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Preface

Currently, there are three volumes of the BASS book series, spanning forty-six
chapters. Chapters in this book are contributed by invited speakers at the annual
meetings of the Biopharmaceutical Applied Statistics Symposium (BASS). Volume
1 is titled Design of Clinical Trials and consists of 15 chapters; Volume 2 is titled
Biostatistical Analysis of Clinical Trials and consists of 12 chapters; and Volume 3
is titled Pharmaceutical Applications and consists of 19 chapters. The three volumes
include the works of 70 authors or co-authors.

History of BASS: BASS was founded in 1994, by Dr. Karl E. Peace. He is
The Georgia Cancer Coalition Distinguished Scholar/Scientist, Professor of
Biostatistics, Founding Director of the Center for Biostatistics, and Senior Research
Scientist in the Jiann-Ping Hsu College of Public Health, Georgia Southern
University.

Originally, there were three objectives of BASS. Since the first editor founded
the Journal of Biopharmaceutical Statistics (JBS) three years before founding
BASS, one of the original objectives was to invite BASS speakers to create papers
from their BASS presentations and submit to JBS for review and publication. Ergo,
BASS was to be a source of papers submitted to JBS to assist in the growth of the
new journal JBS. The additional two objectives were:

• to provide a forum for pharmaceutical and medical researchers and regulators to
share timely and pertinent information concerning the application of biostatistics
in pharmaceutical environments; and most importantly,

• to provide revenues to support graduate fellowships in biostatistics at the
Medical College of Virginia (MCV) and at the Jiann-Ping Hsu College of Public
Health, Georgia Southern University (GSU).

After JBS was on firm footing, the first objective was formally dropped. In
addition, the third objective was expanded to include potentially any graduate
program in biostatistics in the USA.

BASS I (1994) was held at the Hyatt Regency in Orlando, FL; BASS II–III were
held at the Hilton Beach Resort, Inner Harbor, San Diego, CA; BASS IV–VII were
held at the Hilton Oceanfront Resort Hotel, Palmetto Dunes, Hilton Head Island,
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SC; BASS VIII–XII were held at the Desoto Hilton, and BASS XIII–XVI were held
at the Mulberry Inn, both located in the historic district of Savannah, GA.
BASS XVII was held at the Hilton Resort Hotel at Palmetto Dunes, Hilton Head
Island, SC. BASS XVIII–XIX were held at the Mulberry Inn in Savannah. To mark
the twentieth anniversary BASS meeting, BASS XX was held in Orlando at the
Hilton Downtown Orlando Hotel. BASS XXI was held at the Holiday Inn Crowne
Plaza in Rockville, MD, whereas BASS XXII and XXIII were held at the Radisson
Hotel, Rockville, Maryland.

BASS XXIV (www.bassconference.org) was held at the Hotel Indigo in the
charming historic Georgia city of Savannah. More than 360 tutorials and 57 1-day
or 2-day short courses have been presented at BASS, by the world’s leading
authorities on applications of biostatistical methods attendant to the research,
clinical development, and regulation of biopharmaceutical products. Presenters
represent the biopharmaceutical industry, academia, and government, particularly
NIH and FDA.

BASS is regarded as one of the premier conferences in the world. It has served
the statistical, biopharmaceutical, and medical research communities for the past 24
years by providing a forum for distinguished researchers and scholars in academia,
government agencies, and industries to conduct knowledge sharing, idea exchange,
and creative discussions of the most up-to-date innovative research and applications
to medical and health care to enhance the health of general public, in addition to
providing support for graduate students in their biostatistics studies. Toward this
latter end, BASS has provided financial support for 75 students in completing their
master’s or doctorate degree in Biostatistics. In addition, BASS has provided
numerous travel grants to doctorate-seeking students in Biostatistics to attend the
annual BASS meeting. This provides a unique opportunity for students to broaden
their education, particularly in the application of biostatistical design and analysis
methods, as well as networking opportunities with biostatisticians from academia,
the pharmaceutical industry, and governmental agencies such as FDA.

Volume III of the BASS Book Series, Entitled Pharmaceutical Applications,
consists of 19 chapters. Chapter 1 presents targeted learning methods for deter-
mining optimal individualized treatment rules under cost constraints. Chapter 2
provides an overview of omics biomarker discovery and design considerations for
biomarker-informed clinical trials. Chapter 3 presents methods for adaptive bio-
marker subpopulation and tumor type selection in Phase III clinical trials in
oncology. Chapter 4 discusses high-dimensional data analysis methods in geno-
mics. Chapter 5 provides an example of the importance of defining the primary
endpoint drawing on properties of synergy or additivity. Chapter 6 presents the
important method for the recycling of significance levels in testing multiple
hypotheses in confirmatory clinical trials.

Chapter 7 then discusses the statistical testing of single and multiple endpoint
hypotheses in group sequential clinical trials. Chapter 8 presents recently
developed expanded statistical decision rules for interpretations of results of rodent
carcinogenicity studies of pharmaceutical compounds. Chapter 9 provides a sta-
tistical analysis of a randomized, controlled clinical trial of Alendronate treatment
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in Gaucher’s (rare) disease that was prematurely halted. Chapter 10 discusses
methods for mediation modeling in randomized trials in which the outcome vari-
ables are non-normal. Chapter 11 presents statistical considerations in using images
obtained in clinical trials. Chapter 12 provides statistical analysis of several inter-
esting applications arising from the statistical support of a variety of clinical trials.

In Chap. 13, important statistical consideration for uncovering fraud, misconduct,
and other data quality issues in clinical trials is presented. Chapter 14 provides a
thorough presentation of the essentials in the design and analysis of bio-similar
studies. Chapter 15 presents a common language for causal estimands. Chapter 16
provides a thorough presentation of the development of prognostic biomarker
signatures for survival using high-dimensional data. Chapter 17 develops methods for
the validation, multivariate modeling, and the construction of heat map prediction
matrices for overall survival in the context of missingness. Chapter 18 presents
interesting biopharmaceutical applications using tepee plots. Finally, Chap. 19
presents methods for longitudinal and cross-sectional visualization with further
applications in the context of heat maps.

We are indebted to all the presenters, program committee, attendees, and vol-
unteers who have contributed to the phenomenal success of BASS over its first
24 years, and to the publisher for expressing interest in and publishing the series.

Statesboro, USA Karl E. Peace, Ph.D.
Jiann-Ping Hsu College of Public Health

Georgia Southern Univesity
Chapel Hill, USA/Pretoria, Ding-Geng Chen, Ph.D.
South Africa Professor, University of North Carolina

Extraordinary Professor, University of Pretoria
Cambridge, USA Sandeep Menon

Vice President and Head of Early
Clinical Development, Biostatistics
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Chapter 1
Targeted Learning of Optimal
Individualized Treatment Rules Under
Cost Constraints

Boriska Toth and Mark van der Laan

1.1 Introduction

We consider a general resource-allocation problem, namely, to maximize a mean
outcome given a cost constraint, through the choice of a treatment rule that is a
function of an arbitrary fixed subset of an individual’s covariates. In pharmaceutical
applications, we typically think of maximizing a clinical outcome given a monetary
cost constraint, through the allocation of medication to patients, although our model
is much more general. We focus on the setting where unmeasured confounding is
a possibility, but a valid instrumental variable is available. Thus, our setup allows
for consistent estimation of the optimal treatment rule and causal effects in a range
of non-randomized studies, including post-market and other observational studies,
as well as studies involving imperfect randomization due to non-adherence. The
goal is both to: (1) find an optimal intervention d(V ) for maximizing the mean
counterfactual outcome, where V is an arbitrary fixed subset of baseline covariates
W , and (2) estimate the mean counterfactual outcome under this rule d(V ). Wemake
no restrictions on the type of data; however, the case of a continuous or categorical
instrument or treatment variable is discussed in Toth (2016). To our knowledge, this
work is the first to estimate the effect of an optimal individualized treatment regime,
under a non-unit cost constraint, in the instrumental variables setting.

Utilizing instrumental variables. A classic solution for obtaining a consistent esti-
mate of a causal effect under unmeasured confounding is to use an instrumental
variable, assuming one exists. Informally, an instrumental variable, or instrument, is
a variable Z that affects the outcome Y only through its effect on the treatment A, and
the residual (error) term of the instrument is uncorrelatedwith the residual term of the

B. Toth (B) · M. van der Laan
UC-Berkeley, Berkeley, USA
e-mail: bori@stat.berkeley.edu

M. van der Laan
e-mail: laan@berkeley.edu

© Springer Nature Singapore Pte Ltd. 2018
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2 B. Toth and M. van der Laan

outcome (Imbens and Angrist 1994; Angrist et al. 1996; Angrist and Krueger 1991).
Thus, the instrument produces exogenous variation in the treatment. Instrumental
variables have been used widely in biostatistics and pharmaceutics. (See Brookhart
et al. 2010 for a large collection of references.) In these settings, the instrumental
variable is usually some attribute that is related to the health care a patient receives,
but is not at the level of individual patients. For example, Brookhart and Schneeweiss
(2007) exploit variation in physician preference for prescribing NSAID medications
to infer the effect of these medications on gastrointestinal bleeding.

In this work, we solve two versions of the optimal individualized treatment prob-
lem: (1) when the intervention is on the treatment variable A (Sect. 1.7), and (2) when
the intervention is actually on the instrument Z (Sect. 1.6). For example, consider a
study in which HIV-positive patients were encouraged to undergo antiretroviral ther-
apy (ART) with a randomized (or quasi-randomized) encouragement design, but a
number of factors caused non-adherence among some patients (Chesney 2006). The
methods in this chapter allow one to infer what would be the optimal assignment
of patients to ART treatment, based on patient characteristics, to achieve a desirable
outcome (i.e., suppressed viral load, 5-year survival), given a limited budget. One
parameter of interest is the mean outcome under optimal assignment of individu-
als to actually receive ART. This is the problem of finding an optimal treatment
regime. However, in this setting of non-adherence, it might not be possible to inter-
vene directly on the treatment variable. Thus, another parameter of interest is the
mean outcome under the optimal intervention on the instrumental variable. We call
this the problem of finding an optimal intent-to-treat regime, so named because the
instrument is often a randomized assignment to treatment or encouragement mech-
anism. Under our randomization assumption on instrument Z , the optimal intent-
to-treat problem is the same as an optimal treatment problem without unmeasured
confounding, as Z can be seen as a treatment variable that is unconfounded with Y .

Causal effects given arbitrary subgroups of the population.
A key feature of our work is that the optimal intervention d(V ) is a function of a fixed
arbitrary subset V of all baseline covariates W . There is currently great interest and
computational feasibility in designing individualized treatment regimes based on a
patient’s characteristics and biomarkers. The paradigm of precision medicine calls
for incorporating high-dimensional spaces of genetic, environmental, and lifestyle
variables into treatment decisions (Editors: National Research Council Committee
2011). Incorporating many covariates for estimating relevant components of the
data-generating distribution can be helpful in: (1) improving the precision of the
statistical model and (2) ensuring that the instrument induces exogenous variation
given the covariates. However, a physician typically has a smaller set of patient
variables that are available and that he/she considers reliable predictors. Thus, being
able to calculate an optimal treatment (or intent-to-treat) regime as a function of an
arbitrary subset of baseline covariates is of great use.

The targeted minimum loss-based framework.
Our estimators use targeted minimum loss-based estimation (TMLE), which is
a methodology for semiparametric estimation that has very favorable theoretical
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properties and can be superior to other estimators in practice (van der Laan and Rubin
2006; van der Laan and Rose 2011). TMLE guarantees asymptotic efficiency when
certain components of the data-generating distribution are consistently estimated.
Thus, under certain conditions, the TMLE estimator is optimal in having the asymp-
totically lowest variance for a consistent estimator in a general semiparametricmodel,
thereby achieving the semiparametric Cramer–Rao lower bound (Newey 1990). The
TMLEmethod also has a robustness guarantee: It produces consistent estimates even
when the functional form is not known for all relevant components of the parameter of
interest (see Sects. 1.6.3.4 and 1.7.3). Another beneficial property is asymptotic lin-
earity. This ensures that TMLE-based estimates are close to normally distributed for
moderate sample sizes, which makes for accurate coverage of confidence intervals.
Finally, TMLE has the advantage over other semiparametric efficient estimators that
it is a substitution estimator, meaning that the final estimate is made by evaluating the
parameter of interest on the estimates of its relevant components. This property has
been linked to good performance in sparse data in Gruber and van der Laan (2010).

The TMLE methodology uses the following procedure for constructing an esti-
mator:

1. Let P0 denote the true data-generating distribution.Onefirst notes that the param-
eter of interest Ψ (P0) depends on P0 only through certain relevant components
Q0 of the full distribution P0; in other words, Ψ (P0) = Ψ (Q0).1 TMLE targets
these relevant components by only estimating these Q0 and certain nuisance
parameters g02 that are needed for updating the relevant components. An initial
estimate (Q0

n, gn) is formed of the relevant components and nuisance parame-
ters. This is typically done using the Super Learner approach described in van
der Laan et al. (2007), in which the best combination of learning algorithms is
chosen from a library using cross-validation.

2. Then, the relevant components Q0
n are fluctuated, possibly in an iterative process,

in an optimal direction for removing bias efficiently. To do so, one defines a
fluctuation function ε → Q(ε|gn) and a loss function L(. . . ), wherewe fluctuate
Q0

n to Q0
n(ε|gn) by solving for fluctuation ε = argminε

1
n

∑n
i=1 L(Q0

n(ε|gn), gn)
(Oi ). For example, the loss function might be the mean squared error or the
negative log likelihood function.

3. Finally, one evaluates the statistical target parameter on the updated relevant
components Q∗

n and arrives at estimate ψ∗
n = Ψ (Q∗

n).

The key requirement is to choose the fluctuation and loss functions so that, upon
convergence of the components to their final estimate Q∗

n and g∗
n , the efficient influ-

ence curve equation is solved:

Pn D∗(Q∗
n, g

∗
n) = 0

1We are abusing notation here for the sake of convenience by using Ψ (·) to denote the mapping
both from the full distribution to R

d and from the relevant components to Rd .
2The nuisance parameters are those components g0 of the efficient influence curve D∗(Q0, g0) that
Ψ (Q0) does not depend on.



4 B. Toth and M. van der Laan

Above, Pn denotes the empirical distribution (O1, . . . , On), and we use the short-
hand notation Pn f = 1

n

∑n
i=1 f (Oi ) · D∗ denotes the efficient influence curve.

1.2 Prior Work

Luedtke and van der Laan (2016a) is a recent work that gives a TMLE estimator for
the mean outcome under optimal treatment given a cost constraint. That problem is
very similar to the one we solve in Sect. 1.6, with the main difference being that we
allow amore general non-unit cost constraint which results in a different closed-form
solution to the optimal rule. Luedtke and van der Laan (2016b) tackles the issue of
possible non-unique solutions and resulting violations of pathwise differentiability.
The conditions we require in assumptions (A2)–(A4) are adopted from these works.

A large body of work focuses on the case of optimal treatment regimes in the
unconstrained case, such as Robins (2004). More recently, various approaches tackle
the constrained ODT problem: Zhang et al. (2012) describe a solution that assumes
the optimal treatment regime is indexed by a finite-dimensional parameter, while
Chakraborty et al. (2013) describe a bootstrappingmethod for learning ODT regimes
with confidence intervals that shrink at a slower than root-n rate. Chakraborty and
Moodie (2013) give a review of recent work on the constrained case.

1.3 Model and Problem

We consider the problem of estimation and inference under an optimal intervention,
in the context of an instrumental variable model. We take an iid sample of n data
points (W, Z , A,Y ) ∼ M , whereM is a semiparametric model. Z is assumed to be
a valid instrument for identifying the effect of treatment A on outcome Y , when one
has to account for unmeasured confounding. In applications, instrument Z is often
a randomized encouragement mechanism or randomized assignment to treatment
which may or may not be followed. In other cases, Z is not perfectly randomized but
nevertheless promotes or discourages individuals in receiving treatment. V ⊆ W is
an arbitrary fixed subset of the baseline covariates, and FV (W ) gives the mapping
W → V · d(V ) refers to a decision rule as a function of V , where Z = d(V ) is
used to denote the optimal intervention on the instrument Z , in other words, the
optimal assignment to treatment or the optimal intent-to-treat. A = d(V ) refers to
the optimal treatment rule. We are interested in estimating the mean counterfactual
outcome under an optimal rule Z = d(V ) or A = d(V ). Figure 1.1 shows a diagram.

There are no restrictions on the type of data. However, the case of categorical or
continuous Z or A are both dealt with separately in Toth (2016).

Further, we let cA(A,W ) be a cost function that gives the cost associated with
assigning an individual with covariates W to a particular A value. We let cT (Z ,W )

be a cost function that gives the total cost associated with assigning an individual
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Fig. 1.1 Causal diagram

with covariates W to a particular Z value. We can think of cT (Z ,W ) as the sum
of cZ (Z ,W ), a cost incurred directly from setting Z , and EA|W,ZcA(A,W ), an
average cost incurred from the actual treatment A.3 We need to find optimal rule
Z = d(V ) under cost constraint E cT (Z ,W ) ≤ K , for a fixed cost K , and optimal
rule Z = d(V ) under constraint E cA(A,W ) ≤ K .

Notation. Let PW ≡ Pr(W ) and ρ(Z ,W ) ≡ Pr(Z = 1|W ). Also let Π(Z ,W ) ≡
E(A | Z ,W ) be the conditional mean of A given Z ,W , and μ(Z ,W ) ≡ E(Y |
Z ,W ).

We also define μb(V ) � EW |V
[
μ(Z = 1,W ) − μ(Z = 0,W )

]
, which gives the

mean difference in outcome between setting Z = 1 and Z = 0 given V . Similarly,
cb,Z (V ) � EW |V

[
cT (Z = 1,W ) − cT (Z = 0,W )

]
, and cb,A(V ) � EW |V

[
cA(A =

1,W ) − cA(A = 0,W )
]
. We also use notation m(V ) � EW |Vm(W ), where m is

the causal effect function defined in the causal assumptions.
We further assume wlog that intent-to-treat Z = 0 has lower cost for all V :

EW |V cT (0,W ) ≤ EW |V cT (1,W ).4 Let KZ � EWcT (0,W ) be the total cost of not

assigning any individuals to intent-to-treat, and KZ � EWcT (1,W ) be the total cost
of assigning everyone, andwe assume a non-trivial constraint KZ < K < KZ . Define

KA � EWcA(0,W ), and KA similarly.

Causal model.
Using the structural equation framework of (Pearl 2000), we assume that each vari-
able is a function of other variables that affect it and a random term (also called error
term). Let U denote the error terms. Thus, we have

W = fW (UW ), Z = fZ (W,UZ ), A = f A(W, Z ,UA),Y = fY (W, Z , A,UY )

3It is not hard to extend this model to incorporate uncertainty in E(A|W, Z) for calculating
cT (Z ,W ), and thus estimating cT (Z ,W ) from the data, given fixed functions cZ , cA. There is
a correction term that gets added to the efficient influence curve.
4We are only making this assumption for the sake of easing notation. We can forgo this assumption
by introducing notation; i.e., Z = l(V ) is the lower cost intent-to-treat value for a stratum defined
by covariates V .
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where U = (UW ,UZ ,UA,UY ) ∼ PU,0 is an exogenous random variable, and fW ,
fZ , f A, fY may be unspecified or partially specified (for instance, we might know
that the instrument is randomized). UY is possibly confounded with UA.

We use notation that a subscript of 0 denotes the true distribution, in expressions
such as E0, P0.

Assumption (A1) Assumptions ensuring that Z is a valid instrument:

1. Exclusion restriction. Z only affects outcome Y through its effect on treatment
A. Thus, fY (W, Z , A,UY ) = fY (W, A,UY ).

2. Exogeneity of the instrument. E(UY |W, Z) = 0 for any W, Z .
3. Z induces variation in A. Var0[E0(A|Z ,W )|W ] > 0 for all W .

Structural equation for outcome Y :
4. Y = Am(W ) + θ(W ) +UY for continuous Y , and

Pr(Y = 1|W, A, ŨY ) = Am(W ) + θ(W ) + ŨY for binary Y ,
whereUY = (ŨY ,U ′

Y ) for an exogenous r.v.U ′
Y ,

5 andm, θ are unspecified func-
tions.

Assumptions 2 and 4 yield that, whether Y is binary or continuous,

E(Y |W, Z) = m0(W )Π0(W, Z) + θ0(W )

We use Y (A = a) to denote the counterfactual from setting treatment to A =
a. These assumptions guarantee that E(Y (A = a)) equals EWm(W )a + θ(W ) for
identifiable functions m, θ .

It should be noted that we do not require the instrument to be randomized with
respect to treatment (UZ ⊥⊥ UA| W is not necessary).

It is simple to see from the above instrumental variable assumptions that Z is
randomized with respect to Y , so we have:

Corollary 1 (Randomization of Z.) UZ ⊥ UY |W.

This implies E(Y (Z)|W ) = E(Y |W, Z).

Statistical model. The above-stated causal model implies the statistical model M
consisting of all distributions P of O = (W, Z , A,Y ) satisfying EP(Y |W, Z) =
mP(W ) · ΠP(W, Z) + θP(W ). Here, mP and θP are unspecified functions and
ΠP(W, Z) = EP(A|W, Z) such that VarP(ΠP(Z ,W )|W ) > 0 for allW . Note that
the regression equation EP(Y |W, Z) = mP(W ) · ΠP(W, Z) + θP(W ) is always sat-
isfied for some choice of m(W ), θ(W ) when Z is binary. The distribution for the
instrument ρ(W ) may or may not be known, and we generally think of all other
components PW ,Π,m, θ as unspecified.

5The U ′
Y term is an exogenous r.v. whose purpose is for sampling binary Y with mean

f̃Y (W, Z , A, ŨY ).
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1.3.1 Parameter of Interest, with Optimal Intent-to-Treat

Causal parameter of interest.

ΨZ (P0) � Maxd EP0Y (Z = d(V )) s.t. EP0 [cT (Z = d(V ),W )] ≤ K

Statistical target parameter.

ΨZ ,0 = EP0μ0(Z = d0(V ),W ) (1.1)

where d0 is the optimal intent-to-treat rule:
d0 = argmaxd EP0μ0(Z = d(V ),W ) s.t. EP0 [cT (Z = d(V ),W )] ≤ K
We also use the notation ΨZ (P0) = ΨZ (PW,0, μ0).

1.3.2 Parameter of Interest, with Optimal Treatment

Causal parameter of interest.

ΨA(P0) � Maxd E0Y (A = d(V )) s.t. E0[cA(A = d(V ),W )] ≤ K (1.2)

Identifiability. m(W ) is identified as
[
(μ(Z = 1,W ) − μ(Z = 0,W ))/(Π(Z =

1,W ) − Π(Z = 0,W ))
]
. θ(W ) is identified as

[
μ(Z ,W ) − Π(Z ,W ) · m(W )

]
.

Statistical target parameter.

Lemma 1 The causal parameter given in Eq. (1.2) is identified by the statistical
target parameter:

ΨA,0 = EPW,0

[
m0(W )d0(V ) + θ0(W )

]
(1.3)

Note that optimal decision rule d0 is a function ofm0, PW,0. For ΨA,0 we also use the
notation ΨA(PW,0,m0, θ0), or alternately ΨA(PW,0,Π0, μ0), using the above identi-
fiability results.

This lemma follows from our causal assumptions:

ΨA(P0) = EY (A = d0(V )) = EW EUY |W EY (A = d0(V )|W,UY )

The right hand side becomes EW EUW |Y (m(W )d0(V ) + θ(W ) +UY ) for a continuous
Y , and EW EUW |Y (m(W )d0(V ) + θ(W ) + ŨY ) for a binary Y .
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1.4 Closed-Form Solution for Optimal Rule d0 in the Case
of Binary Treatment

The problem of finding the optimal deterministic treatment rule d(V ) is NP-hard
(Karp 1972). However, when allowing possible non-deterministic treatments, there
is a simple closed-form solution for the optimal treatment or the optimal intent-to-
treat. The optimal rule is to treat all strata with the highest marginal gain per marginal
cost, so that the total cost of the policy equals the cost constraint.

This section introduces key quantities and notation used in the rest of the chapter.
We present the solution in detail for the case of intervening on the instrument, when
Z = d0(V ). Recall that wlogwe think of Z = 0 as the ‘baseline’ intent-to-treat (ITT)
value having lower cost. We define a scoring function T (V ) = μb(V )

cb(V )
for ordering

subgroups (given by V ) based on the effect of setting Z = 1 per unit cost. In the
optimal intent-to-treat policy, all groups with the highest T (V ) values deterministi-
cally have Z set to 1, up to cost K and assuming μb ≥ 0. We write TP(V ) to make
explicit the dependence on PW , μ(Z ,W ) from distribution P .

Define a function SP : [−∞,+∞] → R as

SP(x) = EV [I (TP(V ) ≥ x)(cb(V )]

In otherwords, SP(x) gives the expected (additional above baseline) cost of setting
Z = 1 for all subgroups having TP(V ) ≥ x . We use S0(·) to denote SP0 from here
on.

Define cutoff ηP as
ηP = S−1

P (K − KA,P)

The assumptions below in Sect. 1.5 guarantee that S−1
P (K − KA,P) exists and ηP

is well defined. η is set so that there is a total cost K of treating with Z = 1 everyone
having T (V ) ≥ η. Further let:

τP = max{ηP , 0}

Thus, τ gives the cutoff for the scoring function T (V ), so the optimal rule is

dP(V ) = 1 iff TP(V ) ≥ τP

Lemma 2 Assume (A2)–(A4). Then, the optimal decision rule d0 for parameter
ΨZ ,0 as defined in Eq.1.1 is the deterministic solution d0(V ) = 1 iff T0(V ) ≥ τ0,
with T0, τ0 as defined above.

The proof is given in Toth (2016). That work also describes modifications to the
optimal solution for d0 when Z is continuous or categorical.
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1.4.1 Closed-Form Solution for Optimal Treatment Rule
A = d0(V )

The solution given above goes through for the case of intervening on the treatment,
with the two main modifications that: (1) replace intervention variable Z with A, and
(2) replace μb(W ) with m(W ). These latter quantities represent the effect on Y of
applying the intervention versus the baseline treatment (at Z or A, respectively).

1.5 Assumptions for Pathwise Differentiability of ΨZ,0
and ΨA,0

We use notation d0 = dP0 , τ0 = τP0 , etc. We state these assumptions for ΨZ ,0. The
exact same assumptions apply for ΨA,0, replacing Z with A in a few places.

These three assumptions are needed to ensure pathwise differentiability and prove
the form of the canonical gradient (Theorem 1).

Assumptions (A2)–(A4).

(A2) Positivity assumption: 0 < ρ0(W ) < 1.

(A3) There is a neighborhood of η0 where S0(x) is Lipschitz continuous, and a
neighborhood of S0(η0) = K − KZ 0

where S−1
0 (y) is Lipschitz continuous.

(A4) Pr0(T0(V ) = τ) = 0 for all τ in a neighborhood of τ0.

Note that (A3) implies that S−1
0 (K − KZ 0

) exists. Note also that (A3) actually
implies Pr0(T0(V ) = η) = 0 for η in a neighborhood of η0, and thus, (A3) implies
(A4) when η0 > 0 and τ0 = η0.

Need for (A4) (Guarantee of non-exceptional law).
If (A4) does not hold and there is positive probability of individuals being at the
threshold for being treated or not under the optimal rule, then the solution d(V ) is
not unique, and ΨZ ,0 is no longer pathwise differentiable. It is easy to see that under
(A4), the optimal d(V ) over the broader set of non-deterministic decision rules is
a deterministic rule. Toth (2016) describes why (A4) is a reasonable assumption in
practice whenwe have a constraint KZ < K < KZ that allows for only a strict subset
of the population to be treated.
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1.6 TMLE for Optimal Intent-to-Treat Problem (ΨZ,0)

All proofs and derivations for what follows are given in Toth (2016).

1.6.1 Canonical Gradient for ΨZ,0

For O = (W, Z , A,Y ), and deterministic rule d(V ), define

D1(d, P)(O) � I (Z = d(V ))

ρP(W )
(Y − μP(Z ,W )) (1.4)

D2(d, P)(O) � μP(d(V ),W ) − EPμP(d(V ),W ) (1.5)

D3(d, τ, P)(O) = −τ(cT (d(V ),W ) − K ) (1.6)

Define

D∗(d, τ, P)(O) � D1(d, P)(O) + D2(d, P)(O) + D3(d, τ, P)(O)

Theorem 1 Assume (A1)–(A4) above. ThenΨZ is pathwise differentiable at P0 with
canonical gradient D0 = D∗(d0, τ0, P0).

1.6.2 TMLE

The relevant components for estimatingΨZ = EWμ(Z = d(V ),W ) areQ = (PW , μ

(Z ,W )). Decision rule d is also part of Ψ , but it is a function of PW , μ(Z ,W ). The
nuisance parameter is g = ρ(W ). First convert Y to the unit interval via a linear
transformation Y → Ỹ , so that Ỹ = 0 corresponds to Ymin and Ỹ = 1 to Ymax. We
assume Y ∈ [0, 1] from here.

1. Use the empirical distribution PW,n to estimate PW . Make initial estimates of
μn(Z ,W ) and gn = ρn(W ) using any strategy desired. Data-adaptive learning
using Super Learner is recommended.

2. The empirical estimate PW,n gives an estimate of PrV,n(V ) = EW,n I (FV (W ) =
V ), KZ ,n = EW,ncT (0,W ), KZ ,n = EW,ncT (1,W ), and cb,Z ,n(V ) = EW,n|V
(cT (1,W ) − cT (0,W )).

3. Estimate μb,0 as μb,n(V ) = EW,n|V (μn(1,W ) − μn(0,W )).
4. Estimate T0(V ) as Tn(V ) = μb,n(V )

cb,Z ,n(V )
.

5. Estimate S0(x) using Sn(x) = EV,n[I (Tn(V ) ≥ x)(cb,Z ,n(V )].
6. Estimate η0 as ηn using ηn = S−1

n (K − KZ ,n) and τn = max{0, ηn}.
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7. Estimate the decision rule as dn(V ) = 1 iff Tn(V ) ≥ τn .
8. Now fluctuate the initial estimate ofμn(Z ,W ) as follows: For Z ∈ [0, 1], define

covariate H(Z ,W ) � I (dn(V )=Z)

gn(W )
. Run a logistic regression using:

Outcome: (Yi : i = 1, . . . , n)

Offset: (logit μn(Zi ,Wi ), i = 1, . . . , n)

Covariate: (H(Zi ,Wi ) : i = 1, . . . , n)

Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1[μn(ε)(Zi ,Wi ) log Yi + (1 − μn(ε)(Zi ,Wi )) log(1 − Yi )]

and μn(ε)(Z ,W ) = logit−1(logit μn(Z ,W ) + εH(Z ,W )).
9. Set the final estimate of μ(Z ,W ) to μ∗

n(Z ,W ) = μn(εn)(Z ,W ).
10. Finally, form final estimate of ΨZ ,0 = ΨZ ,d0(P0) using the plug-in estimator

Ψ ∗
Z = ΨZ ,dn (P

∗
n ) = 1

n

n∑

i=1

μ∗
n(Z = dn(Vi ),Wi )

We have used the notation ΨZ ,d(P) referring to mean outcome under decision
rule Z = d(V ), and Ψ ∗

n the final estimate of the data-generating distribution.

It is easy to see that PnD∗(dn, τn, P∗
n ) = 0: We have PnD1(dn, P∗

n ) = Pn
d
dε

L(Qn(ε|gn), gn, (O1, . . . , On))|ε=0 = 0; PnD2(dn, P∗
n ) = 0 when we are using the

empirical distribution PW,n; and PnD3(dn, τn, P∗
n ) = 0 is described in the proof of

optimality of the closed-form solution in Toth (2016).

1.6.3 Theoretical Results for Ψ ∗
Z

1.6.3.1 Conditions for Efficiency of Ψ ∗
Z

These six conditions are needed to prove asymptotic efficiency (Theorem 2). As
discussed in Toth (2016), when all relevant components and nuisance parameters
(PW,n, ρn, μn) are consistent, then (C3) and (C4) hold, while (C6) holds by con-
struction of the TMLE estimator.

(C1) ρ0(W ) satisfies the strong positivity assumption: Pr0(δ < ρ0(W ) < 1 −
δ) = 1 for some δ > 0.

(C2) The estimate ρn(W ) satisfies the strong positivity assumption, for a fixed
δ > 0 with probability approaching 1, so we have Pr0(δ < ρn(W ) < 1 − δ) → 1.

Define second-order terms as follows:

R1(d, P) � EP0

[(
1 − PrP0(Z = d|W )

PrP(Z = d|W )

)(
μP(Z = d,W ) − μ0(Z = d,W )

)]
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R2(d, τ0, P) � EP0

[
(d − d0)(μb,0(V ) − τ0cb,0(V ))

]

Let R0(d, τ0, P) = R1(d, P) + R2(d, τ0, P).

(C3) R0(dn, τ0, P∗
n ) = oP0(n

− 1
2 ).

(C4) P0[(D∗(dn, τ0, P∗
n ) − D0)

2] = oP0(1).

C5) D∗(dn, τ0, P∗
n ) belongs to a P0-Donsker class with probability approaching 1.

(C6) 1
n

∑n
i=1 D

∗(dn, τ0, P∗
n )(Oi ) = oP0(n

− 1
2 ).

1.6.3.2 Sufficient Conditions for Lemma 3

(E1) GC-like property for cb,Z (V ), μb,n(V ):
supV |(EW,n|V − EW,0|V )cb,T (W )| = supV (|cb,Z ,n(V ) − cb,Z ,0(V )|) = oP0(1)

(E2) supV |EW,0|Vμb,n(W ) − EW,0|Vμb,0(W )| = oP0(1)

(E3) Sn(x), defined as x → EV,n[I (Tn(V ) ≥ x)cb,Z ,n(V )] is a GC-class.

(E4) Convergence of ρn ,μn to ρ0,μ0, respectively, in L2(P0) norm at a O(n−1/2)

rate in each case.

When all relevant components and nuisance parameters are consistent, as is the
case when Theorem 2 below holds and our estimator is efficient, we also expect
conditions (E1)–(E4) to hold.

Toth (2016) discusses the assumptions and conditions above in detail.

1.6.3.3 Efficiency and Inference

Theorem 2 (Ψ ∗
Z is asymptotically linear and efficient.) Assume assumptions (A1)–

(A4) and conditions (C1)–(C6). Then, Ψ ∗
Z = ΨZ (P∗

n ) = ΨZ ,dn (P
∗
n ) as defined by the

TMLE procedure is a RAL estimator of ΨZ (P0) with influence curve D0, so

ΨZ (P∗
n ) − ΨZ (P0) = 1

n

n∑

i=1

D0(Oi ) + oP0(n
− 1

2 ).

Further, Ψ ∗
Z is efficient among all RAL estimators of ΨZ (P0).
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Inference. Let σ 2
0 = VarO∼P0D0(O). By Theorem 2 and the central limit theo-

rem,
√
n(ΨZ (P∗

n ) − ΨZ (P0)) converges in distribution to a N (0, σ 2
0 ) distribution.

Let σ 2
n = 1

n

∑n
i=1 D

∗(dn, τn, P∗
n )(Oi )

2 be an estimate of σ 2
0 .

Lemma 3 Under the assumptions (C1) and (C2), and conditions (E1)–(E4), we
have σn →P0 σ0. Thus, an asymptotically valid 2-sided 1 − α confidence interval is
given by

Ψ ∗
Z ± z1− α

2

σn√
n

where z1− α
2
denotes the (1 − α

2 )-quantile of a N (0, 1) r.v.

1.6.3.4 Double Robustness of Ψ ∗
Z,n

Theorem 2 demonstrates consistency and efficiency when all relevant components
and nuisance parameters are consistently estimated. Another important issue is under
what cases of partial misspecification we still get a consistent estimate ofΨZ ,0, albeit
an inefficient one. Our TMLE-based estimate Ψ ∗

Z is a consistent estimate of ΨZ ,0

under misspecification of ρn(W ) in the initial estimates, but not under misspecifica-
tion of μn(W, Z). However, it turns out there is still an important double robustness
property. If we considerΨ ∗

Z = ΨZ ,dn (P
∗
n ) as an estimate ofΨZ ,dn (P0), where the opti-

mal decision rule dn(V ) is estimated from the data, then we have that Ψ ∗
Z is double

robust to misspecification of ρn or μn in the initial estimates.

Lemma 4 (Ψ ∗
Z is a double robust estimator of ΨZ ,dn (P0).) Assume assumptions

(A1)–(A4) and conditions (C1)–(C2). Also assume the following version of (C4):

VarO∼P0(D1(dn, P∗
n )(O) + D2(dn, P∗

n )(O)) < ∞.

Then, Ψ ∗
Z = ΨZ ,dn (P

∗
n ) is a consistent estimator of ΨZ ,dn (P0) when either μn is

specified correctly, or ρn is specified correctly.

The proof of this lemma is based on the equation

ΨZ ,dn (P
∗
n ) − ΨZ ,dn (P0) = −P0

[
D1(dn, P∗

n ) + D2(dn, P∗
n )

] + R1(dn, P∗
n )

where D1, D2, and R1 are as defined in Sects. 1.6.1 and 1.6.3.1.

1.7 TMLE for Optimal Treatment Problem (ΨA,0)

Wenowpresent results for the case of intervening on the treatment, setting A = d(V ).
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1.7.1 Efficient Influence Curve D∗
A(Ψ0)

Lemma 5 Let

J0(Z ,W ) = I (Z = 1)

ρ0(W )
+

( I (Z=1)
ρ0(W )

− I (Z=0)
1−ρ0(W )

)(
d0(V ) − Π0(W, Z = 1)

)

Π0(W, Z = 1) − Π0(W, Z = 0)

The efficient influence curve D∗
A(Ψ0) is

D∗
A(Ψ0) = −τ0EP0 [cT (d0(V ),W ) − K ] (1.7)

+m0(W )d0(V ) + θ0(W ) − Ψ0 (1.8)

−J0(Z ,W )m0(W )
[
A − Π0(W, Z)

]
(1.9)

+J0(Z ,W )
[
Y − (m0(W )Π0(W, Z) − θ0(W ))

]
(1.10)

We also write D∗(d0, τ0, P0). For convenience, denote lines (1)–(4) of D∗
above as D∗

c , D∗
W , D∗

Π , and D∗
μ, respectively. Finally, let D

∗
A,dn

denote the efficient

influence curve for ΨA,dn (P0) � EPW,0m0(W )dn(V ) + θ0(W ), which is the mean
counterfactual estimate when the decision rule is estimated from the data. We have
D∗

A,dn
= D∗

W + D∗
Π + D∗

μ (see Toth 2016).

1.7.2 Iterative TMLE Estimator

We have derived two different TMLE-based estimators for ΨA,0. We present an
iterative estimator here, which involves a standard, numerically well-behaved, and
easily understood likelihoodmaximization operation at each step. Theother estimator
uses a logistic fluctuation in a single non-iterative step and has the advantage that
the estimate μ respects the bounds of Y found in the data (see Toth 2016; Toth and
van der Laan 2016).

The relevant components for estimatingΨA = EW [m(W )d(V ) + θ(W )] are Q =
(PW ,m, θ). The nuisance parameters are g = (ρ,Π). d(V ) and τ can be thought of
as functions of PW ,m here. Let

h1(W ) � 1
ρ(W )(Π(W,1)−Π(W,0)) + d(V )−Π(W,1)

(Π(W,1)−Π(W,0))2
1

ρ(W )(1−ρ(W ))
. Also, let h2(W ) �

1
ρ

[
1 − Π(W,1)

Π(W,1)−Π(W,0) + d−Π(W,1)
Π(W,1)−Π(W,0) (1 − Π(W,1)

Π(W,1)−Π(W,0)
1

1−ρ
)
]
.

Then, we have that D∗
μ = (h1Π + h2)(Y − mΠ − θ).

If A is not binary, convert A to the unit interval via a linear transformation A → Ã
so that Ã = 0 corresponds to Amin and Ã = 1 to Amax. We assume A ∈ [0, 1] from
here.

1. Use the empirical distribution PW,n to estimate PW . Make initial estimates
of Q = {mn(W ), θn(W )} and gn = {ρn(W ),Πn(W, Z)} using any strategy
desired. Data-adaptive learning using Super Learner is recommended.
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2. The empirical estimate PW,n gives an estimate of PrV,n(V ) = EW,n I (FV (W ) =
V ), KA,n = EW,ncA(0,W ), KA,n = EW,ncA(1,W ), and cb,A,n(V ) = EW,n|V
(cA(1,W ) − cA(0,W )).

3. Estimate mn(V ) as EW,n|Vm(W ).
4. Estimate T0(V ) as Tn(V ) = mn(V )

cb,A,n(V )
.

5. Estimate S0(x) using Sn(x) = EV,n[I (Tn(V ) ≥ x)(cb,A,n(V ))].
6. Estimate η0 as using ηn = S−1

n (K − KA,n) and τn = max{0, ηn}.
7. Estimate the decision rule as dn(V ) = 1 iff Tn(V ) ≥ τn (the decision rule is not

updated iteratively).

ITERATE STEPS (8)–(9) UNTIL CONVERGENCE:
8. Fluctuate the initial estimate of mn(W ), θn(W ) as follows: Using μn(Z ,W ) =

mn(W )Πn(Z ,W ) + θn(W ), run an OLS regression:
Outcome: (Yi : i = 1, . . . , n)

Offset: (μn(Zi ,Wi ), i = 1, . . . , n)

Covariate: (h1(Wi )Πn(Zi ,Wi ) + h2(Wi ) : i = 1, . . . , n)

Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1(Yi − μn(ε)(Zi ,Wi ))

2 and
μn(ε)(Z ,W ) = μn(Z ,W ) + ε(h1(W )Πn(Z ,W ) + h2(W )).

Note that μn(ε) = (mn + εh1)Πn + (θn + εh2) stays in the semiparametric
regression model.
Update mn to mn(ε) = mn + εh1, θn to θn(ε) = θn + εh2.

9. Now fluctuate the initial estimate of Πn(Z ,W ) as follows: Use covariate
J (Z ,W ) as defined in Lemma 5. Run a logistic regression using:

Outcome: (Ai : i = 1, . . . , n)

Offset: (logit Πn(Zi ,Wi ), i = 1, . . . , n)

Covariate: (J (Zi ,Wi )m(Wi ) : i = 1, . . . , n)

Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1[Πn(ε)(Zi ,Wi ) log Ai + (1 − Πn(ε)(Zi ,Wi ))

log(1 − Ai )] andΠn(ε)(Z ,W ) = logit−1(logitΠn(Z ,W ) + εJ (Z ,W )m(W )).
Update Πn to Πn(ε). Also update h1(W ), h2(W ) to reflect the new Πn .

10. Finally, form final estimate of ΨA,0 = ΨA,d0(P0), using a plug-in estimator with
the final estimates upon convergence m∗

n and θ∗
n :

Ψ ∗
A = ΨA,dn (P

∗
n ) = 1

n

n∑

i=1

[
m∗

n(Wi ) · dn(Vi ) + θ∗
n (Wi )

]
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As for ΨZ , it is straightforward to check that the efficient influence equation
PnD∗(dn, τn, P∗

n ) = 0.

1.7.3 Double Robustness of Ψ ∗
A

As in Sect. 1.6.3.4, Ψ ∗
A is not a double robust estimator of ΨA,0: Component m(W )

must always be consistently specified as a necessary condition for consistency of
Ψ ∗

A . However, if we consider Ψ ∗
A = ΨA,dn (P

∗
n ) as an estimate of ΨA,dn (P0), where

the optimal decision rule dn(V ) is estimated from the data, then we have that Ψ ∗
A is

double robust:

Lemma 6 (Ψ ∗
A is a double robust estimator of ΨA,dn (P0).) Assume (A1)–(A4) and

(C1)–(C2). Also assume VarO∼P0(D
∗
d(dn, P

∗
n )(O)) < ∞.

Then, Ψ ∗
A = ΨA,dn (P

∗
n ) is a consistent estimator of ΨA,dn (P0) when either:

• mn and θn are consistent
• ρn and Πn are consistent
• mn and ρn are consistent

Above D∗
d refers to D∗

μ + D∗
Π + D∗

W , the portions of the efficient influence curve
that are orthogonal to variation in decision rule d. The proof is straightforward (see
Toth 2016).

1.8 Simulations

1.8.1 Setup

We use two main data-generating functions:

Dataset 1 (categorical Y ).

Data is generated according to:

UAY ∼ Bernoulli(1/2)

W1 ∼ Uniform(−1, 1)

W2 ∼ Bernoulli(1/2)

Z ∼ Bernoulli(α)

A ∼ Bernoulli(W1 + 10 · Z + 2 ·UAY − 10)

Y ∼ Bernoulli((1 − A) ∗ (plogis(W2 − 2 −UA,Y )) + (A) ∗ (plogis(W1 + 4))
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UA,Y is the confounding term. For the simulations where V ⊂ W , we take V =
(1(W1 ≥ 0) + −1(W1 < 0),W2). We have cT (Z = 1,W ) = 1, cT (Z = 0,W ) =
0 for all W here.

Dataset 2 (continuous Y .)

We use three-dimensional W and distribution

UAY ∼ Normal(0, 1)

W ∼ Normal(μβ,�)

Z ∼ Bernoulli(0.1)

A ∼ −2 · W1 + W22 + 4 · W3 · Z +UAY

Y ∼ 0.5 · W1 · W2 − W3 + 3 · A · W2 +UAY

When V ⊂ W , we use either V equals W1 rounded to the nearest 0.2, or alter-
nately, V is W3 rounded to the nearest 0.2. We also have cT (0,W ) = 0 for all W ,
and cT (1,W ) = 1 + b · W1, and varying μβ, �, and b.

Forming initial estimates.
We use the empirical distribution PW,n for the distribution of W . For learning μn ,
we use Super Learner, with the following libraries of learners (the names of learners
are as specified in the SuperLearner package (van der Laan et al. 2007):

For continuous Y : glm, step, randomForest, nnet, svm, polymars, rpart, ridge,
glmnet, gam, bayesglm, loess, mean.

For categorical Y : glm, step, svm, step.interaction, glm.interaction, nnet.4, gam,
randomForest, knn, mean, glmnet, rpart.

Further, we included different parameterizations of some of the learners given
above, such as ntree = 100, 300, 500, 1000 for randomForest.

Finally, for learning ρn , we use a correctly specified logistic regression, regressing
Z on W (except for simulation (C) as described below).

Estimators used.
For both parameters of interest ΨZ and ΨA, we report results on the TMLE estimator
Ψ ∗

Z (orΨ
∗
A), and the initial substitution estimatorΨ 0

Z ,n (orΨ
0
A,n). The latter is the plug-

in estimate, for instanceΨ 0
Z ,n � ΨZ (PW.n, μn), that uses the same initial estimates of

relevant components and the nuisance parameter as TMLE. Thus, the initial substi-
tution estimator gives a comparison of TMLE to a straightforward semiparametric,
machine learning-based approach. 1000 repetitions are done of each simulation.
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Table 1.1 (Simulation A.) Consistent estimation of ΨZ ,0 using machine learning, categorical
Y · ΨZ ,0 = 0.3456, K = 0.3, and V ⊂ W · σ 2

n = VarO∼Pn D
∗
Z (dn, τn, P∗

n )(O)

N = 250

Estimator Ψ ∗
Z Bias Var σ 2

n /N Cover

TMLE 0.3545 0.0089 0.0071 0.0010 88.3

CV-TMLE 0.3541 0.0085 0.0017 0.0010 90.6

Init. Substit. 0.3427 −0.0029 0.0067 0.0010 (87.9)

N = 1000

TMLE 0.3485 0.0029 0.0003 0.0003 93.3

CV-TMLE 0.3497 0.0041 0.0002 0.0003 96.8

Init. Substit. 0.3344 −0.0112 0.0003 0.0003 (88.3)

N = 4000

TMLE 0.3467 0.0011 0.0001 0.0001 95.0

CV-TMLE 0.3498 0.0002 0.0001 0.0001 94.7

Init. Substit. 0.3429 −0.0027 0.0001 0.0001 (93.3)

Table 1.2 (Simulation B.) Consistent estimation of ΨA,0 using machine learning, continuous
Y · ΨA,0 = 336.2, K = 0.8, and V ⊂ W · σ 2

n = VarO∼Pn D
∗
Z (dn, τn, P∗

n )(O)

N = 250

Estimator Ψ ∗
A Bias Var σ 2

n /N Cover

TMLE 327.5 −8.7 344.7 176.3 78.4

Init. Substit. 310.0 −26.2 495.1 174.0 (47.8)

N = 1000

TMLE 332.9 −3.3 40.7 38.5 89.0

Init. Substit. 322.7 −13.5 126.8 43.1 (53.2)

N = 4000

TMLE 334.5 −1.7 8.4 9.1 93.3

Init. Substit. 328.7 −7.5 25.9 8.8 (41.3)

Simulations (A–B): using a large library of learning algorithms for consistent
initial estimates.
Tables1.1 and 1.2 show the behavior of our estimators whenmachine learning is used
to consistently estimate all relevant components and nuisance parameters. Table1.1
deals with estimating ΨZ when Y is categorical. In this case, bias is very low with or
without the TMLE fluctuation step. σ 2

n /n gives a consistent estimate of the variance
of Ψ ∗

Z , in this case where efficiency holds. We see that both estimators have very
low variance that converges to σ 2

n /n by n = 1000. Coverage of 95% confidence
intervals is also displayed, with intervals calculated as Ψ ∗

n ± 1.96 σn√
n
, as in Lemma

3. The coverage is given in parentheses for the initial substitution estimator, as σ 2
n

is not necessarily the right variance. The TMLE estimators show better coverage,
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even though, in this example, the width of the confidence intervals was accurate for
all estimators for n ≥ 1000. This may be due to the asymptotic linearity property
of the TMLE-based estimators, ensuring that they follow a normal distribution as n
becomes large.

Y is continuous in Table1.2. TMLE convincingly outperforms the initial substi-
tution estimator in both bias and variance here. Only the TMLE estimator is guar-
anteed to be efficient, and we see a significant improvement in variance. The esti-
mated asymptotic variance σ 2

n /n approximates the variance seen in Ψ ∗
A fairly well

for n ≥ 1000. The coverage of confidence intervals for TMLE seems to converge to
95% more slowly than for the previous case of categorical Y .

Simulation (C): double robustness under partial misspecification.
As described in Sect. 1.7.3, Ψ ∗

A = Ψ ∗
A,dn

is a double robust estimator of ΨA,dn (Ψ0),
but not necessarily of ΨA,0.

Table1.3 verifies consistency of Ψ ∗
A when the initial estimate for μn is grossly

misspecified as μn = mean(Y ). This creates a discrepancy of ∼0.1 points between
ΨA,dn (P0) andΨA,0. The initial substitution estimator retains a bias of around−0.09 in
estimating ΨA,dn (P0), while TMLE demonstrates practically zero bias by n = 1000.
TMLE is not efficient in this setting of partial misspecification. It has significantly
larger variance than the initial substitution estimator for smaller sample sizes, but the
variances are similar by n = 4000. For confidence intervals, the width was calculated
by estimating Var(ΨA,dn ) as σ 2

n = VarO∼Pn D
∗
dn

(P∗
n )(O), where D∗

dn
(P) is the effi-

Table 1.3 (Simulation C.) Robustness ofΨ ∗
A to partial misspecification,μn is misspecified.ΨA,0 =

0.63, K = 0.5, and V = W

N = 1000

Estimator Ψ ∗
A

(
Ψ ∗ −

Ψdn (P0)
)

(
Ψ ∗ − Ψ0

)
Var Cover

TMLE 0.54 0.00 −0.09 0.69 93.3

Init. Substit. 0.45 −0.10 −0.18 0.24 (69.2)

N = 4000

TMLE 0.54 0.00 −0.09 0.11 96.8

Init. Substit. 0.45 −0.09 −0.18 0.10 (40.1)

Table 1.4 (Simulation D.) Estimation of true mean outcome ΨZ ,dn (P0), under rule
dn · ΨZ ,dn (P0) = 162.8 when K = 0.2, and ΨZ ,dn (P0) = 289.1 when K = 0.8. Sample size is
N = 1000 and V = W

K = 0.2 K = 0.8

Learning μn Ψ ∗
Z Var Ψ ∗

Z Var

Large library 158.9 8.14 286.4 9.32

Small library 148.3 49.45 267.9 16.28

No fitting 142.2 12.83 264.1 10.30
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cient influence curve of ΨA,dn (P) as defined in Sect. 1.7.1. It provides a conservative
(over)-estimate of variance for confidence intervals, as discussed in Toth and van der
Laan (2016). We see that TMLE’s coverage converges to just above 95%. On the
other hand, coverage is very low for the initial substitution estimator due to its bias.
This is despite the fact that the intervals are too wide in this case.

Simulation (D): quality of the estimate of dn versus the true mean outcome
attained under rule dn .
We study how more accurate estimation of the decision rule dn can lead to a
higher objective obtained. The objective maximized here is the mean outcome under
rule dn , where dn must satisfy a cost constraint. We use the known true distri-
butions for PW,0 and μ0 in calculating the value of mean outcome under dn as
Ψdn (P0) = EP0μ0(W, Z = dn(V )). The highest the true mean outcome can be under
a decision rule that satisfies EP0cT (W, Z = d(V )) ≤ K is Ψ0 using optimal rule
d = d0. Therefore, the discrepancy between Ψdn (P0) and Ψ0 gives a measure of how
inaccurate estimation of the decision rule diminishes the objective.

We compareΨdn (P0)when estimatingμn using the usual large library of learners;
when using a smaller library of learners consisting of mean, loess, nnet.size = 3,
nnet.size = 4, nnet.size = 5; and finally when we set μn = mean(Y ) · dn is estimated
usingμn as usual (note that it is the same between the initial substitution and TMLE-
based estimates). Table1.4 confirms the importance of forming a good fit with the
data for achieving a high mean outcome. For K = 0.2 when roughly 20% of the
population could be assigned Z = 1, the mean outcome was only a few points below
the true optimal mean outcome Ψd0 , when using the full library of learners (158.9
vs. 162.8). However, it was about 15 points lower when using a much smaller library
of learners. In fact, even when using machine learning with several nonparametric
methods in the case of the smaller library, the objective Ψdn (P0) attained was not far
from that attained with the most uninformative μn = mean(Y ). Very similar results
hold for the less constrained case of K = 0.8.

1.9 Discussion

We considered the resource-allocation problem of finding the optimal mean coun-
terfactual outcome given a general cost constraint, in the setting where unmeasured
confounding is a possibility and an instrumental variable is available. This work
dealt with both problems of finding an optimal treatment regime, and finding the
optimal intent-to-treat regime. For both cases, we gave closed-form solutions of the
optimal intervention and derived estimators for the optimal mean counterfactual out-
come. Our model allows the individualized treatment (or intent-to-treat) rules to be
a function of an arbitrary subset of baseline covariates. Estimation is done using
the targeted maximum likelihood (TMLE) methodology, which is a semiparametric
approach having a number of desirable properties (efficiency, robustness to mis-
specification, asymptotic normality, and being a substitution estimator). Simulation
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results showed that TMLE can simultaneously demonstrate both finite-sample bias
reduction and lower variance than straightforwardmachine learning approaches. The
empirical variance of TMLE estimators appears to converge to the semiparametric
efficiency bound, and confidence intervals are accurate for sample sizes of a few
thousand. Consistency in the case of partial misspecification was confirmed, in the
sense of Lemmas 4 and 6. Our simulations also addressed the important question of
to what extent improved statistical estimation can lead to better optimization results.
We were able to demonstrate significant increases in the value of the mean outcome
under the estimated optimal rule, when a larger library of data-adaptive learners
achieved a closer fit.
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Chapter 2
Overview of Omics Biomarker Discovery
and Design Considerations
for Biomarker-Informed Clinical Trials

Weidong Zhang, Bo Huang, Jing Wang and Sandeep Menon

2.1 Overview of Omics Biomarker Discovery

Biomarker discovery is critical in drug development to understand disease etiology
and evaluate drug activity. Rapid development of omics technologies over the last
few decades has offered tremendous opportunities in biomarker discovery. Omics
biomarkers are high dimensional in nature. The major omics technologies include
genomics (the study of genes, mutations and their functions), transcriptomics (the
study of themRNAand their expressions), proteomics (the study of proteins and their
expressions),metabolomics (the study ofmolecules involved in cellularmetabolism),
lipomics (the study of cellular lipids and their functions), and glycomics (the study of
cellular carbohydrates and their functions). Omics biomarkers are high dimensional
in nature. Each omics technology may output thousands or millions of analytes, and
dimensionality of omics data varies from a few hundreds to a fewmillions. Advance-
ments in omics technologies have provided us great opportunities to understand
disease biology from the unbiased global landscape. The technology boom started
from late twentieth century when Microarray was first available for measurement
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of whole transcriptome and genome. A DNA microarray is a solid surface attached
with a collection of DNA fragments, known as probes or oligos. A probe is a specific
sequence of a section of a gene that can be used to hybridize a cDNA or cRNA from
a fluorescent molecule-labeled target sample. The fluorescent intensity of a probe—
target hybridization is measured and quantified to determine the abundance of DNA
molecules in the target sample. As a novel alternative strategy for genomics study,
next-generation sequencing (NGS) technologies emerged after the completion of the
HumanGenome Project in 2003 have completely revolutionized biomedical research
in the last decade. As a result, both turnaround time and cost of sequencing have been
substantially reduced. According to the National Human Genome Research Institute
(NHGRI), the cost of sequencing a genome dropped from $100 million in 2001 to
$1245 in 2015 (Wetterstrand 2016), and the turnaround time was shortened from
years in the late 90s to days including analysis in 2016 (Meienberg et al. 2016). Over
the last decade, NGS technology has been widely applied to biomedical research in
variety of ways including transcriptome profiling, identification of new RNA splice
variant, genome-wide genetic variants identification, genome-wide epigenetic mod-
ification, and DNA methylation profiling. NGS technology is particularly a good
fit to cancer research given the “disorder of genome” nature of cancer disease. In
cancer research, NGS has significantly enhanced our ability to conduct comprehen-
sive characterization of cancer genome to identify novel genetic alterations and has
significantly helped dissect tumor complexity. Coupling with sophisticated compu-
tational tools and algorithms, significant achievements have been accomplished for
breast cancer, ovarian cancer, colorectal cancer, lung cancer, liver cancer, kidney
cancer, head and neck cancer, melanoma, acute myeloid leukemia (AML), etc. (Shyr
and Liu 2013).

2.2 Statistical Considerations in Omics Precision Medicine
Study

2.2.1 Data Integration

Human diseases are mostly complex diseases that involve multiple biological com-
ponents. Rapid rate of discovery has revealed many molecular biomarkers including
omic biomarkers that are associated with disease phenotypes. However, translat-
ing those associations into disease mechanisms and applying the discovery to clinic
remain a great challenge. In genome-wide association studies, the major issues are
either the effects of associated variants are too small effects or those effects do not
appear to be functionally relevant. For example, many genetic variants that may be
responsible for certain genetic disposition of certain disease reside on non-coding
region of the genome (Lowe and Reddy 2015). Using information from single bio-
logical process, e.g., genetic polymorphism, may limit our ability to unveil true
biological mechanism. On the other hand, single data set from on experiment repre-
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sents only one snapshot of the biology, which necessitates integration of data from
multiple experiments or multiple biological processes. It is well known that precision
medicine is a systems biology that requires a holistic approach to understand dis-
ease etiology. By nature, multiple data sets generated from different sources such as
different laboratories, different omics data types may be studied together to achieve
maximum benefits. However, integration of data from different technologies or plat-
forms has posed steep challenges on data analysis (Bersanelli et al. 2016). A few
statistical methods have been proposed but areas have been focused on multivari-
ate analysis approaches such as Partial least squares (PLS), Principal Component
Analysis (PCA), and network analysis (Bersanelli et al. 2016). A recent method
developed by Pineda et al. seemed to work well on combining information from
genetic variant, DNA methylation, and gene expression data measured in bladder
tumor samples, in which study penalized regression methods (LASSO and Elas-
tic NET), were employed to explore relationships between genetic variants, DNA
methylation, and gene expression measured in bladder tumor samples (Pineda et al.
2015).

Another issue with data integration is data preprocessing and normalization. For
example, onemaywant to combine gene expression data derived fromplatforms such
as PCR,Microarray, or NGS. Or onemaywant to combine gene expression data from
the same technology but the data are generated fromdifferent laboratories. To address
these issues and ensure valid comparisons between data sets, cross-platform normal-
ization has been proposed before data integration (Shabalin et al. 2008; Thompson
et al. 2016).

2.2.2 Power and Sample Size Assessment

Power and sample size estimation in precision medicine using omics technology
remain statistically challenging due to the high dimensionality and uncertain effect
sizes. Numerous methods have been proposed for expression-based omics data. For
example, Jung and Young developed a method to take the advantage of pilot data
for confirmatory experiment controlling family-wise error rate (FWER). When pilot
data are not available, a two-stage sample size recalculation was proposed using the
first stage data as pilot data (Jung and Young 2012). A false discovery rate (FDR)-
based approach for RNAseq experiment was developed by Bi and Liu, by which
the average power across the differentially expressed genes was first calculated, and
then a sample size to achieve a desired average power while controlling FDR was
followed (Bi and Liu 2016). Similar FDR-based approach was also available for
microarray or proteomics experiment (Liu and Hwang 2007).

Most power and sample size calculations focus on univariate analysis. However,
there are growing needs to tackle this problem in multivariate analysis. Saccenti and
Timmerman have proposed a method for sample size estimation in a multivariate
principal component analysis (PCA) and partial least-squares discriminant analysis
(PLS-DA) (Saccenti and Timmerman 2016). In the case of PCA, one may want
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to determine minimal sample size to obtain stable and reproducible PCA loading
estimates. For PLS-DA, the goal is to assess how sample size and variability of the
data affect the sensitivity and specificity of classification using PLS-DA (Saccenti
and Timmerman 2016). Although those algorithms were developed using certain
omics data, each one of them may be used as a generalized approach to the data that
have similar data type such as gene expression and metabolomics.

Sample size estimation in genome-wide association studies (GWAS) requires
special treatment given its unique features as compared to other omics data, e.g.,
transcriptomics or proteomics data. Often GWAS is conducted in a case-control
design or family-based (case-parents trio) design. Since GWAS typically evaluates
hundreds of thousands of SNP markers, a much larger sample size is expected to
achieve reasonable power (Klein 2007; Spencer et al. 2009;Wu and Zhao 2009; Park
et al. 2010). The power and sample size depend on multiple factors including effect
size, number of SNPs being tested, distribution of minor-allele frequency (MAF),
disease prevalence, linkage disequilibrium (LD), case/control ratio, and assumption
of error rate in an allelic test (Hong and Park 2012). Considering complexity of
genetic study and data structure and objectives of the studies, numerous methods
for sample size calculation have been proposed according to the specific scenarios
(Jiang and Yu 2016; Lee et al. 2012).

2.2.3 Statistical Modeling

Conventional statistics focus on problems with large number of experimental units
(n) as compared to small number of features or variables (p) measured from each
unit. In drug discovery, biomarker discovery using omics data in precision medicine
often deals with “large p, small n” problem, in which hundreds of thousands ana-
lytes are measured from relatively much smaller number of subjects (sometimes as
few as a dozen). An array of statistical methods have been developed in analysis of
high-dimensional omics data. Those methods include exploratory clustering anal-
ysis to investigate patterns and structures, and univariate or multivariate regression
and classification analysis to predict disease status (Johnstone andTitterington 2009).
For expression-based omics data such as gene expression, proteomics,metabolomics,
dimension reduction is considered as thefirst step before subsequent analysis.Dimen-
sion reduction techniques include descriptive statistical approach such as coefficient
variation (CV)filtering, bywhich analyteswith lowCVare removed from subsequent
regression/ANOVA analysis. This approach was particularly useful when comput-
ing power is limited. Given today’s high computing capacity, CV step is typically
skipped and a univariate regression analysis is used for both dimension reduction
and inference.

Although univariate single-analyte analysis is still a common approach for high-
dimensional data due to its simplicity and interpretation benefit, multivariate and
multiple regressions considering multiple analytes in a model become more pop-
ular for the advantage of: (1) Complexity of disease mechanism requires an inte-
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grated information from multiple biomarkers to explain more biological variations.
(2) Interactions between biomarkers cannot be modeled with single biomarker anal-
ysis. (3) Correlation and dependency among biomarkers cannot be handled with
single-analyte analysis. Common multivariate methods include elastic net regular-
ized regression (ENET), random forest (RF) and classification and regression trees
(CART).

High-dimensional omics data are complex in regard to not only their dimen-
sionality but their correlation structures. Therefore, controlling false discovery in
high-dimensional omics data may need more statistical rigor. Family-wise error rate
(FWER) adjustment techniques such as Bonferroni correction are easy to implement
but generally considered too conservative. Benjamini andHochberg (BH) introduced
a sequential p-value procedure that controls FDR (Benjamini and Hochberg 1995).
The BH method first finds the largest k such that P(m) ≤k/m * α, where m stands for
m tests and α is a predefined FDR level, and rejects the null hypothesis for all H(i) for
I�1…k. Compared with FWER approach, BH is able to gainmore power regarding
statistical discoveries. Another FDR-related method, which is widely applied in the
omics data analysis, is the q-value method developed by Storey (2002). The q-value
is a measure of significance in terms of the false discovery rate. Both q-value and
BH methods allow dependence of testing.

For GWAS, selection of genome-wide significance threshold is challenging due
to the ultra-high number of statistical testing and complex genetic LD structures.
Different procedures including Bonferroni, FDR, Sidak, permutation have been pro-
posed; however, it was suggested that a p�5×10−8 can be used for genome-wide
significance and p�1×10−7 can be used as a suggestive threshold at practical level
(Panagiotou and Ioannidis 2012; Pe’er et al. 2008). A recent study from Fadista et al.
further updated the thresholds by investigating different scenarios. They suggested
that P-value thresholds should take into account impact of LD thresholds, MAF, and
ancestry characteristics. A p-value threshold of 5×10−8 was confirmed for Euro-
pean population with MAF>5%. However, the P-value threshold needs to be more
stringent with European ancestry with low MAF (3×10−8 for MAF≥1%, 2×10−8

for MAF�0.5% and 1×10−8 for MAF≥0.1% at LD r2<0.8) (Fadista et al. 2016).

2.3 Biomarker-Informed Design Considerations

2.3.1 Classical Designs

Classical designs are widely used in clinical development of personalized medicine
with a predictive biomarker which does not involve any pre-specified statistical adap-
tations based on the interim outcomes. Classical population enrichment designs can
be categorized as two types of designs: retrospective enrichment design and prospec-
tive enrichment design.



28 W. Zhang et al.

2.3.1.1 Retrospective Designs

When prospective validation and testing of a biomarker is not feasible or not assess-
able in time at the beginning of the trial, retrospective enrichment design—a tra-
ditional all-comers design with retrospective validation of a biomarker, could be
considered.

Retrospective validation is conducted after the completion of the study and may
involve previously conducted trials in the same patient population. As stated by
Mandrekar and Sargent (2009) when conducted appropriately, this design can aid
in bringing forward effective treatments to marker-defined patient populations in
a timely manner that might otherwise be impossible due to ethical and logistical
(i.e., large trial and long time to complete) considerations. For such retrospective
analysis to be valid and to minimize bias, Mandrekar and Sargent summarized a list
of essential elements that are critical to retrospective validation studies.

• Data from a well-conducted randomized controlled trial
• Availability of samples on a large majority of patients to avoid selection bias
• Prospectively stated hypothesis, analysis techniques, and patient population
• Predefined and standardized assay and scoring system
• Upfront sample size and power justification.

Taking the development of EGFR-inhibitors cetuximab and panitumumab in
metastatic colorectal cancer (CRC) as an example, Cetuximab and panitumumab
were initially marketed for the indication of EGFR+CRC, which represents 65% of
advanced colorectal cancer patients. Based on retrospective analysis of previously
conducted randomized phase III and II trials (Karapetis et al. 2008; Bokemeyer et al.
2009; Van Cutsem et al. 2009), it has been demonstrated that cetuximab significantly
improves the overall survival for patients with wild-type KRAS (a protein that in
humans is encoded by the KRAS gene), with no survival benefit in patients harbor-
ing KRAS-mutant status. As a result, in July 2009, the FDA approved cetuximab
for treatment of KRAS wild-type colon cancer. Similarly, in a prospectively spec-
ified analysis of data from a previous randomized phase III trial of panitumumab
versus best supportive care (Amado et al. 2008), the hazard ratio for progression-
free survival (PFS) comparing panitumumab with best supportive care in the KRAS
wild-type and mutant subgroups was 0.45 and 0.99, respectively, with a statistically
significant treatment byKRAS status interaction (p<0.0001). Given the lack of activ-
ity in KRAS-mutant group, the label was changed to include wild-type patients only
in 2009.

2.3.1.2 Prospective Designs

In contrast to retrospective enrichment designs that test and assess biomarker of
interest retrospectively, prospective enrichment designs prospectively test, assess
biomarkers, and select patients at the beginning of the trial. Although retrospective
evaluation of predictive biomarkers could save resources and time andmake effective
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Fig. 2.1 Enrichment design

treatments available to patients in a much expedited timeframe, it may introduce
serious bias due to the nature of retrospective selection of patient subgroups and lack
of controlled validation of biomarkers. Hence, in the clinical development of targeted
therapies and predictive biomarkers, prospective design is still the gold standard.

There are a number of prospective enrichment designs including the classical
enrichment/targeted design, biomarker stratified design, sequential testing strategy
design, biomarker-analysis design, marker-based strategy design and hybrid design.
These designs differ from each other by the primary hypothesis test, randomization,
multiplicity approaches which in turn affects the operating characteristics of the
design including sample size, power, and type I error rate.

Enrichment/Targeted Design

In an enrichment design or targeted design, all patients in the trial may not generally
benefit from the study treatment under consideration. The goal of the enrichment
designs is to study the clinical benefit in a subgroup of the patient population defined
by a specific biomarker status. In this design, the patients are screened for the presence
or absence of a biomarker(s) profile. After extensive screening, only patients with the
presence of a certain biomarker characteristic or profile are enrolled in the clinical
trial (Freidlin et al. 2010; Sargent et al. 2005). In principle, this design essentially
consists of an additional criterion for patient inclusion in the trial (Fig. 2.1).

A recent example for the enrichment design was of mutated BRAF kinase
(Chapman et al. 2011). Almost 50% of melanomas have an activating V600E BRAF
mutation. This leads to the hypothesis that inhibition of mutated BRAF kinase
will have meaningful clinical benefit. Hence, only patients who tested positive for
V600E BRAF mutation were enrolled in the study. Patients were randomized to an
inhibitor of mutated BRAF kinase or control treatment. As hypothesized, the large
treatment benefit was observed in the pre-specified subgroup. Another example for
enriched design was used in HER2 trial where patients with HER2+breast cancer
(Romond et al. 2005). During the conduct of the study, it is important to have rapid
turnaround times for the assay results in order to enroll patients faster. In addition,
the assay testing should be consistent between different laboratories. For example, a
high discordance was found between the local and central testing for HER2 status.
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Hence, the Herceptin therapy may have benefitted a potentially larger group than
defined as HER2+by central testing.

The following considerations should be taken into account in this design—(1)
a smaller sample size is usually required but the screening may still take the same
amount of time (or even longer as explained below) as with an all-comers designs
given the extensive pre-screen testing that will be conducted before enrollment; (2)
the marketing label will be restricted; (3) there may still be a potential subset of
patients who may benefit with the new treatment; (4) restricted enrollment does not
provide data to establish that treatment is ineffective in biomarker negative patients;
(5) a low prevalence of the marker may be challenging operationally and financially.
Operationally, the biggest challenge is in recruitment, and financially, it may not be
commercially attractive.

The efficiency of this design is a function of the percent of biomarker positive
patients who are likely to be benefitted by the target treatment, and the reliability
and reproducibility of the assay also play a pivotal role. This design is appropriate
when the mechanistic behavior of drug is known and there is compelling preliminary
evidence of benefit to a subset population.

Biomarker Stratified Design

It is also called as the biomarker by treatment interaction design. This design is most
appropriate when there is no preliminary evidence to strongly favor restricting the
trial to patients with specific biomarker profile that would necessitate a biomarker-
enrichment design. This design is prospective and leads to a definitive marker val-
idation strategy. In such cases, marker by treatment or stratified design is more
informative than biomarker-enrichment design. In this design, the patients are tested
for biomarker status and then separately randomized according to their positive or
negative status of the marker (Freidlin et al. 2010). Thus, the randomization is done
using marker status as the stratification factor; however, only the patients with a
valid measurable marker result are randomized. Patients in each marker group are
then randomized to two separate treatments (Fig. 2.2). Two separate hypotheses tests
are conducted to determine the superiority of one treatment over the other separately
within each marker group. The sample size is calculated separately to power the
testing within each marker subgroup. Another variation to the hypothesis test within
the same design is to conduct a formal marker by treatment interaction test to see if
the treatment effect varies within each marker status subgroup. In this case, the study
is powered based on the magnitude of interaction. This design can be viewed as two
stand-alone trials; however, it is different from a large clinical trial by the calculation
of the sample size and restriction of the randomization to only patients with a valid
marker result.
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Fig. 2.2 Marker by treatment Interaction design

Sequential Testing Strategy Design

Sequential testing designs in principle can be considered as a special case of the
classical randomized clinical trial for all comers or unselected patients.

a. Test Overall Difference Followed by Subgroup

Simon and Wang (2006) proposed an analysis strategy where the overall hypothesis
is tested to see if there is a difference in the response in new treatment versus the
control group. If there is no difference in the response is not significant at a pre-
specified significance level (for example 0.01), then the new treatment is compared
to the control group in the biomarker status positive patients. The second comparison
uses a threshold of significance which is proportion of the traditional 0.05 not utilized
by the initial test. This approach is useful when the new treatment is believed to be
effective in a wider population, and the subset analysis is supplementary and used
as a fallback option.

For example, if the trial is planned for having 90% power for detecting a uniform
33% reduction in overall hazard using a two-sided significance level of 0.03, then
the overall analysis will take place when there are 297 events. If the test is positive
in 25% of patients and the test is not prognostic, then at the time of analysis there
will be approximately 75 events among the test positive patients. If the overall test
of treatment effect is not significant, then the subset test will have 75% power for
detecting a 50% reduction in hazard at a two-sided 0.02 significance level. By delay-
ing the treatment evaluation in the test positive patients, 80% power can be achieved
when there are 84 events and 90% power can be achieved when there are 109 events
in the test positive subset.

Song and Chi (2007) later proposed a modification of the above method. Their
method takes into account the correlation between the test statistics of the hypotheses
of the overall population and the biomarker positive population.

b. Test Subgroup Followed by the Overall Population

Bauer (1991) investigated the multiple testing in the sequential sampling. Here, the
hypothesis for the treatment is first tested in the biomarker positive status patients
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and then tested in the overall population. This strategy is appropriate when there is
a preliminary biological basis to believe that biomarker positive patients will benefit
more from the new drug and there is sufficient marker prevalence to appropriately
power the trial. In this closed testing procedure, the final type I error rate is always
preserved. The approach of first testing in the subgroup defined by marker status
has been implemented in the ongoing US-based phase III trial testing cetuximab in
addition to infusional fluorouracil, leucovorin, and oxaliplatin as adjuvant therapy in
stage III colon cancer (Albert et al. 2005). While the trial has now been amended to
accrue only patients with KRAS–wild-type tumors, approximately 800 patients with
KRAS mutant tumors have already been enrolled. In this trial, the primary analysis
would be conducted at the 0.05 level in the patients with wild-type KRAS. A sample
size of 1,035 patients with wild-type KRAS per arm would result in 515 total events,
providing 90% power to detect a hazard ratio of 0.75 for this comparison using a two-
sided log-rank test at a significance level of 0.05. If this subset analysis is statistically
significant at P=0.05, then the efficacy of the regimen in the entire population will
also be tested at level 0.05, as this is a closed testing procedure. This comparison
using all 2910 patientswill have 90%power to detect a hazard ratio of 0.79 comparing
the two treatment arms, based on a total of 735 events.

Biomarker-Analysis Design

Biomarker-analysis design (Baker et al. 2012) essentially has two elements. The
first element is a randomized trial with the presence or absence of the biomarker
examined in all participants followed by the identification of a promising subgroup.
This is done by using a plot of treatment benefit versus various cut-points or intervals
of the biomarker. It is critical in this design that the specimen be at least collected at
the randomization even if it is not examined, though it is preferred that it is examined
at randomization. Collection of the specimens a priori can mitigate the risk of non-
compliance with the treatment due to the incoming knowledge of the marker data
(Baker and Freedman 1995). As the data trickles in, the investigators need to assess
the risk and benefit especially from an ethical perspective of concealing the new
information.

This design can assist in understanding the following hypothesis test: (a) targeted
treatment versus standard of care in the overall population; (b) targeted treatment
versus standard of care in the biomarker positive population; (c) targeted treatment
versus standard of care in the biomarker negative population; (d) marker-based treat-
ment selection versus targeted therapy, and (e) marker-based treatment selection
versus standard of care. With multiple hypotheses that can be tested for (a) to (e),
the significance levels and confidence intervals need to be adjusted according to the
type and the number of hypotheses under consideration.

The selection of biomarker subgroup using the cut-points can be done using
graphics. Various graphics have been proposed in the literature which assists in
better visualization and understanding of the cut-points and intervals. Some of these
plots present confidence intervals that adjust for multiplicity. Commonly used plots
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include (a) marker-by-treatment predictiveness curves, (b) selection impact curve,
(c) tail-oriented subgroup plot, and (d) the sliding-window subgroup plot.

(a) Marker-by-treatment predictiveness curves (Janes et al. 2011)—the risk of the
response is plotted separately under targeted therapy and standard of care treat-
ments for subjects with a marker in the interval.

(b) Selection impact curve (Song and Pepe 2004)—benefit of marker-based treat-
ment selection is plotted directly as a function of marker cut-points.

(c) Tail-oriented subgroup plot (Bonetti and Gelber 2000)—The estimated bene-
fit of targeted therapy against the standard of care is plotted among subjects
with a marker level greater than a cut-point as a function of different clinically
meaningful cut-points. Hence, the tail of the distribution is specified when the
estimated benefit is plotted for a marker level above a certain cut-point.

(d) Sliding-window subgroup plot (Bonetti and Gelber 2004)—The estimated ben-
efit of targeted therapy against the standard of care is plotted among subjects
with a marker level within an interval as a function of marker level. Hence, the
sliding window is specified when the estimated benefit is plotted for a marker
level within a certain interval.

The tail-oriented subgroup plot and sliding window plots (Cai et al. 2011) give
confidence intervals that account formultiple testing of several cut-points or intervals.

Baker and Kramer (2005) proposed a special case of biomarker analysis design
for rare events. In this design, all subjects are randomized to either the targeted
therapy or the control. The specimens are collected but not examined at the time of
randomization. Subjects are randomly selected at the end of the trial to test for the
presence or absence of themarker. The probability of random selection is ascertained
based on the positive outcome of interest. King et al. (2001) proposed testing for the
marker only for the subjects with a positive outcome of interest. This type of design
can be referred to as biomarker-nested case-control design.

Marker-Based Strategy Design

In this design, patients are randomly assigned to treatment dependent or independent
of the marker status (Fig. 2.3). All patients randomized to the non-biomarker-based
arm receive the control treatment. In the biomarker-based arm, the patients receive
the targeted or experimental therapy if the marker is positive and control treatment if
the marker is negative (Freidlin et al. 2010; Sargent et al. 2005). The outcome of all
of the patients in the marker-based subgroup is compared to that of all patients in the
non-marker-based subgroup to investigate the predictive value of the marker. One
downside of this design is that patients treated with the same regimen are included in
both the marker-based and the non-marker-based subgroup, resulting in a substantial
redundancy leading to many patients receiving the same treatment regimes in both
subgroups. Hence, this design can reduce the treatment effect especially if the preva-
lence of the marker is high requiring a large sample size. This is illustrated in the
following example, in the ERCC1 trial (Cobo et al. 2007) and presented in (Freidlin
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Fig. 2.3 Marker-based strategy design

et al. 2010) about 57% of the biomarker-based strategy arm patients were assigned to
the same regimen of cisplatin+docetaxel as done in the standard of care arm. Thus,
the comparisonweakens the between-arm treatment effect difference and reduces the
statistical power to reject null hypotheses. This can lead to either getting incomplete
information or may miss a valuable biomarker in addition to delaying the evalua-
tion of the biomarker due to the increased sample size required to achieve a desired
power. One other disadvantage of this design is the inability to examine the effect
of targeted therapy in patients in the negative marker status group as none of these
patients receive it. Even if the patients in the negative marker status group respond to
the targeted therapy, this cannot be assessed. The treatment difference between the
new treatment and the control treatment can be diluted by marker-based treatment
selection and sometimes can be a poor choice as compared to the randomized design.

Amodified version of this design has been proposed where negative marker status
groupundergoes randomization and receives the targeted therapyor the control. Thus,
the modified design allows assessment of the targeted therapy in both the biomarker
positive and negative subgroup. It helps to assess whether the efficacy of the marker
positive patients to therapy is because of the marker status being positive or due to
an improved treatment regardless of the marker status. The assessment can also be
done retrospectively if the classification of the marker needs to be revisited.

Hybrid Design

This design should be considered when there is strong evidence from preclinical or
prior studies that there is efficacy of some treatment(s) on the marker-based sub-
group. This makes it almost impossible due to ethical reasons to randomize patients
with a particular marker to other treatment options. It is very similar to the enrich-
ment designs, and all patients are examined for marker status and are randomly
assigned to treatment or assigned to standard-of-care treatment for patients with
positive biomarker values. However, only a marker-positive subgroup of patients is
randomly assigned to treatments, whereas patients in the marker-negative group are
assigned to control or standard-of-care treatment (Fig. 2.4). The study is powered to
detect treatment difference only in the marker-positive group. Samples are collected
from all the subjects to help testing for additional markers in the future.
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Fig. 2.4 Hybrid design

It should be noted that except for the enrichment/targeted design, all classi-
cal designs covered are all-comers designs so that all patients irrespective of their
biomarker status is enrolled in the study.

2.3.2 Novel Designs

2.3.2.1 Adaptive Accrual Design

If biomarker-based subgroups are predefined, but with uncertainty on the best pos-
sible endpoint and population, an adaptive accrual design could be considered with
interim analysis that may lead to modify the patient population to accrual.

Wang et al. (2007) proposed a phase III design comparing an experimental treat-
ment with a control treatment that begins with accruing both positive and negative
biomarker status patients. An interim futility analysis would be performed, and based
on results of the interim analysis it is decided to either continue the study in all patients
or only the biomarker positive patients. Specifically, the trial follows the following
scheme: begin with accrual to both marker-defined subgroups; an interim analysis
is performed to evaluate the test treatment in the biomarker-negative patients. If
the interim analysis indicates that confirming the effectiveness of the test treatment
for the biomarker-negative patients is futile, then the accrual of biomarker-negative
patients is halted and the final analysis is restricted to evaluating the test treatment
for the biomarker-positive patients. Otherwise, accrual of biomarker-negative and
biomarker-positive patients continues to the target sample size until the end of the
trial. At that time, the test treatment is compared to the standard treatment for the
overall population and for biomarker-positive patients (Fig. 2.5).

Jenkins et al. (2011) proposed a similar design but with more flexibility in the
context of oncology trials. It allows the trial to test treatment effect in the overall pop-
ulation, subgroup population or the co-primary populations at the final analysis based
on the results from interim analysis. Besides, the decision to extend to the second
stage is based on intermediate or surrogate endpoint correlated to the final endpoint
(Fig. 2.6). Specifically, the trial has two distinct stages and follows the following
scheme: at the first stage, accrual both marker-defined subgroups; an interim analy-
sis is performed on the first stage subjects using a short-term intermediate endpoint;
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Fig. 2.6 Adaptive accrual design

based on the interim results, the trial can (1) continue in co-primary populations; (2)
continue in marker-defined subgroup; (3) continue in the full population without an
analysis in marker-defined subgroup; (4) stop for futility. Each of the above options
has a pre-specified, but potentially different, stage 2 sample size and length of fol-
low up associated with it. As the trial continues to recruit new subjects for stage 2,
the stage 1 subjects would be remained in the trial and be monitored for long-term
endpoint. The final assessment for the trial is on long-term endpoint for all patients
from both stages.

Mehta et al. (2009) also proposed an adaptive accrual design, which is called
“adaptive group sequential design with population enrichment.” This design is an
extension to a classical group sequential design. Specifically, at the second-last visit
in a trial using group sequential design, both the sample size and study popula-
tion are allowed to be modified based on the accumulated observed data. Adaptive
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accrual designs are very attractive due to its flexibility to change sample size and
enrich population, which greatly increase the chance of study success. However,
these designs also increase the complexity of trial dramatically. From the trial man-
agement perspective, logistics of drug are complicated if sample size is increased
and the recruitment might slow down if population is enriched. From the statistical
perspective, type I error of the trial would be inflated due to the potential interim
adaptations and multiplicity. Appropriate statistical correction methods and testing
procedures should be applied to preserve the type I error. Besides, intensive sim-
ulations should be conducted to obtain a good understanding of the various trial
parameters such as the interim decision rule before committing to a design.

2.3.2.2 Biomarker-Adaptive Threshold Design

Biomarker development and validation is usually very expensive and time consum-
ing. Often times by the time of the start of late phase clinical trials, a reliable
biomarker, as well as its threshold, for identifying patients sensitive to an experi-
mental treatment is not known.

When themarker is known but the threshold or the cut-point for defining a positive
or negative biomarker status is not clear, a biomarker-adaptive threshold design can
be considered (Jiang et al. 2007). The biomarker-adaptive threshold design combines
the test of overall treatment effect with the establishment and validation of a cut-point
for a pre-specified biomarker which identifies a biomarker-based subgroup believed
to be most sensitive to the experimental treatment. This design potentially provides
substantial gain in efficiency.

Specifically, the main purpose of the biomarker-adaptive threshold design is to
identify and validate a cutoff point for a pre-specified biomarker, and to compare the
clinical outcome between experimental and control treatments for all patients and
for the patients identified as biomarker positive in a single study. The procedure pro-
vides a prospective statistical test of the hypotheses that the experimental treatment
is beneficial for the entire patient population or that the experimental treatment is
beneficial for a subgroup defined by the biomarker and provides an estimate of the
optimal biomarker cutoff point.

The statistical hypothesis test can be carried out by splitting the overall type
I error rate α. First, compare the treatment response on the overall population at
α1 and if not significant then perform the second test at α − α1. For example,
if the null hypothesis of no benefit in overall population is rejected at a desired
significance level of say 0.04, then the testing is stopped. Otherwise, the testing
is carried out at 0.01 to test the hypothesis of no benefit in identified biomarker-
based subpopulation. This strategy controls overall alpha below the 0.05 level. The
advantage of this procedure is its simplicity and that it explicitly separates the effect of
the test treatment in the broad population from the subgroup specification.However, it
takes a conservative approach in adjusting for multiplicity in combining the overall
and subgroup analyses. Other strategies of combining the two statistical tests for
overall and subgroup patients involve consideration of the correlation structure of
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the two test statistics. A point estimate and a confidence interval for the cutoff value
could be estimated by a bootstrap re-sampling approach.

2.3.2.3 Adaptive Signature Design

The adaptive signature design (Freidlin et al. 2009) is a design proposed to select the
subgroup using a large number of potential biomarkers. This design is appropriate
when both the potential biomarkers and the cutoff are unknown; however, there
is some evidence that the targeted therapy may work in some of the shortlisted
biomarkers.

It combines a definitive test for treatment effect in entire patient population with
identification and validation of a biomarker signature for the subgroup sensitive
patient population. There are three elements in this design: (a) trial powered to detect
the overall treatment effect at the end of the trial; (b) identification of the subgroup of
patients who are likely to benefit to the targeted therapy at the first stage of the trial;
(c) statistical hypothesis test to detect the treatment difference in sensitive patient
population based only the subgroup of patients randomized in the latter half of the
trial. These elements are pre-specified prospectively.

Statistical tests should be conducted appropriately in this design to account for
multiplicity. A proposed strategy is as follows: test the initial null hypothesis of no
treatment benefit in overall population at a slightly lower significance level than the
overall alpha of 0.05 (for example, 0.04). If the initial null hypothesis is rejected at the
lower significance level, then the targeted therapy is declared superior than the control
treatment for the overall population. The hypothesis testing and analysis is complete
at this stage. If the first hypothesis is not rejected, then the signature component of
the design is used to select a potentially promising biomarker subgroup. It is done
by the following steps: split the study population into a training sub-sample and a
validation sub-sample of patients. Training sub-sample is used to develop a model to
predict the treatment difference between targeted therapy and control as a function of
baseline covariates. The developed model is then applied to validation sub-sample to
obtain the prediction for each subject in this sample. A predicted score is calculated
to classify the subject as sensitive or non-sensitive. The subgroup is selected using a
pre-specified cutoff for this predicted score. The second hypothesis test is conducted
in this sensitive subgroup to see the benefit of the targeted therapy against the control.
This test is conducted at a much lower significance (e.g., 0.01).

According to Freidlin and Simon (2009), this design may be ideal to use for Phase
II clinical trials for developing signatures to identify patients who respond better to
targeted therapies. The advantage of this design is its ability to de-risk losing the
label of broader population. However, since only half of the patients are used for
development or validation, and with the large number of potential biomarkers for
consideration, a large sample size may be needed to adequately power the trial.
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2.3.2.4 Cross-Validated Adaptive Signature Design

Cross-validated adaptive signature design (Freidlin et al. 2010) is an extension of the
adaptive signature design, which allows use of entire study population for signature
development and validation.

Similar to the adaptive signature design, the initial null hypothesis is to test the
benefit of the targeted therapy against the control is conducted in the overall popu-
lation which is conducted at a slightly lower significance level α1 than the overall
alpha α. The sensitive subset is determined by developing the classifier using the full
population. It is done by the following steps

1. Test the initial null hypothesis of no treatment benefit in the overall population
at α1, which is a slightly lower significance level than the overall α. If this
hypothesis is rejected, then the targeted therapy is declared superior than the
control treatment for the overall population and analysis is completed. If the first
hypothesis is not rejected; then carrying out the following steps for signature
development and validation.

2. Split study population into “k” sub-samples.
3. One of the “k” sub-samples is omitted to form a training sub-sample. Similar to

the adaptive signature design, develop a model to predict the treatment differ-
ence between targeted therapy and control as a function of baseline covariates
using training sub-sample. Apply the developed model to each subject not in this
training sub-sample so as to classify patients as sensitive or non-sensitive.

4. Repeat the same process leaving out a different sample from the “k” sub-samples
to form training sub-sample. After “k” iterations, every patient in the trial will
be classified as sensitive or non-sensitive.

5. Compare the treatment difference within the subgroup of patients classified as
sensitive using a test statistic (T). Generate the null distribution of T by permuting
the two treatments and repeating the entire “k” iterations of the cross-validation
process. Perform the test at α-α1. If the test is rejected, then the superiority is
claimed for the targeted therapy in the sensitive subgroup.

The cross-validation approach can considerably enhance the performance of the
adaptive signature design as it permits the maximization of information contributing
to the development of the signature, particularly useful in the high-dimensional data
setting where the sample size is limited. Cross-validation also maximizes the size
of the sensitive patient subset used to validate the signature. One drawback is the
fact that the signature for classifying sensitive patients in each sub-sample might not
be the same and thus can cause difficulty in interpreting the results if a significant
treatment effect is identified in the sensitive subgroup.

2.3.2.5 Basket and Umbrella Trial Designs

Increasing knowledge about the genetic causes of disease is prompting intense inter-
est in the concept of precision medicine. This is particularly the case in oncology,
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which researchers view as the field most advanced with the strategy. The science is
prompting researchers to develop treatments that target the mutations regardless of
where a patient’s cancer is located in the body.

A key driver of the strategy is the fact that the same cancer-causingmolecular traits
are often found in a variety of tumor types, raising hope that a drug effective against
the target in, say breast cancer, would be effective in a tumor originating in another
organ. Indeed, Roche Holding AG’s breast cancer drug Herceptin, which targets a
receptor called Her2, turned out to be effective—and was eventually approved—for
gastric tumors that have high levels ofHer2.But the drugZelboraf,which is especially
effective against the skin cancer melanoma with a certain mutation in a gene called
BRAF, turns out to have essentially no effect against colon cancer harboring the same
mutation, raising the issue that it is much more complicated and researchers should
have some caution toward broad success in the approach.

Another major issue in the clinical development of precision medicines is that
genetically characterized tumors breaks common cancers such as lung or breast into
a dozen or more much rarer diseases. That poses a challenge to drug companies,
which in recruiting for a single-drug trial could have to screen as many as 10,000
patients to find enough patients to test a drug against a rare mutation. Screening
patients for a trial involving 10 or 20 drugs instead is expected to be much more
efficient, and more quickly provide patients with access to potentially beneficial
treatments.

Umbrella trial design and basket trial design are proposed in recent years to meet
these challenges and to develop novel targeted therapies in a faster and more efficient
manner.

As shown in Fig. 2.7, an umbrella trial assesses different molecularly targeted
drugs on different mutations in one cancer type of histology. Examples are Inves-
tigation of Serial Studies to Predict Your Therapeutic Response with Imaging And
molecular Analysis 2 (I-SPY TRIAL 2, I-SPY 2, NCT01042379; Ref. Barker et al.
2009), the FOCUS4 study in advanced colorectal cancer (Kaplan et al. 2007), and
the phase II adaptive randomization design Biomarker-integrated Approaches of
Targeted Therapy for Lung Cancer Elimination (BATTLE; Ref. Kim et al. 2011) in
NSCLC (NCT00409968).

A basket trial assesses one or more molecularly targeted drugs on one or more
mutations regardless of cancer types of histologies. This design facilitates a particu-
lar targeted therapeutic strategy (i.e., inhibition of an oncogenically mutated kinase)
across multiple cancer types. Examples are NCI’s Molecular Analysis for Therapy
Choice (MATCH) and the Molecular Profiling-based Assignment of Cancer Thera-
peutics (MPACT, NCT01827384) trials (Conley et al. 2014).

These designs are quite powerful because they can screen and test multiple treat-
ments, multiple biomarkers in multiple indications simultaneously.

The NCI-MATCH basket trial is illustrated below as an example of basket design.
NCI-MATCH: Molecular Analysis for Therapy Choice, announced at the 2015

annual meeting of the American Society of Clinical Oncology (ASCO) in Chicago,
is a large basket trial initiated by the National Cancer Institute (NCI). The trial
seeks to determine whether targeted therapies for people whose tumors have specific
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Fig. 2.7 Umbrella trial design and basket trial design

gene mutations will be effective regardless of their cancer type. NCI-MATCH will
incorporate more than 20 different study drugs or drug combinations, each targeting
a specific gene mutation, in order to match each patient in the trial with a therapy
that targets a molecular abnormality in their tumor.

NCI-MATCH is a phase II trial with numerous small substudies (arms) for each
treatment being investigated. It opened with approximately 10 substudies, moving
to 20 or more within months. The study parameters for the first 10 arms would be
sent to 2,400 participating sites in the NCTN for review in preparation for patient
enrollment beginning in July 2015. Additional substudies could be added over time
as the trial progresses.

The NCI-MATCH trial has two enrollment steps. Each patient would initially
enroll for screening in which samples of their tumor will be removed (biopsied). The
samples would undergo DNA sequencing to detect genetic abnormalities that may
be driving tumor growth and might be targeted by one of a wide range of drugs being
studied. If a molecular abnormality is detected for which there is a specific substudy
available, to be accepted in NCI-MATCH patients would be further evaluated to
determine if they meet the specific eligibility requirements within that arm. Once
enrolled, patients would be treated with the targeted drug regimen for as long as their
tumor shrinks or remains stable. Potential treatments include (but not limited to) the
following:

• Crizotinib—Separate studies in ALK rearrangements and ROS-1 translocations
• Dabrafenib and trametinib—BRAF V600E or V600K mutations
• Trametinib—BRAF fusions or non-V600E, non-V600K BRAF mutations
• Afatinib—Separate studies in EGFR and HER2 activating mutations
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• AZD9291—EGFR T790M and rare EGFR activating mutations
• T-DM1—HER2 amplifications
• VS-6063—NF2 loss
• Sunitinib—cKIT mutations.

Overall, 3000 patients will be screened during the full course of the NCI-MATCH
trial to enroll about 1000 patients in the various treatment arms. Each arm of the
trial will enroll up to 35 patients. For every trial, the primary endpoint is objective
response. Secondary endpoints include 6-month progression-free survival, time to
progression, toxicity, and biomarker status.

2.3.3 Examples

2.3.3.1 Example 1: Development of Crizotinib in ALK+NSCLC

Lung cancer is currently the leading cause of cancer death in both men and women.
Historically, lung cancer was categorized as two types of diseases: small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC accounting
for about 85–90% of lung cancer cases. NSCLC can also be classified according to
histological type: adenocarcinoma, squamous-cell carcinoma, and large-cell carci-
noma. Such classification is important for determining management and predicting
outcomes of the disease.

However, with the rapid advance in biological and genetic science in the past two
decades, researchers find there are various oncogenic drivers behind the progression
of lung cancer caused by the inactivation of the so-called tumor suppressor genes.
Table 2.1 shows the potential oncogenic drivers in NSCLC based on the current
knowledge, such as the EGFR mutation and the ALK mutation.

