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Preface

This book can be regarded as a textbook on bilinear regression analysis which could
be used for a second course on classical multivariate analysis. The first course in
such a series would deal with multivariate linear models, focusing, for example,
on the estimation of parameters and the testing of hypotheses in such models.
However, the book definitely does not require any knowledge of PCA, PCR, PLS,
factor analysis, cluster analysis, multidimensional scaling, etc., since it does not
treat any of these methods or any related methods. The most important prerequisite
is some knowledge of linear models (univariate and/or multivariate models), and
some knowledge of the basics of linear algebra would be helpful. The book has
been written for PhD students in mathematical statistics or statistics, but researchers
will probably also find some of the presented ideas and results to be of interest.
The main purpose of writing this book was to present basic statistical theory for
bilinear models, extending linear models theory, which from a theoretical point of
view is a big and relevant step to take. For example, we mainly deal with non-
linear estimators where the estimators of the mean parameters are not independent
of the estimators of the dispersion parameters. Statistics goes hand in hand with
data analysis. Therefore, one of the topics included in the book is the analysis of
residuals, and it is emphasized that residuals are very important quantities to study.
Moreover, the problem of the influence of observations is treated with some care.
Generally speaking, a major part of the book includes tools that have been developed
for handling bilinear regression models from a practical perspective.

One can view the approach adopted in the book as a combination of solid
mathematics and illustrative and intuitive derivations, employing examples and pure
data analysis, and to some extent, this reflects my view of statistical thinking. One
of the cornerstones of the book is the definition of models which permit a clear
mathematical treatment, including the estimation of unknown parameters, together
with the presentation of methods for model validation against data.

It is worth noting that in several places in the book only the most enthusiastic
reader will follow the details, and in fact, there are many places where the reader
has to work out the details by themselves. For example, concerning several “moment
calculations”, only a few intermediate hints are presented together with the final
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viii Preface

result. The same can be said about the “matrix differentiation” which is performed.
If all the details had been given, I believe the technical side of the material would
have taken too much space. However, without any techniques it is difficult to derive
new results. My intention has been that readers should be able to identify the ideas
behind the different approaches presented in the book and should also be able to
copy the included calculations.

The book is not meant to provide easy reading. However, if one is willing
to devote time and effort to working with the material, one can expect to be
rewarded. Students should perhaps read the book in a manner similar to jumping
on a trampoline. One’s first jump on a trampoline is not high, one’s second jump
is higher and then, in a short time, one approaches the maximum height. There
are different thresholds to be crossed, but after a while readers will understand the
logic and basic ideas used in the book. One can also compare reading the book to
travelling on a safari which at the beginning takes one through a landscape filled
with trees and bushes severely obstructing one’s view, after which one reaches a
savannah, with an open landscape offering an excellent view of numerous exciting
animals.

The whole book can be studied within the framework of a two-semester course
which also includes solving some of the suggested problems, which can very
well be worked on in pairs. Note that some problems take quite a long time to
solve. Another alternative is to use the material in the first three chapters for a
course comprising, for example, 10 seminars, leading to knowledge about maximum
likelihood estimation in bilinear regression models (BRM) and extended bilinear
regression models. A third alternative is to consider only the BRM , i.e. the growth
curve model (GMANOVA), in each of the eight chapters. This would probably lead
to a course which takes a somewhat longer time to complete than one semester. If
desired one could reduce the course length by omitting Chap. 8, or Chaps. 7 and 8.

The structure of the book deserves a few comments. In the main body of the
text, few technical derivations are given if the results are available in the literature.
Instead, the reader is referred to the appendices, where notations and technical
results are presented. For proofs of many of the results, however, one is referred to
other sources where detailed proofs can be found. Concerning the literature reviews
at the end of each chapter, I have attempted to trace early references, and it is
fascinating to see how much was accomplished and understood a long time ago.
It is beyond my competence, from a statistics point of view, to provide a historical
perspective on the material, but I hope that some readers will delve deeper into the
early works, with a view to understanding the conceptual core of statistics and how
to transmit achieved knowledge to the next generation of scientists. The problems
that we face today can be solved better once we have apprehended how people
were thinking in the pre-PC era. Moreover, I have tried to cite the literature which
is directly connected to the content of this book, but I am convinced that I have
omitted important references which I do not know of or have merely missed during
the writing process. I would be happy to receive information about such omissions.

This book owes a great deal to many friends and colleagues. I am without
doubt most indebted to my wife, Tatjana, who encouraged me to start this project
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and with whose blessing a large amount of my time has been invested in. It has
been a long journey which has lasted for many years, and I am happy that it
has come to an end. My colleagues and friends Kai-Tai Fang, Tõnu Kollo and
Muni Srivastava have all been very important for my view of statistics in general
and multivariate analysis in particular. I have learnt a great deal from our jointly
written articles and a book written together with Tõnu Kollo. For example, some
of the material in this book stems from our collaborative works on Edgeworth-
type expansions and mean shift analysis, as well as influence analysis in general.
Over the years, many PhD students have contributed to discussions which have
helped me to understand various ideas implemented in this book. In particular, I
have borrowed ideas and material produced by Jemila Hamid (on residual analysis)
and Chengcheng Hao (on perturbation analysis). Furthermore, special thanks are
extended to Martin Singull, with whom I have shared the supervision of several
PhD students and have had numerous discussions on topics related to this book. I am
grateful to Thomas Holgersson who unselfishly spent time reading a draft version
of the book. Thanks also go to Katarzyna Filipiak and Augustyn Markiewicz for
organizing and inviting me to a very interesting workshop series in Bedlewo, Poland
(the Mathematical Research and Conference Center (MRCC) which is part of the
Institute of Mathematics of the Polish Academy of Sciences). I have visited the
workshops an uncountable number of times, and the stimulating discussions and the
“free thinking environment” have had a great impact on this book. At the very end
of this project, Paul McMillen made a complete linguistic revision and I am both
thankful for and impressed by his improvement of the English of the manuscript.
Finally, I would like to acknowledge gratefully all those (who are too many to be
listed) who have helped me by providing references and shedding light on detailed
concerns which I have had over the years.

I would be grateful to be informed of any errors which readers might find in the
book. The responsibility for the errors is, of course, mine alone.

Uppsala, Sweden Dietrich von Rosen
November 2017
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Chapter 1
Introduction

1.1 What Is Statistics

Statistical science is about planning experiments, setting up models to analyse
experiments and observational studies, and studying the properties of these models
or the properties of some specific building blocks within these models, e.g.
parameters and independence assumptions. Statistical science also concerns the
validation of chosen models, often against data. Statistical application is about
connecting statistical models to data.

The general statistical paradigm is based on the following steps:

1. setting up a model;
2. evaluating the model via simulations or comparisons with data;
3. if necessary, refining the model and restarting from step 2;
4. accepting and interpreting the model.

There is indeed also a step 0, namely determining the source of inspiration for
setting up a statistical model. At least two cases can be identified: (i) the data-
inspired model, i.e. depending on our experiences and what is seen in data, a model
is formulated; (ii) the conceptually inspired model, i.e. someone has an idea about
what the relevant components are and how these components should be included in
the model of some process, for example.

It is obvious that when applying the paradigm, a number of decisions have to
be made which unfortunately are all rather subjective. This should be taken into
account when relying on statistics. Moreover, if statistics is to be useful, the model
should be relevant for the problem under consideration, which is often relative to
the information which can be derived from the data, and the final model should be
interpretable. Statistics is instrumental, since, without expertise in the discipline in
which it is applied, one usually cannot draw firm conclusions about the data which
are used to evaluate the model. On the other hand, “data analysts”, when applying
statistics, need a solid knowledge of statistics to be able to perform efficient analysis.
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2 1 Introduction

The purpose of this book is to provide tools for the treatment of the so-called bilinear
models. Bilinear models are models which are linear in two “directions”. A typical
example of something which is bilinear is the transformation of a matrix into another
matrix, because one can transform the rows as well as the columns simultaneously.
In practice rows and columns can, for example, represent a “spatial” direction and a
“temporal” direction, respectively.

Basic ingredients in statistics are the concept of probability and the assumption
about the underlying distributions. The distribution is a probability measure on
the space of “random observations”, i.e. observations of a phenomenon whose
outcome cannot be stated in advance. However, what is a probability and what does
a probability represent? Statistics uses the concept of probability as a measure of
uncertainty. The probability measures used nowadays are well defined through their
characterization via Kolmogorov’s axioms. However, Kolmogorov’s axioms tell us
what a probability measure should fulfil, but not what it is. It is not even obvious
that something like a probabilistic mechanism exists in real life (nature), but for
statisticians this does not matter. The probability measure is part of a model and any
model, of course, only describes reality approximatively.

1.2 What Is a Statistical Model

A statistical model is usually a class of distributions which is specified via functions
of parameters (unknown quantities). The idea is to choose an appropriate model
class according to the problem which is to be studied. Sometimes we know exactly
what distribution should be used, but more often we have parameters which generate
a model class, for example the class of multivariate normal distributions with an
unknown mean and dispersion. Instead of distributions, it may be convenient, in
particular for interpretations, to work with random variables which are representa-
tives of the random phenomenon under study, although sometimes it is not obvious
what kind of random variable corresponds to a distribution function. In Chap. 5 of
this book, for example, some cases where this phenomenon occurs are dealt with.
One problem with statistics (in most cases only a philosophical problem) is how to
connect data to continuous random variables. In general it is advantageous to look
upon data as realizations of random variables. However, since our data points have
probability mass 0, we cannot directly couple, in a mathematical way, continuous
random variables to data.

There exist several well-known schools of thought in statistics advocating
different approaches to the connection of data to statistical models and these schools
differ in the rigour of their method. Examples of these approaches are “distribution-
free” methods, likelihood-based methods and Bayesian methods. Note that the fact
that a method is distribution-free does not mean that there is no assumption made
about the model. In a statistical model there are always some assumptions about
randomness, for example concerning independence between random variables.
Perhaps the best-known distribution-free method is the least squares approach.
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Likelihood methods utilize classes of distributions which are generated by
unknown parameters and the idea is to estimate these parameters. A consequence
of this procedure is that we obtain the distribution which should be considered
the true distribution, as well as acquiring information about the parameters which,
if the model is appropriately specified, is interpretable. Concerning the normal
distribution, usually the mean and variance act as parameters, although from an
exponential family point of view, a more natural equivalent parametrization can be
set up.

In Bayesian methods the basic idea is that everything unknown is modelled with
the help of distributions, for instance, unknown parameters. One is avoiding some of
the problems with the likelihood approach, such as connecting continuous data to a
model, but instead one generates other problems; for example it is difficult to specify
distributions for all the unknown elements. Moreover, in the Bayesian approach
the concept of conditional independence is crucial, in contrast to the likelihood
approach, where independence is used. Which method is to be preferred is a matter
of taste.

This book is mainly likelihood-inspired, i.e. likelihood acts as a basis for the
presentations. However, one should note that many statistical inference procedures
are not purely frequentistic, Bayesian or likelihood procedures. For example, if one
is dealing with normally distributed variables with unknown singular dispersion
matrices, it is not clear which school of thought can be adopted when trying to
follow the general statistical paradigm. Other deep discussions can concern the
concept of confidence intervals and variable selection methods. General material
of interest, including deliberations on deeper philosophical issues, are presented in
Evans et al. (1986), Davison (2003), Berger and Molina (2004), Geisser (2006),
Mayo and Cox (2006) and Cox (2006), for example.

In fact, in some way, restricting the inference procedures to one particular
procedure is inconsistent with the statistical paradigm. The problem at hand should
guide one’s choice. Moreover, one has to decide if the conclusions and decision
making should be based on probabilistic arguments, for example hypotheses testing.
In this book we emphasize understanding the statistical model and the statistics
under consideration. For example, in the case of an estimator or a hypothesis test,
we want to understand what is really being estimated or tested. The basic problem is
the difference between a statistical model and the corresponding estimated model,
which is data-dependent, i.e. different data sets may lead to different interpretations
and conclusions.

Example 1.1 In this example, several statistical approaches for evaluating a model
are presented. Let

x′ = β ′C + e′,

where x : n×1, a random vector corresponding to the observations, C : k×n, is the
design matrix, β : k × 1 is an unknown parameter vector which is to be estimated,
and e ∼ Nn(0, σ 2I ), which is considered to be the error term in the model and
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where σ 2 denotes the variance, which is supposed to be unknown. In this book the
term “observation” is used in the sense of observed data which are thought to be
realizations of some random process. In statistical theory the term “observation”
often refers to a set of random variables. Let the projector PC ′ = C′(CC′)−C

be defined in Appendix A, Sect. A.7, where (•)− denotes an arbitrary g-inverse
(see Appendix A, Sect. A.6). Some useful results for projectors are presented in
Appendix B, Theorem B.11.

The least squares approach works as follows. Let xo be the observations of x,
and let us minimize, with respect to β,

(x′
o − E[x′])(x′

o − E[x′])′ = (x′
o − β ′C)(x′

o − β ′C)′,

which yields

̂β
′
oC = x′

oP C ′, (1.1)

where ̂βo stands for the estimate of β, i.e. an explicit numerical value of β.
Moreover, it follows that

(x′
o − β ′C)(x′

o − β ′C)′ = x′
o(I − PC ′)xo + (x′

oPC ′ − β ′C)()′ ≥ x′
o(I − PC ′)xo,

where (•)()′ is used according to Appendix A, Sect. A.7, with equality if and only
if (1.1) is true. In order to study properties of the estimate, xo is replaced by x, and
when doing so, the estimator

̂β
′
C = x′P C ′

is obtained. Due to the linearity of the estimator

̂β
′
C ∼ Nn(βC, σ 2P C ′);

i.e. ̂βC is unbiased and normally distributed with variance σ 2PC ′ . The variance
parameter can be estimated as nσ̂ 2 = x′(I − P C ′)x. According to the statistical
paradigm, models should be evaluated. The linear model in this example may, for
instance, be evaluated via residuals, i.e. x′

o(I −PC ′) and x′(I −PC ′). For example,
one should validate the model with respect to influential observations and outliers
as well as the fit of the model to data. Moreover, specific properties such as the
smallest variance properties of the β-estimator can be shown or the “best quadratic”
properties of the variance estimator.

An alternative estimation procedure is based on finding estimators which mini-
mize the overall variance

E[(x′ − β ′C)(x′ − β ′C)′],
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which can be rewritten in the following way:

E[(x′ − β ′C)(x′ − β ′C)′]
= E[x′(I − P C ′)x] + E[(x′P C ′ − β ′C)(x′P C ′ − β ′C)′]. (1.2)

Thus, it follows that the estimator equals

̂β
′
C = x′P C ′,

because in this case the second term in (1.2) equals 0. In order to verify the model
via comparisons to data, the estimate

̂β
′
oC = x′

oP C ′,

is calculated. The expressions for the estimator and estimate are the same as the
corresponding expressions in the least squares approach, although conceptually the
methods differ to a great extent; i.e. for the least squares method we start with data,
find an estimate and then construct an estimator by replacing the data, xo, by x.
For the minimization of the variance we started with x, found an estimator and then
constructed an estimate by replacing x by xo.

Now we turn to the likelihood approach. Here one starts with the likelihood,
which nowadays, for continuous random variables, is the density of x evaluated at
xo, i.e.

L(β, σ 2) = (2π)−n/2(σ 2)−n/2exp{− σ 2

2 (x′
o − β ′C)(x′

o − β ′C)′}.

This function is maximized with respect to σ 2 and β which gives

̂β
′
oC = x′

oC
′(CC′)−C = x′

oP C ′,

nσ̂ 2
o = x′

o(I − C′(CC′)−C)xo = x′
o(I − P C ′)xo.

In a second step of the likelihood approach ̂β is constructed by replacing xo by x.
Hence, we establish that the likelihood approach will lead to the same conclusion as
the least squares and the minimum variance approaches.

��
Over the years many more estimation methods have been presented. For example,
shrinkage methods, robust methods and Bayesian methods. We would also like
to emphasize that models should be meaningful, i.e. that the parameters and their
estimators should be understandable, and computations connected to the model
should be fast. The past 20 years, with the arrival of increasingly powerful PCs and
computer facilities, have witnessed an absurd use of algorithms and one can even
see programs running for days and nights. The beauty of statistics, as well as its
relation to mathematics, has been partly lost. This is serious, because mathematics
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helps us to examine the models and understand the analysis. Without mathematics
it is easy to become trapped in too many ad hoc procedures. Intuition and ad hoc
procedures should be basic ingredients in statistical model building, but they should
also be possible to verify. This is the best way to create an end-product which can
later be improved. Using too many simulation studies will result in an end-product
which only with difficulty can be transmitted to the next generation of statisticians.

This book considers models which are called bilinear. Briefly speaking, the main
difference between linear and bilinear models is that in the estimation process, the
latter uses random weights when performing projections (due to an estimated inner
product), whereas linear models generally use non-random projections. Another
important fact is that under usual normality assumptions bilinear models do not
belong to the exponential family.

1.3 The General Univariate Linear Model with a Known
Dispersion

In this section the classical Gauss-Markov set-up is considered but we assume
the dispersion matrix to be completely known. If the dispersion matrix is positive
definite (p.d.), the model is just a minor extension of the model in Example 1.1.
However, if the dispersion matrix is positive semi-definite (p.s.d.), other aspects
related to the model will be introduced. In general, in the Gauss-Markov model the
dispersion is proportional to an unknown constant, but this is immaterial for our
presentation. The reason for investigating the model in some detail is that there has
to be a close connection between the estimators based on models with a known
dispersion and those based on models with an unknown dispersion. Indeed, if one
assumes a known dispersion matrix, all our models can be reformulated as Gauss-
Markov models. With additional information stating that the random variables are
normally distributed, one can see from the likelihood equations that the maximum
likelihood estimators (MLEs) of the mean parameters under the assumption of
an unknown dispersion should approach the corresponding estimators under the
assumption of a known dispersion. For example, the likelihood equation for the
model X ∼ Np,n(ABC,�, I ) which appears when differentiating with respect to
B (see Appendix A, Sect. A.9 for definition of the matrix normal distribution and
Chap. 1, Sect. 1.5 for a precise specification of the model) equals

A′�−1(X − ABC)C′ = 0;

and for a large sample any maximum likelihood estimator of B has to satisfy
this equation asymptotically, because we know that the MLE of � is a consistent
estimator. For interested readers it can be worth studying generalized estimating
equation (GEE) theory, for example see Shao (2003, pp. 359–367).

Now let us discuss the univariate linear model

x′ = β ′C + e′, e ∼ Nn(0,V ), (1.3)
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where V : n × n is p.d. and known, x : n × 1, C : k × n and β : k × 1 is to
be estimated. Let xo, as previously, denote the observations of x and let us use
V −1 = V −1P C ′,V +P (C ′)o,V −1V −1 (see Appendix B, Theorem B.13), where (C′)o
is any matrix satisfying C((C′)o)⊥ = C(C′), where C(•) denotes the column vector
space (see Appendix A, Sect. A.8). Then the likelihood is maximized as follows:

L(β) ∝ |V |−1/2exp{−1/2(x′
o − β ′C)V −1(x′

o − β ′C)′}
= |V |−1/2exp{−1/2(x′

oP
′
C ′,V − β ′C)V −1()′}

×exp{−1/2(x′
oP (C ′)o,V −1V

−1xo)}
≤ |V |−1/2exp{−1/2(x′

oP (C ′)o,V −1V
−1xo)},

which is independent of any parameter, i.e. β, and the upper bound is attained if and
only if

̂β
′
oC = x′

oP
′
C ′,V ,

where ̂βo is the estimate of β . Thus, in order to estimate β a linear equation
system has to be solved. The solution can be written as follows (see Appendix B,
Theorem B.10 (i)):

̂β
′
o = x′

oV
−1C′(CV −1C ′)− + z′(C)o

′
,

where z′ stands for an arbitrary vector of a proper size.
Suppose that in model (1.3) there are restrictions (a priori information) on the

mean vector given by

β ′G = 0.

Then

β ′ = θ ′Go′
,

where θ is a new unrestricted parameter. After inserting this relation in (1.3), the
following model appears:

x′ = θ ′Go′
C + e′, e ∼ Nn(0,V ).

Thus, the above-presented calculations yield

̂β
′
oC = x′

oP
′
C ′Go,V
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and from here, since this expression constitutes a consistent linear equation in ̂βo, a
general expression for ̂βo (̂β) can be obtained explicitly.

If V is p.s.d the likelihood does not exist and the model consists of a continuous
and a discrete part. Because V is p.s.d., there exists a semi-orthogonal matrix H :
n × r , where r = r(V ) and V = HH ′ (see Appendix A, Sect. A.5), such that

H o′
V = 0.

Note that we do not lose any “information” if a one-to-one transformation of x

takes place. Therefore the estimation of β in (1.3) can equivalently be carried out
via x′(H : H o), where (H : H o) denotes the partitioned matrix of H and H o (see
Appendix A, Sect. A.8). Hence, with probability 1

x′
oH

o = β ′CH o (1.4)

and therefore we assume (consistency assumption) H o′
xo ∈ C(H o′

C′), which is
equivalent to xo ∈ C(C′ : V ). Thus, the data put restrictions on β, which is a new
feature in comparison with the case when V is of full rank. The meaningfulness of
this depends on the problem under consideration. Moreover,

x′H = β ′CH + ẽ, ẽ ∼ Nr(0,H ′V H ). (1.5)

Equation (1.4) is linear in β and because of consistency (see Appendix B,
Theorem B.10 (i))

β ′ = x′
oH

o(CH o)− + θ ′(CH o)o
′
,

where one can view the elements of θ as a new set of unrestricted parameters.
Inserting the solution into (1.5) yields

x′H = x′
oH

o(CH o)−CH + θ ′(CH o)o
′
CH + ẽ.

From earlier calculations we know that

̂θ
′
o = x′

o(I − H o(CH o)−C)H

×(H ′V H )−1H ′C′(CH o)o((CH o)o
′
CH (H ′V H )−1H ′C′(CH o)o)−

+z′((CH o)o
′
CH )o

′
, (1.6)

where z is an arbitrary vector and then

̂β
′
o = x′

oH
o(CH o)− + x′

o(I − H o(CH o)−C)H

×(H ′V H )−1H ′C′(CH o)o((CH o)o
′
CH (H ′V H )−1H ′C′(CH o)o)−(CH o)o

′

+z′((CH o)o
′
CH )o

′
(CH o)o

′
.
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If we study the statistical properties of this estimate, we should consider the
following (remember (1.4) and that H ′H = I ):

̂β
′ = β ′CH o(CH o)−

−β ′CH o(CH o)−CHH ′C′(CH o)o((CH o)o
′
CHH ′C′(CH o)o)−(CH o)o

′

+x′HH ′C′(CH o)o((CH o)o
′
CHH ′C′(CH o)o)−(CH o)o

′

+z′((CH o)o
′
CH )o

′
(CH o)o

′

and then assume some conditions (estimability conditions) so that for̂β
′
L, for some

specific L, the term including z will disappear. Moreover, in practice the condition
xo ∈ C(C′ : V ) may not be satisfied and then a pretreatment of data has to take
place, for example a projection of data on the space C(C′ : V ).

Example 1.2 Here the singular Gauss-Markov model is illustrated. In an experi-
ment where the eating behaviour of n dairy cows was studied in connection with the
administration of food, one could keep the total amount of food fixed (let us say t)
over a 24 h day-and-night cycle. During the 24 h, a record was made of how much
each of the n cows was eating. Due to breeding and local environmental conditions,
the cows are correlated with a covariance matrix σ 2V , where σ 2 is an unknown
scaling parameter. Since the cows have been part of many feeding experiments,
the correlation between the cows can be supposed to be known. The main idea
is to relate the recorded values to various explanatory variables, such as lactation,
the amount of produced milk and variables measuring the quality of the milk. If
the measurements are denoted as x0i , i = 1, 2, . . . , n, and the other explanatory
variables as c1i , c2i , . . . cki , the following linear model can be set up:

xi = μ +
k

∑

j=1

βjcji + εi , i = 1, 2, . . . , n,

which in matrix notation equals

x′ = β ′C + e′;

C = (1n, c1, c2, . . . , ck)
′, cj = (cji ), e ∼ Nn(0, σ 2V ), and β = (μ, β1, . . . , βk)

′
and σ 2 are unknown parameters. As an estimator of σ 2 we can use

(n − k − 1)̂σ 2 = (x′ −̂β
′
C)()′,

for some estimator̂β of β. Thus, if we are able to estimate β, all the parameters can
be estimated.

The technical treatment of the model proceeds as follows. Note that by making
a one-to-one transformation of x, there is no information loss. Thus, x will be



10 1 Introduction

pre-multiplied by 1′ and 1o′
. From the experimental assumptions it follows that

x′1 = t , which in turn implies V 1 = 0 and

β ′C1 = x′1 = t .

This means that, according to the model, we have an equation with no variation, and
thus the equation can be treated as a deterministic equation which puts restrictions
on β. Solving this equation (see Appendix B, Theorem B.10 (i)) leads to

β ′ = t (C1)− + θ(C1)o
′
,

where θ is an arbitrary vector of a proper size. Moreover,

x′1o = t (C1)−C1o + θ(C1)o
′
C1o + ẽ,

where ẽ ∼ Nn(0, 1o′
V 1o). In this model the MLE is obtained via

̂β
′
C1o = t (C1)−C1o +̂θ(C1)o

′
C1o,

where

̂θ(C1)o
′
C1o = (x′ − t (C1)−C)1o(1o′

V 1o)−11o′
C′(C1)o

×((C1)o
′
C1o(1o′

V 1o)−11o′
C′(C1)o)−(C1)o

′
C1o.

from which ̂β can be obtained under certain conditions on C. ��
In the example it was supposed that x′1 = t , which implied that 1′V = 0. However,
as noted above, we can assume that we have models where V is singular without
any exact restrictions on x. When restrictions are put on the dispersion (covariance)
matrix, we have restrictions on the random variable which only hold with probability
1. Therefore, it must in this case also be assumed that the data belong to a proper
subspace, which may indeed be difficult to verify.

Moreover, for the linear model

x′ = β ′C + e′, e = (0, σ 2V )

with restrictions

β ′K = h;

the situation can be described via the following model:

(x′ : h) = β ′(C : K) + e′, e = (0, σ 2W ),



1.4 The General Multivariate Linear Model 11

where

W =
(

V 0
0 0

)

.

This clearly shows how general the singular Gauss-Markov model is.

1.4 The General Multivariate Linear Model

In this book we study models which are based on an underlying multivariate normal
distribution. The multivariate normal distribution is closely connected to linearity,
since a linear function of a normal variable is also normally distributed. The theory
around the normal distribution is well developed and one can, among other things,
show that the general multivariate linear model under certain conditions belongs
to the exponential family, which is very important. For example, for models which
belong to the exponential family, there are complete and sufficient statistics, and all
the moments and cumulants are at our disposal.

The general multivariate linear model equals

X = BC + E, (1.7)

where X : p × n is a random matrix which corresponds to the observations, B :
p × k is an unknown parameter matrix and C : k × n is a known design matrix.
Furthermore, E ∼ Np,n(0,�, I ), where � is an unknown p.d. matrix. For a
definition of the matrix normal distribution Np,n(μ, •, •) see Appendix A, Sect. A.9.
The model in (1.7) is also called the MANOVA model. According to the model
specifications, the model consists of independently distributed columns. The design
matrix C is also called a between-individuals design matrix. In order to be able to
draw any conclusions from the model, we have to estimate the unknown parameters
B and �. Following the statistical paradigm, we also have to verify the model and
this usually takes place with the help of residuals.

If we examine the likelihood function, L(B,�), we have

L(B,�) ∝ |�|n/2exp{−1/2tr{�−1(Xo − BC)()′}}
= |�|n/2exp(−1/2tr{�−1So + �−1(XoP C ′ − BC)()′}),

where

So = Xo(I − PC ′)X′
o.

Let S be as So, but with Xo replaced by X. From here it follows that the model
belongs to the exponential family and that XP C ′ and S are sufficient statistics. It
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can be shown that the statistics also are complete. The MLEs for B and � are
obtained from

̂BoC = XoP C ′, (1.8)

n̂�o = So,

since (1.8) constitutes a linear consistent equation system in B. The likelihood is
always smaller or equal to (2π)−pn/2|n−1So|−n/2exp{−np/2}, where the upper
bound is obtained when inserting ̂BoC and ̂�o.

Example 1.3 This is an example where several variables are to be modelled simul-
taneously. In environmental monitoring one can use many chemical biomarkers.
For example, in Sweden, one monitors calcium, magnesium, sodium, potassium,
sulphate, chloride, fluoride, nitrogen, phosphorus, conductivity and other sub-
stances/properties in lakes spread over the whole country. Observations are collected
several times over the year. Imagine that we want to compare two regions for
a specific year. Then one can select 20 lakes from each region and as response
variables use the above-mentioned chemical variables, for which an average over
the summer months can be used, for example. The model for the data with ten
response variables and 40 observations equally divided between the two regions can
be presented in the following way:

X = BC + E,

where X: 10×40, B: 10×2 consists of the mean parameters, E ∼ N10,40(0,�, I ),
where �: 10 × 10 is the unknown dispersion matrix, and

C =
(

1′
20 0
0 1′

20

)

.

��
Example 1.4 Now an example with repeated measurements with an unstructured
mean is briefly presented. Another strategy for comparing regions than that pre-
sented in Example 1.3 is to focus on one of the chemical variables, for example
nitrogen. Moreover, instead of averaging over the summer months as in Exam-
ple 1.3, we can use the measurements from June, July and August. Thus we could
set up the following model:

X = BC + E,

where X: 3 × 40, B: 3 × 2 consists of the mean parameters, E ∼ N3,40(0,�, I ),
where �: 3 × 3 is the unknown dispersion matrix, and the between-individuals
design matrix C is as in Example 1.3. ��



1.5 Bilinear Regression Models: An Introduction 13

There are two natural follow-up questions concerning the models presented in
Examples 1.3 and 1.4. The first concerns with the repeated measurements for
nitrogen over the summer months. It would be of interest to use a linear model
for these measurements, in particular if we were to include data from some more
months. Then we would have a complete analogy with the analysis of growth curve
data, but here, instead of growth, nitrogen over time would be studied. The second
question is if we could analyse all ten chemical variables over time simultaneously.
In that case we would have an analogy with a spatio-temporal model setting. Here,
instead of geographic spatial information, we would be observing different chemical
variables. Both these extensions would be outside the general multivariate linear
model setting. However, under certain restrictions they could be analysed with
bilinear regression models, since the mean structure, instead of being linear, would
be bilinear. This would imply, among other things, that the models do not belong to
the exponential family.

1.5 Bilinear Regression Models: An Introduction

Throughout the book BRM is used as an abbreviation for bilinear regression model.
Other common names are the growth curve model or GMANOVA (generalized
multivariate analysis of variance). At the end of the previous section, it was noted
that even under normality assumptions, we have very natural models which do not
belong to the exponential family. It was also noted in the previous section that if a
model has a linear mean structure, the model belongs to the exponential family. In
this section, it will be shown, among other things, that if a bilinear mean structure is
assumed together with an arbitrary dispersion matrix, the model is not a member
of the exponential family and instead belongs to the curved exponential family.
Remember that if a matrix is pre- and post-multiplied by other matrices, we perform
a bilinear transformation.

Often the mean structure ABC is considered, where the unknown parameter is
given by B. Hence, we have a bilinear model:

X = ABC + E, (1.9)

where X: p × n, the unknown mean parameter matrix B: q × k, the two design
matrices A: p×q and C: k×n, and the error matrix E build up the model. Moreover,
let E be normally distributed with independent columns, mean 0, and a positive
definite dispersion matrix � for the elements within each column of X. Then the
density function for X is proportional to

|�|−1/2nexp{−1/2tr{�−1(X − ABC)(X − ABC)′}}

and after some manipulations it can be shown that this model belongs to the curved
exponential family. For example, this can be shown through a reparametrization,
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i.e. according to Appendix B, Theorem B.1 (i), A can be factored as A = �
(

I
0

)

T ,
where � is orthogonal and T is a non-singular matrix. Moreover, let � = T B ,
� = �′��, Y = �′X, Y ′ = (Y ′

1 : Y ′
2) and

�−1 =
(

�11 �12

�21 �22

)

.

Then the density function for the new variable Y is proportional to

|�−1|n/2exp{−1/2(tr{�−1Y (I − P C ′)Y ′} − 2tr{Y 1�
11�C}

−2tr{Y 2�
21�C} + tr{�11�CC′�′})},

which shows that the model belongs to the curved exponential family, since the
number of “free” parameters, i.e. �−1 and �11�, is less than the number of
functions including observations and parameters. Note that

�21� = (I : 0)�−1(0 : I )′((I : 0)�−1(I : 0)′)−1�11�.

The above-mentioned model is often termed the growth curve model and was
introduced by Potthoff and Roy (1964), although very similar models had been
considered earlier. The A matrix is often referred to as the within-individuals design
matrix and C, as in (1.7), is called the between-individuals design matrix.

A natural extension of the BRM is the following “sum of profiles” model

X =
m
∑

i=1

AiBiCi + E,

where X: p × n is the sample matrix, the mean parameter matrices are Bi : qi × ki ,
the within-individual design matrices equal Ai : p × qi and the between-individual
design matrices Ci : ki × n, are such that

C(C′
m) ⊆ C(C′

m−1) ⊆ · · · ⊆ C(C′
1). (1.10)

Let E be matrix normally distributed with independent columns, mean 0, and a
dispersion matrix � for the elements within each column of E. Note that instead
of (1.10), we can suppose that

C(Am) ⊆ C(Am−1) ⊆ · · · ⊆ C(A1). (1.11)

The model is referred to herein as the extended bilinear regression model (EBRM•• )

and in order to distinguish between (1.10) and (1.11), as well as indicate m in
the profile expression, EBRMm

B and EBRMm
W are used, where the subscripts B

and W stand for “between” and “within”, respectively, and are used depending on
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whether (1.10) or (1.11) is assumed to hold. Sometimes the EBRMm• is called the
extended growth curve model. The conditions in (1.10) or (1.11) are mathematically
motivated since they lead to explicit MLEs. Concerning these conditions, there is an
analogy with the Behrens-Fisher problem; i.e. the purpose is to compare two groups
of size n1 and n2, respectively, for testing equality of the means with the additional
assumption that random variables corresponding to the observations from different
groups have different variances, i.e.

x′ = μ′C + e′,

where μ′ = (μ′
1 : μ′

2),

C =
(

1′
n1

⊗
(

1

0

)

: 1′
n2

⊗
(

0

1

))

,

where ⊗ denotes the Kronecker product (see Appendix A, Sect. A.6) and

e′ ∼ Nn(0,
(

σ 2
1 In1 0
0 σ 2

2 In2

)

), n = n1 + n2.

Comparing μ1 and μ2 will not give any precise answer about differences between
groups, i.e. their distributions, unless σ 2

i is taken into account. If (1.10) or (1.11)
does not hold, we have, instead of a common mean and different variances (Behrens-
Fisher case), different means and a common dispersion matrix. This situation is
called seemingly unrelated regression (SUR) and has been extensively studied in a
univariate setting (e.g. see Kariya and Kurata, 2004). An example of a univariate
SUR model is the SUR model with two functionally independent regression lines,
but correlated error terms. In the multivariate case it becomes more difficult to
interpret results and there are reasons why one should avoid this type of model.

This section is concluded by giving some more examples.

Example 1.5 This example illustrates the use of the BRM to analyse Swedish
liming data (see also Examples 1.3 and 1.4). For many years there has been a
problem with the acidification of lakes in Sweden, and to help lakes to recover,
one is liming them to stimulate the recovery process. Below we present a data set
which covers ten lakes from each of two regions where the pH concentration has
been measured at three different depths, 0.5, 5 and 10 m. Since the pH is highest
close to the surface and thereafter decreases we can try to model the concentration
with a linear model. The data are presented in Table 1.1. The following matrices
are involved in the description of the data. The matrix X is the random matrix
which corresponds to the data and X ∼ N3,20(ABC,�, I ), where B is an unknown
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Table 1.1 Selected data, with some minor modifications, from the integrated monitoring of the
effects of liming project at the Swedish University of Agricultural Sciences; pH represents minus
the decimal logarithm of the hydrogen ion activity

Lake Depth pH Region Lake Depth pH Region

1 0.5 6.72 1 11 0.5 7.29 2

1 5.0 6.61 1 11 5.0 6.78 2

1 10.0 6.41 1 11 10.0 6.76 2

2 0.5 6.80 1 12 0.5 6.91 2

2 5.0 6.80 1 12 5.0 6.91 2

2 10.0 6.70 1 12 10.0 6.71 2

3 0.5 7.16 1 13 0.5 7.23 2

3 5.0 7.12 1 13 5.0 7.37 2

3 10.0 7.01 1 13 10.0 7.10 2

4 0.5 7.17 1 14 0.5 6.81 2

4 5.0 7.20 1 14 5.0 6.68 2

4 10.0 7.08 1 14 10.0 6.18 2

5 0.5 6.96 1 15 0.5 6.66 2

5 5.0 6.68 1 15 5.0 6.47 2

5 10.0 6.48 1 15 10.0 6.17 2

6 0.5 7.23 1 16 0.5 6.89 2

6 5.0 7.02 1 16 5.0 6.59 2

6 10.0 6.80 1 16 10.0 6.19 2

7 0.5 6.87 1 17 0.5 6.98 2

7 5.0 6.73 1 17 5.0 6.64 2

7 10.0 6.43 1 17 10.0 6.24 2

8 0.5 7.15 1 18 0.5 6.88 2

8 5.0 7.18 1 18 5.0 7.01 2

8 10.0 6.80 1 18 10.0 6.71 2

9 0.5 7.23 1 19 0.5 7.01 2

9 5.0 7.03 1 19 5.0 6.90 2

9 10.0 6.73 1 19 10.0 6.80 2

10 0.5 7.24 1 20 0.5 7.20 2

10 5.0 7.19 1 20 5.0 7.17 2

10 10.0 6.99 1 20 10.0 7.07 2

parameter matrix and � is p.d. but unstructured, and where

A =
⎛

⎝

1 0.5
1 5
1 10

⎞

⎠ , C =
(

1′
10 ⊗

(

1

0

)

: 1′
10 ⊗

(

0

1

))

. ��

Example 1.6 This example concerns the hormone melatonin and acute severe
depression. More than 30 years ago, depression was already being studied
concerning its relation to various hormones, in particular melatonin. Among other
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Fig. 1.1 Serum melatonin levels patients with acute depression (∗) and a control group of healthy
individuals (+). Group-averaged sample means have been joined in the figure

discoveries, the melatonin peak level was found to be lowered in patients suffering
from acute depression in comparison to the corresponding level in healthy subjects.
The melatonin levels for these two groups are shown in Fig. 1.1. The peak levels
remained low when these patients were re-examined during remission. Therefore,
melatonin levels can be viewed as a bio-marker for depression. It is typical of
melatonin, as well as some other hormones (e.g. cortisol), that they follow a day-
and-night cycle.

If the data consist of ten repeated measurements over the day-and-night cycle,
the following model can be used: X ∼ N10,60(ABC,�, I ), where (ω = π/24)

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 sin(ω) cos(ω) sin(2ω) cos(2ω)

1 sin(4ω) cos(4ω) sin(4 ∗ 2ω) cos(4 ∗ 2ω)

1 sin(8ω) cos(8ω) sin(8 ∗ 2ω) cos(8 ∗ 2ω)

1 sin(12ω) cos(12ω) sin(12 ∗ 2ω) cos(12 ∗ 2ω)

1 sin(14ω) cos(14ω) sin(14 ∗ 2ω) cos(14 ∗ 2ω)

1 sin(16ω) cos(16ω) sin(16 ∗ 2ω) cos(16 ∗ 2ω)

1 sin(18ω) cos(18ω) sin(18 ∗ 2ω) cos(18 ∗ 2ω)

1 sin(20ω) cos(20ω) sin(20 ∗ 2ω) cos(20 ∗ 2ω)

1 sin(22ω) cos(22ω) sin(22 ∗ 2ω) cos(22 ∗ 2ω)

1 sin(24ω) cos(24ω) sin(24 ∗ 2ω) cos(24 ∗ 2ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

C =
(

1′
28 ⊗

(

1

0

)

: 1′
32 ⊗

(

0

1

))

,

i.e. there are two groups (28 patients and 32 healthy controls, which are supposed
to follow the mean structure indicated in Fig. 1.1). ��
Example 1.7 This is an additional example illustrating the application of the BRM ,
utilizing the classical dental data set of Potthoff and Roy (1964). The data consist of
growth measurements, i.e. the distance in mm from the centre of the pituitary to the
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pterygomaxillary fissure, for 11 girls and 16 boys at ages t1 = 8, t2 = 10, t3 = 12
and t4 = 14. The design matrices equal

A1 =

⎛

⎜

⎜

⎝

1 t1

1 t2

1 t3

1 t4

⎞

⎟

⎟

⎠

, Linear growth; A2 =

⎛

⎜

⎜

⎝

1 t1 t2
1

1 t2 t2
2

1 t3 t2
3

1 t4 t2
4

⎞

⎟

⎟

⎠

, Quadratic growth;

C =
(

1′
11 ⊗

(

1

0

)

: 1′
16 ⊗

(

0

1

))

.

Then, the model is given by either X ∼ N4,27(A1BC,�, I ) or X ∼N4,27(A2BC,

�, I ). The data are presented in Table 1.2 and illustrated in Fig. 1.2. One can observe
that there is a difference between the boys and girls, and in subsequent sections
we are going to investigate if there is a statistical model which can be used in the
analyses, including a validation of the model, and where the difference between the
genders can be tested. ��

Table 1.2 Four repeated growth measurements were taken at ages t1 = 8, t2 = 10, t3 = 12 and
t4 = 14 from 11 girls and 16 boys (by permission of Potthoff and Roy (1964) © Oxford University
Press 1964)

Id Gender t1 t2 t3 t4 Id Gender t1 t2 t3 t4

1 F 21.0 20.0 21.5 23.0 12 M 26.0 25.0 29.0 31.0

2 F 21.0 21.5 24.0 25.5 13 M 21.5 22.5 23.0 26.5

3 F 20.5 24.0 24.5 26.0 14 M 23.0 22.5 24.0 27.5

4 F 23.5 24.5 25.0 26.5 15 M 25.5 27.5 26.5 27.0

5 F 21.5 23.0 22.5 23.5 16 M 20.0 23.5 22.5 26.0

6 F 20.0 21.0 21.0 22.5 17 M 24.5 25.5 27.0 28.5

7 F 21.5 22.5 23.0 25.0 18 M 22.0 22.0 24.5 26.5

8 F 23.0 23.0 23.5 24.0 19 M 24.0 21.5 24.5 25.5

9 F 20.0 21.0 22.0 21.5 20 M 23.0 20.5 31.0 26.0

10 F 16.5 19.0 19.0 19.5 21 M 27.5 28.0 31.0 31.5

11 F 24.5 25.0 28.0 28.0 22 M 23.0 23.0 23.5 25.0

23 M 21.5 23.5 24.0 28.0

24 M 17.0 24.5 26.0 29.5

25 M 22.5 25.5 25.5 26.0

26 M 23.0 24.5 26.0 30.0

27 M 22.0 21.5 23.5 25.0
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Fig. 1.2 The distance in mm from the centre of the pituitary to the pterygomaxillary fissure in
girls (solid line) and boys (dashed line) at ages 8, 10, 12 and 14

Example 1.8 Now an example illustrating the applications of the EBRM3
B is

presented. Let us start from the very beginning and suppose that we have a random
vector x associated with observations which follow the model

x = μ + e,

where e ∼ Np(0,�). Assume that there exists a linear relation between the
components in μ, i.e. μ ∈ C(A). Thus, μ = Aβ for some β (see Appendix B,
Theorem B.3 (i)) and x = Aβ + e. Moreover, suppose that we have n independent
observations which all have the same within-individuals model μ ∈ C(A), and
suppose that there additionally exists a linear model between the independent
observations. For example, there are three groups of individuals one corresponding
to a group receiving a placebo treatment and the others corresponding to groups
receiving two different treatments. Thus we end up with the following model:

X = ABC + E,

where X = (x1, x2, . . . , xn), B = (β1,β2,β3), E ∼ Np,n(0,�, I ) and

C =
⎛

⎝

1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

⎞

⎠ .
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Furthermore, assume that we have a polynomial growth. Then the Vandermonde
matrix, for example,

A =

⎛

⎜

⎜

⎜

⎜

⎝

1 t1 . . . t
q−1
1

1 t2 . . . t
q−1
2

...
...

. . .
...

1 tp . . . t
q−1
p

⎞

⎟

⎟

⎟

⎟

⎠

describes the connection between growth and time. In this model all the individuals
follow the same polynomial growth model. However, if each treatment group
follows a polynomial of a different order, we may, for example, have the following
model:

X = A1B1C1 + A2B2C2 + A3B3C3 + E,

where

C1 =
⎛

⎝

1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

⎞

⎠ ,

C2 =
(

1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0

)

,

C3 = (

1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
)

,

A1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 t1 . . . t
q−3
1

1 t2 . . . t
q−3
2

...
...

. . .
...

1 tp . . . t
q−3
p

⎞

⎟

⎟

⎟

⎟

⎠

, B1 = (β1,β2,β3),

A′
2 =

(

t
q−2
1 t

q−2
2 . . . t

q−2
p

)

, B2 = (β3, β4),

A′
3 =

(

t
q−1
1 t

q−1
2 . . . t

q−1
p

)

, B3 = β5.
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Note that C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1). The above example implies, for instance, that

the mean of the placebo group and that of the treatment groups, respectively, equal

β11 + β12t + · · · + β1(q−2)t
q−3,

β21 + β22t + · · · + β2(q−2)t
q−3 + β2(q−1)t

q−2,

β31 + β32t + · · · + β3(q−2)t
q−3 + β3(q−1)t

q−2 + β3qt
q−1.

��
Example 1.9 In order to illustrate certain ideas, the “real” example presented as
Example 1.6 is now extended to form Example 1.9. An additional purpose of this
is to present the ingredients for performing simulation studies which, several times,
will take place later in this book. Suppose that there are three treatment groups
comprising 10, 15 and 20 patients. The groups are assumed to follow different
models over the day-and-night cycle, according to a nested subspace assumption:

X = A1B1C1 + A2B2C2 + A3B3C3 + E,

E ∼ Np,n(0,�, I ), C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1),

where (ω = π/24),

A1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 sin(ω) cos(ω)

1 sin(4ω) cos(4ω)

1 sin(8ω) cos(8ω)

1 sin(12ω) cos(12ω)

1 sin(14ω) cos(14ω)

1 sin(16ω) cos(16ω)

1 sin(18ω) cos(18ω)

1 sin(20ω) cos(20ω)

1 sin(22ω) cos(22ω)

1 sin(24ω) cos(24ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sin(2ω)

sin(4 ∗ 2ω)

sin(8 ∗ 2ω)

sin(12 ∗ 2ω)

sin(14 ∗ 2ω)

sin(16 ∗ 2ω)

sin(18 ∗ 2ω)

sin(20 ∗ 2ω)

sin(22 ∗ 2ω)

sin(24 ∗ 2ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos(2ω)

cos(4 ∗ 2ω)

cos(8 ∗ 2ω)

cos(12 ∗ 2ω)

cos(14 ∗ 2ω)

cos(16 ∗ 2ω)

cos(18 ∗ 2ω)

cos(20 ∗ 2ω)

cos(22 ∗ 2ω)

cos(24 ∗ 2ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

C1 = (1′
10 ⊗

⎛

⎜

⎝

1

0

0

⎞

⎟

⎠ : 1′
15 ⊗

⎛

⎜

⎝

0

1

0

⎞

⎟

⎠ : 1′
20 ⊗

⎛

⎜

⎝

0

0

1

⎞

⎟

⎠),

C2 = (1′
10 ⊗

(

1

0

)

: 1′
15 ⊗

(

0

1

)

: 1′
20 ⊗

(

0

0

)

), C3 = (1′
10 : 1′

35 ⊗ 0).
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Here C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1) is satisfied and in order to generate data, the

remaining task is to specify the parameters:

B1 =
⎛

⎝

0.01 0.14 0.20
0.21 −0.01 −0.004
0.02 0.03 −0.01

⎞

⎠ , B2 = (−0.04 −0.06
)

, B3 = (0.10),

102�

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.25 −0.10 0.10 −0.10 0.10 0.20 0.05 0.00 −0.05 0.05
−0.10 0.29 −0.14 0.09 −0.04 −0.13 −0.07 0.05 0.07 −0.02

0.10 −0.14 0.33 −0.01 0.04 0.15 −0.01 0.03 0.11 0.12
−0.10 0.09 −0.01 0.31 0.01 −0.13 −0.09 −0.03 0.11 0.05

0.10 −0.04 0.04 0.01 0.21 0.03 0.01 0.03 −0.05 0.03
0.20 −0.13 0.15 −0.13 0.03 0.45 0.10 0.05 0.03 0.05
0.05 −0.07 −0.01 −0.09 0.01 0.10 0.30 0.00 −0.15 0.13
0.00 0.05 0.03 −0.03 0.03 0.05 0.00 0.21 0.07 −0.11

−0.05 0.07 0.11 0.11 −0.05 0.03 −0.15 0.07 0.28 −0.06
0.05 −0.02 0.12 0.05 0.03 0.05 0.13 −0.11 −0.06 0.34

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The choice of parameters is directed by the values presented in Fig. 1.3. In this
figure two groups of individuals follow a day-and-night cycle, whereas in the present
example a third group of individuals has been added which does not show any
nocturnal peak level (see Fig. 1.3). Later, in Sect. 6.6, the data will be contaminated
and the effect of this contamination on various residuals will be studied. ��

8 10 12 14 16 18 20 22 24 2 4 6 8

Time of Day

0.1

0.15

0.2

Fig. 1.3 Based on the serum melatonin data presented in Example 1.6 a new data set with three
groups of individuals has been generated. Group 1, Group 2 and Group 3 are indicated by asterisk
symbol, plus symbol and open circle, respectively, and follow the model in Example 1.9
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Example 1.10 The model in Example 1.8 is now reconsidered. This example
indicates how the EBRM3

B and EBRM3
W are related. However, in general the

relation between the EBRM3
B and EBRM3

W is not so clear. The following model
is equivalent to the model in Example 1.8:

X = A1�1C1 + A2�2C2 + A3�3C3 + E,

where

C1 = (

1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
)

,

C2 = (

0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
)

,

C3 = (

0 0 . . . 0 0 0 . . . 0 1 1 . . . 1
)

,

A1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 t1 . . . t
q−1
1

1 t2 . . . t
q−1
2

...
...

. . .
...

1 tp . . . t
q−1
p

⎞

⎟

⎟

⎟

⎟

⎠

, �1 = (β ′
1, β3, β5)

′,

A2 =

⎛

⎜

⎜

⎜

⎜

⎝

1 t1 . . . t
q−2
1

1 t2 . . . t
q−2
2

...
...

. . .
...

1 tp . . . t
q−2
p

⎞

⎟

⎟

⎟

⎟

⎠

, �2 = (β ′
2, β4)

′,

A3 =

⎛

⎜

⎜

⎜

⎜

⎝

1 t1 . . . t
q−3
1

1 t2 . . . t
q−3
2

...
...

. . .
...

1 tp . . . t
q−3
p

⎞

⎟

⎟

⎟

⎟

⎠

, �3 = β3.

The interesting point is that now C(A3) ⊆ C(A2) ⊆ C(A1) holds instead of
C(C′

3) ⊆ C(C′
2) ⊆ C(C′

1). Moreover, when considering the EBRM3
B , {B i},

i = 1, 2, 3, are the objects of interest, whereas in the EBRM3
W the parameters

{�i}, i = 1, 2, 3, are of interest. For example, if the estimability conditions are
considered, the estimability of B1 does not necessarily imply the estimability of
�1. Of course, if {Bi} is estimable, then so too are {�i}, i = 1, 2, 3, but usually
we are not interested in estimating all the parameters in {Bi}, i = 1, 2, 3, uniquely
and then it is not so easy to find out the estimability conditions for �i . Moreover,
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deriving D[̂�i ] from D[̂Bi ] without knowledge about the covariance C[̂B i ,̂Bj ],
i �= j , is impossible (see Appendix A, Sect. A.10 for definitions of these moments).

��
The next example involves a relatively complicated between-individuals design,
together with an easily interpretable within-individuals structure.

Example 1.11 EBRM3
W : This example presents a so-called interference model,

see Filipiak and von Rosen (2012) and Filipiak and Markiewicz (2017), among other
presentations. Consider an agricultural experiment and suppose that one wants to
compare t different varieties of spring barley, for example. There is likely to be an
interaction between the environment (the type of soil, rainfall, drainage, etc.) and the
variety of grain which will affect the yield. Therefore, b blocks are chosen where
the environment is fairly consistent throughout the blocks.

Let n experimental units (plots) be divided into the b blocks each of size k. Let
the t treatments be applied to the units so that each unit receives one treatment. The
treatment which is applied to unit j in block i is determined by the design d . Within
the blocks the effect of the treatments applied to each unit can be quantified via a
random variable x.

Assume that the response of a given plot may be affected by treatments of
neighbouring plots, as well as by the treatment applied to that plot. Moreover,
consider experiments with a one-dimensional arrangement of plots in each block,
and in which the treatments have different left and right neighbour interference
effects.

The linear model associated with the design d can be written as follows:

x′ = β1C1,d + β2C2,d + β3C3 + e′, (1.12)

where βi , i = 1, 2, 3, are the unknown vectors of treatment effects, neighbour
effects and block effects, respectively, and e is the vector of random errors. The
matrix C1,d ∈ R

v×n depends on the design and it is a matrix with binary entries
which satisfies C′

1,d1v = 1n. The matrix C′
2,d = ((I b ⊗ H )C′

1,d : (I b ⊗ H ′)C′
1,d)

is a known matrix of neighbour effects, where

H ′ =
(

0′
k−1 1
Ik−1 0k−1

)

or H′ =
(

0′
k−1 0
Ik−1 0k−1

)

for a circular design (Druilhet, 1999) and for a design without border plots (Kunert
and Martin, 2000), respectively (0k−1 is a k − 1 dimensional vector of zeros). The
matrix C3 = I b ⊗ 1′

k is the design matrix of block effects. In the literature such
a model as the one presented above is called an interference model with neighbour
effects.

Suppose that for each treatment, we are measuring a response which consists
of p characteristics. Then the following extension of the interference model (1.12)
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appears:

X = A1B1C1,d + A2B2C2,d + A3B3C3 + E,

where X ∈ R
p×n is the matrix of observations, B i , i = 1, 2, 3, are the unknown

matrices of treatment, neighbour and block effects, respectively, and Ai , i = 1, 2, 3,
are within-individuals design matrices, which now will be specified. It is assumed
that in the experiment there is no left- and right-neighbour effect and no block
effect for the last characteristic, and for the second last characteristic there is no
block effect. Then A1 = Ip, A2 = (Ip−1, 0p−1)

′ and A3 = (Ip−2, 0p−2, 0p−2)
′,

which obviously satisfy C(A3) ⊆ C(A2) ⊆ C(A1). Finally it is noted that E ∼
Np,n(0,�, I ), where � > 0 is an unstructured dispersion matrix. ��

Problems

1 Generate data according to X ∼ N5,20(ABC,�, I 20), where

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 2 4
1 3 9
1 4 16
1 5 25
1 6 36

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, � =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

3.0 1.0 0.5 0.5 1.0
1.0 4.0 1.5 1.5 1.0
0.5 1.5 2.0 1.0 0.5
0.5 1.5 1.0 2.0 0.5
1.0 1.0 0.5 0.5 2.0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, B =
(

1 0.5
3 4

)

C =
(

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

)

.

Present informative plot(s) of the data.

2 Let xi ∼ N5(μ,�), i = 1, . . . , n, be independently distributed, where

μ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
2
4
5
3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, � =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

4.0 2.0 1.5 2.5 1.0
2.0 5.0 0.5 2.5 2.0
1.5 0.5 2.0 1.0 0.5
2.5 2.5 2.0 2.0 1.5
1.0 2.0 0.5 1.5 3.0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Put

μ̂ = 1

n

n
∑

i=n

xi .



26 1 Introduction

(i) Formulate the weak law of large numbers, i.e. μ̂ converges in probability to
μ, and indicate through simulations that the error is of order n−1. (ii) Formulate the
multivariate central limit theorem, i.e. μ̂ converges in distribution to the multivariate
normal distribution, and indicate through simulations that the error is of order n−1/2.

3 (i) Formulate a three-way ANOVA model with two-way interactions. (ii) Formu-
late a multiple regression model with three independent variables and an intercept.
(iii) Present the proposed models in (i) and (ii) using matrix notation. (iv) Formulate,
using matrix notation, an analysis of covariance model.

4 Let

A =

⎛

⎜

⎜

⎝

1 8
1 12
1 14
1 16

⎞

⎟

⎟

⎠

.

Find an orthogonal matrix � and a non-singular matrix H such that A′ = H

(I 2 : 0)�. (Hint: Utilize some linear algebra book.)

5 Let P A,V = A(A′V −1A)−A′V −1, where V is positive definite. Show (i)
tr{PA,V } = r(A); (ii) P A,V P A,V = PA,V ; (iii) C(P A,V ) = C(A); and (iv)
N (I − P A,V ) = C(A). (For an explanation of the notation, see Appendix A,
Sect. A.7 and Appendix A, Sect. A.8.)

6 Let A be non-singular. Show that the inverse matrix A−1 is unique.

7 Show that if a matrix � of size p × p satisfies ��′ = Ip, then �′� = Ip.

8 Show that the commutation matrix (for a definition of the matrix see Appendix
A, Sect. A.5) is an orthogonal matrix.

9 Show that the square matrices A and A′ have the same eigenvalues.

10 Show that if all the eigenvalues of the square matrix A are real and k of them
are non-zero, then (tr{A})2 ≤ k tr{A2}.

Literature

The following literature review reflects the historical development of some part
of statistical science and includes background information on linear and bilinear
models. No details are provided, meaning, for example, that the techniques and
tools used by the various authors are omitted. Instead it is recommended that one
should study the original articles. Moreover, it should be noted that it is impossible,
in few pages, to present a complete survey of literature published on the topics under
consideration.
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Nowadays statistical science is mainly based on probability theory. One has
merged stochastics with statistics but this has not always been the case. Today
statisticians use probabilities to describe uncertainty, and probability and probability
distributions are used for the following purposes: (i) to build models, (ii) to create
random experiments (sampling), and (iii) to support conclusions. One challenge
has been to handle “continuous” data, and this is a problem which statisticians
are still faced with today. Fundamental theory was established at the beginning of
the twentieth century, including Kolmogorov’s (1933) famous axiomatic probability
proposal. The philosophy behind Kolmogorov’s work and alternative proposals, as
well as an interesting and beneficial historical perspective, has been presented by
Schafer and Vovk (2006). It is interesting to look into early works on probability
theory, for example, von Bortkiewicz (1917), where also references to earlier works
can be found.

An embryo of multivariate statistics was introduced by Galton (1886, 1888,
1889), who, among other things, exploited bivariate problems (see Anderson,
1996). The normal distribution has always played a fundamental role when it
comes to analysing continuous data. Two very well-known results/notion, which
are connected to the normal distribution and which appeared more than a hundred
years ago, are the t-test (Student, 1908) and Pearson’s product correlation coefficient
(Pearson, 1896). Concerning correlation, it was, however, Galton (1886, 1888)
who came up with the fundamental ideas, including the concept of conditional
expectation; see Bulmer (2003) and Stigler (2012), for interesting reading about
Galton. Pearson, besides referring to Galton, also refers to Bravais (1846), who
used the correlation coefficient (see Monhor, 2012). Cowles (2001) points out
that Galton’s half-cousin Charles Darwin used the term correlated variation in his
renowned book “The Origin of Species”.

Many references concerning the bivariate normal distribution can be found in
Kotz et al. (2000). Edgeworth (1892) presented a three-dimensional normal distri-
bution which was generalized by Pearson (1896) to a p-dimensional version. Fisher
(1915) derived the distribution of the sample Pearson correlation coefficient. Hence,
we can conclude that around 1900 it became possible to analyse continuous multi-
response data in a systematic way. To understand how important and impressive
the development of statistics was during the above-mentioned years, we refer to
historically oriented books and articles, for example see Stigler (1986, 2012) and
Cowles (2001).

Fisher’s result concerning the correlation coefficient was generalized by Wishart
(1928), who derived the distribution of a quadratic form of a p-variate normally
distributed variable, i.e. the joint distribution of sample variances and sample
covariances. Wishart’s result has been very fundamental to multivariate statistics;
see Aitken (1949) for additional references.

Matrices were not used in statistics during the period stretching from 1880s to
1920s. However, determinants were frequently applied, and for example, the inverse
dispersion matrix in the multivariate normal density was expressed with the help
of the determinant and minors. Today multivariate analysis is mostly presented
via matrices, but sometimes more abstract/geometric presentations are available;
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see, for example, Drygas (1970), Stone (1977, 1987), Herr (1980), Eaton (1983)
and Wichura (2006). Matrices can play different roles, and can, for example, be
used as a collection of elements or as representations of linear transformations.
It is advantageous to use both interpretations simultaneously, but this will not be
promoted in the present book. It should be noted that the concept of matrices has
existed for more than 150 years, but matrices and statistics established contact with
each other much later in the history of statistics. Searle (2000, 2005) (see also
David, 2006) states that it was around 1930 that matrices started to be used. Early
work using matrices was performed by Bartlett (1934b), Cochran (1934) and Aitken
(1935). Algebra has also entered multivariate analysis, which was highlighted by
Perlman (1987), for example. Now the use of algebra can be found in many branches
of multivariate analysis and one area is the derivation of moments and cumulants
(e.g. see Letac and Massam, 2008; Withers and Nadarajah, 2012).

In the following, a very brief overview is presented of the literature dealing
with the “chain”: linear models—multivariate linear models—bilinear models—
extended bilinear models. Least squares (different versions) and their applications
(data analysis) have a very long history in which many famous scientists have been
involved, such as Laplace, Legendre and Gauss (e.g. see Seal, 1967; Stigler, 1986;
Aldrich, 1999; Farebrother, 1999). The development of least squares theory has
been driven forward through applications. However, according to Seal (1967), based
on sums of squares the underlying linear models which were used were analysed
intuitively. It was Yates (1933) who first connected linear models to least squares
(see also Irwin, 1934; Aitken, 1936; Kolodziejczyk, 1935). However, it has been
clearly demonstrated by Hald (1981, 2002) that within the actuarial sciences, the
Danish statisticians Gram (1879) and Thiele (1889) worked with linear models and
least squares. There are also other interesting works written by these authors (see
Hald, 1981). Although regression analysis and analysis of variance models have
been applied for more than 100 years, it was not until the 1950s that these subject
areas were put under the same umbrella, for example, in a paper by Tocher (1952)
and in the impressive book by Kempthorne (1952).

