (23.3)
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where {ψi (x)}, i = −∞.. + ∞, is a set of chosen—and hence known—spatial func-
tions [satisfying the boundary conditions; i.e, ψn (x) = cos(nπx/L] for free bound-
aries), whereas {zi (t)}, i = −∞..+∞, is a set of temporal functions that represent
the new unknowns. The modal shape functions {ψi (x)} have the property of being
mutually orthogonal, both for the displacement and the strain.

To find the general solution to the problem, we now substitute the proposed “normal
mode” solution given by Eq. (23.2) into Eq. (23.3), multiply both sides of the equation
by ψn (x), and integrate the result over the spatial coordinate x from 0 to L . Due to the
hysteretic contribution, the resulting equation is a fairly complicated equation for the
unknown spatial functions zn(t) in the normal mode expansion. We can easily simplify
this equation using two assumptions: (1) the excitation is performed at a frequency �

in the neighborhood of the resonance frequency of the mth mode, and (2) we only con-
sider Am cos(mπx/L) cos(�t +φm) as the dominant contribution in the displacement
field for the hysteretic nonlinear terms containing the strain amplitude (in other words,
we assume �∂x u = m(π/L) Am).

After some tedious calculations we arrive at the following set of coupled differential
relations (adopting the Einstein summation convention, however, no sum over n).

∂2
t t zn + �

Q
∂t zn + ω2

nzn = F cos(�t) − Bnjk z j zk − Dnjkl z j zk zl

− Hn m

[
sign(∂t zm) (A2

m − z2
m) − 2Am zm

]
, (23.4)

where F = (2F̃)/(ρL), and ωn the frequencies of the linear (low amplitude) reso-
nances [Visscher et al. 1991]; that is, ωn = n(π c

/
L) with c the linear bar velocity.

The advantage of using normal mode shape functions is that the mode-coupling occurs
solely by way of the nonlinear interaction. There is no coupling at the linear level. The
coupling constants appearing in the second, third, and fourth terms on the right-hand
side of Eq.(23.4) correspond to the components of higher-order tensors B, D, and H ,
and can be expressed as integrals over x :

Bnjk = 2K

ρ L

L∫

0

dx β ∂xψn ∂xψ j ∂xψk (23.5a)

Dnjkl = 2K

ρ L

L∫

0

dx δ ∂xψn ∂xψ j ∂xψk ∂xψl (23.5b)

Hn m = K

ρL

L∫

0

dx α ∂xψn |∂xψm | ∂xψm . (23.5c)

Thus, once nonlinearity is considered, all existing linear modes will interact with
each other at the nonlinear level, provided they all have a nonzero strain level at those
places where the nonlinearity is present. This is important for the inverse mapping of
the damage location using different excitation modes.

In a SIMONRUS, one analyzes the dependence of a resonance curve at increas-
ing forcing amplitude. In order to obtain a resonance curve (at a constant forcing



374 K.V.D. Abeele and F. Windels

amplitude F), the sinusoidal source frequency � applied to the sample is stepped
up discretely over a small range encompassing a certain resonance frequency, for
instance, around ωm for mode m. At each discrete frequency during the scan, the
steady-state amplitude response | zn(�; F) | after 5Q periods is monitored, for n = m,
2m, 3m, 4m, 5m, and so on. Let us first recall the solution of the linear problem.

2.3 Linear Solution

If everything were linear, and we would investigate the response of the bar at source
frequencies � in the neighborhood ωm , the only mode that would be receptive to this
excitation is exactly the mode m. All other modes are not activated because the driving
frequency is too far away from their corresponding resonance frequencies. The so-
lution of Eq. (23.4) in the absence of nonlinearity (β = δ = α = 0) is of the form
Am cos(�t+φm). Basic differential calculus tells us that the linear response amplitude
Am and phase φm satisfy following equations,

Am = | zm(�; F) | = F/
√

(�2 − ω2
m)2 + (�2/Q)2, (23.6a)

tan φm = −�2/(Q (�2 − ω2
m)). (23.6b)

Equation (23.6b) clearly shows that the phase lag for an excitation in the neigh-
borhood of any mode is independent of the mode number. which implies that the
attenuation depends linearly on the frequency. The true resonance frequency corre-
sponds to the maximum amplitude response (solution of d A/d� = 0), and is given by

�res = ωm/

√
1 + 1/Q2. (23.6c)

This is the linear response. However, when nonlinearity is present in the system, one
can expect that some signatures of the resonance spectrum will change accordingly. In
general, the position of the resonance peaks will become amplitude dependent, har-
monics start to appear, attenuation may become nonlinear, and so on. The observation
of such nonlinear behavior betrays the presence of the nonlinear zone inside the sam-
ple. The deduction of analytical relations for the expected shifts and the harmonics can
help in the inverse procedure of damage localization from nonlinear observations. This
is exactly the subject of the rest of the chapter. We consider two cases: classical cubic
nonlinearity and nonclassical hysteretic nonlinearity.

3. Solution for Classical–Cubic Nonlinearity

For the purpose of illustrating the calculation procedure, we now only consider the
nonlinear term containing the cubic “δ” nonlinearity in Eqs. (23.1), (23.2), and (23.4).
We investigate the resulting effect of a “δ”-nonlinearity on the resonance frequency
and on the generation of harmonics.

3.1 Shift of the Resonance Frequency for Sinusoidal Excitation near Mode “m”

Equation (23.4) for β = α = 0 states that mode n can be influenced due to the
cubic nonlinear interaction of the modes j, k, and l (summation over j, k, and l). If we
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concentrate on the excitation of the bar around the frequency ωm , and investigate the
dominant nonlinear effect affecting mode m due to this excitation, we can safely say
that the first-order perturbation on the behavior of this mode will only be due to the
combination of modes j, k and l with j = k = l = m. (All other responses are zero in
the linear case.) Therefore the amplitude dependence of mode m is basically governed
by the following equation (no sum over m):

∂t t zm + �

Q
∂t zm + ω2

m zm = F cos(�t) − Dm m m m z3
m, (23.7a)

where:

Dm m m m = 2

ρL

L∫

0

dx K δ (∂xψm)4 = 2K

ρL

(
m

π

L

)4
L∫

0

dx δ sin4
(

m
π

L
x
)
. (23.7b)

One can solve Eq. (23.7) using rigorous perturbation methods or comprehensive
multiple timescale methods, and so on [Landau and Lifshitz 1969; Nayfeh 1973;
Pohit et al. 1999]. However, in this case, it suffices to simply substitute zm =
Am cos (�t + φm) into Eq. (23.7a) and to equate the corresponding terms in cos(�t)
and sin(�t) (neglecting the force term in cos(�t) arising as a secondary part of the
nonlinear contribution). As a result, we find that the amplitude Am satisfies the follow-
ing equations.

Am = F
√(

�2 − ω2
m − 3

4
Dmmmm A2

m

)2

+
(

�2

Q

)2
. (23.8)

For a fixed forcing amplitude F , Eq. (23.8) gives an implicit relation between the
response amplitude Am and the driving frequency �. Because the nonlinear contri-
bution to the amplitude change is small, we can consider the term in the denominator
containing the square of Am as being constant. Consequently, the resonance frequency,
for which the response amplitude is maximal, expressed in terms of the maximal strain
amplitude εm = �εmax = Am,max(mπ/L), is approximately given by

�res(εm) ≈ �res(0)

⎡

⎣1 + 3

4L
ε2

m

L∫

0

dx δ sin4
(

m
π

L
x
)
⎤

⎦. (23.9)

The relative frequency shift is quadratic in the strain, which agrees with the litera-
ture on nonlinear harmonic oscillators [Landau and Lifshitz 1969]. It is important to
notice that the quadratic dependence on strain is irrespective of the setting of the cubic
nonlinearity: global or localized. For a localized damage centered at x = xd , extend-
ing from [xd − d/2, xd + d/2] (with d � L) and represented by a constant cubic
nonlinearity δ (Figure 23.1a); we obtain:

�res,Local(εm) ≈ �res(0)

[
1 + 3

4

δ d

L
sin4

(
m

π

L
xd

)
ε2

m

]
= �res(0)

[
1 + C1 ε2

m

]
.

(23.10)
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Fig. 23.1. Investigation of the nonlinear signature C1 (proportionality coefficient in the strain amplitude
dependence of the resonance frequency shift) from a cubic nonlinear defect as function of its position xd

in a resonant bar. (a) Schematic geometry for the resonant bar simulations. (b) Signature C1 for excita-
tion near the fundamental mode (m = 1). (c) Signature C1 for the second bar mode excitation (m = 2).
(d) Signature C1 for the third bar mode excitation (m = 3). Lines represent the analytical formulae;
diamonds correspond to the numerical simulations. The width of the defect zone is d = L/20.

For a global constant nonlinearity extending all along the bar, the shift becomes

�res,Global(εm) ≈ �res(0)

[
1 + 9

32
δ ε2

m

]
. (23.11)

In most cases δ is considered to be negative (softening), implying that the resonance
frequency reduces quadratically with amplitude. Note that the above expressions [Eqs.
(23.10 and (23.11)] are just special cases to illustrate the effect of localized and global
damage on the frequency shift. The proposed formalism is far more widely applica-
ble because the integral in (23.9) can be calculated for an arbitrary distribution of the
nonlinearity. The (sine)4 dependence on the position xd of the damage in Eq. (23.10)
is quite understandable keeping in mind that modes will contribute to the nonlinearity
to an amount proportional to their strain-field amplitude at the defect position. Be-
cause the shift is essentially the result of a threefold nonlinear interaction of mode m
thereby affecting the same mode m, we indeed arrive at the fourth-order dependence.
Another important observation is that the shift depends on the product of the non-
linearity strength δ and the relative width d/L , causing the parameter δd/L to be an
“effective” nonlinear strength parameter.

We have compared the analytical prediction of the shift for localized damage [Eq.
(23.10)] to the shift calculated from the numerical multiscale model discussed in Chap-
ter 12 of this book, ignoring hysteretic nonlinearity. Figure 23.1b shows the numerical
and analytical predictions of the proportionality coefficient C1 in Eq. (23.10) for the
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Table 23.1. Parameters used in the simulations

General Parameters NRUS Parameters Numerical Simulation (NS) Parameters

K = 10 GPa Cubic Nonlinearity Cubic Nonlinearity
ρ = 2600 kg/m3 δNRUS = −108 δNS = −3 10−12 which yields

δNRUS = (δNSK2)/3 = −108

L = 0.25 m Hysteretic Nonlinearity Hysteretic Nonlinearity
d = L/20 αNRUS = 200 γ = 10−3 which yields α = γ K2/5 · 1014 = 200
Q = 80 NS Discretisation Parameters

(m = mode number; � = circular frequency)
�x = L/(120m)
�t = 2π/(� ∗ 384 ∗ m)

fundamental mode (m = 1) and for a fixed value of d and δ. The parameter values
used in the simulations are given in Table 23.1. The agreement between the analytical
predictions and the numerical simulation results is excellent and validates the NRUS
predictions. Similar agreement can be found for higher order modes: m = 2 in Figure
23.1c and m = 3 in Figure 23.1d.

3.2 Amplitude of the Harmonics for Sinusoidal Excitation near Mode “m”

To find the first-order amplitude of the second and third harmonics, given a sinusoidal
excitation near mode m, we need to solve the following equations.

∂2
t t z2m + �

Q
∂t z2m + ω2

2m z2m = −D2m m m m z3
m . (23.12)

∂2
t t z3m + �

Q
∂t z3m + ω2

3m z3m = −D3m m m m z3
m . (23.13)

By substituting the solution for zm into Eqs. (23.12) and (23.13), the right-hand
terms will be composed of source terms containing cos(�t) and cos(3�t). Neither has
a frequency near ω2m , thus there will be no activation of the second harmonic and
therefore z2m will be zero all the time. On the other hand, the 3� component in the
right-hand side of Eq. (23.13) will produce a nonzero amplitude for the third harmonic
when � is swept around ωm . Representing z3m by A3m cos(3�t +φ3m), the amplitude
A3m can be easily calculated and reads:

A3m = |D3m m m m |
4

A3
m√

((3�)2 − ω2
3m)2 + �2(3�)2

Q2

. (23.14)

The amplitude of the strain field of the third harmonic for an excitation near the
resonance frequency ωm of mode m consequently becomes

ε3m =
∣∣∣∣∣∣

3Q

2L

L∫

0

δ sin

(
3mπ

L
x

)
sin3

(mπ

L
x
)

dx

∣∣∣∣∣∣
ε3

m . (23.15)
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The integral can be calculated for an arbitrary distribution of the cubic nonlinear-
ity over the bar. Irrespective of the distribution, we notice that the third harmonic
is proportional to the third power in the strain, and that the quality factor plays an
important role in the efficiency of the harmonic generation. Higher Q-values (lower
attenuation) will produce higher harmonics. For the two special cases of a localized
damage zone and a globally distributed cubic nonlinearity we respectively get:

ε3m,Local = 3

2
Q

|δ| d

L

∣∣∣∣ sin

(
3mπ

L
xd

)
sin3

(mπ

L
xd

)∣∣∣∣ ε3
m = C3 ε3

m (23.16)

ε3m,Global = 3

16
Q |δ| ε3

m . (23.17)

For the higher-order even harmonics, one can repeat the reasoning applied for the
second harmonic. The cubic nonlinearity never produces a source contribution that
contains an even multiple of the source frequency near ω2km , for any integer k-value.
All even harmonics thus remain zero. For the odd harmonics, it is always possible to
identify combinations of source terms that lead to a source contribution with frequency
(2k + 1)�. For the fifth harmonic there are three terms that yield such a source term,
giving rise to the following equation,

∂2
t t z5m + �

Q
∂t z5m + ω2

5m z5m = −D5m 3m m m z3m z2
m − D5m m 3m m z3m z2

m

−D5m m m 3m z3m z2
m . (23.18)

After some calculus and in analogy with the third harmonic, we obtain the general
expression for the strain amplitude of the fifth harmonic for an excitation near the
resonance frequency ωm of mode m:

ε5m = 45Q2

4L2

∣∣∣∣∣∣

L∫

0

δ sin

(
3mπ

L
x

)
sin3

(mπ

L
x
)

dx

∣∣∣∣∣∣

×
∣∣∣∣∣∣

L∫

0

δ sin

(
5mπ

L
x

)
sin

(
3mπ

L
x

)
sin2

(mπ

L
x
)

dx

∣∣∣∣∣∣
ε5

m . (23.19)

The fifth harmonic is proportional to the fifth power of the fundamental strain am-
plitude, irrespective of the damage distribution. For the two special cases of a localized
damage zone and a globally distributed cubic nonlinearity, we respectively get:

ε5m,Local = 45

5

[
Q

δd

L

]2 ∣∣∣∣ sin

(
5mπ

L
xd

)
sin

(
3mπ

L
xd

)
sin2

(mπ

L
xd

)∣∣∣∣ ε5
m

= C5 ε5
m . (23.20)

ε5m,Global = 45

256
Q2 δ2 ε5

m . (23.21)

Because the fifth harmonic is a second-order harmonic generation, its efficiency is
quadratic in the nonlinearity strength and in the quality factor.
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Fig. 23.2. Investigation of the nonlinear signature C3 and C5 (proportionality coefficient in the strain am-
plitude dependence of the third and fifth harmonics) from a cubic nonlinear defect as function of its position
xd in a resonant bar. (a) Signature C3 for fundamental mode excitation (m = 1). (b) Signature C3 for the
second bar mode excitation (m = 2). (c) Signature C5 for the fundamental mode excitation (m = 1),
and (d) signature C5 for the second bar mode excitation (m = 2). Lines represent the analytical formulae;
diamonds correspond to the numerical simulations. The width of the defect zone is d = L/20.

The particular position-dependent behavior of the coefficients C3 and C5 in Eqs.
(23.16) and (23.20) in the case of a localized damage zone with cubic nonlinearity
is checked by comparing it to the results of the multiscale model (Chapter 12 of this
book). Figure 23.3 illustrates the good agreement between the analytical and numerical
results for the proportionality coefficients of the third and fifth harmonics taken at the
resonance frequency of the fundamental of mode m = 1 and mode m = 2. When
comparing the results for the resonance frequency shift in Figure 1 to the harmonic
generation efficiency in Figure 23.2, we notice that a defect may show a reasonable
resonance frequency shift without a sign of harmonics being generated, for instance,
when the defect is located at L/3 for m = 1, or at L/6 for m = 2. This is entirely due
to the influence of the mode shapes on the efficiency of the harmonic generation.

4. Nonclassical Nonlinearity

In this section, we focus on the influence of the nonuniqueness of the nonlinear stress–
strain equation. Therefore, we set all classical nonlinearity to be zero (β = δ = 0), and
consider only the effect of the parameter α in Eqs. (23.1), (23.2), and (23.4).

The trick for finding the amplitudes of the fundamental and higher harmonics is
to identify the oscillating terms in the right-hand side of Eq. (23.4) with circular
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frequencies equal to (n/m)� ≈ ωn . Only those terms will contribute to the ampli-
tude of zn(t). To do this, we are forced to express the sign-function into a Fourier
series. Using

sign(∂t zm) = sign(−�Am sin(�t + φm))

= −
∞∑

k=0

4

(2k + 1)π
sin((2k + 1)(�t + φm)), (23.22)

it becomes clear that only the odd harmonics will be generated with nonzero ampli-
tudes, in as much as there will be no oscillating contributions in the right-hand side
source terms with even multiples of �.

4.1 Shift of the Resonance Frequency for Sinusoidal Excitation
near Mode “m”

For n = m, we basically have to find the solution of

∂2
t t zm + �

Q
∂t zm + ω2

nzm

= F cos(�t) − Hm m

[−8

3π
A2

m sin(�t + φm) − 2A2
m cos(�t + φm) + · · ·

]
,

(23.23)

where the three dots represent terms containing higher-order oscillations. In a similar
manner as in the case of cubic nonlinearity, we now obtain that

Am = F
√

(�2 − ω2
m + 2Hm m Am)2 +

(
�2

Q
+ 8

3π
Hm m Am

)2
. (23.24)

Equation (23.24) gives an implicit relation between the response amplitude Am and
the driving frequency �, for a fixed forcing amplitude F . Under the assumption of
small nonlinear contributions, the resonance frequency can be expressed, in terms of
the maximal strain response amplitude εm = Am,max(mπ/L), as follows.

�res(εm) ≈ �res(0)

(
1 −

(
1 + 4

3π Q

)
c Hm mεm

ω3
m

)

= �res(0)

⎡

⎣1 −
(

1 + 4

3π Q

)
εm

L

L∫

0

dx α
∣∣∣sin3

(
m

π

L
x
)∣∣∣

⎤

⎦ . (23.25)

The relative frequency shift for hysteretic nonlinearity changes linearly with the
strain, and again this agrees with literature on lumped nonlinear harmonic oscillators
[Guyer et al. 1998]. It is important to notice that the linear dependence on strain is irre-
spective of the status of the hysteretic nonlinearity: global or localized. For a localized
damage centered at x = xd , extending from [xd − d/2, xd + d/2] (with d � L) and
represented by a constant hysteretic nonlinearity α (Figure 23.1a), we obtain:
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�res,Local(εm) ≈ �res(0)

[
1 − α d

L

(
1 + 4

3π Q

) ∣∣∣sin3
(

m
π

L
xd

)∣∣∣ εm

]

= �res(0) [1 − X1 εm] . (23.26)

For a global constant hysteretic nonlinearity extending all along the bar, the shift be-
comes

�res,Global(εm) ≈ �res(0)

[
1 − 4α

3π

(
1 + 4

3π Q

)
εm

]
. (23.27)

Because α represents the hysteretic strength (and by consequence a positive parame-
ter), the change in resonance frequency will always be directed towards lower values.
The most general expression for the shift contains a weighted integral over an arbitrary
distribution of the nonlinearity. Again, we can interpret the (sine)3 dependence on the
position xd of the damage in Eqs. (23.25) and (23.26) keeping in mind that modes
will contribute to the nonlinearity to an amount proportional to their strain-field am-
plitude at the defect position. This time, however, the shift is essentially the result of a
twofold nonlinear interaction of mode m that affects the same mode m. The absolute
value operation is the consequence of the nonuniqueness of the stress–strain relation.
Furthermore, we notice in Eq. (23.26) that the shift for a localized damage feature
depends on the “effective” nonlinear strength parameter αd/L .

Besides quantifying the relative frequency shift at resonance, Eq. (23.24) reveals
another interesting relation connected with the hysteresis contribution to attenuation.
If the (linear) quality factor is not too small (Q > 10), the hysteretic nonlinearity will
be responsible for an amplitude-dependent change in the loss factor, which is mainly
caused by a change in the Q-factor satisfying:

1

QN L
= 1

QL
+ 8

3πω2
m

Hm m Am = 1

QL
+ 8

3π

c Hm mεm

ω3
m

. (23.28)

The amplitude dependent Q-factor is typical for hysteretic systems only. For in-
stance, Eq. (23.8) for classical cubic nonlinearity does not show any amplitude depen-
dence in the second term of the denominator, and therefore no nonlinear damping is
accounted for.

Recalling that εm ≈ mπ F Q
/
(Lω2

m) at resonance, we can compare the relative
decrease in strain amplitude at resonance with the relative decrease of the resonance
frequency obtained in Eq. (23.25). We then find the following constant relation,

�res,0 − �res(A)

�res,0

εres,0 − εres(A)

εres,0

=
��res(A)

�res,0

QN L

(
1

QN L
− 1

QL

) ≈ 3π

8Q

(
1 + 4

3π Q

)
≈ 3π

8Q
= 1.178

Q
,

(23.29)
which implies that the relative amplitude decrease due to hysteretic nonlinearity is
approximately a factor Q larger than the relative frequency shift.

We again take advantage of the multiscale model discussed in Chapter 12 of this
book to validate the above analytical formulae in the limiting case of uniform mod-
ulus, uniform quality factor, and localized hysteretic nonlinearity. The Preisach–
Mayergoysz (PM) spaces (see also Chapters 11, 12, 14, 16–19, 21) used to model the
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Fig. 23.3. Investigation of the nonlinear signature X1 (proportionality coefficient in the strain amplitude
dependence of the resonance frequency shift) from a hysteretic nonlinear defect (d = L/20) as a function
of its position in a resonant bar. (a) Signature X1 for excitation around the fundamental mode (m = 1).
(b) Signature X1 for the second bar mode excitation. (c) Ratio of relative frequency shift to absolute in-
crease in Q−1 for the fundamental mode (m = 1) derived from the numerical simulations. (d) Investigation
of the proportionality coefficient in the strain amplitude dependence of the resonance frequency shift from
a hysteretic nonlinear defect as a function of its width (W ). The defect is located in the middle of the bar
(xd = L/2): analytical predictions for the first three bar modes, and numerical results for the fundamental
mode excitation (m = 1). Lines represent the analytical formulae; diamonds correspond to the numerical
simulations.

hysteretic nonlinearity in the numerical simulations consist of uniformly distributed
units over a range of −5 MP to 5 MPa. Figure 23.3a shows the numerical and analyti-
cal predictions of the proportionality coefficient X1 in Eq. (23.26) for the fundamental
mode (m = 1) and for a fixed value of d and α. The parameter values used in the
simulations are listed in Table 23.1. A similar good agreement can be found for higher
order modes: m = 2 in Figure 23.3b.

Figure 23.3c illustrates the ratio of relative frequency reduction to the absolute Q−1

reduction obtained with the numerical model. The average value is indeed close to the
analytically predicted value of 1.178, except in the center of the bar, where second-
order effects may play a role, and at the ends of the bar where the effect of the nonlin-
earity is highly tempered by the mode shape.

In addition, we investigated the influence of the width W of the defect zone for a
fixed centered location of the defect (xd = L/2) with a fixed nonlinearity α extending
from (L − W )/2 to (L + W )/2. The analytical prediction and numerical results of the
strain proportionality coefficient in Eq. (23.25) are illustrated in Figure 23.3d, and both
results agree very well for m = 1. Initially, the shift increases linearly with the width
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[Eq. (23.26) if W = d � L]. However, for larger values, a saturation is obtained due
to the particular shape of the resonance mode that is weighing the contribution (strain-
field is a sine function). The asymptotic behavior is the value of the proportionality
coefficient for a complete volumetrically nonlinear bar with hysteretic nonlinearity α

[Eq. (23.27)]. The predictions for higher modes are also shown in Figure 23.3d and
can be readily understood from the particular mode shapes of the second and third
resonance.

While performing the simulations as function of the width of the defect zone, we al-
ways observed the predicted constant value of 1.178 for the ratio of relative frequency
shift to absolute attenuation increase. This leads to the conclusion that this ratio is
independent of the defect characteristics.

4.2 Amplitude of the Harmonics for Sinusoidal Excitation near Mode “m”

We already stated that no even harmonics will be generated for a given sinusoidal
excitation near mode m, because there will be no oscillating contributions in the right-
hand side source terms of Eq. (23.4) with even multiples of � when β = 0. We can
find the first-order amplitude of the third harmonics by solving the following equation.

∂2
t t z3m + �

Q
∂t z3m + ω2

3m z3m = −H3m m
8

15π
A2

m sin(3(�t + φm)). (23.30)

Representing z3m by A3m cos(3�t+φ3m), the strain amplitude for an excitation near
the resonance frequency ωm of mode m consequently reads:
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(23.31)

Similarly the fifth strain amplitude can be calculated, and yields:

ε5m = 8Q
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x
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(mπ

L
x
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L
x
)
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ε2

m = X5 ε2
m .

(23.32)

Both the third and fifth harmonic (and by extension all odd harmonics) are pro-
portional to the second power of the fundamental strain amplitude, irrespective of the
damage distribution. They all are generated by a second-order interaction between two
fundamental components, which originated in the sign-function contribution. From
Eqs. (23.31) and (23.32), one can easily obtain the expressions for the two special
cases of a localized damage zone and a globally distributed hysteretic nonlinearity.

Again, we have checked the particular position-dependent behavior of the coeffi-
cients X3 and X5 in Eqs. (23.31) and (23.32) in the case of a localized damage zone
with hysteretic nonlinearity by comparing it to the results of the multiscale model.
Figure 23.4 illustrates the good agreement between the analytical and numerical re-
sults for the proportionality coefficients of the third and fifth harmonics taken at the
resonance frequency of the fundamental of mode m = 1 and mode m = 2.
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Fig. 23.4. Investigation of the nonlinear signatures X3 and X5 (proportionality coefficient in the strain
amplitude dependence of the third and fifth harmonics) from a hysteretic nonlinear defect as a function of
its position in a resonant bar. (a) Signature X3 for the fundamental mode excitation (m = 1). (b) Signature
X3 for the second bar mode excitation (m = 2). (c) Signature X5 for the fundamental mode excitation
(m = 1), and (d) signature X5 for the second bar mode excitation (m = 2). Lines represent the analytical
formulae; diamonds correspond to the numerical simulations. The defect zone is d = L/20.

5. Inverse Modeling

As the NRUS predictions of frequency shifts and harmonic content are analytical in
nature, they offer opportunities to solve the inverse problem of defect characteriza-
tion and localization. Traditionally, scanning techniques are used to localize damage
in a material. Zones with defects are spotted by analyzing the changing properties of
reflected or transmitted signals. In most cases the scanning requires a mechanical oper-
ation and a coupling with the medium. A consistent coupling is indeed very important
when nonlinear signatures are sought.

The degree to which nonlinearity can be observed highly depends on the value of the
strain at the location of the nonlinearity. If the strain values are low the nonlinearity will
not be activated. By using multiple mode information and combining harmonic and
frequency shift observations, it is possible to interpret those pieces of information in a
consistent manner and to invert them for the damage characteristics and location. The
fact that global resonances can be used for the inversion is an important advantage over
traditional techniques. Unlike other techniques, the NRUS method does not require a
spatial scan to locate the defect, as them lets different excitation modes, with different
vibration patterns, probe the structure.

In the next sections we give some possibilities on how to combine several of the
above deduced formulae to infer the location of the defect, its degree of nonlinearity,
and width, based on the obtained nonlinear signatures of the resonances.



23 Analytical Model for Imaging of Microdamage Using NRUS 385

5.1 Classical Cubic Nonlinearity

If the medium contains a localized defect that can be represented by a zone with classi-
cal nonlinearity, we can infer the location and its effective nonlinear strength by simply
considering the lowest two resonance modes. In both cases the resonance frequency
shift is given by Eq. (23.10) for m = 1 and m = 2. After some algebraic calculations,
we otain an expression for the relative location of the defect:

xd/L = 1

π
Acos

[
1

2
4

√
ε2

1 �ω2/ω2

ε2
2 �ω1/ω1

]
. (23.33)

Experimental values for the shifts can be determined by the SIMONRUS technique.
It is clear, however, that the inversion procedure by Eq. (23.33) is nonunique as defects
located symmetrically with respect to the center of the bar cannot be distinguished
from each other.

For what concerns the degree and width of the defect, we find that

δ
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2
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2
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)2
. (23.34)

This expression confirms that the relative width of the defect and its strength cannot
be uncoupled for localized defects, and hence δ d/L should indeed be considered as
the effective damage parameter characterizing the defect zone.

A similar inverse calculation can be obtained from the knowledge of the frequency
shift and the third harmonic, for instance. For instance, combining Eqs. (23.10) and
(23.16) yields:
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(23.35)

For nonlocalized defects (spread over a finite width comparable to L/2, for in-
stance), it is necessary to use the general equations given in Eqs. (23.9) and (23.15) for
the inversion.

5.2 Non-Classical Hysteretic Nonlinearity

The above-outlined inversion can also be performed in cases when the defect is rep-
resented by a hysteretic nonlinearity. Using Eq. (23.26) for two modes (m = 1, 2) we
get:
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) . (23.36)
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On the other hand, if we use the strain dependence of the resonance frequency
shift and of the third harmonic at the fundamental mode [Eqs. (23.26) and (23.31)
for m = 1], we find that
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Again it is necessary to use the more general equations and more sophisticated
optimization algorithms for the inversion in the case of nonlocalized defects.

6. Conclusions

An analytical treatment of the effect of damage on the resonance mode characteristics
is not simple, and probably only possible under severe assumptions. Nevertheless, if
analytical formulae are available they can be of great use to (1) check the correctness
of the simulations performed by numerical models in limiting cases, and (2) provide
quick methods for the inversion of the damage characteristics.

We have presented a nonlinear version of the Resonance Ultrasound Spectroscopy
(RUS) theory by extending the traditional formalism to the treatment of damage in
the form of nonlinearity. General equations were developed in the 1-D case, describ-
ing the interaction between the modes induced by the nonlinearity. These equations
were solved following a perturbation approach. We considered two different nonlinear
stress–strain signatures that represent the damage: a reversible cubic nonlinearity as
well as the more interesting hysteretic nonlinearity.

The solutions provide analytical expressions for the nonlinear shift of the modal
resonance frequency and the harmonic generation as a function of the strength of the
nonlinearity, the width of the defect, and its position in the 1-D system. Each analyt-
ical formula can be readily explained in terms of the vibration patterns of the modes
that produce the particular nonlinear interaction. The dependence on the strain level is
different for both cases of nonlinearity, but always independent of the defect location.

We compared the results to numerical calculations from a multiscale model, show-
ing excellent agreement, provided the discretization is defined adequately.

The analytical formulae were exploited to infer critical information about the dam-
age position, the degree of nonlinearity, and the width of the damage zone either from
the shifts in resonance frequency occurring at different excitation modes, or from the
shift and the harmonics predicted at a single mode. The use of multiple mode infor-
mation for the inversion of damage characteristics and localization has an important
advantage over traditional scanning techniques. Unlike other techniques, the NRUS
method does not require a spatial scan to locate the defect, as it lets different excitation
modes, with different vibration patterns, probe the structure.
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Abstract
In the framework of various European and nationally funded projects, intact and damaged sam-
ples of Carbon Fiber Reinforced Polymer (CFRP) composites, layered aluminum plates, and
natural building stones are being examined using both linear and nonlinear acoustic and ultra-
sonic diagnostic methods. Similar techniques are also applied to the monitoring of the early
curing stages of concrete. The goal of these projects is to develop the necessary means for
an innovative microdamage inspection system based on Nonlinear Elastic Wave Spectroscopy
(NEWS). This chapter contains a report on some of our latest laboratory results using different
NEWS techniques. We investigated the heat damage in composite laminates at moderate tem-
peratures using Nonlinear Resonance Ultrasound Spectroscopy (NRUS). The NRUS technique,
which evaluates the amplitude dependence of a single resonance mode, has been implemented
in two variations: time domain analysis (evaluating the signal reverberation) and frequency do-
main analysis (evaluating the sweep characteristics). Both methods show consistent results and
provide a considerable sensitivity for nonlinear signatures as a function of heat temperature and
exposure time. Linear and nonlinear wave propagation methods have also been used to exam-
ine near-surface deterioration of natural building stones used in restoration projects throughout
Europe. Samples are locally excited with a high-frequency sinusoidal wave (order of 100 kHz)
producing a surface wave, and in some cases a coupling with a low-frequency signal is pro-
duced by an impact. Linear wave speed and attenuation measurements are supplemented with
nonlinear acoustic measurements investigating the creation of harmonics and intermodulation
frequencies. Consistent observations show that undamaged areas are essentially linear in their
response, and the damaged zones become highly nonlinear. Finally, this chapter also illustrates
the use of NEWS in the monitoring of different steps in the early curing process of concrete. We
analyzed the evolution in the linear and nonlinear ultrasonic behavior of concrete as a function
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of the degree of hydration during the first three days of the curing process. The results show a
good correlation between the phase changes in the concrete due to chemical reactions and me-
chanical setting seen in the temperature profile, and the linear and nonlinear acoustic properties.

Keywords: Acoustic spectroscopy, aeronautics, composites, concrete, curing process, damage
diagnosis, heat damage, microdamage, natural building stone, nonlinear acoustics, nonlinear
elastic wave spectroscopy, nonlinearity

1. Introduction

Recent advances in modern material technology require the development of Non-
Destructive Evaluation (NDE) techniques that allow the quantification of microstruc-
tural damage in a wide variety of materials during their manufacture and life cycle,
ensuring both their quality and durability. In aeronautics, for instance, the perfor-
mance and behavior characteristics of airframe structures can be adversely affected
by structural degradation, resulting from sustained use within normal flight envelopes,
as well as from exposure to severe environmental conditions, and from damage due to
impact. Similar examples can be found in civil engineering applications. For primary
load-bearing structures, these factors can have serious consequences in terms of safety,
cost, and operation. Consequently, the timely and accurate detection, characterization,
and monitoring of the development of structural defects over time (e.g., cracking, cor-
rosion, delamination, material degradation, and other flaws, defects, or damage) are
of major concern to the operational environment. Traditional NDE techniques such as
high-quality linear acoustic, electromagnetic, and visual inspection methods are gener-
ally not sufficiently sensitive to the presence and development of domains of incipient
and progressive damage. For this purpose, we are currently developing and validating
innovative microdamage inspection systems based on various NDT methods within
the class of Nonlinear Elastic Wave Spectroscopy (NEWS).