The MTA crizotinib (XALKORI®, Pfizer Inc., New York, NY, USA) is a potent,
selective, small-molecule competitive inhibitor of anaplastic lymphoma kinase
(ALK), MET, and ROS-1 (Christensen et al. 2007; Shaw et al. 2014). The first-
in-human phase 1 trial started in December 2015 to estimate the MTD opening to
all-comer patients with solid tumors. The EML4-ALK translocation in NSCLC was
discovered in 2007. In the same year, the study was amended to add patients with
EML4-ALKmutation to theMTDcohort, and the first clinical responsewas observed
in ALK+tumors in early 2008. Subsequently, the clinical development program pro-
gressed rapidly, and crizotinib was approved in 2011 by the FDA for NSCLC that is
ALK-positive as detected by an FDA-approved companion diagnostic test, a com-
mercially available break-apart fluorescence in situ hybridization (FISH) probes for
detecting ALK gene rearrangement to detect the rearrangement in NSCLC (Kwak
et al. 2010). It took only 6 years from FIH to registration.

Table 2.2 summarizes the clinical studies and their trial designs and endpoints
that led to the accelerated and full approval by the global health authorities. Classical
enrichment designs were used for these studies that allowed for the investigation of



2 Overview of Omics Biomarker Discovery and Design Considerations … 43

Table 2.1 Oncogenic drivers in lung adenocarcinoma

Oncogenic drivers Prevalence (%)

KRAS 20–25

EGFR 13–17

ALK 3–7

MET skipping ~3

HER2 ~2

BRAF ~2

PIK3CA ~2

ROS1 ~1

MET amp ~1

NRAS ~1

MEK ~1

AKT ~1

RET ~1

NTRK1 ~0.5

Table 2.2 Clinical studies that led to accelerated approval and full approval (www.clinicaltrials.g
ov)

Protocol Setting Trial design Primary endpoints

A8081001 (n�119) All lines, solid tumors,
ALK-positive NSCLC

Single-arm,
open-label study of
crizotinib

Safety,
pharmacokinetics,
response

A8081005 (n�136) ≥2nd line
ALK-positive NSCLC

Single-arm,
open-label study of
crizotinib

Safety, response

A8081007
(confirmatory phase 3)
(n�318)

2nd line ALK-positive
NSCLC

Crizotinib versus
(pemetrexed or
docetaxel),
randomized,
open-label study

PFS

this novel drug in an efficient and rapidway because patientswithALKmutation only
account for approximately 5% of NSCLC population. High response rates (55–60%)
in the two single-arm enrichment studies led to accelerated approval by the FDA.
Full approval was granted after positive readout of randomized confirmatory study
A8081007.

In the absence of comparative data, it was unclear whether the distinct clinico-
pathologic characteristics of patients with ALK-positive NSCLC noted above might
be contributing to the observed antitumor activity of Crizotinib. Extensive retrospec-
tive statistical analyses were conducted using bootstrapping (covariate-matched) and
modeling (covariate-adjusted) to simulate outcomes of randomized controlled stud-
ies of crizotinib versus standard advanced NSCLC treatment (Selaru et al. 2016).

http://www.clinicaltrials.gov
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These analyses utilized data from the control arms of three Pfizer-sponsored phase
III studies evaluating first-line paclitaxel—carboplatin or gemcitabine—cisplatin and
second- or later-line erlotinib regimens in patientswith advanced unselectedNSCLC.
These analyses demonstrated clinically meaningful and statistically significant effect
of Crizotinib despite the lack of a concurrent active control arm.

2.3.3.2 Example 2: Bayesian Predictive Probability Design
for an Enrichment Phase 2 POC Study

Breast cancer is a common type of cancer among women. A diagnosis of triple-
negative breast cancer (TNBC) means the three most common types of receptors
that fuel cancer growth—ER, PR, and HER2 are not present, which represents 15%
of breast cancer patients. In TNBC with Notch genomic alternations (NA+), the
inhibition of activation of the Notch pathway using single-agent Notch inhibitor
therapy may induce clinical activity (Stylianou et al. 2006). The prevalence of Notch
alteration in breast cancer is estimated to be around 10%, soNotch+TNBC represents
only 1–2% of breast cancer, a very rare disease.

This is a phase 2 proof-of-concept (POC) study of an experimentalNotch inhibitor,
an oral drug given twice daily (BID). The hypothesis is that treatment with this drug
response rate can be improved from historical level of≤30 to≥60%. However, there
are two main challenges in designing the trial. First of all, there is no prior clinical
data to suggest a high response rate of 60%can be achieved in this rare disease defined
by NA+, nor is there any prior data on the analytical validity or clinical utility of the
assay. As a result, it is highly desirable to stop the trial early if observed objective
response rate (ORR) is low during the trial conduct. Secondly, due to the extremely
low prevalence rate of 1–2% of the target population in breast cancer, enrollment
speed is expected to be slow, albeit 20–25 sites will be opened to screen hundreds
of TNBC patients, and the turnaround time of the next generation sequencing assay
(~2–3 weeks) may decrease trial acceptance.

To meet the aforementioned challenges, a Bayesian predictive probability (BPP)
design was proposed with multiple interim looks (Lee and Liu 2008), so that the trial
can be stopped early if there is no or low drug effect since it is a costly studywith high
risk. The Bayesian approach allows greater flexibility in continuously monitoring the
trial data to make a go/no-go decision.

Figure 2.8 illustrates the study design. Patients would be tested for the biomarker
status. If it is NA positive, patients will be assigned to the experimental drug using
the proposed BPP design. It is estimated that at least 28 patients are required to
test the hypothesis controlling for the type I and type II error rates. Also 20 NA
negative patients would be enrolled to gather some data for exploratory analysis to
meet regulatory requirement of health authorities (but not hypothesis to be tested).
This is because the treatment effect is expected to be much smaller (if there were any
effect) in the marker-negative population, the size of the marker-negative population
would usually be too small to give a definitive answer on the effect in that population;
but, it would provide at least some estimate of the effect in that population.
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Fig. 2.8 Study design of an experimental notch inhibitor

Table 2.3 Interim
futility/efficacy decision rules

Number of patients Negative/Futility Positive/Efficacy

8 ≤1 ≥8

10 ≤2 ≥9

12 ≤3 ≥10

15 ≤5 ≥11

18 ≤6 ≥12

TheBPPdesign uses a beta-binomial conjugate distribution for the tumor response
rate p. The predictive probability (PP) is the probability of a positive result at the end
of the trial, based on the cumulative information in the current stage (statistically,
an integration of conditional power over the parameter space of p). During the trial,
the PP is compared to some boundary values (θL and θU ) for futility and superiority
evaluation.

• If pp<θL, stop the trial and reject the alternative
• If pp>θU , stop the trial and reject the null; otherwise continue.

By applying some optimization algorithms, the optimal design that minimizes the
maximum sample size can be determined.

With a non-informative prior of beta (0.3, 0.7), it is estimated that 28 patients
will be required to have 25 response-evaluable patients so as to control the one-sided
type I error rate at 0.05 with 90% power when the true ORR is 60%. The design
has multiple interim looks for potential early stopping, and the decision rules are
provided in Table 2.3. At the final analysis, at least 12 responders are required out
of 25 evaluable patients to claim the drug efficacious.

It is assumed that futility boundaries are binding. The nominal type I error rate
(one-sided) is 0.041 assuming the futility boundaries are binding. Simulations (details
not included) show that the pre-specified type I error rate (0.05) is strictly controlled
under the non-binding assumption and bounded above at 0.044.

The efficacy boundaries are non-binding which means if crossed enrollment will
continue, and the study will not be stopped early. However, this information may
form the basis for internal decision making and strategic planning (e.g., opening
additional sites to shorten the time to study completion, or starting early discussions
with health authorities on potential registration). Non-binding efficacy boundaries
will not inflate the type I error rate, although it reduces the power slightly.
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With the proposed Bayesian design, the study has a 78% probability of early
termination under the null hypothesis, and the expected sample size under the null
hypothesis is 14.43 patients. This design achieves the objective of terminating the
trial early with minimal resources when the effect of the drug is not as high as
expected.

2.3.3.3 Example 3: Adaptive Group Sequential Design with Population
Enrichment for Cardiovascular Research

Despite substantial progress in the prevention of cardiovascular disease and its
ischemic complications, it remains the single largest killer in theUSA.New treatment
options are needed, particularly to respond to the challenges of an aging population
and rising rates of obesity and diabetes. Development of novel therapeutic strategies
for the management of acute cardiovascular disease is especially challenging. Spe-
cific problems include relatively low event rates, diverse patient populations, lack
of reliable surrogate end points, and small treatment effects subject to substantial
uncertainty. Because the clinical development process is enormously expensive and
time consuming, there is considerable interest in statistical methods that use accu-
mulating data from a clinical trial to inform and modify its design. Such redesign
might include changes in target sample size and even changes in the target popula-
tion (Mehta 2009). Mehta et al. (2009) demonstrated how to apply an adaptive group
sequential design with population enrichment in cardiovascular research.

Consider a placebo-controlled randomized cardiovascular trial with a composite
primary end point including death, myocardial infarction, or ischemia-driven revas-
cularization during the first 48 h after randomization for therapies intended to reduce
the risk of acute ischemic complications in patients undergoing percutaneous coro-
nary intervention. Assume, based on prior knowledge that the placebo event rate is in
the range of 7–10%. The investigational drug is assumed, if effective, to reduce the
event rate by 20%, but the evidence to support this assumption is limited. The actual
risk reduction could be larger but could also easily be as low as 15%, a treatment
effect that would still be of clinical interest given the severity and importance of the
outcomes, but that would require a substantial increase in sample size.

Assume, besides the entire population under study G0, two subgroups of patients,
G1 and G2, have also been identified by investigators that of interest. G1 is a subset
of G0, and G2 is a subset of G1. And it is preferred that the sample size of the study
would not exceed 15,000.

A classical group sequential design was considered first with target sample size
8750 patients and interim analyses be performed at 50 and 70% of that target
(Fig. 2.9). The first interim look would take place when the first 4375 patients have
finished the study, and the trial stops for efficacy if the test statistic Z1≤−2.96 and
for futility if Z1≥0.1. The second interim look would take place when 6215 patients
have finished the study, and the corresponding efficacy and futility bounds for Z2
are −2.46 and −1.29, respectively. At the final look, when all 8750 patients have
completed the study, the null hypothesis of no treatment effect is rejected in favor
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Fig. 2.9 Classical group sequential design

of the active treatment if Z3≤−2.0. Otherwise, we fail to reject the null hypothesis.
The unconditional type 1 error is controlled at 0.025 for this group sequential design.

Assume at the first and second looks, we observed the test statistics, Z1�−
1.6728 and Z2�−1.8816 (Fig. 2.10), both do not exceed either the efficacy or futility
boundaries. Therefore, the trial can continue beyond the second look. Besides, based
on the observed data up to the second interim look, the estimated event rate for the
control arm is 8.7% and the estimated percent risk reduction is only 15.07%. For
these values, the conditional power of this study is only 67%.

To increase the conditional power to 80%, as it is always preferred, the sample
size needs to be increased. Besides, as the total sample size is preferred not to exceed
15,000, the design could be adapted as follows:

(1) If the sample size reestimation for the overall population G0 produces a revised
sample size>15,000, consider enrichment.

(2) The enrichment strategy proceeds as follows: (i) estimate the number of addi-
tional patients needed to test the null hypothesis of no treatment effect in G1
with 80% conditional power, assuming that the observed effect size in G1 is
the true effect size; (ii) if that sample size plus the number of patients already
enrolled is<15,000, the trial will continue until the additional number of patients
is enrolled, but future eligibility will be restricted to patients belonging to sub-
group G1; (iii) if that enrichment strategy does not yield a sample size<15,000,
the same calculation will be performed with the estimated effect size for sub-
group G2 and, if that reestimation yields a sample size<15,000, the trial will
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Fig. 2.10 Group sequential design with observed values

continue, enrolling only members of G2; (iv) if neither of the sample size calcu-
lations for the patient subgroups yields a sample size<15,000, the trial will be
continued with the original eligibility criteria and sample size target, provided
that the conditional power with 8750 patients is at least 20%; (v) otherwise, the
trial will be terminated for futility.

A question arises as to how to test for a treatment effect at the end of the trial
given the possibility of a sample size increase and population enrichment at the sec-
ond interim look. To preserve the type 1 error of the study as a whole, a closed testing
procedure that guarantees strong control of the type 1 error rate can be employed.
Specifically, if enrichment is implemented, the testing procedure involves 2 hypothe-
sis tests (Fig. 2.11). Suppose for specificity that the data lead to an enrichment strategy
with the G1 subpopulation. In that instance, test 1 is a test of the null hypothesis in the
entire study population, consisting of patients enrolled from G0 before the initiation
of the enrichment strategy and patients enrolled from G1 thereafter. However, if test
1 rejects the null hypothesis, we can conclude only that the new treatment is superior
to placebo in either the G0 population or the G1 subpopulation. Thus, we then per-
form test 2, a conventional level-α test of the null hypothesis of no treatment effect in
patients from the G1 subpopulation enrolled after the second interim analysis, that is,
after enrichment began. If both hypotheses are rejected, we conclude that treatment
is superior to placebo in the subpopulation G1. In this way, the family-wise error
rate is strongly controlled. A similar procedure is followed if enrichment is limited
to subpopulation G2.
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Fig. 2.11 Closed testing procedure Note Hi: no treatment effect in patient population Gi

2.4 Discussion

Omics biomarkers have become increasingly important in understanding disease
biology and providing guidance to clinical trial designs. Such information has been
widely incorporated in clinical trials, especially in oncology trials due to the het-
erogeneity nature of the disease, which is often defined by many types of omics
biomarker. Leveraging the biomarker information, numerous innovative designs have
been proposed in the literature and have presented tremendous opportunities for
innovation in drug development. Benefits of advanced biomarker-informed designs
include, but not limited to, (i) higher probability of success with more accurate tar-
geting population defined by biomarker; (ii) the flexibility to modify the trial to gain
clinical benefits; (iii) the possibility to shorten the development cycle; (iv) ability
to leverage more data outside of the trial. However, steep challenges such as pre-
dictability of biomarker and robust biomarker assay development remain key issues
to be addressed before the implementation of advanced designs involving biomarker.
The novel biomarker-informed designs should be viewed as “a” solution not “the”
solution for planning clinical trial experiment, and the use of the novel design should
be fully evaluated and applied depending on the context. Thorough statistical simu-
lations are encouraged to be in place before any decision making. In principle, any
novel design can only be implemented “by design” and the statistical validity and
integrity must be preserved. Guidelines regarding principles of how and when to use
novel designs should be developed such that the risk of misuse and misinterpretation
of the novel designs are kept at minimum.
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Chapter 3
Phase 3 Oncology Trials of Personalized
Medicines with Adaptive Subpopulation
Selection

Cong Chen, Wen Li, Xiaoyun (Nicole) Li and Robert A. Beckman

3.1 Introduction

A personalized medicine in oncology may benefit a subpopulation of patients with
certain predictive biomarker signatures or certain disease types. However, limited by
preclinical data and early phase clinical data, there is great uncertainty about drug
activity in a subpopulation when designing a confirmatory trial in practice and it is
logical to take a two-stage adaptive approach. The first stage de-selects (or prunes)
non-performing subpopulations at an interim analysis, and the second stage pools
the remaining subpopulations in the final analysis. There are two important designs
in this context. In the first design (Li et al. 2016, 2017), patients with different
biomarker levels are enrolled in a study and the treatment effect is assumed to be in
ascending order of the biomarker level (a biomarker enrichment design). The goal of
the interim analysis is to de-select non-performing biomarker subpopulations. In the
second design (Chen et al. 2016a; Yuan et al. 2016; Beckman et al. 2016), patients
with different tumor types but the same biomarker signature are included in a trial (a
basket design). The goal of the interim analysis is to identify a subset of tumor types
in the absence of order in treatment effect.

Two-stage designs represent a special type of adaptive designs. Most of the pre-
vious research work in adaptive designs has used the same endpoint for both interim
and final analyses (Stallard and Todd 2010; Magnusson and Turnbull 2013; Mehta
et al. 2014). However, in practice it often takes a long time to observe the primary
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endpoint of a study (e.g., overall survival in oncology), and the data on a primary
endpoint at an interim analysis may provide little information on the true treatment
effect. To gather more informative data in a typical confirmatory oncology trial, it
often requires majority of (if not all) patients to have an adequate follow-up, which
makes it difficult to implement a timely adaptation. One solution to this problem
would be to de-select subpopulations at the end of the trial, using the primary end-
point and a subset of the patients, aka, the “informational design” (Chen et al. 2016b).
When an intermediate endpoint sensitive to treatment intervention is available, an
alternative solution is to use it at the interim analysis for an adaptation decision
(See Chen et al. (2013) for a general discussion of the utility of a sensitive inter-
mediate endpoint in late-stage drug development). In oncology, such an endpoint is
routinely derived from tumor size changes post-treatment, either as a continuous or
a categorical variable.

When an intermediate endpoint is used at interim to assist with the design, a key
issue is how to incorporate it into Type I error control and estimation of treatment
effect for the primary endpoint. Stallard (2010) used a double regression method
to incorporate intermediate endpoint data into the estimation of treatment effect on
the primary endpoint, which improved the accuracy of population selection. Type I
error control was demonstrated via simulations. Royston et al. (2003) explored the
issue in non-confirmatory trials without specifically controlling Type I error. Jenkins
et al. (2011) proposed a design that uses a combination test for population selec-
tion and hypothesis testing based on two different endpoints. Their proposed design
involves separating enrolled subjects into two distinct partitions (a typical approach
in adaptive designs). No explicit assumptions were made about the treatment effect
on intermediate endpoint in these approaches. Wang et al. (2014) and Friede et al.
(2011) proposed different adaptive designs for population selection and hypothe-
sis testing. In their approaches, the intermediate endpoint at the interim analysis
is assumed to have no treatment effect in Type I error control. Wang et al. (2013)
investigated the impact of the correlation between the two endpoints on Type I error
control. Again, the intermediate endpoint at the interim analysis is assumed to have
no treatment effect.

Since confirmatory Phase 3 trials routinely fail on primary endpoints in spite of
clinical activities observed on intermediate endpoints in Phase 1 or Phase 2 trials, it
is inappropriate to assume null treatment effect on an intermediate endpoint when
discussing Type I error control of the primary endpoint. The possible existence of a
mild to moderate effect should be considered. In this chapter, we treat the treatment
effect on an intermediate endpoint as a nuisance parameter to provide the most
conservativeType I error control and explore themaximumbias of the naïve estimator
of the treatment effect. The handling of intermediate treatment effect as a nuisance
parameter is a distinctive feature of our proposed methodology. Note that the use of
same endpoint can be viewed as a special case within the framework of this chapter.

The remaining chapter is organized as follows. Section 3.2 introduces notations.
Sections 3.3 and 3.4 review the control of overall Type I error and treatment effect
estimation for the biomarker enrichment design and the basket design, respectively. A
hypothetical example is provided under each design. In the hypothetical examples,we
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have kept the total sample size of the pooled population the same as planned without
pruning (refer to Chen et al. (2016a) for other sample size adjustment strategies),
which requires a sample size increase of the performing subpopulations as necessary.
However, the methodology presented in this chapter does not rely on any particular
sample size adjustment strategy. Section 3.5 provides summary and discussions.

3.2 Statistical Designs of a Phase 3 Trial with Biomarker
or Tumor Selection

We consider a population composed of K distinct subpopulations. To demonstrate
whether an experimental therapy (compared to control) has a treatment effect in a
subset of the subpopulations, a two-stage trial is planned under a Phase 3 setting.
Since time-to-event endpoints are the most popular in Phase 3 oncology trials, for
illustration purpose, progression-free survival (PFS) is used as an intermediate end-
point for population selection at the interim analysis while overall survival (OS) is
the primary endpoint for the final analysis. When one or both endpoints are not of
the time-to-event type, the results presented in this chapter can be easily extended
once a joint distribution function of the involved test statistics is obtained.

For simplicity, interim analysis is assumed to be conducted at a common infor-
mation time t for all the subpopulations in this chapter. The information time refers
to the proportion of target number of deaths for final analysis. A non-performing
subpopulation is de-selected or pruned after the interim analysis if it does not meet a
pre-specified selection criterion. Assume thatm subpopulations are identified as non-
performing and the remaining (K-m) subpopulations are deemed to be performing
based on the selection criteria. (Of note, m is not pre-specified.) The (K-m) perform-
ing ones proceed to the second stage and are pooled as one composite population
in the final analysis. If all the subpopulations are identified as non-performing, the
study stops early for futility. For simplicity, a common selection bar (i.e., p value for
testing treatment effect in a subpopulation < αt) is applied to all the subpopulations.
A trend of the observed treatment effect favoring the experimental arm may corre-
spond to αt <0.5, and a potentially clinically significant finding may correspond to
αt <0.025.

A key issue of interest for a study design is Type I error control in hypothesis test-
ing of the primary endpoint at the final analysis. When patients used in the interim
analysis are excluded from the final analysis (an operational adaption), there is not
any concern on Type I error inflation. However, this is not a preferred approach in
practice because the final analysis would be substantially delayed and the sample size
of the study might be substantially increased. Throughout this chapter, we consider
an inferential adaptive approach in that patients from the first stage are included in
the final analysis. A penalty on Type I error control has to be paid as a consequence.
We use α∗ to denote the nominal alpha level at the final analysis that maintains the
overall Type I error at an α level (usually 0.025 one-sided) acceptable to regulatory
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agencies. Another key issue of interest is the potential bias of the naïve estima-
tor of treatment effect based on the pooled population at the final analysis (Bauer
et al. 2010). Before we discuss the two issues, we introduce the notations and basic
distributional properties of the relevant test statistics.

3.2.1 Notations and Distributional Properties

The true treatment effect of the time-to-event endpoints refers to negative logarithm
of hazard ratio (experimental arm versus control arm) and is denoted by δi for the
intermediate endpoint at interim and by θi for the primary endpoint in the end for the
ith subpopulation, 1≤ i≤K. The asymptotic distributions of the test statistics based
on the two endpoints are as follows:

• The standardized test statistics Xi(t) based on the intermediate endpoint used
at the interim analysis for population selection follows a normal distribution
N

(
δi

√
Ii(t), 1

)
, where Ii(t) is the Fisher information of the intermediate endpoint

at the interim time t (i.e., number of events on the intermediate endpoint divided
by 4);

• The standardized test statistics X̃i based on the primary endpoint used at the

final analysis follows a normal distribution N
(
θi

√
Ĩi, 1

)
, where Ĩi is the Fisher

information of the primary endpoint at the final analysis (i.e., number of events on
the primary endpoint divided by 4).

Furthermore, we have Corr(Xi(t),Xi′(t)) � 0, Corr
(
X̃i, X̃i′

)
� 0 for i �� i′. To

simplify the discussion, we assume that the two test statistics for each subpopulation

have a common correlation ρ(≥0), i.e., Corr
(
Xi(t), X̃i

)
� ρ , 1≤ i≤K. The higher

the correlation, the higher the potential inflation Type I error. Overall Type I error
rate is asymptotically controlled as long as a consistent estimator of ρ is used for
the calculations introduced below. With this simplification, the standardized test
statistics has a multivariate normal distribution with a simple correlation structure
that is not impacted by the information although in general it may. The correlation can
be estimated using the trial data by the WLW method (Wei et al. 1989). Alternative
methods such as the bootstrapping method (Hall et al. 1989) may also be used to
estimate the correlation structure. When the endpoints are of different types, the
standard test statistics have the canonical joint normal distribution as defined in
Jennison and Turnbull (2000), which can be estimated accordingly.
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3.2.2 Pooled Treatment Effect in the Performing
Subpopulations

At the end of the trial, the (K-m) performing subpopulations are pooled together for
the primary analysis through a standardized test statistics V(−m) which can be written
as

V(−m) �
K∑

j�m+1

√
ĨjX̃j

/√√√√
K∑

j�m+1

Ĩj (3.1)

The test statistics V(−m) follows an asymptotic normal distribution, i.e., V(−m) ∼
N

(∑K
j�m+1 θjĨj

/√∑K
j�m+1 Ĩj, 1

)
. When the Fisher information of the primary end-

point at the final analysis (Ĩi) is equal for all the performing subpopulations, V(−m)

can be rewritten as
∑K

j�m+1 X̃j/
√
K − m.

Let Sm denote a set of (K-m) performing subpopulations that continue after the
interim analysis, a point estimate of the corresponding pooled treatment effect can
be written as

θ̂Sm � V(−m)√∑K
j�m+1 Ĩj

(3.2)

In the following sections, S is used to denote a generic set of the performing
subpopulations, and θ̂S is used to denote the corresponding treatment effect.

3.3 Population Section in a Biomarker Enrichment Design

Without loss of generality, we assume that the treatment effect from the first subpop-
ulation to the K th subpopulation is in an ascending order. At the interim analysis,
a subpopulation i is identified as performing if its standardized test statistic Xi(t)
is no less than Z1−αt and is identified as non-performing otherwise, where Z1−αt is
the lower (1 − αt)th quantile of a standard normal distribution. The examination of
non-performing subpopulations begins from the first subpopulation and continues
up until the first performing subpopulation (denoted as the (m+1)th subpopulation)
is identified (m≥0). The subpopulations starting from (m+1)th are judged as “per-
forming” and are pooled in the final analysis.
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3.3.1 Control of Type I Error

According to the design descriptions above, the overall Type I error is

P (Reject the null hypothesis at the levelα∗|{θi � 0δi : i � 1, . . . ,K})
� P

(
X1(t) > Z1−αt ,V(−0) > Z1−α∗ |{θi � 0, δi : i � 1, . . . ,K})

+
K−1∑

m�1

P
(
X1(t) ≤ Z1−αt , . . . ,Xm(t) ≤ Z1−αt , Xm+1(t) > Z1−αt ,

V(−m) > Z1−α∗ |{θi � 0, δi : i � 1, . . . ,K}) (3.3)

Equation (3.3) can be calculated from a multivariate normal distribution based
on the distributional results in Sect. 3.2. In order to control the overall Type I error,
the probability (i.e., the overall Type I error) in (3.3) must be no more than the
pre-specified α level.

The calculation of (3.3) involves the nuisance parameters δi (1≤ i≤K). Since
the trial data are not necessarily generated under θi �0 (1≤ i≤K), it is impossible
to estimate δi (1≤ i≤K) from the trial data. However, in most disease settings, it
is reasonable to assume that δi tends to be closer to zero when θi is under the null
hypothesis than under an alternative hypothesis. This assumption can be helpful
for narrowing the parameter space for δi (1≤ i≤K). In addition, a meta-analysis of
relevant historical trials may also be used to find a sensible parameter space. Both
approaches are out of the scope of this chapter. Instead, we try to find the minimal
α∗ that controls (3.3) at α in the entire parameter space (−∞, ∞). The minimal
α∗ (denoted as min(α∗)) is used as the nominal alpha level in the final analysis. As
expected, min(α∗) is less than α in general (see technical details in Li et al. 2016).

3.3.2 Treatment Effect Estimation

Implied by the fact that min(α∗) is less than α, the naïve estimator θ̂S may overesti-
mate the treatment effect. Given that Xm+1(t) has a left truncated normal distribution
conditional on Sm, the bias of the point estimate θ̂Sm at the final analysis, denoted as
Biasm+1, can be shown to be

√
Ĩm+1ρφ

(
Z1−αt − δm+1

√
Im+1(t)

)
/
(
1 − �

(
Z1−αt − δm+1

√
Im+1(t)

))

∑K
j�m+1 Ĩj

.

The overall bias of the point estimate θ̂S is

Biasoverall �
K−1∑

m�0

Biasm+1 × P(S � Sm) (3.4)
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where P(S � Sm) is the probability of de-selecting m non-performing subpopula-

tions, which is
(∏m

j�1 �
(
Z1−αt − δj

√
Ij(t)

)) × (
1 − �

(
Z1−αt − δm+1

√
Im+1(t)

))
for

m>0 and
(
1 − �

(
Z1−αt − δ1

√
I1(t)

))
for m�0.

Similar to Type I error control, a conservative estimate of the bias can be obtained
by maximizing (3.4) in the entire parameter space of δi for 1≤ i≤K. Unlike in Type
I error control whereas δi cannot be estimated for the value that corresponds to the
null hypothesis θi �0 (1≤ i≤K), estimation of (3.4) is not tied to an untenable
hypothesis, and point estimates of δi (1≤ i≤K) based on trial data can be plugged
into the equation to derive a less conservative point estimate of the bias. The accuracy
of the analytic form (3.4) was demonstrated in a simulation study in Li et al. (2017).

3.3.3 A Hypothetical Example

In this section, we present a hypothetical trial example. Assume a total of 500 patients
are randomized with 1:1 ratio into the experimental arm and the control arm. The
overall population consists of two biomarker subpopulations (biomarker positive
(i.e., BM+) and biomarker negative (i.e., BM−)). OS is the primary endpoint, and
PFS is the intermediate endpoint in this study. Enrollment period is 1 year, and accrual
rate is constant. Median OS and median PFS in the control arm are assumed to be
1 year and 6 months, respectively. The hazard ratio (HR) between the experimental
arm and the control arm in the overall population is 0.75 for OS and is 0.6 for PFS for
planning purpose. The study would complete after a total of 360 deaths are observed,
which is approximately 1.5 years after enrollment completion. The study has about
78% power to detect 0.75 hazard ratio in OS at α � 0.025.

To implement our proposed adaptive design, the interim analysis is planned when
all patients are enrolled. At the time of the interim analysis, approximately 260 PFS
events are observed in the overall population. For simplicity, we assume that there are
equal numbers of events in each biomarker subpopulation for both OS and PFS. We
choose αt � 0.1 at the interim analysis for population selection; i.e., the observedHR
in PFS would be less than approximately 0.8 in order for a biomarker subpopulation
to be included in the final analysis. The sample size in BM+will have to be increased
in case BM− is de-selected at interim in order to reach the target number deaths.

We assume that the correlation between the log-rank test statistics based on PFS
at interim and the log-rank test statistics based on OS at final is estimated to be 0.5,
a reasonable if not over-conservative estimate based on our experience. With this
correlation estimate, min(α∗) is calculated to be 0.0187 based on the study setup and
(3.3) and is obtained at δ1 � 0.2 and any δ2 ≥ 1.7. Consider a scenario when true
HR for OS is 0.56 in BM+ and 1.00 in BM−, and true HR for PFS is 0.45 in BM+
and 1.00 in BM−. In this scenario, our proposed design can successfully de-select
the BM− subpopulation 90% of the time at the interim analysis and have an overall
study power of 95%.We also evaluated the power of using OS for de-selection at the
same interim analysis under αt � 0.2. In this case, min(α∗) is calculated to be 0.0219
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based on our setup and a degenerate form of (3.3). The corresponding study power
is 90%, lower than the design that uses PFS for population selection. Overall, our
proposed design, using either the intermediate endpoint or the clinical endpoint, has
a higher power than the traditional design without subpopulation selection (78%).

Based on (3.4), the maximum bias in the naïve estimator of the treatment effect is
0.009.With the true hazard ratio on OS at around 0.75, this bias leads to an estimated
hazard around 0.74. The maximum bias is obtained at δ1 � 0.125 and δ2 � 0.225.

3.4 Tumor Type Section in a Basket Design

The basket design de-selects a subpopulation (i.e., a tumor type) to the second stage
whenever its standardized test statistic Xi(t) is less than the selection bar Z1−αt .
Similar to the biomarker enrichment design described in the previous section, the
remaining subpopulations are pooled in the final analysis.

3.4.1 Control of Type I Error

Suppose m subpopulations are pruned at the interim analysis, and they are denoted
by i1, …, im. The remaining (K-m) performing subpopulations are denoted by
i(m+1), …, iK. In this situation, V(−m) is similarly defined as in (3.1), but is based
on Xi(m+1) (t), . . . ,XiK(t). With m non-performing subpopulations pruned at interim,
the overall Type I error is P0

(
α∗, i1, . . . , im|αt,m,

{
θij � 0, δij : j � 1, . . . ,K

})
or

equivalently P
(
Xi1(t) ≤ Z1−αt , . . . ,Xim(t) ≤ Z1−αt , Xi(m+1) (t) > Z1−αt , . . . ,XiK(t) >

Z1−αt , V(−m) > Z1−α∗ |{θij � 0, δij : j � 1, . . . ,K
})
.

In the absence of the order of treatment effect by subpopulation, there are C(K, m)
possible configurations of {i1,…, im} where C(K, m)�C(K, m)�K!/((K−m)!m!).
The overall Type I error for basket design using an intermediate endpoint is in the
following form

P
(
Reject the null hypothesis at the level α∗|{θi � 0, δi : i � 1, . . . ,K}, t )

�
K−1∑

m�0

∑

over C(K,m)*

P0
(
α∗, i1, . . . , im|αt,m,

{
θij � 0, δij : j � 1, . . . ,K

})
(3.5)

where the second summation is over all the C(K, m) possible configurations. Equa-
tion (3.5) can be calculated from a multivariate normal distribution based on the
distributional results in Sect. 3.2.

Similar to the biomarker enrichment design, a narrow parameter space for δi
(1≤ i≤K) based on trial data or a meta-analysis may be used to facilitate the calcu-
lation of α∗. To be conservative, we search the entire parameter space of δi (1≤ i≤K)
to find the minimal α∗ that controls (3.5) at α. Due to the symmetry of the test statis-
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tics under the null hypothesis as well as lack of ordering in tumor type selection, the
minimal α∗ is achieved at same ϑi � δi

√
Ii(t) for 1≤ i≤K, which can simplify (3.5)

substantially. The minimal α∗ (denoted as min(α∗)) is used for testing the primary
endpoint in the final analysis. As expected, min(α∗) is less than α in general, which
again implies possible bias in point estimation of treatment effect.

3.4.2 Treatment Effect Estimation

Based on a similar derivation in Sect. 3.3, the overall bias is

K−1∑

m�0

∑

over C(K,m)∗

(
Biasm+1 × P

(
S � Sm � {

i(m+1), . . . , iK
}))

(3.6)

where Biasm+1 �
∑K

j�m+1

√
Ĩijρ

(
φ
(
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Similar to the biomarker enrichment design, an estimate of the maximum bias

can be obtained and so is a less conservative point estimate of the bias based on trial
data.

3.4.3 A Hypothetical Example of Adaptive Trial with Tumor
Type Selection

In this hypothetical example, the key objective of the basket trial is to file for accel-
erated approval at an interim analysis (following existing regulatory paradigm) and
full approval at the final analysis. PFS is often an acceptable endpoint for accelerated
approval. Different endpoints (e.g., ORR for immunotherapies) may also be consid-
ered in practice upon discussion with regulatory agencies. A more general objective
of an interim analysis is to discontinue the non-performing tumor types earlier.

Consider a randomized controlled basket trial with 1:1 randomization in six tumor
indications. Each tumor indication has approximately 88 PFS events at the interim
analysis. With 88 events, each indication has 90% power for detecting a hazard ratio
of 0.5 in PFS atαt � 0.025 (1-sided). An observed hazard ratio of 0.66 approximately
meets the selection bar of αt � 0.025 for a subpopulation to be included in the pooled
analysis.

It is assumed that approximately 110 patients are enrolled for each tumor indica-
tion in order to reach the target number of PFS event at the data cutoff date for the
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interim analysis. The final sample size in the pooled population is fixed at approxi-
mately 660 (i.e., 110 multiplied by 6). The interim analysis for each tumor indication
is conducted separately unless the target number of PFS events is reached at approx-
imately the same time. Whenever an indication has a negative PFS outcome (i.e., the
indication is pruned), a total of 110 patients are equally distributed to the remaining
indications. Based on the above setup and (3.5), the minimal α* is 0.008 when ρ is
0.5. A larger penalty is paid in this example than in the last one, mainly because of
the lack of ordering in treatment effect in subpopulations in this example. Assum-
ing that 65% of the patients in the pooled population die by the cutoff date for the
final analysis (i.e., a total of 430 events), the study has approximately 90% power to
detect a hazard ratio of 0.7 in OS at α*�0.008. An observed hazard ratio of 0.79
approximately meets the nominal alpha level α*�0.008 for a positive OS outcome
in the pooled analysis.

As a comparison to a traditional design without pruning at the interim analysis,
the observed hazard ratio in OS would be approximately 0.83 for the trial to be
positive at α=0.025. While this bar seems easier to cross, when some of the tumor
indications in the basket are inactive, the chance of crossing it in a trial that does not
prune non-performing ones at interim is lower than an adaptive trial that does (Chen
et al. 2016a). Moreover, the addition of an interim analysis for accelerated approval
could substantially shorten the time to drug approval. Last but not least, this basket
trial has the potential to get an experimental therapy approved in up to six tumor
indications based on a single trial with comparable sample size to a conventional
Phase 3 trial for one tumor indication.

When ρ�0.5, the maximum bias is estimated to be approximately 0.07. This
means that, when the true hazard ratio is 0.75, the observed hazard ratio is expected
to be approximately 0.70 (i.e., exp(−(−log(0.75)+0.07))) in the worst-case scenario
for the underlying intermediate treatment effect. The actual bias can be estimated
based on estimates of the PFS effects at the interim analysis. Of note, the maximum
bias is the same under different selection bars. However, for a certain range of δ (say
a more reasonable range of 0.4–0.6), the corresponding bias could be different under
different selection bar, e.g., a smaller bias yielded by a relaxed bar αt � 0.1. This is
because the greater the αt, the less the cherry picking effect in pruning and the less
the estimation bias.

3.5 Discussion

We have provided a statistical approach to control the overall Type I error and correct
estimation bias when different endpoints are used for adaption and hypothesis testing
in a two-stage adaptive design setting. The approach is illustratedwith two previously
studied designs useful for the development of personalized medicines. The same
approach can be applied to more general adaptive designs. Related issues are the
focus of ongoing research.
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TheType I error control in this chapter is based on a null hypothesis of all subpopu-
lations being inactive. Rejection of the null hypothesis does not automatically mean
that the subpopulations in the pool are equally active. Heterogeneity in treatment
effect across subpopulations in the final analysis deserves investigation. However,
this is a common issue in conventional Phase 3 trials. For example, the impact of
baseline characteristics on treatment effect is routine investigated in Phase 3 trials.
Regulatory decision on drug approval or scope of the label hinges upon the outcome
of such ad hoc analyses despite an overall positive outcome from the trial. The issue
is also similar to regional effect in a multi-regional study or the trial effect in a meta-
analysis, both well studied and understood. The concern about heterogeneity should
not be a hurdle of conducting biomarker enrichment trials or basket trials.

For simplicity, we have only considered one interim analysis in the hypothetical
examples. In practice, multiple interim analyses may be conducted. For example,
an interim analysis for detecting an overwhelming survival benefit may be added
after pruning. Timing of the interim analysis for pruning is important for reducing
selection errors. The interim analysis may be conducted earlier if treatment effect is
expected to manifest early or later otherwise.

We note that the required penalty for using internal data for pruning can be sig-
nificant especially for the basket trial. An alternative approach is to rely on credible
external data for pruning. Further, there should be no penalty when subpopulations
are pruned solely because of unexpectedly slow accrual, or due to evolution of stan-
dard of care that renders the study obsolete. Relaxation of the selection criteria may
also reduce the penalty.

Last but not least, it is well known that the naïve estimator of treatment effect in a
conventional group sequential trial that has stopped early for efficacy can be inflated
(Wang et al. 2016). Pruning in a two-stage adaptive design has a similar impact on
estimation of treatment effect as early stopping in a group sequential design does.
However, unlike in the group sequential trial setting whereas there is no data to
substantiate the bias estimation, patients enrolled in the second stage of a two-stage
adaptive design provide an unbiased data source for this purpose. The data should
be routinely reported in practice, along with the bias-corrected estimate.
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Chapter 4
High-Dimensional Data in Genomics

Dhammika Amaratunga and Javier Cabrera

4.1 Introduction

Technological advances are revolutionizing the pharmaceutical industry. Particularly
in early-stage research, there has been a significant paradigm shift. Rather than study
a few carefully chosen entities (such as certain proteins or enzymes) as in the past,
the thinking now is to explore a very large number of entities (e.g., maybe an entire
genome or several thousand proteins) all at once.

This has led to high-dimensional data becoming a common characteristic of early-
stage biological research, particularly in genomics, proteomics, and imaging. High-
dimensional data are data that are generated when p features are measured on each
of n samples, so they can be organized into a p × n matrix X, with n and p such that
p is at least an order of magnitude larger than n (i.e., n �p). It is this latter attribute
that distinguishes this type of data, sometimes referred to as “small n, large p” data
or megavariate data, from standard statistical multivariate data, which are similar
except that their n>p.

As an example, in a study of sialic acid storage diseases, the expression levels of
p=45101 genes were measured for n=12 18-day old mice, of which 6 were wildtype
mice and 6 were knockout mice, where “knockout” refers to the fact that these mice
had their Slc17A5 gene inactivated (Van Acker et al. 2017; Moechars et al. 2005).
The measurements were performed on RNA samples drawn from total brain using
Affymetrix Mouse 430 2.0 GeneChips. The objective of the study was to identify
differences in gene expression patterns across these two sets ofmice, since it is known
that there is association between mutations in the Slc17A5 gene, which encodes the
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protein sialin and sialic acid storage diseases. We will use this data (which we will
hereon refer to as the Sialin data) for illustrative purposes in the rest of the paper.

The de facto dimensionality of the data is, of course, p. Conventional data anal-
ysis methodologies are either not directly applicable or are unlikely to be effective
when dealing with this sort of data since the sample size is considerably less than p.
Methods developed for regular machine learning and data mining applications may
also encounter difficulties as they could have a tendency to overfit since n<p; i.e.,
they are likely to find spurious patterns in the data. In fact, at first sight, the high
dimensionality would seem to present an insurmountable problem, not just for con-
ventional methods, but for anymethod. However, the essential belief when analyzing
a high-dimensional dataset is that it contains patterns of value which reside in much
lower (say k) dimensional subspaces, where not only k<p but also k<n, in fact,
ideally k=1 or 2. Of course, neither the low-dimensional representations, nor even k,
may be unique. In other words, it is possible that there are several low-dimensional
aspects of the data involving different subsets of the p initial features which carry
some sort of meaningful information. Finding them (and distinguishing them from
spurious patterns) is the major challenge.

In the remainder of the paper, wewill outline somemethods that have been applied
successfully for analyzing high-dimensional data in the genomics arena. The number
of techniques that have been proposed is quite substantial, and it is not possible in a
short review to outline all of them; therefore, only a few select methods that we and
our colleagues have found consistently useful will be presented. Tukey’s ideas on
exploratory data analysis (Tukey 1977, 1980) play a pivotal role in these methods.
Further details of procedures can generally be found either online or in the literature.
Amaratunga and Cabrera (2004) and its second edition, Amaratunga et al. (2014),
are book-length treatments of this topic, while Amaratunga and Cabrera (2016) is a
brief review.

4.2 Visualization

Two-dimensional renderings of the data are useful for initial exploration of the data.
One such is the biplot, which is a plot associated with the singular value decomposi-
tion. Here X is decomposed as X=UDV ′, where U is p × n and column orthogonal,
V is n × n and orthogonal, and D is n × n and diagonal. If we retain only the two
largest values in the diagonal of D (call it D2) and subset U and V accordingly (call
them U2 and V 2), we can approximate X by X2 �A2B2

′ where A2 �U2D1/2
2 and B2

�V 2D1/2
2 . The two columns of A2, when plotted against each other, will offer a two-

dimensional rendering of the p features. Analogously, the two columns of B2, when
plotted against each other, will offer a two-dimensional rendering of the n samples.
The two plots can be shown in a single diagram called a biplot (Gabriel 1971), so
that not only the individual characteristics of the p features and the n samples, but
also possible associations between the two can be assessed.
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Fig. 4.1 Spectral map of the Sialin data. The 12 samples (the 6 wildtype mice and the 6 knockout
mice) are shown as squares, with the wildtype mice shown as blue squares and the knockout mice
shown as green squares. The 45101 genes are shown as gold circles

A spectral map is a special type of biplot which is constructed following certain
modifications toX, such as adjusting for size and scale differences among the features;
for details, see Wouters et al. (2003). This enhances the display for microarray data.

Figure 4.1 is a spectral map of the Sialin data. It can be observed that the two sets
of the samples (the wildtype mice and the knockout mice) separate cleanly along
the direction of the x-axis, with the wildtype mice (shown as blue squares) to the
left and the knockout mice (shown as green squares) to the right. The p value of a
t test performed on the x-axis projection of the samples is 3.31×10−6. Especially
given that this was an “unsupervised” analysis, in the sense that the construction of
the spectral map did not make use of the information that the samples came from
two distinct populations, this clearly shows that there is good separation between the
samples.

4.3 Individual Feature Analysis

When analyzing grouped high-dimensional data, it is useful to next carry out a
supervised analysis of each of the p features individually. This will give an indication
as towhich features are driving the separation between groups. This can be done using
conventional statistical hypothesis testing techniques.
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For example, for the Sialin data, since there are two groups of samples, student’s
t tests can be used. However, the sample size is often limited in these studies, which
in turn reduces the power of these tests. Hence, it is often useful to “borrow strength”
across features to improve the sensitivity of the entire procedure. This can be done
by setting some additional structures, such as setting a distribution structure for the
variances.

Let the data be denoted as {Xgij}, where g (g=1,…, p) indexes the features, j (j=1,
2) indexes the groups, and i (i=1, …, nj) indexes the samples (note: n1+n2=n). The
standard t test assumes that Xgij is normally distributed with mean μgj and variance
σ 2
g. Under these assumptions, the t test uses t test statistics {Tg} to test whether μg1

�μg2 for each feature, g.
A number of suggestions have been made as to how to borrow strength across the

p features. Generally, they assume that the {σ 2
g} collectively follow some distribution

Fσ . Most proposed approaches are parametric in nature and assume a distributional
form for Fσ , such as an inverse gamma distribution. One widely used such method is
limma (Smyth 2004). This is a hybrid classical–Bayes approach in which a posterior
variance estimate is substituted into the classical t statistic in place of the usual sample
variance, giving rise to a moderated t statistic Tg*. Like with the conventional t test,
the null distribution of Tg* can be adequately approximated by a t distribution, but
with different degrees of freedom.

A semiparametric approach for borrowing strength, which is less dependent on
distributional assumptions, is Conditional t or Ct (Amaratunga and Cabrera 2009). In
this approach, even the normality assumption of the t test is dropped and it is assumed
that Xgij follows an unknown distribution F. Now both F and Fσ are unspecified
distributions and a resampling scheme along the lines of the bootstrap (Efron 1981)
is used to approximate them. They are then used to generate critical envelopes, tα(sg)
(instead of constant critical values as in the conventional t test) for several different
values of α; here sg is the pooled standard error of the gth feature, and α is the
significance level of the test. For each feature, g, a p value, pg, can be assigned by
identifying the smallest value of α that results in significance for that feature.

For the Sialin data, limma declared 990 features as significant at the 0.001 level
whileCt declared909 features as significant at the 0.001 level; these canbe considered
to be the initial “discoveries” by this analysis.

4.3.1 Multiplicity Considerations

Clearly, however, when testing somany features, the likelihood is very high that there
will be a large number of “false discoveries” among the discoveries, i.e., differences
that are declared significant even though they are not real. The traditional approach to
this multiple testing problems has been to control the probability of at least one false
discovery (called the Familywise Error Rate or FWER), the Bonferroni procedure
being the most common such fix. However, if this is done with a large number of
features, there will be a substantial loss of statistical power andmany true discoveries
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may go undetected. The False Discovery Rate (FDR) is a more recent alternative
(Benjamini and Hochberg 1995) that seeks to better address this problem.

This approach attempts to control the FDR, defined as:

FDR=expected proportion of false discoveries among the set of discoveries,

rather than the FWER. There are multiple approaches to controlling the FDR, some
common ones are by Benjamini and Hochberg (1995), Benjamini and Yekutieli
(2001), and Storey (2002).

Operationally, FDR control is often done by converting the observed p values to
FDR adjusted p values or q values. The FDR adjusted p value (also referred to as a
q value) for feature g is the smallest FDR value for which the null hypothesis can be
rejected for that feature and all others with smaller p values (Benjamini and Yekutieli
2001; Storey 2002).

For the Sialin data, 338 of the limma features and 345 of the Ct features had q
values below 0.001, with an overlap of 305 genes.

4.3.2 Gene Set Analysis

Even with multiplicity adjustments, it is clearly impossible to screen large numbers
of apparently significant genes. Thus, it is often of interest to also analyze gene sets,
where a gene set, GS, is a collection of genes that are known to share a common
biological function, chromosomal location, or regulation. Gene sets are available in
public databases such as Gene Ontology (GO), KEGG, Biocarta, and GenMAPP.

The objective of gene set analysis is to identify gene setswhich have comparatively
low p values (or q values). Thus, it is natural to consider using a version of Fisher’s
statistic for combining p values (Fisher 1925) for this purpose. This is the Mean Log
P (MLP) statistic (Pavlidis et al. 2004; further studied by Raghavan et al. 2006, 2007,
Tryputsen et al. 2014):

MLP � mean(− log(pi )) �
∑

i∈GS

(− log(pi ))/r

Since gene-level p values often tend to deviate from a uniform distribution even
in situations that may be regarded as null, whichever test statistic is used, a per-
mutation procedure is the most effective way to assess whether a given set GS of
size r with observed test statistic MLP is enriched. This is carried out as follows:
repeatedly draw random samples of size r from the set of all p values; recalculate
MLP for each random sample (call this MLP*); the proportion of times that MLP*
exceeds the observed valueMLP in a large number of runs could be regarded as the
p value for the significance of gene set GS.

For the Sialin data, one of themore prominent findings is that theGOhierarchy that
involves myelination (GO term 42552), ensheathment of neurons (GO term 7272),
and regulation of action potential in neurons (GO term 19228) are all significant.
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This is highly encouraging from an interpretation point of view since loss of sialin
is known to affect these biological processes.

4.4 Analysis of Combinations of Features

Next, it is useful to study combinations of features. Supervised classification (or
discriminant analysis) refers to a class of techniques whose objective is to seek a
combination of features that is able to discriminate between the groups of samples
with reasonable accuracy. Again, there are a number of possible approaches. We
shall now describe a method based on fitting a linear model for the case where the
number of groups is two.

Let Yi indicate the group of the ith sample, let πi be the probability of sample i
belonging to Group 1, and let the values of the features for the ith sample be xi, the
ith column of X. The logistic regression model postulates that π i is associated with
xi via the equation:

log(πi/(1 − πi )) � β ′xi ,

where β is a p-vector of coefficients. In conventional logistic regression, these coef-
ficients are estimated by maximizing the log-likelihood:

l(β) �
∑

[Yi log(πi ) + (1 − Yi )log(1 − πi )]

When n <p, there is insufficient data to estimate the full model. One solution is to
maximize l(β) under the penalty constraint � |βj | <h, or, equivalently, to minimize

S(β) � −l(β) + λ
∑

|β j |

after scaling all features to have unit sample variance. This procedure is called lasso
(Tibshirani 1996). The tuning parameter λ controls the strength of the penalty: λ�0
yields the standard regression estimates, λ→∞ yields all zero estimates, and values
of λ in between these two extremes yield compromises between fitting the traditional
logistic model and shrinking all of its coefficients toward zero. A suitable value for
λ is usually found by assessing the fit. Once this is done and the model fitted, many
coefficients will inevitably shrink all the way to zero, essentially performing feature
selection. A highly effective and efficient algorithm for lasso and a related procedure
called elastic net was developed by Friedman et al. (2010).

The Sialin dataset was analyzed using lasso. As an initial check to see how good
the fit was, the grouping for the 48 samples was predicted using the fitted model;
the groups of all 12 were identified correctly; there were zero errors. This may seem
to indicate a very good fit, but since the fitting and the prediction were done using
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exactly the same data, the zero error rate could be highly over-optimistic. Therefore,
it would be unwise to rely on this as an assessment of goodness of fit.

It is best to measure the predictive ability of a model by validating it on a set of
data that was not used to fit the model. This could be done by dividing the dataset
into two parts, then using one part (called the “training set”) for fitting the model and
using the other part (called the “test set”) for testing it. The group of each sample in
the test set can be predicted using the fitted model and the proportion of errors can be
calculated to give an assessment of the predictive accuracy of the model. This will
not be over-optimistic because the test data were not used for model fitting.

However, there is often not enough data to allow a part of it to be left out for testing.
A simulated version of the same idea is leave-one-out cross-validation (LOOCV)
(Stone 1974). This is carried out in n steps as follows. At the ith step, all the samples
except sample i form the training set. The model is fitted using this training set.
Then the group of the ith sample, which is now temporarily the test set, is predicted
using the fitted model and it is noted whether or not the prediction is correct. This is
repeated for each i (i.e., for each sample), in turn and the percentage of total errors
is calculated and reported as the LOOCV error rate.

The LOOCV error rate for the Sialin data was 0% (i.e., 0/12), indicating a good fit.
We also kept track of which genes appear in at least half the fitted models. These are
possibly the genes most influential for separating the two groups, although because
of correlations among genes, certain influential ones may not show up. These genes
can be examined as before, and again, the GO hierarchy involving GO terms 42552,
7272, and 19228 shows up as an affected pathway.

Variations of cross-validation include leave-k-out cross-validation (in which k
samples are left out at each step) and k-fold cross-validation (in which the original
set of samples is randomly partitioned into k subsets, one of which is left out at each
step). Another type of variation is the bootstrap (inwhich a random set of n samples is
left in at each step, with the random sampling being done with replacement) (Efron
1981, 1983; Breiman 1996). There are variants of the bootstrap too, such as the
.632+bootstrap (Efron 1983; Efron and Tibshirani 1997).

When there are a large number of features, ensemble techniques, which iterate
through samples of both rows and columns of X with the findings aggregated and
collated at the end, have been found to work well. The initial popular ensemble
technique was Random Forest (Breiman 2001), which was mostly developed for
mining early “BigData”where nwas very large. A variation called EnrichedRandom
Forest (Amaratunga et al. 2008a, b) works well when n<p. An additional variation,
in which lasso is used in a Random Forest like procedure (Amaratunga et al. 2012)
has also been found to work well.

4.5 Discussion

In this paper, we have given an overview of techniques that are useful for analyzing
grouped high-dimensional genomics data. When there is no group information, the
goal of the analysis might actually be to try and infer groups among the samples.
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For this, unsupervised classification (also called cluster analysis) techniques can be
applied. Here too special methods have been developed for high-dimensional data,
an example being an ensemble technique called ABC (Amaratunga et al. 2008a, b).
Two-way clustering and biclustering methodologies have also been developed and
applied (Kasim et al. 2016).

Finally, an important note: it is imperative that any findings be independently
validated. Due to the high dimensionality, overfitting always remains a possibility,
particularly in the selection of important features. Independent verification maybe
sought through a repeat or similar study or through contextual subject-matter means.
The importance of such independent qualification cannot be stressed enough.
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Chapter 5
Synergy or Additivity—The Importance
of Defining the Primary Endpoint
and the Approach to Its Statistical
Analysis—A Case Study

Bruce E. Rodda

5.1 Introduction

When a patient is prescribed two different therapeutic moieties for an indication,
these entities may be taken either concurrently or in combination. In either case, it is
anticipated that co-administration of two agents will result in efficacy and/or safety
that is superior to that expected from either component if administered independently.
The therapeutic outcome from such a co-administration should benefit from both
products, and the contribution of each component should be measurable.

There are several reasons for administering two medications as a single dosage
form. These include convenience for the patient, improved compliance, and lower
cost, among others. There are also advantages for the sponsor, including manufactur-
ing efficiencies, improved market share, and intellectual property benefits. The latter
two benefits may be enhanced if it can be demonstrated that the clinical outcome
associated with the administration of the combination is associated with a synergistic
effect of the two components. For this reason, demonstrating synergy of two thera-
peutic entities can be a very important objective in the clinical development program
of a combination product.

5.2 Definition

In a combination product, it is important that each entity contribute individually to
the overall response. A patient’s response to the combination treatment that exceeds
the response expected from the simple sum of the individual effects can provide an

B. E. Rodda (B)
Strategic Statistical Consulting LLC, University of Texas School
of Public Health, Austin, TX, USA
e-mail: Bruce_Rodda@msn.com

© Springer Nature Singapore Pte Ltd. 2018
K. E. Peace et al. (eds.), Biopharmaceutical Applied Statistics Symposium ,
ICSA Book Series in Statistics, https://doi.org/10.1007/978-981-10-7820-0_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7820-0_5&domain=pdf


76 B. E. Rodda

additional therapeutic benefit to the patient and a potential marketing advantage for
the sponsor.

The standard definition of synergy of two pharmacologic agents is characterized
by the following quotation. “A synergistic effect is one in which the combined effect
of two chemicals is greater than the sum of the effects of each agent given alone.”
(Hardman et al. 1996). In contrast, “[a]n additive effect describes the combined effect
of two chemicals that is equal to the sum of the effects of each agent given alone.”
(Hardman et al. 1996). These definitions are critical to the discussion at hand and are
those that have been traditionally used in the evaluation of potential synergy between
therapeutic agents.

5.3 Background

While the data used in this chapter are hypothetical, they reflect an actual set of studies
that was designed and conducted by a major pharmaceutical company. The example
is unique in that the original sponsor used a set of well-designed studies in support
of a new drug application that supported additivity of two component medicines,
and several years later a different company (Company X) used the identical set of
clinical trials and their results to support a patent application that claimed synergy
between the two components. The two companies had two different objectives and
analyzed the results of these studies in two very different ways to address those
different objectives.

The audiences of these two contrasting objectives were also different. The original
evaluation was submitted to the US Food and Drug Administration (FDA) by the
sponsor in support of a new drug application. Several years later, an independent
analysis of the same set of studies was submitted to the US Patent and Trademark
Office (USPTO) by Company X in support of a patent application.

The objective of this chapter is to demonstrate that the ability to characterize, and
to claim the existence of, a synergistic relationship between two agents depends to a
critical degree on how “synergy” is defined and how the data are analyzed.

While the studies and data presented in this chapter are hypothetical, they reflect
an actual case and the descriptions of the studies have been extensively modified to
preclude associating these results with specific companies, products, or outcomes of
the actual studies. Only enough information has been retained to facilitate presenta-
tion of the chapter’s thesis.

5.4 The Sponsor’s Case

The use of combination products for the treatment of type-2 diabetes has been com-
mon for several years, and the example used in this chapter is based on a development
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plan for a combination of metformin and a sulfonylurea for the treatment of this dis-
ease.

The goal of the sponsor in this example was to develop a combination of met-
formin and a sulfonylurea in this indication, using the reduction of hemoglobin A1c
(hereafter A1c) following six months of treatment as the primary outcome variable.
Their interest was in providing a product with the benefits of both agents and did not
anticipate any synergistic or potentiative activity of the two component medications,
although their clinical development plan allowed evaluation of a potential synergistic
effect between the two agents. The original submission by the sponsor to the FDA
requested that the combination be approved as safe and effective for the treatment
of this indication, but there was no request for a claim of synergy between the two
agents.

As the basis of their new drug application (NDA), the sponsor conducted five
clinical trials in support of the combination product. These clinical trials will form
the basis for the discussion of the case presented in this chapter.

The designs of four of these studies were standard 2×2 designs in which the four
treatmentswere placebo,metformin, sulfonylurea, and the combination ofmetformin
and sulfonylurea. These designs are presented in the following schematic.

Stabilization

Placebo

Metformin

Sulfonylurea

Combination

3 months

6 months treatment 
Randomization

The treatment layout for the first four studies was:

Studies 1–4
Placebo sulfonylurea Sulfonylurea

Placebo metformin Placebo Sulfonylurea

Metformin Metformin Combination

Two doses of metformin (low/high) and three doses of sulfonylurea
(low/med/high) were included in the clinical development plan. The 2×2 designs
used different combinations of doses, and the results of these studieswill be discussed
later in this chapter.
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The fifth study was a 3×4 design in which two doses of metformin and three
doses of sulfonylurea were also included, resulting in 12 treatment groups (M-lo,
M-hi, S-lo, S-med, S-hi, Placebo, M-lo/S-lo, M-lo/S-med, M-lo/S-hi, M-hi/S-lo, M-
hi/S-med, and M-hi/S-hi).

Study 5
Placebo
sulfonylurea

Sulfonylurea
(low)

Sulfonylurea
(med)

Sulfonylurea
(high)

Placebo
metformin

placebo S(lo) S(med) S(hi)

Metformin (low) M(lo) M(lo)/S(lo) M(lo)/S(med) M(lo)/S(hi)

Metformin (high) M(hi) M(hi)/S(lo) M(hi)/S(med) M(hi)/S(hi)

These five studies followed standard designs for the evaluation of potential syn-
ergy (metformin by sulfonylurea interaction) and would have been capable of iden-
tifying synergy, if it existed.

The concept of pharmacologic additivity can be appreciated by the graphic exam-
ple below. Consider the design of the four simpler studies, each comprising four treat-
ment groups. Assume that the placebo treatment is associated with a 0.2% reduction
in average estimated A1c over the six-month observation period; the patients in the
metformin group have a 0.8% reduction in A1c: and the patients in the sulfonylurea
group have a 1.1% reduction in A1c. These reductions are generally consistent with
the treatment effects observed in the studies under consideration.
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Placebo Metformin Sulfonylurea Combination

Example of Additivity

Sulfonylurea

Metformin

Placebo

Note that the effect of every treatment contains a response due to placebo, and we
must subtract this effect from the observed treatment response to obtain an estimate
of the net (or pharmacologic) effect for each treatment. In this example, the net
(pharmacologic) effect of metformin is 0.8% (1.0%–0.2%) and that of sulfonylurea
is 1.1% (1.3%–0.2%). The figure above demonstrates that the observed effect for
each treatment is the total of the net pharmacologic effects and the placebo effect.

To relate this concept to the metformin and sulfonylurea combination treatment,
refer to the column on the far right in the chart above. If metformin and sulfonylurea
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are truly additive in their pharmacologic effects at these doses, the expected response
(reduction in A1c) associated with the combination of metformin and sulfonylurea
(the sum of the effects taken independently) would be the sum of the individual
effects, i.e., the placebo effect which is common to every treatment (0.2%) plus the
metformin effect (0.8%) plus the sulfonylurea effect (1.1%)which yields an expected
reduction of 2.1% for the metformin and sulfonylurea combination treatment.

Synergy would only occur if “the combined effect of two components is greater
than the sum of the effects of each agent given alone.” (Hardman et al. 1996). Thus,
for the combination of metformin and sulfonylurea to be truly synergistic in the
example above, the average reduction in A1c associated with the combination would
need to exceed 2.1% by an amount greater than would be expected by chance. This
would be characterized by a large metformin by sulfonylurea interaction effect in the
various statistical analyses.

Although results are usually presented later in a report, it is important to present
summaries of these five trials at this point to form the basis for the central argument
of this chapter. In addition, the thesis of this chapter is not related to sample size or
missing data. Therefore, only the average responses to the treatments in the individual
studies will be presented.

In the first study, the test for a metformin by sulfonylurea interaction did not
suggest the presence of any interaction (synergy). The expected effect of the combi-
nation in the absence of synergy was −1.68 (−0.80 + (−1.01)+0.13), very similar
to the observed difference of −1.46.
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There was no suggestion of synergy in Study 2 either, the expected effect of the
combination in the absence of synergy being −2.23 (−1.11 + (−1.40)+0.28), also
similar to the observed difference of −1.92.

The statistical analysis of Study 3 indicated additive effects of metformin and
sulfonylurea at these doses. The estimated effect if the effects were additive was
−1.94 (−0.90+ (−1.13)+0.09), comparable to the observed value of −2.23.
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In the fourth study, the effect of the combination of the two treatments was similar
to the estimated effect of sulfonylurea alone. The statistical analysiswas supportive of
both metformin and sulfonylurea effects at these doses, but no synergy was implied.
Note that these first four studies offer no suggestion of any synergistic effect of the
two agents over the dose ranges explored. The parallel lines in the graphs visually
support additivity of the agents.

The fifth and final study explored a range of doses for both entities as previously
described and also provided no evidence of a synergistic effect of the two drugs. The
results of this study are presented in the figure below.

The table below presents the estimates of the net treatment effect (actual observa-
tionminus placebo effect) for Study 5. In addition, the numbers in parentheses are the
estimates of the combination treatment effects that would be expected if there was
complete additivity. These numbers, the statistical analysis, and the graphic above
provide no evidence of synergy of any kind in this study.
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Study 5 (Change from placebo in A1c) Sulfonylurea
Placebo Low Medium High

Metformin Placebo – −0.19 −0.56 −0.97

Low −0.24 −0.64
(−0.43)

−1.04
(−0.80)

−1.74
(−1.21)

High −0.87 −1.08
(1.06)

−1.46
(−1.43)

−1.81
(−1.84)

The results of the five studies provide ten opportunities for synergy to be observed,
if it existed. Each of the four 2×2 studies provides a single estimate and the 3×
3 study provides six estimates of possible synergy. Each of these five studies was
independently analyzed by the original sponsor using general linear model theory
and included factors formetformin, sulfonylurea, and their interaction. The estimated
treatment effects are summarized in the table below

Summary of Patient Data
Average treatment effects submitted to the FDA in consideration of synergy

Study
M/S dose

Metformin Sulfonylurea Combination Expected
effect if
additive

Difference
implying
synergy

1-M/H −0.67 −0.87 −1.33 −1.54 0.21 (N)

2-H/H −0.85 −1.14 −1.66 −1.99 0.33 (N)

3-M/L −0.81 −1.04 −2.14 −1.85 −0.29 (Y)

4-L/L −0.56 −1.10 −1.19 −1.66 0.47 (N)

5-L/L −0.24 −0.19 −0.64 −0.43 0.21 (N)

5-M/L −0.24 −0.56 −1.04 −0.90 −0.24 (Y)

5-H/L −0.24 −0.97 −1.74 −1.21 −0.53 (Y)

5-L/H −0.87 −0.19 −1.08 −1.06 −0.02 (Y)

5-M/H −0.87 −0.56 −1.46 −1.43 −0.03 (Y)

5-H/H −0.87 −0.97 −1.81 −1.84 0.03 (N)

The final column in the table above presents the difference between the observed
effect of each of the combinations and the effect expected if there was an additive
relationship between the two components. In this column, a positive number indicates
an effect less than additivity and a negative number indicates potential positive syn-
ergy. The statistical analyses of the individual studies resulted in p values exceeding
0.20 for all interactions. Note that from a purely directional point of view, one-half
the observed differences between the actual combination effect and hypothesized
additivity was negative and one-half was positive—exactly what would be expected
if the two components were additive. In addition, in each analysis there was firm
statistical support for the clinical effect of each component treatment.
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While it would be inappropriate to perform any statistical tests on the data in the
final column of the table for a variety of reasons, there clearly is no suggestion from
these studies that metformin and sulfonylurea are synergistic in reducing A1c after
six months of treatment.

The conclusions that are suggested by these studies are that each of the two
component medicines is associated with reductions in A1c and that the combination
is also associatedwith a reduction inA1c that is consistentwith additive contributions
of both components. This was the conclusion of both the sponsor and the FDA. The
combination product was approved for the treatment of type 2 diabetes; no request
was made for a statement of synergy in the labeling and none was granted.

Since there did not appear to be any evidence of synergy associated with the
clinical effects of these two compounds, no patent claiming synergy was filed by the
sponsor with the US Patent and Trademark Office (USPTO).

5.5 Company X’s Case

As the term of the original exclusivity neared expiration, interest in a generic version
of the combination was pursued by other firms. One of these companies (Company
X) determined that a patent that supported synergy of the two components in this
indication would provide themwith a unique position in the market, provide a poten-
tial marketing advantage, and thus improve sales. For these reasons, they decided
to file a patent application seeking a claim of synergy between the two agents. The
foundation for their filing included the identical studies and data that the original
sponsor had submitted to the FDA in support of the approved NDA. However, since
the original analyses of these studies did not support synergy, Company X needed a
different approach to support the patent application of potential synergy.

It should be pointed out that in contrast to an approved new drug application,
a patent does not assure that a product provides the effect cited in the patent. The
patent provides a claim of intellectual property, but that claim may not necessarily
be related to the product’s actual performance in humans—even if the product’s
performance in humans is known. In addition, and unlike submissions to the FDA,
submissions to the USPTO can be based on selective datasets and analyses. There
is no requirement for full disclosure regarding all knowledge available regarding
the product. Selective data supporting a patent application may be submitted to the
USPTO without providing information that may conflict with the intended claim for
clinical use, and there is no requirement for consistency between submissions to the
USPTO and the FDA.

The analytic approach that was used by Company X to support their claim of
synergy differed greatly from that traditionally used to evaluate synergy (as used by
the original sponsor) and was of questionable statistical validity. However, Company
Xmaintained in their patent application that their definition of synergy was the same
as the original sponsor, i.e., “a synergistic effect is one in which the combined effect
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of two chemicals is greater than the sum of the effect of each agent given alone.”
(Hardman et al. 1996).

Despite the assertion by Company X that their definition of synergy was the same
as that of the original sponsor, the analyses supporting their contention of synergy
were completely different from the analyses submitted to the FDA by the original
sponsor, whose original analyses were inconsistent with a synergistic effect.

The approach used by Company X was based on the concept of “responder.”
This technique required that each patient be characterized as a “responder” or
“non-responder” to their assigned treatment, thus effectively ignoring the degree
of response for each patient beyond that required to determine whether a patient was
a responder.

A “responder” in this case was defined by Company X as a patient whose A1c was
less than 6.0% or who experienced a reduction of at least 1.0% after six months of
treatment. The percentage of responders in each treatment group was then computed
within each study according to this definition and was then used as the basic datum
for comparison.

In contrast to the classic definition of synergy discussed previously, the only
approach to support synergy submitted to the USPTO by Company X was based on
the following methodology. First, a “placebo-adjusted” proportion of patients who
responded in each active treatment group was calculated. Company X defined the
“placebo-adjusted” effects for each study to be the percentage of responders in each
active treatment group minus the percent responders in the placebo group in that
study. While this clearly could be problematic (the difference could be less than 0.0),
their strategy for the USPTO submission was based on this approach. Fortunately
for Company X, none of these “placebo-adjusted” probabilities was negative or the
irrationality of their approach would have been obvious to the USPTO.

The rationale for this approach can be appreciated by viewing the Venn diagram
below and the subsequent explanation.

PM
Metformin

PS
Sulfonylurea

PMPS
Both

In the schematic above, PM represents the “adjusted” probability of response for
the metformin groups and PS represents the “adjusted” probability of response for
the sulfonylurea groups.

This approach has been validly used (without the “adjustment”) to determine
synergy between two herbicides (Hewlett and Plackett 1979). Consider the following
example of two herbicides (say M and S) designed to kill a given weed. Assume that
M is effective in killing a proportion (PM) of the plot if administered alone and S is
effective in killing a proportion (PS) of the plot when administered alone. If the two
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herbicides were applied together and acted independently, the proportion of the plot
being killed would be PM +PS − PMPS based on conventional probability theory.

Thus, if there was no synergy, the expected proportion of the plot dying with
combination treatment would be PM +PS − PMPS. If the observed proportion of
the plot that was killed exceeded PM +PS − PMPS, there would be evidence of a
synergistic effect of the two herbicides. While this approach makes sense in the
context of a situation where the totality of effect cannot exceed unity (the entire
plot being killed), it does not make sense in the context of demonstrating synergy of
drugs with measurable effects. In addition, the definition of synergy in this context is
different than the additive definition in which the combined effect of two chemicals
is greater than the sum of the effects of each agent given alone.

This rationale for demonstrating synergy fails on both logical and statistical
grounds when there is no upper bound on the treatment effect (unlike death).

To demonstrate the fallacies of this approach, the proportion of responders in each
study according to Company X’s definition is summarized in the following table.

Summary of Patent Data
Entries are percent of “responders” for each treatment

Treatment Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5

Placebo 15.8 24.4 18.3 17.7 34.7

Low M – – – 20.0 44.3

Med M – 38.3 37.7 – 40.0

High M 53.3 – – – 57.1

Low S. – – 40.5 44.6 46.5

High S. 67.5 50.0 – – 58.9

Lo M/Lo S. – – – 37.9 69.4

Lo M/Hi S. – – – – 78.1

Med M/Lo S. – – 61.5 – 60.6

Med M/Hi S. – 66.4 – 80.9

Hi M/Lo S. – – – 68.6

Hi M/Hi S. 87.0 – – – 81.2

The rationale for determination of the existence of synergy in each study was
based on the logic presented above using the adjusted proportion of responders in
each active treatment group. As discussed previously, this adjustment was made by
subtracting the proportion of placebo responders from the proportion of responders
in each treatment group to achieve a “placebo-adjusted” response rate. For example,
in Protocol 1 the adjusted response rate (%) for the high dose metformin treatment
would be 53.3 − 15.8�37.5, that for the high dose of sulfonylurea would be 67.5
− 15.8�51.7, and that for the combination would be 87.0 – 15.8�71.2.

The evaluation of synergy was then made by determining whether the observed
“placebo-adjusted” proportion of responders in the combination group exceeded that
which would be expected using the PM +PS − PMPS definition of additivity. In this
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case, PM +PS − PMPS would be 0.375+0.517− (0.375) * (0.517)�0.698 or 69.8%.
Since the observed adjusted response rate for the combination in this study was
71.2%, there is evidence of synergy by this approach. These calculations have been
performed for each of the various studies and combinations and are presented below.

Summary of Patent Data
Entries are “placebo-adjusted” response probabilities (percentages) submitted to the
USPTO in support of synergy

Study
M/S dose

%
Metformin
(M)

%
Sulfonylurea
(S)

M+G – M * S Observed
combination

Difference
implying
synergy

1-M/H 37.5 51.7 69.8 71.2 1.4 (Y)

2-H/H 13.9 25.6 35.9 42.0 6.1 (Y)

3-M/L 19.4 22.2 37.3 43.2 5.9 (Y)

4-L/L 2.3 26.9 28.6 20.2 −8.4 (N)

5-L/L 9.6 11.8 20.3 34.7 14.4 (Y)

5-M/L 5.3 11.8 16.5 25.9 9.4 (Y)

5-H/L 22.4 11.8 31.6 33.9 2.3 (Y)

5-L/H 9.6 24.2 31.5 43.5 11.9 (Y)

5-M/H 5.3 24.2 28.2 46.2 18.0 (Y)

5-H/H 22.4 24.2 41.2 46.5 5.3 (Y)

The table above was the general summary submitted to the USPTO to support
a claim of synergy. The position of Company X was that there were ten treatment
combinations among the five studies that could be used to determine the existence
of synergy, and nine supported synergy. They also cited that a binomial test of the
ten results was associated with a p value of<0.01. None of the A1c data from the
five studies that were submitted to the FDA were submitted to the USPTO. Based on
this limited information, but absent any of the analyses and summaries submitted to
the FDA, a patent for synergy was granted by the USPTO.

5.6 Discussion

The hypothetical example above is based on an actual case and clearly distinguishes
between two approaches to the evaluation of potential synergy between two agents.
Thefirst approach uses the factorial nature of the study designs and provides estimates
of potential interaction effects, which in this case was not consistent with synergy.
The second approach, using consistency with probabilistic independence (PM +PS
− PMPS) as an index of synergy, has several elements that make it inappropriate for
use in a clinical trial situation.
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The first drawback of the second approach is that it requires a definition of “re-
sponder.”When trying to characterize synergy of herbicides, the responder definition
is clear—death, and the proportion of the plot dying is a reasonable metric. The logic
in the PM +PS − PMPS definition of synergy in this case is supportable.

However, the definition of “responder” using this approach in a clinical trial has
a significant impact, even if there is no “adjustment” for placebo response and using
the fundamental concept manifest in the classical definition of synergy. For example,
suppose (but being extreme to make the point) that all placebo patients have a 0.4%
reduction in A1c; all metformin patients have a 0.8% reduction; and all patients in the
sulfonylurea group have a 0.9% reduction. If the effects are additive, wewould expect
to see an average reduction of 1.3% in the combination group (0.4%P+0.4%M+
0.5%S) as in a previous schematic and represented below.

0.0
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0.4

0.6

0.8

1.0

1.2

1.4

Placebo Metformin Sulfonylurea Combination

Example of Additivity

Sulfonylurea

Metformin

Placebo

Recall that one of the requirements to be considered a responder is that a patient
must experience a reduction of at least 1.0% inA1c over the 6months of study. In this
example and by this definition, none of the placebo patients will be responders; none
of the metformin patients will be responders; and none of the sulfonylurea patients
will be responders; but 100% of the combination patients will be responders. Using
Company X’s logic and statistical approach, synergy will be claimed where none
exists.

Suppose we make a minor change in the definition of responder and reduce the
required reduction in A1c to 0.9% instead of 1.0%. Assume that all placebo patients
still have a 0.4% reduction; all metformin patients have a 0.8% reduction; and the
patients in the sulfonylurea group still have a 0.9% reduction. If the effects are
additive, wewould still expect to see an average reduction of 1.3% in the combination
group (0.4%P+0.4%M+0.5%S).

Using this revised definition of responder, where the only change from the previ-
ous definition was a reduction in the requirement from aminimum change of 1.0% to
0.9%, none of the placebo patients will be responders; none of themetformin patients
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will be responders; but 100% of the sulfonylurea patients and 100% of the combina-
tion patientswill be responders. Since the sulfonylurea and combination patients have
the same proportion of responders (100% in this example), demonstrating synergy
would be impossible using this approach—even if it existed.

Consider a variation of the previous examplewhere the proportion of responders is
the same for all single entity treatments as in the previous paragraph, but the average
response in the combination group is no longer 1.3%, but is now 2.0%—real synergy.
It is still impossible to demonstrate synergy using the “responder” approach since
all patients in the sulfonylurea and combination groups were “responders.” Here we
have clear evidence that there is synergy with respect to the average reduction in
A1c, but by using the “responder” approach, it is impossible to detect.

The above discussion identifies several points that make using the proportion of
responders to characterize synergy inappropriate when a measureable endpoint is
used as the primary efficacy variable.

• The actual degree of response is not considered.
• Synergy can be inferred where it does not exist.
• Synergy may appear to be absent when it truly exists.
• Either of these resultsmay be created by selectively defining the term, “responder.”
• Bias could be easily introduced if the definition of responder is selected with
knowledge of the study results.

There were other problematic issues with using a responder approach for deter-
mining the existence of synergy in this specific case.

• Each treatment combination contributed only one piece of information for the
evaluation of synergy.

• The sample sizes of the various studies and the number of patients receiving each
of the various combinations were not considered in the evaluation.

• All comparisons using the “responder” approach were based on an assumption
that the comparisons were independent, which is clearly not tenable.

• Six of the ten comparisons in support of the patent came from the same study with
the same placebo contributing to each comparison.

• Each individual treatment contributed to more than one comparison.
• The placebo-adjusted response rates for active treatments were computed by sub-
tracting the proportion of placebo responders in each study from the proportion of
responders in the active treatment groups to obtain a “placebo-adjusted response
probability” associated with each active treatment.

• While the theory purporting to support this approach is tenuous at best, it is very
possible for the proportion of responding placebo patients to exceed the proportion
of patients responding to an active agent. Subtracting the placebo proportion from
the active proportion would yield a negative probability—a nonsensical result.

In the hypothetical case described in this chapter, the clinical studies forming the
basis for both a new drug application by the original sponsor and a patent application
byCompanyXwere identical. However, the analytic approaches used to demonstrate
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synergy were very different in the two cases. In the original approach submitted to
the FDA, the conventional definition of synergy and general linear model theory
was used to evaluate whether synergy existed. This approach used all the data in
the studies and determined that no synergy existed, defining synergy as an effect of
the combination that exceeds the sum of the effects of the individual components. A
claim for synergy was not requested by the sponsor, nor granted by the FDA. The
FDA approved the combination as being efficacious, but did not consider the data as
supportive of synergy.

An alternative approach to determining synergy was chosen by Company X to
support a patent application claiming synergy between the two componentmedicines.
Characterizing each patient as a responder (or non-responder), a probabilistic defi-
nition of synergy and its evaluation was used. This approach is quite appropriate if
the endpoint of interest is unique and dichotomous. While the definition of synergy
in this case is not additive as when a measured outcome is primary, the PM +PS −
PMPS definition is a logical approach to demonstrating synergy by a different defi-
nition. In this case, it is critical that the endpoint be unique, since the outcome can
be manipulated by selective definition of “response.”

The hypothetical example presented in this chapter was based on an actual case
and demonstrates the importance of defining the anticipated outcome variable as an
integral component of the objective of a clinical development plan (or protocol).
Different definitions of outcome variables (endpoints) that are intended to evaluate
the same objective can result in different analyses and conflicting conclusions.
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Chapter 6
Recycling of Significance Levels
in Testing Multiple Hypotheses
of Confirmatory Clinical Trials

Mohammad Huque, Sirisha Mushti and Mohamed Alosh

6.1 Introduction

For the demonstration of benefits of a new treatment, confirmatory clinical trials
generally include multiple hypotheses and classify them into primary and secondary
types and sometimes also into other lower types, such as tertiary, supportive, and
exploratory. These trials normally define primary and secondary hypotheses in terms
of the primary and secondary endpoints of the trial and frequently assign weights to
them in testing based on their clinical importance and power considerations. Thus,
the sets or families of hypotheses in confirmatory trials may follow a hierarchically
ordered structure, with the primary family holding a special status, so that if the trial
wins for one or more of its hypotheses then one can characterize clinically relevant
benefits of the study treatment. The role of the secondary hypotheses in the trial is
generally to demonstrate additional benefits of the study treatment. O’Neill (1997)
and ICH (E-9, 1998) discussed the importance of structuring study endpoints and
hypotheses into the primary and secondary types that best reflect the objectives of
clinical studies.

The last two decades have witnessed several innovative statistical procedures that
account for the above hierarchical structure in testing of multiple hypotheses. Some
of these methods recycle the significance level of a successfully rejected hypoth-
esis to other hypotheses within the same family (e.g., the primary family) and to
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hypotheses in other families according to an “α-propagation rule,” which shows how
the significance level of a rejected hypothesis distributes to other hypotheses to be
tested. Certain methods take a more a general approach. For example, the graphical
approach of Bretz et al. (2009), reviewed in Sect. 6.5, considers hypotheses of a trial
individually instead of structuring them into families; the directed edges of the graph
which link different hypotheses are used to represent the hierarchical and logical
restrictions that may be applicable when testing a number of hypotheses.

The idea of hierarchical testing for a family of multiple hypotheses has been
around for some time. For example, Williams (1971) used such a technique to test
for minimum effective dose using his newly introduced trend test. Maurer et al.
(1995) and Bauer et al. (1998) have used the hierarchical testing approach; Maurer
et al. in their article gave the first “modern” proof for it using closed testing which
we address in Sects. 6.3 and 6.4. However, Westfall and Krishen (2001) first used
the term “gatekeeping” in the context of testing of hierarchically ordered families
F1, . . . , Fs of hypotheses, with s ≥ 2. They showed that the Type I error rate is
controlled when the family F i +1 assigned the full trial level α after all hypotheses
in the preceding family F i are first rejected, for 1≤ i ≤ s − 1. This testing approach
that allows recycling of entire α from a family to the next later became known as
the serial gatekeeping strategy. Dmitrienko et al. (2003) later proposed another test
strategy in which the family F i +1 can be tested if at least one hypothesis in the family
F i is rejected, for 1≤ i≤ s− 1. They call this test strategy as the parallel gatekeeping
strategy. Both the serial and parallel gatekeeping strategies guarantee strong control
of the familywise error rate (FWER) as defined in Hochberg and Tamhane (1987).
These above articles along with articles by Bauer (1991), Koch and Gansky (1996),
and Hsu and Berger (1999) triggered considerable research activity on this topic
with subsequent contributions by Dmitrienko et al. (2006), Dmitrienko and Tamhane
(2007), Hommel et al. (2007), Dmitrienko and Tamhane (2009), and many others.

Further, Dmitrienko et al. (2008) discussed that the Holm (1979) and Hochberg
(1988) procedures do not allow recycling of α from the primary family to the sec-
ondary family unless all hypotheses in the primary family are first rejected. This is
the case, for example, in a two-arm trial which compares a treatment to control on
multiple primary endpoints using either the Holm or the Hochberg procedure. They
proposed modifications of these procedures by truncating them. Their truncated ver-
sions of the Holm andHochberg procedures do allow recycling of α from the primary
family to the secondary family of hypotheses when at least one of the hypotheses
of the primary family is rejected. Dmitrienko et al. (2013) and Huque et al. (2013)
discussed gatekeeping strategies and truncated Holm and Hochberg procedures for
clinical trial applications.

In addition, Wiens (2003) and Wiens and Dmitrienko (2005) proposed an exten-
sion of the fixed-sequence method calling it the fallbackmethod. This method allows
testing a hypothesis in the sequence evenwhen a preceding hypothesis in the sequence
is not rejected. Huque and Alosh (2008) later extended the fallback method to con-
sider the correlation between the test statistics when the joint distribution of the test
statistics is specified; this method is now known as the parametric fallback method.
Further, a key article by Hommel et al. (2007) showed that several standard test pro-
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cedures, such as Holm, weighted Bonferroni–Holm, fixed-sequence, and fallback
methods, and certain gatekeeping procedures immediately follow from shortcuts to
the closed testing principle of Marcus et al. (1976) when using Bonferroni adjust-
ments.

Li and Mehrotra (2008), on the other hand, introduced a concept of adapting
the significance level for testing secondary hypotheses based on the finding of the
primary hypotheses tests. Alosh and Huque (2009), likewise, on considering ideas
fromSong andChi (2007), introduced the notion of consistency in testing for an effect
in the overall population and in a specific subgroup. These authors later extended this
consistency concept to other situations, including the description of a consistency-
adjusted strategy for accommodating an underpowered primary endpoint; see Alosh
and Huque (2010) and Huque and Alosh (2012). Research related to consistency
in testing multiple hypotheses continues; see, for example, Li (2013), Alosh et al.
(2014), and Rauch et al. (2014). Huque et al. (2012) used some of these methods
for testing multiple hypotheses of composite endpoint trials. Also, Hung and Wang
(2009, 2010) proposed some controversial multiple testing problems.

Additionally, Bretz et al. (2009) and Burman et al. (2009) independently intro-
duced a nifty graphical framework for creating and visualizing test strategies for
common multiple test problems. Bretz et al. (2011a, 2011b) provided further under-
standings about the use of this approach for clinical trial applications. This approach,
though similar in concept to the general gatekeeping approach, allows recycling of
significance level of a successfully rejected hypothesis to other hypotheses accord-
ing to an alpha-propagation algorithm in a way that preserves the FWER for the
trial in the strong sense. Its appeal notably is in the graphical visualizations of how
alpha-allocations are initially made to primary and secondary hypotheses, and after a
hypothesis is rejected, how these alpha-allocations modify and shift to other remain-
ing hypotheses for subsequent tests. In addition, its easy use allows evaluation of
multiple design options for tailoring the trial design down to a level that can have
a greater chance of success. Free software package gMCP in R is now available for
using this method; see Bretz et al. (2011b) on how to download and use this package.

However, on examining the graphical approach with the work by Hommel et al.
(2007), one finds that this approach in its simplest form is a by-product of the short-
cut to the closed testing approach when applying weighted Bonferroni tests to the
intersection hypotheses, as shown in Bretz et al. (2009). In the graphical approach,
weights for the weighted Bonferroni tests are updated after each hypothesis rejection
through an algorithm so that the consonance condition holds, thus allowing shortcuts
to the closed testing approach, which can then be represented in a graphical form.
This shortcut closed testing approach and its graphical representation also extend to
the weighted parametric and Simes tests of hypotheses when the joint distribution of
the test statistics can be fully or partially specified; see Bretz et al. (2011b).

The aforementioned contributions, and others not mentioned here, remind us that
the last two decades have witnessed the introduction of many important statistical
methods for addressing multiplicity problems of clinical trials. Many of them are
now used in designing modern clinical trials with multiple objectives. Particularly,
methods related to recycling of significance levels in testing multiple hypotheses,
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when these hypotheses follow a hierarchical structure, are of significant importance
for clinical trial applications, as they reduce the degree of multiplicity and maximize
power for the primary hypotheses test of the trial. However, some of these methods,
as they are fairly new, are not written down in books for easy understanding. This
chapter is therefore an effort in that direction.

This chapter summarizes concepts andmethods for recycling of significance levels
in testing multiple hypotheses for the fixed-sample trial designs. Readers interested
in allocating recycled significance levels in group sequential procedures when testing
multiple hypotheses may refer to Maurer and Bretz (2013), Xi and Tamhane (2015)
and Chap. 7 of this book. Section 6.2 introduces concepts regarding recycling of
significance levels. Sections 6.3 and 6.4 then introduce closed testing and shortcut
closed testing procedures. Section 6.5 then gets into the sequentially rejective graph-
ical procedures and explores their relationship to the shortcut closed testing. Finally,
Sect. 6.6 makes some concluding remarks. In this chapter, unless otherwise spec-
ified, words used as “null hypothesis” or “hypothesis” are synonymous, including
their plural versions “null hypotheses” and “hypotheses.” Also, the reported signifi-
cance levels and p-values are for two-sided tests, unless mentioned otherwise.

6.2 Recycling of Significance Levels in Testing Multiple
Hypotheses

The recycling of significance levels follows from the idea that if one rejects H1

at a significance level α1, then this α1 can be recycled such that H2 can be tested
at level α2 + α1 � α, instead of α2. One can see this recycling of significance
level, for example, in the Holm (1979) procedure for testing two hypotheses, where
α1 � α2 � α/2. Let p1 and p2 denote the p-values associatedwith the tests of the two
hypotheses H1 and H2, respectively. The Holm procedure first tests the hypothesis
associated with the smaller of the two p-values at level α/2. If that p-value is less than
α/2, it rejects this hypothesis and tests the other hypothesis (hypothesis associated
with the larger of the two p-values) at the full significance level α. An equivalent
graphical procedure of the Holm procedure with two hypotheses shows explicitly
how the recycling of the significance levels occurs upon the rejection of a hypothesis
(see Fig. 6.1). This graphical procedure initially assigns α/2 to H1 and α/2 to H2

and then tests each of the two hypotheses at level α/2. If the procedure rejects one
of the two hypotheses, then the significance level α/2 of this rejected hypothesis is
recycled, so that the other hypothesis is tested at the full significance level α. For
example, if the procedure initially rejects H2 on observing p2 < α/2, then this α/2
of H2 is recycled to test the other hypothesis H1 at level α, as a result of adding the
recycled α/2 from H2 to the original α/2 from H1.

https://doi.org/10.1007/978-981-10-7820-0_7
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Fig. 6.1 Graphical
representation of Holm’s test
with two hypotheses H1 and
H2 with α = 0.05 H2

1

1

H1

α1 = α/2 α2 = α/2

6.2.1 Recycling of Significance Levels in Testing
Hierarchically Ordered Hypotheses

Recycling of significance levels can also be seen in the fixed-sequence test proce-
dure which is often used for testing multiple hypotheses of clinical trials when the
hypotheses are hierarchically ordered in pre-specified testing sequence. The first
hypothesis is assigned with full significance level α, and the remaining hypotheses
are initially assigned with level 0. If the first hypothesis is rejected at level α, then this
α is recycled to test the second hypothesis in the sequence, so that the second hypoth-
esis can now also be tested at full level α. If the second hypothesis is also rejected at
level α at this stage, then the procedure proceeds to test the third hypothesis in the
sequence. This test strategy controls the FWER as long as (1) the testing sequence
is specified prospectively, and (2) there is no further testing as soon as a hypothesis
is not rejected. The idea behind this test strategy is that a rejection of a hypothesis at
a level α allows recycling that significance level to the next hypothesis in the testing
sequence. However, the fixed-sequence test procedure stops testing (i.e., no further
recycling allowed) as soon as it fails to reject a hypothesis.

In order to justify that the above fixed-sequence test strategy controls the FWER
in the strong sense, consider first the simplest case of testing two hypotheses H1 and
H2. The procedure tests H1 first at level α, and if H1 is rejected, then it tests H2 at
the full level α. There are three null hypothesis configurations H1 ∩ H2, H1 ∩ K2,
and K1 ∩ H2, where K1 and K2 denote the alternative hypotheses of H1 and H2,
respectively. For the case K1 ∩ H2, the Type I error rate does not exceed α, because
the Type I error is committed only in falsely rejecting H2 and this probability is α

by construction. For the case H1 ∩ K2, the Type I error rate does not exceed α for
similar reasons. For the case H1 ∩ H2, let R1 and R2 denote the rejection regions for
testing H1 and H2, respectively, so that Pr(R1|H1) � α and Pr(R2|H2) � α. Then,
Pr(R1 ∪ R2|H1 ∩ H2) � Pr(R1|H1) � α, because R2 is a subset of R1 since H2 is
tested only after H1 is first rejected at level α. This completes the proof for the case
of testing two hypotheses. The proof for the general case follows from the results of
Maurer et al. (1995) and also from the application of the shortcuts to closed testing
shown in Hommel et al. (2007).

The appeal for the fixed-sequence testing strategy is that each hypothesis can
be tested at the largest possible significance level α. However, its main drawback
is that if a hypothesis in the sequence is not rejected, then subsequent hypotheses
cannot be rejected even if one or more of them have extremely small p-values. For
example, consider a trial which tests hypotheses H1 and H2 in a sequence and tests
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1 1

α1 = 0.03 α2 = 0.01 α3 = 0.01

Fig. 6.2 Graphical illustration of the fallback procedure for testing three hypotheses H1, H2, and
H3

H1 first. Suppose that the p-value for H1 is p1 = 0.22 and the p-value for H2 is p2
= 0.0001. Despite the apparent strong result for H2, no formal favorable statistical
conclusion can be made for this second hypothesis, because H1 is not rejected at
conventional significance levels like α � 0.05. If this happens in a clinical trial, then
non-statisticians would dispute this statistical recommendation; see Fisher andMoyé
(1999) for related discussions.

The fallbackmethodwas proposed to address this drawback of the fixed-sequence
test strategy. In this method, one assigns a portion α1 ≤ α to the first hypothesis in
the test sequence, H1, and distributes the remaining significance level α − α1 to
the remaining hypotheses. For example, in testing three hypotheses with the testing
sequence H1 → H2 → H3 at α = 0.05, one may assign α1 = 0.03 to H1, α2 = 0.01
to H2, and α3 = 0.01 to H3, so that α1 + α2 + α3 � α (see Fig. 6.2). In using this
method, the rejection of the hypothesis Hj in the sequence preserves its significance
level dj as the testing progresses and recycles it to the next hypothesis Hj+1 in the
testing sequence, as in the case for the fixed sequential testing method. This recycled
significance level adds to the prospectively assigned significance level α j+1 of Hj+1

so that α j + α j+1 becomes the updated significance level for testing Hj+1. However,
if the procedure fails to reject Hj , then the original significance level α j+1 for Hj+1

remains as is.
Thus, in the above example with three hypotheses, with the testing sequence as

stated above, the fallback method would test H1 at level α1 = 0.03. If this hypothesis
is rejected, then the method saves this significance level and recycles it to test H2 at
level α1 + α2 � 0.03 + 0.01 � 0.04. If H2 is now rejected at this level, then H3 is
tested at the full significance level α = 0.05. However, if H2 is not rejected at level
0.04, then H3 is still tested at its original level α3 = 0.01. Consider now the special
case that the fallback method is unable to reject H1 and H2, but is able to reject H3.
Then, α3 = 0.01 can be recycled to H1 and H2, so that these two hypotheses can
be tested at higher significance levels. For example, H1 can be tested at level α1 +
rα3 = 0.03 + r 0.01 and H2 at level α2 + (1 − r )α3 = 0.01 + (1 − r ) 0.01, where
0 ≤ r ≤ 1 is prospectively specified (see Fig. 6.3a). The resulting test procedure
with r � α2/(α1 + α2) is equivalent to the α-exhaustive extension of the fallback
procedure considered by Wiens and Dmitrienko (2005). However, Hommel et al.
(2007) suggested another extension of the fallback procedure. Figure 6.3b, given in
Bretz et al. (2009), displays this extension. In this figure, the symbol ε denotes an
infinitesimally small weight indicating that the significance level is to be recycled
from H2 to H3 only when both H1 and H2 are rejected. This extension considers that
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Fig. 6.3 a, bGraphical illustrations of the two extensions of the fallback procedure; α1 + α2 + α3=
α = 0.05

H1 is more important than H3; consequently, once H2 is rejected, its significance
level should be recycled to H1 before continuing to test H3.

6.2.2 Recycling of α in Truncated Holm and Hochberg
Procedures

There is a keen interest in using the Holm (1979) and Hochberg procedures (1988)
for testing a family of primary hypotheses of clinical trials as these methods are more
powerful than the Bonferroni procedure. In order to explain these two procedures,
let p j be the p-value associated with test of hypothesis Hj for j = 1, …, k. Further,
let p(1) ≤ . . . ≤ p(k) be the ordered p-values and H(1), . . . , H(k) the associated
hypotheses. Assume that these hypotheses are equallyweighted. Both procedures use
the same test critical values except that the Holm procedure is a step-down procedure
and starts testing with the most significant p-value; the Hochberg procedure, on the
other hand, is a step-up procedure and starts testing with the least significant p-value.

The Holm procedure follows the following stepwise algorithm:

Step 1: If p(1) < α/k, then reject H(1) and go to the next step; otherwise, retain all
hypotheses and stop testing.
Step 2: j = 2, …, k − 1: If p( j) < α/(k − j + 1), then reject H( j) and go to the next
step; otherwise, retain H( j), . . . , H(k) and stop testing.
Step 3: If k : p(k) < α, then reject H(k); otherwise, retain it.