As noted above, Galton, Thiele, Edgeworth, Pearson, Fisher and indeed several
others, at the beginning of the twentieth century, dealt with the concept of multi-
response. Thereafter followed an impressive period, 1930–1940, when multivariate
analysis was really blossoming with many new published ideas, covering topics such
as generalized distance: (Mahalanobis (1930, 1936) who was heavily influenced by
Pearson’s work, see Nayak (2009)); generalized variance (Wilks, 1932), including
the test statistic Wilks’ � (a term introduced by Rao (1948), in an excellent
survey of multivariate testing); principal components analysis (Pearson, 1901;
Hotelling, 1933); canonical correlation analysis (Hotelling, 1936); discriminant
analysis (Bose, 1936; Fisher, 1936, 1938) (according to Kendall (1957), Karl
Pearson around 1920 introduced the idea of discriminating between multivariate
populations); precise derivations of distributions of various statistics (Wishart, 1928;
Hotelling, 1931; Bartlett, 1934a; Cochran, 1934; Bose, 1936; Bose and Roy, 1938)
(in these works references are often made to earlier works of Fisher); distribution of
eigenvalues of, for example, certain functions of Wishart matrices (Fisher, 1939;
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Girshick, 1939; Hsu, 1939; Roy, 1939) (see also Anderson (2007), about the
connections between these publications); multivariate testing (Wilks, 1932; Bartlett,
1934b, 1939). A general probabilistically oriented review of multivariate analysis in
its early years was presented by Madow (1938). There are several other interesting
articles which were published during this period and many of the above references
cross-refer to each other (see e.g. Bartlett, 1974; Anderson, 1996, for some details).
One should also note that many of the above-mentioned fundamental ideas were
backed up by geometrical arguments; i.e. intuition and mathematics went hand in
hand.

During the next decade (the 1940s) structured dispersion matrices started to be
studied. Among others, Wilks (1946) (with his study of the intraclass structure, also
termed the uniform structure) and Votaw (1948) (with his study of compound sym-
metry, block symmetry) contributed to the development of the treatment of patterned
dispersion matrices. Nowadays many dispersion structures are treated, although
there is no general reference available. Time series structures, spatial-temporal
structures, structures fulfilling some invariance conditions, variance components
structures and several other structures are treated by various authors. However, if one
is interested in obtaining explicit estimators, structures satisfying a Jordan algebra
condition (a quadratic subspace condition, Seely, 1971) are the natural structures to
consider (e.g. see Jensen, 1988).

It took rather a long time before the first books on multivariate analysis
appeared, i.e. the seminal works of Roy (1957), Kendall (1957) and Anderson
(1958). It is interesting to note that Anderson’s book has been published in
a third edition, Anderson (2003), and is still in use. With the development of
computational facilities, the subject has also changed. Schervish (1987) made a
number of interesting reflections about multivariate analysis when comparing the
second edition of the book by Anderson (1958), i.e. Anderson (1984), with a book
by Dillon and Goldstein (1984). Schervish’s article, together with the discussion
by Anderson, Gnanadesikan and Kettenring, Goldstein, Perlman, Press and Sen,
makes very interesting reading. Now, more than 25 years since the discussion took
place, we can study how multivariate analysis has developed since then. Several new
methods have appeared, new classes of distributions (e.g. elliptical distributions) are
used and Bayesian analysts have acquired tools for obtaining posterior distributions.
Right now multivariate analysis is slowly moving towards the analysis of large-
dimensional observations (e.g. see Fujikoshi et al., 2013; Imori and von Rosen,
2015).

A number of books which treat classical multivariate analysis have been
produced over the years, for example, Dempster (1969), Srivastava and Khatri
(1979), Mardia et al. (1979), Muirhead (1982), Takeuchi et al. (1982), Eaton (1983),
Srivastava and Carter (1983), Seber (1984), Siotani et al. (1985), Bilodeau and
Brenner (1999), Morrison (2005) and Rencher and Christensen (2012). All these
works include a large number of references to works within classical multivariate
analysis. However, it should be emphasized that this list of interesting books in
this field could be extended considerably. The above selection is just a personal
choice indicating the broad spectrum of multivariate analysis. Fujikoshi et al. (2010)
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considered many classical multivariate analysis approaches through expansions of
distributions and, via the expansions, also considered high-dimensional problems.
Furthermore, over the years a number of specialized books have been published,
such as books on principal components analysis (Jolliffe, 2002), discriminant
analysis (McLachlan, 1992), correspondence analysis (Greenacre, 1984), cluster
analysis (Everitt et al., 2011), independent component analysis (Hyvärinen et al.,
2001), (which is related to projection pursuit), confirmatory and explorative factor
analysis, latent structural equations (Bartholomew et al., 2011) and graphical
models (Whittaker, 1990; Lauritzen, 1996; Cox and Wermuth, 1996; Andersson and
Perlman, 1998). Part of the theory around graphical models has many connections
with the subject matter of this book, although the links are usually not mentioned.
Moreover, distribution theory has been developed to fit the statistical problems
connected to multivariate analysis.

Above, a selection of the relatively rich body of literature concerning multivariate
analysis has been presented. A few of the references provided mention the BRM ,
either under the heading of the growth curve model or GMANOVA. The history
of the analysis of growth curves through a repeated measurements analysis can be
traced back to works such as those by Wishart (1938) and Box (1950), which are two
well-known contributions. Both papers are of interest from a historical perspective,
with Box, for example, taking care of the dependency within repeated measurements
via split-plot analysis, as well as by assuming unstructured dispersion matrices.
Rao (1958) is another early contribution and in the above-mentioned book by Roy
(1957), bilinear hypothesis testing is presented; this topic is also dealt with in a
work by Anderson (1951) and in an abstract by Olkin and Shrikhande (1954). The
article by Potthoff and Roy (1964) is often considered to be the first paper where
the growth curve model was treated, but a similar model had already been discussed
by Rao (1958), as well as by other authors (e.g. see the reference list of Gleser
and Olkin, 1970). Moreover, an article by Burnaby (1966) which is related to the
article by Potthoff and Roy (1964) dealt with the discrimination of growth curves
(see also Rao, 1966a) and included more precise mathematical results than Potthoff
and Roy (1964). Soon after the article by Potthoff and Roy (1964), a number of
important contributions appeared, in particular, Rao (1965, 1966b, 1967), Khatri
(1966), Grizzle and Allen (1969) and Gleser and Olkin (1970) (the last of these
aforementioned papers was written much earlier than its publication date). Reviews
of the growth curve model have been written by Woolson and Leeper (1980), Seber
(1984, Chapter 9.7), von Rosen (1991), Kanda (1994) and Srivastava and von Rosen
(1999). The first book dedicated to the growth curve model was written by Kariya
(1985), who focused on testing hypothesis. Kariya and Sinha (1989) discussed the
model and provided many references, in particular it was noted that the model
belongs to the curved exponential family. Kshirsagar and Smith (1995) wrote a book
on the growth curve model which to some extent summarizes the earlier works
on the model. Pan and Fang (2002) considered model validation of the BRM , in
particular the recognition of influential observations. Timm (1997), in an interesting
review, considered extensions of the BRM , in particular the EBRMm• .
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Extended growth curve models have been presented in papers by Gleser and
Olkin (1970), Verbyla and Venables (1988), von Rosen (1989), Timm (1997),
Fujikoshi et al. (1999) and others. In particular, Srivastava and Khatri (1979,
Problem 6.9, p. 196) indicated one way to estimate the parameters. It is interesting
to note that in order to estimate parameters in a MANOVA model under bilinear
restrictions, an EBRMm• is useful. However, when testing bilinear hypotheses
this can be performed without any knowledge of the EBRMm• . Perhaps this is
one reason why the EBRMm• has not been discussed so much. However, to
test a hypothesis without estimating the appropriate parameters does not usually
constitute a complete analysis. Moreover, in relation to the EBRMm• , lattice models,
considered by Andersson and Perlman (1993) and the approach of Andersson et al.
(1993), among others, are very interesting.

The term bilinear has previously been used in the context of statistical model
building by Gabriel (1998), for example, (see also Drton and Richardson, 2004;
Hoff, 2015), although the term has been used more often in the chemometrics
literature (e.g. see Linder and Sundberg, 2002). Moreover, a current topic of
discussion is the so-called bilinear least squares approach (see Valderrama and
Poppi, 2008).

Models partly overlapping the above-mentioned classes are mixed linear models
and variance components models. The latter class of models usually assumes an
unstructured mean and thus does not belong to the same class as the BRM and
its extensions. The book by Rao and Kleffe (1988) is one of several interesting
works dealing with the estimation of variance components. Concerning mixed
linear models (i.e. linear models with fixed and random effects), this class has
an extensive scope and comprises all the above-mentioned models. However, the
treatment of mixed linear models, except in a few special cases, is completely based
on asymptotics, and this approach is inconsistent with the philosophy of the book,
where a great deal of energy is devoted to obtaining explicit finite sample results.
One reference with a focus on mixed linear models and applications is Verbeke and
Molenberghs (2000).

Finally, a few comments follow on the growth curve model, i.e. the BRM .
Potthoff and Roy (1964) presented the model as a model for modelling growth
curves, but this is slightly misleading. The model calls for balanced data, which
means that each “individual”, which is supposed to be the independent unit, has to be
observed at the same points in time and the same number of times. However, usually
growth curves consist of the so-called unbalanced data and a better approach for
studying growth curves (estimating parameters, testing hypotheses, predicting new
observations) than using the growth curve model is to consider random coefficient
regression models (see Rao, 1965). Random coefficient regression models use
the idea of analysing individual growth curves and this approach has natural
generalizations, for example, for the analysis of non-linear growth. Moreover, there
are interesting Bayesian approaches to the analysis of growth curves (e.g. see Fearn,
1975; Geisser, 1980). Nowadays the term “latent growth curves” is in use, but these
models differ significantly from the BRM (see Geiser et al., 2013).
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Chapter 2
The Basic Ideas of Obtaining MLEs:
A Known Dispersion

2.1 Introduction

Multivariate linear models, as well as the bilinear regression models, are extensions
of univariate linear models. Therefore, possessing a good knowledge of linear mod-
els theory helps one understand the BRM and EBRMm• . If the dispersion matrix
in the BRM or EBRMm• is supposed to be known, these models belong to the
class of univariate linear models (the Gauss-Markov model, after a vectorization).
It is well known that for this class of models a decomposition of subspaces is
essential. This decomposition is important for the mathematical treatment, as well
as for the understanding of the analysis based on these models. In this chapter, first
the singular Gauss-Markov model is treated, and thereafter the models which are
the main subject of this book are discussed in some detail. Note that the singular
Gauss-Markov model is the most general linear model when only a single variance
component (error variance) is present.

2.2 Linear Models with a Focus on the Singular
Gauss-Markov Model

The inference method adopted in this book is mainly based on the likelihood
function. The purpose of this section is to introduce vector space decompositions
and show their roles when estimating parameters. In Appendix B, Theorems B.3 and
B.11, a few important results about the linear space C(•), its orthogonal complement
C(•)⊥ and projections P A = A(A′A)−A′ are presented. Once again the univariate
linear model

x′ = β ′C + e′, e ∼ Nn(0, σ 2I ). (2.1)
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D. von Rosen, Bilinear Regression Analysis, Lecture Notes in Statistics 220,
https://doi.org/10.1007/978-3-319-78784-8_2

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78784-8_2&domain=pdf
https://doi.org/10.1007/978-3-319-78784-8_2


40 2 The Basic Ideas of Obtaining MLEs: A Known Dispersion

Fig. 2.1 Consider the model
given in (2.1). Decomposition
of the whole space according
to the design matrix C ′ is
presented

will be studied. In Example 1.1 it was noted that μ̂′ = ̂β
′
C and the maximum

likelihood estimator of σ 2 equalled nσ̂ 2 = r ′r , where the “mean” μ̂ = PC ′x and
“residuals” r = (I − P C ′)x. Hence, the estimators and residuals are obtained by
projecting x on the column space C(C′) and on its orthogonal complement C(C′)⊥,
respectively. The estimates are obtained by replacing x by xo in the expressions
given above. Moreover, under normality, μ̂ and r are independently distributed and
constitute the building blocks of the complete and sufficient statistics. Thus, μ̂ and r

are very fundamental quantities for carrying out inference according to the statistical
paradigm, i.e. parameter estimation and model evaluation. Indeed, this is the basic
philosophy adopted throughout this book, even if the models presented later become
much more complicated. Consequently, the following space decomposition is of
interest:

Rn = C(C′) � C(C′)⊥,

where � denotes the orthogonal sum (see Appendix A, Sect. A.8), which is
illustrated in Fig. 2.1.

Suppose now that in the model x′ = β ′C + e′, the restrictions

β ′G = 0

hold. The restrictions mean that there is some prior information about β or some
hypothesis has been postulated about the parameters in β. Then it follows from
Sect. 1.3 that

̂β
′
C = x′C′Go(Go′

CC′Go)−Go′
C = x′P C ′Go.

An important property is that if C(G) ⊆ C(C), then ̂β
′
G = 0 because

̂β
′
G = ̂β

′
CC′(CC′)−G = 0.

Moreover, σ̂ 2 is proportional to the squared residuals r = (I − P C ′Go)x, where

r ′r = x′(I − P C ′Go)x = x′(P C ′(CC ′Go)o + I − P C ′)x,
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Fig. 2.2 Consider the model given in (2.1). Decomposition of the whole space according to the
design and the restriction β ′G = 0; V1 = C(C ′Go), V2 = C(C ′Go)⊥ ∩ C(C ′), V3 = C(C ′)⊥ and
P = PC′Go

since C(C′(CC′Go)o) = C(C′Go)⊥ ∩ C(C′) (see Appendix B, Theorem B.3 (vi)).
The estimators are obtained by projections of x using the space decomposition

Rn = C(C′Go) � C(C′Go)⊥ ∩ C(C′) � C(C′)⊥,

which is illustrated in Fig. 2.2.
Note that we have decomposed the whole space into three orthogonal subspaces.

It is easy to imagine that one can continue decomposing until spaces of dimension
1 occur. This can always be performed, but the procedure is only meaningful if
the subspaces can be interpreted. Usually applications induce restrictions on C(C′)
and then, if a decomposition into orthogonal subspaces can be achieved, an easily
interpretable model is obtained. Unfortunately, the majority of linear models which
are to be analysed do not share this property, for example regression models and
many analysis of variance models which are unbalanced, i.e. models suitable to
handle a different number of observations in the “cells”, such as models for k-way
tables. A lack of orthogonality does not mean that one is unable to use the model,
but it indicates that many competitive models can exist. Choosing between models
is challenging and is at least partly a matter of taste.

Now the Gauss-Markov model presented in Sect. 1.3 and Example 1.2, i.e.

x′ = β ′C + ε′, ε ∼ Nn(0, σ 2V ), V p.s.d.,

will be studied in some detail, because it provides a deeper understanding of how
to relate subspace decompositions to statistical inference. An unknown variance
parameter, σ 2, is now also included. Let V = HH ′, where H : n × r , r = r(V )

and put G = (H ′H )−1H ′. Post-multiplying x′ by (G′ : H o) is a one-to-one
transformation, i.e. there is no loss of information, and

x′
oH

o = β ′CH o, (2.2)

x′G′ = β ′CG′ + ε̃′, ε̃ ∼ Nr(0, σ 2I ) (2.3)

is obtained. In comparison with Sect. 1.3 the approach is slightly different. The
presentation has been altered because now a very natural variance estimator is
obtained immediately. If (2.2) is to have a solution, it has to be assumed that
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xo ∈ C(C′) + C(V ) (see Appendix B, Theorem B.10). In reality this may not hold
and, therefore, a projection of the data on C(C′) + C(V ) has to take place before
starting to estimate the parameters. Note the difference in using the equality sign
“=” in (2.2) and (2.3). In (2.2) it means that the relation holds with probability 1,
whereas in (2.3) it means that we have equality in distribution.

Hence, according to (2.2) and (2.3), the original model with a singular dispersion
matrix has been transformed into a model where a normal density is involved,
but where there are now also some restrictions on the mean induced by the data.
Note that in (2.2) the random variable x has been replaced by the observation
vector xo. Since the restrictions depend on the data one may question if this is
a statistical model and there are definitely problems with the interpretation of the
estimate. Solving (2.2) implies that β can be written as follows (see Appendix B,
Theorem B.10):

β ′ = x′
oH

o(CH o)− + θ(CH o)o
′
, (2.4)

where θ is a new arbitrary parameter vector. Inserting the solution in (2.3) yields the
following linear model:

x′G′ = x′
oH

o(CH o)−CG′ + θ(CH o)o
′
CG′ + ε̃′. (2.5)

Now standard methods for obtaining MLEs can be applied. Put F = (CH o)o
′
CG′.

Then the MLE of θ is given by

̂θo = x′
o(I − H o(CH o)−C)G′F ′(FF ′)− + z′F o′

,

where z is arbitrary. Since G′G = H (H ′V H )−1H ′, this expression is the same as
the one presented in (1.6). It follows that

C(F ) = C((CH o)o
′
CG′) = C((CH o)o

′
CH (H ′H )−1H ′)

= C((CH o)o
′
C(I − H o(H o′

H o)−H o′
)) = C((CH o)o

′
C)

and, since F o′
(CH o)o

′
C = 0,

̂β
′
oC = x′

oH
o(CH o)−C + x′

o(I − H o(CH o)−C)G′F ′(FF ′)−(CH o)o
′
C. (2.6)

Moreover, it is important to note that this expression does not depend on any specific
choice of H o. The estimator can be rewritten as

̂β
′
C = x′H o(CH o)−C(I − G′F ′(FF ′)−(CH o)o

′
C) + x′G′F ′(FF ′)−(CH o)o

′
C,

(2.7)
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which thus is split into a deterministic and a stochastic part, since x′H o is constant
with probability 1. However, note that the deterministic part is data-dependent. If we
consider the estimates, there is no conceptual difference between the deterministic
and the stochastic parts. On the other hand, if we want to evaluate the model, as
the statistical paradigm requires, there are problems concerning how to evaluate the
deterministic part, since distribution theory will not help us, for example, to identify
what an extreme observation is. An alternative way of expressing ̂β

′
C is given by

̂β
′
C = x′(I − (C′)o((C′)o′

V (C′)o)−(C′)o′
V ). (2.8)

This expression is presented because there are good and simple geometrical interpre-
tations which can take place, which we will return to later. The relation is obtained
in the following way. Start from (2.6) and then (letting P H = H (H ′H )−1H ′)

G′F ′(FF ′)−(CH o)o
′
C = P H(I − (C′)o((C′)o′

HH ′(C′)o)−(C′)o′
HH ′),

because C(C′(CH o)o) = C(H (H ′(C′)o)o) (see Appendix B, Theorem B.3 (v)),
and thereafter, applying the special case in Appendix B, Theorem B.13,

x′
oH

o(CH o)−CP H = x′
oH

o(CH o)−C − x′
oPHo,

where (2.2) has been utilized, and

x′
oH

o(CH o)−CP H (C′)o = −x′
oH

oPH (C′)o.

All these relations establish the proposed estimator in (2.8).
Since the estimator ̂β

′
C is linear in x, it is normally distributed. Using (2.7), the

mean can be derived and it can be shown that the estimator is unbiased, i.e.

E[̂β ′
C] = β ′C.

Concerning the dispersion, since the deterministic part of the estimator does not
have to be considered,

D[̂β ′
C] = D[C′

̂β] = σ 2C′(CH o)o(FF ′)−(CH o)o
′
C,

which does not depend on the choice of (FF ′)−; i.e. it is unique. Moreover, the
unbiased, quadratic, minimum variance estimator is given by

(r − r(F ))̂σ 2 = x′R(I − F ′(FF ′)−F )R′x, (2.9)

where

R = (I − H o(CH o)−C)G′.
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To show that the expression in (2.9) is unbiased, it is noted that E[x′R(F ′)o] = 0
and tr{R(I − F ′(FF ′)−F )R′V } = tr{I − F ′(FF ′)−F }, since H ′G′ = I r . It can
also be observed that

G′(I − F ′(FF ′)−F )G = G′(F ′)o((F ′)o′
(F ′)o)−(F ′)o′

G

= H (H ′H )−1H ′(C′)o((C′)o′
V (C′)o)−(C′)o′

H (H ′H )−1H ′

and

x′(I − H o(CH o)−C)H (H ′H )−1H ′(C′)o

= x′(I − H o(CH o)−C)(I − H o(H o′
H o)−H o′

)(C′)o = x′(C′)o,

since x ∈ C(C′ : V ). Note that x ∈ C(C′ : V ) is always true, but data xo may
not share this property. The relations given above imply that (2.9) can be written as
follows:

(r − r(F ))̂σ 2 = x′(C′)o((C′)o′
V (C ′)o)−(C′)o′

x, (2.10)

where it is important to note that r − r(F ) is identical to the dimension of (C(C′) ∩
C(V ))⊥, which also means that if V is positive definite, r(F ) = r(C).

Now we study which spaces are involved when β ′C is estimated and will
later study how linear spaces are connected to the estimation of σ 2. Let P be an
orthogonal projector on C(C′ : V ), i.e. by assumption Px = x. Then,

C′
̂β = P 1x + P 2x,

where

P 1 = C′(H o′
C′)−H o′

P ,

P 2 = C′(CH o)o(FF ′)−FG(I − C′(H o′
C′)−H o′

)P .

One can show that P 1P 2 = P 2P 1 = 0 and

C(C′) = C(P 1) ⊕ C(P 2) = C(C′(H o′
C′)−H o′

C′) ⊕ C(C′) ∩ C(H ).

It is interesting to note that by choosing (H o′
C′)− we obtain different types of

decompositions. Consider a general expression (not the most general), which is
obtained by solving the linear equation system defining any g-inverse (QQ−Q =
Q),

(H o′
C′)− = (H o′

C′)+ + (CH o)oZ,
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where “+” indicates the use of the unique Moore-Penrose inverse (see Appendix A,
Sect. A.6) and Z is an arbitrary matrix. If Z = 0, then

C(C′(H o′
C′)−H o′

C′) = C(C′(H o′
C′)+H o′

C′) = C(C′CH o),

but if

Z = −((CH o)o
′
CC′(CH o)o)−(CH o)o

′
CC′(H o′

C′)+,

C(C′(H o′
C′)−H o′

C ′)

= C((I − C ′(CH o)o((CH o)o
′
CC ′(CH o)o)−(CH o)o

′
C)C′(H o′

C′)+H o′
C ′)

= (C(C′) ∩ C(H ))⊥ ∩ (C(C′) ∩ C(H ) + C(C′(H o′
C ′)+H o′

C′))

= (C(C′) ∩ C(H ))⊥ ∩ C(C′),

since

C(C′) ∩ C(H ) + C(C′(H o′
C′)+H o′

C′) = C(C′) ∩ C(H ) + C(C′CH o)

= C(C′(CH o)o) + C(C′CH o) = C(C′).

One can sum up by stating that the following general decomposition holds:

Rn = {C(C ′(H o′
C ′)−H o′

C′) ⊕ C(C ′) ∩ C(V )} ⊕ C(V (C ′)o) � (C(C ′) + C(V ))⊥,

since C(C′)+C(V ) = C(C′)⊕C(V (C′)o), and this is illustrated in Fig. 2.3. For the
two special cases considered above,

Rn = {C(C′CV o) ⊕ C(C′) ∩ C(V )} ⊕ C(V (C′)o) � (C(C′) + C(V ))⊥,

if Z = 0, and the second choice of Z leads to

Rn = {C(C′) ∩ (C(C′) ∩ C(V ))⊥ � C(C′) ∩ C(V )} ⊕ C(V (C′)o) � (C(C′) + C(V ))⊥.

Other types of decompositions of Rn which are expressed as subspace functions of
C(C′) and C(V ) exist, for example

Rn = ((C(C ′) + C(V )) ∩ C(C′)⊥ ⊕ ((C(C ′) + C(V )) ∩ C(V )⊥) � C(C′) ∩ C(V )

�(C(C′) + C(V ))⊥
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Fig. 2.3 Decomposition of the whole space in the strongly singular Gauss-Markov model; V1 =
C(C ′(H o′

C′)−H o′
C), V2 = C(C′) ∩ C(V ), V3 = C(V (C ′)o) and V4 = (C(C ′) + C(V ))⊥

Fig. 2.4 Decomposition of the whole space in the weakly singular Gauss-Markov model; V1 =
C(C ′), V2 = C(V (C ′)o) and V3 = C(V )⊥

and

Rn = (C(C ′) + C(V )) ∩ C(C ′)⊥ � (C(C ′) + C(V ))⊥ ∩ C(C′) � C(C ′) ∩ C(V )

�(C(C ′) + C(V ))⊥,

but they will not be considered. More importantly, one conclusion from the above
discussion is that one should be very careful when estimating the mean parameters
if this involves C(C′(H o′

C′)−H o′
C). In the literature the above general situation is

called strongly singular (see also Fig. 2.3). If C(C′) ⊆ C(V ), one refers to the model
as a weakly singular Gauss-Markov model (see Nordström, 1985). In this case

Rn = {C(C′) ⊕ C(V (C′)o)} � C(V )⊥,

which is illustrated in Fig. 2.4.
Moreover, some light is now shed on the decomposition

C(C′) + C(V ) = C(C′) ⊕ C(V (C′)o). (2.11)

Although it may look mysterious, this is a natural expression and in full agreement
with the results for the model in (2.1). For the Gauss-Markov model, a subspace
decomposition has been presented with a standard inner product. However, the
“natural” inner product is based on V ; i.e. for any pair of vectors u, v the inner
product is defined as (u, v) = u′V −1v, if V −1 exists. If V is singular and the
vectors u, v belong to C(V ), one can use (u, v) = u′V −v. If either of the vectors
u, v does not belong to C(V ), the inner product does not make sense. Let us return
to (2.11). If V is non-singular, (2.11) can be written

Rn = CV (C′) � CV (V (C′)o).
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If V is singular and C(C′) ⊆ C(V ),

CV (V ) = CV (C′) � CV (V (C′)o).

Thus we have an informative orthogonal decomposition,

Rn = CV (C′) � CV (V (C′)o) � CV (V )⊥.

Estimators are obtained by projecting random variables corresponding to data on
these spaces, with the additional assumption that x ∈ C(V ). If (2.8) is rewritten as

̂β
′
C = x′(I − V −V (C′)o((C′)o′

V V −V (C′)o)−(C′)o′
V ), (2.12)

the orthogonal projection of x on CV (V (C′)o)⊥ is uncovered. Moreover, (2.10) can
be written as follows:

(r − r(F ))̂σ 2 = r ′V −r,

which means that we have multiplied the residual r by itself, using the inner product,
with the residual being equal to

r = V (C′)o((C′)o′
V V −V (C′)o)−(C′)o′

V V −x.

Thus, similar to the linear model with a non-singular dispersion matrix, the
estimators for the weakly singular Gauss-Markov model are also obtained with the
help of projections.

Turning to the strongly singular Gauss-Markov model, it follows immediately
from (2.10) and (2.12) that V − cannot be used as an inner product if one wants
to apply a geometrical approach based on projections. Hence, the question is what
inner product should be used. It follows from (2.12) that an inner product based on
a matrix W has to satisfy

(C′)o′
W = (C′)o′

V , for any(C′)o′

(C′)o′
WW−x = (C′)o′

x, x ∈ C(C′) + C(V ).

We will not discuss these equations in detail, but note that one choice of solution is
W = C′C + V . Hence, C′C + V is used to define the inner product instead of V .
However, W = C′MC +V , where M is any p.d. matrix, could also have been used
as a solution. Moreover, instead of (2.12),

̂β
′
C = x′(I − (C′C + V )−V (C′)o((C′)o′

V (C′C + V )−V (C ′)o)−(C′)o′
V )
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and instead of (2.10)

(r − r(F ))̂σ 2 = r ′(C′C + V )−r,

where

r = V (C′)o((C′)o′
V (C′C + V )−V (C′)o)−(C′)o′

V (C′C + V )−x.

Therefore, we have the following spaces which can serve as a basis for the statistical
inference and evaluations:

Rn = CW (C′) � CW(V (C′)o) � CW(C′ : V )⊥,

where W = C′C + V , and when calculating the inner product, the Moore-Penrose
inverse is used, i.e. (u, v) = u′W+v, for u and v in C(W). Among other things, this
implies that CW(C′ : V )⊥ is orthogonal to the other spaces and does not bear any
information. Hence, we have obtained a general basic decomposition for analysing
the strongly singular Gauss-Markov model. From the space decomposition we
cannot identify what role the deterministic part of the model plays. On the other
hand, if we choose the g-inverse (H o′

C ′)− to be the Moore-Penrose inverse, then
one can show that

Rn = CW(C′(H o′
C′)+H o′

C′)

� CW(C ′) ∩ CW(V ) � CW (V (C ′)o) � (CW(C ′) + CW (V ))⊥

= CW(C′CV o) � CW(C ′) ∩ CW(V ) � CW(V (C ′)o) � (CW(C′) + CW(V ))⊥.

By projecting observations on these spaces, estimators of parameters can be derived,
non-random parts can be identified and residuals can be derived, in order to validate
the model and estimate the variance parameter.

Finally, restrictions on the mean parameter space,

β ′K = 0,

are briefly considered. These restrictions are used, for example, when hypotheses
are tested. In this case

β ′ = γ Ko′
,

where γ is a new parameter and, instead of (2.2) and (2.3), the following equations
hold:

x′
oH

o = β ′Ko′
CH o,

x′G′ = β ′Ko′
CG′ + ε̃, ε̃ ∼ Nr(0, σ 2I ).
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Note that x ∈ C(C′Ko) + C(V ). Thus, the above approach can be copied and the
following estimators are obtained:

̂β
′
C = x′(I − (C ′KoKo′

C + V )−V (C ′Ko)o

×((C′Ko)o
′
V (C′KoKo′

C + V )−V (C ′Ko)o)−(C ′Ko)o
′
V ),

(r − r(F ))̂σ 2 = r ′(C′KoKo′
C + V )−r,

r = V (C′Ko)o

×((C′Ko)o
′
V (C′KoKo′

C + V )−V (C′Ko)o)−(C ′Ko)o
′
V (C ′KoKo′

C + V )−x,

as well as the orthogonal subspace decomposition

Rn = CW0(C
′KoKo′

CV o) � CW0(C
′Ko) ∩ CW0(V )

� CW0(V (C ′Ko)o) � (CW0(C
′Ko) + CW0(V ))⊥, W 0 = C′KoKo′

C + V .

These relations are natural, but it would have been interesting to have been able
to decompose CW0(C

′) ∩ CW0(V ) into two orthogonal subspaces CW0(C
′Ko) ∩

CW0(V ) � CW0(C
′Ko)⊥ ∩ CW0(C

′) ∩ CW0(V ). This would have meant that
CW0(C

′Ko) would have had to commute with CW0(C
′)∩CW0 (V ) (for a definition of

commutativity see Kollo and von Rosen (2005, p. 31)), which, for example, takes
place if CW0(K

o) ⊆ CW0((CV o)o), because in this case CW0(C
′Ko) is a subspace to

CW0(C
′) ∩ CW0(V ) (see Appendix B, Theorem B.3).

2.3 Multivariate Linear Models

In this short section, an MLE for � is additionally given, for comparisons with
the estimator of the variance in univariate linear models (see Fig. 2.5). The purpose
of this section is to link univariate linear models with multivariate linear models,
which will later be linked to the BRM . The multivariate linear model was presented
in Sect. 1.4 and its MLEs were given by

̂BoC = XoPC ′ ,

n̂�o = ror
′
o, r ′

o = (I − PC ′)X′
o. (2.13)

In comparison with univariate linear models, the only difference when estimating
parameters is that instead of x′: 1 ×n, we have X: p ×n. Thus, in some sense, from
a mathematical point of view, the treatment of the univariate and multivariate models
concerning estimation is the same. Indeed it would be mathematically more correct
to say “linear multivariate model” instead of “multivariate linear model”. However,
if one considers properties of the estimators, then differences appear. This is mainly



50 2 The Basic Ideas of Obtaining MLEs: A Known Dispersion

Fig. 2.5 Decomposition of the whole space according to the transpose of the design matrix C,
which is valid for both the multivariate and univariate linear models. The difference in size of
the figures indicates an observation space which is p-dimensional versus a space which is one-
dimensional

due to the difference between the Wishart distribution and the χ2 distribution
(see Appendix A, Sect. A.9, for definitions of the distributions). Moreover, from a
practical point of view, since in the multivariate case one is dealing with several
variables simultaneously, the data analysis also becomes more complicated. For
example, dependencies among the variables have to be taken into account, which
of course is not necessary in the univariate case. Obviously there are more questions
which are to be considered in the multivariate model. The differences between the
univariate linear and multivariate linear models are illustrated in Fig. 2.5.

It is worth noting that any multivariate linear model via a vectorization can be
written as a univariate linear model. Consider the multivariate linear model

X = BC + E, E ∼ Np,n(0,�, I ), � > 0, (2.14)

which can also be written as follows:

vecX = (C′ ⊗ I )vecB + e, e ∼ Npn(0, I ⊗ �), � > 0. (2.15)

However, stating that any one of the representations given above has some general
advantages does not make sense from a statistical point of view. Finally, it is noted
that a general inference strategy in multivariate analysis is to take an arbitrary linear
combination of X, let us say l′X, leading to a univariate model, and then to try to
choose in some sense the best l (e.g. see Rao, 1973, Chapter 8).

2.4 BRM with a Known Dispersion Matrix

It should be stressed that the multivariate model illustrated in Fig. 2.5 is a special
case of the model given in (1.9), which will serve as a basic model for the
presentation of the subject matter of this book. Before starting the technical
presentation, a formal definition of the BRM is provided.
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Definition 2.1 (BRM) Let X: p × n, A : p × q , q ≤ p, B: q × k, C: k × n,
r(C) + p ≤ n and �: p × p be p.d. Then

X = ABC + E (2.16)

defines the BRM , where E ∼ Np,n(0,�, I ), A and C are known matrices, and B

and � are unknown parameter matrices.

The condition r(C) + p ≤ n is an estimability condition when � is unknown.
However, for ease of presentation in this section, it is assumed that the dispersion
matrix � is known. The idea is to give a general overview and leave many details
for the subsequent sections.

For the likelihood, L(B), we have

L(B) ∝ |�|−n/2e−1/2tr{�−1(Xo−ABC)(Xo−ABC)′}.

From (2.16) it is seen that there exists a design matrix A which describes the
expectation of the rows of X (a within-individuals design matrix), as well as a design
matrix C which describes the mean of the columns of X (a between-individuals
design matrix). It is known that if one pre- and post-multiplies a matrix, a bilinear
transformation is performed. Thus, in a comparison of (1.7) and (2.16), instead of a
linear model in (1.7), there is a bilinear one in (2.16). The previous techniques used
when Rn was decomposed into C(C′) � C(C′)⊥ are adopted; i.e. due to bilinearity
the tensor product Rp ⊗ Rn is decomposed as

(C(A) ⊗ C(C′)) � (C(A) ⊗ C(C′)⊥) � (C(A)⊥ ⊗ C(C′)) � (C(A)⊥ ⊗ C(C′)⊥).

Let the projections P A,	 = A(A′�−1A)−A′�−1 and P C ′ be as before (see
Appendix A, Sect. A.7). It appears that the likelihood can be decomposed as follows
(omitting the proportionality constant (2π)−np/2):

L(B) ∝ |�|−n/2exp{−1/2tr{�−1PA,	(Xo − ABC)(Xo − ABC)′P ′
A,	}}

×exp{−1/2tr{�−1(I − PA,	)(Xo − ABC)(Xo − ABC)′(I − P ′
A,	)}},

since (I −P ′
A,	)�−1P A,	 = 0. Thus, a decomposition of Rp into two orthogonal

subspaces has been utilized. Continuing as in the linear case, i.e. using PC ′ and
I − PC ′ , the following expression for the likelihood is obtained:

L(B) ∝ |�|−n/2exp{−1/2tr{�−1PA,	(Xo − ABC)P C′(Xo − ABC)′P ′
A,	}}

×exp{−1/2tr{�−1P A,	(Xo − ABC)(I − PC′)(Xo − ABC)′P ′
A,	}}

×exp{−1/2tr{�−1(I − PA,	)(Xo − ABC)P C′(Xo − ABC)′(I − P ′
A,	)}}

×exp{−1/2tr{�−1(I − PA,	)(Xo − ABC)(I − PC′)(Xo − ABC)′(I − P ′
A,	)}};
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i.e. the likelihood consists of four factors. Utilizing (I − PA,	)A = 0 and (I −
P C ′)C′ = 0, this expression reduces to

L(B) ∝ |�|−n/2exp{−1/2tr{�−1PA,	(Xo − ABC)PC ′(Xo − ABC)′P ′
A,	}}

×exp{−1/2tr{�−1P A,	Xo(I − PC ′)X′
oP

′
A,	}}

×exp{−1/2tr{�−1(I − P A,	)XoPC ′X′
o(I − P ′

A,	)}}
×exp{−1/2tr{�−1(I − P A,	)Xo(I − PC ′)X′

o(I − P ′
A,	)}}, (2.17)

and only the first term involves the unknown parameter. Since � is supposed to be
known, the maximum of the likelihood occurs when

ÂBoC = P A,	XoP C ′

= A(A′�−1A)−A′�−1XoC
′(CC′)−C, (2.18)

because in (2.17) one term smaller than one cancels. If a vectorized form of the
model had been used, i.e.

vecX = (C′ ⊗ A)vecB + e, e ∼ Npn(0, I ⊗ �),

we would have obtained, applying standard linear models theory, the estimator given
in Sect. 2.2, which is a BLUE (best linear unbiased estimator). In the next section the
“real” case when � is unknown will be considered. The decomposition of Rp ⊗Rn

when estimating the parameters is illustrated in Fig. 2.6.
Note that C	(A) means that the inner product is defined through �−1; i.e. take

any two vectors x and y from C	(A) and then the inner product is defined by the
operation x′�−1y. When ÂBC is estimated, X is projected on the tensor space
C	(A) ⊗ C(C′). If C	(A) is the whole space, P A = I , which for example takes

Fig. 2.6 Decomposition of the whole space according to the within-individuals and between-
individuals designs, illustrating the mean and residual spaces in the BRM , and a comparison with
the multivariate linear model (MANOVA)
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place when A: p × p is non-singular. Moreover, in Fig. 2.6, C	(A)⊥ stands for the
space where any element, let us say u, satisfies u′�−1A = 0.

2.5 EBRMm
B

with a Known Dispersion Matrix

In Sect. 1.5 two extensions of the BRM were presented, i.e. the EBRMm
B and

EBRMm
W , together with examples of the application of these models. In this section

the reader is introduced to the mathematics concerning the EBRMm
B , with m = 3,

which will also be used later when studying the model without a known dispersion
matrix. Now (2.16) is formally generalized and the EBRMm

B is specified in detail.

Definition 2.2 (EBRMm
B ) Let X: p × n, Ai : p × qi , qi ≤ p, B i : qi × ki , Ci :

ki × n, i = 1, 2, . . . ,m, r(C1) + p ≤ n, C(C′
i ) ⊆ C(C′

i−1), i = 2, 3, . . . ,m, and
�: p × p be p.d. Then

X =
m
∑

i=1

AiBiCi + E (2.19)

defines the EBRMm
B , where E ∼ Np,n(0,�, I ), {Ai} and {Ci} are known matrices,

and {B i} and � are unknown parameter matrices.

In the present book it is usually assumed that m = 2, 3, and in this section �

is supposed to be known. In that case, r(C1) + p ≤ n, C(C′
i ) ⊆ C(C′

i−1), i =
2, 3, . . . ,m are not needed when estimating B i . However, since the results from
this chapter will be utilized in the next chapter, it is assumed that C(C′

i ) ⊆ C(C′
i−1),

i = 2, 3, . . . ,m, holds. Thus, the following model will be handled:

X = A1B1C1 + A2B2C2 + A3B3C3 + E, E ∼ Np,n(0,�, I ), (2.20)

where C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1), Ai : p×qi , the parameter Bi : p×qi , is unknown,

Ci : ki ×n and the dispersion matrix � is supposed to be known. It has already been
noted in Sect. 1.5 that without the subspace condition on C(Ci ), we would have
the general “sum of profiles model” (a multivariate seemingly unrelated regression
(SUR) model). Later (2.20) is studied when C(A3) ⊆ C(A2) ⊆ C(A1) replaces
C(C′

3) ⊆ C(C′
2) ⊆ C(C′

1), i.e. we have an EBRM3
W . Since the model under the

assumption C(A3) ⊆ C(A2) ⊆ C(A1) through a reparametrization can be converted
to (2.20) and vice versa, i.e. EBRM3

B � EBRM3
W , the models are in some sense

equivalent. However, because of non-linearity in estimators of mean parameters, this
does not imply that all the results for the models can easily be transferred from one
model to the other.

From now on, under the nested subspace condition C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1),

MLEs will be derived when � > 0 is known. The likelihood is proportional to

|�|−n/2exp{−1/2tr{�−1(Xo − E[X])()′}}, (2.21)
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where E[X] = A1B1C1 + A2B2C2 + A3B3C3. A chain consisting of three links
of relatively straightforward calculations involving the trace function will start. The
calculations will involve the following three basic quantities:

S1 = Xo(I − PC ′
1
)X′

o, (2.22)

P Ao
1,	

−1 = Ao
1(A

o′
1 �Ao

1)
−Ao′

1 �, (2.23)

P A1,	 = A1(A
′
1�

−1A1)
−A′

1�
−1. (2.24)

For notational convenience Q1 = P Ao
1,	

−1 and P 1 = P A1,	 will be used. Note that
S1 is positive definite with probability 1 and both Q1 and P 1 are projectors which
are related, i.e. P 1 = I − Q′

1 (see Appendix B, Theorem B.11 (v)). Thus,

tr{�−1(Xo − E[X])()′} = tr{�−1S1} + tr{�−1(XoPC ′
1
− E[X])()′}

(because C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1))

= tr{�−1S1} + tr{(XoP C ′
1
− E[X])′�−1(XoPC ′

1
− E[X])}

(because tr(UV ) = tr(V U ))

= tr{�−1S1} + tr{(XoPC ′
1
− E[X])′�−1P 1(XoP C ′

1
− E[X])}

+tr{(XoP C ′
1
− E[X])′Q1�

−1(XoP C ′
1
− E[X])}

(because Q1�
−1 + �−1P 1 = �−1) (see Appendix B, Theorem B.11 (v))

≥ tr{�−1S1} + tr{(XoP C ′
1
− E[X])′Q1�

−1Q′
1(XoP C ′

1
− E[X])}

(because Q1�
−1 = Q1�

−1Q′
1)

= tr{�−1S1} + tr{�−1(Q′
1XoP C ′

1
− E[Q′

1X])()′} (2.25)

(because tr(UV ) = tr(V U )).

Note that E[Q′
1X] = Q′

1A2B2C2 + Q′
1A3B3C3; i.e. the parameter B1 has been

excluded (filtered) and thereby the number of parameters has been reduced. Equality
holds in (2.25) if and only if

A′
1�

−1(XoPC ′
1
− A1B1C1 − A2B2C2 − A3B3C3) = 0, (2.26)
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and this expression will later be used in order to determine ̂B1. When continuing,
the calculations which started with (2.22) will be repeated, but now using matrices
which have been projected on C(A1)

⊥. Put

S2 = S1 + Q′
1XoP C ′

1
(I − P C ′

2
)PC ′

1
X′

oQ1, (2.27)

Q2 = P (Q′
1A2)o,	−1 = (Q′

1A2)
o((Q′

1A2)
o′
�(Q′

1A2)
o)−(Q′

1A2)
o′
�, (2.28)

P 2 = PQ′
1A2,	

= Q′
1A2(A

′
2Q1�

−1Q′
1A2)

−A′
2Q1�

−1 (2.29)

and then continuing from (2.25), as well as repeating the arguments used in (2.25),
yields

tr{�−1S2} + tr{(Q′
1XoPC ′

2
− E[Q′

1X])′�−1(Q′
1XoP C ′

2
− E[Q′

1X])}
= tr{�−1S2} + tr{(Q′

1XoP C ′
2
− E[Q′

1X])′�−1P 2(Q
′
1XoP C ′

2
− E[Q′

1X])}
+tr{(Q′

1XoP C ′
2
− E[Q′

1X])′Q2�
−1(Q′

1XoP C ′
2
− E[Q′

1X])}
≥ tr{�−1S2} + tr{(Q′

1XoP C ′
2
− E[Q′

1X])′Q2�
−1Q′

2(Q
′
1XoPC ′

2
− E[Q′

1X])}
= tr{�−1S2} + tr{�−1(Q′

2Q
′
1XoPC ′

2
− E[Q′

2Q
′
1X])()′}. (2.30)

Equality holds in (2.30) if and only if

A′
2Q1�

−1(Q′
1XoP C ′

2
− Q′

1A2B2C2 − Q′
1A3B3C3) = 0. (2.31)

Moreover, since in (2.30) E[Q′
2Q

′
1X] = Q′

2Q
′
1A3B3C3, we have in two steps

reduced the EBRM3
B to a BRM . Let

S3 = S2 + Q′
2Q

′
1XoPC′

2
(I − P C′

3
)P C′

2
X′

oQ1Q2, (2.32)

Q3 = P (Q′
2Q′

1A3)o,	−1 = (Q′
2Q

′
1A3)

o((Q′
2Q

′
1A3)

o′
�(Q′

2Q
′
1A3)

o)−(Q′
2Q

′
1A3)

o′
�,

(2.33)

P 3 = P Q′
2Q

′
1A3,	

= Q′
2Q

′
1A3(A

′
3Q1Q2�

−1Q′
2Q

′
1A3)

−A′
3Q1Q2�

−1 (2.34)

and then advancing from (2.30) yields

tr{�−1S3} + tr{(Q′
2Q

′
1XoPC′

3
− E[Q′

2Q
′
1X])′�−1(Q′

2Q
′
1XoPC′

3
− E[Q′

2Q
′
1X])}

= tr{�−1S3}
+tr{(Q′

2Q
′
1XoP C′

3
− E[Q′

2Q
′
1X])′�−1P 3(Q

′
2Q

′
1XoPC′

3
− E[Q′

2Q
′
1X])}

+tr{(Q′
2Q

′
1XoP C′

3
− E[Q′

2Q
′
1X])′Q3�

−1(Q′
2Q

′
1XoPC′

3
− E[Q′

2Q
′
1X])}
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≥ tr{�−1S3} + tr{(Q′
2Q

′
1XoPC′

1
)′Q3�

−1Q′
3(Q

′
2Q

′
1XoPC′

1
)}

= tr{�−1S3} + tr{�−1Q′
3Q

′
2Q

′
1XoP C′

3
X′

oQ1Q2Q3} (2.35)

with equality if and only if

A′
3Q1Q2�

−1(Q′
2Q

′
1XoP C ′

3
− Q′

2Q
′
1A3B3C3) = 0. (2.36)

It follows that the last line in (2.35) is independent of the parameters B i , i = 1, 2, 3,
and if we can find estimators of Bi so that the lower bound is obtained, we have
found the MLEs.

From the above-presented chain of calculations, it follows from (2.26), (2.31)
and (2.36) that three linear equations in three unknown parameters appear which
then have to be solved. This means that if we can find solutions to these equations,
the lower bound given in (2.35) can be attained. Thus we have to verify the existence
of a solution. From (2.36) it follows that

C(A′
3Q1Q2�

−1Q′
2Q

′
1XoP C ′

3
) ⊆ C(A′

3Q1Q2�
−1Q′

2Q
′
1A3) = C(A′

3Q1Q2)

and thus there always exists a ̂B3 (see Appendix B, Theorem B.10 (ii)). Moreover,
for (2.31) there is a solution with respect to B2 if and only if

C(A′
2Q1�

−1Q′
1(XoP C ′

2
− A3B3C3)) ⊆ C(A′

2Q1)

holds, which is always true, and finally (2.26) implies that a solution with respect to
B3 exists if and only if

C(A1�
−1(XoP C ′

1
− A2B2C2 − A3B3C3)) ⊆ C(A1),

which also is trivially true. Thus there exists at least one solution. To estimate Bi ,
i = 1, 2, 3, uniquely, we need conditions on C(Ai ), i = 1, 2, 3, which will be
considered in Chap. 4. However, the general mean E[X] can always be uniquely
estimated:

Ê[X] = A1̂B10C1 + A2̂B20C2 + A3̂B30C3

= P 1XoP C ′
1
+ (I − P 1)(A2̂B20C2 + A3̂B30C3)

= P 1XoP C ′
1
+ Q′

1(A2̂B20C2 + A3̂B30C3)

= P 1XoP C ′
1
+ P 2Q

′
1XoP C ′

2
+ Q′

2Q
′
1A3̂B30C3

= P 1XoP C ′
1
+ P 2Q

′
1XoP C ′

2
+ P 3Q

′
2Q

′
1XoP C ′

3
. (2.37)

In order to understand Ê[X], as well as the calculations leading to the final
expression, it is of interest to note that calculations constitute projections of
observations. Therefore, it is informative to know which spaces the observations
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are projected onto. Moreover, since � is known, standard linear models theory (see
Sect. 2.2) implies that Ê[X] should be expressed through a projector. Therefore,
the projectors P 1, P 2 and P 3 will be exploited. To establish that P 1, P 2 and P 3
are projectors, straightforward calculations show that each of the three matrices is
idempotent. From (2.23) it follows that

C(P 1) = C(A1),

and using (2.29) and the projection theorem (Appendix B, Theorem B.11 (iv)) yields

C(P 2) = C(Q′
1A2) = C(�Ao

1) ∩ (C(A1) + C(A2)) = C	(A1)
⊥ ∩ (C	(A1 : A2)). (2.38)

Moreover, (2.34) implies

C(P 3) = C(Q′
2Q

′
1A3) = C(�(Q′

1A2)
o) ∩ (C(Q′

1A2) + C(Q′
1A3))

(because of the projection theorem, i.e. Appendix B, Theorem B.11 (iv))

= C(�(Q′
1A2)

o) ∩ C(Q′
1) ∩ (C(A1 : A2 : A3)

(because of the projection theorem, i.e. Appendix B, Theorem B.11 (iv), and (2.38))

= (C(A1) + C(�(A1 : A2)
o)) ∩ C(�Ao

1) ∩ (C(A1 : A2 : A3)

= (C(A1) ∩ C(�Ao
1) + C(�(A1 : A2)

o)) ∩ C(A1 : A2 : A3)

(through application of the modular identity, see Appendix B, Theorem B.3 (iv))

= C(�(A1 : A2)
o) ∩ C(A1 : A2 : A3)

(because C(A1) ∩ C(�Ao
1) = {0})

= C	(A1 : A2)
⊥ ∩ C	(A1 : A2 : A3).

Note that these relations imply that P 2Q
′
1 = P 2 and P 3Q

′
2Q

′
1 = P 3, which means

that instead of (2.37),

Ê[X] = P 1XoP C ′
1
+ P 2XoP C ′

2
+ P 3XoP C ′

3
. (2.39)

Furthermore, when the inner product is defined via �, the projectors P 1, P 2 and P 3
project onto orthogonal subspaces. Thus, there is enough information to generalize
Figs. 2.3 and 2.6 so that the EBRM3

B can also be described graphically, for example
as in Fig. 2.7.
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Fig. 2.7 Decomposition of
the whole space according to
the within-individuals and the
between-individuals designs,
illustrating the mean and
residual spaces in the
EBRM3

B : V1 = C	(A1),
V2 = C	(A1 :
A2) ∩ C	(A1)

⊥,
V3 = C	(A1 : A2 :
A3) ∩ C	(A1 : A2)

⊥,
V4 = C	(A1 : A2 : A3)

⊥,
W1 = C(C ′

3),
W2 = C(C ′

2) ∩ C(C′
3)

⊥,
W3 = C(C ′

1) ∩ C(C′
2)

⊥,
W4 = C(C ′

1)
⊥

Note that in Fig. 2.7 the so-called stairs structure is indicated, which is a
distinctive feature of the EBRM•• .

The estimation procedure for obtaining Ê[X] will now be graphically illustrated.
The fact is that if one understands the link between Fig. 2.7 and the derivation of
the maximum likelihood estimators, more general models can be treated and, for
example, expressions for the EBRMm

B can be derived. Moreover, similar figures
will be used when working with the EBRM3

W . First it is noted that vec(E[X])
belongs to the mean space

(V1 ⊗ (W1 �W1 �W1)) � (V2 ⊗ (W1 �W1)) � (V3 ⊗ W1);

the notation used here, including the definition of the subspaces, and the reasons for
using the expressions employed follow from Fig. 2.7.

The estimation of the parameters follows a three-step procedure with a final
updating of expressions. The process is illustrated in Figs. 2.8 and 2.9. LetVi be as in
Fig. 2.7. In the first step of the estimation procedure the tensor space C(C′

1)⊗C	(I )

is decomposed into two parts and the observation vector is projected on C(C′
1)⊗V1

and C(C′
1)⊗ (V2 �V3 �V4), via the projections (P C ′

1
⊗P 1)xo and (P C ′

1
⊗Q′

1)xo,
where P 1 and Q1 are defined by (2.24) and (2.23), and xo = vecXo (see Fig. 2.8).
The projection (P C ′

1
⊗ P 1)xo is used for estimating B1 and one can, according

to (2.26), express ̂B1o as a function of B2 and B3. Moreover, the second projection
does not include B1, which is essential. Relative to B1 the second projection
generates a residual space which is part of the total residual space (see Figs. 2.8
and 2.9). This space will be utilized when estimating B2 and B3. In Fig. 2.8, P1
symbolizes the projection.

In the second step the ideas from the first step are repeated and C(C′
2) ⊗ (V2 �

V3�V4) is decomposed into two parts, C(C′
2)⊗V2 and C(C′

2)⊗(V3�V4). Therefore,
(P C ′

2
⊗P 2)(PC ′

1
⊗Q′

1)xo and (P C ′
2
⊗Q′

2)(P C ′
1
⊗Q′

1)xo will be utilized. However,
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Fig. 2.8 Illustration of the various steps in the maximum likelihood estimation procedure. For
details, the reader is referred to the text

Fig. 2.9 Illustration of the steps when obtaining maximum likelihood estimators. For the notation
see Fig. 2.7 and the text

(P C ′
2
⊗P 2)(P C ′

1
⊗Q′

1) = P C ′
2
⊗P 2 and (P C ′

2
⊗Q′

2)(PC ′
1
⊗Q′

1) = P C ′
2
⊗Q′

2Q
′
1.

According to (2.31) and P C ′
2

⊗ P 2, ̂B2o can be expressed as a function of B3.
Moreover, the projection on the new residual space is in Fig. 2.8 indicated by P2.

In the third step C(C′
3)⊗(V2�V3�V4) is also decomposed into two parts and the

part which is obtained from the projection (PC ′
3
⊗ P 3)xo is used to estimate B3.

The explicit expression for ̂B3o is obtained from (2.36). Since there are no more
unknown parameters involved in ̂B3o, all the estimators can be found via a final
backwards updating; i.e. ̂B3o is used in (2.31) in order to find ̂B2o and then ̂B3o and
̂B2o are used in (2.26).

So far we have only considered how to estimate the parameters of the model. The
statistical paradigm, however, demands that methods for validating the EBRMm

B

should be developed. Many natural methods are based on the exploration of residual
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spaces; i.e. we have to consider the tensor space (C(C′
1⊗A1)+C(C′

2⊗A2)+C(C′
3⊗

A3))
⊥, which equals

(C(C′
1 ⊗ A1) + C(C′

2 ⊗ A2) + C(C′
3 ⊗ A3))

⊥

= C(C′
3) ⊗ C	(A1 : A2 : A3)

⊥ � C(C′
3)

⊥ ∩ C(C′
2) ⊗ C	(A1 : A2)

⊥

� C(C′
2)

⊥ ∩ C(C′
1) ⊗ C	(A1)

⊥ � C(C′
1)

⊥ ⊗ R
p. (2.40)

Thus, residuals are introduced which are projections on the subspaces introduced
in (2.40), i.e.

R1 = X(I − P C ′
1
), R2 = Q′

1XP C ′
1
,

R3 = Q′
2Q

′
1XPC ′

2
, R4 = Q′

3Q
′
2Q

′
1XP C ′

3
.

Indeed, a finer division of the subspaces can be performed and this is illustrated via
the BRM , where

R11 = PA,	X(I − PC ′), R21 = (I − P A,	)X(I − P C ′), (2.41)

R2 = (I − P A,	)XP C ′ . (2.42)

All these residuals are presented in Fig. 2.10. However, any treatment and utilization
of the residuals are postponed until the models are considered under the assumption
of an unknown �.

The following is worth noting. Suppose that in the BRM there are bilinear
restrictions on the mean parameters, i.e.

E[X] = ABC, FBG = 0,

where F and G are known matrices. Because FBG = 0 forms a linear system of
equations, the restriction FBG = 0 can be reformulated as follows (see Appendix
B, Theorem B.10 (i)):

B = (F ′)o�1 + F ′�2G
o′
,

Fig. 2.10 Illustration of four
residual spaces in the
EBRM3

B and the three
residual spaces in the BRM .
For the notation see Fig. 2.7
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(a) (b) (c)

Fig. 2.11 In (a), a BRM without restrictions is shown, in (b), the area where FBG = 0 may have
an effect is illustrated and in (c), FBG = 0 holds, leading to a stairs structure, i.e. an EBRM2

B .
Furthermore, V1 = C	(A(F ′)o), V2 = C	(A) ∩ C	(A(F ′)o)⊥, V3 = C	(A)⊥, W1 = C(C ′Go),
W2 = C(C ′) ∩ C(C ′Go)⊥ and W3 = C(C ′)⊥

where �1 and �2 are new parameters. Thus the BRM with bilinear restrictions
turns into an EBRM2

B . This is illustrated in Fig. 2.11. Later in Chaps. 3 and 7
a complete theory is presented concerning how to estimate parameters and test
hypotheses when bilinear restrictions exist.

This section is ended by briefly considering residuals for the liming data
presented in Example 1.5.

Example 2.1 In Example 1.5, liming data for 20 Swedish lakes were presented. A
BRM with � = I 3 and A, given in Example 1.5, was applied and led to

̂Bo =
(

7.09 7.03
−0.03 −0.04

)

. (2.43)

The residuals R11, R21 and R2 in Fig. 2.10 were calculated according to (2.41)
and (2.42), and are presented in Table 2.1. Now the problem is to interpret the
residuals and decide if there are any extreme residuals. This can be accomplished in
many ways. It is, however, crucial that we derive the distributions for the residuals
(e.g. for the largest or the smallest residual). A detailed handling of the residuals will
be provided in Chap. 6. Moreover, it should be noted that if, for example, the value
for Lake 1, depth 0.5 m is changed from 6.72 to 10, this will affect the residuals
in Region 1, whereas the residuals in Region 2 will be unaffected. The residual for
Lake 1, depth 0.5 m changes from −0.3 to 2.1. Other changes also appear, but are
not very pronounced. If the values for Lake 1, depth 5 and 10 m are also altered,
supposed to equal 10, the three residuals R11 for Lake 1 equal 2.6, 2.7 and 2.8,
respectively, are much larger than the other residuals. Thus, it has been demonstrated
that outstanding observations can be identified via the residuals. ��
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Table 2.1 Residuals for the liming data presented in Example 1.5 where in the model � = I 3

Lake R11 R21 × 10−3 R2 × 10−2 Lake R11 R21 × 10−3 R2 × 10−2

1 −0.3 5 −2 11 0.2 109 −2

1 −0.3 −9 3 11 0.1 −207 4

1 −0.3 4 −2 11 0.1 98 −2

2 −0.3 0.9 −2 12 −0.1 −15 −2

2 −0.2 −2 3 12 0.0 28 4

2 −0.0 0.8 −2 12 0.1 −13 −2

3 0.1 7 −2 13 0.3 −52 −2

3 0.2 −13 3 13 0.4 100 4

3 0.3 6 −2 13 0.6 −47 −2

4 0.1 −8 −2 14 −0.1 41 −2

4 0.2 15 3 14 −0.2 77 4

4 0.3 −7 −2 14 −0.4 −37 −2

5 −0.1 36 −2 15 −0.3 4 −2

5 −0.2 −70 3 15 −0.4 −7 4

5 −0.3 32 −2 15 −0.4 3 −2

6 0.2 20 −2 16 −0.1 7 −2

6 0.1 −37 3 16 −0.2 −14 4

6 0.0 18 −2 16 −0.4 6 −2

7 −0.2 −7 −2 17 −0.0 15 −2

7 −0.2 12 3 17 −0.2 −28 4

7 −0.3 −6 −2 17 0.4 13 2

8 0.1 −51 −2 18 −0.1 −56 −2

8 0.1 97 3 18 0.1 105 4

8 0.1 −46 −2 18 0.2 −50 −2

9 0.2 5 −2 19 0.0 22 −2

9 0.1 −9 3 19 0.1 −42 4

9 −0.0 4 −2 19 0.2 20 −2

10 0.2 7 −2 20 0.2 7 −2

10 0.2 12 3 20 0.3 −14 4

10 0.3 −6 −2 20 0.5 6 −2

2.6 EBRMm
W

with a Known Dispersion Matrix

Here the estimators for the EBRM3
W when � is known are derived and compared

with the estimators for the EBRM3
B , which were obtained in the previous section.

For completeness, the definition of the model under consideration is given below.

Definition 2.3 (EBRMm
W ) Let X: p×n, Ai : p×qi , qi ≤ p, B i : qi×ki , Ci : ki×n,

i = 1, 2, . . . ,m, r(C′
1 : C′

2 : C′
3) + p ≤ n, C(Ai ) ⊆ C(Ai−1), i = 2, 3, . . . ,m, and
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�: p × p be p.d. Then

X =
m
∑

i=1

AiBiCi + E (2.44)

defines the EBRMm
W , where E ∼ Np,n(0,�, I ), {Ai} and {Ci} are known matrices,

and {B i} and � are unknown parameter matrices.

When estimating the parameters of the EBRM3
B , a chain of straightforwardly

performed calculations was presented. Now, in order to estimate the parameters in
the EBRM3

W , a between-individuals subspace decomposition is utilized and it is
noted that (use Appendix B, Theorem B.3 (iii))

Rn = C(C′
1) � C(C′

1)
⊥ ∩ C(C′

1 : C′
2) � C(C′

1 : C′
2)

⊥ ∩ C(C′
1 : C′

2 : C′
3)

� C(C′
1 : C′

2 : C′
3)

⊥.

Let P i , i = 1, 2, 3, 4, be orthogonal projections on these spaces, i.e.

P 1 = PC ′
1
, P 2 = P Q1C

′
2
, P 3 = PQ2Q1C

′
3
, P 4 = P (C ′

1:C ′
2:C ′

3)
o , (2.45)

where

Q1 = P (C ′
1)

o , Q2 = P (C ′
1:C ′

2)
o .