NEWS techniques primarily deal with the investigation of the amplitude dependence
of material parameters such as wavespeed, attenuation, spectral content, and the like.
The degree to which these material properties depend on the applied dynamic am-
plitude can be quantified by various nonlinear parameters. Several NEWS techniques
have been developed to probe for the existence of damage (e.g., delaminations, mi-
crocracks, or weak adhesive bonds) by investigating the generation of harmonics, sub-
harmonics, and intermodulation of frequency components, the amplitude-dependent
shift in resonance frequencies, the nonlinear contribution to attenuation properties,
slow dynamic effects, and phase modulation. Details about these methods and their
applications in NDT can be found in References [1–18] as well as in Chapters 4, 15,
25, 28, and 29 of this book. Laboratory tests performed on a wide variety of materials
subjected to different microdamage mechanisms of mechanical, chemical, and thermal
origin, have shown that the sensitivity of such nonlinear methods to the detection of
microscale features is far greater than that obtained with linear acoustical methods.

In the framework of various European and national funded projects, several of the
above-mentioned techniques are being fine-tuned to specific applications. As a first
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step in this process, we investigated the use and robustness of these methods for ma-
terials with a simple geometry. In this chapter we restrict ourselves to the discussion
of three examples: the study of heat damage in CFRP composites used in aeronautics,
the investigation of surface deterioration in natural building stones on historical mon-
uments, and the monitoring of the early stages in the concrete curing processes using
NEWS.

2. Nonlinear Resonance Spectroscopy on CFRP Composites with
Heat Damage at Moderate Temperatures

2.1 Rationale

A review of the mechanisms of heat damage in composites and a state of the art of non-
destructive evaluation techniques currently used to evaluate heat damage is available
in [19]. The exposure to heat induces chemical and microstructural changes that affect
the mechanical behavior of the composite laminate, even at moderate temperatures.
Studies have shown that thermal degradation is typically matrix dominated because by
the time fiber properties such as tensile strength and modulus are affected, all other
mechanical integrity is lost. Compressive, shear, and flexural properties are consid-
ered to be the most sensitive mechanical properties for use in the early detection of
thermal degradation. Most of the work reported in the literature dealing with NDE
for heat damage in composites is based on the following five methods: thermal (IR),
ultrasonics, acoustic emission, dielectric properties, and radiography. These methods,
although readily available and generally well developed, are limited in their capabili-
ties to detect and characterize the changes in composite material properties associated
with heat damage. As an example, experimental work carried out at CSM, Sweden, on
unidirectional CF/epoxy laminates illustrates the fact that the mechanical properties
change well before the microstructural alterations can be detected with classical ultra-
sonic techniques [20]. Figure 24.1 gives an idea of the detectability threshold of heat
damage in unidirectional AS4-8552 CFRP laminates using conventional ultrasonics.
Amplitude C-scans are performed for three samples exposed to 285, 290, and 300◦ C

285�C

300�C

290�C

exposure time 1 hour

exposure time 1 hour

exposure time 1 hour

Fig. 24.1. Ultrasonic amplitude C-scan of unidirectional composite (CF/epoxy laminate) exposed for one
hour to 285, 290, and 300◦C.
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for one hour. Delaminations clearly appear at 290◦C whereas no sign of damage is
seen at 285◦C.

Nevertheless, the measured value of the interlaminar shear strength for the same type
of samples changes from 121 MPa for nonexposed samples to 114 MPa when exposed
at 200◦C for the duration of one hour, to 84 MPa at 285◦C and to 43 for samples at
300◦C.

Most traditional NDE techniques are capable of detecting physical anomalies such
as cracks and delaminations. However, to be effective for thermal degradation they
must be capable of detecting initial heat damage that occurs on a molecular scale.
Review of the literature from more recent years indicates that a vast number of NDE
methods are currently under development and show various degrees of promise for
characterizing heat damage in composites: thermal wave, vibrothermography, leaky
lamb wave, ultrasonic backscatter, acoustoultrasonics, isotope radiation backscatter,
embedded sensors, shearography, thermal imaging, backscattered X-rays, diffuse re-
flectance infrared Fourier transform, laser-induced fluorescence, and, of course, non-
linear elastic wave spectroscopy. More extensive information on the status of develop-
ment of several of these NDE methods and their capabilities for detecting heat damage
in composite laminates can be found in an extended state-of-the-art review available
from NTIAC [21].

One of the goals of the European Union sponsored project, “Health Monitor-
ing of Aircraft by Nonlinear Elastic Wave Spectroscopy” (AST-CT-2003-502927,
AERONEWS, coordinated by Professor Koen Van Den Abeele [22]) is indeed to in-
vestigate and confirm the effectiveness of newly developed ultrasonic methods based
on NEWS for detecting early damage in aeronautic components. Within AERONEWS,
thermally loaded composites were considered to be good examples for the simulation
of the initiation and progressive degree of microdamage as the result of extreme envi-
ronmental conditions.

2.2 Experimental Set-Up and Methodology

To substantiate the potential of NEWS techniques to discern heat damage and test
its postulated high sensitivity to incipient damage and micromechanical changes in
the medium, we examined a set of heat-damaged composite laminate samples using a
nonlinear resonant ultrasonic spectroscopy technique, and quantified their nonlinear-
ity as a function of the heating temperature and exposure time. The set of 21 CFRP
(AS4/8552 quasi-isotropic lay-up) samples consisted of one reference sample, which
was left unexposed, and 20 samples exposed at five different temperatures (240, 250,
260, 270, and 300◦C) for four different durations (15’, 30’, 45’, and 60’). The nominal
size of the samples was 120 mm × 20 mm × 4 mm (Figure 24.2a).

All samples were subjected to a global nonlinear resonant ultrasonic-acoustic spec-
troscopy technique which measures the amplitude dependence of the resonance behav-
ior of a single mode of the samples. This technique has also been termed SIMONRUS:
Single Mode Nonlinear Resonant Ultrasound Spectroscopy [11–15]. The mode under
consideration in this study is the fundamental flexural mode of a beam, which has a
stress concentration in the middle of the sample and displacement nodes at a distance



24 Laboratory Experiments Using NEWS 393

Fig. 24.2. (a) CFRP samples; (b) set-up for TD and FD SIMONRUS.

of 0.224 L from both edges, with L the length of the sample (120 mm). Two imple-
mentations of SIMONRUS were realized: an amplitude dependent analysis of the re-
verberation signal in the time domain (TD-SIMONRUS), and a study of the nonlinear
resonance response in the frequency domain (FD-SIMONRUS). For both cases, we
used the same set-up: a sample is supported by two nylon wires at the node lines, and
is excited by a loudspeaker (diameter 32 mm, focused by a cone to 20 mm) centered in
the middle of the sample (Figure 24.2b); The response is measured by a laser vibrom-
eter near one of the edges. All equipment is computer controlled and operated through
LabVIEW and GPIB. Acquisition of the signal is realized by a 5 MHz DAQ-card.

In the TD-SIMONRUS experiment we excite the sample with a 1000 period burst
excitation at a given amplitude and with a frequency close to the fundamental flex-
ural resonance frequency. We then record a total of 0.6 seconds (120,000 points at a
sampling rate of 200 kHz) of the reverberation of the sample after the excitation is
stopped. To achieve a high accuracy, we implemented a variable dynamic range ac-
quisition procedure based on an automated feedback of the instantaneous amplitude
response. Doing so, the dynamic range is adjusted each 4000 points, and the signals
are averaged 10 times (see Figure 24.3a for a typical measurement result).

The analysis of the “composed” signals was done by fitting small moving time win-
dows of the signal with an exponentially decaying sine function: Ae−αt sin(2π f t +φ).
The output of the TD-SIMONRUS analysis procedure yields the evolution of the fre-
quency ( f ) and damping characteristic (α) as a function of the amplitude A in the
decaying signal. If no nonlinearity is present we should obtain a constant frequency
and a constant damping characteristic for all amplitudes. However, when nonlinearity
is present and related to the thermally induced microdamage, we may expect a stronger
dependence of the frequency and damping on the amplitude for increasing microdam-
age. This is indeed the case as shown in Figures 24.3b–d, in which we have gathered
the results of frequency versus amplitude for the reference sample, a sample heated at
250◦C for 45’ and a sample exposed at 300◦C for 60’.

Figure 24.4 illustrates the analyzed results of the amplitude dependence for the
damping characteristic. Here we have plotted the Q factor (Q = π f/α inverse at-
tenuation). Again we notice that this material parameter is amplitude dependent and
that the nonlinearity is higher for samples with increased thermal damage.
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Fig. 24.3. TD SIMONRUS results: (a) typical recorded signal; (b) analyzed frequency versus acceleration
amplitude for the reference sample showing almost no nonlinearity; (c),(d) for two samples at different
heating temperature and exposure time: 250C for 45’(c) and 300C for 60’ (d).
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Fig. 24.4. TD SIMONRUS nonlinear Q-factor (inverse attenuation) analysis for two samples at different
heating temperature and exposure time: 250◦C for 45’(a) and 300◦C for 60’ (b).

In order to quantify the degree of nonlinearity, we calculate the linear propor-
tionality coefficient γ between the relative resonance frequency shift and the strain
amplitude, � f/ fo = γ ε. The strain values ε were calculated from the measured ac-
celeration values A, using the strain-acceleration conversion expression for beams:
ε = 0.225 · d/( f · L)2 · A, with d = 4 mm and L = 200 mm. It should be noted
that, because of the global character of the applied NEWS method, γ only represents a
global quantification of the nonlinearity, integrated over the whole sample. It contains
no direct information on the localization of the defects.

To assure the reliability of the method, we verified that the obtained values of the
nonlinearity γ were independent of the chosen initial excitation frequency and ap-
plied voltage. Figure 24.5 shows the robustness of the results for a composite laminate
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Fig. 24.6. Illustration of the consistency of TD SIMONRUS and FD-SIMONRUS results.

sample exposed at 300◦C for 45’. In Figure 24.5a, the analyzed response at three dif-
ferent frequencies is illustrated for a fixed excitation amplitude. In Figure 24.5b, the
response at fixed frequencies is illustrated for three different excitation amplitudes.

Finally, the TD-SIMONRUS results were also compared with results of FD-
SIMONRUS experiments. In the latter method, which is well documented in earlier
publications [11–15], we record and analyze the excitation dependence of the full res-
onance curve of the fundamental flexural mode while sweeping frequency. The exper-
imental set-up is the same as for TD-SIMONRUS. As illustrated in Figure 24.6, the
analysis of the resonance frequency as a function of the resonant response amplitude
provides results that are remarkably consistent with the results from TD-SIMONRUS.
The offset of both results is due to different environmental conditions.

2.3 Discussion of the Results in Comparison with Linear Measurements

The results for the global nonlinearity of all samples are summarized in the left part
of Figure 24.7. The nonlinear parameter γ shows an overall increase with increasing
exposure time and heat temperature, up to a factor 10 with respect to the reference
value. A comparison with a traditional A-scan of the samples (Figure 24.8) reveals that
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Fig. 24.7. Nonlinearity γ (left) and linear Q-factor (inverse attenuation, right) for all 21 samples as a
function of heating temperature and exposure time.

Temp.

240˚C

250˚C

260˚C

270˚C

15’ Exposure time: 30’ 45’ 60’

Delaminations

Delam

Fig. 24.8. Traditional amplitude A-scan for a set of composite laminates as function of heating temperature
and exposure time.

the increase of nonlinearity (measured as a global property of the sample) is indeed an
indication of the degradation of the mechanical properties of the sample due to the
thermal loading. Samples with zones of delaminations clearly correspond to a higher
global nonlinearity.

As a comparison with a measure of the linear characteristics of the sample (tradi-
tional ultrasound), we also examined the values of the linear (or low-amplitude) Q-
factor of each of the samples. The results are displayed in Figure 24.7b. Apparently
the linear attenuation for heat-treated samples reduces as a function of exposure time
and heat temperature (Q-factor increases). If the linear measure of attenuation would
be connected to damage, we would have expected the Q-factor to decrease instead of
increase. Therefore, our conclusion is that the effect seen in the linear attenuation is not
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a measure of the microdamage, but is related to the chemical and physical change in
linear material parameters due to the thermal loading (molecular changes in the resin
matrix).

3. Nonlinear Wave Propagation and Wave Modulation Spectroscopy
of Structural Damage in Natural Stones Used in Restoration of
Historical Monuments

3.1 Rationale

The European Cultural Heritage deals with a great variety of structures of high intrinsic
value. For centuries, historical monuments have been subjected to mechanical loads,
and to various types of weathering (i.e., temperature variations, atmospheric pollu-
tion, freeze and thaw, moisture transport, etc.), which affect their quality and impose
damage of a certain type and degree. The induced damage on natural building stones
due to aggressive urban environment may lead to significant losses of the elasticity
and strength properties of the outermost layers of stone. In time, this results in ero-
sion features, cohesionless appearance, and disintegration. Damage diagnosis of NB
stones is the first stage in the planning of the remedial steps to which the success of
the restoration should be entrusted. An erroneous diagnosis may be very harmful to
the cultural, structural, and economic outcome of the operation. Thus far, the classical
processes for measuring the mechanical properties and effectiveness of the consolida-
tion treatment of stones are observational, empirical, and destructive: a sample is taken
from the structure—if it is permitted—it is cut and then standard rock mechanical tests
are performed for characterization. Obviously, it would be much more appropriate if
the knowledge of the mechanical properties and damage could be the result of nonde-
structive tests performed at the location itself. Up to now, however, there is no such
validated “stone-friendly” technology, procedure, or apparatus available on the market
that can do the in situ assessment of damage, verify the effectiveness of consolidation
treatments of stones, and provide guidance in the choice of compatible quarry stones
for repair.

This is exactly the goal of the European Union sponsored project “Integrated tool
for in situ characterization of effectiveness and durability of conservation techniques
in historical structures” (EVK4-CT-2002-00080, DIAS, coordinated by Professor
George Exadactylos, Technical University of Crete, Greece [23]). The DIAS project
will contribute to the evolution of EU policies by developing an integrated portable
Drilling-Indentation-Acoustics of Stones (DIAS) device that will furnish an easy-to-
use and quasinondestructive technique to evaluate the in situ mechanical characteris-
tics of a NB stone (elasticity and strength) and quantify and characterize its damage
compared to the virgin material. The study presented in this article deals solely with
the acoustical part of the project goal to quantify near-surface stone deterioration.

Among other nondestructive evaluation techniques, nonlinear wave propagation and
nonlinear wave modulation spectroscopy are being increasingly used in damage detec-
tion applications [1–10]. The former technique investigates the creation of second and
higher harmonics within the material during the propagation of a continuous wave,
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Fig. 24.9. Experimental set-up on the Balegem sample.

whereas the latter method consists of generating two signals of two separate frequen-
cies in a sample, and inspecting the generation of sum and difference frequencies. In
the following section we illustrate the use of both nonlinear techniques on an environ-
mentally damaged block of Balegem in laboratory conditions.

3.2 Experimental Set-Up and Methodology

3.2.1 Description of the Balegem Stone Sample

Balegem is a natural stone that has been frequently used for the construction and
restoration of historical buildings in Belgium and Holland over the past century. The
Balegem stone is mainly composed of quartz grains in a calcite cement. In polluted
city air the calcite is transformed into gypsum, causing a typical weathering.

For our laboratory experiments, we used a sample with an obvious peripheral zone
that has deteriorated through external conditions (Figure 24.9). In order to investigate
the damage quantification potential of the proposed acoustic techniques, the following
set-up has been prepared. An emitting transducer is epoxied on the surface of the
Balegem stone and a similar receiver is used and moved around to acquire signals in a
circle around the emitter. Several positions are indicated on the ring (14 in total): the
positions 13, 14, 1, and 2 are in the damaged zone; all the other positions are located
on a supposedly intact surface.

3.2.2 Linear Acoustic Measurements

To get acquainted with the sample, we first performed time-of-flight measurements for
pulsed Rayleigh waves propagating along the surface of the block. Figure 24.10 illus-
trates two typical temporal signals received at position 8 on the intact surface (Fig-
ure 24.10a) and at the diametrically opposite position (position 1) in the deteriorated
zone (Figure 24.10b). We calculated the velocity of the surface wave from the arrival
time, and plotted the obtained velocities at each position versus the positions on the
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Fig. 24.10. Received temporal signals on the Balegem block: intact surface (a) and damaged surface (b).
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ring (Figure 24.11a). The principal observation is that the wave velocity is consider-
ably less in the deteriorated zone compared with the intact surface zones. We easily
observe a 20 to 50% reduction in wave speed.

In addition, we also analyzed the amplitude characteristics of the signals. We calcu-
lated the Fourier transform of the entire temporal signal and identified the maximum
amplitude in the power spectrum at each position. Figure 24.11b visualizes the relative
amplitude of the received surface waves versus the position on the Balegem sample.
As expected, we observed that the amplitude decreases when the surface is damaged
(positions 1, 2, 13, and 14). A similar result has been found when integrating the power
spectrum of the signals at each position (over a limited range in frequency), indicat-
ing that the “energy” is indeed decreasing in damaged zones. We observed a typical
reduction of energy by a factor of 10 to 30.

3.2.3 Nonlinear Acoustic Measurements

In order to supplement the previous “linear” study and test the sensitivity of NEWS
techniques, two types of nonlinear measurements are performed on the Balegem
sample.

The first type of nonlinear measurements is based on the Nonlinear Wave Mod-
ulation Spectroscopy (NWMS) [7–10]. This technique consists of simultaneously
exciting a sample with two autonomous waves, which frequency spectra are con-
fined to two separate ranges, and inspecting the interference of the two waves in the
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material’s response. We pay particular attention to the sum and difference frequencies
(sidebands).

The study presented here, is performed using NWMS in “impact mode”: the sample
is excited by tapping it with an impact hammer, while a high-frequency continuous
signal generated by a separate transducer is propagating through the sample. The in-
teraction between the impact signal and the high frequency can be quantified and used
in the assessment of damage within the sample. This method can be quickly applied
and is ideally suited to applications where the question of damaged versus undamaged
must be quickly addressed.

In this case, the high-frequency signal is generated by a piezoelectric transducer (E)
epoxied to the Balegem sample. The emitted signal is fixed at 110 kHz with a constant
voltage. The low-frequency signal, generated by the impact, is limited in time and is
attenuated in the sample. The quite rich spectrum of the components corresponding
to the hammer impact is limited in the frequency band to about 15 kHz. Typical in-
termodulation spectra are illustrated in Figure 24.12 for a frequency range centered
around 110 kHz. On this figure, four subfigures are shown corresponding to four po-
sitions on the ring: two positions in the intact zone (positions 12 and 14, top figures)
and two in the damaged zone (positions 5 and 7, bottom figures). Close observations
of these spectra clearly reveal that the sideband amplitudes are much more important
in the deteriorated zone. Apart from the increase of the first sideband, we can also note
the manifestation of the second one.

For the quantification of the analysis, we have computed a simple parameter of non-
linearity by calculating the energy included in the sidebands at each position (Fig-
ure 24.13). For the intact surface, the mean level of this energy is about 10−6. When
the wave has propagated through the environmental deteriorated zone, there is an in-
crease in the nonlinearity parameter by a factor of 100 to 1000.

The second type of NEWS measurements we performed on the Balegem sample
deals with the quantification of harmonic generation. A mono-frequency and quasi-
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continuous signal is generated by the transducer E, and response measurements are
performed at transducer R, which is rotated on a circle around E. The response sig-
nals are analyzed at the fundamental excitation frequency as well as at its harmonic
frequencies. In the current laboratory set-up, the frequency was fixed at 80 kHz and a
200 cycle burst signal was generated. The comparison of the harmonic generation [at
160 kHz (second harmonic) and 240 kHz (third harmonic)] in the spectra for an intact
and a damaged zone is shown in Figure 24.14. We observe that the harmonic ampli-
tudes are more important for the damaged zone (Figure 24.14b) than in the case of the
intact surface (Figure 24.14a). The nature of the intermediate frequencies (appearing
at odd multiples of 40 kHz) is not clear at the moment.

Another representation of the harmonic generation can be realized as follows: for
each position, we store the amplitude of the fundamental frequency component to-
gether with those of the second and the third harmonics for different values of the
amplitude of the excitation (starting from 100 mV to 1 V, increasing by 100 mV steps).
By plotting the harmonics as a function of the fundamental, we get a typical view of
the second and third harmonic dependence as illustrated in Figure 24.15 for position
5 on the ring. The difference between an intact surface and an environmental deterio-
rated zone is clearly shown in Figure 24.16 where the amplitude dependencies of the
harmonics are represented for several positions on the ring. The nonlinearity is propor-
tional to the shift of the curves. The larger the amplitude of the harmonic is for small
amplitudes of the fundamental, the more the zone is nonlinear.

4. Monitoring the Curing of Concrete Using NEWS

4.1 Rationale

The durability of cement-based products and concrete structures is highly influenced
by the early stages of hydration. The creation of an interfacial transition zone between
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Fig. 24.14. Harmonic generation for intact surface (a) and deteriorated zone (b).
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Fig. 24.15. Amplitude of the second (a) and the third harmonic (b) versus the fundamental amplitude at
position 5.

the aggregates and the cement paste, with a thickness of up to 50 µ m, is considered
to be the origin of primary defects in concrete leading to preferred paths for crack
propagation and transport of aggressive agents threatening the durability of concrete
[24]. A precise knowledge of the micromechanical properties during the successive
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ring.

phases of the hydration process will provide information on the concrete resistance
and allows assessment of its durability.

It is essential that nondestructive techniques be developed and applied in that re-
spect. Boumiz [25,26] and Morin [27,28] used ultrasonic measurements of linear elas-
tic coefficients in combination with volumetric shrinkage measurements to describe
the evolution of the capillary network of a high-performance concrete during hard-
ening. In general, however, lack of sensitivity and difficulties in interpretation of the
linear ultrasonic measurements arise when validating the early stages of curing [29].

New developments in NDT, however, suggest that several alternative methods may
be more appropriate in the evaluation of microstructural changes. In order to simul-
taneously probe the instantaneous microstructural activity and the micromechanical
characteristics of freshly poured concrete during its curing process, we developed an
integrated system of dynamic nondestructive techniques based on acoustic emission,
linear ultrasonic wave propagation, and NEWS harmonic monitoring. With this study,
we complement and extend the work of Lacouture et al. [30] who started the use of
NEWS for monitoring the early chemical reaction phase in the curing process. To-
gether with theoretical hydration models, this integrated approach should eventually
lead to an improved prediction of the long-term behavior of concrete and its perfor-
mance dependence on the curing processes.

4.2 Experimental Set-Up and Methodology

4.2.1 Materials and Sample Preparation

All material properties are measured inside a curing cell of L×W×H = 200×150×
100 mm3 (Figure 24.17). The cell has four circular openings containing four transduc-
ers: a transmitter and receiver for both compressional (P) and shear (S) waves. The
compressional transducers (0.5 MHz central frequency) are positioned on the cross
side and have a separation distance of 200 mm. The shear transducers (0.25 MHz
central frequency), placed on the long side, have a mutual distance of 15 cm. A
thin film closing the apertures prohibits the freshly poured concrete from leaking
through. Springs in the transducer holders ensure perfect contact between the trans-
ducers and the concrete. In addition, two thermocouples, monitoring the evolution in
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Fig. 24.17. Top view (left) and picture (middle) of the curing cell, containing AE sensors (AE), ther-
mocouples (T), and compressional (P) and shear (S) transducers. The sample is placed in a climate
chamber (right) and closed without active control, diminishing outside temperature and relative humidity
fluctuations.

inside temperature, are fit in from the (open) top side. Lastly, two very sensitive sensors
(0.375 MHz) attached on top of two protruding bars register the Acoustic Emission
(AE) signals emerging from the microstructural activity in the concrete sample.

The concrete used in the experiment was composed as follows: 625 kg/m3 Sand 0/4,
1190 kg/m3 Aggregates 4/14, 450 kg/m3 CEM I 42.5R, Water 150 kg/m3, 4500 cc/m3

Plastifier Rheolmild 2000 PF, and corresponds to a concrete with a water:cement ratio
of 33%.

4.2.2 Experimental Procedure

After pouring the fresh concrete in the cubic cell, the instrumented sample is placed
in a climate chamber (Figure 24.17, right) to isolate it from large outside temperature
and relative humidity fluctuations. The climate chamber is closed. However, climate
conditions are not actively controlled in order to allow and to monitor variations of
the concrete’s inside temperature, which are characteristic for concrete curing. The
(damped) temperature inside the climate chamber is also registered and is used to
correct the thermal fluctuations in the concrete sample for day–night cycles.

The AE events are registered using a Digital Wave system, and are independent
of the other measurements, except for the communication about the interruption of
the registration at times when acoustic waves are transmitted through the medium.
A LabVIEW script controls the active acoustic measurements, adjusting the function
generator (Agilent 33250A) and the oscilloscope (LeCroy 9310AM) settings through
GPIB. The acoustic responses, the temperature (three readings: inside temperatures
Tin,1 and Tin,2, and outside temperature Tout) and relative humidity are logged on the
same PC.

For each of the wave polarizations (P and S), two types of acoustic measurements
are performed: a pulsed wave and a continuous wave train transmission. In the first
experiment, we apply a unipolar pulse of 1 µs to the respective transducer. From the
arrival time of the received pulses in the pulsed P and S wave transmission experi-
ments, we determine the speed of the waves for longitudinal and shear polarization. In
the continuous wave experiments, we typically use a sequence of 100 cycle bursts at
100 kHz and evaluate the spectral content (harmonics) at the receiver as a function of
time.
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We monitor the curing process during the first 72 hours. Sequences, consisting of
registering condition parameters and acoustic responses, are repeated every 3 minutes
in the first 12 hours of the experiment. Between 12 hours and 24 hours, sequences
are repeated every 7 minutes. After one day, measurements are performed every 15
minutes. AE events are registered continuously, except at times when acoustic waves
propagate through the medium.

4.3 Results and Analysis

4.3.1 Temperature Profile

The typical temperature change inside the concrete sample, calculated as the differ-
ence between inside and outside temperature (to correct for day–night cycle), is shown
in the top figure of Figure 24.18, left. The temperature augmentation represents the in-
ternal accumulation of heat due to chemical reactions. The initiation of the first chem-
ical reaction starts really early in the process, about 6 hours after the preparation of
the concrete, and the increase lasts for about 12 hours. It is during this period that
most clustering between the different particles is established, first between the small-
est and later between the largest particles [23–26]. After reaching the hydration peak,
the temperature decreases gradually back to room temperature during the subsequent
mechanical setting phase.

4.3.2 Acoustic Emission Monitoring

The bottom figure in Figure 24.18 (left) illustrates the cumulative counts of the acoustic
emission events, after automatic filtering out of bad readings. After an initial phase of
activity, we observe a silent period, followed by an accelerated increase of counts that
starts just prior to the main temperature change. At this point, it is believed that the
largest particles in the concrete are becoming fully connected. The silence during the
connection period of small particles is not easy to explain, but one of the reasons could
be that the recording of high frequency pulses is hindered by the high attenuation in
the slurry, and do not attain the threshold settings of the device. Figure 24.18 also
illustrates that the accumulation of AE counts goes on well beyond the temperature
peak. This reflects the mechanical setting (shrinkage) of the concrete during the curing
process.

4.3.3 Ultrasonic Wave Velocity

Ultrasonic through transmission pulse mode experiments with separated pairs of P and
S wave transducers were used to determine the speed of the waves for longitudinal and
shear polarization. The arrival time of the received pulses was then calculated and
transformed into longitudinal and shear wave velocities, as illustrated in Figure 24.18
(right). During the first part of the curing (earlier than six hours after the preparation)
the attenuation was so high that it was impossible to transmit any sound wave through
the sample. An alternative way to monitor the sound speed during this early period
could be the monitoring of the reflection coefficient at the concrete–cell interface as
was done by Lacouture et al. [30]. However, this method cannot be used for later



406 K.V.D. Abeele et al.

0
0

200

400

600

24 48 72

Time (h)

C
um

ul
at

iv
e 

A
E

 C
ou

nt
s

0
0

2

4

6
∆T

in
-o

ut
 (

�C
)

(a)

0
0

1000

2000

3000

4000

5000

24 48 72

W
av

e 
V

el
oc

ity
 (

m
/s

)

Time (h)

SHEAR

COMPRESSIONAL
(b)

Fig. 24.18. Left: Cumulative counts of filtered AE events (bottom) in comparison with the variations in
inside temperature (top); right: measured longitudinal and shear wave velocity during curing.

times because the shrinkage of the concrete causes a disbonding between the concrete
and the lucite container, resulting in poor acoustic measurements. In our set-up the
spring loading on the transducers assures a good permanent contact of transmitter and
receiver to the concrete surface. Once the transmission of shear acoustic wave energy
is possible, we observe a steep rise of the wave velocities which lasts almost up to the
maximum temperature increase, and corresponds to the phase of connecting larger and
larger particles. The steep rise is followed by a gradual increase to an asymptotic value.
Actually, the inflection point in the longitudinal and shear velocity is situated just
before the temperature peak, and indicates the transition between the grain connection
phase and the pore-filling phase within the sample, controlled by diffusion of water
and ions through the hydrate layers [23–26]. When transforming the wave velocities
into Young’s modulus and Poisson coefficient, we manifestly witness the complete
transition between a fluidlike medium (E = low and v ≈ 0.5), and a real solid block
of concrete (E ≈ 40 MPa and v ≈ 0.2) in the course of one day.
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Fig. 24.19. (a) Evolution in second harmonic (compressional and shear) in comparison with the variations
in inside temperature (top). (b) Evolution of the second harmonic longitudinal and shear wave nonlinearity
coefficient.

4.3.4 Nonlinear Acoustic Analyses

Because of the large attenuation in the beginning of the curing process, we performed
the continuous wave transmission experiments in a slightly modified curing cell with
a smaller transmission distance (5 cm). Figure 24.19a shows the evolution of the sec-
ond harmonic as the response to a 100 kHz compressional and shear burst signal in
comparison with the variations in inside temperature. We observed a striking corre-
spondence between the net temperature change due to the chemical and mechanical
setting processes, and the harmonic content of the wave train transmission. After a
fast build-up during the temperature rise (chemical phase), the harmonic generation
reduces during the phase of mechanical setting, though keeping a sizeable level. The
recordings of the third harmonic are not easy to interpret at this point.

In order to eliminate the effect of the fundamental amplitude on the level of the
harmonics, we calculated the nonlinearity parameter β in the relation A2 = β(A1)

2,
with A2 the level of the second harmonic, and A1 the fundamental amplitude. The
evolution of β as function of curing time is shown in Figure 24.19b. We observed that
the shear wave nonlinearity is dominant in the prepeak phase of the curing process, that
is, during the formation of the connections between the particles. The level decreases
together with the decreasing temperature, but rises again in the late mechanical setting.
The longitudinal nonlinearity is delayed with respect to the shear nonlinearity and only
exists in the pore-filling regime (early phase of the mechanical setting) during which
hydration fills the capillary pores [23–26]. This analysis leads to the conjecture that the
origin of the nonlinear components is connected to the micromechanical changes in the
composition, both due to the initial chemical reactions (mostly shear nonlinearity) and
the progressive mechanical setting of the sample (longitudinal and shear).

5. Conclusions

We have illustrated three laboratory applications of Nonlinear Elastic Wave Spec-
troscopy (NEWS), which could be used as precursors to real field applications in
aeronautics and civil engineering.
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We showed that TD-SIMONRUS and FD-SIMONRUS are both capable of discern-
ing the effects of heat damage in composite laminates as a function of heat temperature
and exposure time with a high degree of sensitivity. We have examined the reliability of
the methods and compared the results to traditional measures of damage. The behavior
of the nonlinearity coefficient is highly correlated to the observation of delaminations
resulting from a linear ultrasonic A-scan. However, due to the high sensitivity of the
nonlinear parameter, we expect that the nonlinear methods can also work to detect the
more subtle property changes associated with modest temperatures.

Linear and nonlinear wave propagation techniques were applied to investigate the
surface quality of intact and damaged natural building stones used in restoration
projects of historical buildings. This has been realized by means of different measures
of wave excitation: a pulsed signal generation for the time-of-flight and attenuation
measurements, and two types of continuous wave generation, with and without a low-
frequency impact, for the nonlinear acoustic measurements. In all cases, the results
allow us to tell the difference between a damaged zone of a structure and an intact one.
However, the sensitivity of the nonlinear methods is far superior.

Finally, NEWS techniques can also be applied to obtain complementary informa-
tion about the different phases in curing processes. We have found that the origin of
the nonlinearity is connected to the micromechanical changes in the composition due
to the initial chemical reactions (mostly shear nonlinearity) and to the progressive me-
chanical setting of the sample (longitudinal and shear).

Acknowledgments

The authors gratefully acknowledge the support of the Flemish Fund for Scientific
Research (G.0206.02 and G.0257.02), the provisions of the European Science Foun-
dation Programme NATEMIS, and the European FP5 and FP6 Grants DIAS (EVK4-
CT-2002-00080) and AERONEWS (AST3-CT-2003-502927).

References

[1] Buck O, Morris WL, Richardson JN (1978), Acoustic harmonic-generation at unbonded interfaces
and fatigue cracks, Appl Phys Letters 33(5): 371–373.

[2] Nazarov VE, Sutin AM (1997), Nonlinear elastic constants of solids with cracks, J Acoust Soc Am
102: 3349–3354.

[3] Morris WL, Buck O, Inman RV (1979), Acoustic harmonic-generation due to fatigue damage in
high-strength aluminum, J Appl Phys 50(11): 6737–6741.

[4] Adler L, PB Nagy PB (1991), Second-order nonlinearities and their application in NDE, in DO
Thompson, DE Chimenti (Eds), Review of Progress in quantitative Nondestructive Evaluation, Vol.
10B, Plenum, New York, pp. 1813–1820.

[5] Cantrell JH, Yost WT (1994), Acoustic harmonic-generation from fatigue-induced dislocation
dipoles, Phil Mag A 69: 315–326.

[6] Nazarov VE, Ostrovsky LA, Soustova I, Sutin AM (1988), Nonlinear acoustics of micro-
inhomogeneous media, Phys Earth and Planet Interiors 50(1): 65–73.