The Hochberg procedure follows the following stepwise algorithm:
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Step 1: If p(k) ≥ α, then retain H(k) and go the next step; otherwise, reject all
hypotheses and stop testing.
Step 2: j = 2, …, k − 1: If p(k− j+1) ≥ α/j , then retain H(k− j+1) and go to the next
step; otherwise, reject all remaining hypotheses and stop testing.
Step 3: If k : p(1) ≥ α/k, then retain H(1); otherwise, reject it.

However, Fig. 6.1 shows that the Holm procedure recycles its entire significance
level α within this family. Thus, it is unable to recycle any part of significance level
α to other hypotheses unless H1 and H2 are both rejected. Consider a trial with a
primary family F1 and a secondary familyF2, where F1 consists of the two hypotheses
H1 and H2 and F2 consists of a single hypothesis H3. Suppose that one applies the
Holm procedure to H1 and H2 in F1 at level α = 0.05. If the procedure rejects both
H1 and H2, then the entire significance level α = 0.05 is available for testing H3 in
F2. However, if it rejects only one hypothesis in F1, then H3 in F2 cannot be tested
further; doing so can inflate the FWER. In order to see this, consider the casewhen H1

is false with a very large effect so that the procedure rejects H1 almost surely at level
α/2, but H2 and H3 are both true. Therefore, if H3 is tested at some level α3 > 0, then
the probability of falsely rejecting either H2 or H3 will be 1− (1 − α)(1 − α3) > α,
assuming independent p-values for H2 and H3. For example, if α3 � α/2 � 0.025,
then the FWER becomes 0.074 which exceeds the nominal level α = 0.05. The same
situation holds when the Hochberg procedure is used for the primary family.

Dmitrienko et al. (2008) devised truncated versions of the Holm and Hochberg
procedures when there is a desire to have the power advantage of the conventional
Holm or Hochberg procedures over the Bonferroni test for testing hypotheses in the
primary family but also an interest to retain a portion of the overall significance level
α for testing hypotheses in the secondary family, when at least one hypothesis in
the primary family is rejected. The truncated versions of the Holm and Hochberg
procedures are formed by constructing the critical values c j for j = 1,…, k by testing
its k-ordered hypotheses H(1), . . . , H(k) as follows:

c j � δ
α

k − j + 1
+ (1 − δ)

α

k
, j � 1, . . . , k, (6.2.1)

where the term α/(k − j + 1) is the j th critical value for the conventional Holm
procedure and the term α/k is the critical value for the Bonferroni test. These two
critical values are combined by the parameter δ with 0 ≤ δ ≤ 1 forming a convex
combination. Thus, when δ = 0, the method reduces to the Bonferroni method, and
when δ = 1 it reduces back to the conventional Holm procedure. The method of
carrying on the test procedure remains the same as in the conventional procedure
but using the critical values c j ’s as defined in (6.2.1). The c j values remain the same
for the Hochberg procedure. However, the test in the Holm procedure starts with the
smallest ordered p-value as compared to the Hochberg procedure in which the test
starts with the largest ordered p-value.

As an example, consider k = 2 and δ =1/2. Suppose that the p-values for H1 and H2

in primary family F1 are ordered as p(1) ≤ p(2), with associated hypotheses ordered
as H(1) and H(2). The tests for the truncated Holm procedure are then performed
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Fig. 6.4 Illustration of the
truncated Holm test with two
primary hypotheses H1 and
H2, and one secondary
hypothesis H3, when α =
0.05

H1 H2

δ

1- δ

α1 = α/2 α2 = α/2

α3 = 0

δ

H3

1- δ

as follows: (1) Reject H(1) if p(1) < c1 � α/2; otherwise, stop further testing; (2)
reject H(2) if p(2) < c2 � (1 + δ)α/2 � 3α/4. The recycled significance level for
testing the secondary family F2 is then either α if both H(1) and H(2) are rejected or
α − c2 � α/4 when H(1) is rejected but H(2) is retained.

The truncated Holm procedure can also be graphically represented as in Fig. 6.4.
Note that, as compared to Fig. 6.1, the weights on directional edges connecting H1

with H2 and vice versa are now δ instead of 1. Choosing 0 ≤ δ < 1 allows recycling
a fraction of the significance level from the primary to the secondary family. Note
that if δ = 0 one would recycle α/2 to the secondary family, and when δ =1, then no
recycling to the secondary family is foreseen. If the Hochberg procedure is used in
this example, then the test procedure would be performed as follows: Reject both H(1)

and H(2) if p(2) < 3α/4; otherwise, move to test H(1) and reject it if p(1) < c1 � α/2.
Huque et al. (2013) discuss truncated Holm procedure for the case of testing three
primary hypotheses.

6.3 Closed Testing Procedures

In testing multiple hypotheses in confirmatory clinical trials, the focus generally is
on making conclusions for the individual hypotheses; hardly ever one is interested in
whether all hypotheses are jointly true or not. Therefore, given k individual hypothe-
ses H1, . . . , Hk , the test of the global intersection hypothesis HI � ⋂

j∈I Hj with
I � {1, . . . , k} is not helpful for this purpose. The rejection of such a global test
does not in general help clinicians in characterizing the clinical benefits of the study
treatment. However, the closed testing principle by Marcus et al. (1976) provides a
general framework for constructing powerful test procedures that allow conclusions
for the individual hypothesis Hj for j ∈ I by testing each intersection hypothesis HJ

for J ⊆ I at level α. A test procedure based on the closed testing principle is called
a closed test procedure and abbreviated by CTP. A CTP for making conclusion on
the k individual hypotheses can be constructed as follows:
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(1) Define a family {H1, . . . , Hk} of k individual hypotheses, which can include,
for example, primary and secondary hypotheses.

(2) Construct the closure H̃ of 2k − 1 non-empty intersection hypotheses as

H̃ �
{
HJ �

⋂

j∈J Hj , J ⊆ I, HJ 
� ∅
}
. (6.3.1)

(3) Find a suitable α-level test for each intersection hypothesis HJ in H̃.
(4) Reject an individual hypothesis Hj while controlling the FWER at level α if all

HJ in H̃ with j ∈ J are rejected.

The above procedure may sound somewhat complicated, but Table 6.1 illustrates
how aCTP can be constructed based onweighted Bonferroni tests for the intersection
hypotheses, each tested at level α. This table considers three individual hypotheses
H1, H2, and H3, with H1 and H2 as primary, and H3 as secondary. We assume that
H3 is tested only if either H1 or H2 is rejected first. Column 1 in Table 6.1 lists all
seven intersection hypotheses HJ in H̃. Columns 2–4 show the pre-specified weights
for performing the weighted Bonferroni tests for each intersection hypothesis HJ in
Column 1,with the sumof theweights being equal to 1. Column 5 shows the rejection
rules of the weighted Bonferroni test for HJ in column 1 based on the p-values pi for
i = 1, 2, 3. The CTP from Table 6.1 rejects H1 while controlling the FWER at level
α if it rejects each of the four hypotheses H123, H12, H13, and H1 locally at level α.
Likewise, it rejects H2 if it rejects H123, H12, H23, and H2 locally at level α and so
on for H3. Note that if the CTP from Table 6.1 rejects H1 then it would test only H23

and H2 each at level α to reject H2, and it would test only H3 at level α after it rejects
both H1 and H2.

As mentioned above, the CTP provides strong FWER control in making con-
clusions about the individual hypotheses. Consider the case of testing, for example,
three hypotheses H1, H2, and H3. The null hypothesis configurations for testing these
hypotheses are: (1) H1H2H3, (2) H1H2K3, (3) H1K2H3, (4) K1H2H3, (5) H1K2K3,
(6) K1H2K3, and (7) K1K2H3, where K j denotes the alternative hypothesis for j =
1, 2, 3. For configurations (5)–(7), the procedure obviously controls the Type I error
rate at level α, because in each of these cases only one true hypothesis can be falsely
rejected and the probability for that is bounded by α. For the configuration K1H2H3,
there are three ways one can commit a Type I error, namely by falsely rejecting either
H2, H3 or both H2 and H3. Therefore, for this configuration, one must show that the
probability P23 = Pr{(CTP rejects H2) ∪ (CTP rejects H3) | K1H2H3} ≤ α. Now,
(CTP rejects H2) = {(H123 is rejected) ∩ (H12 is rejected) ∩ (H23 is rejected) ∩ (H2

is rejected)} ⊆ (H23 is rejected). Also, (CTP rejects H3) = {(H123 is rejected) ∩ (H13

is rejected) ∩ (H23 is rejected) ∩ (H3 is rejected)} ⊆ (H23 is rejected). Therefore,
P23 ≤ Pr{H23 is rejected} ≤ α. Similarly, one can show that for the null hypothesis
configurations H1H2K3, H1K2H3, and H1H2H3, the respective probabilities P12,
P23, and P123 are each bounded by α. Thus, the procedure provides strong FWER
controls for the case considered. This proof easily extends to the general case.
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Table 6.1 An example of closed testing for three hypotheses with weighted Bonferroni tests

HJ H1 H2 H3 Reject HJ if

H123 0.8 0.2 0.0 p j < wj ;Jα for at
least one j ∈
J � {1, 2, 3}

H12 0.8 0.2 – p j < wj ;Jα for at
least one
j ∈ J � {1, 2}

H13 0.7 – 0.3 p j < wj ;Jα for at
least one
j ∈ J � {1, 3}

H1 1.0 – – p1 < α

H23 – 0.3 0.7 p j < wj ;Jα for at
least one
j ∈ J � {2, 3}

H2 – 1.0 – p2 < α

H3 – – 1.0 p3 < α

Note For each HJ in Column 1, the weights wj ;J are such that 0 ≤ wj ; J ≤ 1 and the sum∑
j∈J wj ; J ≤ 1

6.4 Shortcut Closed Testing Procedures

Although CTPs constructed as above provide powerful multiple test procedures for
testing k individual hypotheses, they have the disadvantage that the number of inter-
section hypotheses increases exponentially in k. Instead, shortcuts to CTPs can be
derived that reduce the numerical complexity by exploiting the consonance prop-
erty introduced by Gabriel et al. (1969). A CTP is called consonant if the rejection
of an intersection hypothesis implies the rejection of at least one of its individual
hypotheses. That is, the rejection of an intersection hypothesis HJ � ⋂

j∈J Hj at
level α implies the rejection of the individual hypothesis Hj at level α for at least
one j ∈ J while controlling the FWER in the strong sense. The following discusses
the general case for constructing shortcut procedures and then the special case using
weighted Bonferroni tests. In both cases, one can see that after the rejection of one or
more hypotheses using a shortcut procedure the remaining hypotheses can be tested
at higher significance levels, though not exceeding α.

6.4.1 The General Case

In order to explain the construction of a shortcut CTP, consider first the case of a
conventional CTP for testing three hypotheses Hj with unadjusted p-values p j for
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j = 1, 2, 3. One can construct a test for H123 by finding significance levels α j ; 123 so
that

Pr

⎧
⎨

⎩

⋃

j∈{1, 2, 3}

(
Pj < α j ; 123

)
⎫
⎬

⎭
≤ α. (6.4.1)

One would then reject H123 at level α when p j< α j ; 123 for at least one j ∈ {1,
2, 3}. Similarly, one can construct tests for H12, H13, and H23 by finding significance
levels α j ; 12, α j ; 13, and α j ; 23 so that

Pr
{⋃

j∈{1, 2,}
(
Pj < α j ; 12

)} ≤ α, Pr
{⋃

j∈{ 1, 3}
(
Pj < αα j ; 13

)} ≤ α, and

Pr
{⋃

j∈{ 2, 3}
(
Pj < α j ; 23

)} ≤ α, respectively. (6.4.2)

Onewould then reject H12 when p j < α j ; 12 for at least one j ∈ {1, 2}. Similarly,
one would reject H13 when p j < α j ; 13 for at least one j ∈ {1, 3} and would reject
H23 when p j < α j ; 23 for at least one j ∈ {2, 3}.

Therefore, with the above significance levels for testing intersection hypotheses,
one can set up a conventional CTP for testing Hj for j = 1, 2, 3. This CTPwould reject
H2 if H123, H12, and H23 are rejected as above and p2 < α. Similarly, it would reject
H1 if H123, H12, and H13 are rejected as above and p1 < α, and so on. However, this
CTP simplifies to a shortcut CTP if significance levels in Eq. (6.4.2) also satisfy the
conditions:

α j ; 123 ≤ α j ; 12 ≤ α for j ∈ {1, 2}, α j ; 123 ≤ α j ; 13 ≤ α for j ∈ {1, 3}, and
α j ; 123 ≤ α j ; 23 ≤ α for j ∈ {2, 3}. (6.4.3)

Conditions (6.4.3) ensure consonance; that is, if an intersection hypothesis is
rejected, then at least one of its individual hypotheses is also rejected. Thus, in our
case, if H123 is rejected by observing p2< α2; 123, then H2 is rejected—no need to
test for H12, H23, and H2 as in the convention CTP. Now, suppose that H2 is rejected,
and then one would move to test H13 using significance levels α j ; 13 for j ∈ {1, 3}.
If H13 is now rejected by observing p3< α3; 13, then H3 would be rejected. If H13 is
so rejected, then H2 would be tested at the full significance level α.

Thus, a CTP would simplify to a shortcut test procedure test if one constructs
tests for its intersection hypotheses HJ � ⋃

j∈J Hj such that these tests satisfy
consonance. This can be achieved, for example, by finding significance levels α j ; J

such that Pr
{⋃

j∈J
(
Pj < α j ; J

)} ≤ α and α j ; J ≤ α j ; J′ ≤ α for all J′ ⊆ J ⊆ I

and j ∈ J′. Then, HJ′ would be rejected for any J′ ⊆ J ⊆ I when p j < α j ; J′ for
at least one j ∈ J′, where, as before, p j is the unadjusted p-value associated with
Hj . Once HJ′ is rejected, say for j � j0, then the individual hypotheses Hj0 would
be rejected, without going through the additional steps of the conventional CTP.
We will revisit the special case again in the next section when applying weighted
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Bonferroni tests. Note that the above conditions imply that once the procedure rejects
an individual hypothesis, the tests for subsequent individual hypotheses can occur
at larger significance levels. Satisfying consonance in a CTP has the advantage of
reducing the number of tests and simplifying the presentation of the results. The
total number of tests in shortcut procedures satisfying consonance reduces the initial
complexity from 2k − 1 to k.

Example 1 Consider a four-arm trial to compare a treatment with three doses with
placebo for showing benefit of the treatment for at least one of the three doses.
Let these three doses be denoted as D1 (high dose), D2 (medium dose), and D3

(low dose). Let H1, H2, and H3 denote the corresponding superiority hypotheses by
one-sided tests using statistics Z j � d j

√
I j for j = 1, 2, 3. Here, d j denotes the

treatment difference for dose Dj from placebo, I j = 1/Var (dj), and Z j > 0 shows
that the observed treatment difference is in the beneficial direction. Furthermore,
let the sample size n per treatment arm be sufficiently large so that under the null
hypothesis H123 the joint distribution of (Z1, Z2, Z3) can be assumed to follow a
three-dimensional multivariate normal N3(0, R) with mean vector 0 and the equi-
correlation matrix R with off-diagonal elements equal to 0.5.

Suppose that in testing H123 the significance level α1; 123 is prefixed at 0.6α. The
values α2; 123 � α3; 123 � α123 have to be determined as follows. Let c j ; 123 �
�−1

(
1 − α j ; 123

)
for j = 1, 2, 3. Then, α123 can be obtained from the equation

1 − α � Pr
{
(Z1 ≤ c1; 123) ∩ (Z2 ≤ x) ∩ (Z3 ≤ x)|H123

}
, (6.4.4)

on solving for x , where α123 � 1 − �(x) and �(u) denote the distribution function
of a standard normal random variable U . Because R is equi-correlated, consider the
test statistics (Z1, Z2, Z3, Y ) such that they follow a four-dimensional multivariate
normal distribution such that correlations between Z j and Y are

√
ρ for j = 1, 2, 3.

Given Y � y, the test statistics Z j for j = 1, 2, 3 are then independently distributed
with means E(Z j |y) � y

√
ρ and Var (Z j |y) � 1 − ρ. Therefore, x in Eq. (6.4.4)

can be determined from the equation

1 − α �
∞∫

−∞

{

�

(
c1; 123 − y

√
ρ√

1 − ρ

)}{

�

(
x − y

√
ρ√

1 − ρ

)}2

ϕ(y)dy, (6.4.5)

whereϕ(u) is the probability density function of the standard normal randomvariable
U . Equation (6.4.5) involves the evaluation of a one-dimensional integral, which can
be computed with, for example, the QUAD function in SAS. Therefore, when α =
0.025, one computes x = 2.48635 such that α2; 123 � α3; 123 � a123 � 1 − �(x) �
0.006453. Then, α1; 123 = 0.015 and α2; 123 � α3; 123 � 0.006453 for testing H123.

Suppose that unadjusted one-sided p-values p1 = 0.010, p2 = 0.013, and p3 �
0.034 were observed in the trial for D1, D2, and D3, respectively. The procedure
would then reject H123 at level 0.025 as well as the elementary hypothesis H1 because
p1 = 0.010 < 0.6 α = 0.015; this is possible when one intends to keep the subsequent



104 M. Huque et al.

significance levels α1; 12 � α1; 13 � α1; 123. Therefore, the procedure would continue
testing the intersection hypothesis H23 with α2; 23 � α3; 23 which can be determined
by solving the equation

1 − α � Pr{(Z2 ≤ y) ∩ (Z3 ≤ y)|H23} � �23(y, y; ρ) (6.4.6)

for ywhere,�23(u, v; ρ) denotes the cumulative distribution function for the standard
bivariate normal distribution in the randomvariablesU and V . Solving Eq. (6.4.6) for
α = 0.025 and ρ = 0.5 gives y = 2.21214 and α2; 23 � α3; 23 � 1−�(y) � 0.013479.
Therefore, the procedurewould also reject H23 at levelα =0.025 (one-sided) andwith
its individual hypothesis H2, because p2 = 0.013 < 0.013479. The procedure would
then continue testing H3 and would fail to reject it because p3 � 0.034 > 0.025.

6.4.2 Special Case Using Bonferroni Tests

An important class of closed test procedures is derived by applying the weighted
Bonferroni test to each intersection hypothesis HJ � ⋂

j∈J Hj with J ⊆ I. Accord-
ingly, one specifies the weights wj ; J such that 0 ≤ wj ; J ≤ 1 and

∑
j∈J wj ; J ≤ 1.

Using the weighed Bonferroni test, one rejects HJ if p j < α j ; J � wj ; Jα for at
least one j ∈ J. Hommel et al. (2007) introduced a subclass of sequentially rejective
closed test procedures by imposing the monotonicity condition

wj ; J ≤ wj ; J′ ≤ 1 for all J′ ⊆ J ⊆ I, and j ∈ J′ (6.4.7)

on the weights of the weighted Bonferroni tests. They showed that by testing inter-
section hypotheses with weighted Bonferroni tests satisfying (6.4.7) guarantees con-
sonance. That is, the weighted Bonferroni test rejects an intersection hypothesis HJ

if p j < α j ; J � wj ; Jα for at least one j ∈ J and consequentially also the elemen-
tary hypothesis Hj if the weights satisfy (6.4.7). This leads to a simplified shortcut
procure to the underlying CTP. Many commonly used multiple test procedures sat-
isfy condition (6.4.7), including the weighted Bonferroni–Holm procedure, certain
gatekeeping procedures, fixed-sequence tests, the fallback procedure, and also the
graphical approach by Bretz et al. (2009).

However, conventional CTPs based on the weighted Bonferroni weights will still
be valid even if the weights do not satisfy the consonance condition. For example,
in Table 6.1, the Bonferroni weights do not satisfy condition (6.4.7). The weights{
wj ; J

}
for J = {1, 2, 3} are {0.8, 0.2, and 0.0} and theweights

{
wj ;J′

}
for J′ = {1, 2, 3}

are {0.7 and 0.3}, violating the condition (6.4.7), because w1;J′ � 0.7 < 0.8 � w1;J.
This type of weighting or others which do not satisfy consonance or satisfy only
partially is beyond the scope of this chapter. However, the weights in Table 6.1 can
be easily modified to satisfy (6.4.7) by setting, for example, w1;J′ = 0.8 and w3;J′ =
0.2. The following illustrates how to select weights for the weighted Bonferroni tests
that satisfy (6.4.7) and lead to shortcut CTPs for clinical trials applications.
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Test H123 with non-negative weights
( 1w , 2w , 0), and 1w + 2w =1

Test H23 with weights
1 12 ww δ+ , 11 1 w)( δ− , 0 ≤ 1δ ≤ 1

After
Rejecting H1

Test H13 with weights
221 ww δ+ , 221 w)( δ− , 0 ≤ 2δ ≤ 1

After
Rejecting H2

Stop
If no rejection

Fig. 6.5 A shortcut CTP representation for testing two primary hypotheses H1 and H2, and a
secondary hypothesis H3 on using the weighted Bonferroni tests for intersection hypotheses with
weights satisfying the consonance condition. Values of the recycling parameters δ1 and δ2 in this
figure are pre-specified

Consider first the simple case of testing three hypotheses, where the first two
hypotheses H1 and H2 are of primary and the third one, H3, is of secondary interest.
Suppose that in testing the initial intersection hypothesis H123 one selects the weights
ofw1,w2, andw3 for H1,H2, and H3, respectively, such thatw1 +w2 � 1 andw3 � 0.
The selection of w3 = 0 for H3 indicates that this hypothesis is tested only after
rejecting at least one of the two primary hypotheses.

Suppose that p1 < w1α and the resulting weighted Bonferroni test rejects H123.
This rejection then implies the rejection of the individual hypothesis H1 such that
its weight w1 can be recycled to the remaining weights w2 and w3 according to
a parameter δ1 ≥ 0, so that in testing the intersection hypothesis H23 the updated
weights becomew2 +δ1 w1 andw3 +(1−δ1)w1. Note that in this strategy for updating
weights, none of theweights in testing H23 are smaller than the correspondingweights
in testing H123. Similar arguments apply when the initial test for H123 rejects H2

instead of H1. In that case, the updated weights for testing H13 become w1 + δ2 w2

and w3 + (1 − δ2)w2 according to a recycling parameter δ2 ≥ 0. Consequently, the
weighting structure for the intersection hypotheses is such that consonance is ensured.
Therefore, the shortcut procedure as displayed in Fig. 6.5 can be created for testing
H1, H2, H3.

Now, consider a trial to test two primary hypotheses H1 and H2, and two secondary
hypotheses H3 and H4 using weighted Bonferroni tests, where H3 and H4 are paired
with H1 and H2, respectively, so that H3 can be tested only after H1 is first tested
and rejected; similarly,H4 can be tested only after H2 is first tested and rejected.
Following Maurer et al. (2011), we will call {H1, H3} and {H2, H4} as pairs of
parent–descendant hypotheses to reflect the above-stated hierarchical testing strategy.
Suppose that H1 and H2 receive the initial weights w1 and w2, respectively, such that
w1 + w2 = 1, so that w3 � w4 � 0 for H3 and H4, respectively. The selections w3 = 0
and w4 = 0 indicate that a descendant secondary hypothesis is not to be tested until
its parent primary hypothesis is first tested and rejected. These weights represent the
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Table 6.2 Bonferroni weights with recycling parameters δ1 and δ2 for testing the two primary
hypotheses H1 and H2, and two secondary hypotheses H3 and H4 in performing a shortcut CTP

Intersection
hypotheses

Weights assigned to hypotheses for performing weighted Bonferroni
tests

H1 H2 H3 H4

H1234 w1 w2 � 1 − w1 0 0

H234 – w2 + δ1w1 (1 − δ1)w1 0

H134 w1 + δ2w2 – 0 (1 − δ2)w2

H13 1 – 0 –

H24 – 1 – 0

H34 – – w
′
3 w

′
4

w′
3 � (w1 + δ2w2)/(1 + δ1w1 + δ2w2) andw′

4 � (w2 + δ1w1)/(1 + δ1w1 + δ2w2)

local significance levels α j � wjα for j = 1, …, 4. As before, consider the recycling
parameters δ1 and δ2 on the interval [0, 1].

With the above information, one can construct the weights in Table 6.2 for per-
forming weighted Bonferroni tests of intersection hypotheses by considering only
the six intersection hypotheses (of order ≥2 as listed in Table 6.2) satisfying the
consonance condition. Note that in this table the number six results from the weight-
ing strategy if a primary hypothesis is rejected such that a fraction of its weight is
propagated to the other primary hypothesis and the remaining weight goes to its
descendant secondary hypothesis; see the rows for H234 and H134 in Table 6.2. For
example, if H1 was initially rejected in testing H1234 according to the weights in Row
3 of Table 6.2, then in testing H234 in Row 4 of Table 6.2 a fraction δ1 of w1 goes to
H2 making the total weight at H2 as w2 + δ1w1 and remaining weight (1 − δ1)w1 is
assigned to H3 which is descendant of H1, so that the weight at H4 still remains 0.
Similarly, if H2 was initially rejected, then in testing H134 a fraction δ2 of w2 goes to
H1 making the total weight at H1 as w1 + δ2w2 and remaining weight (1 − δ2)w2 is
assigned to H4, so that the weight at H3 still remains 0.

For the above weighting strategy, Table 6.2 is sufficient to test the four indi-
vidual hypotheses, as it spans the full closure satisfying (6.4.7) with the following
conditions: (1) The weights for indices in H123, H124, and H12 remain the same as
the corresponding weights for indices in H1234; (2) the weights for indices in H23

remain the same as the corresponding weights for indices in H234; (3) the weights
for indices in H14 remain the same as the corresponding weights for indices H134.
Table 6.3 shows the full closure satisfying (6.4.7)without the four individual hypothe-
ses. Thus, Table 6.2 leads to a shortcut procedure as displayed in Fig. 6.6, where the
maximum number of tests is k = 4 as compared to the 2k −1 = 15 for the full closure.

The weights shown for H34 in Table 6.2 are proportional to w1 + δ2w2 for the
index 3 of the set {3, 4} and to w2 + δ1w1 for the index 4 of this set. Thus, the
actual weights for testing H34 become w′

3 � (w1 + δ2w2)/(1 + δ1w1 + δ2w2) and
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Table 6.3 Bonferroni weights with recycling parameters δ1 and δ2 for testing the two primary
hypotheses H1 and H2, and two secondary hypotheses H3 and H4, in the full closure table satisfying
consonance (showing only intersection hypotheses of order 2 or greater)

Intersection
hypotheses

Weights assigned to hypotheses for performing weighted Bonferroni
tests

H1 H2 H3 H4

H1234 w1 w2 � 1 − w1 0 0

H123 w1 w2 0 –

H124 w1 w2 – 0

H12 w1 w2 – –

H134 w1 + δ2w2 – 0 (1 − δ2)w2

H14 w1 + δ2w2 – – (1 − δ2)w2

H13 1 – 0 –

H234 – w2 + δ1w1 (1 − δ1)w1 0

H23 – w2 + δ1w1 (1 − δ1)w1 –

H24 – 1 – 0

H34 – – w′
3 w′

4

Note Intersection hypotheses shown in bold texts are the ones included in Table 6.2

Fig. 6.6 A shortcut CTP representation for testing two primary hypothesesH1 and H2, and two
secondary hypothesesH3 and H4 on using the weighted Bonferroni tests for intersection hypotheses
with weights satisfying the consonance condition. Values of δ1 and δ2 in this figure are pre-specified

w′
4 � (w2 + δ1w1)/(1 + δ1w1 + δ2w2), respectively, and sum to 1.When δ1 � δ2 � δ,
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Table 6.4 A different table of Bonferroni weights for testing the two primary hypotheses H1 and
H2, and two secondary hypotheses H3 and H4. After rejection of a primary hypothesis, a fraction
of its weight goes to the second primary hypothesis and the remaining is distributed equally to the
two secondary hypotheses

Intersection
hypotheses

Weights assigned to hypotheses for performing weighted Bonferroni
tests

H1 H2 H3 H4

H1234 w1 w2 � 1 − w1 0 0

H134 w1 + δ2w2 – (1 − δ2)w2/2 (1 − δ2)w2/2

H13 w1 + δ2w2 + (1 −
δ2)w2/2

– (1 − δ2)w2/2 –

H14 w1 + δ2w2 + (1 −
δ2)w2/2

– – (1 − δ2)w2/2

H234 – w2 + δ1w1 (1 − δ1)w1/2 (1 − δ1)w1/2

H23 – w2 + δ1w1 + (1 −
δ1)w1/2

(1 − δ1)w1/2 –

H24 – w2 + δ1w1 + (1 −
δ1)w1/2

– (1 − δ1)w1/2

H34 – – 1/2 1/2

then w′
3 � (w1 + δw2)/(1 + δ ) and w′

4 � (w2 + δw1)/(1 + δ). Note that consonance
is also satisfied if one selects w′

3 � w1 and w′
4 � w2.

Note that if the weighting strategy was different than in Table 6.2, then one may
have to consider more than six intersection hypotheses in order to satisfy (6.4.7).
For example, when the pairs {H1, H3} and {H2, H4} are not parent–descendant,
then one may consider a weighting strategy such that after a primary hypothesis is
initially rejected then a fraction of its weight goes to the other primary hypothesis,
but the remaining fraction is distributed equally to the two secondary hypotheses.
This weighting strategy then generates Table 6.4 of weights for eight intersection
hypotheses and the associated test scheme as shown in Fig. 6.7. Such a weighting
strategy is followed in the parallel gatekeeping method. Similar to Tables 6.2 and
6.4, span the full closure table satisfying (6.4.7) with the condition that the weights
for indices in H123, H124, and H12 remain the same as the corresponding weights for
indices in H1234.

6.5 Sequentially Rejective (SR) Graphical Procedures

The SR graphical procedures as proposed in Bretz et al. (2009) visualize the
Bonferroni-based tests for each individual hypothesis along with an α-propagation
rule by which the procedure recycles the significance level of a rejected hypothesis
to other remaining hypotheses to be tested. In a graphical approach, the k individual
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Test H134

After rejecting H2

Test H234

After rejecting H1

Test H13

After rejecting H4

Test H23

After rejecting 
H4

Test H34 if either H1 is rejected in 
testing H134 or H2 is rejected in testing 

H234

After rejecting H3
After rejecting 
H3

Test H1234 Stop
No Rejection

Test H14 Test H24

Fig. 6.7 A shortcut CTP representation for testing two primary hypothesesH1 and H2, and two
secondary hypothesesH3 and H4 on using the weighted Bonferroni tests for intersection hypotheses
with weights as shown in Table 6.4. Values of δ1 and δ2 in this figure are pre-specified

hypotheses are represented initially by a set of k nodes with a nonnegative weight of
wi at node i (i = 1,…, k); this weight whenmultiplied by α represents the local signif-
icance level at that node. The weight gi j associated with a directed edge-connecting
node i with node j indicates the fraction of the local significance level at the tail
node i that is added to the significance level at the terminal node j if the hypothesis
at the tail node i is rejected. For convenience, we will call these directed edges as
“arrows” running from one node to the other and the weight gi j as the “transition
weight” on the arrow running from node i to node j .

Figure 6.8 illustrates the basic concepts for testing two primary hypotheses H1

and H2, and one secondary hypothesis H3. In this figure, the initial Graph (a) shows
three nodes. Two nodes represent H1 and H2 with weights w1 and w2, respectively,
with w1 + w2 � 1. The node for H3 shows a weight w3 = 0, which can increase
only after the rejection of a primary hypothesis. The nonnegative number g12 � δ1
is the transition weight on the arrow going from H1 to H2; similarly, g21 = δ2 is the
transition weight on the arrow going from H2 to H1. The transition weight on the
arrow going from H1 to H3 is 1 − δ1 and that on the arrow going from H2 to H3

is 1 − δ2 satisfying the condition that sum of the transition weights on all outgoing
arrows from a single node must be bounded above by 1.

Graph (b) of Fig. 6.8 represents the resulting graph after H2 is rejected in Graph
(a). The rejection of this hypothesis frees its weight w2 which is then recycled to H1

and H3 according to an α-propagation rule addressed in the following for the general
case. This rule also calculates new transition weights going from one node to the
other for the new graph. Graph (c) of Fig. 6.8 similarly shows the resulting graph if
H1 is rejected in Graph (a). The following shows the general SR graphical procedure
for testing k individual hypothesesH1, . . . , Hk given their individual unadjusted p-
values.

(0) Set J � {1, . . . , k}.
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H1

w1

H2

w2

w3 = 0

H3

1-δ2

δ1

δ2

1-δ1

H1 H3

w1+δ2w2 w2 (1-δ2) 
1 

1
H2 H3

1

1 

w2+δ1w1 w1 (1-δ1)

(a) Ini al Graph for tes ng H1, H2, and H3 

along with their B-weights 

(b) Graph a er rejec ng H2 in (a), for tes ng H1

and H3 along with their B-weights

(c) Graph a er rejec ng H1 in (a), for tes ng H2

and H3 along with their B-weights

Fig. 6.8 Graphical representation of intersection hypotheses in the shortcut closed testing with two
primary hypotheses H1 and H2, and one secondary hypothesis H3; the term B-weights used here
is for Bonferroni weights

(i) Select a j ∈ J such that p j < w j ;Jα, and reject Hj ; otherwise, stop. The
collection of weights {w j ;J, j ∈ J} are such that 0 ≤ wj ;J ≤ 1 and

∑

jε J
w j ;J ≤ 1.

(ii) Update the graph:

(a) J � J\( j)
(b)

wl;J � wl;J + wj ;Jg jl, l ∈ J; 0, otherwise (6.5.1)
(c)

glk �
{
glk + gl j g jk

1 − gl j g jl
, (l, k) ∈ J, l 
� k, gl j g jl < 1

}

; 0, otherwise

(6.5.2)

(iii) If |J| ≥ 1, then go to step (i); otherwise, stop.

After rejecting Hj , the above (6.5.1) for a new graph updates the weight for Hl to
a new weight which is the old weight wl;J plus the weight wj ;J at Hj multiplied by
the transition weight g jl on the arrow connecting Hj to Hl . Also, (6.5.2) calculates
new transition weights for this new graph for which the numerator glk + gl j g jk is the
transition weight on the arrow connecting Hl to Hk plus the product of the transition
weights on arrows going indirectly from Hl to Hk through the rejected hypothesis
Hj . The denominator term gl j g jl in (6.5.2) indicates the product of transitionweights
on arrows connecting Hl to Hj and returning back to Hl . The procedure produces
weights wl;J which satisfy the consonance condition of (6.4.7).

In order to illustrate the graphical procedure, consider an oncology trial for com-
paring two doses (high and low) of a new treatment to a control on two primary
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endpoints progression-free survival (PFS) and overall survival (OS) with the logical
restriction that the low dose can be tested for the treatment efficacy on an endpoint
only when the high dose for that endpoint first establishes treatment efficacy. Thus,
for this trial we have a total of four hypotheses, grouped into two primary hypotheses
H1 and H2 comparing the high dose to the control for the two endpoints PFS and
OS, and the two secondary hypotheses H3 and H4 comparing the low dose to the
control for the same two endpoints. The logical restriction stated above implies the
pairing of hypotheses as {H1, H3} and {H2, H4} reflect the hierarchy in testing the
two doses for each endpoint; that is, H3 is to be tested only when H1 is first tested
and rejected, and similarly, H4 is to be tested when H2 is first tested and rejected.

The initial Graph (a) of Fig. 6.9 displays the graphical testing strategy employed
for the above trial. The four individual hypothesesH1, H2, H3, and H4 are represented
by four nodes with associated nonnegative weights w1, w2, w3, and w4, respectively.
These weights satisfy w1 +w2 � 1, w3 � 0, and w4 = 0 so that the local significance
levels for testing H1 and H2 are w1α and w2α, respectively, and those of for testing
H3 and H4 are zero in this graph. The zero weight assignment for the two secondary
hypotheses indicates that in this initial graph we do not want to reject a secondary
hypothesis until its parent primary hypothesis is first rejected.

In Graph (a) of Fig. 6.9, g12 � δ1, g21 � δ2, g13 � 1 − δ1 and g24 = 1 −
δ2. These settings mean that if H1 was rejected in Graph (a), then a fraction δ1 of
w1 would recycle H2 so that the weight at H2 would become w2 + δ1w1 and the
remainder (1 − δ1)w1 would go to H3; the weight at H4 would remain 0 because
there is no arrow going from H1 to H4 setting g14 = 0. Similarly, if H2 was initially
rejected in Graph (a), then a fraction δ2 of w2 would recycle H1 so that the weight
at H1 would become w1 + δ2w2 and the remainder (1 − δ2)w2 would go to H4; the
weight at H3 would remain 0 as there is no arrow going from H2 to H3 giving g23
= 0. The value g32 = 1 indicates that if H3 was rejected after the rejection of H1

then the entire weight (1− δ1)w1 at H3 would recycle H2, so that the total weight at
H2 after the rejection of both H1 and H3 would be (w2 + δ1w1) + (1 − δ1)w1 � 1.
Similarly, g41 =1 indicates that if H4 was rejected after the rejection of H2 then the
entire weight (1− δ2)w2 at H4 would recycle H1, so that the total weight at H1 after
the rejection of both H2 and H4 would be (w1 + δ2w2) + (1 − δ2)w2 � 1.

Suppose that in Graph (a) of Fig. 6.9, one selectsw1 = 4/5,w2 = 1/5, δ1 =1/4, and δ2
= 3/4. This selection may be based on the prior experience that such a trial can easily
succeed for the high dose with the PFS endpoint, and there may be similar experience
for the low dose aswell. Suppose that H1 is rejected in this graph, then H1 is removed,
and testing reduces to testing the remaining three hypotheses with a new Graph (b).
For this new graph, the application of (6.5.1) yields new weights ofw2 +δ1w1 � 2/5,
(1 − δ1)w1 = 3/5, and w4 = 0 for H2,H3, and H4, respectively; also, the application
of (6.5.2) finds g23 = δ2(1 − δ1)/(1 − δ1δ2) = 9/13, g24 � (1 − δ2)/(1 − δ1δ2) �
4/13, g32 � 1, g42 � δ1 � 1/4, and g43 � 1 − δ1 � 3/4. However, if H2 was
rejected instead of H1 in Graph (a), then one would arrive at Graph (c) with weights
w1 + δ2w2 � 19/20, w3 = 0, and (1− δ2)w2 = 1/20 for H1, H3, and H4, respectively,
with g14 � δ1(1− δ2)/(1− δ1δ2) � 1/13, g13 � (1− δ1)/(1− δ1δ2) � 12/13, and
g41 � 1, g31 � δ2 � 3/4, and g34 � 1 − δ2 � 1/4.
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and H4 along with their weights 

H2

H4

w2 +δ1w1
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1 0 
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H3
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(f) Graph for tes ng H3 and H4 along with their 
weights a er the rejec on of H2 in (b) or H1 in (c)  

1

δ1

δ2

Fig. 6.9 Graphical representation of the active intersection hypotheses in the shortcut closed testing
with two primary hypotheses H1 and H2, and two secondary hypotheses H3 and H4

Now, in Graph (b), if H3 is rejected then the application of (6.5.1) and (6.5.2) gives
Graph (d) for testing the remaining two hypotheses H2 and H4. Similarly, in Graph
(c), if H4 is rejected, then one would arrive at Graph (e) for testing the remaining two
hypotheses H1 and H3. However, if either in Graph (b) H2 is rejected or in Graph (c)
H1 is rejected, then one would reach Graph (f) for testing H3 and H4, with weights
w′′
3 and w′′

4 , respectively, and g34 � g43 � 1, where

w′′
3 � (w1 + δ2w2)

(
(1 − δ1)

1 − δ1δ2

)

� 57/65 andw′′
4 � (w2 + δ1w1)

(
(1 − δ2)

1 − δ1δ2

)

� 8/65.

The graphical procedure in Fig. 6.9 and that based on the shortcut closed testing as
shown in Table 6.2 (and in Fig. 6.6) are two different multiple test procedures for the
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same clinical trial problem. However, the graphical procedure shows resemblance
to the shortcut closed testing. This can be viewed by considering each graph in
the graphical approach with two or more hypotheses as a Bonferroni test for an
intersection hypothesis along with an α-propagation rule and a rule that generates
weights for the weighted Bonferroni test for the next graph after the rejection of a
hypothesis. For example, Graph (a) in Fig. 6.9 displays the weighted Bonferroni test
for H1234 as well as the recycling rule. Now, if the procedure rejects H1, then one
is Graph (b) of Fig. 6.9, which again represents a weighted Bonferroni test for H234

(with the weights that satisfy consonance) along with the recycling rule for the next
graph. Thus, on comparing Fig. 6.5 with Fig. 6.8 and Fig. 6.6 with Fig. 6.9, one can
see this resemblance.

In addition, to a user it may seem that graphical procedures do not include all
shortcut procedures as defined in Sect. 6.4. For example, in the graphical approach
for testing H3 and H4 (see Graph (f) of Fig. 6.9), the Bonferroni weights associated
with H3 and H4 on using (6.5.1) and (6.5.2), after rejecting H1 and H2, come out to
be w′′

3 and w
′′
4 , respectively (see bottom of Fig. 6.9). For example, in Fig. 6.9, if w1 =

3/4, w2 = 1/4, δ1 = 3/4, and δ2 = 1/2, then for these values in the initial graph w
′′
3 = 1/4

andw
′′
4 = 3/4. Shortcut closed testing, on the other hand (see bottom of Table 6.2), can

use these weights as well as other weights, such as w′
3 = 2/5 and w′

4 = 3/5 in Table 6.2
for the test of H34, satisfying consonance. But δ1 � δ2 � δ gives w′′

3 � w′
3 and

w′′
4 � w′

4. However, as indicated in Bretz et al. (2011, 2014), the graphical procedure
has extensions, thus covering a greater set of shortcut procedures. Also, note that
although choosing from a larger class of shortcut procedures would lead to even
more possibilities of choosing suitable multiple test procedures, the determination
of the weights becomes much more demanding and more difficult to communicate.
Thus, in our opinion, the SR graphical approach is flexible and general enough for
practical purposes and for clinical trial applications.

6.5.1 Re-testing of a Primary Hypothesis

After the rejection of a primary hypothesis, methods discussed in Sects. 6.2 and
6.4, and the graphical procedures discussed in Sect. 6.5, allow re-testing of other
unrejected primary hypotheses of a trial at higher significance levels on recycling the
significance level of the rejected primary hypothesis of that trial to these unrejected
primary hypotheses according to a pre-specified α-propagation rule. Suppose that
the trial also intends to test parent–descendant secondary hypotheses. As defined
earlier, a secondary hypothesis of a trial is called a parent–descendant of a primary
hypothesis of that trial if that secondary hypothesis can be tested only if its associated
primary hypothesis is first tested and rejected. Now, suppose that the investigator
after the rejection of a primary hypothesis of the trial recycles the entire significance
level of this rejected primary hypothesis to test other primary hypotheses of the trial
and fails to reject them. Then in that case, no significance level will be left to test
the secondary hypothesis to support the result of the rejected primary hypothesis.
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This situation may cause difficulties in interpreting study findings. Therefore, our
suggestion is that once a primary hypothesis in a trial is rejected, at least part of its
significance level should be recycled to test its associated secondary hypothesis, and
if that secondary hypothesis is rejected, then its significance level can be recycled
back to test other unrejected primary hypotheses of the trial.

However, in order to increase the power of the test for the secondary hypothesis
after the rejection of its associated primary hypothesis, one may recycle the entire
significance level of the rejected primary hypothesis to this secondary hypothesis.
This seems quite alright, when the test of the associated secondary hypothesis takes
priority for enhancing the credibility of the rejected primary hypothesis. Nonetheless,
some, being naïve, may refute this approach on stating that the primary hypotheses
test results must not depend in any way on the results of the secondary hypotheses
test results. However, such logical restriction is apparently unwarranted here as one
views the successful outcomes on the test of a primary hypothesis and its associated
secondary hypothesis serving as a gate before testing subsequent hypotheses. This
seems quite meaningful when testing multiple hypotheses related to different doses
or different endpoints, as in the following example.

Example 2 Consider the above three-arm oncology trial with control and two doses
D1 and D2, where D1 is of greater potency than D2, and each dose is compared to the
control. As before, let H1 and H2 be the two primary hypotheses for demonstrating
treatment benefits for the high dose D1 on endpoints PFS and OS, respectively.
Further, let H3 and H4 be the two secondary hypotheses for demonstrating treatment
benefits for the low dose D2 on PFS and OS, respectively. The logical restriction
imposed is that H3 is to be tested only after H1 is first tested and rejected, and similarly,
H4 is to be tested only after H2 is first tested and rejected. Let theweightedBonferroni
test procedure initially tests H1 and H2 at levels 0.04 and 0.01, respectively, and
suppose that in this testing, it rejects H1 but fails to reject H2. Rejecting H1 at level
0.04 then allows testing H3 at this significance level. Now, suppose that H3 when
tested at level 0.04 is rejected. Then, this significance level of 0.04 is free and can
be recycled for re-testing H2 at a much higher significance level of 0.01 + 0.04 =
0.05. Therefore, if H2 is now rejected, because its test now has greater power, then
H4 can be tested at the full significance level of 0.05. Thus, in this illustration the
test result for H1 is independent of the results of secondary hypotheses. Therefore,
if one is able to characterize treatment benefit of the study medication based on this
result, then it should be alright to let the result of H2 depend on the result of H3 as
long as the test procedure applied controls FWER in the strong sense for testing the
stated four hypotheses of the trial.

6.6 Discussion

Confirmatory trials generally include multiple objectives, frame these objectives in
terms of multiple test hypotheses, and subsequently classify these hypotheses into
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hierarchically ordered families. This hierarchical ordering of multiple hypotheses,
driven mostly by clinical considerations, plays an important role in the statistical
testing, as it reduces the degree of multiplicity and allows the use of methods that
are more powerful. The use of powerful statistical tests for primary hypotheses of a
trial is of paramount importance, as the trial can become a successful trial if it rejects
(i.e., wins for) at least one of its primary hypotheses. On the other hand, a trial that
wins for its secondary hypothesis but fails for all its primary hypotheses is usually a
failed trial. Therefore, confirmatory trials normally use a statistical test method that
assigns initially all of the trial α to the test of the primary hypotheses and in testing
gives more weights to those primary hypotheses that are more important than others.
Novel statistical test methods (such as gatekeeping and the SR graphical procedures)
are now available that do all that.

Statistical tests for intersection hypotheses, often known as global tests, test a
global null hypothesis for finding whether given a number of hypotheses are jointly
true or not; see, for example, Sankoh et al. (1999, 2003) and Sankoh and Huque
(1997). These test methods control the FWER in the weak sense; that is, the control
of this error rate is valid only when all null hypotheses included in the intersection are
jointly true null hypotheses. Confirmatory clinical trials rarely use these methods for
making conclusions for the individual hypotheses; doing so can inflate the FWER, as
thesemethods do not consider all null hypothesis configurations in protecting FWER.
These trials, therefore, use methods that control the familywise error rate (FWER)
in the strong sense, achieved by controlling this error rate across all null hypothesis
configurations. This then assures that the probability of falsely rejecting any true
hypothesis, among all the hypotheses tested, is controlled at a pre-specified level α

regardless of which and how many other hypotheses are true or false. These strong
FWER control methods allow making conclusions for the individual hypotheses
without inflating FWER. Methods covered in this chapter are those that fall into this
category. However, having said all that, note that intersection hypotheses tests are
useful tests and can serve the stated purpose when used in a closed testing scheme,
as shown in this chapter.

There is a keen interest in using the Holm and Hochberg methods for testing
the primary family of hypotheses of clinical trials, as these methods are more pow-
erful than the Bonferroni procedure. However, these methods allow testing of the
secondary family of hypotheses only when all hypotheses in the primary family are
first rejected. We have introduced the truncated versions of these methods which
have some power advantage and also have some trial α available for the tests of the
secondary family of hypotheses, when some (but not all) hypotheses in the primary
family are successfully rejected.

Both the gatekeeping and graphical approaches can handle the following two
cases: (a) Primary hypotheses test results must not depend in any way on the results
of the secondary hypotheses test results; (b) the primary hypotheses, which initially
remain unrejected in the testing scheme, can be re-tested on recycling some α from
the test results of the secondary hypotheses. This recycling of α in (b) for testing a
primary hypothesis obviously makes the significance level for testing this primary
hypothesis dependent on the rejections of one or more hypotheses in the secondary
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family. In our opinion, such a re-testing of a primary hypothesis, initially not rejected
in the first round, is quite valid when at least one primary hypothesis is first rejected
so that one is able to characterize a clinically relevant treatment benefit related to
that primary hypothesis whose result is independent of the result of the secondary
hypotheses tests.
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Chapter 7
Statistical Testing of Single and Multiple
Endpoint Hypotheses in Group
Sequential Clinical Trials

Mohammad Huque, Sirisha Mushti and Mohamed Alosh

7.1 Introduction

It is well recognized that a clinical trial of fixed-sample design planned without
interim looks can falsely reject a hypothesis of no treatment effect on an endpoint by
chance alone. This error commonly known as the false positive error or the Type I
error can be excessive if the trial testsmore than one hypothesis in the same study.This
inflation of theType I error is of concern as it can lead to false conclusions of treatment
benefits in a trial. However, many statistical approaches for confirmatory clinical
trials are now available for keeping the probability of falsely rejecting any hypothesis
in testing a family of hypotheses (i.e., the familywise Type I error rate) controlled to
a specified level; see, for example, a recently released FDA draft guidance “Multiple
Endpoints in Clinical Trials,” and Alosh et al. (2014).

However, many confirmatory clinical trials accrue patients over manymonths and
enroll hundreds to thousands of patients; this is a widespread practice, for example,
for some cardiovascular and oncology trials. Investigators, bound by ethical and
economic constraints, usually design these large trials with interim looks, with the
possibility of stopping the trial early at an interim stage if the study treatment has the
desired efficacy that is clinically relevant, or if it is futile to continue the study, either
for lack of efficacy of the study treatment or for safety concerns. These clinical trials
are normally recognized as group sequential (GS) clinical trials. The Type I error rate
for GS trials, even for the simplest case of testing a single hypothesis, can be inflated
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if there are no adjustments for multiple looks, as compared to conventional non-GS
trials, because of the repeated tests of the same hypothesis at interim looks. In GS
trials, the same hypothesis is tested at different looks as the trial data accumulates
over the time course of the trial, until the hypothesis is rejected or the trial reaches the
final look for the last test of the hypothesis. Consequently, for assuring the credibility
of a treatment benefit result even for a single-hypothesis GS trial, it is considered
necessary to use a statistical adjustment method for controlling the probability of a
Type I error at a pre-specified level through proper design and analysis methods that
are prospectively planned.

There is an extensive literature for GS trials with plans to test a single primary
hypothesis of a trial with repeated testing on accumulating data observed at different
looks, and to stop the trial early at a look either for efficacy or for futility reasons.
This literature covers in detail the technical and operational aspects of such trials,
explaining how to plan, conduct, and analyze accumulating data of such trials. Emer-
son (2007) is an excellent review article on this topic. Also, there are useful books on
this topic, including Whitehead (1997), Jennison and Turnbull (2000), and Proschan
et al. (2006). Also, there are classical papers on this topic that are of historical impor-
tance, such as Armitage et al. (1969), Pocock (1977), O’Brien and Fleming (1979),
and Lan and DeMets (1983). In addition, there are some extensions of the methods
for multi-arm group sequential trials, e.g., comparison of multiple doses of the same
treatment to a common control on a single primary endpoint with interim looks; see,
for example, Follmann et al. (1994), Jennison and Turnbull (2000), Hellmich (2001),
and Stallard and Friede (2008).

However, modern clinical trials are designed with multiple endpoints; some of
these endpoints are given primary and secondary designations. The primary endpoint
family along with their hypotheses holds a special position: If the study wins on one
or more of its primary endpoint hypotheses then, depending on the level of evidence
desired for this win, one can characterize a clinically relevant benefit of the study
treatment. In this regard, O’Neill (1997), based on clinical and statistical considera-
tions, made the case that secondary endpoint hypotheses need to be tested only when
there is at least one rejection of the primary endpoint hypotheses leading to a clini-
cally relevant benefit of the study treatment. Several innovative statistical procedures
for confirmatory clinical trials were proposed that maximize the power for the tests of
the primary hypotheses. In doing so, these approaches consider O’Neill’s stipulation
along with possibility of assigning weights to the different endpoint hypotheses and
other logical restrictions. Further, these test procedures control the familywise Type
I error rate (FWER) in the “strong sense” (see, e.g., Hochberg and Tamhane 1987),
so that the conclusion of treatment efficacy can be made at the individual endpoints
or hypotheses levels.

There is a fair amount of literature regarding these novel procedures for fixed-
sample clinical trials but not so for GS clinical trials which are frequent for car-
diovascular and oncology trials. Examples of such procedures for fixed-sample trial
designs include the gatekeeping procedures (see, e.g., Dmitrienko et al. 2003, 2008;
Dmitrienko and Tamhane 2009; and Huque et al. 2013 among others) and the graph-
ical procedures (see, e.g., Bretz et al. 2009, 2011, 2014). The development of the
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gatekeeping procedures and the graphical method have relied, either explicitly or
implicitly, on shortcuts to the closed test procedure, as discussed by Hommel et al.
(2007). These developments that utilize short-cut testing have been possible for
weighted Bonferroni tests of the intersection hypotheses that satisfy “consonance”
property (Hommel et al. 2007). Thereafter, the interest has been as to whether a
similar approach for testing multiple hypotheses is possible for GS clinical trials.
Recent publications, including Glimm et al. (2010), Tamhane et al. (2010), Maurer
and Bretz (2013), Ye et al. (2013), Xi and Tamhane (2015), and Xi et al. (2016), have
made this possible and have advanced multiple hypotheses testing methods for GS
trials.

Tang and Geller (1999) proposed a general closed testing scheme for testing mul-
tiple hypotheses for GS clinical trials. This scheme, though conceptually simple to
follow, seems complex to apply in practice, except for certain special situations. By
taking advantage of the Hommel et al.’s findings and those of others, we make the
case that that Tang and Geller’s scheme can be simplified for application purposes by
developing short-cut closed test procedures using, for example, the weighted Bonfer-
roni tests. These short-cut procedures for testing multiple hypotheses in GS clinical
trials also allow, indirectly, recycling the unused significance level of a rejected
hypothesis to testing other hypotheses in a trial.

In this chapter, we first review the classical O’Brien-Fleming (OF) and Pocock
(PK) approaches as well as the α-spending function methods, for setting the bound-
aries in a standard GS clinical trial for repeated testing of a single primary hypoth-
esis. We will call herewith the α-spending function methods as spending function
methods. As we will see later, these boundaries computed from the spending func-
tion approaches for testing a single hypothesis can still be used for testing multiple
hypotheses in GS trials. Consequently, software developed for standard GS trials
with a single-hypothesis test can also be used for multiple hypotheses tests. We also
touch on the Tang and Geller (1999) closed testing approach as it is of historical
importance and show that for testing two primary hypotheses of a trial, this approach
simplifies when the weighted Bonferroni test is used for testing the intersection
hypothesis. We then visit the graphical approach, for testing multiple primary and
secondary hypotheses of GS trials, as discussed by Mauer and Bretz (2013), and
present an illustrative example for testing two primary and two secondary endpoints
of a trial. Thereafter, we consider the case that when the trial stops after the rejection
of a primary hypothesis at a look say for ethical reasons, then other hypotheses need
to be tested at the same look, as discussed by Tamhane et al. (2010). We close this
chapter with some concluding remarks. Finally, we should point out that in all the
discussions and methods presented for deriving boundaries of the GS trials and all
tests considered are 1-sided comparing a study treatment to control.
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7.2 Testing of a Single Hypothesis in a GS Trial

As in fixed-sample trials, the endpoints in a GS trial can be continuous, binary, or
time-to-event. Although the associated test statistics for these endpoints may appear
dissimilar, they share a common property: They can be expressed in terms of the
standardized sums of independent observations of a random variable. Consequently,
they span asymptotically the same joint distribution across time points of multiple
looks of the data. Therefore, for the sake of simplicity in this chapter, we assume that
the multiple endpoints considered are continuous, and the sample size for each arm
of a 2-arm trial designed to compare the study treatment to control remains equal for
each endpoint at each look. This case of equal sample size can be easily extended to
the case when the sample size for the treated and control arms of the trial at a look
can be of different sizes. Also, we consider the case that the total sample size for the
final look is fixed in advance. In our discussion of GS trials, we do not consider them
adaptive when the investigator continues to modifying the trial design based on the
earlier results or what is known as adaptive study design. Adaptive study designs
may allow for the possibility of adjusting the sample size of the trial, redefining the
endpoint, or modifying the patient population based on the results of an interim look
of the data of the trial.Methodological approaches for GS trials with such adaptations
are more complex, and some of the assumptions and statements made here may not
be valid. With these considerations, we first consider the case of testing a single
endpoint hypothesis H0 : δ ≤ 0 against the alternative hypothesis Ha : δ > 0 for a
trial with K − 1 interim looks and a final look, for a total of K ≥ 2 looks. A positive
value of δ indicates that the test treatment is better than the control.

7.2.1 Test Statistics and Their Distributions

Consider a 2-arm randomized trial designed to compare a treatment with a control
on a single primary endpoint based on a total sample size of N subjects per arm. Let
Sn1 be the sum statistic for the treatment difference at look 1 based on n1 subjects
per treatment arm. This sum statistics at look 1 is the sum of endpoint observations
on n1 subjects in the treatment arm minus the sum of endpoint observations on n1
subjects in the control arm. Define the B-value at look 1 as

B(t1) � Sn1/
√
VN , where VN � Var(SN ) � 2Nσ 2. (7.2.1)

In (7.2.1), SN is the sum statistic for the final look yet to be observed and σ 2 is
the known variance of individual observations which remains constant throughout
the trial regardless of whether the subject observed is in the treatment arm or in the
control arm. The value t1 at look 1, usually known as the information fraction or the
information time at look 1, is given by
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Var{B(t1)} � n1/N � t1. (7.2.2)

Note that calling here n1/N � t1 as the information fraction or information time
assumes that the sample sizes for the treatment and control groups are equal at each
look and the variance of individual observations remains constant. In general, ifd1 and
d2 denote asymptotically normal estimates of a treatment group difference at interim
and final looks, then the information fraction is defined as I � Var(d2)/Var(d1). For
normal outcomes, information time is the proportion of data available at the interim
look, relative to the planned maximum if the trial is not stopped early. However, in
presenting our results, for simplicity, we maintain our assumptions of equal sample
sizes and constant variance. These results easily extend to the general case (Jennison
and Turnbull 2000).

The standardized test statistic Z(t1) for testingH0 at look 1 can then be expressed
as

Z(t1) � Sn1/
√
Vn1 � (Sn1/

√
VN )

√
VN/Vn1 � B(t1)/

√
t1. (7.2.3)

The relationship in (7.2.3) follows from Var(Sn1 ) � 2n1σ 2 and VN/Vn1 � 1/t1.
Now consider the second look with the sample size of n2 � n1 + r per treatment
arm. Then B(t2) � (Sn1 + Sr)/

√
VN where Sr is the sum statistic for the treatment

difference based on the new data available at look 2. Consequently,

Var{B(t2)} � n2/N � t2,Cov{B(t1),B(t2)} � t1,

and

Corr{B(t1),B(t2)} � Corr{Z(t1),Z(t2)} � √
t1/t2 for t1 ≤ t2. (7.2.4)

Given t1 ≤ t2 ≤ · · · ≤ tk ≤ · · · ≤ tK � 1, we assume that B(t1),B(t2), . . . ,B(tK )

follow a multivariate normal distribution with

E{B(tk)} � 0 underH0 andCov{B(tk),B(tl)} � tk for tk ≤ tl ≤ tK . (7.2.5)

Therefore, the normal Z-statistics {Z(tk) � B(tk)/
√
tk} for k � 1, . . . ,K follow

a multivariate normal distribution with

E{Z(tk)} � 0 underH0 andCov{Z(tk),Z(tl)} � √
tk/tl for tk ≤ tl ≤ tK . (7.2.6)

The non-central expected value of B(tk) in terms of the information fraction tk is
given by:

E{B(tk)} � nkδ/
√
2Nσ 2 � (nk/N )

√
N/2(δ/σ ) � tkθ, (7.2.7)
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where θ � √
N/2(δ/σ ) is the “drift parameter.” Consequently, the non-central

expected value of E{Z(tk)} � √
tkθ.

Note that θ � z1−α + z1−β for a fixed-sample non-GS trial, where for such a
trial, α is the probability of falsely rejecting the null hypothesis H0 : δ ≤ 0 of no
treatment effect in favor of the alternative hypothesis Ha : δ > 0 of treatment effect,
and power 1−β is the probability of rejecting H0 when given the true treatment
difference δ � δ0 > 0. For example, when the trial α �0.025 and power 1−β

�0.90, then θ � 3.2415. Here the notation z1−x stands for the deviate such that
Pr(U ≤ z1−x) � 1−xwith 0≤x ≤1, whereU is the normal N(0, 1) random variable.
More details about B(t) values and Z(t) normal scores can be found in Proschan et al.
(2006) and Lan and Wittes (1988). In the following, we show how the well-known
methods by Pocock (1977) and O’Brien and Fleming (1979) rely on these B-values
and z-scores in finding their local significance levels, i.e., GS-boundary values, for
the repeated testing of H0. For convenience, we will call these historical methods as
PK and OF methods and their boundaries as PK and OF classical boundaries.

7.2.2 Classical PK and OF Boundaries

When analyses of accumulating data of aGS trial occur at equally spaced information
times, then the PKboundary is a constant boundary on the z-scale. That is, if tk � k/K
for k � 1, . . . ,K , the constant PK boundary cPK (α,K) � x for 1-sided tests can
then be obtained by solving for x in the following equation:

Pr[
K⋂

k�1

{Z(tk) ≤ x}|H0] � 1 − αwith tk � k/K for k � 1, . . . ,K, (7.2.8)

such that theType I error rate is controlled at levelα. This equation canbe solvedunder
the assumption that the joint distribution of the test statistics {Z(tk); k � 1, . . . ,K}
is multivariate normal with zero mean vector and correlation matrix (ρkl) � (√

tk/tl
)

with tk ≤ tl . For example, cPK (α,K) � 2.28947 for K � 3, (t1 � 1/3, t2 �
2/3, and t3 � 1), and α�0.025. For solving for x in (7.2.8), we wrote SAS/IML
codes that calculated the left-hand side of the equation using PROBBNRM and
QUAD functions of SAS. PROBBNRM is a SAS function which gives values of
the cumulative distribution functions of a standard bivariate normal distribution on
specifying the value of the two variables and the correlation coefficient between
them. QUAD is a SAS function which integrates numerically a function over an
interval. This calculation expressed the joint distribution of {Z(tk); k � 1, 2, 3} as
the product of the distribution of Z(t1) and the conditional bivariate distribution of
Z(t2) and Z(t3) given Z(t1) � z(t1).

Jennison and Turnbull (2000) and Proschan et al. (2006) include 2-sided PK
boundary values for different values of K , and α�0.01, 0.05, and 0.10. These 2-
sided boundary values at level α, if taken as 1-sided boundary values at level α/2,
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may not be identical to the actual 1-sided boundary values obtained from (7.2.8); see,
for example, Sect. 2.4 inWassmer and Brannath (2016). The PK boundary values for
2-sided tests are obtained by replacing Z(tk) ≤ x by |Z(tk)| ≤ x in (7.2.8). Thus, a
GS trial, designed with PK boundary with looks at equally spaced information times
with given α and K , would reject H0 for efficacy and stop the trial at look k with the
information fraction tk when Z(tk) > cPK (α,K).

Likewise, the OF boundary is a constant boundary on the B-value scale when the
trial looks occur at equally spaced information times. Therefore, when tk � k/K,

for k � 1, . . . ,K , the 1-sided OF boundary value can be obtained by solving for x
in the following equation:

Pr[
K⋂

k�1

{B(tk) ≤ x}|H0] � 1 − αwith tk � k/K for k � 1, . . . ,K .

Using Z(tk) � B(tk)/
√
tk the above equation can be expressed as in (7.2.9) to

solve for x using the joint distribution of the test statistics {Z(tk); k � 1, . . . ,K} as
a multivariate normal with zero mean vector and correlation matrix (ρkl) � (√

tk/tl
)

for tk ≤ tl :

Pr[
K⋂

k�1

{
Z(tk) ≤ x/

√
tk

}|H0] � 1 − αwith tk � k/K for k � 1, . . . ,K . (7.2.9)

For example, when K �2, (t1 � 1/2 and t2 � 1), α �0.025, and the tests are 1-
sided, then solving the equationPROBBNRM(x

√
2, x,

√
1/2)�0.975gives the value

of x=1.97742 which in turn gives the OF boundary values of c1(α,K) � x
√
2 �

2.796494 for the first look at t1 � 1/2 and c2(α,K) � x � 1.97742 for the final look
on the z-score scalewith the corresponding boundary values ofα1(α,K) � 0.002583
and α2(α,K) � 0.023997 on the p-value scale. Thus, if a GS trial is designed with
two looks with an interim look at t1 � 1/2, and α � 0.025, then H0 will be rejected
when the p-value at this look is less than α1(α,K) � 0.002583 stopping the trial
early; otherwise, the trial will continue to the next and final look, and H0 will be
rejected there when the p-value at this look is less than α2(α,K) � 0.023997.

Jennison and Turnbull (2000) and Proschan et al. (2006) provide values of x for
2-sided tests for different values of K and α � 0.01, 0.05, and 0.1. These 2-sided
boundary values at level α, if read as 1-sided boundary values at level α/2, may not
agreewith the actual 1-sided boundary values. Note that themethods described in this
section are of historical importance and are not so frequently used; they lackflexibility
because managing analysis at equally spaced information time can be challenging.
A more flexible approach for GS trials is the spending function approach described
in the next section.
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7.2.3 Spending Function Approach

The classical PK and OF boundaries introduced above require specifying the total
number of looks at equally spaced information times. This can be inconvenient for
clinical trial applications as the Data Safety Monitoring Board (DSMB) or any other
group charged with performing interim looks of the accumulating clinical trial data
may have to postpone a look for logistical reasons, or may decide to have a look at
an unspecified time because of certain concerns. Lan and DeMets (1983) proposed
the spending function approach for this and showed that the construction of GS
boundaries do not require pre-specification of the number or timings of looks.

Any non-decreasing function f (α, t) in the information time t, over the interval
0≤ t ≤1 and parameterized by the overall significance level α for testing H0, can
be a spending function if it satisfies the following conditions: f (α, t) ≤ f

(
α, t′

)
for

0 ≤ t ≤ t′ ≤ 1; f (α, t � 0) � 0; and f (α, t � 1) � α. A commonly used spending
function for clinical trials is the OF-like:

f1(α, t) � 2{1 − Φ(z1−α/2/
√
t)},

whereΦ(.) is the cumulative distribution function of the standard normal distribution.
Note that f1(α, 0) � 0 and f1(α, 1) � α. If the trial had only 2 looks,

one at t=1/2 and the other at t=1, and α � 0.025, then f1(α � 0.025, t � 1/2) �
2(1 − Φ(2.241403/0.70711)) � 2{1 − Φ(3.1698)} � 0.001525 and
f1(α � 0.025, t � 1) � α. One can then find the significance level x for the
final look by solving the equation Pr {(P1 <0.001525) ∪ (P2 <x)}�0.025. The
next section shows how these equations are solved. The advantage of using the
OF-like spending function for clinical trials is its shape which is convex. This allows
spending very little of the total α for early looks and saves most of it for latter looks
when the trial has sufficient number of patients exposed to the new treatment. The
idea is to stop the trial early only when the treatment effect size is sufficiently large
and clinically convincing.

Table 7.1 includes a few other spending functions. These and other spending
functions give the cumulative Type I error rate spent at look k with the associated
information fraction tk . This cumulative value does not give directly the local sig-
nificance level αk(α, tk) (i.e., the boundary value) for testing H0 at look k, except
when k � 1 (the first look). Note that these boundary values are on the p-value scale
and need to be converted for presentation on the z-scale. Finding αk(α, tk) requires
additional calculations which we describe in the following with an example. These
calculations usually require solving equations in multiple integrals and are not easy
when K≥3. Special computer software is normally used for this.
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Table 7.1 Examples of spending functions

Linear Pocock-like Hwang-Shi-Decani (1990)

f2(α, t) � αt f3(α, t) � α loge{1 + (e − 1)t} f4(α, t) �
α
[{1 − exp(−λt)}/{1 − exp(−λ)}],

for λ �� 0

7.2.4 Calculations of Boundary Values Using Spending
Functions

We illustrate the use of spending functions for finding the local significance level
αk(α, tk) at look k with the information fraction tk , so that H0 will be rejected when
the 1-sided p-value pk at this look is less than αk(α, tk). Suppose a trial uses the OF-
like spending function to control the Type I error rate at level α � 0.025. Suppose
that the first look occurs at t1 � 0.30. Then at this look, we spend

f1(α � 0.025, t1 � 0.30) � 2
{
1 − Φ

(
z1−α/2/

√
0.30

)}

� 2

{
1 − Φ

(
2.2414027√

0.30

)}
� 0.0000427

Therefore, at this look, α1(α, t1) � 0.0000427 and the critical value c1(α, t1) �
3.9285725 from Pr{Z(t1) > c1(α, t1)} � 0.0000427; one will reject H0 and stop the
trial at the first look if p1 < 0.0000427 or Z(t1) > 3.9285725. Thus, at this look the
investigator spends very little of the total α � 0.025.

Suppose that the trial did not stop at the first look and the investigator decides to
have the second look at t2 � 0.65. Then the cumulative alpha spent at this look is

f1(α � 0.025, t � 0.65) � 2
{
1 − Φ

(
z1−α/2/

√
0.65

)}

� 2

{
1 − Φ

(
2.2414027√

0.65

)}
� 0.0054339

Therefore, we determine the boundary critical values of c2(α, t2) � 2.5479 or
α2(α, t2) � 0.0054187 by solving the equation: Pr[{(Z(t1) > 3.9285725}∪{(Z(t2) >

c2(α, t2)}] � 0.0054339. Therefore, one can reject H0 at the second look and stop
the trial, if at this look, the observed p-value p2 < 0.005187 or Z(t2) > 2.5479.

Suppose the trial did not stop at this second look and the investigator moves to the
final look at t3 � 1. Then the cumulative alpha spent at the final look is α � 0.025.
One can then find c3(α, t3) by solving the equation:

Pr[{(Z(t1) > 3.9285725} ∪ {(Z(t2) > 2.5479} ∪ {(Z(t3) > c3(α, t3)}] � 0.025
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Table 7.2 Examples for the OF-like spending function with α�0.025, 0.0125, K �3, and 1-sided
tests

Look # Information fraction Cumulative α spent Boundaries

α �0.025

1 0.30 0.00004 0.00004

2 0.65 0.00543 0.00542

3 1.00 0.025 0.02331

α �0.0125

1 0.30 0.00001 0.00001

2 0.65 0.00194 0.00194

3 1.00 0.0125 0.01188

Solving this equation gives c3(α, t3) � 1.9897 and α3(α, t3) � 0.023312. There-
fore, one can reject H0 at the final look if at this look the p-value p3 < 0.023312 or
Z(t3) > 1.9897.

A general recursive equation for finding ck(α, tk) and αk(α, tk)
for a spending function f (α, t) is given by f (α, tk) � f (α, tk−1) +

Pr
[
{⋂k−1

i�1 Z(ti) ≤ ci(α, ti)} ∩ {Z(tk) > ck(α, tk)}
]

for k ≥ 2. There are soft-

ware available that give values of ck(α, tk) and αk(α, tk) for OF-like and other
spending functions, see Zhu et al. (2011) for a review of these software. Table 7.2
shows the results from such a software. We show in Sect. 7.3 that such boundaries
can also be used for testing multiple hypotheses of GS trials.

7.3 Testing of Multiple Hypotheses in GS Trials

Many GS trials are designed for testing multiple endpoint hypotheses, frequently,
for testing two endpoint hypotheses. Two situations generally arise. Consider, for
example, a GS trial for testing two endpoint hypotheses. The first case arises when
after the rejection of one of the two hypotheses at an interim look the trial does
not stop but continues to later looks for testing the other hypothesis. The second
case arises when the two hypotheses are hierarchically ordered, e.g., one is primary
and the other is secondary. The first hypothesis in the hierarchy (i.e., the primary
hypothesis) is allocated first using the full trial α (e.g., α�0.025). If this hypothesis
is rejected at an interim look, then the trial stops because of ethical considerations.
For example, if the first hypothesis is associated with the mortality endpoint and the
second hypothesis with a quality of life measure, then if the trial wins at a look for
the mortality endpoint then the trial would generally discontinue for ethical reasons.
In that case, the second hypothesis (i.e., the secondary hypothesis) is tested at the
same look at which the first hypothesis was rejected. The remainder of this section
considers the first case and Sect. 7.4 considers the second case. In the following,
we first address methods based on the Bonferroni inequality and then move on to



7 Statistical Testing of Single and Multiple Endpoint Hypotheses … 129

α-recycling approaches based on the closed testing principle (CTP) of Marcus et al.
(1976), and finally to themore recent graphical approach ofMaurer andBretz (2013).

7.3.1 Methods Based on the Bonferroni Inequality

Consider, for example, a trial which for the demonstration of superiority of a new
treatment to control specifies two null hypotheses: H1 and H2. Rejection of either of
the two hypotheses at a look can establish efficacy of the new treatment. However, if
the trial rejects one of the two hypotheses at an interim look, the trial can continue to
later looks for testing the other hypothesis. For such a trial, the use of the Bonferroni
inequality leads to two approaches for a stronger claim. The first approach splits the
significance level α as α1 + α2 ≤ α for testing H1 at level α1 and H2 at level α2. For
example, it may assign α1 � 0.005 for testing H1 and α2 � 0.02 for testing H2 for
controlling the overall Type I error rate at α � 0.025. Tests for H1 and H2 can then
separately follow in a univariate GS testing framework for the separate control of
the Type I error rates at levels α1 and α2, respectively, using the same or different
spending functions for each. In Sect. 7.3.2, we show that this approach extends to
an α-recycling approach, such that, if one of the multiple hypotheses is rejected at a
look then the boundary value for testing other hypotheses is updated to larger values.

The second approach uses the Bonferroni inequality differently. It specifies
the rejection boundary values as α′

k(tk) > 0 for looks k � 1, . . . ,K such that∑K
k�1 α′

k (tk ) � α. It then applies a conventional multiple hypothesis testing method
at a look for the control of the Type I error rate at the local level α′

k(tk) at that look.
Suppose that K � 2, i.e., the trial is designed with two looks, and α′

1(t1) � 0.005
and α′

2(t2 � 1) � 0.02, for the first and second looks, respectively. One can then
apply, for example, the conventional Hochberg procedure (1988) for testing H1 and
H2 at level 0.005 at the first look, and similarly, can apply the same procedure for
testing these hypotheses at the final look at level 0.02. The methods discussed in this
section for testing two hypotheses generalize to testing more than two hypotheses.

7.3.2 Method Based on the Closed Testing Principle

The closed testing principle ofMarcus et al. (1976) provides a general framework for
constructing powerful closed test procedures (CTPs) for testing individual hypothe-
ses based on tests of intersection hypotheses of different orders. One starts with a
family of individual hypotheses H1, . . . ,Hh and constructs a closed set H̃ of 2h − 1
non-empty intersection hypotheses as follows:

H̃ �
{
HJ �

⋂

j∈J Hj, J ⊆ I � {1, . . . , h}
}
.
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One then performs an α-level test for each hypothesis HJ in H̃ by using, for
example, the weighted Bonferroni test. One then rejects an individual hypothesis Hj

when all HJ for j ∈ J are rejected by their corresponding α-level tests.
For example, when h �2, the closed set H̃ � {H12,H1,H2}. A CTP will reject

the individual hypothesis H1 only when H1 and H12 are both rejected, each by an
α-level test. If one uses, for example, the weighted Bonferroni test for H12, then the
procedure cuts down the extra step of testing H1 after rejecting H12. The weighted
Bonferroni test rejects H12, when pj < wjα for at least one j ∈ {1, 2}, where w1

and w2 are the nonnegative weights assigned to H1 and H2, respectively, such that
w1 + w2 ≤ 1, and pj are the observed p-values associated with Hj for j ∈ {1, 2}.
Suppose that this test rejects H12 for j � 1 on observing p1 < w1α, then H1 is
automatically rejected, as the significance level α for the test ofH1 satisfies α ≥ w1α.
This property in its general form, known as the consonance property, when satisfied
for testing intersection hypotheses in a closed testing procedure, leads to short-cuts
of closed test procedures and allows recycling of the significance level of a rejected
hypothesis to other hypotheses (Hommel et al. 2007). This property basically means
that the rejection of an intersection hypothesis HJ by an α-level test implies the
rejection of at least one individual hypothesis Hj for j ∈ J.

As a numerical example, consider testing the two hypotheses H1 and H2 with
α � 0.025, and suppose that weights assigned to H1 and H2 are w1 � 0.8 and
w2 � 0.2, respectively, so that w1 + w2 � 1. Further, supposed that the associated
observed p-values for the tests ofH1 andH2 were p1 � 0.024 forH1 and p2 � 0.004
for H2. The simple weighted Bonferroni test would reject only H2, as p1 > w1α �
0.020 and p2 < w2α � 0.005. However, the weighted Bonferroni based CTP with
these weights would reject both hypotheses. This CTP, in its initial step, would
reject the intersection hypothesis H12 as pj < wjα for j � 2. Consequently, as the
procedure assigns theweights of one for testing each singleton hypotheses, satisfying
consonance, it would then reject each of the two hypotheses as pj < 1.α � 0.025
for each j ∈ {1, 2}.

In the following, we first visit the GS closed test procedure by Tang and Geller
(1999) for testing multiple hypotheses and show that this procedure leads to α-
recycling procedures by using weighted Bonferroni tests of intersection hypotheses
that satisfy consonance. The Tang and Geller procedure is of historical importance
with respect to using the closed testing procedure for testing multiple hypotheses in
group sequential trials. Although the procedure sounds complicated in its original
form, it can be simplified if the weighted Bonferroni tests, with weights satisfying
the consonance property, are used for testing its intersection hypotheses. However,
selection of such weights can be cumbersome for testing more than three hypotheses.
Section 7.3.3 toward the end illustrates how to find these weights when testing two
primary hypotheses and a secondary hypothesis. In general, the graphical approach
(Sect. 7.3.5) in this regard is easier to use when testing multiple hypotheses.

Consider testing h ≥ 2 endpoint hypotheses in a GS trial designed to compare
a new treatment to control. Consider, as before, the intersection hypotheses HJ for
J ⊆ I � {1, . . . , h}, i.e., the new treatment to control treatment difference δj ≤ 0
for all endpoints j ∈ J ⊆ I. Also, consider that multiple looks for the trial occur at
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different information times t ∈ {t1, t2, . . . , tK } such that t1 ≤ t2 ≤ · · · ≤ tK � 1. Let
ZJ be a test statistic for testing HJ (e.g., by a weighted Bonferroni test) and let ZJ(t)
be the test statistic value of ZJ at a look with information fraction t. Further, let cJ(t)
be the critical value for performing an α-level test of HJ at this look by using ZJ(t).
That is, for each J ⊆ I, the cJ(t) values for different t (at which times repeated tests
occur) satisfy Pr{ZJ(t) > cJ(t) for some t|HJ} ≤ α. Then a closed test procedure for
GS trials as proposed by Tang and Geller (1999) can be stated as follows:

Step 1: Start testing HI as in a univariate case of a GS trial but using the group
sequential boundary values cI(t) for the test statistics ZI(t), where I �
{1, . . . , h}.

Step 2: Suppose that HI is rejected first time at the look with t � t∗. Then, for
rejecting at least one individual hypothesis at this look, apply a CTP to
test HJ with J ⊆ I using ZJ(t∗) and its critical value cJ(t∗). Note that
cJ(t∗) can be different for different HJ’s. In applying this CTP at t � t∗
either (a) none of the individual hypotheses will be rejected, or (b) at
least one individual hypothesis Hj will be rejected for j ∈ I.

Step 3(a): In Step 2, if none of the individual hypotheses are rejected at t � t∗ then
continue to the next look; however, if t∗ � 1 and none of the individual
hypotheses are rejected, the trial will stop without the rejection of any
hypothesis.

Step 3(b): In Step 2, if at least one hypothesis is rejected at t � t∗, then exclude
the indices of the rejected hypotheses from the index set I. With this
updated index set I, continue to the next look and repeat Step 1 and
Step 2. Note that in this process, all previously rejected hypotheses are
assumed rejected at later looks and are removed for further testing.

Step 4: Reiterate the above steps until all hypotheses are rejected or the trial
reaches the final look.

Implementing the Tang and Geller (1999) approach for the general case can be
complicated because of the computational difficulties in finding cJ(t) values for
testing HJ for different J and different looks. However, this approach simplifies on
using univariate tests for HJ that satisfy consonance. Examples, of such tests, are
the max-T or min-p test, and the un-weighted Bonferroni test. Weighted Bonferroni
test which is more useful for clinical trial applications also serves this purpose,
but the weights for the weighted Bonferroni tests need to be pre-selected to satisfy
consonance. This may be difficult when testing more than three hypotheses. An
alternative to thiswhich does not have this issue is the graphical approach addressed in
Sect. 7.3.4. The following, however, addresses theweightedBonferroni test approach
and illustrates its application for testing two hypotheses in a GS trial.

In the weighted Bonferroni test approach, to satisfy consonance for the tests of
HJ for J ⊆ I, one pre-selects weights wj(J) for j ∈ J with

∑
j∈J wj(J) ≤ 1 so that

wj(J∗) ≥ wj(J) for every J∗ ⊆ J. For these cases, standard software developed for
testing a single hypothesis with a spending function approach can still be used for
testing multiple hypotheses. The following is an illustrative example for testing two
hypotheses H1 and H2 in a GS trial.
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In the case of testing twohypotheses, aCTP considers a single intersection hypoth-
esis HJ with J � {1, 2}, written as H12, and two individual hypotheses H1 and H2.
Suppose that for testing H12 one assigns weights w1{1, 2} � 0.8 and w2{1, 2} � 0.2
so that w1{1, 2}α � 0.02 and w2{1, 2}α � 0.005 with the trial α � 0.025. Conso-
nance is satisfied, because after H12 is rejected, the weights for testing each of the
two individual hypotheses in the CTP is one. The following illustrates how one will
test H1 and H2 in a GS trial with such initial weights.

Tests at the First Look
Suppose that the first look for the trial occurs at t � t1 � 0.30, and suppose
that at this look the unadjusted p-values associated with H1 and H2 are p1(t1)
and p2(t1), respectively. The CTP will reject H12 by the weighted Bonferroni
test if either p1(t1) < α1(w1{1, 2}α � 0.02, t1 � 0.30) � α1(0.02, t1 � 0.30) or
p2(t1) < α2(0.005, t1 � 0.30), where these boundary critical values can be obtained
by specifying spending functions f1 and f2. If f1 and f2 are each OF-like, then

α1(0.020, t1 � 0.30) � f1(w1{1, 2}α � 0.02, t1 � 0.30) � 0.00002

α2(0.005, t1 � 0.30) � f2(w2{1, 2}α � 0.005, t1 � 0.30) � 2.977E − 07

Suppose that H12 is not rejected at this look with t1 � 0.30 and the trial continues to
the second look.

Tests at the Second Look
Suppose that the second look occurs at t2 � 0.65. Further, suppose that at this
look the unadjusted p-values associated with H1 and H2 are p1(t2) and p2(t2),
respectively. Consequently, the CTP will reject H12 at this look if either p1(t2) <

α1(0.02, t2 � 0.65) or p2(t2) < α1(0.005, t2 � 0.65). The use of the spending func-
tions f1 and f2 as OF-like for this look gives the boundary values

α1(0.020, t1 � 0.65) � 0.0039 andα2(0.005, t1 � 0.65) � 0.000498.

Section 7.2.4 has addressed how these boundary values are calculated. As indicated
before, computer software is used to calculate such boundary values.

Now, suppose that p2(t2) < 0.000498, then H12 will be rejected leading to the
automatic rejection ofH2 because of the consonance condition being satisfied. There-
fore, as H12 and H2 are rejected at t∗ � t2 � 0.65, the CTP will test the remaining
hypothesis H1 at the same look with (t∗ � t2 � 0.65) with the updated boundary
value of α1(0.025, t2 � 0.65) � 0.00542 by the same OF-like spending function.
Thus, there is a recycling of alpha of 0.005 form the rejected H2 to H1, updating the
alpha of 0.02 to 0.02+0.005�0.025 which is incorporated in the first argument of
α1(0.025, t2 � 0.65). Thus, a CTP with consonance allows recycling of alpha for
GS trials, but here, this recycling updates the boundary values for testing H1 starting
from at t∗ � t2 � 0.65 using a spending function. Suppose that p1(t2) � 0.015
which is greater than 0.00542, then H1 at this second look remains not rejected. The
trial then continues to the final look with t3 � 1 for testing H1.
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Test at the Final Look
The final look occurs with t3 � 1 for testing H1 with the assumption that H2 (which
was rejected at the second look) remain rejected at this look. Therefore, H1 would
be tested at this look at level α1(0.025, t3 � 1) � 0.02331 by the same OF-like
spending function.

7.3.3 Some Key Considerations and Comments

For applications, the spending functions to be used for testing different hypotheses
need to be pre-specified, and for interpreting study findings, it is good practice to use
the same spending functions for testing different hypotheses. It should be noted that
although the total number of looks may not be pre-specified, however, specifying it
may help reducing concerns about unnecessary looks of the data. In addition, in our
previous discussion, including the illustrative example in Sect. 7.3.2, we assumed
that information fractions for the two endpoints are equal at each look. This can be
the case for continuous or binary endpoints; however, this may be not the general
case. That is, if tk(E1) and tk(E2) are information fraction for two endpoints at looks
k � 1, ..,K then it is possible that tk(E1) �� tk(E2) for at least one k. This can occur,
for example, when E1 or E2 are time-to-event endpoints; it may also occur for other
situations. Then the question may arise as how to adopt the above procedure for this
general case.

In this regard, we note that the above procedure can be easily adopted to
address this general case. To illustrate, suppose that in the above example, at
the first look t1(E1) � t1(E2) � 0.30, but at the second look t2(E1) � 0.40
and t2(E2) � 0.65 and assume that H12 is not rejected at the first look; yet, it
can be rejected at the second look if either p1(t2) < α1(0.02, t2(E1) � 0.40) or
p2(t2) < α1(0.005, t2(E2) � 0.65). Now, suppose that at this stage H12 is rejected
by observing that p2(t2) < α1(0.005, t2(E2) � 0.65), leading to the rejection of H2

as before. Therefore, the alpha of 0.005 for the rejected H2 will now be recycled for
testing H1, that is by updating the old boundary value of α1(0.02, t2(E1) � 0.40)
to a new boundary value α1(0.025, t2(E1) � 0.40) at this second look, and to
α1(0.025, t3(E1) � 1) at the final look.

Note that in above after rejecting H2 at the second look, the significance level for
testing for H1 is α1(0.025, t2(E1) � 0.40) which is not equal to α � 0.025. Wrong-
fully, testing H1 at α � 0.025 instead of testing it at level α1(0.025, t2(E1) � 0.40)
after the rejection of H2 can inflate the overall Type I error rate. Also, if the trial
stops at a look after rejecting a hypothesis for ethical reasons, say after the rejection
of H2, then one cannot test a second hypothesis such as H1 at the full significance
level of α � 0.025. Doing this can inflate the overall Type I error rate, except for
the special case when the test statistics for the two hypotheses are independent. We
consider this type of GS trials in Sect. 7.4.

The spending functions used to test each hypothesis needs to satisfy a monotonic-
ity property. That is, the difference function f (λ, tk) − f (λ, tk−1) is monotonically
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non-decreasing in λ for k � 1, . . . ,K . For example, the OF-like α-spending function
satisfies this condition for λ < 0.318 (Maurer and Bretz 2013).

The above weighted Bonferroni-based CTP for testing two hypotheses can be
extended to testing more than two hypotheses if weights assigned for testing inter-
section hypotheses in a CTP are such that consonance property is guaranteed, that
is, weights assigned are such that rejection of an intersection hypothesis in the CTP
leads to the rejection of at least one individual hypothesis in that intersection hypoth-
esis. For example, for testing two primary hypotheses H1 and H2 and a secondary
hypothesis H3 of a trial, the CTP would consider four intersection hypotheses H123,
H12, H13 and H23 and three individual hypotheses.

The following selection of weights for performing Bonferroni-based tests of inter-
section hypotheses in the CTP would then satisfy consonance property. Assign non-
negative weights of w1, w2, and w3 associated with indices (1, 2, and 3) of H123 to
test this hypothesis with w1 + w2 � 1 and w3 � 0; the selection of w3 � 0 indicates
thatH3 is tested only after at least one of the two primary hypotheses is first rejected.
Assign weights of {w1,w2} toH1 andH2, respectively to testH12. Similarly, weights
of {w1 + δ2w2, (1 − δ2)w2} to test H13, and weights of {w2 + δ1w1, (1 − δ1)w1} to
test H23, where 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1. The weights assigned to each of the
individual hypotheses will be one. The selection of these weight and the recycling
parameter δ1 and δ2, for example, can be based on the trial objectives. Once such
weights for performing the weighted Bonferroni tests satisfy consonance, a CTP for
testing the above three hypotheses in a GS trial can be proposed.

GS trials that are not properly conducted have the potential of unblinding the
trial prematurely, and consequently, this may impact the integrity of the trial and
its results. To address this important issue, usually an Independent Data Monitoring
Committees (DMC) along with a charter is setup for GS trials. As our focus for this
chapter is to overview the general multiple testing approaches for group sequential
trials, we do not discuss this issue here. The interested reader may consult relevant
literature in this regard, see, e.g., Ellenberg et al. (2017). The concerns about potential
unblinding for testing single hypothesis over the course of GS trials remain the same
for GS trials with testing multiple hypotheses related to multiple endpoints.

For a GS trial that include testing of multiple hypotheses, a Statistical Analysis
Plan (SAP) that explains in sufficient details the design, the analyses method, and
the DMC charter, is essential for proper interpretation of study findings. Such a SAP
should in general be developed a priori and agreed upon by those involved before
launching the trial.

7.3.4 Graphical Approach

The above weighted Bonferroni-based CTP for testing multiple hypotheses of a
GS trial, though possible, can be challenging in finding appropriate weights that
guarantee consonance when the number of hypotheses tested are more than a few.
The graphical approach of Bretz et al. (2009) which includes a special algorithm for
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(a) Initial Graph for testing H1, H2, and H3

along with their weights
(c) Graph after rejecting H1 in (a), for testing H2

and H3 along with their weights

Fig. 7.1 Graphical representation of testing with two primary hypotheses H1 and H2, and one
secondary hypothesis H3

doing this solves this problem. In this approach, one can graphically visualize the
weighted Bonferroni tests for multiple hypotheses along with an α-propagation rule
bywhich the procedure recycles the significance level of a rejected hypothesis to other
remaining unrejected hypotheses. This graphical approach, originally developed for
testingmultiple hypotheses of non-GS trials, can also be conveniently used for testing
multiple hypotheses of GS trials; see, for example, Maurer and Bretz (2013). The
following explains the key concepts of this approach for testing multiple hypotheses.

In this graphical approach, the h individual hypotheses are represented initially
by a set of h nodes with nonnegative weight of wi at node i(i � 1, . . . , h) such that∑h

i�1 wi ≤ 1. These weights when multiplied by α represent the local significance
levels at those respective nodes. The weight gij (with 0 ≤ gij ≤ 1) associated with a
directed edge connecting the node i to the node j indicates the fraction of the local
significance level at the tail node i that is added to the significance level at the terminal
node j, if the hypothesis at the tail node i is rejected. For convenience, we will call
these directed edges as “arrows” running from one node to the other, and the weight
gij as the “transition weight” on the arrow running from node i to node j.

Figure 7.1 illustrates key concepts of this graphical approach for testing two
primary hypotheses H1 and H2 and a secondary hypothesis H3 of a trial. In this
figure, the initial Graph (a) shows three nodes. Two nodes represent H1 and H2 with
weights w1 � 3/4 and w2 � (1 − w1) � 1/4, respectively. The node forH3 shows a
weight w3 � 0, which can increase only after the rejection of a primary hypothesis.
The nonnegative number g12 � 1/4 is the transition weight on the arrow going from
H1 to H2; similarly, g21 � 1/4 is the transition weight on the arrow going from H2

to H1. The transition weight on the arrow going from H1 to H3 is 3/4 and that on
the arrow going from H2 to H3 is also 3/4 satisfying the condition that sum of the
transition weights of all outgoing arrows from a single node must be bounded above
by 1.
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Graph (b) of Fig. 7.1 represents the resulting graph after H2 is rejected in Graph
(a). The rejection of this hypothesis frees its weight w2 which is then recycled to H1

andH3 according to an α-propagation rule addressed in the following for the general
case. This rule also calculates new transition weights going from one node to the
other for the new graph. Graph (c) of Fig. 7.1 similarly shows the resulting graph if
H1 is rejected in Graph (a). The following shows the general graphical procedure for
testing h individual hypotheses H1, . . . ,Hh for a non-GS trial given their individual
unadjusted p-values pj for j � 1, . . . , h.

(0) Set I � {1, . . . , h}. The set of weights {wj(I), j ∈ I} are such that 0 ≤ wj(I) ≤ 1
with the sum

∑
j∈I wj(I) ≤ 1.

(i) Select a j ∈ I such that pj < {wj(I)}α and reject Hj; otherwise stop.
(ii) Update the graph as:

(a) I � I\{j}, i.e., the index set I without the index j
(b)

wl(I) � wl(I) + wj(I)gjl, l ∈ I; 0, otherwise (7.3.1)
(c)

glk � glk + gljgjk
1 − gljgjl

, where (l, k) ∈ I, l �� k and gljgjl < 1; 0, otherwise

(7.3.2)

(iii) If |I| ≥ 1 then go to step (i); otherwise stop

After rejecting Hj, the Eq. (7.3.1) for a new graph updates the weight for Hl to a
newweight which is its old weightwl(I) plus the weightwj(I) atHj multiplied by the
transition weight gjl on the arrow connectingHj toHl . Also, the transition weights glk
for the new graph are obtained by the algorithm (7.3.2) whose numerator glk + gljgjk
is the transition weight on the arrow connecting Hl to Hk plus the product of the
transition weights on arrows going fromHl toHk through the rejected hypothesisHj.
The term gljgjl in (7.3.2) is the product of transition weights on arrows connectingHl

to Hj and then returning to Hl . The approach produces weights wl(I) which satisfy
consonance.

For explaining this procedure, consider a trial,which for demonstrating superiority
of a new treatment A+Standard of Care (SOC) to placebo +SOC, plans to test two
primary hypotheses H1 and H2 and two secondary hypotheses H3 and H4, where the
pairs (H1, H3) and (H2, H4) being considered as parent–descendant (Maurer et al.
2011). That is, H3 is tested only when H1 is rejected, and similarly, H4 is tested only
when H2 is rejected. Suppose that the trial specifies a graphical test strategy as in
Fig. 7.2 for testing these four hypotheses. The initial Graph (a) in Fig. 7.2 gives a
smaller weight of w1 � 1/5 to H1 as compared to a weight of w2 � 4/5 to H2 based
on the prior experience that the trial may win easily for H1 at the significance level
of w1α � 0.005, but the trial may require a larger significance level of w2α � 0.02
for winning for H2. As stated before, we assume that all tests in the procedure are
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Fig. 7.2 Graphical test procedure for two primary hypotheses H1 and H2, and two secondary
hypotheses H3 and H4, where pairs (H1, H3) and (H2, H4) are parent–descendant

1-sided and the control of the overall Type I error rate is at level α � 0.025. The
Graph (a) assigns zero-weights to the two secondary hypotheses indicating that we
do not want to reject a secondary hypothesis until its parent primary hypothesis is
first rejected.

In Graph (a) of Fig. 7.2, g12 � g21 � g13 � g24 � 1/2 and g32 � g41 � 1. These
settings mean that if H1 was rejected in Graph (a) then a fraction 1/2 of w1 would
be recycled to H2 so that the weight at H2 would become w2 + (1/2)w1 � 9/10 and
the remainder (1/2)w1 � 1/10 would go to H3; the weight at H4 would remain 0
because there is no arrow going from H1 to H4 meaning that g14 � 0. The rejection
of H1 in Graph (a) would lead to Graph (b) with new transition weights obtained
from (7.3.2) as: g23 � 1/3, g24 � 2/3, g42 � g43 � 1/2 and g32 � 1. Similarly, if
H2 was initially rejected in Graph (a), then a fraction 1/2 of w2 would be recycled to
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H1 so that the weight at H1 would become w1 + (1/2)w2 � 3/5 and the remainder
(1/2)w2 � 2/5 would go to H4; the weight at H3 would remain 0 as there is no
arrow going from H2 to H3 giving g23 � 0. The rejection of H2 in Graph (a) would
lead to Graph (c) with transition weights obtained from (7.3.2) as: g13 � 2/3, g14 �
1/3, g34 � g31 � 1/2 and g41 � 1.