The likelihood up to proportionality is stated in (2.21) and from there it follows that
one should consider

tr{�−1(Xo − E[X])(Xo − E[X])′} =
4

∑

i=1

tr{�−1(Xo − E[X])P i (Xo − E[X])′},

where one has utilized the fact that P 1 + P 2 + P 3 + P 4 = I , since
∑4

i=1 P i is a
projector on the whole space. Because of the stairs structure, the within-individuals
space, i.e. Rp, is split. Hence,

tr{�−1(Xo − E[X])(Xo − E[X])′} = tr{�−1(Xo − E[X])P 4(Xo − E[X])′} (2.46)

+
3

∑

i=1

tr{�−1P Ai,	(Xo − E[X])P i (Xo − E[X])′P ′
Ai,	

} (2.47)

+
3

∑

i=1

tr{�−1P ′
Ao

i ,	
−1 (Xo − E[X])P i (Xo − E[X])′P Ao

i ,	
−1}. (2.48)
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Note that the right side of (2.46) and (2.48) are free of B1, B2 and B3, and thus
MLEs are obtained if estimators can be found so that (2.47) equals 0; i.e. in this
case there is an upper bound of the likelihood which is attainable and which is free
of parameters. The condition that (2.47) should equal 0 is equivalent to the following
system of linear equations:

A′
1�

−1(Xo − A1B1C1 − A2B2C2 − A3B3C3)P 1 = 0, (2.49)

A′
2�

−1(Xo − A2B2C2 − A3B3C3)P 2 = 0, (2.50)

A′
3�

−1(Xo − A3B3C3)P 3 = 0. (2.51)

In order to find the estimates ̂Bio, i = 1, 2, 3, (2.49)–(2.51) have to be solved. It
can be shown that these linear equations are consistent, but, as for the EBRM3

B it is
meaningless to consider the parameters separately without additional assumptions.
Thus, once again the focus will be on Ê[X], i.e.

Ê[X] = P A1,	XoP C ′
1
+ P A2,	XoP Q1C

′
2
+ PA3,	XoP Q2Q1C

′
3
, (2.52)

which through the following calculations will be shown to hold. Solving (2.49)–
(2.51) yields

Ê[X] = A1̂B1C1 + A2̂B2C2 + A3̂B3C3

= PA1,	XoP 1 + A2̂B2C2(I − P 1) + A3̂B3C3(I − P 1)

= PA1,	XoP 1 + PA2,	XoP 2(I − P 1) + A3̂B3C3(I − P 2)(I − P 1)

= PA1,	XoP 1 + PA2,	XoP 2(I − P 1) + PA3,	XoP 3(I − P 2)(I − P 1),

which is identical to (2.52) since P 2(I −P 1) = P 2 and P 3(I −P 2)(I −P 1) = P 3.
While Fig. 2.7 shows a decomposition of the tensor space for the EBRM3

B ,
Fig. 2.12 provides the corresponding information for the EBRM3

W .
Moreover, while Fig. 2.10 illustrates the four residual spaces in the EBRM3

B ,
Fig. 2.13 presents the four residual spaces in the EBRM3

W . In Fig. 2.13 the natural
residuals are given by

R1 = X(I − P 4), R2 = (I − P A3,	)X(I − P 3),

R3 = (I − P A2,	)X(I − P 2), R4 = (I − P A1,	)X(I − P 1); (2.53)

P i , i = 1, 2, 3, 4, are defined in (2.45).
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Fig. 2.12 Decomposition of the whole space according to the within-individuals and the between-
individuals designs, illustrating the mean and residual spaces in the EBRM3

W : V1 = C	(A3),
V2 = C	(A2) ∩ C	(A3)

⊥, V3 = C	(A1) ∩ C	(A2)
⊥, V4 = C	(A1)

⊥, W1 = C(C ′
1), W2 =

C(C ′
1 : C′

2) ∩ C(C ′
1)

⊥, W3 = C(C′
1 : C′

2 : C ′
3) ∩ C(C ′

1 : C ′
2)

⊥, W4 = C(C ′
1 : C ′

2 : C′
3)

⊥. The

estimator Ê[X] is presented in (2.52)

Fig. 2.13 Illustration of the four residual spaces in the EBRM3
W . For the notation see Fig. 2.12

Problems

1 Give examples, i.e. specify appropriate matrices, of a weakly singular and a
strongly singular Gauss-Markov model.

2 Let

x′ = β ′C + ε, ε ∼ Nn(0, σ 2V ), V p.s.d.

and suppose that β ′L = 0, for some known matrix L. Estimate the parameters β

and σ 2.
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3 Suppose that the model is identical to the one in (2.44) with m = 2 and known
�. Estimate B1 and give conditions on K and L so that K̂B1L does not depend on
any choice of g-inverses.

4 In (2.20) let A3 = 0. Find, for given �, maximum estimators of B1, B2 and
determine

̂X = A1̂B1C1 + A2̂B2C2.

Moreover, show that E[̂X] = A1B1C1 + A2B2C2.

5 Let the model be given by (2.20), but suppose that the nested subspace condition
C(C′

3) ⊆ C(C′
2) ⊆ C(C′

1) does not hold. Derive expressions for ̂Bi , i = 1, 2, 3.

6 For each task presented below create three matrices: A1, A2 and A3.

(i) Create the matrices such that C(Ai ) is orthogonal to C(Aj ), i �= j .
(ii) Create the matrices such that C(Ai ) is disjoint with C(Aj ), i �= j , but not

orthogonal.
(iii) Create matrices such that C(A1) ∩ C(A2) = {0}, C(A1) ∩ C(A3) = {0}, but

C(A1) ∩ C(A2 : A3) �= {0}.
7 Show that |�| is proportional to

∫

exp{−1/2tr{�−1yy ′}}dy,

where � is a dispersion matrix of full rank.

8 Show that |S + V V ′| ≥ |S|, where S is p.d. and V is any matrix of a proper size.

9 Let Ri , i = 1, 2, 3, be given by (2.53). Are these residuals mutually indepen-
dently distributed? Why/why not?

10 Solve (2.49)–(2.51).

Literature

In this chapter the dispersion matrix was supposed to be known, and therefore we
have the obvious connections between the BRM , the EBRMm• and univariate linear
models, generally speaking the Gauss-Markov model. Therefore, it is appropriate
here to provide some background references on univariate linear models. Before
commencing, from a practical point of view it is worth noting that analysis of
variance, regression analysis and covariance analysis can all be treated in the
same fashion within linear models theory. However, for each of these topics,
of course, special problems and ideas have been dealt with and exploited, for
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example balancedness, multiple testing problems, variable selection and a huge
range of methods for performing model validation, including the topic of influential
observations (see Chap. 8 for references). A general ultimate goal has been to
develop corresponding results for the BRM and its extensions, but this has only
been partly fulfilled.

In his classical book entitled “The Design and Analysis of Experiments”,
Kempthorne (1952) presented, among other things, general linear univariate models
with the help of matrices (see also Hinkelmann and Kempthorne, 2005, 2008). The
main topic of Kempthorne’s book was analysis of variance methods, which were
treated in great detail, and even today this book is still highly useful. It constitutes a
basis for a solid handling of models connected to least squares. The development of
methods for handling models via least squares was to a large extent complete in the
1960s. Some other well-known books on linear models and their theory have been
presented by Scheffé (1959), Graybill (1961, 1976), Seber (1966), Searle (1971,
1987) and Rao (1973). In contrast to Kempthorne’s work, the authors who came
after him (in particular Rao) started to use generalized inverses (g-inverses) instead
of performing reparametrizations, in order to handle the rank deficiencies of the
design matrix in the general linear model. In the 1960s a large amount of research
activities on g-inverses started, although the concept is much older. Today many
books are available which specialize in g-inverses, for example, the classical work
by Rao and Mitra (1971) or the newer book by Ben-Israel and Greville (2003),
which among other things includes many references connected to g-inverses (note
that the first edition of the book by Ben-Israel and Greville appeared in the 1970s).
In parallel with all the above-mentioned publications, interesting work on linear
models (slightly more abstract in nature and based on linear spaces and a coordinate-
free approach) was performed by Kruskal (1961), Drygas (1970), Eaton (1970) (see
Eaton, 2007, for some notes on Kruskal’s work), Stone (1977, 1987) and Wong
(1993), among others. Among the more recently published works on linear models
is the book by Sengupta and Jammalamadaka (2003), who present the topic in a
clear and interesting way.

After the basic theory on linear models had been established the academic
challenge was then to develop methods for handling a general linear model with a
known singular dispersion matrix. Under the assumption of a singular dispersion
matrix, there exist random variables which equal a constant with probability 1,
which is indeed quite special. This leads to some philosophical concerns (see
Baksalary et al., 1992). With regard to non-singular dispersion Aitken (1936) had
already presented work on estimation and least squares, i.e. had derived the best
linear unbiased estimator of the mean parameter. There exists a huge volume of
literature on the singular Gauss-Markov model, for example Zyskind and Martin
(1969), Rao (1973, Chapter 4i), Alalouf (1978), Baksalary and Kala (1979, 1981),
Nordström (1985), Tian et al. (2008) and Baksalary and Trenkler (2011). In
particular we refer to Nordström, because he divided the singular Gauss-Markov
model into two cases, i.e. the weakly singular and the strongly singular Gauss-
Markov model, and to Baksalary & Trenkler for a number of recent references.
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Concerning the BRM , it is of interest to discuss weighted versus unweighted
estimators of the mean parameters. This topic has a long history within the Gauss-
Markov model framework (see Puntanen et al., 2011, Chapter 10; Haslett et al.,
2014). For a complete set of references on the topic up to 1989, one should consult
Puntanen and Styan (1989).

It should be noted that there are articles which treat in detail the EBRMm• (and
the BRM) with almost-known dispersion matrices (proportional to an unknown
constant), i.e. a Gauss-Markov model where the overall design matrix is a sum of
Kronecker products of matrices and thus the corresponding linear space is a tensor
product. Examples of such articles are those written by Tian and Takane (2007,
2009), Beganu (2009), Song (2011) and Song and Wang (2014), who considered
best linear unbiased estimators (see also Zhang and Zhu, 2000; Xu and Wang, 2011).
Also relevant for this book are the results and ideas of Hu (2010), who proposed,
by first assuming a known dispersion matrix, a two-stage estimator of the mean
parameters. Admissibility of linear estimators for the BRM with known correlation,
under some specific restrictions, was obtained by Zhang and Gui (2008) and Zhang
et al. (2009, 2011).
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Chapter 3
The Basic Ideas of Obtaining MLEs:
Unknown Dispersion

3.1 Introduction

In this chapter, the maximum likelihood estimators of all the parameters in the
BRM , EBRM3

W and EBRM3
B are derived when the dispersion is supposed to

be unknown; i.e. when following the statistical paradigm, it is supposed that the
experiment has been designed and accomplished, and now it is time to estimate
the parameters of the model. Only the estimators are obtained, while statistical
properties such as their distributions are left to subsequent chapters. The subject
matter of this chapter is essential for the book and it is worthwhile devoting some
time to reflection on the derivations and results.

3.2 BRM and Its MLEs

Let

X = ABC + E, E ∼ Np,n(0,�, I ), � > 0, (3.1)

where all matrices are specified in Definition 2.1. From general maximum likelihood
theory we know that estimators are consistent. This means that the MLE of �,
should converge to � and, therefore, intuitively, the estimators of B with a known
or estimated � should be of a similar form. Let us restate the appropriate part of
Fig. 2.6 as Fig. 3.1 which will serve as a basis for understanding how subspaces are
connected to the MLEs.

© Springer International Publishing AG, part of Springer Nature 2018
D. von Rosen, Bilinear Regression Analysis, Lecture Notes in Statistics 220,
https://doi.org/10.1007/978-3-319-78784-8_3

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78784-8_3&domain=pdf
https://doi.org/10.1007/978-3-319-78784-8_3


72 3 The Basic Ideas of Obtaining MLEs: Unknown Dispersion

Fig. 3.1 Consider the model
given in (3.1). Decomposition
of the whole space according
to the within-individuals and
between-individuals designs,
illustrating the mean and
residuals in the BRM , is
presented

First a strict mathematical treatment of the model is presented and thereafter
the mathematics is illustrated graphically in Fig. 3.2. It follows from (3.1) that the
likelihood, L(B,�), is given by

L(B,�) = (2π)−np/2|�|−n/2e−1/2tr{�−1(Xo−ABC)(Xo−ABC)′}.

Using the results from Sect. 2.4 when � was known, the likelihood, L(B,�), in
agreement with Fig. 3.1, can be decomposed as

L(B,�) = (2π)−np/2|�|−n/2

× exp{−1/2tr{�−1P A,	(Xo − ABC)PC ′(Xo − ABC)′P ′
A,	}}

× exp{−1/2tr{�−1Xo(I − P C ′)X′
o}}

× exp{−1/2tr{�−1(I − P A,	)XoPC ′X′
o(I − P A,	)′}}.

This expression is smaller than or equal to the profile likelihood

(2π)−np/2|�|−n/2

× exp{−1/2tr{�−1(Xo(I − P C ′)X′
o + (I − P A,	)XoP C ′X′

o(I − P A,	)′)}}
(3.2)

with equality if and only if

ABC = PA,	XoP C ′

= A(A′�−1A)−A′�−1XoC
′(CC′)−C. (3.3)

In Fig. 3.1 this implies that the part of the likelihood which is connected to the mean
(E[X] = ABC) has been eliminated. Moreover, from Appendix B, Theorem B.9
(iv) it follows that (3.2) is smaller than or equal to

(2π)−np/2|(So+(I−PA,	)XoP C ′X′
o(I−PA,	)′)/n|−n/2exp{−np/2}, (3.4)
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where So = Xo(I − P C ′)X′
o, which is obtained if

n� = So + (I − P A,	)XoP C ′X′
o(I − P A,	)′ (3.5)

is inserted in (3.2). Since the right-hand side of (3.5) equals (Xo−ABC)()′, there is
no problem applying Theorem B.9 (iv) in Appendix B. It is less clear if this theorem
can be applied for optimization purposes, if instead of B, we have a function in �;
i.e. B(�), which sometimes appears.

Using (2.41) and (2.42), it follows from (3.5) that n� = R11R
′
11 + R21R

′
21 +

R2R
′
2, among other things showing the whole tensor space Rn ⊗Rp to be included

in the estimation process. Both Eqs. (3.3) and (3.5) are complicated functions
in �, but fortunately the only requirement for finding explicit MLEs are a few
straightforward calculations. Pre-multiplying (3.5) by A′�−1 yields

nA′ = A′�−1So,

and thus under the assumption that S−1
o exists

̂A′�−1 = nA′S−1
o . (3.6)

This means that A′�−1 has been estimated, which is exactly what is needed
in (3.3) and (3.5) because P A,	 is used, and now it is known that P A,	 = P A,So .
It follows that the upper bound in (3.4) does not depend on any unknown parameter
and is obtained by inserting the estimates given in (3.3) and (3.5), in the likelihood,

which thus yields MLEs. Moreover, ̂A′�−1 = A′
̂�

−1
. We may summarize our

finding as follows. Out of all the relations, the relation shown in (3.6) is the most
important one because it implies:

1. the finding of an upper bound of the likelihood function;
2. the finding of MLEs;
3. establishment of the relation P A,̂	 = P A,S .

In particular, implication (3) tells us that there is no great difference between
obtaining MLEs when � is known and obtaining them when � is unknown, since
all the estimators, including the estimators of the residuals R11, R21 and R2 are
similar, i.e. the projection operators used in the estimation process project on the
same spaces.

In the next theorem the above results are summarized and the MLEs of B and �

are explicitly presented.

Theorem 3.1 For the BRM given in Definition 2.1 and with S = X(I − P C ′)X′
supposed to be p.d., with n − r(C) ≥ p, the MLEs are given by

ÂBC = A(A′S−1A)−A′S−1XC′(CC′)−C,

n̂� = S + (I − A(A′S−1A)−A′S−1)XC′(CC′)−CX′(I − S−1A(A′S−1A)−A′).
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The assumption that S is p.d. holds with probability 1, if n − r(C) ≥ p. Moreover,
̂� is always unique, i.e. does not depend on any choice of g-inverse.

Corollary 3.1 Let ̂B satisfy the relation ÂBC given in Theorem 3.1. Then

̂B = (A′S−1A)−A′S−1XC ′(CC′)− + (A′)oZ1 + A′Z2C
o′
,

where Z1 and Z2 are arbitrary matrices.
If the estimability conditions C(K ′) ⊆ C(A′) and C(L) ⊆ C(C) are fulfilled,

then

K̂BL = K(A′S−1A)−A′S−1XC′(CC′)−L,

which is independent of any choice of g-inverse, i.e. is unique.
If ρ(A) = q and ρ(C) = k, then

̂B = (A′S−1A)−1A′S−1XC′(CC′)−1.

It is questionable whether ̂B under non-estimability should be called an estimator,
because Z1 and Z2 are both unknown and unrestricted. For this reason ̂B, in this
case, is definitely not a very useful quantity.

Corollary 3.2 If A = I , then

̂BC = XC′(CC′)−C,

n̂� = S.

In Corollary 3.2 the MLEs for the classical multivariate analysis of variance model
(MANOVA) are presented. The estimators should be compared to those given in
Theorem 3.1. It is clearly seen that a member of the exponential family is easier to
deal with than with a member from the curved exponential family. Among others,
for the BRM the mean estimator is non-linear. This implies that many statistical
properties are more difficult to verify for the BRM than for the MANOVA model.
The mathematics behind the above presented estimation approach is illustrated in
Fig. 3.2. Note that we can consider the approach to consist of two steps.

For completeness and to illustrate how the decomposition of subspaces and
projections leads to three different residuals (see Figs. 3.1 and 3.2), the next relations
are presented:

̂R11 = P A,SX(I − PC ′); (3.7)

̂R21 = (I − P A,S)X(I − P C ′); (3.8)

̂R2 = (I − P A,S)XPC ′ . (3.9)

All these relations bear information about the BRM . Later, in Chap. 6, the above
residuals will be studied in detail.
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Fig. 3.2 Step 1 is used to find information about the inner product, which is then estimated using
S = X(I − P C′ )X′ = R11R

′
11 + R21R

′
21. In Step 2 the MLEs are constructed via projections on

appropriate subspaces

The MLEs given in Theorem 3.1 provide interesting information and also force
us to examine more deeply the estimation process of the parameters of the BRM .
It appears that � plays two roles. One role is to reflect the uncertainty in the data
and another role is to determine the inner product when the mean estimator ÂBC is
to be derived. Mathematically this means that when quantifying uncertainty, we are
operating with an outer product of vectors, i.e. I ⊗� = E[vec(X−ABC)vec′(X−
ABC)], whereas when considering the estimators of the mean parameters � is used
in the definition of an inner product. On the other hand, we do not have to distinguish
between these two roles of �, because the use of � when defining the inner product

is taken care of through the relation A′
̂�

−1 = nA′S−1, implying that automatically
only the variation connected to C(C′)⊥, i.e. S = ̂R11̂R

′
11 + ̂R12̂R

′
12, will be

involved, omitting ̂R2̂R
′
2 (see (3.7)–(3.9)). However, it is conceptually beneficial

to regard � as having two roles.
The residuals ̂R11, ̂R21 and ̂R2 all carry information about �, and it was shown

in the proof of Theorem 3.1 that the sum of the squared residuals will form the
MLE of �. However, it is really worthwhile to complicate the picture somewhat
and not just think of � as an object summarizing the variation, because if � is
structured, e.g. banded, we can use some basic principles for estimating � in a
straightforward manner. For example, we can use projections on subspaces and then
adjust the estimator so that it becomes banded.

Moreover, as noted above, the parameter � represents the dispersion (vari-
ances/covariances) within individuals. Usually, in order to estimate the dispersion,
independent observations are needed. However, for the BRM it appears that once
there are enough independent observations, one can also utilize within-individuals
information, i.e. ̂R2, to estimate �. The idea is that based on the independent
observations, one can estimate the inner product defining the dependency within
individuals (� in C	(A)), via ̂R11 in (3.7) and ̂R21 in (3.8), and then due to
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the mean structure in the BRM , there exist degrees of freedom to improve the
estimated dispersion via within-individuals information. This can also be restated
in the following way: the between-individuals source of variation is based on the
difference between the observations and the estimated mean, i.e. ̂R11 and ̂R21,
which simultaneously provides information about the inner product, and the within-
individuals source of variation is then based on the difference between the estimated
mean and the estimated model, i.e. ̂R2 in (3.9).

Another interesting aspect is that we can very well regard S as being a known
quantity when considering

ÂBC = A(A′S−1A)−A′S−1XC′(CC′)−C, (3.10)

because the distribution of S is independent of B, i.e. S is an ancillary statistic (see
Ghosh et al., 2010) if we disregard that the distribution of both ÂBC and S depend
on �. The projection A(A′S−1A)−A′S−1 which is a function of S can be used to
improve the unbiased estimator XC ′(CC′)−C through the possibility to improve its
dispersion. However, there do not exist any results which indicate that this way of
performing inference, in general, will improve non-conditional inference. Moreover,
note that the variation introduced by S in (3.10) is in some way artificial. If an
experiment which is analysed by the BRM is intended to be repeated, the new
estimate will differ from (3.10) (with inserted data), which will be partly due to
the fact that S is not constant, and if conditioning with respect to S, this has to be
taken into account. However, if only a single study is performed, one can very well
condition with respect to S, which simplifies inference significantly.

Above, in (3.10), a weighted estimator was presented. Alternatively, an
unweighted estimator,

A˜BC = A(A′A)−A′XC′(CC′)−C, (3.11)

can also be used. The difference between (3.10) and (3.11) equals (see Appendix B,
Theorem B.13)

ÂBC = A˜BC − A(A′A)−A′SAo(Ao′
SAo)−Ao′

XC′(CC′)−C. (3.12)

However, since the two terms on the right-hand side of (3.12) are not independently
distributed it is not obvious how (3.12) should be interpreted.

Example 3.1 Consider the Potthoff and Roy data presented in Table 1.2. In a
preliminary analysis of the data, the results for two different model versions and two
types of estimates are now shown. The model equals X ∼ Np,n(A•B•C,�•, I ),
where A• indicates that different choices of the within-individuals design matrix
will be used and B•,�• means that different estimates will be obtained in the
different model versions applied below. In the formulas, So = Xo(I 27 − P C ′)X′

o.
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Model Ia
The MLEs for a model where the linear growth is defined through

A1 =

⎛

⎜

⎜

⎝

1 8
1 10
1 12
1 14

⎞

⎟

⎟

⎠

are derived:

̂B1o = (A′
1S

−1
o A1)

−1A′
1S

−1
o XoC

′(CC′)−1 =
(

17.4 15.8
0.48 0.83

)

,

̂�1o =

⎛

⎜

⎜

⎝

5.1 2.4 3.6 2.5
3.9 2.7 3.1

6.0 3.8
4.6

⎞

⎟

⎟

⎠

.

The first column in ̂B1o refers to the girls and the second to the boys. Since there
does not seem to be any structure in ̂�1o, the assumption about an unstructured
dispersion matrix is reasonable.

Model Ib
This model is the same as Model Ia, but now an unweighted estimate of the mean
parameters is derived, and n̂�2o = (Xo − A1̂B2oC)()′:

̂B2o = (A′
1A1)

−1A′
1XoC

′(CC′)−1 =
(

17.4 16.3
0.48 0.78

)

,

̂�2o =

⎛

⎜

⎜

⎝

5.1 2.5 3.6 2.5
4.0 2.7 3.0

6.0 3.8
4.6

⎞

⎟

⎟

⎠

.

In comparison with Model Ia there does not seem to be any big numerical
differences. However, the distributions for the estimators in Model Ib are much
easier to work out than those in Model Ia.

Model IIa
The MLEs for a model with quadratic growth are now presented, i.e.

A2 =

⎛

⎜

⎜

⎝

1 8 64
1 10 100
1 12 144
1 14 196

⎞

⎟

⎟

⎠

,
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̂B3o = (A′
2S

−1
o A2)

−1A′
2S

−1
o XoC

′(CC′)−1 =
⎛

⎝

17.1 22.0
0.54 −0.31

−0.003 0.050

⎞

⎠ ,

̂�3o =

⎛

⎜

⎜

⎝

5.0 2.5 3.6 2.5
3.9 2.7 3.1

6.0 3.8
4.6

⎞

⎟

⎟

⎠

.

In comparison with Models Ia, b, the intercept for the boys has increased, whereas
for the girls not much has been altered. Thus, the data indicate that the growth
patterns for the girls and the boys differ and the use of a BRM may be questionable.

Model IIb
This model is the same as Model IIa, but now an unweighted estimate of the mean
parameters is derived, and n̂�4o = (X − A2̂B4oC)()′:

̂B4o = (A′
2A2)

−1A′
2XoC

′(CC ′)−1 =
⎛

⎝

17.0 22.2
0.54 −0.31

−0.003 0.050

⎞

⎠ ,

̂�4o =

⎛

⎜

⎜

⎝

5.0 2.5 3.6 2.5
3.9 2.7 3.1

6.0 3.8
4.6

⎞

⎟

⎟

⎠

.

The estimators in Model IIb are almost identical to those in Model IIa.
Figure 3.3 illustrates the data. The most striking revelation in Fig. 3.3 is that

there are some indications that the boys may follow a quadratic growth. This
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Fig. 3.3 The growth in the Potthoff and Roy (1964) data set (see Table 1.2) is illustrated for boys
and girls, separately. In each figure the four models presented in Example 3.1 are given. The dashed
lines indicate the unweighted estimators
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will be investigated in subsequent sections. Moreover, the differences between the
MLEs and the unweighted estimates are minor. Thus, considering the BRM for data
analysis, one has to consider seriously if it is advantageous to use MLEs, since the
distribution for these estimators is much more complicated than the distribution for
the unweighted estimators, for example. ��

3.3 EBRM3
B
and Its MLEs

Let

X = A1B1C1 + A2B2C2 + A3B3C3 + E, E ∼ Np,n(0,�, I ), � > 0,

C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1),

where all sizes of matrices are given in Definition 2.2. Following the structure of the
previous section, first the derivation of the MLEs is performed in a rigorous way,
culminating in Theorem 3.2, and thereafter the mathematics is illustrated in Fig. 3.4.
Note that a major part of the derivation for obtaining MLEs has already been carried
out in Sect. 2.5. The likelihood, L(B1,B2,B3,�), equals

L(B1,B2, B3,�) = (2π)−np/2|�|−n/2e−1/2tr{�−1(Xo−A1B1C1−A2B2C2−A3B3C3)()
′}.

Let, as in Sect. 2.5,

P 1 = I − Q′
1 = P A1,	 , P 2 = I − Q′

2 = P Q′
1A2,	, P 3 = I − Q′

3 = PQ′
2Q′

1A3,	, (3.13)

S1 = Xo(I − P C′
1
)X′

o, or X(I − PC′
1
)X′, (3.14)

S2 = S1 + Q′
1Xo(P C′

1
− P C′

2
)X′

oQ1, or S1 + Q′
1X(P C′

1
− P C′

2
)X′Q1, (3.15)

S3 = S2 + Q′
2Q

′
1Xo(P C′

2
− PC′

3
)X′

oQ1Q2, or S2 + Q′
2Q

′
1X(P C′

2
− P C′

3
)X′Q1Q2.

(3.16)

Adopting the results from Sect. 2.5 when � is known, it is seen that the likelihood
can be factored in the following way:

L(B1,B2,B3,�) = (2π)−np/2|�|−n/2

×exp{−1/2tr{�−1S1}}exp{−1/2tr{(XoP C ′
1
− E[X])′�−1P 1()}}

×exp{−1/2tr{�−1(Q′
1XoP C ′

1
− E[Q′

1X])()′}}
= (2π)−np/2|�|−n/2

×exp{−1/2tr{�−1S2}}exp{−1/2tr{(XoP C ′
1
− E[X])′�−1P 1()}}
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Fig. 3.4 Estimation flow for the EBRM3
B . For a detailed explanation of the various steps and

notation see Sect. 3.3. W1 = C(C ′
3), W2 = C(C ′

2) ∩ C(C′
3)

⊥, W3 = C(C ′
1) ∩ C(C ′

2)
⊥, W4 =

C(C ′
1)

⊥; V1• = C•(A1), V2• = C•(A1)
⊥ ∩C•(A1 : A2), V3• = C•(A1 : A2)

⊥ ∩C•(A1 : A2 : A3),
V4• = C•(A1 : A2 : A3)

⊥, where • represents �, S1, ̂S2 or ̂S3. In the expressions ⊥ is interpreted
as denoting the orthogonal complement relative to the inner product
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×exp{−1/2tr{(Q′
1XoP C ′

2
− E[Q′

1X])′�−1P 2()}}
×exp{−1/2tr{�−1(Q′

2Q
′
1XoPC ′

2
− E[Q′

2Q
′
1X])()′}}

= (2π)−np/2|�|−n/2

×exp{−1/2tr{�−1S3}}exp{−1/2tr{(XoP C ′
1
− E[X])′�−1P 1()}}

×exp{−1/2tr{(Q′
1XoP C ′

2
− E[Q′

1X])′�−1P 2()}}
×exp{−1/2tr{(Q′

2Q
′
1XoP C ′

3
− E[Q′

2Q
′
1Xo])′�−1P 3()}}

×exp{−1/2tr{�−1Q′
3Q

′
2Q

′
1XoP C ′

3
X′

oQ1Q2Q3}}.

This expression is smaller than or equal to

(2π)−np/2|�|−n/2exp{−1/2tr{�−1S3 + �−1Q′
3Q′

2Q′
1XoPC ′

3
X′

oQ1Q2Q3}} (3.17)

with equality if and only if (see (2.26), (2.31) and (2.36))

A′
1�

−1(XoP C ′
1
− A1B1C1 − A2B2C2 − A3B3C3) = 0, (3.18)

A′
2Q1�

−1(Q′
1XoP C ′

2
− Q′

1A2B2C2 − Q′
1A3B3C3) = 0, (3.19)

A′
3Q1Q2�

−1(Q′
2Q

′
1XoPC ′

3
− Q′

2Q
′
1A3B3C3) = 0. (3.20)

Moreover, using (3.18)–(3.20) and the equality

S3 + Q′
3Q

′
2Q

′
1XoP C ′

3
X′

oQ1Q2Q3 = (Xo −
3

∑

i=1

AiB iCi )()
′,

which is independent of �, it is established that the likelihood L(B1,B2,B3,�) is
smaller than or equal to (see Appendix B, Theorem B.9 (iv))

(2nπ)−np/2|S3 + Q′
3Q

′
2Q

′
1XoP C ′

3
X′

oQ1Q2Q3|−n/2exp{−np/2} (3.21)

and (3.21) is obtained if and only if

n� = S3 + Q′
3Q

′
2Q

′
1XoP C ′

3
X′

oQ1Q2Q3, (3.22)

which is an equation in � since Qi , i = 1, 2, 3, are functions of �. Thus, if we are
able to solve (3.18)–(3.20) and (3.22), the MLEs will be found, because then it has
been shown that these equations determine (3.21), i.e. (3.21) will be independent of
any unknown parameter which becomes the upper bound of the likelihood.
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From now on, for notational convenience, only estimators are considered. Note
that (see Appendix B, Theorem B.11 (iv))

C(Q′
1) = C	(A1)

⊥ = C(�−1A1)
⊥,

C(Q′
2Q

′
1) = C(�−1Q′

1A2)
⊥ ∩ C(Q′

1) = C(�−1Q′
1A2)

⊥ ∩ C(�−1A1)
⊥,

C(Q′
3Q

′
2Q

′
1) = C(�−1Q′

2Q
′
1A3)

⊥ ∩ C(�−1Q′
1A2)

⊥ ∩ C(�−1A1)
⊥.

Hence, pre-multiplying (3.22) by A′
1�

−1, A′
2Q

′
1�

−1 and A′
3Q

′
2Q

′
1�

−1 yields the
important relations

A′
1�

−1 = nA′
1S

−1
1 , (3.23)

A′
2Q1�

−1 = nA′
2Q1S

−1
2 , (3.24)

A′
3Q2Q1�

−1 = nA′
3Q2Q1S

−1
3 . (3.25)

Equation (3.23) implies that � in Q1 can be replaced by S1 and then Q1 will be
denoted ̂Q1. Let ̂S2 be S2, with Q1 having been replaced by ̂Q1. Moreover, (3.24)
implies that � in Q2 can be replaced by ̂S2 which will then be denoted by ̂Q2
with the additional supposition that Q1 has been replaced by ̂Q1. Let̂S3 be S3 with
S2, Q2 and Q1 having been replaced by ̂S2, ̂Q2 and ̂Q1, respectively. The facts
and notations given above yield that instead of (3.18)–(3.20), a consistent linear
equation system in B1, B2 and B3 has emerged which equals

A′
1S

−1
1 (XP C ′

1
− A1B1C1 − A2B2C2 − A3B3C3) = 0,

A′
2
̂Q1

̂S
−1
2 (̂Q

′
1XPC ′

2
− ̂Q

′
1A2B2C2 − ̂Q

′
1A3B3C3) = 0,

A′
3
̂Q1

̂Q2
̂S

−1
3 (̂Q

′
2
̂Q

′
1XPC ′

3
− ̂Q

′
2
̂Q

′
1A3B3C3) = 0.

These equations compose a nested structure; i.e. in the first equation B1, B2 and
B3 are included, in the second equation B2 and B3 are included and in the last
equation only B3 is included. Thus, we can solve for B3, insert the solution in the
other equations, and then solve for B2, etc. The solution is presented in the next
theorem:

Theorem 3.2 For the EBRM3
B given in Definition 2.2 and with S1 = X(I −

P C ′
1
)X′ supposed to be p.d., with n − r(C′

1) ≥ p, the MLEs are given by

̂B1 = (A′
1S

−1
1 A1)

−A′
1S

−1
1 (X − A2̂B2C2 − A3̂B3C3)C

′
1(C1C

′
1)

−

+(A′
1)

oZ11 + A′
1Z12C

o′
1 ,

̂B2 = (A′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−A′
2
̂Q1

̂S
−1
2

̂Q
′
1(X − A3̂B3C3)C

′
2(C2C

′
2)

−
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+(A′
2
̂Q1)

oZ21 + A′
2
̂Q1Z2,2C

o′
2 ,

̂B3 = (A′
3
̂Q1

̂Q2
̂S

−1
3

̂Q
′
2
̂Q

′
1A3)

−A′
3
̂Q1

̂Q2
̂S

−1
3

̂Q
′
2
̂Q

′
1XC′

3(C3C
′
3)

−

+(A′
3
̂Q1

̂Q2)
oZ31 + A′

3
̂Q1

̂Q2Z32C
o′
3 ,

n̂� = (X − A1̂B1C1 − A2̂B2C2 − A3̂B3C3)()
′

= ̂S3 + ̂Q
′
3
̂Q

′
2
̂Q

′
1XP C ′

3
X′

̂Q1
̂Q2

̂Q3,

where Zij , i = 1, 2, 3, j = 1, 2, are arbitrary matrices, ̂Q1 = I − P ′
A1,S1

, ̂Q2 =
I − P ′̂

Q′
1A2,̂S2

, ̂Q3 = I − P ′̂
Q′

2
̂Q′

1A3,̂S3
, and ̂S2 and ̂S3 are estimators of S2 and

S3, with Qi having been replaced by ̂Qi , i = 2, 3; S2 and S3 are defined in (3.15)
and (3.16), respectively. The assumption that S1 is p.d. holds with probability 1,
since n ≥ p + r(C1) is assumed to hold.

From this theorem it follows that the upper bound of the likelihood is obtained when
one inserts the estimators presented in the theorem in the likelihood; i.e. the upper
bound equals

(2nπ)−np/2|̂S3 + ̂Q
′
3
̂Q

′
2
̂Q

′
1XP C ′

3
X′

̂Q1
̂Q2

̂Q3|−n/2exp{−np/2}.

Corollary 3.3

Ê[X] = A1̂B1C1 + A2̂B2C2 + A3̂B3C3

= P A1,S1XPC ′
1
+ P

̂Q′
1A2,̂S2

XP C ′
2
+ P

̂Q′
2
̂Q′

1A3,̂S3
XP C ′

3
.

Now the estimation process will be described in more heuristic terms, similar to
the discussion connected to Figs. 2.9 and 2.10. This is important, because one needs
to develop one’s intuition in order to generalize the above-presented treatment in a
meaningful way.

In Sect. 2.5, where � was supposed to be known, we established how the
estimation was performed via projections. It appeared that � was involved only
as a matrix defining the inner product. Thus, the estimation strategy will be, as with
the BRM with an unknown dispersion matrix, to estimate the inner product first
and then project observations on suitable spaces, i.e. the same spaces as when � is
known.

In Fig. 3.4 a particular estimation scheme for the EBRM3
B is presented. It

switches between estimating the inner product in certain regression spaces and then
projecting observations on appropriate spaces in order to obtain estimators of the
parameters of the mean, or to be more precise, to obtain estimators of estimable
linear combinations of B i , i = 1, 2, 3. The estimation scheme appears when solving
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the likelihood equations

A′
i�

−1(X − E[X])C′
i = 0, i = 1, 2, 3, n� = (X − E[X])()′,

starting with A′
1�

−1(X − E[X])C′
1 = 0.

From the estimation of the parameters in the BRM it follows that in Step 1
the natural starting point is to construct S1 = R1R

′
1, where R1 = X(I − P C ′

1
)

which then in Step 2 will replace � in Vi	 , i.e. the space Vi with the inner product
defined by �, i = 1, 2, 3, 4 (see Fig. 3.4 for a definition of Vi). Note that we
do not have to involve n such that instead � the matrix n−1S1 (it is a consistent
estimator) is used because in the projector the scalar n is not included. Thereafter
in Step 2, two projections are performed. One projection gives an estimator of
linear combinations of B1 as a function of B2 and B3, while the other projection
projects observations on the tensor space C(C′

1)⊗CS1(
̂Q

′
1(A2,A3,A4)) for further

manipulations. Remember that ̂Q
′
1 is a projector.

In Step 3 the information in R1 is directly used via S1 in the calculations of ̂S2
given by

̂S2 = S1 + ̂R2̂R
′
2,

where ̂R2 = ̂Q
′
1X(P C ′

1
−P C ′

2
). It is interesting to observe that after the application

of Step 2, we have an EBRM2
B model, which can also be seen in the illustration in

Fig. 3.4 in Step 3. Moreover, in this figure it is indicated that the spaces connected
with the estimation of B1, as well as Rp⊗C(C′

1)
⊥, where Rp = ∑4

i=1 Vi = C	(I ),
will not be used anymore.

Now, going from Step 3 to Step 4 is identical to going from Step 1 to Step 2.
Instead of the sum of squares matrix S1, the matrix ̂S2 appears as an inner product
estimator. Two projections are carried out, one via P C ′

2
⊗ ̂Q

′
2
̂Q

′
1 and one which is

used to estimate linear combinations of the mean parameter B2 as a function of B3,
which is indicated by ̂B2(B3) in Fig. 3.4.

In Step 5 in Fig. 3.4 it can be seen that the BRM structure has been obtained
and we can continue as before, i.e. the inner product is updated with the help of
̂S3 = ̂S2 + ̂R3̂R

′
3, where ̂R3 is obtained from R3, with S2, Q2 and Q1 having

been replaced by ̂S2, ̂Q2 and ̂Q1, respectively. Thereafter, in Step 6, projections
on the mean space and its orthogonal complement are carried out. Thus, B3

can be estimated and by backwards updating ̂B2, ̂B1 and Ê[X] are obtained.
Moreover, since this is the last step, � is estimated via S3 and a projection on
C(C′

3) ⊗ C(̂Q
′
3
̂Q

′
2
̂Q

′
1), i.e. n̂� = ̂S3 + ̂Q

′
3
̂Q

′
2
̂Q

′
1XPC ′

3
X′

̂Q1
̂Q2

̂Q3. However,

note that any of properly scaled S1 and ̂Si , i = 2, 3, can be used as an estimator of
� and serve as alternative estimators to the MLE.
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3.4 EBRM3
W

and Its MLEs

Now

X = A1B1C1 + A2B2C2 + A3B3C3 + E, E ∼ Np,n(0,�, I ), � > 0,

C(A3) ⊆ C(A2) ⊆ C(A1),

is studied where all the sizes of the matrices are presented in Definition 2.3. Once
again the mathematical derivation of the estimators is given first, and then the
approach is illustrated. It is interesting to compare the results for the EBRM3

W with
those for the EBRM3

B .
At the beginning of the mathematical derivation, we completely rely on Sect. 2.6,

where MLEs were obtained for a known �. The likelihood, L(B1,B2,B3,�),
equals

L(B1,B2, B3,�) = (2π)−np/2|�|−n/2e−1/2tr{�−1(Xo−A1B1C1−A2B2C2−A3B3C3)()
′}.

(3.26)

Let, as previously in Sect. 2.6,

P 1 = P C ′
1
, P 2 = PQ1C

′
2
, P 3 = P Q2C

′
3
, P 4 = P (C ′

1:C ′
2:C ′

3)
o , (3.27)

where

Q1 = P (C ′
1)

o , Q2 = P (C ′
1:C ′

2)
o . (3.28)

Thus, the likelihood can be written as follows:

L(B1,B2,B3,�)

= (2π)−np/2|�|−n/2exp{−1/2
4

∑

i=1

tr{�−1(Xo − E[X])P i ()
′}}. (3.29)

From Sect. 2.6 it follows that an upper bound of the likelihood is achieved if a
solution can be found to the system of equations consisting of (2.49)–(2.51), i.e. the
nested system

A′
1�

−1(Xo − A1B1C1 − A2B2C2 − A3B3C3)P 1 = 0, (3.30)

A′
2�

−1(Xo − A2B2C2 − A3B3C3)P 2 = 0, (3.31)

A′
3�

−1(Xo − A3B3C3)P 3 = 0. (3.32)
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Based on (2.46), (2.48), (3.26) and (3.29), it follows that � has to satisfy (see
Appendix B, Theorem B.9 (iv))

n� = (Xo − E[X])()′ = XoP 4X
′
o +

3
∑

i=1

P ′
Ao

i ,	
−1XoP iX

′
oPAo

i ,	
−1 . (3.33)

In order to find estimators for B i which are independent of �, explicit expres-
sions for A′

i�
−1, i = 1, 2, 3, are required. However, it is straightforward to obtain

such expressions from (3.33), since pre-multiplying (3.33) by A′
i�

−1, i=1,2,3, leads
to the following important relations:

nA′
3S

−1
1o = A′

3�
−1, nA′

2
̂S

−1
2o = A′

2�
−1, nA′

1
̂S

−1
3o = A′

1�
−1, (3.34)

where

S1o = XoP 4X
′
o,

̂S2o = S1o + P ′
Ao

3,S
−1
1o

XoP 3X
′
oP Ao

3,S
−1
1o

, (3.35)

̂S3o = ̂S2o + P ′
Ao

2,
̂S−1

2o

XoP 2X
′
oPAo

2,̂S−1
2o

. (3.36)

As before, the ̂ on S2o and S3o indicates that an inner product has been estimated.
It follows that, instead of (3.30)–(3.32), a system of consistent linear equations in
Bi , i = 1, 2, 3, has been obtained, which equals

A′
1
̂S

−1
3o (Xo − A1B1C1 − A2B2C2 − A3B3C3)P 1 = 0, (3.37)

A′
2
̂S

−1
2o (Xo − A2B2C2 − A3B3C3)P 2 = 0, (3.38)

A′
3S

−1
1o (Xo − A3B3C3)P 3 = 0. (3.39)

Hence, from these hierarchically structured equations ̂B i , i = 1, 2, 3, are derived.
Moreover, ̂� is obtained via (3.33). The results are summarized in the next theorem,
but we alter the presentation by using random variables instead of observations.

Theorem 3.3 For the EBRM3
W presented in Definition 2.3 let S1 and̂Si i = 2, 3,

be defined through (3.35) and (3.36), respectively; Qi , i = 1, 2, is defined in (3.28)
and P i , i = 1, 2, 3, 4, in (3.27). Moreover, S1 = XP 4X

′ is supposed to be p.d.,
which holds with probability 1 if n − r(C′

1 : C′
2 : C′

3) ≥ p. Then the MLEs are
given by

̂B1 = (A′
1
̂S

−1
3 A1)

−A′
1
̂S

−1
3 (X − A2̂B2C2 − A3̂B3C3)C

′
1(C1C

′
1)

−

+(A′
1)

oZ11 + A′
1Z12C

o′
1 ,

̂B2 = (A′
2
̂S

−1
2 A2)

−A′
2
̂S

−1
2 (X − A3̂B3C3)Q1C

′
2(C2Q1C

′
2)

−
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+(A′
2)

oZ21 + A′
2Z2,2(C2Q1)

o′
,

̂B3 = (A′
3S

−1
1 A3)

−A′
3S

−1
1 XQ2C

′
3(C3Q2C

′
3)

−

+(A′
3)

oZ31 + A′
3Z32(C3Q2)

o′
,

n̂� = (X − A1̂B1C1 − A2̂B2C2 − A3̂B3C3)()
′

= ̂S3 + P ′
Ao

1,
̂S−1

3
XP C ′

1
X′P

Ao
1,̂S−1

3
,

where Zij , i = 1, 2, 3, j = 1, 2, are arbitrary matrices.

Corollary 3.4 Let ̂B i be given in Theorem 3.3. Then

Ê[X] = A1̂B1C1 + A2̂B2C2 + A3̂B3C3

= PA1,̂S3
XP C ′

1
+ P A2,̂S2

XP Q1C
′
2
+ P A3,S1XP Q2C

′
3
.

Corollary 3.5 Let ̂Bi be given in Theorem 3.3, and suppose that C(C′
1) is

orthogonal to C(C′
2 : C′

3) and C(C′
2) is orthogonal to C(C′

1 : C′
3). Then, the MLEs

are given by

̂B1 = (A′
1
̂S

−1
3 A1)

−A′
1
̂S

−1
3 XC′

1(C1C
′
1)

− + (A′
1)

oZ11 + A′
1Z12C

o′
1 ,

̂B2 = (A′
2
̂S

−1
2 A2)

−A′
2
̂S

−1
2 XC′

2(C2C
′
2)

− + (A′
2)

oZ21 + A′
2Z2,2C

o′
2 ,

̂B3 = (A′
3S

−1
1 A3)

−A′
3S

−1
1 XC′

3(C3C
′
3)

− + (A′
3)

oZ31 + A′
3Z32C

o′
3 ,

n̂� = (X − A1̂B1C1 − A2̂B2C2 − A3̂B3C3)()
′

= ̂S3 + P ′
Ao

1,̂S−1
3

XPC ′
1
X′P

Ao
1,
̂S−1

3
,

where

S1 = X(I − PC ′
1:C ′

2:C ′
3
)X′, ̂S2 = S1 + P ′

Ao
3,S−1

1
XPQ2C

′
3
X′P

Ao
3,S−1

1
,

̂S3 = ̂S2 + P ′
Ao

2,
̂S−1

2
XP Q1C

′
2
X′P

Ao
2,
̂S−1

2
.

There is one interesting aspect of Corollary 3.5. In the EBRM3
B , because of the

unknown dispersion �, it is not possible to interpret any orthogonal relations
among Ai , immediately. However, for the EBRM3

W it makes sense to include
orthogonality restrictions for C′

i , i = 1, 2, 3, which, as seen in Corollary 3.5,
then also simplifies the expressions of the estimators. In fact, in many applications
one can reformulate an EBRM3

B and transform it into an EBRM3
W with an

orthogonal between-individuals structure and interpretable parameters, for example
when studying growth curves in different treatment groups.
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Similar to the description of the estimation of the parameters in the EBRM3
B ,

which was presented in Fig. 3.4, an estimation algorithm for the EBRM3
W is now

described. Moreover, P Ai,	 , i = 1, 2, 3, are determined by (3.34), i.e. ̂P A1,	 =
P A3,S1 , ̂P A2,	 = P A2,̂S2

and ̂P A1,	 = PA1,̂S3
. The estimation scheme in Fig. 3.5

follows in principle (3.30)–(3.32), starting with (3.32), then using (3.31) and, finally,
considering (3.30).

We can summarize the estimation in six steps. In Step 1 a sums of squares matrix
S1 = R1R

′
1, where R1 = X(I −P C ′

1:C ′
2:C ′

3
), is constructed which is used to replace

� in Step 2. Moreover, in Step 2, B3 is estimated. In Step 3 the inner product
estimator is updated with the help of ̂R2 = P

Ao
3,S

−1
1

XP Q2C
′
3
. It is also indicated

in Fig. 3.5 that R1 is not needed anymore in the estimation process. Proceeding to
Step 4, ̂B2 is obtained as a function of ̂B3. The arguments from Step 3 and Step 4
are then repeated in Step 5 and Step 6, and Step 6 produces ̂B1 as a function of ̂B2
and ̂B3, as well as ̂�, where ̂R4 = P

Ao
1,
̂S−1

3
XP C ′

1
and ̂R3 = P

Ao
2,̂S−1

2
XP Q1C

′
2

are

used.
A comparison of Figs. 3.4 and 3.5 uncovers both similarities and some principal

differences. If one examines the spaces which are involved, for the EBRM3
B there

are two decompositions,

C(C′
3) � C(C′

2) ∩ C(C′
3)

⊥ � C(C′
1) ∩ C(C′

2)
⊥ � C(C′

1)
⊥,

C(A1) � C(A1)
⊥ ∩ C(A1 : A2) � C(A1 : A2)

⊥ ∩ C(A1 : A2 : A3)

� C(A1 : A2 : A3)
⊥,

which build up the tensor space, illustrated in Fig. 3.4, whereas for the EBRM3
W in

Fig. 3.5 the corresponding spaces are

C(C′
1) � C(C1 : C′

2) ∩ C(C′
1)

⊥ � C(C′
1 : C′

2 : C ′
3) ∩ C(C′

1 : C′
2)

⊥

� C(C′
1 : C′

2 : C′
3)

⊥,

C(A3) � C(A3)
⊥ ∩ C(A2) � C(A2)

⊥ ∩ C(A1) � C(A1)
⊥.

For the EBRM3
B the condition C(C′

3) ⊆ C(C′
2) ⊆ C(C′

1) means that the spaces
are nested within C(C′

1), whereas for the EBRM3
W there are three arbitrary spaces,

C(C′
3), C(C′

2) and C(C′
1), which are comparable but do not have to be nested in any

way. The nestedness applies to C(Ai ), i = 1, 2, 3, when working with the EBRM3
W .

However, what the two models have common is the fact that the estimation in both
of them starts with W4 from where � is estimated when � is used to define the
inner product. Thereafter, one transmits the information, viâS2, to W3, updates the
estimation of the inner product, transmits the information, via ̂S3, to W2, obtains a
new estimator of the inner product, and finally transmits the information to W1, after
which � is estimated as a dispersion matrix. However, the procedures for finding
the estimators of the mean parameters in EBRM3

B and EBRM3
W are different.
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Fig. 3.5 Estimation flow for the EBRM3
W . For a detailed explanation of the various steps and

notation see Sect. 3.4. W1 = C(C ′
1), W2 = C(C ′

1 : C ′
2) ∩ C(C′

1)
⊥, W3 = C(C′

1 : C′
2 : C ′

3) ∩
C(C ′

1 : C ′
2)

⊥, W4 = C(C ′
1 : C′

2 : C′
3)

⊥; V1• = C•(A3), V2• = C•(A3)
⊥ ∩ C•(A2), V3• =

C•(A2)
⊥ ∩ C•(A1), V4• = C•(A1)

⊥, where • represents �, S1, ̂S2 or ̂S3
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For the EBRM3
B case we immediately, via a projection, obtain a model which

is an EBRM2
B , i.e. we can define a recursive estimation process, whereas for the

EBRM3
W we perform orthogonal decompositions, which is perhaps best illustrated

in formulas (2.46)–(2.48).

3.5 Reasons for Using Both the EBRM3
B
and the EBRM3

W

One may question if it is necessary to present results for the EBRM3
B and EBRM3

W

in parallel. Since there is a one-to-one correspondence between the models, it should
be possible to derive the maximum likelihood estimators and their properties from
both set-ups. Consider the EBRM3

B

X = A1B1C1 + A2B2C2 + A3B3C3 + E, C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1).

Then, according to Appendix B, Theorem B.3 (iii), C(C′
1) = C(C′

2)� C(D′
2), where

D2 is any matrix satisfying C(D′
2) = C(C′

1) ∩ C(C′
2)

⊥, and C(C′
2) = C(C′

3) �
C(D′

1), where D1 is any matrix satisfying C(D′
1) = C(C′

2)∩C(C′
3)

⊥, implying that

C′
1 = (C′

2 : D′
2)H 1, C′

2 = (C′
3 : D′

1)H 2

for some non-singular matrices H 1 and H 2. Hence, for any choice of basis D1
and D2 there exist non-singular matrices H 1 and H 2 such that the model X =
A1B1C1 + A2B2C2 + A3B3C3 + E can be presented as

X = A1�1(C
′
2 : D′

2)
′ + A2�2(C

′
3 : D′

1)
′ + A3B3C3 + E, (3.40)

where �i = B iH
′
i , i = 1, 2. Now let �1 = (�11 : �12) and �2 = (�21 :

�22), where the partitions correspond to the partitions (C′
2 : D′

2)
′ and (C′

3 : D′
1)

′,
respectively. Moreover, let �1 = �11H

′
2 and then partition �1 = (�11 : �12)

so that it fits (C′
3 : D′

1)
′. All these definitions and operations lead to (3.40) being

equivalent to

X = (A1 : A2 : A3)(�
′
11 : �′

21 : B ′
3)

′C3 + (A1 : A2)(�
′
12 : �′

22)
′D1

+A1�12D2 + E,

which is an EBRM3
W . Hence, it has been shown how, by a reparametrization,

any EBRM3
B can be formulated as an EBRM3

W . The opposite is, of course, also
true, i.e. any EBRM3

W can be formulated as an EBRM3
B . In principle one might

believe that it would be sufficient to, for example, only consider the EBRM3
B .

However, there are some problems with this approach. Firstly there are several
reparametrizations and several partitions involved, which means that individual
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parameter estimates may be difficult to interpret, and secondly all MLEs are non-
linear estimators and, therefore, it is not so easy to work out how to transmit
properties, for example knowledge about moments of the MLEs, from one model
to another, i.e. from the EBRM3

B to the EBRM3
W or vice versa. Thus, to achieve

greater ease of application and clarity, one should work with the two different types
of models separately.

Problems

1 For the BRM , calculate the residuals ̂R11, ̂R21 and ̂R2 in (3.7), (3.8) and (3.9),
respectively, and compare with the data in Table 2.1. What conclusions can be
drawn?

2 (GMANOVA + MANOVA) Let

X = AB1C1 + B2C2 + E,

where the observation matrix X: p × n, the unknown mean parameter matrices
B1: q × k1 and B2: p × k2, the three known design matrices A: p × q , C1:
k1 × n and C2: k2 × n, and the error matrix E form the model. Moreover, let E

be normally distributed with independent columns, with mean 0, and an unknown
positive definite dispersion matrix � for the elements within each column of E. Find
maximum likelihood estimates of the parameters. Can the model be used when there
is a MANOVA model with some specific background information? Can the model
be used when there is a GMANOVA model (BRM) with some specific background
information?

3 Let

X = AB1C1 + A2B2C2 + E, C(C′
2) ⊆ C(C′

1),

where the observation matrix X: p × n, the unknown mean parameter matrices B1:
q1 × k1 and B2: q2 × k2, the four known design matrices A1: p × q1, A2: p × q2,
C1: k1 × n and C2: k2 × n, and the error matrix E ∼ Np,n(0,�, I ), where � > 0,
form the model. Find maximum likelihood estimates of the parameters.

4 In Problems 2 and 3 suppose that � = I and estimate the parameters in both
models. Moreover, generate Xo according to the models in Problems 2 and 3
(choose matrices Ai , B i , C i and �). Compare the unweighted estimates (assuming
� = I ) with the MLEs, assuming � to be an unknown parameter.

5 In Problem 3 replace C(C′
2) ⊆ C(C′

1) by C(A2) ⊆ C(A1) and derive the
parameter estimators.
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6 Let W ∼ Wp(�, n), � is p.d., and let A be of size p × q .

(i) Show that A(A′W−1A)−A′ and W − A(A′W−1A)−A′ are independently
distributed. (Hint: note that the g-inverse can be replaced by the inverse and
a matrix A of full rank. Thereafter factorize A.)

(ii) Show that A(A′W−1A)−A′ and I − P A,W are independently distributed.

7 Let W ∼ Wp(�, n). Show that with probability 1, C(W ) ⊆ C(�) and if n ≥
r(�), C(W ) = C(�).

8 Consider Example 1.9 and generate data according to the proposed model.
Estimate the parameters of the model.

9 Analyse the data presented in Example 1.5. Discuss the model fit via appropri-
ately chosen residuals.

10 In the EBRM3
W suppose that the condition C(A3) ⊆ C(A2) ⊆ C(A1) does not

hold. Try to understand why in this case it is so difficult to obtain explicit maximum
likelihood estimators.

Literature

Potthoff and Roy (1964) formulated the BRM but did not derive MLEs. They
provided the structure which “natural” estimators should satisfy and, undoubtedly,
stimulated many other authors. Explicit maximum likelihood estimators were
obtained by Khatri (1966), who derived the results using precise matrix manip-
ulations. A completely different approach was taken by Rao (1965, 1966), who
applied a variable selection approach together with multivariate covariance analysis
(see also Baksalary et al., 1978; Kenward, 1985; Verbyla, 1986; Fujikoshi and
Rao, 1991; Mikulich et al., 1999; Soler and Singer, 2000; Vasdekis, 2008). Rao’s
estimator appears to comprise Khatri’s and Rao showed that the approach taken
by Potthoff and Roy did not take care of all the information in the data. Grizzle
and Allen (1969) provided a number of insightful comments on the approaches
taken by Rao and Khatri. A “canonical reduction” of the BRM through singular
value decompositions of the known within-individuals and between-individuals
design matrices, leading to a canonical formulation of the BRM , was performed
by Gleser and Olkin (1970). Estimators of the model were obtained with the help
of a fundamental inequality applied to the likelihood function. Anderson and Olkin
(1985) presented a general overview of techniques of finding MLEs in the BRM , as
well as for finding them when there are some restrictions on the mean parameters.
The elegant work by Gleser and Olkin (1970) inspired many others, including
Kariya (1978, 1985), Banken (1984a,b), Fujikoshi and Satoh (1996) and Kariya and
Sinha (1989). Kariya, as well as Banken, applied group symmetry arguments when
working with the BRM . A monograph by Srivastava and Khatri (1979) was the first
book where inequalities were used to derive the MLEs in the BRM . In contrast to



3.5 Reasons for Using Both the EBRM3
B and the EBRM3

W 93

Gleser and Olkin, Srivastava and Khatri used the original matrices in the derivation
of the MLEs (see also Gleser and Olkin, 1972). Another approach is to solve the
likelihood equations. Elswick (1985), Chinchilli and Elswick (1985) and von Rosen
(1985, 1989), among others, all showed how to solve the likelihood equations.
These equations look complicated and are clearly non-linear, and therefore, from
a mathematical point of view, it is somewhat surprising that explicit solutions exist
and that, in fact, all the solutions can be explicitly presented.

The estimation of parameters in the BRM with a bilinear restriction such as
FBG = 0 was considered by Tubbs et al. (1975), where F and G are known
matrices. Kabe (1981) discussed more general restrictions. The estimators proposed
by these authors are not MLEs (see also Lewis and van Knippenberg, 1984). Gleser
and Olkin (1970) and Fujikoshi et al. (1999) put restrictions on the mean parameters
in the canonical formulation of the model, which was fully exploited by Banken
(1984b). Srivastava and Khatri (1979, Problem 6.9, p. 196) indicated how to obtain
MLEs under bilinear restrictions (Srivastava, 2002, gave some more details). von
Rosen (1989) considered F iBGi = 0, i = 1, 2, . . . , s, where F i and Gi are known,
and C(Gs ) ⊆ C(Gs−1) ⊆ · · · ⊆ C(G1), and showed how MLEs can be obtained.

Estimating parameters in the BRM under bilinear restrictions on the mean
parameters is equivalent to estimating the parameters in the EBRMm• , although,
in order to have nested subspace relations, sometimes additional restrictions have
to be put on the design matrices or the matrices defining the restrictions (see von
Rosen, 1989; Kollo and von Rosen, 2005, Chapter 4). Verbyla and Venables (1988),
in an interesting article, presented an extended growth curve model (EBRMm• ),
which was termed “the sum of profiles model”, and the authors came up with
several important observations, for instance that the EBRMm• without a nested
subspace condition is a multivariate seemingly unrelated regression (SUR) model.
The estimation algorithm proposed by Verbyla and Venables, designed to estimate
the parameters of the SUR model, will stop in one iteration if either a within-
individuals or a between-individuals nested subspace condition holds (see also
Stanek and Koch, 1985; Kabe, 1992; Timm, 1997; Drton et al., 2006). von
Rosen (1989) presented explicit MLEs for the EBRMm

B , where estimators were
recursively presented. Takane and Zhou (2012) discussed the MLEs provided by
Verbyla and Venables’ estimation algorithm and von Rosen’s solution.

Moreover, Verbyla and Venables (1988) also studied a special EBRM2
W which is

a combination of a GMANOVA and a MANOVA model (GMANOVA+MANOVA),
i.e. E[X] = AB1C1+B2C2, where Bi , i = 1, 2, are the unknown parameters. This
model had also been studied by von Rosen (1985), Elswick (1985) and Chinchilli
and Elswick (1985). All these authors presented MLEs. Note that this model is a
special case of the EBRM2

W . Klein and Žežula (2015) studied an EBRMm
W with

mutually orthogonal between-individuals design matrices (see also Hu et al., 2011).
As noted above, Gleser and Olkin (1970) presented a canonical version of the

EBRM2• , showed how to reduce the original model to be of a canonical form (see
also Fujikoshi and Satoh, 1996) and derived the MLEs. This approach was later
generalized, to cover a general EBRMm• , by Banken (1984b), who also presented
MLEs. Furthermore, Fujikoshi et al. (1999) presented estimators and discussed
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variable selection in the EBRM2
W (see also Srivastava, 2002; Filipiak and von

Rosen, 2012).
An interesting generalization of Gleser and Olkin’s (1970) approach was pre-

sented in an article by Andersson et al. (1993), where the concept of totally
ordered subspaces was introduced in the context of estimating mean parameters
and an unstructured dispersion matrix. Explicit MLEs were obtained. Note that a
chain of nested subspaces implies that the spaces are totally ordered subspaces. In
general the presentation by Andersson et al. (1993) is more mathematical than other
presentations. Moreover, this work was extended in Andersson and Perlman (1993),
where other references can also be found.

Wong and Cheng (2001) also used a mathematical language when considering
the BRM , but instead of a positive definite dispersion matrix, they treated a singular
dispersion matrix (see also Wong et al., 1995). The BRM with a singular dispersion
matrix was also discussed by Srivastava and von Rosen (2002).

Above we have mostly been considering MLEs which also constitute the main
theme of this chapter. However, alternative estimating approaches have been used
over the years. Probably the most frequently applied estimation alternatives are
Bayesian oriented approaches or different versions of a two-step approach.

Geisser (1980) presented a Bayesian review of the BRM . Among other things, it
was noted that the posterior mean estimator of the mean parameters is identical
to the corresponding MLE. Furthermore, Geisser presented a number of results
concerning prediction (see also Geisser, 1970; Lee and Geisser, 1972, 1975; Fearn,
1975; He and Xu, 2014).

A two-step approach usually means that first an estimator is constructed when
the dispersion matrix is known and thereafter, in a second step the dispersion matrix
is replaced by an estimator. For examples, see Rao (1967), Fearn (1977), Kariya
and Kurata (2004, Chapter 9), Hu and Yan (2008), Hu et al. (2012a,b) and Liu et al.
(2015).