[7] Antonets VA, Donskoy DM, Sutin AM (1986), Nonlinear Vibro-diagnostics of flaws in multilayered
structures, Mech of Composites Materials 15: 934–937.

[8] Nagy PB (1998), Fatigue damage assessment by nonlinear ultrasonic materials characterization,
Ultrasonics 36(1–5): 375–381.



24 Laboratory Experiments Using NEWS 409

[9] Sutin, AM, Donskoy DM (1998), Vibro-acoustic Modulation Nondestructive Evaluation Technique,
Proceedings of SPIE 3397, pp. 226–237.

[10] Van Den Abeele K, Johnson PA, Sutin AM (2000), Nonlinear elastic wave spectroscopy (NEWS)
techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS),
Res Nondest Eval 12/1: 17–30, 2000.

[11] Johnson PA, Zinszner B, Rasolofosaon PNJ (1996), Resonance and elastic nonlinear phenomena in
rock, J Geophys Res 101: 11553–11564.

[12] Van Den Abeele K, Carmeliet J, TenCate JA, Johnson PA (2000), Nonlinear Elastic Wave Spec-
troscopy (NEWS) techniques to discern material damage. Part II: Single Mode Nonlinear Resonant
Acoustic Spectroscopy (SIMONARS), Res Nondestr Eval 12/1: 31–42.

[13] Van Der Abeele K, Van De Velde K, Carmeliet J (2001), Inferring the degradation of pultruded
composites from dynamic nonlinear resonance measurements, Polymer Composites 22(4): 555–567.

[14] Van Den Abeele K, De Visscher J (2000), Damage assessment in reinforced concrete using spectral
and temporal nonlinear vibration techniques, Cement and Concrete Research 30/9: 1453–1464.

[15] Guyer RA, McCall KR, Van Den Abeele K (1998), Slow elastic dynamics in a resonant bar of rock,
Geophys Res Lett 25: 1585–1588.

[16] TenCate JA, Shankland TJ (1996), Slow dynamics in the nonlinear elastic response of Berea sand-
stone, Geophys Res Lett 23(21): 3019–3022.

[17] TenCate JA, Smith E, Guyer RA (2000), Universal slow dynamics in granular solids, Phys Rev Lett
85(5): 1020–1023.

[18] Vila M, Vander Meulen F, Dos Santos S, Haumesser L, Bou Matar O (2004), Contact phase modu-
lation method for acoustic nonlinear parameter measurement in solid, Ultrasonics 42: 1061–1065.

[19] GA Matzkannin, see http://wwwntiaccom/gamsoarhtml
[20] C Mattei, private communication.
[21] State of the art Review NTIAC-SR-98-02, see NTIAC publications at http://wwwntiaccom/
[22] For more information, visit: http://wwwkulakacbe/AERONEWS
[23] For more information, visit: http://minelabmredtucgr/dias/
[24] Ollivier JP, Masco JC, Bourdette B (1995), Interfacial Transition Zone in Concrete, Advanced

Cement Based Materials 2(1): 30–38
[25] Boumiz A, Vernet C, Cohen Tenoudji F (1996), Mechanical properties of cement pastes and mortars

at early ages - Evolution with time and degree of hydration, Advanced Cement Based Materials,
3(3-4): 94–106.

[26] Boumiz A (1995) Etude comparée des évolutions mécaniques et chimiques des pâtes de ciment
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Abstract
Nonlinear acoustics was a huge topic of research in the 1960s and 1970s after the creation of the
parametric array. (By mixing two high-frequency sound waves together in a nonlinear medium
such as water, a very focused beam could be created.) Other applications were also suggested
and research in the field exploded. In the mid-1980s a group at Los Alamos began exploring the
nonlinearity of the earth with a mind to developing tools such as the parametric array for use
in seismic imaging. Initial measurements showed rocks to be highly nonlinear. Yet, attempts
at carefully quantifying the dynamic behavior of rocks were frustrating, as were attempts to
model the physics. Rocks showed some extremely peculiar behavior, including memory effects
(slow dynamics), hysteresis, and end point memory in addition to the expected Landau-type
nonlinearity. This chapter traces (historically) the macroscopic experiments that led to our cur-
rent understanding of the peculiar nonlinearity of not only rocks and geomaterials, but many
other materials as well. Results from some recent microscopic measurements where neutron
scattering is used to help ascertain the physical origin of the nonlinearity conclude the chapter.

Keywords: Geomaterials, hysteresis, memory effects, nonlinear acoustics, nonlinear elasti-
city, rocks, slow dynamics

1. Introduction

The study of nonlinearity in rocks was a rather natural outgrowth of the study of non-
linear waves in air and water. After the development of jet engines in the late 1940s,
interest in loud (or finite amplitude rather than infinitesimal amplitude) sound boomed.
With a rapid increase in submarine fleets and the advent of the Cold War, interest in
nonlinear underwater acoustics also grew. Some of the first experiments to study the
interaction of nonlinear waves occurred in the late 1950s. The development of the un-
derwater parametric array in the early 1960s—which used the nonlinear mixing of two
sound beams to form a narrow difference frequency beam (i.e., an acoustic spotlight)—
really drove the field of nonlinear acoustics into a frenzy.

Nonlinearity in air and water can be manifested in various ways. Waves that propa-
gate in a nonlinear fluid such as water distort and develop harmonics with distance.
Even in (weakly nonlinear) air, if the wave is intense, distortion will develop and
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shocks will form, the sonic boom is probably the most well-known example. Wave-
mixing effects in the form of intermodulation distortion and concomitant sideband
generation may also be observed. Nonlinear effects such as the modulation (and sup-
pression) of sound by sound have been known since the late 1950s.

In seismology, the “acoustic approximation” is frequently used. In fact much of
the world’s early seismic imaging is based on acoustic approximation. It was thus
only natural to examine the nonlinearity of the earth and earth materials with non-
linear acoustics analogues. These nonlinear experiments were performed to explore
and potentially develop techniques commonly used in nonlinear acoustics for seismic
imaging applications. Early experiments at Los Alamos were carried out to create a
parametric array in the earth (using an array of seismic sources). Although the results
were inconclusive, the fact that earth materials were highly nonlinear was unmistak-
able. Nonlinear research in earth materials was thus scaled down to the laboratory
(Johnson et al., 1987, 1989, 1991) and nearly ten years of research into the nonlinear-
ity of earth materials resulted. Over this period, various types of rocks were studied
and all were found to be highly nonlinear; notably, sedimentary rocks (which are oil
and gas bearing) showed the largest and most interesting nonlinearities.

Two types of experiments in rocks and geomaterials are specifically discussed in
this chapter. First, wave propagation experiments are carried out using (mostly) sed-
imentary solids (large blocks) and in long rods or rock cores. These experiments are
analogous to acoustics experiments by D.T. Blackstock and his students at the Univer-
sity of Texas in Austin in the 1970s and 80s in air-filled ducts. Second are resonance
experiments on long “thin” rods (or core samples). Although analogous (and mostly
unremarkable) resonance experiments were attempted in air- and water-filled tubes, the
much larger nonlinearity of rocks made resonance experiments and the effects of their
nonlinearity much easier to study. Finally, a note about two-wave interaction experi-
ments. Well-known two-wave nonlinear mixing experiments in water (e.g., modulation
of sound by sound, scattering of sound by sound) were also performed in solids (John-
son et al., 1991) and lead somewhat naturally to techniques for nondestructive testing.
Such experiments and techniques are discussed elsewhere in this book. This chapter
concludes with a discussion of some very recent measurements using neutron scatter-
ing to learn about the microscopic behavior of the crystalline components of rocks and
how these neutron scattering experiments relate to the peculiar nonlinear behavior that
is now discussed.

2. Wave Propagation Experiments

Some of the first experiments on wave propagation in rocks (sandstone cores) were
done at Los Alamos in the 1990s. Meegan et al. (1993) showed some of the very first
wave propagation and harmonic measurements made in a long rock core of Berea
sandstone. However, potential issues with receiver site effects due to bonding (a com-
mon problem in seismology), lack of strict environmental controls, and new modeling
efforts led TenCate et al. (1996) to carefully repeat and expand Meegan’s results in a
more carefully controlled environment.
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Both sets of experiments yielded data that strongly suggested rocks were more com-
plex than expected. Quasistatic stress–strain loops on sandstones were known to be
hysteretic and highly unusual since the 1900s (Adams and Coker, 1906) and quasi-
static measurements by many others (see Guyer et al., 1995) suggested the need to
include hysteresis in models developed at that time. Even so, propagation time wave-
forms didn’t match simple expectations (Kadish et al., 1996) and the prediction of
harmonic levels, even with ad hoc improvements (e.g., including hysteresis) in Lan-
dau theory (Van den Abeele et al., 1997), were not very encouraging. A new type of
experiment was needed.

3. Resonance Experiments

The examination of a particular resonance mode at increasing excitation levels is a
common experiment and often used to study nonlinear oscillators. Softening or hard-
ening nonlinearity (with increasing drive amplitude) produces an easy-to-identify fam-
ily of resonance curves. With a softening nonlinearity, the resonance frequency drops
with increasing amplitude; with hardening, the resonance frequency rises. The Duff-
ing oscillator (which includes an additional cubic nonlinearity in the spring constant)
is perhaps one of the most well-known and frequently studied nonlinear oscillators.
Noticeable peak shifts and jumps are possible and can be quite common. Experiments
done in the early 1970s (Cruikshank, 1972) were performed to see if an air-filled tube
showed any of the behavior typical of a nonlinear oscillator. Results were positive but
at the same time disappointing. Air is simply not very nonlinear.

On the other hand, similar experiments on long (thin) core samples of various rocks
produced dramatic sets of nonlinear resonance curves. Johnson et al. (1996) showed
such results for a wide variety of rocks. Resonance frequencies of the samples they
examined always softened with increasing drive level; in one particular Fontainebleau
sandstone the frequency shift they observed was nearly 10%! Moreover, resonance
curves obtained by sweeping frequencies upward while watching the sample’s res-
ponse differed from curves obtained sweeping downward. The results were highly
reminiscent of curves one might obtain from a Duffing oscillator. As mentioned before,
sedimentary rocks (especially clean sandstones) showed some of the most dramatic
nonlinear peak shifts with increasing drive levels.

Efforts to describe the nonlinear resonance curves obtained on rocks with Duffing-
like theoretical treatments failed, sometimes miserably, so additional experiments were
performed. TenCate and Shankland (1996) discovered that the different up and down
response curves obtained as a rock was swept through a resonance are repeatable, but
only after the rock was “conditioned” first. Moreover, once the rock was given suitable
time to rest or “recover,” the whole resonance behavior was completely reproducible.
In the case of one sandstone sample, the behavior of the rock was repeatable for hun-
dreds of experiments; that is, the rock’s macroscopic behavior was unchanged during
these experiments. The authors dubbed this behavior “slow dynamics” (discussed in
many places throughout this book). Fortuitously, the time scales of the slow dynamics
in rocks were on the order of tens of minutes which made them very easy to study.
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(Other materials of interest for nondestructive testing applications showed slow dy-
namics on much shorter time scales.) Finally, TenCate et al. (2000) discovered that the
recovery back to the original state of many rocks went as the logarithm of time. One
other notable recovery process can be described with a log(t) behavior, creep back
to equilibrium. Slow dynamics, however, is not necessarily related to creep; slow dy-
namics is induced with an ac (acoustic) drive; creep is induced with a dc driving force.
Rocks are peculiar solids.

During the above experiments, it was discovered that rocks (sedimentary rocks and
concretes in particular) and their concomitant response were also highly susceptible
to humidity and temperature; however, slow dynamics always remained an identify-
ing feature of the rock’s response unless the rock was fully saturated. Thus, great care
and extreme measures were taken to be sure measurements were made in carefully
controlled environments. As a consequence, an isolation chamber was built; careful
measurements made in this chamber showed that there was a threshold above which
slow dynamics became dominant; below that drive threshold, the rock behaved as a
weakly nonlinear Duffing oscillator. It was also shown that different rocks have differ-
ent thresholds. For more details, see Chapter 26 by D. Pasqualini in this book.

4. Microscopic Measurements—Neutron Scattering

Within the last few years, several neutron diffraction experiments were carried out by
Darling et al. (2004a,b) on intact samples of rock. In these experiments the authors and
their colleagues took simultaneous neutron diffraction data while performing quasi-
static stress–strain loops, and while doing conditioning and recovery experiments. In
this way, information on the atomic (crystalline lattice) scale was obtained at the same
time as some of the classic nonlinear macroscopic measurements were made. In ad-
dition, neutron diffraction was recently used to determine how much of the rocks was
amorphous and how much was crystalline; some fascinating hints at mechanisms for
nonlinearity have been identified. Three sets of experiments are described in this final
section.

Quasistatic stress–strain measurements on rocks show hysteresis loops as well as
nonlinearity. As with many quasistatic stress–strain measurements there is an initial
conditioning cycle followed by a repeatable banana-shaped loop. Neutron diffraction
measurements (Darling et al., 2004), however, show that the crystalline lattice always
behaves in a completely reversible and linear fashion. In fact, the authors estimate that
only a few percent of the volume of the rock must contribute to the nonlinearity and
hysteresis seen in the macroscopic measurements. They conclude that it is likely in
the bond structure of the rock where all the peculiar nonlinearities occur. Placing the
origin of the nonlinearity with the bond structure was not a new idea; however, these
are the first compelling experiments that support that hypothesis.

Recent measurements (Page et al., 2004) show another interesting aspect of sand-
stones. When a pair distribution function technique is applied to the diffraction pattern
obtained from a pure quartz sandstone (Fontainebleau sandstone in their particular
case), it was found that there were an excess number of Si–O and O–O bonds not be-
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longing to any long-range crystalline structure in the rock. The authors suggest there
may be an amorphous phase (glass?) within the rock. The idea is appealing. Glassy
dynamics is certainly reminiscent of many of the peculiar behaviors seen in rocks.

Finally, recent neutron diffraction measurements by TenCate et al. (2005) were taken
while abruptly changing temperature and also while applying and removing a condi-
tioning acoustic drive. Both sets of macroscopic measurements show abrupt changes
in the state of the rock (i.e., initial drop of modulus) and then slow, log(time) recov-
ery back to the original (or a new) equilibrium state. Neutron diffraction, on the other
hand, suggests that the bulk of the crystalline material behaves as expected during the
temperature changes (a dc “driving” force), with no unusual nonlinear behavior what-
soever. The acoustic (ac “driving” force) experiment has yet to be analyzed. Work on
this topic is nearly complete and another publication is in preparation.

5. Summary

Rocks (especially sandstones and other sedimentary rocks) have been shown to have
very peculiar nonlinearities. On the other hand, they are also easy to study, and their
nonlinear properties have proven helpful for studies of a host of other materials that
display rocklike behavior. Much has been learned but very careful measurements were
necessary. Although it has long been suspected that most of the interesting nonlinear
behavior seen in rocks lies in the way the rock is put together (the bond system),
recent neutron measurements confirm what was long suspected. Applications of this
work include better concretes, understanding more about the strength and durability of
buildings made of stone, and numerous nondestructive testing applications.
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Abstract
The elastic properties of geomaterials are anomalous. Hysteresis with end point memory, slow
dynamics, and linear variation of the resonance frequency with the strain are only some of
these uncommon features. All these characteristics have been related to a nonclassical nonlinear
elasticity. Chapter 1 introduces two strain regions where the experiments show different elastic
behaviors. At low strain, rocks show their intrinsic nonlinearity until a strain material-dependent
threshold, εth . A transition from linear to classical nonlinear behavior appears in this first region.
For strains beyond εth the experimental data are contaminated by a complex nonequilibrium
dynamics. Memory effects and conditioning complicate the characterization of the intrinsic
nonlinearity of the sample and they do not allow a simple interpretation of the experimental
data to prove the existence of anomalous nonclassical nonlinearity.

Keywords: Classical nonlinearity, conditioning, dynamical experiments, geomaterials, intrin-
sic nonlinearity, memory effects, nonequilibrium dynamics, nonlinearity

1. Introduction

Rocks are complex systems. Their extraordinary elastic properties are the manifesta-
tion of this complexity. The presence of hysteresis with end point memory (Cook and
Hodgson, 1965, Gordon and Davis, 1967), long–time recovery relaxation phenomena
(TenCate and Shankland, 1996, TenCate et al., 2000), and anomalous softening of the
resonance frequency with strain (Johnson et al., 1996) are only some examples of the
uncommon elastic properties of geomaterials. This experimental evidence led us to
define rocks as anomalous nonlinear elastic materials. Several basic questions are still
open about this nonlinearity.

In this chapter some recent experimental results are presented which help to better
understand the nonlinearity of rocks. The focus of this chapter is to show the existence
of a strain threshold, below which these materials show a classical nonlinear behav-
ior, and beyond which complex memory and conditioning effects appear. These two
regions are fundamental for understanding the nonlinear nature of rocks and to de-
fine the intrinsic nonlinear behavior of these materials. The key point is that beyond
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this threshold the experimental data cannot be simply used to prove the existence of
nonclassical behavior due to the presence of nonequilibrium dynamics.

2. Intrinsic Nonlinearity and Conditioning

Most of the measurements of nonlinear effects are performed by resonance bar ex-
periments. A detailed description of this experiment is presented by TenCate et al. in
this book. In this type of experiment the resonance frequency ( fR) dependence on the
external force is analyzed as an indicator of nonlinearity: the system is linear if the
resonance frequency peak does not change with the external force, whereas a change
in fR indicates nonlinearity. There are many materials in nature that exhibit elastic
nonlinearity. For these materials the nonlinearity is shown as a quadratic softening of
the fR increasing the drive amplitude. This nonlinearity, known as classical nonlin-
earity, has been described by Landau and Lifshitz (1998) using a Taylor expansion
of the bar’s displacement in the strain. Instead of a quadratic softening, rocks show
a linear softening with the drive amplitude that was interpreted as an indicator of an
anomalous nonlinearity (Guyer and Johnson, 1999) as shown by Johnson in this book.

In recent works (TenCate et al., 2004; Pasqualini et al., in press) it was shown that
this shift has to be interpreted carefully because the measurements can be contaminated
by the presence of a nonequilibrium dynamics. The external force can bring the rock
into a nonequilibrium state complicating the dynamical behavior and the interpretation
of the nonclassical behavior. Figure 26.1 shows the effect of the conditioning on the
resonance frequency peak. The peak of the resonance curve is measured at different
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Fig. 26.1. Conditioning effect. The resonance frequency is plotted as a function of strain for Berea. The
peak of the resonance curve is measured at different strains from low strain 10−9up to 10−6, the drive is
then dropped of to the lowest strain. This last value (open dots) for fR is different from the first one (full
dot) as a consequence of conditioning.
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strains from low strain 10−9 up to high strain 10−6, and the external force is then
reduced back to the lowest strain. The last value (open dots in Figure 26.1) for fR is
different from the first one (full dot): the reason for this difference is the conditioning.

The experimental data cannot be analyzed easily due to the presence of this nonequi-
librium dynamics. In order to prevent this contamination, an ad hoc experimental strat-
egy, named “zig–zag,” was developed (see TenCate et al. in this book). This method
consists of the systematical increase of the drive level passing through the up/down
frequency sweeps and then releasing it back to the lowest strain to check if the fR has
changed.

3. Experimental Evidence

3.1 Two Regions

The samples analyzed are two sandstones, Berea and Fontainebleau. During the experi-
ment the bar is driven by a frequency f and the acceleration of the bar end is measured.
In order to compare samples with different length L the acceleration ü is converted into
strain ε, using the convention ε = ü/(4π L f 2). Different resonance curves are built
at constant drive amplitude sweeping the frequency up/down (see Figure 26.2). In this
experiment the frequency stability of the samples is � 0.1 Hz corresponding to a ther-
mal stability of 10 mK.

For each resonance curve the peak and the resonance frequency fR are determined
using a statistical analysis that was developed by D. Higdon of the Los Alamos Na-
tional Laboratory. This analysis is based on a nonparametric Gaussian process to
model the strain as a function of frequency (Banerjee et al., 2004). Using a Markov
Chain Monte Carlo (MCMC) method, a Bayesian estimation for the peak and fR are
calculated together with their uncertainties.

The application of the zig–zag method reveals the presence of two strain regions.
These two regions are divided by a strain threshold εth , below which there is no evi-
dence of conditioning (first region) and beyond which the measures are contaminated
by nonequilibrium dynamics (second region). The threshold εth is a function of the
material and environmental quantities such as temperature, saturation, and so on. The
value of the threshold for Fontainebleau is εth = 2 · 10−7 and εth = 5 · 10−7 for
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Fig. 26.2. Experimental resonance frequency curves for Berea and Fontainebleau.
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Fig. 26.3. Resonance frequency shift for both Berea and Fontainebleau. Dashed lines show the threshold.

Berea. In Figure 26.3, the shift of the resonance frequency for both samples is plot-
ted as a function of strain. In the same figure the two regimes, nonconditioning and
conditioning, are outlined.

In the first region, strain less than εth , there is no evidence of conditioning: Rocks
show a reversible nonlinearity. The resonance frequency shift is repeatable: one can
change how the experiment is carried out and the results do not change. In the absence
of conditioning, the data show the intrinsic nonlinearity and consequently they can be
simply analyzed and interpreted.

On the other hand, in the second region, strain bigger than εth , conditioning, and
nonequilibrium dynamics are present. As a consequence, the experimental results are
history dependent and not repeatable. Without a good understanding of the relationship
between nonlinear dynamics and intrinsic nonlinearity, the data beyond that threshold
cannot be simply interpreted to define intrinsic nonlinearity. Analysis of the data be-
yond εth without considering the nonequilibium contamination can only lead to erro-
neous conclusions.

3.2 First Region: Intrinsic Nonlinearity

Figure 26.4 shows the shift of the resonance frequency versus strain for the first region
where the conditioning is not present. The strain range of this regime is 2 · 10−9 to
2 · 10−7 for Fontainebleau and 2 · 10−9 to 5 · 10−7 for Berea. The resonance frequency
fR and the respective strain are calculated using the MCMC method, which also com-
putes the error bars. Note that the error bars for the strain are too small to be seen in
Figure 26.4 for the strain range used.

The data analysis shows that fR decreases quadratically as we increase the drive
amplitude to the threshold εth . At very low strain, 10−8 to 10−7 , both rocks behave
effectively as a linear elastic system: any change in the fR can be seen in the error
bars. There is no evidence of linear softening, which could lead one to believe in the
presence of anomalous nonlinear behavior. In this region the data are well described
by a classical nonlinear model, where the nonlinear term is represented by a Duffing
nonlinearity (see the next section for model details). Figure 26.4 shows an excellent
agreement between the experimental data and the fit using this theoretical model (solid
lines). The quality factor Q is calculated as the ratio of the resonance frequency and
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Fig. 26.4. First region: resonance frequency shift for Berea and Fontainebleau limited at the strain range
where conditioning and memory effects do not occur. The solid lines are the theoretical fits: a classical
Duffing nonlinear oscillator.

the width of the resonance curve at 1/
√

2 of the maximum, �. It is important to point
out that the uncertainties of the quality factor are larger than the ones of the resonance
frequency peak. Analyzing the resonance curves, it is easy to see that � is constant
within one percent. Therefore, the quality factor behaves as the resonance frequency,
quadratically with the strain.

4. Model

As introduced in the previous section, in the low-strain regime the experimental data
are accurately described by a simple phenomenological dynamical model. This model
consists of a classical damped harmonic potential to which a quartic classical nonlinear
term (Duffing) is added. The equation of motion for the displacement u can be written
as follows.

ü + �2
0u + 2µu̇ + γ u3 = F sin(ωt), (26.1)

where �0 is the linear resonance frequency, µ is the damping coefficient, and ω = 2π f
is the angular frequency. γ < 0, the nonlinear parameter, leads to a softening nonlin-
earity as the experiments show. The amplitude of the driving force F is proportional
to the amplitude of the voltage applied to the bar in the experiment. The derivation of
an analytical approximation for the solution of Eq. (26.1) is given in detail in Nayfeh
(1981) and leads to the following relation between the displacement amplitude, a, and
the drive amplitude F .

�2
0µ

2a2 + a2
[
(ω − �0)�0 − 3

8
a2γ

]2

= 1

4
F2. (26.2)

The peak of the resonance curve aR , and the drive frequency ωR = 2π fR , at which
the peak occurs, can be easily calculated from Eq. (26.2):

⎧
⎨

⎩
ar = F

2µ�0

ωR = 3F2γ

32µ2ω3
0

+ �0.
(26.3)
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Fig. 26.5. First region: resonance frequency curve for Berea and Fontainebleau limited to the strain range
where conditioning and memory effects do not occur. Solid lines are the theoretical model, open circles
represent the experimental data, and full dots are the resonance frequency peaks calculated using MCMC.

The previous equation can be written in terms of the effective strain ε and the reso-
nance frequency fR as

fR = 3L2γ

16π3�0
ε2 + �0

2π
. (26.4)

Thus, in agreement with the measured data, the model predicts that the resonance fre-
quency softens quadratically with the amplitude F , which is proportional to the strain
amplitude. In Figure 26.4 the experimental data are fitted using the second equation
in (26.3). The fitting parameters, �0 and γ , are determined for both samples: for the
Fontainebleau sample �0 = 7262.8 rad/s, γ = −7.6 × 1019 m−2 s−2, and for the
Berea sample, �0 = 17375.7 rad/s, γ = −5.3 × 1019 m−2 s−2. Once the parameters
�0 and γ are fixed as just described, the resonance curves are reconstructed and com-
pared with the experimental resonance curves in Figure 26.5. Both Figures 26.4 and
26.5 show an excellent agreement between theoretical prediction and measured data.
The model also predicts that the width of the resonance curve is independent of the
drive amplitude. Its theoretical value � = 2µ is in agreement with the experimental
evidence.

5. Conclusions

The main idea presented in this chapter is that we need to be careful interpreting the
experimental data to provide a basis for the existence of nonclassical behavior. Two
strain regions have been delineated by a strain threshold, εth , which is material and
environment dependent. The one at low strain is free of conditioning and memory
effects and as a consequence the experiment is repeatable. In the second region the
external force drives the sample into a new nonequilibrium state. Then the resonance
frequency shift is not reversible anymore. Meanwhile in the first region the rock shows
its intrinsic nonlinearity and the measured data can be simply interpreted; in the second
region the data contaminated by the nonequilibrium dynamics do not have a simple
interpretation.
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Limiting the analysis to the first region, it has been found that rocks do not show
a nonclassical nonlinearity as it was claimed in previous works (Smith and TenCate,
2000, Guyer et al., 1999). A classical Duffing nonlinearity is enough to capture the
dynamical behavior in this region. A detailed explanation about the disagreement with
previous works can be found in Pasqualini (in press). Anomalous features can be seen
only in the region where the nonequilibrium dynamics contaminates the intrinsic non-
linearity and one cannot simply interpret this behavior as a sign of nonclassical non-
linearity in rocks.

As a consequence of this experimental evidence it is clear that we need a new theory
that combines the intrinsic nonlinearity of the materials and nonequilibrium dynamics.
We cannot speak about nonclassical nonlinearity in rocks until the fundamental rela-
tionship between intrinsic nonlinearity and nonequilibrium dynamics is understood.
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Abstract
Acoustic techniques based on the interaction of two ultrasonic waves in materials with vari-
able properties are proposed. Two types of materials are considered: (i) an inhomogeneously
prestressed nonlinear elastic material undergoing two-parametric plane strain and (ii) a non-
linear elastic material with weakly inhomogeneous physical properties. The theoretical basis of
the techniques is presented in detail. Analytical solutions to one-dimensional problems of non-
linear propagation and interaction of waves in the material (structural element) with two parallel
traction-free boundaries are derived. The nonlinear part of boundary oscillations includes essen-
tial information about the predeformed state and the physical properties of the material. This
enables us to propose (i) two techniques for qualitative and quantitative nondestructive evalua-
tion (NDE) of the inhomogeneous predeformed state of the material and (ii) a resonance tech-
nique for NDE of weakly inhomogeneous physical properties of the nonlinear elastic material.
Techniques are illustrated by numerical experiments.

Keywords: Acoustic NDE technique, inhomogeneity, nonlinearity, prestress, resonance, solid,
wave interaction

1. Introduction

Nonlinear effects of wave propagation in materials with mechanical inhomogeneities
(microscale damages, microstructure, etc.) are several orders of magnitude higher than
in isotropic homogeneous materials. This fact encourages authors to elaborate tech-
niques for NDE of the properties of inhomogeneous materials on the basis of nonlinear
effects emerging in course of wave propagation and interaction.

The main aim of this work is to elaborate relatively simple nonlinear acoustic tech-
niques for ultrasonic NDE of materials with variable properties, such as materials
undergoing inhomogeneous prestress and materials with space-dependent physical
properties. The amount of information necessary to be determined by NDE of inhomo-
geneous materials increases substantially in comparison with experiments with iso-
tropic homogeneous materials. To achieve this goal, there are two principal possibilities
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for NDE: (i) to use more complicated techniques or (ii) to stay on the level of relatively
simple tests. In this research the second approach is followed. The inverse problems
of recovering the inhomogeneity of material properties are solved on the basis of the
solutions to the direct problems of ultrasonic wave propagation. This approach makes
it easier to use nonlinear effects that accompany multiwave propagation, reflection,
nonlinear interaction, and so on, as the sources of information and to obtain relatively
simple algorithms for NDE techniques.

Two types of inhomogeneous materials are investigated: (i) inhomogeneously pre-
stressed nonlinear elastic materials and (ii) physically inhomogeneous elastic materials
with weakly space-dependent density, and linear and nonlinear elastic properties. The
prestressed state of the material is caused by the action of external forces and cor-
responds to the plane strain. The problem (i) is considered as quasi one-dimensional
and the problem (ii) as one-dimensional. In the quasi one-dimensional case, prior as-
sumptions are made so that the wave process in two-dimensional prestressed materials
is reduced to a one-dimensional problem. Equations of motion for both cases are de-
rived from the theory of elasticity with quadratic nonlinearity. The variable material
properties are described by polynomials.

The analytical solutions describing propagation, reflection, and interaction of two
counterpropagating longitudinal waves with smooth arbitrary initial profiles in the in-
homogeneous nonlinear elastic materials are derived. These solutions enable us to de-
termine the dependencies of the wave characteristics on the parameters of the material
inhomogeneity.

Harmonic wave propagation in inhomogeneous nonlinear elastic materials with two
parallel boundaries is studied in detail. The wave process is excited in terms of par-
ticle velocity and is recorded in terms of stress. Analytical expressions that describe
the wave process are derived. Numerical simulation on the basis of the analytical solu-
tions enables us to determine the distortion of wave profiles according to the material
parameters and state.

The results of the analysis permit us to propose algorithms of qualitative and quan-
titative techniques for NDE of (i) two-parametric prestressed state of the material and
(ii) weakly inhomogeneous properties of the nonlinear elastic material.

2. Inhomogeneously Prestressed Material

2.1 Problem Formulation

The discovery of the piezoelectric effect by brothers Pierre and Jacques Curie in 1880
made it possible to use ultrasonic wave propagation data for NDE of material prop-
erties. The first attempt in this sense was made in 1913.1 After that an intensive the-
oretical and experimental research was carried on, resulting in effective and versatile
methods for evaluating different mechanical properties and states of materials.2

The detailed development of the mathematical basis and the experimental set-up
of the ultrasonic NDE of materials with homogeneous prestress began much later.
For example, Bergman and Shanbender in 19583 and Benson and Raelson in 19594

described the acoustoelastic effect, that is, the dependence of wave velocity on the
value of initial stress in materials.



27 Nonlinear Acoustic NDE Techniques 427

Inhomogeneity of prestress introduces additional difficulties in NDE, as the amount
of information necessary to be determined increases dramatically. This problem is
under intensive investigation nowadays.5–7 In this work the efficiency of NDE is in-
creased by taking advantage not only of the acoustoelastic effect, but also of the effects
accompanying the nonlinear propagation and interaction of ultrasonic waves.5, 6

The NDE problem for the inhomogeneously predeformed material is solved on
the basis of two longitudinal waves that counterpropagate simultaneously in the ma-
terial. An isotropic and homogeneous nonlinear elastic material is considered. De-
formations of the material are described in the Lagrangian rectangular coordinates
X K , K = 1, 2, 3 on the basis of the nonlinear theory of elasticity. The physical and
the geometrical nonlinearities are taken into account.8

Three different states of the isotropic homogeneous elastic material are distin-
guished. At the beginning, the material is in the initial, undeformed natural state.
Then, the material is subject to the external forces and from now on is in the static
(independent of time) prestressed state. At some instant two longitudinal waves are
simultaneously excited at two boundaries, bringing the material in the final state.

In the final state, the components of the displacement vector U∗
K (X J , t) are ex-

pressed by the sum

U∗
K (X J , t) = U 0

K (X J ) + UK (X J , t), (27.1)

where U 0
K (X J ) and UK (X J , t) denote displacements evoked by prestress and wave

motion, respectively and t denotes time.
Only two-dimensional deformations are considered, and therefore the components

of the deformation vectors U 0
3 (X J , t) and U3(X J , t) are assumed to be zero.

In the case of plane strain, the equation of motion in terms of the displacement vector
now takes the form of the following system of two equations9

[1 + k1 U∗
I,I + k2 U∗

J,J ] U∗
I,I I + [2 k3 U∗

I,J + 2 k4 U∗
J,I ] U∗

I,I J

+ [k7 + k3 U∗
I,I + k3 U∗

J,J ] U∗
I,J J + [k4 U∗

I,J + k3 U∗
J,I ] U∗

J,I I

+ [k3 U∗
I,J + k4 U∗

J,I ] U∗
J,J J + [k6 + k5 U∗

I,I + k5 U∗
J,J ] U∗

J,J I

−c−2 U∗
I,t t = 0, (27.2)

where the indices I, J , and t after a comma indicate differentiation with respect to X I ,
X J and time t . The indices I and J in Eq. (27.2) assume the values I = 1, J = 2 for
the first equation and I = 2, J = 1 for the second. The coefficients

k1 = 3 + 6 k (ν1 + ν2 + ν3), k2 = k (λ + 6 ν1 + 2 ν2),

k3 = 1 + k (ν2 + 3 ν3/2), k4 = k (µ + ν2 + 3 ν3/2),

k5 = k [ λ + µ + 3 ( 2 ν1 + ν2 + ν3/2)],
k6 = k ( λ + µ), k7 = k µ, k = (λ + 2 µ)−1, c−2 = ρ0 k (27.3)

are functions of the Lamè constants λ and µ, the third-order elastic constants ν1, ν2

and ν3 and the material density ρ0.
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Fig. 27.1. Loading scheme. F1, F2 - external forces, Ut - boundary excitation.