The value g32 � 1 in this Graph (b) indicates that if H3 was rejected after the
rejection of H1 then the entire weight of (1/2)w1 � 1/10 at H3 would be recycled
to H2, so that the total weight at H2 after the rejection of both H1 and H3 would be
(w2+(1/2)w1 � 9/10)+((1/2)w1 � 1/10) � 1; the weight atH4 would remain zero
as in this graph there is no arrow going from H3 to H4. Therefore, after the rejection
of both H1 and H3, the Graph (b) would reduce to Graph (d). Similarly, g41 � 1 in
Graph (c) indicates that if H4 was rejected after the rejection of H2 then the entire
weight (1/2)w2 � 2/5 at H4 would be recycled to H1, so that the total weight at H1

after the rejection of both H2 and H4 would be (w1 + (1/2)w2)) + ((1/2)w2) � 1;
the weight at H3 would remain zero. Therefore, after the rejection of both H2 and
H4, the Graph (c) would reduce to Graph (e). However, if either H2 was rejected in
Graph (b) or H1 was rejected in Graph (c), then these graphs would reduce to Graph
(f).

7.3.5 Illustrative Example of the Graphical Approach for GS
Trials

The above graphical approach originally developed for testing multiple hypotheses
of non-GS trials also applies to GS trials. Recycling of alpha of a rejected hypothesis
to other hypotheses occurs similarly, but boundary values for testing the unrejected
hypotheses are calculated using spending functions. For example, consider the above
trial for testing two primary hypotheses H1 and H2 and two secondary hypotheses
H3 and H4, where pairs (H1, H3) and (H2, H4) are parent–descendant.

In the beginning, we start with Graph (a) of Fig. 7.2 with four hypothe-
ses

{
Hj, j ∈ I1 � {1, 2, 3, 4}} identified by four nodes and the associated weights

{wj(I1), j ∈ I1} � {1/5, 4/5, 0, 0}. These weights give the starting overall signifi-
cance levels

{
wj(I1)α, j ∈ I1;α � 0.025

} � {0.005, 0.02, 0, 0}, and the j-th one for
testing of Hj by using its spending function fj for determining its boundary values
for testing. That is, in the beginning, with Graph (a), we test each Hj (j ∈ I1) in the
univariate GS testing framework for the control of the overall Type I error rate at
level wj(I1)α so that the total overall Type I error rate control for the trial is at level∑

j∈I1 wj(I1)α � α.

For this example, we assume that fj’s are all equal to f (γ, t) � 2{1 −
Φ(z1−γ /2/

√
t)}, which is OF-like, and γ is the overall significance level for the

repeated testing of a hypothesis. The weights w3(I1) � w4(I1) � 0 indicate that H3

andH4 are not tested in Graph (a); if they were tested, they would remain unrejected.
The following describes how the procedure performs tests of these hypotheses at
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Table 7.3 Tests information at the first look at t1 � 1/2 according to Graph (a)

Overall trial α 0.025

j ∈ I1 1 2 3 4

wj(I1) 1/5 4/5 0 0

wj(I1)α 0.005 0.02 0 0

αj
(
wj(I1)α, t1

)
0.00007 0.0010 0 0

Note As the p-values {pj(t1), j ∈ I1} exceed their corresponding boundary values, there is no
rejection of a hypothesis at this look

different looks and how it recycles the unused alpha of a rejected hypothesis to other
unrejected hypotheses.

Tests at the First Interim Look:
Suppose that at the first look, the information fraction is t1 � 1/2. For this exam-
ple, we assume that the information fraction at a look remains the same for dif-
ferent hypotheses. If this is not the case, the procedure will proceed as discussed
in Sect. 7.3.3. The univariate group sequential procedure for testing a hypothesis
in a single-hypothesis trial calculates the boundary values for interim looks given
the overall significance level α. However, in our case, there are more than one sig-
nificance levels as

{
wj(I)α, j ∈ I1;α � 0.025

} � {0.005, 0.02, 0, 0} assigned to
{Hj, j ∈ I1}. These overall significance levels, and the use of the OF-like spend-
ing function at t1 � 0.5, then give the boundary values {αj

(
wj(I1)α, t1

)
, j ∈ I1} �

{0.00007, 0.0010, 0, 0} for testing {Hj, j ∈ I1} at the first look. Note that the sub-
script of t identifies the look number and the subscript j for the hypothesis Hj being
tested. Also note that the boundary value of αj

(
wj(I1)α, tk

)
is a function of the overall

significance level wj(I1)α assigned to Hj and the information fraction tk at look k;
here k � 1.

Suppose that at the first look, the unadjusted p-values {pj(t1), j ∈ I1} associate
with {Hj, j ∈ I1} are such that pj(t1) ≥ αj

(
wj(I1)α, t1

)
for j ∈ I1; consequently, the

trial will continue to the second look without rejection of a hypothesis at the first
look. For recording purposes, one can summarize the above testing information at
the first look as in Table 7.3.

Tests at the Second Look:
Suppose that the trial conducts the second look when the information fraction

is t2 � 3/4. Since none of the hypotheses was rejected at the first look, we begin
with Graph (a) at the second look, by using the same overall significance levels of
{wj(I1)α, j ∈ I1}) � {0.005, 0.02, 0, 0} that were used at the first look. However,
as t2 � 3/4 at the second look, the use OF-like spending function leads to the
boundary values of {αj

(
wj(I1)α, t2

)
, j ∈ I1} � {0.00117, 0.0069, 0, 0} for testingHj

for j ∈ I1. The boundary values for testing H3 and H4 remain zero, as there is no
rejection of a primary hypothesis so far. Suppose that at this second look, the observed
p-values associated with for H1, H3, H2, and H4 are p1(t2) � 0.001, p2(t2) � 0.020,
p3(t2) � 0.040, and p4(t2) � 0.091, respectively. These results lead to the rejection
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Table 7.4 a Tests information at the second look at t2 � 3/4 according to Graph (a) after no
rejection at the first look. b Tests information at the second look at t2 � 3/4 according to Graph
(b) after the rejection of H1 at this look

Overall trial α 0.025 (Table 7.4a)

j ∈ I1 1 2 3 4

wj(I1) 1/5 4/5 0 0

wj(I1)α 0.005 0.02 0 0

αj
(
wj(I1)α, t2

)
0.00117 0.0069 0 0

p-values: pj(t2) 0.001 0.020 0.040 0.091

Overall trial α 0.025 (Table 7.4b)

j ∈ I2 – 2 3 4

wj(I2) – 9/10 1/10 0

wj(I2)α – 0.0225 0.00255 0

αj
(
wj(I2)α, t2

)
– 0.00802 0.00047 0

p-values: pj(t2) 0.001 0.020 0.040 0.091

Note H1 is rejected as p1(t2) � 0.001 is less than its boundary value of 0.00117 (Table 7.4a)
Note As p2(t2) � 0.020 > 0.00802 and p3(t2) � 0.040 > 0.00047, there is no additional rejection
at the second look (Table 7.4b)

ofH1 at the second look as p1(t2) � 0.001 is less than its boundary value of 0.00117;
see Table 7.4a.

The above rejection of H1 at the second look then frees its overall significance
level of w1(I1)α) � 0.005 as unused alpha which is recycled to the remain-
ing three hypotheses for their tests according to Graph (b). This revised graph,
constructed after the rejection of H1, allows retesting of the remaining hypothe-
ses {Hj, j ∈ I2 � {2, 3, 4}} at their corresponding overall significance levels of{
wj(I2)α, j ∈ I2

} � {−, (9/10)α, (1/10)α, (0)α} � {−, 0.0225, 0.00255, 0}. Note
that the overall significance levels for testing H2, H3 are now increased creating
the possibility of additional rejections of hypotheses at the second look according
to Graph (b). The use OF-like spending function with these updated overall signifi-
cance levels and t2 � 3/4, then produces the boundary values of {αj

(
wj(I2)α, t2

)
, j ∈

I2} � {−, 0.00802, 0.00047, 0} for testingHj for j ∈ I2; see Table 7.4b. However, in
this table, as p2(t2) � 0.020 > 0.00802 and p3(t2) � 0.040 > 0.00047, there is no
additional rejections at the second look. Therefore, the trial moves to the next look
which is the final look.

Tests at the Final Look:
After the rejection ofH1 at the second look, the tests for the remaining three hypothe-
ses {Hj, j ∈ I2} at the final look start with the same Graph (b) and the same
overall significance levels of

{
wj(I2)α, j ∈ I2

} � {−, (9/10)α, (1/10)α, (0)α} �
{−, 0.0225, 0.00255, 0} for testing {Hj, j ∈ I2 � {2, 3, 4}}. However, as t3 � 1 at
this look, the use of the same OF-like spending function produces the boundary val-
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Table 7.5 a Tests information at the final look at t3 � 1 according to Graph (b) after the rejection
of H1 at the second look. b Tests information at the final look at t3 � 1 according to Graph (f) after
the rejection of H1 at the second look and the rejection of H2 at the final look

Overall trial α 0.025 (Table 7.5a)

j ∈ I2 – 2 3 4

wj(I2) – 9/10 1/10 0

wj(I2)α – 0.0225 0.00255 0

αj
(
wj(I2)α, t3

)
– 0.01988 0.00234 0

p-values: pj(t3) – 0.012 0.008 0.041

Overall trial α 0.025 (Table 7.5b)

j ∈ I2 – 2 3 4

wj(I2) – – 2/5 3/5

wj(I2)α – – 0.010 0.015

αj
(
wj(I2)α, t3

)
– – 0.00907 0.013440

p-values: pj(t3) – 0.012 0.008 0.041

Note As p2(t3) � 0.0120 < 0.01988 and p3(t2) � 0.008 > 0.00234, there is a rejection of H2 at
this look (Table 7.5a)
Note As p3(t2) � 0.008 < 0.00907, H3 is also rejected at this look (Table 7.5b)

ues of {αj
(
wj(I2)α, t3

)
, j ∈ I2} � {−, 0.01988, 0.00234, 0} for testing of {Hj, j ∈ I2}

at this look. Suppose that at this final look, the observed p-values associated with for
H3,H2, andH4 are p2(t3) � 0.012, p3(t3) � 0.008, and p4(t3) � 0.041, respectively.
These results then lead to the rejection of H2 at the final look as its p2(t2) � 0.012
is less than its corresponding boundary value of 0.01988; see Table 7.5a.

Now, as H1 was rejected at the second look and as H2 is rejected at the final
look, the tests of hypotheses H3 and H4 at the final look will be at the increased
overall significance levels of {wj(I3)α, j ∈ I3 � {3, 4}} � {(2/5)α, (3/5)α} �
{0.010, 0.015} according toGraph (f). These with theOF-like spending function give
the boundary values of {–, –, 0.00907, 0.01344} for testing {Hj, j ∈ I3}, rejecting
also H3 in this final look, as p3(t2) � 0.008 is less than 0.00907; see Table 7.5b.
Consequently, the remaining H4 can be tested at this look the at the full overall
significance level of α�0.025 which gives the boundary value of 0.0220 for its
testing. Therefore, as p4(t2) � 0.041 > 0.0220 for H4, the trial stops without the
rejection of this hypothesis.
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7.4 Testing a Secondary Hypothesis When the Trial Stops
After the Rejection of a Primary Hypothesis

Consider, for example, a trial with two looks for testing a primary hypothesis H1

and a secondary hypothesis H2 with one interim look and a final look at information
fractions t1 and t2 � 1(0 < t1 < t2), respectively. The trial, if it rejects H1 at the
interim look, stops at that look for ethical reasons. This will in general be the case
when H1 is associated with an endpoint such as mortality. Therefore, H2 must be
tested at the same interim look when H1 is rejected, and this test for H2 must occur
after the rejection of H1.

A question often arises: Can the test of H2 at the interim look, after the rejection
of H1 at that look, be at the full significance level α (e.g., α � 0.025)? This ques-
tion may arise based on the considerations that H2 is not tested unless H1 is first
rejected and there is no repeated testing of H2 after the rejection of H1. Tamhane
et al. (2010) (also Xi and Tamhane 2015) showed that the answer of this question
is affirmative, only for the special case when the test statistics for testing H1 and
H2 are independent. However, this can inflate the overall Type I error rate if the test
statistics are correlated. They show that with certain distributional assumptions of
the test statistics, the exact adjusted significance level for testing H2 can be found
if this correlation is known. However, if this correlation is unknown, then an upper
bound of the adjusted significance levels can be set that covers all correlations. The
following revisits this work in some detail because of its importance for clinical trial
applications.

We assume that the trial is designed to demonstrate superiority of a new treatment
to control such that Hi : δi ≤ 0(i � 1, 2), where δ is the treatment difference param-
eter. Also, X and Y are the test statistics for testing H1 and H2, respectively, which
become (X (tk),Y (tk)) at information times tk(k � 1, 2). Also, following the results
of Sect. 7.2, we assume that each pair (X (t1),X (t2)) and (Y (t1),Y (t2)) follows a
standard bivariate normal distribution with the same correlation of

√
t1. Further, we

assume that each pair (X (t1),Y (t1)) and (X (t2),Y (t2)) follows a standard bivariate
normal distribution with correlation coefficient of ρ ≥ 0. Furthermore, we assume
that (c1, c2) and (d1, d2) are boundary values for testing H1 and H2, respectively, so
that d1 is used only when H1 is rejected at the first look; similarly, d2 is used only
when H1 being retained at the first look is rejected at the final look. The test strategy
for this 2-stage design can then be stated as follows:
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Step 1: 

 If Go to Step 2

 If Reject and test 

If Reject ; else, retain it

(In either case terminate the trial)

Step 2: 

 If Terminate the trial without any rejection

 If Reject and test 

If Reject ; else, retain it.

Determining the Boundary Values of the Procedure
Tests for H1 and H2 for the above 2-stage design can be carried out by the method
based on the closed testing for GS trials as addressed in Sect. 7.3.2. The intersection
hypothesis H12 would be tested by the weighted Bonferroni tests with weights of
w1 � 1 and w2 � 0 associated with the tests of H1 and H2, respectively; w2 � 0
for H2 implies that this weight can increase only after H1 is rejected. Therefore, for
this design, the rejection of H1 at level α implies the rejection of H12 at level α.
Consequently, H2 can be tested at the full significance level α. But as the trial is a
GS trial with one interim look, the boundary values c1 and c2 for testing H1 can then
be found from the following two equations:

Pr{X (t1) > c1|H1} � f1(α, t1(X ))

and

f1(α, t1(X )) + Pr{X (t1) ≤ c1 ∩ X (t2) > c2|H1} � f1(α, t2(X ) � 1),

where f1(α, t) is the spending function for testing H1, and t1(X ) and t2(X ) are the
information fractions for testing H1 at the first and final looks, respectively. For
example,when f1(α, t) isOF-like,α�0.025, and t1(X ) � 0.5, then c1 � 2.95901 and
c2 � 1.96869 on the normal z-scale which translates to α1(0.025, t1(X ) � 0.5) �
0.00153 and α2(0.025, t2(X ) � 1) � 0.02449 on the p-value scale.

Since the significance level α for the test of H1 after its rejection recycles to test
H2, the boundary values (d1, d2) for H2 need to be calculated also by a GS method
but at the same level α. Reason for this is that, though H2 is tested after the rejection
of H1, the rejection of H2, similar to that for H1, can occur either at the first look
or at the final look. Thus, if one uses the Pocock (1977) method for calculating the
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boundary values for testing H2, then at α�0.025, t1(Y ) � 0.5 and t2(Y ) � 1, the
value d � d1 � d2 � 2.17828 (on the z-scale) which is 0.01469 on the p-value scale.
However, the test statisticsX andY inmany applicationswill be positively correlated.
Therefore, if this correlation is ρ, and remains the same for the two looks, then it is
natural to ask a key question: Is it possible to take advantage of this correlation and
find d∗ ≤ d while maintaining the control of the overall Type I error rate at level α�
0.025?

The following shows that this is possible. But the extent of the gain depends on
the value of ρ. Larger is the value of ρ on the interval 0 ≤ ρ ≤ 1, lesser is the gain,
and as ρ approaches one, the value of d∗ approaches d determined by the Pocock
(1977) method.

Determining the Value of d∗
Testing ofH1 andH2 gives rise to three null hypotheses configurationsH12 � H1∩H2,
H1 ∩ K2, and K1 ∩ H2, where K1 and K2 are alternatives to H1 and H2, respectively.
The overall Type I error rate for testing H1 and H2 under the first two configurations
is ≤α. That is, tests for H1 control this error rate at level α regardless of whether H2

is true or false. Therefore, we need to find zy � d∗ by solving for zy in the following
equation under K1 ∩ H2.

Pr{X (t1) > c1 ∩ Y (t1) > zy} + Pr{X (t1) ≤ c1 ∩ X (t2) > c2 ∩ Y (t2) > zy} � α.

(7.4.1)

Now, Cov {X (t1),X (t2)} � √
t1, Cov {X (t1),Y (t2)} � √

t1 ρ, and
Cov{X (t1),Y (t1)} � Cov{X (t2),Y (t2)} � ρ. Also, E{X (t1)} � θ

√
t1, E{X (t2)} �

θ , and E{Y (ti)} � 0 for i � 1, 2, because of K1 ∩H2 and θ being the drift parameter
for X. Further, one can show that conditional on X (t2) � x(t2), the test statistics
X (t1) and Y (t2) are independently normally distributed as:

X (t1) is N
{
x(t2)

√
t1, 1 − t1

}
and Y (t2) is N

{
(x(t2) − θ)ρ, 1 − ρ2

}

Therefore, the Eq. (7.4.1) for finding zy � d∗ can be written as:

α � 1 − Φ
(
c1 − θ

√
t1

) − Φ
(
zy

)
+ Φ12

(
c1 − θ

√
t1, zy; ρ

)

+

∞∫

c1−θ

�

(
c1 − θ

√
t1 − u

√
t1√

1 − t1

)
�

(
−zy − uρ
√
1 − ρ2

)

φ(u)du, (7.4.2)

where� andφ are the density and the cumulative distribution functions of theN(0,1)
random variable, and Φ12 is the cumulative distribution function of the standard
bivariate normal distribution with correlation coefficient of ρ.

Therefore, specifying values of ρ, t1, c1, and c2, one can construct a graph zy �
f (θ) over the interval θ>0 that satisfy Eq. (7.4.2). Figure 7.3 shows such graphs
for different values of ρ when α�0.025 (1-sided), t1 � 0.5, and c1 � 2.95901 and
c2 � 1.96869 on using the OF-like α-spending function. Constructing such a graph
for a given ρ then gives d∗ � zy where the maximum occurs for that ρ. Such a
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Fig. 7.3 Graph of zy � f (θ) over the interval θ>0 satisfying Eq. (7.4.2). In this graph, theta�θ

and z � zy . The horizontal dashed line in the graph represents the Pocock boundary

selection of d∗ assures that the right side of (7.4.2) is≤α for all θ>0. Table 7.6, for
the above values of α, t1, c1, and c2, gives d∗ values and the corresponding αd* values
on the p-value scale for values of ρ shown in column 1 of this table. This table also
includes values of θ∗ where the d∗ values occur. Results of this table show that if the
test statistics for testingH1 andH2 are uncorrelated, then the test forH2 at a look after
the rejection ofH1 at that look can be at the full significance level α. However, if these
test statistics are correlated, then this significance level for testing H2 is correlation
dependent. For positive correlations, this significance level for testing decreases with
increasing correlation value and approaches to a value by the Pocock (1977) method.

7.5 Concluding Remarks

Confirmatory clinical trials have been gold standards for establishing efficacy of
new treatments. However, such trials when designed with a single primary endpoint
do not provide sufficient information when one must assess the effect of the new
treatment on different but important multiple characteristics of the disease. For these
situations, trials includemultiple endpoints related to these disease characteristics and
a statistical plan for testing multiple hypotheses on these endpoints for establishing
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Table 7.6 Values of d* for the 2-stage design for different correlations when α�0.025 (1-sided),
t1 � 0.5, and c1 � 2.95901 and c2 � 1.96869 on using the OF-like α-spending function

Correlation
ρ

d*
(Z-scale)

αd*
(p-value scale)

θ � θ∗

0.0 1.95996 0.02500 θ∗ � all θ > 6.5

0.1 1.96958 0.02444 4.54

0.2 1.98063 0.02382 4.12

0.3 1.99160 0.02321 4.00

0.4 2.00497 0.02248 3.43

0.5 2.01872 0.02176 3.11

0.6 2.03407 0.02097 2.78√
0.5 2.05314 0.02003 2.45

0.8 2.07326 0.01907 2.15

0.9 2.10262 0.01775 1.79

0.99 2.15450 0.01560 1.31

0.999 2.17026 0.01499 1.20

PK value d �2.17828 αd = 0.01469 –

Conservative α/2�0.0125 –

Note θ � θ∗ is the value of θ where zy is maximum on the graph zy � f (θ) over the interval θ>0
satisfying Eq. (7.4.2)

efficacy findings of new treatments. However, testing multiple hypotheses in a trial
can raise multiplicity issues causing inflation of the Type I error rate. Fortunately,
many novel new statistical methods, such as gatekeeping and graphical methods,
are now available in the literature for addressing all types of multiplicity issues of
clinical trials. These novel methods have advanced the role of statistical methods in
designing modern clinical trials with multiple endpoints or multiple objectives.

In clinical trials with serious endpoints, such as death, often a new treatment is
added to an existing therapy for detecting a relatively small but clinically relevant
improvement in the treatment effect beyond what the existing therapy provides.
Designing and conducting such andother trials for serious diseases canbe complex, as
these trials may require thousands of patients to enroll and several years to complete.
Ethical and economic reasons may necessitate that these trials be designed with
interim looks for finding the effect of the treatment at an earlier timepoint allowing the
possibility of stopping the trial early when it becomes clear that the study treatment
has the desired efficacy or it is futile to continue the trial further. Such trials that allow
analyses of the accumulated data at interim looks for the possibility of stopping the
trial early for efficacy or futility reasons are commonly known as group sequential
trials.

Obviously, interim analyses of the data in a group sequential trial amounts to
repeated testing of one or more hypotheses and would result in Type I error rate
inflation, so multiplicity adjustment would be required for drawing valid inference.
As mentioned in this chapter, several approaches have been cited in the literature for
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addressing the control of Type I error rate for repeated tests of a single hypothesis
related to a single primary endpoint of the trial. However, approaches for addressing
the multiplicity issues for testing multiple hypotheses related to multiple endpoints
of group sequential trials are less frequent in the literature.

This chapter, in addition to providing a brief review of procedures and citing key
references thereof for the repeated testing procedures of a single endpoint hypothesis
in groups sequential trials, considers procedures for handling multiplicity issues
for repeated testing of multiple endpoint hypotheses of trials. In this regard, we
distinguish two cases of multiple endpoints which guide the approach for handling
the multiplicity issue. The first case arises when after a hypothesis is rejected at an
interim look, the trial can continue to test other hypotheses at subsequent looks for
additional claims. A testing approach for this is to use the Bonferroni inequality
which requires splitting the significance level either among the endpoints or among
the different looks. This approach is now rarely used because of the low power of
the tests.

A better approach (discussed in Sect. 7.3.2) is to consider the use of the closed
testing with the weighted Bonferroni tests of the intersection hypotheses, when the
weights satisfy the consonance property. This approach allows recycling of the sig-
nificance level of a rejected hypothesis to the other hypotheses, thus increasing the
power of the test procedure. However, as discussed, the recycling of the significance
level from a rejected hypothesis to other hypotheses occurs through an α-spending
function and is not simple as with non-group sequential trials.

The closed testing-based approach can be manageable when testing 2–3 hypothe-
ses, but it may be difficult to set up for testing more than three hypotheses, for exam-
ple, when testing two primary and two secondary hypotheses in a trial, as selecting
weights for the weighted Bonferroni tests that satisfy the consonance property can be
complicated. For these advanced cases, a graphical approach is recommended which
is easier to plan, to use, and to communicate to non-statisticians. This chapter illus-
trates the application of these two approaches through illustrative examples, showing
details of the derivations of the significance levels.

The second case arises (discussed in Sect. 7.4), for example, for a group sequential
trial designed for testing a primary and a secondary endpoint hypotheses, and the trial
stops at an interim look for ethical reasons when the primary hypothesis is rejected
at that look in favor of the study treatment. The issue then arises as to what would
be the significance level for testing the secondary hypothesis at that look, given that
that the secondary hypothesis is tested only after the primary one is rejected first.
This issue has been investigated in the literature in detail, but we have revisited it
for increasing its awareness, as group sequential trials are frequently designed with
a single primary hypothesis and multiple secondary hypotheses. A natural way to
address this problem is to use the graphical procedure and recycle the significance
level of the rejected primary hypothesis to secondary hypotheses using the Pocock-
like α-spending function.

Glimm et al. (2010) illustrated that using the Pocock-like group sequential test to
the secondary hypotheses has a power advantage over the O’Brien-Fleming bound-
ary. Other approaches that consider correlation information between the test statistics
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can also be used for simple cases, for example, for the case of testing a single primary
and a single secondary hypothesis.

Power considerations in designing GS trials that tests multiple hypotheses are also
important. However, this topic is beyond the scope of this paper. The power issue
would generally be like those for testing multiple hypotheses in a non-GS trial.
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Chapter 8
Expanded Statistical Decision Rules
for Interpretations of Results of Rodent
Carcinogenicity Studies
of Pharmaceuticals

Karl K. Lin and Mohammad A. Rahman

8.1 Introduction

The Center for Drug Evaluation and Research of the U.S. Food and Drug Admin-
istration (CDER/FDA) draft Guidance for Industry: Statistical Aspects of the
Design, Analysis, and Interpretation of Chronic Rodent Carcinogenicity Studies
of Pharmaceuticals (U.S. department of Health and Human Services, 2001) was
announced in Federal Register (Tuesday, May 8, 2001, Vol. 66, No. 89) for a 90-day
public comment in 2001. Comments on the document from 16 drug companies, pro-
fessional organizations of the pharmaceutical industry, and individual experts from
USA, Europe, and Japan were submitted to the Agency. The public comments are
in Food and Drug Administration Docket No. 01D–0194 and are available to FDA
scientists to review. The public comments were positive on the contents and the use-
fulness of the guidance. The statistical methods recommended in the draft guidance
for industry document have been closely followed by statistical reviewers within
CDER/FDA and statisticians in drug companies in USA and abroad in their data
analyses of carcinogenicity studies.

It is noted that the 2001 draft guidance for industry document discussed the rec-
ommended statistical methods for the design, analysis, and interpretation of results
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only for NDA and IND submissions that include two chronic (long-term) rodent car-
cinogenicity studies of pharmaceuticals in rats and mice. Two more types of NDA
and IND submissions other than those with two chronic studies in rats and mice were
either not discussed or barely mentioned in the guidance document. They are sub-
missions including one chronic study in rats and one six-month study in transgenic
mice and submissions including only one chronic study in either rats or mice.

The general statistical methods recommended for the analysis of data of chronic
carcinogenicity studies of pharmaceuticals in the original draft guidance for industry
document are still fairly up-to-date and applicable in general to those other types of
submissions. However, it is noted that the 2001 draft guidance for industry document
discussed the recommended statistical methods for the interpretation of study results
only for NDA and IND submissions that include two chronic rodent carcinogenicity
studies of pharmaceuticals in rats and mice. It has become necessary to update the
part of methods of interpretation of study results of the original guidance document
to include recently recommended interpretation methods for the two other types of
NDA and IND submissions.

Furthermore, it has also become necessary to update the part of the recommended
interpretationmethods in the original guidancedocument to reflect themore restricted
decision rules (explained below) having been used by some practicing pharmacolo-
gists/toxicologists in their final determination of the carcinogenic potential of a new
drug after the issuance of the 2001 draft guidance document for public comment.

It is specifically recommended throughout the draft guidance document that the
trend tests (testing the null hypothesis of no positive trend versus the alternative
hypothesis of a positive trend in incidence rates), which have been studied extensively
in the literature and internally within CDER/FDA (Lin 1988, 1995, 2000a, b, 2010;
Lin andAli 2006; Lin andRahman1998; Lin et al. 2010, 2016;Rahman andLin 2008,
2009, 2010), should be the primary tests for the evaluation of carcinogenic effects of a
drug because they have more statistical power to detect a true carcinogenic effect and
that the pairwise comparison tests (testing the null hypothesis of no drug-induced
increase versus the alternative hypothesis of a drug-induced increase in incidence
rates of a treated group over the control group) should be used only in rare situations
in which a comparison between the control group and an individual treated group is
considered asmore appropriate than the trend test in the carcinogenicity evaluation of
a drug. Studying the special nature and the designs of carcinogenicity studies and the
need to balance the Type I and Type II errors in statistical inference in a regulatory
environment, statistical decision rules were developed by statisticians within the
Office of Biostatistics (OB) in CDER/FDA for applying trend tests alone and for
applying pairwise comparison tests alone in a statistical review and evaluation of
carcinogenicity studies of a new drug.

The draft guidance recommended in the section of interpretation of study results
that a positive dose–response (or trend) in incidence rates of an individual tumor
type be tested at 0.005 or 0.025 significance level and that a pairwise comparison
of an increase in incidence rates in a treated group over the control group of the
tumor type be tested at 0.01 or 0.05 significance level for a common or a rare tumor
type, respectively, in a standard submission of two chronic studies in both sexes of
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rats and mice. A tumor type is defined as common if it has a spontaneous rate of
greater than or equal to 1% and as rare otherwise. The use of these decision rules
for individual tumor types results in an overall false-positive rate of about 10% in a
standard submission containing two chronic studies in both sexes of rats and mice
(Lin and Rahman 1998; Rahman and Lin 2008). The 10% overall false-positive rate
has been determined as the most appropriate in the regulatory review environment
with the consideration of the nature of the designs of carcinogenicity studies of new
drugs.

In order to further reduce the false-positive rate (measuring the producer’s
risk in regulatory reviews of toxicology studies), some practicing pharmacolo-
gists/toxicologists have used a so-called joint test in their determination if a test
of a drug effect on the development of an individual tumor type is statistically sig-
nificant. In the joint test, the results of both the test for the positive trend and the
pairwise comparison test for an increase in the high dose group over the control
group in incidence rates of the individual tumor type have to be statistically sig-
nificant simultaneously at the levels of significance recommended for the separate
tests in the 2001 draft guidance for industry document in order to consider the drug
effect on the development of the individual tumor type as statistically significant. We
have concerns that the use of levels of significance recommended in the guidance
document is for the trend tests alone, and for the pairwise comparison test alone, and
not for the joint test; and that there is a serious consequence of huge inflations of the
false-negative rate (measuring the consumer’s risk in regulatory reviews of toxicol-
ogy studies) in the use of the joint test with the levels of significance recommended
for the separate tests in the 2001 draft guidance document in the final interpretation
of the results of a carcinogenicity study.

We have done extensive simulation studies to investigate the impacts of the use
of the levels of significance recommended in the 2001 draft guidance document for
the separate tests in the joint test on the determination of carcinogenic potential of
a new drug and to recommend a new set of decision rules (levels of significance)
that balance the false-positive and the false-negative rates at acceptable levels for the
use of the joint test. Therefore, it has also become necessary to update the part of
recommended methods of interpretation of study results in the 2001 draft guidance
document to include those newly recommended sets of decision rules for the joint
tests in different types of new drug application submissions.

This book chapter includes twomajor parts. The first part, serving as the important
statistical basis for the second part, includes presentations of results of our simulation
studies investigating the impacts of the joint test using the levels of significance
recommended in the 2001 draft guidance document for the separate tests on the
determination of carcinogenic potential of a new drug. The second part includes our
recommended sets of expanded decision rules for the separate tests and the joint
tests to be used in those three types of new drug application submissions. Methods
of our simulation studies comparing false-negative rates resulting from the trend test
alone and from the trend test and the control-high group pairwise comparison test
simultaneously (i.e., the joint test) in the determination of the carcinogenicity of new
drugs are presented in Sect. 8.2. Results of the simulation studies are presented in
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Sect. 8.3. Expanded sets of new decision rules recommended for the separate and
the joint tests for the three different types of submission are presented in Sect. 8.4.

8.2 Methods of Our Simulation Studies Comparing
False-Negative Rates Resulting from the Trend Test
Alone and from the Trend Test Jointly with
Control-High Group Pairwise Comparison Test
in the Determination of the Carcinogenicity of New
Drugs

Two simulation studies were conducted. The objective of the simulation studies
is to evaluate the extent of inflation of the false-negative rates resulting from the
use of the joint test with the levels of significance recommended for the separate
tests in the 2001 draft guidance document for determining a statistically significant
drug effect on the development of a given tumor type. The two simulation studies
used survival and tumor data generated from theWeibull distribution and the Gamma
distribution, respectively, to evaluate the false-negative rates resulting from the use of
the following three types of decision rules for determining if a test of the drug effect on
development of a given tumor type is statistically significant at the significance levels
for separate tests recommended in the 2001 draft guidance for industry document:
(a) requiring a statistically significant result in the trend test alone (this is the rule
recommended in the draft guidance for industry document); (b) requiring statistically
significant results both in the trend test and in any of the three pairwise comparison
tests (control versus low, control versus medium, and control versus high); and (c)
requiring statistically significant results both in the trend test and in the control
versus high group pairwise comparison test (this is the joint test rule). The results of
decision rule type (b) were also included the tabulations, but they are not included
in the evaluations of the inflations of false-negative rates in this book chapter.

8.2.1 Simulation Study Based on the Weibull Distribution

The first simulation study used the same Weibull distribution and the same sets of
values for the parameters used in the National Toxicology Program (NTP) study
(Dinse 1985) to reflect various simulated conditions on the effect of early or late
tumor appearance, the effect of spontaneous rate, the effect of dose on mortality, and
the effect of dose on tumor prevalence. Also in this and next simulations studies,
the same NTP assumption that tumor types considered are occult and incidental
(nonfatal) was also used. Because of the assumption of the data, the death-rate (life-
table) method (Peto et al. 1980) for fatal tumors was not used, and therefore, the
censoring process was not considered.
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In our first and the NTP studies, the tumor detection time (T0 in weeks) and the
time to natural death (T1 in weeks) of an animal were modeled by four parameter
Weibull distributions as

Sl (t |x) � P(Tl > t |X � x) � e
{−(Cl+Dl x)[(t−Al )]Bl

}
if t > Al , and Sl (t |x) � 1 if t ≤ Al

where Al is the location parameter, Bl is the shape parameter, Cl is the baseline scale
parameter, Dl is the dose-effect parameter, and l =0, 1. Table 8.1 lists the values of
the parameters that were used in Dinse (1985) and in this simulation study. Notes of
Table 8.1 also show the factors used in the simulation study.

The prevalence function for incidental tumors equals the cumulative function of
for time to tumor onset, i.e.,

P(t, x) � 1 − S0(t |x)

The factors used in the NTP study are defined as follows: (1) low or high tumor
background rate: The prevalence rate at 2 years in the control group is 5% (low) or
20% (high). (2) Tumors appear early or late: The prevalence rate of the control group
at 1.5 years is 50% (appearing early) or 10% (appearing late) of the prevalence rate at
2 years. (3) None, small, or large effect on tumor prevalence: The prevalence of the
high dose group at 2 years minus the prevalence of the control group at 2 years is 0%
(none effect), or 10% (small effect), or 20% (large effect). (4) None, small, or large
effect on mortality: The expected portion of animals alive in the high dose group
at 2 years is 70% (none), 40% (small effect), or 10% (large effect). The expected
portion of animals alive in the control group at 2 years is taken as 70%.

There are important differences in study design between the NTP study and our
study. The NTP study simulated three treatment groups with doses x�0, x�1,
and x�2 (called the control, low, and high dose groups), and our study used four
treatment groups (with doses x�0, x�1, x�2, and x�3, called the control, low,
mid, and high dose groups, respectively). Since the values of the parameters A, B, C,
and D used were the same in the two studies, the characterizations of the effects of
the dose level on tumor prevalence, factor 3, and on mortality, factor 4, apply to the
dose level x�2, i.e., to the mid-dose level in our study. To recast these descriptions
in terms of the effect at the x�3 (high dose) level, factors (3) and (4) become factors
(3’) and (4’) described below:

(3’). No dose effect, a small dose effect, or a large dose effect on tumor prevalence:
The prevalence of the high dose group (x�3) at 2 years minus the prevalence of the
control group at 2 years is 0% (no effect), or approximately 15% (small effect), or
approximately 28% (large effect).

(4’). No dose effect, a small dose effect, or a large dose effect on mortality: The
expected proportion of animals alive in the high dose group at 2 years is 70% (no
effect), 30% (small effect), or 4% (large effect). The expected proportion of animals
alive in the control group at 2 years is taken as 70%.
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Table 8.1 Values of parameters for the Weibull models (Taken from Dinse 1985) in the generation
of the simulated survival and tumor data

Weibull parameters

Time to death (T1 in weeks)

Drug effect on
death

A B Scale×104

C D

None 0 4 0.0000305 0

Small 0 4 0.0000305 0.0000239

Large 0 4 0.0000305 0.00008325

Time to tumor onset (T0 in weeks) corresponding to each model for time to death

Background
tumor rate

Tumor
appearance

Dose effect
on tumor
prevalence

A B Scale x 104

C D

Low Early None 17 2 0.0678 0

Low Early Small 17 2 0.0678 0.0736

Low Early Large 17 2 0.0678 0.1561

Low Late None 56 3 0.00465 0

Low Late Small 56 3 0.00465 0.005025

Low Late Large 56 3 0.00465 0.010675

High Early None 21 2 0.324 0

High Early Small 21 2 0.324 0.097

High Early Large 21 2 0.324 0.209

High Late None 57 3 0.0215 0

High Late Small 57 3 0.0215 0.00645

High Late Large 57 3 0.0215 0.01383

Notes on factors used in the simulation: (1) low or high tumor background rate: The prevalence
rate at 2 years in the control group is 5% (low) or 20% (high). (2) Tumors appear early or late: The
prevalence rate of the control group at 1.5 years is 50% (appearing early) or 10% (appearing late) of
the prevalence rate at 2 years. (3) None, small, or large effect on tumor prevalence: The prevalence
of the high dose group at 2 years minus the prevalence of the control group at 2 years is 0% (none
effect), or 10% (small effect), or 20% (large effect). (4) None, small, or large effect on mortality:
The expected portion of animals alive in the high dose group at 2 years is 70% (none), 40% (small
effect), or 10% (large effect). The expected portion of animals alive in the control group at 2 years
is taken as 70%
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Fig. 8.1 Weibull model used to generate the survival data when the dose effect on mortality is
small

These differences in design between the NTP and our studies can be expected to
have the following effects on the Type 2 error rates for this and the other studies of
ours (relative to the NTP study):

The higher tumor prevalence rates in the high dose groups should help to reduce
the false-negative rates (or to increase the levels of power) of statistical tests.

On the other hand, higher levels of mortality will reduce the effective sample size
and thus tend to increase the false-negative rates (or to decrease the levels of power).

Two vectors, each with 200×1 dimensions, T0 and T1, were generated from two
Weibull distributions representing tumor onset time and the time to death of 200
animals. The actual time of death (T) for the animal was defined as the minimum of
T1 and 104 weeks, i.e., T� (min (T1, 104)). The animal developed the tumor (Y�
1) if the time to tumor onset did not exceed the time to death (T0 ≤T), and (Y�
0) otherwise. The actual tumor detection time was assumed to be the time of death.
Animals in the same dose group were assumed to be equally likely to develop the
tumor in their lifetimes. It was assumed that tumors were developed independently
of each other. Figure 8.1 contains the graphical presentations of the Weibull models
used to generate the survival data when the dose effect on mortality is small, and
Fig. 8.2 contains the graphical presentations of the Weibull models used to generate
the tumor prevalence data when the background tumor rate is low, the dose effect on
tumor prevalence is large, and the tumor appears early in our study.

The age-adjusted prevalencemethod (Peto et al. 1980) for dose–response relation-
ship and age-adjusted Fisher exact test for pairwise comparisons in tumor incidence
using the NTP partition of time intervals were applied to the generated survival and
tumor incidence dataset of the 200 animals. The p values of the trend test and of the
pairwise comparisons between the control and each of the individual treated groups
were recorded and compared with the recommended levels of significance recom-
mended in the 2001 draft guidance for industry document for the trend test alone
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Fig. 8.2 Weibull model used to generate the tumor prevalence data when the background tumor
rate is low, the dose effect on tumor prevalence is large, and the tumor appears early

and pairwise comparisons alone for the three decision rules in determining if a drug
effect on the development of a given tumor type is statistically significant.

The levels of significance are those with adjustment for effect of multiple testing
for the test for positive trend recommended in Lin and Rahman (1998), U.S. Depart-
ment of Health and Human Services (2001), and Rahman and Lin (2008), and those
for pairwise comparisons suggested by Haseman (1983, 1984a, b). False-positive
(Type I) and false-negative (Type II) rates were estimated after 10,000 simulation
runs for each of the 36 simulation conditions.

8.2.2 Simulation Study Based on the Gamma Distribution

The second simulation study was based on the Gamma distribution under the same
simulation conditions as those under the first simulation study based on the Weibull
distribution. The purpose of the second simulation study is to compare the results of
this study with those from the study based on the Weibull distribution to improve the
validity of the simulation results of the first simulation study. For a valid comparison
of results, the experimental conditions, themethods of analysis, and the decision rules
used in this second simulation study are similar to those used in the first simulation
study based on the Weibull distribution. The values of the parameters of the Gamma
distribution used in this simulation study are presented in Table 8.2.
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Table 8.2 Values of parameters for the gamma distribution in the generation of the simulated
survival and tumor data
y � β(α−δ∗x)

�(α−δ∗x) e
−βt t(α−δ∗x)−1 where x is the dose level and t > ∞

Gamma parameters for survival data generation

Background
survival rates

Dose effects on
death

α β δ

70% None 18 0.148 0

Small 18 0.148 1.01

Large 18 0.148 2.22

Gamma parameters for tumor incidence data generation

Background
survival rates

Tumor
appearance

Dose effects
on death

α β δ

Low (5%) Early None 3 0.00800 0

Small 3 0.00800 0.30

Large 3 0.00800 0.45

Late None 16 0.10028 0

Small 16 0.10028 0.80

Large 16 0.10028 1.20

High (20%) Early None 3 0.01445 0

Small 3 0.01445 0.22

Large 3 0.01445 0.35

Late None 18 0.13500 0

Small 18 0.13500 0.60

Large 18 0.13500 1.08

8.3 Results of Our Simulation Studies

8.3.1 Results of Our First Simulation Study Based
on the Weibull Distribution

Table 8.3 contains the estimated (attained) false-negative rates resulting from our
extensive simulation using theWeibull distribution under the following requirements
for concluding a test result as a statistically significant effect: (1) requiring a statis-
tically significant result in the trend test alone, (2) requiring statistically significant
results in the trend test and in any of the C-L, C-M, and C-H pairwise comparison
tests simultaneously, and (3) requiring statistically significant results in the trend test
and in the C-H pairwise comparison tests simultaneously. The last two columns of
the table show the percent changes of the error rate of (2) over that of (1), and of the
error rate of (3) over that of (1), respectively.

It is noted that the rates in the table obtained from simulation conditions 1, 4, 7, 10,
13, 16, 19, 22, 25, 28, 31, and 34 are actually one minus the estimated false-positive
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rates. In those simulation conditions, it was assumed that there was no dose effort on
tumor rate (the null hypothesis of no positive dose–response or increase in incidence
in a treated group over the control). The estimated false-negative rates are from the
other 24 simulation conditions.

Results of the evaluation of Type I error patterns in the study conducted and
reported in Dinse (1985) show that the Peto trend test without continuity correction
and with the partition of time intervals of the study duration (0–52, 53–78, 79–92,
93–104 weeks, and terminal sacrifice) proposed by NTP yields attained levels of
false-positive rate close to the nominal levels (0.05 and 0.01) used in the test.

The results of our first simulation study show a very interesting pattern in levels
of attained Type I error. The attained levels of Type I error under various simulation
conditions were divided into two groups. The division is made based on the factor
of background rate, either 5% or 20%. The levels of the first group were around
0.005, and they were from the simulated conditions with 20% background rate. The
attained Type I levels of the second groups were around 0.015, and they were from
the simulated conditions with 5% background rate. The results and the pattern of
the attained Type I errors in our first simulation study make sense. For the simulated
conditions with 20% background rate, almost all of the 10,000 generated datasets
(each dataset containing tumor and survival data of four treatment groups of 50 ani-
mals each group) will have tumor rate of equal to or greater than 1% (the definition
of a common tumor) in the control group. The attained levels of Type I error under
various simulated conditions in this group are closed to the nominal level of sig-
nificance recommended in the 2001 draft guidance document for common tumors
after adjusting the effect of multiple testing. The attained Type I errors of the other
group were between the nominal levels of significance of 0.005 (for the trend test
for common tumors) and 0.025 (for the trend test for rare tumors) and not around
0.005. The reason for this phenomenon is that, though the background rate in the
simulated conditions for this group was 5% that is considered as a rate for a common
tumor, some of the 10,000 generated datasets will have tumor rates less than 1% in
the control group. For this subset of the 10,000 datasets, the nominal level of 0.025
was used in the trend test.

It becomes more complicated in the evaluation of the attained Type I errors in
the use of the joint decision rule. It is so because the two tests are not independent
since the pairwise comparison tests used a subset (a half) of the data used in the trend
test. Theoretically, if the trend test and the pairwise comparison test are actually
independent and are tested at 0.005 and 0.01 levels of significance, respectively, then
the nominal level of significance of the joint tests should be 0.005×0.01�0.00005.
Some of the levels of attained Type I error of the joint tests are larger than 0.00005
due to the dependence of the two tests that were applied simultaneously.

As mentioned previously, the evaluation of the patterns of the Type II error is the
main objective of our simulation studies. As was expected, the false-negative rates
resulting from the joint test using the levels of significance recommended for the
separate tests recommended in the 2001 draft guidance document are higher than
those from the procedure recommended in the draft guidance document that requires
only a statistically significant result in the trend test alone. This is due to the fact in
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statistics that the false-positive rate and the false-negative rate run in the opposite
direction and that the use of the joint test with the levels of significance recommended
for the separate tests in the 2001 draft guidance document in the joint test to cut down
the former rate will definitely inflate the latter rate.

The magnitude of the inflation of false-negative rate resulting from the trend test
alone or a pairwise comparison test alone or both the trend test and the pairwise
comparison test between the control and high groups simultaneously (i.e., the joint
test) depends on all the four factors, namely drug effect on mortality, background
tumor rate, time of tumor appearance, and drug effect on tumor incidence considered
in the simulation and also listed in the notes in the bottom of Table 8.1.

Results of this simulation study show that the factor of the effect the dose has
on tumor prevalence rate has the largest impact on the inflation of the false-negative
rate when both the trend test and the pairwise comparison tests between the control
and high groups are required to be statistically significant simultaneously in order to
conclude that the effect is statistically significant. The inflations are most serious in
the situations in which the dose has a large effect on tumor prevalence. The inflation
of false-negative rates resulting from the joint test in this first simulation study based
on the Weibull distribution can be as high as 153.3% (i.e., more than two and half
times) of that when the trend test alone is required to be statistically significant
to consider that the effect is statistically significant. As the results of the second
simulation based on the Gamma distribution discussed in next subsection show, the
inflation of the false-negative rates resulting from the joint test can go much higher
than 153.3%.

The abovefinding is themost alarming result among those fromourfirst simulation
study (and also among those from our second simulation study discussed below).
When the dose of the test new drug has large effects on tumor prevalence, it is a clear
indication that the drug is carcinogenic. Exactly in these most important situations,
the use of the joint test with the levels of significance recommended for the separate
tests in the 2001 draft guidance document causes the most serious inflation of the
false-negative error rate (or the most serious reduction in statistical power to detect
the true carcinogenic effect). The net result of this alarming finding is that the use
of the joint test with improper levels of significance can be up to more than two and
half times likely to fail to detect a true carcinogenic effect than the procedure based
on the result of the trend test alone.

It is true that the results in Table 8.3 also show that for the situations in which
the dose has a small effect on tumor prevalence, the increases of false-negative
rates caused by the joint test using the levels of significance for the separate tests
recommended in the 2001 draft guidance document are not much more (be up to
26%) than those from using the trend test alone. However, this observation does
not imply that the use of the levels of significance recommended in the 2001 draft
guidance document for the separate tests in the joint test is justified. The reason is
that the small group sizes are used as a surrogate of a large population with low tumor
incidence endpoint in the standard carcinogenicity studies. There is almost no power
(or with false-negative rates close to 100%) for a statistical test to detect a true effect
because of the small group size and the low tumor incidence rates and the small
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dose effect on tumor prevalence. In those situations, there will be little room for the
further increase in false-negative rate no matter how many additional requirements
of statistical significance in tests that are put on top of the original trend test.

The extremely large false-negative rates in the above and other subsequent simu-
lated situations caused by the nature (low cancer rates and small group sample sizes)
of a carcinogenicity experiment reinforce the important arguments that it is neces-
sary to assume an overall false-positive rate of about 10% to raise the power (or to
reduce the false-negative rate) of an individual statistical test that uses a very small
multiplicity adjusted level of significance and that it is a big concern about the use
of the joint test with the levels of significance recommended for the separate tests
in the 2001 draft guidance document in the determination of the carcinogenicity of
a new drug. Again, the producer’s risk in a trend test alone is known (0.5% for a
common tumor and 2.5% for a rare tumor in a two-species study) and is small in
relation to the consumer’s risk that can be 100 or 200 times of the level of the known
producer’s risk. The levels of significance recommended in the 2001 draft guidance
for industry document were developed with the consideration of those situations in
which the carcinogenicity experiment has great limitations. Trying to cut down the
producer’s risk (false-positive rate in regulatory review of toxicology studies) beyond
that which safeguards against the huge consumer’s risk (false-negative rates in reg-
ulatory review of toxicology studies) by the use of the joint test with the improper
levels of significance is not consistent with the principles of the statistical science.

We also made a comparison of the false-negative rates (and levels of power) of
the trend test alone between the NTP (Dinse 1985) and our simulation study based
on the Weibull distribution as a quality control check of the results of our study.
Table 8.4 contains the false-negative rates and levels of power (1—false-negative
rate) under the various simulation conditions from the two studies. Although the
sameWeibull distribution models were used to generate the survival and tumor data,
and 10,000 replicates (datasets) were used in both studies, there are some differences
in experimental design as mentioned previously and in used levels of significance in
statistical tests between the two studies. The levels of power of the NTP study are
from the column under “ZNTP and No continuity correction” in Table 3 (page 760)
of Dinse (1985).

Again there are differences in design between NTP and our studies. There were
only three treatment groups (control, low and high) and a total of 150 animals used
in the NTP study, while there were four treatment groups (control, low, medium, and
high) and a total of 200 animals used in our study. In our study, the 0.005 level of
significance was used in the test if the background rate of the generated sample data
of the control group is 1% or greater; otherwise, the 0.025 level of significance was
used. The 0.05 level of significance was used in the NTP study.

Because of the differences in experimental design and level of significanceused, an
exact comparison of the results between the two studies cannot bemade.However, the
comparison of the results between the two studies has assured us that our simulation
study results are very consistent with those from the NTP study. Our study has higher
false-negative rates than those of theNTP study in all the simulation conditions except
the following four (a) no dose effect onmortality, low background rate, tumors appear
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Table 8.4 Comparison of false-negative rates (and levels of power) between NTP and our study
based on the Weibull distribution

Simulation factors and conditions with factors NTP study using 0.05
level of
significance(1) (3)

OB/CDER/FDA study
using either 0.005 or
0.025 level of
significance(1) (2)

Dose effect
on
mortality

Background
tumor rate

Tumor
appearance
time

Dose effect
on tumor
prevalence

Power False
negative

Power False
negative

None Low Early Small 0.46 0.54 0.37 0.63

None Low Late Small 0.43 0.57 0.37 0.63

None High Early Small 0.29 0.71 0.16 0.84

None High Late Small 0.26 0.74 0.16 0.84

Small Low Early Small 0.42 0.58 0.30 0.70

Small Low Late Small 0.39 0.61 0.28 0.72

Small High Early Small 0.25 0.75 0.12 0.88

Small High Late Small 0.23 0.77 0.11 0.89

Large Low Early Small 0.32 0.68 0.16 0.84

Large Low Late Small 0.28 0.72 0.13 0.87

Large High Early Small 0.19 0.81 0.06 0.94

Large High Late Small 0.17 0.83 0.04 0.96

Average 0.31 0.69 0.19 0.81

None Low Early Large 0.86 0.14 0.87 0.13

None Low Late Large 0.83 0.17 0.86 0.14

None High Early Large 0.65 0.35 0.66 0.34

None High Late Large 0.62 0.38 0.62 0.38

Small Low Early Large 0.81 0.19 0.78 0.22

Small Low Late Large 0.76 0.24 0.73 0.27

Small High Early Large 0.60 0.40 0.54 0.46

Small High Late Large 0.55 0.45 0.46 0.54

Large Low Early Large 0.64 0.36 0.46 0.54

Large Low Late Large 0.56 0.44 0.36 0.64

Large High Early Large 0.44 0.56 0.26 0.74

Large High Late Large 0.38 0.62 0.16 0.84

Average 0.64 0.36 0.56 0.44

Notes (1) There are differences in design between NTP and OB/CDER/FDA studies. There were only three
treatment groups (control, low, and high) and a total of 150 animals used in the NTP study, while there were four
treatment groups (control, low, medium, and high) and a total of 200 animals used in the OB/CDER/FDA study.
(2). In the OB/CDER/FDA study, the 0.005 level of significance was used in the test if the background rate of
the generated sample data of the control group is 1% or greater; otherwise, the 0.025 level of significance was
used. The 0.05 level of significance was used in the NTP study. (3). The levels of power of the NTP study are
from the column under “ZNTP and No continuity correction” in Table 3 (page 760) of Dinse (1985)
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early, and large dose effect on tumor prevalence, (b) no dose effect on mortality, low
background rate, tumors appear late, and large dose effect on tumor prevalence, (c) no
dose effect on mortality, high background rate, tumors appear early, and large dose
effect on tumor prevalence, and (d) no dose effect on mortality, high background
rate, tumors appear late, and large dose effect on tumor prevalence. In those four
simulation conditions, the false-negative rates from the NTP study are only a little
bit higher than the corresponding rates from our study. The reason behind the above
observation of the false-negative rates from the two studies is that the NTP study used
the larger 0.05 level of significance in the trend test than that used in our study inwhich
the level of significance 0.005 or 0.025 was used depending on the background rate
of the control group of the generated tumor data. As mentioned previously, holding
other factors that affect the power (or false-negative rate) constant, a larger level of
significance used in a test will produce a lower false-negative rate.

Another observation of the false-negative rates from the NTP and our first studies
is that the reductions in false-negative rate in the NTP study using a much larger
level of significance (0.05) than that used in our study (0.005 or 0.025) are not as
large as they might be expected to be if holding other factors constant. The reason
behind this observation is that the total numbers of animal used (number of animals
per group multiplied by a number of groups) in the two studies are different. The
NTP study used the old study protocol that had only three treatment groups (control,
low, and high) and 150 animals, while our study used the more recent study protocol
that had four treatment groups (control, low, medium, and high) and 200 animals.
The smaller total number of animals used in the NTP study cuts down the effect of
reducing the false-negative rates caused by using a larger level of significance.

We did some additional runs of the simulation and took a closer look at the four
exceptional cases mentioned above in which the false-negative rates from our first
simulation study were equal or slightly lower than those of the NTP study. We found
an explanation for those exceptional cases. All the four exceptional cases involved
no dose effect on mortality, and large dose effect on the tumor prevalence. For all
survival and tumor generated datasets, most of the calculated p values from the trend
tests of 10,000 individual datasets are very small; that is, the trend tests will be
considered as statistically significant regardless of the use of the level of significance
of 0.05 used in the NTP study or of 0.005 or 0.025 used in our study.

8.3.2 Results of Our Second Simulation Study Based
on the Gamma Distribution

The results of our second simulation study based on the Gamma distribution are
presented in Table 8.5. As the estimated false-negative rates of Columns 5, 6, and 8
of this table show, our second simulation study yields consistent results with those
of our first simulation study. Like in our first simulation study based on the Weibull
distribution, the magnitude of the inflation of false-negative rate resulting from the
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use of the joint tests requiring statistical significant results at the levels of significance
recommended in the 2001 draft guidance document for the separate tests depends on
all the four factors considered in the simulation study.

Results of our second simulation study based on the Gamma distribution show
even larger inflations of the false-negative rate than those from the first simulation
study based on the Weibull distribution. The inflations are most serious in the situa-
tions in which the dose has a large effect on tumor prevalence. The inflation can be
as high as 204.5% (i.e., more than three times) of that when the trend test alone is
required to be statistically significant to consider that the effect is statistically signif-
icant. In the first simulation study, most serious inflations also occur when the dose
effect on death is small in addition to the large effect of dose on tumor prevalence.
However, in the second simulation study, the dose effect on death extends from only
small effect in the first simulation study to both none and small effects in this second
study. The most serious inflation, 204.5%, occurs when the dose effect on tumor
prevalence is large and the dose effect on death is none.

8.4 Recommended Decision Rules for Interpretations
of Study Results of Various Types of Submissions
and Various Statistical Tests

In rodent carcinogenicity studies, the extent needed for adjusting for the effect of
multiple tests (controlling of the overall false-positive error) depends on statistical
tests performed (trend tests alone, or control-high pairwise comparison tests alone,
or joint tests of trend and control-high pairwise comparisons simultaneously), and
studies conducted and included in an application submission (two two-year studies
in two species, or a two-year study in only one species, or a combination of one
two-year study in one species and a short- or medium-term study in the other species
under ICH guideline).

Statistical procedures have been proposed for controlling the overall false-positive
rate (Fairweather et al. 1998; Lin and Ali 2006; Lin 2010; Lin et al. 2010, 2016;
Rahman and Lin 2009; Thomson and Lin 2009). In those publications, the statisti-
cal decision rules for controlling the overall false-positive rates associated with trend
tests and pairwise comparisons separately and jointly for interpreting the final results
of carcinogenicity studies in the three types of submissions are discussed. The rec-
ommended decision rules have been developed based on our empirical studies using
historical control data of CD rats and CD mice (strains that are most widely used
in studies of pharmaceuticals), and some strains (models) of transgenic mice, and
on our simulation studies, including those discussed and included in the first part
of this book chapter, to achieve an overall false-positive rate of around 10% for the
various combinations of the statistical tests performed and the three different types
of submissions.
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Table 8.5 Estimated false-negative rates of trend test alone and trend test along with pairwise
comparisons in simulations based on Gamma distribution

Dose
effect on
death

Background
tumor rate

Tumor
appear-
ance

Dose
effect on
tumor
rate

Trend Trend
and high

Trend
and any

Percent
change
T-high

Percent
change
T-any

None 0.0527 Early None 0.9880 0.9970 0.9940 0.9109 0.6073

None 0.0527 Early Small 0.6480 0.7500 0.7390 15.74 14.04

None 0.0527 Early Large 0.1540 0.4690 0.3380 204.5 119.5

None 0.0674 Late None 0.9910 0.9980 0.9970 0.7064 0.6054

None 0.0674 Late Small 0.7390 0.8180 0.8070 10.69 9.202

None 0.0674 Late Large 0.2220 0.4940 0.3820 122.5 72.07

None 0.1937 Early None 0.9970 0.9980 0.9980 0.1003 0.1003

None 0.1937 Early Small 0.7770 0.8340 0.8180 7.336 5.277

None 0.1937 Early Large 0.3400 0.5440 0.4650 60.00 36.76

None 0.1805 Late None 0.9950 0.9960 0.9960 0.1005 0.1005

None 0.1805 Late Small 0.8390 0.8830 0.8760 5.244 4.410

None 0.1805 Late Large 0.2940 0.5220 0.4270 77.55 45.24

Small 0.0527 Early None 0.9830 0.9980 0.9960 1.526 1.322

Small 0.0527 Early Small 0.7180 0.8560 0.8460 19.22 17.83

Small 0.0527 Early Large 0.1900 0.5030 0.3980 164.7 109.5

Small 0.0674 Late None 0.9880 0.9990 0.9980 1.113 1.012

Small 0.0674 Late Small 0.7370 0.8970 0.8860 21.71 20.22

Small 0.0674 Late Large 0.2940 0.6410 0.5810 118.0 97.62

Small 0.1937 Early None 0.9960 0.9970 0.9970 0.1004 0.1004

Small 0.1937 Early Small 0.8370 0.9250 0.9100 10.51 8.722

Small 0.1937 Early Large 0.3640 0.5910 0.5390 62.36 48.08

Small 0.1805 Late None 0.9940 1.000 0.9990 0.6036 0.5030

Small 0.1805 Late Small 0.8780 0.9780 0.9740 11.39 10.93

Small 0.1805 Late Large 0.3840 0.7460 0.6980 94.27 81.77

Large 0.0527 Early None 0.9900 1.000 1.000 1.010 1.010

Large 0.0527 Early Small 0.8130 0.9390 0.9270 15.50 14.02

Large 0.0527 Early Large 0.3760 0.6540 0.6220 73.94 65.43

Large 0.0674 Late None 0.9910 1.000 1.000 0.9082 0.9082

Large 0.0674 Late Small 0.8580 0.9850 0.9740 14.80 13.52

Large 0.0674 Late Large 0.5810 0.9450 0.9220 62.65 58.69

Large 0.1937 Early None 0.9980 1.000 1.000 0.2004 0.2004

Large 0.1937 Early Small 0.8850 0.9910 0.9850 11.98 11.30

(continued)
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Table 8.5 (continued)

Dose
effect on
death

Background
tumor rate

Tumor
appear-
ance

Dose
effect on
tumor
rate

Trend Trend
and high

Trend
and any

Percent
change
T-high

Percent
change
T-any

Large 0.1937 Early Large 0.5640 0.8710 0.8320 54.43 47.52

Large 0.1805 Late None 0.9990 1.000 1.000 0.1001 0.1001

Large 0.1805 Late Small 0.9270 1.000 1.000 7.875 7.875

Large 0.1805 Late Large 0.6270 0.9970 0.9820 59.01 56.62

(Note of Table 8.5): The estimated false-negative rates under simulation numbers 1, 4, 7, 10, 13,
16, 19, 22, 25, 28, 31, and 34 are actually one minus the estimated false-positive rates because the
assumption of no dose effect on tumor prevalence rate is used in those simulations

As mentioned previously, it is well known that, for a multi-group study (e.g.,
three doses and control), trend tests are more powerful than pairwise comparisons
between the control and individual treated groups. Therefore, tests for a positive trend
instead of pairwise comparison tests for a positive increase between control and high
dose groups should be the primary tests in the evaluation of drug-related increases
in tumor rate. However, also as mentioned previously, in order to further reduce the
false-positive rate, some practicing pharmacologists/toxicologists have used the joint
test with levels of significance recommended for the separate tests in the 2001 draft
guidance document in interpreting a statistical significance of a test of drug effect
in the development of an individual tumor types in a given tissue of tested animals.
In the joint test, the drug effect on the development of a given tumor in a given
tissue is considered as a statistical significance only if both the trend test and the C-H
pairwise comparison of the tumor incidences are both simultaneously significant at
the above-mentioned levels of significance for the separate tests for trend test alone
and the separate C-H pairwise comparison test alone. We have recommended a new
set of more appropriate levels of significance in terms of the balance between the
false-positive rate and the false-negative rate for the joint tests for the three types of
IND and NDA submissions.

In terms of studies conducted, most new drug application submissions consist of
two two-year (chronic) carcinogenicity studies in two species. However, there are
two situations in which a submission includes only a chronic carcinogenicity study
conducted in one species.

In the first of the two above-mentioned situations, drug sponsors follow the Inter-
national Conference on Harmonization (ICH) (1988) guideline S1B Testing for Car-
cinogenicity of Pharmaceuticals (1998) in the carcinogenicity evaluations of their
new drugs. This ICH guideline outlines experimental approaches to the evaluation of
carcinogenic potential that may obviate the need for the routine use of two long-term
rodent carcinogenicity studies and allows for the alternative approach of conducting
one long-term rodent carcinogenicity study together with a short- or medium-term
rodent test. The short- or medium-term rodent test systems include such studies
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as initiation-promotion in rodents, transgenic rodents, or newborn rodents, which
provide rapid observations of carcinogenic endpoints in vivo. The special issue of
Toxicologic Pathology (2001) published a large collection of papers on those short-
or medium-term rodent test systems. In most submissions under the ICH guideline,
drug sponsors conduct 26-week studies in transgenic mice as the short- or medium-
term rodent test systems in the other species. Different strains (models) of transgenic
mice have been used in the alternative carcinogenicity studies of pharmaceuticals.
P53±, Tg.AC, TgrasH2, and XPA−/−are the models having been used by drug
companies.

The FDA 2001 draft guidance for industry document on chronic rodent carcino-
genicity studies of pharmaceuticals does not cover the discussions of designs, and
methods of data analysis and interpretation of study results of transgenic mouse
studies. However, except the part of interpretation of study results, the recommended
methods of statistical analysis for the type of submissions including two chronic stud-
ies in rats and mice are still applicable to analyze the data from transgenic mouse
studies excluding those studies using Tg.AC mice that have been rarely used nowa-
days. It becomes necessary only to develop decision rules for the interpretation of
results for this type of submissions.

The second situation includes application submissions of post-marketing commit-
ment studies of approved drugs or application submissions of studies of new drugs
under which carcinogenicity studies of the drug products in one species are usu-
ally considered sufficient based on pharmacological and toxicological justifications.
FDA does not have clear regulations on this issue of situations in which this type
of submission is acceptable. Drug sponsors are asked to discuss the issue and get
agreements on the issue with the Agency in advance. As in the type of submissions
under ICH guideline, the recommended methods of statistical analysis for the type
of submissions with two chronic studies in rats and mice are still applicable to ana-
lyze the study data of this third type of submissions. However, it also just becomes
necessary only to develop decision rules for the interpretation of results for this type
of submissions.

8.4.1 Decision Rules for the Separate and Joint Tests
in Submissions with Two Two-Year Studies in Two
Species

In the past, CDER/FDA statistical reviewers of carcinogenicity studies used the
statistical decision rule described in Haseman (1983, 1984a) in their tests for signif-
icance of positive trends in tumor incidence of a given tumor type. The decision rule
was originally developed for pairwise comparison tests in tumor incidence between
the control and the high dose groups and was derived from results of carcinogenic-
ity studies of environmental compounds conducted at National Toxicology Program
(NTP). Strains of Fischer 344 rats and B6C3F1 mice were used in the NTP studies.
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Like most studies of pharmaceuticals, four treatment/sex groups with 50 animals
in each group were used in those NTP studies. All of those NTP studies lasted for
2 years. The decision rule tests the significant differences in tumor incidence of a
given tumor type between the control and the high dose groups at 0.05 significance
level for rare tumors and at 0.01 significance level for common tumors. Again, a
tumor type with a background rate of 1% or less is classified as rare by Haseman;
more frequent tumors are classified as common. Haseman’s original study and a sec-
ond study using more recent data with higher background tumor rates show that the
use of this decision rule in the control-high pairwise comparison tests would result in
an overall false-positive rate between 7 and 8% based on earlier studies, and between
10 and 11% based on more recent studies, respectively (Haseman 1983, 1984a, b).

Concerns were raised that applying the levels of significance described by Hase-
man (1983) to analyses of positive trend tests would lead to an excessive overall
false-positive error rate since data from all treatment groups are used in the tests
and considerably lower background tumor rates in carcinogenicity studies of phar-
maceutical compounds than those NTP studies of environmental compounds can
yield a wrongly significant result. Results from studies conducted within and outside
CDER/FDA show that these concerns were valid. Based on studies conducted by us
and by NTP, the overall false-positive error resulting from interpreting trend tests
by the use of the above decision rules is about twice as large as that associated with
control-high pairwise comparison tests (Lin and Rahman 1998).

Based on studies using real historical control data of CD mice and CD rats
from Charles River Laboratories and on simulation studies conducted internally in
CDER/FDA and in collaboration with NTP, new statistical decision rules for tests
for a positive trend alone in tumor incidence of a tumor type in this type of sub-
missions have been developed. These new decision rules test the positive trends in
incidence rates in rare and common tumors at 0.025 and 0.005 levels of significance,
respectively. The new decision rules achieve an overall false-positive rate of around
10% in a standard submission with two two-year studies in two species (Lin 1995;
Lin and Rahman 1998; Rahman and Lin 2008). The 10% overall false-positive rate
is considered by CDER/FDA as appropriate in a regulatory setting of reviewing
carcinogenicity studies of new drugs.

As mentioned above, statistical literature emphasizes methods for testing for pos-
itive trends alone in tumor incidence rate. There are, as mentioned previously, situa-
tions, however, in which pairwise comparisons alone between control and individual
treated groups may be more appropriate than the trend tests. Under those situations,
the decision rules described in Haseman (1983) should be used in interpreting the
results of the control-high pairwise comparison tests. The Haseman decision rules
recommend that the control-high pairwise comparison alone be tested at 0.01 and
0.05 significance levels common and rare tumors, respectively.

As also mentioned above, the joint test often used by pharmacolo-
gists/toxicologists in the determination of a statistical significance of a drug effect
on the development of an individual tumor type in a given tissue requires both the
trend test and the C-H pairwise comparison of the incidences of the tumor type to
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be both simultaneously significant at the levels of significance for the separate tests
recommended in the 2001 draft guidance document.

Because the nature of the carcinogenicity studies included in this type of submis-
sions, i.e., with the small group sizes (50–70 animals/group) used in regular chronic
carcinogenicity studies as a surrogate of a big population of mice or rats, and with
low tumor incidence rate endpoints, the false-negative rate is already inherently big.
Therefore, it is necessary to assume larger overall false-positive rates, such as 0.1
(10%), in a carcinogenicity study than those used in other types of drug development
studies, such as clinical trials, to reduce the large false-negative rate (or to increase the
low power of detecting a true effect) inherent in the nature of the studies mentioned
above.

Based on the important results of our new simulation studies discussed in the first
part this chapter, and the results of our previously published empirical studies, the
following recommended decision rules for submissions with two two-year studies
in two species have been developed for the joint test using both the trend test and
the C-H pairwise comparison simultaneously in the interpretation of a statistically
significant result of a drug effect on the development of an individual tumor type.
It is recommended that the significance levels 0.005 and 0.025 in the trend test
and 0.05 and 0.10 in the C-H pairwise comparison for common and rare tumors,
respectively, be used in the joint test in each of the two simultaneous tests in this type
of submissions. The use of the newly recommended decision rules will still result
in about 10% overall false-positive rate in a submission with two chronic studies in
two species.

The newly developed set of decision rules are to be used as alternative rules for
the joint test in the determination of a statistically significant effect of a drug on the
development of a given tumor type. The development of this newly recommended
alternative set of decision rules for the joint test should not be wrongly construed as
the invalidation of the previously developed and recommended decision rules for the
trend tests alone and for the C-H pairwise comparisons alone.

The new decision rules for the joint test are designed to produce about the same
levels of false-positive rate in a joint test as those produced by a trend test alone as
shown in the sampled plot in Fig. 8.3. Therefore, the use of the newly recommended
decision rules in the joint tests in a standard submission with two chronic studies in
mice and rats will also result in an overall false-positive rate about 10% based on the
results of Lin and Rahman (1998) and Rahman and Lin (2008).

People may have the opinion that the 0.1 level of significance we have recom-
mended for rare tumors for the C-H pairwise comparison component of the joint
test is too excessive. We have taken a close look into this issue by evaluating the
false-positive rates in the small range between 0.0 and 0.01 of background tumor
rates where our recommended level of significance of 0.1 for rare tumors in the
C-H pairwise comparison component of the joint test produced much smaller false-
positive rates than those from the trend test alone. Figure 8.4 shows the comparison
of attained false-positive rates of the joint test using the newly recommended levels
of significance with those of the trend test alone using the levels of significance rec-
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Fig. 8.3 Plot of attained false-positive rates of the trend test alone and the joint test using test levels
of 0.1 for rare tumors and 0.05 for common tumors for the C-H pairwise comparison component

Fig. 8.4 Plot of attained false-positive rates of the trend test alone and the joint test using test levels
of 0.1 for rare tumors and 0.05 for common tumors

ommended in the 2001 guidance for industry document for background tumor rates
between 0.0 and 0.1.

After looking at Fig. 8.4, we feel that the recommended 0.1 level of significance
for rare tumors for the C-H pairwise component of the joint test is still not large
enough to reduce the large differences in false-positive rate between the joint test
and the trend test alone within the (0.0, 0.01) range of background tumor rates. We
have tried larger levels of significance of 0.15, 0.2, and 0.0.25 for rare tumors for
the C-H component of the joint test. We have obtained the identical plots of attained
false-positive rates of the joint test using those larger levels of significance for the C-
H comparison component and of the trend test alone in the background rates between
0.0 and 0.01 as shown in Fig. 8.5. The reasons for the identical plots for the three
levels of significance 0.15, 0.2, and 0.25 for rare tumors for the C-H component of
the joint test are that the estimated variances of the distributions of the test statistics



8 Expanded Statistical Decision Rules for Interpretations … 175

Fig. 8.5 Plot of attained false-positive rates of the trend test alone and the joint test using test levels
of 0.15 or 0.2 or 0.25 for rare tumors and 0.05 for common tumors

become so small with those very low background tumor rates and that the p values
of the C-H pairwise component and of the test for positive trend based on those
distributions are smaller than 0.15 and 0.025, respectively.

The reason for the small p values of the Peto prevalence asymptotic trend test
discussed above can be easily seen by looking at the normal approximation test
statistic Z�T/[V(T)]1/2 where T�∑

i Di (Oi –Ei), V(T)�∑
i
∑

j Di Dj Vij,Di is
the dose level of the ith group, Oi �∑

k Oik, Ei �∑
k Eik, Vij �∑

k Vijk, Vijk �αk

Pik(δ ij –Pjk), αk �O.k(Rk −O.k)/(Rk –1), δij �1 if i� j, and�0, otherwise, Eik �
O.k Pik, O.k �∑

iOik, Rk is the number of animals that have not died of the tumor
type of interest, but come to autopsy in time interval k, Pik is the proportion of Rk

in group I, Oik is the observed number of autopsied animals in group i and interval
k found to have the incidental tumor type, and O.k �∑

iOik. For definitions of the
above mathematical notations and more detailed discussions on the test method,
readers are referred to the FDA 2001 draft guidance for industry document (U.S.
Department of Health and Human Services 2001). When the background rates under
null hypothesis of no drug effect are low (less than 0.01), all the estimated variances,
Vijk, Vij, and V(T) will be small, and the calculated Z statistics will be large, and the
p-values will be small.

It is noted that the levels of attained false-positive rates of the test for positive
response alone in Figs. 8.4 and 8.5 are not at the same levels as those in Fig. 8.3 in the
range of 0.0–0.01 of background rate. The attained false-positive rates of the test for
positive response alone in the range of background rates are higher in Fig. 8.3 than
those in Figs. 8.4 and 8.5 for the background rates between 0.0 and 0.01. Figures8.4
and 8.5 used data generated from a different simulation study using an exact instead
of the asymptotic prevalence method in both the separate test for positive response
alone and the joint test for the positive response and for the C-H pairwise increase
comparison in the computations of attained false-positive rates. The exact method
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for the Peto prevalence trend test described in Mehta et al. (1988) was used along
with the Fisher exact test in this different simulation study.

The higher attained false-positive rates between 0.0 and 0.01 background tumor
rates in Fig. 8.3 than those in Figs. 8.4 and 8.5 are related to the issue of under-
estimation of p values of the test for positive response based on asymptotic normal
approximation used in calculations of the attained false-positive rates of Fig. 8.3. The
generated tumor-bearing animals of the four treatment groups based on those small
background rates of only 50 animals each will be all small under the null hypothesis
of no carcinogenic effect of the drug. It is well known (Ali 1990) that p values of
the Peto asymptotic test for positive response will be underestimated when the total
tumor-bearing animals across all treatment groups are small. Under those situations,
it is recommended to use exact permutation tests (Gart et al. 1986; U.S. Depart-
ment of Health and Human Services 2001; Rahman et al. 2016; Lin et al. 2016) to
replace the asymptotic tests to correct the problem. But as mentioned in Sect. 8.2,
the age-adjusted prevalence asymptotic method described in Peto et al. (1980) was
used in our simulations discussed in that section. Exact permutation tests will result
in larger p values than those from the asymptotic tests, and, therefore, yield lower
false-positive rates as demonstrated in Figs. 8.4 and 8.5 based on the generated data
from the different simulation and on the use of an exact method of the Peto preva-
lence test. The conservative exact permutation tests will, in turn, result in increasing
false-negative rates. We feel that the recommended 0.1 level of significance for rare
tumors for the C-H pairwise comparison component of the joint test is justified even
when exact permutation tests for positive response are used in the comparisons of
attained false-positive rates of the joint test and the test for positive response alone
in our simulation studies.

We have also evaluated the performance, in terms of the control of false-negative
rates, of the newly recommended levels of significance for the joint test based on
datasets generated from the Weibull distributions described in Sect. 8.2.1. The esti-
mated false-negative rates from the evaluations are presented in Table 8.6. This table
contains also estimated false-negative rates (Columns 7 and 8, 10 and 11) when
two other pairs of levels of significance (0.05, 0.05) and (0.05, 0.01) in addition to
the newly recommended pair of levels of (0.1, 0.05) were used for the control-high
pairwise comparisons (Columns 6 and 9) in the joint tests.

Rates of Columns 5 and 8 of Table 8.6 are slightly different from those of Columns
6 and 7 of Table 8.3 because only 2,000 replications were used this evaluation while
10,000 replications were used in the evaluation described in Sects. 8.2.1 and 8.3.1.

The rates of Column 5 (basing on the trend test alone) and Columns 6 and 9
(basing on the joint test using the newly recommended levels of significance) and
Columns 8 and 11 (basing on the joint test with the levels of significance for the
separate tests recommended in the 2001 draft guidance document) show that the use
of the joint test with the newly recommended levels of significance greatly reduces
the false-negative rates to about the levels of using the trend test alone in all but 1
of the 36 simulation conditions conducted. In the simulation condition (#18), the
reductions in inflation in false-positive rate were still significantly reduced by two
thirds (from 144.6% (or 153.3% in Table 8.3) to 58.70%).
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The results in Table 8.6 show that, in this type of submissions, the use of the newly
recommended levels of significance for the joint test in the data generated from the
Weibull distribution has greatly reduced the false-negative rates when compared to
those presented in Table 8.3 (and also in Table 8.5 based on data generated from the
Gammadistribution) resulting from theuse of the levels of significance recommended
for the separate tests in the 2001 draft guidance in the joint test. As mentioned
above, the false-negative rates from the using the newly recommended levels of
significance in the joint test have been reduced to about the levels of those using
the levels of significance recommended in the 2001 guidance for industry document
in the trend test alone. Due to the space limitation, the newly recommended levels
of significance for the joint test were not evaluated on the data generated from the
Gamma distribution described in Sect. 8.2.2. However, we expect to see the similar
results of great reductions in the inflation of false-negative rates as in those the above
evaluation using data generated from the Weibull distribution.

8.4.2 Decision Rules for the Separate and Joint Tests
in Submissions Under ICH Guideline
with a Combination of One Two-Year Study in Rats
and a Transgenic Mouse Study

False positives therefore arise primarily from the two-year rodent carcinogenicity
study in submissions under the ICH guideline because of more common tumors
among a large number of tumor/organ combinations tested than those in the trans-
genic mouse study or other short- or medium-term studies. In the transgenic mouse
study or other short- or medium-term studies that use much small number of ani-
mals, the false-positive rate will not be inflated even when multiple statistical tests
on different tumors are performed because tumor background rates are very low, and
the number of tumor types developed in the tested animals is small. In studies using
Tg.AC transgenic mice, only data of incidence rates and weekly numbers of skin
papillomas are used to test the carcinogenic effect of the drug. In those studies, a
positive result is almost surely a true instead of a false-positive. This means that if
each of the individual tests is performed at a given level of significance (e.g. 0.05),
the overall false-positive rate will be still close to the given level. Therefore, there is
no or little need to adjust the effect of multiple tests.

Based on a large number of empirical and simulation studies conducted within
CDER/FDA mentioned in the previous section, the following decision rules are
recommended for controlling the overall false-positive rate of submissions under the
ICH guideline.

For tests for positive trend alone, it is recommended that common and rare tumors
are tested at 0.005 and 0.025 significance levels, respectively, in the two-year study
and at 0.05 and 0.05 significance levels, respectively, in the alternative study.
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For control-high pairwise comparison alone, it is recommended that common and
rare tumors are tested at 0.01 and 0.05 significance levels, respectively, in the two-
year study and at 0.05 and 0.05 significance levels, respectively, in the alternative
study.

For tests for positive trend and control-high pairwise comparison jointly, it is rec-
ommended that common and rare tumors are tested at 0.005 and 0.025 significance
levels, respectively, in trend test, and at 0.05 and 0.10 significance levels, respec-
tively, in control-high pairwise comparison in the two-year study and at 0.05 and
0.05 significance levels, respectively, in both trend test and control-high pairwise
comparison in the alternative study for both common and rare tumors.

The use of the above decision rules in a submission under the ICH guideline will
result in an overall false-positive rate about 5% in the two-year study and another
overall false-positive rate also around 5% for the short- or medium-term studies
in the tests for trend and control-high group pairwise comparisons, separately or
jointly. This will result in an overall false-positive rate of around 10% for the entire
submission.

8.4.3 Decision Rules for the Separate and Joint Tests
in Submissions with Only One Two-Year Study in One
Species

For tests for trend and control-high group comparisons, separately or jointly, the
overall false-positive rate is a function of the number of tests performed, background
tumor rate, group sizes, and variability of the population data. Holding other fac-
tors unchanged, the overall false rate increases, in general, as the number of tests
performed increases. The number of tests performed in a submission with only one
two-year study in one species is about half of that of a submission with two two-year
studies in two species. Higher levels of significance should be used in themultiplicity
adjustment in the submission with only one two-year study in one species.

Also based on a large number of empirical and simulation studies conducted
within CDER/FDA mentioned in the previous section, the following decision rules
are recommended for the separate and joint tests in controlling the overall false-
positive rate in submissions with only one two-year study in one species justified
under the special regulatory conditions mentioned previously.

For tests for positive trend alone, it is recommended that common and rare tumors
are tested at 0.01 and 0.05 significance levels, respectively.

For control-high pairwise comparison alone, it is recommended that common and
rare tumors are tested at 0.025 and 0.10 significance levels, respectively.

For tests for positive trend and control-high pairwise comparison jointly (i.e., the
joint test), it is recommended that common and rare tumors are tested at 0.01 and
0.05 significance levels, respectively, in trend test, and at 0.05 and 0.10 significance
levels, respectively, in control-high pairwise comparison.
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Table 8.7 Recommended decision rules (levels of significance) for controlling the overall false-
positive rates for various statistical tests performed and for various types of submissions

Tests for positive
trend alone

Control-high pairwise
comparison alone

Tests for positive
trend and control-high
pairwise comparison
jointly

Standard two-year
studies with two
species and two sexes

Common and rare
tumors are tested at
0.005 and 0.025
significance levels,
respectively

Common and rare
tumors are tested at
0.01 and 0.05
significance levels,
respectively

Common and rare
tumors are tested at
0.005 and 0.025
significance levels,
respectively, in trend
test, and at 0.05 and
0.10 significance
levels, respectively, in
control-high pairwise
comparison

Alternative ICH
studies (one two-year
study in one species
and one short- or
medium-term
alternative study, two
sexes)

Common and rare
tumors are tested at
0.005 and 0.025
significance levels,
respectively, in the
two-year study, and at
0.05 and 0.05
significance levels,
respectively, in the
alternative study

Common and rare
tumors are tested at
0.01 and 0.05
significance levels,
respectively, in the
two-year study, and at
0.05 and 0.05
significance levels,
respectively, in the
alternative study

Common and rare
tumors are tested at
0.005 and 0.025
significance levels,
respectively, in trend
test, and at 0.05 and
0.10 significance
levels, respectively, in
control-high pairwise
comparison in the
two-year study, and at
0.05 and 0.05
significance levels,
respectively, in both
trend test and
control-high pairwise
comparison in the
alternative study

Standard two-year
studies with one
species only and two
sexes

Common and rare
tumors are tested at
0.01 and 0.05
significance levels,
respectively

Common and rare
tumors are tested at
0.025 and 0.10
significance levels,
respectively

Common and rare
tumors are tested at
0.01 and 0.05
significance levels,
respectively, in trend
test, and at 0.05 and
0.10 significance
levels, respectively, in
control-high pairwise
comparison

The use of the above decision rules in a submission with only one two-year
study will result in an overall false-positive rate about 10% in the tests for trend and
control-high group pairwise comparisons, separately or jointly.
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The recommended decision rules (levels of significance) for controlling the overall
false-positive rates for various statistical tests performed and types of submissions
discussed above are summarized in Table 8.7.
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Chapter 9
A Prematurely Halted, Randomized,
Controlled Clinical Trial of Alendronate
Treatment in Patients with Gaucher
Disease

Shumei S. Sun

9.1 Introduction

Gaucher disease is an autosomal recessive disease caused by severely decreased
intracellular hydrolysis of glucosylceramides and other glucosphingolipids. Nearly
all cases are due to a heritable deficiency of lysosomal glucocerebrosidase (GC) that
causes massive accumulation of unhydrolyzed glucosylceramides and other glu-
cosphingolipids within macrophages of the liver, spleen, bone marrow, and other
tissues (Beutler and Grabowski 2001). Most symptomatic patients with GC defi-
ciency are treated with periodic injections of recombinant GC (Barton et al. 1991).
This therapy results in gratifying decreases in glucosylceramide storage in the liver
and spleen, but signs and symptoms relating to bone disease, including bone pain
and osteopenia, have either required years of therapy for improvement, or have been
completely refractory to enzyme therapy (Elstein et al. 1996; Rosenthal et al. 1995).

The purpose of this investigation was to determine whether the osteopenia that is
seen in most adults with Gaucher disease can be corrected by bone anti-resorptive
adjunctive therapy in patients who are receiving enzyme therapy (Harinck et al.
1984; Ciana et al. 1997; Ostiere et al. 1991). We initiated a two-year, double-blind,
two-arm, placebo-controlled trial of alendronate, at a dose of 40 mg/day, in adults
with Gaucher disease who had been treated for at least six months with GC enzyme
therapy. Therapeutic outcome was monitored by dual-energy x-ray absorptiometry
(DXA) measurements of bone mineral density (BMD) and bone mineral content
(BMC) at the lumbar spine and whole body DXA scans at entry into the study and
at six-month intervals until the end of the 24-month study.
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Table 9.1 Number of examinations by number of patients

Number of
examinations

Number of patients

Alendronate Placebo Total

Lumbar spine scan 16 15 31

1 6 7 13

2 5 5 10

3 2 1 3

4 0 1 1

5 3 1 4

Whole body scan 15 15 30

1 5 7 12

2 5 5 10

3 2 1 3

4 1 1 2

5 2 1 3

9.2 Summary Statistics

Data were collected on 31 patients. The study was halted prematurely according to
widely accepted stopping rules (O’Brien and Fleming 1979) because of the develop-
ment of significant positive differences between group assignments. When the group
randomization code was broken, it was found that 16 patients had been randomized
to alendronate and 15 to placebo. Only four patients completed all of the study exam-
inations with measurements at baseline, 6, 12, 18, and 24 months. Among the 27
patients who did not finish the study, 13 had one DXA measurement at the lumbar
spine and 12 had one whole body DXA scan. Ten of the patients had two DXA
measurements at the lumbar spine and two had whole body DXA scans. It was found
that one-half of these ten patients had been assigned to alendronate and one-half to
placebo. Table 9.1 presents the number of patients by number of measurements in
the alendronate and placebo groups, separately and together.

9.3 Randomization at Baseline

To test the randomization of patients at entry into the trial, baseline means and
standard deviations of sex, age, lumbar spine BMC and BMD, total body BMC and
BMD, total body fat mass, and total body lean mass were calculated in each of the
two groups. A two-sample t test was used to determine whether there were significant
differences in these variables between the groups at baseline. None of the differences
noted between the randomly assigned groups were significant at entry into the study
as shown in Table 9.2.
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Table 9.2 Baseline mean bone mineral density, body fat mass, body lean mass, and percent fat
mass in alendronate group and placebo group

Alendronate Placebo P value

N Mean ± Std N Mean ± Std

Lumbar spine scan

Age (years) 16 39.62 ± 7.60 15 34.85 ± 8.99 0.1203

BMC_TOT (g) 16 58.44 ± 15.85 15 61.37 ± 13.43 0.5849

BMD_TOT (g/cm2) 16 0.946 ± 0.145 15 0.955 ± 0.140 0.8539

Whole body scan

Age (years) 15 39.27 ± 7.73 15 34.85 ± 8.99 0.1598

BMC_TOT (g) 15 2379.0 ±
391.43

15 2516.5 ± 549.99 0.4366

BMD_TOT (g/cm2) 15 1.137 ± 0.133 15 1.171 ± 0.148 0.5165

Total body fat mass (g) 15 18032 ± 3672 15 19251 ± 9723 0.6551

Total body lean mass (g) 15 49717 ± 12933 15 49407 ± 10519 0.9431

(%) Fat 15 0.2609 ±
0.0525

15 0.2590 ± 0.0860 0.9419

9.3.1 Statistical Analyses

ForBMCandBMDof the lumbar spine, total bodyBMC (BMC_TOT) and total body
BMD (BMD_TOT), total body fat mass, and total body lean mass, the differences
between baseline values at entry into the study and measurements six months later
were calculated for each patient. We used paired t tests to determine whether the
differences inmeasurements of these parameters differed fromzero, andweused two-
sample t tests to determine whether measurements of these parameters at six months
after entry into the study, when compared to baseline values, showed significant
differences in the alendronate and placebo groups. Table 9.3 presents these results.

Ten patients in the alendronate group and eight patients in the placebo group had
more than one measurement (including baseline measurements), and five patients in
alendronate group and three in the placebo group had more than two measurements
(including baseline). Due to the small sample sizes, a longitudinal model was not
applied to the dataset. Instead, we calculated the mean of the measured variables
between the second visit and the most recent visit and the differences between this
mean and baseline measurements for each individual. A paired t test was used to
check whether the resulting differences were qualitatively different from zero, and a
two-sample t test was applied to determinewhether bone density improved in patients
assigned to alendronate compared to those assigned to placebo. The results of this
analysis are shown in Table 9.4.

In a third statistical approach, linear regressions were run to obtain the change in
slopes of the outcome parameters for patients who hadmore than one visit (Wenstrup
et al. 2004). The slopes indicate the pattern of change over time in the measured
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Table 9.3 Differences between baseline and six-month examination values for lumbar and whole
body DXA scans in alendronate and placebo groups

Alendronate (P-value) Placebo (P-value) 2-Sample

N�10 N�8 P value

Lumbar spine scan

BMC_TOT (g) 2.5181 ±
2.4415++(0.0098)

−0.4580 ±
2.2013(0.5747)

0.0164*

BMD_TOT (g/cm2) 0.0313 ±
0.0240++(0.0026))

0.0012 ± 0.0282(0.9106) 0.0263*

Whole body scan

BMC_TOT (g) 12.85 ± 45.54(0.3956) 15.58 ± 59.17(0.4805) 0.9129

BMD_TOT (g/cm2) 0.0034 ± 0.0138(0.4510) 0.0109 ± 0.0208(0.1819) 0.3738

Total body fat mass (g) −0.759 ± 1997(0.9991) 307.51 ± 1832(0.6494) 0.7402

Total body lean mass
(g)

−16.82 ± 742.0(0.9444) 668.91 ± 913.5(0.0771) 0.0975

(%) Fat −0.002 ± 0.0227(0.8093) 0.0022 ± 0.0192(0.7534) 0.6965

+0.01<P value<0.05, significantly different from 0 at 0.05 level
++P value<0.01, significantly different from 0 at 0.01 level
*0.01<P value<0.05, significantly different between having alendronate and placebo at 0.05 level
**P value<0.01, significantly different between having alendronate and placebo at 0.01 level

Table 9.4 Differences between baseline and the mean of the rest of the examinations (mean of
rest—baseline) for alendronate and placebo groups

Alendronate (P-value) Placebo (P-value) 2-Sample

N�10 N�8 P value

Lumbar spine scan

BMC_TOT (g) 3.3018 ±
2.3514++(0.0016)

−0.7130 ±
1.7579(0.2892)

0.0010**

BMD_TOT (g/cm2) 0.0380 ±
0.0244++(0.0008)

0.0026 ± 0.0291(0.8067) 0.0126*

Whole body scan

BMC_TOT (g) 9.49 ± 50.93(0.5701) 13.86 ± 54.58(0.4958) 0.8630

BMD_TOT (g/cm2) 0.0070 ± 0.0125(0.1093) 0.0114 ± 0.0185(0.1255) 0.5616

Total body fat mass (g) 145.9 ± 2259(0.8427) 274.7 ± 1832(0.6843) 0.8980

Total body lean mass
(g)

−118.8 ± 358.9(0.7482) 586.1 ± 867.5(0.0976) 0.1670

(%) Fat 0.0008 ± 0.0245(0.9215) 0.0023 ± 0.0197(0.7521) 0.7775

+0.01<P value<0.05, significantly different from 0 at 0.05 level
++P value<0.01, significantly different from 0 at 0.01 level
*0.01<P value<0.05, significantly different between having alendronate and placebo at 0.05 level
**P value<0.01, significantly different between having alendronate and placebo at 0.01 level
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Table 9.5 Differences in mean slopes of bonemineral content and bonemineral density, total body
fat mass, total body lean mass and percent body fat between alendronate and placebo groups per
month

Alendronate (P-value) Placebo (P-value) 2-Sample

N�10 N�8 P value

Lumbar spine scan

BMC_TOT (g/mo) 3.641 ± 2.874++(0.0031) −1.596 ± 3.124(0.1918) 0.0020**

BMD_TOT (g/cm2/mo) 0.0415 ±
0.0301++(0.0018)

−0.005 ± 0.0379(0.6977) 0.0097**

Whole body scan

BMC_TOT (g/mo) 11.94 ± 63.40(0.0597) 6.36 ± 77.15(0.1941) 0.8682

BMD_TOT
(g/cm2/mo)

0.0132 ± 0.0194(0.5663) 0.0173 ± 0.0341(0.8224) 0.7496

Total body fat mass
(g/mo) mo)6mo(g/6mo
momo mo mo) (g/6mo)
mo (g/6mo (g/mo) mo)

−491.3 ± 3531(0.6703) −67.8 ± 2329(0.9367) 0.7745

Total body lean mass
(g/mo) (g/mo (g/6mo
mo)

−170.2 ± 1035(0.6155) 964.1 ± 1830(0.1799) 0.1158

(%) Fat (%/mo) −0.008 ± 0.040(0.5259) −0.001 ± 0.026(0.8784) 0.6806

+0.01<P value<0.05, significantly different from 0 at 0.05 level
++P value<0.01, significantly different from 0 at 0.01 level
*0.01<P value<0.05, significantly different between having alendronate and placebo at 0.05 level
**P value <0.01, significantly different between having alendronate and placebo at 0.01 level.

parameters. Table 9.5 shows the two-sample t test results of the mean slopes for the
alendronate and placebo groups.

9.4 Results

As shown in Table 9.3, lumbar spine BMC and BMD increased significantly in
the alendronate group after the first six months of treatment compared to base-
line. The mean increases and standard deviations were 2.5181 ± 2.4415 grams and
0.0313 ± 0.0240 grams per centimeter squared, for BMC_TOT and BMD_TOT,
respectively. In the placebo group, however, BMC_TOT decreased and BMD_TOT
increased slightly after the first six months on placebo compared to baseline. The
mean changes and standard deviations were −0.4580 ± 2.2013 grams and 0.0012 ±
0.0282 grams per centimeter squared for BMC_TOT and BMD_TOT, respectively.
Compared to the placebo group, the alendronate group had significantly greater
increases in BMC_TOT and BMD_TOT after six months of treatment. In terms of
the whole body DXA scan, BMC_TOT, BMD_TOT, total body fat mass, and total
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body lean mass did not show any significant differences between the alendronate
and placebo groups. However, patients assigned to placebo had a greater total body
fat mass and greater total body lean mass compared to the patients assigned to alen-
dronate, but the percent body fat did not differ significantly between the two groups.

Table 9.4 shows results similar to those inTable 9.3 butwith amore salient increase
in mean lumbar spine BMC_TOT and BMD_TOT after six months of treatment with
alendronate compared to baseline. The mean change in BMC_TOT was 3.3018 ±
2.3514 grams after six months on alendronate versus −0.72130 ± 1.7579 grams
after six months on placebo. Changes of BMD_TOT over six months were 0.0380±
0.0244 grams per centimeter squared in the alendronate group and 0.0026 ± 0.0291
gramsper centimeter squared in the placebogroup. The increases inmeanBMC_TOT
andBMD_TOT frombaseline during treatmentwere significantly greater for patients
assigned to alendronate than for patients assigned to placebo.

Table 9.5 shows the pattern of change over time. Mean lumbar spine BMC_TOT
and BMD_TOT increased significantly over time in the alendronate group but
decreased in the placebo group. The average rates of change in BMC_TOT were
3.641± 2.874 grams per sixmonths in the group assigned to alendronate and−1.596
± 3.124 grams per six months in the group assigned to placebo. The mean rates of
change in BMD_TOT were 0.0415 ± 0.0301 grams per centimeter squared per six
months in patients assigned to alendronate and –0.005± 0.0379 grams per centimeter
squared in patients assigned to placebo.