Other types of estimators for the BRM have also been suggested. For example,
Fang et al. (2006) introduced an approach termed restricted expected multivariate
least squares. Tan (1991), in an interesting article, showed how to improve the
MLE of the mean parameter in the BRM via different types of loss functions.
Other authors who have used loss functions to improve MLEs are Kariya (1989),
Kubokawa et al. (1992), Kariya et al. (1996, 1999). Moreover, for the EBRMm

B

minimum risk estimators were considered by Wu (1998, 2000), and Wu et al. (2006)
applied a MINQUE-related approach and estimated both the mean parameters and
the dispersion matrix simultaneously. Kubokawa and Srivastava (2001) studied
robustness of mean estimators in the BRM . Kanda et al. (2002) considered
simultaneous confidence regions for EBRMk

W using a canonical formulation of the
model.

In the above-presented literature review, two large areas have not been covered.
One of them is the estimation of parameters in the BRM and EBRMm• when there
exist data which are missing at random. The other uncovered area is the estimation
of parameters when the models include structured dispersion matrices.
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Chapter 4
Basic Properties of Estimators

4.1 Introduction

Since statistical models usually consist of unknown parameters, these parameters
have to be estimated in order to make the models interpretable. A general strategy
(plugging-in strategy) is to replace the original unknown parameters with estimated
quantities, i.e. to create an estimated model and then hope that this procedure
will provide useful information. In order to draw firm statistical conclusions, one
needs to know the distribution of the estimated model, the estimated parameters
or in general the distribution of any statistic of interest. One consequence of the
estimation procedure is that the produced estimators of the parameters in a model are
usually dependent (correlated), which obviously cannot be the case in the original
model where there is no distribution put on the parameters. This deviance from the
original model may be essential for the interpretation of the output from any analysis
based on the model.

Unfortunately, exact distributions may be difficult to derive. Therefore one has
mostly to rely on approximations. There are many ways of performing approxima-
tions. One is to approximate the original model with a model where the necessary
distributions can be obtained. For example, a non-linear model can be approximated
by a linear model, and if one additionally supposes an error which is normally
distributed, the basic distributions are available for applying the model to real data.
Sometimes this is a good idea, but sometimes the original model has a specific
meaning, including an understanding of the parameters, whereas its linearization is
more difficult to interpret.

Another type of approximation is implemented when a multivariate set-up, with
an unknown dispersion matrix, is approximated with a number of independent
univariate models, for example, when a p-dimensional multivariate linear model
is approximated by p independent univariate linear models.

A third type of approximation is to consider the approximation from an asymp-
totic perspective, i.e. to suppose that many independent observations, let us say n,
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are available. The mathematics usually requires that n → ∞, but, of course, we
always have a finite number of independent observations. One rarely knows how
many observations are needed in order to trust results based on n → ∞.

In statistics and, in particular, multivariate analysis, functions of the inverse
dispersion matrix, �−1: p × p, are often used. However, there may be a problem
estimating the inverse, e.g. due to multicollinearity in “specific functions of data” or
there may simply be too few independent observations. In this case one can use the
Cayley-Hamilton theorem (see Rao, 1973, pp. 44–45), which implies

�−1 =
p−1
∑

i=0

ci�
i , ci are functions of �, �0 = Ip,

with the following approximation (pretending that ci are unknown constants):

�−1 ≈
a−1
∑

i=0

ci�
i , for some a < p.

This type of approximation can motivate the use of partial least squares (PLS) (see
Li et al., 2015). There exist several other types of approximations of �−1, among
others the Moore-Penrose inverse �+ (see Appendix A, Sect. A.6) or the regularized
dispersion matrix (� + λI )−1 with some particularly chosen λ.

When approximating distributions it is fairly straightforward to base the approx-
imations on moments, if they can be explicitly derived or approximated in a
reasonable way. For distributions with compact support, moments contain the
necessary information for determining the distribution. However, if the support is
not compact moments can still be used in the approximations. Deciding the order
of moments to be used in the approximations is similar to the problem of deciding
which polynomial degree should be used when approximating a non-linear function,
e.g. via a Taylor series expansion. In this book we use the so-called Edgeworth-type
expansions, which in principle involve the approximation of one density based on
another density via knowledge about moments from both the original distribution
and the approximating distribution.

In Chap. 3, MLEs were presented for the BRM , as well as for the EBRM3
B

and EBRM3
W . Unfortunately all the estimators are non-linear functions of the

random variables of the model. Therefore, no expressions for exact distributions
are available which can be of practical use. Since the estimators are MLEs, it is
known that they are consistent and asymptotically normally distributed, but usually
in applications the difference between the number of unknown parameters and the
number of independent observations is relatively small and utilizing asymptotic
theory is questionable.

Approximations of distributions via simulations can be useful when there are
a few parameters of interest. However, with a larger number of parameters, it
can become too complicated to perform such approximations via simulations. For
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example, there may be a large number of nuisance parameters, e.g. � in the BRM

when B is of primary interest. In principle the size of � may approach infinity and
then there is the problem of how to estimate B .

Finally, it is noted that for the BRM , as well as the EBRMm
B and EBRMm

W ,
which all belong to the curved exponential family, there are no optimal properties
available, such as minimum variance estimators or most powerful tests. Therefore,
there are many more possibilities for choosing strategies and methods when
applying bilinear regression models than when dealing with models belonging to the
exponential family. In this book, we mainly use maximum likelihood theory, which
makes it possible to obtain optimal asymptotic properties, which unfortunately are
rarely of use when analysing medium-sized data sets. When testing hypotheses,
the likelihood ratio test is based on maximum likelihood estimators which replace
the unknown parameters of the likelihood. This, however, does not mean that
maximum likelihood estimators have to be used when interpreting models and their
parameters. One can very well use other classes of estimators for the interpretation
of parameters and models, and use maximum likelihood estimators solely for
constructing likelihood ratio tests, where the estimators are used so that correct
levels and high powers are obtained. Hence, it can be concluded that maximum
likelihood estimators are of the utmost interest, but there can be many reasons for
using other estimators when evaluating statistical models.

4.2 Asymptotic Properties of Estimators of Parameters
in the BRM

The statistics presented in the following are all functions of the number of
independent observations, n. Thus, when writing n → ∞, we imagine a sequence of
statistics under consideration which can be exploited in many ways. In the following
we only elucidate whether a sequence converges and not how fast it converges.
There exists a huge body of mathematical literature which studies sequences, in
particular the convergence of sequences, and in this book we follow statistical
tradition in our use of convergence in probability and in distribution (see Appendix
A, Sect. A.11 for definitions).

The next lemma is fundamental for the following presentation of asymptotic
results for the BRM (see also Appendix B, Theorem B.18).

Lemma 4.1 Let S = X(I − P C ′)X′, where X follows the BRM presented in
Definition 2.1. Then, if n → ∞, and r(C) ≤ k is independent of n,

(i) n−1S
P→ �;

(ii) 1√
n

vec(S − �)
D→ Np2(0,
), 
 = (Ip2 + Kp,p)(� ⊗ �),

where Kp,p is the commutation matrix. See Appendix A, Sects. A.5 and A.6 for
definitions of Kp,p and vec(•), respectively.
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Proof Since S = ∑n−r(C)
i=1 yiy

′
i , for some yi ∼ Np(0,�), where yi and yj , i �= j ,

are independent, statement (i) follows from the law of large numbers and statement
(ii) from the central limit theorem (see Appendix B, Theorem B.18 (ii) and (v)) and
that D[S] = (n − r(C))(Ip2 + Kp,p)(� ⊗ �). ��

Suppose that there are two matrices K and L, such that the following estimation
conditions hold: C(K ′) ⊆ C(A′), and C(L) ⊆ C(Cv) ⊆ C(C) for some fixed
number v, where Cv is a matrix which consists of the first v columns in C. The
reason for the latter assumption is that when n → ∞, the number of columns in C

increases and without this assumption it would not make sense to consider K̂BL,
where ̂B is the MLE of the mean parameter of the BRM .

The estimability conditions given above and Theorem 3.1 together provide

K̂BL = K(A′S−1A)−A′S−1XC′(CC′)−L. (4.1)

Among other things, it is noted that this expression does not depend on the choice
of g-inverse (see Appendix B, Theorem B.7 (ii)), and K̂BL is built up with the help
of two independent quantities (jointly sufficient statistics), S ∼ Wp(�, n − k), and
XC′(CC′)−L ∼ Np,k(ABL,�,L(C′C)−L′). From Lemma 4.1 (i), since for any
continuous function h(•), h( 1

n
S) → h(�), in probability, it follows that

K(A′S−1A)−A′S−1 = K(A′(n−1S)−1A)−A′(n−1S)−1

P→ K(A′�−1A)−A′�−1, n → ∞. (4.2)

Let

KB	L = K(A′�−1A)−A′�−1XC′(CC′)−L

and it will be demonstrated that the tr-distance, || • || (see Appendix A, Sect. A.6),
converges to zero, i.e.

||K̂BL − KB	L|| = tr{(K̂BL − KB	L)(K̂BL − KB	L)′} P→ 0, n → ∞.

(4.3)

This means that under the tr-distance K̂BL is asymptotically equivalent to KB	L.
Note that (see Appendix B, Theorem B.9 (iii)) ||AQB − APB|| > ||CQD −
CPD|| for all P and Q if and only if BB ′ ⊗ A′A − DD′ ⊗ C ′C is p.d., where it
is supposed that the matrices are of proper sizes.

Now let ε be any small quantity and

P(||K̂BL − KB	L|| > ε) = P(||D(S,�)XC′(CC′)−L|| > ε), (4.4)
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where

D(S,�) = K((A′S−1A)−A′S−1 − (A′�−1A)−A′�−1). (4.5)

Note that from (4.2) it follows that D(S,�)
P→ 0. Let M be any arbitrary non-

stochastic matrix and Y = X − ABC. Then, (4.4) equals

P(||K̂BL − KB	L|| > ε)

= P(||D(S,�)YC′(CC′)−L|| > ε, MM ′ − YC ′(CC′)−LL′(CC′)−CY ′ is p.d.)

+P(||D(S,�)YC′(CC′)−L|| > ε, MM ′ − YC ′(CC′)−LL′(CC′)−CY ′ is not p.d.)

≤ P(||D(S,�)M || > ε) + P(MM ′ − YC′(CC′)−LL′(CC ′)−CY ′ is not p.d.). (4.6)

The first term in (4.6) converges to zero and the second one is discussed now. Since
the number of columns in C is increasing when n → ∞, one most proceed with
a certain degree of caution. Note that, based on Markov’s inequality (see Appendix
B, Theorem B.9 (i)),

P(MM ′ − YC′(CC′)−LL′(CC ′)−CY ′ is not p.d.)

= P(α′YC′(CC′)−LL′(CC′)−CY ′α ≥ α′MM ′α, for some α)

≤ tr{L′(CC′)−L}α′�α

α′MM ′α
≤ tr{L′(CvC

′
v)

−L}α′�α

α′MM ′α
,

and the right-hand side does not depend on n. Thus, by choosing M appropriately,
the probability given above can be made smaller than any pre-requested quantity.
Hence, from (4.6) it follows that K̂BL is asymptotically equivalent to KB	L.
Moreover, since KB	L converges to KBL the next theorem has been established.

Theorem 4.1 Let K̂BL be given by (4.1), where K: r × q and L: k × s. Then, if
n → ∞,

(i)
√

n(K̂BL − KBL)
D→ Nr,s(0,K(A′�−1A)−K ′,L′(CC′)−L);

(ii) K̂BL
P→ KBL.

Concerning asymptotic results for ̂�, the following expression, obtained from
Theorem 3.1, is now considered in some detail:

n̂� = S + (I − A(A′S−1A)−A′S−1)XP C ′X′(I − S−1A(A′S−1A)−A′).
(4.7)

It can be shown that this expression is asymptotically equivalent to

n�	 = S + (I − A(A′�−1A)−A′�−1)XPC ′X′(I − �−1A(A′�−1A)−A′),
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since

(I − A(A′S−1A)−A′S−1)XP C ′

and

(I − A(A′�−1A)−A′�−1)XPC ′

are asymptotically equivalent, which follows from (4.3); i.e. when the asymptotic
equivalence of K̂BL and KB	L is proven. The distribution of n�	 equals the
sum of two independent Wishart-distributed variables, and the Wishart distribution
is a much simpler distribution to deal with than the distribution for n̂�.

The matrix X in (4.7) can be replaced by Y = X − ABC. Moreover,
YP C ′Y ′ is independent of n, if r(C) = k, which is supposed to hold. Therefore,

1√
n
YP C ′Y ′ P→ 0. Thus, applying Lemma 4.1 and Appendix B, Theorem B.17 (iii),

the next theorem is established.

Theorem 4.2 Let ̂� be given in Theorem 3.1. Then, if n → ∞,

(i)
√

nvec(̂� − �)
D→ Np2(0,
), 
 = (Ip2 + Kp,p)(� ⊗ �);

(ii) ̂�
P→ �.

It is interesting to note that when studying ̂� from an asymptotic point of view,
the space C�(A) ⊗ C(C′) is not involved and there is a clear difference between
performing non-asymptotic inference and performing asymptotic inference. In some
way this indicates that if there are many observations in relation to the number of
parameters, there is no point in performing an analysis based on the BRM instead
of using a MANOVA model.

4.3 Moments of Estimators of Parameters in the BRM

Throughout this section, as in Corollary 3.1, two matrices, K and L, will be used
which satisfy C(K ′) ⊆ C(A′) and C(L) ⊆ C(C), respectively. These are the so-
called estimability conditions in the BRM in the sense that unique estimators are
obtained when these conditions are met. Then, once again,

K̂BL = K(A′S−1A)−A′S−1XC′(CC′)−L, (4.8)

where S = X(I −P C ′)X′. Moments for K̂BL and ̂� will now be derived, but there
derivation is a rather technical issue. In principle, one needs to combine knowledge
from the matrix normal, Wishart and inverse Wishart distributions. As K and L,
the matrices A and C may be chosen and then, if these matrices are of full rank,
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i.e. r(A) = q and r(C) = k, one may pre-multiply (4.8) by (A′A)−1A′, post-
multiply by C′(CC′)−1, and obtain

̂B = (A′S−1A)−1A′S−1XC′(CC′)−1. (4.9)

Thus, by studying (4.8) one always obtains complete information about (4.9). When
considering the general ̂B-expression presented in Corollary 3.1, for each choice
of Zi , i = 1, 2, we have to treat the estimator separately. If Zi is non-random, we
just have a translation of ̂B and, as will later be seen, we have a biased estimator.
If Zi is random, everything is more complicated and less clear and there is no point
discussing this case.

In (4.8) the matrix S is random, and therefore the expression for K̂BL is quite a
complicated non-linear random expression. As noted before, it consists of two parts,
namely

K(A′S−1A)−A′S−1 (4.10)

and

XC′(CC′)−L, (4.11)

but fortunately S and XC′ are independently distributed (see Appendix B, Theo-
rem B.19 (viii)), which will be utilized many times.

The distribution of K̂BL is a function of S which is used because of the inner
product estimation. However, �, which defines the inner product, may be regarded
as a nuisance parameter and, therefore, it is of interest to neglect the variation in
K̂BL which is due to S and compare the estimator with the class of estimators
proposed by Potthoff and Roy (1964);

K̂BGL = K(A′G−1A)−A′G−1XC′(CC′)−L, (4.12)

where G is supposed to be a non-random positive definite matrix. One choice is
G = I . According to Appendix B, Theorem B.19 (i), the distribution of K̂BGL is
matrix normal. Therefore, it can be valuable to compare the moments of K̂BL with
the corresponding moments of K̂BGL in order to understand how the distribution of
K̂BL differs from the normal one. Furthermore, one can use a conditional approach
concerning K̂BL, i.e. conditioning with respect to S in K̂BL, since the distribution
of S does not involve the parameter B .

Now the first two moments for K̂BL are presented.

Theorem 4.3 Let K̂BL be given by (4.8). Then

(i) E[K̂BL] = KBL;
(ii) if n − r(C) − p + r(A) − 1 > 0,

D[K̂BL] = n − r(C) − 1

n − r(C) − p + r(A) − 1
L′(CC′)−L ⊗ K(A′�−1A)−K ′.
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Proof Because of independence between S and XC′ (see Appendix B, Theo-
rem B.19 (viii)),

E[K̂BL] = E[K(A′S−1A)−K ′S−1]E[XC′(CC′)−L]. (4.13)

Since E[X] = ABC implies E[XC′(CC′)−L] = ABL, the expression in (4.13)
is equivalent to

E[K̂BL] = E[K(A′S−1A)−A′S−1]ABL

= E[K(A′S−1A)−A′S−1A]BL = KBL,

where in the last equality a result from Appendix B, Theorem B.7 (i) has been used.
Continuing with statement (ii), based on the definition of the dispersion matrix,

D[K̂BL] = E[vec(K(̂B − B)L)vec′(K(̂B − B)L)] (4.14)

and

K(̂B − B)L = K(A′S−1A)−A′S−1(X − ABC)C′(CC′)−L. (4.15)

Moreover, since C(K ′) ⊆ C(A′), K ′ = A′H , for some H . The fact will be utilized
that from the uniqueness of the projectors, it follows that

P A,S = A(A′S−1A)−A′S−1 = A(A′S−1A)−1A′S−1 = P A,S, (4.16)

where A is any matrix of full rank such that C(A) = C(A).
Put Y = (X − ABC)C′(CC′)−L, which, according to Appendix B, Theo-

rem B.19 (viii), is independent of S, and the dispersion of Y equals

D[Y ] = L′(CC′)−L ⊗ �. (4.17)

Now,

D[K̂BL] = E[(I ⊗ H ′P A,S)E[vecYvec′Y ](I ⊗ P ′
A,SH )]

= E[(I ⊗ H ′P A,S)D[Y ](I ⊗ P ′
A,SH )]

= L′(CC′)−L ⊗ E[H ′P A,S�P ′
A,SH ]. (4.18)

Therefore, remaining task is to derive E[H ′P A,S�P ′
A,SH ], and to derive this

expression it is convenient to work with a canonical form. Let (see Appendix B,
Theorem B.1 (i))

A′�−1/2 = T (I r(A) : 0)�′, (4.19)
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where T is non-singular, �′ = (�′
1 : �′

2), (p× r(A) : p× (p− r(A)), is orthogonal
and �−1/2 is a symmetric square root of �−1. Moreover, put

V = ��−1/2S�−1/2�′ ∼ Wp(I , n − r(C)). (4.20)

The matrices V and its inverse V −1 will be partitioned as follows:

V =
(

V 11 V 12

V 21 V 22

)

r(A) × r(A) r(A) × (p − r(A))

(p − r(A)) × r(A) (p − r(A)) × (p − r(A))
, (4.21)

V −1 =
(

V 11 V 12

V 21 V 22

)

r(A) × r(A) r(A) × (p − r(A))

(p − r(A)) × r(A) (p − r(A)) × (p − r(A))
. (4.22)

Thus, from (4.20) and (4.22) it follows, since (V 11)−1V 12 = −V 12V
−1
22 (see

Appendix B, Theorem B.8 (i)), that

E[PA,S�P ′
A,S] = E[�1/2�′

1(V
11)−1(V 11 : V 12)(V 11 : V 12)′(V 11)−1�1�

1/2]
= E[�1/2�′

1(I : (V 11)−1V 12)(I : (V 11)−1V 12)′�1�
1/2]

= E[�1/2�′
1{I + (V 11)−1V 12V 21(V 11)−1}�1�

1/2]
= �1/2�′

1�1�
1/2 + �1/2�′

1E[V 12V
−1
22 V −1

22 V 21]�1�
1/2

= �1/2�′
1�1�

1/2(1 + p − r(A)

n − r(C) − p + r(A) − 1
), (4.23)

where result (vii) of Theorem B.21 in Appendix B has been applied. A remaining
task is to express (4.23) in the original matrix A, and some calculations yield

�1/2�′
1�1�

1/2 = A(A′�−1A)−A′. (4.24)

Hence, (4.23) and (4.24) verify statement (ii). ��
Corollary 4.1 Let ̂B be given by (4.9) with r(A) = q and r(C) = k. Then

(i) E[̂B] = B;
(ii) if n − k − p + q − 1 > 0,

D[̂B] = n − k − 1

n − k − p + q − 1
(CC′)−1 ⊗ (A′�−1A)−1.

Corollary 4.2 Let Ê[X] = ÂBC. Then

(i) E[ÂBC] = ABC;
(ii) if n − r(C) − p + r(A) − 1 > 0,

D[Ê[X]] = n − r(C) − 1

n − r(C) − p + r(A) − 1
C′(CC′)−C ⊗ A(A′�−1A)−A′.
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It is worth noting that the factor

n − r(C) − 1

n − r(C) − p + r(A) − 1
> 1,

which appears in both Theorem 4.3 and Corollary 4.1, shows the contribution to
the dispersion due to the random weight S. If we had assumed a known covariance
matrix, this factor would have been replaced by 1. When n − r(C) is somewhat
larger than p − r(A), the effect of the factor on the dispersion is rather small.

Next for consideration are moments of a higher order and for notational
convenience we have chosen to use the moment representation

E[(K(̂B − B)L)⊗k].
The Kroneckerian power is a convenient way to gather all the possible mixed
moments μijk..., i.e. monomials (E[xi

1x
j

2 xk
3 . . . ]), as well as operate on them. The

drawback is that the same moments (μijk...) appear in several places in (K(̂B −
B)L)⊗k and, therefore, from a computational point of view (K(̂B − B)L)⊗k is not
efficient. Different representations and moments of arbitrary order can be studied
(see Kollo and von Rosen, 1995), but the technical treatment is rather lengthy and
therefore omitted here.

Theorem 4.4 (Kollo and von Rosen, 2005, Theorem 4.2.2) Let K̂BL be given
by (4.8). Put

v(A) = vec(K(A′�−1A)−K ′),

v(C′) = vec(L′(CC′)−L).

In these notations the following statements hold:

(i) If r is odd, E[(K(̂B − B)L)⊗r ] = 0.
(ii) If n − r(C) − p + r(A) − 1 > 0, then

E[(K(̂B − B)L)⊗2] = c0v(A)v′(C′),

where

c0 = n − r(C) − 1

n − r(C) − p + r(A) − 1
.

(iii) If n − r(C) − p + r(A) − 3 > 0, then

E[(K(̂B − B)L)⊗4] = (1 + 2c1){v(A)v′(C′)}⊗2

+(1 + 2c1)(Ip ⊗ Kp,p ⊗ Ip){v(A)v′(C′)}⊗2(In ⊗ Kn,n ⊗ I n)

+(1 + 2c1)Kp,p3{v(A)v′(C′)}⊗2Kn3,n

+(c2I + c3{(Ip ⊗ Kp,p ⊗ Ip) + Kp,p3}){v(A)v′(C′)}⊗2,
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where

c1 = p−r(A)
n−r(C)−p+r(A)−1 ,

c2 = 2(p−r(A))(n−r(C)−p+r(A)−1)+{2+(n−r(C)−p+r(A))(n−r(C)−p+r(A)−3)}(p−r(A))2

(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)2(n−r(C)−p+r(A)−3)
,

c3 = p−r(A)
(n−r(C)−p+r(A))(n−r(C)−p+r(A)−3)

+ (p−r(A))2

(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)(n−r(C)−p+r(A)−3)
.

(iv) If n − r(C) − p + r(A) − 2r + 1 > 0, then (for notation see Appendix A,
Sect. A.12)

E[(K̂BL)⊗2r ] = O(n−r ).

Proof Because of independence between S and XC′ (see Appendix B, Theo-
rem B.19 (viii)),

E[(K(̂B − B)L)⊗r ] = E[(K(A′S−1A)−A′S−1)⊗r ]
×E[(X − ABC)⊗r ](C′(CC ′)−L)⊗r . (4.25)

Due to normality, E[(X − ABC)⊗r ] = 0 for odd r and thus statement (i) is
established.

Statement (ii) is just a reorganization of the elements in D[K̂BL], given in
Theorem 4.3 (ii).

Now statement (iii) is considered. In Appendix B, Theorem B.19 (v), the fourth
order moments of a variable with a matrix normal distribution with mean 0 are
given. Put

K1,i = I i , K2,i = I i ⊗ K i,i ⊗ I i , K3,i = K i,i3 , (4.26)

where the size of the matrices is indicated by i, which in the following equals either
p or n. Then some manipulations yield (for details see Kollo and von Rosen, 2005,
p. 415)

E[(K(̂B − B)L)⊗4]

=
3

∑

j=1

Kj,p{E[(vec(�′
1(I + V 12V

−1
22 V −1

22 V 21)�1))
⊗2]v′(C′)⊗2}Kj,n′

, (4.27)



110 4 Basic Properties of Estimators

where �1 and V are defined in (4.19) and (4.20), respectively. Expanding (4.27)
gives

E[(K(̂B − B)L)⊗4] =
3

∑

j=1

Kj,p

{

(vec(�′
1�1))

⊗2

+vec(�′
1�1) ⊗ E[vec(�′

1V 12V
−1
22 V −1

22 V 21�1)]
+E[vec(�′

1V 12V
−1
22 V −1

22 V 21�1)] ⊗ vec(�1�
′
1)

+E[(vec(�′
1V 12V

−1
22 V −1

22 V 21�1))
⊗2]

}

v′(C′)⊗2Kj,n′
. (4.28)

From Appendix B, Theorem B.21 (vii),

E[�′
1V 12V

−1
22 V −1

22 V 21�1] = c1�
′
1�1,

E[(vec(�′
1V 12V

−1
22 V −1

22 V 21�1))
⊗2]

= c2(vec(�′
1�1))

⊗2 + c3(K
2,p + K3,p)(vec(�′

1�1))
⊗2, (4.29)

and together with (4.28) these expressions establish statement (iii) of the theorem.
In order to demonstrate statement (iv) it is first noted that

E[(K̂BL)⊗2r ] = E[(K(A′S−1A)−A′S−1)⊗2r ]E[(XC′(CC′)−L)⊗2r ].

Since one is just interested in the order of magnitude and no explicit expressions
of E[(K̂BL)⊗2r ], it follows from knowledge about moments of the matrix normal
distribution that it is sufficient to consider (see Appendix, Theorem B.19 (vi))

E[(vec(K(A′S−1A)−A′S−1�S−1A(A′S−1A)−K ′))⊗r ].

As in (4.29), this expression can be presented in a canonical form,

E[(vec(�′
1V 12V

−1
22 V −1

22 V 21�))⊗r ] = E[(�′
1V 12V

−1/2
22 )⊗2r ]E[(vecV −1

22 )⊗r ],

where the equality follows from the independence relation given in Appendix B,
Theorem B.20 (iv). Furthermore,

E[(vecV −1
22 )⊗r ] = O(n−r ),

which is proven in Kollo and von Rosen (2005, p. 417). Furthermore, Theorem B.20
(iv) in Appendix B states that the matrix V 12V

−1/2
22 is normally distributed with

moments independent of n. Thus, the theorem is established. ��
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In Theorem 4.3 (ii) and Corollary 4.1 (ii) the dispersion matrices for K̂BL

in (4.8) and ̂B were presented. However, these expressions are of little use if �−1

is not replaced by some appropriate value. If unbiased estimators are of interest, an
unbiased estimator of A(A′�−1A)−A′ has to be found. This is indeed fairly easy,
since Eq. (3.6) stated that

nA′S−1 = A′
̂�

−1
,

where ̂�
−1

is the inverse of the maximum likelihood estimator, and (see
Appendix B, Theorem B.20 (v))

E[A(A′
̂�

−1
A)−A′] = 1/nE[A(A′S−1A)−A′]

= n − r(C) − p + r(A)

n
A(A′�−1A)−A′.

Hence, the following theorem has been established.

Theorem 4.5 Consider the BRM presented in Definition 2.1, and let ̂� be the
maximum likelihood estimator. Unbiased estimators of the dispersion matrices for
K̂BL in (4.8) and ̂B are given by the following statements.

(i) If n − r(C) − p + r(A) − 1 > 0, then

̂D[K̂BL] = n(n−r(C)−1)
(n−r(C)−p+r(A)−1)(n−r(C)−p+r(A))

L′(CC′)−L ⊗ K(A′
̂�

−1
A)−K ′.

(ii) If n − k − p + q − 1 > 0, and A and C are of full rank

̂D[̂B] = n(n−k−1)
(n−k−p+q−1)(n−k−p+q)

(CC′)−1 ⊗ (A′
̂�

−1
A)−1.

In the following, the first and second order moments for ̂� in the BRM are
established. The estimator ̂� was presented in Theorem 3.1, i.e.

n̂� = S + (I − P A,S)XP C ′X′(I − P ′
A,S)

= S + P ′
Ao,S−1XP C ′X′PAo,S−1, (4.30)

where Ao for convenience is chosen to be of full column rank, i.e. Ao : p × (p −
r(A)).

Theorem 4.6 (Kollo and von Rosen, 2005, Theorem 4.2.3) Let ̂� be as
in (4.30).

(i) If n − r(C) − p + r(A) − 1 > 0, then

E[̂�] = � − r(C)
1

n

n − r(C) − 2(p − r(A)) − 1

n − r(C) − p + r(A) − 1
A(A′�−1A)−A′.



112 4 Basic Properties of Estimators

(ii) If n − r(C) − p + r(A) − 3 > 0, then

D[̂�] = d1(I + Kp,p){(A(A′�−1A)−A′) ⊗ (A(A′�−1A)−A′)}
+d2(I + Kp,p){(A(A′�−1A)−A′) ⊗ (� − A(A′�−1A)−A′)}
+d2(I + Kp,p){(� − A(A′�−1A)−A′) ⊗ (A(A′�−1A)−A′)}

+ 1

n
(I + Kp,p){(� − A(A′�−1A)−A′) ⊗ (� − A(A′�−1A)−A′)}

+d3vec(A(A′�−1A)−A′)vec′(A(A′�−1A)−A′),

where

d1 = n−r(C)

n2 + 2r(C)
p−r(A)

n2(n−r(C)−p+r(A)−1)
+ r(C) 2c1+c2+c3

n2 + r(C)2 c3
n2 ,

with

c1 = p−r(A)
(n−r(C)−p+r(A)−1)

,

c2 = 2(p−r(A))(n−r(C)−p+r(A)−1)+{2+(n−r(C)−p+r(A))(n−r(C)−p+r(A)−3)}(p−r(A))2

(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)2(n−r(C)−p+r(A)−3)
,

c3 = p−r(A)
(n−r(C)−p+r(A))(n−r(C)−p+r(A)−3)

+ (p−r(A))2

(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)(n−r(C)−p+r(A)−3)
,

and

d2 = n−p+r(A)−1
n(n−r(C)−p+r(A)−1)

,

d3 = 2r(C)(n−r(C)−1)(n−p+r(A)−1)(p−r(A))

n2(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)2(n−r(C)−p+r(A)−3)
.

Proof Only statement (i) will be proven here. For details concerning statement (ii)
see Kollo and von Rosen (2005, Theorem 4.2.3). The reason for not giving a proof
of the second statement is that it consists of lengthy calculations where most steps
in the proof have been applied earlier. Moreover, D[̂�] will not be used in the
following presentation and is only included for completeness of presentation.

The fact will be utilized that S ∼ Wp(�, n − r(C)) and

Ao′
XP C ′X′Ao ∼ Wp−r(A)(A

o′
�Ao, r(C))
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are independently distributed (see Appendix B, Theorem B.19 (ix)). From (4.30)
and Theorem B.19 (iv), (vii) in Appendix B,

E[n̂�] = E[S] + E[P ′
Ao,S−1XPC ′X′P Ao,S−1

= E[S] + E[SAo(Ao′
SAo)−E[Ao′

XC′(CC′)−CX′Ao](Ao′
SAo)−Ao′

S]
= (n − r(C))� + r(C)E[P ′

Ao,S−1�P Ao,S−1]. (4.31)

Let �1/2 be a symmetric square root of � and it follows that there exist a non-
singular matrix H and an orthogonal matrix � = (�′

1 : �′
2)

′, where �1 : (p −
r(A)) × p and �2 : r(A) × p, such that (see Appendix B, Theorem B.1 (i))

Ao′ = H (Ip−r(A) : 0)��−1/2 = H�1�
−1/2 (4.32)

holds. Moreover, similar to (4.20), let

V = ��−1/2S�−1/2�′, (4.33)

but now with the partition

V =
(

V 11 V 12

V 21 V 22

)

(p − r(A)) × (p − r(A)) (p − r(A)) × r(A)

r(A) × (p − r(A)) r(A) × r(A)
. (4.34)

Therefore,

P ′
Ao,S−1�P Ao,S−1 = �−1/2�′

(

I V −1
11 V 12

V 21V
−1
11 V 21V

−1
11 V −1

11 V 12

)

��−1/2

and

E[n̂�] = E[S] + r(C)�−1/2�′E
[

I V −1
11 V 12

V 21V
−1
11 V 21V

−1
11 V −1

11 V 12

]

��−1/2. (4.35)

Thus, from Theorem B.20 (ii), (iv), and since E[V 21V
−1
11 ] = 0, (4.35) is identical to

E[n̂�] = (n − r(C))� + r(C)�−1/2�′
(

I 0
0 c1I r(A)

)

��−1/2

= (n − r(C))� + r(C)�−1/2�′
1�1�

−1/2 + r(C)c1�
−1/2�2�

′
2�

−1/2. (4.36)

Finally, one returns to the original matrices and

�1/2�′
1�1�

1/2 = � − A(A′�−1A)−A′, �1/2�′
2�2�

1/2 = A(A′�−1A)−A′.
(4.37)
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Thus, the expectations given by (4.36) can be expressed in the original matrices and
from (4.37) it follows that (4.36) can be written as

E[n̂�] = (n − r(C))� + r(C)(� − A(A′�−1A)−A′) + r(C)c1A(A′�−1A)−A′,
(4.38)

which is identical to statement (i) of the theorem. ��
It is interesting to devote some thought to the results of Theorem 4.6 (i). Here

it is stated that the maximum likelihood estimator of � is not unbiased. Indeed it
follows that ̂� underestimates �, on average. This was expected, because the MLEs
of variances in linear and multivariate linear models are biased estimators. For these
estimators, unbiased estimators can always be obtained by rescaling the original
estimator. The estimator ̂� involves A and therefore rescaling is not possible.
However, in the next theorem, an unbiased estimator of � is presented which only
is a function of ̂�.

Theorem 4.7 Let ̂� be given by (4.30) and

e1 = r(C)
n−r(C)−2p+2r(A)−1

(n−r(C)−p+r(A)−1)(n−r(C)−p+r(A))
.

Then ̂�U = ̂� + e1A(A′
̂�

−1
A)−A′ is an unbiased estimator of �.

Proof The proof is based on the fact A′
̂�

−1 = nA′S−1 and (see Appendix B,
Theorem B.20 (v))

E[A(A′S−1A)−A′] = (n − r(C) − p + r(A))A(A′�−1A)−A′.

Hence, from Theorem 4.6 it follows that

E[̂�U ] = � +
{

−r(C)
1

n

n − r(C) − 2p + 2r(A) − 1

n − r(C) − p + r(A) − 1
+r(C)e1

1

n
(n − r(C) − p + r(A))

}

×A(A′�−1A)−A′ = �.

��
It can be observed that in Theorem 4.7

A(A′
̂�

−1
A)−A′ = PA,̂	

̂�P ′
A,̂	

;

i.e. a projection on C(A) takes place. Moreover, one can note that 1
n−r(C)

S also

is an unbiased estimator of �. If one compares the estimator 1
n−r(C)

S with the
one given by Theorem 3.1, there is in principle only one firm conclusion which
can be drawn, namely that the distribution for the estimator 1

n−r(C)
S is a Wishart

distribution, whereas the distribution of the maximum-likelihood-based estimator is
unknown.



4.3 Moments of Estimators of Parameters in the BRM 115

The maximum likelihood estimator ̂�, given by Theorem 3.1, combines the
deviation between the observations and the sample mean and the deviation between
the sample mean and the estimated model (see also Fig. 3.2). Hence, the maxi-
mum likelihood estimator uses two sources of information whereas 1

n−r(C)
S uses

only one. Intuitively the maximum likelihood estimator should be preferable,
although one must remember that one’s choice of estimator depends on the number
of observations and the choice of design matrix A.

It is possible to compare the two estimators with respect to their variances. Since
a comparison can only be made for a given A, however, no such comparison will
be made. It should, furthermore, be noted that in multivariate analysis the statistic

1
n−r(C)

S is often used as an estimator of �, for example in principal component
analysis, canonical correlation analysis and different versions of factor analysis.
However, if the mean value is structured as in the BRM , i.e. E[X] = ABC, one
can very well apply Theorem 4.7.

Next an interesting statement is given which can be proven in the same fashion
as several of the previous theorems.

Theorem 4.8 Let K̂BL and ̂� be given by (4.8) and (4.30), respectively. Then

C[K̂BL,̂�] = 0.

This theorem states that K̂BL and ̂� are uncorrelated. However, K̂BL and ̂� are
not independently distributed, which can be seen from

E[K̂BL ⊗ K̂BL ⊗ ̂�] �= E[K̂BL ⊗ K̂BL] ⊗ E[̂�].

To verify this statement, rather lengthy moment calculations have to take place and,
therefore, these are omitted here.

This section is ended by showing some calculations when applying the estima-
tors.

Example 4.1 (Continuation of Example 3.1, Potthoff and Roy (1964) data) In
Example 3.1 two different models were considered. Now the estimated dispersion
of the mean estimators and an unbiased estimator of the dispersion matrices is
presented. For details concerning the models the reader is referred to Example 3.1.

Model Ia
According to Corollary 4.1 (ii) and Theorem 4.5 (ii),

D[̂B1] = 24/22

(

0.09 0
0 0.06

)

⊗ (A′
1�

−1A1)
−1,

̂D[̂B1] =
(

0.09 0
0 0.06

)

⊗
(

17.9 −1.3
−1.3 0.1

)

.
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It follows from Theorem 4.7 that an unbiased estimator of � is given by

̂�1U = ̂�1 + 2∗20
22∗23A1(A

′
1
̂�

−1
1 A1)

−A′
1,

̂�1Uo =

⎛

⎜

⎜

⎝

5.4 2.7 3.8 2.7
4.2 3.0 3.3

6.3 4.1
5.0

⎞

⎟

⎟

⎠

,

where ̂�1 = (X − A1̂B1C)()′. For comparison, 1
n−r(C)

So is presented as an
alternative unbiased estimator of � which equals

1

n − r(C)
So = 1

n − r(C)
Xo(I − P C ′)X′

o =

⎛

⎜

⎜

⎝

5.4 2.7 3.9 2.7
4.2 2.9 3.3

6.5 4.1
5.0

⎞

⎟

⎟

⎠

.

It is interesting to note that there are very small differences between ̂�1Uo and the
estimator based on So.

Model Ib
The dispersion for ̂B2 = (A′

1A1)
−1A1XC′(CC′)−1 can be written as follows:

D[̂B2] = (CC′)−1 ⊗ (A′
1A1)

−1A′
1�A1(A

′
1A1)

−1.

One way of estimating the dispersion is to replace � by an unbiased estimator, for
example 1/(n − r(C))S, i.e.

̂D[̂B2] = 1
n−r(C)

(CC′)−1 ⊗ (A′
1A1)

−1A′
1SA1(A

′
1A1)

−1. (4.39)

The expectation of ̂�2 = (X − A1̂B2C)()′ equals

E[̂�2] = n−r(C)
n

� + r(C)
n

(I − P A1)�(I − PA1).

Finding an unbiased estimator of � is performed via the following relation:

̂�2U = n

n − r(C)
̂�2 − r(C)

(n − r(C))2 (I − P A1)S(I − P A1). (4.40)

Now explicit calculations of (4.39) and (4.40), respectively, yield

̂D[̂B2] =
(

0.09 0
0 0.06

)

⊗
(

16.6 −1.2
−1.2 0.1

)
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and

̂�2Uo =

⎛

⎜

⎜

⎝

5.4 2.7 3.9 2.7
4.2 3.0 3.3

6.3 4.2
5.0

⎞

⎟

⎟

⎠

.

The difference in performance between Model Ia and Model Ib can be measured
by (see Appendix B, Theorem B.9 (v))

̂D[̂B2] − ̂D[̂B1]
= (CC ′)−1 ⊗ { 1

n−k
(A′

1A1)
−1A′

1SA1(A
′
1A1)

−1 − n−k−1
(n−k−p+q−1)(n−k−p+q)

(A′S−1A)−1}

≤ ( 1
n−k

(λ1+λp)2

4λ1λ2
− n−k−1

(n−k−p+q−1)(n−k−p+q)
)(CC′)−1 ⊗ (A′S−1A)−1,

where λp and λ1 denote the smallest and largest eigenvalues of S, respectively. The
inequality is according to the Loewner order (see Appendix A, Sect. A.3). Thus,
since λ1 = 15.3 and λ2 = 0.9,

̂D[̂B2] − ̂D[̂B1] ≤

⎛

⎜

⎜

⎝

4.9 −0.4 0 0
0.04 0 0

3.4 −0.2
0.02

⎞

⎟

⎟

⎠

.

Hence, it can be seen that the upper bound indicates that there might be a difference
in the estimated variance between the two approaches. However, we do not know
how sharp the upper bound is in reality and one can suspect that it is not very sharp,
in particular if the smallest eigenvalue is close to 0.

Model IIa
This model is similar to Model Ia. The difference is that now a second degree
polynomial describes the growth instead of a line. The results are as follows:

D[̂B3] = 24/23

(

0.09 0
0 0.06

)

⊗ (A′
2�

−1A2)
−1,

̂D[̂B3] =
(

0.09 0
0 0.06

)

⊗
⎛

⎝

286.7 −51.0 2.2
−51.0 9.3 −0.4

2.2 −0.4 0.02

⎞

⎠ .

In comparison with Model Ia, the estimated variance of the intercept and slope is
much higher. It has indeed become so large that it is difficult to determine whether
̂B3 differs from 0.
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An unbiased estimator of � is given by

̂�3U = ̂�2 + 2∗22
23∗24A2(A

′
2
̂�

−1
2 A2)

−A′
2,

�3Uo =

⎛

⎜

⎜

⎝

5.4 2.7 3.8 2.7
4.2 3.0 3.3

6.3 4.1
5.0

⎞

⎟

⎟

⎠

.

The estimator of � is almost the same as the previously presented unbiased
estimators of �, but, in contrast to that, the estimated dispersion of the mean
parameters differs significantly between Model Ia and Model IIa.

Model IIb
This model is an extension of Model Ib and it follows that

D[̂B4] = (CC′)−1 ⊗ (A′
2A2)

−1A′
2�A2(A

′
2A2)

−1,

̂D[̂B4] =
(

0.09 0
0 0.06

)

⊗
⎛

⎝

216.6 −40.4 1.8
−40.4 7.6 −0.3

1.9 −0.3 0.02

⎞

⎠ .

Thus, as for Model IIa there is a relatively large dispersion. An unbiased estimator
of � is given by

̂�4Uo =

⎛

⎜

⎜

⎝

5.4 2.7 3.9 2.7
4.1 3.0 3.3

6.4 4.2
5.0

⎞

⎟

⎟

⎠

.

The most striking discovery in this example is that when adding a mean parameter
to the model, the dispersion of the mean estimators becomes large. Therefore, if
in practice one has to choose between a two-parameter linear model and a three-
parameter model, the results indicate that a two-parameter model is more relevant
to use than a three-parameter model.

The upper bound of the difference ̂D[̂B4] − ̂D[̂B3] is rather large and computa-
tions yield

̂D[̂B4] − ̂D[̂B3] ≤

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

87.7 −15.6 0.7 0 0 0
2.8 −0.1 0 0 0

0.005 0 0 0
60.3 −10.7 0.46

2.0 −0.08
0.004

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Hence, it can be seen that the upper bound indicates that there can be a difference in
the estimated variance between the two approaches. ��
Example 4.2 (Continuation of Example 1.5, “Liming Data”)

̂Bo =
(

7.1 7.0
−0.03 −0.04

)

,

D[̂B] = 17/16(CC′)−1 ⊗ (A′�−1A)−1,

̂D[̂B] =
(

0.1 0
0 0.1

)

⊗
(

0.041 0.0010
0.0010 0.00049

)

,

̂�o =
⎛

⎝

0.036 0.034 0.042
0.060 0.066

0.088

⎞

⎠ ,

̂�U = ̂� + 2∗15
16∗17A(A′

̂�
−1

A)−1A,

̂�Uo =
⎛

⎝

0.040 0.038 0.047
0.067 0.073

0.097

⎞

⎠ .

If S in ̂B is considered to be fixed,

D[̂B|S] = (CC′)−1 ⊗ (A′S−1A)−1A′�A(A′S−1A)−1

with an unbiased estimator ̂D[̂B|S] = 16
17

̂D[̂B], where � has been replaced by
̂� = 1

n−r(C)
S. Hence, a conditional approach is fairly relevant to use, in particular

since in this case the distribution of ̂B is known. ��

4.4 EBRM3
B
and Uniqueness Conditions for MLEs

In order to study the estimators of parameters in the EBRM3
B , the estimators or the

bilinear combinations of them have to be unique. If the estimate ̂B io is considered to
be unique, it is understood that ̂B io has a unique expression, whereas if the estimator
̂Bi is unique, this means that it has a unique distribution (excluding events with
probability mass 0). In the following, however, ̂B i represents both the estimators
and the estimates. It is essential, as for the BRM , to obtain uniqueness conditions,
since the conditions reveal whether or not the parameters or bilinear functions of the
parameters are estimable. Unfortunately, in comparison with the BRM , there are
more parameters for the EBRM3

B and their estimators are functionally connected.
Thus, the handling of the EBRM3

B is more complex and the technical treatment
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more complicated. In general the technical details presented in the following will be
sparse.

The next theorem presents the uniqueness conditions necessary and sufficient for
the estimators of the parameters in the EBRM3

B .

Theorem 4.9 For the EBRM3
B presented in Definition 2.2, let ̂B i , i = 1, 2, 3, be

given in Theorem 3.2 and let K̂B iL, i = 1, 2, 3, be linear combinations of ̂B i; K

and L are known matrices of proper sizes. Then the following statements hold:

(i) ̂B3 is unique if and only if

r(A3) = q3, r(C3) = k3, C(A3) ∩ C(A1 : A2) = {0};

(ii) K̂B3L is unique if and only if

C(L) ⊆ C(C3), C(K ′) ⊆ C(A′
3(A1 : A2)

o);

(iii) ̂B2 is unique if and only if

r(A2) = q2, r(C2) = k2, C(A1) ∩ C(A2) = {0},
C(A1)

⊥ ∩ C(A1 : A2) ∩ C(A1 : A3) = {0};

(iv) K̂B2L is unique if and only if

C(L) ⊆ C(C2), C(K ′) ⊆ C(A′
2(A1 : A3)

o);

(v) ̂B1 is unique if and only if

r(A1) = q1, r(C1) = k1, C(A1) ∩ C(A2) = {0},
C(A2)

⊥ ∩ C(A1 : A2) ∩ C(A2 : A3) = {0};

(vi) K̂B1L is unique if and only if

C(L) ⊆ C(C1), C(K ′) ⊆ C(A′
1),

C(A′
3(I − P Ao

1
A2(A

′
2PAo

1
A2)

−A′
2)A1(A

′
1A1)

−K ′) ⊆ C(A′
3(A1 : A2)

o),

C(A′
2A1(A

′
1A1)

−K ′) ⊆ C(A′
2A

o
1);

(vii) The estimator ̂� in Theorem 3.2 is always uniquely estimated as well as the
estimator Ê[X] given in Corollary 3.3.

Proof The proof is based on the expressions given in Theorem 3.2. The estimators
will be unique if the expressions do not include the Zij matrices. Moreover, since
the matrix expressions involving Zij do not include any inner product estimators,
the uniqueness conditions will hold irrespective of whether � is known or unknown;
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i.e. in principle the conditions could have been derived from standard linear models
theory.

Now the derivations of the statements begin and we start by considering ̂B3,
which is unique if (A′

3Q2Q1)
o = 0 and Co

3 = 0. Note that instead of ̂Q2
̂Q1 in

Theorem 3.2, Q2Q1 can be used, since the estimate of the inner product, as has
been noted above, can be disregarded. Since the derived uniqueness conditions do
not depend on the inner product, this fact shortens the derivations significantly. It
follows that

C(Q2Q1) = C(A1 : A2)
⊥,

and therefore (see Appendix B, Theorem B.5 (iv))

r(A′
3Q2Q1) = r(A1 : A2 : A3) − r(A1 : A2),

which implies that (A′
3Q2Q1)

o = 0 is equivalent to

C(A3) ∩ C(A1 : A2) = {0}, r(A3) = q3.

Thus, statement (i) has been verified and statement (ii) can also be obtained from
these calculations.

Turning to statement (iii), it follows immediately from Theorem 3.2 that
(A′

2Q1)
o = 0 and Co

2 = 0 have to be satisfied. The conditions are equivalent to

C(A2) ∩ C(A1) = {0}, r(A2) = q2, r(C2) = k2.

Moreover, according to Theorem 3.2, A′
2Q1�

−1Q′
1A3̂B3C3C

′
2 should be unique

and using statement (i)

C(A′
3Q1�

−1Q′
1A2) ⊆ C(A′

3(A1 : A2)
o) = C(A′

3Q1Q2)

should hold. Since C(�−1Q′
1A2) = C(I − Q2), this expression is equivalent to

C(A′
3Q1) ⊆ C(A′

3Q1(Q1A2)
o).

Hence, applying Appendix B, Theorem B.3 (vii), this relation yields

C(Q1A3) ∩ C(Q1A2) = {0},

which is an identical statement to statement (iii) of the theorem (see Appendix B,
Theorem B.11 (iv)).
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Concerning statement (iv), after some reflection, the following relations for a
unique expression of K̂B2L are obtained from Theorem 3.2:

C(L) ⊆ C(C2),

C(K ′) ⊆ C(A′
2A

o
1), (4.41)

C(A′
3P Ao

1
A2(A

′
2PAo

1
A2)

−K ′) ⊆ C(A′
3(A1 : A2)

o). (4.42)

However, further manipulations show that (4.41) and (4.42) jointly can be
replaced by

C(K ′) ⊆ C(A′
2(A1 : A3)

o).

Now, ̂B1 is studied very briefly. For details the reader is referred to Kollo and von
Rosen (2005, p. 392). From Theorem 3.2 it follows that, in order to have a unique
̂B1, the rank conditions r(A) = q1 and r(C1) = k1 have to hold, and

(A′
1A1)

−1A′
1(A2̂B2C2 + A3̂B3C3)C

′
1(C1C

′
1)

−1

must be unique. Note that

C(A′
2) ⊆ C(A′

2A
o
1)

has to be true and that ̂B2 is a function of ̂B3 which, after some further calculations,
leads to the condition

C(A′
3(I − P Ao

1
A2(A

′
2PAo

1
A2)

−A′
2)A1) ⊆ C(A′

3(A1 : A2)
o).

This relation can be shown to be equivalent to

C(PAo
2
A3) ∩ C(P Ao

2
A1) = {0},

which is identical to (see Appendix B, Theorem B.11 (iv))

C(A2)
⊥ ∩ C(A1 : A2) ∩ C(A3 : A2) = {0}.

The proof of statement (vi) is omitted because, in addition to being lengthy, the
calculations are very similar to those presented above. Finally, it is noted that (see
Corollary 3.3)

Ê[X] = P A1,S1XP C ′
1
+ P

̂Q′
1A2,̂S2

XP C ′
2
+ P

̂Q′
2
̂Q′

1A3,̂S3
XPC ′

3
,

and instead of this expression it is sufficient to consider

P A1,	XP C ′
1
+ PQ′

1A2,	
XPC ′

2
+ P Q′

2Q
′
1A3,	

XP C ′
3
.
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Once again, repeating arguments and calculations for proving the other parts of the
theorem, it can be shown that Ê[X] is uniquely estimated. Moreover, it then follows
that ̂� can also be uniquely estimated. ��
A general reflection is that the conditions for uniqueness/estimability for the mean
parameters are interpretable and useful, whereas when considering K̂BiL, it is more
difficult to understand the relations.

4.5 Asymptotic Properties of Estimators of Parameters
in the EBRM3

B

Similar to Lemma 4.1 the next lemma can be established.

Lemma 4.2 Let S1,̂S2,̂S3, ̂Q1, ̂Q2, Q1 and Q2 be defined through Theorem 3.2
and (3.13)–(3.16). Suppose that for large n, r(C1) ≤ k1, and that both r(C1) −
r(C2) and r(C2) − r(C3) are independent of n. Then, as n → ∞,

(i) n−1S1
P→ �, n−1

̂S2
P→ �, n−1

̂S3
P→ �,

(ii) ̂Q1
P→ Q1, ̂Q2

P→ Q2.

Proof Since the distribution for S (see Lemma 4.1) used in the BRM and the

distribution for S1 are the same, n−1S1
P→ � follows from Lemma 4.1, and this

is also true for ̂Q1
P→ Q1. Then it is noted that ̂Q

′
1A1 = 0, and hence

̂S2 = S1 + ̂Q
′
1(X − A1B1C1)(PC ′

1
− P C ′

2
)(X − A1B1C1)

′
̂Q1. (4.43)

From Appendix B, Theorem B.20 (vi) it follows that

(X − A1B1C1)(PC ′
1
− PC ′

2
)(X − A1B1C1)

′ ∼ Wp(�, r(C1) − r(C2)),

because (A3B3C3 + A2B2C2)(P C ′
1
− P C ′

2
) = 0. It is assumed that r(C1) − r(C2)

is fixed for large n, which indeed implies that for large n the Wishart distribution
does not depend on the values of n. Hence,

1

n
(X − A1B1C1)(P C ′

1
− P C ′

2
)(X − A1B1C1)

′ P→ 0,

which is precisely what is needed in the following. Thus, (4.43) yields n−1(̂S2 −
S1)

P→ 0, and then n−1
̂S2

P→ �. Moreover, ̂Q2
P→ Q2 and then copying the above

presentation one may show n−1
̂S3

P→ �. ��
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In Lemma 4.2 the most basic relations for a discussion of asymptotically equivalent
expressions for K̂B iL, i = 1, 2, 3, have been presented and the derivation of these
equivalent expressions begins now.

Starting with K̂B3L, it is assumed that K and L have been chosen so that K̂B3L

is unique. Hence, K̂B3L equals (see Theorem 3.2)

K̂B3L = K(A′
3
̂Q2

̂Q1
̂S

−1
3

̂Q
′
1
̂Q

′
2A3)

−A′
3
̂Q2

̂Q1
̂S

−1
3 XC′

3(C3C
′
3)

−L. (4.44)

From Theorem 4.9 (ii) it is seen that one of the uniqueness conditions is C(L) ⊆
C(C3). This condition depends on the number of columns, n, in C3. Therefore, as
for the BRM (see Sect. 4.2), it will be supposed that

C(L) ⊆ C(C3v), (4.45)

for some v, where v is a fixed number and C3v stands for the first v columns of C3.
Let, correspondingly to D(S,�) for the BRM in Sect. 4.2, i.e. (4.5),

D(̂S3,�) = K((A′
3
̂Q2

̂Q1
̂S

−1
3

̂Q
′
1
̂Q

′
2A3)

−A′
3
̂Q2

̂Q1
̂S

−1
3

−(A′
3Q2Q1�

−1Q′
1Q

′
2A3)

−A′
3Q2Q1�

−1) (4.46)

and put

KB3	L = K(A′
3Q2Q1�

−1Q′
1Q

′
2A3)

−A′
3Q2Q1�

−1XC′
3(C3C

′
3)

−L, (4.47)

which is a linear function in the normally distributed matrix X. Note that
D(̂S3,�)E[X] = 0, as well as

D(̂S3,�)
P→ 0, n → ∞. (4.48)

Moreover, for any small ε > 0,

P(||K(̂B3 − B3	)L|| > ε)

= P(||D(̂S3,�)(X − E[X])C′
3(C3C

′
3)

−L|| > ε); (4.49)

the trace distance || • || has already been used in (4.3). Now let M be an arbitrary
matrix of a proper size. Then

P (||D(̂S3,�)(X − E[X])C ′
3(C3C

′
3)

−L|| > ε)

= P (||D(̂S3,�)(X − E[X])C ′
3(C3C

′
3)

−L|| > ε

MM ′ − (X − E[X])C ′
3(C3C

′
3)

−LL′(C3C
′
3)

−C3 is p.d.)

+P (||D(̂S3,�)(X − E[X])C ′
3(C3C

′
3)

−L|| > ε,
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MM ′ − (X − E[X])C ′
3(C3C

′
3)

−LL′(C3C
′
3)

−C3(X − E[X])′ is not p.d.)

≤ P (||D(̂S3,�)M|| > ε, )

+P (α′(X − E[X])C ′
3(C3C

′
3)

−LL′(C3C
′
3)

−C3(X − E[X])′α ≥ α′MM ′α),

(4.50)

for some specific p-dimensional vector α. The first expression in (4.50), based
on (4.48), converges to 0, and due to Markov’s inequality (see Appendix B,
Theorem B.9 (i)) and by choosing M appropriately, the second expression can be
made arbitrarily small:

P(α′(X − E[X])C′
3(C3C

′
3)

−LL′(C3C
′
3)

−C3(X − E[X])′α ≥ α′MM ′α)

≤ tr{L′(C3C
′
3)

−L}
α′MM ′α

≤ tr{L′(C3vC
′
3v)

−L}
α′MM ′α

. (4.51)

Thus,

K(̂B3 − B3	)L
P→ 0. (4.52)

It is worth noting that

KB3	L ∼ Nr,s(KB3L,A′
3Q1Q2�

−1Q′
2Q

′
1A3,L

′(C3C
′
3)

−L), (4.53)

if K has r rows and L has s columns. Thus, for K̂B3L there exists an asymptotically
equivalent expression which is normally distributed. If � had been known, the
distribution in (4.53) would have been the natural one to use.

In order to discuss ̂B2 and ̂B1, one needs to reformulate (4.52) somewhat. Let
Kn be a sequence of matrices such that for a given n, C(Kn′

) ⊆ C(A′
3
̂Q1

̂Q2) and

Kn P→ K , for some K. Then

Kn
̂B3L − KB3	L

P→ 0. (4.54)

In the following there are also some expressions where L in K̂B3L depends on
n, i.e. C3C

′
i (CiC

′
i )

−L, i = 1, 2 (here L is different from the above one and does
not depend on n), and in particular the following results will be utilized:

Kn
̂B3C3C

′
2(C2C

′
2)

−L − KB3	C3C
′
2(C2C

′
2)

−L
P→ 0,

C(L) ⊆ C(C2), n → ∞, (4.55)

Kn
̂B3C3C

′
1(C1C

′
1)

−L − KB3	C3C
′
1(C1C

′
1)

−L
P→ 0,

C(L) ⊆ C(C1), n → ∞. (4.56)
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Proceeding by showing K̂B2L to be unique, it follows from Theorem 3.2 that

K(A′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−A′
2
̂Q1

̂S
−1
2

̂Q
′
1(X − A3B3C3)C

′
2(C2C

′
2)

−L (4.57)

and

K(A′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−A′
2
̂Q1

̂S
−1
2

̂Q
′
1A3(̂B3 − B3)C3C

′
2(C2C

′
2)

−L (4.58)

have to be considered. Analogously to C(L) ⊆ C(C3v) in the previous case,
i.e. (4.45), it is now assumed that C(L) ⊆ C(C2v) for a matrix C2v which consists
of the first v columns of C2. Put

Gn = K(A′
2
̂Q

′
1
̂S

−1
2

̂Q1A2)
−A′

2
̂Q

′
1
̂S

−1
2

and

G = K(A′
2Q

′
1�

−1Q1A2)
−A′

2Q
′
1�

−1. (4.59)

From Lemma 4.2 it follows that Gn P→ G, n → ∞. Furthermore, C(A′
3(G

n)′) ⊆
C(A′

3
̂Q1

̂Q2). Hence, utilizing (4.53) results in (4.58) converging to 0.
Turning to the proof of (4.57), the proof of (4.52) shows that it is sufficient that

the next probability can be made arbitrarily small:

P(α′(X − E[X])C′
2(C2C

′
2)

−LL′(C2C
′
2)

−C2(X − E[X])′α ≥ α′MM ′α), (4.60)

where α is some p-dimensional vector and M is an arbitrary matrix of size p ×
p. However, choosing M appropriately, via Markov’s inequality (see Appendix B,
Theorem B.9 (i)), (4.60) can be made arbitrarily small. Therefore,

K(A′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−A′
2
̂Q1

̂S
−1
2

̂Q
′
1XC′

2(C2C2)
−L − GXC′

2(C2C2)
−L

P→ 0,

n → ∞, (4.61)

where G is given by (4.59). From (4.54) and (4.61), and setting

KB2	L = K(A′
2Q1�

−1Q′
1A2)

−A′
2Q1�

−1Q′
1(X − A3B3	C3)C

′
2(C2C2)

−L,

(4.62)

lead to the asymptotic result,

K̂B2L − KB2	L
P→ 0, n → ∞. (4.63)
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Moreover, if K has r rows and L has s columns,

KB2	L ∼ Nr,s(KB2L,K(A′
2Q1�

−1Q′
1A2)

−K ′,L′(C2C
′
2)

−L). (4.64)

Next K̂B1L is discussed under the condition that it is unique. From Theorem 3.2
it follows that asymptotic expressions for

K(A′
1S

−1
1 A1)

−A′
1S

−1
1 XC′

1(C1C
′
1)

−L, (4.65)

K(A′
1S

−1
1 A1)

−A′
1S

−1
1 P A2,S2,Q1XP C ′

2
C′

1(C1C
′
1)

−L, (4.66)

K(A′
1S

−1
1 A1)

−A′
1S

−1
1 (I − PA2,S2,Q1)A3̂B3C3C

′
1(C1C

′
1)

−L (4.67)

have to be derived. Moreover, for the same reasons as before, C(L) = C(C1v) is
supposed to hold, where v is a fixed number and C1v consists of the first v columns
in C1. Copying some of the previous proofs yields that for (4.65)

K(A′
1S−1

1 A1)
−A′

1S
−1
1 XC′

1(C1C
′
1)−L − K(A′

1�−1A1)−A′
1�−1XC′

1(C1C′
1)

−L
P→ 0,

n → ∞,

(4.68)

and for (4.66)

K(A′
1S−1

1 A1)
−A′

1S
−1
1 PA2,S2,Q1XPC ′

2
C′

1(CC′
1)

−L

−K(A′
1�

−1A1)−A′
1�−1PA2,S2,Q1XPC ′

2
C′

1(CC′
1)−L

P→ 0, n → ∞, (4.69)

and (4.67) converges to

K(A′
1�

−1A1)
−A′

1�
−1(I − P A2,	,Q1)A3B3	C3C

′
1(C1C

′
1)

−L. (4.70)

Set

KB1	L = K(A′
1�

−1A1)
−A′

1�
−1(X − A2B2	C2 − A3B3	C3)

× C′
1(C1C

′
1)

−L, (4.71)

where the linear combinations of B3	 and B2	 are obtained from (4.47) and (4.62),
respectively. Thus, using (4.65)–(4.71) it has been shown that

K̂B1L − KB1	L
P→ 0, n → ∞. (4.72)

If K has r rows and L has s columns,

KB1	L ∼ Nr,s(KB1L,K(A′
1�

−1A1)
−K ′,L′(C1C

′
1)

−L).
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Hence, the following theorem has been established, where the last two statements
concerning ̂� follow immediately from Lemma 4.2.