The quasi one-dimensional problem of counterpropagation of two one-dimensional
longitudinal waves in the material undergoing two-dimensional prestressed state is
considered. The wave process is excited simultaneously on the surfaces X1 = 0 and
X1 = h of the material (Figure 27.1). The prestressed state and the ratio of the width
of the excitation zone to the thickness of the material are assumed to be such that the
spatial derivatives of the displacements due to the propagating waves are much larger
in the direction of propagation X1 than in the orthogonal direction X2. Taking into ac-
count this assumption and the equilibrium of the material in the static prestressed state,
the equation that describes longitudinal wave propagation in the material undergoing
inhomogeneous plane strain yields:

[1 + k1 U 0
1,1 + k2 U 0

2,2] U1,11 + [k1 U 0
1,11 + k3 U 0

1,22

+k5 U 0
2,12] U1,1 + k1 U1,11 U1,1 − c−2 U1,t t = 0 (27.4)

The nonlinear second-order hyperbolic differential equation (27.4) with space-dependent
coefficients can be solved provided that additional information about the prestressed
state is available, that is, the coefficients in Eq. (27.4) are known. These coefficients are
functions of the displacement U 0

K , that is, the solution of the equation of equilibrium
of the material in the prestressed state

[1 + k1 U 0
I,I + k2 U 0

J,J ] U 0
I,I I + [2 k3 U 0

I,J + 2 k4 U 0
J,I ] U 0

I,I J

+ [k7 + k3 U 0
I,I + k3 U 0

J,J ] U 0
I,J J + [k4 U 0

I,J + k3 U 0
J,I ] U 0

J,I I

+ [k3 U 0
I,J + k4 U 0

J,I ] U 0
J,J J + [k6 + k5 U 0

I,I + k5 U 0
J,J ] U 0

J,J I = 0.

(27.5)

2.2 Counterpropagation of Longitudinal Waves

Our aim is to investigate how to use the nonlinear effects of wave propagation and
interaction in NDE of the inhomogeneous prestressed state of a nonlinear elastic ma-
terial. To achieve this goal, the quasi one-dimensional problem of counterpropagation
of two longitudinal waves in the material is studied. This wave propagation process
is described by Eq. (27.4). The two-dimensional prestressed state of the material that
corresponds to plane strain is described by Eq. (27.5). The problem is solved under the
assumption that the total deformations caused by prestress and wave motion are small
but finite and remain elastic. The initial stage of distortion of the wave profile is con-
sidered and it is assumed that shock waves are not generated. These assumptions lead
to the conclusion that in this problem the strain is small and the small parameter ε can
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be involved. Consequently, the problem may be solved by means of the perturbation
technique. Following this procedure, the solution to Eq. (27.5) is sought in series

U1 =
∞∑

n=1

εn U (n)
1 , (27.6)

and solution to Eq. (27.6) in series

U 0
K =

∞∑

m=1

εm U 0 (m)
K , (27.7)

where ε � 1 is a positive perturbation parameter and K = 1, 2.
In principle, the displacements caused by wave motion and prestress may be of dif-

ferent orders. The aim is to gather the maximum amount of information about the
prestressed state from the wave propagation data. This problem was analyzed in Ref-
erence [18], reaching the conclusion that the amplitude of the excited wave is a critical
aspect in ultrasonic NDE. The most informative wave propagation data for NDE can
be obtained if displacements caused by the excited wave are of the same order as dis-
placements caused by the prestress. This is the reason why the same small parameter
is used in series (27.6) and (27.7).

Following the perturbation procedure the series (27.6) and (27.7) are introduced into
Eq. (27.4) and a set of equations that determines the terms in series (27.6) is derived.
The obtained equations are solved for the case of simultaneous propagation of two
longitudinal waves with smooth arbitrary initial profiles ϕ(t) and ψ(t), that is, under
the initial and boundary conditions

U1(X1, X2, 0) = U1,t (X1, X2, 0) = 0, (27.8)

U1,t (0, X2, t) = εa0ϕ(t)H(t), (27.9)

U1,t (h, X2, t) = εahψ(t)H(t), (27.10)

where H(t) denotes the Heaviside unit step function, and a0 and ah are constants. The
initial wave profiles satisfy the conditions max | ϕ(t) | = 1 and max | ψ(t) | = 1.
The first term in series (27.6)

U (1)
1 (X1, X2, t) = a0 H(ξ)

∫ ξ
0 ϕ(τ)dτ + ah H(η)

∫ η
0 ψ(τ)dτ

− a0 H(θ)
∫ θ

0 ϕ(τ)dτ − ah H(ζ )
∫ ζ

0 ψ(τ)dτ (27.11)

ξ = t − X1/c, η = t − h/c + X1/c,

ζ = t − h/c − X1/c, θ = t − 2 h/c + X1/c

is the solution of the linear wave equation.
The second and the third terms in series (27.6) are solutions to the one-dimensional

hyperbolic equations with constant coefficients where it is possible to separate the
independent variables in the known right-hand sides. These equations are again solved
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exploiting the perturbation technique and the Laplace integral transform with respect
to time.

The final expressions for the second and the third terms in series (27.6) are too
cumbersome to be presented here. More details about these solutions are available in
Reference [9]. The derived analytical solution (27.6) is valid in the time interval

0 ≤ t < 2h/c. (27.12)

As a result, the analytical solution (27.6) describing the counterpropagation and
the interaction of two longitudinal waves with smooth arbitrary initial profiles in the
inhomogeneously prestressed nonlinear elastic material is derived. The first term in
series (27.6) describes simultaneous counterpropagation of two longitudinal waves in
a homogeneous isotropic prestress-free linear elastic material. The subsequent terms
correct the solution and take nonlinearity and prestress into account.

2.3 Prestressed State

Wave motion is described by solution (27.6) to Eq. (27.4) and is dependent on the
prestressed state determined by the set of equations defining the equilibrium of the
material (27.5).

The perturbation technique is used and the solution to this set of equations is sought
in series (27.7) with the small parameter, deriving the sets of equations that determine
the terms in series (27.7).

A two-dimensional material (structural element) with thickness h and length 2 l
is considered. The perturbation equations are solved for the special case of the pre-
stressed state that corresponds to the plane strain (Figure 27.1). The surfaces X1 = 0
and X1 = h are traction-free.

The aim is to solve the problem of NDE of the parameters of the predeformed state
on the basis of wave propagation data. For this purpose it is convenient to describe
the prestressed state by polynomials and define the polynomial boundary conditions
in terms of the components T 0

K L(X1, X2) of the symmetric Kirchhoff pseudostress
tensor in the form

T 0
11(0, X2) = T 0

11(h, X2) = T 0
12(0, X2) = T 0

12(h, X2) = T 0
21(X1, ±l) = 0,

T 0
22(X1, ±l) = ε

5∑

n=0

wn Xn
1 , (27.13)

where wn is a constant. These boundary conditions may be expressed also in terms of
displacement on the basis of the theory of elasticity.8

The polynomial solution to Eqs. (27.5) is sought. The linear set of equations has the
following solution in terms of stress:

T 0
11(X1, X2) = T 0

12(X1, X2) = T 0
21(X1, X2) = 0,

T 0
22(X1, X2) = ε ( w0 + w1 X1),

T 0
33(X1, X2) = εν(w0 + w1 X1), (27.14)
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where ν denotes the Poisson ratio. Interestingly, the considered material is in equilib-
rium under boundary conditions (27.13) only when constants w j , j = 2, 3, . . . are
equal to zero.

Similarly, the second and the subsequent terms in series (27.7) are determined from
the set of linear differential equations with known right-hand sides under the boundary
conditions equal to zero. Expressions for these terms are omitted for brevity.

The result is that the prestressed state of the material is determined in terms of
the prestress in leading orders: the component T 0

22 = a + b X1 of the Kirchhoff
pseudostress tensor, where the notation a = ε w0, b = ε w1 is used. The nonlinear
correction to the predeformed state is rated to be of negligible magnitude.

Consequently, the considered two-dimensional prestressed state corresponds to the
plane strain and can be considered as the two-parametric state. The parameter a char-
acterizes the constant part of the prestress and the parameter b the linearly variable
part.

2.4 Interaction of Sine Waves

In view of NDE sine waves with the same amplitude and frequency are excited on
opposite surfaces of the material in terms of particle velocity. The boundary conditions
(9) and (10) are transformed into

U1,t (0, X2, t) = ε a0 sin ωt H(t), (27.15)

U1,t (h, X2, t) = ε ah sin ωt H(t), (27.16)

where ω denotes the radial frequency.
The evolution of the wave profile is recorded on the same surfaces in terms of stress.

The distortion of the stress wave profile is analyzed on the basis of solution (27.6)
to the equation of motion (27.4). This solution enables us to separate the linear wave
propagation [first term in series (27.6)] from the nonlinear effects (second and subse-
quent terms) that accompany wave propagation, reflection, and interaction. In the case
of sine waves nonlinear effects consist in the generation of higher harmonics and of
nonlinear material–wave and wave–wave interaction.

The linear part of the solution describes the simultaneous propagation of two sine
waves in the prestress-free physically linear material where wave interaction is deter-
mined by superposition of wave profiles.

The nonlinear effects of wave motion (Figure 27.2) that are analyzed here on the ba-
sis of the second term in series (27.6) are sensitive to the nonlinear physical properties
of the material and to the prestress parameters. They are governed by the oscillation of
double frequency (second harmonic) with respect to the frequency of excitation.

The nonlinear theory of elasticity8 describes the stress as a function of the derivative
of the particle displacement U with respect to the spatial coordinate X . This is the
reason why, henceforth, the nonlinear effects are characterised by the function U (2)

1,1.
From the mathematical point of view, this function is described by the second term in
the perturbation solution (27.6). The analytical expression for U (2)

1,1 ≡ U (2)
,X is derived
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Fig. 27.2. Nonlinear effects evoked by two waves counterpropagation.

by means of an analytical computational software (Maple V), and assumes the form

U (2)
,X = A(2)

0 +
m1∑

j=1

A(2)
1 j sin ωϑ j +

m2∑

j=1

A(2)
2 j cos ωϑ j

+
m3∑

j=1

A(2)
3 j sin 2ωϑ j +

m4∑

j=1

A(2)
4 j cos 2ωϑ j , (27.17)

where ϑ j = t + c1 j h/c + c2 j X1/c , and c1 j , c2 j are constants.

The expression (27.17) consists of nonperiodic term A(2)
0 and periodic terms with

arguments ωϑ j and 2ωϑ j . Analytical expressions for nonperiodic term A(2)
0 and am-

plitudes A(2)
i j , i = 1, ..., 4 are too cumbersome to be presented here.

From the physical point of view the function U (2)
,X describes the main part of nonlin-

ear effects including the evolution of the second harmonic, influence of the prestress
on the evolution of the first harmonic, nonlinear interaction between two first harmon-
ics and influence of the material nonlinear physical properties on the wave propaga-
tion. Evolution of the third and the higher harmonics are neglected here along with
the higher-order small phenomena. In the following, the dimensionless function ε U (2)

,X
characterizes the ratio of the magnitude of nonlinear effects to the magnitude of the
linear oscillation.

For demonstration purposes, let us consider a numerical experiment. Let the prop-
erties of the material (structural element) correspond to duralumin with density ρ0 =
2800 kg/m3, constants of elasticity λ = 50 GPa, µ = 27.6 GPa, ν1 = −136 GPa, ν2 =
−197 GPa, ν3 = −38 GPa, and dimensions h = 0.1 m and l = 1 m. The strain is
characterized by the dimensionless constant ε that is set to ε = 10−4. The sine wave
amplitudes are determined by constants a0 = −ah = c m/s in correspondence with
the boundary conditions (27.15) and (27.16). The constant c is defined by Eq. (27.3).
As a result, the amplitude of the excited particle velocity at the boundaries X1/h = 0
and X1/h = 1 has opposite sign and same absolute value | ε a0 | = 0.6130 m/s. The
wave excitation frequency ω is set to ω = 1.9 ·106 rad/s.



27 Nonlinear Acoustic NDE Techniques 433

2

0

10
2  
eU

, x
(2

)

1 2

τ

–2
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Fig. 27.4. Homogeneously prestressed material. Modulated oscillations on the boundaries.

The numerical simulation of the nonlinear part of boundary oscillations caused by
the simultaneous propagation of two sine waves in the prestress-free physically non-
linear elastic material is illustrated in Figure 27.3.

The oscillations on both boundaries, where X1/h = 0 and X1/h = 1, are similar.
It is possible to distinguish two distinct intervals on the time axis: the propagation
interval (0 ≤ τ < 1) and the interaction interval (1 ≤ τ < 2). Here X1/h denotes the
dimensionless spatial coordinate and τ = t c/h the dimensionless time.

The nonlinear wave interaction amplifies the boundary oscillation amplitude in the
interaction interval about a hundred times. This phenomenon facilitates the usage of
nonlinear effects of wave interaction in NDE of material properties and states.

2.5 NDE of Plane Strain

2.5.1 Qualitative NDE Technique

The nonlinear part of boundary oscillations in prestress-free materials are character-
ized by the constant but different values of the amplitudes in the propagation and
interaction intervals (see Figure 27.3). These amplitudes are sensitive to the physical
properties of the material (density, elastic constants) but less sensitive to the value of
the excitation frequency.

Homogeneous prestress (T 0
22 = a) modulates the boundary oscillation (Figure 27.4).

The shape and the depth of modulation include information about the sign and the
value of prestress. The oscillation profiles on both boundaries are similar.

Inhomogeneous prestress (T 0
22 = a+b X1) modulates oscillation on different bound-

aries in different way (see Figure 27.5).
The analysis of the influence of prestress on the boundary oscillations presented

in Figures 27.3 to 27.5 leads to the conclusion that nonlinear effects of two sine
wave counterpropagation data enable us to solve the problem of qualitative NDE of
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Fig. 27.5. Oscillations on the boundaries of inhomogeneously prestressed material recorded in the interval
1 ≤ τ < 2 (solid line - X1/h = 0, dashed line - X1/h = 1).

prestress in materials. It is easy to distinguish qualitatively the presence and nature of
prestress. The absence of modulation in boundary oscillations characterizes prestress-
free materials. The similar modulation of oscillations on both boundaries is a sign of
homogeneous prestress. The inhomogeneity in prestress causes disparity in oscilla-
tion profiles on different boundaries. Interestingly, in the case of pure bending when
the stress T 0

22 has equal value but opposite sign on opposite boundaries, the boundary
oscillation profiles coincide, but a phase shift occurs.

2.5.2 Quantitative NDE Technique

Quantitative NDE is based on the observation that the width of modulation of the
nonlinear boundary oscillations, caused by the simultaneous propagation of two sine
waves, ultimately depends on the inhomogeneous prestress.

For instance, let us consider the following model problem. It is assumed that the
geometry and the physical properties (density, elastic constants of the second and
third order) of the material are known. The preliminary inspection confirms the fact
that the material is undergoing a predeformed state that corresponds to pure bending
with tension or compression characterized by the constants a and b of the Kirchhoff
pseudostress tensor component T 0

22 = a + b X1. The purpose is to evaluate constants
a and b starting from experimental boundary oscillation data.

In order to evaluate the unknown values of prestress parameters a and b for the real
material, a suitable experiment is set up as follows. The recorded boundary oscillation
profiles on opposite boundaries in the interval of interaction are plotted in Figure 27.5.
The two instants τ1 and τ2 that correspond to the local maximums of the oscillation
profile are fixed in this plot.

Using the analytical solution (27.6), boundary oscillation amplitudes at the instants
τ1 and τ2 versus prestress parameters a and b are plotted, as shown in Figure 27.6.

The quantitative NDE of the prestress parameters for the case presented by Fig-
ure 27.5 includes the following steps. First, the values of oscillation amplitudes on
opposite boundaries are determined for instants τ1 and τ2 (see Figure 27.5), and their
difference is calculated for both time instants. Then, on the basis of the value of this
difference for the instant τ1 two possible values of parameter b are determined, as
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Fig. 27.6. Boundary oscillation amplitude versus prestress parameters a and b at the instant τ1 (solid
line - X1/h = 0, dashed line - X1/h = 1).

shown in Figure 27.6. Finally, parameter a is determined in Figure 27.6 according to
the value of the oscillation amplitude in Figure 27.6 on one of the boundaries at the
instant τ1.

The corresponding plot for instant τ2, not presented here, may be used to verify the
values of the evaluated prestress parameters.

3. Weakly Inhomogeneous Material

Problem Formulation

Nonlinear effects arising from counterpropagation, interaction, and reflection of waves
in different materials are intensively studied due to promising applications for nonde-
structive characterization of materials.10 Effects of resonant wave–wave interaction,11

amplitude amplification by interaction, and modulation of amplitudes by different ex-
ternal and internal effects12 constitute only a short list of phenomena that may be
exploited for practical purposes.

In this section the theoretical basis for counterpropagation of two harmonic waves
in nonlinear weakly inhomogeneous elastic materials is outlined. The corresponding
analytical solution is derived and analyzed numerically. The resonant values of interac-
tion amplitudes as functions of the excitation frequency and amplitude are determined
for various physically inhomogeneous nonlinear elastic materials. These resonant val-
ues are sensitive to the material properties and may be used for their nondestructive
characterization.

The one-dimensional motion of an inhomogeneous nonlinear elastic material is de-
scribed by the equation12

[
1 + k1(X) U,X ( X, t)

]
U,X X ( X, t) + k2(X) U,X ( X, t) + k3(X)

[
U,X ( X, t)

]2

− k4(X) U,t t ( X, t) = 0. (27.18)
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Equation (27.18) is a nonlinear second-order partial differential equation with vari-
able in space coefficients. These coefficients ki (X), i = 1 . . . 4 are functions of the
material variable physical properties, the density ρ(X), the Lamé coefficients λ(X)

and µ(X) and the third-order coefficients of elasticity ν1(X), ν2(X), ν3(X). In the
one-dimensional case the five elastic coefficients are grouped together as follows:

α(X) = λ(X) + 2µ(X), β(X) = 2 [ν1(X) + ν2(X) + ν3(X)] , (27.19)

where α(X) is the linear and β(X) the nonlinear coefficient of elasticity. Now, the
coefficients ki (X), i = 1 . . . 4 in Eq. (27.18) may be expressed as

k0(X) = [α(X)]−1 , k1(X) = 3 [1 + k0(X)β(X)] , k2(X) = k0(X) α,X (X),

k3(X) = 3 k0(X)
[
α,X (X) + β,X (X)

]
/2, k4(X) = ρo(X) k0(X). (27.20)

It is assumed that the material has two parallel traction-free surfaces at X = 0 and
X = L . Eq. (27.18) is solved under the initial and boundary conditions

U (X, 0) = U,t (X, 0) = 0,

U,t (0, t) = εa0ϕ(t)H(t),

U,t (L , t) = εaLψ(t)H(t), (27.21)

where the notation used is the same as in Eqs. (27.8)–(27.10).
The perturbation technique is again employed and the analytical solution to Eq. (27.18)

is sought in the form of a series with a small parameter ε

U (X, t) =
∞∑

n=1

εn U (n)(X, t), 0 < ε � 1. (27.22)

Henceforth, only the first three terms in series (27.22) are considered.
It is assumed that the inhomogeneity in the density ρ(X), linear elastic coefficient

α(X), and nonlinear elastic coefficient β(X) is weak and may be described as a small
deviation from the constant value of these properties by expression

γ (X) = γ (1) + εγ (2)(X), γ = ρ, α, β, (27.23)

where the function γ (2)(X) that describes the space-dependent properties of the mate-
rial is formulated as a third-order polynomial

γ (2)(X) = γ1ξ X + γ2ξ X2 + γ3ξ X3,

γ (2)(X) = ρ(2)(X), α(2)(X), β(2)(X),

ξ = ρ, α, β. (27.24)

Now, the inhomogeneous physical properties of a material are determined by nine
constants γiξ .



27 Nonlinear Acoustic NDE Techniques 437

By introducing Eqs. (27.23) and (27.24) into expressions (27.20), the coefficient
k0(X) may be expanded into the Taylor series

k0(X) =
[

1 − εα(2)(X)/α(1) +
(
εα(2)(X)/α(1)

)2 − . . .

]
/α(1)

and coefficients ki (X), i = 1 . . . 4, after some algebraic calculations, are the follow-
ing:

k1(X) = k(1)
1 + ε k(2)

1 (X) + ε2k(3)
1 (X),

k2(X) = ε k(2)
2 (X) + ε2k(3)

2 (X),

k3(X) = ε k(2)
3 (X) + ε2k(3)

3 (X),

k4(X) = k(1)
4 + ε k(2)

4 (X) + ε2k(3)
4 (X), (27.25)

where functions k( j)
i (X), i = 1, . . . , 4, j = 2, 3 are polynomials.

Finally, substituting the first three terms in series (27.22) and expressions (27.25)
into Eq. (27.18) yields the governing equation. Following the perturbation procedure,
(i.e., equating to zero the terms with the same power of ε and neglecting all terms
higher than ε3), a set of equations for the three first terms in series (27.22) follows.

3.1 Interaction of Harmonic Waves

From the point of view of practical applications, the counterpropagation of two
harmonic waves in a physically nonlinear elastic material is investigated. The initial
wave profiles are defined as sine functions

ϕ(t) = ψ(t) = sin(ωt), (27.26)

where ω denotes the radial frequency.
Wave propagation and interaction is described by Eq. (27.22). The first term in series

(27.22) is the solution to the linear wave equation. The latter has been derived under
the initial and boundary conditions (27.21) and has the form

U (1)
,t (X, t) = a0 H(ξ)ϕ(ξ) + aL H(η)ψ(η) − a0 H(θ)ϕ(θ) − aL H(ζ )ψ(ζ ),

ξ = t − X/c, η = t − L/c − X/c, θ = t − 2L/c − X/c , ζ = t − X/c + L/c,(27.27)

where c = (k(1)
4 )(−1/2) is the linear wave velocity.

The analytical expressions for the second and the third term in Eq (27.22) have been
derived by means of the symbolic software Maple 9. Due to the their complexity, they
are not presented here. The interested reader is referred to12 for further detail.

Counterpropagation, reflection and interaction of two harmonic waves is illustrated
on the basis of numerical simulations. The material is assumed to be duralumin with
density ρ(1) = 3000 kg/m3 and coefficients of elasticity α(1) = 100 GPa and β(1) =
−750 GPa. The thickness of the specimen is L = 0.1 m. The wave process is excited
by the values of constants a0 = −aL = −c m/s and ε = 10−4.

The wave process is analyzed in terms of U,X (X, t) that characterizes the stress
distribution in the specimen. Function U,X (X, t) is derived from the solution (27.22).
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Fig. 27.8. Second-order effects of boundary oscillations. Thin solid line: homogeneous material, bold
dashed line (X = 0) and bold solid line (X = L): inhomogeneous material.

The first term U (1)
,X (X, t) characterizes the stress distribution caused by the linear wave

process in the homogeneous material and the subsequent terms U (i)
,X (X, t), i = 2, 3

take the nonlinearity and inhomogeneity of the problem into account. Linear wave
propagation is studied. The excitation frequency is assumed to be ω = 1.53447 · 106

rad/s. On the boundaries of the material two different oscillation intervals may be
distinguished: the wave propagation interval 0 ≤ t c/L < 1 and the wave interaction
interval 1 ≤ t c/L < 2.

Amplification of the amplitude of the boundary oscillation in the wave interaction
interval is dependent on the frequency ω. If the frequency is equal to ω = 2 π n c/L ,
then the amplification is the highest: three times the initial amplitude, as demonstrated
in Figure 27.7 for the case n = 4. In the special case when ω = 2 π (n + 0.5) c/L
there is no amplification in the interval of wave interaction. For all other values of ω,
the amplification lies between these two extremes.

The predominant factor of the nonlinear boundary oscillation U (2)
,X (X, t), plotted in

Fig. 27.8 is governed by the double frequency i. e., the second harmonic. Here the
excitation frequency satisfies the condition ω = 6 π c/L and two different nonlinear
elastic materials are considered. The thin solid line corresponds to the nonlinear oscil-
lation on the boundaries X = 0 and X = L of the physically homogeneous material,
and the bold dashed and bold solid lines describe oscillation in the inhomogeneous
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Fig. 27.9. Influence of the excitation amplitude on the boundary oscillations. Linear problem (n = 5).

material on boundaries X = 0 and X = L , respectively. Interestingly, in the inter-
val of wave propagation, magnified in the upper part of Figure 27.8, the nonlinear
effects are two orders of magnitude smaller that in the interval of wave interaction
1 ≤ t c/L < 2. This difference does not depend on the frequency, as it was in the case
of linear wave interaction (Figure 27.7). It should also be noticed that that the oscil-
lation on the boundaries of the homogeneous material has constant amplitude but the
inhomogeneity in the material physical properties modulates it.

Qualitatively similar are the boundary oscillations described by the term U (3)
,X (X, t),

except for the fact that these higher-order oscillations are modulated already on the
boundaries of the homogeneous material.

3.2 Material Characterization by Nonlinear Resonance

This section focuses on exploring the feasibility of using wave interaction resonance
caused by counterpropagation of two waves for nondestructive material characteri-
zation. The resonance (maximum) of the amplitude of the linear interaction (super-
position) occurs if the excitation frequency satisfies the condition ωl = 2 π n c/L
(Figure 27.7; n = 4). The value of this resonance amplitude Al depends on the excita-
tion amplitude only. A simulation was performed for the following range of excitation
amplitudes −1.30 c ≤ a0 ≤ −0.35 c, aL = −a0 m/s and ε = 10−4.

Some of the 20 computed values of the boundary oscillation amplitudes Ali , i =
1, . . . , 20 are plotted in Figure 27.9 for the linear case. The maximum (resonant) am-
plitude in the interaction interval 1 < t c/L < 2 occurs in all cases at the same
frequency ωl = 2 π c n/L , where n is an integer.

As previously discussed, material inhomogeneity modulates the interaction ampli-
tude (Figure 27.8). This is the reason why, henceforth, the first positive peak of the
interaction amplitude will be considered. The value of this peak A is computed on the
basis of the three first terms in solution (27.22) and takes nonlinearity and material
inhomogeneity into account.

The following notation for the parameters of material inhomogeneity is adopted:

γ (X) = γ (1) ( 1 + δiξ (X)), δiξ (X) = εγiξ Xi/γ (1), δiξ (L) ≡ δiξ ,

i = 1, 2, 3, γ, ξ = ρ, α, β. (27.28)
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Fig. 27.10. Nonlinearity and inhomogeneity versus resonance frequency.

The relative value of the first positive peak of the interaction amplitude depends on
the material inhomogeneity, on the excitation amplitude and frequency, as illustrated
in Figure 27.10. Physical properties of the material are assumed to vary linearly along
the X -axis and are described by Eq. (27.28) in the form

γ (X) = γ (1) ( 1 + δ1ξ (X)), δ1ξ (X) = εγ1ξ X/γ (1), γ, ξ = ρ, α, β. (27.29)

The inhomogeneity of material properties is estimated by the value of the parameter
of inhomogeneity δ1ξ (L) ≡ δ1ξ , ξ = ρ, α, β.

Three different materials with variable linear elastic property α(X) are considered.
In the first case, the elastic coefficient α(X) varies linearly with a negative slope along
the X -axes and the maximum deviation at X = L from the basic value α(1) = 100 GPa
is 1 %; that is, 102δ1α = −1.0. In the second case, the elastic coefficient α(X) is con-
stant α(1) = 100 GPa (homogeneous material). In the third case, the elastic coefficient
α(X) varies linearly with a positive slope along the X -axes (102δ1α = 1.0).

By analyzing the curves presented in Figure 27.10, it can be easily seen that (i) the
variation in the value of the linear elastic coefficient induces a shift in the value of
the resonance frequency, (ii) the value of the resonance frequency is sensitive to the
properties of the material and (iii) the resonance frequency may be used for qualitative
and quantitative NDE of the properties of physically inhomogeneous nonlinear elastic
materials.

The last conclusion is supported by the results of similar simulations for materials
with variable density. In this case the shift of the resonant frequency occurred only in
the horizontal direction (see Fig. 27.11).
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Fig. 27.11. Nonlinear resonance as function of excitation frequency and material properties ( j = 1,

. . . , 20, i = 1, 2, 3).

The influence of the variation of the nonlinear elastic coefficient β on the resonance
frequency is substantially weaker than that of the density and the linear elastic coeffi-
cient.

The results of the numerical simulation show cascades in different regions of
A/Ali −ω/ωl plane (Figure 27.11). These cascades form different corridors for linear,
quadratic and cubic inhomogeneities in material properties, as illustrated for α(X) in
Figure 27.11. It is worth noting that inhomogeneity in density has an essentially differ-
ent effect on wave interaction resonance than other material properties. This facilitates
the use of the obtained results in NDE of the properties of inhomogeneous materials.

4. Conclusions

The key idea of exploiting nonlinear effects of ultrasonic wave propagation and inter-
action for elaboration of relatively simple methods of NDE of inhomogeneous materi-
als is presented. In particular, two model problems are studied:

(i) Counterpropagation and interaction of two longitudinal waves in inhomoge-
neously prestressed nonlinear elastic materials (structural element).

(ii) The same wave propagation process in physically weakly inhomogeneous non-
linear elastic materials.

For those problems, a detailed theoretical basis is provided, including the derivation of
analytical solutions.

Analysis of numerical simulations leads to the conclusion that the nonlinear effects
of boundary oscillations evoked by the counterpropagation of two longitudinal waves
in the material contain enough information for NDE techniques to evaluate the para-
meters of simple inhomogeneous materials.
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Three NDE techniques are proposed:

(i) Qualitative NDE technique, on the basis of the profile of the nonlinear part of
boundary oscillations, allows us to distinguish different states of plane strain in
the material, including the possibility to discriminate between prestressed and
prestress-free materials.

(ii) Quantitative NDE technique that enables us to evaluate the parameters of two-
parametric prestressed state of the material on the basis of the values of two first
peaks of the profile of nonlinear boundary oscillation to.

(iii) Resonance NDE technique, allowing us to distinguish qualitatively weak inho-
mogeneity in different physical properties of nonlinear elastic materials and to
evaluate this weak inhomogeneity.

The proposed NDE techniques may be especially useful for nondestructive charac-
terization of materials where nonlinear effects of wave propagation are several orders
of magnitude higher than in the materials considered here, such as materials with mi-
crostructure, or affected by microscale damages, and so on.
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Abstract
Ultrasonic fatigue and nonlinear elastic behavior of metals are studied and their relation exper-
imentally established. The high-cycle fatigue process is summarily described and the implica-
tion in the dynamical behavior of the material is outlined. In this framework, a new method and
an experimental system for the study of the nonlinear behavior and fatigue failure of metals
under high-intensity ultrasonic stresses has been developed and tested. The method is based
on the measurement of the vibration velocity of bar-stepped samples for different excitation
levels keeping the temperature of the sample constant. The experimental set-up is constituted
by a driving system exciting the material samples at resonance and a nonintrusive data acqui-
sition system. Results show the relation between the material nonlinearity parameter and the
fatigue state. In this way the viability of nonlinear material characterization for fatigue damage
assessment is established.

Keywords: Fatigue in metals, high-cycle fatigue, high-power ultrasonics, nonlinear charac-
terization of metals, nonlinear vibrations

1. Introduction

The present study was originated in the framework of the design and construction of
high-power ultrasonic transducers for use in air. There are numerous possibilities for
airborne high-power ultrasound applications in industry, but they are generally lim-
ited by the maximum acoustic energy which is possible to generate. Two main causes
introduce limitations: one is the nonlinear attenuation of pressure waves, leading to
saturation and important energy losses by harmonic distortion, and the other is the
limited power capacity of the transducers, due to fatigue of their metallic components.
For the analysis of the second phenomenon a high-frequency fatigue experimental
system has been designed, constructed, and tested as described in this chapter. Exten-
sional and flexural vibrations to fatigue samples at about 20 kHz are applied and the
effect is analyzed at different constant temperatures. The limiting strain, defined as
the strain amplitude threshold beyond which fatigue can occur in a small number of
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cycles, is evaluated by using the experimental system and a theoretical procedure,
which is here described. The limiting strain and the nonlinear behavior of attenuation
(strain–amplitude dependence) are microscopically interpreted as changes occurring in
the distribution and density of dislocations in relation with the initiation of the fatigue
process. The detection of the fatigue process is fundamental in its first stages in order
to avoid catastrophic damage of the material. To that purpose we have theoretically
and experimentally established as described in this work the direct relation between
the fatigue process and the nonlinear dynamical behavior of metallic materials exten-
sionally and flexurally vibrating. Fatigue is one of the primary reasons for the failure
of structural and particularly metallic components. Moreover, in many applications in-
cluding aeronautic, energy industries, and, of course, high-power ultrasonic transduc-
ers, metallic components are expected to have a very long life (>109 cycles) and often
they are subjected to sonic or ultrasonic stressing. The study presented in this chapter
concerns high-frequency (20 kHz) fatigue and more specifically the establishment of
a relation between the high-cycle fatigue process and the evolution of the nonlinear
elastic characteristics of metals.

A description of the fatigue process and a review of high-frequency fatigue experi-
ments is presented in this section as a general introduction.

1.1 Fatigue Process in Metals

The term “fatigue” refers to the gradual accumulation of damage produced under alter-
nating mechanical straining of a specimen. It is well known that a metal subjected to
cyclic stressing will fracture at loads below the steady ultimate tensile strength. In fact,
fatigue is one of the primary reasons for the failure of structural components. In gen-
eral, there are many uncertainties in establishing fatigue reliability. Therefore, testing
of the structures will always be necessary. The fatigue life contains two parts: initia-
tion and propagation of the crack. Dislocations play a major role in the fatigue crack
initiation phase. After a high number of loading cycles, dislocations pile up and form
structures called persistent slip bands (PSB). PSBs are areas that rise above (extrusion)
or fall below (intrusion) the surface. They leave tiny steps in the surface that serve as
stress risers where fatigue cracks can initiate. The rupture surface presents a plane zone
(where microcracks propagate) and a rough zone (where ductile deformation occurs).