9.5 Conclusion

The mean bone mineral content and bone mineral density of the lumbar spine
increased significantly in patients assigned to alendronate rather than placebo over a
period of time as little as sixmonths. However, the mean BMC_TOT and BMD_TOT
by whole body DXA scan did not show significant differences between the alen-
dronate and placebo groups. Due to the small sample sizes in the dataset, the random
effects longitudinal model could not be applied to the data to detect differences
between the two groups. Of potential clinical importance, the dataset at the cessation
of the study suggests that patients assigned to placebo but not to alendronate gained
in percent body fat and lean body mass.
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Chapter 10
Mediation Modeling in Randomized
Trials with Non-normal Outcome
Variables

Jing Cheng and Stuart A. Gansky

10.1 Introduction

In many health studies, the intervention is designed to change some post-
randomization (intermediate) variable, such as knowledge, attitudes, behavior,
biomarkers or social factors, so that the change in the intermediate variablewill lead to
improvement in the final health outcomes of interest (MacKinnon and Luecen 2011).
Such an intermediate variable is usually called mediator, explaining how and/or why
an exposure/program/treatment changes an outcome of interest. For example, the
Detroit Dental Health Project’s Motivational Interviewing DVD (DDHP MI-DVD)
trial was a randomized dental trial of a Motivational Interviewing (MI) intervention
to prevent early childhood caries (ECC) in low income African-American children
(0–5 years) in Detroit, Michigan (Ismail et al. 2011). In the study, caregivers in both
intervention and control groups watched a 15-min education video on children’s oral
health. The control group (DVD only) was then provided general recommendations
on diet, oral hygiene, and dental visits. For the intervention group (MI+DVD), a MI
interviewer reviewed the child’s dental examination with caregivers and discussed
caregivers’ personal thoughts and concerns about specific goals for their child’s oral
health. A brochure with caregivers’ specific goals was then printed and placed in a
convenient place at home. Families in theMI+DVD group also received booster calls
within 6 months of the intervention. The study hypothesized that the MI+DVD inter-
vention would change the caregivers’ and children’s behaviors in oral hygiene and
then the behavioral changes would lead to improved oral health in children. In these
studies, researchers are not only interested if the intervention works but also if and
how much the intervention affects the outcome through and around the intermediate
mediator.
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The effect of an intervention through the mediator is called the indirect or medi-
ation effect, showing that the intervention affects the outcome through the inter-
mediate variables as designed. The effect around the mediator is called the direct
effect, indicating that the intervention changes the outcome directly or involving
some other intermediate variables in a heretofore undiscovered mechanism. Know-
ing those effects helps us to better understand the working mechanism of an inter-
vention such that future programs can tailor specific program components to target
specific important mediators and consequently lead to bigger improvement in health
outcomes.

Many conventional and causal mediation approaches (Baron and Kenny 1986;
Cole and Maxwell 2003; Daniels et al. 2012; Goetgeluk et al. 2008; Imai et al.
2010a; Jo et al. 2011; MacKinnon 2008; Pearl 2001; Robins and Greenland 1992;
Rubin 2004; Small 2012; Sobel 1982, 2008; Steyer et al. 2014; Ten Have et al.
2007; Van der Laan and Petersen 2008; VanderWeele and Vansteelandt 2009) have
been developed for continuous outcomes. When the outcome of interest is a non-
continuous but binary, multinomial, or count outcome, mediation approaches relying
on linear models may not be appropriate. For non-continuous outcomes such as
binary outcomes with nonlinear models, MacKinnon and Dwyer (1993) showed that
the traditional product and difference methods give different results. Therefore, we
will discuss mediation approaches for non-continuous outcomes in this chapter.

10.2 Traditional Mediation Analysis

SinceWright (1920) developed a path analysis as a special case of structural equation
modeling (SEM), various SEM-based methods have been developed for mediation
analysis (e.g., Judd and Kenny 1981; Sobel 1982; MacKinnon 2008). Baron and
Kenny (1986) provided an excellent conceptual description of mediation more than
30 years ago. Since then, their proposed approach on mediation in the context of
linear models has been widely used in many areas for mediation analyses on contin-
uous outcomes. Figure10.1 illustrates Baron and Kenny’s approach using the SEM
approach and involving multi-step regressions, where Zi denotes the randomized

Fig. 10.1 Baron and Kenny’s mediation approach
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treatment, Mi for the observed mediator level, Xi for the observed baseline covari-
ates, and Yi for observed outcome for subject i .

• Total effect of treatment on outcome (c) is estimated by regressing the outcome
variable on the treatment: Yi = γ1 + κ1Xi + cZi

• Regress the mediator on the treatment controlling for baseline covariates: Mi =
γ2 + κ2Xi + aZi

• Direct effect of treatment on outcome (c′) is estimated by regressing the outcome
variable on the treatment while controlling for the mediation: Yi = γ3 + κ3Xi +
bMi + c′Zi

• Check if all the coefficients a, b, and c are significant and if c′ is smaller than c. If
the criteria are met, then the mediation effect of the treatment on the outcome via
the mediator is estimated by (c − c′).

That is, Baron and Kenny’s approach estimates the mediation effect as the differ-
ence between total effect (c) and direct effect (c′). Alternatively the mediation effect
can be estimated as a product of the two coefficients a and b (MacKinnon 2008).
MacKinnon et al. (1995) showed that the mediation effect by the product method
is equivalent to the effect by the difference method for continuous outcomes with
linear models.

Although not explicitly expressed, the traditional mediation approaches require
a series of ignorability assumptions to have a causal interpretation of direct and
mediation effects, such as no unmeasured confounding of the Z-M, Z-Y, and M-
Y relationships and no confounders of the M-Y relationship that are affected by
the treatment Z (Pearl 2001; VanderWeele and Vansteelandt 2009). We will dis-
cuss the ignorability assumptions further under the potential outcome framework
and introduce recently developed approaches relaxing some of those assumptions in
the next sections. Although Baron and Kenny’s approach may have low statistical
power in some situations (MacKinnon et al. 2002) and their criteria may not be met
sometimes (Holmbeck 2002), the estimated direct and mediation effects have causal
interpretations under assumptions that the linear models and a series of ignorability
assumptions hold, and there is no treatment and mediator interaction. Several causal
methods (Pearl 2001; Jo 2008; Sobel 2008; VanderWeele and Vansteelandt 2009;
Imai et al. 2010b) have described the SEM approach under the counterfactual poten-
tial outcome framework and relaxed the assumption of no treatment by-mediator
interaction. For example, VanderWeele and Vansteelandt (2009) provided closed-
form formula for the direct and mediation effects allowing treatment by-mediator
interaction in linear models.

When the mediator and outcome are not continuous such that linear models do
not fit the data, generalized linear models have been used for the mediation analysis
with a logit or probit link for binary data or log link for count data:

g(E[Yi |Zi ) = γ1 + cZi

h(E[Mi |Zi ]) = γ2 + aMi

g(E[Yi |Zi , Mi ]) = γ3 + bMi + c′Zi .
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However, MacKinnon and Dwyer (1993) illustrated that the estimated mediation
effect based on the product (ab) and the difference (c − c′) can be very different
in those nonlinear models due to different scales that are used. After standardiza-
tion, the estimated mediation effect based on the product and difference would be
much closer (MacKinnon and Dwyer 1993; Coxe and MacKinnon 2010). However,
the standardized product or difference methods may still lead to biased estimate
for the causal mediation effect in some situations (Imai et al. 2010a; Pearl 2012).
Additionally the results from those traditional approaches depend on specific statis-
tical models because they do not provide a general definition of causal direct and
mediation effects independent of specific statistical models before the analyses.

10.3 The Counterfactual Framework, Notation
and Assumptions

Different from traditional approaches, recently developed causal mediation app-
roaches adopt the potential outcome framework (Neyman 1923; Rubin 1974) and
define causal direct and indirect (mediation) effects independent of a specific statisti-
cal model (Valeri and VanderWeele 2013). In this chapter, we will first conceptually
define causal direct and indirect (mediation) effects without reference to a specific
statistical model and then discuss different statistical models to identify and estimate
those causal effects under appropriate assumptions. We will first consider the total,
direct, and indirect (mediation) effects on the additive scale as a difference of two
potential outcomes, andwewill then discuss effects on other scales (e.g., correspond-
ing to logit for binary outcomes and log for count outcomes) in next sections.

Wemake the Stable Unit Treatment Value Assumption (SUTVA), which says that
a subject’s potential outcome is not related to the randomization or mediation value
of other subjects or the method of administration of randomization or the mediator.
The SUTVA assumption allows us use scalar indices rather than vector indices in
potential variable notation and enables linking the potential variables to observed
variables. Under SUTVA, we let Mz

i denote the potential value of a mediator under
treatment Zi = z for subject i . In a two-arm study, Mz

i has two versions: M1
i under

treatment and M0
i under control. However, in practice we are not able to observe both

potential mediator values but only one of M1
i and M0

i depending on which treatment
group subject i was actually assigned to.We use Y z,m

i to denote the potential outcome

subject i would have under the treatment Zi = z andmediatorMi = m, and Y
z,Mz

i
i for

potential outcome under Zi = z. Below we will use Y z,m
i to define controlled effects

and Y
z,Mz

i
i for natural effects. Again, only one version of multiple potential outcomes

will be observed for a subject depending on the actual treatment and mediator value
subject i had.

Under the potential outcome framework, we will define both the individual level
causal effects and population average causal effects. However, in real studies, we are
not able to observe all the potentialmediators and potential outcomes under treatment



10 Mediation Modeling in Randomized Trials … 197

and control for a subject who would only take either treatment or control, so the
individual level causal effects cannot be identified. On the other hand, the population
average causal effects can be identified under some assumptions, such as different sets
of assumptions from Pearl (2001), Robins (2003), Van der Laan and Petersen (2008),
Hafeman (2009), and Imai et al. (2010a) on sequential ignorability of treatment
and mediator, and the assumption of no treatment by-mediator interaction in some
methods (Robins 2003; Hafeman 2009). Van der Laan and Petersen (2008), Imai
et al. (2010a) and Ten Have and Joffe (2010) provide good reviews of assumptions
to achieve nonparametric identifiability of the causal effects.

The total effect (TE) of the treatment for subject i and its average across subjects
are, respectively,

T Ei = Y
1,M1

i
i − Y

0,M0
i

i , ¯T E = E(Y
1,M1

i
i − Y

0,M0
i

i ),

which is the total effect of the treatment (Z = 1) on outcome Y compared to control
(Z = 0) no matter whether the effect is through or around the mediator M . Note that
in some situations, we are interested in the effect conditional on baseline covariates
¯T E = E(Y

1,M1
i

i − Y
0,M0

i
i |Xi ). The total effect of the treatment has two components:

the treatment effect around the mediator, called the direct effect, and the treatment
effect through the mediator, called the indirect or mediation effect. There are two
sets of definitions on these effects proposed in the literature (Pearl 2001; Ten Have
et al. 2007; Imai et al. 2010a; Robins 2003; Ten Have and Joffe 2010): controlled
and natural effects.

The controlled direct effect (CDE) of the treatment for subject i and its average
across subjects while fixing the mediator at m are

CDEm
i = Y 1m

i − Y 0m
i , ¯CDE

m = E(Y 1m
i − Y 0m

i ),

which is the treatment effect compared to control while fixing the mediator atm, and
the controlled mediation effect (CME) of m versus m ′ when fixing the treatment z
and its average are

CMEz
i = Y zm

i − Y zm ′
i , ¯CME

z = E(Y zm
i − Y zm ′

i ),

for z = 0, 1 and all m �= m ′,

which is the effect of mediator (at m vs. at m ′) on the outcome under treatment z.
Conditional on baseline covariates Xi , the controlled direct and mediation effects
are ¯CDE

m = E(Y 1m
i − Y 0m

i |Xi ) and ¯CME
z = E(Y zm

i − Y zm ′
i |Xi ).

In contrast to the controlled effects for setting the mediator at a fixed level m, the
natural effects set the mediator at its “natural” level that would be achieved under
treatment z. The natural direct effect (NDE) of the treatment for subject i and its
average across subjects when the mediator is set at its level under treatment z are
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NDEz
i = Y

1,Mz
i

i − Y
0,Mz

i
i , ¯NDE

z
i = E(Y

1,Mz
i

i − Y
0,Mz

i
i ),

which is the treatment effect on outcome compared to control while having the
mediator at its potential level Mz

i , and the natural mediation (indirect) effect (NME)
and its average when fixing treatment z are

NMEz
i = Y

z,M1
i

i − Y
z,M0

i
i , ¯NME

z = E(Y
z,M1

i
i − Y

z,M0
i

i ),

which is the outcome change under treatment z that would be observed if the media-
tor would change from the value under control M0

i to the value under treatment M1
i .

Conditional on baseline covariates Xi , the natural direct and mediation effects are
¯NDE

z
i = E(Y

1,Mz
i

i − Y
0,Mz

i
i |Xi ) and ¯NME

z = E(Y
z,M1

i
i − Y

z,M0
i

i |Xi ). In real stud-
ies, we may not be able to set the mediator at a specific level and therefore natural
effects are probably preferred.

However, because the natural effects involve the counterfactual potential outcome

Y
z,Mz∗

i
i (z �= z∗) corresponding to both levels (z and z∗) of Z , the identification of

natural effects requires stronger assumptions than controlled effects. To identify the
effects, different sets of assumptions from Pearl (2001), Robins (2003), Van der
Laan and Petersen (2008), VanderWeele and Vansteelandt (2009), and Imai et al.
(2010a) among others have been proposed, including different versions of sequential
ignorability assumption of treatment andmediator. For example, Imai et al. (2010a, b)
and Cheng et al. (2017) assumed

{Y z∗,m
i , Mz

i } ⊥ Zi |Xi = x; Y z∗,m
i ⊥ Mz

i |Zi = z, Xi = x, for all z, z∗,m. (10.1)

This assumption says that (1) the treatment is independent of potential mediators
and potential outcomes given the baseline covariates; and (2) the mediators are inde-
pendent of the potential outcomes given the treatment and baseline covariates. In the
MI+DVD study, the first ignorability assumption is reasonable because of the ran-
domization of the treatment. However, the second ignorability assumption may not
hold even in the randomizedMI+DVD study because themediator, oral health behav-
ior, after randomization was not randomly assigned. Even though it is not guaranteed
by randomization, the second ignorability assumption may hold after conditioning
on baseline covariates and treatment. That is, the mediator, oral health behavior, was
as if randomized among subjects in the same treatment group who have the same
baseline characteristics.

Under sequential ignorability, the distribution of the counterfactual potential out-
come is nonparametrically identified (Imai et al. 2010b; Pearl 2012):

f (Y
z,Mz∗

i
i |Xi = x) =

∫
M

f (Yi |Mi = m, Zi = z, Xi = x)dFMi (m|Zi = z∗, Xi = x), x ∈ X; z, z∗ = 0, 1.

E[Y z,Mz∗
i

i |Xi = x] =
∑
m

E(Yi |Zi = z, Mi = m, Xi = x)P(Mi = m|Zi = z∗, Xi = x) (10.2)
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That is, the distribution (expectation) of the counterfactual potential outcome on the
left-hand side can be expressed as a function of the distribution of observed data on
the right-hand side. This result of nonparametric identifiability of the average causal
effects enables the estimation of the causal effects based on potential outcomes and
mediators we do not observe.

10.4 Mediation Analysis on Binary Outcomes

Many conventional and causal mediation approaches have been developed for con-
tinuous outcomes. For non-continuous outcomes such as binary outcomes with non-
linear models, MacKinnon and Dwyer (1993) showed that the traditional product
method and difference method generally give different results, even though the two
methods are approximately equivalentwhen the binary outcome is rare under assump-
tions shown by VanderWeele and Vansteelandt (2010). By the mediation formula
(10.2), the conventional product method provides a consistent estimate for causal
direct and mediation effects when the linear models and ignorability assumptions
hold for the data (Imai et al. 2010a; VanderWeele and Vansteelandt 2009). Imai et al.
(2010b) assume a mediator model and an outcome model:

MZi
i ∼ fM(θM = h−1(αM + βM Zi + ηT

M Xi )) (10.3)

Y
Zi ,M

Zi
i

i ∼ fY (θY = g−1(αY + βY Zi + γY M
Zi
i + ξY Zi M

Zi
i + ηT

Y Xi )) (10.4)

where the link functions h and g aremonotonic and differentiable functions; e.g., logit
or probit link for binaryMi or Yi . Then they usedMonte Carlo integration to compute
the direct and indirect (mediation) effects from (10.2) for general outcomes, including
binary outcomeswhen the linear models do not hold. Specifically, their approach first
builds amediator model and an outcomemodel based on observed data, then samples
Mz∗

i from the mediator model and samples the counterfactual potential outcome

Y
z,Mz∗

i
i from the outcome model, and next uses (10.2) to compute the direct and

indirect (mediation) effects. The mediation package in R implements their approach
for common types of mediators and outcomes, including binary outcomes.

While Imai et al.’s approach estimates the causal direct and mediation effects as
risk differences between treatment and control for general outcomes including binary
outcomes marginalized over the baseline covariates, VanderWeele and Vansteelandt
(2010) considered causal direct and mediation effects on non-addictive scale such as
direct effect and mediation effect odds ratios (ORs) specifically for binary outcomes.
They considered a logit model (10.5), a special case of the natural effects models
(Lange et al. 2012; Vansteelandt et al. 2012), for a binary outcome and then derived
the natural direct effect odds ratio (10.6) and natural mediation effect odds ratio
(10.7):
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logi t[E{Y z,Mz∗
i

i |Xi }] = θ0 + θ1z + θ2z
∗ + θ3Xi (10.5)

odds{Y z,Mz∗
i

i |Xi }
odds{Y z∗,Mz∗

i
i |Xi }

= exp[θ1(z − z∗)] (10.6)

odds{Y z∗,Mz
i

i |Xi }
odds{Y z∗,Mz∗

i
i |Xi }

= exp[θ2(z − z∗)] (10.7)

The natural direct and mediation effect ORs are considered a more natural scale for
binary outcomes than the additive scale in Imai et al.’s approach (VanderWeele and
Vansteelandt 2010; Vansteelandt 2010; Loeys et al. 2013). The approach by Vanstee-
landt et al. (2012) does not require a mediator model but still requires an imputation
outcome model built on observed data in treatment, mediator, and baseline covari-

ates. Then the counterfactual outcome Y
z,Mz∗

i
i is predicted based on the imputation

outcome model when z and z∗ are not equal. The approach next regresses observed
and imputed counterfactual potential outcomes on z, z∗, and X by Model (10.5) and
obtains the “simple imputation estimate” by (10.6) and (10.7). Note that as opposed
to the marginal effect in Imai et al.’s approach, the imputation estimate based on the
natural effect models provides estimated conditional effects and allows for evaluat-
ing moderation effects of covariates Xi . Both approaches by Imai et al. (2010a, b)
and VanderWeele and Vansteelandt (2010) allow treatment by-mediator interaction.

Alternatively, Elliott et al. (2010) constructed principal strata (Frangakis and
Rubin 2002; Rubin 2004; VanderWeele 2008; Gallop et al. 2009) based on the joint
distribution of the potential mediator value under treatment and control and then
developed a Bayesian approach to estimate the principal strata-specific intent-to-
treat (ITT) effect of the treatment where the treatment has no effect on the mediator
(called “disassociative effect”) and does change the mediator (“associative effect”).
The mediation effect is then a function of associative effects and probabilities asso-
ciated with the binary mediator and binary outcome.

10.5 Mediation Analysis on Count and Zero-Inflated Count
Outcomes

In addition to binary outcomes, the outcome variable in many studies is often a count
following a Poisson or Negative Binomial distribution, or a zero-inflated count that
has a higher probability of being zero than expected under a Poisson or Negative
Binomial distribution, such as number of doctor or emergency visits, number of
admissions and readmissions to a hospital, number of complications, and number
of decayed, missing and filled primary teeth (dmft) or tooth surfaces (dmfs). In the
DDHP MI+DVD study, the outcomes of interest are the number of new untreated
cavities, dmft and dmfs at the end of the study 2 years later compared between
MI+DVD and DVD-only groups (Ismail et al. 2011), which contain 24–62% zeros
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Fig. 10.2 Histograms of the numbers of new untreated decayed surfaces (cavities)

in various dental outcomes (Fig. 10.2) because the majority of the children did not
have any new untreated cavities, dmft and dmfs at the end of the study.

10.5.1 Methods Under the Assumption of Sequential
Ignorability

10.5.1.1 Mediation Analysis Without Post-baseline Confounders

As discussed above, we are not able to observe the counterfactual potential outcome

involved in the natural effects Y
z,Mz∗

i
i (z �= z∗) in a study. However, under sequential

ignorability, the distribution of the counterfactual potential outcome Y
z,Mz∗

i
i (z �= z∗)

is nonparametrically identified (Imai et al. 2010a, b; Pearl 2012).
For a count outcome following a Poisson or Negative Binomial distribution, Imai

et al.’s approach (2010b) fits a log linear outcome model (10.4) for the observed
count outcome on observed treatment, mediator, and covariates, then samples the
counterfactual outcome from the log linear outcome model, and then uses Monte
Carlo integration to compute the direct and indirect (mediation) effects from the
mediation formula (10.2) on the additive scale. Alternatively, Valeri and Vander-
Weele (2013) considered a log linear natural effect model for the count outcome and
provided formula for the direct and indirect (mediation) effects on the rate ratio scale
instead of the additive scale when the mediator is continuous. Albert and Nelson
(2011) developed an approach for estimating path-specific effects in the context of a
directed acyclic graph (DAG) using log linear models, andAlbert 2012 considered an
inverse-probability weighted estimator for the mediation effect on count outcomes.

For zero-inflated outcomes, different approaches (Min and Agresti 2002) have
been proposed in the non-mediation context, including the zero-inflated Poisson
(ZIP) (Lambert 1992) or zero-inflated Negative Binomial (ZINB) (Long 1997)
model. Under the mediation context, the ZIP outcome distribution is:
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P(Y
Zi ,M

Zi
i

i = 0) = ωi + (1 − ωi )e
−λi ;

P(Y
Zi ,M

Zi
i

i = j) = (1 − ωi )
e−λi λ

j
i

j ! ; j > 0 (10.8)

while the ZINB outcome distribution is:

P(Y
Zi ,M

Zi
i

i = 0) = ωi + (1 − ωi )(1 + σλi )
− 1

σ ;

P(Y
Zi ,M

Zi
i

i = j) = (1 − ωi )
�( j + 1

σ
)

j !�( 1
σ
)

(σλi )
j (1 + σλi )

− j− 1
σ ; j > 0 (10.9)

where log
ωi

1 − ωi
= αY1 + βY1Zi + γY1M

Zi
i + ξY1Zi M

Zi
i + ηT

Y1Xi ,

log λi = αY2 + βY2Zi + γY2M
Zi
i + ξY2Zi M

Zi
i + ηT

Y2Xi (10.10)

σ(≥ 0) is a dispersion parameter that does not depend on covariates.

The basic idea of these zero-inflated models is that the outcome is a mixture of zeros
and Poisson (or Negative Binomial) random variables with the mixture proportion
p(Zi , M

Zi
i , Xi ) and Poisson (or Negative Binomial) mean λ(Zi , M

Zi
i , Xi ). Note that

when an interpretation only relies on the second part (positive outcome) of the ZIP
or ZINB model, the conclusion could be misleading because the two groups with
the positive outcome are not ensured to be comparable by randomization (Follmann
et al. 2009).

For count outcomes with a lot of zeros, more than expected under Poisson or
Negative Binomial, Wang and Albert (2012) assumed a zero-inflated Negative Bino-
mial (ZINB) model for the outcome, provided a mediation formula for the mediation
effect estimation in a two-stage model, and then decomposed the mediation effect in
a three-stage model when there is no post-treatment confounder.

Instead of decomposing the indirect (mediation) effect into different components
for ZINB data (Wang and Albert 2012), Cheng et al. 2017 extended Imai et al.’s
approach (2010b) for estimating the overall direct, indirect (mediation), and total
effects specifically for zero-inflated count outcomes (zero-inflatedPoissonorZIP, and
zero-inflatedNegativeBinomial or ZINB) in addition to count outcomes (Poisson and
NB). Although the second part of a zero-inflated model alone may lead to misleading
results, Cheng et al.’s approach (2017) does not only rely on the estimated coefficients
in the second part of the ZIP or ZINB model but instead estimates the direct and
indirect effects of treatment as a difference in corresponding potential zero-inflated
count outcomes. Their approach uses information from all the randomized subjects
with both parts of the model so that the ignorability of treatment holds. They adopt
Imai et al.’s procedure (Imai et al. 2010a, b) based on the quasi-Bayesian Monte
Carlo approximation of King et al. (2000). Specifically, the procedure (Imai et al.
(2010a, b); Cheng et al. 2017a) involves multiple steps: (I) Fit the mediator and
outcome models based on observed mediator (10.3) and outcome (10.8) or (10.9)
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with (10.10), and obtain estimated model coefficients and their estimated asymptotic
covariance matrix. (II) Simulate model coefficients from their sampling distribution
based on the approximate multivariate normal distribution with mean and variance
equal to the estimated coefficients and their estimated asymptotic covariance matrix
obtained in (I), and sample K copies of the mediator and outcome model coefficients
from their sampling distributions: θ k

M and θ k
Y . (III) For each copy k = 1, ..., K , (IIIa)

simulate potential values of the mediator under each z = 0, 1 for each subject based
on the mediator model (10.3) with simulated parameters (coefficients) obtained in
(II); (IIIb) simulate potential outcomes under each z = 0, 1 for each subject based
on the outcome model (10.4) with simulated potential mediator values obtained in
(IIIa) and simulated parameters (coefficients) obtained in (II); (IIIc) compute the
direct, mediation, and total treatment effects by averaging the difference between
the corresponding two predicted potential outcomes discussed in Sect. 10.2. And
(IV) compute the point estimates of direct, indirect (mediation), and total effects,
confidence intervals and p values based on the results from J repetitions. The sample
median, standard deviation, and percentiles of the corresponding distributions from
the J repetitions are used as the point estimate, standard error, and confidence interval
for the direct, indirect (mediation), and total effects.

10.5.1.2 Mediation Analysis with Post-baseline Confounders

Previously, we discussed causal mediation analysis for studies only with measured
baseline confounders Xi . However, it is not uncommon that some confounding
occurred after baseline. For example, in the DDHP MI-DVD study, when evalu-
ating the direct effect of the MI+DVD intervention versus DVD alone on children’s
dental outcomes and its mediation effect through the mediator if whether or not care-
givers made sure their child brushed at bedtime. Other intermediate variables (such
as caregivers’ oral hygiene knowledge and their own oral health-related behaviors)
after baseline could be associated with both the mediator (whether or not they made
sure their child brushed) and the outcome (children’s dental outcomes), so those inter-
mediate variables would be post-baseline confounders for the mediation analysis of
interest.

Figure10.3 shows the treatment mechanism through and around the mediator
when the treatment (a) does not affect and (b) does affect the post-baseline con-
founder, respectively, where Ui denote post-baseline confounders.

(a) (b)

Fig. 10.3 Treatment mechanism when Z does not affect U (a) and when Z affects U b
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Post-Baseline Confounders not Affected by the Treatment
Under the sequential ignorability (10.11), average natural effects are identified (Ten
Have and Joffe 2010) when treatment Zi does not affect the post-baseline confounder
Ui (Fig. 10.3(a)):

(Y z∗,m
i , Mz

i ) ⊥ Zi |Xi = x; and Y z∗,m
i ⊥ Mz

i |Zi = z, Xi = x,Ui = u, for all z, z∗,m, u.

(10.11)

Same as the first part of (10.1), the first part of (10.11) implies the ignorability of
treatment; that is, the treatment is randomly assigned conditional on Xi . Although
similar to the second part of (10.1) regarding the ignorability of the mediator, the
second part of (10.11) is conditional on not only the treatment assignment and base-
line covariates but also post-baseline confounders. Assumption (10.11) indicates that
among subjects in the same treatment group who have the same values of baseline
characteristics and post-baseline confounders, the mediator is effectively random
(independent of confounding). In the MI+DVD study, the sequential ignorability
assumes (1) the MI+DVD intervention is independent of confounders conditional on
baseline covariates, and (2) the mediator (whether or not caregivers made sure their
child brushed at bedtime) is independent of confounders conditional on assigned
treatment group, baseline covariates, and post-baseline confounders such as care-
givers’ oral hygiene knowledge and behaviors.

To estimate the natural direct and indirect effects of the treatment when the post-
baseline confounder Ui is not affected by treatment Zi , the mediation model stays
the same as (10.3), but the outcome model (10.4) needs to be modified by including
the post-baseline confounder(s) in the model (Ten Have and Joffe 2010):

Y
Zi ,M

Zi
i

i ∼ fY
(
θY = g−1(αY + βY Zi + γY M

Zi
i + ηT

Y Xi + φT
Y Ui )

)
(10.12)

For zero-inflated count data, the post-baseline confounder will be included in the
outcome model as (10.10):

log
ωi

1 − ωi
= αY1 + βY1Zi + γY1M

Zi
i + ηT

Y1Xi + φT
Y1Ui ,

log λi = αY2 + βY2Zi + γY2M
Zi
i + ηT

Y2Xi + φT
Y2Ui

Following Imai et al.’s general procedure (2010b), Cheng et al. (2017) discussed the
method for estimating the natural direct and indirect (mediation) effects based on the
mediation formula for count and zero-inflated count outcome when the post-baseline
confounders are not affected by the treatment.

Post-Baseline Confounders Affected by the Treatment
When we evaluate the effect of the MI+DVD intervention on children’s dental out-
comes around or through the mediator whether or not caregivers made sure their
child brushed at bedtime, we note that the MI+DVD intervention could also affect
caregivers’ oral hygiene knowledge and other related behaviors, which could be asso-
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ciated with both the mediator whether or not they made sure their child brushed at
bedtime and their child’s dental outcomes. That is, there could be some post-baseline
confounders on the mediator–outcome relationship, which are also affected by the
treatment.

When treatment Zi affects the post-baseline confounder Ui (Fig. 10.3(b)), the
sequential ignorability (10.11) does not identify average natural effects without addi-
tional assumptions.Under (10.11) and the extended outcomemodel (10.13), although
the estimate of the average controlled direct effect by β̂Y could be biased, the average
controlled mediation effect can be consistently estimated by a function of γ̂Y (Ten
Have and Joffe 2010):

Y Zi ,Mi
i ∼ fY (θY = g−1(αY + βY Zi + γY Mi + ηT

Y Xi + φTUi )). (10.13)

The biased average controlled direct effect is due to the fact that the treatment
Zi affects the post-baseline confounder Ui and this treatment effect on Ui is not
incorporated in the estimation of the controlled direct effect. For continuous out-
comes with an identity link function in (10.13), Vansteelandt (2009) and Joffe
and Greene (2009) used a two-stage ordinary least squares (OLS) procedure to
estimate the average controlled direct effect by correcting the bias in the sec-
ond stage. Their approaches involve two stages: (1) Fit an OLS model for out-
come on randomization, mediator, and post-baseline confounder in the first stage
Yi = αY + βY Zi + γY Mi + ηT

Y Xi + φTUi and obtain γ̂Y ; and (2) in the second stage,
compute the adjusted outcome as Y ad j = Y − γ̂Y M , and then fit another OLS model
for the adjusted outcome on randomized treatment as Y ad j = β

ad j
Y Zi . The estimated

coefficient β̂ad j
Y will then be a good estimate for the average controlled direct effect

when the outcome is continuous and there is a post-baseline confounder Ui affected
by Zi . However, for other types of outcomes such as count and zero-inflated count
outcomes, the two-stage OLS procedure may not work well to adjust the bias in the
estimation of the average controlled direct effect.

Alternatively, additional assumptions have been adopted for identification of the
effect, sometimes in sub-populations or strata, when there are post-baseline con-
founders affected by treatment. Tchetgen Tchetgen and Shpitser (2012) and Vander-
Weele and Chiba (2014) considered a sensitivity analysis with various contrasts of
the outcome between two sub-populations as sensitivity parameters and then cor-
rected the bias with specified values of sensitivity parameters. Tchetgen Tchetgen
and VanderWeele (2014) assumed monotonicity about the treatment effect on the
post-baseline confounder and showed the nonparametric identifiability of the nat-
ural direct effect. When the mediator is binary, Taguri and Chiba (2015) classified
subjects into four principal strata based on the joint distribution of the potential medi-
ator under treatment and control and estimated the natural direct and indirect effects
under an additional monotonicity assumption on treatment by-mediator effect and
an assumption of common average mediator effects between compliant and never
intermediates.

Instead of considering point identification of the effect, some researchers also
considered the derivation of bounds for the natural direct and indirect effects, includ-
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ing the work by Sjolander (2009), Kaufman et al. (2009) and Robins and Richardson
(2011).

For count and zero-inflated count outcomes when there are post-baseline con-
founders affected by treatment, Cheng et al. (2017) discussed a series of assump-
tions, including Albert and Nelson’s conditional independence assumption (Albert
and Nelson 2011), for the identification of effects. Given the theoretical proofs on the
identification under the series of assumptions, Cheng et al. (2017) proposed sensitiv-
ity analyses for count and zero-inflated count outcomes when there is post-baseline
confounding. In (10.14), they define the mediation effect as the causal effect of the
treatment on the outcome specifically through the mediator M under treatment z, and
the direct effect as all other causal effects of the treatment on the outcome around
M , including the effect through the post-baseline confounder U . That is, the con-
founding effect from U is included in the direct effect when it is not the interest.
See Sect. 10.5.1.3 for discussion on mediation analyses when mediation effects via
multiple mediators are of interest.

¯NMEz = E
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Y

z,Uz
i ,M

1,U1
i

i
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)
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(10.14)

When there are post-baseline confounders affected by treatment, sequential ignor-
ability (10.15) and (10.16), mediator models, and outcome models will be modified
accordingly:

(
Y z,u,m
i , Mz∗,u∗

i ,Uz
i

)
⊥ Zi | Xi = x (10.15)

Y z,u,m
i ⊥ Mz∗,u∗

i | Xi = x, Zi = z,Uz
i = u (10.16)

MZi
i ∼ fM

(
θM = h−1(αM + βM Zi + φMU

Zi
i + ηT

M Xi )
)

(10.17)

Y
Zi ,M

Zi
i

i ∼ fY
(
θY = g−1(αY + βY Zi + γY M

Zi
i + φYU

Zi
i + ηT

Y Xi )
)

(10.18)

Additionally, Cheng et al. (2017) assumed various models for the post-baseline con-
founder UZi

i for the effect identification. The idea is that if we know the treatment
mechanismon the post-baseline confounders,we are able to incorporate that informa-
tion into the direct and mediation effect estimation. In a real-life study, although it is
almost impossible to completely know such treatment mechanisms on confounders,
investigators often understand partial information regarding such mechanisms based
on their previous work and literature. Therefore, it is very helpful to have a sensitivity
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analysis incorporating such information and see how the direct and mediation effects
will change when specific values of the parameters are changed under the uncertainty
in the treatment mechanisms on post-baseline confounders. Cheng et al. (2017) con-
sidered variousmodels (10.19)–(10.21) for continuous post-baseline confoundersU ,
where model (10.21) allows the heterogeneity treatment effect onU for individuals.
For a binary confounder U , one can assume that there is an underlying continuous
variable under U , which follows one of the following models (10.19)–(10.21).

U 1
i = U 0

i + βU , (10.19)

U 1
i = U 0

i + βU + τ T
U Xi , (10.20)

U 1
i = U 0

i + βU + τ T
U Xi + δi , where δi ⊥ (Zi , Xi ,U

0
i ,Y z,u,m

i , Mz∗,u∗
i )

and δi follows a known distribution (10.21)

For general post-baseline confounders, Cheng et al. (2017) considered a set of
assumptions to identify the effects (10.14),

(
Y z,u,m
i , Mz∗,u∗

i ,U 1
i ,U 0

i

)
⊥ Zi | Xi = x (10.22)

Y z,u,m
i ⊥ Mz∗,u∗

i | Xi = x, Zi = z,U 0
i = u,U 1

i = u∗ (10.23)

and

UZi
i ∼ fU

(
θU = o−1(αU + βU Zi + τ T

U Xi )
)

,

U1
i ⊥ U0

i | Xi = x and
(
Y z,u,m
i , Mz∗,u∗

i

)
⊥ (

U0
i ,U1

i

) | Xi = x, Zi = z (10.24)

Note that (10.22) and (10.23) involve the joint distribution of
(
U 0

i ,U 1
i

)
while (10.15)

and (10.16) involve the marginal distributionUz
i . Therefore, (10.22) and (10.23) are

stronger than (10.15) and (10.16). Assumption (10.24) is similar the conditional
independence assumption on Z1(1) and Z0(0) in Albert and Nelson (2011), but
(10.24) assumes some relation betweenU 1 andU 0 instead of assuming independence
betweenU 1 andU 0 as inAlbert andNelson (2011) and hence could bemore practical
in some real-life studies.

Cheng et al. (2017) showed that the average effects ¯NMEz, ¯NDEz and ¯NT Ez can
be identified under (A) sequential ignorability (10.15) and (10.16), mediator model
(10.17) and outcome model (10.18), and one of confounder models (10.19)–(10.21);
or (B) sequential ignorability (10.16), (10.22) and (10.23), mediator model (10.17)
and outcome model (10.18), and the confounder model (10.24). The same results
will follow when the treatment by-confounder interaction Zi ×UZi

i is included in
the mediator model (10.17) and both the treatment by-mediator and treatment by-
confounder interactions Zi × MZi

i and Zi ×UZi
i are included in the outcome model

(10.18). The procedure based on the quasi-Bayesian Monte Carlo approximation
(King et al. 2000) discussed in Sect. 10.5.1.1 can still be used for inference on the
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direct, mediation, and total treatment effects, except that one additional confounder
model (10.19), (10.20), (10.21) or (10.24) will be incorporated.

As discussed above, in a real study, we are not able to know the values of param-
eters βU and τ T

U for sure. However, the study can provide a reasonable range on the
potential values along with information from literature. Then we can vary the values
of parameters βU and τ T

U one or two at a time and see how the estimates of effects
(10.14) will change for a sensitivity analysis. Cheng et al. (2017) proposed to use
estimates from a regression of observed Ui on treatment Zi , covariates Xi and their
interaction as reasonable starting points for the choice of values for βU and τ T

U in the
sensitivity analysis. For example, inUi = αU + δU Zi + νU Xi + εi , use δ̂U pmc% as
a range for the parameters, where the choice of c% (say 1

3 ,
1
2 or 1 of the estimate) will

be based on expert knowledge in a study to represent the possible treatment effect
on the confounder. Then 10–20 equally divided values in the range can be used for
the sensitivity analysis.

In theMI+DVD study, theMI+DVD interventionmight change the times children
visited their dentists during the follow-up, and the dental visits were possibly associ-
ated with both the mediator (whether or not parents made sure children brushed their
teeth) and children’s dental outcomes. To account for the post-baseline dental visits, a
sensitivity analysis is helpful to understand how the effects would change with vary-
ing post-treatment confounder effect. Because theMI+DVD intervention had a small
effect in reducing dental visits based on observed data (−0.15), −0.15 ± 1

3 (−0.15);
i.e., (−0.20,−0.10) was used as the reasonable range for βU in terms of possible
intervention–confounder effect. Figure10.4 shows that with various values of βU ,
the mediation effects stay around 0 while the direct and total effects increase and
vary within a range from 0.03 for untreated decayed surfaces (cavities).

Fig. 10.4 Sensitivity analysis for direct, mediation, and total effects on the numbers of new
untreated decayed tooth surfaces (cavities) with varying treatment effects on the post-treatment
confounder βU
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(a) (b)

Fig. 10.5 Causal diagram with treatment Z , mediators M1 and M2, outcome Y , and confounders
U under a M1 causally affects M2 and b M1 does not causally affect M2

10.5.1.3 Mediation Analysis with Multiple Mediators

In real studies, the treatment often affectsmultiple intermediate variables. Figure10.5
shows a causal diagram with two mediators. Daniel et al. (2015) discussed various
approaches when more than one intermediate variables exist in a study. The existing
approaches can be grouped into three types (1) M2 is the mediator of interest, and
M1 is treated as a mediator–outcome confounder affected by treatment (Vansteelandt
and VanderWeele 2012; Tchetgen and VanderWeele 2014; VanderWeele and Chiba
2014; VanderWeele et al. 2014; Taguri and Chiba 2015; Cheng et al. 2017); (2) path-
specific effects are estimated, but their sum does not equal the total effect (Avin et al.
2005; Albert and Nelson 2011); and (3) the multiple mediators do not causally affect
one another (MacKinnon 2000; Preacher and Hayes 2008; Lange et al. 2014; Taguri
et al. 2018), see Fig. 10.5b.

In Sect. 10.5.1.2, we have discussed the first type of mediation analyses when
mediation from a specific intermediate variable is of interest. Then other intermediate
variables are considered as post-baseline confounders and included in the direct
effect of the treatment. However, in some studies, investigators are interested in the
mediation effects via multiple mediators. Imai and Yamamoto (2013) assumed a
linear structural equation model for the outcome and mediators and estimated the
effects; Daniel et al. (2015) decomposed the total effect in the finest possible way,
and VanderWeele and Vansteelandt (2013) considered the mediators one at a time as
joint mediators and proposed decomposition of the total effect with regression-based
and weighting approaches.

For count data, Albert and Nelson (2011) assumed independence between one
mediator under treatment Z1(1) and under control Z1(0) and then conducted a sen-
sitivity analysis on path-specific effects, where the sum of path-specific effects does
not equal the total effect. Taguri et al. (2018) considered the setting with causally
non-orderedmultiplemediators. It has become common to have a treatmentwithmul-
tiple components targeting on multiple non-causally related mediators. For example,
a common cavity management strategy includes two components—an antibacterial
component to reduce oral bacteria and a mineralization component to strengthen the
teeth with fluoride. In such studies, the mediators are often not causally related. The
sequential ignorability becomes
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Taguri et al. (2018) decomposed the total effect as a function of the indirect (medi-
ation) effects through multiple causally non-ordered mediators and the direct effect
around the mediators:
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where the “pure” and “total” effects capture the differential inclusion of the interac-
tion between the treatment and mediators.

Taguri et al. (2018) also provided an analytical approach for the joint natural
indirect effect between twomediators as a function of the indirect effect for individual
mediator and the mediated interactive effect:
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+ (Y
1,M1

1 ,M1
2

i − Y
1,M1

1 ,M0
2

i ) + (Y
1,M0

1 ,M1
2

i − Y
1,M0

1 ,M0
2

i ) (10.26)

= PSE0
1 + PSE0

2 + MInt, (10.27)

where PSE0
1 = (Y

1,M1
1 ,M0
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i ) is the indirect effect through M1 while M2

takes the value under control, PSE0
2 = (Y
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1 ,M1

2
i − Y

1,M0
1 ,M0

2
i ) is the indirect effect

through M2 while M1 takes the value under control, and MInt is the mediated inter-
action between M1 and M2. By (10.25), we see that even if the two mediators are not
causally ordered, the sum of two indirect effects considered separately may not be
the same as the joint indirect effect when there are interactions between the effects
through the twomediators.WhenMInt=0, then the joint total natural indirect effect is
the same as the sum of the two separate total indirect effect. Similarly the population
average effect can be decomposed as the decomposition (10.25) at the individual
level. Understanding how the treatment works through the multiple mediators, rela-
tive contributions of different components and their interactions provide additional
information to design a better treatment strategy.
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10.5.2 Methods Without the Assumption of Sequential
Ignorability

In Sect. 10.5.1, we discussed various mediation methods assuming sequential ignor-
ability for count and zero-inflated count data (Albert and Nelson 2011; Wang and
Albert 2012; Albert 2012; Taguri et al. 2018; Cheng et al. 2017). Sequential ignor-
ability is plausible for some studies. However, the sequential ignorability may not
be plausible for other studies. For example, in DDHP MI+DVD study, caregivers’
and children’s oral health-related behaviors were not randomized or controlled by
the investigators but could be affected by factors other than the MI+DVD interven-
tion, such as oral health education the parents/children received from family dentists,
schools, communities, or the Internet. Those outside factors were not measured in
the study and could be confounders of the mediator–outcome relationship for being
associated with whether or not the parents made sure children brushed their teeth and
children’s dental outcome, so the sequential ignorability may not hold in this study.

Whenunmeasured confounding is of concern in a study, instrumental variable (IV)
methods are very helpful for obtaining consistent estimates for treatment effects by
adjusting for both unmeasured and measured confounders when a valid and strong
IV can be found (Angrist et al. 1996). In the context of mediation analysis, a valid IV
is a variable that, given the measured baseline variables: (1) affects the value of the
mediator; (2) is independent of the unmeasured confounders; and (3) does not have
a direct effect on the outcome other than through its effect on the mediator. Methods
for mediation analysis based on the IV approach have been proposed by investigators
(Ten Have et al. 2007; Albert 2008; Dunn and Bentall 2007; Small 2012) using the
randomization interacted with baseline covariates as IVs, but those methods focus on
linear models for continuous outcomes. When a linear model holds for the outcome,
two-stage least squares (2SLS) provides consistent estimates for causal effects when
there is a valid IV.When the outcomemodel is nonlinear, two-stage residual inclusion
(2SRI) and two-stage predictor substituion (2SPS) (Nagelkerke et al. 2000; Terza
et al. 2008) have been proposed to estimate causal effects in a general context. See
Guo and Small (2016) and Cai et al. (2011) for comparison of 2SRI and 2SPS in
general settings. In the context of mediation analysis when there is a concern of
unmeasured confounding such that the assumption of sequential ignorability for
the mediator might fail, Guo et al. (2018) developed a new IV approach using the
randomization by-baseline covariate interaction Z × XIV as the instrumental variable
for count and zero-inflated count data. Since the randomized treatment itself is not
used as the IV, both the direct and indirect effects of the treatment on the outcome
of interest can be estimated. They considered the controlled and natural direct and
indirect effects on a ratio scale for count and zero-inflated count.
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Considering a generalized linear outcomemodelwith log link for count and aNeyman
Type A distributed outcome (Dobbie and Welsh 2001) for zero-inflated count:

f {E (Y (z,m)|x, u)} = β0 + βz z + βmm + βxx + u, (10.32)

where u is an unmeasured confounder, Guo et al. (2018) showed that estimating the
controlled effect ratios is equivalent to estimating βz and βm
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. (10.33)

and that the natural direct effect ratio will be the same as the controlled direct effect
ratio:
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= exp
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. (10.34)

However, given the mediator model (10.35) and outcome model (10.36), the natural
indirect effect ratio will be different from the controlled indirect effect ratio, being
(10.37) for a continuous mediator and (10.38) for a binary mediator:
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= P(Mz = 1|x, u) exp(βm) + P(Mz = 0|x, u)

P(Mz∗ = 1|x, u) exp(βm) + P(Mz∗ = 0|x, u)
, binary. (10.38)

For a continuous mediator, the natural direct effect ratio (10.34) and indirect effect
ratio (10.37) are identifiable given that the parameters βz , βm , αz and αIV can be
estimated consistently. However, the natural indirect effect ratio for a binarymediator
(10.38) depends on the values of the unmeasured u and therefore is not identifiable
without additional assumptions.

Using the randomization by-baseline covariate interaction Z × XIV as an IV,
both 2SRI and 2SPS fit the same mediator model in Stage I based on observables:
h{E (

M |z, x, z × xIV
)} = α0 + αz z + αIVz × xIV + αxx. In Stage II, 2SRI fits the
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outcome model with the residual r̂ = (m − m̂) from Stage I : f {E (
Y |m, z, x, r̂

)} =
β0 + βz z + βmm + βxx + βr r̂ ; 2SPS uses the predicted value m̂ instead of the resid-
ual r̂ from the first stage for the outcome model f {E (

Y |m̂, z, x
)} = β0 + βz z +

βmm̂ + βxx.Guo et al. (2018) showed that when the outcome model is log linear and
the mediator model is linear, 2SRI provides consistent estimate of the parameters
but 2SPS is not necessarily consistent; when the outcome model is log linear and the
mediator model is logit, neither 2SRI nor 2SPS is consistent.

Because the two-stage methods may not be consistent for a count or zero-inflated
count especially when the mediator is not continuous, Guo et al. (2018) considered
a new approach using a set of estimating functions to incorporate information about
the parameters and distribution such that E{g(w, θ)} = 0, where w = (z, x,m, y)
and θ = (β0, βz, βm, βx) are the parameters associated with the outcome model.
Then they maximized the empirical likelihood

∏n
i=1 pi subject to the restrictions

pi ≥ 0,
∑n

i=1 pi = 1,
∑n

i=1 pig(wi , θ) = 0 for θ̂ , where pi is the probability to
observe the data (Zi , Xi , Mi ,Yi ). Guo et al. (2018) showed that their estimating
equations and empirical likelihood estimator θ̂ is consistent under some mild reg-
ularity conditions. Note that this approach does not require the specification of the
error distribution of the outcome and therefore is robust to the misspecification of
the outcome distribution.

In theMI+DVD study,more than 60%of children had no new untreated lesions, so
the count outcome has many zeros. The mediator of whether or not caregivers made
sure their child brushed at bedtime is binary. There is a concern about unmeasured
confounders of oral health education that the caregivers and/or children received from
their dentists, schools, communities, or the Internet outside of the study. Therefore,
the IV mediation analysis was considered. Three baseline covariates (the number of
times that the child brushed at baseline, whether or not caregivers made sure their
child brushed at bedtime at baseline, and whether or not caregivers provided the child
healthy meals at baseline) are considered as important behavioral variables related to
subsequent oral hygiene behaviors and oral health. Therefore, their interactions with
the randomized intervention were used to construct three IVs. The three constructed
IVs were shown to be reasonable IVs following a series of assessments on the IV
assumptions (Guo et al. 2018). The result shows a controlled direct effect ratio
of 1.081, indicating that the intervention did not have much direct effect on the
number of newuntreated decayed tooth surfaces (cavities). Parent behavior inmaking
sure their child brushed at bedtime tended to decrease the number of new untreated
decayed tooth surfaces (cavities) (controlled indirect effect ratio of 0.595) but the
effect was not statistically significant with a 90% CI of (0.070, 4.604).

10.6 Summary

Mediation analysis provides helpful information for understanding mechanisms
underlying risk factors or treatment on health outcomes and is a powerful tool for
better-designed interventions. When linear models do not fit non-continuous health
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outcomes, mediation analysis becomes challenging. This chapter has discussed con-
ventional methods as well as recently developed causal methods for mediation analy-
ses for binary, count, and zero-inflated count health outcomes under different settings
and assumptions. Researchers are encouraged to evaluate the plausibility of assump-
tions and select a method appropriate for their study.
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Chapter 11
Statistical Considerations
for Quantitative Imaging Measures
in Clinical Trials

Ying Lu

11.1 Introduction

Since the discovery of X-ray in 1895, noninvasive medical imaging techniques have
experienced many major milestones, including inventions of computer tomogra-
phy (CT), MRI, PET, and ultrasound; each of them revolutionized the medicine
(Thomas and Banerjee 2013). Medical imaging has been extensively used in modern
medicine for population screening and risk assessment, disease diagnosis, prognos-
tic prediction, monitoring disease progress and treatment response, imaging-guided
treatments, and as tools for basic biology. Another important application of imaging
techniques is in drug developments. Imaging endpoints have been used in clinical
trial to assess the effects of drugs on patients, such as primary or secondary clinical
endpoints, or as surrogate markers for clinical events that may not be easily observed
during the trials.

The first published randomized controlled clinical trial conducted by BMRC in
1946 studied the effect of streptomycin versus bed resting for treating pulmonary
tuberculosis (No author 1948). X-ray films were used to assess patient eligibility as
well as treatment effects. Two radiologists and one clinician performed independent
and blinded readings to assess changes from baseline. Disagreement was resolved
via consensus readings. Based on the radiologists’ assessment, the trial concluded
that streptomycin was “no doubt” more effective than bed resting.

Since then, imaging has been an integrated part of clinical trials. We have used
number and size of lesions to evaluate the treatment effect formultiple sclerosis drugs,
bone mineral density (BMD) and vertebral fractures for osteoporosis drugs, and the
“response evaluation criteria in solid tumors” (RECIST) for cancer treatments. All
of them are measured via imaging techniques.
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The advantages of imaging techniques in clinical trials are many folds: They are
noninvasive, can be measured repeatedly, are objective and reproducible measures of
clinical changes, and are oftentimes measured both qualitatively and quantitatively.
Their disadvantages include equipment and reader dependence, complex logistics,
and higher costs.

While image is a form of data, direct overlap of medical images is not common
used to compare the trial results. Radiologists have been used to assess the images
in categorical values. More often, regions of interests (ROIs) were pre-defined and
some summary statistics from the ROIs are derived as quantitative endpoints. As a
result, there are also multiple ways to summarizing an image and selection of what
is the most clinically relevant summary will require clinical insights of clinicians.
However, many other properties, such as measurement errors of the summary statis-
tics, predictive accuracy, and leading time for clinical events, are also important
considerations (Lu and Zhao 2015). Thus, the selection of proper imaging endpoints
requires collaborative efforts of a multidisciplinary team (Zhao 2010).

Clinical trials are experiments or observations done in clinical research. The clin-
ical trials to validate imaging endpoints are different from the trials that using estab-
lished imaging techniques to determine the effectiveness of medical intervention
strategies. The American College of Radiology Imaging Network (ACRIN) has a
consortium to evaluate medical imaging techniques (Hillman 2005). For this chapter,
we will focus on the use of imaging techniques in clinical trials for therapeutic inter-
ventions. However, the methods are also relevant for general use of all kinds of
biomarkers.

In the remaining of chapter, two topics are specifically discussed. Section 11.2
discusses statistical considerations of selecting an (imaging) biomarker endpoint for
a phase II oncology trial. Section 11.3 discusses quality control and quality assurance
of bone mineral density and contents in pediatric bone trials. Section 11.4 presents
discussions and conclusion.

11.2 Predictive Accuracy and Clinical Trial Utility
of Imaging Endpoints

11.2.1 Surrogate Endpoints for Trials

Approval of a new drug in USA requires substantial evidence of effectiveness that
must be derived from adequate and well-controlled clinical investigations. Similarly,
the Public Health Service Act requires biological products to be safe, pure, and
potent. Clinical benefits that have supported drug approval have included impor-
tant clinical outcomes (e.g., increased survival, symptomatic improvement) but have
also included effects on established surrogate endpoints (e.g., blood pressure, serum
cholesterol). Depending on the stage of drug development, clinical trials may use
different endpoints to serve different purposes. For oncology drug development, for



11 Statistical Considerations for Quantitative Imaging … 221

example, early-phase clinical trials evaluate safety and identify evidence of biologi-
cal drug activity, such as tumor shrinkage. Endpoints for later phase efficacy studies
commonly evaluate whether a drug provides a clinical benefit such as prolongation
of survival or an improvement in symptoms.

A clinical endpoint is defined as a characteristic or variable that reflects how
patient feels or functions or how long a patient survives. They are strongest evidence
for drug effects. Sometimes, it may take too long to measure a clinical endpoint.
For that reason, we also use surrogate endpoint in trials. A surrogate endpoint is a
biomarker intended to substitute for a clinical endpoint, which is expected to predict
the clinical benefit, harm, or lack of benefit or harm. Imaging endpoints can be both
clinical and surrogate endpoints.

Statistically, Prentice (1989) gave a statistical definition of surrogate endpoint “as
a response variable (X) for which a test of the null hypothesis of no relationship to
the treatment groups (T ) under comparison is also a valid test of the corresponding
null hypothesis based on the true endpoint (Y ).” Mathematically, it can be expressed
as

f (X |T ) � f (X) ⇔ f (Y |T ) � f (T ). (11.1)

Here f (Z |T ) is the conditional probability distribution of a random variable Z
conditional on the value of Z . Thus, f (X |T ) � f (X) represents the null hypothesis
for the surrogate endpoint and f (Y |T ) � f (Y ) represents the null hypothesis for
the true clinical endpoint. “⇔” represents the equivalence.

Prentice criterion defined in (11.1) established the clinical validity of a surro-
gate marker for an intervention. Imaging endpoints measure clinically physiological
changes invasively and can be seen at asymptomatic stage and can be perfect candi-
dates for surrogate endpoints. However, this definition of surrogate endpoint requires
equivalence, which is in a higher order thanmost commonly used surrogate endpoints
(Schatzkin 2000). More often, treatment on surrogate endpoint is only a necessary
but not sufficient condition for an effective treatment. For example, RECIST is a
necessary condition for progress-free or overall survival for many oncology drugs.
It is not a sufficient condition because some of the drugs may demonstrate bene-
fits in RECIST but no improvement in overall survival. We often use RECIST as a
surrogate endpoint for proof of concept phase II trials and progress survival time or
overall survival time as clinical endpoint for the pivotal phase III trials. Also, it is
worthwhile to point out that surrogacy of an endpoint depends on treatments.

Our discussion in this section is not about how to determine the clinical validity
of an imaging endpoint as a surrogate endpoint (Alonso et al. 2006). We assume the
case that the clinical validity has been established for imaging endpoints; i.e., the
endpoint measures the clinical endpoints. To make a surrogate useful, in addition to
its clinical validity defined by (11.1), we also need to establish its analytical validity
and clinical utility. Analytical validity means that imaging biomarkers should be
accurate, reliable, and reproducible, which we will discuss in Sect. 11.3. Clinical
utility in a clinical trial setting means that use of surrogate endpoints should provide
tangible benefits to investigators or sponsors, either in reduction of the number of



222 Y. Lu

patients needed or trial durations or simplification of logistics, etc., to justify their
uses. To this end, there is no difference between an imaging surrogate marker versus
general surrogatemarkers. Therefore, the discussion belowapplies to all the surrogate
markers.

11.2.2 Phase II Oncology Trials

In oncology trials, phase II trials often use a one-sided single-arm design. Let Y (t) be
a binary step function of the best clinical response status to proportion time t of trial
duration since baseline: t ∈ (0 , 1], such as complete or partial responses according
to RECIST. We also assume that Y (0) � 0 as no response before treatment. In
this section, we assume that a surrogate imaging endpoint X depends on treatment
T through clinical outcome Y , i.e., T → Y → X . As the result, X is a surrogate
endpoint forY based on definition (11.1). Example ofX can be circulated cancerDNA
in blood sample. Because oncology phase II trials often are single arm, treatment T
is not explicitly expressed in the experiment rather through the definitions of the null
and alternative hypotheses. We want to determine if X has any clinical utility over
endpoint Y .

Let g(t) � Pr [Y (t) � 1] be the observed cumulative probability of response
and g(h)(t) � Pr [Y (t) � 1|h ] be the cumulative probability of response up to a
proportion time of t under the null (h � 0) and alternative (h = 1) hypotheses,
respectively. In a typical phase II trial design, we specified that a historical response
rate as g(0)(1) and a success of a treatment should achieve a response rate at g(1)(1).
Thus, a typical phase II trial test for the hypotheses that H0 : g(1) ≤ g(0)(1) versus
H1 : g(1) ≥ g(1)(1). The standard sample size formula for a single-arm one-sided
phase II trial under is under a type I error α and power 1 − β is

n �
(
zα

√
g(0)(1)

(
1 − g(0)(1)

)
+ z1−β

√
g(1)(1)

(
1 − g(1)(1)

))2
(
g(1)(1) − g(0)(1)

)2 (11.2)

We can also consider the response rate at early time Y (t) as a surrogate endpoint
for Y (1), the final response status. The specificity P(Y (t) � 0|Y (1) � 0 ) � 1 and
sensitivity P(Y (t) � 1|Y (1) � 1 ) � g(t)/g(1). In that sense, we can test if the drug
is effective at any time t for H0 : g(t) ≤ g(0)(t) versus H1 : g(t) ≥ g(1)(t). The
asymptotic sample size is determined by

n(t) �
(
zα

√
g(0)(t)

(
1 − g(0)(t)

)
+ z1−β

√
g(1)(t)

(
1 − g(1)(t)

))2
(
g(1)(t) − g(0)(t)

)2 (11.3)
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11.2.3 Continuous (Imaging) Surrogate Endpoints

LetX be a continuous (imaging) surrogate variable that can predict the response at the
end of trial Y (1). X(t) is its value at time t. As a surrogate endpoint, the value of X(t)
for treatment responders and non-responders should have different distributions. Let

Xi (t) � {X(t)|Y (1) � i} ∼ N
(
μi (t), σ

2
i (t)

)
(11.4)

be the surrogate variable for responders and non-responders. Without loss of gener-
alizability, we let μ1(t) − μ0(t) � δ(t) > 0. Thus,

X(t) � Y (1)X1(t) + (1 − Y (1))X0(t) (11.5)

E[X(t)] � g(1)μ1(t) + (1 − g(1))μ0(t) � μ0(t) + g(1)δ(t) (11.6)

V [X(t)] � σ 2
0 (t) + g(1)

[
σ 2
1 (t) − σ 2

0 (t)
]
+ g(1)(1 − g(1))δ2(t) (11.7)

The ability of X(t) to predict response Y (1) is often described by a receiver oper-
ating characteristics (ROC) curve. The area under the ROC curve (AUC) representing
the strength of its predictive utility was studied in imaging validation studies. Under
our notations, the AUC for X(t) is measured by

AUC(t) � �

(
δ(t)/

√
σ 2
0 (t) + σ 2

1 (t)

)
(11.8)

As a surrogate endpoint, test for the treatment efficacy at time t based on a test
of mean surrogate measures at any time of t under the following hypotheses: H0 :
E[X(t)] ≤ μ0(t) + g(0)(1)δ(t) versus H1 : E[X(t)] ≥ μ0(t) + g(1)(1)δ(t). The
asymptotic sample size is determined by

m(t) �

⎛
⎜⎜⎝

zα

√
g(0)(1)

(
1 − g(0)(1)

)
+ σ 2

0 (t)+g(0)(1)[σ 2
1 (t)−σ 2

0 (t)]
δ2(t) +

z1−β

√
g(1)(1)

(
1 − g(1)(1)

)
+ σ 2

0 (t)+g(1)(1)[σ 2
1 (t)−σ 2

0 (t)]
δ2(t)

⎞
⎟⎟⎠

2

(
g(1)(1) − g(0)(1)

)2 (11.9)

11.2.4 Discrete Imaging Surrogate Endpoints

Imaging surrogate endpoints can also be discretized. Let Z(t) be a binary surrogate
imaging endpoint. One possible example is to use a cutoff value of a continuous surro-
gate variable X(t). We can define Z(t |x ) � 1{X(t)>x}. The sensitivity (Sn) and speci-
ficity (Sp) for clinical response Y (1) are Sn(t |x) � P(Z(t |x ) � 1|Y (1) � 1) �
1 − �

(
x−μ1(t)

σ1

)
and Sp(t |x) � P(Z(t |x ) � 0|Y (1) � 0) � �

(
x−μ0(t)

σ0

)
.
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The mean and variance of Z(t |x ) are in (11.10) and (11.11), respectively.

h(t |x) � E[Z(t |x)] � [1 − Sp(t |x)] + [Sn(t |x) + Sp(t |x) − 1]g(1) (11.10)

V [Z(t |x)] � g(1)(1 − g(1))[Sn(t |x) + Sp(t |x) − 1]2

+ Sp(t |x)(1 − Sp(t |x))(1 − g(1)) + Sn(t |x)(1 − Sn(t |x))g(1)
(11.11)

The sample size is calculated using the following formula.

k(t) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zα

√√√√√√
g(0)(1)

(
1 − g(0)(1)

)
+

Sp(t |x)(1−Sp(t |x))(1−g(0)(1))+Sn(t |x)(1−Sn(t |x))g(0)(1)

[Sn(t |x)+Sp(t |x)−1]2

+

z1−β

√√√√√√
g(1)(1)

(
1 − g(1)(1)

)
+

Sp(t |x)(1−Sp(t |x))(1−g(1)(1))+Sn(t |x)(1−Sn(t |x))g(1)(1)

[Sn(t |x)+Sp(t |x)−1]2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(
g(1)(1) − g(0)(1)

)2 . (11.12)

11.2.5 Utility of Surrogate Variables

For a surrogate variable to be useful, it should provide clinical utility for a trial. Here,
we consider the utility in two aspects. The first utility is to reduce the overall sample
size for a trial. The second utility is to allow a trial to reach conclusion earlier.

Theorem 11.1 For a single-arm one-sided oncology trial with a binary clinical end-
point, either continuous or binary surrogate endpoints will not reduce the required
sample sizes under the same type I or II errors, i.e., m(t) ≥ n(1) and k(t) ≥ n(1).

Proof According to Eqs. (11.2), (11.9), and (11.12), m(t) ≥ n(1) and k(t) ≥ n(1).
Thus, surrogate endpoints will not be able to reduce the sample size during the entire
trial period.

Furthermore, a continuous surrogate endpoint always requires higher sample size.
For a binary surrogate variable, the sample size k(t) � n(1) if and only if Z is a perfect
surrogate with both sensitivity and specificity to be 1.

QED.

Definition 11.1 A surrogate variable has clinical utility value if it required a smaller
sample size than n(t) in Eq. (11.3) at a time t during the trial.

Thus, ifm(t)/n(t) < 1 for a t < 1, the continuous surrogate endpoint has clinical
utility value. Similarly, if k(t)/n(t) < 1 for a t < 1, the binary surrogate endpoint
offers no clinical utility value.
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Fig. 11.1 AUC of ROC for
P1 to P4 as a function of
time during trial. Legend:
The black (solid), red
(dashed), green (dotted), and
blue (dotdash) lines for P1,
P2, P3, and P4, respectively
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Whether a surrogate endpoint offers a clinical utility value depends on the relative
improvement in its prediction of clinical response in comparison with the change of
response over time. Using the ratio of m(t)/n(t) and k(t)/n(t) can help us to select
surrogate endpoint that will reduce the trial duration. Furthermore, using k(t)/n(t)
can help us to select the best cutoff value for a continuous surrogate endpoint.

Example 11.1 Let g(0)(t) � 0.2t and g(1)(t) � 0.4t , i.e., the response rates
increase linearly under the null and alternative hypotheses for clinical endpoint.
We have four continuous surrogate markers, P1, P2, P3, and P4. We assume
that the accuracy of surrogate endpoint to predict clinical endpoint improves
over the time. Using notations in Sect. 11.2.3, we assume that μ0(t) � 0 and
σ 2
0 (t) � σ 2

1 (t) � 1. In this special case, μ1(t) � δ(t) � √
2�−1(AUC(t)).

For P1 and P3, AUC(1) �0.99 and for P2 and P4, AUC(1) �0.90. After an
initial period of no change, we assume AUCs of P1 and P3 follow a slow linear
improvement with time as AUC(t) � 0.85 + 4[AUC(1) − 0.85]/3(t − 0.25)+. P2
and P4, on the other hand, have exponential improvements in AUC as AUC(t) �
0.85+1.05[AUC(1) − 0.85]

[
1 − exp(t − 0.25)+

]
. Figure 11.1 shows the AUCs for

P1 to P4 as a function during the trial.
To evaluate type 2 clinical utility of these surrogate endpoints, Fig. 11.2 plots

the ratio of sample size m(t)/n(t) during trial period. Here, we use α � 0.05 and
β � 0.2. We can see that these markers will have advantage in early stage of trial but
the benefits are reduced after more chance to observe clinical endpoints. The more
accurate surrogate endpoints have benefits for a longer time window. Further, the
rapidly improved endpoints have also longer clinical utility time windows.

Example 11.2 Continuing from Example 11.1, we would like to select a cutoff value
in above continuous surrogate endpoints to generate binary surrogate endpoints. We
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Fig. 11.2 Ratio of sample
size m(t)/n(t) during trial
period. Legend: The black
(solid), red (dashed), green
(dotted), and blue (dotdash)
lines for P1, P2, P3, and P4,
respectively
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Table 11.1 Comparison of
clinical utility between
continuous and optimal
binary surrogates

Time P1 P2 P3 P4
m(t)
n(t)

k(t)
n(t)

m(t)
n(t)

k(t)
n(t)

m(t)
n(t)

k(t)
n(t)

m(t)
n(t)

k(t)
n(t)

0.25 0.67 0.78 0.67 0.78 0.67 0.78 0.67 0.78

0.50 1.12 1.20 1.33 1.50 0.87 0.84 1.21 1.32

0.75 1.42 1.37 1.98 2.17 1.14 1.01 1.85 1.98

1.00 1.50 1.28 2.65 2.81 1.50 1.28 2.65 2.81

have many options to select the cutoff values. However, we would like to select the
optimal cutoff values that generate lowest ratio of sample size k(t)/n(t). The optimal
cutoff values depend on the time during the trial. To illustrate selection of optimal
cutoff values, we look at trial time t �0.25, 0.50, 0.75, and 1.00 in Fig. 11.3. The
left panel of Fig. 11.3 shows the ROC curves at four time points and highlights the
optimal cutoff points. The right panel shows the ratio of k(t)/n(t) over the range of
1-specificity and highlights the optimal cutoff points. Table 11.1 compares clinical
utility values for all four surrogate measures used either as continuous or as binary
at the optimal cutoff values. Although, in general, the continuous surrogate variables
give better utility, it is possible that optimal binary surrogate endpoints outperform
the continuous one in some cases.

11.2.6 Conclusion

To be used as surrogate endpoints for clinical trials, imaging endpoints need to
have clinical relevance as defined by Prentice (1989) and clinical utility, either in
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Fig. 11.3 Utility of binary surrogate endpoints and the corresponding optimal cutoff values at 0.25,
0.50, 0.75, and 1.00 time in a trial. Legend: The black (solid), red (dashed), green (dotted), and blue
lines and points are for the 0.25, 0.50, 0.75, and 1.00 time point of a trial

saving overall sample size or saving time to conclude trial earlier. In this subsection,
we demonstrated that surrogate endpoints will require more patients in a phase II
single-arm oncology trial. It, however, can achieve earlier inference than the clinical
endpoints if it has higher predictive accuracy measured in AUC of ROC curves and
more rapidly increase in time than the clinical endpoints.
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11.3 Quality Control Process for Imaging Endpoints

11.3.1 Types of Measurement Errors

Imaging endpoints depend on the condition of radiological equipment, operators,
environment, and interpreters (radiologists). As such, their results are subject to ran-
dom variations. Measurement error is defined as the difference between a measured
value from the true physical value. Measurement errors can be characterized based
on their statistical distribution. The difference between the mean of measurement
errors and the true physical value is the accuracy error. The variation around the
mean is the precision error (Lu and Zhao 2015).

Clinically, accuracy errors (here used as equivalent to the term bias) reflect the
degree to which the measured results deviate from the true values. To evaluate accu-
racy errors, we need to know the true values of the measured parameters. It is not
always possible, however, to measure the accuracy errors because sometimes the
true values of the measured parameters cannot be verified. For example, quantitative
ultrasound (QUS) bone measurements are affected by several quantitative and qual-
itative factors, and there is no single correlate for any QUS measurement. Therefore,
we cannot define a single accuracy error for QUS (Njeh et al. 1999).

For clinical applications only the part of the accuracy error that varies from patient
to patient in an unknown fashion is relevant. The other part, i.e., the one that is
constant, can be averaged across subjects (e.g., the average underestimation of bone
density due to the average fat content of bone marrow in quantitative computed
tomography (QCT)), can be ignored. There are two reasons: First, for diagnostic uses,
the reference data will be affected by the same error so the difference between healthy
and diseased subjects is constant. Second, the error is present at both baseline and
follow-up measurements and does not contribute to measured changes. Therefore,
when discussing the impact of accuracy errors only that part of the error that changes
from patient to patient in an unknown and uncontrollable fashion is of interest. For
this reason, small accuracy errors are of little clinical significance provided they
remain constant. They are more relevant to diagnosis and risk assessment than to
monitoring changes or relative differences between arms in a clinical trial (Engelke
and Gluer 2006).

Precision errors reflect the reproducibility of the technique. They measure the
ability of a method to reproducibly measure a parameter for reliably monitoring
clinical changes over time. Precision errors can be further separated into short-term
and long-term precision errors. Short-term precision errors characterize the repro-
ducibility of a technique and are useful for describing the limitations of measuring
changes in a clinical status. If they are large, they may affect the diagnostic accuracy
of a techniquemeasured byAUCof ROC curves. Long-term precision errors are used
to evaluate instrument stability which is critical for clinical trials. Because long-term
precision errors include additional sources of random variation attributable to small
drifts in instrumental calibration, variations in patient characteristics, and other tech-
nical changes related to time, they provide a better measure of a technique’s ability
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to monitor parameter changes than the short-term precision errors do. For patient
measurements, estimates of long-term precision usually also include true longitudi-
nal variability of measured body sites. For these reasons, long-term precision errors
normally are larger than short-term errors. Lu and Zhao (2015) provided a com-
prehensive overview on the statistics used in quality control, quality assurance, and
quality improvement in radiological studies, including various forms of precision
errors and their distribution properties for different clinical applications.

Precision errors are usually evaluatedwhenever new techniques or newdevices are
developed. Precision errors are also evaluated immediately after a device is installed
in clinical sites to assure that the equipment is performing according to the manufac-
turer’s specifications at baseline. Precision errors also are always assessed before the
beginning of clinical trials or longitudinal studies (Lu et al. 1996). It is always the
desire to keep the same equipment used through the entire trial to assure consistency
of measurements. However, for long-term studies, it is usually not feasible. Although
the manufacturer’s service personnel can set up the device so that precision errors are
within appropriate limits at baseline, it is very important to monitor the equipment
to assure that imprecision remains within acceptable limits. Despite the remark-
able accuracy and reproducibility of radiological equipment, measurements can still
vary because of changes in equipment, software upgrades, machine recalibration,
X-ray source decay, hardware aging and/or failure, or operator errors. If equipment
is upgraded during the trial, in addition to calibrate to the previously used device, a
new precision reference is usually established. A conversion formula (Shepherd and
Lu 2007) can be used to characterize the precision errors of longitudinal changes in
the presence of device upgrades.

A quality control and quality assurance program is always necessary for clinical
trials using imaging endpoints. In this section, we would like to provide overview of
extension of univariate statistical process control approaches (Lu and Zhao 2015) to
bivariate quality control process charts, which have been used in pediatric trials to
monitor bone mineral density and contents over the trial period of time.

11.3.2 Univariate Process Control Charts for Bone Mineral
Density

In an ideal setting, a well-maintained equipment produces values that are randomly
spread around a reference value. A change point is defined as the point in time at
which the measured values start to deviate from the reference value. To evaluate
measurement stability and identify change points, radiologists develop phantoms
that simulate human measurements but, unlike humans, do not change over time
(Kalender et al. 1995; Krueger et al. 2016). Variations in phantom measurements
should reflect variations in human measurements. Phantoms are measured regularly
to detect one or more of the following events: (1) The mean values before and after
the change point are statistically significantly different; (2) The standard deviations
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of measurements before and after the change point are statistically significantly dif-
ferent; (3) The measurements after the change point show a gradual but significant
departure from the reference value. When phantom is not available and possible,
normal health controls have been traveled to all participating sites to serve as the ref-
erences longitudinally and across sites (Keshavan et al. 2016). There are advantages
of in vivo measures of human subjects. However, it costs a lot more, cannot continu-
ously measured, and is often hard to determine if there are changes over time for the
reference populations. Therefore, if possible, a quality control based on phantoms is
the best approach for clinical trials.

Statistical process control (SPC) is a powerful collection of problem-solving tools
for achieving process stability and improving capacity through reduction of variabil-
ity (Rodriguez and Ransdell 2010). There are several statistical methods for identi-
fying change points (Montgomery 2012). Shewhart chart and CUSUM chart are two
most commonly used methods. The advantages of Shewhart chart are its simplicity
and easy for use. Thus, it has been widely used inmany areas, especially direct use by
technicians of radiology equipment. CUSUM is a more sensitive statistical method
that can identify status of an equipment more accurately and efficiently. However, it
requires mathematical calculations andmuch less intuitive. It is often used by quality
control centers to monitor machine performance during a trial.

In osteoporosis trials using DXA scanners, Shewhart and CUSUM process con-
trol charts are used to monitor longitudinal scanner performance for BMD either
using Hologic or European spine phantoms or Hologic hip or whole-body phantoms.
Details of these quality control charts and examples of their applications for univari-
ate BMD can be found in Lu et al. (1996), Lu and Zhao (2015). Here, we give a brief
overview in order to introduce the bivariate quality control charts.

A Shewhart chart is a graphic display of a quality that has been measured over
time. The chart contains a central horizontal line that represents the mean reference
value. Three horizontal lines above and three below the central line indicate 1, 2,
and 3 standard deviations from the reference value. By plotting the observed quality
control measurements on the chart, we can determine if the machine is operating
within acceptable limits.

The reference values can be derived from theoretical values for the phantom, or
from the first 25 observations measured at baseline. The reference value changes
whenever the Shewhart chart indicates an out-of-control signal and the machine is
recalibrated. Thenew reference valuewill thenbe themeanof thefirst 25observations
after recalibration. The number of observations needed to calculate the reference
value may vary; the number 25 was chosen based on practical experience to balance
the stability of the reference value with the length of time needed to establish it.

The standard deviation varies among individual devices, andmanufacturers should
be selected accordingly. For example, in one osteoporosis study, we sometimes use
the BMD of a Hologic phantom to monitor DXA scanner performance. We usually
assume the coefficient of variation for Hologic machines to be 0.5% and Lunar to
be 0.6%, based on reported data on long-term phantom precision (Lu et al. 1996).
Therefore, the standard deviation for the scanner was calculated as 0.005 and 0.006
times the reference value for Hologic and Lunar machines, respectively.
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Table 11.2 Definition of tests for assignable causes for Shewhart charts

Tests Pattern description

1 One point is more than 3 standard deviation from the central line

2 Nine points in a row on one side of the central line

3 Six points in a row steadily increasing or steadily decreasing

4 Fourteen points in a row alternating up and down

5 Two out of 3 points in a row more than 2 standard deviation from the central line

6 Four out of 5 points in a row more than 1 standard deviation from the central line

7 Fifteen points in a row all within 1 standard deviation from the central line on either
or both sides of the line

8 Eight points in a row all beyond 1 standard deviation from the central line on either
or both sides of the line

The original Shewhart chart will signal that there is a problem if the observed
measurement is more than 3 standard deviations from the reference value. Although
intuitive and easy to apply, the chart is not very sensitive to small but significant
changes. Therefore, a set of sensitizing tests for assignable causes has been developed
to improve the sensitivity of Shewhart charts. Eight of the tests are available in the
statistical software package SAS. The tests are listed in Table 11.2.

The sensitizing rules can be used in all or in part depending on the underlying
processes of interest. For example, for quality control of DXA machines, we used
four tests—1, 2, 5, and 6 (Lu et al. 1996). Once a change point has been identified by
any one of the tests, the manufacturer’s repair service should be called to examine
the causes and to recalibrate the machine. We then use the next 25 observations to
generate new reference values and apply the tests to the subsequent data according
to the new reference value.

The sensitizing rules increase the sensitivity of the Shewhart chart, but also
increase the number of clinically insignificant alarms, which is not desirable. To
overcome this problem, a threshold based on the magnitude of the mean shift can
also be implemented. For example, we can select ten consecutive scans from after
the possible change point identified on the Shewhart chart and then calculate their
mean values. If the mean differs by more than one standard deviation (which equals
0.5% times the reference value, in our example) from the reference value, the change
point is confirmed as a true change point. Otherwise, the signal from the Shewhart
chart is ignored and the reference value is unchanged. This approach filters out small
and clinically insignificant changes. However, the true difference must be more than
one standard deviation for this approach to be effective, and this approach can delay
the recognition of true change points.

ACUSUMchart is short for cumulative sum chart. In applications, we recommend
a version of CUSUM known as tabular CUSUM because it can be presented with
or without graphs. Mathematically, we define an upper one-sided tabular CUSUM
SH (i) and a lower one-sided tabular CUSUM SL(i) for the ith QC measurement as
the following:
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SH (i) � max

[
0,

Xi − μ0

σ
− k + SH (i − 1)

]
(11.13)

SL(i) � max

[
0,

μ0 − Xi

σ
− k + SL(i − 1)

]
(11.14)

Here,μ0 is the reference mean, σ is the standard deviation, and k is a parameter to
filter out insignificant variations and is usually set at 0.5. The initial values of SH (0)
and SL(0) are 0. The chart sends an alarmmessage if SH (i) or SL(i) is greater than 5.
In other words, when the standardized BMD value deviates more than k from zero,
the cumulative upper bounded sum increases by the amount of deviations above k.
On the other hand, if the deviation is less than k, the cumulative sum will be reduced
accordingly. When the cumulative sum is less than zero, we ignore the past data
and set the cumulative sum as zero. However, a cumulative sum greater than 5 is a
strong indication of a deviation from the reference mean in the data. Furthermore,
a CUSUM chart also estimates when the change occurred and the magnitude of the
change. We use the estimated magnitude of change to establish the new reference
values (Lu and Zhao 2015).

11.3.3 Bivariate Process Control Charts for Bone Mineral
Density

Bone structure for adults does not change rapidly, and bone mineral density change
is primarily due to the loss of bone mineral contents (BMC). Thus, using longitu-
dinal Shewhart or CUSUM chart described above is adequate to monitoring DXA
scanner performance in adult osteoporosis trials. The situation is different, however,
for pediatric trials, during which children experience rapid changes not only in bone
mineral contents but also in bone structure due to growth. Thus, quality control is
needed to monitor the measurement stability in not only BMD, but also both BMC
and area for whole-body scans in pediatric clinical trials for bone changes. As such, a
bivariate simultaneous process control chart is required for BMB and BMC. Because
BMD is the ratio of BMC over bone area, in control of BMD and BMC implies in
control of the bone area. In our bivariate quality control process, we perform log-
transformations for BMD (lBMD) and BMC (lBMC), so the log-transformed bone
area is the difference of the lBMC and lBMD. In ten sets of quality control scan data
for whole-body phantom in a pediatric trial we tested, the log-transformed BMD,
BMC, and Area had almost identical break points as the raw data of BMD, BMC,
and Area. Thus, in this section, log-transformed variable names are used exchange-
able with the original BMD, BMC, and Area. We introduce bivariate Shewhart and
CUSUM charts as the following.
Bivariate Shewhart Chart (BSC) (Lu et al. 2006): In a univariate Shewhart chart,
we draw three lines above and below the reference mean in a unit of one standard
deviation. Based on the probability of a normally distributed random variable, we
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Table 11.3 Bivariate Shewhart sensitized rules for QC Data

Rules Description

1 One (1) point outside the outer ring (third ring)

2 Five (5) points in a row on one of the four quatrains

5 Two (2) of 3 points in a row outside of the middle ring (second ring)

6 Four (4) of 5 points in a row outside of the inner ring (first ring)

define several types of reportable events inTable 11.2. In our bivariate Shewhart chart,
we assume the random measurement errors for lBMD and lBMC follow a bivariate
normal distribution with a mean of (μl BMD, μl BMC ) and a covariance matrix �.
We denote the standard deviations of lBMD and lBMC as σl BMD and σl BMC , and
the correlation coefficient as ρ. Like univariate case, we can estimate these five
parameters from the first 25 QC phantom scan data.

Themain idea to extend Shewhart chart form univariate to bivariate is to divide the
bivariate plane into different rings and define events accordingly. Let lBMC be the
X-axis and lBMDbe the Y-axis.We draw three ellipses using the following equation:

σ 2
l BMD(X − μl BMC )2 − 2ρσl BMDσl BMC (X − μl BMC )(Y − μl BMD) + σ 2

l BMC (Y − μl BMD)2

� σ 2
l BMDσ 2

l BMC

(
1 − ρ2

)
R2 (11.15)

where R�1.52, 2.49, and 3.44, respectively, to reflect similar boundaries of one,
two, and three standard deviation lines in a univariate Shewhart chart.

We then draw the bivariable plane into four quatrains according to two lines by
the axes of the ellipses. Figure 11.4 shows steps to construct the four quatrains. A 45-
degree line (l BMC � l BMD, or y � x) can be also drawn to indicate the directions
of measured area in relationship to the observed reference means. If observed break
points moved toward northeast, it means the area increased.

Whenever the machine recalibrated or maintained, a new chart should be formed
based on the new means and covariance matrix.

Table 11.3 gives sensitizing rules for bivariate Shewhart chart that are correspond-
ing to Table 11.2 for univariate Shewhart chart rule. After daily quality control scan,
a technician plots the lBMD and lBMC on the bivariate Shewhart chart. If one of
the above four rules is violated, the machine will need to be reviewed for assignable
courses and possibly required for services.

As an example of a whole-body phantom quality scans by a DXA scanner, we
calculated five parameters for lBMD and lBMC: μl BMD � 0.1008 (log(mg/cm2),
μl BMC � 6.5814 (log(mg)), σl BMD � 0.0256 (log(mg/cm2), σl BMC � 0.0320
(log(mg)), and ρ � 0.5885. Figure 11.5 shows the corresponding Shewhart chart
and examples when the rules are violated.

Bivariate CUSUM Chart (BCC) (Lu et al. 2007): To construct bivariate CUSUM,
we first transform the ith observed lBMC (Xi) and lBMD (Yi) into two independent
uncorrelated standardized monitoring variables Z (1)

i and Z (2)
i . Here,
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Fig. 11.4 Illustration of steps to construct a bivariate Shewhart chart. Legend: • Step 1: Take first
25 QC phantom data, and calculate the 5 baseline distributions. • Step 2: Create a chart using
lBMC as the X-axis and lBMD as the Y-axis. Draw three ellipses using the following equations:
σ 2
l BMD(X − μl BMC )2 − 2ρσl BMDσl BMC (X − μl BMC ) (Y − μl BMD) + σ 2

l BMC (Y − μl BMD)2 �
σ 2
l BMDσ 2

l BMC

(
1 − ρ2

)
R2. • Three Rs to be used are 1.52, 2.49, and 3.44, respectively, to reflect

similar boundaries of three SD lines in a univariate Shewhart chart.• Step 3: A 45-degree line (Y=X)
can be drawn to indicate the directions of measured area in relationship to the observed reference
mean.• Step 4: Divide the plane into four quatrains according to two lines by the axes of the ellipses.•
A chart organized in Steps 1–4 will be kept over time until a break point is identified and the scanner
recalibrated. A new chart should start then

⎡
⎣ Z (1)

i

Z (2)
i

⎤
⎦ �

⎡
⎣ σ 2

l BMC ρσLBMCσLBMD

ρσLBMCσLBMD σ 2
l BMD

⎤
⎦

− 1
2[

Xi − μil BMC

Yi − μil BMD

]
(11.16)

Then, we can construct the following cumulative sums for the deviation from the
origin (0, 0):

Step 1: Take first 25 QC phantom data, and calculate the means (μl BMC , μl BMD),
standard deviations (σl BMC , σl BMD) and correlation coefficient ρ between lBMCand
lBMC.
Step 2: Transform the ith observed lBMC and lBMD in longitudinal QC data
into two uncorrelated standardized monitoring variables Z (1)

i and Z (2)
i according

to Eq. (11.16).
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Fig. 11.5 Example of alarm events in a bivariate Shewhart control chart for BMD data

Step 3: Calculate distance from center (0,0) as Ri �
√(

Z (1)
i

)2
+
(
Z (2)
i

)2

Step 4: Calculate the cumulative upper and lower sums of the ith observation in both
in Z (1)

i and Z (2)
i using the following formulas:

S(1)
H (i) � max

(
0, S(1)

H (i − 1) + (Ri − K )
Z (1)
i

Ri
1{

Z (1)
i >0

}
)

(11.17)

S(1)
L (i) � max

(
0, S(1)

L (i − 1) + (K − Ri )
Z (1)
i

Ri
1{

Z (1)
i <0

}
)

(11.18)

S(2)
H (i) � max

(
0, S(2)

H (i − 1) + (Ri − K )
Z (2)
i

Ri
1{

Z (2)
i >0

}
)

(11.19)

S(2)
L (i) � max

(
0, S(2)

L (i − 1) + (K − Ri )
Z (2)
i

Ri
1{

Z (2)
i <0

}
)

(11.20)

Here, subscripts H and L indicate the higher and lower directions of cumulative
deviations from the means; (i) indicates variable number (1 and 2); K is the filter for
deviation and has been selected as 0.5; and finally, 1{G} is the indication function of
event G being true (=1) or false (=0).
Step 5: Send an alarm if one of the sum is above B.



236 Y. Lu

11.3.4 Comparison of Bivariate Quality Control Process
Charts and Combinational Uses of Univariate Quality
Control Charts

In this subsection,we compare the performanceof univariateQCcharts, simultaneous
uses of univariate quality control charts, and bivariate QC charts for both BMD and
BMC. The first approach simultaneously uses Shewhart charts for lBMD and lBMC
to monitor scanner performance. If one or both two variables violate Shewhart rules
1, 2, 5, and 6 in Table 11.2, the algorithm will send an alarm. The second approach
simultaneously uses CUSUM charts for lBMD and lBMC. An alarm is set if one
or both CUSUM detect an alarm. The third approach uses bivariate Shewhart chart,
and the fourth approach uses bivariate CUSUM. We refer them as Approaches 1–4,
respectively, in this section.

Simulation conditions are set in Table 11.4. The simulation data are generated
in two period. Period 1 is for case when the scanner is in control and is used to
evaluate performance in control conditions. The scanner changes in Period 2. In the
first scenario, both BMD and BMD increase 1SD (and thus lArea is unchanged).
In the second scenario, both BMD and BMD increase 0.707SD (and thus lArea is
unchanged). In the third scenario, only BMC increases 1SD (and thus lArea also
increases the same amount). In the fourth scenario, BMC increases 1SD and BMD
decreases 1SD (and thus lArea has a 2SD decrease). We measure the performance
based on two variables. The first is the average running length (ARL) from the start
to the first alarm. When the system is in control, we want the average running length
as long as possible. However, when the system changes, we want the average running
length as short as possible. The second outcome variable is the rate of sending an
alarm within 100 consecutive scans. When the process is in control, this rate is
corresponding to the false positive rate within 100 scans (FPR), which should be
as low as possible. When the process is not in control, this rate is corresponding to
a true positive rate (TPR) and should be as high as possible. Table 11.5 gives the
simulation results.

From Table 11.5, we can see that bivariate CUSUM has the best performance
with excellent sensitivity while having high specificity. Twenty-five percent (25%)
of simulations had no false positives in 365 scans. In comparison, the bivariate
Shewhart chart has also good sensitivity, not high false alarm rate. Similarly, the
combinational use of univariate CUSUM achieved high sensitivity but not specific
enough as the false alarm rates were high in all four cases. Combination of two
Shewhart was not sensitive enough in scenario 2, and the specificity is also worse
than CUMSUM but better than bivariate Shewhart chart.

We applied these methods to longitudinal QC data from four DXA scanners from
four different sites. Three scanners monitored the whole-body (WB) phantoms, and
one scanner monitored a spine phantom (SP). Table 11.6 lists the number of scans to
reach the first alarm using Shewhart or CUSUM chart to monitor BMD and BMC.
In addition to the univariate QC, we also compare the alarm by either BMD or
BMC whatever first, or joint bivariate QC charts. Although we did not have gold
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Table 11.4 Distribution of lBMC and lBMD in four simulation scenarios

Scenarios Period 1 (n�365) Period 2 (n�365)

1 N

([
0

0

]
,

[
1 0.5885

0.5885 1

])
N

([
1

1

]
,

[
1 0.5885

0.5885 1

])

2 N

([
0

0

]
,

[
1 0.5885

0.5885 1

])
N

([
0.707

0.707

]
,

[
1 0.5885

0.5885 1

])

3 N

([
0

0

]
,

[
1 0.5885

0.5885 1

])
N

([
1

0

]
,

[
1 0.5885

0.5885 1

])

4 N

([
0

0

]
,

[
1 0.5885

0.5885 1

])
N

([
1

−1

]
,

[
1 0.5885

0.5885 1

])

Table 11.5 Average running length and true and false positive rates of simulation experiments

Condition Statistics Univariate CUSUM Simultaneous approaches

BMD BMC Area 1 2 3 4

In control ARLa 156 157 158 80 61 31 213

FPRb 37% 38% 38% 57% 69% 91% 29%

Scenario 1 ARLa 18 17 80 6 5 6 8

TPRc 74% 74% 55% 91% 95% 98% 99%

Scenario 2 ARLa 115 19 18 11 5 6 7

TPRc 47% 73% 77% 85% 95% 98% 100%

Scenario 3 ARLa 21 19 96 8 7 9 20

TPRc 79% 79% 51% 95% 97% 98% 88%

Scenario 4 ARLa 17 20 24 6 4 5 5

TPRc 81% 80% 71% 96% 98% 98% 100%

aARL (average running length) is the number of scans until the first alarm
bFPR (false positive rate) is the percentage of simulations that the QC method gave a false positive
alarm within 100 scans after the beginning of the monitoring
cTPR (true positive rate) is defined as the percentage of simulations that the QC method gives a
true positive alarm within 100 scans after the event

standards (i.e., the maintenance records for assignable courses) for these scanners,
the first scanner may have some issues with BMC. It is almost for sure that the second
scanner had a failure in all parameters. The scanner 3most likely is in well-controlled
condition, and the fourth scanner may have some problems with BMD. Except for
scanners 1 and 3, whichmay be in control condition, the performance using Shewhart
or CUSUM chart has no practical differences.
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Table 11.6 Applications of bivariate QC to four QC data

Site/Phantom Methods Univariate QC Simultaneous
approaches

BMD BMC Area BMD or
BMC

Bivariate
QC

1/WB Shewhart 17 19 31 17 15

CUSUM 26 16 131 26 76

2/WB Shewhart 5 5 14 5 5

CUSUM 2 6 2 2 2

3/WB Shewhart 57 70 9 57 29

CUSUM 63 258 258 63 69

4/SP Shewhart 16 14 48 14 16

CUSUM 20 45 96 20 54

11.3.5 Conclusion

For the validity of clinical trial results, quality control programs are often required for
clinical trials using imaging endpoints. Statistical quality control methods, such as
Shewhart andCUSUMcharts, are used in trials. Increasingly,QC requiresmonitoring
multiple imaging measures. Repeated use of univariate QC process control charts
increases chance of false alarms. A proposed bivariate CUSUM chart demonstrated
outstanding performance characteristics in DXAQC for pediatric trials that required
simultaneous monitoring of both BMC and BMD.

11.4 Discussions and Conclusions

Imaging biomarkers have been widely used in clinical trials, both as surrogate end-
points or diagnostic tools to select proper patient populations. The use of imaging
endpoints is continuously increasing. The use of new imaging technology in clinical
trials has raised many statistical questions. This chapter focused on a small part of
evaluating the utility of surrogate markers for clinical trials and the quality control
methods to monitor performance of radiological equipment during clinical trials.

We demonstrated that the usefulness of a surrogate endpoint relative to direct use
of clinical endpoint depends on the leading time of the biomarkers relative to the
clinical endpoints and diagnostic precision. A binormal model is a nature way to
link the change over time of the treatment effect size of the surrogate marker to a
commonly used diagnostic efficiency parameter, AUC of a ROC curve. Modeling the
time to event distribution and the leading time AUC will help us to assess whether
using a surrogate marker offers advantages in a trial. We are extending this approach
to randomized clinical trials with different types of clinical endpoints.
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We also illustrated the use of process control charts to monitor bivariate measures
in pediatric bone mineral density studies. Another important question for quality
control is the calibration among different equipments from different sites. Lu and
Zhao (2015) has extensive discussions on this topic. Keshavan and colleagues (2016)
evaluated the impact of cross-calibration on statistical power inmultisiteMRI studies
for multiple sclerosis trials.
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Chapter 12
Interesting Applications from Three
Decades of Biostatistical Consulting

Karl E. Peace, Uche Eseoghene Okoro and Kao-Tai Tsai

12.1 Introduction

In 30 years of consulting in and to the pharmaceutical industry, several novel and
challenging applications arose. Four such examples are presented in this chapter.
The example presented in Sect. 12.2 demonstrates using a parallel design instead of
a crossover design in a bioequivalence trial of several formulations. This trial also
incorporated blinded sample size re-estimation—before there was a literature on the
subject.

The second example, presented in Sect. 12.3, is of a clinical trial employing a 2×2
factorial design in studying the effects of a fixed combination, a two-component drug
for treating allergic rhinitis. This trial reflects using bivariate plots of two primary
response measures to illustrate simultaneously drug/dose effects.

The third example, presented in Sect. 12.4, is a dose comparison trial aimed at
establishing the optimal dose of a H2-receptor antagonist in treating patients with
duodenal ulcer. This trial also reflects using bivariate plots of two primary response
measures to illustrate simultaneously drug/dose effects, and reflects logistical
aspects of interim analyses procedures aimed initially at dropping the placebo arm
and later dose discrimination, as well as illustrating the need to carefully define the
trial objective.

The fourth and last example, presented in Sect. 12.5, provides an overview of
assessing whether evidence exists from two Phase II trials of angina to support
conducting a Phase III trial at either a b.i.d. or t.i.d. dosing of the drug. This example
reflects using an equiradial hexagonal design and response surface methods to arrive
at a region in the dose by frequency of dosing plane over which maximal response
is expected.
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12.2 A Parallel Design Instead of a Crossover Design
in a Bioequivalence Study of Several Formulations
(Peace and Chen 2010)

12.2.1 Background

A 2×2 crossover bioequivalence trial of a new test formulation (T1) versus the
standard (S) of a marketed drug had been conducted in 16 subjects. One subject
failed to complete the second period. Although a washout period of at least three
half-lives of the drug was included in the protocol, analysis of AUC and CMAX
suggested the presence of a carry-over effect (or treatment-by-period interaction).
Therefore, inference as to bioequivalence had to rely on only the data from the first
period. The analysis of first period bioavailability endpoints did not enable one to
conclude bioequivalence.