Theorem 4.10 Let ̂Bi be the maximum likelihood estimators of B i , i=1,2,3, in the
EBRM3

B , given in Theorem 3.2.

(i) If K̂B3L for the specific known matrices K and L is unique for some n, and
if additionally there exists a number, v, such that C(L) ⊆ C(C3v), where C3v

is a matrix whose columns are identical to the first v columns in C3, then

K̂B3L − KB3	L
P→ 0, n → ∞, where KB3	L is given by (4.47).

(ii) If K̂B2L for the specific known matrices K and L is unique for some n, and
if additionally there exists a number, v, such that C(L) ⊆ C(C2v), where C2v

is a matrix whose columns are identical to the first v columns in C2, then

K̂B2L − KB2	L
P→ 0, n → ∞, where KB2	L is given by (4.62).

(iii) If K̂B1L for the specific known matrices K and L is unique for some n, and
if additionally there exists a number, v, such that C(L) ⊆ C(C1v), where C1v

is a matrix whose columns are identical to the first v columns in C1, then

K̂B1L − KB1	L
P→ 0, n → ∞, where KB1	L is given by (4.71).

(iv) Let Xv , C1v , C2v and C3v denote the first v columns in X, C1, C2 and C3,
respectively. Then for Ê|Xv] = ∑3

i=1 A1̂BiCiv

Ê|Xv] − (A1B1	C1v + A2B2	C2v + A3B3	C3v)
P→ 0, n → ∞,

where A1B1	C1v follows from statement (iii) by choosing K = A1 and L =
C1v , A2B2	C2v follows from statement (ii) by choosing K = A2 and L =
C2v , and A1B3	C3v follows from statement (i) by choosing K = A3 and
L = C3v .

(v) Let S3, Q1, Q2 and Q3 be defined in (3.13)–(3.16). Then

̂� − 1

n
(S3 + Q3Q2Q1XP C ′

3
X′Q′

1Q
′
2Q

′
3)

P→ 0, n → ∞.

(vi) ̂�
P→ �, n → ∞.

4.6 Moments of Estimators of Parameters in the EBRM3
B

For the BRM , the distributions of the maximum likelihood estimators are difficult
to find. In Theorem 3.2, the estimators for the EBRM3

B were given and one can see
that the expressions are stochastically much more complicated than the estimators
for the BRM . To understand the estimators, moments are useful quantities. For
example, approximations of the distributions of the estimators have to take place,
and in this book these approximations are based on moments. Before studying
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K̂B iL, i = 1, 2, 3, the estimated mean structure Ê[X] = ∑3
i=1 Ai

̂B iCi and
̂� are treated. Thereafter, D[K̂B iL], i = 1, 2, 3, is calculated. The ideas for
calculating D[K̂B iL] are very similar to the ones presented for obtaining D[Ê[X]]
and E[̂�]. Some advice is appropriate here. The technical treatment in this section
is complicated, although not very difficult. Readers less interested in details are
recommended merely to study the results in the given theorems. Moreover, the
presentation in different places is not complete due to computational lengthiness.
Table 4.1 includes definitions which are used throughout the section.

First it will be shown that in the EBRM3
B , under the uniqueness conditions

presented in Theorem 4.9, the maximum likelihood estimators of KBiL will be
unbiased and then it follows that Ê[X] = ∑m

i=1 Ai
̂B iCi is also unbiased. In

Theorem 3.2 the maximum likelihood estimators ̂B i , i = 1, 2, 3, were presented.
Since C(C′

3) ⊆ C(C′
2) ⊆ C(C′

1), the following facts, which are obtained from
Appendix B, Theorem B.19 (ix) and (xi), will be utilized.

Table 4.1 Special definitions used in Sect. 4.6

Notation Definition Reference

A1:r A1:r = (A1 : A2 : · · · : Ar ) (4.93)

mr mr = p − r(A1:r ) + r(A1:r−1) (4.78)

cr cr−1 = n−r(Cr )−mr−1−1
n−r(Cr−1)−mr−1−1 (4.86)

er er = (p−mr )(n−r(Cr )−1)
(n−r(Cr )−mr−1−1)(n−r(Cr )−mr−1+p−mr−1)

(4.91)

fr fr = n−r(Cr )−1
n−r(Cr )−mr−1 (4.92)

gi,j gi,j = cici+1 × · · · × cj−1mj/(n − r(Cj ) − mj − 1), i < j (4.118)

gj,j = mj/(n − r(Cj ) − mj − 1)

Gr Gr+1 = Gr (G
′
rAr+1)

o, G0 = I (4.73)

W r W r = X(I − P Cr
)X′ (4.74)

�r �r = (�u′
r : �l′

r )′ �r : mr−1 × mr−1, �r�
′
r = �′

r�r = I

�u
r : mr × mr−1, �0 = I (4.75)

V r V r = �r�
u
r−1 × · · · × �u

1�−1/2W r�
−1/2�u′

1

× · · · × �u′
1 ∼ Wmr−1 (I , n − r(Cr )) (4.80)

V 1 = �u
1�−1/2W 1�

−1/2�u′
1

U r U r = �r−1�
u
r−2 × · · · × �u

1�−1/2W r�
−1/2�u′

1

× · · · × �u′
r−2�

′
r−1 ∼ Wmr−2 (I , n − r(Cr )) (4.81)

U 1 = �−1/2W 1�
−1/2, U 2 = �u

1�−1/2W 2�
−1/2�u′

1

Mr M ′
r = (

I : (V r
11)

−1V r
12

)

(4.83)

Er Er = �u
r−1�

u
r−2 × · · · × �u

1�−1/2Ar (4.84)

Zr,s Zr,s = �u
r−1�

u
r−2 × · · · × �u

1�−1/2P ′
Gr ,W

−1
r

P ′
Gr+1,W−1

r+1

× · · · × P ′
Gs,W

−1
s

, 2 ≤ r ≤ s (4.107)

Z1,s = P ′
G1,W

−1
1

P ′
G2,W

−1
2

× · · · × P ′
Gs ,W

−1
s

, s ≥ 1 (4.108)

Zr,s = I , r > s

In this book mostly r ≤ 3
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Facts

(i) S1 is independent of XC′
1, XC ′

2 and XC′
3.

(ii) ̂Q1
̂S

−1
2 is independent of XC′

2 and XC′
3.

(iii) ̂Q2
̂Q1

̂S
−1
3 is independent of XC′

3.

These facts will be used throughout this section. Instead of Facts (ii) and (iii), it

could be stated that ̂S
−1
2 is independent of XC′

2 and XC′
3, and ̂S

−1
3 is indepen-

dent of XC′
3. Moreover, it is interesting to note that here there are two nested

structures of information which are so linked that explicit moment calculations
can take place. On the one hand there is a structure connected to the mean,
i.e. ({XC′

1,XC′
2,XC′

3}, {XC′
2,XC′

3}, {XC′
3}), and on the other hand there is the

residual structure ({S1}, {̂Q1
̂S

−1
2 }, {̂Q2

̂Q1
̂S

−1
3 }). In the following the notations

related to projectors and quadratic forms, presented in Appendix A, Sect. A.7, will
frequently be used.

Now, using the expressions presented in Theorem 3.2

E[K̂B3L] = E[K(A′
3
̂Q2

̂Q1
̂S

−1
3

̂Q
′
1
̂Q

′
2A3)

−A′
3
̂Q2

̂Q1
̂S

−1
3

̂Q
′
1
̂Q

′
2]

×E[XC ′
3(C3C

′
3)

−L]
(because XC′

3 is independent of ̂S3 and ̂Q2
̂Q1

̂S
−1
3 )

= E[K(A′
3
̂Q2

̂Q1
̂S

−1
3

̂Q
′
1
̂Q

′
2A3)

−A′
3
̂Q2

̂Q1
̂S

−1
3

̂Q
′
1
̂Q

′
2]A3B3L = KB3L,

E[K̂B2L] = E[K(A′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−A′
2
̂Q1

̂S
−1
2

̂Q
′
1

(E[X] − A3̂B3C3)C
′
2(C2C

′
2)

−L]
= KB2L − E[K(A′

2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−A′
2
̂Q1

̂S
−1
2

×̂Q
′
1A3(̂B3 − B3)C3C

′
2(C2C

′
2)

−L]
(because XC′

3 is independent of ̂Q1
̂S

−1
2 and E[A3(̂B3 − B3)C3] = 0)

= KB2L,

E[K̂B1L] = E[K(A′
1S

−1
1 A1)

−A′
1S

−1
1 (E[X] − A2̂B2C2 − A3̂B3C3)C

′
1(C1C

′
1)

−L]
= KB1L

−E[K(A′
1S

−1
1 A1)

−A1S
−1
1 (A2(̂B2 − B2)C2 + A3(̂B3 − B3)C3)C

′
1(C1C

′
1)

−L]
(because XC′

3 and XC′
2 are independent of S1 and E[Ai (̂B i − B i )Ci ] = 0, i = 1, 2)

= KB1L.

Hence, these calculations have established the following theorem.

Theorem 4.11 Consider the EBRM3
B presented in Definition 2.2. Under the

uniqueness conditions given in Theorem 4.9, K̂BiL is an unbiased estimator of
KB iL, i = 1, 2, 3, where ̂B i is given in Theorem 3.2.
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In the same way as the unbiasedness of K̂B iL was verified it can be shown that
the sum of profiles

∑3
i=1 Ai

̂BiCi is unbiased. The difference is that now we do not
have to rely on uniqueness conditions, because

∑3
i=1 Ai

̂BiC i is always unique.

Corollary 4.3 Consider the EBRM3
B presented in Definition 2.2. The expression

∑3
i=1 Ai

̂B iCi is an unbiased estimator of E[X] = ∑3
i=1 AiB iCi , where ̂Bi , i =

1, 2, 3, is given in Theorem 3.2.

In several of the forthcoming proofs it is indicated how one can handle a model
with a mean E[X] = ∑m

i=1 AiBiCi , m > 3, but the comments and explanations
concern the model when m = 3, since it is only in this case explicit estimators have
been presented. The dispersion of Ê[X] = ∑3

i=1 Ai
̂B iCi is studied in some detail,

since all the essential steps for carrying out general moment calculations are used.
However, before calculations start, in order to shorten the presentation, a number of
definitions are provided (see also Table 4.1). Let

Gr+1 = Gr (G
′
rAr+1)

o, G0 = I , (4.73)

W r = X(I − P Cr )X
′. (4.74)

In particular,

G1 = Ao
1,

G2 = G1(G
′
1A2)

o, C(G2) = C(Ao
1) ∩ C(Ao

2) = C(A1 : A2)
⊥,

G3 = G2(G
′
2A3)

o, C(G3) = C(G2) ∩ C(Ao
3) = C(A1 : A2 : A3)

⊥.

For convenience, Gi is supposed to be of full column rank. Moreover, let the non-
singular matrix H r : mr × mr , H 0 = I , and the orthogonal matrix

�r = (�u′
r : �l′

r )′, �r : mr−1 × mr−1, �u
r : mr × mr−1, (4.75)

be defined through a factorization of (G′
i−1Ai )

o, i.e.

G′
1 = Ao′

1 = H 1(Ip−r(A) : 0)�1�
−1/2 = H 1�

u
1�−1/2, (4.76)

(G′
r−1Ar )

o′
H r−1 = H r (Imr : 0)�r = H r�

u
r , r = 2, 3, . . . , (4.77)

where mr is a decreasing sequence in r given by

mr = p − r(A1 : A2 : · · · : Ar ) + r(A1 : A2 : · · · : Ar−1), m0 = p, m1 = p − r(A1).

(4.78)



132 4 Basic Properties of Estimators

Since by definition Gr = Gr−1(G
′
r−1Ar )

o, it follows that

G′
r = H r�

u
r �

u
r−1 × · · · × �u

1�−1/2, (4.79)

which is a relation to be used frequently in the following. Moreover, note that the
size of Gr is p × mr . Furthermore, define

V r = �r�
u
r−1 × · · · × �u

1�−1/2W r�
−1/2�u′

1

× · · · × �u′
r−1�

′
r ∼ Wmr−1(I , n − r(Cr )), r = 2, 3, . . . , (4.80)

V 1 = �u
1�−1/2W 1�

−1/2�u′
1 ∼ Wm1(I , n − r(C1)),

U r = �r−1�
u
r−2 × · · · × �u

1�−1/2W r�
−1/2�u′

1

× · · · × �u′
r−2�

′
r−1 ∼ Wmr−2(I , n − r(Cr )), r = 3, 4, . . . , (4.81)

U1 = �−1/2W 1�
−1/2 ∼ Wp(I , n − r(C1)),

U2 = �u
1�−1/2W 2�

−1/2�u′
1 ∼ Wm1(I , n − r(C2)),

and

V r
11 = (Imr : 0)V r (Imr : 0)′, U r

11 = (Imr−1 : 0)U r (Imr−1 : 0)′. (4.82)

In particular, many of the forthcoming moment relations will be based on calcula-
tions involving V r

11 and U r
11, given in (4.82). Connected to these matrices are

M ′
r =

(

I : (V r
11)

−1V r
12

)

, (4.83)

Er = �u
r−1�

u
r−2 × · · · × �u

1�−1/2Ar , (4.84)

where specially it is noted that

r(Er ) = r(Gr−1Ar ) = p − mr. (4.85)

One of the main tricks when deriving the moment expressions is to use the
observation presented in the next lemma.

Lemma 4.3 Let V r
11 and U r

11 be given by (4.82) and let h(•) be any measurable
function of (U r

11)
−1 of proper size. Then

E[(V r−1
11 )−1h(U r

11)] = cr−1E[(U r
11)

−1h(U r
11)], r = 2, 3,
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where

cr−1 = n − r(Cr ) − mr−1 − 1

n − r(Cr−1) − mr−1 − 1
= 1 + r(Cr−1) − r(Cr )

n − r(Cr−1) − mr−1 − 1
. (4.86)

Proof According to the definitions of V r−1
11 and U r

11, and Theorem B.22 (i) in
Appendix B, there exists a unique lower triangular matrix T such that

U r
11 = T T ′, V r−1

11 = T FT ′, (4.87)

where F ∼ MβI(mr−1, n−r(Cr−1), r(Cr−1)−r(Cr )) (see Appendix A, Sect. A.9
for a definition of the multivariate β-distribution) is independent of T . Since (see
Appendix B, Theorem B.22 (iii))

E[F−1] = cr−1I ,

the lemma is established. ��
The result in (4.87) is of special interest, in particular the fact that F is

independent of T , which follows from the derivation of the MβI (•, •, •) distribution
(e.g. see Kollo and von Rosen, 2005, pp. 248–249). One should note that U r

11 =
V r−1

11 + W , where U r
11, V r−1

11 and W ∼ Wmr−1(I , r(Cr−1) − r(Cr )) are Wishart-
distributed, and W is independent of V r−1

11 .
Another important result which will also be used repeatedly is the following

lemma.

Lemma 4.4 Let Mr be given by (4.83) and let Q be an arbitrary non-random
matrix of a proper size. Then

E[MrQM ′
r ] = E[

(

I

V r
21(V

r
11)

−1

)

Q
(

I (V r
11)

−1V r
12

)]

=
(

Q 0
0 E[tr{(V r

11)
−1Q}]I

)

.

Proof Since V r is Wishart-distributed, there exists an N ∼ Nmr−1,n−r(Cr)(0, I , I )

such that V r = NN ′. Corresponding to the V r
11 partition N ′ = (N ′

1 : N ′
2),

i.e. V r
11 = N1N

′
1, and it is noted that N2 is independent of N1. Then the proof

follows by an application of Appendix B, Theorem B.19 (iv). ��
In Corollary 3.3 Ê[X] was presented as a sum of three random variables:

Ê[X] =
3

∑

i=1

Ai
̂BiCi = P A1,S1XP C ′

1
+ P

̂Q′
1A2,̂S2

XP C ′
2
+ P

̂Q′
2
̂Q′

1A3,̂S3
XP C ′

3
,

(4.88)
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where

̂P 1 = P A1,S1,
̂P 2 = P

̂Q′
1A2,̂S2

, ̂P 3 = P
̂Q′

2
̂Q′

1A3,̂S3
, (4.89)

̂Q1 = I − ̂P
′
1,

̂Q2 = I − ̂P
′
2. (4.90)

The variables in (4.88) are of the same type as Ê[X] in the BRM but unfortunately
the variables are not independently distributed. Now it will be shown how to derive
the dispersion matrix D[Ê[X]]. Note that E[Ê[X]] = E[X] and

D[Ê[X]] = D[Ê[X] − E[X]] = D[
3

∑

i=1

̂P i (X − E[X])PC ′
i
],

This means that in order to find D[Ê[X]], it is sufficient to consider the
dispersion

D[̂P r (X − E[X])PC ′
r
], r = 1, 2, 3,

and the covariance

C[̂P r (X − E[X])P C ′
r
,̂P s (X − E[X])PC ′

s
], 1 ≤ r < s ≤ 3.

By summing all the necessary dispersion and covariance matrices, D[Ê[X]] is
obtained. In the next theorem the dispersion is studied, whereas the covariance
is treated in Theorem 4.13. The final expression for D[Ê[X]] is presented in
Theorem 4.14.

Theorem 4.12 Consider the EBRM3
B presented in Definition 2.2. Let mr and cr

be defined by (4.78) and (4.86), respectively. Put

d1,2 = c1e2, d1,3 = c1c2e3, d2,3 = c2e3,

where

er = (p − mr)(n − r(Cr ) − 1)

(n − r(Cr ) − mr−1 − 1)(n − r(Cr ) − mr−1 + p − mr − 1)
, r = 2, 3,

(4.91)

and

fr = n − r(Cr ) − 1

n − r(Cr ) − mr − 1
, r = 1, 2, 3. (4.92)
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Furthermore, let

A1:i = (A1 : A2 : · · · : Ai ), A1:0 = 0 (4.93)

and define

K i = �(P Gi−1,	−1 − P Gi,	−1)

= A1:i (A′
1:i�−1A1:i )−A′

1:i − A1:i−1(A
′
1:i−1�

−1A1:i−1)
−A′

1:i−1,

where in particular

K1 = A1(A
′
1�

−1A1)
−A′

1,

K2 = A1:2(A′
1:2�−1A1:2)−A′

1:2 − A1(A
′
1�

−1A1)
−A′

1,

K3 = A1:3(A′
1:3�−1A1:3)−A′

1:3 − A1:2(A′
1:2�−1A1:2)−A′

1:2.

Then, if er and fr are finite and positive,

D[P A1,S1(X − E[X])PC ′
1
] = f1P C ′

1
⊗ K1, (4.94)

D[P
̂Q′

1A2,̂S2
(X − E[X])PC ′

2
] = P C ′

2
⊗ (d1,2K1 + f2K2),

D[P
̂Q′

2
̂Q′

1A3,̂S3
(X − E[X])PC ′

3
] = P C ′

3
⊗ (d1,3K1 + d2,3K2 + f3K3),

where ̂Qr , r = 1, 2, is defined in (4.90).

Proof It follows that the proof in principle holds for an arbitrary r , which,
however, will not be highlighted. Due to independence between the “mean” and
the “residuals”

D[̂P r (X − E[X])P C ′
r
] = P C ′

r
⊗ E[̂P r�̂P

′
r ], r = 1, 2, 3, (4.95)

where for notational convenience ̂P r in (4.89) is used, and therefore the crucial
quantity to consider is

E[̂P r�̂P
′
r ].

When r = 1, relation (4.95) is immediately obtained from Theorem 4.3 (ii), since
the expressions which have to be calculated have the same form as those used when
calculating the dispersion for the dispersion of ̂B in the BRM , i.e.

E[̂P 1�̂P
′
1] = f1K1, (4.96)

where f1 is given by (4.92).
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Before starting the derivation of E[̂P r�̂P
′
r ], r = 2, 3, some preparatory results

are stated without proofs. For r = 2 the “open sesame” relation

̂Q1
̂S

−1
2

̂Q
′
1 = ̂Q1

̂S
−1
2 = G1(G

′
1W 2G1)

−1G′
1 (4.97)

will be used, where G1 and W 2 are defined in (4.73) and (4.74), respectively. This
relation and a similar one given below in (4.101) are two of the most important
relations for treating the EBRM3

B theoretically, since, for example, the right-hand

side of (4.97) shows that ̂Q1
̂S

−1
2

̂Q
′
1 = ̂Q1

̂S
−1
2 is inverted Wishart-distributed, and

therefore moments are also available. Moreover, with M1 as defined in (4.83)

̂P 2 = ̂Q
′
1P A2,G′

1W2G1,G1
= P ′

G1,W−1
1

P A2,G′
1W2G1,G1

= �1/2�′
1M1H

−1
1 P G′

1A2,G′
1W2G1

G′
1

(4.98)

yields

̂P 2�̂P
′
2 = �1/2�′

1M1PE2,U2
11

P ′
E2,U

2
11

M ′
1�1�

1/2,

where E2 is defined in (4.84). Then, because V 1 is Wishart distributed, V 1 = NN ′
and V 1

12 = N1N
′
2 for some normally distributed

N = (N ′
1 : N ′

2)
′ ∼ Np,n−r(C1)(0, I , I ),

implying, among other things, that N2 is independent of N1 and U 2
11 = V 1

11 + W ,
where W ∼ Wp−r(A)(I , r(C1)− r(C2)) is independent of V 1

11. It follows, by using
Lemma 4.4, that

E[̂P 2�̂P
′
2] = �1/2�u′

1 E[PE2,U2
11

P ′
E2,U2

11
]�u

1�1/2

+�1/2�l′
1 �l

1�
1/2E[tr{(V 1

11)
−1P E2,U

2
11

P ′
E2,U

2
11

}].

Using Lemma 4.3 and Theorem B.26 (i) in Appendix B, the expectations can be
calculated:

E[PE2,U2
11

P ′
E2,U2

11
] = f2P E2,

E[tr{(V 1
11)

−1P E2,U
2
11

P ′
E2,U

2
11

}] = c1E[tr{(U2
11)

−1P E2,U
2
11

P ′
E2,U

2
11

}]

= c1E[tr{(U2
11)

−1P E2,U
2
11

}] = d1,2, (4.99)
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defined in the statement of the theorem. Furthermore, it can be shown that K1 and
K2, also given in the statement of the theorem, satisfy

K1 = �1/2�l′
1 �l

1�
1/2,

K2 = �1/2�u′
1 P E2�

u
1�1/2,

respectively, and hence

E[̂P 2�̂P
′
2] = d1,2K1 + f2K2 (4.100)

has been determined.
Next r = 3 is considered and the derivation follows the previous case when

r = 2. Instead of (4.97), the following equations now appear:

̂Q2
̂Q1

̂S
−1
3

̂Q
′
1
̂Q

′
2 = ̂Q2

̂Q1
̂S

−1
3 = G2(G

′
2W 3G2)

−1G′
2 (4.101)

and

̂P 3 = ̂Q
′
2
̂Q

′
1P A3,G

′
2W3G2,G2

= P ′
G1,W

−1
1

P ′
G2,W

−1
2

PA3,G
′
2W3G2,G2

= �1/2�′
1M1�

′
2M2H

−1
2 P G′

2A3,G′
2W3G2

G′
2, (4.102)

as well as

̂P 3�̂P
′
3 = �1/2�′

1M1�
′
2M2P E3,U

3
11

P ′
E3,U

3
11

M ′
2�2M

′
1�1�

1/2.

Then, once again applying Lemma 4.4 and using V 1
12 = N1N

′
2 for some normally

distributed N ′ = (N ′
1 : N ′

2), where N2 is uncorrelated with N1, M2 and U3
11,

E[̂P 3�̂P
′
3] = �1/2�u′

1 �′
2E[M2P E3,U

3
11

P ′
E3,U

3
11

M ′
2]�2�

u
1�1/2 (4.103)

+ �1/2�l′
1�l

1�
1/2E[tr{(V 1

11)
−1�2M2PE3,U3

11
P ′

E3,U3
11

M ′
2�

′
2}].
(4.104)

It is observed that E[M2P E3,U3
11

P ′
E3,U3

11
M ′

2] has the same stochastic structure as

E[̂P 2�̂P
′
2] and therefore the right-hand side of (4.103) equals

�1/2�u′
1 �′

2E[M2P E3,U
3
11

P ′
E3,U

3
11

M ′
2]�2�

u
1�1/2

= �1/2�u′
1 �u′

2 E[P E3,U
3
11

P ′
E3,U

3
11

]�u
2�u

1�1/2

+�1/2�u′
1 �l′

2�l
2�

u
1�1/2E[tr{(V 2

11)
−1P E3,U

3
11

P ′
E3,U

3
11

}].
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Now Lemma 4.3 and Theorem B.26 (i) in Appendix B, yield

E[P E3,U
3
11

P ′
E3,U

3
11

] = f3PE3 ,

E[tr{(V 2
11)

−1P E3,U
3
11

P ′
E3,U

3
11

}] = c2E[tr{(U 3
11)

−1PE3,U3
11

P ′
E3,U3

11
}]

= c2E[tr{(U 3
11)

−1PE3,U3
11

}] = d2,3, (4.105)

where f3 and c2 are given in Table 4.1 and d2,3 is defined in the beginning of the
theorem. Finally, (4.104) is considered:

�1/2�l′
1 �l

1�
1/2E[tr{(V 1

11)
−1�′

2M2PE3,U3
11

P ′
E3,U

3
11

M ′
2�2}]

= �1/2�l′
1 �l

1�1/2c1E[tr{(U2
11)

−1�′
2M2PE3,U3

11
P ′

E3,U
3
11

M ′
2�2}]

= �1/2�l′
1 �l

1�1/2

×c1E[tr{(U2
11)

−1�′
2V

2�2�u′
2 (V 2

11)
−1P

E3,U3
11

P ′
E3,U3

11
(V 2

11)
−1�u

2�′
2V

2�2}]

= �1/2�l′
1 �l

1�1/2c1E[tr{�u′
2 (V 2

11)
−1P

E3,U3
11

P ′
E3,U3

11
(V 2

11)−1�u
2U2

11}]

= �1/2�l′
1 �l

1�1/2c1E[tr{(V 2
11)

−1P
E3,U

3
11

P ′
E3,U3

11
}],

since �′
2V

2�2 = U 2
11 and �u

2U 2
11�

u′
2 = V 2

11. Thus, the last expression has the same
form as the left-hand side of (4.99) and, therefore, the expectation in (4.104) equals

E[tr{(V 1
11)

−1�′
2M2P E3,U

3
11

P ′
E3,U

3
11

M ′
2�2}] = d1,3.

The statement of the theorem concerning r = 3 is verified by observing that

K2 = �1/2�u′
1 �l′

2 �l
2�

u
1�1/2, (4.106)

K3 = �1/2�u′
1 �u′

2 P E3�
u
2�u

1�1/2.

��
It is of interest to reflect on how the proof was carried out and understand that
the main parts consist of two recursive relations, and in particular to understand
when and why Lemmas 4.3 and 4.4 were applied. Now the covariance between the
terms in

Ê[X] = P A1,S1XP C ′
1
+ P

̂Q′
1A2,̂S2

XP C ′
2
+ P

̂Q′
2
̂Q′

1A3,̂S3
XPC ′

3

is studied.
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Theorem 4.13 Let r < s ≤ 3 and let the notation be the same as in Theorem 4.12
and its proof. Then, for the EBRM3

B presented in Definition 2.2, if er , given in
Theorem 4.12, is finite and positive,

C[̂P r (X − E[X])PC ′
r
, ̂P s (X − E[X])PC ′

s
]

=
{

−PC ′
3
⊗ d2,3K2, if r > 1,

PC ′
s
⊗ (d1,sK1 + Ks), if r = 1.

Proof The following proof indicates that the result holds for a general m > 3 in
an EBRMm

B , if MLEs have been derived. The matrices Mr and Er given by (4.83)
and (4.84) will be used. Additionally, a matrix Zr,s simplifies the presentation as
follows:

Zr,s = �u
r−1�

u
r−2 × · · · × �u

1�−1/2P ′
Gr ,W

−1
r

P ′
Gr+1,W

−1
r+1

× · · · × P ′
Gs,W

−1
s

,

2 ≤ r ≤ s, (4.107)

Z1,s = P ′
G1,W

−1
1

P ′
G2,W

−1
2

× · · · × P ′
Gs,W

−1
s

, s ≥ 1, (4.108)

Zr,s = I , r > s.

First consider the case r = 1:

E[̂P 1�̂P
′
s ] = E[�1/2�′

1M1�u
1�1/2P ′

As,G
′
s−1WsGs−1,Gs

Z′
1,s−1]

= �1/2�u′
1 E[�u

1�1/2P ′
As,G

′
s−1WsGs−1,Gs

Z′
2,s−1]�u

1�1/2

+E[tr{(V 1
11)−1�u

1�−1/2�P ′
As,G

′
s−1WsGs−1,Gs

Z′
2,s−1}]�1/2�l′

1 �l
1�1/2

= �1/2�u′
1 �u

1�−1/2�E[�−1/2�u′
1 × · · · × �u′

s−1P
′
Es,U

s−1
11

] (4.109)

×�u
s−1 × · · · × �u

1�1/2 + d1,sK1 (4.110)

= �1/2�u′
1 �u

1�−1/2��−1/2�u′
1 × · · · × �u′

s−1PEs
�u

s−1 × · · · × �u
1�1/2 + d1,sK1

= Ks + d1,sK1, (4.111)

where, among other used results, Lemma 4.4 has been applied.
Now suppose r = 2 and s = 3. Note that (X − E[X])PC ′

2
can be written as

(X − E[X])P C ′
2

= (X − E[X])(P C ′
3
+ P C ′

2
− P C ′

3
),

where (X − E[X])P C ′
3

is independent of ̂P 2, ̂P 3 and (X − E[X])(PC ′
2
− P C ′

3
).

Hence,

C[̂P 2(X − E[X])PC ′
2
,̂P 3(X − E[X])P C ′

3
] = P C ′

3
⊗ E[̂P 2�̂P

′
3].
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Thus, from now on E[̂P 2�̂P
′
3] is discussed in a manner similar to the way in which

we discussed the case when r = s, and it turns out that there exists a recurrence
property which is somewhat easier to handle than when r = s, as in Theorem 4.12.
It can be shown, using the same arguments as were used when (4.103) and (4.104)
were obtained, that if one assumes that

E
[

tr{(V 1
11)

−1�u
1�−1/2P A2,G

′
1W2G1,G1

�P ′
A3,G

′
2W3G2,G2

×G2(G
′
2W 2G2)

−1G′
2W 2�

−1/2�u′
1 }

]

= 0, (4.112)

then

E[̂P 2�̂P
′
3] = E[Z1,1P A2,G

′
1W2G1,G1

�P ′
A3,G′

2W3G2,G2
Z′

1,2]
= �1/2�′

1E[M1�
u
1�−1/2P A2,G

′
1W2G1,G1

�P ′
A3,G

′
2W3G2,G2

Z′
2,2M

′
1]�1�

1/2

= �1/2�u′
1 �u

1�−1/2E[PA2,G
′
1W2G1,G1

�P ′
A3,G′

2W3G2,G2
Z′

2,2]�u
1�1/2. (4.113)

To verify (4.112), Lemma 4.3 together with some calculations are used. The left-
hand side equals

c1E[tr{(U 2
11)

−1�u
1�−1/2P A2,G

′
1W2G1,G1

�P ′
A3,G

′
2W3G2,G2

×G2(G
′
2W 2G2)

−1G′
2W 2�

−1/2�u′
1 }]

= c1E[tr{�u
1�−1/2P A2,G

′
1W2G1,G1

�P ′
A3,G′

2W3G2,G2
G2(G

′
2W 2G2)

−1H 2�
u
2}]

= c1E[tr{G′
2PA2,G′

1W2G1,G1
�P ′

A3,G′
2W3G2,G2

G2(G
′
2W 2G2)

−1}] = 0,

since according to the definition of G2, given in (4.79), G′
2A2 = 0, which implies

that

G′
2P A2,G

′
1W2G1,G1

= 0.

Continuing with (4.113), by the definition of P A2,G
′
1W2G1,G1

, it is obtained
that (4.113) equals (in particular using (4.79))

�1/2�u′
1 �u

1�−1/2E[(I − P ′
G2,W

−1
2

)�P ′
A3,G

′
2W3G2,G2

Z′
2,2]�u

1�1/2, (4.114)

which consists of a difference of two moment expressions. Concerning the first
expression, it follows that:

�1/2�u′
1 �u

1�1/2E[P ′
A3,G

′
2W3G2,G2

Z2,2]�u
1�1/2

= �1/2�u′
1 �u

1�1/2E[P ′
A3,G

′
2W3G2,G2

]�−1/2�u′
1 �u′

2 �u
2�u

1�1/2, (4.115)
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since

Z′
2,2�

u
1�1/2 = P

G2,W
−1
2

�−1/2�u′
1 �u

1�1/2

= �−1/2�u′
1 �u′

2 (V 2
11)

−1(V 2
11 : V 2

12)�2�
u
1�1/2,

and when in (4.115) the expectation is taken, the expression including V 2
12

is cancelled. Because for some normally distributed N = (N ′
1 : N ′

2)
′ ∼

Nm1,n−r(C2)(0, I , I ), i.e. N has independent elements and a zero mean, V 2
12 =

N1N
′
2 and in particular N2 is independent of the other random quantities in (4.115).

It appears from the following that it is not necessary to express E[P ′
A3,G

′
2W3G2,G2

]
in (4.115).

When studying the second expression in (4.114), it can be observed that

�1/2�u′
1 �u

1�−1/2E[P
G2,W−1

2
�P ′

A3,G′
2W3G2,G2

Z2,2]�u
1�1/2

= �1/2�u′
1 �u′

2 �u
2�u

1�1/2E[P ′
A3,G′

2W3G2,G2
]�−1/2�u′

1 �u′
2 �u

2�u
1�1/2 (4.116)

+ �1/2�u′
1 �l′

2 �l
2�

u
1�1/2E[tr{(V 2

11)
−1�u

2�u
1�1/2P ′

A3,G
′
2W3G2,G2

�−1/2�u′
1 �l′

1 }],
(4.117)

since

�1/2�u′
1 �u

1�−1/2P ′
G2,W

−1
2

�P ′
A3,G

′
2W3G2,G2

Z2,2�
u
1�1/2

= �1/2�u′
1 �u

1�−1/2P ′
G2,W

−1
2

�P ′
A3,G

′
2W3G2,G2

P
G2,W

−1
2

�−1/2G1
1�

u′
1 �u

1�1/2

= �1/2�u′
1 �u′

2 M2�
u
2�u

1�1/2P ′
A3,G

′
2W3G2,G2

�−1/2�u′
1 �u′

2 M ′
2�2�

u
1�1/2,

and if one calculates the expected value of this expression, one obtains the sum
of (4.116) and (4.117). However, (4.116) is identical to (4.115), since

�1/2�u′
1 �u′

2 �u
2�u

1�1/2G2 = �1/2�u′
1 �u

1�1/2G2 = �G2.

Hence,

E[̂P 2�̂P
′
3] = −�1/2�u′

1 �l′
2�l

2�
u
1�1/2

×E[tr{(V 2
11)

−1�u
2�u

1�1/2P ′
A3,G

′
2W3G2,G2

�−1/2�u′
1 �l′

2 }].
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Finally, it is noted that, according to (4.106), K2 = �1/2�u′
1 �l′

2 �l
2�

u
1�1/2 and using

Lemma 4.3

E[tr{(V 2
11)

−1�u
2�u

1�1/2P ′
A3,G

′
2W3G2,G2

�−1/2�u′
1 �u′

2 }]

= c2E[tr{(U3
11)

−1�u
2�u

1�1/2P ′
A3,G

′
2W3G2,G2

�−1/2�u′
1 �u′

1 }]
= c2E[tr{(U3

11)
−1P E3,U

3
11

}] = d2,3,

where E3 is given by (4.84) and the last equality follows from (4.105). All these
calculations establish the theorem. ��

Theorems 4.12 and 4.13 imply the next result.

Theorem 4.14 Consider the EBRM3
B presented in Definition 2.2 and apply the

notation used in Theorems 4.12 and 4.13. Then

D[Ê[X]] = D[
3

∑

i=1

Ai
̂B iCi ]

= D[P A1,S1XP C ′
1
+ P

̂Q′
1A2,̂S2

XP C ′
2
+ P

̂Q′
2
̂Q′

1A3,̂S3
XPC ′

3
]

= D[P A1,S1XP C ′
1
] + D[P

̂Q′
1A2,̂S2

XP C ′
2
] + D[P

̂Q′
2
̂Q′

1A3,̂S3
XPC ′

3
]

+2C[PA1,S1XP C ′
1
,P

̂Q′
1A2,̂S2

XPC ′
2
]

+2C[PA1,S1XP C ′
1
,P

̂Q′
2
̂Q′

1A3,̂S3
XP C ′

3
]

+2C[P
̂Q′

1A2,̂S2
XPC ′

2
,P

̂Q′
2
̂Q′

1A3,̂S3
XP C ′

3
]

= f1P C ′
1
⊗ K1 + PC ′

2
⊗ (3d1,2K1 + (f2 + 2)K2)

+PC ′
3
⊗ (3d1,3K1 − d2,3K2 + (f3 + 2)K3).

Now the expectation of ̂� is considered (see Theorem 3.2 for a presentation of
̂�). The necessary calculations will be similar, but easier than those presented above,
because certain random matrices are not included in the expressions given below.

Theorem 4.15 Let K i be defined in Theorem 4.12 and let mr and cr be defined
by (4.78) and (4.86), respectively. Put

gi,j = cici+1 × · · · × cj−1mj/(n − r(Cj ) − mj − 1), i < j ≤ 3,

(4.118)

gj,j = mj/(n − r(Cj ) − mj − 1),
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which are supposed to be finite and positive. For the EBRM3
B , let ̂� be as in

Theorem 3.2, i.e.

n̂� = X(I − PC′
1
)X′ + ̂Q

′
1X(P C′

1
− P C′

2
)X′

̂Q1

+̂Q
′
2
̂Q

′
1X(P C′

2
− PC′

3
)X′

̂Q1
̂Q2 + ̂Q

′
3
̂Q

′
2
̂Q

′
1XPC′

3
X′

̂Q1
̂Q2

̂Q3, (4.119)

where ̂Qi is defined in Theorem 3.2. Then

E[n̂�] = (n − r(C1))� +
3

∑

j=2

(r(Cj−1) − r(Cj ))

×(

j−1
∑

i=1

gi,j−1K i + �Gj−1(G
′
j−1�Gj−1)

−1G′
j−1�)

+r(C3)(

3
∑

i=1

gi,3K i + �G3(G
′
3�G3)

−1G′
3�).

Proof The proof of the theorem could be based on many of the calculations
and established relations which were used when verifying Theorems 4.12 and
4.13. However, since the problem is now somewhat simpler, the proof will
mainly rest on taking the expectations of squares of Zr,s , defined in (4.107)
and (4.108). From the given expression of n̂�, it follows that the expectations
of X(I − PC ′

1
)X′, ̂Q′

1X(PC ′
1
− PC ′

2
)X′

̂Q1, ̂Q
′
2
̂Q

′
1X(P C ′

2
− P C ′

3
)X′

̂Q1
̂Q2 and

̂Q
′
3
̂Q

′
2
̂Q

′
1XP C ′

3
X′

̂Q1
̂Q2

̂Q3 are needed. When obtaining the moments, Facts (i)–
(iii) presented at the beginning of Sect. 4.6 will be utilized. The following moment
expressions will be used:

E[X(I − P C ′
1
)X′] = (n − r(C1))�,

E[X(P C ′
j−1

− P C ′
j
)X′] = (r(Cj−1) − r(Cj ))�, j = 2, 3,

E[XP C ′
3
X′] = r(C3)�.

Then it follows from (4.119) that the theorem is verified if it is shown that

E[̂Q′
1�

̂Q1] = g1,1K1 + �G1(G
′
1�G1)

−1G′
1�, (4.120)

E[̂Q′
2
̂Q

′
1�

̂Q1
̂Q2] = g1,2K1 + g2,2K2 + �G2(G

′
2�G2)

−1G′
2�,

(4.121)

E[̂Q′
3
̂Q

′
2
̂Q

′
1�

̂Q1
̂Q2

̂Q3] = g1,3K1 + g2,3K2 + g3,3K3

+ �G3(G
′
3�G3)

−1G′
3�.

(4.122)
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Expression (4.120) is true, since

E[̂Q′
1�

̂Q1] = E[Z1,1�Z′
1,1] = �1/2�′

1E[M1M
′
1]�1�

1/2

= �1/2�u′
1 �u

1�1/2 + �1/2�l′
1 �l

1�
1/2E[tr{(V 1

11)
−1}]

= �G1(G
′
1�G1)

−1G′
1� + g1,1K1,

where Mr is defined in (4.83), r = 1, and E[tr{(V 1
11)

−1}] follows from Appendix
B, Theorem B.21 (i).

Concerning (4.121),

E[̂Q′
2
̂Q

′
1�

̂Q1
̂Q2] = E[Z1,2�Z′

1,2] = �1/2�′
1E[M1Z2,2�Z′

2,2M
′
1]�1�

1/2

= �1/2�u′
1 E[Z2,2�Z′

2,2]�u
1�1/2 + �1/2�l′

1 �l
1�

1/2E[tr{(V 1
11)

−1Z2,2�Z′
2,2}]

= �1/2�u′
1 �′

2E[M2M
′
2]�2�

u
1�1/2 + c1�

1/2�l′
1 �l

1�
1/2E[tr{(U 2

11)
−1Z2,2�Z′

2,2}]
= �1/2�u′

1 �u′
2 �u

2�u
1�1/2 + �1/2�u′

1 �l′
2 �l

2�
u
1�1/2E[tr{(V 2

11)
−1}]

+c1�
1/2�l′

1 �l
1�

1/2E[tr{(V 2
11)

−1}]
= �G2(G

′
2�G2)

−1G′
2� + g1,2K1 + g2,2K2.

Finally, (4.122) is presented and the ideas for proving the result are similar to
those used when calculating (4.120) and (4.121):

E[̂Q′
3
̂Q

′
2
̂Q

′
1�

̂Q1
̂Q2

̂Q3] = E[Z1,3�Z′
1,3]

= �G3(G
′
3�G3)

−1G′
3� + g3,3K3 + g1,3K1 + g2,3K2.

Hence, based on the above-derived formulas, it is straightforward to obtain E[X(I−
P C ′

1
)X′], E[̂Q′

1X(P C ′
1

− P C ′
2
)X′

̂Q1], E[̂Q′
2
̂Q

′
1X(P C ′

2
− P C ′

3
)X′

̂Q1
̂Q2] and

E[̂Q′
3
̂Q

′
2
̂Q

′
1XPC ′

3
X′

̂Q1
̂Q2

̂Q3], and then the theorem is established. ��
As shown in Theorem 4.15, the estimator ̂� is not an unbiased estimator. This is by
no means unexpected, because this fact has already been observed when m = 1 in
the EBRMm

B , i.e. the BRM . It can be shown that

E[n̂�] = n�

+
3

∑

j=2

j−1
∑

i=1

(r(Cj−1) − r(Cj ))(gi,j−1 − 1)K i + r(C3)

3
∑

i=1

(gi,3 − 1)K i ,
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where K i , i = 1, 2, 3, are given in Theorem 4.12. Therefore, if unbiased estimators
of K i , i = 1, 2, 3, can be found, an unbiased estimator of ̂� is available. Copying
previous calculations yields

E[A1(A
′
1
̂�

−1
A1)

−A′
1] = E[A1(A

′
1S

−1
1 A1)

−A′
1] = (n − r(C1) − m1)K1,

E[̂Q′
1A2(A

′
2
̂Q1

̂�
−1

̂Q
′
1A2)

−A′
2
̂Q1] = E[̂Q′

1A2(A
′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−A′
2
̂Q1]

= (n − r(C2) − m1 + p − m2)K2 + c1(p − m2)K1,

E[̂Q′
1
̂Q

′
2A3(A

′
3
̂Q2

̂Q1
̂�

−1
̂Q

′
1
̂Q

′
2A3)

−A′
3
̂Q2

̂Q1]
= E[̂Q′

1
̂Q

′
2A3(A

′
3
̂Q2

̂Q1
̂S

−1
3

̂Q
′
1
̂Q

′
2A3)

−A′
3
̂Q2

̂Q1]
= (n − r(C3) − m2 + p − m3)K3 + c1(p − m3)K2 + c1c2(p − m3)K1.

From these expressions unbiased estimators of K i , i = 1, 2, 3, let us say ̂K i , can be
obtained which are pure functions of the MLE of �. Hence, the next theorem has
been established.

Theorem 4.16 With ̂� as presented in Theorem 4.15, an unbiased estimator of �

in the EBRM3
B , presented in Definition 2.2, is given by

̂�U = ̂� − 1

n

3
∑

j=2

j−1
∑

i=1

(r(Cj−1) − r(Cj ))(gi,j−1 − 1)̂K i − 1

n
r(C3)(

3
∑

i=1

(gi,3 − 1)̂K i ,

where

̂K1 = 1

n − r(C1) − m1
A1(A

′
1
̂�

−1
A1)

−A′
1,

̂K2 = 1

n − r(C2) − m1 + p − m2

̂Q
′
1A2(A

′
2
̂Q1

̂�
−1

̂Q
′
1A2)

−A′
2
̂Q1

− c1(p − m2)

n − r(C2) − m1 + p − m2
̂K1,

̂K3 = 1

n − r(C3) − m2 + p − m3

̂Q
′
1
̂Q

′
2A3(A

′
3
̂Q2

̂Q1
̂�

−1
̂Q

′
1
̂Q

′
2A3)

−A′
3
̂Q2

̂Q1

− c1(p − m3)

n − r(C3) − m2 + p − m3

̂K2 − c1c2(p − m3)

n − r(C3) − m2 + p − m3

̂K1.

In the rest of this section D[̂B i ] and ̂D[̂B i ], i = 1, 2, 3, will be considered. For
̂B3 it follows from Theorem 3.2 that

̂B3 = (A′
3G2(G

′
2W 3G2)

−1G′
2A3)

−1A′
3G2(G

′
2W 3G2)

−1G′
2XC′

3(C3C
′
3)

−1,

(4.123)
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where G2 and W 3 are given by (4.73) and (4.74), respectively. Thus, from
Corollary 4.1 (ii), if n − k3 − m2 + q3 − 1 > 0,

D[̂B3] = n − k3 − 1

n − k3 − m2 + q3 − 1
(C3C

′
3)

−1 ⊗ (A′
3G2(G

′
2�G2)

−1G′
2A3)

−1.

It is now shown how to obtain the dispersion matrix for ̂B2. Because of the
assumption of uniqueness, given in Theorem 4.9 (iii),

G′
1A2̂B2C2

can be studied, since

(A′
2G1G

′
1A2)

−1A′
2G1G

′
1A2̂B2C2C

′
2(C2C

′
2)

−1 = ̂B2.

It has already been shown that ̂B2 is an unbiased estimator and therefore

G′
1A2(̂B2 − B2)C2 (4.124)

is treated. The expression in (4.124) can be rewritten as

G′
1A2(̂B2 − B2)C2 = P G′

1A2,G
′
1W2G1

G′
1(X − E[X] − A3(̂B3 − B3)C3)P C ′

2

= P G′
1A2,G

′
1W2G1

G′
1{(X − E[X])(PC ′

2
− P C ′

3
) + (X − E[X])PC ′

3

−P A3,G
′
2W3G2,G2

(X − E[X])PC ′
3
}

= P G′
1A2,G

′
1W2G1

G′
1(X − E[X])(P C ′

2
− P C ′

3
)

+P G′
1A2,G

′
1W2G1

G′
1(I − P A3,G

′
2W3G2,G2

)(X − E[X])PC ′
3
. (4.125)

The idea behind the decomposition of G′
1A2(̂B2 − B2)C2 is that the components

are partly independent: (X − E[X])PC ′
3

is independent of (X − E[X])(PC ′
2

−
P C ′

3
), P G′

1A2,G
′
1W2G1

G′
1 and PA3,G′

2W3G2,G2
, because W 2 and W 3 are independent

of XP C ′
3
. Hence,

C
[

P G′
1A2,G

′
1W2G1

G′
1(X − E[X])(PC ′

2
− P C ′

3
),

P G′
1A2,G

′
1W2G1

(I − P A3,G
′
2W3G2,G2

)(X − E[X])PC ′
3

]

= 0

and therefore

D[G′
1A2(̂B2 − B2)C2]

= D[P G′
1A2,G

′
1W2G1

G′
1(X − E[X])(P C ′

2
− P C ′

3
)] (4.126)

+D[P G′
1A2,G

′
1W2G1

(I − P A3,G
′
2W3G2,G2

)(X − E[X])P C ′
3
]. (4.127)
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The two expressions given by (4.126) and (4.127) are now treated separately. Firstly,

D[P G′
1A2,G′

1W2G1
G′

1(X − E[X])(PC ′
2
− P C ′

3
)]

= (P C ′
2
− P C ′

3
) ⊗ E[PG′

1A2,G′
1W2G1

G′
1�G1P

′
G′

1A2,G
′
1W2G1

]

and the rest follows from the treatment of the BRM , e.g. see (4.23). Thus, (4.126)
equals

D[P G′
1A2,G

′
1W2G1

G′
1(X − E[X])(P C ′

2
− P C ′

3
)] = (P C ′

2
− P C ′

3
)

⊗ n − r(C2) − 1

n − r(C1) − m1 + r(G′
1A2) − 1

P G′
1A2,G

′
1	G1

G′
1�G1. (4.128)

Secondly, the expression (4.127) is treated, which is somewhat more complicated to
handle. Note that

D[P G′
1A2,G′

1W2G1
G′

1(I − PA3,G′
2W3G2,G2

)(X − E[X])P C′
3
] = P C′

3
⊗

E[P G′
1A2,G′

1W2G1
G′

1(I − PA3,G′
2W3G2,G2

)�(I − P ′
A3,G′

2W3G2,G2
)G1P

′
G′

1A2,G′
1W2G1

]

and

PG′
1A2,G

′
1W2G1

G′
1 = H 1�

l′
2�l

2�
u
1�−1/2 − H 1�

l′
2 V 2

21(V
2
11)

−1�u
2�u

1�−1/2, (4.129)

where �1, �2 and H 1 are defined in (4.75) and (4.76). Then, because
E[V 2

21(V
2
11)

−1] = 0,

E[P G′
1A2,G′

1W2G1
G′

1(I − PA3,G′
2W3G2,G2

)�(I − P ′
A3,G′

2W3G2,G2
)G1P

′
G′

1A2,G′
1W2G1

]

= E[H 1�
l′
2 �l

2�
u
1�−1/2(I − PA3,G′

2W3G2,G2
)�(I − PA3,G′

2W3G2,G2
)�−1/2�u′

1 �l′
2 �l

2H
′
1]

+E
[

H 1�
l′
2 V 2

21(V
2
11)

−1�u
2�u

1�−1/2(I − PA3,G′
2W3G2,G2

)�(I − P ′
A3,G′

2W3G2,G2
)

×�−1/2�u′
1 �u′

2 (V 2
11)

−1V 2
12�

l
2H

′
1

]

. (4.130)

The two expressions on the right-hand side of (4.130) will from now on be
considered separately. The difference between obtaining moments for the mean
parameters and obtaining moments for Ê[X] or ̂� is that in the latter cases one
has not to rely on uniqueness for the mean parameters. Concerning ̂B2, it follows
from the proof of Theorem 4.9 (iii) that in order for ̂B2 to be unique, C(A′

3G1) =
C(A′

3G2) has to be true. Thus, utilizing (4.79),

�u
1�−1/2A3 = Z�u

2�u
1�−1/2A3
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for some matrix Z, and

�u
1�−1/2(I − P A3,G

′
2W3G2,G2

)

= �u
1�−1/2 − Z�l′

3�l
3�

u
2�u

1�−1/2 + Z�l′
3 V 3

21(V
3
11)

−1�u
3�u

2�u
1�−1/2.

Then, since E[V 3
21(V

3
11)

−1] = 0 and �l
2�

u′
2 = 0,

E[H1�l′
2 �l

2�
u
1�−1/2(I − PA3,G

′
2W3G2,G2

)�(I − P ′
A3,G

′
2W3G2,G2

)�−1/2�u′
1 �l′

2 �l
2H

′
1]

= H1�l′
2 �l

2H ′
1 + n − r(C3) − 1

n − r(C3) − m3 − 1
H 1�

l′
2 �l

2Z�l′
3 �l

3Z′�l′
2 �l

2H
′
1,

where H 1�
l′
2�l

2H
′
1 and H 1�

l′
2�l

2Z�l′
3 �l

3Z
′�l′

2 �l
2H

′
1 now have to be expressed in

the original matrices. A few calculations show that

�l′
3�l

3 = �u
2�u

1�−1/2A3(A
′
3G2(G

′
2�G2)

−1G′
2A

′
3)

−A′
3�

−1/2�u′
1 �u′

2 , (4.131)

�l′
2�l

2 = �u
1�−1/2A2(A

′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2�

−1/2�u′
1 , (4.132)

�u′
1 �u

1 = �1/2G1(G
′
1�G1)

−1G′
1�

1/2, (4.133)

and then (4.132) implies the relation

H 1�
l′
2 �l

2 = G1A2(A
′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2�

−1/2�u′
1

and (4.131) implies that

Z�l′
3�l

3Z
′ = �u

1�−1/2A3(A
′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3�

−1/2�u′
1 .

Moreover, using (4.133) the first expression on the right-hand side of (4.130) equals

E[H 1�
l′
2 �l

2�
u
1�−1/2(I − P A3,G′

2W3G2,G2
)�(I − P ′

A3,G′
2W3G2,G2

)�−1/2�u′
1 �l′

2 �l
2H

′
1]

= n−r(C3)−1
n−r(C3)−m3−1P G′

1A2,G′
1	G1

G′
1A3(A

′
3G2(G

′
2�G2)

−1G′
2A

′
3)

−A′
3G1P

′
G′

1A2,G′
1	G1

+ PG′
1A2,G′

1	G1
G′

1�G1. (4.134)

The second term on the right-hand side of (4.130) can after some calculations be
shown to equal

E
[

H 1�
l′
2 V 2

21(V
2
11)

−1�u
2�u

1�−1/2(I − P A3,G′
2W3G2,G2

)�(I − P ′
A3,G′

2W3G2,G2
)�−1/2�u′

1 �u′
2

×(V 2
11)

−1V 2
12�

l
2H

′
1

]

= H 1�
l′
2 �l

2H
′
1E[tr{(V 2

11)
−1�u

2�u
1�−1/2(I − PA3,G′

2W3G2,G2
�(I − P ′

A3,G′
2W3G2,G2

)

×�−1/2�u′
1 �u′

2 }], (4.135)
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and the remaining task is to obtain the expectation of the trace function in (4.135).
However, the necessary calculations have by now been repeated several times and
therefore, without showing any details, it is stated that

E[tr{(V 2
11)

−1�u
2�u

1�−1/2(I − PA3,G
′
2W3G2,G2

)�(I − P ′
A3,G

′
2W3G2,G2

)�−1/2�u′
1 �u′

2 }]

= c2E[tr{(U3
11)−1U3

11�
u′
3 (V 3

11)−1(V 3
11)−1�u

3U3
11}]

= c2E[tr{(V 3
11)

−1}] = c2
m3

n − r(C3) − m3 − 1
, (4.136)

where U 3
11 is defined in (4.82).

Hence, by using (4.126)–(4.130), (4.134)–(4.136), D[G′
1A2(̂B2 − B2)C2], can

be obtained and after a discussion of D[̂B1], a forthcoming Theorem 4.17 will be
presented where, among other things, a complete expression for D[̂B2] is given.

Concerning D[̂B1], it should be noted that the treatment of D[̂B1] is similar to
the treatment of D[̂B2], although some additional arguments are needed. If ̂B1 is
to be unique, it follows from Theorem 4.9 that A1 and C1 must be of full rank and,
therefore, instead of ̂B1, the linear combinations A1(̂B1 −B1)C1, with expectation
0, will be studied.

As when treating (4.124), A1(̂B1 − B1)C1 will be decomposed, i.e.

A1(̂B1 − B1)C1

= P A1,W1(X − E[X])(P C′
1
− P C′

2
)

+P A1,W1 (I − PA2,G′
1W2G1,G1

)(X − E[X])(P C′
2
− P C′

3
)

+P A1,W1 (I − PA2,G′
1W2G1,G1

)(I − PA3,G′
2W3G2,G2

)(X − E[X])P C′
3
. (4.137)

Due to independence among the terms

D[A1(̂B1 − B1)C1]
= D[P A1,W1 (X − E[X])(P C′

1
− P C′

2
)]

+D[P A1,W1(I − PA2,G′
1W2G1,G1

)(X − E[X])(P C′
2
− P C′

3
)]

+D[P A1,W1(I − PA2,G′
1W2G1,G1

)(I − PA3,G′
2W3G2,G2

)(X − E[X])P C′
3
]. (4.138)

The three terms on the right-hand side of (4.138) are now treated one by one. Using
the independence between PA1,W1 and (X − E[X])(P C ′

1
− P C ′

2
),

D[P A1,W1(X − E[X])(P C ′
1
− P C ′

2
)] = (P C ′

1
− P C ′

2
) ⊗ E[PA1,W1�P ′

A1,W1
],

and knowledge about the BRM yields

E[P A1,W1�P ′
A1,W1

] = n − k1 − 1

n − k1 − p + q1 − 1
A1(A

′
1�

−1A1)
−1A′

1. (4.139)



150 4 Basic Properties of Estimators

Concerning the second expression, it is noted that (X − E[X])(P C ′
2

− P C ′
3
) is

independent of P A1,W1 and P A2,G
′
1W2G1,G1

. Hence,

D[PA1,W1 (I − PA2,G′
1W2G1,G1

)(X − E[X])(PC ′
2
− PC ′

3
)]

= (PC ′
2
− PC ′

3
) ⊗ E[PA1,W1(I − PA2,G

′
1W2G1,G1

)�(I − P ′
A2,G

′
1W2G1,G1

)P ′
A1,W1

].
(4.140)

In order to find an explicit expression of (4.140), the approach to finding the
expectation in (4.130) is copied. Rewriting PA1,W1 and PA2,G

′
1W2G1,G1

in a
canonical form, one obtains:

P A1,W1 = �1/2�l′
1 �l

1�
−1/2 − �1/2�l′

1 V 1
21(V

1
11)

−1�u
1�−1/2

and

P A2,G
′
1W2G1,G1

= Z1H 1�
l′
2�l

2�
u
1�−1/2 − Z1H 1�

l′
2V 2

21(V
2
11)

−1�u
2�u

1�−1/2,

where Z1 is defined based on the fact that the uniqueness of ̂B1 implies C(A′
2) =

C(A′
2G1): hence a Z1 exists such that

A2 = Z1G
′
1A2.

Applying the same techniques as before gives

E[P A1,W1(I − P A2,G
′
1W2G1,G1

)�(I − P ′
A2,G

′
1W2G1,G1

)P ′
A1,W1

]

= (1 + c1
m2

n − r(C2) − m2 − 1
)A1(A

′
1�

−1A1)
−1A′

1

+ n − r(C2) − 1

n − r(C2) − m2 − 1
P A1,	A2(A

′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2P

′
A1,	

.

Finally, the third term in (4.138) can be written as follows:

D[P A1,W1(I − P A2,G
′
1W2G1,G1

)(I − P A3,G
′
2W3G2,G2

)(X − E[X])P C ′
3
]

= P C ′
3
⊗ E

[

PA1,W1(I − PA2,G′
1W2G1,G1

)(I − P A3,G
′
2W3G2,G2

)�

×(I − P ′
A3,G

′
2W3G2,G2

)(I − P ′
A2,G

′
1W2G1,G1

)P ′
A1,W1

]

.
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It can be shown that the expectation equals

E[�1/2�u′
1 �u

1�−1/2(I − PA2,G′
1W2G1,G1

)(I − PA3,G′
2W3G2,G2

)�

×(I − P ′
A3,G

′
2W3G2,G2

)(I − P ′
A2,G

′
1W2G1,G1

)�−1/2�l′
1 �l

1�
1/2]

+E
[

�1/2�l′
1 V 1

21(V
1
11)

−1�u
1�−1/2(I − P A2,G

′
1W2G1,G1

)(I − P A3,G
′
2W3G2,G2

)�

×(I − P ′
A3,G

′
2W3G2,G2

)(I − P ′
A2,G

′
1W2G1,G1

)�−1/2�u′
1 (V 1

11)
−1V 1

12�
u
1�1/2

]

,

(4.141)

where

E
[

�1/2�u′
1 �u

1�−1/2(I − PA2,G
′
1W2G1,G1

)(I − P A3,G
′
2W3G2,G2

)�

×(I − P ′
A3,G

′
2W3G2,G2

)(I − P ′
A2,G

′
1W2G1,G1

)�−1/2�l′
1�l

1�
1/2

]

= P A1,	� + PA1,	A2(A
′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2P

′
A1,	

+ n−r(C3)−1
n−r(C3)−m3−1P A1,	(I − P A2,G

′
1	G1,G1

)

×A3(A
′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3(I − P A2,G

′
1	G1,G1

)′P ′
A1,	 (4.142)

and

E
[

�1/2�l′
1 V 1

21(V
1
11)

−1�u
1�−1/2(I − PA2,G

′
1W2G1,G1

)(I − P A3,G
′
2W3G2,G2

)�

×(I − P ′
A3,G

′
2W3G2,G2

)(I − P ′
A2,G

′
1W2G1,G1

)�−1/2(�1
1)

′(V 1
11)

−1V 1
12�

u
1�1/2

]

= A1(A
′
1�

−1A1)
−1A′

1c1c2
m3

n − r(C3) − m3 − 1
. (4.143)

In the next theorem D[̂Bi], i = 1, 2, 3, are stated explicitly.