At each stage of the complex fatigue process a certain phenomenon dominates. The
fatigue process is usually represented by the Wöhler curve, where the applied stress
is plotted versus the number of cycles to failure (Figure 28.1). The fatigue process has
a statistical nature, such that an important dispersion of points in the Wöhler plot is
expected. The relationship between strain amplitude and number of loading cycles S–
N (Wöhler curve) depends on the material, its composition and previous history (heat
treatment, mechanical treatment), as well as the conditions of the experiment (stress
range, frequency of cycling, temperature, nature of the environment, etc.). The first
part of the curve corresponds to low-cycle fatigue, in which high-stress amplitudes
are applied and an important plastic deformation occurs. In the high-cycle region
(high number of cycles and small stress amplitudes) the strain is almost completely
elastic.
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Fig. 28.1. The Wöhler curve. Relation between the mechanical properties and the fatigue process.

Fatigue research has often been focused on the study of the relation between fati-
gue damage accumulation and changes taking place on the surface during stressing
(formation of slip lines, bands, extrusions, micro- and macrocracks). Further insight
on fatigue life can be obtained from the study of changes in the mechanical properties
of the stressed material.

The gradual changes in stress–strain curves as well as the changes in mechanical
hysteresis loops as a function of the number of stress cycles were the object of early
studies in the decades 1910–1920 (see Bratina, 1966 and references therein). The ef-
fect of fatigue stressing on the attenuation damping was also studied by different re-
searchers during the fifties and sixties (Bratina, 1966; Mason, 1956, 1968).

Microscopic theories based on the movement and multiplication of dislocation loops
explaining changes in attenuation with amplitude have been provided by Granato
and Lücke (1956) and by Mason (1971). They proposed a quantitative theory of
damping and modulus changes due to dislocation and they distinguished two kind
of losses that are dependent on the frequency and on the amplitude, respectively. The
amplitude-dependent loss is a hysteretical loss which has a strain-amplitude depen-
dence. Figure 28.2 (from Granato and Lücke, 1956) outlines the stress–strain depen-
dence obtained from the Granato–Lücke model for the second type of losses.
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Fig. 28.2. Stress–strain (σ − ε) relation as proposed by Granato and Lücke (from Granato and Lücke,
1956).

In this chapter the focus is on the macroscopic description and quantification of the
fatigue process by means of the changes in the nonlinear dynamical behavior of the
material when fatiguing. The hysteresis loop surface increases with the strain and with
the number of cycles. A damping increase is then produced as well as an important
increase in the nonlinear elastic properties of the material. The increase of mater-
ial damping during the fatigue process is a well-known effect. On the contrary, the
changes produced in the nonlinear characteristics of the material have been scarcely
evaluated (Nagy, 1998).

1.2 High-Frequency Fatigue

High-frequency mechanical vibrations in metals by means of high-intensity ultrasound
can induce ultrasonic fatigue. Data about the behavior of materials at such loading-
frequency range are useful for acoustic technology, power engineering, aircraft and
rocket engineering, and so on.

One of the main advantages of ultrasonic fatigue testing is the important reduction
of time, and therefore the possibility of analyzing a very high number of fatigue cycles
(Puskár, 1982; Matikas, 2001). The test equipments are generally simple and give the
possibility of testing the samples at different temperatures and under different environ-
mental conditions.

High-frequency fatigue studies were initiated in the fifties (Puskár, 1982; and ref-
erences therein) and nowadays the topic is still the object of numerous applied and
theoretical investigations (Matikas, 2001; Wang et al., 2002; Holper et al., 2004;
Marines et al., 2003; Papakyriacou et al., 2001; Mayer et al., 2001). In fact, due to
the increasing requirements in fatigue strength and life of the components, high fre-
quency fatigue analysis becomes the most appropriate method for material testing.

Puskár (1982) has reviewed experimental results on the fatigue limit obtained from
low- and high-frequency fatigue tests in different materials and under different testing
conditions. In general, experiments have been carried out by fatiguing the metal, and
also by measuring attenuation variations with strain amplitude. Results show differ-
ences up to around 40% in the limiting strain for high- and low-frequency loading. In
particular, for aluminium the limiting strain seems to be from 20 to 30% higher for
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high-frequency tests than for low-frequency tests. However, reports on iron indicate
that the fatigue crack nucleates at higher values for low-frequency fatigue. Results for
copper samples seem to be similar for high and low frequency. A number of contradic-
tory results for steel samples are also reported in this reference. The complexity of the
phenomenon is at the origin of such contradictions. In fact to be sure about the results,
the material used and the conditions of the experiments have to be very carefully con-
trolled. The grain size and the microstructure of the metal also have to be considered
as an important feature in the limiting strain value.

Recent works (Marines et al., 2003; Wang et al., 2002) have described the fatigue
behavior of different steels at high frequency. The main conclusion is that rupture
can occur beyond 109 cycles and that the difference of fatigue strength between 106

cycles and 1010 cycles may be of about 200 MPa, where high-cycle tests present lower
fatigue strength. Another conclusion is that the infinite fatigue life (i.e., the existence
of a horizontal asymptote in the Wöhler curve) assumed for this kind of materials in
classical fatigue analysis cannot be taken as a correct rule. For the materials tested, a
direct effect of the loading frequency on the fatigue strength does not exist, but high
frequencies seem to be more sensible to surface roughness. Other authors (Holper
et al., 2004) have analyzed the fatigue process in aluminium alloys for low- and high-
frequency fatigue, and their results show that in vacuum and under identical conditions,
no influence of the frequency appears.

Other works also evaluate experimentally the effect of the loading frequency on
fatigue strength for aluminium (Mayer et al., 2001), pure niobium, and tantalum and
Ti 6Al 7Nb (Papakyriacou et al., 2001) under different environmental conditions.

In summary, the most recent works prove a stronger sensitivity of high-frequency
fatigue tests to material characteristics and experimental conditions and explain in this
way the contradictory results reported by early researchers.

Puskár (1989) described the different phases of high-cycle fatigue processes by
means of a qualitative model (Puskár and Golovin, 1984). In this model, four stages
are distinguished: fatigue process incubation (redistribution of dislocations, increase of
dislocation density, microplastic deformation of surface grains), submicroscopic crack
nucleation and propagation (appearance of persistent slip bands), crack propagation in
high stress zones (surface striations), and final failure.

2. Method and Experimental Technique

A new method and an experimental system have been developed to study ultra-
sonic fatigue failure and its relation to the nonlinear behavior of metals under high
intensity ultrasonic stresses. In this section, the theoretical hypothesis are summa-
rized (Section 2.1), the experimental techniques and procedures are detailed (Sec-
tion 2.2), and the method to quantify the damping in metals at high amplitudes (Section
2.3) as well as the procedure for nonlinear elastic characterization (Section 2.4) are
described.
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2.1 Nonlinear Elasticity Theories. Qualitative Description for
a Phenomenological Analysis of the Nonlinear Elastodynamic
Behavior of Fatigued Metals

The theory of high-cycle fatigue processes is related to the mechanical, and more
specifically to the elastic properties of metals. The fatigue theory predicts that the
surface of the hysteresis loop increases when the stress and/or the number of cycles
increases. In fact, the microscopic theory proposed by Granato–Lücke, (1956) and
Mason (1971) leads to a hysteretical stress–strain (σ–ε) dependence as plotted in Fig-
ure 28.2. It justifies the experimentally observed increase of damping both with stress
amplitude and number of cycles.

To relate the nonlinear elastodynamic behavior of metals with the fatigue process,
we show the relationship between the surface of the hysteresis loop and the nonlin-
earity parameter of the material. To this purpose, two nonlinear elasticity theories are
presented briefly and applied to model nonlinear vibrations in a metallic rod vibrating
in its first extensional resonant mode. First, the classical nonlinear elasticity is outlined
and applied. Second, a simple hysteretical theory is considered.

The classical nonlinear elasticity theory may be used as a reference: the nonlinear
elastic behavior of intact metallic samples may be well described by this approach.
Nevertheless this classical model is not appropriate to describe the anomalous nonlin-
ear elasticity observed in fatigued metals. A one-parameter hysteresis loop is proposed
(Nazarov and Sutin, 1989). The parameter of the hysteresis loop is directly propor-
tional to the surface of the loop, and the nonlinear elastodynamic behavior of metals is
also shown to be directly proportional to this parameter.

Other more sophisticated models have been developed for the explanation of non-
classical nonlinear behavior of materials containing cracks (Maev and Solodov, 2000;
Sutin and Nazarov, 1995; Donskoy et al., 2001; Van den Abeele et al., 1997; Scalerandi
et al., 2003; and theoretical chapters of this book). Nevertheless the objective of this
chapter is only to show in a simple and clear way the relation between the nonlinearity
parameter and the physics of the fatigue process.

2.1.1 Classical Nonlinear Elasticity

The following constitutive equation is considered (Murnaghan, 1951),

σ = Y0

(
∂u
∂x

)
+ Y1

(
∂u
∂x

)2

+ Y2

(
∂u
∂x

)3

, (28.1)

where σ is the Piola–Kirchhoff stress, u is the displacement, x is the spatial material
coordinate and Y0, Y1, and Y2 are, respectively, the second- third- and fourth-order
elastic constants for extensional vibration. From the conservation of the momentum
law, written in Lagrange coordinates, the following wave equation is obtained,

ρ0
∂2u
∂t2 = Y0

∂2u
∂x2 + Y1

∂

∂x

[(
∂u
∂x

)2
]

+ Y2
∂

∂x

[(
∂u
∂x

)3
]

, (28.2)
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where ρ0 is the density at the initial state and t is the time. A method of successive
approximations is used to solve Eq. (28.2). The solution is assumed to be the addition
of three terms: u = ul + u2 + u3, where ul is the first-order approximation and u2 and
u3 are the second- and third-order perturbations. The boundary conditions are linear
excitation at one end of the sample (x = L) and free vibration at the other (x = 0).
Harmonic distortion and changes in frequency are then calculated. The well-known
linear solution for ul is easily obtained:

ul(x, t) = −u0 cos ωt cos k0x (28.3)

with u0 being the displacement at the excitation point, ω the angular frequency, and
k0 the wavenumber. The second- and the third-order perturbations, calculated by a
perturbative technique (Campos-Pozuelo et al., 2006), result in:

u2(x, t) = Y1u2
0

Y0
(A(x) + B(x) cos 2ωt) (28.4)
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where A(x) and B(x) are spatial functions,
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are functions of space and also of the third- and fourth-order elastic constants. The
change in the resonance frequency is thus:

k = k0 + �k, �k = −k3u2
0

64
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− 18

(
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, (28.6)

where k is the nonlinear wavenumber and k0 is the low amplitude wavenumber
(Campos-Pozuelo et al., 2006).

It must be noted that in this approach, the third harmonic component of the displace-
ment is of the third order on ku0. The change in frequency with amplitude �k/k is of
the second order on the linear strain amplitude (ku0).

2.1.2 Hysteretical Model

A hysteresis loop is assumed to describe the macroscopic relation between stress and
strain. The following one-parameter hysteresis loop is proposed (Nazarov and Sutin,
1989),

σ = Y0ε +

⎧
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γ
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, (28.7)
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where ε is the strain, Y0 is the Young modulus, ε0 (x) is the local strain amplitude, and
γ is the parameter describing the opening of the hysteresis loop.

The same perturbation technique used in the classical elasticity theory is applied,
but only up to the second order. From the conservation of the momentum law written
in Lagrangian coordinates, a wave equation is obtained for every part of the cycle.

After applying an analytical Fourier transform and imposing the same boundary
conditions as in the previous paragraph, the following expression is obtained for the
displacement (Campos-Pozuelo et al., 2006),

u(x, t) = −u0 cos ωt cos kx + γ u2
0 F(x) sin ωt

+γ u2
0G(x) cos ωt + γ u2

0 H(x) sin 3ωt,
(28.8)

where F(x), G(x), and H(x) are spatial functions. Changes in frequency are also cal-
culated to be �k = −γ ku0/3L . The second-order perturbation from classical elastic-
ity [Eq. (28.4)] should be added to this result to complete the solution.

It is important to note that the third harmonic is already present in this second-order
model. Thus, second and third harmonic components are of the same order. This im-
plies that the third harmonic amplitude shows a quadratic dependence on the excitation
amplitude. On the other hand, the change of the frequency results in linear dependence
on the amplitude, in contrast with the quadratic dependence obtained from the classical
theory of elasticity.

2.2 Experimental Technique
2.2.1 High Frequency Fatigue System

The experimental system developed for the generation and analysis of ultrasonic fa-
tigue in metallic samples is basically constituted by an excitation system to drive
the samples at resonance and a noninvasive data acquisition system (Figure 28.3;
Campos-Pozuelo et al., 2002).

Excitation system

The excitation system consists of an electronic generator designed ad hoc and a piezo-
electric transducer (Gallego-Juarez et al., 1994). The electronic generator driving the
transducer incorporates a feedback system in order to automatically adjust the exci-
tation frequency to the resonance frequency of the transducer (Gallego-Juarez et al.,
1994). The electronic generator also includes a switching circuit for the production
of periodic interruptions in the driving signal in order to avoid the temperature of the
sample increasing for long-term excitation (Kromp et al., 1973). The circuit establishes
and counts the number and length of the tone bursts exciting the samples. In this way
the number of applied cycles to the sample is controlled. Burst length and off-time can
be varied between 0.1 s and 6000 s.

The driving transducer is an extensional resonant system at about 22 kHz consti-
tuted by two half-wave resonant elements: a piezoelectric sandwich and a stepped horn
(Figure 28.3). The sandwich element consists of four piezoelectric ceramics placed
between two metallic cylindrical rods. The stepped horn acts as a mechanical ampli-
fier to achieve higher vibration amplitude at its thinner termination where the samples
are attached.
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Fig. 28.3. Experimental set-up.

Samples

Two types of samples with stepped profile were designed and constructed to produce
flexural and extensional standing waves. The samples were designed following two
basic requirements: their first resonance mode has to match the transducer’s resonance
frequency and, in addition, they have to achieve high strains (enough for fatigue initi-
ation and propagation) in certain sections, while they are driven at linear range strains
in other sections. For extensional-wave tests, cylindrical stepped rods as shown in Fig-
ure 28.3 were used (Campos-Pozuelo et al., 2002). The theoretical strain distributions
for two extensionally vibrating resonant samples of stepped and uniform shape are
compared in Figure 28.4a (Campos-Pozuelo and Gallego-Juárez, 1995a). The strong
increase of the strain in the central thinner section of the stepped sample allows a non-
linear behavior in this part, while keeping the excitation working in its linear range.
In Figure 28.4b, we show the experimental validation of such assumptions. The direct
measurement of the strain was made by experimental quantification of the transversal
vibration of the sample and considering the relation of the classical and linear the-
ory of the elasticity and the one-dimensional assumption. Uniform cylindrical samples
were also used to determine the linear range of the transducer (Campos-Pozuelo and
Gallego-Juárez, 1996).
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A similar idea was used to design samples for flexural vibration. Figure 28.5a shows
the geometry of a stepped sample bar and its strain distribution compared with the dis-
tribution in a constant section prismatic bar. In Figure 28.5b the experimental valida-
tion of the assumed amplitude distribution is shown for a flexurally vibrating stepped
sample (Campos-Pozuelo and Gallego-Juárez, 1995b).

Data acquisition

The data acquisition system is based on a He–Ne laser vibrometer (POLYTEC PFV-
502) providing nonintrusive measurements of the particle velocity in the range of 10
microns/s up to 10 m/s for frequencies up to 1.5 MHz with an accuracy of 2 microns/s.
The temperature of the sample was monitored at the nodal section, where the maxi-
mum heating occurs (Minogna et al., 1981), by using an infrared thermometer. The
vibration signal was automatically acquired and treated by a PC.

To fatigue the samples, bursts of between 0.1 and 1 second with intervals of several
seconds were applied to produce peak stress values high enough for crack nucleation
(of the order of 300 MPa).

The system allows tests at different controlled temperatures by using a thermically
isolated oven, provided with a control system to keep the inside temperature constant.
The temperature may be measured by a thermocouple and regulated by a multifunction
controller, connected to the electric heater.

2.2.2 Variation of the Attenuation with the Strain Amplitude for Intact
(Nonfatigued) Materials: Limiting Strain

It has already been established that the internal friction increases with strain. Following
the above-mentioned theory of Granato–Lücke, (1956), some authors (Mason, 1968,
1956; Mason and MacDonald, 1972; Nazarov, 1991; Kuz’menko, 1975) have assumed
that the observed increase of attenuation for an ultrasonic wave above a critical strain
amplitude can be associated with the formation of dislocation loops, which lead to
fatigue crack. This critical value beyond which fatigue failure can easily be produced
is called limiting strain. The increase of attenuation with the strain amplitude and its
relationship with fatigue damage initiation has been analyzed by a number of authors
and several experimental systems have been proposed (Mason, 1968, 1956; Mason and
MacDonald, 1962; Kuz’menko, 1975; Puskár, 1977).

By using the experimental system for the production of the high-frequency fatigue
previously described, a measurement method was developed to evaluate the variations
of internal losses in metals with the strain level at ultrasonic frequency, and to de-
termine the value of the limiting strain beyond which changes occur in the material,
which give rise to a very pronounced increase of attenuation. To quantify the internal
losses in the material, through the measurement of particle velocity and excitation volt-
age, a linear one-dimensional model of the assembly constituted by the transducer and
the sample (Figure 28.6) has been developed (Campos-Pozuelo and Gallego-Juárez,
1996). This model is based on the following assumption: the piezoelectric sandwich
may be approached by a piezoelectric ceramic rod having the same resonant frequency
and mechanical impedance, and it is considered at one end to be free x = 0 and
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at the other to be coupled to the bigger section of the mechanical amplifier. That
means that boundary conditions for the piezoelectric bar are F(x = 0) = 0 and
F(x = lc) = Z Bu̇, Z B being the termination impedance from the assembly consti-
tuted by the mechanical amplifier and the sample, F the force, u̇ the particle velocity,
and lc the length of the piezoelectric rod. To calculate Z B , energy loss is neglected
in the mechanical amplifier, which is assumed to be resonant (l = λ

/
2). The input

impedance of the sample (Zm) is calculated by neglecting the energy dissipation at the
external bigger sections, where the material vibrates under linear conditions. Also it
is assumed that αmlm << klm (αm is the attenuation of the sample material and lm
its length) and that the stepped samples are resonant (tan k lm/4 = d2/d1). To obtain
the limit for linear behavior of the transducer, measurements were done with constant
section rod samples, where no increase of the strain occurs.

With all these assumptions and by using the piezoelectric equations (Mason, 1968),
the following relation is obtained between the applied voltage (Va), and the vibration
velocity at the end of the sample

(
u̇ f

)
,

Va = u̇ f (Kt + Kmαm), (28.9)

where

Kt =
(

D2

D1

)2 Z0cαclcπ D2
1

8ϕ
, Km =

(
D1

D2

)2 Z0mπd2
1αc

16ϕ
lm,

D1 and D2 are the diameters of the two sections of the mechanical amplifier, Z0c
and Z0m are the specific impedances of the piezoelectric element and of the sample,
respectively, ϕ is the piezoelectric constant, and αc the attenuation of the piezoelectric
element. In the linear range of the transducer Kt is a constant.

From this equation the sample attenuation, αm , can be expressed in the form

αm =
(
Va

/
u̇ f − Kt

)

Km
. (28.10)
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In this way, from the measurement of the driving voltage Va and the particle velocity
at the end of the sample u̇ f , the attenuation for different excitation levels may be
obtained.

2.2.3 Analysis of the Nonlinear Elastic Behavior of Metals

The experimental set-up shown in Figure 3 is also valid for the nonlinear characteri-
zation of metallic materials. The technique basically consists of exciting the first reso-
nant mode of the samples, and in quantifying the nonlinear harmonic distortion and the
changes in frequency produced with increasing strain amplitudes. The vibration mode
is driven at different voltage amplitudes and the waveshape of the vibration is analyzed
by using standard FFT methods (Campos-Pozuelo and Gallego-Juarez, 1995a, b). It
must be noted that by means of the feedback system which automatically adjusts the
excitation frequency to the resonance frequency, it is also possible to quantify the non-
linear changes in frequency. Nonlinearity parameters may be quantified by measuring
the slope of the straight line relating the second (or third) harmonic to the fundamental
or the slope of the line relating changes in frequency with strain amplitude.

To analyze the changes in the nonlinearity parameter with the number of applied
cycles during the fatigue process, the velocity response of the sample is captured and
the signal at the turn-off of the tone burst exciting the sample is analyzed, as pro-
posed by Van Den Abeele et al. (2002). In such a procedure the amplitude of the
excitation signal is kept constant and the amplitude dependence is obtained by a time-
windowed analysis of the reverberation signal. Figures 28.7 and 28.8 show examples
of the different signals captured from the samples in the time and frequency domains,
respectively. The reverberation technique, which is very useful for nonlinear charac-
terization at constant excitation, presents the disadvantage of a high noise level at low
amplitudes. This is because high- and low-amplitude measurements are made by using
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only one acquisition signal, and then the absolute vertical resolution is the same for
both measurements. Therefore the relative vertical resolution for the low-level values
is poorer than for the high-level values. For a more efficient use of this technique,
more sophisticated signal treatment methods should be applied (Van Den Abeele et
al., 2002).

3. Measurements

3.1 Limiting Strain of Metallic Alloys: Attenuation Versus Amplitude for Intact
Samples

The procedure described in Section 2.2.2 has been applied to the determination of
the limiting strain of some metallic alloys such as duraluminium and Ti 6Al 4V. The
evolution of the internal friction with the strain amplitude has been obtained from the
measurements of the applied voltage at the transducer and the vibration amplitude at
the end of the samples. Results are shown in Figures 28.9 and 28.10. The threshold
of amplitude beyond which the attenuation increases rapidly can be easily observed
for duraluminum as well as for the titanium alloy (Ti 6%Al 4% V) in Figures 28.9
and 28.10, respectively. Such results have been obtained for a constant temperature at
23◦ C.
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3.2 Comparative Analysis of the Nonlinear Behavior of Metallic Alloys
Before and After Being Fatigued

Experimental tests about the nonlinear elastodynamic behavior of fatigued and intact
samples have been carried out. The samples are fatigued by using the experimental set-
up previously described. Two metallic alloys of current use in the aeronautics industry
as well as in the construction of high-power ultrasonic transducers (duraluminium and
Ti 6Al 4V) have been tested by using extensional and flexurally vibrating samples.
The nonlinearity parameter was quantified from nonlinear harmonic distortion in the
case of flexural vibrations and from the changes in frequency with strain amplitude
for extensional vibrations. The nonlinear elastic behavior is compared for the same
sample before and after fatigue crack nucleation.

In Figure 28.11 the third harmonic relative to the fundamental amplitude is plotted
as a function of the fundamental amplitude, before and after fatiguing the sample, for
titanium and aluminum alloys. The important increase of the nonlinear harmonic dis-
tortion after fatiguing the sample is evident for both materials. Figure 28.12 shows, for
a Ti6Al4V sample, the comparison of the evolution of the second and third harmonics
before and after fatiguing the material. The signals were picked up at the same mea-
surement point. It is clear that the fatigue process produces a notable increase of the
third harmonic, which becomes stronger than the second one. Such behavior cannot be
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interpreted as an increase of the nonlinearity parameter as it is understood in the classi-
cal theory of the elasticity (see Section 2.1.1). A simple theory including hysteresis, as
proposed in Section 2.1, predicts a second-order third harmonic that is directly related
to the hysteresis loop surface through the parameter γ , whereas the second harmonic is
not affected by this parameter in this simplified theory. Results plotted in Figures 28.11
and 28.12 confirm the opening of the hysteresis loop due to the fatigue process (see
Section 2.1.2) as the origin of the observed increase of nonlinearity.

The amplitude dependence of the resonance frequency of fatigued and intact sam-
ples on the two analyzed materials for their first extensional mode has also been
experimentally quantified. A linear dependence of the frequency on the vibration am-
plitude, which is hard to justify from the classical nonlinear elasticity theory (see Sec-
tion 2.1.1), is observed. Figure 28.13 shows the dependence of the frequency on the
amplitude of the vibration for extensionally vibrating samples of duraluminum and
Ti6Al4V.

In conclusion, it can be stated that the experimental results confirm the increase of
the hysteresis loop area when the material is fatigued and the possibility of detecting
such increase by a nonlinear elastic characterization of the material. The comparison
between the different models and the experimental data shows that before fatiguing,
the samples follow a classical nonlinear behavior whereas after crack nucleation, their
nonlinear elastic behavior is better described by a hysteretical model.
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3.3 Evolution of the Nonlinearity Parameters During the Fatigue Process

From the experimental results shown in Section 3.2 it seems clear that the nonlinear
elastic characterization of metals can be used to monitor the fatigue process. The work
of Nagy (1998) shows the viability of using nonlinear ultrasonic techniques for fa-
tigue damage assessment. He measures the second-order acoustoelastic coefficient in
a great variety of materials (including metals) during the fatigue process (classical,
low-frequency fatigue). Van den Abeele et al. (2002) use nonlinear ultrasonic vibra-
tion to monitor the fatigue process. Both works conclude that nonlinear features are
more sensible to fatigue damage than classical linear characterization. We propose
here, on the basis of the fatigue system described in Section 2.2.1 and the nonlin-
ear characterization methodology employed to compare intact and fatigued samples in
Section 3.2, to use the high-amplitude ultrasonic vibrations fatiguing the samples for
nonlinear characterization and monitoring of the linear and nonlinear elastic behavior
of the metal during the fatigue process.

Samples are fatigued by applying a constant voltage to the driving transducer (see
Section 2.2.1). When the fatigue crack nucleates, the sample attenuation increases.
Then, according to the results of Section 2.2.2, the displacement of the sample de-
creases. Results will be always analyzed in terms of values normalized to the vibration
amplitude. Bursts of length of 0.1 s at the resonance frequency are applied to the
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sample and the reverberation is automatically recorded for every burst. To character-
ize the linear and nonlinear elastic behavior of the samples during the fatigue process,
frequency, attenuation, and nonlinearity parameters are evaluated for every acquisi-
tion. In Figure 28.14, results are plotted for a extensionally vibrating duraluminum
sample. To construct this curve we consider the results of Figure 28.13 and define a
nonlinearity parameter as the slope of the straight line fitting the frequency changes
versus amplitude. To evaluate the attenuation, the envelope of the reverberation signal
is calculated. All parameters are normalized by relating them to their initial values.
Figure 28.15 shows results obtained for a flexurally vibrating Ti6Al4V sample. The
harmonic distortion is represented by the ratio of the third harmonic to the fundamen-
tal amplitude for the maximum amplitude window in the reverberation signal. Both
Figures 28.14 and 28.15 ratify the idea that nonlinear parameters are more sensitive
than linear parameters to fatigue damage changes.

4. Conclusions

A study showing the relationship between ultrasonic fatigue and nonlinear elas-
tic behavior of metals has been the object of the present chapter. An experimental
system to produce and analyze high-frequency fatigue and a method for nonlinear
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characterization of metals by using high-amplitude ultrasonic vibrations have been
described. Experimental results show that the nonlinearity parameters of the metal
strongly increase with fatigue in the material. Moreover, it has been shown that the
nature of the nonlinear elasticity exhibited by intact and fatigued specimens is dif-
ferent. Intact samples follow the predictions of the classical nonlinear elasticity theory
whereas fatigued samples present a hysteretical behavior. Such results are in agreement
with the description of the fatigue process outlined in the introduction of the chapter.
The important changes in the nonlinear elastic behavior of metal samples (harmonic
distortion, amplitude dependence of frequency and attenuation) compared to changes
in linear elastic properties (frequency and attenuation) indicate that nonlinear charac-
terization should be a good method for fatigue damage assessment in metals.
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Campos-Pozuelo, C., Vanhille, C. and Gallego-Juárez, J.A., 2006, Comparative study of the nonlinear
behaviour of fatigued and intact samples of metallic alloys, Under revision in IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control., 53: 175–184.

Donskoy, D., Sutin, A., and Ekimov, A., 2001, Nonlinear acoustic interaction on contact interfaces and its
use for nondestructive testing. NDT&E Int. 34: 231–238.

Gallego-Juarez, G., Rodriguez-Corral, J., San Emeterio, L. and Montoya-Vitini, F., 1994, European Patent
EP 450,030 1991, US Patent 5,299,175.
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Abstract
The classical approach to nonlinear acoustic nondestructive evaluation (NDE) is based on the
higher (ultra-)harmonic or mixed frequency response of an imperfect material. In the non-
classical case, beyond the well-known ultraharmonics and the modulation sidebands nonlin-
ear spectra acquire a number of new spectral components: subharmonics, ultrasubharmonics,
and ultrafrequency pairs. These nonclassical nonlinear modes demonstrate a high localization
around defects and provide new opportunities for early detection and recognition of damaged
areas. The chapter includes theoretical background and extensive experimental results on defect
selective nonlinear imaging and NDE using complete multifrequency nonclassical spectra.

Keywords: Higher harmonics, hysteresis, imaging, instability, nonclassical nonlinearity,
nondestructive evaluation (NDE), self-modulation, subharmonics, wave modulation

1. Introduction

A gradual pace of a 30-year history of nonlinear acoustics of solids has been disturbed
by a dramatic turn over the last decade. In early 1960s, a classical field of investiga-
tions was aimed at homogeneous (flawless) crystals whose nonlinearity was associated
with lattice anharmonicity. As a result, a unique means was created for experimental
characterization of nonlinear behavior of interatomic forces in crystalline materials.1

However, even in the first experimental studies of imperfect materials a substantial in-
crease in nonlinearity was measured as soon as dislocations were induced in a single
crystal of Al by a mechanical impact.2 Further investigations confirmed an impor-
tant role of internal boundaries and microinhomogeneities in enhancement of acoustic
nonlinearity in fatigue materials with dislocations and in alloys containing internal
interfaces between matrix and precipitate.3

A number of studies were then implemented to discover the mechanisms underly-
ing boundary nonlinearity using surface and interface acoustic waves.4, 5 These results
were supplemented by direct observations of efficient higher harmonic generation in
bulk acoustic wave reflection from an interface between two nonlinear solids.6 The
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experiments revealed an increase in acoustic nonlinearity by several orders of magni-
tude for both surface and bulk waves7, 8 in a weakly bonded contact. Besides the much
higher efficiency, such a contact acoustic nonlinearity (CAN) was shown to exhibit a
substantial qualitative departure from fundamental nonlinear effects of higher harmon-
ics generation and acoustic wave interaction, which have been a predominant subject
for most of the studies in classical nonlinear acoustics. The family of nonlinear con-
tact phenomena included frequency transformations down on the spectrum, hysteresis,
instabilities, stochastic effects, and so on9–12 that are well known in other branches
of nonlinear physics. Because the CAN closely simulates the nonlinear behavior of a
crack, the nonlinear acoustics of the weakly bonded interface became a topical subject
of numerous studies and applications concerned with NDE of cracked defects.

Another area where the deviations from classical nonlinear acoustics were found
to be evident was acoustics of structurally inhomogeneous media and rocks in partic-
ular.13 The grainy structure of rocks, apparently, comprises a number of nonideally
bonded interfaces whose nonlinear response is the main source of nonlinearity in ge-
omaterials. Different types of contact bonds in the interfaces between grains result
in various mechanisms of structural nonlinearity14 that are involved in interpreting
nonclassical manifestations of acoustic nonlinearity in rocks. These mechanisms are
complemented by the Preisach–Mayergoyz (P–M) formalism to include hysteresis of
elastic properties of rocks.15 The P–M scheme enables a phenomenological description
of such nonclassical manifestations as elastic hysteresis and discrete memory observed
in static and dynamic experiments. It also predicts unconventional features of quadratic
dynamic characteristics of the higher harmonics and a linear amplitude dependence of
the resonance frequency shift for acoustic waves in rocks.

The above approaches originated from quite different areas: nonlinear acoustics of
interfaces and acoustics of structurally inhomogeneous media and rocks. However, ul-
timately they came to the common conclusion that these new nonlinear (nonclassical)
phenomena may become a novel versatile tool for nonlinear material characterization
and NDE, with a much broader area of applications than its classical predecessor. The
latter fact is, mainly, due to the following circumstances. The stiffness of classical ma-
terials can be considered as a locally quasilinear characteristic because even for high
acoustic strains ≈ 10−4 the contribution of nonlinear terms in the stiffness variation
with the acoustic strain is usually below 10−3. As a result, noticeable nonlinear ef-
fects are developed only because of the accumulation of the nonlinear response along
distance and classical materials are said to display a distributed nonlinearity.

On the contrary, the acoustic wave interaction with a weakly bonded area in a solid
is accompanied by a strong local stiffness variation: the stiffness of the interface (or
a crack) can be substantially greater for compression than for tensile stress which is
high enough to cause an intermittent contact between the crack surfaces.16 In this
case, the intact material outside the defect can be considered as a “linear carrier” of
the acoustic wave and one can consider the localized nonlinearity of the imperfect
solid. This nonclassical feature of CAN causes the effects of nonlinear reflection and
scattering by cracked defects8, 17 and enables 2-D-imaging of the nonlinear excita-
tions confined inside such defect areas.18 Thus, nonlinear NDE of imperfect materi-
als is inherently defect selective; that is, it distinctively responds to fractured flaws.
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Fortunately, this group of flaws includes the most malignant defects for material
strength: micro- and macrocracks, delaminations, debondings, impact and fatigue
damages, and so on, which are discussed within the scope of this chapter.

Another implication of the localized nature of CAN is concerned with instability
phenomena that can develop in the defect area.19 The lower stiffness of the cracked
area makes it behave as a localized oscillator which is, apparently, strongly nonlinear
due to CAN. Therefore, for an intense acoustic excitation it can manifest such effects as
subharmonic generation, instability, and transition to chaotic dynamics unconventional
for distributed nonlinearity of classical materials but known for nonlinear resonators.
As a result, the spectrum of local oscillations acquires a number of new nonlinear
components and thus demonstrates a substantial departure from the classical multi-
ple higher harmonic collection. Such nonclassical spectra open new opportunities for
nonlinear NDE.

The latter fact is emphasized in this chapter: the physical effects that lay the basis
for the emergence of nonclassical nonlinear spectra are considered through the prism
of NDE applications. The chapter is organized in two main parts. The nonresonant
manifestations of CAN are discussed in the first section, whereas the second one is
concerned with instability phenomena. Each section opens with a phenomenological
interpretation of nonlinear phenomena followed by case studies of nonlinear NDE
applications.