12.2.2 Design of New Bioequivalence Study

By the time we began to design a new bioequivalence trial, in addition to the origi-
nal test formulation (T1), pharmaceutical formulation scientists had developed four
other formulations (T2, T3, T4, T5) that management wanted to assess whether their
bioavailability was comparable to that of the standard S. So, the protocol of the new
bioequivalence trial included the standard S and all five test formulations.

12.2.3 Six-by-Six Latin Square Design Versus Six-Group
Parallel Design

Initially, we considered using a six-by-six Latin square as the design, with each
subject receiving each of the six formulations. We estimated sample size based on
the first period data from the earlier two-by-two crossover study and concluded that
we needed 20 subjects in each of the formulation groups to have 80% power (with a
Type I error of 0.05) to detect a 20% difference in bioavailability endpoints for each
pairwise comparison of a test formulation to the standard, if run as a six formulation
group parallel study. This gave a total of 120 (between subjects) observations, 20
per group. We therefore were satisfied that running a six-by-six crossover study with
four subjects per sequence (for a total of 24 subjects and 144 observations) would
provide at least 80% power to detect a 20% difference between the formulations in
each five pairwise comparisons of a test to the standard.

However, we estimated costs of conducting the crossover study versus conducting
the parallel study.Obviously, based on the costs of concentration assays, the crossover
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study was more expensive. The crossover was also expected to be more expensive in
terms of volunteer stipends, since we expected that we would have to pay volunteers
‘pretty big bucks’ to ensure that they participated in all six periods. In addition,
facility rental costs for the crossover study (6 weekends) would be more expensive
than for the parallel study (5 weekends with 24 subjects each). So, the final study
design was a six formulation, parallel group study with 20 subjects per group.

12.2.4 Sample Size Re-estimation

As the variance estimate for sample size estimation derived from the first period
data from the referenced two-by-two crossover study with only eight subjects per
sequence, we decided to include a sample size re-estimation plan. Twenty-four dif-
ferent subjects participated in the trial on each of 5 consecutive weekends. During
each weekend, subjects were given the formulation to which they were randomized
and blood samples taken at times specified in the protocol. Concentrations of drug
in the samples became available prior to entering the next group of 24 subjects.

Our data management department developed a computer program which ‘kicked
out’ in blinded fashion only the variance estimate based on the analysis model after
the data (AUC) were available from the subjects entered on each weekend (before
the next weekend). After the second weekend (48 subjects, 8 per group) the variance
estimate used for sample size estimation was greater than the variance estimate
based on the 48 subjects. We thus concluded that our sample size estimate of 120
was adequate.

It is noted that the sample size re-estimation plan introduced no bias, as under
normal theory the estimators of variance and mean are independent (so that knowl-
edge of the variance estimate as data accumulated gave us no information about
mean differences between formulations), neither did the sample size re-estimation
plan invoke a Type I error penalty (as no between formulation groups inference was
made).

12.3 A 2×2 Factorial Design in Assessing Efficacy
of a Fixed Combination Product in Seasonal Allergic
Rhinitis (SAR) (Peace and Chen 2010; Diamond et al.
1981; Peace and Tsai 2009; Peace 2005)

12.3.1 Background

A fixed combination product (TP) of triprolidine (T) and pseudoephedrine (P) was
marketed prior to the DESI review in the 1970s. The DESI review deemed that a
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clinical trial would have to be conducted to demonstrate the effectiveness of TP for
this indication.

12.3.2 Design

The experimental design of the trial incorporated a 2×2 full factorial design with
fixed, parallel, treatment groups: the combination (TP) product, triprolidine alone
(T), pseudoephedrine alone (P), and placebo (0). Approximately, 160 patients with
seasonal allergic rhinitis (SAR) were randomized in balanced fashion (40 per group)
to the four treatment groups. Each patient received three doses of the drug to which
he/she was randomized. The first dose was taken just after randomization at baseline,
the second dose was taken 3 h after the first dose, and the third dose was taken 3 h
after the second dose.

12.3.3 Objective

The objective of the trial was to demonstrate the efficacy of the combination product
(TP) in the treatment of seasonal allergic rhinitis (SAR).

12.3.4 Primary Efficacy Endpoints

Hallmark signs and symptoms of SARare nasal airway congestion (or resistance) and
sneezing, rhinorrhea, lacrimation or itching of the eyes, nose, or throat. Therefore,
primary efficacy endpoints were nasal airway resistance (NAR), ranging from rating
of 1 to a rating of 6 in order of increasing severity, and a hay fever symptom complex
score (HFSC) (occurrence and frequency of sneezing, rhinorrhea, lacrimation or
itching of the eyes, nose, or throat), ranging from a score of 0 to a score of 44. These
endpoints were assessed at baseline and hourly after each dose.

12.3.5 Objective Revisited

The fixed combination FDA regulation indicates that to prove that TP is effective,
TP must be proven to be better than T and TP must be proven to be better than P. For
a disease condition for which the primary efficacy measure is expected to be affected
by both components of the combination, this requirement may be interpreted as the
alternative hypothesis Ha in the compound hypothesis testing framework:
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Ho : Ho1 UHo2 versusHa : Ha1 ∧ Ha2

where the individual null (Ho1 and Ho2) and alternative hypotheses (Ha1 and Ha2)
appear in:

Ho1 : μTP � μT versusHa1 : μTP > μT,Ho1 : μTP � μP versusHa1 : μTP > μP,

where μTP, μT, μP, and μ0 denote the true effect of the drug among patients in the
respective groups in terms of the efficacy measure.

As T (antihistamine) is not expected to affect NAR and P (a sympathomimetic) is
not expected to affect HFSCS, the objective, reflecting the fixed combination FDA
regulation, is addressed by the following compound alternative hypotheses:

For NAR, TP > T andTP > 0 and for HFSCS, TP > P and TP > 0.

The logic being by combining T and P, the efficacy of P as a decongestant must
not be lost and the efficacy of T in relieving the signs and symptoms of hay fever
must not be lost. Each was tested at the 0.025 level of significance.

In analyzing data from the trial, the primary efficacy measures had to be trans-
formed (due to lack of normality). The logarithm of NAR and the logarithm of
(HFSCS+1) were statistically analyzed to address the trial objective.

Figures 12.1 and 12.2 illustrate means of Log(NAR) and Log(HFSCS+1) by
treatment group and post-baseline hour, respectively. Figure 12.3 represents a bivari-
ate plot of the means of Log(NAR) and Log(HFSCS+1) as a function of treatment
group and hour of assessment. Baseline hour (0) and the hour after baseline (1, 2,
…, 8) at which measurements were made appear along the graph of each treatment
group. Graphs for each treatment group illustrate the effect of the drug in each group
on both primary measures jointly. Movement of the graph for a treatment group in
the direction of the origin reflects improvement.

12.4 A Dose Comparison Trial in Duodenal Ulcer (Peace
and Chen 2010; Peace 2005; Peace et al. 1985; Dickson
et al. 1985; Venezuela et al. 1985; Peace 2011)

12.4.1 Background

In the mid 1980s, based on data from gastric acid anti-secretory studies at various
doses and frequencies of dosing, there was reason to believe that a single night
time (hs) dose of 800 mg of the first H2-receptor antagonist cimetidine (C) for up
to 4 weeks would be clinically optimal in treating duodenal ulcer patients. When
first consulted, the original clinical development plan consisted of two, randomized,
double-blind, placebo controlled, pivotal proof of efficacy trials. One trial would
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Fig. 12.1 Plot of mean log (NAR) by treatment group and time of assessment. Baseline values are
shown at hour 0

compare 800 mg hs to placebo, while the other would compare 1200 mg hs to
placebo.

Thus, the objective for each trial is the alternative hypothesis of the two constructs:

Trial 1 : Ho : μ800C � μP versusHa : μ800C > μP

Trial 2 : Ho : μ1200C � μP versusHa : μ1200C > μP

Each trial was to enroll 150 patients per treatment group, for a total of 600 patients.
One hundred and fifty patients per group would provide a power of 95% to detect a
20% difference in cumulative 4-week ulcer healing rates between the C and placebo
groups with a one-sided, Type I error of 5%.

Since conducting these two trials would subject ½ the patients to placebo and pro-
vide no in-trial comparison between dose groups (necessary to conclude optimality
in some sense of the 800 mg hs regimen), the author recommended amalgamating
the two trials into a single trial with three distinct treatment groups as per:

Trial 3 : 1200mgChs versus 800mgChs versus 0mgChs (Placebo)

with 164 patients per treatment group, for a total of 492 patients. One hundred and
sixty-four patients per treatment group would provide a power of 95% to detect a



12 Interesting Applications from Three Decades … 247

Fig. 12.2 Plot ofmean log (HFSCS+1) by treatment group and time of assessment. Baseline values
are shown at hour 0

difference of 20% in cumulative 4-week ulcer healing rates between any two of the
treatment groups with an experiment-wise Type I error of 5% (1.67% per each one-
sided, pairwise comparison). Not only would this trial require fewer patients and be
less expensive to conduct, it would also provide a within-trial comparison between
C doses, for dose discrimination.

Further savings could be realized by incorporating into the Trial #3 protocol, a
planned interim analysis after ½ the patients had been entered and completed. At
the interim analysis, the efficacy comparisons: 1200 mg C vs. placebo and 800 mg
C vs. placebo would be tested. If both were statistically significant, then the entire
study could be stopped providing efficacy of each C dose were the only objective.
If comparing the doses of C was also of clinical importance, then the placebo arm
could be stopped and the two C arms run to full completion to have greater power in
the comparison of doses. By conducting Trial #3 (instead of the two separate trials)
and incorporating the interim analysis, potential savings of up to 190 patients could
be realized, a savings of approximately $2 million. Additional savings would be
expected due to less time required to conduct the trial.

However, Trial #3 was not conducted. Instead, a landmark dose comparison trial
was conducted retaining the 800 mg hs dose and placebo, but including a dose
lower than 800 mg hs and a dose higher than 1200 mg HS. The primary objective
in conducting a clinical trial of C in the treatment of duodenal ulcers with a single
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Fig. 12.3 Plot of mean log (NAR) and mean log (HFSCS+1) by group and hour of assessment.
Baseline values are at hour 0

nighttime dosewas to demonstrate that 800mgCwas clinically optimal.We therefore
added a 400 mg dose and replaced the 1200 mg dose with a 1600 mg dose (a twofold
increase among consecutive doses) in the final trial protocol, which was IRB and
FDA approved.

12.4.2 Landmark Dose Comparison Trial

Both primary and secondary efficacy objectives were identified in the final protocol.
The primary objective addressed ulcer healing. The secondary objective addressed
upper gastrointestinal (UGI) pain relief.

12.4.2.1 Primary and Secondary Objectives

The primary objective was to confirm that C given as a single nighttime dose of
800mg for up to 4weekswas clinically optimal in healing duodenal ulcers. Clinically
optimal meant that 800 mg C was effective (significantly superior to placebo), that
800 mg C was superior to 400 mg C, and that 1600 mg C was not significantly
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superior to 800 mg C. Symbolically, the primary (note p subscript of H) objective
derives from three null and alternative hypotheses:

Hp01 : Puh800 � Puh0 · · · · · · · · ·Hp02 : Puh800 � Puh400 · · · · · · · · ·Hp03 : Puh1600 �� Puh800

Hpa1 : Puh800 > Puh0 · · · · · · · · ·Hpa2 : Puh800 > Puh400 · · · · · · · · ·Hpa3 : Puh1600 � Puh800

where Puh0, Puh400, Puh800, and Puh1600 represent the cumulative ulcer healing (uh)
rates by week 4 in the placebo, 400 mg C, 800 mg C, and 1600 mg C treatment
groups, respectively, under single nighttime (hs) dosing. Specifically, the primary
objective is the compound alternative Hpa of the hypothesis testing construct: Hp0:
Hp01U Hp02 U Hp03 versus Hpa: Hpa1∧ Hpa2 ∧ Hpa3 comprised the primary study
objective. Addressing the objective by individual analysis of each of the three uni-
variate hypotheses, it is clear that the experiment-wise Type I error rate of 0.05 must
be preserved across the three separate univariate hypotheses.

Symbolically, the secondary (note s subscript of H) objective derives from the
three null and alternative hypotheses:

Hs01 : Ppr800 � Ppr0 · · · · · · · · ·Hs02 : Ppr800 � Ppr400 · · · · · · · · ·Hs03 : Ppr1600 �� Ppr800
Hsa1 : Ppr800 > Ppr0 · · · · · · · · ·Hsa2 : Ppr800 > Ppr400 · · · · · · · · ·Hsa3 : Ppr1600 � Ppr800

where Ppr0, Ppr400, Ppr800, and Ppr1600 represent the UGI pain relief (pr) rates in the
placebo, 400 mg C, 800 mg C, and 1600 mg C treatment groups, respectively, under
single nighttime (hs) dosing. Specifically, Hsa1, Hsa2, and Hs03 comprised the sec-
ondary study objective.

Of the six possible pairwise comparisons among the four dose groups, only three
comprised the study objective. The other three: 1600 mg C versus 0 mg C, 1600 mg
C versus 400 mg C, and 400 mg C versus 0 mg C were not part of the study objective
and thus did not exact a Type I error penalty (i.e., the overall Type I error of 5%
was ‘Bonferonnied’ across the three pairwise comparisons comprising the study
objective, and not across the six possible pairwise comparisons).

12.4.2.2 Sample Size Determination

The trial was designed to enter enough patients to complete one hundred and sixty-
four (164) per treatment group, for a total of 656 patients. One hundred and sixty-four
patients per treatment group would provide a power of 95% to detect a difference
of 20% in cumulative 4-week ulcer healing rates between any two of the treatment
groups with an experiment-wise Type I error rate of 5% (1.67% for each of the three,
one-sided, pairwise comparisons, reflecting the study objective). The worst case of
the binomial variance was used in estimating the sample size since prior duodenal
ulcer clinical trials of cimetidine showed an approximate 50% healing rate in the
placebo groups
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12.4.2.3 Further Design Considerations

The trial was multicenter, stratified, randomized, double-blind, and placebo (0 mg
C) controlled. Neither patients, investigators, nor their staff knew the identity of the
four treatment regimens. As there had been reports that there might be a negative
correlation between smoking status and duodenal ulcer healing, patients were strat-
ified by heavy smoking status (Yes, No) within each center prior to randomization
to the four treatment groups.

In addition, since there was pressure to conduct the trial as quickly as possible, we
planned to enlist a large number (approximately 70) of investigational sites. So, we
expected there would be many centers who enrolled very few patients and therefore
would impact the analysis and interpretation using the completely randomized design
block (CRBD) model, with investigational sites as blocks. Since we believed that
there would also be a negative correlation between ulcer size and ulcer healing, we
defined six ulcer size categories: [0.3], (0.3; 0.4], (0.4; 0.5], (0.5; 1.0), [1.0], and (1.0;
3.0]. Our primary analysis model would not include investigational site as a block,
but would instead include smoking status-by-ulcer size as blocks (12 blocks, where
the 11 total degrees of freedom partition into 1 for smoking, 5 of ulcer size, and 5
for interaction between smoking and ulcer size).

12.4.2.4 Blinded Treatment Groups

Blinded treatment group medication was packaged using the existing regulatory
approved 400 mg C tablet. A 400 mg placebo tablet was formulated identical to the
400 mg C tablet except that it contained 0 mg C. Blinded trial medication for the four
treatment groups was packaged in blister packs for 4 weeks of nightly treatment as:

0 mg C Group: Four 400 mg placebo tablets;
400 mg C Group: One C 400 mg tablet+ three 400 mg placebo tablets;
800 mg C Group: Two C 400 mg tablets+ two 400 mg placebo tablets; and
1600 mg C Group: Four C 400 mg tablets.

12.4.2.5 Entry and Assessment Procedures

To enter the trial, patients were required to have an endoscopically confirmed duo-
denal ulcer of size at least 0.3 cm, and either daytime or nighttime UGI pain. After
providing informed consent at the baseline visit, patients provided a history (includ-
ing prior use of medications, particularly anti-ulcer ones or antacids), underwent
a physical examination, had vital signs measured, provided blood and urine sam-
ples for clinical laboratory assessments, had UGI pain assessed, and underwent
endoscopy. Patients were instructed how to use a daily diary to record the sever-
ity of daytime or nighttime UGI pain, as well as to record any adverse experience
or concomitant medication use. Diaries and trial medication were dispensed, and
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the patients were instructed to return at weeks 1, 2, and 4 of the treatment period
for follow-up endoscopy, UGI pain assessment, and assessment of other clinical
parameters. Antacids were provided to patients for relief of severe pain during the
first 6 days/nights of therapy only and were limited to four tablets per day of low
acid-neutralizing capacity.

Follow-up endoscopic evaluation was carried out following strict time windows
at week 1 (days 7–8), week 2 (days 13–15), and week 4 (days 26–30). Patients whose
ulcers were healed at any follow-up endoscopy were considered trial completers and
received no further treatment or endoscopic assessment.

12.4.3 Innovative Aspects of the Clinical Trial Program

There are several aspects of this program that were rather innovative and ‘firsts.’

12.4.3.1 Interim Analyses to Drop Placebo Arms

Interimanalyses plans thatwould allowdroppingof the placebo armafter establishing
efficacy of the doses, while allowing the dose arms to run to completion for dose
discrimination, were developed.

12.4.3.2 Trial Objectives as Only Three of Six Pairwise Comparisons

The study objective was formulated as only three of six pairwise comparisons among
the four dose groupswhile preserving the overall experiment-wise Type I error across
these three comparisons. The other three comparisons could be investigated, prefer-
ably using confidence intervals, but they should not invoke a Type I error penalty on
the study objective.

12.4.3.3 Giving up Information on Center Differences

Instead of using centers as a blocking factor in the primary analyses, the 12 classifi-
cations of smoking status-by-baseline ulcer size was used as the blocking factor due
to small numbers of patients per treatment group per center and due to the prognostic
importance of smoking status and baseline ulcer size.

12.4.3.4 Assessment of Type of Monitoring Group

Roughly, half the investigational sites were recruited and monitored by in-house
clinical operations personnel. The remaining half were recruited and monitored by
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an outside Contract Research Organization (CRO). An assessment of differences
in treatment effect between sites monitored by in-house personnel and those mon-
itored by the CRO was conducted. There was no treatment-by-type of monitoring
interaction, although the healing rates were generally lower among CRO monitored
sites.

12.4.3.5 Association Between Ulcer Healing and Smoking Status
and Ulcer Size

This landmark duodenal ulcer trial definitively established for the first-time negative
correlations between ulcer healing and smoking status and ulcer healing and baseline
ulcer size. Smokers experienced a significant lower healing rate than nonsmokers.
Patients with the largest ulcers were less likely to heal than patients with smaller
ulcers. Smokers with largest ulcers were most difficult to heal, whereas nonsmokers
with smallest ulcers were easiest to heal. Effectiveness estimates of ulcer healing
were adjusted for smoking status and baseline ulcer size.

12.4.3.6 Bivariate Graphical Methods

The duodenal ulcer trial was the first to utilize bivariate plots to profile ulcer healing
and UGI pain relief jointly. The plots illustrated strong dose response in terms of
ulcer healing and UGI pain relief separately and jointly (Fig. 12.4). It is noted in
Fig. 12.4 that not all patients had daytime pain at baseline (not all treatment group
graphs begin at one on pain axis). The reason for this is that the protocol called for
patients to have ulcer-like pain during the day or during the night.

12.4.3.7 Establishing Effectiveness Based on a Subset Analysis

This trial was conducted at a time when the FDA began to let it be known that
they expected the NDA or SNDA to address whether the effect of treatment seen
in the entire clinical trial efficacy population generalized over subsets (by sex, by
race or ethnicity, by age, by disease severity) of the population. We established from
the trial that the 800 mg C dose was effective in the elderly population based on
a subset analysis of patients 65 years old or older. In addition, labeling included
acknowledging that for patients who smoked and had large ulcers, 1600 mg hs could
be used.

12.4.3.8 Maximum Use of Patients with UGI Pain Who Were Screened

The landmark, dose comparison trial of once nightly C in the treatment of duodenal
ulcer is but one of three clinical trials we conducted simultaneously at the investi-
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Fig. 12.4 Proportions of patients with unhealed ulcers and proportion of patients with daytime
pain by dose group and week of endoscopy

gational sites. Each center conducted three protocols: the one discussed in duodenal
ulcer patients, one in gastric ulcer patients, and one in patients with dyspepsia. This
represented maximal use of patients who were screened.

To expand further, patientswere recruited if they experienced ulcer-like symptoms
including epigastric UGI pain. Those who satisfied general entry criteria and who
gave consent underwent endoscopy. If duodenal ulcer (DU) and not gastric ulcer
(GU) was confirmed, they entered the landmark DU trial. If GU was confirmed, they
entered a GU trial, and if there was no DU and no GU, they entered a dyspepsia trial.
This latter protocol provided a rather stringent definition of dyspepsia: Ulcer-like
symptoms including epigastric UGI pain not explained by the presence of DU or
GU upon endoscopy. This concurrent protocol method maximized the utility of the
advertisement effort to get patients to the clinic who were experiencing ulcer-like
symptoms.

12.4.4 Conclusions

The SNDA clinical trial program that led to approval of clinically optimal dosing
of the first H2-receptor antagonist: Cimetidine in the treatment of duodenal ulcers
has been reviewed. The program included a landmark clinical trial that not only
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definitively established 800 mg C hs for 4 weeks as the clinically optimal dosing
regimen, but also was the first to definitively establish negative associations between
ulcer healing and smoking status and ulcer size, as well as the first trial to establish
bivariate dose response in terms of ulcer healing and relief of UGI pain. Clinical
optimality of 800 mg C hs was defined as 800 mg C being effective as compared to
placebo; 800 mg C being more effective than 400 mg C; and 1600 mg C not being
more effective than 800 mg C.

Further, to make maximal use of patients screened, the program included clinical
trials of the 800 mg C regimen in dyspepsia and in gastric ulcers. The program
also included drug interaction trials of the 800 mg C dose with widely used drugs
and a bioequivalence trial of a new 800 mg C tablet to be marketed compared to
two, 400 mg tablets of the commercially available formulation. The bioequivalence
trial was required as the clinical trial in DU was conducted using the commercially
available 400 mg tablet at the time of study conduct.

12.5 Equiradial Hexagonal Design with Response Surface
Methodology in Phase II Anti-anginal Trials (Peace
and Chen 2010; Peace 1990)

12.5.1 Introduction

Angina pectoris is pain in the chest that occurs when the heart muscle receives blood
that has reduced oxygen levels. The discomfort may also occur in other areas than the
chest, for example: the back, shoulders, arms, neck, or jaw, and mimic the symptoms
of indigestion. Angina is thought to be a symptom of coronary artery disease (CAD)
rather than a disease per se. The first drug (coronary vasodilator) approved for the
treatment of angina was nitroglycerin, administered under the tongue.

Response surfacemethodology (RSM)was incorporated into two Phase II clinical
trials of an unapproved, in-licensed drug believed to have anti-anginal efficacy. The
objective of the RSM was to estimate dose and frequency of dosing that could be
used in developing Phase III, pivotal proof of anti-anginal efficacy protocols. The
primarymeasure of anti-anginal efficacy in the Phase II protocolswas time to onset of
exercise-induced angina. An equiradial hexagonal design—two equilateral triangles
with a common center point—and a full quadratic response model were used. Design
and analysis aspects of these trials are reviewed in this chapter.

12.5.2 Original Objective of Phase II Protocols

The original objective of the Phase II protocols was to obtain dose comparison
information on measures reflecting possible anti-anginal efficacy when given b.i.d.
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and to compare the top b.i.d. regimen with a t.i.d. regimen at the same total daily
dose. As the protocols were exploratory, Phase II studies and sample sizes were not
determined from a power perspective, rather they were chosen to ensure replication
in each treatment group (3) per center (2) per protocol (2). Essential features of the
protocols are captured in the sections that follow.

12.5.3 Treatment Groups in the Original Protocols

The treatment groups for Protocol 1 were: 0 mg b.i.d., 4 mg b.i.d., 6 mg b.i.d., and
4 mg t.i.d. The first three regimens permit comparisons among doses: 0 (placebo),
4, and 6 mg when given b.i.d. The last two regimens permit the comparison of the
b.i.d. and t.i.d. regimens at the same total daily dose (12 mg).

The treatment groups for Protocol 2 were: 2 mg b.i.d., 8 mg b.i.d., and ‘6 mg t.i.d.’
The 2 mg b.i.d. regimen was thought to be a ‘no effect’ dose. The last two regimens
permit the comparison of the t.i.d. regimen ‘6 mg t.i.d’: 4 mg, 6 mg, and 6 mg, to the
8 mg b.i.d. regimen, at the same total daily dose (16 mg).

12.5.4 Efficacy Measures

For each protocol, measures of efficacy were: time-to-stress-test-induced anginal
onset, total exercise time, double product (heart rate x systolic pressure), at the onset
of angina and at the end of the exercise time, maximal St wave depression, time to
maximal St wave depression, and weekly anginal frequency (with nitroglycerin use
recorded). Time-to-stress-test-induced anginal onset was considered the primary
efficacy measure.

12.5.5 Stress Testing and Dosing Considerations

Patients who were candidates for protocol entry underwent a stress test prior to
randomization. Those who qualified for entry returned to the clinic a week later for
a baseline stress test, randomization, and dispensing of study medication. They then
returned to the clinic on day 17 for stress tests at 2, 7, or 12 h after the dose taken on
day 17.

After randomization patients were dosed either b.i.d. or t.i.d. for 16 days, plus 0
or 1 tablet on day 17, dependent on the assigned dose group and timing of stress test
on day 17.
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Table 12.1 Coded and uncoded vertices of equilateral, hexagonal design

Protocol 1 Protocol 2

Dose Coded vertices Uncoded
vertices

Dose Coded vertices Uncoded
vertices

4 t.i.d.
(
−1

/
2,−√

3
/

2
)

(12 mg, 2 h) 2 b.i.d.
(
−1

/
2,−√

3
/

2
)

(4 mg, 2 h)

6 b.i.d.
(
1
/
2,+

√
3
/

2
)

(12 mg, 12 h) 2 b.i.d.
(
−1

/
2,−√

3
/

2
)

(4 mg, 12 h)

4 b.i.d. (0, 0) (8 mg, 7 h) 4 b.i.d. (0, 0) (8 mg, 7 h)

0 b.i.d. (−1, 0) (0 mg, 7 h) 6 t.i.d./8
b.i.d.

(1, 0) (16 mg, 7 h)

12.5.6 Final Study Design to Permit Use of RSM

At the initial consultation, it was observed that by replicating the 2 mg b.i.d. group
and adding a 4 mg b.i.d. group in Protocol 2 (see highlighted dose in Table 12.1), the
two protocols could be amalgamated under a single equiradial hexagonal design. This
design is a member of the class of uniform precision designs. It permits exploration
of the efficacy measure using response surface methodology (RSM) as a function of
total daily dose (0–16 mg) and time of stress test after the last dose (2, 7, or 12 h).

The design represents two equilateral triangles with a common center point
(Fig. 12.5). The vertices of the hexagon are the vertices of the two equilateral tri-
angles. The vertices have been transformed (Table 12.1) so that the center point
(8 mg, 7 h) becomes (0, 0). The vertex (−1,0) represents 0 mg (placebo) total daily
dose and stress test administered 7 h after the last dose (on day 17). The vertex (1,
0) represents 16 mg total daily dose (either 8 mg b.i.d. or ‘6 mg t.i.d.’) and stress

test administered 7 h after the last dose. The vertex
(
−1

/
2,−√

3
/
2
)
represents

4 mg total daily dose and stress test administered 2 h after the last dose. The ver-

tex
(
−1

/
2,−√

3
/
2
)
represents 4 mg total daily dose and stress test administered

12 h after the last dose. The vertex
(
−1

/
2,−√

3
/
2
)
represents 12 mg total daily

dose and stress test administered 2 h after the last dose. The vertex
(
1
/
2,+

√
3
/
2
)

represents 12 mg total daily dose stress test administered 12 h after the last dose.

12.5.7 RSM Analysis Model

The full quadratic response surface model regressing time-to-delay in angina onset
(TTDAO) is given by:

TTDAO � β0 + β1X1 + β2X2 + β12X1X2 + β11X
2
1 + β22X

2
2 + ξ,
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Fig. 12.5 Equiradial
hexagonal design or two
equilateral triangles with a
common center point. (Note
total daily dose and time of
last stress test have been
coded; see Table 12.1)

where X1 represents total daily dose and X2 represents the time of administering the
stress test after the last dose.

TTDAO represented the difference between the time-to-anginal onset at the base-
line stress test and the time-to-anginal onset stress test, at either 2, 7, or 12 h after
the last dose.

Before settling on the full quadratic model given above, we included blocking
variables to assess whether any differences between protocols and any differences
between investigational sites within protocols were statistically significant. Seeing
none, we settled on the full quadratic model given without including any blocking
variables.

So, we fit themodel to the data using PROCRSMof the statistical analysis system
(SAS). The aim of these analyses was to identify total daily dose and time after last
dose for which there existed acceptable clinical efficacy (defined a priori as delay in
time-to-anginal onset at least 30% above baseline).

12.5.8 Analysis Results

Table 12.2 presents the analysis results from PROC RSM. Figure 12.6 shows the
contour plot of the fitted response surface. Parenthetically, the fitted response surface
must be searched tofind regions in theX1X2 plane that correspond to expected clinical
delay of anginal onset of at least 30% above baseline. We note that

(1) The model is not rejected due to lack of fit (P>0.52) and that the model explains
over 60% of the variation in response.
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Table 12.2 ANOVA summary, RSM analysis

Response
mean

1.271

Root MSE 0.766

R-square 0.531

CV 60.308

Regression DF Type I SS R-Square F Prob.

Linear 2 23.287 0.442 19.82 <0.0001

Quadratic 2 2.016 0.038 1.72 0.1922

Cross product 1 2.667 0.051 4.54 0.0390

Total regress 5 27.969 0.531 9.52 <.0001

Residual DF SS MS F Prob.

Lack of fit 1 0.250 0.250 0.42 0.5207

Pure error 41 24.420 0.596

Total error 42 24.670 0.587

Parameter DF Estimate SD T Prob.

Intercept 1 1.450 0.221 6.55 <0.0001

X1 1 0.950 0.181 5.26 <0.0001

X2 1 −0.542 0.156 −3.46 0.0012

X1* X1 1 0.050 0.313 0.16 0.8738

X1* X2 1 −0.667 0.313 −2.13 0.0390

X2* X2 1 −0.396 0.235 −1.69 0.0991

Factor DF SS MS F Prob.

X1 3 18.927 6.309 10.74 <0.0001

X2 3 11.380 3.793 6.46 0.0011

(2) Themodel has predictive capacity; i.e., total regression is statistically significant
(P<0.0001).

(3) The significance of total regression is explained primarily by the significance
of the linear terms (P<0.0001) in the model.

(4) Both dose (X1: P<0.0001) and time of stress test after last dose (X2: P�0.0012)
are statistically significant.

(5) The estimates of the coefficients (slopes) of dose and time of stress test after
last dose are intuitively consistent; i.e., the predicted delay in time-to-anginal
onset (P_DTTAO) from the model increases as dose increases (positive slope)
and decreases as the time of last stress test after dose increases (negative slope).

Maximal predicted delay in time-to-anginal onset ranged from 2.98 to 3.16 min,
representing a delay that ranged from 55 to 59% above baseline. However, the corre-
sponding ‘troughs’ reflected unrealistic total daily dose and time of stress test after
last dose, for example, a total daily dose of 16 mg and time of stress test 2 h after last
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Fig. 12.6 Plot of fitted response surface. (Note total daily dose axis: 0.0–16.0; time of stress test
after last dose 0.0–12.0 h)

Table 12.3 Summary of findings from RSM analysis

Desired effect Predicted dose Predicted time

P_DTTAO (min) Increasing (mg) Decreasing (h)

(2.98; 3.16) (55%; 59%) 16 2

(1.60;) (30%;) 8 2–5

(1.60;) (30%;) 16 8.5–9.5

dose—suggesting an unrealistic dose and frequency of dosing regimen of 1.33 mg
given 12 times daily! (Table 12.3).

The specified clinically important delay in time-to-anginal onset of 30% is pre-
dicted with a total daily dose of 16 mg and frequency of dosing interval that contains
8 h. Therefore, the results of the RSM analyses suggest a total daily dose of 16 mg
given t.i.d. (the 4, 6, and 6 mg regimen) for consideration in Phase III trials. Since
the total daily dose was at the end of the dosing interval, it would be advisable for
Phase III trials t.i.d. dosing regimens to bracket 16 mg per day, or to conduct another
Phase II t.i.d. trial that brackets this dose.
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Chapter 13
Uncovering Fraud, Misconduct,
and Other Data Quality Issues
in Clinical Trials

Richard C. Zink

13.1 Introduction

The quality of data from clinical trials has received a great deal of attention in recent
years, as traditional approaches to assess quality through on-site monitoring, and
100% source data verification have come under increased scrutiny as providing little
benefit for the substantial cost. Numerous regulatory guidance documents and indus-
try position papers have described risk-based approaches, which makes use of cen-
tral computerized review, to identify quality and safety issues (European Medicines
Agency 2013; TransCelerate BioPharma 2013; US Food and Drug Administration
2013). An emphasis on risk-based approaches forces the sponsor to take a more
proactive approach to quality through a well-defined protocol, sufficient training and
communication, and by highlighting those data most important to patient safety and
the integrity of the final study results. Further, identifying data problems early allows
the sponsor to correct or refine study procedures as the trial is ongoing.

Unusual or problematic data can arise due to a number of reasons including
carelessness (such as transcription errors), contamination of samples, mechanical
failures, ormiscalibrated equipment, poor planning (e.g., lack of appropriate backups
or contingency planning should problems occur), or poor training in trial procedures.
Fraud is also an important topic in discussions of data quality, and it distinguishes
itself from the aforementioned issues due to the deliberate intention of the perpetrator
to mislead others (Buyse et al. 1999). Google defines fraud as “wrongful or criminal
deception intended to result in financial or personal gain.” However, the difficulty
or inability to discern the intention of, or the lack of any perceived benefit for, the

R. C. Zink (B)
Data Management and Statistics, TARGET PharmaSolutions, Chapel Hill, NC, USA
e-mail: rzink@targetpharmasolutions.com

R. C. Zink
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

© Springer Nature Singapore Pte Ltd. 2018
K. E. Peace et al. (eds.), Biopharmaceutical Applied Statistics Symposium ,
ICSA Book Series in Statistics, https://doi.org/10.1007/978-981-10-7820-0_13

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7820-0_13&domain=pdf


262 R. C. Zink

culprit may make the term “misconduct,” defined by Google as “unacceptable or
improper behavior,” more appropriate to use in practice.

Though the terms fraud and misconduct may have subtle differences in actual or
perceived meaning, they are used interchangeably throughout this chapter to refer to
data fabrication and falsification and to distinguish from other data quality issues that
result from carelessness or any technical issues related to the generating or recording
of data. Fabricating data occurs when fictitious data are recorded and submitted
as if they were honestly obtained. This includes recording data for a patient for a
procedure that may have been inadvertently missed, documenting study visits that
did not take place, or making up patients in their entirety. Data falsification includes
“manipulating research materials, equipment or processes, or changing or omitting
data or results” so that data are not accurately reflected (Office of Research Integrity
2017). Examples of this include substituting the data of one subject for another,
failing to record data that indicates a safety issue or altering data in order for patients
to meet eligibility criteria and participate in the trial.

Despite the increasing availability of statistical and graphical tools available to
identify unusual data, fraud itself is extremely difficult to diagnose (Buyse et al. 1999;
Venet et al. 2012; Zink 2014). For one thing, many of the methods used to identify
misconduct at a study center involve comparisons against other clinical trial sites.
Such analyses could identify natural differences in patient population or variations
in technique between the sites that would not constitute fraudulent behavior. Further,
analyses motivated by a need to identify a particular type of malfeasance can detect
data anomalies with reasonable explanations. Even if data turn out to be problematic,
stating that the unusual findings are explicitly due to fraud may require evidence
beyond what is available in the clinical trial database (Evans 2001).

Fraud in clinical trials is thought to be rare, though its prevalence is likely under-
estimated due to previously unavailable or limited tools and training for diagnosis, or
for fear over negative publicity (Buyse et al. 1999; Weir and Murray 2011). Further,
two recent publications describe higher than expected rates of scholarly retractions
in the life science and biomedical literature, often due to fraud or suspected fraud
(Fang et al. 2012; Grieneisen and Zhang 2012). Regardless of how extensive mis-
conduct is in practice, recommendations to prevent clinical trial misconduct include
simplifying study entry criteria, minimizing the amount of data collected, and uti-
lizing sufficient and varied trial monitoring (Buyse et al. 1999; Baigent et al. 2008;
Weir andMurray 2011; Venet et al. 2012). However, even in the presence of incorrect
data due to manipulation or other quality issues, trial integrity will be preserved in
most cases, most often due to randomization and blinding of study medication, or
because the anomalies are limited to few sites (Buyse et al. 1999; Baigent et al. 2008;
TransCelerate BioPharma 2013; US Food and Drug Administration 2013).

So this begs the question: If clinical trial fraud is so uncommon, with seemingly
limited potential to seriously compromise the results of the trial, why bother looking
for it at all? In short, it is much easier to identify problems as they occur while the
trial is ongoing with the opportunity to resolve the issue or modify the trial as needed.
Compare this to the scenario of finding a systemic problem once the trial has been
unblinded and the final study results have been prepared. At this point, there are
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fewer options available to the study team to find an appropriate solution, particularly
when their every action will be scrutinized due to the availability of randomization
codes. Most importantly, the early identification, resolution, and documentation of
any lapse in data quality are important to protect the well-being of study participants
(International Conference of Harmonisation 1996).

Clinical trial data are highly structured, and human beings are bad at fabricating
realistic data, particularly in the many dimensions that would be required for it to
appear plausible (Buyse et al. 1999; Evans 2001; Venet et al. 2012). Defining a series
of statistical and graphical checks to be implemented on a regular basis to identify
fraud is a minimal investment for the team to make to prevent potential catastrophe.
Further, these same statistical checks can be used to identify data anomalies that
occur in the absence of any misconduct. This chapter illustrates various statistical
and graphical methodologies to assess data quality using a sample clinical trial. In
Sect. 13.2, we summarize two examples ofmisconduct from the literature tomotivate
the regular screening of clinical trials for data quality issues. Section 13.3 briefly
describes a clinical trial of patients who experienced an aneurysmal subarachnoid
hemorrhage. This data will be analyzed in Sect. 13.4, with particular emphasis on the
interpretation of analysis findings and suggestions for further analysis. Section 13.5
provides a brief conclusion. All analyses were performed using JMP Clinical 6.1.

13.2 Examples of Past Misconduct

13.2.1 Multicenter Animal Study

In the early 1980s, the National Heart, Lung, and Blood Institute conducted a mul-
ticenter animal study of two drugs with the ultimate goal to develop a reproducible
animal model for studying myocardial infarction to evaluate new therapies (Bailey
1991). Therewere four centers where the research involved dogs. During data review,
staff at the coordinating center identified some disparities between the data provided
by one site when compared to the others. Study investigators were provided with
data and were able to quickly determine that there were inconsistent relationships
between the weights of the dogs and the weights of the left ventricle of the heart,
as well as the infarct size and the level of blood flow to the heart from one of the
centers. The project officer approached the laboratory chief of the site providing the
unusual data, only to find out that the medical fellow responsible for conducting the
experiments had fabricated data on a previous study.

In order to better understand the scope of the problem, the coordinating center
set up an external panel of cardiovascular experts to further scrutinize the data.
Additional review found noticeable differences between pre-discovery (Dogs 1–34)
and post-discovery (Dogs 35 and above) dogs, but this was not viewed as sufficient
to engage in formal proceedings of fraud. However, several pieces of hard evidence
became available: Data were reported on a heart that was found to be discarded
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without the planned studies having taken place, tissue from pre-discovery dog hearts
had none of the expected radioactivity necessary to perform the assays, and data logs
showed numerous discrepancies between the dogs reported and analyzed. Review
of the medical fellow’s past published work showed similar unusual data patterns to
those identified in this study.

13.2.2 Dietary Intervention Trial

Allegations of fraud were made against the lead author of a manuscript describing
the benefits of a dietary intervention in reducing heart attacks that was published in
the British Medical Journal (BMJ) in 1992 (Al-Marzouki et al. 2005; White 2005).
Suspicions were raised when the findings of a follow-up manuscript submitted to the
BMJ later that year appeared too good to be true and inconsistent with the findings
from previous clinical trials in the literature. Further, concerns over data collection,
statistical methodology, and the similarity of this newwork to other papers submitted
by the lead author raised additional red flags. Because the lead author was outside the
jurisdiction of an official research body or regulatory authority, the journal decided to
investigate. Though the data for these twomanuscripts were first requested in August
of 1994, the final analysiswas not available untilMarch of 1999.Delayswere initially
due to the non-responsiveness on the part of the author, and subsequently due to the
excessive amount of handwritten data that required entry. In themeantime, the author
submitted and published manuscripts with other medical journals.

For the 1992 manuscript, re-analysis of the data identified numerous statistically
significant differences among the means and variances of 22 covariates between
the treatment and control arms at baseline, even after a Bonferroni adjustment for
multiple comparisons. Further, 10 of 22 of the baseline characteristics exhibited
significant differences among the trailing digit between the two groups (this method-
ology is described below). Based on these and other findings, the authors concluded
that there was strong evidence of misconduct (Al-Marzouki et al. 2005). Additional
investigation ensued, and lacking other alternatives, the BMJ went public with their
findings in 2002.

13.3 Sample Data

Nicardipine hydrochloride, available in oral and intravenous forms, belongs to the
class of calcium channel blockers which are used to treat high blood pressure and
angina. Nicardipine was examined in a clinical study of patients experiencing an
aneurysmal subarachnoid hemorrhage, which is bleeding between the brain and
the tissues that surround the brain (Hayley et al. 1993). The primary endpoint was
improvement in patient recovery according to the Glasgow Outcome Scale, with
the incidence of cerebral vasospasm, and the incidence of death or disability due
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to vasospasm serving as important secondary endpoints (Jennett and Bond 1975).
The study was a two-week trial in 906 patients randomly assigned to intravenous
nicardipine or placebo; 902 patients ultimately received treatment at 40 clinical sites.
Data were available for vital signs (heart rate, systolic, and diastolic blood pressure),
27 different laboratory tests, and 4 measurements from electrocardiogram (ECG)
curves. Each day represented a different study visit.

Please note that the analyses and results summarized here are for illustrative
purposes only; no formal conclusions on the safety or effectiveness of nicardipine
should be made as a result of this chapter.

13.4 Screening Clinical Trials to Assess Data Integrity

13.4.1 Overview

The analyses below are inspired by the Buyse et al. (1999) paper where each site is,
in turn, treated as the suspect site and compared to all other sites grouped together
as a reference. This approach serves as straightforward means to implement a set
of analyses quickly, particularly for groups with limited statistical support. Other
approaches that consider the relationships between data collected from individuals
within the same site, or sites within the same country are available (Desmet et al.
2013, 2017). Readers may also wish to consider how the multiple comparisons with
the best (MCB) method of Hsu (1992) or the analysis of means (ANOM) method of
Ott (1967) may be applied to analyses of data quality at clinical trial sites.

13.4.2 Multiplicity Considerations

Crowe and co-authors suggest using the false discovery rate (FDR) to adjust for
multiplicity for safety outcomes in a clinical trial; we describe this approach in detail
in Volume 2 of the ICSA Biostatistics Book Series of the Biopharmaceutical Applied
Statistics Symposium (Crowe et al. 2009; Zink 2017). For the proactive screening of
quality issues for data in a clinical trial, I sites with J procedures and K statistical
tests to perform for each procedure can generate a large multiple testing problem.
Appropriate multiplicity adjustment should achieve a reasonable balance between
committing type I errors without overly sacrificing the power to detect potential
quality signals, particularly when the study was not designed to detect lapses in
quality between the study centers. The FDR provides a more balanced approach
between type I error and power, since it does not control the familywise error rate
(Benjamini and Hochberg 1995). The FDR, typically pre-specified at α � 0.05, is
the proportion of erroneous rejections among the rejected null hypotheses from a set
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Table 13.1 Trailing digit preference for a particular test

0 1 2 3 4 5 6 7 8 9

Suspect

Reference

of multiple tests. In general, with H comparisons of ordered (smallest to largest) p
values p(h), the FDR p value for the hth hypothesis is

p∗
(h) �

⎧
⎨

⎩

p(h) for h � H

min
(
p∗

(h),
h

(h−1) p(h−1)

)
for h � 1, 2, . . . , (H − 1)

Corresponding simultaneous 95% FDR confidence intervals can be defined by
finding the largest hwhere p(h) ≤ hα/H and using α∗ � hα/H for allH confidence
intervals (Benjamini and Yekutieli 2005). Below, we apply a separate α � 0.05 to
each analysis reported within Sect. 13.4.2 so that, at most, H � I × J . However,
alternate approaches could be used to adjust for multiple comparisons, such as a
single α � 0.05 across the H � I × J × K tests. In cases where analyses are
performed retrospectively due to suspected misconduct at a single trial site (as in
Sect. 13.2.2), stronger type I error control through Bonferroni, or another method
that preserves the familywise error rate, may be preferred (Westfall et al. 2011).

13.4.3 Sample Analyses

13.4.3.1 Analysis of Digit Preference

One example for identifying data anomalies involves analyzing digit preference for
the data collected from the tests or procedures performed during a clinic visit, such
as the vital signs, laboratory values, and ECG measurements described above. The
distributions of leading or trailing digits (i.e., the first or last digit, respectively)
can be compared between each suspect site and its corresponding reference. In this
section, we focus solely on analyzing the trailing digit. A table similar to Table 13.1
would be populated with the frequencies nrc (rth row and cth column) of observing
each trailing digit for each suspect site and test combination, with as many as H �
(3 + 27 + 4) × 40 � 1360 tests performed for the sample data (assuming each test is
observed at each site).

In lieu of a chi-square general association statistic, the Cochran–Mantel–Haenszel
(CMH) rowmean score statistic QS is used to take advantage of the ordinality of digit
value for greater power; further,we apply standardizedmid-rank scores to account for
the possibility that the observed digits might not be equally spaced from one another
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(Stokes et al. 2012). The row mean score statistic is Qs � ( f̄1− f̄2)
2

{
1

n1+
+ 1

n2+

}{ nva
n−1 } , where

va � ∑10
c�1

(ac−μa )2n+c
n , μa � ∑10

c�1
acn+c
n , and f̄r � ∑10

c�1
acnrc
nr+

. Qs is distributed

χ2
(1). Standardized mid-rank scores are defined as ac � 2[

∑c
k�1 n+k]−n+c+1
2(n+1) .

The clinical and statistical significance of a large number of tests can be easily
summarized using a volcano plot to highlight the combinations of greater interest:
those tests with large numerical differences and/or those meeting the criteria for
statistical significance after applying a suitable multiplicity adjustment (Zink et al.
2013, Zink 2014). In Fig. 13.1, 1288 site-test combinations are summarized. The
x-axis represents the maximum difference between the suspect site versus the refer-
ence across all observed digits to represent the max percent difference. The y-axis
represents the raw p value from the CMH row mean score test on the negative log10
scale, so the smaller the p value, the larger the value vertically. In general, the inter-
esting site-test combinations are those that approach the upper corners and are above
the dashed FDR reference line. Systolic and diastolic blood pressures for Sites 16
and 40 are labeled as points of interest to examine further.

Further analysis of the Site 40 markers provides the trailing digit bar charts in
Fig. 13.2. Notice the investigator(s) at Site 40 were twice as likely to report a “0” in
the trailing digit for both diastolic (left) and systolic (right) blood pressures, with “5”
as the second most common result. How could we interpret these findings? Perhaps
Site 40may not be following the study protocol. For example, the investigators at that
center may have collected blood pressures manually, reading values from a gauge
where the best one could do is to interpret a 0 or 5 as the last digit, instead of using
a machine to obtain more accurate measurements. Alternatively, this investigator
might have a tendency, compared to the other sites, to round measurements to a 0 or
5. Further, investigation would be required to understand the reason behind such a
finding. However, the study team first needs to decide if such a finding is substantial
or important enough based on the study endpoints and goals to intervene.

Analyses of trailing digit preference can identify other issues aside from round-
ing—they can be used to detect instances where diagnostic equipment might be
miscalibrated, where an error code may be output repeatedly, or the readings may be
consistently too high or too low. Important differences in subjective measurements
can be identified, such as the investigator’s assessment of clinical signs using a Likert
scale, which might suggest that additional training is needed. Analyses of leading
digits can also identify sites that tend to readmuch higher or lower than the other sites.
Alternatively, leading digits can be assessed to identify departures from Benford’s
Law, where each digit d is expected to be observed with probability log10

(
1 + 1

d

)

(Benford 1938; Hill 1996). The corresponding test is
∑k

i�1
(Oi−Ei )

2

Ei
∼ χ2

(k−1). How-
ever, as Kirkwood et al. (2013) noted in their analysis of digit preference, the com-
parisons of observed digits between sites are likely to be more useful since Benford’s
law may not apply in practice. Finally, while this section focused on the analysis of
the trailing (or leading) digit for any numeric data, similar analyses could be used to
compare the distributions of nominal or ordinal categorical variables between each
suspect site and its reference. In the case of nominal categorical variables, how-
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Fig. 13.1 Volcano plot of trailing digit preference among ECG, vital sign, and laboratory mea-
surements (FDR) reference line drawn at −log10(0.00493)�2.3071, where α∗ �127/1288 ×
0.05�0.00493. Alternatively, the FDR reference line could be drawn at −log10 (maximum unad-
justed p value ≤ α∗) as in Zink et al. (2013). Bubbles are colored according to clinical trial
site. Each point represents a specific test, such as systolic blood pressure, for a specific site
comparing that suspect site to all other sites as a reference. The max percent difference is the
largest difference observed among all digit values between the suspect site and reference, i.e.,
max

{
ps,0 − pr,0, . . . , ps,9 − pr,9

}
, where ps, j and pr, j are the proportion of tests with a trailing

digit of j for the suspect and reference, respectively

ever, the CMH row mean score test should be replaced with the chi-square general
association statistic.

13.4.3.2 Correlation Among Related Covariates

In Sect. 13.2.1,we described how inconsistent relationships between variables helped
identify an instance of misconduct. As noted in the introduction, it is challenging to
fabricate data in themanydimensions thatwould be required for it to appear plausible.
Even in the absence of fraudulent behavior, examining higher-order moments such
as the variance, skewness, and kurtosis of each variable, or the pairwise correlation
among pairs of variableswithin each site can uncover a problem in data quality. In this
section, we focus on the analysis of pairwise correlations. Analyses of correlations
have been applied in the past to detect irregularities from questionnaires obtained in
clinical trials (Taylor et al. 2002).
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Fig. 13.2 Bar charts of trailing digit preference for diastolic and systolic blood pressure for site 40
compared to reference. The y-axis represents the proportion of all trial measurements that exhibit
the trailing digit summarized along the x-axis

Fisher’s Z-transformation can be used to calculate a test statistic to compare two
correlation coefficients (Fisher 1921, 1970). Let ri j1 j2 be the correlation of variables
j1 and j2 for site i. Fisher’s Z-transformed correlation r∗

i j1 j2
is defined as

r∗
i j1 j2 � 1

2
loge

(
1 + ri j1 j2
1 − ri j1 j2

)

,

and the normally distributed test statistic comparing the correlation of variables j1
and j2 between groups s and r (suspect and reference, respectively) is defined as

Zsr j1 j2 � r∗
s j1 j2

− r∗
r j1 j2√

1
ns j1 j2−3 +

1
nr j1 j2−3

.

If variables are not approximately normal, it may be preferable to pre-transform
according to a log transformation. Alternatively, Spearman’s correlation, which is
based on the ranks of the values, may be used. In general, I sites with J proce-
dures performed will result in up to I×J×(J−1)

2 comparisons. However, since tests
within each domain (vital signs, laboratories, ECG) tend to be measured at the
same time (which may not be true across domains), we limit analyses to pairs
of tests within the same domain. For this study, this would result in as many as

40 ×
((

3
2

)

+

(
27
2

)

+

(
4
2

))

� 14,400 comparisons if all pairs of tests within

domains were available in each site, with at least four instances of each measure-
ment. Using the sample data, 13,680 tests were performed.

In Fig. 13.3, the x-axis represents the difference in untransformed correlations
between the suspect site versus its reference. The y-axis represents the raw p value
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Fig. 13.3 Volcano plot of pairwise correlations among ECG, vital sign, and laboratory measure-
ments. Pairwise correlations were only evaluated within domain (ECG, vital signs, or laboratories)
when measurements were likely to be observed at the same time. The y-axis represents the p
value for a test of the difference of Fisher’s Z-transformed Pearson correlation coefficients. The
x-axis represents the difference in Pearson correlation coefficients. FDR reference line drawn at
−log10(0.00232)�2.635, where α∗ �634/13680 × 0.05�0.00232. Bubbles are colored accord-
ing to clinical trial site. Each point represents a specific pair of tests, such as aspartate and alanine
aminotransferase, for a specific site comparing that suspect site to all other sites as a reference

from theZ-test defined aboveon thenegative log10 scale, so the smaller thepvalue, the
larger the value vertically. In general, the interesting site-pair combinations approach
the upper corners and above the dashed FDR reference line. Here, numerous results
are identified among six pairs of laboratory tests for Site 28.

Further analysis of the laboratory tests for Site 28 is presented in Fig. 13.4, where
a graphical representation of the lower triangle of the correlation matrices for Site
28 and its reference highlight the magnitude of pairwise associations. Notice that
Site 28 has much stronger positive correlations for the six selected pairs (outlined
in Fig. 13.4), which comprise various combinations of four laboratory tests: alanine
aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase,
and prothrombin time. As an aside, some authors note that fabricated data tend to
exhibit stronger correlation than non-fabricated data (Akhtar-Danesh and Dehghan-
Kooshkghazi 2003).

Figure 13.5 displays a scatterplot matrix of the data for the four variables fromSite
28.Numerous bivariate outliers contribute to the strong correlations of these variables
within Site 28, many of which come from a single patient. While extreme values for
any single laboratory test may indicate a potential safety concern, multiple tests that
are jointly extreme may indicate something more severe, such as drug-induced liver
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Fig. 13.4 Heat map of correlation matrix among laboratory measurements for site 28 compared
to reference. Darker purple or green cells indicates pairs of tests with more positive or negative
correlation, respectively

injury (US Food and Drug Administration 2009). Detecting such findings early can
give the study team an opportunity to intervene on the patient’s behalf.

The above analysis can be modified to assess the autocorrelation of repeated
measurements over time, though it will likely be most useful when the repeated
measurements are roughly evenly spaced. For example, each variable can be com-
pared against a fixed lag with itself, say to assess the serial relationship of values
that are one month apart. Noticeable differences in the autocorrelation between a
suspect site and its reference could warrant further review. In extreme cases, it may
be worthwhile to examine instances where the values for a particular test do not
change at all over the course of the entire study, though this may occur in practice if
limits of detection are consistently exceeded.

13.4.3.3 Visit Scheduling

In this final example,we examine the scheduling of study visits. Buyse and co-authors
(1999) describe an example where study visits for a suspect site appeared too good
to be true (Fig. 13.6). The study days on which the visit occurred were rather evenly
distributed fromDay 18 to 25 among the non-suspect sites. However, the suspect site
had most visits occurring on Day 21, which is likely the expected day for the visit
to take place. However, while this finding is unusual, it isn’t necessarily the result
of misconduct. Some investigators tend to block enroll and go out of their way to
schedule trial patients on a limited number of days. So while the scheduling of this
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Fig. 13.5 Scatterplot matrix of highly correlated laboratory measurements for site 28. Pink ovals
represent the 95% density ellipses of respective pairwise distributions

Table 13.2 Comparison of study day for a particular visit

18 19 20 21 22 23 24 25

Suspect

Reference

visit from the suspect center may stand out, a more definitive understanding is only
possible with some investigation by the study team.

Similar analyses toSect. 13.4.3.1 canbeusedhere to screen studyvisits for unusual
patterns, such as schedules that appear too perfect, or schedules that indicate that a
site tends to see patients too early or too late. The latter phenomenon is problematic
in that the sites visits will be off schedule, meaning that the measurements obtained
are not reflective of the expected drug exposure. For the example in Fig. 13.6, we
can define Table 13.2 in order to compute a CMH row mean score statistic.

In general, I sites and J visits will result in as many as H � I × J comparisons.
Assuming 14 visits for Nicardipine results in at most 560 tests. Unfortunately, given
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Fig. 13.6 Bar chart of visit attendance for suspect site compared to reference. The y-axis represents
the proportion of study visits that occur on the study day summarized along the x-axis. Data are
from Buyse et al. 1999.

that each day results in a new visit, the volcano plot, and bar charts for Nicardipine
are not extremely interesting. However, this analysis did identify a flaw in my logic
in how the SDTM Study Visits (SV) domain data set was built from the vital signs,
laboratories, and ECG domains. The laboratories for some patients at Site 39 were
performed at Study Day 1 (the day before randomization and dosing), which was
subsequently used as the Study Day for Visit 1 and identified as a signal. The impor-
tance of this example is that screening for data quality issues generated by the site (or
patient) may identify instances where the sponsor, or contract research organization
(CRO) working on behalf of the sponsor, may be responsible for the anomaly!

13.5 Conclusions

This chapter summarized past examples of clinical trial misconduct and illustrated
several methodologies to assess data quality using data from a sample clinical trial.
However, numerous additional methodologies to identify unusual data exist in the
literature (e.g., Buyse et al. 1999;Evans 2001;Venet et al. 2012;Kirkwood et al. 2013;
TransCelerate BioPharma 2013; Zink et al. 2014; Knepper et al. 2016). Statisticians
should take an active interest in data quality, since any steps taken to identify and
resolve data anomalies earlier in the timeline of a clinical trial contributes to more
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straightforward analysis and interpretation later on. With sufficient resources, study
teams should assess the usefulness of variousmethodologies in the presence of known
data issues (O’Kelly 2004). One thing to note from the examples presented above:
Identifying unusual data points is only the first step. It takes additional investigation
to understand the root cause of any signals indicating a lapse in data quality. While
much of the research focuses on the impact of staff at investigative sites, patients,
vendors, and sponsors play important roles in data quality. To illustrate this point,
we end with a recent example.

In 2013, a scientist at a pharmaceutical services companywas convicted ofmanip-
ulating data for preclinical studies for an anticancer therapy (Anonymous 2013; Ben-
derly 2013; Mansel 2013). The data irregularities were identified in 2009 during the
review of quality control analyses within the CRO. It was later discovered that the
individual had been engaged in the selective reporting of data since 2003, neces-
sitating the review of hundreds of previously conducted safety studies for multiple
sponsors including AstraZeneca and Roche (Jack 2013). This deception “directly
impacted the validity of clinical trials and delayed a number of medicines coming to
market” (Benderly 2013). It is unclear whether trial sponsors could have identified
the data issues, or why it took several years for the CRO to identify the misconduct.
However, we repeat the following lesson from the introduction: Defining a series
of statistical and graphical checks to be implemented on a regular basis to identify
lapses in data quality is a minimal investment to prevent potential catastrophe. Com-
panies should study these examples from the literature and develop safeguards to
limit or prevent misconduct and other data quality issues from occurring within and
between organizations.
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Chapter 14
Design and Analysis of Biosimilar Studies

Shein-Chung Chow and Fuyu Song

14.1 Introduction

In 2009, the United States (US) Congress passed the Biologics Price Competition
and Innovation (BPCI) Act, which has given the US Food and Drug Administration
(FDA) the authority to review and approve biosimilar drug products (or follow-
on biologics). A biosimilar product is a similar biological product such as protein
product, vaccine, or blood product whose active drug substance is made of a living
cell or derived from a living organism. Biosimilars are not generic drugs but similar
biologic drug products. Similar is in the sense that it is similar to an innovator drug
product in terms of safety, purity, and potency.

Following the passage of the BPCI Act, in order to obtain input on specific issues
and challenges associated with the implementation of the BPCI Act, the US FDA
conducted a two-day public hearing on Approval Pathway for Biosimilar and Inter-
changeability Biological Products held on November 2–3, 2010 at the FDA in Silver
Spring, Maryland. Several scientific factors were raised and discussed at the public
hearing. These scientific factors include criteria for assessing biosimilarity, study
design and analysis methods for assessment of biosimilarity, and tests for compara-
bility in quality attributes ofmanufacturing process and/or immunogenicity (see, e.g.,
Chow et al. 2010). These issues primarily focus on the assessment of biosimilarity.
The issue of interchangeability in terms of the concepts of alternating and switching
was also mentioned and discussed. The discussions of these scientific factors have
led to the development of regulatory guidances. On February 9, 2012, the US FDA
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circulated three draft guidances on the demonstration of biosimilarity for comments.
These draft guidances are

(1) ScientificConsiderations inDemonstratingBiosimilarity to aReferenceProduct
(FDA 2012a);

(2) Quality Considerations in Demonstrating Biosimilarity to a Reference Protein
Product (FDA 2012b);

(3) Biosimilars:Questions andAnswersRegarding Implementationof theBiologics
Price Competition and Innovation (BPCI) Act of 2009 (FDA 2012c).

Subsequently, FDA hosted another public hearing on the discussion of these draft
guidances at the FDA on May 11, 2012.

As indicated in the guidance of Scientific Considerations in Demonstrating
Biosimilarity to a Reference Product, FDA recommends a stepwise approach for
providing so-called totality-of-the-evidence in demonstrating biosimilarity between
a proposed biosimilar to a reference product. The stepwise approach starts with ana-
lytical similarity assessment for critical quality attributes (CQAs) at various stages
of the manufacturing process, followed by animal studies for toxicity, pharmacoki-
netic/pharmacodynamics (PK/PD), immunogenicity, and clinical studies for safety
and efficacy assessment. The purpose of this chapter is to provide a comprehen-
sive review of design and analysis for biosimilar studies conducted for biosimilarity
assessment, analytical similarity assessment, and assessment of the risk of switching
and/or alternation for drug interchangeability.

In the next section, criteria and commonly considered statistical methods
(Schuirmann’s two one-sided tests procedure and confidence interval approach) for
biosimilarity assessment will be reviewed. Also, included in this section is a biosimi-
larity index proposed by Chow et al. (2011). Section 14.3 focuses on tiered approach
recommended by the FDA for analytical similarity assessment. Issues and study
designs regarding drug interchangeability in terms of switching and alternation are
discussed in Sect. 14.4. Recent development and some concluding remarks are pro-
vided in the last section of this chapter.

14.2 Assessing Biosimilarity of Biosimilar Products

14.2.1 Definition of Biosimilarity

As indicated in the BPCI Act, a biosimilar product is a product that is highly similar
to the reference product notwithstanding minor differences in clinically inactive
components and there are no clinically meaningful differences in terms of safety,
purity, and potency. At 2010 FDA public hearing, the following scientific issues
regarding design and analysis of biosimilar studies were raised.

(1) How similar is similar? and How similar is considered highly similar?
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Table 14.1 Fundamental differences between generics and biosimilars

Generic drug products Biosimilar drug products

Made by chemical synthesis Made by living cells

Defined structure Heterogeneous structure
Mixtures of related molecules

Easy to characterize Difficult to characterize

Relatively stable Variable
Sensitive to environmental conditions such as
light and temperature

No issue of immunogenicity Issue of immunogenicity

Usually taken orally Usually injected

Often prescribed by a general practitioner Usually prescribed by specialists

(2) Will one-size-fits-all criterion for bioequivalence assessment of generic drug
products be adopted for biosimilarity assessment of biosimilar products? If not,
what is the ideal criterion for biosimilarity?

(3) Can scaled average bioequivalence (SABE) criterion for highly variable drug
products be used for biosimilar products?

(4) Can a non-inferiority trial be considered to replace a bioequivalence (biosimi-
larity) study?

(5) Should a crossover design or a parallel design be used for biosimilarity assess-
ment?

(6) Can the standard methods for bioequivalence assessment be directly applied to
assess biosimilarity?

These questions, however, were not fully addressed at the public hearing, and
some of the questions still remain unanswered up to date. In what follows, some of
these scientific factors will be addressed.

14.2.2 Fundamental Differences Between Generics
and Biosimilars

Since standard methods for bioequivalence assessment of generic drug products are
well established and have been in practice for years, the questions regarding whether
these methods can be directly applied to assessment of biosimilarity of biosimilar
products. The answer to this question is obvious due to some fundamental differences
between generics and biosimilars (see Table 14.1).

Toprovide a better understanding,Table 14.2 summarizes the comparisonbetween
in vivo bioequivalence testing for generic drug products and biosimilarity testing for
biosimilar products.
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Table 14.2 Comparison between in vivo bioequivalence testing and biosimilarity testing

Characteristics Bioequivalence testing Biosimilarity testing

Study endpoint Drug absorption Drug safety/purity/potency

Variability 20–30% 40–50%

Criterion (80, 125%) (70, 143%) or SABE?

Study design Crossover Parallel/crossover

Statistical methods TOST or confidence interval TOST, confidence interval or
biosimilarity index

Primary assumption Fundamental BE assumption Fundamental BS assumption?

Requirement BE trial is required Analytical, PK/PD, clinical
studies

14.2.3 Criteria for Biosimilarity

Average Bioequivalence (ABE) Criterion—For approval of generic drug products,
FDA requires that evidence of equivalence I average bioavailability in terms of drug
absorption be provided through the conduct of bioequivalence studies. A test drug
product is said to be bioequivalent to a reference drug product if the estimated 90%
confidence interval for the geometric means ratio (GMR) of the primary pharma-
cokinetic (PK) parameters, e.g., area under the blood or plasma concentration-time
curve (AUC) and maximum concentration (Cmax) is totally within the bioequiv-
alence limits of 80.00–125.00% (FDA 2003; Chow and Liu 2008). ABE criterion
focuses on average bioavailability and ignores the variability associated with the PK
responses. Thus, two drug products may fail the evaluation of ABE if the variability
associated with the PK responses is large even though they have identical means.

ABEcriterion has been criticized penalizing good products (i.e., test productswith
less variability). In this case, there is a need for alternative criteria for bioequivalence
assessment for drug products with large variability. A drug with large variability is
considered highly variable. FDA defines a highly variable drug (HVD) as a drug
whose within-subject (or intra-subject) variation is greater than or equal to 30%.
Based on this definition,most biosimilar products are considered highly variable drug
products. One of problematic aspects of this definition is that the estimated within-
subject variability depends on themetrics of pharmacokinetic responses such asAUC
and Cmax. Haidar et al. (2008) pointed out that HVDs show variable pharmacoki-
netics as a result of their inherent properties (e.g., distribution, systemic metabolism,
and elimination) (see also, Haidar et al. 2008; Tothfalusi et al. 2009; Davit et al.
2008). A drug may have low variability if it is administered intravenously, whereas
it can be highly variable after oral administration.

Scaled Average Bioequivalence (SABE) Criterion—In practice, HVDs often fail
to meet current regulatory acceptance criteria for ABE. In the past decade, the topic
for evaluation of bioequivalence for HVDs has received much attention. This topic
has been discussed several times at regulatory forums and international conferences,
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but academics, representatives of pharmaceutical industries and regulatory agencies
failed to reach a consensus until recently that the approach of scaled average bioe-
quivalence (SABE) is proposed by Haidar et al. (2008). The approach of SABE is
briefly described below.

Denoted by μT and μR respectively, are compared. The acceptance of bioequiv-
alence is claimed it the difference between the logarithmic means is between pre-
specified regulatory limits. The limits (δA) are generally symmetrical on the logarith-
mic scale and usually equal± ln(1.25). Thus, the criterion for ABE can be expressed
as follows:

−δA ≤ μT − μR ≤ δA

In a bioequivalence study, the individual kinetic responses are evaluated from
the measured concentrations. The means of the logarithmic responses of the two
formulations are calculated. These sample averages estimate the true population
means. A variance is also estimated for each kinetic response. It is a measure of the
intra-subject variance but not always identical to it. FDA suggests the above ABE
could be scaled by a standard deviation as follows:

−δs ≤ (μT − μR)

σW
≤ δs ,

where δS is the SABE regulatory cutoff. Here, the standard deviation (σW ) is the
within-subject standard deviation. In replicate design, σW is generally the within-
subject standard deviation of the reference formulation (denoted by σWR).

14.2.4 Statistical Methods

In practice, one of the most widely used designs for assessing biosimilarity between
biosimilar products and an innovator biological product is probably either a two-
sequence, two-period (2×2) crossover design or a two-arm parallel group design.
Under a valid study design, biosimilarity can then be assessed by means of an equiv-
alence test under the following interval hypotheses

H0 : μT − μR ≤ θLorμT − μR ≥ θU vs. Ha : θL < μT − μR < θU , (14.1)

where (θL , θU ) are pre-specified equivalence limits (margins) and μT and μR are the
population means of a biological (test) product and an innovator biological (refer-
ence) product, respectively. Under a crossover design, consider the following statis-
tical model for raw data:

Yi jk � μ + Sik + Pj + Fj,k + C( j−1,k) + ei jk, (14.2)
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where

Yijk be the response (e.g., AUC) of the ith subject in the kth sequence at the jth
period and

μ the overall mean;
Sik the random effect of the ith subject in the kth sequence, where i=1, 2, …,

g;
Pj the fixed effect of the jth period, where j=1, …, p and Σ jPj=0;
F(j, k) the direct fixed effect of the drug product in the kth sequence which is

administered at the jth period, and ΣF(j, k)=0;
C(j−1, k) the fixed first-order carryover effect of the drug product in the kth

sequence which is administered at the (j=1)th period, where C(0, k)=0;
and ΣC(j−1, k)=0;

eijk the (within-subject) random error in observing Yijk .

It is assumed that {Sik} are independently and identically distributed (i.i.d.) with
mean 0 and variance σ2

s and {eijk} are independently distributed with mean 0 and
variances σ2

t ,where t= 1, 2,…, L (the number of formulations to be compared). {Sik}
and {eijk} are assumed mutually independent. The estimate of σ2

s is usually used to
explain the inter-subject variability, and the estimates of σ2

t are used to assess the
intra-subject variabilities for the t-th drug product.

Confidence Interval Approach—For bioequivalence assessment of small molecule
drug products, the FDA adopts the 80/125 rule based on log-transformed data. The
80/125 rule states that bioequivalence is concluded if the geometric means ratio
(GMR) between the test product and the reference product is within the bioequiva-
lence limits of (80.00, 125.00%), with a certain statistical assurance. Thus, a typical
approach is to consider the method of classic (shortest) confidence interval.

Consider a standard two-sequence, two-period crossover design, under model
(14.2), after log transformation of the data, let ȲT and ȲR be the respective least
squares means for the test and reference formulations, which can be obtained from
the sequence-by-period means. The classic (or shortest) (1−2α)×100% confidence
interval can then be obtained based on the following t statistic:

T � (ȲT − ȲR) − (μT − μR)

σ̂d

√
1
n1
+ 1

n2

, (14.3)

where n1 and n2 are the numbers of subjects in sequences 1 and 2, respectively, and
σ̂d is an estimate of the variance of the period differences for each subject within
each sequence, which are defined as follows:

dik � 1

2
(Yi2k − Yi1k), i � 1, 2, . . . , nk; k � 1, 2.
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Thus, V(dik) � σ2
d � σ2

e/2. Under normality assumptions, T follows a central
student t distribution with degrees of freedom n1 +n2 − 2. Thus, the classic (1 −
2α) × 100% confidence interval for μT − μR can be obtained as follows:

L1 � (ȲT − ȲR) − t(α, n1 + n2 − 2)σ̂d

√
1

n1
+

1

n2
,

U1 � (ȲT − ȲR) − t(α, n1 + n2 − 2)σ̂d

√
1

n1
+
1

n2
. (14.4)

The above a (1 − 2α) × 100% confidence interval for log(μT ) − log(μR) �
log(μT /μR) can be converted into a (1−2α)×100% confidence interval forμT /μR

by taking an anti-log transformation.
Note that under a parallel group design, a (1 − 2α) × 100% confidence interval

for μT /μR can be similarly obtained.

Schuirmann’s TwoOne-sided Tests (TOST) Procedure—The assessment of aver-
age bioequivalence is based on the comparison of bioavailability profiles between
product products. However, in practice, it is recognized that no two drug productswill
have exactly the samebioavailability profiles. Therefore, if the profiles of the twodrug
products differ by less than a (clinically)meaningful limit, the profiles of the two drug
products may be considered equivalent. Following this concept, Schuirmann (1981)
first introduced the use of interval hypotheses (14.1) for assessing average bioequiv-
alence. The concept of interval hypotheses (14.1) is to show average bioequivalence
by rejecting the null hypothesis of average bioinequivalence. In most bioavailability
and bioequivalence studies, δL and δU are often chosen to be −θL � θU � 20% of
the reference mean (μR). When the natural logarithmic transformation of the data is
considered, the hypotheses corresponding to hypotheses (14.1) can be stated as

H′
0:μT/μR ≤ δL or μT/μR ≥ δU

vs. H′
a: δL < μT/μR < δU

(14.5)

where δL � exp(θL) and δU � exp(θU ). Note that FDA recommends that (δL , δU ) �
(80.00, 125.00%) for assessing average bioequivalence.

Note that the test for hypotheses in (14.5) formulated on the log-scale is equivalent
to testing for hypotheses (14.1) on the raw scale. The interval hypotheses (14.1) can
be decomposed into two sets of one-sided hypotheses

H01:μT − μR ≤ θL vs. Ha1:μT − μR > θL

and

H02:μT − μR ≥ θU vs. Ha2:μT − μR < θU. (14.6)
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The first set of hypotheses is to verify that the average bioavailability of the test
formulation is not too low, whereas the second set of hypotheses is to verify that
the average bioavailability of the test formulation is not too high. A relatively low
(or high) average bioavailability may refer to the concern of efficacy (or safety) of
the test formulation. If one concludes that θL < μT − μR (i.e., reject H01) and
μT − μR < θU (i.e., reject H02), then it has been concluded that

θL < μT − μR < θU.

Thus, μT and μR are equivalent. The rejection of H01 and H02, which leads to the
conclusion of average bioequivalence, is equivalent to rejecting H0 in (14.1).

Under hypotheses (14.1), Schuirmann (1987) introduced the two one-sided tests
procedure for assessing average bioequivalence between drug products. The pro-
posed two one-sided tests procedure suggests the conclusion of equivalence of μT

andμR at the α level of significance if, and only if, H01 and H02 in (14.6) are rejected
at a pre-determined α-level of significance. Under the normally assumptions, the
two sets of one-sided hypotheses can be tested with ordinary one-sided t tests. We
conclude that of μT and μR are average equivalent if

TL � (ȲT − ȲR) − θL

σ̂d

√
1
n1
+ 1

n2

> t(α, n1 + n2 − 2)

and

TU � (ȲT − ȲR) − θU

σ̂d

√
1
n1
+ 1

n2

< −t(α, n1 + n2 − 2). (14.7)

The two one-sided t tests procedure is operationally equivalent to the classic
(shortest) confidence interval approach; that is, both the classic confidence interval
approach and Schuirmann’s two one-sided tests procedure will lead to the same
conclusion on bioequivalence.

Note that under a parallel group design, Schuirmann’s two one-sided tests proce-
dure can be similarly derived with a slightly modification from a pair t test statistic
to a two-sample t test statistic.

14.2.5 Biosimilarity Index

Chow (2013) proposed the development of a composite index for assessing the
biosimilarity of follow-on biologics based on the facts that (1) the concept of biosim-
ilarity for biologic products (made of living cells) is very different from that of
bioequivalence for drug products, and (2) biologic products are very sensitive to
small changes in the variation during the manufacturing process (i.e., it might have
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a drastic change in clinical outcome). Although some research on the comparison
of moment-based criteria and probability-based criteria for the assessment of (1)
average biosimilarity and (2) variability of biosimilarity for some given study end-
points by applying the criteria for bioequivalence are available in the literature (see,
e.g., Chow et al. 2010; Hsieh et al. 2010), universally acceptable criteria for biosim-
ilarity are not available in the regulatory guidelines/guidances. Thus, Chow (2013)
and Chow et al. (2011) proposed a biosimilarity index based on the concept of the
probability of reproducibility as follows.

Step 1. Assess the average biosimilarity between the test product and the reference
product based on a given biosimilarity criterion. For illustration purpose,
consider bioequivalence criterion as biosimilarity criterion. That is, biosim-
ilarity is claimed if the 90% confidence interval of the ratio of means of a
given study endpoint falls within the biosimilarity limit of (80.00, 125.00%)
or (−0.2231, 0.2231) based on log-transformed data or based on raw (orig-
inal) data.

Step 2. Once the product passes the test for biosimilarity in Step 1, calculate the
reproducibility probability based on the observed ratio (or observed mean
difference) and variability. Thus, the calculated reproducibility probability
will take the variability and the sensitivity of heterogeneity in variances into
consideration for assessment of biosimilarity.

Step 3. We then claim biosimilarity if the calculated 95% confidence lower bound
of the reproducibility probability is larger than a pre-specified number p0,
which can be obtained based on an estimated of reproducibility probability
for a study comparing a “reference product” to itself (the “reference pro-
duct”). We will refer to such a study as an R-R study. Alternatively, we can
then claim (local) biosimilarity if the 95% confidence lower bound of the
biosimilarity index is larger than p0.

Since the idea of the biosimilar index is to show that the reproducibility proba-
bility in a study for comparing “a reference product” with “the reference product” is
higher than the study for comparing a follow-on biologic with the innovative (refer-
ence) product, the criterion of an acceptable reproducibility probability (i.e.,p0) for
assessment of biosimilarity can be obtained based on the R-R study. For example, if
the R-R study suggests the reproducibility probability of 90%, i.e., PRR � 90%, the
criterion of the reproducibility probability for bioequivalence study could be chosen
as 80% of the 90% which is p0 � 80% × PRR � 72%.

The above described biosimilar index has the advantages that (1) it is robust with
respect to the selected study endpoint, biosimilarity criteria, and study design, and
(2) the probability of reproducibility will reflect the sensitivity of heterogeneity in
variance.

Note that the proposed biosimilarity index can be applied to different functional
areas (domains) of biological products such as pharmacokinetics (PK), biological
activities, biomarkers (e.g., pharmacodynamics), immunogenicity, manufacturing
process, efficacy, etc. An overall biosimilarity index or totality biosimilarity index
across domains can be similarly obtained as follows:
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Step 1. Obtain p̂i , the probability of reproducibility for the ith domain, i=1, …, K.
Step 2. Define the biosimilarity index p̂ � ∑K

i�1 wi p̂i , where wi is the weight for
the ith domain.

Step 3. Claim global biosimilarity if we reject the null hypothesis that p ≤ p0,
where p0 is a pre-specified acceptable reproducibility probability. Alter-
natively, we can claim (global) biosimilarity if the 95% confidence lower
bound of p is larger than p0.

14.3 Analytical Similarity Assessment

In the guidance on Scientific Considerations in Demonstrating Biosimilarity to a
Reference Product, FDA introduces the concept of stepwise approach for obtaining
totality-of-the-evidence for the regulatory review and approval of biosimilar appli-
cations (FDA 2015).

The stepwise approach starts with the assessment of analytical similarity of crit-
ical quality attributes (CQAs) for structural and functional characterization in the
manufacturing process of biosimilar product that may have an impact on assessment
of similarity. In practice, there is often a large number of CQAs that may be relevant
to clinical outcomes. Thus, it is almost impossible to assess analytical similarity for
all of these CQAs individually. As a result, FDA suggests that the sponsors identify
CQAs that are relevant to clinical outcomes and classify them into three tiers depend-
ing upon their criticality risk ranking, i.e., most relevant (Tier 1), mild-to-moderately
relevant (Tier 2), and least relevant (Tier 3) to clinical outcomes. To assist the spon-
sors, FDA also proposes some statistical approaches for the assessment of analytical
similarity for CQAs from different tiers. For example, FDA recommends equiva-
lence test for CQAs from Tier 1, a quality range approach for CQAs from Tier 2,
and descriptive raw data and graphical presentation for CQAs from Tier 3 (see, e.g.,
Christl 2015; Tsong 2015; Chow 2014, 2015).

14.3.1 Stepwise Approach for Demonstrating Biosimilarity

The stepwise approach is briefly summarized by a pyramid illustrated in Fig. 14.1.
The stepwise approach starts with analytical studies for structural and functional

characterization. The stepwise approach continues with animal studies for toxicity,
clinical pharmacology studies such as PK/PD studies, followed by investigations of
immunogenicity, and clinical studies for safety/tolerability and efficacy. The spon-
sors are encouraged to consult with medical/statistical reviewers of FDA with the
proposed plan or strategy of the stepwise approach for regulatory agreement and
acceptance. This is to make sure that the information provided is sufficient to fulfill
the FDA’s requirement for providing totality-of-the-evidence for the demonstration
of biosimilarity of the proposed biosimilar product as compared to the reference prod-
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Fig. 14.1 A stepwise approach to demonstrate biosimilarity

uct. FDA suggests critical quality attributes be classified into three tiers depending
upon their criticality or risk ranking relevant to the clinical outcomes.

Tsong (2015) indicated that critical quality attributes (CQAs) are necessarily
tested for the functional, structural, and physicochemical characterization of the
proposed biosimilar product as compared to a reference product (either aUS-licensed
product or an EU-approved reference product) for analytical similarity assessment.
Analytical similarity assessment is considered as the foundation of the stepwise
approach for obtaining the totality-of-the-evidence for demonstrating biosimilarity
between the proposed biosimilar product and the reference product. The CQAs with
most relevance to clinical outcomes will be assigned to Tier 1, while the CQAs with
mild-to-moderately relevant to clinical outcomes will be classified to Tier 2. Tier 3
will contain those CQAs with least relevance to clinical outcomes. In practice, it is
believed that biological activity assays are the best representation available to test the
clinically relevant mechanism of action (MOA) and therefore should be assigned to
Tier 1. Other CQAs which are tested in comparative physicochemical and functional
assessment (outside of those relevant toMOA) are of potential relevance to similarity
which is considered most appropriate for Tier 2 or Tier 3.

14.3.2 FDA’s Tiered Approach

FDA recommends tiered approach for analytical similarity assessment of CQAs
from different tiers. For CQAs from Tier 1, FDA recommends an equivalence test be
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performed. For CQAs from Tier 2, it is suggested that quality range approach should
be considered. For CQAs fromTier 3, descriptive raw data and graphical presentation
be used (see, e.g., Cristl 2015; Tsong 2015; Chow 2015). These approaches for tier
analysis are briefly outlined in below.

Equivalence Test for Tier 1—For CQAs from Tier 1, FDA recommends that an
equivalency test be performed for the assessment of analytical similarity.As indicated
by the FDA, a potential approach could be a similar approach to bioequivalence
testing for generic drug products (FDA 2003; Chow 2015). In other words, for a
given critical attribute, we may test for equivalence by the following interval (null)
hypothesis:

H0 : μT − μR ≤ −δ or μT − μR ≥ δ, (14.8)

where δ>0 is the equivalence limit (or similaritymargin), andμT andμR are themean
responses of the test (the proposed biosimilar) product and the reference product lots,
respectively. Analytical equivalence (similarity) is concluded if the null hypothesis
of non-equivalence (dis-similarity) is rejected. Note that Yu (2004) defined inequiv-
alence as when the confidence interval falls entirely outside the equivalence limits.
Similarly to the confidence interval approach for bioequivalence testing under the
raw data model, analytical similarity would be accepted for a quality attribute if the
(1 − 2α) 100% two-sided confidence interval of the mean difference is within (−δ,
δ).

Under the null hypothesis (14.8), FDA indicates that the equivalence limit (sim-
ilarity margin), δ, would be a function of the variability of the reference product,
denoted by σR . It should be noted that each lot contributes one test value for each
attribute being assessed. Thus, σR is the population standard deviation of the lot
values of the reference product. Ideally, the reference variability, σR , should be esti-
mated based on some sampled lots randomly selected from a pool of reference lots
for the statistical equivalence test. In practice, it may be a challenge when there is a
limited number of available lots. Thus, FDA suggests the that the sponsor provide a
plan on how the reference variability, σR , will be estimated with a justification.

Quality Range Approach for Tier 2—For CQAs from Tier 2, FDA suggests that
analytical similarity be assessed on the basis of the concept of quality ranges, i.e.,
±xσ , where σ is the standard deviation of the reference product and x should be
appropriately justified. Thus, the quality range of the reference product for a specific
quality attribute is defined as

(
μ̂R − x σ̂R, μ̂R + x σ̂R

)
. Analytical similarity would

be accepted for the quality attribute if a sufficient percentage of test lot values (e.g.,
90%) falls within the quality range. For a given critical attribute the quality range
is set based on test results of available reference lots. If x=1.645, we would expect
90% of the test results from reference lots to lie within the quality range. If x is
chosen to be 1.96, we would expect that about 95% test results of reference lots will
fall within the quality range. As a result, the selection of x could impact the quality
range and consequently the percentage of test lot values that will fall within the
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quality range. Thus, FDA indicates that the standard deviation multiplier (x) should
be appropriately justified.

The quality range approach for comparing populations between a proposed
biosimilar product and a reference product is a reasonable approach under the
assumption that μT � μR and σT � σR . Under this assumption, we expect that
there is a high percentage (say 90%) of test values of the test product will fall within
the quality range obtained based on the test values of the reference product. Thus, one
of themajor criticisms of the quality range approach is that it ignores the fact that there
are differences in population mean and population standard deviation between the
proposed biosimilar product and the reference product, i.e., μT �� μR and σT �� σR .
In practice, it is recognized that biosimilarity between a proposed biosimilar prod-
uct and a reference product could be established even under the assumption that
μT �� μR and σT �� σR . Thus, under the assumption that μT � μR and σT � σR ,
the quality range approach for analytical similarity assessment for CQAs from Tier 2
is considered more stringent as compared to equivalence testing for CQAs from Tier
1 (most relevant to clinical outcomes) regardless that they are mild-to-moderately
relevant to clinical outcomes. This is because that equivalence testing allows a pos-
sible mean shift of σR/8, while the quality range approach does not. In what follows,
several examples for the possible scenarios of (1 μT ≈ μR or there is a significant
mean shift (either a shift to the right or a shift to the left), and (2) σT ≈ σR , σT > σR ,
or σT < σR .

Raw data and graphical comparison for Tier 3—For CQAs in Tier 3 with lowest
risk ranking, FDA recommends an approach that uses raw data/graphical compar-
isons. The examination of similarity for CQAs in Tier 3 is by nomeans less stringent,
which is acceptable because they have least impact on clinical outcomes in the sense
that a notable dissimilarity will not affect clinical outcomes.
The method of raw data and graphical comparison is easy to implement and yet it is
subjective. One of the major criticisms is that it is not clear how the approach can
provide totality-of-the-evidence for demonstrating biosimilarity. For CQAs in Tier
1, they are least relevant to clinical outcomes and yet should carry less weight as
compared to those CQAs from Tier 1 and Tier 2. There is little or no information
regarding what results will be accepted by the method of data and graphical compar-
ison. In practice, if significant differences in graphical comparisons of some CQAs
are observed, should this observation raise a concern? In this case, if it is possible,
the degree of criticality risk ranking of these CQAs should be assessed whenever
possible.

14.3.3 Challenging Issues to FDA’s Approaches

The idea of FDA’s proposed equivalence test for Tier 1 CQAs comes from the bioe-
quivalence assessment for generic drugs which contain the same active ingredient(s)
as the reference drug product. It may not be appropriate to apply the idea directly to
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the assessment of biosimilarity of biosimilar products. The FDA’s proposed equiv-
alence test is sensitive to (1) the primary assumptions made, (2) the selection of c,
and (3) the estimation of σR . Chow (2015) commented on these issues as follows.

Primary Assumptions—Basically, FDA’s proposed equivalence test ignores (1)
the lot-to-lot variability of both the reference product and the proposed biosimilar
product, (2) the difference betweenmeans, and (3) the inflation/deflation in variability
between the reference product and the proposed biosimilar product. Suppose that
there are K reference lots which will be used to establish EAC for the equivalence
test. FDA suggests that one sample is randomly selected from each lot. The standard
deviation of the reference product σR can be estimated based on the K test results.
Let xi , i � 1, 2., . . . , K be the test result of the i th lot. xi , i � 1, 2, . . . , K are
assumed to be independently and identically distributed with mean μR and variance
σ 2
R . In other words, we assume that μRi � μRj � μR and σ 2

Ri � σ 2
Rj � σ 2

R for i ��
j, i, j � 1, 2, . . . , K .Thus, the expected value of E(x̄) � μR and Var(x̄) � σ 2

R/K .
In practice, it is well recognized thatμRi �� μRj and σ 2

Ri �� σ 2
Rj for i �� j , whereμRi

and σ 2
Ri are the mean and variance of the ith lot of the reference product. A similar

argument applies to the proposed biosimilar (test) product. As a result, the selection
of reference lots for the estimation of σR is critical for the proposed approach.

In addition, FDA assumes that the difference in mean responses between the ref-
erence product and the proposed biosimilar product is proportional to the variability
of the reference product. In other words, � � μT − μR(in log scale) ∝ σR . FDA
suggests that the power for detecting a clinically meaningful difference be evaluated
at σR/8. Thus, under the assumption, the FDA’s proposed equivalence testing is
straightforward and easy to implement. However, Chow (2014) indicated that FDA’s
proposed testing procedure depends upon the selection of the regulatory standard
c=1.5, the anticipated difference � � μT − μR , and the compromise between the
test size (type I error) and statistical power (type II error) for detecting � Chow
2015).

Heterogeneity Within and Between Test and Reference Products—Let σ 2
R and

σ 2
T be the variabilities associated with the reference product and the test product,

respectively. Also, let nR and nT be the number of lots for analytical similarity
assessment for the reference product and the test product, respectively. Thus, we
have

σ 2
R � σ 2

WR + σ 2
BR and σ 2

T � σ 2
WT + σ 2

BT ,

where σ 2
WR, σ 2

BR and σ 2
WT , σ 2

BT are the within-lot variability and between-lot (lot-
to-lot) variability for the reference product and the test product, respectively. In
practice, it is very likely that σ 2

R �� σ 2
T and often σ 2

WR �� σ 2
WT and σ 2

BR �� σ 2
BT even

σ 2
R ≈ σ 2

T . This has posted a major challenge to the FDA’s proposed approaches for
the assessment of analytical similarity for CQAs from both Tier 1 and Tier, especially
when there is only one test sample from each lot from the reference product and the
test product. FDA’s proposal ignores lot-to-lot (between-lot) variability, i.e., when
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σ 2
BR � 0 or σ 2

R � σ 2
WR . In other words, sample variance based on xi , i � 1, . . . , K

from the reference product may underestimate the true σ 2
R , and consequently may

not provide a fair and reliable assessment of analytical similarity for a given quality
attribute.

In practice, it is well recognized that μRi �� μRj and σ 2
Ri �� σ 2

Rj for i �� j , where
μRi and σ 2

Ri are the mean and variance of the ith lot of the reference product. A
similar argument is applied to the proposed biosimilar (test) product. As a result,
the selection of reference lots for the estimation of σR is critical for the proposed
approach. The selection of reference lots has an impact on the estimation of σR and
consequently on the EAC. Suppose there are K reference lots available and n lots
will be tested for analytical similarity. FDA suggests using the remaining K-n lots
to establish EAC to avoid selection bias. It sounds a reasonable approach if K 	 n.

In practice, however, there are few lots available. In this case, the FDA’s proposed
approach may not be feasible.

Sample Size—In practice, one of the major problems to a biosimilar sponsor is the
availability of reference lots for analytical similarity testing. FDA suggests that an
appropriate sample size (the number of lots from the reference product and from the
test product) be used for achieving a desired power (say 80%) to establish similarity
based on a two-sided test at the 5% level of significance assuming that the mean
response of the test product differs from that of the reference product by σR/8.

Furthermore, since sample size is a function of α (type I error), β (type II error or
1 minus power), δ (treatment effect), and σ 2 (variability), it is a concern that we may
have inflated the type I error rate for achieving a desired power to detect a clinically
meaningful effect size (adjusted for variability) with a pre-selected small sample size
(i.e., a small number of lots).

14.4 Issues and Designs of Drug Interchangeability

As indicated in the Subsection (b)(3) amended to the Public Health Act Subsec-
tion 351(k)(3), the term interchangeable or interchangeability in reference to a bio-
logical product that is shown to meet the standards described in Subsection (k)(4),
means that the biological product may be substituted for the reference product with-
out the intervention of the healthcare provider who prescribed the reference product.
Along this line, in what follows, definition and basic concepts of interchangeability
(in terms of switching and alternating) are given.

14.4.1 Definition and Basic Concepts

As indicated in the Subsection (a)(2) amends the Public Health Act Subsec-
tion 351(k)(3), a biological product is considered to be interchangeable with the
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reference product if (i) the biological product is biosimilar to the reference product;
and (ii) it can be expected to produce the same clinical result in any given patient.
In addition, for a biological product that is administered more than once to an indi-
vidual, the risk in terms of safety or diminished efficacy of alternating or switching
between use of the biological product and the reference product is not greater than
the risk of using the reference product without such alternation or switch.

Thus, there is a clear distinction between biosimilarity and interchangeability. In
other words, biosimilarity does not imply interchangeability which is much more
stringent. Intuitively, if a test product is judged to be interchangeable with the refer-
ence product then it may be substituted, even alternated, without a possible interven-
tion, or even notification, of the healthcare provider. However, the interchangeability
is expected to produce the same clinical result in any given patient, which can be
interpreted as that the same clinical result can be expected in every single patient. In
reality, conceivably, lawsuits may be filed if adverse effects are recorded in a patient
after switching from one product to another.

It should be noted that when FDA declares the biosimilarity of two drug products,
it may not be assumed that they are interchangeable. Therefore, labels ought to state
whether for a follow-on biologic which is biosimilar to a reference product, inter-
changeability has or has not been established. However, payers and physicians may,
in some cases, switch products even if interchangeability has not been established.

14.4.2 Switching and Alternation

Unlike drug interchangeability in terms of prescribability and switchability for
generic drug products (Chow and Liu 2008), the US FDA has slightly perception of
drug interchangeability for biosimilars. From the FDA’s perspectives, interchange-
ability includes the concept of switching and alternating between an innovative bio-
logic product (R) and its follow-on biologics (T). The concept of switching is referred
to as not only the switch from “R to T” or “T to R” (narrow sense of switchability),
but also “T to T” and “R to R” (broader sense of switchability). Note “T to T” could
indicate a switch from an approved biosimilar product to another approved biosimi-
lar product, while “R to R” could be a switch from an innovative biological product
to itself (e.g., from a different batch or made at a different location). As a result,
in order to assess switching, biosimilarity for “R to T,” “T to R,” “T to T,” and “R
to R” need to be assessed based on some biosimilarity criteria under a valid study
design. The BPCI Act indicates that the risk in terms of safety or diminished efficacy
of switching between use of the biological product and the reference product should
not be greater than the risk of using the reference product without such a switch. This
suggests that the risk of switching between Ti, i�1,…, K, where K is the number of
approved biosimilars and R should not be greater than the risk of switching between
R and R.

On the other hand, the concept of alternating is referred to as either the switch from
T to R and then switch back to T (i.e., “T to R to T”) or the switch from R to T and
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then switch back to R (i.e., “R to T to R”). Thus, the difference between “the switch
from T to R” then “the switch from R to T” and “the switch from R to T” then “the
switch from T to R” needs to be assessed for addressing the concept of alternating.
The BPCI Act also indicates that the risk in terms of safety or diminished efficacy of
alternating between use of the biological product and the reference product should
not be greater than the risk of using the reference product without such alternating.
In practice, alternating “T to R to T” or “R to T to R” could have multiple T’s (e.g.,
different approved biosimilars) and multiple R’s (e.g., from different batches and/or
made at different manufacturing locations/sites).

Thus, in practice, it is very difficult, if not impossible, to assess drug interchange-
ability of approved biosimilar products especially when there are multiple T’s and
R’s in the marketplace. As stated in the BPCI Act, the relative risk between switch-
ing/alternating and without switching/alternating must be evaluated. However, little
or no discussion about the criteria for assessment of the relative risk was mentioned
in the BPCI Act. In the recent FDA draft guidances on the demonstration of biosim-
ilarity of follow-on biologics, little or no discussion regarding the criteria, study
design, and statistical methods for assessment of drug interchangeability in terms of
switching and alternating was mentioned either. Thus, detailed regulatory guidances
regarding the assessment of drug interchangeability in terms of switching and/or
alternating are necessarily development.