Theorem 4.17 Consider the EBRM3
B presented in Definition 2.2. Let ̂B i , i =

1, 2, 3, be given in Theorem 3.2 and suppose that for each ̂Bi the uniqueness con-
ditions in Theorem 4.9 are satisfied. Let Gi , mi and ci be defined by (4.73), (4.78)
and (4.86), respectively. Then, if the dispersion matrices are supposed to exist,

(i) if n − k3 − m2 + q3 − 1 > 0,

D[̂B3] = n−k3−1
n−k3−m2+q3−1 (C3C

′
3)

−1 ⊗ (A′
3G2(G

′
2�G2)

−1G′
2A3)

−1;
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(ii) if n − r(C3) − m3 − 1 > 0 and n − r(C1) − m1 + q2 − 1 > 0,

D[̂B2] = D
[

(A′
2G1G

′
1A2)

−1A′
2G1PG′

1A2,G
′
1W2G1

G′
1(X − E[X])

×(P C ′
2
− PC ′

3
)C′

2(C2C
′
2)

−1
]

+D
[

(A′
2G1G

′
1A2)

−1A′
2G1P G′

1A2,G
′
1W2G1

G′
1(I − P A3,G

′
2W3G2,G2

)

×(X − E[X])PC ′
3
C′

2(C2C
′
2)

−1
]

,

where

D[(A′
2G1G

′
1A2)

−1A′
2G1P G′

1A2,G
′
1W2G1

G′
1(X − E[X])(P C′

2
− PC′

3
)C′

2(C2C
′
2)

−1]
= (C2C

′
2)

−1C2(I − P C′
3
)C′

2(C2C
′
2)

−1

⊗ n−k2−1
n−r(C1)−m1+q2−1 (A′

2G1(G
′
1�G1)

−1G′
1A2)

−1,

and

D
[

(A′
2G1G

′
1A2)

−1A′
2G1P G′

1A2,G
′
1W2G1

G′
1(I − P A3,G

′
2W3G2,G2

)(X − E[X])

×PC ′
3
C′

2(C2C
′
2)

−1
]

= (C2C
′
2)

−1C2PC ′
3
C′

2(C2C
′
2)

−1

⊗
{

n−r(C3)−1
n−r(C3)−m3−1F 1A3(A

′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
1

+(1 + c2
m3

n−r(C3)−m3−1 )(A′
2G1(G

′
1�G1)

−1G′
1A2)

−1
}

,

where

F 1 = (A′
2A2)

−1A′
2P A2,G

′
1	G1,G1

;
(iii) if n−k1−p+q1−1 > 0, n−r(C2)−m2−1 > 0 and n−r(C3)−m3−1 > 0,

D[̂B1] = D[(A′
1A1)

−1A′
1P A1,W1(X − E[X])(PC ′

1
− P C ′

2
)C′

1(C1C
′
1)

−1]

+D
[

(A′
1A1)

−1A′
1PA1,W1(I − PA2,G′

1W2G1,G1
)(X − E[X])

×(P C ′
2
− P C ′

3
)C′

1(C1C
′
1)

−1
]

+D
[

(A′
1A1)

−1A′
1PA1,W1(I − PA2,G′

1W2G1,G1
)(I − P A3,G

′
2W3G2,G2

)

×(X − E[X])P C ′
3
C′

1(C1C
′
1)

−1
]

,
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where

D[(A′
1A1)

−1A′
1PA1,W1(X − E[X])(P C′

1
− PC′

2
)C ′

1(C1C
′
1)

−1]
= (C1C

′
1)

−1C1(I − PC′
2
)C′

1(C1C
′
1)

−1 ⊗ n−k1−1
n−k1−p+q1−1 (A′

1�
−1A1)

−1,

D[(A′
1A1)

−1A1PA1,W1(I − P A2,G
′
1W2G1,G1

)(X − E[X])(P C′
2
− PC′

3
)C ′

1(C1C
′
1)

−1]
= (C1C

′
1)

−1C1(P C′
2
− PC′

3
)C ′

1(C1C
′
1)

−1

⊗
{

(1 + c1
m2

n−r(C2)−m2−1 )(A′
1�

−1A1)
−1

+ n−r(C2)−1
n−r(C2)−m2−1F 2A2(A

′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2

}

with

F 2 = (A′
1A1)

−1A′
1PA1,	 (4.144)

and

D
[

(A′
1A1)

−1A′
1P A1,W1(I − P A2,G

′
1W2G1,G1

)(I − P A3,G
′
2W3G2,G2

)

×(X − E[X])PC ′
3
C′

1(C1C
′
1)

−1
]

= (C1C
′
1)

−1C1P C ′
3
C′

1(C1C
′
1)

−1

⊗
{

(1 + c1c2
m3

n−r(C3)−m3−1 )(A′
1�

−1A1)
−1

+F 2A2(A
′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2

+ n−r(C3)−1
n−r(C3)−m3−1F 3A3(A

′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
3

}

,

where

F 3 = (A′
1A1)

−1A′
1P A1,	(I − P A2,G

′
1	G1,G1

). (4.145)

In Theorem 4.17 D[̂B i], i = 1, 2, 3, was presented. However, in order to apply
the results, estimators of these quantities are needed. Now estimators based on the
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MLEs are derived, and according to Theorem 4.17, these estimators are immediately
obtained if unbiased estimators of L1 − L6, given below, are found:

L1 = (A′
3G2(G

′
2�G2)

−1G′
2A3)

−1, L2 = (A′
2G1(G

′
1�G1)

−1G′
1A2)

−1,

L3 = (A′
1�

−1A1)
−1, L4 = F 1A3(A

′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
1,

L5 = F 2A2(A
′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2,

L6 = F 3A3(A
′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
3.

An unbiased estimator of L1, let us say ̂L1, is given by

̂L1 = n

n − r(C3) − m2 + r(A′
3G2)

(A′
3
̂Q2

̂Q1
̂�

−1
̂Q

′
1
̂Q

′
2A3)

−1, (4.146)

since ̂Q2
̂Q1(n

̂�)−1
̂Q

′
1
̂Q

′
2 = G2(G

′
2W 3G2)

−1G′
2, G′

2W 3G2 ∼ Wm2(G
′
2�G2, n−

r(C3)), and then Appendix B, Theorem B.21 (i) gives the result.
For the same reasons, an unbiased estimator of L2 equals

̂L2 = n

n − r(C2) − m1 + r(A′
2G1)

(A′
2
̂Q1

̂�
−1

̂Q
′
1A2)

−1, (4.147)

since ̂Q1(n
̂�)−1

̂Q
′
1 = G1(G

′
1W 2G1)

−1G′
1, G′

1W 2G1 ∼ Wm1(G
′
1�G1, n −

r(C2)), and once again Theorem B.21 (i) in Appendix B gives the result. Moreover,
since

E[(A′
1(n

̂�)−1A1)
−1] = E[(A′

1S
−1
1 A1)

−1] = (n − r(C1) − p + r(A1))

×(A′
1�

−1A1)
−1,

̂L3 = n

n − r(C1) − p + r(A1)
(A′

1
̂�

−1
A1)

−1. (4.148)

Concerning L4–L6 the situation is slightly more complicated. Details of how to
obtain ̂L4 are presented, whereas the other estimators are only listed. Inspired by
the handling of (4.127),

E[PG′
1A2,G

′
1W2G1

G′
1A3(A

′
3G2(G

′
2W 3G2)

−1A′
3G1P

′
G′

1A2,G′
1W2G1

] (4.149)

is now studied. From (4.129) it follows that the expectation in (4.149) equals

H 1�
l′
2�l

2�
u
1�−1/2A3E[(A3G2(G

′
2W 3G2)

−1G′
2A3)

−1]A′
3�

−1/2�u′
1 �l′

2 �l
2H

′
1

+H 1�
l′
2 �l

2H
′
1E[tr{(V 2

11)
−1E3(E

′
3(U

3
11)

−1E3)
−1E′

3}],
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where H 1, �1, �2 are defined in (4.75) and (4.76), and E3 is defined in (4.84). The
formula comprises two expectations which have been calculated before; i.e. they are
given by

(n − r(C3) − m2 − r(A′
3G2))H 1�

l′
2�l

2�
u
1�−1/2A3(A3G2(G

′
2�G2)

−1G′
2A3)

−1

×A′
3�

−1/2�u′
1 �l′

2 �l
2H

′
1

= (n − r(C3) − m2 + r(A′
3G2))P G′

1A2,G
′
1	G1

G1(A3G2(G
′
2�G2)

−1G′
2A3)

−1

×A′
3G2P

′
G′

1A2,G
′
1	G1

and

c2(p − m3)H 1�
l′
2 �l

2H
′
1 = c2(p − m3)P G′

1A2,G
′
1	G1

G′
1�G1,

respectively. Hence, once again using

G2(G
′
2W 3G2)

−1G′
2 = ̂Q2

̂Q1(n
̂�)−1

̂Q
′
1
̂Q

′
2, (4.150)

G1(G
′
1W 2G1)

−1G′
1 = ̂Q1(n̂�)−1

̂Q
′
1, (4.151)

it can be shown that

̂L4 = (n − r(C3) − m2 + r(A′
3G2))

−1(A′
2G1G

′
1A2)

−1A′
2G1PG′

1A2,G′
1W2G1

×G′
1A3(A

′
3G2(G

′
2W 3G2)

−1G′
2A3)

−1A′
3G1P

′
G′

1A2,G′
1W2G1

G′
1A2(A

′
2G1G

′
1A2)

−1

−c2(p − m3)(n − r(C3) − m2 + r(A′
3G2))

−1
̂L2 (4.152)

is an unbiased estimator of L4. Note that in the above relation, if one uses (4.150)
and (4.151), ̂L4 is explicitly expressible as a function of ̂�.

Similar calculations yield that an unbiased estimator of L5 is given by

̂L5 = (n − r(C2) − m1 + r(A′
2G1))

−1(A′
1A1)

−1A′
1PA1,S1

×A2(A
′
2G1(G

′
1W 2G1)

−1G′
1A2)

−A′
2G1P

′
G′

1A2,G′
1W2G1

PA1,S1A1(A
′
1A1)

−1

−c1(p − m2)(n − r(C2) − m1 + r(A′
2G1))

−1
̂L3, (4.153)

which is expressible as a function of ̂� via (4.151). Concerning L6, an unbiased
estimator equals

̂L6 = (n − r(C3) − m2 + r(A′
3G2))

−1(A′
1A1)

−1A′
1P A1,S1(I − P A2,G′

1W2G1,G1
)

×A3(A
′
3G2(G

′
2W 3G2)

−1G′
2A3)

−A′
3(I − PA2,G′

1W2G1,G1
)′PA1,S1A1(A

′
1A1)

−1

−c1(p − m3)(A
′
1A1)

−1A′
1(
̂L5 − c2̂L3)A1(A

′
1A1)

−1, (4.154)
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where (4.150) and (4.151) can be used to express the estimator through ̂�.

Theorem 4.18 Consider the EBRM3
B presented in Definition 2.2. Let D[̂B i],

i = 1, 2, 3, be given in Theorem 4.17 and suppose that for each ̂Bi the uniqueness
conditions in Theorem 4.9 are satisfied. Let for i=1,2,3, Gi , mi and ci be defined
by (4.73), (4.78) and (4.86), respectively, and let ̂Li , i = 1, 2, 3, 4, 5, 6, be defined
by (4.146)–(4.148), (4.152)–(4.154). Then, if the estimators exist:

(i)

̂D[̂B3] = n−k3−1
n−k3−m2+q3−1 (C3C

′
3)

−1 ⊗ ̂L1;

(ii)

̂D[̂B2] = ̂D
[

(A′
2G1G

′
1A2)

−1A′
2G1P G′

1A2,G
′
1W2G1

G′
1(X − E[X])

×(P C ′
2
− P C ′

3
)C′

2(C2C
′
2)

−1
]

+̂D
[

(A′
2G1G

′
1A2)

−1A′
2G1P G′

1A2,G
′
1W2G1

G′
1(I − PA3,G′

2W3G2,G2
)

×(X − E[X])PC ′
3
C′

2(C2C
′
2)

−1
]

,

where

̂D
[

(A′
2G1G

′
1A2)

−1A′
2G1P G′

1A2,G
′
1W2G1

G′
1(X − E[X])

× (P C ′
2
− P C ′

3
)C′

2(C2C
′
2)

−1
]

= (C2C
′
2)

−1C2(P C ′
2
− P C ′

3
)C′

2(C2C
′
2)

−1 ⊗ n−k2−1
n−r(C1)−m1+q2−1

̂L2,

and

̂D
[

(A′
2G1G

′
1A2)

−1A′
2G1P G′

1A2,G
′
1W2G1

G′
1(I − P A3,G

′
2W3G2,G2

)(X − E[X])

×PC ′
3
C′

2(C2C
′
2)

−1
]

= (C2C
′
2)

−1C2PC ′
3
C′

2(C2C
′
2)

−1

⊗{ n−r(C3)−1
n−r(C3)−m3−1

̂L4 + (1 + c2
m3

n−r(C3)−m3−1 )̂L2};
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(iii)

̂D[̂B1] = ̂D[(A′
1A1)

−1A′
1P A1,W1(X − E[X])(PC ′

1
− P C ′

2
)C′

1(C1C
′
1)

−1]

+̂D
[

(A′
1A1)

−1A′
1PA1,W1(I − PA2,G′

1W2G1,G1
)(X − E[X])

×(P C ′
2
− P C ′

3
)C′

1(C1C
′
1)

−1
]

+̂D
[

(A′
1A1)

−1A′
1PA1,W1(I − PA2,G′

1W2G1,G1
)(I − P A3,G

′
2W3G2,G2

)

×(X − E[X])P C ′
3
C′

1(C1C
′
1)

−1
]

,

where

̂D[(A′
1A1)

−1A′
1PA1,W1(X − E[X])(PC ′

1
− PC ′

2
)C′

1(C1C
′
1)

−1]
= (C1C

′
1)

−1C1(P C ′
1
− P C ′

2
)C′

1(C1C
′
1)

−1 ⊗ n−k1−1
n−k1−p+q1−1

̂L3,

̂D[(A′
1A1)

−1A1R0(I − P A3,G
′
2W3G2,G2

)(X − E[X])(PC ′
2
− PC ′

3
)C′

1(C1C
′
1)

−1]
= (C1C

′
1)

−1C1(P C ′
2
− P C ′

3
)C′

1(C1C
′
1)

−1

⊗{(1 + c1
m2

n−r(C2)−m2−1 )̂L3
n−r(C2)−1

n−r(C2)−m2−1
̂L5}

and

̂D
[

(A′
1A1)

−1A′
1P A1,W1(I − PA2,G

′
1W2G1,G1

)(I − P A3,G
′
2W3G2,G2

)

×(X − E[X])P C ′
3
C′

1(C1C
′
1)

−1
]

= (C1C
′
1)

−1C1P C ′
3
C′

1(C1C
′
1)

−1

⊗{(1 + c1c2
m3

n−r(C3)−m3−1 )̂L3 + ̂L5 + n−r(C3)−1
n−r(C3)−m3−1

̂L6}.

4.7 EBRM3
W

and Uniqueness Conditions for MLEs

The EBRM3
W is presented in Definition 2.3 and our study of this model in this

section and the following sections includes fewer details than were provided for the
EBRM3

B in the previous section. For definitions of the matrices used in Sects. 4.7–
4.9 the reader is referred to Chap. 3. The difference between the treatments of the
two models will be highlighted, but usually only theorems containing the results are
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stated without proofs. Indeed, if one has followed the treatment of the EBRM3
B ,

the proofs can be considered as classroom exercises. Estimators for the parameters
of the EBRM3

W were given in Theorem 3.3, and in Corollary 3.4 the estimator

Ê[X] was presented. As before, Ê[X] and ̂� are always unique. When treating
the EBRM3

B , it was noted that the uniqueness of estimators is independent of the
estimated inner product. Thus, by assuming � = I , the next theorem can be verified
by transposing the matrices in the EBRM3

B and applying Theorem 4.9.

Theorem 4.19 Consider the EBRM3
W presented in Definition 2.3. Let ̂B i , i =

1, 2, 3, be given in Theorem 3.3 and let K̂B iL, i = 1, 2, 3, be linear combinations
of ̂Bi ; K and L are known matrices of proper sizes. Then the following statements
hold:

(i) ̂B3 is unique if and only if

r(A3) = q3, r(C3) = k3, C(C′
3) ∩ C(C′

1 : C′
2) = {0};

(ii) K̂B3L is unique if and only if

C(K ′) ⊆ C(A′
3), C(L′) ⊆ C(C3(C

′
1 : C′

2)
o);

(iii) ̂B2 is unique if and only if

r(A2) = q2, r(C2) = k2, C(C′
1) ∩ C(C′

2) = {0},
C(C′

1)
⊥ ∩ C(C′

1 : C′
2) ∩ C(C′

1 : C′
3) = {0};

(iv) K̂B2L is unique if and only if

C(K ′) ⊆ C(A′
2), C(L) ⊆ C(C2(C

′
1 : C′

3)
o);

(v) ̂B1 is unique if and only if

r(A1) = q1, r(C1) = k1, C(C′
1) ∩ C(C′

2) = {0},
C(C′

2)
⊥ ∩ C(C′

1 : C′
2) ∩ C(C′

2 : C′
3) = {0};

(vi) K̂B1L is unique if and only if

C(K ′) ⊆ C(A′
1), C(L) ⊆ C(C1),

C(C3(I − P (C ′
1)

oC′
2(C2P (C ′

1)
oC′

2)
−C2)C

′
1(C1C

′
1)

−L) ⊆ C(C3(C
′
1 : C′

2)
o),

C(C2C
′
1(C1C

′
1)

−L) ⊆ C(C2(C
′
1)

o).
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4.8 Asymptotic Properties of Estimators of Parameters
in the EBRM3

W

Concerning asymptotic properties we can once again rely completely on the
approach and results for the EBRM3

B . Correspondingly to Lemma 4.2 the next
lemma can be stated, whose proof follows directly from the proof of Lemma 4.2.

Lemma 4.5 Let S1, ̂S2 and ̂S3 be as in Theorem 3.3. Suppose that for large n,
r(C1) ≤ k1, and that both r(C1 : C2 : C3) − r(C1 : C2) and r(C1 : C2) − r(C1)

do not depend on n. Then, if n → ∞,

n−1S1
P→ �, n−1

̂S2
P→ �, n−1

̂S3
P→ �.

The following limiting quantities will be used:

KB3	L = K(A′
3�A3)

−A′
3�XQ2C

′
3(C3Q2C

′
3)

−L, (4.155)

KB2	L = K(A′
2�

−1A2)
−A′

2�
−1(X − A3B3	C3)Q1C

′
2(C2Q1C

′
2)

−L, (4.156)

KB1	L = K(A′
1�

−1A1)
−A′

1�
−1(X − A2B2	C2 − A3B3	C3)C

′
1(C1C

′
1)

−L,

(4.157)

which all are normally distributed, and where it is supposed that K and L are so
chosen that (4.155)–(4.157) do not depend on the choice of g-inverses, i.e. are
unique. The matrices Q1 and Q2 are defined in (3.27), i.e. Q1 = I − P C ′

1
and

Q2 = I − P C ′
1:C ′

2
.

Correspondingly to Theorem 4.10, where the EBRM3
B was considered, the next

theorem can be verified.

Theorem 4.20 Consider the EBRM3
W presented in Definition 2.3. Let for i=1,2,3,

̂Bi and̂� be the maximum likelihood estimators ofB i and� in theEBRM3
W , given

in Theorem 3.3.

(i) If K̂B3L for the specific known matrices K and L is unique for some n, and
if additionally there exists a number, v, such that C(L) ⊆ C(C3Q2v), where
C3Q2v is a matrix whose columns are identical to the first v columns inC3Q2,

then K̂B3L − KB3	L
P→ 0, n → ∞, where KB3	L is given by (4.155).

(ii) If K̂B2L for the specific known matrices K and L is unique for some n, and
if additionally there exists a number, v, such that C(L) ⊆ C(C2Q1v), where
C2Q1v is a matrix whose columns are identical to the first v columns inC2Q1,

then K̂B2L − KB2	L
P→ 0, n → ∞, where KB2	L is given by (4.156).

(iii) If K̂B1L for the specific known matrices K and L is unique for some n, and
if additionally there exists a number, v, such that C(L) ⊆ C(C1v), where C1v
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is a matrix whose columns are identical to the first v columns in C1, then

K̂B1L − KB1	L
P→ 0, n → ∞, where KB1	L is given by (4.157).

(iv) Let Xv , C1v , C2v and C3v denote the first v columns in X, C1, C2 and C3,
respectively. Then for Ê|Xv] = ∑3

i=1 Ai
̂B iCiv

Ê|Xv] − (A1B1	C1v + A2B2	C2v + A3B3	C3v)
P→ 0, n → ∞,

where A1B1	C1v follows from statement (iii) by choosing K = A1 and L =
C1v , A2B2	C2v follows from statement (ii) by choosing K = A2 and L =
C2v , and A1B3	C3v follows from statement (i) by choosing K = A3 and
L = C3v .

(v) Let S3 = S1 + P ′
Ao

3,	−1XP 3X
′P Ao

3,	−1 + P ′
Ao

2,	
−1XP 2X

′P Ao
2,	

−1 with P 3

and P 2 defined in (3.27). Then

̂� − 1

n
(S3 + P ′

Ao
1,	

−1XP C ′
1
X′P Ao

1,	
−1)

P→ 0, n → ∞.

(vi) ̂�
P→ �, n → ∞.

4.9 Moments of Estimators of Parameters in the EBRM3
W

Let, as in Theorem 3.3, S1, ̂S2 and ̂S3 be defined by

S1 = X(I − PC ′
1:C ′

2:C ′
3
)X′, ̂S2 = S1 + P ′

Ao
3,S−1

1
XPQ2C

′
3
X′P

Ao
3,S−1

1
,

̂S3 = ̂S2 + P ′
Ao

2,
̂S−1

2
XP Q1C

′
2
X′P

Ao
2,
̂S−1

2
,

where the projections Q1 = I − PC ′
1

and Q2 = I − P C ′
1:C ′

2
. Similar to the facts

for the estimators in the EBRM3
B , stated at the beginning of Sect. 4.6, the following

facts now hold.

Facts

(i) XC ′
1 is independent of XQ1C

′
2 and XQ2C

′
3.

(ii) XQ1C
′
2 is independent of XQ2C

′
3.

(iii) S1 is independent of XQ2C
′
3, XQ1C

′
2 and XC′

1.
(iv) ̂S2 is independent of XQ1C

′
2 and XC′

1.
(v) ̂S3 is independent of XC′

1.

Using these statements, correspondingly to Theorem 4.11, the next theorem can
be stated concerning the unbiasedness of the mean parameter estimators in the
EBRM3

W .
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Theorem 4.21 Consider the EBRM3
W presented in Definition 2.3. Under the

uniqueness conditions given in Theorem 4.19, K̂BiL is an unbiased estimator of
KB iL, i = 1, 2, 3, where ̂B i is given in Theorem 3.3.

Corollary 4.4 The expression
∑3

i=1 Ai
̂BiCi is an unbiased estimator of E[X] =

∑3
i=1 AiB iCi , where ̂Bi is given in Theorem 3.3.

Many of the following moment expressions rest on the next lemma, for example
when considering E[n̂�] and D[K̂B iL], i = 1, 2, 3.

Lemma 4.6 Let all the matrices be as in Theorem 3.3. Then,

(i) if n − r(C′
1 : C ′

2 : C′
3) − 1 > 0,

E[PA3,S1�P ′
A3,S1

] = n−r(C′
1:C ′

2:C ′
3)−1

n−r(C′
1:C ′

2:C ′
3)−p+r(A3)−1A3(A

′
3�

−1A3)
−A′

3;

(ii) if 0 < ci < ∞, i = 1, 2, where

c1 = p−r(A2)

n−r(C′
1:C ′

2)−p+r(A2)−1
, c2 = n−r(C′

1:C ′
2)−p+r(A3)−1

n−r(C ′
1:C ′

2:C ′
3)−p+r(A3)−1

,

E[P A2,̂S2
�P ′

A2,̂S2
] = A2(A

′
2�

−1A2)
−A′

2 + c1P
′
Ao

3,�−1A2(A
′
2�

−1A2)
−A′

2P Ao
3,�−1

+c1c2A3(A
′
3�

−1A3)
−A′

3

= (1 + c1)A2(A
′
2�

−1A2)
−A′

2 + c1(c2 − 1)A3(A
′
3�

−1A3)
−A′

3;

(iii) if 0 < di < ∞, i = 1, 2, where

d1 = p−r(A1)
n−r(C1)−p+r(A1)−1 , d2 = n−r(C1)−p+r(A2)−1

n−r(C′
1:C ′

2)−p+r(A2)−1
,

and if 0 < c2 < ∞,

E[PA1,̂S3
�P ′

A1,̂S3
] = (1 + d1)A1(A

′
1�

−1A1)
−A′

1 + d2(d2 − 1)A2(A
′
2�

−1A2)
−A′

2

+d2d1(c2 − 1)A3(A
′
3�

−1A3)
−A′

3.

Proof Statement (i) is almost identical to the moment expression in (4.96), which in
turn followed from calculations used when proving Theorem 4.3 (ii). The difference
is that in Theorem 4.3, S ∼ Wp(�, n − r(C1)), whereas now S1 ∼ Wp(�, n −
r(C′

1 : C ′
2 : C′

3)).
Proving statement (ii) turns out to be much more complicated than proving

statement (i). This stems from the fact that̂S2 is not Wishart-distributed. Because it
is easier to work with P

Ao
2,
̂S−1

2
instead of PA2,̂S2

, the following relation will be used:

E[P A2,̂S2
�P ′

A2,̂S2
] = E[(I − P ′

Ao
2,
̂S−1

2
)�(I − P

Ao
2,̂S−1

2
)], (4.158)
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and after expansion the terms on the right-hand side of (4.158) will be considered
in detail. It appears that E[P ′

Ao
2,̂S−1

2
�] is symmetric and, therefore, in order to

determine (4.158), it suffices to consider

E[P ′
Ao

2,̂S−1
2

�], (4.159)

E[P ′
Ao

2,̂S−1
2

�P
Ao

2,
̂S−1

2
]. (4.160)

In several places the following trick of multiplying by projectors, decomposing the
whole space, will be used. It is noted that since I = P ′

Ao
3,	−1 +PA3,	 (see Appendix

B, Theorem B.11 (v)), (4.159) is identical to

E[(P ′
Ao

3,	−1 + PA3,	)P ′
Ao

2,̂S−1
2

�] = E[P ′
Ao

3,�−1P
′
Ao

2,̂S−1
2

�]. (4.161)

Note that the expression A′
3�

−1X(I −PC ′
1:C ′

2:C ′
3
) is independent of Ao′

2 X and

Ao′
3 X, and E[A′

3�
−1X(I − P C ′

1:C ′
2:C ′

3
)] = 0, and therefore in (4.161)

E[P A3,	P ′
Ao

2,
̂S−1

2
�] = 0.

Moreover, put

W = S1 + XP Q2C
′
3
X′ ∼ Wp(�, n − r(C′

1 : C′
2)) (4.162)

and then the important relations

Ao′
2
̂S2A

o
2 = Ao′

2 WAo
2, (4.163)

Ao′
3
̂S2A

o
2 = Ao′

3 WAo
2 (4.164)

can be obtained, meaning that Ao′
3 P ′

Ao
2,
̂S−1

2
is solely a function of a Wishart variable

W and

E[P ′
Ao

3,	−1P
′
Ao

2,̂S−1
2

�] = E[P ′
Ao

3,	
−1P

′
Ao

2,W−1�] = P ′
Ao

3,	−1P
′
Ao

2,�
−1�

= P ′
Ao

2,	−1� = � − A2(A
′
2�

−1A2)
−A′

2, (4.165)

where Appendix B, Theorem B.20 (ix) has been applied.
Next (4.160) is considered and following the above ideas it is noted that (4.160)

equals

P A3,	E[P ′
Ao

2,
̂S−1

2
�P

Ao
2,̂S−1

2
]P ′

A3,	
+ P ′

Ao
3,	−1E[P ′

Ao
2,
̂S−1

2
�P

Ao
2,̂S−1

2
]P Ao

3,	
−1 .

(4.166)
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This is true since P A3,	E[P ′
Ao

2,
̂S−1

2
�P

Ao
2,̂S−1

2
]P Ao

3,	
−1 = 0, which holds because

A′
3�

−1X(I − PC ′
1:C ′

2:C ′
3
) is independent of Ao′

2 X and Ao′
3 X, and

E[A′
3�

−1X(I − P C ′
1:C ′

2:C ′
3
)] = 0.

Now, due to (4.163) and (4.164)

P ′
Ao

3,	−1E[P ′
Ao

2,̂S
−1
2

�P
Ao

2,̂S−1
2

]P Ao
3,	−1 = P ′

Ao
3,	−1E[P ′

Ao
2,W−1�PAo

2,W−1 ]P Ao
3,	−1

= � − A2(A
′
2�

−1A2)
−A′

2 + c1P
′
Ao

3,	−1A2(A
′
2�

−1A2)
−A′

2PAo
3,	−1 ; (4.167)

c1 in this equation and in the formulation of the lemma is determined by following
the proof of Theorem 4.6 (i) and, in particular, by making a comparison with the
derivation of (4.31), as well as by performing some calculations.

In order to complete the proof of statement (ii), the remaining task is to discuss

P A3,	E[P ′
Ao

2,̂S−1
2

�P
Ao

2,̂S−1
2

]P ′
A3,	. (4.168)

Now another trick is applied. Note that I = PA3,S1 +P ′
Ao

3,S−1
1

and A3S
−1
1 S2A

o
2 = 0.

Therefore (4.168) is identical to

P A3,	E[P ′
Ao

3,S
−1
1

P ′
Ao

2,̂S−1
2

�P
Ao

2,̂S−1
2

P
Ao

3,S−1
1

]P ′
A3,	

= P A3,	E[P ′
Ao

3,S
−1
1

P ′
Ao

2,W−1�P Ao
2,W

−1P Ao
3,S−1

1
]P ′

A3,	
. (4.169)

The reason for including P
Ao

3,S
−1
1

in (4.168) is that ̂S2 is not Wishart-distributed,

whereas (4.169) is a function of Wishart matrices, i.e. S1 ∼ Wp(�, n− r(C ′
1 : C′

2 :
C′

3)) and W ∼ Wp(�, n − r(C′
1 : C′

2)), which therefore is relatively easy to treat.

Moreover, since A′
3�

−1X(I − P C ′
1:C ′

2:C ′
3
) is independent of Ao′

3 X and Ao′
2 X, and

hence also independent of Ao′
3 WAo

3 and Ao′
2 WAo

2, (4.169) equals

P A3,	�P ′
A3,	

E[tr{P ′
Ao

2,W
−1�P Ao

2,W−1Ao
3(A

o′
3 S1A

o
3)

−1Ao′
3 }]. (4.170)

For the derivation of moments of estimators in the EBRM3
B , Lemma 4.3 has turned

out to be crucial and this will also be the case when exploiting the expectation of
the trace function in (4.170). Let

V = �−1/2S1�
−1/2 ∼ Wp(I , n − r(C′

1 : C′
2 : C′

3)),

V 11 = (I r(Ao
3)

, 0)V (I r(Ao
3)

, 0)′ ∼ Wp−r(A3)(I , n − r(C′
1 : C′

2 : C′
3)).
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Since C(Ao
2) ⊆ C(Ao

3), according to the definition of W , Ao′
3 P ′

Ao
2,W−1�P Ao

2,W−1Ao
3

is a function of V 11 and a random quantity which is independent of Ao′
3 S1A

o
3.

Therefore, applying Lemma 4.3 yields

E[tr{P ′
Ao

2,W−1�P Ao
2,W−1Ao

3(A
o′
3 S1A

o
3)

−1Ao′
3 }]

= c2E[tr{P ′
Ao

2,W
−1�P Ao

2,W
−1A

o
3(A

o′
3 WAo

3)
−1Ao′

3 }]

= c2E[tr{�Ao
2(A

o′
2 WAo

2)
−1Ao′

2 }],

where c2 is given in the statement of the lemma. Furthermore, it can be shown
(Theorem B.21 (i) in Appendix B) that c1 = E[tr{�Ao

2(A
o′
2 WAo

2)
−1Ao′

2 }].
Thus, (4.170) equals

c1c2A3(A
′
3�

−1A3)
−A′

3, (4.171)

and (4.159) and (4.160) have been determined. By expanding (4.158) and then
using (4.165)–(4.167) and (4.171), statement (ii) of the lemma has been verified.

Now the proof of statement (iii) is briefly described. The first observation is that
the expectation in statement (iii) equals

E[(I − P ′
Ao

1,
̂S−1

3
)�(I − P

Ao
1,̂S−1

3
)] (4.172)

and therefore

E[P ′
Ao

1,
̂S−1

3
�], (4.173)

E[P ′
Ao

1,
̂S−1

3
�P

Ao
1,̂S−1

3
] (4.174)

are of interest. When proving statement (ii), the decomposition C(A3) � C(A3)
⊥

was used. For statement (iii), let A23 be any matrix generating C(A2) ∩ C(A3)
⊥.

Thus,

C(A3) � C(A2) ∩ C(A3)
⊥ � C(A2)

⊥ = C(A3) � C(A23) � C(A2)
⊥,

and (4.173) is identical to

(P ′
Ao

2,	
−1 + P A23,	 + P A3,	)E[P ′

Ao
1,̂S−1

3
�] = E[P ′

Ao
2,	−1P

′
Ao

1,
̂S−1

3
�],

since (P A23,	 + P A3,	)E[P ′
Ao

1,̂S−1
3

�] = 0. Furthermore, put

W 1 = W + XP Q1C
′
2
X′ ∼ Wp(�, n − r(C1)),
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and then

Ao′
1
̂S3A

o
1 = Ao′

1 W 1A
o
1, (4.175)

Ao′
2
̂S3A

o
1 = Ao′

2 W 1A
o
1. (4.176)

Hence,

E[P ′
Ao

2,	
−1P

′
Ao

1,̂S−1
3

�] = E[P ′
Ao

2,	−1P
′
Ao

1,W
−1
1

�]
= P ′

Ao
2,	−1P

′
Ao

1,	
−1� = P ′

Ao
1,	

−1�. (4.177)

Since (4.177) is a symmetric expression, E[�P
Ao

1,̂S−1
3

] takes the same value as the

moment expression in (4.173).
Now E[P ′

Ao
1,̂S−1

3
�P

Ao
1,
̂S−1

3
] in (4.174) is derived. The first observation is that the

expectation equals

P ′
Ao

2,	−1E[P ′
Ao

1,̂S−1
3

�P
Ao

1,̂S−1
3

]P Ao
2,	

−1 (4.178)

+PA23,	E[P ′
Ao

1,̂S−1
3

�P
Ao

1,
̂S−1

3
]P ′

A23,	
(4.179)

+PA3,	E[P ′
Ao

1,̂S−1
3

�P
Ao

1,
̂S−1

3
]P ′

A3,	
, (4.180)

which is true since P ′
Ao

2,	
−1E[P ′

Ao
1,̂S−1

3
�P

Ao
1,
̂S−1

3
]PA2,	 = 0 and C(A2) = C(A3)�

C(A23). The expectations (4.178)–(4.180) are derived separately and one starts
with (4.178), which equals (see (4.167) for hints about calculations)

� − A1(A
′
1�

−1A1)
−A′

1 + d1P
′
Ao

2,	−1A1(A
′
1�

−1A1)
−A′

1P Ao
2,	−1, (4.181)

where d1 is given in statement (iii) of the lemma. Since A′
2
̂S

−1
2

̂S3A
o
1 = 0, (4.179)

can be written as follows:

PA23,	E[P ′
Ao

2,̂S−1
2

P ′
Ao

1,̂S−1
3

�P
Ao

1,
̂S−1

3
P

Ao
2,̂S−1

2
]P ′

A23,	

= PA23,	E[P ′
Ao

2,W−1P
′
Ao

1,W
−1
1

�P
Ao

1,W
−1
1

PAo
2,W−1]P ′

A23,	

= PA23,	�P ′
A23,	

E[tr{P ′
Ao

1,W−1
1

�P
Ao

1,W−1
1

Ao
2(A

o′
2 WAo

2)
−1Ao′

2 }]. (4.182)

However, since C(Ao
1) ⊆ C(Ao

2), it follows from Lemma 4.3 that (4.182) equals

d1A23(A
′
23�

−1A23)
−A′

23E[tr{P ′
Ao

1,W−1
1

�P
Ao

1,W−1
1

Ao
2(A

o′
2 W 1A

o
2)

−1Ao′
2 }]

= d1A23(A
′
23�

−1A23)
−A′

23E[tr{�Ao
1(A

o′
1 W 1A

o
1)

−1Ao′
1 }]

= d2d1(A2(A
′
2�

−1A2)
−A′

2 − A3(A
′
3�

−1A3)
−A′

3), (4.183)
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where d2 is given in statement (iii) of the lemma and

A23(A
′
23�

−1A23)
−A′

23 = A2(A
′
2�

−1A2)
−A′

2 − A3(A
′
3�

−1A3)
−A′

3.

Finally, the expression for (4.180) is obtained. Since both A′
3
̂S

−1
1

̂S3A
o
1 = 0 and

A′
2
̂S

−1
2

̂S3A
o
1 = 0, (4.180) is identical to

P A3,	E[P ′
Ao

3,S−1
1

P ′
Ao

2,̂S−1
2

P ′
Ao

1,̂S−1
3

�P
Ao

1,
̂S−1

3
P

Ao
2,
̂S−1

2
P

Ao
3,S−1

1
]P ′

A3,	

= P A3,	E[P ′
Ao

3,S−1
1

P ′
Ao

2,W−1P
′
Ao

1,W
−1
1

�P
Ao

1,W
−1
1

PAo
2,W−1P Ao

3,S−1
1

]P ′
A3,	

and the following chain of calculations holds, i.e. (4.180) equals

P A3,	�P ′
A3,	

E[tr{P ′
Ao

2,W−1P
′
Ao

1,W
−1
1

�P
Ao

1,W
−1
1

PAo
2,W−1Ao

3(A
o′
3 S1A

o
3)

−1Ao′
3 }]

= c2A3(A
′
3�

−1A3)
−A′

3E[tr{P ′
Ao

1,W
−1
1

�P
Ao

1,W−1
1

Ao
2(A

o′
2 WAo

2)
−1Ao′

2 }]

= c2d1A3(A
′
3�

−1A3)
−A′

3E[tr{�Ao
1(A

o′
1 W 1A

o
1)

−1Ao′
3 }]

= c2d1d2A3(A
′
3�

−1A3)
−A′

3. (4.184)

Thus, by combining (4.172)–(4.174), (4.177), (4.183) and (4.184), the expression
for statement (iii) of the lemma is obtained. ��
In Lemma 4.6, necessary preparatory results were presented. Next they will be used
when deriving D[Ê[X]], where

Ê[X] − E[X] = P A1,̂S3
(X − E[X])P C ′

1
+ P A2,̂S2

(X − E[X])PQ1C
′
2

+P A3,S1(X − E[X])PQ2C
′
3
. (4.185)

Due to independence (see Facts (i)–(iii) at the beginning of this section), the
covariances between the terms in (4.185) equal 0, i.e.

C[P A1,̂S3
(X − E[X])PC ′

1
,P A2,̂S2

(X − E[X])PQ1C
′
2
] = 0,

C[P A1,̂S3
(X − E[X])PC ′

1
,P A3,S1(X − E[X])PQ2C

′
3
] = 0,

C[P A2,̂S2
(X − E[X])PQ1C

′
2
,P A3,S1(X − E[X])PQ2C

′
3
] = 0.

In comparison with Ê[X] for the EBRM3
B , where the covariances between the

terms differed from 0, the situation for the EBRM3
W is somewhat simpler. Without

a proof we state the next theorem.



4.9 Moments of Estimators of Parameters in the EBRM3
W 167

Theorem 4.22 Consider the EBRM3
W presented in Definition 2.3, and apply the

notation used in Lemma 4.6. Then

D[Ê[X]] = D[P A1,̂S3
(X − E[X])P C ′

1
] + D[P A2,̂S2

(X − E[X])PQ1C
′
2
]

+D[P A3,S1(X − E[X])P Q2C
′
3
]

= P C ′
1
⊗ E[PA1,̂S3

�P ′
A1,̂S3

] + P Q1C
′
2
⊗ E[PA2,̂S2

�P ′
A2,̂S2

]
+P Q2C

′
3
⊗ E[P A3,S1�P ′

A3,S1
],

where E[PA1,̂S3
�P ′

A1,̂S3
], E[PA2,̂S2

�P ′
A2,̂S2

] and E[P A3,S1�P ′
A3,S1

] are all
given in Lemma 4.6.

The estimated dispersion was presented in Theorem 3.3, i.e.

n̂� = ̂S3 + P ′
Ao

1,
̂S−1

3
XP C ′

1
X′P

Ao
1,̂S−1

3
. (4.186)

Calculating the expectation of ̂� is relatively straightforward since the necessary
moment expressions were used in the proof of Lemma 4.6. Note that XPC ′

1
is

independent of̂S3, XP Q1C
′
2

is independent of̂S2 and XP Q2C
′
3

is independent of S1,
and that E[P ′

Ao
1,
̂S−1

3
�P

Ao
1,̂S−1

3
], E[P ′

Ao
2,̂S−1

2
�P

Ao
2,̂S−1

2
] and E[P ′

Ao
3,S−1

1
�P

Ao
3,S

−1
1

]
are obtained in the proof of Lemma 4.6.

Theorem 4.23 Consider the EBRM3
W presented in Definition 2.3, and apply the

notation used in Lemma 4.6. Then

E[n̂�] = E[S1] + r(Q2C
′
3)E[P ′

Ao
3,S−1

1
�P

Ao
3,S

−1
1

]
+r(Q1C

′
2)E[P ′

Ao
2,̂S−1

2
�P

Ao
2,
̂S−1

2
] + r(C1)E[P ′

Ao
1,̂S−1

3
�P

Ao
1,̂S−1

3
],

where

E[S1] = (n − r(C′
1 : C′

2 : C′
3))�,

E[P ′
Ao

3,S
−1
1

�P
Ao

3,S−1
1

] = p−r(A3)

n−r(C′
1:C ′

2:C ′
3)−p+r(A3)−1A3(A

′
3�

−1A3)
−A′

3

+Ao
3(A

o′
3 �Ao

3)
−1Ao′

3 ,

E[P ′
Ao

2,
̂S−1

2
�P

Ao
2,̂S−1

2
] = Ao

2(A
o′
2 �Ao

2)
−1Ao′

2 + A3(A
′
3�

−1A3)
−A′

3

+c1P
′
Ao

3,	
−1A2(A

′
2�

−1A2)
−1A′

2P Ao
3,	

−1

+c1c2A3(A
′
3�

−1A3)
−A′

3,
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E[P ′
Ao

1,
̂S−1

3
�P

Ao
1,̂S−1

3
] = Ao

1(A
o′
1 �Ao

1)
−1Ao′

1 + d1P
′
Ao

2,	
−1A1(A

′
1�

−1A1)
−

×A′
1PAo

2,	−1 + d1d2A23(A
′
23�

−1A23)
−A′

23

+c2d1d2A3(A
′
3�

−1A3)
−A′

3,

and

r(Q2C
′
3) = r(C′

1 : C′
2 : C′

3) − r(C′
1 : C′

2), r(Q1C
′
2) = r(C′

1 : C′
2) − r(C1).

The next task is to find an unbiased estimator of �, which, according to
Theorem 4.23, can be achieved if unbiased estimators of E[P ′

Ao
1,̂S−1

3
�P

Ao
1,̂S−1

3
],

E[P ′
Ao

2,̂S−1
2

�P
Ao

2,
̂S−1

2
] and E[P ′

Ao
3,S−1

1
�P

Ao
3,S

−1
1

] are established. Thus, unbiased

estimators of Ai (A
′
i�

−1Ai )
−A′

i and Ao
i (A

o′
i �Ao

i )
−1Ao′

i , i = 1, 2, 3, solve the
problem. One strategy for finding these unbiased estimators is to replace � by its
MLE and then, after rather lengthy calculations, to find an estimator which is solely
a function of the MLE. This procedure was carried out for the EBRM3

B and the
result was presented in Theorem 4.16. However, there are many alternatives and an
easy method is to apply Appendix B, Theorems B.20 (v) and B.21 (i) to S1 and
(Ao′

i S1A
o
i )

−1, i.e.

Ai (A
′
iS

−1
1 Ai )

−A′
i ∼ Wp(Ai (A

′
i�

−1Ai )
−A′

i , n − r(C′
1 : C′

2 : C′
3) − p + r(Ai )),

E[Ai (A
′
iS

−1
1 Ai )

−A′
i ] = (n − r(C′

1 : C′
2 : C′

3) − p + r(Ai ))Ai (A
′
i�

−1Ai )
−A′

i ,

and if n − r(C′
1 : C ′

2 : C′
3) − p + r(Ai ) − 1 > 0

E[Ao
i (A

o′
i S1A

o
i )

−1Ao′
i ] = 1

n−r(C ′
1:C ′

2:C ′
3)−p+r(Ai )−1Ao

i (A
o′
i �Ao

i )
−1Ao′

i .

Via these relations the next lemma can be proved.

Lemma 4.7 Let S1,̂S2 and̂S3 be as in Theorem 3.3 and put

h11 = 1
n−r(C′

1:C ′
2:C ′

3)−p+r(A3)

p−r(A3)

n−r(C′
1:C ′

2:C ′
3)−p+r(A3)−1

,

h12 = n − r(C′
1 : C′

2 : C′
3) − p + r(A3) − 1,

h21 = n − r(C′
1 : C′

2 : C′
3) − p + r(A2) − 1,

h22 = 1
n−r(C′

1:C ′
2:C ′

3)−p+r(A3)
, h23 = 1

n−r(C ′
1:C ′

2:C ′
3)−p+r(A2)

,

h31 = n − r(C′
1 : C′

2 : C′
3) − p + r(A1) − 1,

h32 = 1
n−r(C′

1:C ′
2:C ′

3)−p+r(A1)
, h33 = 1

n−r(C ′
1:C ′

2:C ′
3)−p+r(A23)

.
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Then

̂E[P ′
Ao

3,S
−1
1

�P
Ao

3,S−1
1

] = h11A3(A
′
3S

−1
1 A3)

−A′
3 + h12A

o
3(A

o′
3 S1A

o
3)

−1Ao′
3 ,

̂E[P ′
Ao

2,
̂S−1

2
�P

Ao
2,̂S−1

2
] = h21A

o
2(A

o′
2 S1A

o
2)

−1Ao′
2 + h22A3(A

′
3S

−1
1 A3)

−A′
3

+h23c1A2(A
′
2S

−1
1 A2)

−1A′
2 − h22c1A3(A

′
3S

−1
1 A3)

−1A′
3

+h22c1c2A3(A
′
3S

−1
1 A3)

−A′
3,

̂E[P ′
Ao

1,
̂S−1

3
�P

Ao
1,̂S−1

3
] = h31A

o
1(A

o′
1 S1A

o
1)

−1Ao′
1 + h32d1A1(A

′
1S

−1
1 A1)

−A′
1

−h23c1A2(A
′
2S

−1
1 A2)

−1A′
2

+h33d1d2A23(A
′
23S

−1
1 A23)

−A′
23 + h22c2d1d2A3(A

′
3S

−1
1 A3)

−A′
3.

Using Lemma 4.7 the following theorem is established.

Theorem 4.24 Let ̂� be as in Theorem 3.3. Then, for the EBRM3
W presented in

Definition 2.3, an unbiased estimator of � is given by

̂�U = ̂� + r(C′
1:C ′

2:C ′
3)

n(n−r(C′
1:C ′

2:C ′
3))

S1 − r(Q2C
′
3)

n
̂E[P ′

Ao
3,S−1

1
�P

Ao
3,S

−1
1

]

− r(Q1C
′
2)

n
̂E[P ′

Ao
2,̂S−1

2
�P

Ao
2,̂S−1

2
] − r(C1)

n
̂E[P ′

Ao
1,̂S−1

3
�P

Ao
1,
̂S−1

3
],

where ̂E[P ′
Ao

3,S
−1
1

�P
Ao

3,S−1
1

], ̂E[P ′
Ao

2,
̂S−1

2
�P

Ao
2,̂S−1

2
] and ̂E[P ′

Ao
1,̂S−1

3
�P

Ao
1,
̂S−1

3
] are

all presented in Lemma 4.7.

Now D[K̂B iL], i = 1, 2, 3, will be obtained for known K and L under the
assumption that K̂BiL is unique.

Theorem 4.25 Let ̂Bi , i = 1, 2, 3, be given in Theorem 3.3 and suppose that for
each K̂B iL, i = 1, 2, 3, the uniqueness conditions presented in Theorem 4.19 are
satisfied. Then, if the dispersion matrices are supposed to exist,

(i)

D[K̂B3L] = n−r(C ′
1:C ′

2:C ′
3)−1

n−r(C′
1:C ′

2:C ′
3)−p+r(A3)−1L′(C3Q2C

′
3)

−L ⊗ K(A′
3�

−1A3)
−K ′;

(ii)

D[K̂B2L] = D[K(A′
2
̂S

−1
2 A2)

−A′
2
̂S

−1
2 (X − E[X])Q1C

′
2(C2Q1C

′
2)

−L]
+D[K(A′

2A2)
−A′

2A3(̂B3 − B3)C3Q1C
′
2(C2Q1C

′
2)

−L],
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where D[K(A′
2
̂S

−1
2 A2)

−A′
2
̂S

−1
2 (X − E[X])Q1C

′
2(C2Q1C

′
2)

−L] is
obtained by applying Lemma 4.6 (ii) and D[K(A′

2A2)
−A′

2A3(̂B3 −
B3)C3Q1C

′
2(C2Q1C

′
2)

−L] follows from statement (i) of this theorem;
(iii)

D[K̂B1L] = D[K(A′
1
̂S

−1
3 A1)

−A′
1
̂S

−1
3 (X − E[X])C ′

1(C1C
′
1)

−L]
+D[K(A′

1A1)
−A′

1P A2,̂S2
XQ1C

′
2(C2Q1C

′
2)

−C2C
′
1(C1C

′
1)

−L]
+D[K(A′

1A1)
−A′

1A3(̂B3 − B3)C3(I − Q1C
′
2(C2Q1C

′
2)

−C2)C
′
1(C1C

′
1)

−L],

where

D[K(A′
1
̂S

−1
3 A1)

−A′
1
̂S

−1
3 (X − E[X])C′

1(C1C
′
1)

−L]

and

D[K(A′
1A1)

−A′
1P A2,̂S2

XQ1C
′
2(C2Q1C

′
2)

−C2C
′
1(C1C

′
1)

−L]

are obtained by applying Lemma 4.6 (ii) and (iii), and

D[K(A′
1A1)

−A′
1A3(̂B3 − B3)C3(I − Q1C

′
2(C2Q1C

′
2)

−C2)C
′
1(C1C

′
1)

−L]

follows from statement (i).

Proof Note that D[K̂B3L] has the same structure as D[K̂BL] in the BRM (see
Theorem 4.3 (ii)); i.e. the result for statement (i) follows from Theorem 4.3 (ii).

For K̂B2L in statement (ii) the moments are more difficult to obtain than those
for K̂B3L in statement (i). It follows from the facts presented at the beginning of
Sect. 4.9 that XQ1C

′
2 is independent of S1 and ̂S2, as well as XQ2C

′
3. Hence

K(A′
2
̂S

−1
2 A2)

−A′
2
̂S

−1
2 (X − E[X])Q1C

′
2(C2Q1C

′
2)

−L

and

K(A′
2A2)

−A′
2A3(̂B3 − B3)C3Q1C

′
2(C2Q1C

′
2)

−L

are uncorrelated. Moreover, due to assumptions about K and the fact that C(A3) ⊆
C(A2),

K(A′
2
̂S

−1
2 A2)

−A′
2
̂S

−1
2 A3 = K(A′

2A2)
−A′

2A3

and therefore Lemma 4.6 (ii), together with statement (i) of this theorem, establishes
statement (ii).
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Similar arguments to those used for the proof of D[K̂B2L] also apply to
D[K̂B1L] in statement (iii), but these arguments are omitted here. ��

When performing inference about parameters in a model, it is important to
understand how the estimators of these parameters are correlated. Ideally the
estimators should be independently distributed, but uncorrelated estimators or
estimators with low correlations are to be preferred to highly related estimators.
For the BRM and its extensions, usually only statements about correlation can
take place. In the next theorem the covariances between ̂B1, ̂B2 and ̂B3 are
presented. The proof is based on the facts presented at the beginning of this section,
i.e. Sect. 4.9, and, since the technical treatment follows the one used when verifying
the previous theorem, it is omitted here.

Theorem 4.26 Consider the EBRM3
W presented in Definition 2.3. Let ̂B i , i =

1, 2, 3, be given in Theorem 3.3 and suppose that for each ̂B i , i = 1, 2, 3, the
uniqueness conditions given in Theorem 4.19 are satisfied. Then, if the dispersion
matrices are supposed to exist,

(i)

C[̂B2,̂B3] = −((C2Q1C
′
2)

−1C2Q1C
′
3 ⊗ (A′

2A2)
−1A′

2A3)D[̂B3],

where D[̂B3] is presented in Theorem 4.25 (i);
(ii)

C[̂B1,̂B3] = −((C1C
′
1)

−1C1C
′
2 ⊗ (A′

1A1)
−1A′

1A2)C[̂B2,̂B3]
−((C1C

′
1)

−1C1C
′
3 ⊗ (A′

1A1)
−1A′

1A3)D[̂B3],

where C[̂B2,̂B3] follows from statement (i), and D[̂B3] follows from Theo-
rem 4.25 (i);

(iii)

C[̂B1,̂B2] = −((C1C
′
1)

−1C1C
′
3 ⊗ (A′

1A1)
−1A′

1A3)C[̂B2,̂B3]
−((C1C

′
1)

−1C1C
′
2 ⊗ (A′

1A1)
−1A′

1A2)D[̂B2],

where C[̂B2,̂B3] follows from statement (i), and D[̂B2] follows from Theo-
rem 4.25 (ii).

Corollary 4.5 Let ̂Bi , i=1,2,3, be given in Corollary 3.5, where it is supposed
that C(C′

1) is orthogonal to C(C′
2 : C′

3) and C(C′
2) is orthogonal to C(C′

1 : C′
3).

Then C[̂B1,̂B2] = 0, C[̂B1,̂B3] = 0 and C[̂B2,̂B3] = 0.
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Problems

1 Consider the BRM presented in Definition 2.1. Use simulations to indicate that
the MLE ̂B is unbiased. For a given data set estimate D[̂B]. Moreover, show via
simulations that ̂B is not normally distributed.

2 Consider the EBRM2
W presented in Definition 2.3. Show that the MLE ̂� is not

an unbiased estimator. Derive three different unbiased estimators of �.

3 (GMANOVA + MANOVA, continuation of Problem 2 of Chap. 3) Let

X = AB1C1 + B2C2 + E,

where all matrices are given in Problem 2 of Chap. 3. Consider the MLEs and
show their consistency, and that the estimators of the mean parameters are unbiased.
Moreover, find the dispersion of the estimators of the mean parameters and E[̂�].
4 Show the relations presented in (4.97).

5 In Example 3.1 the MLE and an “unweighted” estimator of B were presented.
Moreover, an upper bound (which due to randomness is not a real upper bound)
between the differences of the corresponding dispersion matrices was shown. Try to
find out via simulations how sharp this upper bound is.

6 Let X ∼ Np,n(μ,�,�). Find E[tr{XX′}] and D[tr{XX′}].
7 Consider the EBRM2

W presented in Definition 2.3. Show that
∑2

i=1 Ai
̂B iCi ,

where ̂B i is the MLE of B i , i = 1, 2, is an unbiased estimator of E[X] and derive
its dispersion matrix.

8 Let X ∼ Np,n(A1B1C1 + A2B2C2 + A3B3C3,�, I ), where Bi , i = 1, 2, 3,
and � are the unknown parameters,

A1 =
⎛

⎝

Ip1

0
0

⎞

⎠ , A2 =
⎛

⎝

0
Ip2

0

⎞

⎠ , A3 =
⎛

⎝

0
0

Ip3

⎞

⎠ ,

where p1 + p2 + p3 = p, and C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1). Find the MLEs of the

parameters, as well as their asymptotic distributions.

9 In the BRM presented in Definition 2.1, suppose that FB = 0 and BG = 0
hold, where F : s × q and G: k × t are known matrices. Give conditions when the
MLE for B is unique.

10 In the BRM presented in Definition 2.1, suppose that FBG = 0 holds, where
F : s × q and G: k × t are known matrices. Find E[̂�], where ̂� is the MLE of �.
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Literature

Asymptotics for linear models (including regression models), constitutes in fact the
basis for the asymptotic results for the BRM and the EBRMm• and was presented
by Eicker (1963, 1966) (see also Drygas, 1971). Another way of contemplating
asymptotic inference is, when the inference is based on an assumption about
normality of errors, as in this book, to view it in the light of classical likelihood
theory modified to handle non-identically distributed observations. Since this book
contains explicit estimators, one can adopt some approach based on working with
the estimators directly. An alternative approach is first to study an appropriate
sequence of criteria functions (loss functions, likelihood functions) and determine
that they converge for large n, i.e. many independent observations, and thereafter
to utilize that the estimators obtained through minimization/maximization of the
criteria function also converge (e.g. see van der Vaart, 1998).

Essential for the interpretation of results for the BRM and the EBRMm• is
the concept of estimability. Bose (1944) formally introduced the concept and
its importance is highlighted in classical Gauss-Markov theory (e.g. see Rao,
1973; Wang and Chow, 1994). However, Thiele (1889) had already considered
the estimability problem in remarkable detail (see Hald, 1981). Essential for the
asymptotics applied to dispersion are the results for the sample dispersion matrix
which is proportional to S = X(I−P C ′)X′ (following the notation of the book). An
early work which treated the results of Lemma 4.1 is the monograph by Anderson
(1958). A useful trick when obtaining asymptotically equivalent expression for the
MLEs of the BRM and the EBRMm• is to apply the Cramér-Slutsky theorem (see
Rao, 1973; Gut, 2013). The estimator n−1S in the projection operators converges
in probability to �, and the remaining parts of the MLEs of the mean parameters
and their approximating quantities are equal in distribution. Thus, results about
asymptotically equivalent expressions are easily obtained via the Cramér-Slutsky
theorem.

Moments are used in this book to understand estimators and perform den-
sity approximations (see Chap. 5) called Edgeworth-type approximations. These
moments are based on moments of the normal distribution, i.e. the multivariate
normal distribution and the matrix normal distribution (see Holmquist, 1988; von
Rosen, 1988a), and moments from the Wishart distribution (Holmquist, 1985;
Lu and Richards, 2001; Letac and Massam, 2004; Graczyk et al., 2005; Collins
et al., 2014). For the most commonly used definition of the Wishart matrix (XX′,
where X is matrix normally distributed) these results can be obtained from the
moments of the matrix normal distribution. Moreover, moments from the inverse
Wishart distribution (Haff, 1982; von Rosen, 1988b, 1997; Letac and Massam,
2004; Matsumoto, 2012; Collins et al., 2014), and sometimes moments for the
multivariate β-distribution of type I and the multivariate β-distribution of type
II (see Kollo and von Rosen, 2005, Subsection 2.4.5) are needed when working
with the BRM or its extensions. Many of the above-cited references on Wishart
moments and inverse Wishart moments are fairly mathematical and often based
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on combinatorial theory. Wong and Hua (2000) solved some of the combinatorial
problems via differentiation. However, if one is only interested in the mean and
dispersion, i.e. the first and second order moments, these moments have for a long
time been available in many texts on multivariate analysis (e.g. see Srivastava and
Khatri, 1979; Kollo and von Rosen, 2005). When looking for moment relations for
the symmetric Wishart matrix, it is important to clarify which object the moments
are being derived for, i.e. whether they are being derived for the upper or lower
triangular of the Wishart matrix, W , for all elements in W or for the object W which
belongs to the space of symmetric matrices. It is also advisable to distinguish clearly
between real valued and complex valued vectors/matrices. Moreover, sometimes
expectations of the trace of a Wishart matrix or an inverse Wishart matrix are needed
and both categories of expectations can be obtained via moments of hypergeometric
function with Wishart arguments (e.g. see Muirhead, 1982; Watamori, 1990; Lu and
Richards, 2001) or by applying some of the results derived by Letac and Massam
(2004), among others.

Moments for the mean and dispersion for the BRM were first presented by
Grizzle and Allen (1969) who also referred to Rao (1967) and other authors where
similar calculations had been performed. The other moment expressions presented
in Theorems 4.6–4.11 follow from results in von Rosen (1990) (see also Kollo and
von Rosen, 2005, Chap. 4). The moment results for the EBRM3

B mostly stem from
von Rosen (1990) and for the corresponding results for the EBRM3

W , the reader is
referred to Filipiak von Rosen (2012).
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Chapter 5
Density Approximations

5.1 Introduction

In the previous section some of the most elementary properties, i.e. moments, of the
MLEs in the BRM , EBRM3

B and EBRM3
W were derived. In these models the exact

distribution of the MLEs is difficult to obtain in a useful form. Thus, one needs to
rely on either simulations or approximations. In general, simulations may be useful
in some particular cases, but can often become computationally demanding, for
example when used to solve distributional problems connected to high-dimensional
statistical problems.

When finding approximations of distributions, it may be advisable to start from
the asymptotic distribution under the assumption of a large number of independent
observations. It is a fairly natural approximation strategy that one should let the
asymptotic result direct the approximation. For example, if the distribution of a
statistic converges to the normal distribution, it is natural to approximate with
a normal distribution. The art in this connection resides in the correction of
the approximation for the finite number of independent observations concerned.
Moreover, in any serious context it is always of interest to indicate the error of
the approximation and the best approach here is to find a sharp upper bound of the
error.

Distributions of a statistic can be approximated in many ways, for example,
by approximating the statistic itself, by approximating the characteristic function
before transforming it back into a density, by approximating the density function
or by directly approximating the distribution function. In this section a special
type of density approximation will be considered which is termed Edgeworth-type
expansion. From the derivation of this type of approximation it follows that one
approximates the characteristic function by excluding higher terms in a Taylor
series expansion of the characteristic function. At this stage the knowledge of
moments and cumulants is crucial. Thereafter an inverse transform is applied to
obtain the density approximation. The reason for calling this type of approximation
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an Edgeworth-type expansion is that it is based on the normal distribution. However,
the correct term is Gram-Charlier A series expansion. Usually the difference
between Edgeworth and Gram-Charlier expansions lies in the organization of terms
in the expansion, which then affects the approximation when series are truncated.
The reason for choosing the term “Edgeworth-type expansion” is that in our
approach we do not have to distinguish between the Gram-Charlier and Edgeworth
expansions, and at the same time, the term “Gram-Charlier expansion” is incorrect
from a historical perspective (see Hald, 2002).

This chapter focuses mainly on the approximation of the distribution of the
maximum likelihood estimators of the mean parameters. Here the results are
unexpectedly beautiful. The same approach could be adopted for the estimators of
the dispersion estimators, but in this case it is not possible to bound the errors of the
approximations and therefore no results will be presented.

5.2 Preparation

Let Y be a random matrix variable with density fY (Y o). The density fY (Y o)

should be approximated via another random variable X and its density fX(Y o), and
knowledge about the cumulants for both distributions. Moreover, the approximating
density and the characteristic functions are going to be differentiated several times
and this will be based on the following matrix derivative.

Definition 5.1 Let Y be a function of X. The kth matrix derivative is defined by

dk Y

d Xk
= d

X

dk−1 Y

d Xk−1 , k = 1, 2, . . . ,

and

d Y

d X
= d vec′Y

d vecX
,

d0 Y

d X0 = Y ,

where, if X ∈ R
p×q ,

d

d X
= (

d

d x11
, . . .

d

d xp1
,

d

d x12
, . . . ,

d

d xp2
, . . . ,

d

d x1q

, . . . ,
d

d xpq

)′.