2. Nonlinear NDE Using Nonresonant Effects of Acoustic
Wave–Defect Interaction

2.1 Higher Harmonic Mode

If the amplitude of an acoustic wave exceeds the static stress of an originally closed
interface it causes vibrations of intermittent contact between the defect fragments:
clapping and/or rubbing of the microasperities provide a strongly nonlinear contact
dynamics.16 Clapping, apparently, results in asymmetrical modulation of the contact
stiffness: it is higher for compression (C) and lower for the contact extension (C−�C).
Such a bimodular behavior of a prestressed contact driven by a harmonic acoustic
strain ε(t) = ε0 cos νt is similar to a “mechanical diode” and results in a pulse-type
modulation of its stiffness �C(t). It also provides an unconventional nonlinear wave-
form distortion: a half-period rectified output instead of the sawtoothlike profile in
classical materials. Because �C(t) is a pulse-type periodic function of the driving fre-
quency ν, the spectrum of the stress induced in the damaged area (�C(t)·ε(t)) contains
a number of its higher harmonics nν (both odd and even orders) whose amplitudes are
modulated by the sinc-envelope function. The depth of stiffness modulation (�C/C)
can be as high as ∼1 (for weakly stressed contacts) thus providing a very efficient
ultraharmonic generation by clapping defects.8

The dynamics of the damaged area driven by shear traction results in friction-
controlled rubbing between its microcontacts.18 In this case, the stiffness modulation
is caused by the transition between stick and slide phases: higher contact stiffness pro-
vided by the static friction in the stick phase drops substantially as the contact surfaces
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Fig. 29.1. Linear (50 kHz) (a), second (b) and third harmonic (c) images of oval delamination area in glass
fiber-reinforced composite (GFRP).

start sliding. Such an abrupt transition, obviously, takes place whenever the harmonic
driving force recovers from zero, that is, twice for the period of acoustic excitation
(symmetric stiffness modulation). Therefore, the contact stiffness modulation �C(t)
is a 2ν-pulse-type function that comprises its higher harmonics 2nν. As a result, the
spectrum of nonlinear shear vibrations of the defect (�C(t) · ε(t)) contains a number
of odd harmonics of the driving frequency.

Apparently, the variety of the higher harmonic spectra in realistic materials is not
confined to the two basic nonlinear responses shown above to be characteristic of
the intermittent contacts. However, as shown below, a prevalence of any of the two
mechanisms in the measured nonlinear response for a given acoustic excitation may
cast light on the structure of the material and the type of defects it contains.

The experimental methodology used for the higher harmonic mode of nonlinear
NDE includes an intense CW acoustic excitation in the kHz-frequency range combined
with a fast and remote scanning laser vibrometry.18 After a 2-D-scan and FFT of the
signal received, the C-scan images of the sample area are obtained for any spectral line
within the frequency bandwidth of 1 MHz.

Figures 29.1a–c show experimental imaging results for an oval delamination on top
of a piezoactuator embedded into a glass fiber-reinforced composite (GFRP). The
nonlinear images (Figures 29.1b,c) selectively reveal the boundary ring of the delami-
nation where clapping and rubbing of the contact surfaces are, apparently, expected.
Because the harmonics are generated locally within this area one would anticipate the
source of nonlinearity to be primarily seen in the nonlinear vibration pattern. On the
contrary, the driving frequency (50 kHz) image indicates a standing wave pattern over
the whole area of the actuator. The strong localization of the nonlinear images is also
facilitated by energy trapping for the higher harmonics generated inside the delami-
nation area whose stiffness is substantially lower than that of the surrounding intact
material.

The mechanism of friction nonlinearity was found to prevail in wood which is a
natural fiber-reinforced composite.20 In intact wood, the nonlinear spectrum averaged
over the specimen surface exhibits an evident odd harmonic domination (see Fig-
ure 19.10, Chapter 19). However, due to the strong material inhomogeneity caused
by the annual rings, a local nonlinear response of wood is also expected to be spatially
inhomogeneous with a maximum nonlinear output in areas of the highest compliancy
where peak strains are developed. A typical higher harmonic C-scan of the LR-plane
(cut along the trunk) of a spruce specimen is shown in Figure 29.2. One can see the
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Fig. 29.2. Third harmonic C-scan of the LR-plate of spruce. Crests positions coincide with late-
wood/earlywood interface.

wavy distribution of local nonlinearity in the radial direction with maxima located in
the earlywood area close to the latewood/earlywood transition interface. Therefore,
the local nonlinear response indicates that the most load-vulnerable part of wood is
formed early in the growing season when the thin-walled earlywood cells appear.

Because odd harmonic domination is a characteristic of intact wood, any deviation
from such a model spectrum may indicate the presence of clapping defects responsible
for even harmonic generation. Thus, the even harmonic distribution over the specimen
enables us to localize and image the defects. Such “clapping-selective” imaging is
shown in Figure 29.3 for simulated delaminations between a decorative oak veneer
lamina and a particleboard substrate (12 × 6.5 × 1 cm). The delamination pattern was
formed by ∼= 1.5 cm wide periodic strips of unglued veneer areas. In Figure 29.3,
the strips of the delaminated areas are clearly indicated by a sharp local increase in
the fourth harmonic amplitude (dark strips) due to the clapping mechanism. It is worth
noting that the alternative NDE technique of particleboard composites with air-coupled
ultrasound normally fails due to the high damping for a thick specimen, whereas the
nonlinear response is virtually independent of the specimen thickness.

2.2 Wave Modulation Mode

The stiffness modulation of a weakly bonded contact subjected to a two-wave acoustic
excitation leads to an efficient mixing of the driving frequencies. The magnitudes of
the modulation sidelobes are indicators of nonlinearity of the defect and were used for
qualitative NDE of cracked flaws in metal parts, concrete, and composites.21

The flexibility and application area of the wave modulation technique can be ex-
panded by combining the high sensitivity of the nonlinear approach with the benefits of
noncontact ultrasonic excitation in a new air-coupled nonlinear modulation version.22
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Fig. 29.3. Fourth-harmonic image of periodic delaminations between oak veneer lamina and particleboard
plate. The specimen length is 12 cm.

It is based on the transmission of small-amplitude air-coupled ultrasound (frequency
ω) through a cracked defect area in a sample subjected to low-frequency (LF) vibra-
tions (Ω). The transmission coefficient T depends on the gap between the crack edges
and can be assumed to be constant only for an infinitesimally small amplitude of LF
vibrations (linear transmission mode): Vout (t) = T × Vin(ωt). Otherwise, the open
crack gap changes harmonically, first, and T (t) → (T0 + T∼(Ωt)) causing linear
modulation of the output signal: Vout (t) = (T0 + T∼(Ωt)) × Vin(ωt). In addition to
the probing wave of frequency ω, the spectrum acquires combination frequency com-
ponents (ω ± Ω) whose relative amplitudes are proportional to (T∼/T0). A further
increase in the pump amplitude causes clapping of the crack edges and results in a
pulse-type modulation of the crack gap. Such a crack works as a modulator with a
nonlinear transmission coefficient T (t) → (T0 + ∑

Tn(nΩt)) and provides multiple
sidebands around the fundamental frequency (nonlinear modulation).

Experimental evidence for the air-coupled modulation is shown in Figure 29.4. In
the experiment, a focused beam of air-coupled ultrasound (frequency ≈ 452 kHz) is
transmitted through an open surface cutting crack in a polymer specimen subject to
a low-frequency (1 – 2 kHz) vibration. For an ultrasonic beam incident normally to
the specimen surface, the transmission coefficient T0 was relatively high, so that the
modulation spectrum displays the complete multiple sideband pattern (Figure 29.4).

The air-coupled modulation develops locally within the cracked area and there-
fore can be used for locating and imaging defects. Scanning of a sample area with
receiver tuned to a sidelobe frequency delivers information solely on the nonlinear
cracked defects. The results, confirming the feasibility of defect-selective NDE in the
wave modulation mode, are shown in Figures 29.5a–b for transmission through both
a linear (a drop of water) and nonlinear (a crack) defect. The linear transmission im-
age (Figure 29.5a) clearly reproduces both defects with a comparable negative con-
trast (�V/V ≈ −0.6) as one would expect due to wave damping and scattering.
On the contrary, the sideband B-scans exhibit a strong rise in the nonlinear output
(�V/V ≈ 20) in the crack area with zero contrast for the linear defect (Figure 29.5b).
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Fig. 29.4. Nonlinear modulation spectrum of air-coupled ultrasound: fundamental frequency is 452 kHz;
modulation frequency ≈1.7 kHz.

(a)

(b)

Fig. 29.5. Defect selective imaging with air-coupled ultrasound: fundamental frequency (a) and wave mod-
ulation (b) B-scans of the area with linear (drop of water, left) and nonlinear (crack, right) defects.

3. Nonlinear NDE Using Instability Modes

3.1 Subharmonics, Frequency Pairs and Self-Modulation

The higher harmonic and wave modulation modes do not require a frequency response
of the defect to be taken into account. Some different scenarios of nonlinear dynamics
of cracked defects that expand considerably nonclassical spectra are revealed in exper-
iments19, 23 and are interpreted on the basis of nonlinear resonance. These scenarios
exhibit forms of dynamic instability, that is, an abrupt change of the output for a slight
variation of the input parameters.

To illustrate the feasibility of the new nonlinear vibration modes and ascertain their
basic spectral patterns, we assume that the damaged area exhibits both resonance and
nonlinear properties and can be identified as a nonlinear oscillator with s degrees of
freedom.19 The set of the s equations of motion for the oscillator driven by an external
acoustic excitation in normal coordinates (Qα) with quadratic nonlinearity approxi-
mation takes the form:24

Q̈α + ω2
α Qα = fα(t) + F N L

α , (29.1)

where α = 1, 2, . . ., s, ωα− are the normal frequencies, and the nonlinear forces in the
right-hand side are the quadratic forms of the normal velocities and accelerations.

In the first approximation of the perturbation theory: Qα = Q(1)
α + Q(2)

α + . . . ,
we set F N L

α = 0 and for the harmonic excitation fα(t) = f0 cos νt . The solution to
Eq. (29.1) then describes the independent oscillations in normal coordinates: Q(1)

α =
Aα cos ωαt + Bα cos νt , where Aα, Bα are constants and the phase factors are omitted.
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The second-order equations Q̈(2)
α + ω2

α Q(2)
α = F N L

α (Q(1)) take into account all
self- and cross-interactions between the oscillations of normal and driven frequen-
cies; by substituting the expression for Q(1)

α we obtain for the nonlinear force: F N L
α ∼∑

βγ (Aβ cos ωβ t + Bβ cos νt)(Aγ cos ωγ t + Bγ cos νt). Besides the second harmon-
ics 2ωβ,γ , 2ν, and DC-terms, this formula includes the following combination fre-

quency components:
∑

βγ [F (2)
βγ cos(ωβ ± ωγ ) + F (2)

νβ cos(ν ± ωβ)]. It can be easily

shown that the last term will cause a resonance increase in Q(2)
α due to the external

excitation if its frequency satisfies the condition ν ± ωβ ≈ ωα , whereas a similar res-

onance behavior of Q(2)
β is obviously achieved when ν ± ωα ≈ ωβ . Thus, the driving

force provides a simultaneous resonance growth of the amplitudes for the pair of nor-
mal modes whose frequencies satisfy the condition:

ωα + ωβ ≈ ν. (29.2)

Equation (29.2) shows that the nonlinear resonance results in the decay of the exter-
nal acoustic excitation into a pair of low-frequency modes of a nonlinear oscillator
(phonon decay into a combination frequency pair). This process displays the well-
known properties of nonlinear resonance:24 first, the exact values of ωα,β are functions
of the driving amplitude so that Eq. (29.2) is an exact equality. Second, the resonance
growth of the modes is possible only if the input excitation exceeds a certain thresh-
old and is then affected by the amplitude and frequency instability and hysteresis. The
resonance instability manifests in the avalanchelike amplitude growth of the nonlinear
products beyond the input threshold. The reverse excursion of the driving amplitude
results in bistability: the input amplitudes for the stepwise up and down transitions
are different (amplitude hysteresis). Such a dynamics is totally different from the clas-
sical powerlaw dependences and is a distinctive signature of the nonlinear acoustic
phenomena associated to nonlinear resonance.

It is worth noting that the particular case of Eq. (29.2) when ωα = ωβ = ω and
hence ν ≈ 2ω corresponds to the subharmonic or the main parametric resonance.
Thorough studies of the latter based on Hill’s and Mathieu’s equations25, 26 show a
similar dynamic behavior (threshold, instability, hysteresis, etc.) for the subharmon-
ics and frequency pairs27 which, in light of the above, is not surprising because both
phenomena stem from the family of nonlinear resonance effects. Instructively, both nu-
merical calculations28 and experimental simulations9 demonstrate substantial broad-
ening of the frequency bands where parametric resonances are observed as the input
amplitude increases. Therefore, at high levels of acoustic excitation of the damaged
area with a set of ωα one can expect both subharmonics and frequency pairs to be
generated virtually independently of the input frequency.

The resonance increase of the spectral components of combination frequency re-
quires us to take into account the higher-order nonlinear terms in the driving force.
It opens an opportunity for the combination-type resonance with a larger number of
normal modes and also expands the nonlinear spectrum due to the interplay between
existing resonant excitations ωα,β and ν from Eq. (29.2). In the latter case, after
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Fig. 29.6. Section of ultrasubharmonic and ultrafrequency pair spectrum calculated from Eq. (29.3): ν =
20 kHz; ωα = 9 kHz; ωβ = 11 kHz; N= 8.

accounting for the N th-order terms, the spectrum includes the following frequency
components,

F N L(ω) ∼
∑

m,n,p

Fmnp(nν + mωα + pωβ), (29.3)

where m + n + p = N − 1.
Besides the ultraharmonics nν, the nonlinear spectrum in Eq. (29.3) comprises the

ultrafrequency pairs (UFP) (nν + mωα + pωβ) and (nν + pωα + mωβ). They are
separated by |m − p| � (� = ωβ − ωα), centered around [nν + (m + p)ν/2] and
structured into two series:

1. A set centered around the ultrasubharmonics (USB) (2a + 1)ν/2: in this case,
m + p = 2a + 1 is odd as well as m − p = [2(a − p) + 1]. Thus, the first UFP
components of the set are shifted by ±�/2 with respect to the USB. If ωα = ωβ ,
then the spectrum contains only the higher harmonics (nν) and USB (2a +1)ν/2.

2. A set centered around integer multiples of ν. In this case, m + p = 2b is even as
well as (m − p) and the UFP series starts at ±� from the harmonics.

These features of the nonlinear spectrum are shown in Figure 29.6 where the results
of calculations based on Eq. (29.3) are given for the normalized amplitudes Fmnp =
1 and N = 8. The symmetrical positions of the UFP-side lobes around the higher
harmonics and USB will result in an amplitude modulation of the nonlinear spectral
components (see next section). Such a modulation is induced by nonlinear resonance
in a multidegree-of-freedom system and, unlike the external wave modulation is called
self-modulation.23
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3.2 Nonclassical Spectra of Instability Modes

To substantiate the basic assumptions of the nonlinear resonance model and elucidate
dynamical characteristics of the USB and UFP we studied experimentally the spectral
responses of various fractured defects to a wide range of acoustic excitations beyond
the threshold of instability.

Figures 29.1a–c demonstrate the nonlinear frequency responses of a crack in a 1-
mm-thick polystyrene plate (commercial CD-case) measured in a sweep mode of the
driving frequency ν. As ν decreases, successive resonance excitation of the subhar-
monics is observed for two normal modes ω1 ≈ 900 Hz and ω2 ≈ 1100 Hz when
ν = 2ω1, 2ω2, respectively (Figures 29.7a,c). When ν ∼= ω1 + ω2 ∼= 2000 Hz (Fig-
ure 29.7b), the sum-frequency resonance activates both normal modes simultaneously:
the frequency pair (ω1, ω2) is excited along with the UFP (� ≈ 200 Hz) due to the
higher-order contact nonlinearity.

The dynamic properties of the nonlinear resonance modes are illustrated in Fig-
ures 29.8 and 29.9. Figure 29.8 shows the amplitude of 3ω/2-subharmonic wave
generated in the reflection of 30-MHz acoustic waves from a crack in LiNbO3 crys-
tal,23 as a function of the input voltage. One can clearly see the steplike thresholds
((VI N )1 ≥ 3V ; (VI N )2 ≥ 4V ) followed by the stable plateaus. The sharp amplitude
increase at the thresholds confirms a transition into the instability region where an
avalanchelike development of nonlinear oscillations takes place. The hysteresis of the
curves in Figure 29.8 is evidence of bistability in the crack signature.

The experiments also reveal the staircase-like structure of the thresholds, shown in
Figure 29.8, as functions of the driving amplitude. Such a structure is a possible indi-
cation of the successive excitation of the nonlinear oscillators associated with different
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Fig. 29.7. Subharmonic (a, c) and UFP - (b) frequency responses of a crack in a sweep mode of driving
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Fig. 29.9. Threshold decay of a subharmonic into ultra-frequency pairs in a delamination area of C/C-SiC-
composite driven with 20 kHz acoustic excitation.

parts of the crack. Such a dynamics is consistent with the broadening of the frequency
zones for the parametric resonance described above.

Figure 29.9 provides direct evidence of the spectral transformations beyond the sub-
harmonic instability threshold for a delamination area in a C/C–SiC composite. As
the driving amplitude of the 20-kHz excitation exceeds the threshold for the subhar-
monic mode (≈0.5 µm in Figure 29.9), another instability threshold gives rise to an
avalanchelike energy decay into the UFP-components (at ≈ 1 µm drive). The oscillo-
scope insert in Figure 29.9 illustrates the self-modulation of the output signal observed
in the damaged area. A further increase of the input results in widening of the UFP-
lines into quasicontinuous frequency bands which are the forerunners of the transition
to chaos.

The experimental results on the frequency and dynamic nonlinear responses of the
fractured flaws are summarized schematically in Figure 29.10 for a defect represented
by a pair of coupled oscillators (normal frequencies ω1 and ω2). At low amplitude
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Fig. 29.10. Schematic diagram of frequency and amplitude nonlinear responses for a cracked defect con-
ceived as a pair of coupled nonlinear oscillators.

(VI N ) of the driving excitation (frequency ν), the nonlinear spectrum follows the non-
resonant scenario of Section 2 and comprises the higher harmonic (HH) and the wave
modulation (WM) frequency components. As the input amplitude exceeds the thresh-
old value, resonance instability generally results in the activation of the ultrasubhar-
monic components first. The threshold amplitude depends on the driving frequency: a
minimal threshold requires frequency matching to the main subharmonic (parametric)
resonance (ν = 2ω). The frequency zones observed for the USB expand readily as the
excitation increases. It is worth noting that the higher-order fractional subharmonics
can also be involved for ν = nω but with higher threshold values. Further increase
of acoustic excitation above a given threshold gives rise to the ultrafrequency pairs
accompanied by self-modulation. A direct transition from the nonresonance modes
to UFP-instability is feasible when the sum–frequency resonance matching condi-
tions are satisfied. Finally, temporal instability is developed and the self-modulation
leads to chaotic beats and the quasicontinuous spectrum typical of noiselike excitations
builds up.

3.3 Nonlinear NDE Using Subharmonic and Self-Modulation Spectra

In the previous section we have shown that the input acoustic power for the USB- and
UFP-modes is basically about the same as that for regular nonlinear acoustic exper-
iments. In practical terms, this requires an acoustic intensity of a few W/cm2 in the
high-MHz-frequency range and the driving amplitudes of µm-scale in the low-kHz
range. A dramatic increase of the instability modes beyond the threshold, as a rule,
leads to distinctive nonlinear spectra with multiple USB- and UFP-components which
can provide abundant information on material properties and defects. A few examples
of nonlinear NDE using these modes are given below to demonstrate their applicability
and superior performance in the cases where the data obtained by nonresonant modes
are insufficient.

As discussed above, because the subharmonic mode results from nonlinear reso-
nance in acoustic wave–defect interaction, it may be sensitive to the input frequency,
whereas the higher harmonics are normally invariant. This can lay the basis for a
frequency-selective nonlinear NDE: for a given driving frequency only “resonant”
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Fig. 29.11. Selective nonlinear NDE of an edge delamination (left) and a thermal damage (right) in CFRP-
foam laminate: 4th harmonic (80 kHz) image (top); 11th subharmonic (110 kHz) image (bottom).
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Fig. 29.12. Ultra-subharmonic (70 kHz) imaging of fatigue crack driven by 20 kHz input.

defects can be discerned in the subharmonic mode. Such a case is illustrated in
Figure 29.11 for the multi-ply plate of carbon fiber-reinforced composite (CFRP) with
two artificial defects, that is, edge delimination (left) and thermal impact (right). Both
defects are detected in the higher harmonic mode (top) but the ultrasubharmonics are
sensitive only to the resonance impact area (bottom).

Fatigue loads in metals (rotors, turbines, etc.) cause minute cracks of micrometer
scale which gradually develop into major cracking and initiate an abrupt material
fracture. The linear ultrasound is virtually unable to detect the fatigued crack at the
early stage of its development. Examples of nonlinear imaging of fatigue induced mi-
croflaws and degradation of metal microstructure using the self-modulation and sub-
harmonic modes are given in Figure 29.12, which shows fatigue cracking produced
by cyclic loading in Ni-base super-alloys. Such a crack of less than 2 mm length, with
average distance between the edges of only ≈ 5 µm, is clearly detected in the ultra-
subharmonic (7ν/2) image, whereas traditional linear NDE by using slanted ultrasonic
reflection failed to work with such small cracks.

Fiber-reinforced composites constitute a class of hi-tech engineering materials
whose application area is rapidly expanding in the aerospace and automotive industries.
Fiber–metal laminates are new materials with excellent tolerance to impact, corrosion,
and lightning stroke, low flammability, and low weight. The example in Figure 29.13
displays such an advanced material for aircraft industry: glass fiber-reinforced
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Fig. 29.13. Subharmonic images of simulated delaminations in a Glare R© sample.
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Fig. 29.14. UFP-spectrum in an impact damaged area of GFR-composite: ν =20 kHz; � ≈1.2 kHz.

aluminum laminate (Glare R©). More specifically, it shows the ultrasubharmonic im-
ages of a Glare plate with two inserted circular Teflon foils to simulate local debond-
ing. In the image, the defect can be recognized fairly well, and the quality is enhanced
by the higher numbers of ultrasubharmonics. We believe that the latter is associated
with the peculiar distribution of subharmonics over the delamination area and stronger
acoustic dissipation outside the defect at higher frequencies.

Mechanical impacts in multi-ply composites produce a fracture that is a com-
bination of matrix–fiber debonding, cracking, and delaminations. Such a combina-
tion of fractured defects makes the impact area strongly nonlinear and, normally, all
nonlinear modes can be traced in the spectra observed. Figure 29.14 shows a section
of the nonlinear spectrum measured in a 14-ply epoxy-based glass-fiber-reinforced
composite (GFRP) with a 9.5 J impact damage for a 20-kHz excitation beyond the
UFP-threshold. One can clearly identify the position of the higher harmonics, ultra-
subharmonics, and ultrafrequency pairs (� ∼= 1.2 kHz). The low amplitudes of the
USB-components are due to their decay into the UFP above the threshold. It is worth
noticing the striking similarity between the experimental spectrum in Figure 29.14 and
the one calculated on the basis of Eq. (29.3) (Section 3.1, Figure 29.6), which substan-
tiates the validity of the nonlinear resonance model developed above.

Similarly to all the nonlinear modes discussed, the frequency pair components gen-
erally display a strong spatial localization around the defects and are applicable for the
detection of damage. The benefit of the UFP-mode is illustrated in Figures 29.15a–c
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Fig. 29.15. Self-modulation imaging of the impact damaged area in the GFRP-composite: a) linear image
(20 kHz); b) 4th harmonic image; c) image at the UFP-side-lobe around 10th harmonic (198.8 kHz).

for the GFRP-sample with the impact damage discussed above. The linear image taken
at the driving frequency of 20 kHz reveals only a developed standing wave pattern over
the whole sample (Figure 29.15a). The higher harmonic image is also corrupted by the
standing wave pattern (b), whereas the image at the first UFP sidelobe of the tenth
harmonic of the driving frequency (198.8 kHz) yields a very clear indication of the
damaged area (Figure 29.15c).

4. Use of Nonlinear Spectra to Improve NDE Performance

The amplitude and the number of higher-order components in nonlinear spectra indi-
cate the presence of fractured defects in the specimen. A simple and fast qualitative
NDE of specimen integrity can be implemented on the basis of the “strength-and-
width” of its nonlinear spectrum and used as a pass–fail test. A quantified version of
such an algorithm, based on normalization of the higher harmonic and wave modula-
tion spectra, was developed for quality assessment of thin-film coatings on compos-
ites.29 The scanning approach described in this chapter enables precise measurement
of the local vibration spectra and defects localization by applying a similar “strength-
and-width” criterion to these local nonlinear spectra. In order to proceed with nonlinear
imaging, a particular spectral line is chosen and the 2-D distribution of this frequency
component calculated. The image obtained is only one of the many images intrinsic
to the diverse nonclassical spectra shown in the preceding sections. Disregarding the
spectral information provided by the other nonlinear modes reduces the reliability of
nonlinear NDE and its efficiency in defect recognition and imaging. A straightforward
approach based on a computer algorithm for defect identification and a tool for im-
age processing are suggested below and applied to the problem of a comprehensive
analysis of the nonlinear spectra.

4.1 Automated Identification of Defects

The feasibility of multifrequency recognition and imaging of defects by computer-
based spectral data processing is evaluated using as an example an artificial delamina-
tion (of unknown shape and location) in a Glare specimen, subject to a dual-frequency
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Fig. 29.16. Correlation spectra for two artificial reference images.

acoustic excitation at the 3.2 and 20 kHz frequencies. As expected, the output C-scan
spectrum of nonlinear vibrations, averaged over the area of the specimen, revealed a
number of ultraharmonics and combination frequency components. A routine analy-
sis would normally comprise both the selection of specific frequencies to be used for
computer imaging, and the analysis of obtained images by an operator for defects iden-
tification. Instead, a correlation approach can be applied for automated identification
of the defect shape and location. It basically compares the defect of unknown form and
position with a set of probing (reference) images. The latter can be generated as arbi-
trary point matrices or on the basis of some preliminary information about the defect.
The values of the correlation factors between the reference matrix images and those
obtained in the experiment enable us to identify the most probable shape and location
of the nonlinear defect.

In a computer experiment, several artificial reference image matrices were generated
and the correlation coefficient was calculated for the images obtained at each spectral
component of the nonlinear spectrum. The examples in Figures 29.16a,b show the
spectral distribution of the correlation factors calculated for the two reference matrices.
From Figure 29.16b it is evident that the majority of the experimental images are
similar to the second reference matrix, so that the shape of the nonlinear part of the
defect is close to the ring located around the center of the scanning area. To further
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specify the defect in more detail, the procedure can be iterated after introducing smaller
variations into the selected first-order reference image.

4.2 Image Quality Enhancement

As the shape and position of the defect are identified, one can proceed to improve
image quality. First, the nonlinear spectral components with the highest correlation
coefficients in Figure 29.16b are selected, so that the “raw” images of the delamina-
tion display all relevant features of the nonlinear response of the defect (Figure 29.17).
These images are then reconstructed to remove background noise and to enhance
contrast. The following image processing operations were applied for each pixel
(p) after normalizing the amplitude (A) distributions of the spectral components in
Figure 29.17.

First of all, amplitude averaging over the group of the n selected images could be
performed, calculating the amplitude of each pixel in the final image (B) as: Bp =∑

A(p)
n /n. As one would expect, averaging allows us to retain all relevant features in

the original images, but at the expense of some increase in the background contrast
outside the defect (Figure 29.18, left).

A straightforward way to improve the signal-to-noise ratio is to apply the multiply-
ing operation to each pixel so that: Bp = A(p)

1 · A(p)
2 · . . . · A(p)

n . This diminishes
dramatically the low-amplitude parts of the image while the high-amplitude areas stay

63.2 kHz 80 kHz 100 kHz60 kHz

Fig. 29.17. Images of an oval delamination for a group of nonlinear spectral components with maximum
correlation coefficient.

Fig. 29.18. Images of the oval delamination reconstructed by amplitude averaging (left), multiplying
(middle) and squaring-and-averaging (right) operations.
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basically unchanged. Figure 29.18 (middle) actually demonstrates substantial decrease
in the background noise and thus, an apparent improvement of overall contrast. How-
ever, it may generally result in some loss of detail in the reconstructed image.

On the contrary, the operation of squaring-and-averaging (Bp = ∑ [A(p)
n ]2/n) is

supposed to avoid such a destructive interference between the images, whereas the
squaring is expected to increase the contrast of each image which then is averaged
over the group. The results presented in Figure 29.18 (right) prove that a reasonably
high contrast can be combined with a detailed image of the defect.

It is worth mentioning that the approach discussed above suggests only one of the
opportunities in automated recognition and processing of the results of nonlinear NDE.
Other advanced approaches that take advantage of the abundant information in the
nonclassical spectra can be developed exploiting image analysis techniques presented
in the literature.30

5. Summary

The nonlinear interaction of an acoustic wave with fractured defects is determined by
nonlinear contact dynamics which strongly depends on the amplitude of the acoustic
wave. At moderate driving amplitude, the contact acoustic nonlinearity suggests a fully
deterministic scenario with higher harmonic generation and/or wave modulation. Un-
like their classical counterparts, these effects feature much higher efficiency, specific
dynamic characteristics, modulated spectra, and unconventional “rectified” waveform
distortion.

At a higher level of excitation, the contact vibrations acquire a dynamic instability
which is a forerunner of the transition to chaos. Such a dynamics is interpreted on
the basis of nonlinear resonance phenomena for a defect conceived as a set of coupled
oscillators. The nonlinear resonance is shown to result in the decay of external acoustic
excitation either into a pair of low-frequency modes (phonon decay into a combina-
tion frequency pair) or a subharmonic mode. For higher-order contact nonlinearity, the
nonlinear spectrum expands considerably to include the ultrasubharmonic and ultrafre-
quency pair (self-modulation) modes. Experiments show that even a moderate acoustic
excitation of realistic cracked defects gives rise to instability vibration modes, which
exhibit threshold behavior and distinctive hysteretic dynamics. Beyond the thresh-
old, the resonance instability activates the ultrasubharmonic spectral components first.
A further amplitude increase causes a threshold generation of ultrafrequency pairs
accompanied by self-modulation. Finally, temporal instability is developed and the
self-modulation leads to chaotic beats and the quasicontinuous spectrum typical of
noiselike excitations builds up. All the modes contributing to such nonclassical nonlin-
ear spectra display a high localization in the areas of nonlinear contacts and, thus, can
visualize readily various fractured defects in solids. Numerous case studies demon-
strate their applicability for nonlinear NDE and defect-selective imaging in various
materials. Particularly successful examples include hi-tech and constructional materi-
als: intact and damaged wood, impact damage and delaminations in fiber-reinforced
plastics, fatigue microcracking in metals, and delaminations in fiber-reinforced metal
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laminates. Multiple frequency components comprising nonclassical nonlinear spec-
tra in imperfect materials provide abundant information on properties and location
of defects. Computerized automatic defect identification and application of image
processing techniques enable a comprehensive analysis of the nonclassical spectra and
improve reliability and quality of nonlinear NDE.
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1. Introduction

Intrinsic material elastic nonlinearity is usually very small even for high values of the
acoustic strains: nonlinear effects are, indeed, quite negligible except for those tak-
ing place due to energy accumulation along the acoustic wave propagation distance.
Recently, from the macroscopic point of view, highly nonlinear elastic response has
been observed in the interaction between elastic waves and localized nonbonded con-
tacts (grains, delaminations, cracks) [1]: the asymmetry in the contact stiffness for
compressional and tensile stresses across the contact boundaries has been identified
as an important source of nonlinearity that gives rise, besides harmonic and subhar-
monic generation, to nonclassical nonlinear phenomena such as instability [1], hys-
teresis [2], self-modulation, and parametric resonance of the contact oscillations [3]
(see also Chapter 19, Part 2 of this book). These effects are being extensively used in
nonlinear nondestructive evaluation applications [4, 5] (see also Part 3 of this book).

Highly nonlinear oscillation effects have also been observed at a nanoscale level [6]
(see Chapter 5, Section 3), mainly due to the variation of a characteristic distance
between the tip of an atomic force microscope cantilever and the sample surface [7,8].

Although lattice anharmonicity in solids is generally small even at high values of
the elastic strains, nonlinear coupling among modes in a multimode resonant structure
can result in a rich variety of nonlinear phenomena. For example, it has been found
that, in weakly nonlinear resonant finite structures subjected to a simple harmonic ex-
citation at one of the normal modes (where there exists a special relationship between
the driving frequency and the frequency of two or more linear modes), the stationary
response may contain contributions in many modes of oscillation [9, 10]. Obviously,
in such a case, the nonlinearity is distributed all over the structure, but experimenting
on piezoelectric resonators some localized nonlinear mechanism has been found to
be present as well [11]. Moreover, experimental evidence has been given of extremely
low thresholds in subharmonic generation of ultrasonic waves in one-dimensional arti-
ficial piezoelectric plates with Cantor-like structure, as compared to the corresponding
homogeneous and periodic plates [12].
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In this chapter, a simple phenomenological theoretical model for subharmonic
threshold generation in a monodimensional finite structure is presented and some ex-
perimental results of subharmonic threshold generation in a piezoelectric resonator are
reported.

2. Theoretical Model for Subharmonic Generation

The phenomenon of subharmonic generation in a nonlinear oscillator is a threshold
phenomenon, which takes place at an unpredictable moment any time the driving force
exceeds a definite value, which is the threshold value. Successive evolution of subhar-
monic oscillations is a complex problem that may lead the system into chaotic dynam-
ics, then to the unpredictability of its final state, whereas the threshold value can be
easily evaluated and a brief account is given here, in order to model the behavior of
more complex finite structures.