14.4.3 Scaled Criteria for Drug Interchangeability (SCDI)

While the criterion for the determination of average biosimilarity is based on the
BE requirement of (80.00, 125.00%) using log-transformed data, the criterion for
the assessment of interchangeability is not clear. As indicated by Chen et al. (2000),
variability due to subject-by-drug formulation interaction will have an impact on
drug interchangeability. Let σ 2

D be the variance component due to the subject-by-
formulation interaction. We would like to propose a criterion to adjust for both intra-
subject variability and the variability due to subject-by-formulation variability. The
current BE criterion adjusted for intra-subject variability leads to so-called scaled
average bioequivalence (SABE) criterion, which is considered suitable for highly
variable drug products. In addition to adjusting intra-subject variability, following
the idea of individual bioequivalence, we may further adjust the BE criterion with
respect to the variability due to subject-by-formulation variability in order to have a
more accurate and reliable assessment of interchangeability. As indicated in the 2001
FDA guidance on bioequivalence, criterion for assessing individual bioequivalence
(IBE) is given by:

θ � (μT − μR)2 + σ 2
D +

(
σ 2
WR − σ 2

WT

)

max
(
σ 2
0 , σ 2

WR

) ,
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where σ 2
WR and σ 2

WT are intra-subject variances for the reference product and the test
product, respectively, and σ 2

0 is a regulatory constant.
The proposed criterion will be based on the first two components of the criterion

for individual bioequivalence, which consists of (i) criterion for average biosimilarity
adjusted for intra-subject variability of the reference product (i.e., SABE), and (ii)
correction for variability due to subject-by-product variability (i.e., σ 2

D). The pro-
posed criterion for assessing interchangeability (i.e., switching and alternating) is
briefly derived below.
Step 1: Unscaled ABE criterion
Let BEL be the BE limit which generally equals 1.25. Thus, biosimilarity requires
that

1

BEL
≤ GMR ≤ BEL

This implies

− log(BEL) ≤ log(GMR) ≤ log(BEL),

or

− log(BEL) ≤ μT − μR ≤ log(BEL),

where μT and μR are logarithmic means.
Step 2: Scaled ABE (SABE) criterion
Difference in logarithmic means is adjusted for intra-subject variability as follows:

− log(BELS) ≤ μT − μR

σW
≤ log(BELS),

or

− log(BELS)σW ≤ μT − μR ≤ log(BELS)σW ,

whereσ 2
W is awithin-subject variation andBELS is theBE limit for SABE. In practice,

σ 2
WR , the within-subject variation of the reference product is often considered.

Step 3: Proposed scaled criterion for drug interchangeability (SCDI)
Consider the first two components of the individual bioequivalence criterion, we
have the following relationship:

(μT − μR)2 + σ 2
D

σ 2
W

� 2δσD + (δ − σD)2

σ 2
W

,

where δ � μT − μR . When δ and σD are close, we observe that
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δ2 + σ 2
D

σ 2
W

≈ 2δσD

σ 2
W

.

The assumption is reasonable when both δ and σD are small.
Thus, the proposed scaled criterion for drug interchangeability (SCDI) is:

− log(BELS) ≤
(

μT − μR

σW

)(
2σD

σW

)
≤ log(BELS).

Now, let f � σW/(2σD), a correction factor for drug interchangeability. Then,
the proposed SCDI criterion is given by:

− log(BELS) f σW ≤ μT − μR ≤ log(BELS) f σW

Note that statistical properties and finite sample performance need further
research.

Following the concept of criterion for individual bioequivalence and the idea of
SABE, the proposed SCDI criterion is developed in order to adjust the usual one-
size-fits-all approach for both intra-subject variability of the reference product and
the variability due to subject-by-product. As compared to SABE, SCDI may result in
wider or narrower limits depending upon the correction factor f which is a measure
of the relative magnitude between σWR and σD .

The proposed SCDI criterion for drug interchangeability depends upon the selec-
tion of regulatory constants for σWR and σD . In practice, the observed variabilities
may deviate far from the regulatory constants. Thus, it is suggested that the following
hypotheses be tested before the use of SCDI criterion:

H01: σWR > σW0 vs. Ha1: σWR ≤ σW0,

and

H02: σD > σD0 vs. Ha2: σD ≤ σD0

If we fail to reject the null hypotheses H01 or H02, then we will stick with the
suggested individual regulatory constants; otherwise, estimates of σWR and/or σD

should be used in the SCDI criterion.
However, it should be noted that statistical properties and/or the finite sample

performance of SCDI with estimates of σWR and/or σD are not well established.
Further research is needed.
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14.4.4 Study Designs

For assessment of bioequivalence for chemical drug products, a standard two-
sequence, two-period (2×2) crossover design is often considered, except for drug
products with relatively long half-lives. Since most biosimilar products have rel-
atively long half-lives, it is suggested that a parallel group design should be con-
sidered. However, parallel group design does not provide independent estimates of
variance components such as inter- and intra-subject variabilities and variability due
to subject-by-product interaction. Thus, it is a major challenge for assessing biosimi-
larity (especially for assessing drug interchangeability) under parallel group designs
since each subject will receive the same product once.

As indicated in the BPCI Act, for a biological product that is administered more
than once to an individual, the risk in terms of safety or diminished efficacy of
alternating or switching between use of the biological product and the reference
product is not greater than the risk of using the reference product without such
alternation or switch. Thus, for assessing drug interchangeability, an appropriate
study design should be chosen in order to address (1) the risk in terms of safety or
diminished efficacy of alternating or switching between use of the biological product
and the reference product, (2) the risk of using the reference product without such
alternation or switch, and (3) the relative risk between switching/alternating and
without switching/alternating. In this section, several useful designs for addressing
switching and alternation of biosimilar products are discussed.

Designs for Switching—Consider the broader sense of switchability. In this case,
the concept of switching includes (1) switch from “R to T,” (2) switch from “T
to R,” (3) switch from “T to T,” and (4) switch to “R to R.” Thus, in order to
assess interchangeability of switching, a valid study design should be able to assess
biosimilarity between “R and T,” “T and R,” “T and T,” and “R and R” based on
some biosimilarity criteria. For this purpose, the following study designs are useful.

Balaam design is a 4×2 crossover design, denoted by (TT, RR, TR, RT). Under
a 4×2 Balaam’s design, qualified subjects will be randomly assigned to receive one
of the four sequences of treatments: TT, RR, TR, and RT. For example, subjects in
sequence 1 of TTwill receive the test (biosimilar) product first and then cross-overed
to receive the reference (innovative biological) product after a sufficient length of
washout (see Table 11.1). In practice, a Balaam design is considered the combination
of a parallel design (the first two sequences) and a crossover design (sequences #3
and #4). The purpose of the part of parallel design is to obtain independent estimates
of intra-subject variabilities for the test product and the reference product. In the
interest of assigning more subjects to the crossover phase, an unequal treatment
assignment is usually employed. For example, we may consider a 1:2 allocation to
the parallel phase and the crossover phase. In this case, for a sample size of N�24,
8 subjects will be assigned to the parallel phase and 16 subjects will be assigned to
the crossover phase. As a result, 4 subjects will be assigned to sequences #1 and #2,
while 8 subjects will be assigned to sequence #3 and #4 assuming that there is a 1:1
ratio treatment allocation within each phase.
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Under Balaam’s design, the first sequence provides not only independent estimate
of the intra-subject variability of the test product, but also the assessment for “switch
from T to T,” while the second sequence provides independent estimate of the intra-
subject variability of the reference product and compares difference between “R and
R.” The other two sequences assess similarity for “switch from T to R” and “switch
fromR toT,” respectively. Under the 4×2Balaamdesign, the following comparisons
are usually assessed:

(1) Comparisons by sequence;
(2) Comparisons by period;
(3) T versus R based on sequence #3 and #4—this is equivalent to a typical 2×2

crossover design;
(4) T versus R given T based on sequence #1 and #3;
(5) R versus T given R based on sequence #2 and #4;
(6) The comparison between (1) and (3) for assessment of treatment-by-period

interaction.

It should be noted that the interpretations of the above comparisons are different.
More information regarding statistical methods for data analysis of Balaam design
can be found in Chow and Liu (2008).

Designs for Alternating—For addressing the concept of alternating, an appropriate
study design should allow the assessment of differences between “R to T” and “T to
R” for alternating of “R to T to R” to determine whether the drug effect has returned
to the baseline after the second switch. For this purpose, the following study designs
are useful.

Two-sequence dual design is a 2×3 higher-order crossover design consisting of
two dual sequences, namely TRT and RTR. Under the two-sequence dual design,
qualified subjects will be randomly assigned to receive either the sequence of TRT
or the sequence of RTR. Of course, there is a sufficient length of washout between
dosing periods. Under the two-sequence dual design, we will be able to evaluate the
relative risk of alternating between use of the biological product and the reference
product and the risk of using the reference product without such alternating.

Note that expected values of the sequence-by-period means, analysis of variance
table, and statistical methods (e.g., the assessment of average biosimilarity, inference
on carryover effect, and the assessment of intra-subject variabilities) for analysis of
data collected from a two-sequence dual design are given in Chow and Liu (2008).
In case there are missing data (i.e., incomplete data), statistical methods proposed
by Chow (2013) are useful.

For a broader sense of alternation involving more than two biologics, e.g., two
biosimilars T1 and T2 and one innovative product R, there are six possible sequences:
(R T2 T1), (T1 R T2), (T2 T1 R), (T1 T2 R), (T2 R T1), and (R T1 T2). In this case, a
6×3 William’s design for comparing three products is useful (see, also, Chow and
Liu 2008). A William design is a variance-balanced design, which consists of six
sequences and three periods. Under the 6×3 William’s design, qualified subjects
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are randomly assigned to receive one of the six sequences. Within each sequence, a
sufficient length of wash is applied between dosing periods.

Detailed information regarding (1) construction of a William design, (2) analysis
of variance table, and (3) statistical methods for analysis of data collected from a
6×3 William design adjusted for carryover effects, in absence of unequal carryover
effects, and adjusted for drug effect can be found in Chow and Liu (2008).

Designs for Switching/Alternating—In the previous two sub-sections, useful study
designs for addressing switching and alternating of drug interchangeability are dis-
cussed, respectively. In practice, however, it is of interest to have a study design
which can address both switching and alternating. In this case, an intuitive study
design is to combine a switching design with an alternating design. Along this line,
in this section, several useful designs for addressing both switching and alternating
of drug interchangeability are introduced.

As indicated earlier, Balaam’s design is useful for addressing switching, while a
two-sequence dual design is appropriate for addressing alternating. In the interest of
addressing both switching and alternating in a single trial, we may combine the two
study designs as follows: (TT, RR, TRT, RTR), which consists of a parallel design
(the first two sequences) and a two-sequence dual design (the last two sequences).
Data collected from the first two dosing periods (which are identical to the Balaam
design) can be used to address switching, while data collected from sequences #3
and #4 can be used to assess the relative risks of alternating.

As it can be seen that the modified Balaam’s design in not a balanced design in
terms of the number of dosing periods. In the interest of balance in dosing periods, it
is suggested the modified Balaam’s design be further modified as (TTT, RRR, TRT,
RTR). We will refer to this design as a complete design. The difference between the
complete design and themodified Balaam design is that the treatments are repeated at
the third dosing period for sequences #1 and #2. Data collected from sequence #1will
provide a more accurate and reliable assessment of intra-subject variability, while
data collected from sequence #2 is useful in establishing baseline for the reference
product. Note that statistical methods for analysis of data collected from the complete
design are similar to those under the modified Balaam’s design.

14.4.5 Unified Approach for Assessing Interchangeability

In practice, switching and alternating can only be assessed after the biosimilar prod-
ucts under study have been shown to be highly similar to the innovative biological
drug product. Based on similar idea for development biosimilarity index (Chow et al.
2011), a general approach for development of switching index and/or alternating
index for addressing switching and/or alternating can be obtained.

Switching Index (SI)—Similar idea can be applied to develop switching index under
an appropriate study design such as a 4×2 Balaam’s crossover design described
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earlier. Thus, biosimilarity for “R to T,” “T to R,” “T to T,” and “R to R” need to be
assessed for addressing the issue of switching.

Define p̂T i the totality biosimilarity index for the ith switch, where i=1 (switch
from R to R), 2 (switch from T to T), 3 (switch from R to T), and 4 (switch from T
to R). As a result, the switching index (SI) can be obtained as follows:

Step 1: Obtain p̂T i , i=1, …, 4;
Step 2: Define switching index as SI � min

i

{
p̂T i

}
, i=1, …, 4, which is the largest

order of the biosimilarity indices;
Step 3: Claim switchability if the 95% confidence lower bound of mini{pTi}. i�1,
…, 4, is greater than a pre-specified value ps0.

Alternating Index (AI)—Similar idea can be applied to develop alternating index
under an appropriate study design. Under the modified Balaam’s crossover design
of (TT, RR, TRT, RTR), biosimilarity for “R to T to R” and “T to R to T” need to
be assessed for evaluation of alternating. For example, the assessment of differences
between “R to T” and “T to R” for alternating of “R to T to R” need to be evaluated
in order to determine whether the drug effect has returned to the baseline after the
second switch.

Define pT i the totality biosimilarity index for the ith switch, where i=1 (switch
from R to R), 2 (switch from T to T), 3 (switch from R to T), and 4 (switch from T
to R). As a result, the alternating index (AI) can be obtained as follows:

Step 1: Obtain p̂T i , i=1, …, 4;
Step 2: Define the range of these indexes, AI � max

i

{
p̂T iQUOTE

} −
mini

{
p̂T iQUOTE

}
, i � 1, . . . , 4, as the alternating index;

Step 3:Claimalternation if the 95%confidence lower boundofmax
i

{pT i } −min
i

{pT i },
i=1, …, 4, is greater than a pre-specified value pA0 .

14.5 Concluding Remarks

14.5.1 Biosimilarity Assessment

Biological products or medicines are therapeutic agents made of a living system or
organism. As a number of biologic products will be due to expire in the next few
years, the potential opportunity in developing the follow-on products of these origi-
nator productsmay result in the reduction of these products and providemore choices
to medical doctors and patients for getting the similar treatment care with lower cost.
However, the price reductions versus the originator biologic products remain to be
determined, as the advantage of a slightly cheaper price may be outweighed by the
hypothetical increased risk of side-effects from biosimilar molecules that are not
exact copies of their originators. Unlike traditional small molecule drug products,
the characteristic and development of biologic products are more complicated and
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sensitive to many factors. Any small change in manufacturing process may result in
the change of therapeutic effect of the biologic products. The traditional bioequiva-
lence criterion for average bioequivalence of small molecule drug products may not
be suitable for evaluation of biosimilarity of biologic products. Therefore, in this arti-
cle, we evaluate the biosimilar index proposed by Chow et al. (2011) for assessment
of the (average) biosimilarity between innovator and reference products. Both results
based on estimation and Bayesian approaches demonstrate that the proposed method
based on biosimilar index can reflect the characteristics and impact of variability on
the therapeutic effect of biologic products. However, the estimated reproducibility
probability based on the Bayesian approach depends on the choice of the prior distri-
butions. If a different prior such as an informative prior is used, a sensitivity analysis
may be performed to evaluate the effects of different prior distributions.

The other advantage of the proposedmethod can be applied to different functional
areas (domains) of biological products such as pharmacokinetics (PK), biological
activities, biomarkers (e.g., pharmacodynamics), immunogenicity, manufacturing
process, efficacy, etc., since it is developed based on the probability of reproducibility.
The further research will be employed for the development of the statistical testing
approach for the evaluation of biosimilarity across domains.

Current methods for the assessment of bioequivalence for drug products with
identical active ingredients are not applicable to follow-on biologics due to funda-
mental differences. The assessment of biosimilarity between follow-on biologics and
innovator in terms of surrogate endpoints (e.g., pharmacokinetic parameters and/or
pharmacodynamics responses) or biomarkers (e.g., genomic markers) requires the
establishment of the fundamental biosimilarity assumption in order to bridge the
surrogate endpoints and/or biomarker data to clinical safety and efficacy.

Unlike conventional drug products, follow-on biologics are very sensitive to small
changes in variation during the manufacturing process, which have been shown to
have an impact on the clinical outcome. Thus, it is a concern whether current crite-
ria and regulatory requirements for the assessment of bioequivalence for drugs with
small molecules can be applied also to the assessment of biosimilarity of follow-on
biologics. It is suggested that current, existing criteria for the evaluation of bioequiv-
alence, similarity, and biosimilarity be scientifically/statistically evaluated in order
to choose the most appropriate approach for assessing biosimilarity of follow-on
biologics. It is recommended that the selected biosimilarity criteria should be able to
address (1) sensitivity due to small variations in both location (bias) and scale (vari-
ability) parameters, and (2) the degree of similarity, which can reflect the assurance
for drug interchangeability.

Under the established fundamental biosimilarity assumption and the selected
biosimilarity criteria, it is also recommended that appropriate statistical methods
(e.g., comparing distributions and the development of biosimilarity index) be devel-
oped under valid study designs (e.g., Design A and Design B described earlier) for
achieving the study objectives (e.g., the establishment of biosimilarity at specific
domains or drug interchangeability) with a desired statistical inference (e.g., power
or confidence interval). To ensure the success of studies conducted for the assessment
of biosimilarity of follow-on biologics, regulatory guidelines/guidances need to be
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developed. Product-specific guidelines/guidances published by EU EMA have been
criticized for not having standards. Although product-specific guidelines/guidances
do not help to establish standards for the assessment of biosimilarity of follow-
on biologics, they do provide the opportunity for accumulating valuable experi-
ence/information for establishing standards in the future. Thus, We recommends that
several numerical studies are recommended including simulations, meta-analysis,
and/or sensitivity analysis, in order to (1) provide a better understanding of these
product-specific guidelines/guidances, and (2) check the validity of the established
FundamentalBiosimilarityAssumption,which is the legal basis for assessing biosim-
ilarity of follow-on biologics.

14.5.2 Analytical Similarity Assessment

For identifying CQAs at various stages of the manufacturing process, most sponsors
assign CQAs based on the mechanism of action (MOA) or pharmacokinetics (PK)
which are believed to be relevant to clinical outcomes. It is a reasonable assump-
tion that change in MOA or PK of a given quality attribute is predictive of clinical
outcomes. However, the primary assumption that there is a well-established rela-
tionship between in vitro assays and in vivo testing (i.e., in vitro assays and in vivo
testing correlation; IVIVC) needs to be validated. Under the validated IVIVC rela-
tionship, the criticality (or risk ranking) can then be assessed based on the degree of
the relationship. In practice, however, most sponsors provide clinical rationales for
the assignment of the CQAs without using a statistical approach for the establish-
ment of IVIVC. The assignment of the CQAs without using a statistical approach is
considered subjective and hence is somewhat misleading.

For a given quality attribute, FDA suggests a simple approach by testing one sam-
ple (randomly selected) from each of the lots. Basically, FDA’s approach ignores
lot-to-lot variability for the reference product. In practice, however, lot-to-lot vari-
ability inevitably exists even when the manufacturing process has been validated.
In other words, we would expect that there are differences in mean and variability
from lot-to-lot, i.e., μRi �� μRj and σ 2

Ri �� σ 2
Rj for i �� j, i, j � 1, 2, . . . , K . In

this case, it is suggested that FDA’s approach be modified (e.g., performing tests on
multiple samples from each lot) in order to account for the within-lot and between-lot
(lot-to-lot) variabilities for fair and reliable comparisons.

For the quality range approach for CQAs in Tier 2, FDA recommends to use x�3
bydefault for 90%of values of test lots contained in the range. It allows approximately
one standard deviation of reference for shifting, which may be adjusted based on
biologist reviewers’ recommendations. However, some sponsors propose using the
concept of tolerance interval in order to ensure that there is a high percentage of test
values for the lots from the test product fall within the quality range. It, however,
should be noted that the percentage decreases when the difference in mean between
the reference product and the proposed biosimilar product increases. This is also
true when σT 
 σR . Even the tolerance interval is used as the quality range. This
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problem is commonly encountered mainly because the quality range approach does
not take into consideration (i) the difference in means between the reference product
and the proposed biosimilar product, and (ii) the heterogeneity among lots within
and between products. In practice, it is very likely that a biosimilar product with
small variability but a mean response which is away from the reference mean (e.g.,
within the acceptance range of σR/8 per FDA) will fall outside the quality range. In
this case, a further evaluation of the data points that fall outside the quality range is
necessary to rule out the possibility by chance alone.

FDA’s current thinking for analytical similarity assessment using a 3-tier analy-
sis is encouraging. It provides a direction for statistical methodology development
for a valid and reliable assessment toward providing the totality-of-the-evidence
for demonstrating biosimilarity. The 3-tier approach is currently under tremendous
discussion within the pharmaceutical industry and academia. In addition to the chal-
lenging issues discussed above, there are some issues that remain unsolved and
require further research. These issues include, but are not limited to, (i) the degree
of similarity (i.e., how similar is considered highly similar?), (ii) multiplicity (i.e.,
is there a need to adjust α for controlling the overall type I error at a pre-specified
level of significance), (iii) acceptance criteria (e.g., about what percentage of CQAs
in Tier 1 need to pass an equivalence test in order to pass the analytical similarity test
for Tier 1?), (iv) multiple references (i.e., what if there are two reference products
such as US-licensed and EU-approved reference product), and (v) credibility toward
the totality-of-the-evidence.

14.5.3 Assessing Drug Interchangeability

With small molecule drug products, bioequivalence generally reflects therapeutic
equivalence.Drugprescribability, switching, and alternating are generally considered
reasonable. With biologic products, however, variations are often higher (other than
pharmacokinetic factorsmay be sensitive to small changes in conditions). Thus, often
only parallel group design rather than crossover kinetic studies can be performed.
It should be noted that very often, with follow-on biologics, biosimilarity does not
reflect therapeutic comparability. Therefore, switching and alternating should be
pursued with extremely caution.

The concept of drug interchangeability in terms of prescribability and switcha-
bility for small molecule drug products are similar but different from those for large
molecule biological products as defined in the BPCI Act. Thus, the usual methods for
addressing drug interchangeability through the assessment of population/individual
bioequivalence cannot be directly applied for assessment of drug interchangeability
for biosimilar products. For biosimilar products, the assessment of drug interchange-
ability in terms of the concepts of switching and alternating involves (1) the assess-
ment of biosimilarity and (2) the evaluation of the relative risk of switching and
alternating. It should be noted that there is a clear distinction between the assessment
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of biosimilarity and the evaluation of drug interchangeability. In other words, the
demonstration of biosimilarity does not imply drug interchangeability.

Based on totality biosimilarity index for assessment of biosimilarity, switching
index and alternating index for addressing drug interchangeability of biosimilar prod-
ucts can be obtained under appropriate switching design and alternating design,
respectively. The proposed switching and alternating indices have the advantages that
(1) they can be applied regardless of the criteria for biosimilarity and study design
used, (2) the assessment is made based on relative difference with the reference
product (i.e., relative difference between (T vs. R) and (R vs. R), (3) it can address
the commonly asked question that “how similar is considered highly similar?”, “the
degree of similarity,” and “interchangeability in terms of switching and alternating” in
terms of the degree of reproducibility, and most importantly (4) the proposed method
is in compliance with current regulatory thinking (i.e., totality-of-the-evidence, rel-
ative risk of switching and alternating for interchangeability). It, however, should
be noted that the proposed totality biosimilarity index and/or switching and alter-
nating indices depend upon the selection of weights in each domain or functional
area for achieving the totality-of-the-evidence for assessment of biosimilarity and/or
interchangeability. The performances of the proposed totality biosimilarity index,
switching index, and alternating index are currently being studied via clinical trial
simulations by Starr et al. (2013).

In practice, it is a concern regarding how many subjects are needed for provid-
ing totality-of-the-evidence across different functional areas such as PK/PD, clinical
efficacy/safety, and manufacturing process and addressing relative risks of switching
and alternating for interchangeability. Based on the proposed totality biosimilarity
index (for assessment of biosimilarity) and switching and alternating indices (for
assessment of interchangeability), sample size required for achieving certain statis-
tical inference (assurance) can be obtained following the procedure as described in
Chow (2013).

As indicated earlier, the broader sense of the concepts of switching and alternat-
ing could involve in a number of biosimilar products, e.g., T_i, i�1, …, K, which
has been shown to be biosimilar to the same innovative (reference) drug product.
Under the broader sense of interchangeability, it is almost impossible for a sponsor
to claim or demonstrate interchangeability according to the definition as given in
the BPCI Act. Alternatively, it is suggested that a meta-analysis that combines all of
data given in the submissions be conducted (by the regulatory agency) to evaluate
the relative risks of switching and alternating of drug interchangeability. In practice,
meta-analysis can be conducted for safety monitoring of approved biosimilar prod-
ucts. This is extremely important especially when there are a number of biosimilar
products in the marketplace.
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Chapter 15
Causal Estimands: A Common Language
for Missing Data

Steven A. Gilbert and Ye Tan

Incorrect choice of estimand andunclear definitions for estimands lead to problems in relation
to trial design, conduct and analysis and introduce potential for inconsistencies in inference
and decision making. (ICH Concept Paper 2014)

15.1 Introduction

What are estimands, and what is there connection with missing data? The topic of
estimands is all about interpreting the results of our statistical analyses in the context
of the original scientific questions that we intend to answer in a clinical trial. Miss-
ing data, a ubiquitous problem in clinical trials, require additional assumptions and
choices on how to collect and analyze data that can have an unexpected impact on the
interpretation of these analyses. When taking an ‘estimand approach’ to planning a
clinical trial, we plan ahead formissing data, protocol deviations, and other unwanted
events so that the interpretation and context of our statistical results are maintained.
We hope to impress upon statisticians that at its core, the estimand approach is not
new, but rather a clarification of good statistical practice, taking assumptions implicit
in our analyses and making them explicit. Clinical trials are a scientific endeavor,
and statisticians must be a fully functioning member of the scientific process; our
analyses need to incorporate the best scientific knowledge available which we can
only obtain by communicating with our colleagues.
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A very basic model of a statistical analysis goes as follows. A sample is drawn
from a population, and a statistic is calculated, say the mean for example. Knowing
the mean of that particular sample drawn is usually not of great interest, but knowing
themean of the population the samplewas drawn from is of interest. Statistical theory
can tell us about how well the sample mean approximates the population mean. The
key to estimands is understanding what population we are talking about.

Regression models are a common statistical tool in all types of research including
clinical trials. A regression analysis will provide estimates of β coefficients that
may be interpreted as a treatment effect or effect of a baseline measurement such
as age or disease severity. In a mathematical statistics class, you assume there is
a true β and the statistical method produces an estimate β̂. You can then go on
to prove consistency, optimality, and other mathematical measures of how well β̂

approximates β. The underlying assumption is that the true β is well defined and
easy to identify. Or equivalently the population of subjects that are described by
these regression coefficients is easily identified. In a clinical trial, especially when
subjects withdraw early, violate the protocol, and do not provide all expected data,
considerable thought may be needed to identify the ‘true’ underlying parameter, or
equivalently, what larger population of subjects do the βs describe?

To illustrate the difficulty in identifying the underlying estimand, let us look at a
classical example from the physical sciences literature and contrast it to a hypothetical
clinical trial. The physical science example is from an experiment by Newcomb
and Michaelson in September of 1882 when they measured the speed of light by
repeatedly timing how long it took for light to travel from their laboratory on the
Potomac River to the base of the Washington Monument and back, a distance of
approximately 7400 m (MacKay and Oldford 2000). The time measurements can
be transformed to speed, and the average speed is interpreted as the speed of light
or at least the speed of light in the atmosphere. In contrast, the situation is much
more complex in clinical trials. Consider a clinical trial with a new GLP-1 receptor
antagonist to control blood sugar in diabetics as measured by change from baseline
HbA1c at 26 weeks. Over the course of the 26-week study, many subjects complete
the study as planned; however, a significant number of subjects are: lost to follow-up,
require rescue medications not specified in the protocol, have an adverse reaction
to the treatment, or refuse to take their medication as directed. The available data
are then analyzed as specified in the statistical analysis plan (SAP), for example,
analysis of covariance, with missing values imputed using last observation carried
forward. Finally, the results are tabulated, and the treated group reduces their HbA1c

by 1.12% versus 0.10% for the control arm, with a difference of 1.02 favoring the
new treatment. What does this estimated difference mean? To what population and
under what circumstances can these results be generalized? Is it all diabetics? Do
they need to be completely compliant with dosing?What if they are on a background
therapy or if they are over 80 years of age? What is the target of our inference?

The estimated treatment difference above is a long way from obtaining data mea-
suring a fundamental physical constant that ostensibly is the same anywhere and
at any time in the universe. Trial results can depend upon many factors including
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background therapy that differs from one geographical area to another and evolves
over time, potentially making the results both time and location specific.

Another complication is that any long-term trial will have subjects experienc-
ing different events after their initial randomization to study drug. These post-
randomization events range from the minor, missing an occasional dosing, to major,
dropping from the study or switching to a rescue medication. Each of these post-
randomization events changes the actual treatment received from study drug alone
to study drug plus rescue medication or study drug at a lower dose than planned, etc.
How these complications are accounted for in the statistical analysis (e.g., multiple
imputation, last observation carried forward, complete case analysis) will effect how
the results can be generalized. The estimand is merely a clear statement of how the
results of the study can be generalized to a larger population, namely who is in that
population and under what circumstances do the results hold.

To make this a little less abstract, consider the following examples of estimands
taken from the ‘Prevention and Treatment of Missing Data in Clinical Trials,’ (NRC
2018).

1. (Difference in) Outcome improvement for all randomized participants.
2. (Difference in) Outcome improvement in tolerators.
3. (Difference in) Outcome improvement if all subjects tolerated or adhered.
4. (Difference in) Areas under the outcome curve during adherence to treatment.
5. (Difference in) Outcome improvement during adherence to treatment.

Later on, Mallinckrodt et al. 2012 suggested a sixth estimand.

6. Difference in outcome improvement in all randomized patients at the planned
endpoint of the trial attributable to the initially randomized medication.

At amore fundamental level, there are two large classes of estimands for endpoints,
effectiveness, and efficacy. Table15.1 shows the two basic categories. On the left is
effectiveness, which ismore or less howwell does the drugwork under less than ideal
conditions. The right side has efficacy, which is how well does the drug work when
taken as directed that is ideal conditions. Regulators tend to prefer effectiveness,
while sponsors prefer efficacy. The preference of clinicians will depend on the type
of drug and the disease that is being treated. Drugs that are used for symptomatic
relief, say analgesics for pain, are better characterized by efficacy. If a subject does not
tolerate a drug or if it is ineffective, another drug can be tried. Vaccines or treatments

Table 15.1 Categories of efficacy estimands

Effectiveness Efficacy

de facto de jure

ITT Per protocol

Treatment policy Drug effect
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for life-threatening diseases such as cancer, where there is less opportunity to try
different treatments, may be better characterized by effectiveness.

The terms de facto and de jure are Latin terms proposed by Carpenter, Roger, and
Kenward that roughly translate as ‘by fact’ and ‘by the law,’ and refer to effectiveness
and efficacy. The benefit of this terminology is that it can be applied to safety analyses
as well, though this terminology is not universally accepted. Similar concepts are
expressed by the idea of using an intention to treat (ITT) or per protocol (PP) analysis.
Lastly, these two general types of analyses can be viewed as assessing either the
‘treatment policy’ (i.e., what is the effect of prescribing the drug, whether you take
it or not) and drug effect (i.e., what is the drug doing when properly dosed).

If subjects are completely compliant with the protocol, and in the absence of miss-
ing data, the estimand framework is easy to apply and may even seem superfluous.
In the ideal case, all subjects comply with the protocol and all data are available. The
results apply to the population of subjects described by the inclusion/exclusion cri-
teria who follow the protocol. In the less than ideal case, post-randomization events
complicate the interpretation of the estimand and subjects with missing observations
present new challenges regarding how to include them at all in the analysis. We
suggest that the estimand should reflect the interpretation of the trial results from the
ideal situation. The next step is to choose statistical methods and possible alterations
to the study design so that meaningful estimates can still be obtained under the less
than ideal case.

Estimands are no more and no less than remembering to start and end with the
science, a lesson well known in the statistics community. Start by understanding and
defining the scientific questions that need to be answered. Choose the best statistical
tools for the job, and interpret the statistical results back into science. In clinical
trials, this translates to ‘how does a treatment work in subjects?’ and ends with an
answer to that question. What follows are some useful methods to help make the
underlying scientific question more clear to ourselves and our colleagues, and some
methods to help keep from going astray on that simple course from the original
scientific question to its eventual answer.

15.2 Theoretical Framework

A theoretical framework is presented to act as a bridge between the scientific goals
of the study and the mathematical details of the statistical analyses. This will begin
an iterative process of planning and designing that will most likely require simu-
lation experiments to determine sample size, power, precision, and other important
operating characteristics.

The theoretical framework to be described is not unique and is taken from the
literature. The authors’ only contribution is to highlight the areas that we think are
useful for the majority of clinical trials that we are involved with, namely missing
data factorizations and some basic causal inference. We intend to review just enough
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theory to help in understanding estimands and how they can be implemented in
practice omitting many details.

Beginning with missing data factorizations, we focus on pattern mixture models
(PMMs), then describe the conditional predictive distribution (CPD), and finally
review some causal inference topics at a very high level. The CPD describes our
knowledge of the missing data. Since by definition we do not observe the missing
data directly, our knowledge of that data is more uncertain than the observed data.
Using a statistical distribution to describe the unseen data is a handy way to put both
structures on the data (e.g., mean parameters in a normal distribution) and keep track
of our uncertainty via the spread and variability of the distribution.

The CPD describes in a sense how missing data are ‘filled in,’ but this only takes
us half way to our goal making a fair comparison of different treatments consistent
with our desired estimand. This is where a little familiarity with the causal inference
literature is important. The general idea is to make sure you are comparing like
with like. The theory makes this more rigorous and provides a notation that greatly
simplifies thinking about these issues.

15.2.1 Pattern Mixture and Selection Model Factorizations

Begin by defining the data Y = {Y1, . . . ,Yn} where each Yi is vector containing
the complete data on the endpoint of interest for subject i . If the random variables
are continuous, assume they will be modeled with a density from the exponential
family (Pawitan 2001) of distributions. For example, consider univariate observations
sampled independently from Y ∼ N (θ, σ 2) with parameters θ and σ . Without loss
of generality, consider σ known. The density function for Y is the product of the
individual densities, f (Y ) = ∏

f (yi ), where

f (yi ) = (
2πσ 2

)−1/2
exp− (yi−μi )

2

2σ2 .

The joint density is called the likelihood function L(θ) when it is treated as a func-
tion of θ with the observations, y′

i s, fixed at their observed values. The maximum
likelihood estimate (MLE) is calculated by finding the parameter values that maxi-
mize1 the likelihood function or equivalently the natural logarithm of the likelihood,
the log-likelihood. Even in a simple example, θ will most likely be a vector. For
example, a two-arm parallel trial comparing means at a single time point could use a
model such as E(yi ) = β0 + βDDi where Di = 1 if subject i is randomized to active
drug and 0 otherwise. In this case, θ = {β0, βD}2 where the βD is interpreted as the
additive treatment effect of the drug on treated subjects. The topic of estimands is all

1We ignore pathological cases such as multiple maxima to keep the discussion simple.
2Nuisance parameters such as the variance are ignored for now to simplify the exposition.
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about this last step, interpreting the results of our statistical analysis in the context
of our original scientific question.

The longer a trial lasts, the greater the chance that we will not be able to measure a
response at a desired time, landmark visit, on all subjects. They may refuse to return
to the clinic, stop taking drug on their own, and have an adverse event where the
investigator removes the drug for safety reasons, etc. The question now is, can we
extend the simple probabilistic framework thatwas so useful formaximum likelihood
estimation to this more complicated setting? The answer, fortunately, is yes.

The framework can be extended by modeling both the response data as above and
the missing data mechanism as well. Define a response indicator R = {R1, . . . , Rn}
that takes values of 1when data are observed and 0when they aremissing.3 It will also
be useful to add some additional notation to keep track of the observed and missing
responses. Borrowing common notation from the missing data literature, define Y =
{YO ,YM } where YO = {Y1O , . . . ,YnO} are the observed responses for subjects i =
1, . . . , n and YM = {Y1M , . . . ,YnM } are the unobserved or missing responses for
these subjects. We will refer to Yi = {YiO ,YiM } as the complete data for subject i .
Furthermore, let X contain the treatment assignment and other covariates of interest.

The next step is to define the joint distribution of {YO ,YM , R}. Simply defining a
joint distribution for these three variables would be difficult or impossible inmost sit-
uations. However, the joint distribution can be factored into conditional distributions
that are more tractable.

The two most common factorizations are the selection model and pattern mixture
factorizations, and mathematically they are described as:

P[YO ,YM , R|X ] = P[R|YO ,YM , X ] × P[YO ,YM |X ] (15.1)

a selection model and

P[YO ,YM , R|X ] = P[R|X ] × P[YO ,YM , |R, X ], (15.2)

a pattern mixture model(Carpenter and Kenward 2012). A third factorization, using
a shared latent parameter, can also be used but will not be discussed in this chapter.

The second term on the right-hand side (RHS) of Eq.15.1 P[YO ,YM |X ] =
P[Y |X ] is the distribution of the complete data. The first term on the RHS of Eq.15.1,
P[R|YO ,YM , X ], describes the conditional probability of observing (or selecting)
each element of the complete data vector; let us call that the selection distribution for
future reference. This selection distribution is used to classify missing data mecha-
nisms as: missing completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR), to be described below.

Agoodway to gain an intuitive understanding of P[R|YO ,YM , X ] is think ofmod-
eling P(R) = 1 using logistic regression. If P[R|YO ,YM , X ] = P[R], the logistic
model would only have an intercept and the data are MCAR. In this case, the miss-

3The model can be extended further by allowing R to take on more than two values indicating
multiple response patterns. This will be necessary for applying PMMs.
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ing data can be ignored and any method including simple summary statistics of the
observed data will be unbiased.

If P[R|YO ,YM , X ] = P[R|YO , X ], the logistic regression model will only have
covariates that are included in the observed data, and the missing data are then
said to be MAR. That is a model for R can be built using the observed endpoints
and covariates. If in addition to MAR the data and missing data distributions have
functionally distinct parameters, (i.e., P[YO ,YM |X; θ ], P[R|YO ,YM , X, ; η] with θ

and η functionally distinct), the missing data mechanism is said to be ignorable. In
this case, only the response data, the Y ′

i s, need to be modeled to obtain an unbiased
estimate, while a model for the R′

i s is not needed. The model for the response
generally needs to use all of the data in the available repeated measures on each
subject and to correctly model the dependencies over time. This is often done with
longitudinal data where the claim is made that data are expected to be missing at
random and therefore a mixed model repeated measures (MMRM) analysis will be
unbiased. However, summary statistics and models that do not incorporate all of the
relevant observed response and covariates will be biased.

Lastly, if P[R|YO ,YM , X ] cannot be simplified further, the logistic regression
model will require YM , and the data are said to be MNAR. This is the most difficult
of the three missing data scenarios to handle.

We caution that categorizing themissing data asMCAR,MAR, orMNAR alone is
not describing an estimand. Rather, it is an important part of defining and estimating
an estimand in the presence of missing data.

15.2.2 Conditional Predictive Distribution

Continuing with the pattern mixture model factorization, the missing data can be
integrated out to obtain the observed likelihood.

P[YO , R] =
∫

P[YO ,YM , R]dYM

=
∫

P[R]P[YO ,YM |R]dYM

=
∫

P[R]P[YO |R]P[YM |YO , R]dYM

The term P[YM |Y0, R] is the distribution of the missing data conditional on the
observed data and response indicators, sometimes referred to as the conditional pre-
dictive distribution (Carpenter and Kenward 2012). This is the key function for
inference and the basis of multiple imputation (MI) approaches. Multiple imputation
draws a random sample from the conditional predictive distribution, fits a model,
and repeats the process multiple times keeping track of the results. These results are
then combined into a single estimate using Rubin’s rules for multiple imputation



314 S. A. Gilbert and Y. Tan

(Carpenter and Kenward 2012). Clearly defining an estimand requires a clear def-
inition of the conditional predictive distribution, which is really just a description
of what the missing data are expected to look like. This is the main area where
statisticians need the input of their clinical and scientific colleagues.

15.2.3 Causal Models

The last section covering selection models, pattern mixture models, and conditional
predictive distributions addressed the issue of what the missing data look like and the
uncertainty in its true value. We now bring in a few concepts from causal inference
to help compare treatment groups. Gelman and Hill (2007) describe causal inference
this way ‘In the usual regression context, predictive inference relates to comparisons
between units, whereas causal inference addresses comparisons of different treatment
if applied to the same units,’ where of course we can think of units as subjects. In
most cases, it is impossible to apply the same treatment to the same subject, and
in practice we infer what would happen to a subject based on comparing different
subjects. For this chapter, we will refer to a comparison of treatments on different
subjects that can be substituted for a comparison of different treatments within the
same subject as a ‘fair’ comparison. We will simplify the exposition greatly and only
concentrate on the main concepts germane to this chapter. The reader interested in
a comprehensive review of causal models is encouraged to read ‘Causal effect in
clinical and epidemiological studies via potential outcomes: concepts and analytical
approaches,’ published in 2000 in the Annual Review of Public Health, (Little and
Rubin 2000).

Without loss of generality, consider two treatments, active drug and control.Define
yi (D = d) as the outcome for subject i if they receive treatment D = d, for example
D = 1 for active treatment and D = 0 for control. These are referred to as potential
outcomes, since only one of the two will be observed depending upon the random-
ization assignment.

Table15.2 is artificial but demonstrates some important points. In this framework,
everyone has a response to treatment and control, but we only get to observe one or
the other. This is referred to as the ‘fundamental problem’ of causal inference. Note
that in this context, even a perfectly run trial where everyone stays on protocol and
contributes data has 50% of the data missing!.

For now, let the table represent an entire population of six subjects. In this popu-
lation, the treatment mean is 11 and the control mean response is 2. The treatment
difference δ is the same for any value of the baseline covariate. Therefore, compar-
ing the two subjects with a baseline value of 40 would yield the same δ̂ = 12 − 3
of 9 as comparing the two subjects with a baseline value of 20, δ̂ = 10 − 1 = 9.
However, the average responses would differ; for example, the treated subjects have
an average response of 12 when the baseline is 40 and only 10 when the baseline is
20. The estimation of δ can be biased if the probability of choosing subjects based
on baseline covariate values differs in the treated and control arms. Comparing the
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Table 15.2 Categories of efficacy estimands

Subject Baseline
covariate

Y(1) Y(0) δ D Yobs

1 20 10 1 9 1 10

2 30 11 2 9 1 11

3 40 12 3 9 1 12

4 20 10 1 9 0 1

5 30 11 2 9 0 2

6 40 12 3 9 0 3

Table 15.3 Categories of efficacy estimands

Subject Baseline
covariate

Y(1) Y(0) δ D Yobs

1 20 10 1 9 1 10

2 30 15 2 13 1 11

3 40 20 3 17 1 12

4 20 10 1 9 0 1

5 30 15 2 13 0 2

6 40 20 3 17 0 3

treated subject with a baseline value of 40 with the control subject with a baseline
value of 20 leads to a biased estimate,

δ̂ = 12 − 1 = 11 �= 9 = δ

This last point can be made a little more rigorous. The treatment comparison is fair if
similar groups of subjects are compared in the two treatment arms. This will happen
if the probability of observing a subject is independent of δ = Y (1) − Y (0) (i.e., a
random sample from the population) or D ⊥⊥ Y (1),Y (0).

Now consider Table15.3 where δ is also correlated with the baseline covariate
(i.e., sicker subjects have larger responses). Now, if the probability of observing
a subject’s response is proportional to the baseline, there will be a selection bias
and both the individual treatment arm estimates and the treatment difference will be
biased relative to the entire population.

In general, there are three ways to handle this situation:

1. Ignore the selection bias, and under the assumption it is small and not scientif-
ically relevant, that is use available data only. This approach has the benefit of
being transparent and easy to apply. The risk is that the estimate will be biased
and misleading.

2. Use statistical methods that adjust for the bias to get an estimate that is unbiased
for the entire population. If this is done well, the benefit is that you will have an
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estimate for your original population that the experiment was designed for.
The risk is that the statistical methods used to remove the bias are based on incor-
rect assumptions (i.e., you have incorrectly specified the conditional predictive
distribution or the selection distribution of the last section). This can result in a
failure to correct or even an increase in the bias.

3. Recognize that you no longer have an unbiased estimate of the entire popula-
tion and alter your estimand to describe that fact (e.g., subjects with moderate
to severe disease). This can be very useful but still requires assumptions and
statistical methods to make sure the treatment comparison is unbiased in the
subpopulation.

15.3 Clinical Trial Principles

Clinical colleagues will most likely not be conversant in estimands or current statis-
tical practices for missing data. However, they like all of us have been exposed to
a grab bag of ‘principles’ such as randomization, blinding, intention to treat (ITT),
per protocol (PP) analyses, and simple imputation methods such as last observation
carried forward (LOCF). They are all in some way related to estimands and missing
data, but none of these alone define an estimand, in that they do not clearly state what
the analysis is providing an estimate of. Let us review these principles and see how
they relate back to missing data, estimands, and the framework described earlier.

15.3.1 Intention to Treat

No discussion of clinical trials is complete without the intention to treat (ITT) prin-
ciple. The first author began working on clinical trials in the 1990s mentored by
statisticians who began their careers in the 1960s and 1970s. They told tales of an
earlier time when only subjects with complete data that were deemed appropriate for
inclusion in the analysis were used. Unsurprisingly, trialists abused the privilege of
having so much leeway to make their drugs look better and were thereafter forced to
adhere to the intention to treat (ITT) principle by the regulatory community to avoid
compromising the results of a trial.

What does the ITT principle really mean? This question is open for discussion.
Hollis and Campbell (1999) reviewed all randomized controlled trials published in
BMJ,Lancet, JAMA, andNEJM in 1997 and found inconsistent use and interpretation
of the term. Informally, ITT is usually described as ‘as randomized, as analyzed.’
More detailed and thought out descriptions are fortunately available, and a working
group of the biopharmaceutical section of the ASA in 1990 provided the following
description:
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... includes all randomised patients in the groups to which they were randomly assigned,
regardless of their compliancewith the entry criteria, regardless of the treatment they actually
received, and regardless of the subsequent withdrawal from treatment or deviations from the
protocol

(Lewis and Machin 1993). Lewis and Machin continue, ‘...the concept of ITT is
clear in purpose and execution. These are parallel group studies of mortality and
similar hard end-point in which medical or surgical intervention is compared to no
intervention.’ At the end of their article, they close with this defense of ITT, ‘Anyone
who follows these principles intelligently, and with a view to minimising bias, need
not worry further about “intention to treat”.’ This is all wise advice, but how do you
define bias? That was the question most were failing to ask at the time.

Howdoes this relate to the theoretical framework? If data are all observed, then the
ITT principle preserves randomization which ensures unbiased estimation. Unfortu-
nately, it is not prescriptive for what to do if data aremissing, that is what assumptions
should we make about the conditional predictive distribution.

15.3.2 Per Protocol

A per protocol analysis includes only subjects who adhere to the protocol (which
includes treatment compliance). The assumption is that this will provide an estimate
of the maximum drug effect since only subjects who have complied with treatment
and have had no other untoward events are analyzed. Furthermore, the hope was
that the PP and ITT estimates would be similar, thus supporting the primary ITT
analysis. The flaw in this argument is that the PP analysis does not respect the
original randomization, thus allowing a potential selection bias, not necessarily in
the direction that is expected. For example, consider a trial of an analgesic compared
against a placebo control in subjects with chronic pain. If the analgesic works and
is well tolerated, most treated subjects will remain in the PP population and provide
a reasonable estimate of the drug effect. However, many placebo subjects will have
inadequate pain control and require rescue medication or drop out of the trial and
hence not be included in the PP population. The remaining placebo subjects will
have lower pain scores than the entire placebo population, thus creating a bias that
decreases the treatment effect. In other situations, the direction of the bias may be
more difficult to predict.

15.3.3 Make the P Value Large

Since ITT is incomplete, it tells you to analyze everyone as randomized, but not what
to do if they have missing data; some other principle is needed to help decide how to
analyze a trial with missing data. In the absence of clear advice on how to account
for missing data, the general rule of thumb given was to be ‘conservative,’ where the
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definition of conservative is to make the p value for the primary efficacy endpoint as
large as possible.

How does this relate to our framework? It completely ignores it. The point of the
estimand framework is to find an unbiased estimate of a parameter of scientific and
clinical interest. Merely taking an arbitrary estimator and making it more difficult to
obtain statistical significance do not help to answer a scientific question.

15.3.4 Carry It Forward

One way to account for missing data is to ‘fill in’ or impute missing data for a
subject using their observed values. There are a number of simple single imputation
methods available for this purpose such as: last observation carried forward (LOCF),
baseline observation carried forward (BOCF), and worst observation carried forward
(WOCF). For example, if the endpoint of interest is average pain at week 12 and the
subject withdrew right after their week 8 visit, you could carry forward that last
observed value at week 8 and use it in lieu of the unobserved value at week 12.
These methods all fall under the category of ‘single imputation methods’ which are
not principled methods in that they ignore the additional uncertainty introduced by
missing data. LOCF can underestimate the variance by using the same observation
multiple times. In fact there is a large body of literature showing that LOCF estimates
can be affected by many aspects of the data collection process including trends over
time and can be have an inflated type I error rate (Mallinckrodt et al. 2011).

15.3.5 Ignore It

Little and Rubin’s work on missing data (1987) became more widely appreciated in
the clinical trial setting during the early 2000s, years after its original publication.
Special attention was spent on the concept of data that is missing at random (MAR)
and the associated concept of ignorability. As discussed earlier, there are a number of
technical details associated withMAR and ignorability, based on the selection model
factorization and the assumption of functionally distinct parameters. However, they
were often boiled down to protocol languagewhich stated the continuous longitudinal
data in the study had values missing at random and therefore a mixed model repeated
measures analysis (MMRM) would provide an unbiased treatment estimate. Again,
the issue of bias is raised without much detail as what it really means, at least in
protocol and statistical analysis plan text.

Statistical bias is the expected systematic difference between the estimate and the
underlying parameter. The estimand defines that underlying parameter. Sowhat is the
implicit estimand for an MMRM analysis ignoring the selection distribution? Based
on the results for ignorability, this implies we are assuming the data are MAR and
the MMRM is correct. In that case, the model implicitly assumes that subjects with
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incomplete trajectories over time are similar to subjects in the same treatment group,
with similar covariates and similar observed responses who complete the study. In
other words, it assumes that subjects remain on their randomized treatment after they
withdraw from the study and therefore provide a type of efficacy estimand. This may
not be desirable for regulators who want more of an effectiveness estimand assuming
that subjects lose treatment benefit when they withdraw from the study.

15.4 Recent History

15.4.1 Panel on Handling Missing Data in Clinical Trials;
National Research Council

In 2010, the ‘Prevention and Treatment of Missing Data in Clinical Trials’ was pub-
lished by the National Research Council of the National Academies. This document
is available to all online at no cost and was requested and funded by the FDA. Its
release marked a major turning point in the demands of regulatory agencies for rigor
in handling missing data in clinical trials. The document stated the importance of:
estimands, designing trials to minimize missing data, following up subjects after
treatment withdrawal, and included a technical overview of many methods of anal-
ysis.

It has 18 main recommendations. Number 1 was

The trial protocol should explicitly define (a) the objectives(s) of the trial; (b) the associated
primary outcome or outcomes; (c) how, when and on whom the outcome or outcomes will be
measure; and (d) the measures of intervention effects, that is, the causal estimand of primary
interest. These measures should be meaningful for all study participants, and estimable with
minimal assumptions. Concerning the latter, the protocol should address the potential impact
and treatment of missing data.

This document was treated as a beginning, not a final pronouncement on how to
handle missing data; in fact, an article by FDA officials Robert O’Neill and Robert
Temple describing the NAS document states ‘... the NAS panel’s report on prevent-
ing and addressing missing data in clinical trials provides a roadmap, or perhaps a
“problem list,” for how we might proceed in the future.’

15.4.2 ICH E9 Addendum

In 2014, an addendum to ICH E9 was proposed that would include material on
estimands and sensitivity analyses. A meeting was held in February 2015 to discuss
the addendum. The results of thismeetingwere published inPharmaceutical Statistic
in 2017 by Phillips et al. The paper “Estimands: discussion points from the PSI
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estimands and sensitivity expert group,” included the following high-level sum-
mary:

Aclearmessage from themeetingwas that estimands bridge the gap between study objectives
and statisticalmethods.When defining estimands, an iterative process linking trial objectives,
estimands, trial design, statistical and sensitivity analysis needs to be established. Each
objective should have at least one distinct estimand, supported by sensitivity analyses.

The paper goes on to describe estimands in more detail and provides a useful frame-
work for considering estimands in a clinical trial, but still fails to provide a concise
definition.

15.5 Simulation Process and Estimands

In this section, we demonstrate a simulation study accounting for missing data.
Where do estimands fit into this process? How is this different from merely con-
sidering missing data? The difference is subtle but important. Monte Carlo methods
will be used to find the operating characteristics of the statistical analysis method
under consideration.Monte Carlomethods in a nutshell entail the generation ofmany
simulated trials which are: individually analyzed with the statistical method of inter-
est, the results saved, and operating characteristics calculated by averaging over the
simulations. In a single simulation, each subject will have a ‘true’ vector of observed
responses y f ull (with no missing observations) and an observed vector, yobs (with
possibly missing observations). For simplicity, assume a monotone missing data pat-
tern (see Sect. 15.9), and then the two vectors, y f ull and yobs will be identical up to
the time of dropout or significant protocol violation depending upon the study design
and availability of retrieved dropout data. Note that there is a distinction between
withdrawal from the study with no possibility of measuring a response at all and
withdrawal from the protocol (e.g., low or no compliance, rescue medication use)
where the response no longer reflects the protocol-specified treatment. After a sub-
ject’s simulated dropout time or withdrawal from protocol, yobs will either have a
missing value or if the protocol allows, a value representing what would be seen if
their response was still measured after they withdraw from treatment.

The key will be to generate y f ull in a manner consistent with the estimand of
interest. In other words, in the ideal trial we would analyze y f ull to obtain an estimate
for our estimand.Bias is then E[y f ull − yobs] and likewise for othermeasures.During
the simulation process, we can analyze yobs and compare the results to analyzing y f ull

which does not require any imputations or other missing data methods and compare
the results to find bias, power loss, etc.

There are two important points to this process. First, the ‘true’ state of nature
is not known. We may assume that subjects who are intolerant to the active drug
receive no benefit after discontinuing active drug. If so, do they immediately lose
the drug effect, or is the loss gradual? A related question is does the drug modify the
course of the disease or does it only provide symptomatic relief? An answer to these
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questions requires scientific and clinical input; however, in many cases the opinions
of the scientific experts will not be unanimous and simulations will need to be done
under different scenarios.

The second point relates to the reason for dropout. Borrowing from the principal
strata literature, we propose simulating latent causes for dropout. For example, a
subject can be a ‘non-tolerator’ of active drug causing them to drop out, or they
can have an unrelated adverse event causing dropout. However, in a real trial, we
may not always be able to distinguish between the two types of adverse events. The
simulations must also account for the effect of mis-identification of the true dropout
category if that can affect a particular analysis method of interest.

15.6 Example: Simulation for Total Motor Score in
Huntington’s Disease

Our example is loosely based on redesigning a real phase II clinical trial in Hunting-
ton’s disease. Huntington’s disease is described as ‘.. an inherited disease that causes
the progressive breakdown (degeneration) of nerve cells in the brain. Huntington’s
disease has a broad impact on a person’s functional abilities and usually results in
movement, thinking (cognitive) and psychiatric disorders.’ (Mayo Clinic 2017).

The original study was designed to compare an experimental drug to placebo
by measuring motor function in Huntington’s disease subjects after 26 weeks of
dosing; the primary endpoint was the change from baseline total motor score (TMS)
compared to placebo. The total motor score is an assessment within the Unified
Huntington Disease Rating Scale and ranges from 0 to 124; the larger the score, the
worse the disease.

In the original study design, no estimand was specifically defined and the primary
efficacy analysiswas based on anMMRMapproach assuming datawereMAR.There
was no plan to assess motor scores after treatment withdrawal or other significant
protocol deviations; that is, there was no attempt to obtain retrieved dropout data.
Without loss of generality, our example will use a two-arm parallel group design
comparing placebo to a fictitious 20mg dose. As in the original design, no retrieved
dropout data will be made available for analysis.

15.7 Base Case

The primary endpoint is the change from baseline in the total motor score (TMS)
assessment of the UnifiedHuntingtonDisease Rating Scale (UHDRS) after 26weeks
of treatment. The observed score ranges from 0 to 124. For our redesign, we will use
historical placebo data measured at baseline and weeks 1, 2, 4, 8, 13, 19, and 26, as
a basis for our simulated data, and add a treatment effect on to the baseline. Begin
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by considering the ‘base case,’ that is the placebo TMS response in subjects who
complete the trial and have no post-randomization deviations during the 6 -month
double-blind period.

In usual sample size consideration, the base case and the base case plus a treatment
effect, δ, are the only scenario that is considered. Although longitudinal data like
the TMS collected over time in this study may be analyzed using a mixed model
repeated measure (MMRM) analysis, sample size calculations are often based on
a cross-sectional model (e.g., ANCOVA or t-test) at the landmark visit of interest
(6-month visit in this case) assuming no missing data, to get the number of complete
subjects needed. The number of complete subjects is then inflated to account for
dropout. For example, if 90 subjects are needed per arm for a t-test with sufficient
power and a 10% dropout rate is expected, a sample size of 100 subjects will be
reported to ensure 90 are available for analysis.

In order to respect the allowed range of TMS, absolute scores are simulated from
a normal distribution and then truncated to fall in the allowable range of 0–124. The
scores could have also been truncated further to reflect inclusion criteria for baseline
TMS, however, that was not done for the simulation results that follow. This is less
complicated than making adjustments to change from baseline scores. In addition,
this also allows the flexibility of having simulated subjects with no post-baseline data
if so desired.

The mean values for the base case are displayed in Fig. 15.1. The figure displays
a stylized fact for placebo response in Huntington’s disease where the response
improves by 2–4 points and lasts approximately 3 months (de Yebenes et al. 2011).
The correlations over time are modeled by a combination of a random subject effect
and an AR(1) process for residual correlation. This structure can have a strong corre-
lation among all visits but still allow for a decreasing correlation as the time interval

Fig. 15.1 Base case: mean
profile
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Table 15.4 Within subject correlation matrix

Week 0 1 2 4 8 13 19 26

0 1.00 0.91 0.89 0.88 0.87 0.87 0.87 0.87

1 0.91 1.00 0.91 0.89 0.88 0.87 0.87 0.87

2 0.89 0.91 1.00 0.91 0.89 0.88 0.87 0.87

4 0.88 0.89 0.91 1.00 0.91 0.89 0.88 0.87

8 0.87 0.88 0.89 0.91 1.00 0.91 0.89 0.88

13 0.87 0.87 0.88 0.89 0.91 1.00 0.91 0.89

19 0.87 0.87 0.87 0.88 0.89 0.91 1.00 0.91

26 0.87 0.87 0.87 0.87 0.88 0.89 0.91 1.00

between visits grows longer, while only requiring the specification of three parame-
ters. The mixed model representation is

yi j = μi j + bi + ei j, (15.3)

where μi j is the fixed mean effect for patient i at visit j and bi is a random subject-
specific termwith a N (0, σ 2

b ) distribution. The error termsmodel both the correlation
between visits and the measurement error. For example, if there were three visits,

Var(e) = σ 2
e

⎡

⎣
1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

⎤

⎦ . (15.4)

In general, Var(ei j ) = σi j = σ 2
e ρ|i− j |. For this example, we have chosen σ 2

b = 164,
σ 2
e = 24 and ρ = 0.33. The resulting correlation matrix is shown in Table15.4.
The careful reader may have noticed that technically the AR(1) structure assumes

that the time intervals between visits are all equal. However, based on empirical data
the structure fits well enough, and this may be true since the correlation structure is
mostly determined by the random subject effect.

The treatment effect is unknown and needs to be hypothesized. We generate
different treatment effect scenarios by defining the treatment effect with a two-step
process:

1. Define a maximum treatment effect δmax that can be varied from a null effect
δmax = 0 to any desired magnitude.

2. A vector of fractional effects f = { f0, f1, f2, f4, f8, f13, f19, f26}. This vector
defines the shape of the treatment effect over time and is held fixed.

For example, consider the following two possible treatment effects:

1. Linear effect f = {0.00, 0.04, 0.08, 0.15, 0.31, 0.50, 0.73, 1.00}.
2. Linear followed by flat effect f = {0.00, 0.20, 0.40, 0.60, 0.80, 1.0, 1.0, 1.00}.
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Fig. 15.2 Treatment effect
by time
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Thus, the treatment effect at time t is ft × δmax . Note that δmax will be a negative
number since lower total motor scores are associated with higher functioning. It may
be best to think of δmax as the maximum absolute treatment difference. These are
displayed in Figure 15.2 where δmax is taken to be −3.8.

Figure15.3 displays motor scores by time for the base case placebo group and
for treatment groups by superimposing both the linear time course and linear to flat
time course, with a δmax of −3.8 on top of the base case. Only, one of the two time
courses would be chosen for a single simulation.
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Fig. 15.4 Simulated change from baseline motor score trajectories

For the simulations, observed motor scores were first simulated from a multi-
variate normal distribution using the base case, a linear treatment trend and a δmax

of −3.8 with random correlated error as specified in the compound symmetry plus
AR(1) covariance structure described earlier. The simulated data are then truncated
to [0, 124] to match the range of TMS scores. Lastly, change from baseline scores
is calculated using the simulated truncated TMS scores. As an example, simulated
change from baseline scores for 50 placebo and 50 active subjects is displayed in
Fig. 15.4.

The results from 10,000 simulated datasets with no missing data are displayed in
Table15.5. The table has three columns,with results fromanMMRManalysiswith all
post-baseline change scores andbaseline as a covariate, anANCOVAatmonth6using
the baseline motor score as a covariate and a simple t-test of the change from baseline
data at month 6. The ‘Delta’ row displays the average estimated treatment difference
in the change from baseline averaged over the 10,000 simulations, while the ‘SD’
row displays the standard deviation of the 10,000 estimated treatment differences.
The last row displays the proportion of simulations that led to rejection of the null
hypothesis, δ = 0, using an α = 0.05 level two-sided test.

Note that all three analyses which are expected to be unbiased for a δ of −3.8 had
an average δ of −3.72. This apparent bias is due to the small number of simulated
patients who had raw scores of less than 0 at month 6 that were then truncated as
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Table 15.5 Simulation of completer data B = 10,000

MMRM ANCOVA t-test

Delta −3.72 −3.72 −3.72

SD 1.31 1.31 1.36

Power 0.83 0.80 0.77

described above. The resulting truncated normal distribution does of course have a
differentmean than the underlying normal distribution, but specifying thosemoments
in advance is difficult. To account for this in the simulations to follow, we calculate
bias relative to an analysis of Y f ull instead of the theoretical δ. This approach can be
used for any simulation regardless of how complex as long as enough simulations
are produced to minimize Monte Carlo error. It is also noteworthy that the MMRM
analysis has 3% greater power than the ANCOVA using only landmark data and
6% greater power than the t-test which does not incorporate the baseline score as a
covariate.

15.8 Estimands

For this simulation study, we consider two extreme cases for the estimands to bet-
ter highlight the differences between effectiveness and efficacy estimands: one, an
effectiveness estimand, where we seek an estimate for a population that discounts the
treatment effect for subjects who do not comply with the protocol and the second an
efficacy estimand, meaning we want to estimate the drug effect if taken as directed
(assuming a subject can tolerate the drug).

1. Effectiveness

• Population: Huntington’s disease subjects as defined by the inclusion and
exclusion criteria of the study.

• Endpoint: Change from baseline in total motor score at 6 months.
• Measure of Intervention Effect: Difference in mean change from baseline
in total motor score at 6 months in the placebo and 20mg treated groups
regardless of tolerability and compliance.

2. Efficacy

• Population: Huntington’s disease subjects as defined by the inclusion and
exclusion criteria of the study.

• Endpoint: Change from baseline in total motor score at 6 months.
• Measure of Intervention Effect: Difference in mean change from baseline in
total motor score at 6 months in the placebo and 20mg treated groups if all
subjects had adhered to the study.
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The effectiveness estimand is in the spirit of an ITT estimate. It is concerned with
the effect of the ‘treatment policy’, that is what is the effect of prescribing the active
drug. If subjects have less than perfect compliance, withdraw from treatment, or take
rescuemedication, it is still possible tomeasure their outcomes and use this, retrieved
dropout, data to get an unbiased estimate of the effectiveness estimand. In contrast,
the efficacy estimand is interested in the hypothetical scenario that everyone adheres
to the treatment. If a subject stops taking drug or initiates a rescue medication, then
their observed scores cannot be used as is and are set to missing.

Both estimands can in some circumstances yield paradoxical results. A pure effec-
tiveness estimand could attribute a positive effect to placebo because the majority of
placebo patients began taking a rescue medication, thus providing a comparison of
new drug versus rescue medication instead of placebo. The pure efficacy estimand
can conversely overstate the effect of the new drug by attributing a positive effect
to subjects who cannot tolerate or otherwise take the medication for any sustained
length of time. Therefore, it may make more sense to modify these two extreme
estimands somewhat so that placebo subjects are not attributed a positive effect by
switching to rescue medication and actively treated subjects are not attributed a pos-
itive effect for taking a drug they cannot tolerate. This is the aim of estimand 6 in
Sect. 15.1. In the case of an efficacy estimand, it may also make sense to limit the
estimand to the population of those who can tolerate the drug. There are analytical
methods that attempt to do this; however, the best method is to use an enriched study
design that includes a run-in period where all subjects are exposed to study drug
and only those who tolerate the drug move forward to the randomized portion of
the trial. Thus, different estimands may require different study designs making the
comparison of estimands and statistical methods more complicated.

15.9 Dropout Reasons and Patterns

We assume there are five categories of subjects:

1. Completers, who will complete the study regardless of treatment assignment,
and provide all protocol-specified data.

2. Loss to Follow-up subjects, who will eventually leave the study for reasons
unrelated to treatment and disease. This category will also include subjects who
are unwilling to participate and other reasons unrelated to disease and drug.

3. Non-compliers who take anywhere from 0 to 80% of assigned drug.
4. Subjects with related adverse events whose adverse event is related to study

drug and leads to drug discontinuation. If the protocol design includes follow-up
on patients who remain on study but off treatment (or protocol in general) data
may be available for some of these subjects. These subjects can only be identified
in the observed data if they were randomized to active drug.

5. Subjects with unrelated adverse events that are not caused by study drug (Table
15.6).
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Table 15.6 Dropout reasons

Category Active treatment (%) Placebo (%)

Completer 66 86

Loss To FUP 4 4

Non-complier 3 3

Related AE 20 0

Unrelated AE 7 7

Table 15.7 Discrete dropout time distribution

Week 0 1 2 4 8 13 19 26

Completer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Loss to FU 2.0 7.5 7.5 7.5 12.5 16.0 22.0 25.0

Non-complier 0.0 0.0 20.0 40.0 20.0 10.0 10.0 0.0

Related AE 0.0 0.0 20.0 40.0 20.0 10.0 10.0 0.0

AE 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Table 15.8 Monotone and non-monotone missing data

Week Baseline 1 2 4 8 13 19 26

Monotone 40 39 38 37 35 ? ? ?

Non-
monotone

40 36 38 ? 35 ? ? ?

? marks indicate missing data

Once a subject is randomly assigned to a non-completer group, a dropout time
also needs to be randomly chosen. This will be done via a discrete distribution on
the visit times. The distribution chosen is displayed in Table15.7

For simplicity, onlymonotone dropout patterns will be generated; that is, a subject
will miss their dropout visit and all subsequent visits. A non-monotone dropout
pattern would have intermittent missing visits. Table15.8 illustrates the difference
between monotone and non-monotone patterns.

Another simplifying assumption for these simulations is that dropout time is only
dependent upon the reason for dropout. A simulation could alter this to account for
baseline severity or any other covariates of interest.

15.9.1 Full and Observed Data

The simulations will create a ‘full’ data vector for each subject and an observed data
vector with missing values. Both the simulations and the statistical analyses require
assumptions about the true full data, which is unknown to us. Therefore, it may be
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Table 15.9 Effectiveness simulation scenario

Category Full data Observed data

Active
treatment

Placebo Active
treatment

Placebo

Before drop Completer BC + δ BC BC + δ BC

Loss To FUP BC + δ BC BC + δ BC

Non-complier BC BC BC BC

Related AE BC + δ BC BC BC

Unrelated AE BC + δ BC BC + δ BC

Post-drop Completer – – – –

Loss To FUP BC BC Missing Missing

Non-complier BC BC Missing Missing

Related AE BC BC Missing Missing

Unrelated AE BC BC Missing Missing

wise to test the analysis assumptions against different possible ‘true’ cases to see
how much bias and type I error inflation can occur.

Due to the original project that initiated this study, we consider a two-arm parallel
group trial with no retrieved dropout data and start by defining the mean effect for
y f ull and yobs . The correlation structure will be taken from base case and applied to
all groups. This may not be true, but we do not have sufficient historical information
to define multiple correlation structures.

Starting with the effectiveness estimand, we assume that placebo subjects will
have on average the mean structure defined for the base case, both pre- and post-
dropout. Treated subjects will all have the same treatment effect prior to dropout,
except the non-compliers who we believe do not receive enough study drug to show
a treatment effect. Finally, all treated subjects are assumed to return to the base case
scenario after dropout by the next visit. This is reasonable for a drug that works
symptomatically so that treatment effects are observed in addition to the normal
progression of the disease. If the disease progresses quickly and the drug modifies
the course of treatment, then a gradual decline from their treated state would make
more sense. This effectiveness scenario is displayed in Table15.9.

The efficacy simulations will work in a similar manner, except now all post-
dropout data will have the same mean effect as the pre-dropout data. This is summa-
rized in Table15.10.

15.9.2 Analysis Methods

All analyses are applied to change from baseline TMS, for the HD disease trial
described earlier. In all cases, data are monotonically missing after dropout,
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Table 15.10 Efficacy simulation scenario

Category Full data Observed data

Active
treatment

Placebo Active
treatment

Placebo

Before drop Completer BC + δ BC BC + δ BC

Loss To FUP BC + δ BC BC + δ BC

Non-complier BC BC BC BC

Related AE BC + δ BC BC BC

Unrelated AE BC + δ BC BC + δ BC

Post-drop Completer – – – –

Loss To FUP BC + δ BC Missing Missing

Non-complier BC + δ BC Missing Missing

Related AE BC + δ BC Missing Missing

Unrelated AE BC + δ BC Missing Missing

non-compliance, adverse event, or loss to follow-up. Only the analysis methods
change in the simulation results that follow. The analysis methods are:

1. Multiple Imputation (MI) is a very simple application of an approximate
Bayesian bootstrap (ABB). The algorithm has two steps: First identify a set
of ‘donor’ data and take a bootstrap sample. The bootstrap sample is then boot-
strapped again to impute missing values.

• Effectiveness: Complete placebo subject data at week 26 were used for the
donor data.

• Efficacy: Complete data from subjects in the same treatment arm at week 26
are used for the donor data.

2. MMRM is a linear mixed model repeated measure analysis using all available
data. The model includes treatment and baseline TMS score as a fixed effect and
a random subject effect. The model also includes an autoregressive structure for
residual correlation.

3. ANCOVA is a linearmodel using availableweek 26 datawith terms for treatment
and baseline TMS score.

4. t-test compares the mean values of the available week 26 data. This is the same
as an ANOVA analysis.

5. ANCOVA LOCF is an ANCOVA using available and last observation carried
forward change from baseline data at week 26.

6. ANCOVA-Full is an ANCOVA using y f ull and represents the ‘ideal’ analysis.
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15.9.3 Simulation Results

Tables15.11 and 15.12 display the results for a 50-subject per arm trial for the
effectiveness and the efficacy estimands under the linear treatment effect, with 10,000
Monte Carlo simulations. The sample size of 50 was of interest to us, and we wished
to see what the operating characteristics would be for this size of trial. The first panel
in each table where δComp = 0 displays the results under the null hypothesis of no
treatment effect. For both effectiveness and efficacy, all methods control the type I
error at approximately the 0.05 level, with the possible exception of a small amount
of inflation for the MMRM analysis.

In Table15.11, we see the only unbiased method for the effectiveness estimand is
the MI approach as demonstrated by the close agreement of the average simulated
Delta estimates for the MI and ANCOVA-Full columns. The average Deltas are
similar for MMRM, ANCOVA, and the t-test which all overstate the treatment effect
because they all provide an estimate of efficacy, not effectiveness, as demonstrated
by their close agreement with δComp for each panel of the table, where δComp is the
simulated treatment difference in the completers prior to truncating the distribution.
The full drug effect is slightly less than δComp. How much less? We can see that in
Table15.12 where the reported Deltas for ANCOVA-Full show the full treatment
effect. Averaging the ratio of Delta for ANCOVA-Full divided by δComp over the
efficacy simulation scenarios in Table15.12 results in a Delta that is approximately
97% of δComp. The same ratio calculated over the effectiveness simulation scenarios
in Table15.11 results in a Delta that is approximately 64% of δComp.

For the efficacy estimand in Table15.12, all of the analysis methods except for
LOCF are unbiased, withMMRMclearly having the advantage in power. As amatter
of fact, LOCF is also biased for the effectiveness estimand. LOCF estimates the
treatment effect at the last observed visit. Since there is downward treatment effect
over time, every treated subject with missing data uses an observation prior to week
26 with a less than maximal treatment effect. Therefore, LOCF targets an estimand
somewhere between effectiveness and efficacy.

15.9.4 Sample Size

The simulations presented explore the operating characteristics of different analysis
methods for two different estimands with a fixed sample size of 50 per arm. This is
a common situation when beginning to design a study where historical knowledge
and logistical considerations often suggest a reasonable sample size. However, there
is also usually a treatment effect size that is of concern. The magnitude of this effect
size can be determined by either what is clinically meaningful or sufficiently large
compared to a competitor product. Therefore, we must also explore whether a study
needs to be increased in size or if it can be decreased. In usual practice, a treatment
difference, δ or effect size, ES = δ/σ , where σ is the standard deviation in a single
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Table 15.11 Effectiveness estimand: N/arm = 50, linear treatment effect

δComp = 0 MI MMRM ANCOVA t-test ANCOVA
LOCF

ANCOVA-
Full

Delta 0.01 0.01 0.01 0.00 0.01 0.02

SD 1.17 1.60 1.68 1.73 1.34 1.34

Power 0.01 0.07 0.05 0.05 0.05 0.05

δComp = −1.9

Delta −1.22 −1.85 −1.85 −1.86 −1.34 −1.21

SD 1.18 1.60 1.68 1.73 1.33 1.35

Power 0.06 0.25 0.20 0.19 0.18 0.15

δComp = −3.8

Delta −2.44 −3.69 −3.70 −3.71 −2.69 −2.43

SD 1.19 1.59 1.67 1.73 1.34 1.36

Power 0.27 0.69 0.60 0.58 0.53 0.43

δComp = −5.0

Delta −3.21 −4.85 −4.86 −4.87 −3.53 −3.20

SD 1.21 1.59 1.67 1.73 1.35 1.38

Power 0.49 0.89 0.83 0.80 0.75 0.64

δComp = −6.0

Delta −3.84 −5.80 −5.82 −5.83 −4.23 −3.83

SD 1.23 1.59 1.67 1.73 1.35 1.39

Power 0.67 0.96 0.93 0.92 0.88 0.78

δComp = −7.6

Delta −4.84 −7.32 −7.34 −7.34 −5.34 −4.83

SD 1.26 1.59 1.67 1.73 1.37 1.42

Power 0.87 1.00 0.99 0.99 0.97 0.92

δComp = −10

Delta −6.32 −9.55 −9.58 −9.58 −6.97 −6.31

SD 1.33 1.59 1.66 1.74 1.41 1.48

Power 0.98 1.00 1.00 1.00 1.00 0.99

arm, is held fixed, and the sample size n is varied. The estimand approach complicates
this; what δ should we use for sample sizing?

Using the estimand approach, there are multiple δs, but the δ capturing the treat-
ment difference in the base case is the one most closely linked to the underlying
PK/PD of the drug. Effectiveness and various other measures of treatment difference
will tend to have smaller magnitude and are in some sense arbitrary; that, is we decide
if we are describing a population on a continuum from everyone has the full drug
effect to no one has the full drug effect.

For our case, therewas an interest of seeing a δ of−4.5. Unfortunately, this request
was not specified in terms of estimands; is this an effectiveness or efficacy scenario?
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Table 15.12 Efficacy estimand: N/arm=50, linear treatment effect

δComp = 0 MI MMRM ANCOVA t-test ANCOVA
LOCF

ANCOVA-
Full

Delta 0.02 0.00 0.00 0.01 −0.00 −0.01

SD 1.72 1.57 1.64 1.68 1.32 1.33

Power 0.06 0.06 0.05 0.05 0.05 0.05

δComp = −1.9

Delta −1.85 −1.86 −1.86 −1.85 −1.36 −1.87

SD 1.72 1.56 1.64 1.68 1.32 1.33

Power 0.19 0.25 0.20 0.19 0.18 0.29

δComp = −3.8

Delta −3.70 −3.70 −3.71 −3.70 −2.71 −3.72

SD 1.72 1.56 1.64 1.68 1.32 1.33

Power 0.55 0.69 0.61 0.58 0.53 0.79

δComp = −5.0

Delta −4.86 −4.86 −4.87 −4.86 −3.55 −4.88

SD 1.71 1.56 1.63 1.68 1.33 1.32

Power 0.77 0.89 0.83 0.81 0.75 0.95

δComp = −6.0

Delta −5.81 −5.81 −5.83 −5.81 −4.25 −5.84

SD 1.71 1.56 1.63 1.68 1.34 1.32

Power 0.90 0.97 0.94 0.92 0.88 0.99

δComp = −7.6

Delta −7.33 −7.33 −7.35 −7.33 −5.36 −7.36

SD 1.71 1.55 1.63 1.69 1.36 1.32

Power 0.98 1.00 0.99 0.99 0.98 1.00

δComp = −10

Delta −9.57 −9.56 −9.60 −9.57 −6.99 −9.60

SD 1.71 1.55 1.62 1.69 1.39 1.32

Power 1.00 1.00 1.00 1.00 1.00 1.00

If we want to simulate data with a treatment difference of −4.5 under an efficacy
scenario, we know from our earlier simulations that mean difference in the truncated
normal distributions describing the treatment groups is about 97% of the δComp used
in the simulation program; therefore, we used the same programs as before by setting
δComp = −4.62 to obtain an efficacy difference of −4.5. Using similar logic and the
fact that the mean difference in the truncated normal distributions describing the
treatment groups for effectiveness is about 64% of the δComp used in the simulation
program, a δComp −7.06 is needed to get an effectiveness treatment difference of
−4.5. Immediately, we see that for a given treatment difference different estimands
can require a markedly greater drug effect.
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Fig. 15.5 Effectiveness—
power curve
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Figure15.5 displays sample size versus power for the effectiveness scenario.
Although an underlying treatment difference of −7.06 is needed to get and effec-
tiveness estimand of −4.5, we also display the results when using an underlying
treatment difference of −4.62. As shown in the figure legend, the resulting effec-
tiveness estimands are −4.5 as expected and −3.0. Simulations were run for various
sample sizes, and then a sigmoidal curve was fitted to help smooth out the results
and enforce increasing power with increasing sample size. A sample size of 45–50
is sufficient for 80% power with an effectiveness estimand of −4.5 and underlying
treatment effect of −7.06. The smaller treatment effect requires a sample size of
greater than 100 (not shown).

Figure15.6 is similar and displays sample size versus power for the efficacy sce-
nario. Again, a sample size of approximately 45 per arm is sufficient for 80% power
if the efficacy estimand difference is−4.5. Using an underlying drug effect of−7.06
results in an efficacy difference of −6.86 (again due to truncation effect) and has
sufficient power with approximately 20 per arm.

15.9.5 Approximate Calculations

It is dangerous to rely on computer simulations without first having a rough idea of
what the results should look like. In these simulation scenarios, we can make reason-
able predictions of the simulation results, with a minimal amount of computations.

The power shown in Tables15.11 and 15.12 is largely driven by the treatment
effect and hence the effect size. The PMM approach used in setting up the simulation
scenarios is particularly amenable to calculating a rough estimate of the effect size.
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Fig. 15.6 Efficacy—power
curve
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For example, start with the efficacy estimand in Table15.11 and the power in the last
column using the complete data. The simulations assume a 66% completion rate for
active subjects and 86% for placebo subjects (a 76% overall completion rate). All
placebo subjects are assumed to follow the base case regardless of whether they drop
out or not. Actively treated subjects, on the other hand, can be grouped as completers
with a full δComp effect and non-completers who revert to the base case. Therefore,
the expected δ under this PMM approach is:

E(δ) = 0.66 × δComp + 0.34 × 0 = 0.66 × δComp.

The expected δ’s are 0, −1.25, −2.51, −3.3, −3.96, −5.02, −6.6 which are all
slightly smaller in magnitude than the average simulated δ, 0.02, −1.21, −2.43,
−3.20, −3.83, −4.83, and −6.31 from the last column of Table 15.11, due to the
truncation effect discussed earlier. The simulations also assumed a standard deviation
at each time point of 13.7 and a correlation of 0.87 between baseline and week 26
data. Therefore, the standard deviation of the change from baseline score is:

SD(Y26 − Y0) =
√
2 × 13.72 − 2 × 0.87 × 13.72 = 6.99,

not accounting for any truncation effect.
Given the expected differences, standard deviation, and sample size, the power

of a hypothesis test can be calculated using standard methods. Using the R function
power.t.test, and the full sample size of 50 per arm,we get: 0.05, 0.15, 0.43, 0.65, 0.80,
0.94, and 1.00, very nearly identical to the simulated power results in the last column
forANCOVA-Full. TheMI results are also of interest because they are approximately
unbiased for the true estimand, as seen by very close agreement between the average
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estimated δ’s in the simulation results. However, for these calculations we want to
account for the loss in power due to missing data; therefore, we repeat the standard
t-test power calculations using a sample size of 0.76 × 50 = 38, because only 76%
of subjects are expected to complete the study. Repeating the calculations above with
power.t.test with the same effect size and a new sample size of 38, we obtain power
calculations of: 0.05, 0.13, 0.34, 0.53, 0.68, 0.87, 0.98.

A back of the envelope calculations can be used for the power curves as well. A
large sample approximation for two sample tests tells us that

Narm ∝ 1

ES2
∝ 1

δ2
.

In Fig. 15.6, 45/arm provides 80% power for a δ of −4.5. The sample size for δ =
−6.86 is about 20. Using the large sample approximation, we get

45

N−6.86
= −6.862

−4.52
,

or 19.4. This type of calculation can be used to spot check results for consistency
and reduce calculations.

15.10 Discussion

Estimands clarify the scientific objectives of inference. These objectives are of inter-
est to everyone on a clinical trial and provide the common language to unite statistical,
medical, scientific, and regulatory experts. Statisticians can have a greater impact and
be of more use to their clinical trial colleagues if they speak in the common language
of scientific objectives instead of introducing statistical jargon to the conversation.

Estimands are not new to statisticians but rather a reminder of the importance of
keeping study objectives and statistical analyses aligned. Furthermore, they keep the
focus onparameters that have a clinical and scientificmeaning, putting estimationfirst
and hypothesis testing second, since there is little value in performing a statistically
accurate hypothesis test on an estimate with little scientific value.

Another lesson learned long ago in the statistics community is that good design is
essential and oftenmore important than the analysis. For example, in theHuntington’s
disease simulation, if we truly wanted to design a trial for an effectiveness estimand,
every effort should have been made to obtain TMS data even after a subject withdrew
from treatment or had a protocol violations. This will not be possible for all subjects,
but there should be enough information gained from the retrieved dropout data to help
inform the conditional predictive distribution for those who could not be followed.
If an efficacy estimand was of primary importance, then an enriched design of some
sort would have been more appropriate.
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The takeaway message is to design the trial you need from the start, with the
estimand you need, and if you can speak in terms of scientific objectives, there are
clinicians and scientists who can help.
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Chapter 16
Development of Prognostic Biomarker
Signatures for Survival Using
High-Dimensional Data

Richard Simon

The heterogeneity of prognoses of patients with apparently the same type of cancer
(i.e., same primary site and tumor histology) has long been recognized. This recog-
nition has led to many attempts to develop prognostic models based on clinical and
pathological factors. The development of genome-wide assays such as microarrays
and next-generation sequencing has provided increased information for development
of prognostic models. Such assays, however, provide information on the expression
level and mutation status of all 20,000 plus human genes. For the information to
be utilized for prognostic modeling, methods must be able to handle data where the
number (p) of candidate predictors is vastly greater than the number of cases. This
has stimulated the development of such methodology by the statistics and machine
learning communities. In this chapter, I will review some of these methods for devel-
oping and evaluating prognostic models based on survival or other time-to-event
endpoints.

16.1 Medical Utility of Prognostic Modeling

Prognostic models are generally based on baseline measurements and provide infor-
mation about the likely long-term outcome of patients either untreated or with stan-
dard treatment. Too often the effect of treatment is ignored in the planning of the
modeling effort because of lack of clarity on the intended use of the model. This
may result in inappropriate selection of cases for model development and lack of
utility of the resulting model. Subramanian and Simon (2010) reviewed the literature
of prognostic models for patients with operable non-small-cell lung cancer. They
found that lack of clarity on intended use of the model was very common. Although
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the oncology literature is replete with publications on prognostic modeling, very
few of these are used in clinical practice. Prognostic models can be useful if they
inform physicians and patients with regard to treatment decisions. Unfortunately,
most prognostic factor studies are conducted using a convenience sample of patients
whose tissues are available. Often these patients are too heterogeneous with regard to
treatment, stage, and standard prognostic factors to support therapeutically relevant
conclusions.

Perhaps, themost successful example of prognosticmodeling using the newassays
was the development of the OncoType DX recurrence score for patients with stage I
breast cancer (Paik et al. 2006). The prospectively defined intended use of the model
was to determine which patients with stage I, and hormonal receptor-positive breast
cancer had such good prognosis with only hormonal therapy that they do not require
chemotherapy. The intended use determined that the cases selected for study all had
stage I, hormonal receptor-positive tumors and did not receive chemotherapy. The
intended use also determined the analysis of the data: merely finding a cut-point for
the outcome of the model that identified a subset of patients with such good outcome
that they might opt for not receiving chemotherapy. The 21 genes used in the model
were determined based on previous studies, and no aspect of the analysis involved
evaluating the relative value of individual genes.

16.2 Survival Risk Prediction Models

16.2.1 Penalized PH Modeling

The most commonly used method is penalized proportional hazards regression. The
proportional hazards model is

log

{
h(t, X )

h0(t)

}
� β ′X

where h(t, X) is the hazard function at time t for a patient with covariate vector X and
h0(t) is the baseline hazard function. Usually, the PHmodel is fit by finding the vector
of regression coefficients that maximize the partial log-likelihood function L. When
the number of features is larger than the number of cases, however, maximization
of L would result in extreme over-fitting of the data and would provide a model that
predicts very poorly. As an extension of Tibshirani’s Lasso method to survival data
(Tibshirani 1997), maximization of L is replaced with maximization of a penalized
log-likelihood:

β̂ � argmaxβ{log(L(β) − λ||β||1} (16.1)
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where ||β||1 denotes the so-calledL1 normofβ; that is, the sumof absolute values of the
components of β. For any nonzeroλ value, some of the regression coefficients will be
shrunken to zero. The larger the shrinkage parameter, the fewer features that remain
in the model. Consequently, this method provides for both feature selection and
regression parameter estimation. The penalty parameter λ is generally determined
by cross-validation of the full dataset to maximize the predictive log-likelihood

n∑
i�1

δi log
(
Li (β̂

(−i))
)

(16.2)

where Li denotes the partial likelihood factor for survival of the ith case evaluated
using the vector of regression coefficients determined when the ith case was omitted
from the training set. There is a term in the sum for each death event as δi is the
censoring indicator.

An alternative approach, similar to ridge regression, is based on determining the
regression coefficient vector using (16.1) but with the L2 norm (square root of sum
of squares of components of the beta vector) replacing the L1 norm (Hastie and
Tibshirani 2004; Van Houwelingen et al. 2006). Using the L2 norm, however, does
not shrink regression coefficients to zero; positive coefficients may be shrunken to
negative values. Consequently, it does not reduce the number of features in themodel.
For this reason, L2 shrinkage is often combined with an initial step for reducing
the number of features. This may be done by selecting only the features with the
greatest univariate association with survival. A third method for PH modeling is to
use as predictors the first few “supervised principle components” of the features.
The supervised principle components are the regular principle components when the
calculation is restricted to features which have a strong univariate association with
survival (Bair and Tibshirani 2004).

Some investigators have used the first few regular principle components of the
features as predictors in a PH regression model. This often fails to provide good
survival risk models because the principle components are computed to maximize
variability but not for good correlation with survival. The method of partial least
squares, originally developed for quantitative uncensoredoutcomes, has been adapted
for use with survival data by Park et al. (2002) and Nguyen and Rocke (2002). This
approach determines linear combinations of the features which are highly correlated
with survival and orthogonal to each other. In Bastien’s method, the weights in the
first PLS component equal the regression coefficients of the univariate PH models.
This is similar to the compound covariate method of Radmacher et al. (2002).

Proportional hazards models can also be built up in a stepwise iterative manner
using boosting to select features for inclusion. The boosting idea is to iteratively
generate models based on minimizing a sum of weighted residuals. The weights are
adaptivelymodified to overweight caseswhich have large residuals. There are several
approaches to PHmodel boosting (Hofner et al. 2014; Binder and Schumacher 2008),
but in the example to follow, we have used the CoxBoost method.
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Several authors have developed methods to identify optimal sets of genes which
together provide good discrimination of the classes. These algorithms are gener-
ally very computationally intensive, and there is little evidence that they provide an
improved prediction, though they have not been evaluated on enough real datasets
(Lai et al. 2006; Staiger et al. 2013). Some of these methods are so computationally
intensive that they have been applied using feature selection on the full dataset and
then cross-validation for evaluation using those features. This partial cross-validation
approach yields estimates of accuracy that is highly biased.

16.2.2 Aggregating Survival Trees

Segal (1998) introduced the concept of survival trees for regression andHothorn et al.
(2004, 2006) and Radespiel-Tröger et al. (2003) studied aggregation of decision trees
to predict survival. A tree is built by successively splitting the cases into two groups
based on the feature which is most associated with survival for the patients at that
node. Nodes which are no longer split because of the stopping criterion called leafs
of the tree. The stopping criterion may be based on the number of cases in a node,
the depth of the path leading to the node, or the lack of effectiveness of splitting
that node using the best single feature. Once the tree is constructed, prediction is
performed for a new case by identifying the leaf that the case would be classified in
and computing the Kaplan–Meier estimate for the training cases associated with that
leaf.

Bagging of survival trees is carried out by taking B bootstrap samples of cases
and computing a survival tree for each of the samples. Prediction of the probability
of survival beyond time t for a new case is determined for each tree and averaged.
Random forests are a variant of bagging survival trees in which only a sample of
covariates is considered for splitting at each node of each tree. The number of covari-
ates used is a pre-specified parameter. The R package party (Hothorn et al. 2006)
can be used for building survival forests. One limitation of survival forests is that
they are difficult to interpret because they may involve 1000 trees. They also are data
hungry and contain many tuning parameters.

16.2.3 Neural Networks

Neural networks (NNs) are nonlinear regressionmethods that have infrequently been
used for prediction survival risk but have been found to be of value in other fields. The
simplest real NNs have three layers. The input layer has one node for each candidate
prediction feature, and each node is connected to all the nodes of the intermediate
“hidden” layer. The output layer contains a single node, and it is connected to all of the
nodes of the hidden layer. The value of a node i in the hidden layer is often taken to be
Hi �1/(1+exp(−αi

′X)) where X denotes the vector of candidate predictors (values
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of the input nodes) and α denotes the vector of weights specific to hidden node i, one
weight for each of the input features. Hence, each hidden node computes a different
linear combination of inputs and transforms the value of the linear combination in a
common nonlinear manner using the nonlinear “transfer function.” The value of the
output node is determined by the value of a nonlinear “activation function” 1/(1+
exp(−β′H)) where H denotes the vector of values of the nodes in the hidden layer.

The value of the output node is taken as the predicted probability of survival
beyond a pre-specified landmark time t. In training the network, cases with survival
censored before t are omitted. Neural networks performbestwith a very large training
set. The number of parameters corresponding to the linear combination weights is
p * m+m where p denotes the number of inputs and m is the number of hidden
nodes. The number of hidden nodes is often kept small, but even then, fitting the
network must generally be the second step of a feature selection process in order to
keep p tractable. Otherwise, the data will be grossly overfit. One can aggregate NNs,
sampling the candidate features to use for individual NNs in the manner of random
forests. A large number of NNs can be built, and the predicted survival probability is
a weighted average of the predictions of individual NNs, weighted by the accuracy
of individual NNs. An alternative approach for limiting the number of input nodes
is to use principle components as candidate predictors. Sargent (2001) compared
prediction accuracy of ANN models to logistic regression models on 28 datasets
with relatively small numbers of candidate predictors. ANN models were superior
in some cases, but generally for the largest sample sizes, the two approaches gave
similar results.

16.2.4 Clustering for Survival Risk Prediction

Unsupervised clustering can be used in several ways for survival risk prediction.
Clinical investigators often use hierarchical clustering of the cases in order to identify
clusters with relatively homogeneous gene expression signatures. They then compute
Kaplan–Meier estimates of the survival distribution for each cluster as a way of
establishing the clinical relevance of the clustering. This approach can be adapted
for use as a survival risk prediction method if a supervised classifier is trained to
assign new cases to the clusters. There is nothing special about using hierarchical
clustering rather than some other method.
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16.3 Accuracy Indices

Graf et al. (1999), Schumacher et al. (2003, 2007), and Bovelstad and Borgan (2011)
have reviewed some of the measures of predictive accuracy for survival risk models.
One index is the normalized predictive log partial likelihood which is shown in
expression (16.2). The partial likelihood for case i is the model-based probability
that case i fails at time t given that someone in the risk set at time t fails. This
varies between 0 for a useless model to 1 for a perfect model. Because of the use
of logarithms, however, this measure is not very intuitively interpretable and single
cases that are not well predicted dominate the average.

Several measures of explained variation for survival data have been described
(Korn and Simon 1990) One R2 measure for PH models is of the form

R2 � 1 − exp

(
− 2

D

[
log(L(β̂)/L(0))

])
(16.3)

where L denotes the partial likelihood. This doesn’t have all of the properties of the
R2 measure for normal linear models but is does provide an index in the interval [0,
1].

Analternativemeasure of the discriminatorypower of amodel is the c concordance
index generalized for censored survival outcomes (Gonen andHeller 2005). For a PH
model, the concordance index is empirical probability that the predictive index for
case i is greater than that of case j given that the survival of case j is longer than that
of case i. In computing this empirical probability, pairs in which both survivals are
censored or in which the survival of one case is censored earlier than the uncensored
survival of the other case are excluded.

For binary classification models (e.g., diseased or not diseased), the receiver oper-
ating characteristic (ROC) curve is a commonly usedmeasure of prediction accuracy.
If we have a classification model which provides a quantitative output, we can define
sensitivity and specificity of the model for any specified value of a cut-point of the
model output. The cut-point separates the predictionswe consider as “disease” versus
those we take as normal. The ROC curve is a graph of sensitivity on the vertical axis
versus 1-specificity on the horizontal axis. The ROC concept has been generalized
for survival data (Heagerty et al. 2000).

Sensitivity and specificity can be defined for predicting the probability of survival
beyond a specified time t. Sensitivity is the probability of predicting survival beyond
t for cases whose true survival times are greater than t. Sensitivity can be estimated
in the following way:

Sensitivity(c;t) � Pr[Ŝ(t) ≥ c|T ≥ t]

� Pr[T ≥ t |Ŝ(t) ≥ c] Pr[Ŝ(t) ≥ c]

Pr[T ≥ t]
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where T is the true unknown survival time and c is a cut-point. The first factor in the
numerator can be estimated from the Kaplan–Meier curve for patients with a model
predicted survival no less than c. The second factor in the numerator is estimated
by the proportion of cases which have a model predicted survival no less than c.
The denominator can be estimated from the Kaplan–Meier curve for all patients.
The specificity at cut-point c and time t can be computed similarly. The ROC time-
dependent curve is constructed by plotting sensitivity versus one minus specificity as
a function of cut-point c for a fixed t. The area under the ROC curve can be computed
for all t, and these AUC values plotted as a function of t.

The time-dependent ROC curve can also be constructed using pre-validated
(Hofling and Tibshirani 2008) predictive values of Ŝ(t) as described below for cali-
bration curves in the section on “Removing Over-fitting Bias”.

The predictive accuracy of survival risk models can also be measured by the Brier
score (Graff et al. 1999; Gerds and Schumacher 2006). The Brier score at time t is

BS(t) � 1

n

n∑
i�1

⎡
⎢⎣ Ŝ(t |Xi )

2 I (ti ≤ t ∧ δi � 1)

Ĝ(ti )
+

(
1 − Ŝ(t |Xi )

)2
I (ti > t)

Ĝ(t)

⎤
⎥⎦ (16.4)

where ti is the survival time of patient i with censoring indicator δI. I is the indicator
function. Ĝ is theKaplan–Meier estimate of the censoring distribution used to remove
a large sample censoring bias. In formula (16.4), n is the number of evaluable cases,
that is, cases which either survived beyond t or died earlier than t. The Brier score
can be thought of as an estimate of the expected squared difference between the
probability being estimated (surviving past t) and the outcome in the data (binary
indicator of whether the patient survived past t). n denotes the sample size excluding
the patients who were censored before time t.