Note that a more precise, but clumsy, notation would have been dk Y
(d X)k

or dk Y
d Xd X...d X

;

i.e. here in Definition 5.1, Xk does not denote the matrix power.
Since the Edgeworth-type expansion is based on knowledge about multivariate

cumulants, it is necessary to define them. Let ϕX(T ) denote the characteristic
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function (Fourier transform),

ϕX(T ) = E[eitr(T ′X)],

where i is the imaginary unit, and then the kth cumulant ck[X] is presented in the
next definition.

Definition 5.2 Let X be a random matrix. Supposing the existence of cumulants of
X, the kth cumulant of X is given by

ck[X] = 1

ik
dk ln ϕX(T )

dT k

∣

∣

∣

∣

T =0
, k = 1, 2, . . . .

In particular, c1[X] = E[vecX] and c2[X] = D[X] (see Appendix B, Theo-
rem B.16 (iii)). Since dY

dX
= d vec′Y

dX
, it follows that ck[X] = ck[vecX], which

is sometimes useful to note. There exist one-to-one relations between cumulants
of an arbitrary order and moments of an arbitrary order. Moreover, for normally
distributed variables cumulants of an order > 2 equal 0. In the following the kth
derivative of a density fX(Xo) will be denoted by f k

X(Xo) and f 0
X(Xo) = fX(Xo),

where the derivative is given in Definition 5.1. Now necessary notations have been
introduced and it is time to present a result concerning multivariate Edgeworth-type
expansions.

Theorem 5.1 Let Y and X be two random matrices of the same size with densities
fY (Xo) and fX(Xo), respectively, both evaluated at Xo. Then

fY (Xo) = fX(Xo) − vec′(E[Y ] − E[X])f 1
X(Xo)

+1

2
vec′(D[Y ] − D[X] + vec(E[Y ] − E[X])vec′(E[Y ] − E[X]))vecf 2

X(Xo)

−1

6

(

vec′(c3[Y ] − c3[X]) + 3vec′(D[Y ] − D[X]) ⊗ vec′(E[Y ] − E[X])

+vec′(E[Y ] − E[X])⊗3
)

vecf 3
X(Xo) + . . . .

Proof Consider the trivial identity

ϕY (T ) = ϕY (T )

ϕX(T )
ϕX(T ) = ϕX(T )exp{ln ϕY (T ) − ln ϕX(T )}.

Now ln ϕY (T ) − ln ϕX(T ) is, according to the above definition given in Defini-
tion 5.2 of cumulants, expanded as

ln ϕY (T ) − ln ϕX(T ) =
∞
∑

k=1

ik

k! t
′(ck[Y ] − ck[X])t⊗k−1,
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where t = vecT . Thus,

ϕY (t) = ϕX(t)

∞
∏

k=1

exp{ 1
k! it

′(ck[Y ] − ck[X])(it)⊗k−1}.

Ordering the terms in a series expansion, according to t⊗k , this relation yields

ϕY (T ) = ϕX(T )

{

1 + i(c1[Y ] − c1[X])′t

+ i2

2 vec′{c2[Y ] − c2[X] + (c1[Y ] − c1[X])(c1[Y ] − c1[X])′}t⊗2

+ i3

6

(

vec′(c3[Y ] − c3[X]) + 3vec′(c2[Y ] − c2[X]) ⊗ (c1[Y ] − c1[X])′

+(c1[Y ] − c1[X])′⊗3
)

t⊗3 + · · ·
}

.

Next this expression is inverted via the inverse Fourier transform; i.e. the following
relation is utilized:

(−1)ka′vecf k
X(X) = (2π)−pq

∫

Rpq

ϕX(T )a′(it)⊗ke−itr(T ′X)dT , k = 0, 1, 2, . . . ,

(5.1)

where a is an arbitrary constant (pq)k-vector, which establishes the theorem. ��
The theorem shows how one density is approximated using another density via
knowledge about cumulants and derivatives of the approximating density. The
approximation is point-wise and the approximating density does not necessarily
have to be a real density, i.e. positive, and when integrating the approximation over
all the values of X, it equals 1.

From Theorem 5.1 it follows that derivatives of densities are needed. Thus, if
the matrix normal distribution is used, the derivatives of the corresponding normal
density are needed; i.e. the Hermite polynomials have to be expressed, and they are
presented now in the next lemma (see Appendix A, Sect. A.13 for a definition of
Hermite polynomials).

Lemma 5.1 Let X ∼ Np,n(μ,�,�). Then the generalized Hermite polynomials
of an order up to 3 equal

H0(X,μ,�,�) = 1, (5.2)

H 1(X,μ,�,�) = vec(�−1(X − μ)�−1), (5.3)

H 2(X,μ,�,�) = vec(�−1(X − μ)�−1)vec′(�−1(X − μ)�−1)

−�−1 ⊗ �−1, (5.4)
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H 3(X,μ,�,�) = vec(�−1(X − μ)�−1)(vec′(�−1(X − μ)�−1))⊗2

−vec(�−1(X − μ)�−1)vec′(�−1 ⊗ �−1)

−vec′(�−1(X − μ)�−1) ⊗ �−1 ⊗ �−1

−�−1 ⊗ �−1 ⊗ vec′(�−1(X − μ)�−1). (5.5)

In Theorem 5.1 no errors were presented. Next a special case is considered for
which not only are errors presented, but also an upper bound of the error is given.
Let in the next theorem | • | denote the absolute value (modulus) of a real (complex)
number.

Theorem 5.2 Let Y and X be two random matrices of the same size, p × q ,
with densities fY (Xo) and fX(Xo), respectively, both evaluated at Xo. Moreover,
suppose that

Y = X − U , (5.6)

where X and U are independently distributed, and let u = vecU and t = vecT .
Then, if m + 1 is even,

fY (Xo) = fX(Xo) +
m
∑

k=1

1

k!vec′E[u⊗k]vecf k
X(Xo) + r

m,

where

|r
m| ≤ (2π)−pq 1

(m + 1)!E[(u′)⊗m+1]
∫

Rpq

t⊗m+1|ϕX(T )|dt .

Proof The proof is in principle a copy of the proof of Theorem 5.1. However, due
to the assumption Y = X − U , where X and U are independently distributed,
the equations of the proof look somewhat different from those in the proof of the
previous theorem. Now let us begin to work with the trivial identity

ϕY (T ) = ϕY (T )

ϕX(T )
ϕX(T ) = ϕ−U (T )ϕX(T )

= ϕX(T )(1 +
m
∑

k=1

(−i)k

k! t ′mk[u]t⊗(k−1) + rm(T )), (5.7)

rm(T ) = 1

(m + 1)! t
′ϕm+1

−U (� � T )t⊗m, (5.8)

where ϕm+1
−U (� � T ) is the m + 1 derivative of ϕ−U (� � T ) evaluated at � � T ,

� is the Hadamard product (element-wise product, see Appendix A, Sect. A.6) and
� is a p × q matrix whose elements have values between 0 and 1.
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Next the inverse Fourier transform given in (5.1) is applied to (5.7) and (5.8).
Thus, the density presented in the theorem is found and a remaining task is to find
the upper bound of

r
m = (2π)−pq 1

(m + 1)!
∫

Rpq

vec′ϕm+1
−U (� � T )t⊗m+1exp(−itr{T ′Xo})ϕX(T )dt .

Then

|r
m| ≤ (2π)−pq 1

(m + 1)!
∫

Rpq

|vec′ϕm+1
−U (� � T )t⊗m+1||ϕX(T )|dt

≤ (2π)−pq 1

(m + 1)!
∫

Rpq

E[(u′)⊗m+1]t⊗m+1|ϕX(T )|dt,

which is identical to the statement of the theorem. ��
It is interesting to note that if E[(u′)⊗m+1] and

∫

Rpq t⊗m+1|ϕX(T )|dt can be
calculated, an upper bound of the error has been found. However, this does not
mean that the proposed boundary is sharp. In special cases one can probably find
better bounds.

An important approximating distribution is the normal distribution with a mean
equal to 0. If X ∼ Np,n(0,�,�), then

ϕX(T ) = exp(− 1
2 tr{�T �T ′}),

which is real-valued. Moreover, this expression, as a function in T , is proportional
to the normal density and therefore the next corollary can be stated. The normal
distribution is, however, not the only possible choice of density.

Corollary 5.1 Let Y and X be two random matrices of the same size, p × q , with
densities fY (Xo) and the matrix normal density (see Appendix A, Sect. A.10)

fX(Xo) = (2π)−pq/2|�|−p/2|�|−q/2exp(− 1
2 tr{�−1Xo�

−1X′
o}),

respectively, both evaluated at Xo; it is supposed that both � and � are p.d., and
E[X] = E[Y ] = 0. Suppose that

Y = X − U , (5.9)

where X and U are independently distributed and let u = vecU . Then

fY (Xo) = fX(Xo) +
3

∑

k=1

1

k! (−1)kE[(u′)⊗k]vecH k(Xo, 0,�,�)fX(Xo) + r
3 ,
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where H k(Xo, 0,�,�) follows from Lemma 5.1 and

|r
3 | ≤ (2π)−pq 1

4! |�|−q/2|�|−p/2E[(u′)⊗4]E[z⊗4]

with z ∼ Npq(0,�−1 ⊗ �−1).

It follows from the corollary that the precision of the density approximation
mainly depends on E[(vecU)⊗4], which in our application can be made small when
the number of independent observations becomes large. Indeed, U can be thought
of as an error term when approximating Y using X. However, at the same time the
eigenvalues of � and �, and E[z⊗4] play a role. The expression E[z⊗4] is given in
Appendix B, Theorem B.19 (v). Thus, if it is possible to choose a structure for � and
�, this can be utilized when planning experiments so that, before the experiment is
carried out, there is some guarantee that an approximation of the density will work.

Moreover, when calculating the error term of the approximation, the mean can
very well differ from 0 since under normality |ϕX(T )| is not affected by the
mean. Thus, Corollary 5.1 can immediately be extended by replacing fX(Xo) and
H k(Xo, 0,�,�) by

(2π)−pq/2|�|−p/2|�|−q/2exp(− 1
2 tr{�−1(Xo − μ)�−1(Xo − μ)′})

and
H k(Xo,μ,�,�),

respectively. Under these assumptions the error is still the same as in Corollary 5.1.
In Corollary 5.1 it was assumed that X followed a matrix normal distribution with

mean 0. Next it is assumed that for vectors y, x and u, the relation y = x −u holds,
where u is independent of the normally distributed x and, in addition, symmetrically
distributed with a mean equal to 0. Then

E[u⊗2] = vec(D[y] − D[x]).

Furthermore, noting that

H 2(xo,μ,�, 1) = �−1(xo − μ)(xo − μ)′�−1 − �−1,

the next corollary can be established.

Corollary 5.2 Let y and x be two random vectors of size p with densities fy(xo)

and

fx(xo) = (2π)−p/2|�|−1/2exp(− 1
2 tr{�−1(xo − μ)(xo − μ)′}),
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respectively, both evaluated at xo; it is supposed that � is p.d. Moreover, suppose
that

y = x − u, (5.10)

where u is independent of x and symmetrically distributed with mean 0. Then

fy(xo) = fx(xo)

+ 1
2 tr{(D[y] − �)(�−1(xo − μ)(xo − μ)′�−1 − �−1)}fx(xo) + r

3

= (1 − 1
2 tr{D[y]�−1I })fx(xo)

+ 1
2 tr{(D[y]�−1 − I )(xo − μ)(xo − μ)′�−1}fx(xo) + r

3 ,

where

|r
3 | ≤ (2π)−p 1

4! |�|−1/2E[(u′)⊗4]E[z⊗4]

with z ∼ Np(0,�−1).

Later Corollary 5.2 will be applied when D[y] is proportional to � and
then the expressions of the corollary can be simplified further. The difference
D[y] − � is positive definite. Moreover, note the following interesting fact. When
integrating the approximation over xo, i.e. omitting the error term in the expansion,
the integral equals 1, meaning that if the approximating density is positive, the
approximating density is also a proper density, which is very uncommon when
applying Edgeworth-type approximations. A second interesting fact appears when,
instead of independence in (5.10), only uncorrelatedness holds.

Corollary 5.3 Let y and x be two random vectors of size p with densities fy(xo)

and

fx(xo) = (2π)−p/2|�|−1/2exp(− 1
2 tr{�−1(xo − μ)(xo − μ)′}),

respectively, both evaluated at xo; it is supposed that � is p.d. Moreover, suppose
that

y = x − u, (5.11)

where C[u, x] = 0 and u is symmetrically distributed with mean 0. Then an
Edgeworth-type approximation of fy(xo), which also is a density, is given by

fx(xo) + 1
2 tr{(D[y] − �)(�−1(xo − μ)(xo − μ)′�−1 − �−1)}fx(xo),

provided that the approximating function is ≥ 0 for all xo.
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5.3 Density Approximation for the Mean Parameter
in the BRM

For the BRM , presented in Definition 2.1, the density of ̂B − B is now approxi-
mated. It is assumed that ̂B is unique, i.e. the matrices A and C are of full rank, and
therefore (see Corollary 3.1)

̂B − B = (A′S−1A)−1A′S−1(X − ABC)C′(CC′)−1 (5.12)

is discussed, where S ∼ Wp(�, n − k). Since (see Appendix B, Theorem B.18 (ii))

1

n − k
S

P→ �, n → ∞,

a natural approximating quantity is

B	 − B = (A′�−1A)−1A′�−1(X − ABC)C′(CC′)−1. (5.13)

Moreover, B	 is normally distributed and

E[̂B − B] = E[B	 − B] = 0,

D[̂B] − D[B	] = p − q

n − k − p + q − 1
(CC′)−1 ⊗ (A′�−1A)−1, (5.14)

where (5.14) is obtained from D[̂B], presented in Corollary 4.1 (ii), and D[B	]
is established with the help of Appendix B, Theorem B.19 (iii). In many natural
applications (CC ′)−1 will become small, or at least its elements are bounded when
n → ∞, and therefore the first two moments (cumulants) of ̂B and B	 are close

to each other. We also know that ̂B − ̂B	
P→ 0 as n → ∞ (see the proof of

Theorem 4.1). Hence, many properties of ̂B support the idea of approximating the
density of ̂B − B with the density of B	 − B. The consequences of this approach
are studied now and our starting point is the next important observation:

̂B − B = B	 − B − U ,

where

U = (A′S−1A)−1A′S−1(P A,	 − I )(X − ABC)C′(CC′)−1.

Now (A′�−1A)−1A′�−1XC′(CC′)−1 and (PA,	 − I )XC′(CC ′)−1 are indepen-
dent (see Appendix B, Theorem B.19 (x)) and XC′(CC′)−1 is independent of S

(see Appendix B, Theorem B.19 (viii)). Therefore, B	 and U are independently
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distributed. Hence, Theorem 5.2 can be applied and the following quantities are
needed if m = 3 is chosen in Theorem 5.2:

B	 − B ∼ Nq,k(0, (A
′�−1A)−1, (CC′)−1),

E[U ] = 0, E[u⊗3] = 0, (u = vecU ),

E[u⊗2] = vec(D[̂B] − D[B	]) = p − q

n − k − p + q − 1
vec((CC′)−1 ⊗ (A′�−1A)−1).

The last expression above is a vectorized version of (5.14). Moreover, in order to
obtain the error bound of the approximation E[u⊗4] has to be considered. Although
it is not difficult to derive E[u⊗4] explicitly, it makes sense only to consider the
order of the error without presenting any details involving A and C. The important
observation is that

U |S ∼ Nq,k(0, (A′S−1A)−1A′S−1�S−1A(A′S−1A)−1 − (A′�−1A)−1, (CC′)−1).

(5.15)

Now, using T and V , given in (4.19) and (4.20), respectively,

(A′S−1A)−1A′S−1�S−1A(A′S−1A)−1 − (A′�−1A)−1 = (T ′)−1V 12V
−1
22 V −1

22 V 21T
−1.

However,

Z = V 12V
−1/2
22

is independent of V 22 (see Appendix B, Theorem B.20 (iv)), and instead of (5.15)

U |Z,V 22 ∼ Nq,k(0, (T ′)−1ZV −1
22 Z′T −1, (CC ′)−1)

can be studied. It follows that E[u⊗4|Z,V 22] is a linear function in ZV −1
22 Z′ ⊗

ZV −1
22 Z′, and since (see Appendix B, Theorem B.19 (vii) and Theorem B.21 (iii))

in the sense of the Loewner order (see Appendix A, Sect. A.3)

E[(ZV −1
22 Z′)⊗2] ≤ c

n2 I

for some specific constant c, depending on A and C, the following theorem has been
established.

Theorem 5.3 For the BRM presented in Definition 2.1, suppose that r(A) = q

and r(C) = k, and that

̂B = (A′S−1A)−1A′S−1XC′(CC′)−1.
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Let

B	 = (A′�−1A)−1A′�−1XC′(CC′)−1 ∼ Nq,k(B, (A′�−1A)−1, (CC′)−1).

Then an Edgeworth-type expansion of the density of ̂B equals

f
̂B(Bo) = fBE (Bo) + r

3 ,

where

fBE
(Bo) = {1 − 1

2 skq + 1
2str{A′�−1A(Bo − B)CC ′(Bo − B)′}}fB	(Bo),

s= p − q

n − k − p + q − 1
, n − k − p + q − 1 > 0,

and

|r
3 | ≤ c

n2 ,

for some fixed constant c which is a function of A and C.

In general the sum of the first terms in an Edgeworth-type expansion is not a density.
However, as was also observed after Corollary 5.2, the density approximation for ̂B
given in Theorem 5.3 works unusually well.

Theorem 5.4 The function fBE (Bo) given in Theorem 5.3 is a density if
0 < 1 − 1

2 skq .

Proof If 0 < 1 − 1
2skq , then fBE

(Bo) ≥ 0. Hence, it has to be shown that the
integral of fBE

(Bo) over the whole space equals 1, i.e.

∫

Rq×k

fBE
(Bo)dBo = 1 − 1

2 skq + 1
2 sE[tr{A′�−1A(B	 − B)CC′(B	 − B)′}] = 1,

where the expectation is taken with respect to B	∼Nqk(B, (A′�−1A)−1, (CC′)−1)

and equals kq . ��
The density function

fY (Y o) = c|�|−n/2|�|−p/2g(tr{�−1(Y o − μ)�−1(Y o − μ)′}),

where c is a standardization constant, is of the form g(u) = u exp(−u/2), Y : p ×n,
μ: p × n, � > 0: p × p, � > 0: n × n, and is the density function of a random
variable Y with a matrix Kotz-type distribution (see Nadarajah, 2003 and Appendix
A, Sect. A.10 for a definition of the Kotz-type distribution).
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Theorem 5.5 The distribution of BE with density fBE
(Bo), given in Theorem 5.3

is a mixture of a normal distribution and a matrix Kotz-type distribution with
weights 1 − 1

2 skq and 1
2 skq , respectively, assuming that 1 − 1

2skq > 0.

A consequence of this theorem is that the distribution of BE may be multimodal,
which is an undesirable feature in that it makes it more difficult to interpret extreme
observations. However, it can be shown that if

s <
2

2 + pq
, (5.16)

the distribution is unimodal. This means that if p is large in relation to n, i.e. the
dimension in relation to the number of independent observations is large, one may
run into problems when interpreting estimators via the approximation. Broadly
speaking, if the approximating distribution deviates to a large extent from the
normal distribution, then the conclusions should be carefully evaluated. However,
if condition (5.16) holds, we can be reasonable confident in the validity of our
conclusions.

When showing the independence between BN and U , the bilinear structure of the
model was indeed used. The matrix U is a function of S and XC′(CC′)−1, whereas
BN is a function of XC′(CC′)−1. The spaces which are involved are Rn ⊗Rp, and
its decomposition, i.e. (C(C′)� C(C′)⊥)⊗ (C	(A)� C	(A)⊥), and the projections
on these spaces: PC ′ , I − P C ′ , P A,	 and I − P A,	 . When projecting X on these
spaces, four independent quantities are obtained: P A,	XP C ′ , P A,	X(I − P C ′),
(I − P A,	)XPC ′ and (I − P A,	)X(I − P C ′). Since ABNC = P A,	XP C ′ and
U is a function of (I − PA,	)X and X(I − P C ′), the variables BN and U are
independently distributed. Hence, vector space decomposition is also essential for
the Edgeworth-type expansion of the mean estimator in the BRM , and one should
apply knowledge concerning the tensor space Rn ⊗ Rp in a manner similar to that
used when estimating parameters. Moreover, an interesting technical observation is
that projecting X on C	(A)⊥ with an estimated inner product, i.e. (I − P A,S)X, is
the same as first projecting X on C	(A)⊥ and then performing a second projection
on CS(A)⊥.

If one’s intention is to perform the inference marginally on the elements of B,
then the marginal distribution will also be a mixture of a Kotz-type distribution and
a normal distribution, but the influence of the Kotz part will be less in this case
compared to the case where simultaneous inference on the elements of B is taking
place. Without a proof, Theorem 5.3 is now generalized as follows.

Theorem 5.6 For the BRM , suppose that C(K ′) ⊆ C(A′) and C(L) ⊆ C(C), and

K̂BL = K(A′S−1A)−A′S−1XC′(CC′)−L.

Let

KB	L = K(A′�−1A)−A′�−1XC′(CC′)−L

∼ N•,•(KBL,K(A′�−1A)−K ′,L(CC′)−L′).
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Then an Edgeworth-type expansion of the density of K̂BL equals

fK̂BL(Bo) = fKBEL(Bo) + r
3 ,

where

fKBEL(Bo) = {

1 − 1
2 s1r(K)r(L) + 1

2 s1tr{K ′(K(A′�−1A)−K ′)−K

× (Bo − B)L(L′(CC′)−L)−L′(Bo − B)′}}fKB	L(Bo),

s1 = p − r(A)

n − r(C) − p + r(A) − 1
, n − r(C) − p + r(A) − 1 > 0,

and

|r
3 | ≤ c

n2
,

for some fixed constant c which is a function of A and C.

Example 5.1 In Example 3.1 different estimates of B in the BRM were presented,
for example the maximum likelihood estimate (Model Ia)

̂B1o = (A′S−1
o A)−1A′S−1

o XoC
′(CC′)−1 =

(

17.4 15.8
0.48 0.83

)

(5.17)

and an unweighted estimate (Model Ib),

̂B2o = (A′A)−1A′XoC
′(CC ′)−1 =

(

17.4 16.3
0.48 0.78

)

. (5.18)

These estimates are very close to each other and one wish to ascertain which of
the corresponding estimators is to be preferred. A natural means of determining
this is to compare their distributions. The unweighted estimator has a matrix
normal distribution and now Theorem 5.6 provides a density approximation which,
according to the theory, is fairly accurate, i.e. Op(n−2) (see Appendix A, Sect. A.12
for a definition of Op(•)).

In Fig. 5.1 the approximate distribution of ̂B1 and the distribution of ̂B2 are
compared. Since there are four elements in ̂B i , i = 1, 2, the distribution is presented
via the following pairs: (̂bi11,̂bi21), the estimated intercept and slope for girls;
(̂bi11,̂bi12), the estimated intercepts for girls and boys; (̂bi12,̂bi22), the estimated
intercept and slope for boys; and (̂bi21,̂bi22), the estimated slopes for boys and
girls.

The overall conclusion when inspecting Fig. 5.1 is that there is almost no differ-
ence between the distributions of the estimators ̂B1 and ̂B2. Note that the different
shapes in (a)–(d) are due to scaling and are not of any particular interest. Thus, from
now on one can completely rely on ̂B2, which, due to its well-known distribution, is
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(a) (b) (c) (d)

Fig. 5.1 Illustration of the distributions in Example 5.2. The first row shows for the MLE, ̂B1 =
(A′S−1A)−1A′S−1XC ′(CC ′)−1, given in (5.17), the bivariate densities for the following pairs:
(̂b11,̂b21), given under (a), (̂b11,̂b12), given under (b), (̂b12,̂b22), given under (c), and (̂b21,̂b22),
given under (d). The second row shows the corresponding densities for the unweighted estimator
̂B2 = (A′A)−1A′XC′(CC ′)−1, given in (5.18)

easier to handle than ̂B1, for example when constructing tests concerning B. Hence,
an estimator is chosen which is not the maximum likelihood estimator and thus is
not asymptotically the best estimator. Moreover, redirecting the discussion one can
conclude that the density approximation presented in Theorem 5.3 seems to work
well. ��
Finally, an example is presented where there are some differences between the MLE
and an unweighted estimator of the mean parameters.

Example 5.2 Artificial data have been generated according to

X = ABC + E, E ∼ Np,n(0,�, I ),

where

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 8
1 12
1 16
1 20
1 24

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, B =
(

1 3
2 3

)

, C =
(

1′
14 ⊗

(

1

0

)

: 1′
14 ⊗

(

0

1

))

,
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� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 1.6 0.9 1.5 0.9
1.6 4 1.9 3.0 1.9
0.9 1.9 2 1.9 0.9
1.5 3.0 1.9 4 1.5
0.9 1.9 0.9 1.5 2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The correlations among the variables are medium-sized, i.e. they vary between 0.45
and 0.75. If one generates data with correlations around 0.90, the estimators, due to
collinearity, start to perform poorly. With the above choice of matrices, the following
data were generated:

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

15.7 17.6 18.3 19.5 19.2 16.9 18.1 19.0 16.0 16.6 15.3 16.8 17.9 16.8,

26.9 29.7 28.4 24.4 23.9 25.3 26.2 27.8 26.5 27.4 29.4 25.0 27.3 26.8
19.3 26.9 24.9 27.4 24.7 25.7 23.6 24.3 23.6 26.2 22.1 24.5 27.3 26.0,

42.1 41.8 39.2 33.4 37.4 39.4 39.9 40.4 36.4 42.0 41.0 37.8 40.9 42.0
30.0 34.7 31.7 34.0 33.4 33.0 32.5 32.0 31.5 31.7 30.9 33.5 33.6 34.4,

52.9 53.2 48.6 46.9 51.3 52.2 49.4 52.2 49.6 53.4 50.5 49.4 51.0 50.7
36.3 43.4 42.2 43.4 41.0 40.8 39.2 39.5 40.0 40.7 39.0 42.0 43.5 40.5,

63.7 63.9 60.1 58.5 63.0 63.0 62.7 62.5 59.9 64.4 61.8 61.2 62.7 63.7
44.3 49.1 48.6 52.3 48.2 49.1 50.7 49.0 47.8 48.1 46.1 48.6 49.9 49.26,

76.8 77.1 75.4 72.6 73.8 72.8 74.6 75.8 73.6 76.4 75.6 72.1 78.3 75.0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Note that each row in X: 5 × 28 is represented by two lines. The data produced

̂B1o = (A′S−1
o A)−1A′S−1

o XoC
′(CC′)−1 =

(

1.63 2.45
1.97 2.97

)

, (5.19)

̂B2o = (A′A)−1A′XoC
′(CC′)−1 =

(

1.43 3.23
1.96 2.98

)

. (5.20)

Moreover, the estimated dispersion matrices for the weighted and unweighted
approach equal

̂�1o = (X − ÂB1oC)()′/28 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2.39 2.50 1.23 1.11 2.29
2.50 6.46 3.61 3.91 4.21
1.23 3.61 3.08 2.57 2.42
1.11 3.91 2.57 3.37 2.33
2.29 4.21 2.42 2.33 4.13

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

̂�2o = (X − ÂB2oC)()′/28 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2.29 1.96 0.96 1.09 1.88
1.96 5.43 2.83 3.37 3.25
0.96 2.83 2.59 2.34 1.76
1.09 3.37 2.34 3.43 1.96
1.88 3.25 1.76 1.96 3.29

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Both dispersion estimators are fairly far away from the true values, but this is not
completely unexpected since the estimators according to the theory are biased. The
estimator based on the unweighted mean is less biased. In Fig. 5.2 the approximate
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(a) (b) (c) (d)

Fig. 5.2 Illustration of the distributions in Example 5.2. The first row shows, for the MLE, ̂B1 =
(A′S−1A)−1A′S−1XC ′(CC ′)−1, given in (5.19), the bivariate densities for the following pairs:
(̂b11,̂b21), given under (a); (̂b11,̂b12), given under (b); (̂b12,̂b22), given under (c); and (̂b21,̂b22),
given under (d). The second row shows the corresponding densities for the unweighted estimator
̂B2 = (A′A)−1A′XC′(CC ′)−1, given in (5.20)

distribution of the MLE and the exact distribution of the unweighted estimator are
presented. Small differences between the weighted and the unweighted estimator
can be observed. With more parameters describing the mean, it would be possible
to show larger differences.

��

5.4 Density Approximation for the Mean Parameter
Estimators in the EBRM3

B

For the BRM , the results possess a certain degree of mathematical beauty. Now the
more complicated EBRM3

B , presented in Definition 2.2, is considered. Once again,
only the densities of the maximum likelihood estimators of the mean parameters
will be treated. Since moments for these estimators were derived in Chap. 4, it is
clear that an Edgeworth-type expansion can be performed. However, it is of interest
to know what can be stated concerning the error of the approximation. For ̂B in
the BRM it was shown that the estimator was a sum of a normally distributed
variable B	 and a random variable (−U ) which was independent of B	 , and it
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is now investigated if this also takes place for B i , i = 1, 2, 3, in the EBRM3
B . It is

always supposed that the conditions for uniqueness of the estimators are satisfied,
which, as has been shown in Theorem 4.9, depend on which ̂Bi is being studied.

Let us start with ̂B3 and the expression presented in (4.123) is used:

̂B3 = (A′
3G2(G

′
2W 3G2)

−1G′
2A3)

−1A′
3G2(G

′
2W 3G2)

−1G′
2XC′

3(C3C
′
3)

−1.

(5.21)

Then, as was also noted when obtaining its dispersion, the estimator has the same
form as ̂B in the BRM . Therefore,

̂B3 − B3 = B3N − B3 − U 3,

where the normally distributed variable B3N satisfies

B3N − B3=(A′
3G2(G

′
2�G2)

−1G′
2A3)

−1A′
3G2(G

′
2�G2)

−1G′
2

× (X − A3B3C3)C
′
3(C3C

′
3)

−1 (5.22)

and

U 3 = (A′
3G2(G

′
2W 3G2)

−1G′
2A3)

−1A′
3G2(G

′
2W 3G2)

−1

× (P G′
2A3,G

′
2	G2

− I )G′
2XC′

3(C3C
′
3)

−1. (5.23)

According to Appendix B, Theorem B.19 (viii), the matrix XC′
3(C3C

′
3)

−1 is
independent of W 3 and A′

3G2(G
′
2�G2)

−1G′
2X is independent of (see Appendix

B, Theorem B.19 (xi))

(PG′
2A3,G

′
2	G2

− I )G′
2X,

which implies that U 3 is independent of B3N . Thus, U3 can be regarded as an error
matrix. Let u3 = vecU3 and then Theorem 5.3 establishes the following theorem.

Theorem 5.7 Let ̂B3, B3N and U 3 be given by (5.21), (5.22) and (5.23), respec-
tively. Then an Edgeworth-type expansion of the density of ̂B3 equals

f
̂B3

(Bo) = fB3E
(Bo) + r

3 ,

where

fB3E
(Bo) = fB3N

(Bo) + 1
2 E[(u′

3)
⊗2]vecf 2

B3N
(Bo)

= (1 − 1
2 sk3m2 + 1

2 s tr{A′
3G2(G

′
2�G2)

−1G′
2A3(Bo − B3)C3C

′
3(Bo − B3)

′})fB3N
(Bo),

s = p − m2

n − k3 − p + m2 − 1
, n − k3 − p + m2 − 1 > 0,
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m2 is defined in (4.78) and

|r
3 | ≤ c

n2 ,

for some fixed constant c which is a function of the design matrices. The expectation
E[(u′

3)
⊗2] equals

E[(u′
3)

⊗2] = m2−q3
n−k3−m2+q3−1 vec′((C3C

′
3)

−1 ⊗ (A′
3G2(G

′
2�G2)

−1G′
2A3)

−1).

The density fB3E
(Bo) is a real density, i.e. the density of a matrix Kotz-type

distribution mixed with a normal density.
In the following ̂B2 will be considered. However, it is convenient first to

manipulate

G′
1A2(̂B2 − B2)C2,

which then due to uniqueness assumptions can be transformed into ̂B2 − B2.
From (4.125) it follows that

G′
1A2(̂B2 − B2)C2 = P G′

1A2,G
′
1W2G1

G′
1(X − E[X])(P C ′

2
− P C ′

3
)

+ P G′
1A2,G

′
1W2G1

G′
1(I − P A3,G

′
2W3G2,G2

)(X − E[X])PC ′
3
. (5.24)

As with ̂B3, the idea is to split this expression into two independent components,
one of which is normally distributed, i.e.

G′
1A2(̂B2 − B2)C2 = G′

1A2(B2N − B2)C2 − G′
1A2U 2C2, (5.25)

where it can be shown that

G′
1A2(B2N − B2)C2 = P G′

1A2,G
′
1	G1

G′
1(X − A2B2C2)(P C ′

2
− P C ′

3
)

+ PG′
1A2,G

′
1	G1

G′
1(I − P A3,G

′
2	G2,G2

)XP C ′
3
,

(5.26)

which is normally distributed, and

G′
1A2U 2C2 = P G′

1A2,G
′
1	G1

G′
1P A3,G

′
2W3G2,G2

P ′
G3,	−1XP C ′

3

− PG′
1A2,G

′
1W2G1

G′
1P

′
G2,	−1(I − P A3,G

′
2W3G2,G2

)XP C ′
3

− PG′
1A2,G

′
1W2G1

G′
1P

′
G2,	−1X(PC ′

2
− PC ′

3
). (5.27)
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It is now briefly shown how (5.26) and (5.27) arose. First, in (5.24) the trivial identity
I − PG′

1A2,G
′
1	G1

+ P G′
1A2,G

′
1	G1

= I is utilized; i.e. a decomposition of the

whole space into C(G′
1A2) and its orthogonal complement is applied. Moreover,

P G′
1A2,G′

1W2G1
G′

1A2 = G′
1A2. Then (5.24) equals

PG′
1A2,G

′
1	G1

G′
1(X − E[X])(P C ′

2
− P C ′

3
) (5.28)

+P G′
1A2,G

′
1W2G1

(I − P G′
1A2,G

′
1	G1

)G′
1(X − E[X])(PC ′

2
− P C ′

3
) (5.29)

+P G′
1A2,G

′
1	G1

G′
1(I − PA3,G′

2W3G2,G2
)(X − E[X])PC ′

3
(5.30)

+P G′
1A2,G

′
1W2G1

(I − P G′
1A2,G

′
1	G1

)G′
1(I − PA3,G

′
2W3G2,G2

)

×(X − E[X])P C ′
3
. (5.31)

Now, using

(I − P G′
1A2,G

′
1	G1

)G′
1 = G′

1P
′
G2,	

−1 ,

(I − P G′
2A3,G

′
2	G2

)G′
2 = G′

2P
′
G3,	−1 ,

splitting (5.30) into the following parts

P G′
1A2,G

′
1	G1

G′
1(I − P A3,G

′
2	G2,G2

)(X − E[X])PC ′
3

−PG′
1A2,G

′
1	G1

G′
1P A3,G

′
2W3G2,G2

(I − P A3,G
′
2	G2,G2

)(X − E[X])PC ′
3

= P G′
1A2,G

′
1	G1

G′
1(I − P A3,G

′
2	G2,G2

)(X − E[X])PC ′
3

−PG′
1A2,G

′
1	G1

G′
1P A3,G

′
2W3G2,G2

P ′
G3,	−1(X − E[X])PC ′

3

and observing that (5.31) is identical to

PG′
1A2,G′

1W2G1
G′

1P
′
G2,	−1(I − P A3,G

′
2W3G2

)(X − E[X])P C ′
3

yield that (5.28)–(5.31) can be transformed into

P G′
1A2,G

′
1	G1

G′
1(X − E[X])(PC ′

2
− P C ′

3
) (5.32)

+P G′
1A2,G′

1	G1
G′

1(I − P A3,G
′
2	G2,G2

)(X − E[X])PC ′
3

(5.33)

+P G′
1A2,G′

1W2G1
G′

1P
′
G2,	−1(X − E[X])(P C ′

2
− P C ′

3
) (5.34)

−P G′
1A2,G′

1	G1
G′

1P A3,G
′
2W3G2,G2

P ′
G3,	−1(X − E[X])P C ′

3
(5.35)

+P G′
1A2,G′

1W2G1
G′

1P
′
G2,	−1(I − P A3,G

′
2W3G2,G2

)(X − E[X])P C ′
3
. (5.36)
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The sum of the first two equations, i.e. (5.32) and (5.33), is identical to
G′

1A2(B2N − B2)C2, given in (5.26), and (5.34)–(5.36) imply G′
1A2U2C2,

presented in (5.27). The reason for presenting slightly more complicated expressions
in (5.34)–(5.36) than those in (5.27) is that (5.34)–(5.36) are more suited to
showing independence between G′

1A2(B2N − B2)C2 and G′
1A2U 2C2. For

G′
1A2U2C2 the translation X − E[X] has been replaced by X, since its

expectation cancelled out. Note also that E[G′
1A2U2C2] = 0 and that W 2

and W 3 in (5.24) have been replaced by �, yielding (5.26), where W 2 and W 3
are both consistent estimators of �. This motivates the decomposition presented
in (5.25).

Now it is shown that G′
1A2(B2N − B2)C2 and G′

1A2U2C2 are independent
so that Corollary 5.2 can be applied. The idea is to show that (5.32) and (5.33)
are independent of (5.34)–(5.36). Firstly it is established that (5.32) is indepen-
dent of (5.34)–(5.36). Note what kinds of projections are used and what space
decomposition and inner product estimators are treated. The following facts are
applied:

• X(PC ′
2
− P C ′

3
) is independent of XP C ′

3
and W 2;

• G′
2X is independent of P G′

1A2,G
′
1	G1

G′
1X.

The second condition implies that G′
2W 3G2 and PG′

1A2,G
′
1	G1

G′
1X are

independent. Thus, (5.32) is independent of (5.34)–(5.36). Furthermore, (5.33)
is independent of (5.35)–(5.36), since

• XP C ′
3

is independent of X(P C ′
2
− P C ′

3
) and W i , i = 1, 2, 3;

• G′
3X is independent of P G′

1A2,G
′
1	G1

G′
1(I − PA3,G

′
2	G2,G2

)X.

The last fact above can be verified by calculating the covariance between the
expressions.

Since in a forthcoming theorem a few specific results for B2N and U 2 are needed,
we note that it follows from the above calculations, provided that inverses exist, that

B2N − B2

= (A′
2G1G

′
1A2)

−1A′
2G1PG′

1A2,G′
1	G1

G′
1(X − A2B2C2)(P C′

2
− P C′

3
)C′

2(C2C
′
2)

−1

+(A′
2G1G

′
1A2)

−1A′
2G1PG′

1A2,G′
1	G1

G′
1(I − P A3,G

′
2	G2,G2

)

×(X − A2B2C2)PC′
3
C′

2(C2C
′
2)

−1 (5.37)

and

U2 = (A′
2G1G

′
1A2)

−1A′
2G1PG′

1A2,G
′
1	G1

G′
1(I − P A3,G

′
2W3G2,G2

)XPC′
3
C′

2(C2C
′
2)

−1

−(A′
2G1G

′
1A2)

−1A′
2G1PG′

1A2,G′
1W2G1

G′
1P

′
G2,	−1P A3,G

′
2W3G2,G2

XPC′
3
C′

2(C2C
′
2)

−1

−(A′
2G1G

′
1A2)

−1A′
2G1PG′

1A2,G′
1W2G1

G′
1P

′
G2,	−1X(PC′

2
− PC′

3
)C′

2(C2C
′
2)

−1. (5.38)
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In the Edgeworth-type expansion, D[B2N ] is also needed. Since X(P C ′
2
− P C ′

3
)

and XP C ′
3

are independently distributed,

D[B2N ]
= (C2C

′
2)

−1C2(I − PC′
3
)C ′

2(C2C
′
2)

−1 ⊗ (A′
2G1(G

′
1�G1)

−1G′
1A2)

−1

+(C2C
′
2)

−1C2PC′
3
C′

2(C2C
′
2)

−1 ⊗
{

(A′
2G1(G

′
1�G1)

−1G′
1A2)

−1

+(A′
2G1(G

′
1�G1)

−1G′
1A2)

−1

×A′
2G1(G

′
1�G1)

−1G′
1A3(A

′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3G1(G

′
1�G1)

−1G′
1A2

×(A′
2G1(G

′
1�G1)

−1G′
1A2)

−1
}

. (5.39)

Although B2N is normally distributed, it does not follow a matrix normal distribu-
tion, and as a consequence the inverse of D[B2N ] can be difficult to express in a
convenient way. However, from a computational point of view it can be shown that
D[B2N ]−1 is not too difficult to obtain and the result is indeed applicable. Using
Corollary 5.2 the next theorem can be stated.

Theorem 5.8 Let ̂B2, B2N and U 2 be defined by (5.25), (5.37) and (5.38),
respectively. Then an Edgeworth-type expansion of the density of ̂B2 equals

f
̂B2

(Bo) = fB2E
(Bo) + r

3 ,

where

fB2E
(Bo)= (1 − 1

2 tr{D[̂B2]D[B2N ]−1 − I })fB2N
(Bo)

+ 1
2 tr{(D[̂B2]D[B2N ]−1 − I )vec(Bo − B2)vec′(Bo − B2)D[B2N ]−1}fB2N

(Bo);

D[̂B2] and D[B2N ] are given in Theorem 4.17 (ii) and (5.39), respectively, and

|r
3 | ≤ c

n2 ,

for some fixed constant c which depends on the design matrices.

It can be noted that the approximating density is not a density where a matrix
Kotz-type distribution is included. In fact the density does not even belong to the
class of matrix elliptical distributions. From an interpretation point of view, this is
slightly unfortunate. To obtain a better and more understandable approximation, the
next step is to approximate D[̂B2] with an error which is proportional to n−2, so
that the overall error of the density approximation will be of the same size as |r

3 |,
given in Theorem 5.8.
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The dispersion matrix D[̂B2] was presented in Theorem 4.17 (ii), and since c2 −
1 = O(n−1) and

n − r(C3) − 1

n − r(C3) − m3 − 1
− (1 + c2

m3

n − r(C3) − m3 − 1
) = O(n−2),

an approximative dispersion equals

˜D[̂B2] = s1(C2C
′
2)

−1C2(I − P C ′
3
)C′

2(C2C
′
2)

−1 ⊗ H 1

+ s2(C2C
′
2)

−1C2P C ′
3
C′

2(C2C
′
2)

−1 ⊗ H 2,

where, if n − r(C1) − m1 + q2 − 1 > 0 and n − r(C3) − m3 − 1 > 0,

s1 = n − k2 − 1

n − r(C1) − m1 + q2 − 1
, s2 = n − r(C3) − 1

n − r(C3) − m3 − 1
, (5.40)

H 1 = (A′
2G1(G

′
1�G1)

−1G′
1A2)

−1 = (A′
2A

o
1(A

o′
1 �Ao

1)
−1Ao′

1 A2)
−1, (5.41)

H 2 = (A′
2G1(G

′
1A3)

o((G′
1A3)

o′
G′

1�G1(G
′
1A3)

o)−(G′
1A3)

o′
G′

1A2)
−1

= (A′
2(A1 : A3)

o((A1 : A3)
o′
�(A1 : A3)

o)−(A1 : A3)
o′
A2)

−1. (5.42)

The matrix H 2 is obtained because

H 2 = H 1

+H 1A
′
2G1(G

′
1�G1)

−1G′
1A3(A

′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3G1(G

′
1�G1)

−1G′
1A2H 1

= (I q2 : 0){(A2 : A3)
′G1(G

′
1�G1)

−1G′
1(A2 : A3)}−1(I q2 : 0)′.

Moreover, D[B2N ], given in (5.39), equals

D[B2N ] = (C2C
′
2)

−1C2(I − P C ′
3
)C′

2(C2C
′
2)

−1 ⊗ H 1

+ (C2C
′
2)

−1C2PC ′
3
C′

2(C2C
′
2)

−1 ⊗ H 2.

Hence, ˜D[̂BN ] and D[B2N ] are of the same form, which helps when exploiting an
Edgeworth-type expansion. It follows from Theorem 5.8 that

tr{˜D[̂B2]D[B2N ]−1 − I } (5.43)

and

tr{(˜D[̂B2]D[B2N ]−1 − I )vec(Bo − B2)vec′(Bo − B2)D[B2N ]−1} (5.44)
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are of interest. To facilitate calculations, based on the decomposition C(C′
2) =

C(C′
3)�C(C′

2)∩C(C′
3)

⊥, the following non-singular matrix is used, where, without
any loss of generality, it is assumed that the symmetric square roots exist:

M ′
2 = (

C2C
′
3(C3C

′
3)

−1/2 : C2C
′
2(C2C

′
3)

o{(C2C
′
3)

o′
C2C

′
2(C2C

′
3)

o}−1/2).

(5.45)

To be more explicit about the space decomposition and (5.45), note that (applying
Appendix B, Theorem B.3 (v))

C(C′
2(C2C

′
3)

o{(C2C
′
3)

o′
C2C

′
2(C2C

′
3)

o}−(C2C
′
3)

o′
C2) = C(C′

2) ∩ C(C′
3)

⊥.

The pre-multiplication by C2 inside M ′
2 is only needed for technical reasons, which

can be seen from the next two equations:

M2(C2C
′
2)

−1C2(I − PC ′
3
)C′

2(C2C
′
2)

−1M ′
2 =

(

0 0
0 I r1

)

, r1 = k2 − r(C3),

(5.46)

M2(C2C
′
2)

−1C2P C ′
3
C′

2(C2C
′
2)

−1M ′
2 =

(

I r2 0
0 0

)

, r2 = r(C3). (5.47)

Now (5.43) and (5.44) equal

tr{˜D[̂B2M
′
2]D[B2NM ′

2]−1 − I } = q2(r1(s1 − 1) + r2(s2 − 1))

and

tr{(˜D[̂B2M
′
2]D[B2NM ′

2]−1 − I )vec((Bo−B2)M
′
2)vec′((Bo−B2)M

′
2)D[B2NM ′

2]−1}
= (s2 − 1)tr{H−1

2 (Bo − B2)C
′
2PC′

3
C2(Bo − B2)

′}
+(s1 − 1)tr{H−1

1 (Bo − B2)C2C
′
2(C2C

′
3)

o{(C2C
′
3)

o′
C2C

′
2(C2C

′
3)

o}−1

×(C2C
′
3)

o′
C2C

′
2(Bo − B2)

′},

where s1 and s2 are given in (5.40). Hence, applying Theorem 5.8 and the above
calculations then lead to the next theorem which has quite an easily interpretable
structure. Furthermore, s1 − 1 and s2 − 1 are both O(n−1).

Theorem 5.9 Let ̂B2 and B2N be defined by (5.25) and (5.37), respectively. An
Edgeworth-type expansion of the density of ̂B2 equals

f
̂B2

(Bo) = f
˜B2E

(Bo) + r
3 ,
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where

f
˜B2E

(Bo) = (1 − 1
2q2(r1(s1 − 1) + r2(s2 − 1))fB2N (Bo)

+ 1
2 (s2 − 1)tr{H−1

2 (Bo − B2)C
′
2P C ′

3
C2(Bo − B2)

′}fB2N
(Bo)

+ 1
2 (s1 − 1)tr{H−1

1 (Bo − B2)C2(I − P C ′
3
)C′

2(Bo − B2)
′}fB2N

(Bo);

ri, si ,H i , i = 1, 2, are given by (5.46), (5.47) and (5.40)–(5.42), and

|r
3 | ≤ c

n2
,

for some fixed constant c which depends on the design matrices. The density fB2N

can be factorized as

fB2N
(Bo) = |C2C

′
2|q2/2fB2N2C2(BoC2)fB2N1C2(BoC2),

where fB2N1C2(BoC2) and fB2N2C2(BoC2) are density representations for

B2N1C2 = (A′
2G1(G

′
1�G1)

−1G′
1A2)

−1A′
2G1(G

′
1�G1)

−1G′
1X(PC ′

2
− PC ′

3
)

∼ Nq2,n(B2C2(I − PC ′
3
),H 1,P C ′

2
− P C ′

3
)

within X(PC ′
2
− PC ′

3
) and

B2N2C2

= (A′
2G1(G

′
1�G1)

−1G′
1A2)

−1A′
2G1(G

′
1�G1)

−1G′
1(I − PA3,G′

2	G2,G2
)XP C′

3

∼ Nq2,n(B2C2PC′
3
,H 2,PC′

3
)

within XPC ′
3
, respectively. Moreover, B2N = B2N1 + B2N2 .

Proof From Theorem 5.8 it follows that the only detail which remains to be proven
is

fB2N
= |C2C

′
2|q2/2fB2N2C2(BoC2)fB2N1C2(BoC2).

Now, if using M2, given by (5.45), then

fB2N
(Bo) ∝ |D[B2N ]|−1/2e

− 1
2 tr{D[B2N ]−1vec(Bo−B2)vec′(Bo−B2)}

= |C2C
′
2|q2/2|D[B2NM ′

2]|−1/2e
− 1

2 tr{D[B2N M ′
2]−1vec((Bo−B2)M ′

2)vec′((Bo−B2)M
′
2)}

= |C2C
′
2|q2/2fB2N2 C2(BoC2)fB2N1 C2(BoC2).

��
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The density factorization in Theorem 5.9 was presented in order to give some insight
into the structure of the Edgeworth-type expansion. The expression B2NiC2, i =
1, 2, was included in the density functions, but this does not mean that a true variable
substitution has taken place, which explains why no Jacobians were included in
the expressions. Moreover, the densities fB2N1C2(BoC2) and fB2N2C2(BoC2) are
representations of densities for normally distributed random variables with singular
distributions; i.e. the expressions can only be considered to be real densities on
appropriate subspaces.

Finally, ̂B1 is considered, which is more difficult than ̂B2 and ̂B3, because ̂B1 is a
function of both ̂B2 and ̂B3. However, the approach to obtaining results concerning
a density approximation for ̂B1 will follow the same procedure as that used when
obtaining Theorems 5.8 and 5.9. Let us restate A1̂B1C1 as given in (4.137):

A1(̂B1 − B1)C1

= P A1,W1(X − E[X])(P C′
1
− PC′

2
)

+PA1,W1(I − PA2,G
′
1W2G1,G1

)(X − E[X])(P C′
2
− PC′

3
)

+PA1,W1(I − PA2,G
′
1W2G1,G1

)(I − P A3,G
′
2W3G2,G2

)(X − E[X])P C′
3
.

(5.48)

Similar to the treatment for ̂B3 and ̂B2, the estimator A1̂B1C1 is split into a
normally distributed variable and a symmetrically distributed error term A1U1C1
with mean 0, i.e.

A1(̂B1 − B1)C1 = A1(B1N − B1)C1 − A1U 1C1, (5.49)

where A1B1NC1 is a matrix obtained from A1̂B1C1 when W i , i = 1, 2, 3, is
replaced by �, i.e.

A1(B1N − B1)C1 = PA1,	(X − E[X])(P C ′
1
− PC ′

2
) (5.50)

+P A1,	(I − PA2,G′
1	G1,G1

)(X − E[X])(P C ′
2
− PC ′

3
) (5.51)

+P A1,	(I − PA2,G′
1	G1,G1

)(I − PA3,G′
2	G2,G2

)(X − E[X])PC ′
3
,

(5.52)

and B1N − B1 = (A′
1A1)

−1A′
1A1(B1N − B1)C1C

′
1(C1C

′
1)

−1. The three
terms, (5.50)–(5.52), in A1B1NC1 are independent since X(P C ′

1
− P C ′

2
),

X(P C ′
2
− P C ′

3
) and XPC ′

3
are independently distributed. Therefore,

D[B1N ] = (C1C
′
1)

−1C1(I − P C ′
2
) ⊗ (A′

1�
−1A1)

−1

+(C1C
′
1)

−1C′
1(P C ′

2
− PC ′

3
)C′

1(C1C
′
1)

−1
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⊗{(A′
1�

−1A1)
−1 + F 2A2(A

′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2}

+(C1C
′
1)

−1C′
1P C ′

3
C′

1(C1C
′
1)

−1

⊗{

(A′
1�

−1A1)
−1 + F 2A2(A

′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2

+F 3A3(A
′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
3

}

, (5.53)

where F 2 and F 3 are given by (4.144) and (4.145), respectively. Moreover, it is
obvious that E[A1B1NC1] = A1B1C1. Now A1U 1C1 is studied. After some
calculations it follows from (5.48) and (5.50)–(5.52) that the “error” term A1U1C1
in (5.49) equals

A1U1C1 = −PA1,W1P
′
G1,	−1X(P C ′

1
− P C ′

2
) (5.54)

−PA1,W1P
′
G1,	

−1(I − PA2,G′
1W2G1,G1

)X(P C ′
2
− P C ′

3
) (5.55)

+PA1,	P A2,G
′
1W2G1,G1

P ′
G2,	−1X(P C ′

2
− P C ′

3
) (5.56)

−PA1,W1P
′
G1,	−1(I − PA2,G′

1W2G1,G1
)(I − P A3,G

′
2W3G2,G2

)XPC ′
3

(5.57)

+PA1,	P A2,G
′
1W2G1,G1

P ′
G2,	

−1(I − P A3,G
′
2W3G2,G2

)XP C ′
3

(5.58)

+PA1,	(I − PA2,G′
1	G1,G1

)P A3,G
′
2W3G2,G2

P ′
G3,	−1XPC ′

3
, (5.59)

and U 1 = (A′
1A1)

−1A′
1A1U 1C1C

′
1(C1C

′
1)

−1. Next the independence between
A1B1NC1 and A1U 1C1 is established. First it is shown that the right-hand side
of (5.50) is independent of (5.54)–(5.59) and thereafter that (5.51) is independent
of (5.54)–(5.59), and finally it is established that (5.52) is independent of (5.54)–
(5.59).

The expression in (5.50) is independent of (5.54)–(5.59), since

• X(PC ′
1
− P C ′

2
) is independent of W 1 and XP C ′

3
;

• P A1,	X is independent of (I − P A1,	)X and G′
iX, i = 1, 2, 3, as well as

G′
1W 2G1 and G′

2W 3G2.

Moreover, the expression in (5.51) is independent of (5.54)–(5.59), since

• X(PC ′
2
− P C ′

3
) is independent of W 1, W 2, X(P C ′

1
− P C ′

2
) and XP C ′

3
;

• P A1,	(I − P A2,G
′
1	G1,G1

)X is independent of G′
2X and G′

2W 3G2.

Furthermore, the expression in (5.52) is independent of (5.54)–(5.59), since

• XP C ′
3

is independent of W i , i = 1, 2, 3, X(P C ′
1
− P C ′

2
) and X(PC ′

2
− PC ′

3
);

• P A3,G
′
2	G2,G2

X is independent of G′
3X.

Hence, Corollary 5.2 can be applied and the following theorem, corresponding
to Theorem 5.9 for ̂B2, has been verified.
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Theorem 5.10 Let ̂B1, B1N and U1 be defined via (5.48), (5.50)–(5.52)
and (5.54)–(5.59), respectively. Then an Edgeworth-type expansion of the density
of ̂B1 equals

f
̂B1

(Bo) = fB1E (Bo) + r
3 ,

where

fB1E
(Bo)=(1 − 1

2 tr{D[̂B1]D[B1N ]−1 − I })fB1N
(Bo)

+ 1
2 tr{(D[̂B1]D[B1N ]−1 − I )vec(Bo − B1)vec′(Bo − B1)D[B1N ]−1}fB1N (Bo);

D[̂B1] and D[B1N ] are given in Theorem 4.17 (iii) and (5.53), respectively, and

|r
3 | ≤ c

n2 ,

for some fixed constant c which depends on the design matrices.

As for ̂B2, in order to obtain a more understandable approximation, the next
step is to approximate D[̂B1] with an error which is proportional to n−2. From
D[̂B1] in Theorem 4.17 (iii) it follows, by performing some calculations, that an
approximative dispersion equals

˜D[̂B1] = s3(C1C
′
1)

−1C1(I − P C ′
2
)C′

1(C1C
′
1)

−1 ⊗ (A′
1�

−1A1)
−1

+ s4(C1C
′
1)

−1C1(P C ′
2
− P C ′

3
)C′

1(C1C
′
1)

−1 ⊗ {

(A′
1�

−1A1)
−1

+ F 2A2(A
′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2

}

+ (C1C
′
1)

−1C1P C ′
3
C′

1(C1C
′
1)

−1 ⊗
{

s2
{

(A′
1�

−1A1)
−1

+ F 3A3(A
′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
3

}

+ F 2A2(A
′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2

}

,

where

s3 = n − k1 − 1

n − r(C1) − p + q1 − 1
, s4 = n − r(C2) − 1

n − r(C2) − m2 − 1
(5.60)

and s2 is given in (5.40). Hence,

˜D[̂B1] − D[B1N ] = (s3 − 1)(C1C
′
1)

−1C1(I − P C′
2
)C ′

1(C1C
′
1)

−1 ⊗ (A′
1�

−1A1)
−1

+ (s4 − 1)(C1C
′
1)

−1C1(P C′
2
− P C′

3
)C′

1(C1C
′
1)

−1 ⊗ {

(A′
1�

−1A1)
−1

+ F 2A2(A
′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2

}
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+ (s2 − 1)(C1C
′
1)

−1C1P C′
3
C ′

1(C1C
′
1)

−1 ⊗ {

(A′
1�

−1A1)
−1

+ F 3A3(A
′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
3

}

. (5.61)

The constants si − 1, i = 2, 3, 4, are all O(n−1).
When discussing ̂B2, the calculations were simplified by introducing the matrix

M2 in (5.45). Now, when considering ̂B1, the same technique is applied, but instead
of M2, the matrix

M ′
1 = (

C1C
′
3(C3C

′
3)

−1/2 : C1C
′
2(C2C

′
3)

o{(C2C
′
3)

o′
C2C

′
2(C2C

′
3)

o}−1/2

: C1C
′
1(C1C

′
2)

o{(C1C
′
2)

o′
C1C

′
1(C1C

′
2)

o}−1/2) (5.62)

is used. The matrix is created according to the decomposition

C(C′
1) = C(C′

3) � C(C′
2) ∩ C(C′

3)
⊥ � C(C′

1) ∩ C(C′
2)

⊥.

Then, (diag(•, •, •) denotes the block-diagonal operator, see Appendix A, Sect. A.6)

M1(C1C
′
1)

−1C1(I − P C ′
2
)C ′

1(C1C
′
1)

−1M ′
1 = diag(0, 0, I r1), r1 = k1 − r(C2),

(5.63)

M1(C1C
′
1)

−1C1(P C ′
2
− PC ′

3
)C ′

1(C1C
′
1)

−1M ′
1 = diag(0, I r20, ),

r2 = r(C2) − r(C3), (5.64)

M1(C1C
′
1)

−1C1P C ′
3
C ′

1(C1C
′
1)

−1M ′
1 = diag(I r3, 0, 0), r3 = r(C3), (5.65)

and applying (5.61)

˜D[̂B1M
′
1] − D[B1NM ′

1] = (s3 − 1)diag(0, 0, I r1) ⊗ (A′
1�

−1A1)
−1

+ (s4 − 1)diag(0, I r2 , 0) ⊗ {(A′
1�

−1A1)
−1 + F 2A2(A

′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2}

+ (s2 − 1)diag(I r3 , 0, 0) ⊗ {(A′
1�

−1A1)
−1 + F 3A3(A

′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
3}.

(5.66)

Moreover, according to Corollary 5.2 the following two expressions are needed:

tr{(˜D[̂B1] − D[B1N ])D[B1N ]−1} (5.67)

and

tr{(˜D[̂B1] − D[B1N ])D[B1N ]−1vec(Bo − B1)vec′(Bo − B1)D[B1N ]−1}.
(5.68)
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Explicit calculations of (5.67) and (5.68) are left to the reader. Here it is noted that
all calculations become straightforward if one uses the matrix M1, given in (5.62),
since

tr{(˜D[̂B1] − D[B1N ])D[B1N ]−1}
= tr{(˜D[̂B1M

′
1] − D[B1NM ′

1])D[B1NM ′
1]−1}

and

tr{(˜D[̂B1] − D[B1N ])D[B1N ]−1vec(Bo − B1)vec′(Bo − B1)D[B1N ]−1}
= tr

{

(˜D[̂B1M
′
1] − D[B1NM ′

1])D[B1NM ′
1]−1

×vec((Bo − B1)M
′
1)vec′((Bo − B1)M

′
1)D[B1NM ′

1]−1
}

.

Among other things, (5.66) presents ˜D[̂B1M
′
1] − D[B1NM ′

1], and

D[B1NM ′
1]−1

= diag(0, 0, I r1) ⊗ A′
1�

−1A1 + diag(0, I r2 , 0) ⊗ H−1
3 + diag(I r3 , 0, 0) ⊗ H−1

4 ,

where

H 3 = (I : 0)((A1 : A2)
′�−1(A1 : A2))

−1(I : 0)′
= (A′

1�
−1A1)

−1 + F 2A2(A
′
2G1(G

′
1�G1)

−1G′
1A2)

−A′
2F

′
2 (5.69)

and

H 4 = (I : 0 : 0)((A1 : A2 : A3)
′�−1(A1 : A2 : A3))

−1(I : 0 : 0)′

= (A′
1�

−1A1)
−1 +

2
∑

i=1

F i+1Ai+1(A
′
i+1Gi (G

′
i�Gi )

−1G′
iAi+1)

−A′
i+1F

′
i+1.

(5.70)

Moreover, let

H 5 = (A′
1�

−1A1)
−1 + F 3A3(A

′
3G2(G

′
2�G2)

−1G′
2A3)

−A′
3F

′
3. (5.71)

Theorem 5.11 Let ̂B1 and B1N be defined in (5.48) and (5.50)–(5.52). Then an
Edgeworth-type expansion of the density of ̂B1, assuming that all the constants
given below exist, equals

f
̂B1

(Bo) = f
˜B1E

(Bo) + r
3 ,
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where

f
˜B1E

(Bo) = (1 − 1
2 (q1(r1(s3 − 1) + r2(s4 − 1)) + (s2 − 1)tr{H 5H

−1
4 })fB1N (Bo)

+ 1
2 (s3 − 1)tr{(A′

1�
−1A1)

−1(Bo − B1)C
′
1(I − P C2)C1(Bo − B1)

′}fB1N (Bo)

+ 1
2 (s4 − 1)tr{H−1

3 (Bo − B1)C1(P C′
2
− PC′

3
)C′

1(Bo − B1)
′}fB1N

(Bo)

+ 1
2 (s2 − 1)tr{H−1

4 H 5H
−1
4 (Bo − B1)C1PC′

3
C′

1(Bo − B1)
′}fB1N

(Bo);

ri , i = 1, 2, 3, are defined in (5.63)–(5.65), si , i = 2, 3, 4, in (5.40) and (5.60), and
H i , i = 3, 4, 5, in (5.69)–(5.71), and

|r
3 | ≤ c

n2 ,

for some fixed constant c which depends on the design matrices. The density fB1N

can be factorized as

fB1N
(Bo) = |C1C

′
1|q1/2fB1N3 C1(BoC1)fB1N2 C1(BoC1)fB1N1 C1(BoC1),

where fB1Ni
C2(BoC2), i = 1, 2, 3, are density representations for

B1N1C1 = (A′
1�

−1A1)
−1A′

1�
−1X(P C ′

1
− P C ′

2
)

∼ Nq1,n(B1C1(I − P C ′
2
), (A′

1�
−1A1)

−1,P C ′
1
− PC ′

2
)

within X(PC ′
1
− PC ′

2
),

B1N2C1 = (A′
1�

−1A1)
−1A′

1�
−1(I − P A2,G

′
1	G1,G1

)X(P C ′
2
− P C ′

3
)

∼ Nq1,n(B1C1(P C ′
2
− P C ′

3
),H 3,P C ′

2
− PC ′

3
)

within X(PC ′
2
− PC ′

3
), and

B1N3C1 = (A′
1�

−1A1)
−1A′

1�
−1(I − P A2,G

′
1	G1,G1

)(I − PA3,G′
2	G2,G2

)XP C ′
3

∼ Nq1,n(B1C1PC ′
3
,H 4,P C ′

3
)

within XPC ′
3
, respectively. Moreover, B1N = B1N1 + B1N2 + B1N3 .