Let us write the general nonlinear dynamical equation of a mass-spring type oscil-
lator as

mẍ + bẋ + kx = F cos ωt + βψ(x, ẋ), (30.1)

where m is the mass, b the viscoelastic coefficient, k the elastic force per unit displace-
ment, F the amplitude of the driving force at the angular frequency ω and ψ a generic
nonlinear function of the displacement x from the equilibrium position and of its time
derivative ẋ , and β the strength of the nonlinear interaction. For sufficiently small val-
ues of the driving force F , one may correctly suppose that the oscillation amplitude A
and the nonlinear parameter β are small enough for the second term on the right side
of Eq. (30.1) to be much smaller than the first one, so that one may firstly linearize the
equation by neglecting the nonlinear term and obtain

xlin = A cos(ωt + ϕ) (30.2)

with A and ϕ the proper values of amplitude and phase of the linear solution. By means
of an iterative procedure, then, one considers a correcting term ξ(t) = (x−xlin) � xlin

to be added to the linear solution (30.2), that solves the equation:

mξ̈ + bξ̇ + kξ = βψ(xlin, ẋlin). (30.3)

The driving term ψ may then be developed in its Fourier spectral components, with fre-
quencies multiple of the driving frequency f = ω/2π , which will generate harmonic
components in the system oscillations. In order to generate subharmonic oscillations
at frequencies f/n, with n integer, the system should start oscillating by itself at one
such frequency by a casual fluctuation ε(t), that will then be temporarily included in
the linear solution xlin , temporarily giving

xlin + ε(t) = xlin + ε0 cos(ωt/n). (30.4)

In such a case, the driving term in Eq. (30.3) takes the form
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βψ(xlin + ε, ẋlin + ε̇)

= β
[
ψ0 + ε0 cos(ωt/n)ψ1 + ε2

0 cos2(ωt/n)ψ2 + higher − order terms
]

(30.5)

whose spectral components contain terms of frequency fm,n = ω/2π(l + m/n) with
l, m, n positive or negative integers. In particular, for subharmonic generation of fre-
quency f/2, a component must be present in ε(t) at this frequency, such as to drive the
system at this very same frequency if n = 2 and l = 1, m = −1, or l = 2, m = −3,
and so on. Higher |m|-order terms, however, produce lower amplitudes of the driving
term, because |m|+ l is the number of interactions needed to produce that term, and ε0

is a small quantity. Therefore, when performing the harmonic balance of all the terms
in Eq. (30.3) at the circular frequency ω/2, one may correctly write

mε̈ + bε̇ + kε = βεψ11(xlin, ẋlin), (30.6)

where ψ11 is the ω/2π frequency term in the harmonic expansion of term ψ1. The
threshold condition for the amplitude value that would set the system into oscillation
at the first subharmonic frequency ω/4π will, then, be deduced from the equation:

ψ11 ≥
√

m2(ω2
0 − ω2/4)2 + b2ω2/4

β
(30.7)

with ω2
0 = k/m and will depend on the nonlinearity coefficient β as well as on the

specific form of the nonlinear function ψ(xlin, ẋlin). Equation (30.7) has been obtained
by solving Eq. (30.6) as if ε were a known perturbation term in the driving term βεψ11

and then by setting the condition that the solution be greater than the perturbing term,
thus producing a feedback ratio greater than one. In particular, if ψ(x, ẋ) = x2, we
have ψ11 = 2xlin , and the threshold condition becomes:

F ≥
√

m2(ω2
0 − ω2)2 + b2ω2

√
m2(ω2

0 − ω2/4)2 + b2ω2/4

2β
. (30.8)

We turn now to the nonlinear generation of subharmonic waves in a finite system
that is driven by an external force evenly distributed in the volume occupied by the
system; in particular, the case is analyzed of a monodimensional homogeneous struc-
ture, defined in the space 0 ≤ x ≤ L . The nonlinear wave equation in the general
displacement variable u versus space x and time t can be written as

cuxx = ρutt + but + βψ(u, ux ) + Q(x, t), (30.9)

where c is a proper elastic constant, ρ is the mass density per unit length, Q(x, t) is
the driving term, ψ(u, ux ) the general nonlinear term depending both from the dis-
placement u and its space derivative ux that replaces the previously defined function
ψ(x, ẋ), and finally, subscripts x and t stand for derivatives. As in the previous case
of the pointlike oscillator, we suppose that ulin(x, t) that solves the linear equation
Eq. (30.9) (β = 0), can be expanded in space harmonics as

ulin(x, t) =
∑

n

Un(t) sin n
π

L
x, (30.10)
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thus satisfying the boundary conditions ulin(0, t) = ulin(L , t) = 0. By introducing
solution (30.10) into the wave propagation Eq. (30.9), the time equation for each space
harmonic component Un(t) can be deduced and the solution subsequently obtained in
the same form as the pointlike oscillator.

In the case of a piezoelectric plate, driven via the electric field uniformly produced
within the entire structure by a sinusoidal voltage signal of amplitude Q0 and circular
frequency ω applied at its surfaces, and considering with no lack of generality just one
direction of propagation x , one may write for each space Fourier component of the
expansion (30.10):

Un(t) = p Q0(L/2nπ2)√
ρ2(ω2 − n2c/ρ)2 + b2ω2

cos(ωt + ϕ) for odd n

Un(t) = 0 for even n, (30.11)

p being a proper piezoelectric coefficient that couples the driving voltage to the stress
field in the plate, and ϕ the relative phase angle between the driving field and the strain
response of the structure at frequency ω.

We limit the discussion of the nonlinear generation in a finite structure to the case of
the first subharmonic mode of frequency ω/4π , assuming for this purpose that a small
perturbation is introduced into the system in the form:

ε(x, t) = E0 f (x) cos(ωt/2) (30.12)

with
f (x) =

∑

n

εn sin n
π

L
x . (30.13)

The system will then be temporarily subject to the oscillation

ulin(x, t) + E0 f (x) cos(ωt/2) (30.14)

and the driving term in Eq. (30.9) be given by

βψ(u + ε, ux + εx )

= β
[
ψ0 + E0 cos(ωt/2)ψ1 + E2

0 cos2(ωt/2)ψ2 + higher-order terms
]
. (30.15)

By balancing each spatial Fourier component, one will then obtain:

− cn2εn = ρεn,t t + bεn,t + βE0ψ11, (30.16)

where ψ11 is the ω/2π frequency term in the harmonic expansion of term ψ1. The
threshold condition for the amplitude value that would set the system into oscillation
at the first subharmonic frequency ω/4π will, then, be deduced from the equation:

ψ11 ≥
√

(cn2 − ρω2/4) + b2ω2/4

β
. (30.17)

The specific value of the ψ11 function and of the threshold value, therefore, obviously
depend upon the media that are experimented on and validation of the model relies on
the specific structure where subharmonic modes are generated.
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3. Experimental Measurements

Some experimental features of the nonlinear effects due to subharmonic generation
that may take place in a simple finite resonant structure such as a piezoelectric res-
onator are presented.

The phenomenological model previously described states that a threshold condition
must exist for the vibration amplitude, and therefore for the amplitude of the driving
force, at frequency ω/2π for setting the system into oscillation at the first subhar-
monic frequency ω/4π . Figure 30.1 reports the amplitude of the first subharmonic at
frequency ω/4π as a function of the applied voltage for a PZT piezoelectric hollow
tube with wall Al electrodes, electrically excited at the thickness (radial) resonance
(ω/2π = 634 kHz). When increasing the driving voltage V0 from low values, a sudden
generation of the subharmonic (threshold) takes place at V0 = 33 V: from this level
onward, the subharmonic amplitude also increases with the applied voltage. The sub-
harmonic threshold exhibits a hysteretic behavior: when decreasing the driving volt-
age, the amplitude of the subharmonic undergoes a drastic drop at V0 = 22.5 V. Hys-
teretic phenomena are typical of systems exhibiting parametric resonance [13]. This
confirmed by observing the displacement frequency spectra, reported in Figure 30.2,
measured in the same sample for increasing values of the applied voltage: the displace-
ment here has been optically measured (the experimental set-up has been described
in [14]). The generation of the subharmonic oscillation at a frequency ω/4π is quite
abrupt when the excitation exceeds the threshold: see Figures 30.2a,b below and above
the threshold, respectively. More interestingly, as can be seen from Figures 30.2c and
d, when increasing the applied voltage, the subharmonic is accompanied by frequency
pairs: 282–352 kHz (Figure 30.2c), 228–406 kHz and 178–456 kHz (Figure 30.2d).
The frequencies of the pair are a function of the applied voltage and their sum is equal
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Fig. 30.1. Amplitude of the ω/4π frequency subharmonic oscillation versus the driving voltage: closed
and open circles are for increasing and decreasing values of the applied voltage, respectively.
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Fig. 30.2. Displacement frequency spectra for a PZT piezoelectric hollow tube electrically forced at the
thickness resonance equal to 634 kHz; figures are for increasing values of the magnitude of the applied
voltage V0.

to the excitation frequency. This is a clear indication that a self-modulation oscillation
is taking place in such a multimode structure.

4. Conclusions

A simplified theoretical model for subharmonic generation in a finite structure has been
described: starting from a general nonlinear dynamical equation of a mass-spring type
oscillator, the model then deals with the nonlinear generation of subharmonic waves
in a finite system driven by an external periodic force. Experimental measurements of
a subharmonic threshold in a piezoelectric resonator have also been reported.
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Abstract
This chapter presents an overview of the typical failure scenarios suffered by aircraft structures.
In particular, failure modes of composite and metal structures are presented. A description of
general nondestructive techniques (NDT) used in the aircraft industry is also reported. Par-
ticular attention is devoted to wave propagation methods based on linear elastic waves. The
limitations of currently used NDT methods, based on linear elastic wave propagation meth-
ods are described, showing the need to develop more robust damage detection methods for the
implementation in a reliable aircraft structural health monitoring system.

Keywords: Corrosion, delamination, fatigue, lamb waves

1. Introduction

The history of aircraft has suffered several accidents due to structural and material fail-
ures, which have strongly influenced authority certification and policies. For aircraft
structures, where safety is the main issue, to prevent catastrophes it is vital to have
rapid estimation of the health of the load-bearing structures. The potential increase of
structural failure scenarios in existing and future aircraft structures has added a greater
degree of urgency to the ongoing need for reliable and efficient nondestructive evalua-
tion (NDE) methods for detection and characterization of damage, flaws, and so on in
aircraft structures. Among the past and recent incidents that have strongly affected the
design and the maintenance procedures, two examples are reported.

In the late 1950s, fierce competition was taking place among Lockheed, Douglas,
and Boeing for the new “jet” aviation market. The Lockeed-188 was introduced into
service in September, 1958. The aircraft was faster on shorter routes than its competi-
tors the B-707 and DC-8. On September 29, 1959, near Buffalo, Texas, a L-188 while
cruising at 15,000 feet, lost its left wing causing 27 fatalities. On March 17, 1960, near
Cannelton, Indiana, another Lockeed-188 lost its left and right wings, with the loss of
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Fig. 31.1. (a) Number of fatal accidents per 100,000 flight hours; (b) Number of fatalities/survived persons.

63 persons. Both accidents involved wing separations during cruise. Initial attention of
investigators was focused on basic flutter characteristics. The subsequent tests showed
that the airplane satisfied the airworthiness requirements. After a detailed survey, it
was found that both aircraft had been involved in the “hard landing” events some-
time prior to accidents, and as a consequence damage was experienced by the engine
mounting system. The undamaged mount had a 6 Hz “whirl” mode natural frequency,
whereas after the damage, the natural frequencies were reduced to 3 cps. The wing
bending and torsional natural frequencies were respectively 3.5 and 2 Hz, therefore
vibratory coupling resulted and the aircraft engine/nacelle/wing developed oscillatory
divergent deflections when subjected to moderate turbulence during cruise. Substan-
tial wing modifications were required. After the accidents, changes to the airworthiness
requirements were made to include fail-safe structural requirements in order to avoid
aeroelastic instabilities.

Another striking incident occurred to a Boeing 737 of Aloha Airlines on April 28,
1988. The aircraft, while cruising at 8000 m, suffered extensive damage to the forward
fuselage losing a large part of the structure (Figure 31.1b). Only one human life was
lost, a stewardess sucked from the airplane. The plane subsequently made a safe emer-
gency landing. The cause of the accident was attributed to the presence of significant
corrosion, low lap joint strength and fatigue damage. The technique used to bond the
overlapping fuselage skins together was inadequate, and in conjunction with exfolia-
tion corrosion led to early debonding. As a result, many adjacent fastener holes started
to crack. This form of cracking, known as multiple site damage, caused widespread fa-
tigue damage (WFD). In these conditions, the aircraft fuselage structure was no longer
able to carry the required residual strength loads. The cause of the accident was at-
tributed to the failure of Aloha Airlines’ maintenance program to detect the presence
of structural damage. In the wake of the Aloha flight incident, the new requirements
set by the Federal Aviation Administration (FAA) state that airlines must include an
inspection requirement to detect exfoliation corrosion, low bond durability, and crack
damage in older aircraft.

These two examples of aircraft structure failures highlight the growing concern
about the need to increase the reliability, and therefore safety, of existing and future
aircraft structures.

Another growing concern is the fact that military and civil aircraft are being used
in service significantly longer than their original design life. This cost-driven trend is
subjecting the structures of these aircraft to conditions that are increasing the prob-
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ability of failure, particularly as a result of aging. Some aircraft models, which have
already endured a long service life, are being considered for more years of service.

The effort of the aviation industry to reduce the number of fatal accidents is achiev-
ing substantial results, as shown in Figure 31.1a, however, the number of fatalities
suffered is still a big unsolved problem for today’s commercial aviation (Figure 31.1b).

Moreover, the growing need to use new and more efficient materials on future air-
craft structures increases the need to develop methodologies to monitor and prevent
structural and material failure modes. It is particular important to emphasize that
although some well-established monitoring methodologies are available to monitor
known damage presence, location, magnitude, and type, there is the need to develop
methodologies capable of assessing unpredictable failure scenarios.

In light of these issues, this chapter presents an overview of the possible fail-
ure scenarios suffered by aircraft structures, NDT methodologies, and linear wave
propagation-based NDT methodologies. In particular, limitations and issues related
to current linear elastic wave propagation NDT techniques are presented highlighting
the need to develop more robust and reliable NDT based on nonlinear elastic wave
propagation NDT techniques.

1.1 Failure Scenarios

This section discusses some of the common failure modes suffered by aircraft struc-
tures. The majority of existing aircraft are mainly made of metal alloys; however, since
the early 1990s the use of fiber-reinforced polymer (FRP) composites for aircraft struc-
tural components has increased significantly, especially for secondary structures. A
review of common failure modes of metallic and composite structures is presented.

1.2 Metal Structures

A detailed summary of the frequency of failure modes [24] is presented in Table 31.1.
The table reveals that for aircraft metal structures, fatigue is the predominant failure
mode in service. The second more dangerous failure mode is corrosion. Although the
number of fatigue failures is higher than corrosion failures, the detection and repair of
corrosion damage on in-service aircraft requires more effort than the rectification of
fatigue cracking. The high occurrence of fatigue failure observed probably reflects the
destructive nature of this failure mode, whereas corrosive attack is generally slower
than fatigue, and usually more easily spotted and rectified during routine maintenance.

An overview of the two most common failure modes is discussed below.

Table 31.1. Frequency of failure modes in aircraft metallic structures [24]

Percentage of Failures

Fatigue 55
Corrosion 16
Overload 14
High temperature corrosion 2
SCC/Corrosion Fatigue/He 7
Wear/abrasion/erosion 6
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1.2.1 Fatigue of Metal Structures

Aircraft structural components can fail at stresses below the tensile strength of the
material if subjected to repeated or cyclic stresses. This phenomenon is called met-
als fatigue. A detailed survey of the number of failure and the common fatigue crack
initiation sites observed in aircraft and helicopters that have led to failures [27, 28] is
reported in Table 31.2. It shows that fatigue failures are strongly affected by the pres-
ence of discontinuities, flaws in aircraft structures, stress concentrations, and residual
stresses (welds). Material surface discontinuities, defects, or surface cracking can in-
crease the local stress, producing a concentration at these points that could initiate
fatigue much more quickly than would be expected. Stress concentrations caused by
surface defects such as scratches and wear tend to be more common as these may not
be present at build, but can be introduced during service. Another common cause of
stress concentration is corrosion, which can lead to fatigue crack initiation. In order
to reduce fatigue failure, aircraft structures are designed with a safe or inspection-free
life. Even if fatigue behavior of most metals and alloys is well understood, fatigue
failures still occur, indicating the complex nature of this phenomenon and the diffi-
culty in controlling the number of variables that affect fatigue. There are many factors
that influence fatigue, some of which are the mean stress, peak stress, frequency of
loading, temperature, environment, material microstructure, surface finish, and resid-
ual stresses. Many of these factors can be successfully taken into account when de-
termining the safe life of a component and, therefore, the majority of fatigue failures
in aircraft causing catastrophic failure tend to be those that initiate as the result of
unforeseen circumstances.

The fatigue failure of ductile materials is preceded by characteristic changes in the
material microstructure and occurs in a quasibrittle manner, that is, by crack propa-

Table 31.2. Summary of fatigue initiation location and number of failures in air vehicles [27, 28]

Number of Failures

Initiation Location Fixed Wing Rotary Wing
Bolt, stud or screw 108 32
Fastener hole or other hole 72 12
Fillet, radius or sharp notch 57 22
Weld 53 3
Corrosion 43 19
Thread (other than bolt or stud) 32 4
Manufacturing defect or tool mark 27 9
Scratch, nick or dent 26 2
Fretting 13 10
Surface or subsurface flaw 6 3
Improper heat treatment 4 2
Maintenance-induced crack 4
Work-hardened area 2
Wear 2 7
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Fig. 31.2. Fatigue crack in Aluminum AA 7075.

gation. Usually, the structures that fail by fatigue experience three different stages of
crack growth [24]:

• Initiation of a fatigue crack. This is strongly affected by the presence of resid-
ual stresses (i.e., welds etc.), and material flaws, and stress concentrations due to
external loads.

• Crack growth. There is progressive crack propagation under repeated loadings.

• Final sudden rupture. The component cannot withstand the applied loads when the
propagating crack reaches a critical size leading to sudden rupture, as shown in
Figure 31.2.

1.2.2 Corrosion

Corrosion is the chemical degradation of metals as a result of a reaction with the en-
vironment. This type of damage onsets mostly at discontinuities, such as a rivet hole,
where the protective surface treatment is particularly vulnerable. Failure occurs when
the decrease of the thickness is such that the structures cannot withstand in-service
loads or the corrosion makes the component susceptible to failure by some other mode
(e.g., fatigue).

The corrosion depends on many factors such as the environment, protective treat-
ments, and the inherent capacity of the materials themselves to resist corrosion. In
particular, the most common external causes of corrosion are due to water intrusion
into dry cavity areas or structural joints. This is generally caused by poor sealing
and/or failure of the interface layer that protects the mating surface, lack of adequate
drainage/ventilation, wearing of the protective coatings, contaminated fuels, and dis-
similar metal components. The most susceptible areas to corrosion on an aircraft are
fin skins/panels and leading edge areas, center fuselage tank rooms, air intake duct,
bottom skin, and wingbox.
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Fig. 31.3. Corrosion pitting and intergranualar cracks in Al 2024.

Detection of corrosion initiation is difficult and its effect increases in a nonlinear
manner with the age of the aircraft [6]. There are various forms of corrosion that exist,
each of which poses different problems to aircraft structures and are briefly discussed
below.

• Uniform corrosion is characterized by a uniform decrease of the thickness of the
structural component, usually without a localized attack.

• Pitting corrosion is a form of localized attack, causing localized perforation of the
material. It can cause failure by perforation with very little weight loss to the mater-
ial. The pitting corrosion damage area is usually very small and, therefore, difficult
to detect during routine inspection. Moreover, it can cause failure by perforation
with very little weight loss to the material. Under the presence of external mechan-
ical loads, the pitting points facilitate the propagation of intergranular cracks, as
shown in Figure 31.3. Extensive corrosion damage can also lead to exfoliation or
the loss of flakes of materials that separates from the ground material.

• Crevice corrosion is a form of localized corrosion, generated by localized changes
in the corrosive environment. Corrosion attack starts more easily in a narrow
crevice that contains a stagnant environment resulting in a difference in concen-
tration of the cathode reactant between the crevice region and the external surface
of the material. Crevices, such as those found at flange joints, threaded, or welded
connections are thus often the most critical sites for corrosion. A special form
of crevice corrosion is filiform corrosion, characterized by the fact that chemical
degradation of metals occurs under a protective film that has been breached. It usu-
ally occurs under painted or plated surfaces when moisture permeates the coating.

• Galvanic corrosion is due to the electric current flowing between two or more dis-
similar metals, immersed in a corrosive solution. This results in corrosion of the
less noble metal and protection of the more noble metal. Galvanic corrosion can
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Fig. 31.4. Matrix cracks and microdelamination in a CFRP composite.

be avoided by proper material selection and improved design of the connection
between dissimilar materials.

• Stress-corrosion cracking occurs when applied stresses, such as in-service or resid-
ual stresses, and corrosion combine to initiate and propagate a fracture. One of the
most common types is transgranular stress-corrosion cracking, SCC, that may de-
velop in concentrated chloride-containing environments.

• Intergranular corrosion is a localized form of corrosion that attacks along the grain
boundaries, keeping the bulk of the grains largely unaffected. This form of cor-
rosion can proceed undetected through the material and may deteriorate the me-
chanical properties of the metal and cause fracture without any visible exterior
signs of corrosion. A particular form of intergranular corrosion, called exfoliation
corrosion, is typical of high-strength aluminum alloys that have been extruded or
otherwise worked heavily. The damage often initiates at end grains encountered in
machined edges, holes, or grooves and can subsequently progress through an entire
section.

1.3 Composite Structures

Extensive efforts to identify the various modes of damage in composite materials have
been undertaken in recent years. The primary finding of most of these investigations is
that macroscopic fracture is usually preceded by an accumulation of the different types
of microscopic damage and occurred by the coalescence of this small-scale damage
into macroscopic cracks.

Macroscopic composite damage modes are usually divided in intraply and interply
(interlaminar) failure modes.

The intraply damage modes are associated with the reduction of stiffness and/or
strength of the single plies. The most common damage modes are matrix cracking or
crazing, fiber breaking and buckling, and the failure of the fiber–matrix interface (fiber
debonding). See Figure 31.4.

Damage progression in a ply will usually be initiated by matrix cracking due to ten-
sile stress transverse to the fiber orientation. Damage growth may also involve matrix
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Fig. 31.5. Interlaminar delamination in a CFRP laminate.

delamination

fiber breakage

Fig. 31.6. Failure of a CFRP laminate after bending fatigue test.

crushing due to transverse compression or fiber compressive failures due to longitu-
dinal compression. Fiber compressive failures can be initiated by the loss of matrix
stiffness. Fiber tensile failures may also occur but most composite structures are able
to withstand some amount of fiber tensile failures prior to structural fracture [29].

It is important to underline that a local material failure (intraply) in a composite
component will not usually mean immediate structural failure as is expected in metals
with low fracture toughness. This is due to their higher damage-tolerant characteris-
tics than homogeneous structures due to the inherent fail-safe characteristics (layered
material).

The local or global separation of plies of material (interply failure) in layered struc-
tures, commonly referred to as delamination (Figure 31.5), is one of the most common
failure modes suffered by aircraft structures. Laminated composites are especially sus-
ceptible to delamination owing to their weak transverse tensile and interlaminar shear
strengths as compared to their in-plane properties and may arise from a wide variety
of causes. Subsurface delaminations may be caused by accidental impacts by foreign
objects during maintenance, repair, and flight missions. For thin laminates, damage
usually occurs subsurface and is therefore not readily detected visually (this is known
as barely visible impact damage, BVID).
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Fig. 31.7. Adhesive failure of an aluminum bond.

Failure of composite structures is quite complex and usually it involves the concur-
rent action of several failure modes. An example of failure of a CFRP laminate under a
fatigue failure test is shown in Figure 31.6. Some of the intraply and interlaminar dam-
ages modes are clearly visible such as fiber breakage on the bottom layer and local and
widespread delamination.

In the case of sandwich structures, failure characteristics can be significantly dif-
ferent from conventional laminated structures, for example, skin–core debonding. The
integrity of an adhesive bond is related to the cohesive part of the bond (presence and
quality of an adhesive layer) and the adhesive part of the bond (quality of the inter-
face between the adhesive and the composite or metallic substrate). Failure of bonded
parts is usually related to the poor quality of the surface treatment at the production
phase or to oxidation processes coupled to the ingress of water at the adhesive/adherent
interface in service as shown in Figure 31.7.

Skin–core debonding also occurs under low-velocity impacts, where a permanent
indentation in the impacted facesheet accompanied with localized core crushing be-
neath and around the impact site is produced. The facing skin will typically rebound
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to some degree after the impact event, therefore, the profile of the residual facesheet
indentation does not necessarily correspond to that of the underlying crushed core. A
comprehensive review of recent investigations of the failure in sandwich structures is
given in Reference [30].

Due to the complex damage modes experienced by composite structures it is, there-
fore, important to have the capability to quantify damage initiation and damage propa-
gation, and to estimate the remaining reliable life. This can be achieved only by devel-
oping robust, reliable, and user-friendly NDT to be implemented in a structural health
monitoring system.

2. Nondestructive Testing (NDT) Techniques in Use in the
Aerospace Industry

NDT of aerospace structures is commonly used as a quality control tool after manufac-
turing and throughout the service life of the structure to check for structural integrity.
The number and frequency of inspections is a function of the part structural role and
of the sensitivity of the NDT technique itself. If visual inspection may be the most-
used inspection technique, it is limited to relatively large damage affecting the surface
aspect of a part and often needs to be completed with techniques that give information
on the integrity of the bulk of the material. The main techniques used in the aerospace
industry are described below.

• X-ray inspection: The technique is based on the use of a source generating X-rays
and a detector (film or digital detector). The technique is mainly used on metallic
and composite parts but can be applied on composite materials with the use of a
special contrast agent. Cracks and corrosion in metallic parts are the primary types
of defects inspected with X-rays.

• Ultrasonics and resonance-based techniques: Ultrasonic-based techniques are rou-
tinely used as quality control for manufacturing of composite parts and bonded
joints. Immersion or contact techniques are equally used in pulse–echo and trans-
mission configuration. The typical frequency range is 1 MHz to 10 MHz. Quality
control of composites with ultrasonics aims at the detection of potential delamina-
tion, debonding, porosity, and foreign objects such as plastic foils. Resonance tech-
niques are mainly used to investigate bonded structures such as sandwich material
(metal/honeycomb or composite honeycomb). The technique monitors variations
in the first thickness resonances of the material and detects the local thickness and
stiffness changes associated with disbond. Typical frequencies used with, for ex-
ample, the Fokker bond tester (resonance-based equipment developed by Fokker)
are from 50 kHz up to 300 kHz.

• Eddy current: EC is maybe the most commonly used technique for in-service
inspection as its main field of application is the detection of fatigue cracks and
corrosion in metallic structures. The technique is based on the monitoring of the
electromagnetic properties of metals through the generation and detection of in-
duced current at the near surface of the material. If EC aim at the same type of
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defect as X-ray, the technique focuses on portability and accessibility rather than
rationality for large-area inspection. Another common application is the characteri-
zation of heat damage in aluminum by measurement of the material’s conductivity.

• Liquid-penetrant and magnetic particle inspection: These two techniques are en-
hanced visual inspection based on the detection of surface breaking cracks and
corrosion pits. They are used as quality control after manufacturing and as inspec-
tion techniques under maintenance tear-downs.

• Shearography and thermography: These full-field techniques are currently pro-
gressing in the aerospace industry because of the potential of large-area inspec-
tion. Shearography is an optical technique detecting local variations of stiffness by
comparing the state of the surface before and after a slight loading of the structure
applied with heat or vacuum. The comparison is performed using optical interfer-
ometry. Thermography is based on a visualization of the heat transfer mechanism
in a structure that is exposed to a fast heat impulse. The techniques show good
sensitivity to delamination in composite and disbonds in metal structures.

The aerospace industry has at its disposition a large toolbox of techniques that are
used from the design phase, through manufacturing, to the in-service life of the aircraft.
As this description shows, these techniques are sensitive to well-defined discontinuities
in the material, that is, when the damage is already placed. The performance of inspec-
tion techniques, in term of sensitivity and threshold of detectability, play an indirect
but nevertheless important role for the development of optimized design strategies.
Traditional NDE techniques are generally not sufficiently sensitive to the presence and
development of domains of incipient and progressive damage. The development of
highly sensitive NDE techniques would improve not only the operational safety but
also allow the design of more optimized structures.

2.1 Dynamic-Based Damage Detection Methods

Damage detection methods can be classified in two different branches: vibration-based
methods and wave propagation methods.

The vibration-based approaches are based on the assumption that damage affects
global structural stiffness, damping, and mass properties and, therefore, structural
changes can be located by analyzing the changes of the dynamic properties such as
natural frequencies, mode shapes, and damping. A detailed overview of vibration-
based damage detection can be found in [3]. The main drawback of the vibration-based
methods is that they detect structural changes that mainly affect the global modes of
the structures. Moreover, they are based on the assumption that linear elastic structures
remain linear elastic after damage and their sensitivity to detect defects such as cracks
is very low.

The wave propagation-based methods detect structural damage by sending stress
waves in the structures and measuring the changes in the received signal relative to
the signal of the pristine structure [16, 17, 31, 32, 34]. A number of studies are under
investigation by mainly using Lamb waves to detect structural changes in aircraft struc-
tures. The methods have been demonstrated to be effective in detecting corrosion [1],
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cracks in metallic structures [21], joints adhesion [2], debonding [15], or delamination
in composites [18].

An overview of the Lamb wave-based methods, highlighting advantages and limita-
tion of the damage detection methods, is presented below.

3. Lamb Waves

Conventional aircraft NDT are usually ground-based methods and used during peri-
odic maintenance checks, whereas structural health monitoring continuously monitors
aircraft structures in situ during flight. Of the currently used structural flaws detec-
tion techniques that are contenders for implementation into an integrated structural
health-monitoring system, Lamb waves are one of the most promising techniques and
are currently subjects of strong interest in academic and commercial laboratories. The
major advantages for using Lamb waves are their capability of propagating a relatively
long distance in thin plates, ability to follow curvature and penetrate into hidden and/or
buried parts allowing detection of subsurface flaws, and wave structure dependence on
frequency and phase velocity [1,2]. Therefore, they are particularly suitable to inspect
large aircraft areas and parts where direct access is not possible. Large areas, enclosed
within a network of actuator sensors, can be inspected by analyzing the transmitted
and/or reflected wave after interacting with the structure parts at boundaries or discon-
tinuities. The presence and location of damage, flaws, and the like are usually identified
by comparing the response of the undamaged configuration with the response signal
of subsequent tests.

3.1 Lamb Waves for Damage Detection

Lamb waves are two-dimensional stress waves that can be generated in thin-walled
structures with free boundaries, where the thickness is only a few wavelengths of the
ultrasound wave. Lamb waves propagate through the entire thickness of a material in
a symmetrical or antisymmetrical number of modes depending on their displacement
pattern, as shown in Figure 31.8. The velocity of the wave propagation depends on the
density, material properties, thickness of the material, and the wave frequency. There
exist a finite number of modes that travel independently and satisfy the wave equation
and the boundary conditions. Particle displacements and stresses in the Lamb waves
occur throughout the thickness of the plate. Because Lamb waves produce stresses

Direction of propagation

Fig. 31.8. (a) Symmetrical; (b) anti-symmetrical mode.
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throughout the plate thickness the entire thickness of the plate is interrogated, therefore
they can be used to detect surface defects, and also internal defects.

Lamb waves can be generated by using various methods such as angled Perspex
wedge, piezoelectric patches, air-coupled ultrasonic transducers, interdigital transduc-
ers, laser generation methods, and others.

For the application of active health monitoring, it is of primary importance to un-
derstand the Lamb waves that could be generated in the structures under investigation.
An example of a typical dispersion curve of the first six Lamb modes propagating
along a composite plate length with constant thickness is shown in Figure 31.9. Each
curve represents a transient resonant mode with specific characteristics such as wave
structure and energy distribution. By controlling both frequency and phase velocity
different Lamb waves can be generated. However, for the creation of a robust damage
detection methodology it is fundamental to know the type and size of damage experi-
enced by the aircraft structure to be monitored, and it is important to identify and select
Lamb wave modes that are sensitive to the presence of the specific structural anom-
aly under investigation. For example, some Lamb wave modes are sensitive to internal
cracks, debonding, and delamination, whereas others are sensitive to corrosion, and
so on.

The knowledge of the sensitive mode to a specific type of damage can be acquired
by numerical technique [10,11] and/or by comparing the Lamb wave propagation phe-
nomena in the healthy and damaged structure [15]. Kundu et al. [11] have shown that
a detailed analysis of the stress distribution inside the plate is important to select the
Lamb mode to be used to detect a defect at a specific depth of the plate. By analyz-
ing the influence of the defect on a particular component of the stress component, the
Lamb wave mode with the highest stress component at the defect location should be
selected.

The propagation of Lamb waves, however, is complicated due to unique character-
istics such as dispersion and multimode and mode conversion [25].
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The dispersive nature of waves causes the different frequency components of the
Lamb waves to travel at different speeds, and the shape of the wavepacket to spread
spatially and temporally, as it propagates through solid media. This broadening dis-
tribution of wave energy causes a drop in signal amplitude. It is, therefore, important
to find a nondispersive point in such a way that dispersion between the transmitted
input and the received signal is minimal so that the interpretation of response signals
becomes easier because the difference between the input signal and the received signal
can be wrongly attributed to presence of damage. An example of nondispersive mode
points, are shown in Figure 31.9.

Moreover, although the input frequency should be high enough to make the wave-
length of the Lamb wave comparable to the scale of local damage, the driving fre-
quency also needs to be low so that higher modes are not excited (multimode excita-
tion). To achieve this either the phase velocity (or wavenumber) and frequency bands
of excitation must be chosen carefully to excite a single mode. A further reason for
selecting modes that are well isolated in the dispersion curves is that mode conver-
sion favors modes with similar phase velocity to that of the incident mode, and it is an
important issue in the wave propagation analysis of composite material structures [36].

Another possible cause of the distortion of the excitation signal is the mode conver-
sion that causes energy redistribution among multimodes. Mode conversion to other
modes within the bandwidth of the incident signal may occur by any interference or
discontinuity along the wave propagation and because the number of possible modes
increases with frequency, lower bands may be preferred. A detailed study of the im-
portance of single-mode operation possibility and the degree to which a mode can be
isolated during excitation can be found in Reference [35].

For practical damage detection applications, a less dispersive frequency region
should be selected so that the interpretation of response is clear and the frequency-
thickness values should be kept below the cut-off frequency of the A1 mode, where
only the first two fundamental modes, namely, the first symmetrical (S0) and antisym-
metrical (A0) propagation and modes, exist. Beyond this point, single-mode excitation
becomes more difficult due to the numerous modes that the structure supports at higher
frequencies.

Moreover, the A0 mode is particularly attractive in ultrasonic NDE applications
because of the associated predominance of out-of-plane displacements over in-plane
displacements, because it is generally easier to generate and detect out-of-plane dis-
placements with conventional ultrasonic transduction methods.