16.3.1 Removing Over-Fitting Bias

The estimate of accuracy index computed on the same training set that was used to
fit the model is called the re-substitution estimate. It is known that the re-substitution
estimates of accuracy are optimistically biased, sometimes dramatically so. If there
is a separate validation set, then all steps of model development, including feature
selection, should be performed only using training set data. The model developed
on the training set can then be used to predict survival outcomes for the patients in
the validation set, and the accuracy indices are computed using only validation set
cases. Dobbin and Simon (2011) discuss optimally splitting a dataset into training
and validation portions when a fully independent validation set is not available.
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An alternative to splitting a dataset into training and validation portions is to use
a re-sampling procedure to estimate the bias of the re-substitution estimate of the
accuracy index. This estimate is then used to adjust and de-bias the re-substitution
estimate. For example, using the nonparametric bootstrap, B bootstrap sample is
selected andwithheld as a validation set. Themodel is developed on the non-withheld
samples. The re-substitution estimate of the accuracy index is computed, and an
unbiased estimate is computed based only on the accuracy of the model in predicting
the withhold samples. The difference of these two estimates is an estimate of the
bias. This bias estimate is averaged over the B bootstrap samples.

In cases where the withhold sample of cases is too small to estimate the statistic
of interest, the pre-validation approach can be used. A K-fold cross-validation is
performed, and a prediction is made for each withheld case. When the folds are
completed, the predicted values, one per case, are combined and the statistic of
interest, e.g., area under a time-dependent ROC curve, is computed using all of the
predicted values. A prediction is made once for each case, and it is made using a
model with that case omitted. But K models, containing possibly different features,
are used for the predictions. This method was studied by Hofling and Tibshirant
(2008) and was used by Simon et al. (2011) for evaluating the predictive accuracy of
high-dimensional survival risk models and in the cross-validated adaptive signature
design of Freidlin et al. (2010) for finding predictive treatment selection signatures.

16.3.2 Calibration of Survival Models

Evaluation of model accuracy is often composed of two components: the discrimina-
tory power of the model and the calibration of the model. A model is considered well
calibrated if it yields proper forecasts. For example, for the subset of men predicted to
have a 30% chance of surviving 5 years, about 30% of them actually survive 5 years.
For a given time t, let Ŝ(t ; X ) denote the predicted probability of surviving t years
for a patient with covariate vector X. For any value
s ε (0, 1), let

�(s) � {X : |S(t, X ) − s|< ε}.

That is, �(s) denotes the set of covariate vectors X which have model predicted
survival within epsilon of the selected value s. Let KM(t; s) denote the Kaplan–Meier
estimate of the probability of surviving beyond time t, for the set of patients whose
X vectors are included in �(s). The survival risk model is well calibrated if KM(t; s)
≈ s for all s in (0, 1). The calibration curve is a plot of s on the horizontal axis versus
KM(t; s) on the vertical axis. With good calibration, the curve follows the 45° line.
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It is best to compute the calibration curve using a separate test set. For each case
in the test set, the value Ŝ(t ; X ) is computed for a pre-specified t. Those values then
are used for computing the calibration curve using only cases in the validation set.

A pre-validated calibration curve can be constructed in the following way for
datasets which are too small to split into training and validation. Using cross-
validation, omit one ormore cases. Fit themodel for the remaining cases and compute
Ŝ(t ; X ) for the cases having been omitted. Repeat this for all folds of the cross-
validation. At that time, we have a predicted Ŝ(t ; X ) for all cases, and prediction
for each case was made using a model developed on a training set that the case was
omitted from. These {Ŝ(t ; X )} values are called pre-validated (Tibshirani). The cali-
bration curve is then computed using all the cases but with the pre-validated Ŝ(t ; X )
values.

16.3.3 Example

To illustrate some of these methods, we have used them to analyze data on survival
of diffuse B cell lymphoma reported by Rosenwald et al. (2002). There were 414
patients and 165 deaths. Gene expressionwas evaluated on anAffymetrixmicroarray
with 24,841 probesets. Overall survival was used as the endpoint. This analysis of
one dataset is not meant to provide an adequate comparison of the methods. For a
more extensive comparison, see Schumacher et al. (2007) and van Wieringen et al.
(2009).

We evaluated several survival risk methods based on the PH model. We applied
L1 penalized PH regression directly to the data with all 24,841 features although the
number of features used in modeling could have been reduced using the methods
of Tibshirani et al. (2012). We also performed L2 penalized PH regression. In order
to obtain a model without too many variables, however, we included the first 100
principle components in the L2 penalized model instead of the 24,841 features. We
also developed a partial least squares PH model using the first PLS component. We
found that the package coxpls crashed the RStudio sessions we were running so we
developed the PLS model on the first 100 principle components for dimensionality
reduction. We computed the first PLS component and fitted a Cox PH model using
that component using the survival package. The first PLS component has weights
corresponding to the regression coefficients of single principle component PH mod-
els.

We also developed a supervised principle component PHmodel using the superPC
package.Weusedonly a single supervised principle component. It is thefirst principle
component of the probesets which themselves are “significant” (nominal z statistic
greater than 1.96 in absolute value) in univariate PHmodels. Finally, we developed a
boosted PH model by applying the CoxBoost package directly to the probeset data.
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Table 16.1 Survival models developed for diffuse large B cell lymphoma data

Model Pre-validated
concordance

Predictive partial
likelihood

Pre-validated brier
score at 3 years

L1 penalized PH 0.559 −884.5 0.314

L2 penalized PH on
PCs

0.697 −912.4 0.213

Partial least squares
on PCs

0.709 −912.3 0.200

Supervised PC 0.626 −870.2 0.290

CoxBoost PH 0.682 −912.7 0.223

To evaluate these models, we performed fivefold cross-validation. We computed
the pre-validated concordance statistic, the predictive log partial likelihood, and the
pre-validated Brier score for the probability of surviving beyond 3 years. Results
are shown in Table 16.1. With regard to the concordance measure, the L2 penalized
model based on pc’s and the PLS model based on the pc’s perform best.

With regard to predictive likelihood, the L2 penalized model, the PLS model and
the CoxBoost model do best. The null log-likelihood is −956.11. Hence, the R2

measure of expression (16.2) for the L2 penalized model is 0.41.
Finally, with regard to the Brier score at 3 years, the L2 penalized model, the

PLS model, and the CoxBoost models again perform best. The L1 penalized model
based on the original 24,841 probesets and the supervised pc model based on those
probesets did not perform as well as the other models.

Figure 16.1 is pre-validated calibration plots for predicting the probability of 3-
year survival for all five models. A properly calibrated probabilistic predictor should
fall along the 45° line. The horizontal axis is the predictive probability of survival for
beyond 3 years. The vertical axis is the proportion of patients who survive beyond
3 years. The L1 penalized PH model and the supervised PC model are seen to
be poorly calibrated. The other three models are well calibrated, particularly the
CoxBoost PH model.
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Fig. 16.1 Calibration of survival models developed for diffuse large B cell lymphoma data
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Chapter 17
Validation, Multivariate Modeling,
and the Construction of Heat-Map
Prediction Matrices for Survival
in the Context of Missing Data

Shankar S. Srinivasan, Albert Elion-Mboussa and Li Hua Yue

17.1 Introduction

Non-interventional trials or registries allow some latitude in the reporting of obser-
vations and procedures by site investigators, leading to a larger degree of miss-
ing data than controlled clinical trials. However, controlled clinical trials (CCT),
which tend to have more complete data, have an extensive set of inclusion and
exclusion criteria which make their patient populations highly selective and unrep-
resentative of the typical patient presenting at a clinic. Furthermore, sites at CCTs
tend to be research or academic sites rather than regular community sites. How-
ever, registries typically do not work under these constraints and provide ideal
data for the development of prognostic models for the typical patient, whereas
the generalizability of models derived from CCTs maybe in question (Unger
et al. 2014; Vist et al. 2008; Townsley et al. 2005). Hence the objective of
this chapter is to perform prognostic analyses within the context of real-world
non-interventional trials while circumventing the drawback of data incomplete-
ness.

The registry through which we will illustrate the construction of prediction mod-
els, despite incomplete data, is the Connect® MM Registry (NCT01081028) (http://
clinicaltrials.gov/ct2/show/NCT01081028). This registry enrolled two cohorts. The
first cohort has an adequate follow-up (median 33.5 months, N�1493) for analysis,
while analysis for the second cohort is pre-mature due to inadequate follow-up.
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The Connect® MM Registry was designed as a prospective, observational, lon-
gitudinal, multicenter study of patients with newly diagnosed multiple myeloma
(MM). There is no planned investigational agent, prescribed treatment regimen, or
mandated intervention in this study. The treating physician determines the enrolled
patient’s therapy for newly diagnosed MM per his or her clinical judgment. Inclu-
sion criteria were limited to patients who were newly diagnosed with symptomatic
MM within 2 months of enrollment, age≥18 years, willingness, and ability to sign
informed consent and an agreement by the patient to complete patient question-
naires alone or with minimal assistance. There were no exclusion criteria. We retro-
spectively applied the typical collection of additional CCT inclusion and exclusion
criteria (such as M-protein≤1.0 g/dL, creatinine>2.5 mg/dL, ANC≤1.5 × 109/L,
hemoglobin≤8 g/dL, AST/ALT>3 UNL, platelets≤75 × 109/L.) to the data from
this registry and found that 40% of the patients in the registry would not have been
eligible for a CCT, reflecting that the registry had adequate non-selectivity making it
prime data for prognostic analysis (Shah et al. 2017). Further supporting, the utility of
the data was the dominance of community sites (81.1%) while the prevalence of aca-
demic and government investigational sites was not insignificant (17.6% and 1.3%,
respectively) (Rifkin et al. 2015). We evaluated the registry baseline data against the
National Comprehensive Cancer Network’s suggested diagnostic workup for multi-
ple myeloma and found that allowing physician discretion in diagnostic data to be
collected, as is usually done for non-interventional registries, had led to a small to
moderate, and sometimes a large extent of incomplete data (Rifkin et al. 2015). So,
while this large registry database represents an ideal cohort for prediction models,
the incompleteness of the data makes the development of such models challenging
and interesting.

We intend to explain the methodology behind the development of an appealing
heat-map representation predicting early and late survival along with the associated
model building and validation. Such a representation will help facilitate patient—
physician interactions at the diagnosis of multiple myeloma. Similar heat-map rep-
resentations, developed using CCT data, have been found useful in the context of
rheumatoid arthritis and ankylosing spondylitis (Vastesaeger et al. 2011; Vastesaeger
et al. 2009). This striking representation is both a color-coded visual summary as
well as a numeric summary of predictions about survival as related to an identified
set of prognostic factors. The heat-map representation based on the Connect® MM
Registry with complete clinical background and interpretation has been published
(Terebelo et al. 2017) for early survival. A manuscript is under development for late
survival using additional follow-up. The beta version of that late survival model is
presented in this manuscript while the methods described reflect some enhancements
in the updated analysis.

Model building is illustrated for a discrete and for a survival endpoint in the
context of missing data. The discrete endpoint being considered is the mortality
within a 180-day period (6months). The survival endpoint being considered is overall
survival, fromwhich the 1-, 2-, 3-, and 4-year survivals are of interest and are derived.
The decision for separate analyses for early and later mortality followed from the
perception that early mortality may have a different etiology than later mortality with
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co-morbidities dominating the former and disease factors more relevant for the latter.
Section 17.2will elaborate, for both endpoints, on univariate screening from a totality
of all identified relevant baseline characteristics, multiple imputation of the missing
data, and variable selection in the context of imputed data. Section 17.3 will provide,
for the discrete endpoint, the combined inferences, the heat-map representation, and
the internal and external validation details. Section 17.4 will provide similar details
for the later mortality. The chapter will conclude with a discussion section.

17.2 Multivariate Modeling

Multivariate modeling starts with univariate screening to reduce the number of pre-
dictors and follows upwith variable selection before developing the predictivemodel.
This section covers these steps in the context of missing data. SAS code is provided
in text for the discrete endpoint. The code is similar for the survival endpoint and
uses SAS PROC PHREG code instead of PROCLOGISTIC code. This survival code
is not provided.

17.2.1 Univariate Screening

Univariate analyses were conducted with the intent of determining the degree of
missingness on each predictor and statistical significance of the predictor in pre-
dicting the dependent measure. Variables significant at the 0.15 level and with less
than 60%missing were screened in. Logistic regression analyses were conducted for
the discrete variable of mortality within 180 days and Cox regression analyses were
conducted on survival data. The code for the logistic regression follows, where d180
is the discrete dependent variable.

proc logistic data = Edeath descending;
model d180 = &var/risklimits; 
ods output ParameterEstimates=&univ_est NObs = &univ_miss;

run;

Twenty-six variables were screened. Thirteen variables were screened through
the logistic regression analyses, and seventeen variables were screened through Cox
regression analyses. The average amount of missing data for the logistic regression
screened variables was 9.23% and 13.1% for the Cox regression.

17.2.2 Multiple Imputation

Concern about the degree of missing data is mitigated by the number of imputed
datasets we created. The relative efficiency RE of multiple imputation is given by
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RE � (1 + λ/m)−1

where λ is the fraction of missing information about the parameter being estimated
and m is the number of imputed datasets (Little and Rubin 2002; Yuan 2000). The
fraction ofmissing datawill be roughly proportional to the average amount ofmissing
data reported earlier. For three imputations, the RE is 0.9375 and 0.8571 for missing
fractions of 20% and 50%, respectively. For the intended ten imputations, the RE
increases to 0.9804 and 0.9524, respectively.

Rubin’s imputation framework (Little and Rubin 2002) was used for the analysis.
This involves assuming an imputation model, then obtaining the predictive distribu-
tion of themissing data conditional on observed data and distribution parameters, and
then producing multiple imputed datasets using the predictive distribution (Patricia
and Steven 2014). Analysis under multiple imputation is robust under less restrictive
assumptions of missing at random (MAR) compared to the case-wise deletion of data
records with any data missing on any predictor. Further case-wise deletion of data
missing on any variable leads to considerable loss of information on other collected
variables. The imputation model was the fully conditional specification (FCS) as
recommended in (van Buuren 2007). All variables (including those screened out)
were used in the imputation model to extract all information on the missingness of
the predictors contained in the dataset. Ten imputations were generated. The SAS
code for the FCS method follows.

proc mi data=os nimpute=10 seed=5122017 out=osm;

class agen hispan bmi issstagen ecogn …;

fcs logistic(agen hispan bmi issstagen ecogn …);

var agen hispan bmi issstagen ecogn …;

run;

17.2.3 Variable Selection

To find the candidate multivariate models, the imputed datasets were stacked on
top of each other and the multivariate logistic and Cox regressions were run using
underweighted observations, with the underweighting proportional to the number of
imputed datasets and to the degree of missingness, an approach recommended as
one of the reasonable approaches in (Wood et al. 2008). The predictors used were
those screened in, in Sect. 17.2.1. The SAS code for the logistic model requesting
all possible models follows. The weight� (1 − f)/(# of imputations) where f is the
average fraction of missing data.

proc logistic data = Edeathm2 ;
model d180 (event = 'yes') = agen issstagen mhecogynn imwg_risk 
mhdiabn mhhyn calcium creat plat_ct caref mobf gp_17p_ad novelf/
selection = score details lackfit ;

weight wt;

run;
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Selection� score in SAS provides the score statistic for all possible models.
The difference in score statistics between models is a chi-squared distribution with
degrees of freedom given by the difference in the number of variables in the models.
Starting with best 1 variable model, we moved in 1 variable increment to the best
k variable model, till the incremental score statistic is less than the critical value
obtained as the 0.1-level Wald X2 chi-square value for 1 degree of freedom. Several
models with score statistics in the neighborhood of that for the best k variable model
were then considered as candidate models. For each candidate model, multivariate
logistic/Cox regression was fit on each of the ten imputed datasets, and the average
Bayesian information criterion (BIC) value was calculated. The final multivariate
model was selected as the candidate model with the minimum average BIC among
models judged to be clinically appropriate. Seven variables were selected through
the stacked weighted logistic regression, and eleven variables were selected through
the variable selection process using Cox regression. The next section starts by using
Rubin’s method (Little and Rubin 2002) to combine the inferences for the seven
variable logistic regressions applied to each imputed dataset.

17.3 The Discrete Case

Model building continues in this section for the discrete endpoint with the compu-
tation of the logistic model using imputed datasets, the development of an intuitive
representation of predictions from the model and internal and external validation.

17.3.1 Combining Inferences

By Rubin’s result (Little and Rubin 2002), the estimate of a parameter of interest is
the average of estimates from each imputed dataset. Such an estimate is efficient and
unbiased under MAR assumptions. The separate estimates and the combined infer-
ences were obtained using the following SAS code for the seven selected variables

proc logistic data=Edeathm2;
model d180 (event = 'Yes') = agen issstagen mhecogynn mhhyn creat 
plat_ct mobf /risklimits details lackfit covb;
by _Imputation_;
ods output ParameterEstimates=lgparms CovB=lgcovb;
run;

proc mianalyze parms=lgparms
covb=lgcovb;
modeleffects Intercept agen issstagen mhecogynn mhhyn creat plat_ct 
mobf;
ods output ParameterEstimates=est1;

run;
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Table 17.1 Logistic regression analysis of baseline characteristics predictive of mortality within
180 days

Characteristic Odds ratio 95% Confidence
interval

P-value

Age (>75 vs.≥75) 1.70 (1.09, 2.67) 0.020

ECOG performance
score (≥2 vs.<2)

3.89 (1.67, 9.05) 0.002

History of
hypertension

1.96 (1.19, 3.22) 0.008

ISS disease stage (III
vs. I and II)

1.85 (1.18, 2.90) 0.007

Renal insufficiency
(Serum
Creatinine>2 mg/dL)

1.59 (0.98, 2.60) 0.062

Platelet count (<150×
109/L vs.>150×
109/L)

2.29 (1.49, 3.53) <0.001

Mobility from EQ5D 2.42 (1.48, 3.94) <0.001

The output dataset est1 above contains the estimates of the intercept parameter α

and the regression coefficients β’s for each predictor xi in the logistic model given
by

π (x) �
exp

(
α +

p∑
i�1

βi xi

)

1 + exp

(
α +

p∑
i�1

βi xi

)

whereπ (x) is the probability of the event corresponding to a vector of predictor values
x (Stokes et al. 2012). Exponentiation of the parameter estimates and confidence
limits provides the odds ratios for a one-point increment in the predictor variable.
All variables, except for mobility, were dummy coded as 0 and 1 as they were
dichotomized variables. Mobility is ordinal and takes three levels from 0 to 2 and the
odds ratio represents, on average, the change in odds for every increase in the level of
mobility. Table 17.1 provides a summary of inferences from the final logistic model
using multiple imputation. The odds ratio of 1.70 implies that the odds of mortality
within 180 days for those patients with age>75 are 1.7 times that for those≤75 years.
Similar interpretations apply to other characteristics in Table 17.1.
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17.3.2 Heat-Map Prediction Matrices

The heat-map prediction matrices are designed to show less favorable outcomes in
the bottom left corner andmore favorable outcomes toward the top right corner of the
matrix. Follow our notes on the steps to achieve this objective by examining Fig. 17.1.
We start by ordering the variables on importance which is assessed by multiplying
the odds ratio by (# of predictor levels—1). For instance, mobility was assessed most
relevant to the matrix in Fig. 17.1 as 2.42 × (3 − 1)�4.84 is the largest computed
value. We start by placing this in the largest row header of the matrix. ECOG status
is the next most important and gets to be the largest column header of the matrix.
The third most relevant variable platelet count bifurcates the mobility header. The
fourth most important variable of hypertension history bifurcates the ECOG header.
Similarly, alternating between rows and columns populates row and column headers
with all model predictors. The row header predictors have the predictor level with
the favorable outcome on top. The column header predictors have the predictor level
with the favorable outcome to the right. This generates a blank matrix with column
and row headers. To populate these blank cells with the appropriate prediction, we
generate every combination of the constituent levels of the predictors, map each

Fig. 17.1 Prediction Matrix for Mortality within 180 days for newly diagnosed multiple myeloma
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combination to the cells of the matrix, and compute the probability of early mortality
for each combination. The estimated probabilities can then be easily inserted into
the prediction matrix. SAS code to generate data for insertion into the section of the
matrix where mobility�0 (No problem in walking about) is provided in Appendix
1.

In Fig. 17.1, wemove to smaller blockswithin the larger blockswith factors which
have succeeding smaller effects. Numeric values in the matrix are the estimated
probability of mortality within 180 days. The chart is traffic color-coded—green for
favorable outcomes, from yellow to red for less favorable outcomes. A color version
of this figure is available in the online version of this book. An excel app facilitating
the easy selection of combinations of predictor levels and the identification of the
estimated probability has been developed andwill be posted at a CelgeneCorporation
Registry Web site soon. The location of this Web site as well as further details will
be presented at www.resourcetepee.com.

17.3.3 Internal Validation

Internal validation involves the splitting of the dataset into test and training samples.
The model obtained in the training sample is evaluated in the test sample. Better
estimates of validation indices are obtained when they are obtained through analysis
of repeated random splits into test and training samples—A process called boot-
strap re-sampling. The validation index we used to measure the predictive ability
of our prognostic model was the Harrell’s C-Index (Harrell 2001). This index is
interpretable as a concordance probability—the probability that a randomly selected
pair of patients, one with a poorer survival outcome than the other, will be correctly
differentially identified based on inputting the two patient’s baseline prognostic char-
acteristics in the fitted model. To compute the index, we imported each of the ten
imputed datasets into the R software and ran the following R code for each dataset
for 100 bootstrap sample pairs

library("rms")
## Imputation # 1
f <- lrm(d180 ~ age+iss+ecog+hyptension+platcount+mobility+creatine,
data = impt1log, x=TRUE, y=TRUE)
validate(f, B=100, dxy = TRUE)

This R script provides the Somer’s D statistic Dxy. The concordance probability
for each imputation can be computed asC-Index�0.5 * |Dxy|+0.5. Training datasets
have better predictive ability due to the possibility of over-fitting the model to the
data. The training optimism adjusted concordance probability adjusts for this bias.
In the multiple imputation context, we compute the concordance probability as the
average of the adjusted concordance probabilities from each imputation. For the
logistic model, the concordance probability is identical to the area under the receiver
operating characteristic (ROC) curve for the model and confidence intervals can
therefore be computed using expressions developed in (Hanley and McNeil 1982)

http://www.resourcetepee.com
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for this area under the curve. The percent reduction in the concordance probability
for the test samples compared to the training samples was 2.53% for the logistic
model indicating the unlikelihood of an over-fitted model. The training optimism
adjusted concordance probability of the fitted logistic model was estimated at 74.3%
(95% CI: 68.7, 80.0). A concordance probability significantly greater than 50% is
indicative of a good predictive model.

17.3.4 External Validation

External validation is a measure of how well the model derived from our registry
works for an independent external dataset. The external data we chose was that
for the FIRST multiple myeloma clinical study (N�1623). A description of this
clinical study and efficacy and safety during this trial is reported in (Benboubker
and Dimopoulos 2014). This study was a phase III, randomized, open-label, 3-arm
study to determine the efficacy and safety of lenalidomide (Revlimid®) plus low-
dose dexamethasone when given until progressive disease or for 18 four-week cycles
versus the combination ofMelphalan, Prednisone, and Thalidomide given for 12 six-
week cycles in patients with previously untreated multiple myeloma who are either
65 years of age or older or not candidates for stem cell transplantation.

All seven variables which were significant predictors in the logistic model devel-
oped from the registry data were collected in the FIRST study. These variables as
well as mortality within 180 days were extracted from the FIRST database. Then the
probability of early mortality was computed for the FIRST data using the registry-
derived logistic model and compared against actual outcomes in the FIRST study.
This was achieved through the R package rms through the following

library(rms)
phat <- 1/(1+exp(-(-4.543656+(0.883258*logist$mobf 
+0.673436*logist$mhhyn+1.359005*logist$mhecogynn+0.617535*logist$isss
tage+0.533151*logist$agen+0.830696*logist$plat_ct+0.466740*logist$cre
at))))
val.prob(phat, logist$dthbf180, xlab="Predicted Probability of Death 
Before 180 Days ", ylab=" Actual Probability of Death Before 180 Days 
", lim=c(0,1.0), legendloc = c(0.75,0.15), m= 30, cex = 0.7)

This R script produces Fig. 17.2. The concordance probability is 71.83% (95%
CI: 66.2, 77.4) compares favorably to 74.3% in the internal validation supporting the
portability of the derived model. This is despite differences between FIRST, a CCT,
and the registry. The triangles in the graphic represent sets of 30 patients. The data
plots under the equiangular line, likely, because FIRST had a healthier cohort due to
restrictive inclusion and exclusion criteria. This would have led to lower actual than
predicted probabilities.
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Fig. 17.2 External validation of the logistic model

17.4 The Survival Case

Model building continues in this section for the survival endpoint with the com-
putation of the Cox model using imputed datasets, the development of an intuitive
representation of predictions from the model and internal and external validation.

17.4.1 Combining Inferences

The separate estimates by imputation and the combined inferences were obtained
using the following SAS code for the eleven selected variables
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proc phreg data=Edeathm2;
model dur*death(0) = agen issstagen mhecogynn mhdiabn creat plat_ct 
mhsolynn mobf gp_17p_ad gp_hyper_ad novelf 
by _Imputation_;
ods output ParameterEstimates=lgparms CovB=lgcovb;
run;

proc mianalyze parms=lgparms
covb=lgcovb;
modeleffects  agen issstagen mhecogynn mhdiabn creat plat_ct mhsolynn 
mobf gp_17p_ad gp_hyper_ad novelf;
ods output ParameterEstimates=est1;
run;

The output dataset est1 above contains the estimates of the regression coefficients
β’s for each predictor xi in the Cox model given by

h(t, x) � h0(t) exp

(
p∑
i

βi xi

)

where h(t, x) is the hazard function at time t defined at a vector of predictor values x
and h0(t) is the baseline hazard function. Exponentiation of the parameter estimates
and confidence limits provide the hazard ratios and confidence limits for a one-point

Table 17.2 Cox regression analysis of baseline characteristics predictive of overall survival

Characteristic Hazard ratio 95% Confidence
interval

P-value

Age (>75 vs. ≥75) 2.01 (1.66, 2.44) <0.001

ECOG performance
score (≥2 vs.<2)

1.73 (1.09, 2.74) 0.019

History of diabetes 1.37 (1.11, 1.69) 0.003

Del (17P) from FISH
and cytogenetic forms

1.55 (1.18, 2.04) 0.002

Hyperdiploidy 1.65 (1.22, 2.25) 0.002

Extramedullary
plasmacytoma

1.47 (1.13, 1.91) 0.004

ISS disease stage (III
vs. II vs. I)

1.31 (1.15, 1.50) <0.001

Renal insufficiency
(Serum
Creatinine>2 mg/dL)

1.46 (1.16, 1.83) 0.001

Platelet count (<150×
109/L vs.>150×
109/L)

1.47 (1.21, 1.79) <0.001

Mobility from EQ5D 1.49 (1.24, 1.79) <0.001

Novel therapy use≥2
versus (0, 1)

0.78 (0.62, 0.98) 0.033
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increment in the predictor variable. All variables in the Cox model, except for mobil-
ity and ISS stage, were dummy coded as 0 and 1 as theywere dichotomized variables.
Mobility and ISS are ordinal and take three levels and the hazard ratio represents,
on average, the change in hazard for every increase in level. Table 17.2 provides
a summary of inferences from the final Cox model using multiple imputation. The
hazard ratio of 2.01 for age implies that the hazard of mortality for those patients
with age>75 is 2.01 times that for those≤75 years. Similar interpretations apply for
other characteristics in the table.

17.4.2 Heat-Map Prediction Matrices

Heat-map prediction matrices featuring predictions of estimated survival beyond
three years will be constructed using methods like those described in Sect. 17.3.2
for the discrete endpoint. Due to the large number of predictors in the Cox model,
we split the prediction matrix into two panels by age group, a clinically important
variable in multiple myeloma. These panels are in Figs. 17.3b and 17.4b. As with
the discrete case, we order the variables by importance and then assign them by
alternating the predictors between the rows and column headers. As before, the row
header predictors have the predictor level with the favorable outcome on top. The
column header predictors have the predictor level with the favorable outcome to the
right. This generates a blank matrix with column and row headers. To populate these
blank cells with the appropriate predictions, we generate every combination of the
constituent levels of the predictors, map each combination to the cells of the matrix,
and compute the probability of survival beyond three years for each combination.
The SAS code to implement this starts with SAS PROC PLAN code as in the discrete
case in Appendix 1 and generates a dataset covals containing the combinations of
the levels of the predictors along with the mapping to cells in the matrix. However,
the SAS code for the survival case differs from that of the discrete case in the way
predictions are generated.

To generate the predictions, we use the methods in Allison (2010). The code
below uses the covals dataset in the baseline statement of the SAS PHREG proce-
dure to generate survival probabilities at every event time in the registry along with
confidence intervals. To obtain the survival beyond three years, we retain the data
records corresponding to event time closest to and less than the three-year time-point
(1095 days). The prediction of survival beyond three years for each predictor com-
bination is estimated as the average of the corresponding 3-year survivals from each
of the imputations.

proc phreg data=Edeathm2;
model dur*death(0) = agen issstagen mhecogynn mhdiabn creat 
plat_ct mhsolynn mobf gp_17p_ad gp_hyper_ad novelf /ties=efron;
baseline out=a covariates=covals survival=s lower=lcl 
upper=ucl/nomean;
by _Imputation_;

run;
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Fig. 17.3 a Excel app inputs to prediction matrix for elderly patients (age>75) in (b). b Prediction
Matrix of survival probability beyond three years for elderly patients
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Fig. 17.4 a Excel app inputs to prediction matrix for younger patients in (b). b Prediction Matrix
of survival probability beyond three years for younger patients (age≤75)
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In Figs. 17.3b and 17.4b, we move to smaller blocks within the larger blocks
with factors which have succeeding smaller effects. Numeric values in the matrix
are the estimated probability of survival beyond 3 years. The panels are traffic color-
coded as in Fig. 17.1 for the discrete data. A color version of this figure is available
in the online version of this book. An excel app facilitating the easy selection of
combinations of predictor levels and the identification of the estimated probability
has been developed. Instructions on how to access this app and apps for 1-year, 2-
year, and 4-year survival will be posted at www.resourcetepee.com. Figure 17.3b
is a screenshot of the panel for the elderly obtained from the inputs to the app in
Fig. 17.3a.

For the inputs in Fig. 17.3a, the app highlights the appropriate row and column
headers in Fig. 17.3b. Following the shaded columns and rows, we see that a patient
with the characteristics in Fig. 17.3a has an estimated 17% probability of surviving
beyond 3 years.

Figure 17.4b is a screenshot of the panel for the younger patients obtained from
the inputs to the app in Fig. 17.4a above.

For the inputs in Fig. 17.4a, the excel app highlights the appropriate row and
column headers in Fig. 17.4b. Following the shaded columns and rows, we see that
a patient with the characteristics in Fig. 17.4a has an estimated 35% probability of
surviving beyond 3 years.

17.4.3 Internal Validation

As for the discrete case, internal validation involved bootstrap re-sampling of a
100 test and training datasets and the computation of concordance probabilities. To
compute this concordance index, we imported each of the ten imputed datasets into
the R software and ran the following R code:

library("rms")
## Imputation # 1
f <- cph(formula=Surv(dur,death) ~ 
age+iss+ecog+diabetes+creatine+platcount+plasmacytoma+mobility+novel+
del17p+hyperploid, data = impt1dt, x=TRUE, y=TRUE, surv = T)
validate(f,B=100, dxy =TRUE)

Using computations like those for the discrete case, the percent reduction in the
concordance probability for the test samples compared to the training samples was
0.94% for the Cox model indicating the unlikelihood of an over-fitted model. The
training optimism adjusted concordance probability of the fitted Cox model was
estimated at 69.5% (95% CI: 66.6, 72.4). A concordance probability significantly
greater than 50% is indicative of a good predictive model.

http://www.resourcetepee.com
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17.4.4 External Validation

External validation was conducted to measure how well the Cox model derived from
our registry works for the FIRST study described in Sect. 17.3.4. Ten variables which
were significant predictors in the Cox model developed from the registry data were
collected in the FIRST study in an identical manner. The variable “# of novel ther-
apies” had levels defined as≥2 novel therapies or (0, 1) novel therapies as part of
the induction regimen in first line. Novel therapies being administered in cohort 1
of the registry included the multiple myeloma drugs Revlimid, Pomalidomide, Vel-
cade, and Carfilzomib. In the FIRST study, patients were randomized to Revlimid+
Dexamethasone continuous, Revlimid+Dexamethasone for 18 months and Melpha-
lan, Prednisone, and Thalidomide for 18 months. The first of the three groups were
most efficacious (Benboubker and Dimopoulos 2014) and was mapped to the≥2
level and the remaining groups to (0, 1) of the novel therapy variable. These 11 vari-
ables as well as the survival duration and censoring variables were extracted from
the FIRST database. Then the probability of survival beyond 3 years was computed
for FIRST data using the registry-derived Cox model and compared against actual
outcomes in the FIRST study. To compute the probability of survival beyond 3 years,
we employ SAS code like that in Sect. 17.4.2 using the actual predictor combinations
found in the FIRST study instead of the covals dataset. To compare actual outcomes
in FIRST to predicted outcomes based on the registry outcomes, we use the following
R code

library(rms)
surv.obj2 = with(dmm020cox,Surv(time, cens))
w <- rcorr.cens(x=dmm020cox$s,S=surv.obj2)
C  <- w['C Index']
se <- w['S.D.']/2
low <- C-1.96*se; hi <- C+1.96*se

library(rms)
S <- Surv(dmm020cox$time, dmm020cox$cens)
if('polspline' %in% row.names(installed.packages())) {
w <- val.surv(est.surv=dmm020cox$s, S=S, u=1095,
fun=function(p)log(-log(p)))
plot(w, xlab="Predicted Probability of Surviving Beyond 3 Years", 
ylab="Actual Probability of Surviving Beyond 3 Years", 
lim=c(.05,1),scat1d.opts=list(nhistSpike=200, side=1))
groupkm(dmm020cox$s, S, m=100, u=1095, pl=TRUE, add=TRUE)
text(0.4,0.95, "C-Index = 0.6787", cex = 0.9)
} 

The first part of the code computes the concordance index and 95% CI as 67.8%
(66.1, 69.6). This second part of the code produces Fig. 17.5.

The concordance probability compares favorably to 69.5% in the internal vali-
dation supporting the portability of the derived model. This is despite differences
between FIRST, a CCT, and the registry. The dots in the graphic represent sets of
about 100 patients each. The data plots above the equiangular line, likely, because
FIRST had a healthier cohort due to restrictive inclusion and exclusion criteria. This
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Fig. 17.5 External validation of the Cox model

would have lead to the higher actual then predicted probabilities of survival beyond
3 years.

17.5 Discussion

For a prognostic model for a disease to be meaningful, it should be based on data
which is representative of the larger population of all patients with the disease,
rather than a heavily screened cohort. Registries can provide such data as they have
less restrictive inclusion and exclusion criteria, especially compared to controlled
studies. However, registries tend to have more missing data due to less rigor in
monitoring sites and leeway given to sites on procedures and observations to be
recorded. Conventional model-building methods work for complete data and need to
bemodified considerably in the context ofmissing data.We have implementedmodel
building for our incomplete registry dataset using analysis after multiple imputation.
Such analysis is valid under missing at random conditions. This assumption implies
that on using all information collected in the study, there remains no extraneous
additional information predictive of missing values. An assumption which is likely
to hold when a large amount of relevant information is collected and then used in the
imputation model.
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We describe the combination of inferences from each of the imputed datasets,
modeling in the discrete and survival contexts, internal and external validation, and
the construction of an intuitive representation of the prediction data. Through boot-
strap re-sampling, we used the gold standard for internal validation to validate the
prediction models. External validation described helps with the demonstration of
the portability of the model to different patient populations. Similar model repre-
sentations have been published in peer-reviewed journals (Vastesaeger et al. 2011;
Vastesaeger et al. 2009) but a complete description of the methodology surrounding
the modeling and construction of the matrix representation is currently unavailable,
especially in the context of missing data. This chapter attempts to fill that void. The
heat-map prediction matrix is a striking visual as well as numerical representation
of prediction models.

For the selected illustrative examples, themodelswere externally validated using a
large clinical trial. The concordance probabilities, measure of the predictive ability of
themodels, were 74.3 and 69.5% in the logistic and Cox internal validations and 71.8
and 67.8% in the external validations. These are in the ballpark of the concordance
probability of 72.2% by internal validation for the Framingham heart study model,
a Cox regression model (Pencina and D’Agostino 2004).
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Appendix 1: SAS Code to Generate Predictions for Insertion
into the Prediction Matrix

*******************************************************************;
**********Creation of Coval dataset********************************;
*******************************************************************;
options orientation=portrait;
%let sitevar=8; *Number of blocks;
%let ptsvar=64; *number of cells;
%let blocksize=8; *number of cells per block;
%let ptspersite=%sysevalf(&ptsvar/&sitevar);
%let blockspersite=%sysevalf(&ptspersite/&blocksize,ceil); 

%put &ptspersite;

proc plan ;
factors block=&sitevar ordered pt=&blocksize ordered /noprint;
output out=rsched;

run;
proc sort data=rsched;by block;run;
data rsched1;;

set rsched;
mobf=0; *Can be changed to 0 1 or 2;
*mhecogynn=0; *Can be changed to 0 or 1;

cell + 1;
if first._n_ then cell = 1;

run;
data rsched1;

set rsched1;
if block in (1 2 3 4) then mhecogynn=1;
if block in (5 6 7 8) then mhecogynn=0;

if block in (1 2 5 6) then mhhyn=1;
if block in (3 4 7 8) then mhhyn=0;
if block in (1 3 5 7) then agen=1;
if block in (2 4 6 8) then agen=0;
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if pt in (1 2 3 4) then plat_ct=0;
if pt in (5 6 7 8) then plat_ct=1;

if pt in (1 2 5 6) then issstagen=0;
if pt in (3 4 7 8) then issstagen=1;
if pt in (1 3 5 7) then creat=0;
if pt in (2 4 6 8) then creat=1;

run;

data covals;
set rsched1;
drop pt block;

run;
proc sort data=covals;by cell;run;

data est2;
set est1;
keep parm estimate;

run;

*****************Transpose estimate**********************;
proc transpose data=est2 out=est3;

id parm;
run;

*Macro to rename variable so that we can merge the transposed data 
set with the main dataset covals;
%macro rename1(oldvarlist, newvarlist);

%let k=1;
%let old = %scan(&oldvarlist, &k);
%let new = %scan(&newvarlist, &k);

%do %while(("&old" NE "") & ("&new" NE ""));
rename &old = &new;

%let k = %eval(&k + 1);
%let old = %scan(&oldvarlist, &k);
%let new = %scan(&newvarlist, &k);

%end;
%mend;

data est3;
set est3;
drop _NAME_ ;
%rename1(agen issstagen mhecogynn mhhyn plat_ct creat mobf, agenm 

issstagem mhecogynm mhhynm plat_ctm creatm mobfm);
run;

data est3b;
set est3;
do cell=1 to 64; /*Change to ptsvar number above in this case 
ptsvar=32*/

output;
end;

run;

proc sort data=est3b; by cell; run;
proc sort data=covals; by cell; run;
data covals1;
merge covals est3b;
by cell;

run;
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proc sort data=covals1;by cell; run;

*To sum Beta for each cell;
data covals2;
set covals1;
Intercept1=intercept;
agens=agenm*agen;
issstages=issstagem*issstagen;
mhecogyns=mhecogynm*mhecogynn;
*mhdiabns=mhdiabnm*mhdiabn;
mhhyns=mhhynm*mhhyn;
creats=creatm*creat;
*mhsolynns=mhsolynnm*mhsolynn;
*calciums=calciumm1*calcium;
plat_cts=plat_ctm*plat_ct;
mobfs=mobfm*mobf;
*agdiab=agenmhdiabnm1*agenmhdiabn;
*pltmob=plat_ctmobfm1*plat_ctmobf;
sumbeta=agens+issstages+mhecogyns+mhhyns+plat_cts+creats+mobfs;

run;

*To calculate the Predicted Probability for each cell; 
data pred;
set covals2;
x=Intercept1 + sumbeta; 
xy=1+exp(-x);
prob=1/xy;

run;
proc sort data=pred;by cell;run;
proc sort data=rsched1;by cell;run;

data all;
merge pred rsched1;
by cell;
keep cell agen issstagen mhecogynn plat_ct mhhyn mobf creat pt block 

prob;
format prob  percent10.;

run;

proc print data=all;run;
proc print data=all;var cell prob;run;
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Chapter 18
Tepee Plots, Graphics for Structured
Tabular Data, with Biopharmaceutical
Examples

Shankar S. Srinivasan, Vatsala Karwe and Li Hua Yue

18.1 Introduction

Graphics for multi-dimensional data feature prominently in (Tufte 2001; Murrell
2011). The tepee plot, to be described here, adds an important tool to this collection
(1:US Patent 7,495,673 B1. Filed June 4 2005, accepted 24 Feb. 2009). Free licenses
for this graphic are available for research and academia at (http://www.resourcetepe
e.com/). A tepee maps structured tabular data—any data in rows and columns. The
structure is an ordering of the rows of the tabular data, which often occurs naturally
in data sets. When it does not exist naturally, an ordering can usually be created by
the user. Some shuffling, ordering, or reorganization of the columns of the table can
also enhance the graphic. The rows represent levels and the columns are attributes
whose levels are of interest. The graphic is an easy to grasp depiction, compared to
raw data and its mathematical transformations, of the distribution of the elements of a
structured tabular data set along column attributes and row levels. Colors associated
with the column attributes help identify dominant attributes.

We start our explication of the tepee plot tool with some pharmaceutical organiza-
tional structure examples. The methodology of constructing a tepee plot is explained
through an example of a tepee plot illustrating the flare and containment of the Ebola
epidemic in West Africa. We return to further examples after this section with bio-
pharmaceutical operational and scientific applications. The manuscript concludes
with a brief discussion.
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18.2 Pharmaceutical Organizational Structure Examples

Early application of this tool was in characterizing organizational structure. The
popular human resource structure tool, an organizational chart, provides an overview
of manpower distribution, but it does not provide a visualization of other resources
utilized. For instance, the manpower-related payroll expenses are not reflected in an
organizational chart. An organizational chart does not tie organizational structure
to resource utilization unlike the tepee plot. The span of an organizational chart is
limited by the smallest possible size of its blocks and their contents. This is less of
a limitation for the tepee plot. What might take 50–60 pages in an organizational
chart can easily be depicted in one page through this graphic. In applications to
organizational structure, we refer to the structured table as a resource utilization
matrix and the tepee plot as a resource tepee plot. This resource utilization at various
functions and at differing levels within the organization ismapped onto a color-coded
chart. This depiction of resource utilization is intended as a compelling alternative
to the organizational chart, having more functionality. It has a color on the chart
as dominant when the function associated with the color expends resources to a
larger extent. The tepee plot provides a fair assessment of resource utilization across
organizational functions and hierarchical levels; should this tool be used as an aid in
growth, attrition, and reorganization decisions. Strong consideration of intangibles
such as work-flows and individual talent, experience and socioeconomic factors
should precede the use of aggregate insights of organizational structure tepees.

18.2.1 Tepee Plot for Full-Time Equivalent (FTE) Data

The starting point for constructing the graphic is the structured tabular matrix which
we will call a resource utilization matrix in the context of organizational struc-
ture tepee plots. A hypothetical resource utilization matrix for FTE is provided in
Table 18.1 for a typical biostatistics and programming department in a large phar-
maceutical company. The vice president (VP) has been arbitrarily assigned to the
early phase statistics group. We could alternatively have assigned 1/8 FTE to each
of the functional groups reporting to him. VP+1 are the VP’s direct reports. There
is one corresponding to each functional group. There are five personnel in the VP+
2 reporting level in the clinical statistics group, four at the VP+2 level in the early
phase statistical group, etc. Such a data set is easy to pull out of an organizational
chart.

Figure 18.1 is the resource tepee plot corresponding to the data in Table 18.1. The
length of each horizontal line represents the total number of personnel at each level of
the biostatistics and programming department. The width of each individual section
of this line corresponds to the total within a function at the level being considered.
The figure has a scale identifying a line length corresponding to 40 employees. For
instance, one can see the 137 employees in the ‘VP+3’ level of the organization as the
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Fig. 18.1 Resource tepee plot for a biostatistics and programming department

entire length of the line at that level and the 16 employees in clinical statistics as the
blue stretch of the line. Each level of the department is equidistant from the previous
and the next level. The area corresponding to each function is invariant to reordering.
To construct the tepee plot, the line corresponding to each row total is centered on
the page and we keep adding segments for each function. Each color-shaded area
is roughly proportional to the number of employees in the function representing the
color.

18.2.2 Distribution of Personnel in a Simulated
Pharmaceutical Company

In this example, we develop a visualization of the organizational structure for a sim-
ulated corporation. The simulation is based roughly on industry averages for the
pharmaceutical and medicines industry as reported by the Bureau of Labor Statistics
(http://www.bls.gov/). For instance, you will see in Table 18.2, 30% of the personnel

http://www.bls.gov/
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Fig. 18.2 Resource tepee plot for a simulated biopharmaceutical company

are in R&D and 25% are in manufacturing. These are based on the 31.4% reported in
professional and related occupations and the 27.5% reported in production occupa-
tions in 2008 by the Bureau of Labor Statistics. However, we acknowledge that what
is true for the industry may not necessarily be true for individual corporations. Fur-
ther, the cascading of these employees through different levels or salary grade/bands
in the organization are based on our estimates. A roughly four-to-five-fold increase
in personnel is assumed when we go down a grade. A 10,000-employee corporation
was simulated. Eight grade levels are assumed starting with the CEO and going down
to CEO-7. The distribution to be displayed is in Table 18.2.

The visualization of this resource utilization matrix in Table 18.2 is in Fig. 18.2
. The organization is most numerous at the CEO-6 level. The scale adjacent to the
figure identifies 500employees.Research anddevelopment, representedby thegreen-
colored segment, has 1880 employees at theCEO-6 organizational level. For the same
simulated employee numbers, as in the examples in this section, the following section
will look at compensation at various levels with the objective of looking at executive
compensation.
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18.2.3 Juxtaposition of CEO and Worker Compensation

The scrutiny of executive compensation has increased with the enactment of the
Dodd-Frank Wall Street Reform and Consumer Protection Act (http://www.cftc.g
ov/LawRegulation/DoddFrankAct/index.htm). Shareholders can vote on executive
compensation packages. While such a vote is non-binding, it can result in consider-
able negative publicity for a corporation and could lead to shareholder lawsuits as
has been the case for Citigroup (Solomon 2012). The Resource Tepee can be useful
as a tool to assess if executive compensation is excessive. A juxtaposition of CEO
compensation with those across all employees at each of the other band levels (or
within functions at chosen band levels) in an organization through this visualization
may be helpful.We return to the simulated corporation in our example in Sect. 18.2.2
and look at the compensation spread across functions and levels. This simulation of
compensation assumes a 350-fold increment of CEO compensation over that of the
average worker in the lowest band of the corporation. Professor GWilliam Domhoff
in his Web site (Domhoff et al. 2016) on wealth, income, and power in America cites
an average 344-fold increment in CEO compensation over that of an average worker
in 2007. Compensation in multiples of 30, 11, 6, 4, 2.5, and 1.5 of the base worker
is assumed as we go down the band levels. The Bureau of Labor Statistics reports a
wage of $13.36 and $15.31 per hour in 2008 for two occupations at the lower end of
the pharmaceutical and medicine industry’s occupation categories. This simulation
uses a compensation of $15.00 per hour at the lowest band. This average income
drop-off is depicted in the graphic in Fig. 18.3 .

The wine glass-shaped graphic depicts a likely drop-off in average compensation
aswe go down the salary grades in an organization.However,we do expect the leaders
of our industry to be reasonably well paid as their skills and talents can generate a
lot of shareholder and employee wealth and they can make important contributions
to our society. So, it is also fair to see an executive’s compensation in the context
of aggregate compensation across different levels and functions of the organization
he heads. The resulting aggregate compensation resource utilization matrix can be
obtained by multiplying the average compensation by the employee tallies in Table
18.2 and is not provided here.

TheResource Tepee in Fig. 18.4 is a visualization of the distribution of compensa-
tion. What constitutes excessive compensation is difficult to address. One may need
a panel of sociologists, shareholder representatives, economists, and other involved
coalitions to address compensation.Graphics can be an aid inmaking these decisions.
One could get some insights on compensation by laying this tepee next to a tepee done
for the distribution of personnel as well as looking at the wine glass-shaped average
income drop-off down the hierarchy of an organization.

http://www.cftc.gov/LawRegulation/DoddFrankAct/index.htm
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Fig. 18.3 Drop-off in average compensation through salary grades

18.3 Methodology

The tepee plot is a color display depicting, at a glance, the distribution of the elements
of a structured tabular data across column attributes and row levels. This section will
describe how this display is constructed by startingwith this structured tabular matrix
and computing a matrix of coordinates. This matrix contains the nodes of the tepee
plot. Boundary lines to separate the colors of the plot are obtained by connecting
coordinates in each column of the matrix of coordinates. Colors representing distinct
attributes are applied to the spaces between boundary lines to obtain the tepee plot.
Data on theEbola epidemic is interspersedwithin the detailed description that follows
to illustrate the construction of the tepee plot.

18.3.1 West African Ebola Data

The Ebola virus and its possible spread to the USA and elsewhere through air travel
was a major concern during the 2014 outbreak. The primary locus of the epidemic
was in the West African countries of Guinea, Liberia, and Sierra Leone. The US
Center for Disease Control (CDC) maintained a tally of the total number of cases
of the disease in these three countries at their Web site (https://www.cdc.gov/vhf/e
bola/outbreaks/2014-west-africa/). Table 18.3 provides the number of new cases of

https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/
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Fig. 18.4 Compensation tepee for a simulated corporation

Ebola in the threeWest African countries as inferred from the CDC data. The disease
flared rapidly from April to October 2014 and it took about a year to contain it.

Table 18.3 West African Ebola data

Month New cases
monthly, Guinea

New cases
monthly, Liberia

New cases
monthly, Sierra
Leone

Row sum

OCT 2015 3 0 156 159

SEP 2015 15 0 308 323

AUG 2015 9 0 216 225

JUL 2015 36 6 258 300

JUN 2015 93 0 302 395

MAY 2015 74 344 429 847

APR 2015 86 610 424 1120

MAR 2015 337 474 673 1484

FEB 2015 238 616 783 1637

(continued)
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Table 18.3 (continued)

Month New cases
monthly, Guinea

New cases
monthly, Liberia

New cases
monthly, Sierra
Leone

Row sum

JAN 2015 238 604 1072 1914

DEC 2014 552 383 2337 3272

NOV 2014 488 1100 1771 3359

OCT 2014 593 3077 3317 6987

SEP 2014 426 2080 995 3501

AUG 2014 188 1049 493 1730

JUL 2014 70 278 375 723

JUN 2014 109 39 142 290

MAY 2014 60 0 16 76

APR 2014 109 4 0 113

COL SUM 3724 10664 14067 28455

18.3.2 Structured Tabular Matrix

The structured tabular matrix for the Ebola data follows:

L �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 156
15 0 308
9 0 216
36 6 258
93 0 302
74 344 429
86 610 424
337 474 673
238 616 783
238 604 1072
552 383 2337
488 1100 1771
593 3077 3317
426 2080 995
188 1049 493
70 278 375
109 39 142
60 0 16
109 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Essential notation is that the structured tabular matrix is denoted by L, consisting
of elements lkj which represents the numerical quantity to be displayed for the kth
attribute at the jth level. The subscript k for the columns from the left to the right
of the matrix varies from 1 for the first attribute to the last or nth attribute in some
appropriate preselected order. The subscript j for the rows from the bottom to the
top of the matrix varies from 0 for the bottom most in the hierarchy to some highest
level m.

To clarify the notation, note, for instance, that l23 is the Ebola tally for the second
attribute at the third level in the hierarchy (from Table 18.3, it is the number of new
cases in Liberia in July 2014). From the matrix l23 is 278. Similarly, l30 is the number
of cases for the third attribute at the 0th or bottom level and equals 0, l11 �60.

18.3.3 Matrix of Coordinates

The next step in the process computes amatrixC of coordinates. Thismatrix contains
the elements cij given by

cij �
{(∑

k≤i

lkj − 0.5 ∗
n∑

k�1

lkj

)
, a ∗ j

}

where
∑

is a symbol for a summation and a is some appropriate amount by which
we would like the hierarchical levels in the tepee to be separated. A comma separates
the x coordinate from the y coordinate. The subscript i for the columns from left to
right of the matrix C varies from 0 to n and represents the n+1 boundaries which
will separate the colors of the tepee. The subscript j for the rows from bottom to
top of the matrix C varies as before from 0 for the bottom most to the highest level
m. The lkj are the elements of the resource utilization matrix as defined earlier. The
coordinates in C are the nodes of the tepee.

To clarify the computation of the C matrix, let us return to our Ebola example.
For the resource utilization matrix in our example, the matrix C of tepee coordinates
computes as shown in the following page.

Let’s verify c21. Using the formula, this coordinate is given by

c21 �
{(∑

k≤2

lk1 − 0.5 ∗
3∑

k�1

lk1

)
, a * 1

}

The quantity
∑

k≤2 lk1 is the sum of the elements the first tier for the first two

attributes. Using the L matrix, this is equal to 60+0�60. The quantity
∑3

k�1 lk1 is
the sum over all attributes in the first tier. This equals 60+0+ 16�76. Using a�1

c21 � {(60 − 0.5 ∗ 76), 1} � (22, 1)
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Similarly consider

C33 �
{(∑

k≤3

lk3 − 0.5 ∗
3∑

k�1

lk3

)
, a * 3

}

� {(70 + 278 + 375 − 0.5 ∗ (70 + 278 + 375)), 3} � (361.5, 3)

Note that for i�0, the first summation drops out and

c0j �
{

−0.5 ∗
8∑

k�1

lkj, a*j

}

C �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−79.5, 18) (−76.5, 18) (−76.5, 18) (79.5, 18)

(−161.5, 17) (−146.5, 17) (−146.5, 17) (161.5, 17)

(−112.5, 16) (−103.5, 16) (−103.5, 16) (112.5, 16)

(−150, 15) (−114, 15) (−108, 15) (150, 15)

(−197.5, 14) (−104.5, 14) (−104.5, 14) (197.5, 14)

(−423.5, 13) (−349.5, 13) (−5.5, 13) (423.5, 13)

(−560, 12) (−474, 12) (136, 12) (560, 12)

(−742, 11) (−405, 11) (69, 11) (742, 11)

(818.5, 10) (−580.5, 10) (35.5, 10) (818.5, 10)

(−957, 9) (−719, 9) (−115, 9) (−957, 9)

(−1636, 8) (−1084, 8) (−701, 8) (1636, 8)

(−1679.5, 7) (−1191.5, 7) (−91.5, 7) (1679.5, 7)

(−3493.5, 6) (−2900.5, 6) (176.5, 6) (3493.5, 6)

(−1750.5, 5) (−1324.5, 5) (755.5, 5) (1750.5, 5)

(−865, 4) (−677, 4) (372, 4) (865, 4)

(−361.5, 3) (−291.5, 3) (−13.5, 3) (361.5, 3)

(−145, 2) (−36, 2) (3, 2) (145, 2)

(−38, 1) (22, 1) (22, 1) (38, 1)

(−56.5, 0) (52.5, 0) (56.5, 0) (56.5, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

18.3.4 Constructing the Tepee Plot

The coordinates in the matrix C in our example are plotted in Fig. 18.5. The y-axis
is a scale from 0 to 18 with tick marks 1 unit apart. Horizontal lines in the plot go
through row coordinates, and the scale for the horizontal lines for 1000 Ebola cases
is provided to the right-hand side. Once the nodes have been plotted, the boundaries
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Fig. 18.5 Tepee plot for new cases of Ebola in West Africa

between colors are obtained by connecting the coordinates in each column of the
matrix of coordinates. For instance, the outer left boundary of the tepee is obtained
by tracing a line through the coordinates (−79.5, 18), (−161.5, 17), etc., down to
(−38, 1) and (−56.5, 0) in the first column of C. The second line from the left is
obtained by connecting (−76.5,18), (−146.5, 1), etc., down to (22, 1) and (52.5, 0)
in the second column of C. Proceeding in this manner through all the columns of C
in our example we obtain all the boundary lines in Fig. 18.5.

Once the boundary lines are obtained, we associate n distinct colors to the n
attributes. Starting from the left, we fill in the space between the boundary lines with
colors going from that for the first column attribute to that for the last or nth attribute.
In our example, we chose blue for the first attribute, yellow for the second attribute,
and green for the third attribute. Using these colors, the tepee in Fig. 18.5 is obtained.
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18.4 Other Operational and Scientific Biopharmaceutical
Applications

Tepee plots can be used in broader contexts outside organizational structure. There
are many other contexts in which we find structured tabular data. Any table in rows
and columns with any quantitative content and some natural or induced ordering can
be displayed using a tepee plot. In this section, we look at tepee plots for outsourcing
costs for clinical trials, laboratory grade shift data tepee plots, and tepee plots for
cancer therapies over time.

For the outsourcing and grade shift tepee plots, we add null lower and upper
nodes—all tepee plot boundaries are extended to a point with x coordinate�0 at one
level below and above. We had noted earlier, when discussing resource tepee plots
that without adding such null nodes the total area covered by each color was roughly
proportional to the total associated with the column function. This proportionality is
exact when we add the null upper and lower nodes. This follows on noting that the
area corresponding to a column attribute is given by the sum of the areas of the top
and bottom triangles and the summation of the trapezoidal areas in between. This
area computes to the following for every column j

0.5 ∗ l0 j ∗ a + 0.5 ∗ lmj ∗ a +
m−1∑
i�0

0.5 ∗ (
li j + li�1, j

) ∗ a � a ∗
m∑
i�0

li j

Thus, the area corresponding to a column attribute is proportional to the total
associated with the column attribute with a proportionality constant given by a, the
distance between the horizontal lines in the plot.

18.4.1 Outsourcing Cost Tepee

Pharmaceutical companies find it expedient to outsource some or all the work
involved in running a clinical trial to CROs. This example looks at the distribu-
tion over different functions of costs in outsourcing budgets. In the other examples,
there was a hierarchy, levels in an organization, which spanned the vertical space of
the graphic. Through this example, we illustrate that such organizational hierarchies
are not necessary, and as noted elsewhere, any quantitative measure which can be
represented in a two-way data matrix can be represented by the resource tepee. The
costs of outsourcing are typically associated with the number of patients (N) that are
to be enrolled in the study (though this association can be thrown off somewhat by
special needs in the studies such as the collection and analysis of biomarker data,
special study design features, clinical phase of the study). In this example, the num-
ber of patients in the clinical studies being displayed is used to order the vertical
space of the graphic. More generally, one could create an ordering by using the row
sums in the resource utilization matrix. The resource utilization matrix in Table 18.4
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Fig. 18.6 Tepee plot for outsourcing costs of clinical trials

shows the distribution of outsourcing costs over a collection of clinical studies. The
collection of studies could be defined as some meaningful collection such as one for
those pertaining to a specific therapeutic area/drug or for a specific CRO. The idea is
to develop a graphic which provides a holistic depiction of the distribution of costs
in a slew of outsourced studies. The numbers in the resource utilization matrix that
follows are made-up numbers (in $1000s) which bear no resemblance to any real
outsourcing effort.

The graphic in Fig. 18.6 summarizes the data in Table 18.4 and adds a null upper
node and a null lower node. These null nodesmake the area of the colors in the graphic
exactly proportional to the total cost, across studies, at the function associated with
the color.

18.4.2 Laboratory Grade Shift Tepee

In clinical trials, laboratory values are graded in severity using some system such
as the NCI CTCAE grading system for cancer drug trials (Common terminology
criteria for adverse events 2016). Table 18.5 is a typical presentation of data about
shifts in safety grades from the baseline to the worst grade while on treatment (this
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Table 18.5 Shifts in anemia grades from baseline to worst grade on treatment

Normal Grade 1 Grade 2 Grade 3 Row sum

Baseline
grade 3

0 14 20 0 34

Baseline
grade 2

14 101 85 10 210

Baseline
grade 1

40 162 45 7 254

Baseline
normal

61 86 10 0 157

Column sum 115 363 160 17 655

table is created using made-up data which does not bear any resemblance to any real
clinical trial). This is how you read the table:

• Thirty-four patients had a grade 3 anemia at baseline and that improved to a worst
grade of 2 in 20 patients and grade 1 in 14 patients.

• One hundred and fifty-seven patients were normal on anemia at baseline. Sixty-
one stayed normal on treatment, 86 had a worst grade of 1, and 10 had a worst
grade of 2.

Figure 18.7 provides an intuitive visualization of this data. The length of each
horizontal line represents the row total—the total number of patients in each baseline
anemia grade. The segments of each horizontal line represent the total in this baseline
grade who end up in the different worst grades on treatment as indicated by the colors
in the legend. The number of patients with any combination of baseline grade and
worst grade can be read off from the length of the associated segment using the scale
provided. The use of the upper and lower null nodes ensures that the area of the
colors is directly proportional to the column totals—the number of patients in each
worst grade.

18.4.3 Cancer Therapies Over Time

The tepee plots in this section are those for multiple myeloma patients in second
line in the time from 2009 to 2015 in the MM Connect Registry (see, Rifkin et al.
2015; http://clinicaltrials.gov/ct2/show/NCT01081 for details about the registry).
These plots together with those for first-line induction and first-line maintenance
were presented as a poster with additional clinical background and study details at
the American Society for Hematology (ASH) 2016 conference at San Diego (Rifkin
et al. 2009).

http://clinicaltrials.gov/ct2/show/NCT01081
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Fig. 18.7 Grade shift tepee plots

Each horizontal line in the first plot (Fig. 18.8) represents patients entering second-
line induction/salvage during that period (read periods in the plots as in this example:
Q34_2010 is the last two quarters of 2010). Each complete line represents 100% of
the patients entering in that period. Using percentages with each line representing
100% gives these graphics a rectangular shape unlike other tepee plots presented
in this document. We note that this special case rectangular tepee plot is somewhat
like a graphic developed in the context of state transitions (Gabadinho et al. 2010).
Each line is split into colored segments representing the percentages for each of the
regimens in the legend. The regimens from left to right in the graphic map to the
regimens from top to bottom in the legend.

A good number of patients in the graphic above fall in the gray ‘other’ category,
and the Figure 18.9 visualizes the plethora of regimens given to patients in the US
context. The total length of each horizontal line represents the total ‘other’ percentage
in the corresponding period with segments for each regimen.
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Fig. 18.8 Tepee plot of second-line cancer regimens over time

Fig. 18.9 Tepee plot with detail on other second-line cancer regimens over time
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18.5 Discussion

The tepee plot can be constructed for any quantitative measure, available across
functions/attributes and levels, in the form of a table with columns and rows. The
tepee plot provides a one-page graphic to summarize structured tabular data, which
can use an intuitive representation instead of the usual large spreadsheet tables. The
tepee plot is easy to interpret. The extent and location of the colors tell us the extent to
which an input of interest is distributed over column attributes and row levels. Many
applications are possible as any table in rows and columns with any quantitative
content and some natural or induced ordering can be displayed using this graphic.

For organizational structure tepees, resources plotted could include any quantifi-
able financial activity in an organization and professional groupings as well as groups
of products, locations, and markets. Further, one could construct tepee plots for an
organization or restrict the display to business units, processes, or projects.

The tepee plot makes three-dimensional data easy to read and understand. Many
applications in research and practice as well as in organizational structure are antic-
ipated.
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Chapter 19
Some Methods for Longitudinal
and Cross-Sectional Visualization
with Further Applications in the Context
of Heat Maps

Shankar S. Srinivasan, Li Hua Yue, Rick Soong, Mia He, Sibabrata Banerjee
and Stanley Kotey

19.1 Introduction

Wewill be presenting, in this chapter, a heuristic which builds on hierarchical cluster-
ing approaches and demonstrates its utility in ordering rows, typically representing
subjects, in state sequence graphics, and, in ordering rows and columns, typically
representing distinct samples and genes, in heat maps. We will first introduce graph-
ics for longitudinal state sequence data as discussed by Gabadinho and colleagues
(Gabadinho et al. 2010, 2011) with the intent of applying it to clinical data in cancer
studies, to characterize the movement of patients over time through various response
and disease states.
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Fig. 19.1 Unordered employment and education sequences (left panel) and sequences ordered
using multi-dimensional scaling on the Hamming distances between subjects (right panel)

19.1.1 Longitudinal State Sequence

Visualizations of sequences of subject states have been developed in response to the
need for characterizing key social transitions over time as reported in (Giele andElder
1998; Elder et al. 2003). The TraMineR R package (Gabadinho et al. 2016) comes
with data collected in McVicar and Anyadike-Danes (2002) consisting of transitions
between states characterizing education and employment in Northern Ireland from
1993 to 1999. This R package has considerable functionality, including descriptive
and inferential analysis of sequences. We are particularly interested in depicting
longitudinal patterns over subjectswhile preserving cross-sectional (sections by time)
information. We offer an improvement in this context to plots generated using the
methods in Gabadinho et al. (2010, 2011). Figure 19.1 shows unordered sequence
data in the left panel and a display of data ordered using multi-dimensional scaling to
the right. Each thin horizontal strip in the plots represents for each subject a sequence
of states over time in the context of employment and education. The R Code follows

#call TraMineR R package and read the mvad data set 
library(TraMineR)
data(mvad)
#create state sequence object and compute the HAM distance 
measure between subject strings of transitions 
mvad.alphab <- c("employment", "FE", "HE", "joblessness", 
"school", "training") 
mvad.seq <- seqdef(mvad, 17:86, xtstep=6,
alphabet=mvad.alphab)
HAMdist <- seqdist(mvad.seq, method="HAM") 
#plot of unordered sequences 
seqIplot(mvad.seq, sortv=1:712, cex.legend=0.9, ylab=NA,
yaxis=FALSE, title="Original mvad data") 
#Ordering using multi-dimensional scaling
mds2 <- cmdscale(HAMdist,k=1) 
seqIplot(mvad.seq, sortv=mds2, cex.legend=0.9, ylab=NA,
yaxis=FALSE, title="mvad data using MDS on HAM") 
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The graphic to the right in Fig. 19.1 orders the raw data to bring out some longi-
tudinal as well as cross-sectional patterns in the data and uses an ordering based on
the first dimension of a multi-dimensional scaling analysis derived from similarities
computed using the Hamming method. Details on this method are in Sect. 19.2.1.
In the right panel, we see subject similarities on the employment (green), higher
education (orange) and school (blue) states, which are not apparent in the raw data.
We seek to improve on this graphic through the edge clustering heuristic described in
Sect. 19.2.5. Clinical application to subject transitions between responder categories
over time, while on cancer therapy will be presented in Sect. 19.4.2. Our heuris-
tic applies to the ordering of the columns as well, together with the rows—a brief
introduction of this in the next section.

19.1.2 Two-Way Heat Maps

In two-way heat maps, typically for gene sample data, we have distinct genes as
columns and distinct samples as rows. We have numeric data for every row column
cell which is typically a scaledmeasure of gene expression. This is mappedmonoton-
ically to elements of a color palette changing gradually from one color and intensity
at one end to another at the other end. The rows and columns are re-ordered to call out
sets of genes and samples which have similar expression profiles. Figure 19.2 below
is gene sample heat map based on gastric cancer data from The Cancer Genome
Atlas (TCGA) Study (The Cancer Genome Atlas Research Network 2014) provided
with the dendsort R package (Sakai 2015).

The data plotted in the heatmap is the scaled association between genes (columns)
and samples (rows). Row to row distance measures between every pair of rows
are used to order the rows using the complete hierarchical clustering method
(Sect. 19.2.3). The columns are ordered in a similar manner, and the row/column
ordered data are plotted. In this figure, the scaled association measure is mapped
to 15 color tones going from blue to red through white. A further sorting of the
ordering obtained by hierarchical clustering is provided by Sakia et al. (2014) and is
described in Sect. 19.2.4. We look briefly at existing methods, the edge clustering,
and the framework for evaluating these methods in the next section.

19.1.3 Brief Overview of Ordering Methods and Their
Evaluation

We develop our plots by starting with a distance or similarity measure between
every pair of the rows and columns (Sect. 19.2.1). These measures are used to
identify sets of rows providing similar patterns of transition for sequence data and
arrangements of rows and columns for two-way heat maps presenting numeric data
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Fig. 19.2 Heat map of the scaled association of genes and samples using gastric cancer data from
the TCGA study

as cohesive color terrains. Some methods which achieve this re-arrangement include
multi-dimensional scaling, hierarchical clustering, sorted dendrograms, and the edge
clusteringmethod. The edge clusteringmethod is developed within the framework of
hierarchical clustering and will be tested using a conventional statistical evaluation
framework. Such a framework often involves generation of data from a known non-
standard distribution and an evaluation of the relative accuracy of various estimating
processes, blinded to the parent distribution, in uncovering characteristics of the par-
ent distribution. By analog, we will look at known latent images with row–column
pixels containing color intensity data, randomly permute the rows and columns to
lose all ordering information, and evaluate the ability of various methods to recover
the latent image.
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Table 19.1 Examples of
operations that transform the
string S1 to S2

S1 A A C B C

S2 A C B B B

3 Substitutions

S1 A A C B C

S S S

S2 A C B B B

2 Insertions and 2 Deletions

S1 A A C B C

D D I I

S2? – A C B – B B

19.2 Ordering Methods

Wewill look at applications where we order column or row strings of data consisting
of discrete ordinal and nominal states, and continuous numeric data. Distance and
similaritymeasures between these strings of data are utilized by ordering heuristics to
assign them to appropriate rows in a sequence plot or appropriate rows and columns in
a two-way heat map. Distance measures can be obtained from similarity measures by
using anymonotonic decreasing function. This section starts with such measures and
then describes methods to order data strings. Technical details are provided for the
edge heuristic. Other techniques are presented at an intuitive level. Any information
deficit can be addressed by standard textbooks such as Anderson (1958) and Johnson
and Wichern (1992).

19.2.1 Prerequisites: Distance and Similarity Measures

In the sequence data, introduced earlier, involving transition between education and
employment states, it is hard to argue any ordering across the states. For such nominal
data, several similaritymeasures are derived based on the number of operationswhich
transform one sequence into another. Table 19.1 has an example from Gabadinho
(2013), a source which describes these methods in detail. The operations considered
are substitution, insertion, and deletion and typically have associated costs.

Popularmeasures include theHamming distance (Hamming 1950)which involves
substitutions alone. In Table 19.1, three substitutions (S) can get us from the string S1
to the string S2. A unit substitution cost would lead to a Hamming distance of 3. The
optimal matching distance (Levenshtein 1966) allows substitutions, insertions (I),
and deletions (D). The table obtains S2 from S1 using 2 deletions and 2 insertions.
We input both the Hamming and the optimal distances into our ordering heuristics.
In addition, we considered a pixel measure which is based on comparisons of an
element in a string to the corresponding element of another, as well as the two
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elements adjacent. This is based on the premise that in a visual display a pixel should
ideallymatchwith asmany of the 8 pixels that surround it as possible. In our analyses,
the ordering heuristics had more of an impact on the sequence plots than the choice
of distance measures.

For strings which consist of continuous data, popular distance measures include
Euclidean, Manhattan, maximum and Mahalanobis distances. The Euclidian is
obtained as the vector normof the differences between corresponding elements of two
strings of numeric data. The Manhattan difference is the sum of absolute position-
wise differences between two strings. The maximum distance is the maximum of
such absolute differences.

We will be looking at applying sequence transition plots for discrete states reflect-
ing response levels, the state of having progressed, and death. These states can be
rank ordered. With this ordinal data, we will use the same distance measures as those
for the numeric data. In the analyses we conducted for numeric and ordinal data, as
with nominal data, the choice of the ordering heuristic had more impact on the dis-
plays obtained than the choice of distance measures. The ordering solution of some
heuristics, such as the hierarchical clustering techniques of single linkage, complete
linkage, and the edge method introduced here, uses the rank positioning of the pair-
wise distances between the singlet strings during agglomerative clustering without
computing composite inter-cluster distances. This makes solutions from these tech-
niques invariant in the set of all monotonic functions of the distance measure used.
A property which leads to a marked robustness to the choice of distance measures
and the unlikelihood of a marked improvement using alternatives among reasonable
distance measures.

In the next section, we look at a tool that resolves the pair-wise mutual distances
between data strings into a higher-dimensional space to achieve an ordering of the
data.

19.2.2 Multi-dimensional Scaling

To motivate this approach, consider data strings A, B, and C. If we find that the
distance measure between A and B is 3, between A and C is 4, and between B and
C is 5, then these distances cannot be resolved in one dimension. The numbers will
be familiar to anyone who has had a grade school geometry class—A, B, and C can
be placed on a plane at the vertices of a right-angled triangle with B and C at the
ends of the hypotenuse and A at the right angle. We needed a second dimension to
resolve the distances. Multi-dimensional scaling (MDS), is a multivariate tool which
uses all pair-wise distances between N data strings and resolves these distances in
N− 1 dimensions. In the state sequence visualization, the N data strings are subject
sequences which need to be placed on rows along the y-axis—essentially a mapping
from this (N − 1) dimensional space to the 1-dimensional y-axis. When doing this,
as in the right panel of Fig. 19.1, we sacrifice (N − 2) dimensions of information
and use the most informative dimension extracted by MDS. In Fig. 19.3, the arrow
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Fig. 19.3 Ordering using a
single dimension of a
multi-dimensional scaling
resolution of pair-wise
distances and a contrast with
the use of clustering

represents the dimensionwhich appears to capturemaximal information as the points
seem to be most aligned along that slant. Ordering of the data using MDS would
be based on projections on this dimension. If each point represented a subject with
a sequence string then subject C would have his color strip representing his state
transitions in a row very close to F, D very close to G and E close to H with A and
B at the top and bottom rows.

In contrast an ordering based on hierarchical clustering would likely have subjects
C, D, and E on adjacent rows of the sequence plot and the F, G, and H subject strips
will be contiguous as well—a solution, which in this example, seems to reflect inter
subject distances better than the MDS one-dimensional ordering. We will now look
at standard hierarchical clustering tools.

19.2.3 Hierarchical Clustering

In this technique, a distance measure between data strings is used along with a
clustering rule to form clusters. Table 19.2 illustrates a clustering sequence. In step
1, we have seven data strings in the elements S1 to S7. We start with each single
element as a cluster. The two closest elements form a cluster as in step 2 in the
table, where elements S1 and S2 from a doublet cluster D1. All distances between
elements/clusters are reassessed at each step.At any step, the elementsmay constitute
doublets, triplets, larger clusters or remaining singlets, and the closest distance leads
to a new cluster and the process continues till we combine all the data into one cluster.
Step 3 and step 4 show some initial steps in the agglomerative clustering of the seven
elements in Table 19.2.
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Table 19.2 Example of a hierarchical clustering sequence

Step 1 (All Singlets) Step 2 (1 Doublet,
Rest Singlets)

Step 3 (2 Doublets,
Rest Singlets)

Step 4 (1 Triplet, 1
Doublets, Rest
Singlets)

S1 D1{S1&S3} D1{S1&S3} D1{S1&S3}

S2 S2 D2{S2&S7} T1{S2&S7&S6}

S3

S4 S4 S4 S4

S5 S5 S5 S5

S6 S6 S6

S7 S7

Popular types of hierarchical clustering include single linkage, average linkage,
and complete linkage. We hope to add a new hierarchical clustering tool called edge
clustering to the lexicon. These clustering techniques start in an identical manner at
the initial step when the first doublet cluster is formed. After this step, the techniques
diverge as there are different rules for determining distances between clusters when
one of them is non-singlet.

Figure 19.4 depicts single linkage clustering. Cluster distance is obtained as the
distance between the closest elements across two clusters. In the figure, the next step
would be a cluster combining {A, B, D} with {E, G, H} as these clusters are closest
by the single linkage inter-cluster distance rule. Figure 19.5 depicts complete link-
age clustering, where the inter-cluster distance is computed as the farthest distance
between elements of two clusters. Using the complete linkage rule, {A, B, D} would
combine with {C, F}. Figure 19.6 illustrates average linkage clustering where the
distance between two clusters is defined as the average over all possible pairs of ele-
ments chosen from the clusters. Another popular method we considered is the Ward
method which minimizes within cluster variances to obtain tight spherical clusters.

Thesepopular hierarchical clusteringmethods, as conventionally presented, donot
provide a unique ordering of clusters or of elements within clusters. The emphasis is
on classification. Sakai et al. (2014) obtain a further ordering by sorting, as a separate
step, the solution from these classificatory hierarchical clustering methods.

19.2.4 Sorting of Dendrograms from Hierarchical Clustering

Conventional hierarchical clustering methods provide a summary of a classification
into clusters using a dendrogram as in Fig. 19.7. This figure contains the IDs of
the elements clustered along the x-axis and each staple represents a combination of
elements entering from the left and right side of the staple to form a new cluster. One
could place the elements, in this ordering along the x-axis, in the rows of a sequence
plot, or in the rows or columns of a two-way heat map if the elements represent
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Fig. 19.4 Single linkage clustering rule

Fig. 19.5 Complete linkage clustering rule
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Fig. 19.6 Average linkage clustering rule

row and column strings of data, respectively. However, note that the ordering is not
unique. Any combination of the staples in this dendrogram could be reversed to yield
a new ordering while preserving the cluster solution.

Sakai et al. (2014) obtain a unique ordering by sorting the dendrogram obtained
from a classificatory clustering method as a separate step following the hierarchi-
cal clustering. They discuss their method, a ‘leaf’ ordering following hierarchical
clustering, along with other methods involving such a two-step process (Bar-Joseph
et al. 2001; Gruvaeus and Wainer 1972). These latter methods are available through
the seriation R Package (Buchta et al. 2008). The framework currently used for
evaluating estimated heat maps, obtained by using these leaf ordering methods on
cluster solutions, uses the information contained in the estimated heat map alone.
For instance, Sakai et al. (2014) note the efficiency of their ordering using the data-
ink ratio (Tufte 2001), a method which measures the total length of lines required
to draw the dendrogram associated with the heat map. Instead of using normative
criteria derived solely from estimated heat maps, we will use the dual parameter
and estimate statistical framework to compare leaf ordering after clustering versus
edge clustering. The edge clustering tool incorporates sorting into the agglomerative
clustering heuristic.
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Fig. 19.7 Example of a dendrogram

19.2.5 The New Edge Hierarchical Clustering Method

In this technique, we start with the data strings to be placed in either the rows or
columns of the end graphical display. Given the eventual placement of these data
strings in rows and columns, and to bring out constraints of such a requirement, we
will refer to these data strings as strips. As with all hierarchical clustering methods,
the initial step forms the initial doublet cluster strip using the two closest elements
among the singlet strips. After this step, the distance measure between two cluster
strips is defined as the smallest among the four distances between the data strips at
the long edges of the two cluster strips.

In Fig. 19.8, the smallest among the four distances between [A, D] and [C, F]
in the ordered clusters {A, B, D} and {C, F} will be compared with all other such
inter-cluster distances to determine the clusters to combine in the next clustering
step. A new cluster strip is formed by joining the two closest cluster strips at the
closest edges. When we continue agglomerating such ordered cluster strips, we end
up with a clustering solution as well as an ordering of all data strips into rows or
columns. One then needs to map the values in the data strings to elements of a color
palette to obtain the visualization.

R Function code to do edge clustering is provided in Appendix A. By ordering on
similarity along edges of cluster strips, this method ensures a smoothness in the end
graphic. Note that the clustering dendrogram solution will tend to differ from those
in other hierarchical methods discussed in Sect. 19.2.3 as the edge method does not
use data strips which are not at the edges of a cluster when evaluating inter-cluster
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Fig. 19.8 Edge clustering rule

distance. The single, complete, and average linkage methods consider all elements of
clusters when evaluating inter-cluster distances. In the next section, we will evaluate
the edge clustering heuristic against leaf ordering after other hierarchical clustering
methods.

19.3 Assessment of Edge Clustering

Wewill evaluate the edge clustering heuristic against selected leaf-ordered clustering
solutions from other hierarchical methods. The evaluation will involve the use of a
statistical parameter-estimate framework as described next.

19.3.1 Assessment Approach: Recovery from Randomly
Permuted Known Informative Images

We presume there is an unknown latent image in our data strings which is worth
uncovering through our sequence transition plots and heat maps. This is our ‘param-
eter’. Heat maps using different methods are our estimators. The traditional statisti-
cal framework to evaluate the efficiency of estimators involves generating data using
known parameters and then comparing different parameter blinded estimates derived
using just the data, to the parameters. Here we will start with some known informa-
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tive image, obtain numeric data as color intensities within pixels, randomly permute
rows and columns to remove all ordering information in the image, and attempt to
recover the known informative image using the different ordering heuristics.

Such a known image is like row and column data strings, in a two-way heat map,
with the numeric data mapped to color intensities. Gene expression data has rows
with samples, columnswith genes and a numeric gene expression at each row column
intersection. Known informative images contain an x pixel coordinate (like genes
in columns), a y pixel co-ordinate (like samples in rows) and three numeric values
for the intensities of the red, blue, and green colors at that coordinate. This can be
converted to monochrome and one intensity value (like numeric gene expression)
using the following R code and the imager package:

library(imager)
color <- load.image("H:/Stat articles/two way
cluster/First_ladies.jpg")
bw<- grayscale(color) 
bw_data <- as.data.frame(bw) 

The data frame bw_data above has the same structure as data frames for gene
expression. We will now look at some iconic images, convert them to numeric ‘heat
map’ like data, permute to lose ordering information and then attempt to recover
the images using the ordering heuristics we have discussed. We will start with the
photograph of the first ladies meeting at the white house after the 2016 elections.

19.3.2 The First Ladies at the White House

Figure 19.9 has the grayscaled photograph of the first ladies as well as the image
after permuting the columns and rows of the grayscaled image. Note that the image
has 246× 166 cells. The R code to permute the rows and columns is provided below.
Such a random permutation in gene expression data may move, among other moves,
a sample D in row 8 and a gene Y in column 26, in what might be the ‘right’ heat map,
to say row 61 and column 17. The normalized gene expression value corresponding
to sample D and gene Y of say 1.73 would now be in cell {61, 17} instead of cell
{8, 26} in what is likely a very non-informative heat map.



410 S. S. Srinivasan et al.

Fig. 19.9 Grayscaled first ladies (left) and permuted image (right)

VEC <- bw_data$value 
VECt <- matrix(VEC,246,166) 
#Randomly permute the row order 
set.seed(1234567)
ind <- 1:166 
Rind <- sample(ind,length(ind),replace=FALSE,prob=NULL) 
#Replace original ordered row numbers with permuted row
numbers
rVECt <-VECt[Rind,] 
#Randomly permute the column order 
set.seed(145967)
ind <- 1:246 
Cind <- sample(ind,length(ind),replace=FALSE,prob=NULL) 
#Replace original ordered column numbers with permuted column 
numbers
rcVECt <-rVECt[,Cind] 
image(t(rcVECt),col=paste("gray",1:99,sep=""))

‘rcVECt’ contains the permuted row and columns data strings for our grayscaled
image. Notice that we replaced the correct column and row numbering of this data
with an arbitrary string of columns and row numbers.

We will use the information contained in these permuted row and column data
strings to estimate an appropriate ordering of the data, replace the permuted ordering
with the assessed ordering in the data matrix, map the numeric data in the data matrix
with this computed ordering onto a grayscale intensity, and plot. The results using
the edge hierarchical clustering method are to the left in Fig. 19.10 and the one using
leaf ordering of single linkage hierarchical clustering is to the right.

The edge ordering method recovers the information in the first ladies photograph
much more effectively than the leaf ordering method. The R code to achieve the
ordering using the edge clustering method is provided below. The edgeOrdering
function is provided in Appendix A as noted earlier. As a final step before plotting,
we replaced the permuted column and row numbering in the data matrix with the
edge method estimated ordering of columns and rows.
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Fig. 19.10 Recovered image using edge clustering (left) and recovered image using leaf ordering
of single linkage hierarchical clustering (right)

#RowD contains distances between every pair of rows.
#ColD is a similar dataframe for columns.
#edgeOrdering is a function which does the edge ordering. 
R_Order <- edgeOrdering(RowD) 
C_Order <- edgeOrdering(ColD) 
OVECt <-rcVECt[R_Order,C_Order] 
#following produces the left panel of Figure 9 
image(t(OVECt),col=paste("gray",1:99,sep=""))

The R code to conduct the leaf ordering of the single linkage solution is provided
below. As noted earlier, this is a two-step process. First, distance measures between
the columndata strings anddistancemeasures between the rowdata strings are used to
obtain the single linkage clustering dendrograms. Then, these dendrograms are sorted
by the dendsort R package to provide the estimated row and column ordering. Before
plotting, we replace the permuted column and row numbering in the data matrix with
the ordering of columns and rows obtained using the leaf ordering method.

#hierachical clustering single linkage 
distR <- dist(DFR) 
distC <- dist(DFC) 
hc0r <- hclust(distR, method="single") 
hc0c <- hclust(distC, method="single") 
#sort dendrogram 
dd0r <- dendsort(as.dendrogram(hc0r)) 
dd0c <- dendsort(as.dendrogram(hc0c)) 
hc_sorted0r <- as.hclust(dd0r) 
hc_sorted0c <- as.hclust(dd0c) 
R_Sin <- hc_sorted0r$order 
C_Sin <- hc_sorted0c$order 
SVECt <-rcVECt[R_Sin,C_Sin] 
#following produces the right panel of Figure 9 
image(t(SVECt),col=paste("gray",1:99,sep=""))
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Fig. 19.11 Grayscaled to left, recovered by the edge method in the middle frame and attempted
recovery using leaf ordering after Ward’s Hierarchical Clustering in the frame to the right

Fig. 19.12 Permuted to left, recovered by the edge method (middle frame) and leaf ordering after
average linkage hierarchical clustering (right)

Leaf ordering from complete linkage and average linkage methods was no more
effective in recovering the first ladies image than the single linkage method. Addi-
tional code and the end graphics are provided at (http://www.resourcetepee.com/).
Inspired by the discombobulated first ladies, the next section uses a Picasso painting.

19.3.3 Picasso and Van Gogh

In Fig. 19.11, to the left, we have Picasso’s Portrait of DoraMaar (1937). The middle
frame has the image recovered after randomly permuting rows and columns using
edge clustering. Note that a portion of the wall to the left of the lady in the original
moves to the right in the edge recovered image. To the right is a new improved Picasso
using leaf ordering on a Ward’s cluster solution, which, is on sale by the author at
Sotheby’s for $10 million!

In Fig. 19.12, we tested edge clustering usingVanGogh’s starry night over Rhone.

http://www.resourcetepee.com/
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Fig. 19.13 Employment and education sequences ordered by edge clustering (left) and sorted
complete linkage (right)

19.4 Examples of the Use of Edge Clustering
for Informative Visualization of Real World Data

We now return to some of the applications that we had introduced earlier, starting
with the data on transitions between education and employment states (McVicar and
Anyadike-Danes 2002).

19.4.1 State Sequence Data

In Fig. 19.1, in the introductory section, we had presented unordered sequence data
and data ordered by using multi-dimensional scaling. The multi-dimensional scaling
approach was described in Sect. 19.2.2. Distance measures for discrete states such as
the HAMmeasure were discussed in Sect. 19.2.1. The left panel of Fig. 19.13 orders
the sequence data using the edge clustering and the right panel uses leaf ordering of
the complete linkage cluster solution.

In general, the edge method resulted in graphics which were smoother than those
using leaf ordering. However, note the similarity in gross features between the two
graphics. This validates the edge clustering tool—it has been developed within hier-
archical clustering and tested in a statistical evaluation framework, and is not an
atheoretical data crunching or image processing heuristic. The graphics were gener-
ated using the following code:
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#call additional required R packages 
library(permute)
library(vegan)
library(dendsort)
#format distance measures for use in the edgeOrdering func-
tion
HAMdist1 <- max(HAMdist)-HAMdist 
HAMdistance<-cbind(rep(1:712,each=712),rep(1:712,712),
as.vector(HAMdist1))
HAMdistance1 <- HAMdistance [(HAMdistance [,2]
> HAMdistance[,1]),]
colnames(HAMdistance1) <- c("base", "compare", "sact") 
HAMdistance1 <- as.data.frame(HAMdistance1) 
# edge clustering and sequence plotting 
edgeSeqHAM <- edgeOrdering(HAMdistance1) 
mvad_seq_HAME <- mvad.seq[edgeSeqHAM, ] 
seqIplot(mvad_seq_HAME,sortv=712:1,cex.legend=0.90,
lab=NA,yaxis=FALSE, title="mvad data using HAM distance with 
Edge Clustering")

The subject states in this section involved discrete states which were nominal.
Next, we look at transitions between discrete states which can be ordered, such as
those of response categories, progression and death in cancer patients.

19.4.2 Sequences in Oncological States

The example in this section is based on blinded data from an oncology clinical
trial. Transitions between oncological states are compared across subjects in two
randomized treatment groups consisting of induction therapy for the period plotted
in Fig. 19.14, followed by differing maintenance. Response to therapy during the
induction phasewas expected to be similar. Oncological states in the longitudinal plot
included Complete Response (CR—1), Very Good Partial Response (VGPR—2),
Partial Response (PR—3), Stable Disease (SD—4), Progressive Disease (PD—5),
and Death (6). The associated numbers reflect the ordinality of the data. After a
documented PD, all states were labeled PD till any death, and after death, all states
are labeled death. All data on responses better than PD were separated from the
PD and death data, and imputations were done using the ordinal logistic regression
method in the MICE R package. The imputed dataset was back-merged to the PD
and death data with any imputed response states overwritten by the PD and death
states. The Euclidean distance measure was used, followed by edge clustering to
order the rows appropriately before plotting. As expected, progression-free survival
and overall survival curves during induction did not separate as essential differences
between randomized groups were at maintenance. The graphics, however, do bring
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Fig. 19.14 Transitions between oncological states for two induction therapies

out differences between the two induction phases. There was deeper response in the
Treatment A panel with more Complete Response and Very Good Partial Response
compared to Treatment Bwhere there wasmore Stable Disease.Many other features,
usually summarized separately in multiple data tables, such as time to response,
duration of response, time to progressive disease and time to death are brought out
in this one display.

The next example looks at displays which require an ordering on both rows and
columns and typically involve numeric data.

19.4.3 Gene Sample Heat Maps

In this section, we return to the gene sample data in Sect. 19.1.2. We use the edge
clustering and the leaf orderingmethods to order both the rows and the columns of the
Cancer Genome Atlas (TCGA) data (The Cancer Genome Atlas Research Network
2014) provided with the dendsort R package (Sakai 2015). Figure 19.15 shows the
heat map without the dendrograms with the clustering solution for the samples and
the genes. The panel to the left is obtained by ordering using edge clustering and the
one to the right uses leaf ordering and complete linkage clustering. R code for the
leaf ordering was based on that provided at (https://rdrr.io/cran/dendsort/f/vignette
s/example_figures.Rmd) by Sakia (2015). As with the state sequence graphics, the
similarity in the color terrains obtained by edge clustering to that using leaf ordering
validates the edge clustering technique.

19.5 Discussion

We used a statistical parameter and estimate framework to evaluate a novel edge
hierarchical clustering method. The ‘parameter’ here is an informative image. The
latent informative image for real data is usually unknown, and this leads to difficulty

https://rdrr.io/cran/dendsort/f/vignettes/example_figures.Rmd
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Fig. 19.15 Gene sample heat map using edge clustering (left) and leaf ordering of complete linkage
clustering (right)

in ascertaining whether a heuristic is providing a right image. We therefore worked
with contexts where imageswere known to be informative and right. Then, we argued
that pixel intensities in such images were like data in heat maps, then permuted rows
and columns and attempted to recover the original image. This was achieved with a
marked degree of success with edge clustering.

For real data, the leaf ordered hierarchical clustering methods work well, as does
the edge clustering heuristic, with some evidence that the edge method may bring
out some additional patterns. The graphics exhibited similar features across edge
ordering and across leaf orderings of common hierarchical clustering methods. This
cross-validates the set of tools studied. One method may bring out a feature in a data
set better than another.

We acknowledge that contexts where we somehow know that an image is right
and informative (the first ladies photograph, art work) may be different from the
ones where we want to find the latent unknown image. By analogy, we may be
testing estimators (in the usual context) under, say, a mixture of normal distributions,
when our real data will never meet such assumptions. Further, there may be many
latent images worth uncovering. Aesthetic images with smoothness qualities, such
as those where the edge clustering appears to perform well, may be different from
scientifically informative images. However, if you or your translational scientist tries
edge clustering and sees Elvis in a heat map, please do let us know!

Acknowledgements The authors would like to thank Arlene Swern and Janice Grecko for their
leadership and support of this necessary endeavor to support a tool for the global assessment of
response patterns to cancer therapy and for helping in uncovering useful patterns in gene expression
data.
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Appendix: R*1 Code to Generate Ordered Sequences
of Rows and Columns Using the Edge Clustering Method

##################################################################
#                                         Edge Clustering                                                       # 
#                               Version 2, December 2017                                                      #     
##################################################################

# Main function - edgeOrdering(): 
# input a dataset containing variables "base", "compare", and "sact".
#     - "base", "compare": row numbers of the original source dataset 
#     - "sact": distance/similarity measure between each combination of 
#               base row and compare row  
# output a vector containing an ordered sequence of row numbers of the 
# original source dataset

edgeOrdering <- function(indata){
indat <- cbind(base=indata$base, compare=indata$compare, sact=indata$sact)
indat <- indat[order(indat[,3], decreasing = TRUE),]
n <- dim(indat)[1]
Nrow <- max(c(indat[,1], indat[,2]))

# initialization
left_orig <- left <- right_orig <- right <- list()
left_orig[1:n] <- left[1:n] <- indat[,1]
right_orig[1:n] <- right[1:n] <- indat[,2]
cl_r <- cl_l <- rep(0, n)
L <- 0 

while(L<Nrow){
m <- dim(indat)[1]
if(m==0){break}
combined <- c(left[[1]], right[[1]])
L <- length(combined)
if(m==1){break}

indatList <- edge(indat, combined, left, right, cl_l, cl_r, m)
indat <- indatList$rest
left <- indatList$left
right <- indatList$right
cl_l <- indatList$cl_l
cl_r <- indatList$cl_r

} 
combined

} 

1*R Core Team 2013.
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checkList <- function(baseList, compareV){
lapply(baseList, function(x){

if(length(x)==length(compareV)){ 1-sum(x != compareV)}
else{x <- 0}
})

} 

edge <- function(indata, combined, left, right, cl_l, cl_r, m){
delete <- NULL
if(cl_r[1]==1){

delete <- c(delete, (1:m)[checkList(right, right[[1]])==1])
delete <- c(delete, (1:m)[checkList(left, rev(right[[1]]))==1])

index1 <- (1:m)[checkList(right, rev(right[[1]]))==1] 
index1 <- index1[index1 != 1]
right[index1] <- lapply(right[index1], function(x) x <- rev(combined))
cl_r[index1] <- 1 

index2 <- (1:m)[checkList(left, right[[1]])==1]
index2 <- index2[index2 != 1]
left[index2] <- lapply(left[index2], function(x) x <- combined)
cl_l[index2] <- 1 

} 
else{

index1 <- (1:m)[checkList(right, right[[1]])==1] 
index1 <- index1[index1 != 1]
right[index1] <- lapply(right[index1], function(x) x <- rev(combined))
cl_r[index1] <- 1 

index2 <- (1:m)[checkList(left, right[[1]])==1]
index2 <- index2[index2 != 1]
left[index2] <- lapply(left[index2], function(x) x <- combined)
cl_l[index2] <- 1 

} 

if(cl_l[1]==1){
delete <- c(delete, (1:m)[checkList(left, left[[1]])==1])
delete <- c(delete, (1:m)[checkList(right, rev(left[[1]]))==1])

index3 <- (1:m)[checkList(left, rev(left[[1]]))==1] 
index3 <- index3[index3 != 1]
left[index3] <- lapply(left[index3], function(x) x <- rev(combined))
cl_l[index3] <- 1 
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index4 <- (1:m)[checkList(right, left[[1]])==1]
index4 <- index4[index4 != 1]
right[index4] <- lapply(right[index4], function(x) x <- combined)
cl_r[index4] <- 1 

} 
else{

index3 <- (1:m)[checkList(left, left[[1]])==1] 
index3 <- index3[index3 != 1]
left[index3] <- lapply(left[index3], function(x) x <- rev(combined))
cl_l[index3] <- 1 

index4 <- (1:m)[checkList(right, left[[1]])==1]
index4 <- index4[index4 != 1]
right[index4] <- lapply(right[index4], function(x) x <- combined)
cl_r[index4] <- 1 

} 

index5 <- (1:m)[sapply(left, length) == sapply(right, length)]
for(k in index5){

if(sum(left[[k]]!=right[[k]])==0) delete <- c(delete,k)
} 

delete <- unique(c(1, delete))

if((m-length(delete))==1) rest <- matrix(indata[-delete,], nrow=1)
else rest <- indata[-delete,]
left <- left[-delete]
right <- right[-delete]
cl_l <- cl_l[-delete]
cl_r <- cl_r[-delete]

if((m-length(delete))>1){ 
orderNew <- order(rest[,3], decreasing = TRUE)
rest <- rest[orderNew,]
left <- left[orderNew]
right <- right[orderNew]
cl_l <- cl_l[orderNew]
cl_r <- cl_r[orderNew]

 } 

list(rest=rest, left=left, right=right, cl_l=cl_l, cl_r=cl_r)
} 
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