3.2 Failure Mode Detection Using Lamb Waves

The technology based on Lamb waves has been used to detect various types of damage
in aircraft structures. Below is a summary of most common failure modes identified
by Lamb wave technique are reported, which are discussed in detail in the next para-
graphs.
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Table 31.3. Most common failure modes identified by Lamb wave technique

Failure Type Mode Selected

Delamination [17–19] Antisymmetric mode A0
Fatigue crack [21–31] Symmetrical mode S0
Sandwich debonding [15] Antisymmetric mode A0
Hidden corrosion [33] Symmetrical mode S0
Joints, adhesive strengths [23] Antisymmetric mode A0

3.2.1 Delamination

To detect this type of damage in composite structures, the antisymmetric mode is
widely used due to its high sensitivity to delamination damage [16, 17]. Moreover,
compared to other Lamb wave modes, the A0 Lamb mode, for a given frequency, has
slower speed and smaller wavelength, therefore it possesses better resolution.

Preliminary investigation of this type of damage was presented by Guo and Cawley
[18]. Wang et al. [19] proposed an active diagnostic system to detect delamination by
analyzing the diffracted wave energy caused by the presence of the delamination.

3.2.2 Hidden Corrosion Detection

Detection of corrosion damage in aircraft structures is an ongoing NDT challenge. Be-
cause Lamb mode velocities are a function of the frequency–thickness product, any
structural or material changes such as corrosion/exfoliation or lack of adhesion be-
tween two layers will affect the propagating mode amplitude, velocity, and frequency
spectrum. By sending a stress wave through a corroded area, a relatively low transmit-
ted signal amplitude (Figure 31.10) will be recorded, whereas undamaged areas are
associated with high received signal amplitude.

This methodology can also be applied to inspect lap splice joints by analyzing the
low-amplitude signal when a nonperfect adhesion exists between the two bonded parts.
Otherwise, if there is no damage, the excited mode will leak into the second joint
producing relatively high-amplitude RF signal (Figure 31.10b).

3.2.3 Fatigue Crack Growth

The fundamental symmetric mode is currently used to detect surface crack growth
in metallic structures due to its high sensitivity to cracks in structures. As an aircraft

(b)(a)

Fig. 31.10. (a) Undamaged joint; b) damaged joint.
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structure undergoes increasing amounts of fatigue, an increasing number of cracks de-
velop. These cracks degrade the Young modulus. Therefore, the local material exhibits
a decrease in the velocity as the modulus degrades due to increasing fatigue. By moni-
toring the changes of velocity in various directions of wave propagations it is possible
to understand damage location and damage size.

Current studies show [21] the efficiency of this mode in detecting closed and open
cracks on an aluminum plate.

3.2.4 Joints and Adhesive Strength

Similar methodologies to the detection of corrosion can be applied to monitor the
strength of bonds between two or more structural components. The use of guided
wave inspection can give the possibility of maximizing the sensitivity to various types
of bond conditions by exciting the appropriate cross-sectional mode shapes through
selection of the corresponding frequency–velocity combinations. In particular, modes
with large shear stresses at the bond layer, occurring generally for the antisymmetric
modes, offer the highest sensitivity to bonded areas with reduced shear stiffness.

3.3 Currently Used Lamb Wave Damage Detection Methodologies

When an elastic wave travels through a region where there is a change of geometry
and/or material properties, scattering occurs in all directions. The scattering is a typical
phenomenon of a wave propagating in a material medium, in which the direction and
frequency of the wave is changed when the wave encounters discontinuities in the
medium. The scattering results in a disordered or random change in the incident energy
distribution. In particular, the presence of damage or discontinuities produces a mode
conversion process (Figure 31.11), where each produced mode has a characteristic
propagation velocity and a characteristic frequency bandwidth.

This phenomenon can be used to locate the presence of structural anomalies in air-
craft structures. In particular, by analyzing the scattered energy of the transmitted sig-
nals it is possible to detect the presence of damage. The decrease of energy in the
direction of propagation should appear in other directions. An increase in the received
energy can be detected in certain directions, showing that the damage can be consid-
ered as a scattering center [22].

Ihn and Chang [21] developed a damage index able to detect cracks in composite
and metal aircraft panels. They calculated the scatter wave in the time domain by
subtracting the reference data recorded for the structure with the initial damage size
from the sensor data for the structure with the extended damage size. The damage
index was based on the ratio between the scatter energy of the mode selected to the

Incident Wave Mode 
A0 S0  

Receiver Receiver

Receiver Emitter

Diffracted  Waves

Defects (diffracting location)

Fig. 31.11. Mode conversion process.
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baseline energy. In particular, the damage index was calculated by dividing the time
integration of the power scatter spectral density of the selected mode at a specified
frequency, with the baseline signal

Damage Index (DI) =

⎛

⎜⎜⎜⎜⎝

t f∫
ti

|Sscatter (ω0, t)|2dt

t f∫
ti

|Sbaseline(ω0, t)|2dt

⎞

⎟⎟⎟⎟⎠

α

, (31.1)

where Sscatter , Sb are the spectral amplitude of the scatter, baseline signal ω0 denotes
the selected driving frequency, t f and ti are the upper and lower bounds of the fun-
damental symmetric mode in the time domain, respectively, and α is the gain factor.
Clearly, the higher the values of the damage index are the higher the magnitude of
the damage. Because the energy is directly related to the area under the time-varying
power spectral amplitude, by monitoring the change of energy due to the structural
changes’ presence it possible to detect and localize damage.

3.4 Limitation of Lamb Waves

The linear acoustic–ultrasonic technique has many potential applications in the NDE
of composite and metal aircraft structures. However, problems of poor reproducibility
and of the sensitivity of the results to precise instrument settings have restricted its
application in industry.

Multiple Lamb wave modes are created as the excitation frequency increases. In
practice, it is difficult to generate a single pure mode, particularly above the cut-off
frequency-thickness of the A1 mode. Therefore, the received signal generally contains
more than one mode, and the proportions of the different modes present can be mod-
ified by mode conversion which occurs at any interference or discontinuity along the
wave propagation. The modes are also generally dispersive at high frequency, which
means that the shape of a propagating wave changes with distance along the propa-
gation path. This makes interpretation of the signals difficult and also leads to signal-
to-noise problems because the peak amplitude in the signal envelope decreases rapidly
with distance if the dispersion is high.

If amplitudes of the individual modes present in a multimode dispersive signal can
be isolated, the relative amplitudes of the different modes generated by mode conver-
sion at a defect could be measured, leading to possibilities not only of defect detection,
but also of defect sizing.

Another important issue is the fact that the calculation of phase and group veloc-
ity dispersion curves can be obtained only for simple structures, but it becomes very
complex and lengthy for structures with complex boundary conditions and interfaces.

4. Conclusions

The above-described difficulties have tended to reduce the attractiveness of Lamb wave
testing and it is generally agreed that it is too complicated to be usable by technicians.
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In light of these of technical and interpretation issues to be solved, it is difficult to
envisage the implementation of a linear acoustic–ultrasonic technique in a structural
health-monitoring system in the near future. This forces the scientific community to
focus on finding alternative NDT methods that can be more reliable and robust, with
ease of implementation and interpretation.

The new class of NDT based on the monitoring of nonlinear elastic wave propaga-
tion offers a promising solution to the many unsolved issues of NDT methods based
on linear elastic wave propagation monitoring.
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Abstract
Solution of nonlinear Inverse Problems (IPs) is a frequent task in nondestructive testing of ma-
terials and structures when structural defects or imperfections must be recognized. One among
the most promising ultrasonic NDT techniques is the Acoustic Emission (AE) method, which
can reveal a dangerous defect (e.g., cracks) growth in realtime. Two practical IP examples of AE
source analysis are presented in this chapter: AE source location and identification. As a com-
parison, a classical approach to the identification IP is shown, whereas the source location and
AE signal parameter correction IPs are treated by the use of the soft computing method based
on Artificial Neural Networks (ANNs). A short introduction to the ANN approach is presented
for that purpose.

Keywords: Acoustic emission, artificial neural networks, inverse problems

1. Introduction

The Forward Problem (FP) in physics is generally treated as the computation of data
values given an appropriate model. On the other hand, the aim of Inverse Problems
(IPs) is to reconstruct the model from a set of measurements. In the ideal case, an
exact theory exists that prescribes how the data should be transformed in order to
reproduce the model. For some selected examples, such a theory exists assuming that
the required infinite and noise-free data sets are available. In NDT/NDE of materials
and structures we often meet requirements on nonlinear IP solution. These IPs are
solved either by classical IP treatment or by using soft computing methods as Artificial
Neural Networks (ANN), which represent an alternative to the genetic algorithms (see
Chapter 22, part 2, for more details on the GA approach to IPs). Many IP examples
from various NDT topics are documented.1

Acoustic Emission (AE) source location and identification is an example of classical
IP solutions in NDT. The AE method is a very effective NDT tool for diagnostics
of materials and structures. In contrast to other, passive, ultrasonic defect detection
methods, the AE is based on the detection of elastic waves emitted by the material itself
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during the defect growth (only active defects are detected). In addition to the realtime
detection of the appearance of structural defects, AE monitoring should realize two
other important tasks connected with IP solution:

(a) AE source (defect) location
(b) AE source identification and defect severity classification.

The task on AE source location is generally solved by the evaluation of i time ar-
rival delays �tip between p AE sensors properly dislocated on a tested structure, and
then by solving the set of quadratic equations for the unknown source position.2 Nev-
ertheless, this approach requires good knowledge of the elastic wave propagation in
the structure (in particular, a knowledge of wave propagation velocity), and often is
not applicable to complicated anisotropic bodies or when dispersion effects and/or
high background noise are present. In such complicated cases, current soft computing
methods such as artificial neural networks offer a better solution.

2. Artificial Neural Networks Approach

Artificial neural networks originated as an attempt to imitate the processing capabil-
ities of the human brain. In 1943, Pitts and McCulloch3 introduced the Perceptron
model, which represents a simplified model of the biological neuron, the basic unit
of a human neural system. The artificial neuron model has since been mathemati-
cally generalized, but its fundamental properties remained: each neuron has a number
of inputs, which are transformed into a single output as schematically illustrated in
Figure 32.1a.

ANN consist of a number of interconnected neurons. Depending on the definition
of the neurons and on their interconnection, many ANN architectures can be dis-
tinguished (feedforward, Hopfield, Kohonen, ART, etc.). This chapter deals almost
exclusively with feedforward ANNs only, also called multilayer perceptrons or back-
propagation networks (BP-networks). In BP-networks, the neurons are organized in a
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Fig. 32.1. a) A schematic description of a neuron with n inputs x1, x2, . . . , xn , and one output y. The
output is determined by the function f acting on a linear combination of the inputs t1, . . . , tn . Numbers are
weights, b is bias. Selection of weights and bias determines the neuron behavior. b) Example of three-layer
feed-forward ANN with three inputs �t1,�t2,�t3 and two outputs x, y.
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number of layers, interconnected in such a manner that the output from each neuron
of the first layer is connected to each neuron in the second one, each neuron output
in the second layer is connected to each neuron in third one, and so on, as shown in
Figure 32.1b. Interconnections, with different weights wi are called synapses.

The inputs of BP-network coincide with the inputs to neurons in the input layer.
Information then propagates forward through the network; weighted sums of the out-
puts from a previous layer are passed to neurons in the next layer. Finally, we get the
network outputs in the last output layer. The layers between the input and output layer
are called hidden layers.

Mathematically, feedforward ANN represent mappings from Rn to Rm (n, m are
integers), where n is the number of neurons in the input layer, and m is the number of
neurons in the output layer.

This mapping is determined by the network architecture and by the chosen weights.
The process of weight adjustment is called ANN learning or training. The abil-
ity to learn from examples is the most significant feature of ANNs. Popularity of
BP-networks stems from the existence of an effective learning algorithm called
backpropagation.

The list of ANN applications during the last two decades covers a variety of dif-
ferent fields ranging from industry, transport, finances, business, telecommunications,
and so on, up to medicine, speech, and entertainment. ANN can be applied to pattern
recognition, identification, classification, nonlinear control systems, data analysis, op-
timization, scheduling, and so on. They also provide a very effective tool for forward
and inverse problem solution. Nowadays, the design of an ANN application is substan-
tially simplified by using very effective software development tools such as the Neural
Network Toolbox in MATLAB,4 used in the IP solution examples presented in next
sections.

During training, parameters of BP-networks should be adjusted in order to achieve
an appropriate structure for the particular task domain. Their desired behavior is usu-
ally formulated in the form of an objective function. For the standard BP-training algo-
rithm, the objective (or error) function E represents the total error between the desired
and actual output of all output neurons in the BP-network, taken for all training pat-
terns from a fixed, finite training set : T =

{[
�x1, �d1

]
. . . ,

[
�xP , �dP

]}

E = 1
2

P∑

p=1

N∑

i=1

(
yip − dip

)2
, (32.1)

where p is an index over all P training patterns, i is an index over all N output neurons,
yip denotes the actual and dip denotes the desired output value of the i th neuron for the
pth training pattern. To minimize E by the gradient descent procedure, it is necessary
to compute the partial derivatives of E with respect to each weight of the network (for
further details, see, e.g., Rojas5). In this way, the particular weights of the network
have to be adjusted by:

wi j (t + 1) = wi j (t) + αδ j yi , (32.2)
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where

δ j =

⎧
⎪⎪⎨

⎪⎪⎩

f ′(ξ j )(d j − y j ) for an output neuron

f ′(ξ j )
∑
k

δkw jk for a hidden neuron.
(32.3)

k indexes neurons in the layer subsequent to the neuron j ; d j is the desired (in case of
output layer only) and y j the actual output value of the neuron j ; f ′(ξ j ) is a derivative
of transfer function at the point ξ j , the potential of neuron j ; t + 1 and t index of
next and present weights, respectively; wi j is the weight of the synapse directed from
neuron i to neuron j ; and a is a constant representing the learning rate.

The network is trained by initially choosing small random weights and thresholds
and then presenting repeatedly all training patterns. Thresholds may be simulated by
a fictive neuron with a constant output value equal to one. An essential component
of the algorithm is an iterative method that propagates the error terms δ j required for
adjusting the weights, starting from the neurons in the output layer back to the neurons
in the previous layers (backpropagation). These error terms correspond to the negative
partial derivative of E with respect to the currently adjusted weight −(∂ E/∂wi j ).

Faster variations of the backpropagation algorithm are based on other optimization
techniques, belonging to two main categories. The first category uses heuristic tech-
niques, as momentum learning, variable learning rate backpropagation, and resilient
backpropagation, which are derived from performance analysis of the standard steepest
descent algorithm. The second category of fast algorithms uses numerical optimization
techniques such as conjugate gradient, quasi-Newton, and Levenberg–Marquardt.

Properly trained backpropagation networks should give reasonable answers when
presented with unfamiliar input data. Typically, a new input leads to an output simi-
lar to the output obtained for training vectors similar to the new input presented. This
generalization property makes it possible to train ANNs on a representative set of
input/target pairs, and get good results without training the network on all possible in-
put/output pairs. Therefore, the selection of an appropriate training data set has crucial
importance for the final behavior of the multidimensional function, which represents
the global output of a trained neural network. The set of training patterns should prop-
erly cover the whole domain of possible inputs.

The efficiency of neural network training can be increased by certain data pre-
processing steps performed on the network inputs and targets, in order to ensure that
they fall within a specified similar range. The most often used approach is to normalize
the mean and the standard deviation of the training set. This procedure normalizes the
inputs and targets to have zero mean and unity standard deviation. One of the problems
that occurs during neural network training is called overfitting. The error on the train-
ing set is driven to a very small value, but when new data is presented to the network,
the error is large. The network has memorized the training examples, but it has not
learned how to generalize to new situations. Figure 32.2 shows a typical response of
two neural networks that have been trained to approximate dependence between train-
ing data marked by the “+” symbols. A solid line shows the approximation obtained
by a correctly trained network while the response of an overfitted network is drawn by
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Fig. 32.2. Behavior of “well approximating” and “over fitted” network.

dotted line. It is evident that overfitting often implies fitting noise and the overfitted
network will not generalize well.

The most powerful method for solving the overfitting problem is regularization. This
method involves the modification of the performance function (which is normally sum
of squares of network errors for training patterns) by adding a special term msw:

msw = 1
NW

NW∑

j=1

w2
j , (32.4)

where NW is the total number of network weights. It is clear that large weight values
lead to high sensitivity of neurons to a variation of their inputs. Using the performance
function EREG leads to smaller weights and biases, which results in smoother network
response and lower probability of over-fitting.

EREG = νE + (
1 − ν

)
msw. (32.5)

The difficulty of regularization lies in the optimal determination of performance
ratio ν.

The ANN learning process is considerably affected by the selection of initial weights
and biases. If the starting potentials of neurons lie within the interval of the highest
sigmoidal function slope, the gradient of the error function acquires high values, and
neurons still remain sensitive enough. If we consider neuron potentials as random vari-
ables, we can formulate the above hypothesis as a zero-mean requirement on the value
of the initial weights. At the same time, the neuron weights should not be too small.
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The absolute values of gradient components would dramatically fall during the back-
propagation algorithm, due to their multiplication by small numbers, and the learning
process would become unacceptably slow. Therefore, it is also useful to require unitary
standard deviation of neuron potentials. When the selection of initial weights ensures
zero mean and unitary variance of neuron potentials, the network learning will not start
in a flat region of the error function, which results in higher learning speed.

Proper selection of input data (pattern features, e.g., some signal or image parame-
ters) is of great importance when the ANN is used for pattern recognition or classifi-
cation. It is important to recognize significant pattern features within an initially large
redundant feature set, and to discard other features insignificant for the correct ANN
decision. The feature selection methods examining the independence of attributes,
such as correlation analysis or information gain, are simple and fast, but can fail in
some applications. A common approach to feature selection for systems with one out-
put is based on computing the marginal importance measure for each pattern feature.
However, when we use some real data, input features may be interdependent and the
system output then depends on relationships between inputs rather than on the in-
put values themselves. When the number of input features is small, a quasiexhaustive
search may be used to select the best feature subset. However, the number of possible
combinations grows quickly with the number of attributes. An alternative, sensitivity
analysis approach to feature selection (called FSS) is proposed in [6]. It comprises the
following steps.

• Train the BP-network using all possible candidate features.
• For all training patterns p, for corresponding network outputs y jp and inputs xip,

compute the sensitivity coefficients s ji , defined as:

s ji = 1
P

P∑

p=1

∣∣∣∣
∂y jp

∂xip

∣∣∣∣. (32.6)

• Eliminate “dummy” features with small values of coefficients s ji . For trained BP-
networks, high values of sensitivity coefficients indicate “important” features.

In any case, the differences of s ji values between significant and dummy features
become smaller when noise increases. If dummy features are eliminated, and training
is repeated using only the remaining features, the performance error becomes lower.
This confirms the advantage of eliminating dummy variables that just introduce noise.
The backpropagation technique can be also applied to the calculation of the sensitiv-
ity coefficients of trained BP-networks. These coefficients express the sensitivity of
ANN to the considered set of input patterns, which is formulated by means of the first
derivatives of the BP-network outputs y j with respect to its inputs xi .

The sensitivity analysis of pretrained BP-networks allows the reduction of the net-
work architecture. The achieved results show better results than many classical ap-
proaches to feature selection. A further advantage of sensitivity analysis consists in
the possibility of comparing the efficiency of different BP-networks trained to solve a
given problem with similar accuracy.
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3. Acoustic Emission Source Location Using Artificial Neural
Networks

Accurate AE source location is a necessary condition for precise damage area iso-
lation in tested structures. Nevertheless, the problem of planar AE source location
on, for example, a highly anisotropic body, cannot be solved in an easy way. Signif-
icant contribution to localization procedures represents an introduction of ANN al-
gorithms.7 Trained ANN with signal arrival time-difference inputs (see Figure 32.1b)
can correctly solve that problem in all relatively complicated cases, for example, in
both anisotropic and dispersive structures such as wound composite tubes under com-
plex loading. Moreover, sometimes it is not necessary to perform detailed ANN train-
ing (calibration) on a real structure, and an easier training on calculated (numerically
simulated) data is sufficient, as demonstrated in the following example.8 ANN-based
source location procedures give sufficiently accurate results in realtime and don’t re-
quire any knowledge of wave propagation velocity or other material properties. One of
the aims of the reported study8 was to correlate areas on composite tubes, exhibiting
high AE activity during multiaxial step loading, with the structural changes observed
by subsequent ultrasonic C-scans. The used experimental setup is schematically drawn
in Figure 32.3. Signals from six AE transducers were preamplified and recorded by a
multichannel AE analyzer.

To solve the problem of AE source localization, an ANN approach with time-
difference inputs was applied. Several ANN architectures were trained and tested on
both numerically simulated and experimentally modeled AE sources. The resulting
four-layer ANN architecture (one input layer, two hidden layers, and one output layer)
was optimized on a minimal localization error. The inputs of the first layer are dif-
ferences �ti of AE signal arrival times, and the outputs from the last layer are two
AE source coordinates x, y (ref. to Figure 32.1b). The backpropagation algorithm was
used for ANN training. The feedforward algorithm of the three-sensor ANN with 15
neurons in two hidden layers may be described by the following equations. Outputs
a j1 of the first hidden layer are given by the equation

a j1 = tanh

( 3∑

i=1

wi j1∆ti + b j1

)
, (32.7)

where j = 1, . . . , 15 is the number of neurons in the first layer, wi jl are weights and
b jl biases of neurons in that layer. The second hidden layer output is described by

a j2 = tanh

( 15∑

i=1

wi j2ai1 + b j2

)
, (32.8)

where j = 1, . . . , 15 is now the number of neurons in the second layer and ai1 are
the neuron outputs of the first hidden layer. The output of the network (two source
coordinates) is expressed by the equation (linear transfer)

a j3 =
15∑

i=1

wi j3ai2 + b j3, (32.9)
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Fig. 32.3. Schematic view on experimental setup used for multiaxially loading of composite tubes.

where j = 1, 2 is the number of neurons in the last layer and a j2 are the outputs of the
second hidden layer.

Six and three AE sensor array configurations were considered for high- and low-
level signals, respectively. Relatively large wave attenuation in tested tubes (about
70 dB/m) and background noise allow only localization of higher amplitude AE events.
As a consequence, not all six sensors will detect the low amplitude AE events, and only
a three-transducer array is used for the source location. However, a lower localization
error is reached by a six-transducer array due to redundancy. For three-sensor arrays,
nine different networks must be trained. Eight similar networks are taught to localize
AE source inside the triangle arrays, and one simpler network is trained to select the
adequate sensor array.

Two different procedures were used for the ANN training : (1) the input time differ-
ences are determined using the Pen-Test experiments (breaking of pencil lead on a tube
surface) in uniformly spaced training points, and (2) the directional diagram of group
velocities is determined by means of Pen-Tests and then the training set of arrival time
differences is calculated numerically. In both procedures, signal arrival times were
precisely evaluated using adaptive signal filtering. Both of the above-mentioned ANN
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training procedures resulted in similar location errors lower than 8 mm. Figure 32.4
shows measured wave velocity diagram of the tubes.

The best fit of the experimental data in Figure 32.4 is obtained by using a regression
function in the form of the theoretically predicted (computed) curve of the anisotropic
group wave velocity. The theoretical curve follows from the knowledge of elastic prop-
erties of composite constituents. The regression and theoretical curves may not be
identical due to the presence of guided waves in a relatively thin structure. However,
in our case, the least square fitting curve differs from the theoretical one by only 2%.
The maximal velocity c90 = 4025 m/s is in the hoop direction, and minimal velocity
along the tube axis is c0 = 3120 m/s so the anisotropy ratio is c90/c0 = 1.29. The
standard deviation of measured data was 280 m/s. The determined velocity diagram
may be used for numerical ANN training on another structure with any transducer
configuration (similar anisotropy and wall thickness is required).

AE localization results are documented in Figure 32.5, which shows the spatial dis-
tribution of high-energy AE events(left part) during a tensile loading cycle of the tube
up to σzz = 47 MPa, as compared to the differential ultrasonic C-scan of the tube
(right part). The x- and r -coordinates represent, respectively, the longitudinal and ra-
dial coordinates. The AE sensor positions are marked by numbered squares 1 to 6
(see also Figure 32.3), and localized AE sources are represented by small circles. 4280
AE events were successfully localized from 18,647 registered events in the considered
loading cycle. The top and bottom regions without AE detection are tube parts near
the clamping where AE sources were not localized.
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Fig. 32.5. AE source distribution map (left) and corresponding Differential C-scan (right). Numbered
squares indicate AE transducer locations.

A concentration of localized AE sources in some particular regions and along fiber
directions is evident in the left part of Figure 32.5. To understand the nature of such ac-
tive regions, the source location map was correlated with other structural observations
performed by ultrasonic C-scanning before and after the loading cycle. Both ultrasonic
images were precisely shifted with respect to the maximum of their two-dimensional
cross-correlation function and the difference was computed. The resulted differential
C-scan is shown in the right part of Figure 32.5. The dark patterns in some regions are
more pronounced, which indicates growing damage. The positions of six AE trans-
ducers were also marked on differential C-scan for comparison with the AE-source
distribution. Significant black bands indicate damage concentration and delamination
along some overstressed fiber bundles. Overlapping dark regions are remarkable on
both parts of Figure 32.5.

From the comparison of the defective regions revealed by the two independent meth-
ods, it can be concluded that the AE localization algorithm, based on the ANN trained
by the wave velocity data, is an appropriate and precise procedure for complicated
anisotropic structures. Furthermore, this proves that an ANN trained on one body can
satisfactorily localize AE sources on other bodies of similar geometry, made from the
same material.

4. Acoustic Emission Source Identification

The second AE source identification problem represents one of the most difficult
inverse problems in AE analysis. AE sources in stressed materials are mostly rapid dy-
namic processes at a microstructure level with duration from fractions of nanoseconds
up to microseconds. Real AE sources, whose true physical description is almost al-
ways not available, are replaced by simple mechanical model wave-based approaches.
From the wavelength point of view, the sources may be considered as nearly punc-
tual, and the problem can be reduced to the study of a body response to point forces
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or quasipoint moments (force dipoles). The generalized theory of AE and AE source
representation has been compactly formulated both by Ohtsu and One9 in the field of
AE, and by Aki and Richards in the field of quantitative seismology.10

AE sources may be modeled as an internal discontinuity displacement (rupture)
caused by a dislocation or crack (seismic fault) or by volume changes (explosion).
An AE signal then represents the kinematical response of the body (surface displace-
ment or velocity field) to the dynamic forces and moments acting on a volume V .
The dynamic displacement field �u(�x, t), caused by the elastic wave propagating from
the AE source represented by volume (point) forces �f (�x, t), must generally fulfill the
wave equation10 (index summation rule is applied)

∂

∂x j

(
ci jkl (�x)

∂

∂xl
uk (�x, t)

)
+ fi (�x, t) = ρ (�x)

∂2ui (�x, t)
∂2t

, (32.10)

where �x = (x1, x2, x3) is the coordinate vector, t is time, ci jkl the tensor of elastic
constants, and ρ is the material density (assumed to be constant). In the abbreviated
Cartesian tensor notation, Eq. (32.10) has the form

[
ci jkl · uk,l j

] + fi = ρ · üi . (32.11)

Necessary initial and boundary conditions must be added to complete the problem defi-
nition. Standard conditions are expressed as a traction-free body surface S(V ) (i.e., ho-
mogeneous, zero-stress boundary conditions) and zero initial displacements and their
derivatives in the whole volume V :

τi j (�x, t) υs
j = 0, �x ∈ S (V )

�u (�x, 0) = 0, �x ∈ V (32.12)
∂ �u (�x, 0)

∂t
= 0, �x ∈ V,

where τi j (�x, t) is the stress tensor and �vs denotes the normal unity vector (outward
normal) to the boundary surface S of the volume V . The inverse problem consists in the
determination of acting forces from the measured displacement or velocity signals. The
problem is simplified if we know the Green’s tensor function Gi j satisfying Eq. (32.10)
with the standard conditions (32.12):

Gi j

(
≡ ui (�x, t)

A

)
= Gi j (�x, t; �x0, 0) . (32.13)

The Green function represents the complex transfer function between the source and
signal detector places, that is, displacement response in the i-direction at a point �x to
the unity pulse of the concentrated force fi (�x, t) acting in the j-direction at time t in
the location �x0

fi (�x, t) = Aδ (�x − �x0) δ (t) δi j , (32.14)

where A is a unit constant of the force dimension, δ( ) denotes the Dirac delta-function
of space and time coordinates, and δin is the Kronecker delta. Finding the Green func-
tion of the tested body is the main task of elastodynamics. Its analytical form is known
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only in particular situations such as for partially unbounded bodies of simple geometry.
In most cases, it must be determined numerically (e.g., by FEM, FDM, LISA, EFIT,
etc.) or experimentally. Experimental determination of the Green function requires
many measurements using artificial AE sources well approximating the delta function
(e.g., laser pulse or the above-mentioned pencil-lead rupture test called PEN-Test).
The numerical solution is also complicated, as huge computations must be performed,
especially in 3-D cases. A promising method of computation and data reduction is
the use of ANN for the Green function interpolation.11 Knowledge of the Green func-
tion simplifies the solution of wave equation (32.10) to the convolution of the source
function Fj (t) with the Green function, assuming far-field displacement, that is, for
|�x − �x0| > nλ, where λ is the wavelength, and n an integer:

ui (�x, t) = Gi j (�x, t; �x0, 0) ∗ Fj (t) . (32.15)

Single point forces, acting on the body surface, suit well as a mechanical substitution
of the PEN-Test. Generally, AE source mechanisms are represented by the seismic
moment tensor M jk(t) involving also coupled forces–dipoles and their moments acting
inside the body. Equation (32.15) then becomes

ui = Gi j ∗ Fj + Gi j,k ∗ M jk . (32.16)

The AE source is identified (i.e., substituted by its simple kinematic model) by the
quantitative determination of all force and moment components. AE source representa-
tion by its mechanical model means that forces and moments, which induce equivalent
displacement field as a real source, are determined. The physical source itself is not
directly identified by this procedure; instead, its external effects are quantified. As-
signing the detected quantities to some micromechanisms is a question for material
sciences or other approaches.

Inverse solution (deconvolution) of Eq. (32.16) can be further simplified assuming a
very simple form for the AE source function (kinematical representation),12

Fj (t) = P · ϕ j · s(t) (32.17)

M jk(t) = Q · ψ j · s(t).

Here P, Q are amplitude constants; ϕ j , ψ j express orientation vectors (source radia-
tion diagrams); and s(t) is a time function of the source activity (the same function for
all components is assumed for simplicity). Under such simplified conditions, the IP
solution may be treated as a multiple deconvolution procedure with a kernel expressed
by a linear combination of the considered Green function components

ui = (P · Gi j · ϕ j + Q · Gi j,k · ψ j ) ∗ s(t). (32.18)

For digitally sampled AE signal (n signal samples) of one measured displacement
component u(n), Eq. (32.18) can be formally rewritten as a set of equations

u(n) =
R∑

i=1

ci

n∑

k=1

gi (n − k)s(k). (32.19)
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A multiple deconvolution procedure then consists in the solution of Eq. (32.19) for
the unknown weight coefficients ci (directional features of the AE source) and the
time function s(k). The set of nonlinear equations (32.19) often represents an ill-posed
problem, and methods such as regularization or singular value decomposition should
be used for its solution.

The above deconvolution procedure of the AE source identification has been suc-
cessfully verified on numerically simulated data. Many other researchers have also
reported good results of similar approaches to the AE source identification problems;
see, for example, the work by Hamstad et al.13 However, such procedures often par-
tially fail when real AE sources must be quantified. This is mainly due to the many
problems encountered in real situations: (a) the distance sensor-source is not much
greater than a typical source dimension (point source approximation is unsatisfactory);
(b) source location and its radiation pattern must not change during the AE signal de-
tection; (c) the Green function must be determined with a very high precision which
may be problematic; (d) the first signal arrival must be determined exactly and the
source should be localized with approximately 1 mm accuracy (inverse procedures
are strongly phase sensitive); (e) placement of transducers should respect the expected
source radiation pattern; (f) signal filtering and transfer functions of sensors and de-
vices must be taken into account (broadband, precisely calibrated transducers should
be used); (g) presence of strong attenuation or wave dispersion can lead to partial or
complete loss of information on the above-mentioned source characteristics. Inversion
procedures may be improved by the averaging of signals detected by more transduc-
ers (information redundancy is desirable). From the direct comparison of numerically
synthesized and measured signals, one can deduce which signal features may be due
to, for example, dispersion effects. The time-frequency or wavelet domain seems to be
the best for AE problem representation in such situations.14

The lack of exact knowledge about the influence of geometrical dispersion effects
is one of the most important constraining factors in AE source classification. In many
practical applications, the complete inverse solution is not necessary for diagnostic
decision, and simplified AE source identification procedure is sufficient. Such a pro-
cedure is followed, for example, in the source description through significant signal
parameters in statistical pattern recognition. Nevertheless, dispersion and attenuation
effects also influence these parameters. For simple diagnostic purpose, the ANNs or
other related methods of optimizing (genetic algorithms, cellular automata, fuzzy- and
ANN-based classification and pattern recognition systems) could be used for the cor-
rection of extracted signal features. Application of advanced soft computing methods
for AE data treatment simplifies and improves assessment of AE sources and their
recognition, classification, and criticality assessment, which also facilitates better diag-
nostic conclusions. One possible way of performing parameter corrections using ANN
is suggested in one of the reported work.15 The proposed correction procedure was
tested on numerically simulated AE experiments, schematically drawn in Figure 32.6.

Model AE signals were numerically generated at four sensor positions by the con-
volution of a model pulse, acting in selected source positions, with the Green function.
The wave transfer Green function was calculated for thousands of source–sensor loca-
tion pairs using numerical simulations performed by 2-D LISA code (Local Interaction
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Simulation Approach16) on steel plates of various thickness th. Backpropagation ANN,
representing a complex correction function of 17 extracted signal features was then
properly trained at regularly spaced mesh nodes, which enabled determination of their
values in “reference” positions placed in the neighborhood of the nearest AE sensor.
The distance corrections were performed by ANN transfer of actual parameter (sig-
nal feature) values, detected at sensors, to the reference point, designated as source’ in
Figure 32.6. The ANN correction scheme is shown in Figure 32.7. Vectors of signal pa-
rameters P(d1) to P(d4) evaluated at sensors s1 to s4 are converted by the ANN, and
AE sources are then classified using the already improved parameter values P(d). Al-
though numerical models have been increasingly successful in simulating wide ranges
of real AE problems, advances in computer modeling must still be validated and veri-
fied against experiments. On the other hand, experimental results are required as input
to computational models.
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