5.5 Density Approximation for the Mean Parameter
Estimators in the EBRM3

W

The ideas presented below are the same as those used when working with the
EBRM3

B in the previous Sect. 5.4. In correspondence with Sect. 5.4, it will be
shown that the distributions of the estimators ̂B i , i = 1, 2, 3, for the EBRM3

W ,
can all be decomposed into a normally distributed part and an error term which has
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an expectation equal to 0 and is independent of the normal part. Indeed, from a linear
model point of view (e.g. see Exercise 1.3, p. 308 in Rao, 1973), the decompositions
are both natural and interpretable.

Starting with ̂B3, given in Theorem 3.3, it follows that under full rank conditions

̂B3 = B3N − U 3,

where

B3N = (A′
3�

−1A3)
−1A′

3�
−1XQ2C

′
3(C3Q2C

′
3)

−1, (5.72)

U 3 = −(A′
3S

−1
1 A3)

−1A′
3S

−1
1 (I − P A3,	)XQ2C

′
3(C3Q2C

′
3)

−1. (5.73)

Since S1 is independent of XQ2C
′
3 and (I −P A3,	)X is independent of A′

3�
−1X,

the two matrices B3N and U are independently distributed. Moreover,

D[B3N ] = (C3Q2C
′
3)

−1 ⊗ (A′
3�

−1A3)
−1 (5.74)

and, if n − r(C′
1 : C′

2 : C′
3) − p + q3 − 1 > 0 (see Theorem 4.25 (i)),

D[̂B3] = (1 + s1)(C3Q2C
′
3)

−1 ⊗ (A′
3�

−1A3)
−1, (5.75)

where

s1 = p−q3
n−r(C ′

1:C ′
2:C ′

3)−p+q3−1 . (5.76)

Hence, correspondingly to Theorem 5.7, we can present the next theorem, omitting
a proof of the statement concerning the error term.

Theorem 5.12 Let ̂B3,B3N andU 3 (u3 = vecU3) be given by Theorem 3.3, (5.72)
and (5.73), respectively. Then an Edgeworth-type expansion of the density of ̂B3
equals

f
̂B3

(Bo) = fB3E
(Bo) + r

3 ,

where

fB3E (Bo) = fB3N (Bo) + 1
2E[(u′

3)
⊗2]vecf 2

B3N
(Bo)

= (1 − 1
2 s1k3q3 + 1

2 s1 tr{A′
3�

−1A3(Bo − B3)C3Q2C
′
3(Bo − B3)

′})fB3N
(Bo),

with s1 defined in (5.76) and supposed to exist, and

|r
3 | ≤ c

n2 ,

for some fixed constant c which is a function of the design matrices.
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In Theorem 5.12 the density corresponds to a mixture of a Kotz-type distribution
(see Appendix A, Sect. A.10) and a normal distribution.

For ̂B2, given in Theorem 3.3, the following decomposition holds under some
full rank conditions. Let F 2 = (A′

2A2)
−1A′

2, then

̂B2 = F 2P A2,̂S2
XQ1C

′
2(C2Q1C

′
2)

−1

−F 2P A3,S1XQ2C
′
3(C3Q2C

′
3)

−C3Q1C
′
2(C2Q1C

′
2)

−1, (5.77)

B2N = F 2P A2,	XQ1C
′
2(C2Q1C

′
2)

−1 (5.78)

−F 2P A3,	XQ2C
′
3(C3Q2C

′
3)

−C3Q1C
′
2(C2Q1C

′
2)

−1, (5.79)

U2 = −F 2P A2,̂S2
(I − PA2,	)XQ1C

′
2(C2Q1C

′
2)

−1

+F 2P A3,S1(I − PA3,	)XQ2C
′
3(C3Q2C

′
3)

−C3Q1C
′
2(C2Q1C

′
2)

−1,

(5.80)

and

̂B2 = B2N − U2.

As before, the independence between B2N and U2 has to be proven. Note that
XQ1C

′
2 is independent of S1, ̂S2 and XQ2C

′
3, and P A2,	X is independent of

(I −PA2,	)X. Hence, the expression on the right-hand side of (5.78) is independent
of U 2. Moreover, XQ2C

′
3 is independent of S1 and PA3,	XQ2C

′
3 is independent

of ̂S2, (I − P A2,	)X and (I − PA3,	)X. Therefore, (5.79) is independent of U2,
implying independence between B2N and U 2.

Concerning moments, E[U2] = 0,

D[B2N ] = (C2Q1C
′
2)

−1 ⊗ (A′
2�

−1A2)
−1

+(C2Q1C
′
2)

−1C2Q1C
′
3(C3Q2C

′
3)

−C3Q1C
′
2(C2Q1C

′
2)

−1

⊗F 2A3(A
′
3�

−1A3)
−A′

3F
′
2, (5.81)

and according to Theorem 4.25 (ii)

D[̂B2] = (C2Q1C
′
2)

−1 ⊗
{

(1 + c1)(A
′
2�

−1A2)
−1

+c1(c2 − 1)F 2A3(A
′
3�

−1A3)
−A′

3F
′
2

}

+(1 + c3)(C2Q1C
′
2)

−1C2Q1C
′
3(C3Q2C

′
3)

−C3Q1C
′
2(C2Q1C

′
2)

−1

⊗F 2A3(A
′
3�

−1A3)
−A′

3F
′
2, (5.82)
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where

c1 = p−q2
n−r(C′

1:C ′
2)−p+q2−1 , c2 = n−r(C′

1:C ′
2)−p+r(A3)−1

n−r(C′
1:C ′

2:C ′
3)−p+r(A3)−1 , (5.83)

c3 = p−r(A3)

n−r(C′
1:C ′

2:C ′
3)−p+r(A3)−1 , (5.84)

and all three constants are supposed to be positive and finite.

Theorem 5.13 Let ̂B2, B2N and U 2 be defined by (5.77)–(5.80). Then an
Edgeworth-type expansion of the density of ̂B2 equals

f
̂B2

(Bo) = fB2E
(Bo) + r

3 ,

where

fB2E (Bo) = (1 − 1
2 tr{D[̂B2]D[B2N ]−1 − I })fB2N (Bo)

+ 1
2 tr{(D[̂B2]D[B2N ]−1 − I )vec(Bo − B2)vec′(Bo − B2)D[B2N ]−1}fB2N (Bo);

D[̂B2] and D[B2N ] are supposed to exist and are presented in (5.82) and (5.81),
respectively, and

|r
3 | ≤ c

n2 ,

for some fixed constant c which depends on the design matrices.

Noting that c1(c2 − 1) = O(n−2), it immediately follows that a natural
approximation of D[̂B2] in (5.82) is given by

˜D[̂B2] = (1 + c1)(C2Q1C
′
2)

−1 ⊗ (A′
2�

−1A2)
−1

+(1 + c3)(C2Q1C
′
2)

−1C2Q1C
′
3(C3Q2C

′
3)

−C3Q1C
′
2(C2Q1C

′
2)

−1

⊗F 2A3(A
′
3�

−1A3)
−A′

3F
′
2. (5.85)

Moreover, to simplify calculations, a matrix M2 is introduced which corresponds to
the matrix given in (5.45):

M ′
2 = (

A′
2�

−1A3(A
′
3�

−1A3)
−1/2 : A′

2�
−1A2(A

′
2�

−1A3)
o

×{(A′
2�

−1A3)
o′
A′

2�
−1A2(A

′
2�

−1A3)
o}−1/2),

where, without any loss of generality, the square roots are supposed to exist; i.e. it
has to be supposed that A3 is of full rank, which we can always assume to hold
in (5.82) and (5.85). Then

˜D[M2̂B2] − D[M2B2N ] = c1H 1 ⊗ I q2 + c3H 3 ⊗ diag(I r(A3), 0),
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where

H 1 = (C2Q1C
′
2)

−1, (5.86)

H 3 = (C2Q1C
′
2)

−1C2Q1C
′
3(C3Q2C

′
3)

−C3Q1C
′
2(C2Q1C

′
2)

−1. (5.87)

Moreover, let

H 2 = H 1 + H 3 = (I : 0)((C′
2 : C′

3)
′Q1(C

′
2 : C′

3))
−1(I : 0)′. (5.88)

Then

D[M2B2N ]−1 = H−1
1 ⊗ diag(0, I q2−r(A3)) + H−1

2 ⊗ diag(I r(A3), 0)

and

D[M2B2N ]−1vec(M2(B2N − B2))

= vec
{

{(A′
2�

−1A3)
o′
A′

2�
−1A2(A

′
2�

−1A3)
o}−1/2

×(A′
2�

−1A3)
o′
A′

2�
−1A2(B2N − B2)H

−1
1

}

+vec{(A′
3�

−1A3)
−1/2A′

3�
−1A2(B2N − B2)H

−1
2 }.

Theorem 5.14 Let ̂B2 and B2N be defined by (5.77)–(5.80). Then an Edgeworth-
type expansion of the density of ̂B2 equals

f
̂B2

(Bo) = f
˜B2E

(Bo) + r
3 ,

where

f
˜B2E

(Bo)

= (1 − 1
2 (q2 − r(A3))k2c1 − 1

2 c1r(A3)tr{H 1H
−1
2 } − 1

2 c3r(A3)tr{H 3H
−1
2 })fB2N

(Bo)

+ 1
2 c1tr{H−1

1 (Bo − B2)
′A′

2A
o
3(A

o′
3 �Ao

3)
−Ao′

3 A2(Bo − B2)}fB2N
(Bo)

+ 1
2 c1tr{H−1

2 H 1H
−1
2 (Bo − B2)

′A′
2�

−1P A3,	A2(Bo − B2)}fB2N
(Bo)

+ 1
2 c3tr{H−1

2 H 3H
−1
2 (Bo − B2)

′A′
2�

−1P A3,	A2(Bo − B2)}fB2N
(Bo),

where c1 and c3 are supposed to exist and are given by (5.83) and (5.84),
respectively, and H i , i = 1, 2, 3, are given by (5.86)–(5.88). Furthermore,

|r
3 | ≤ c

n2
,
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for some fixed constant c which depends on the design matrices. The density fB2N

can be factorized as

fB2N (Bo) = |A′
2�

−1A2|k2/2fA2B2N2
(A2Bo)fA2B2N1

(A2Bo),

where fA2B2N1
(A2Bo) and fA2B2N2

(A2Bo) are density representations for

A2B2N1 = (P A2,	 − PA3,	)XQ1C
′
2(C2Q1C

′
2)

−1

∼ Np,k2((I − P A3,	)A2B2, (P A2,	 − P A3,	)�,H 1)

within (P A2,	 − P A3,	)X and

A2B2N2 = P A3,	X(I − Q2C
′
3(C3Q2C

′
3)

−C3)Q1C
′
2(C2Q1C

′
2)

−1

∼ Np,q2(P A3,	A2B2,P A3,	�,H 2)

within P A3,	X, respectively. Moreover, B2N = B2N1 + B2N2 .

Finally, ̂B1 is discussed briefly. The results are obtained using a procedure similar
to that presented earlier. Now Theorem 3.3, together with a number of calculations,
yields

̂B1 = B1N − U 1,

where

B1N = F 1PA1,	XC′
1(C1C

′
1)

−1 (5.89)

−F 1PA2,	XQ1C
′
2(C2Q1C

′
2)

−C2C
′
1(C1C

′
1)

−1 (5.90)

−F 1P A3,	XQ2C
′
3(C3Q2C

′
3)

−C3(I − Q1C
′
2(C2Q1C

′
2)

−C2)C
′
1(C1C

′
1)

−1, (5.91)

with F 1 = (A′
1A1)

−1A′
1 and

U1 = −F 1PA1,̂S3
(I − P A1,	)XC′

1(C1C
′
1)

−1

+F 1P A2,̂S2
(I − PA2,	)Q1C

′
2(C2Q1C

′
2)

−C2C
′
1(C1C

′
1)

−1 −
+F 1PA3,S1(I−P A3,	)XQ2C

′
3(C3Q2C

′
3)

−C3(I−Q1C
′
2(C2Q1C

′
2)

−C2)C
′
1(C1C

′
1)

−1.

(5.92)

The independence between B1N and U 1 has to be verified. In the right-hand side
of (5.89) the expression is independent of U 1, since

• XC′
1 is independent of ̂S3, ̂S2, S1, XQ1, XQ2;

• P A1,	XC′
1 is independent of (I − P A1,	)X.
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The second term of B1N , given in (5.90), is independent of U 1, since

• XQ′
1C

′
2 is independent of ̂S2, S1, XQ2;

• P A2,	XQ1C
′
2 is independent of ̂S3, (I − P A2,	)X, (I − P A1,	)X.

The third term, given in (5.91), is independent of U1, since

• XQ′
2C

′
3 is independent of S1;

• P A3,	XQ2C
′
3 is independent of ̂S3, ̂S2, (I − P A1,	)X, (I − P A2,	)X,

(I − P A3,	)X.

Thus, B1N and U 1 are independently distributed. Moreover, in order to perform an
Edgeworth-type expansion, dispersion matrices are needed, among others D[B1N ],
which equals

D[B1N ] = (C1C
′
1)

−1 ⊗ (A′
1�

−1A1)
−1

+(C1C
′
1)

−1C1C
′
2(C2Q1C

′
2)

−C2C
′
1(C1C

′
1)

−1 ⊗ F 1A2(A
′
2�

−1A2)
−A′

2F
′
1

+(C1C
′
1)

−1C1(I − C′
2(C2Q1C

′
2)

−C2Q1)

×C′
3(C3Q2C

′
3)

−C3(I − Q1C
′
2(C2Q1C

′
2)

−C2)C
′
1(C1C

′
1)

−1

⊗F 1A3(A
′
3�

−1A3)
−A′

3F
′
1. (5.93)

Theorem 5.15 Let ̂B1, B1N and U 1 be defined by Theorem 3.3, (5.89)–(5.91)
and (5.92), respectively. Then an Edgeworth-type expansion of the density of ̂B1
equals

f
̂B1

(Bo) = fB1E
(Bo) + r

3 ,

where

fB1E (Bo) = (1 − 1
2 tr{D[̂B1]D[B1N ]−1 − I })fB1N (Bo)

+ 1
2 tr{(D[̂B1]D[B1N ]−1 − I )vec(Bo − B1)vec′(Bo − B1)D[B1N ]−1}fB1N

(Bo);

D[̂B1] and D[B1N ] are given in Theorem 4.25 (iii) and (5.93), respectively, and

|r
3 | ≤ c

n2 ,

for some fixed constant c which depends on the design matrices.

Now D[̂B1] is approximated with an error which is proportional to n−1.
Using the definition of the constants c1 and d1 presented in Lemma 4.6 (see also
Theorem 4.25 (iii)), an approximative dispersion equals

˜D[̂B1] = (1 + d1)(C1C
′
1)

−1 ⊗ (A′
1�

−1A1)
−1

+(1 + c1)(C1C
′
1)

−1C1C
′
2(C2Q1C

′
2)

−C2C
′
1(C1C

′
1)

−1 ⊗ F 1A2(A
′
2�

−1A2)
−A′

2F
′
1
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+(1 + e)(C1C
′
1)

−1C1(I − C′
2(C2Q1C

′
2)

−C2Q1)C
′
3(C3Q2C

′
3)

−C3

×(I − Q1C
′
2(C2Q1C

′
2)

−C2)C
′
1(C1C

′
1)

−1 ⊗ F 1A3(A
′
3�

−1A3)
−A′

3F
′
1,

where

e = p−r(A3)

n−r(C ′
1:C ′

2:C ′
3)−p+r(A3)−1

, (5.94)

assuming n − r(C′
1 : C′

2 : C′
3) − p + r(A3) − 1 > 0. Applying the same procedure

as was applied to the other parameters for obtaining an Edgeworth-type expansion
of the density of the parameter estimators, the next matrix is introduced:

M ′
1 =

(

A′
1�

−1A3(A
′
3�

−1A3)
−1/2

: A′
1�

−1A2(A
′
2�

−1A3)
o{(A′

2�
−1A3)

o′
A′

2�
−1A2(A

′
2�

−1A3)
o}−1/2

: A′
1�

−1A1(A
′
1�

−1A2)
o{(A′

1�
−1A2)

o′
A′

1�
−1A1(A

′
1�

−1A2)
o}−1/2

)

,

which is inspired by the space decomposition

C	(A1) = C	(A3) � C	(A2) ∩ C	(A3)
⊥ � C	(A1) ∩ C	(A2)

⊥

with the corresponding dimensions

r1 = r(A3), r2 = r(A2) − r(A3), r3 = r(A1) − r(A2). (5.95)

Hence,

˜D[M1̂B1] − D[M1B1N ]=d1H 4 ⊗ I + c1H 5 ⊗ diag(I r1+r2, 0)

+eH 6 ⊗ diag(I r1, 0, 0),

where

H 4 = (C1C
′
1)

−1, (5.96)

H 5 = (C1C
′
1)

−1C1C
′
2(C2Q1C

′
2)

−C2C
′
1(C1C

′
1)

−1, (5.97)

H 6 = (C1C
′
1)

−1C1(I − C′
2(C2Q1C

′
2)

−C2Q1)C
′
3(C3Q2C

′
3)

−C3

×(I − Q1C
′
2(C2Q1C

′
2)

−C2)C
′
1(C1C

′
1)

−1. (5.98)

Moreover,

D[M1B1N ]−1 =H−1
4 ⊗ diag(0, 0, I r3) + (H 4 + H 5)

−1 ⊗ diag(0, I r2, 0)

+(H 4 + H 5 + H 6)
−1 ⊗ diag(I r1, 0, 0).
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With the above-provided definitions and relations the next theorem can be formu-
lated.

Theorem 5.16 Let ̂B1 andB1N be defined by Theorem 3.3 and (5.89)–(5.91). Then
an Edgeworth-type expansion of the density of ̂B1 equals

f
̂B1

(Bo) = f
˜B1E

(Bo) + r
3 ,

where

f
˜B1E

(Bo) = (1 − 1
2 (d1k1r3 + tr{r2(d1H 4 + c1H 5)(H 4 + H 5)

−1

+r1(d1H 4 + c1H 5 + eH 6)(H 4 + H 5 + H 6)
−1})fB1N

(Bo)

+ 1
2 tr

{

d1H
−1
4 (Bo − B1)

′A′
1�

−1A1(A
′
1�

−1A2)
o

×{(A′
1�

−1A2)
o′
A′

1�
−1A1(A

′
1�

−1A2)
o}−1(A′

1�
−1A2)

o′
A′

1�
−1A1(Bo − B1)

}

×fB1N
(Bo)

+ 1
2 tr

{

(H 4 + H 5)
−1(d1H 4 + c1H 5)(H 4 + H 5)

−1(Bo − B1)
′A′

1�
−1A2(A

′
2�

−1A3)
o

×{(A′
2�

−1A3)
o′
A′

2�
−1A2(A

′
2�

−1A3)
o}−1(A′

2�
−1A3)

o′
A′

2�
−1A1(Bo − B1)

}

×fB1N
(Bo)

+ 1
2 tr

{

(H 4 + H 5 + H 6)
−1(d1H 4 + c1H 5 + eH 6)(H 4 + H 5 + H 6)

−1(Bo − B1)
′

×A′
1�

−1PA3,	A1(Bo − B1)
}

fB1N
(Bo);

ri , i = 1, 2, 3, are defined in (5.95), c1, d1 and e are defined by (5.83), Lemma 4.6
and (5.94), respectively, H i , i = 3, 4, 5, are given by (5.96)–(5.98), and

|r
3 | ≤ c

n2 ,

for some fixed constant c which depends on the design matrices. The density fB1N

can be factorized as

fB1N
= |A′

1�
−1A1|k1/2fA1B1N3

(A1Bo)fA1B1N2
(A1Bo)fA1B1N1

(A1Bo),

where fA1B1Ni
(A1Bo), i = 1, 2, 3, are density representations for

A1B1N1 = (P A1,	 − P A2,	)XH
1/2
4

∼ Np,k1((I − P A2)A1B1, (P A1,	 − PA2,	)�,H 4)
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within (P A1 − P A2)X,

A1B1N2 = (P A2,	 − P A3,	)X(H 4 + H 5)
1/2

∼ Np,k1((PA2,	 − P A3,	)A1B1, (P A2,	 − P A3,	)�,H 4 + H 5)

within (P A2 − P A3)X, and

A1B1N3 = P A3,	X(H 4 + H 5 + H 6)
1/2

∼ Np,k1(PA3,	A1B1,P A3,	�,H 4 + H 5 + H 6)

within P A3X. Moreover, B1N = B1N1 + B1N2 + B1N3 .

Problems

1 Using the matrix derivative given in Definition 5.1, demonstrate the following
relations: (a) d |X|

d X
= |X|vec(X−1)′, (b) d tr{A′X}

d X
= vecA and (c) d tr{X′X}

d X
= 2vecX.

2 Suppose that X is a symmetric matrix. Calculate d tr{A′X}
d X

, d |X|
d X

and d tr{X′X}
d X

,
using the same matrix derivative as in Problem 1.

3 Prove Lemma 5.1.

4 GMANOVA + MANOVA continuation of Problem 2 in Chap. 3 Let

X = AB1C1 + B2C2 + E,

where all the matrices are given in Problem 2. Consider the MLEs and perform
Edgeworth-type expansions for ̂B1 and ̂B2, for the case where the estimators are
uniquely determined.

5 Prove Corollary 5.1 and determine an upper bound of |r∗
3 | as a function of

E[(vecU )⊗4].
6 Give a complete and detailed proof that B3N in (5.22) and U 3 in (5.23) are
uncorrelated.

7 Simulate data according to a BRM . For example, use the same design matrices,
A and C, as in Example 1.7. Apply Theorem 5.2 and try to understand how well the
Edgeworth-type expansion works. Consider the centre of the distribution, as well as
its tails. What can be said about the upper error bound? Plot the error bound versus
the number of independent observations.
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8 Let X follow a matrix Kotz-type distribution. Derive E[X] and D[X]. Do the
marginal distributions of a matrix Kotz-type distribution always follow a Kotz-type
distribution? Give a detailed explanation of the reasons for your answer.

9 Calculate (5.67) and (5.68).

10 Approximate the distribution (using an Edgeworth-type expansion) of the
maximum likelihood estimators of the mean parameters in the EBRM2

W .

Literature

One tool used in this chapter is the concept of the matrix derivative, which Dwyer
and Macphail (1948) were the first to introduce. Since then numerous papers have
been written using different versions of matrix derivatives (see MacRae, 1974; Nel,
1980; Polasek, 1985; Wong, 1985; Magnus and Neudecker, 1988; Magnus, 2010).
In Kollo and von Rosen (2005), as well as other published works, it has been
stressed that a matrix derivative is nothing but a collection of partial derivatives
which can be organized in different ways. Moreover, the organization of elements
of multivariate moments and cumulants (marginal moments and cumulants) follows
the definition of the matrix derivative in use (see Kollo and von Rosen, 2005), which
stems from the fact that moments and cumulants can be obtained by differentiation
of the characteristic function and the cumulant generating function, respectively.

It is interesting to follow the ideas behind the introduction of cumulants and
their relations to moments. In fact these ideas arose from deep studies of the
approximation of densities. A survey covering the developments in this field up
to the 1940s has been provided by Hald (2002) (see also Hald, 1981, 1998). At the
beginning of the nineteenth century, there existed a general idea of approximating
a density function with some series where the first term is another density which
is easy to use (mostly the normal density), and the other terms may be viewed as
correction terms. For details see Hald (2002). One of the main results in this area was
presented by Laplace (1811), who used the normal density, derivatives of the normal
density (Hermite polynomials) and their expectations. Later Bienaymé (1852) and
Chebyshev (1859) improved some of Laplace’s work and operated with moments
and cumulants, although cumulants at that time had not been explicitly defined. The
series which Laplace obtained was called the A-series by Charlier (1905); there are
also a B-series and a C-series.

The above-mentioned authors were mainly inspired by the central limit theorem
and the average of n independent observations. Around 1870, one started to search
for non-normal distributions in order to handle data which obviously could not
be normally distributed and instead followed a skewed distribution. Among other
discoveries, it was observed that if the normal density function was multiplied by a
polynomial the obtained function was not symmetric. It was then that Thiele (1873)
rediscovered the A-series and applied it.
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Gram (1879, 1883) (see also Hald, 2002), who was a colleague of Thiele at an
insurance company in Copenhagen, came up with the idea of using least squares
to determine the coefficients of the A-series, i.e. to estimate the coefficients via a
specific multiple regression model. Moreover, Gram supposed that in the A-series
the approximating functions were orthogonal polynomials and, therefore, one refers
to the series as Gram’s orthogonal A-series. Thiele (1889) improved Gram’s results
by assuming a normal density and Hermite polynomials came into the picture.
Moreover, Thiele introduced cumulants (half-invariants (semi-invariants) according
to Thiele; at that time there existed mathematical results about invariants and semi-
invariants which were used in different kinds of linearizations) and used them
instead of moments, which Gram had been using. In this way, Thiele reobtained the
result of Laplace (1811). Thiele (1899) presented a remarkable non-linear relation
between moments and cumulants of an arbitrary order. On the basis of Laplace’s
results, Edgeworth (1905), among others, presented the A-series in the same fashion
as Thiele, but rearranged the terms of the series so that the terms as a function of the
number of independent observations decreased. The A-series which Thiele obtained,
where normality was used in the approximation, is often called the Gram-Charlier
series, but from a historical point of view this name is slightly misleading.

Hald (2002) presents many more contributors to the field of density approxima-
tions. In particular he mentions the Danish “school” (Oppermann, Thiele, Gram,
Jørgensen), the German “school” (Bruns, Lipps, Hausdorff, von Mises), the British
“school” (Edgeworth, among others) and the Swedish “school” (Charlier, among
others). Some relations between the different schools can be found, but at the same
time it appears from the outside that many scientists (astronomers, mathematicians
and statisticians) have been working in parallel without being aware of each other.

Several more results on the A-series were produced from 1920 to 1945, for
example by Cramér (1926, 1928) (see also Cramér, 1946, pp. 221–231) and
Andersson (1944). Examples of topics focused on during that period are the
convergence of the A-series and determination of the coefficients of the series.
In articles published during this period one often used the characteristic function,
its inverse and the cumulant generating function using techniques similar to those
presented in this book.

Although many researchers have been working on the above-mentioned expan-
sions, both the Edgeworth and the Gram-Charlier expansions suffer from the fact
that the approximations may not be densities. Moreover, in comparison with the
expansion of the centre of the density the expansions of the tails of the density
functions may perform poorly. Therefore, research on distribution approximations
has continued in various directions. The most commonly applied methods are the
tilted Edgeworth expansion, the saddle point approximation and the Cornish-Fisher
expansion (see Strawderman, 2000; DasGupta, 2008, which also include many
references). For some multivariate distribution expansion, see Kollo and von Rosen
(1998), where in particular a q-dimensional density was approximated using a
p-dimensional density with p > q (the results comprised Theorem 5.1 in the present
book).
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When considering the BRM or the EBRMm• , the purpose of the density
approximations in this book is to approximate the distribution of a given estimator
and not, as was the purpose of density approximation for Thiele and others, to
find a suitable density for a given data set. A general problem in connection with
density approximations is that they are point-wise. For the BRM or the EBRMm• ,
two remarkable results appeared in the presentation. The approximating density
happened to be a real density and it was possible to present an upper error bound
of the approximation. In Theorem 5.3 the results for the BRM were presented. An
early reference to that approximation is Fujikoshi (1985). In Kollo et al. (2007) (see
also Kollo and von Rosen, 2005) it was observed that the approximating density
was in fact a true density. The upper bound of the density approximation was first
obtained by Fujikoshi (1985) (see also Fujikoshi, 1987; Fujikoshi and Shimizu,
1989; Kanda, 1994). The results for the EBRM3• in this chapter, i.e. Theorems 5.7–
5.16, are new. However, the derivation of these results is completely based on the
technique developed for handling the BRM .

Concerning the exact distribution results for ̂B in the BRM only a few results
are available; see, for example, Gleser and Olkin (1972), Kenward (1986) or Bai and
Shi (2007). In the paper by Bai and Shi (2007), the GMANOVA+MANOVA model
is studied (see also Bai, 2005). The results are, however, difficult to apply.
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Chapter 6
Residuals

6.1 Introduction

This chapter is devoted to the study of residuals. Residuals summarize the variation
and may be used for estimating parameters connected to the description of uncer-
tainty in a model, identifying outliers (extreme observations) and identifying some
of the influential observations (see Chap. 8). Moreover, residuals can be used to
construct tests, which is fairly obvious, since statistical hypothesis tests are usually
constructed via functions of estimators of parameters describing the variation in the
model under consideration.

Generally speaking, residuals can be defined as the difference between the
observed and the predicted observations, or as the difference of the random variables
corresponding to the observations and the predicted observations. As an introduction
to a discussion of residuals and bilinear models, let us consider the general
multivariate linear model

X = BC + E, E ∼ Np,n(0,�, I ), � > 0,

where B and � are unknown parameters. The matrix residual R, collecting all the
residuals, is given by

R = X − ̂BC = X(I − P C ′),

which is illustrated in Fig. 6.1. In the above model, residuals are obtained by
projecting X on C(C′)⊥. The observed residuals are, of course, given by Ro =
Xo(I − P C ′).

The term “residual”, as used in the following, includes the concepts “matrix
residual” and “components of the matrix residual”. To utilize the residual, since
it is a random quantity, it is natural to consider its distribution and then evaluate
the observed residual, i.e. Ro, with respect to the distribution. In the general
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Fig. 6.1 The mean and
residual spaces in the general
multivariate linear model

multivariate linear case, under the assumption of a normally distributed error, it
follows immediately that the distribution equals

R ∼ Np,n(0,�, I − P C ′). (6.1)

Unfortunately the distribution of R depends on � and the columns of R are not
independent nor identically distributed. Moreover, the dispersion matrix for R is
singular. Hence, the relation in (6.1) cannot be used directly. There exist a large
number of ways to exploit R and Ro, but in this book only a few ideas will be
presented. Focus will be set on the basic structures of the residuals in the bilinear
models.

A general approach to dealing with residuals, from a distribution point of view,
is to study shifts in the mean. One can also adopt approaches based, for example, on
the absolute value of each single element of the matrix of residuals, Ro. Concerning
the mean shift approach, one can study the following five cases, letting Rij , Rj and
Ri denote R and making some extra model assumption for the ij th element, the j th
row or the ith column, respectively.

(i) For 1 ≤ i ≤ n, 1 ≤ j ≤ p, use

Rij ∼ Np,n(dj θe′
i ,�, I − P C ′),

where dj : p × 1 and ei : n × 1 are unit basis vectors, e.g. ei is 1 in the ith
position and 0 elsewhere, it is assumed that ei /∈ C(C′) and θ is an unknown
parameter (below θ is an unknown parameter vector).

(ii) For 1 ≤ i ≤ n, use

Ri ∼ Np,n(1θe′
i ,�, I − P C ′)

or
(iii)

Ri ∼ Np,n(θe′
i ,�, I − P C ′).
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(iv) For 1 ≤ j ≤ p, use

Rj ∼ Np,n(dj θ1′,�, I − P C ′)

or
(v)

Rj ∼ Np,n(djθ ,�, I − P C ′).

Note that in cases (i), (ii) and (iv) a bilinear mean structure is imposed, whereas
cases (iii) and (v) are described through linear structures. However, without any
assumption concerning �, the model in case (v) cannot be considered with the usual
likelihood-based estimation methods, because there are not enough independent
observations (not enough degrees of freedom) for carrying out the estimation. Later
the strategy will be first to assume that � is known and, when evaluating a test
statistic, a plug-in estimator will replace �.

Since we plan to make a statistical decision about the residuals, it is natural to set
up the problem of identifying large elements of the residual as a statistical decision
problem, i.e. a testing problem, which means that we are going to test

H0 : θ = 0 against H1 : θ differs from 0

in cases (i), (ii) and (iv), or

H0 : θ = 0 against H1 : θ unrestricted

in cases (iii) and (v). However, when evaluating the residual, multiple testing is
performed with correlated tests, and one is interested in the large or largest elements
of the residual. Based on standard analysis of variance ideas, natural test statistics
for testing cases (i), (ii) and (iv) are

Fij = (n − r(C) − 1)d ′
jRij ei (e

′
i (I − P C ′)ei )

−1e′
iR

′
ijdj

d ′
jRij (I − ei (e

′
i (I − P C ′)ei )−1e′

i )R
′
ijdj

,

Fi = (n − r(C) − 1)1′
pRiei (e

′
i (I − P C ′)ei )

−1e′
iR

′
i1p

1′
pRi (I − ei (e

′
i (I − P C ′)ei )−1e′

i )R
′
i1p

,

and

Fj = (n − r(C) − 1)d ′
jRj1n(1′

n(I − P C ′)1n)
−11′

nR
′
jdj

d ′
jRj (I − 1n(1′

n(I − P C ′)1n)−11′
n)R

′
jdj

,

respectively. The above test statistics are all F -distributed under H0. For example,
let us consider Fij . In case (i), post-multiplying Rij by ei and pre-multiplying by
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d ′
j yield, after some further manipulations,

(d ′
j�dj )

−1/2(d ′
jRij ei − θ)(e′

i (I − P C ′)ei )
−1/2 ∼ N(0, 1). (6.2)

Furthermore, independently of this expression,

(d ′
j�dj )

−1d ′
jRij (I − ei (e

′
i (I − P C ′)ei )

−1e′
i )R

′
ij dj ∼ χ2(n − r(C) − 1).

(6.3)

Hence, taking the square in (6.2) and dividing it by (6.3) yield the null distribution,
i.e. under H0 the statistic Fij ∼ F1,n−r(C)−1. However, we need the distribution of
max{Fij } or the second largest observation of {Fij }, the third largest, etc. These
distribution problems can be studied in depth, but here it is suggested that one
should apply a straightforward parametric bootstrap approach as a tool for finding
an approximate solution, i.e. to simulate the distributions.

Alternatively the mean shift could also have been introduced in the original
model, i.e.

X ∼ Np,n(BC + dj θe′
i ,�, I ). (6.4)

If ei /∈ C(C′), which usually is true, the F -test statistic presented for testing case (i)
is not the same as the likelihood ratio test for testing H0 in model (6.4). Choosing
between the two approaches is an interesting philosophical question. Since our
intention is to evaluate a given model, the residuals are the main objects to exploit.
However, if our intention had been to find deviating observations among the set of
all the observations, (6.4) would have been the model to discuss. To some extent
the approach used in this book is a marginal inferential procedure and hence also
simpler than the approach based on (6.4).

Returning to the bootstrap simulations for the MANOVA case, which are needed
in order to determine the distribution of the large Fij values, we need to generate
observations from Np,n(0,�, I − P C ′) which is impossible since � is unknown.
However, if we replace � by an unbiased estimate, e.g.

̂�o = 1

n − r(C′)
Xo(I − P C ′)X′

o

or the maximum likelihood estimate, and then generate observations from
Np,n(0,̂�o, I − P C ′), this gives the possibility of finding an approximative
distribution for max{Fij }, max{Fi} and max{Fj }, as well as finding the distributions
of the second largest elements, and so on; i.e. for each generated Xo we calculate
max{Fij }, for example, and then the procedure of generating Xo is repeated many
times which leads to an estimate of the distribution for max{Fij }.
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6.2 Residuals for the BRM

In this subsection quite a large number of results and ideas are presented which do
not follow general practise and are open to discussion. In general, for each residual
we first derive an approximate density which will later be used in a “mean shift”
testing approach. The ideas are backed up via some data analysis.

In Fig. 3.1 a decomposition of the overall residual was shown which was based
on the following space decomposition:

(C(C′) ⊗ C	(A))⊥ = C(C′)⊥ ⊗ C	(Rp) � C(C′) ⊗ C	(A)⊥

= C(C′)⊥ ⊗ C	(A) � C(C′)⊥ ⊗ C	(A)⊥ � C(C′) ⊗ C	(A)⊥.

Moreover, it was shown in Chap. 3 how the defining inner product quantity, i.e. �,
should be estimated and then, instead of the decomposition given above,

(C(C′) ⊗ C
̂	(A))⊥ = C(C′)⊥ ⊗ C

̂	(Rp) � C(C′) ⊗ C
̂	(A)⊥

= C(C′)⊥ ⊗ C
̂	(A) � C(C′)⊥ ⊗ C

̂	(A)⊥ � C(C′) ⊗ C
̂	(A)⊥

(6.5)

was suggested as a basis for inference. Concerning the estimator of the inner
product, the sums of squares matrix S (omitting 1/(n − r(C)), which could have
been used when estimating �) was used, which, as before, equals S = X(I −
P C ′)X′. It has been mentioned that residuals can be defined through X − Ê[X],
which means that for the BRM

X − Ê[X] = X − ÂBC = X − PA,SXP C ′

= X(I − P C ′) + (I − PA,S)XP C ′

= P A,SX(I − PC ′) + (I − P A,S)X(I − P C ′) + (I − PA,S)XP C ′

gives three natural residuals obtained by projecting X on appropriate subspaces. The
residuals are in complete agreement with the subspace decomposition given in (6.5).

Definition 6.1 For the BRM presented in Definition 2.1 the following residuals are
considered:

(i) R1 = X(I − PC ′),
(ii) R2 = (I − P A,S)XPC ′ ;

moreover, R1 = R11 + R12, where
(iii) R11 = P A,SX(I − P C ′),
(iv) R12 = (I − PA,S)X(I − P C ′).
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Fig. 6.2 For the BRM the
three different residuals, R11,
R12 and R2, are presented.
Moreover, the residual
R1 = R11 + R12 can be
understood

These residuals are illustrated in Fig. 6.2. Note that in Chap. 3, instead of R11, R12
and R2, the following notations were used, ̂R11, ̂R12 and ̂R2, because there the aim
was to highlight the fact that the inner product had been estimated.

In principle one would like to find the distribution of the residuals, but, as for
the MLEs of the parameters in the BRM , useful expressions for the distributions
(densities) do not exist for R11, R12 and R2. Therefore, density approximations will
also take place for the residuals and these approximations will serve as a basis for an
evaluation via a likelihood based test procedure. However, note that, in particular,
the residual R1 = R11 + R12 = X(I − PC ′) is normally distributed.

Moreover, although the decomposition of the tensor space seems to be natural,
it is even more important that the objects, i.e. the residuals, should be interpretable.
Therefore, it is of interest to note that the quantities in Definition 6.1 have a clear
meaning, explained below.

• R1 gathers the differences between the “observations”, X, and the “mean”,
XP C ′ . The residual can be used to detect observations which deviate from the
others without taking into account any model assumption.

• R2 gathers the differences between the “mean”, XP C ′ , and the estimated model,
ÂBC = PA,SXP C ′ . The residual gives a hint of the appropriateness of the
model assumptions about the mean structure.

• R11 gathers the differences between the “observations”, X, and the “mean”,
XP C ′ , relative to the within-individuals model. The residual is useful for
detecting if observations do not follow the “within-individuals” model.

• R12 is the overall residual and gathers the differences between the “obser-
vations”, X, and the “mean”, XP C ′ , relative to the case where the within-
individuals model does not hold.

In Fig. 6.3 the four different residuals are presented for the Potthoff and Roy (1964)
data set previously considered in Example 1.7. In Fig. 6.3d the model is evaluated
via R2. One can observe that there is a better fit for the girls than for the boys, and it
is clearly indicated that it is worthwhile investigating whether different models can
be used for the girls and for the boys. For example, it can be of interest to apply an
EBRM2

B . Moreover, in Fig. 6.3a–c there are interesting observations which will be
highlighted in the following presentation. However, the main problem which we are
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(a) (b) (c) (d)

Fig. 6.3 The residuals R1o, R2o, R11o and R12o (see Definition 6.1) for the Potthoff and Roy
(1964) data presented in Table 1.2. On the x-axis the 27 observations are listed. The first 11
observations concern the girls and the others concern the boys. On the y-axis the values of the
residuals are presented. A linear model over time has been applied and the estimators are given in
Example 3.1. Under (a), R1o is presented and then in (b) and (c) the split into R11o and R12o is
given. The plot in (d) shows R2o, with the four lines per gender corresponding to the four ages and
the four estimated mean values

going to address is to obtain the distribution of the largest residual and, as mentioned
above, this will be dealt with using probabilistic arguments.

Next we prepare for density approximations of the residuals, i.e. we derive the
mean and dispersion for the different residuals. Additionally, the moments give a
basic understanding of the residuals.

Theorem 6.1 Let R1, R2, R11 and R12 be given in Definition 6.1, and

c1 = n − r(C) − p + r(A)

n − r(C)
, c2 = p − r(A)

n − r(C) − p + r(A) − 1
, (6.6)

where it is assumed that n − r(C) − p + r(A) − 1 > 0. Then

(i) E[R1] = 0, E[R2] = 0, E[R11] = 0, E[R12] = 0;
(ii) D[R1] = (I − PC ′) ⊗ �;

(iii) C[R1,R2] = 0, C[R2,R12] = 0, C[R2,R11] = 0, C[R11,R12] = 0;
(iv) D[R2] = PC ′ ⊗ �P Ao,	−1 + c2P C ′ ⊗ P A,	�;
(v) D[R11] = c1(I − PC ′) ⊗ PA,	�;

(vi) D[R12] = (I − P C ′) ⊗ �P Ao,	−1 + (1 − c1)(I − PC ′) ⊗ PA,	�.

Proof Since Ao′
X and X(I − P C ′) both have an expectation equal to 0 and the

residuals are odd functions in X, the expectation of any residual in statement (i)
equals 0.
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The result in statement (ii) follows because X(I−P C ′) ∼ Np,n(0,�, (I−P C ′)).
For statements (iii)–(vi), it is useful to rewrite the residuals in a canonical form.

Let, as in (4.32),

Ao′ = H (Ip−r(A) : 0)��−1/2, (6.7)

where H is a non-singular matrix, �′ = (�′
1 : �′

2): p × (p − r(A)) : p × r(A)

is orthogonal and �1/2 is a symmetric square root. Define Y = (Y ′
1 : Y ′

2)
′ ∼

Np,n(0, I , I − P C ′) with Y 1: (p − r(A)) × n, Y 2: r(A) × n, and let Z ∼
Np,n(0, I ,P C ′). Moreover, note that Z = (Z′

1 : Z′
2)

′, with Z1: (p − r(A)) × n, is
distributed independently of Y and hence also of Y 1 and Y 2. Using these matrices it
follows that the distribution of the residuals given in Definition 6.1 can be described
as follows:

• R2 = (I −P A,S)XP C ′ is distributed as �1/2�′
1Z1 +�1/2�′

2Y 2Y
′
1(Y 1Y

′
1)

−1Z1;
• R1 = X(I − P C ′) is distributed as �1/2�′Y , i.e. is normally distributed;
• R11 = P A,SX(I − P C ′) is distributed as �1/2�′

2Y 2(I − Y ′
1(Y 1Y

′
1)

−1Y 1);
(6.8)

• R12 = (I − P A,S)X(I − P C ′) is distributed as

�1/2�′
1Y 1 + �1/2�′

2Y 2Y
′
1(Y 1Y

′
1)

−1Y 1.

Moreover,

�1/2�′
1�1�

1/2 = � − A(A′�−1A)−A′, �1/2�′
2�2�

1/2 = A(A′�−1A)−A′.

(6.9)

In statement (iii) it is affirmed that the residuals R11, R12 and R2 are uncorrelated.
Because Y 1 and Y 2 are independent,

C[R11,R12] = E[vec{�1/2�′
2Y 2(I − P Y ′

1
)}vec′{�1/2�′

1Y 1}]
+E[vec{�1/2�′

2Y 2(I − P Y ′
1
)}vec′{�1/2�′

1Y 2P Y ′
1
}]

= E[(I − Y ′
1(Y 1Y

′
1)

−1Y 1)Y
′
1(Y 1Y

′
1)

−1Y 1] ⊗ �1/2�′
2�2�

1/2 = 0.

Furthermore, because Z1 is independent of Y , C[R2,R12] = 0 and C[R2,R11] =
0. Hence, statement (iii) has been established.
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Now it is shown concisely that statements (iv)–(vi) are true. Concerning state-
ment (iv), it follows, since Y 2 is independent of Y 1 and Z1, that

D[R2] = PC ′ ⊗
(

�1/2�′
1�1�

1/2

+�1/2�′
2E[Y 2Y

′
1(Y 1Y

′
1)

−1(Y 1Y
′
1)

−1Y 1Y
′
2]�2�

1/2
)

and the expectation in this expression is given in Appendix B, Theorem B.21 (vii).
Next, when studying D[R12] in statement (vi), since Y 2 is independent of Y 1,

D[R12] = (I − P C ′) ⊗ (�1/2�′
1�1�

1/2 + E[P Y ′
1
] ⊗ �1/2�′

2�2�
1/2).

Theorem B.23 (ii) in Appendix B implies

E[P Y ′
1
] = p − r(A)

n − r(C)
(I − PC ′)

and thus statement (vi) is verified. Finally, for statement (v), one can note that R11
and R12 are uncorrelated and sum to R1, from which the expression in statement
(v) can be obtained. ��
In Theorem 6.1 (iii) it was given that the three different residuals are pairwise uncor-
related. A natural question arises as to whether the residuals are indeed independent.
Unfortunately the answer is negative, i.e. the residuals are not independent. One way
of showing this is to study higher-order mixed moments of the residuals; e.g. one
can show that

E[R11R
′
11 ⊗ R2R

′
2] �= E[R11R

′
11] ⊗ E[R2R

′
2].

In univariate linear models or the MANOVA model the residuals and the estimated
mean are independent. If this were true for the BRM , this fact could be exploited,
but once again a negative answer appears. Concerning the correlation between the
residuals and the mean estimator, the following theorem holds.

Theorem 6.2 Let R2, R11 and R12 be given in Definition 6.1, and ÂBC =
P A,SXP C ′ . Then

(i) C[R11,ÂBC] = 0;
(ii) C[R12,ÂBC] = 0;

(iii) C[R2,ÂBC] = − p−r(A)
n−r(C)−p+r(A)−1P C ′ ⊗P A,	�, if n−r(C)−p+r(A)−

1 > 0.

Proof Since XP C ′ is independent of R11 and R12 both statements (i) and (ii) follow
immediately. Concerning statement (iii),

C[R2,ÂBC] = C[XPC ′,ÂBC] − D[ÂBC] = P C ′ ⊗ P a,	� − D[ÂBC],

and D[ÂBC] was presented in Theorem 4.3 (ii). Hence, statement (iii) is verified.
��
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Since R2 measures the deviation from the model, but according to statement (iii)
of the theorem is also correlated with ÂBC, any conclusion based on R2 should
also take this fact into account; i.e. marginal inference based on R2 should not be
performed uncritically. Moreover, note that the covariance is negative and that it
“diminishes” when n increases.

The next theorem includes unbiased estimators of the dispersion of the residuals
which can be used when quickly evaluating them, i.e. to decide about the tails of the
distribution of the residuals. However, it is questionable to suppose unbiasedness
for functions of quadratic expressions, since in general quadratic forms are not
symmetrically distributed. On the other hand, there are no obvious alternative
estimators which are easily calculated.

Theorem 6.3 Let D[R2], D[R11] and D[R12] be given in Theorem 6.1 and ̂�

in Theorem 3.1. Then, the following estimators are unbiased estimators of the
dispersion of the residuals (the constants c1 and c2 are presented in Theorem 6.1):

(i) if n − r(C) − p + r(A) > 0,

D̂[R11] = n
n−r(C)

(I − P C ′) ⊗ P A,̂	
̂�;

(ii) if n − r(C) − p + r(A) − 1 > 0,

D̂[R12] = (I − PC ′) ⊗ (̂� + ( r(C)
n

(1 − c2) − c1)
n

n−r(C)−p+r(A)
P A,̂	

̂�);

(iii) if n − r(C) − p + r(A) − 1 > 0,

D̂[R2] = PC ′ ⊗ (̂� + (c2 − 1 + r(C)
n

(1 − c2))
n

n−r(C)−p+r(A)
P A,̂	

̂�).

Proof The proof of the three statements is based on a combination of E[̂�], given
in Theorem 4.6 (ii), and (see Theorem B.20 (v) in Appendix B)

nA(A′
̂�

−1
A)−A′ = A(A′S−1A)−A′

∼ Wp(A(A′�−1A)−A′, n − r(C) − p + r(A)).

��
The condition n−r(C)−p+r(A) > 0 in statement (i) and n−r(C)−p+r(A)−1 >

0 in statements (ii) and (iii) are needed to secure existence of c1 and c2.
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6.3 Distribution Approximations of the Residuals in the
BRM

In the previous section the most basic properties for the three residuals R11, R12
and R2 were presented. Next the distribution of the residuals is studied, but this
can only be performed approximately. As for the MLEs, an Edgeworth-type density
approximation will be derived.

Since n−1S converges to � in probability, as n → ∞ (see Appendix B,
Theorem B.18 (ii)), the residuals R11, R12 and R2 can respectively be approximated
as follows by

R11N = P A,	X(I − PC ′) ∼ Np,n(0,A(A′�−1A)−A′, I − P C ′), (6.10)

R12N = (I − P A,	)X(I − P C ′) ∼ Np,n(0,�Ao(Ao′�Ao)−Ao′�, I − P C ′),
(6.11)

and

R2N = (I − PA,	)XP C ′ ∼ Np,n(0,�Ao(Ao ′�Ao)−Ao′�,P C ′), (6.12)

respectively. Moreover, R11 = R11N −U11, R12 = R12N −U 12, R2 = R2N −U2,
where

U11 = (PA,	 − P A,S)X(I − P C ′), U 12 = −U 11 (6.13)

and

U 2 = (PA,	 − P A,S)XPC ′ . (6.14)

In Sect. 5.3 the density approximation of the mean estimator in the BRM

was considered and a U -matrix (“error matrix”) was obtained, which in turn was
independent of the normally distributed approximating quantity. This is not true for
the above-suggested U11, U 12 and U2. These quantities only satisfy C[R•N,U•] =
0, i.e. the U -matrices are uncorrelated with the quantities which approximate
the residuals. Under some mild conditions, according to Corollary 5.3, we can
approximate the density of the residual with another density, although this time no
error bound for the approximation can be presented. Concerning U 11 and U 12, the
main difference compared with the mean estimator in the BRM is that X(I − P C ′)
is not independent of S, unlike XP C ′ which is part of the mean. The independence
between S and XPC ′ was important when considering the mean estimator. To find
an error bound of the approximation is, of course, of interest. However, this is
more crucial for the density approximation of the mean estimators than that of the
residuals. One reason is that in this case one intends to compare the residuals from
all the different subjects and, since one is carrying out the same procedure for each
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subject, it is often not very essential to find an upper error bound, because it will not
increase the discrimination power among the subjects. The matter of importance
is the distribution of the multiple comparison procedure which is applied for each
residual, which will be treated in detail in Sect. 6.4.

Now some basic moment relations are presented which will be used in the
theorems presented below where Edgeworth-type approximations are presented.
The results follow from Theorem 6.1, where c2 (used below) is also defined and
supposed to exist. From (6.10) to (6.12) the said moment relations are as follows:

E[R11] = E[R11N ] = 0, E[R12] = E[R12N ] = 0, E[R2] = E[R2N ] = 0,

(6.15)

D[R11] − D[R11N ] = −p − r(A)

n − r(C)
(I − P C ′) ⊗ PA,	�, (6.16)

D[R12] − D[R12N ] = p − r(A)

n − r(C)
(I − PC ′) ⊗ P A,	�, (6.17)

D[R2] − D[R2N ] = c2P C ′ ⊗ P A,	�. (6.18)

Note that (6.16) shows that the approximation suggested by (6.10) has a larger
variation than the quantity which is to be approximated and this is not desirable.
The result in (6.16) indicates that something is not optimal, which follows from the
fact that S and X(I − P C ′) are dependent.

However, the approximation can be sharpened, somewhat, and an approximation
will indeed be derived whose error has a mean which equals 0 and is independent of
the approximating variable. The idea is to manipulate R11N in R11 = R11N − U 11.
Instead of R11N ,

P A,	XM(I − P C ′) = P A,	XM

(

0 0
0 In−p+r(A)

)

(I − P C ′)

+ PA,	XM

(

Ip−r(A) 0
0 0

)

(I − P C ′)

will be used, where M is an orthogonal matrix which satisfies

P ′
Ao,S−1X(I − PC ′) = XM

(

Ip−r(A) 0
0 0

)

M ′;
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i.e. an eigenvalue decomposition of the idempotent matrix (I−P C ′)X′Ao(Ao′
X(I−

P C ′)(I − P C ′)X′Ao)−Ao′
X(I − P C ′) has taken place. Thus,

R11 = P A,	XM

(

0 0
0 I n−p+r(A)

)

(I − P C ′)

+ P A,	XM

(

Ip−r(A) 0
0 0

)

(I − P C ′) − U 11.

The explanation for our next result is that P A,	X and PA,	XM have marginally
the same normal distribution, since M ′M = I and M is independent of PA,	X,
but PA,	XM has some advantages in comparison with P A,	X, i.e. it is possible
to have an approximating quantity which is independent of the error.

Theorem 6.4 The distribution of the residual R11 given in Definition 6.1 can be
approximated through the difference

R11 = ˜R11N − U11x,

where

˜R11N = PA,	XM

(

0 0
0 In−p+r(A)

)

(I − P C ′)

is normally distributed and

U 11x = −P A,	XM

(

Ip−r(A) 0
0 0

)

(I − PC ′) + (P A,	 − P A,S)X(I − PC ′),

with ˜R11N and U 11x being independently distributed and M satisfying

M

(

Ip−r(A) 0
0 0

)

M ′

= (I − P C ′)X′Ao(Ao′
X(I − PC ′)(I − P C ′)X′Ao)−Ao′

X(I − P C ′).

Proof First note that

(P A,	 − PA,S)X(I − P C ′) = P A,	(I − P A,S)X(I − P C ′)

= P A,	P ′
Ao,S−1X(I − P C ′) = P A,	XM

(

Ip−r(A) 0
0 0

)

M ′.
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It will be proved that ˜R11N and U11x are independently distributed. Note that
A′�−1X and Ao′

X are independent, which implies that PA,	XM and M are
independent, since M is a function of Ao′

X and the distribution of XM is

independent of M . Moreover, P A,	XM

(

0 0
0 I n−p+r(A)

)

is independent of

P A,	XM

(

Ip−r(A) 0
0 0

)

, since the expressions comprise different independent

observations. Thus, the theorem has been established. ��
Note that the sizes of I • in the decomposition, i.e. Ip−r(A) and In−p+r(A), follow
from

r((I − P C ′)X′Ao) = r(SAo) = r(Ao) = p − r(A).

Hence, the distribution of R11 is approximated with a subset of XM . It is somewhat
unsatisfactory that the decomposition is not unique and there are in fact

(

n
p−r(A)

)

possibilities to approximate.
For the Edgeworth-type approximations of the density for R11 in the following,

moments of order 1 and 2 are needed and for their error terms moments of the fourth
order have to be obtained. Therefore, it is noted that

E[R11] = E[˜R11N ] = 0,

D[R11] − D[˜R11N ]

= (c1(I − P C ′) − (I − P C ′)

(

0 0
0 In−p+r(A)

)

(I − PC ′)) ⊗ PA,	�, (6.19)

with c1 defined in Theorem 6.1. Unfortunately, the difference in (6.19) is not positive
definite. The derivation of the fourth-order moments will be omitted, since this needs
relatively lengthy calculations, but these calculations follow those performed when
obtaining higher-order moments for the estimators in the BRM . Moreover, since the
densities for R11 and ˜R11N do not exist, linear combinations of the residuals with
dispersion matrices which are of full rank will be considered. Indeed, residuals are
commonly evaluated via KR•L, where K and L may be vectors and, in particular,
unit basis vectors which select one element of R• (• means that it can be R11, R12,
R1 or R2). The proof of the next theorem follows from Theorem 5.2 and (6.19).

Theorem 6.5 For the BRM , let the residual R11 be as given in Definition 6.1, let
K: p1 × p and L: n × n1, both of which are known, and let

K˜R11NL ∼ Np1,n1(0,KA(A′�−1A)−A′K ′,D),

D = L′(I − P C ′)

(

0 0
0 In−p+r(A)

)

(I − P C ′)L.
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Then an Edgeworth-type expansion of the density of KR11L, via the density of
K˜R11NL and under the assumption that D[K˜R11NL] is p.d., equals

fKR11EL(KRoL) + r,

where

fKR11EL(KRoL) = {

1 − 1
2c1p1tr{L′(I − P C ′)LD−1} + 1

2p1n1

+ 1
2 tr{(KA(A′�−1A)−A′K ′)−1KRoLD−1

×(c1L
′(I − P C ′)L − D)D−1L′R′

oK
′}}

×fK˜R11NL(KRoL);

c1 is supposed to exist and is defined in Theorem 6.1, and the leading term of |r| is
proportional to E[vec(K(R11 −˜R11N)L)⊗4] which is a function of A, C, K and L.

The two most basic moment properties of KR11EL are now given. Statement (ii) in
particular will be used later.

Corollary 6.1 Let KR11EL be defined via fKR11EL(KRoL), presented in Theo-
rem 6.5, where it is assumed that fKR11EL(KRoL) ≥ 0. Then

(i) E[KR11EL] = 0;
(ii) D[KR11EL] = c1L

′(I − P C ′)L ⊗ KA(A′�−1A)−A′K ′.

Proof The derivation of statement (ii) follows from Appendix B, Theorem B.23 (i),
because according to the theorem

D[KR11EL] = (

1 − 1
2c1p1tr{L′(I − P C′)LD−1} + 1

2p1n1
)

D ⊗ KA(A′�−1A)−A′K ′

+ 1
2p1tr{D−1(c1L

′(I − P C′)L − D)}D ⊗ KA(A′�−1A)−A′K ′

+(c1L
′(I − P C′)L − D) ⊗ KA(A′�−1A)−A′K ′

which is identical to statement (ii). ��
Now we switch from a discussion of R11 to a discussion of the other two

residuals, R12 and R2, presented in Definition 6.1. However, for these residuals
no results will be presented which correspond to Theorem 6.4, i.e. no modification
like the one which led to ˜R11N will take place. The next two theorems are based on
Corollary 5.3, and density approximations for R12 and R2 are presented.

Theorem 6.6 The distribution of the residual R12 given in Definition 6.1, can be
approximated through the difference

R12 = R12N − U 12,
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where R12N and U12 are defined by (6.11) and (6.13), respectively. Let K: p1 × p

and L: n × n1, both of which are known, and

KR12NL ∼ Np1,n1(0,K�P Ao,	−1K
′,L′(I − P C ′)L).

Then an Edgeworth-type expansion fKR12EL(KRoL) of the density of KR12L, via
the density of KR12NL, under the assumption that D[KR12NL] is p.d., is given by

fKR12EL(KRoL) = {

1 − 1
2

p−r(A)
n−r(C)

n1tr{KPA,	�K ′(K�P Ao,	−1K ′)−1}
+ 1

2c1tr{(K�P Ao,	−1K ′)−1KP A,	�K ′(K�P Ao,	−1K ′)−1

× KRoL(L′(I − P C ′)L)−1L′R′
oK

′}}fKR12NL(KRoL),

where c1, supposed to exist, is defined in Theorem 6.1.

Corollary 6.2 Let KR12EL be defined via fKR12EL(KRoL), given in Theo-
rem 6.6, where it is assumed that fKR12EL(KRoL) ≥ 0. Then

(i) E[KR12EL] = 0;
(ii) D[KR12EL] = L′(I − P C ′)L ⊗ (f1K�P Ao,	−1K ′ + c1KP A,	�K ′),

where

f1 = 1 − 1
2

p−r(A)
n−r(C)

n1tr{KP A,	�K ′(K�P Ao,	−1K
′)−1}

+ 1
2c1n1tr{(K�P Ao,	−1K ′)−1KP A,	�K ′}.

Theorem 6.7 The distribution of the residual R2, given in Definition 6.1, can be
approximated through the difference

R2 = R2N − U 2,

where R2N and U 2 are defined by (6.12) and (6.14), respectively. Let K: p1 × p

and L: n × n1, both of which are known, and

KR2NL ∼ Np1,n1(0,K�P Ao,	−1K ′,L′P C ′L).

Then an Edgeworth-type expansion fKR2EL(KRoL) of the density of KR2L, via
the density of KR2NL, under the assumption that D[KR2NL] is p.d., is given by

fKR2EL(KRoL) = {

1 − 1
2c2p1n1

+tr{(KPA,	�K ′)−1KRoL(L′P C ′L)−1L′R′
oK

′}}fKR2N L(KRoL),

where c2, supposed to exist, is defined in Theorem 6.1.
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Corollary 6.3 Let KR2EL be defined via fKR2EL(KRoL), given in Theorem 6.7,
where it is assumed that fKR2EL(KRoL) ≥ 0, and suppose that c2p1n1 ≤ 2.
Then

(i) E[KR2EL] = 0;
(ii) D[KR2EL] = (

1− 1
2c2p1n1+n1tr{(KP A,	�K ′)−1K�P Ao,	−1K ′})L′P C ′L

⊗K�PAo,	−1K ′

+2L′PC ′L⊗K�PAo,	−1K ′(KP A,	�K ′)−1K�P Ao,	−1K ′.

6.4 Mean Shift Evaluations of the Residuals in the BRM

In the presentation of Sect. 6.3, approximate densities of the residual matrices R11,
R12 and R2 have been obtained. The expressions depend on unknown dispersion
parameters and if one uses the densities directly, the parameters have to be replaced
by estimates. This can be carried out and then it is possible to look for extreme
values in the data set i.e., one tries to understand if the extreme observations are in
the tail of the distribution.

However, one should remember that a weak point of Edgeworth-type expansions
is that the tails of the distributions may be poorly estimated.

Another approach, already demonstrated in Sect. 6.1, where it was shown how it
can work for the MANOVA model, is based on statistical testing for extreme obser-
vations. This can be achieved by studying the so-called mean shift assumptions. In
this case a model is assumed for the residuals. Let R• represent any of the residuals
R11, R12, R1 and R2. Then the model which will be studied can, in principle, be
written as follows:

R• = F�G + E•, (6.20)

where the density for E• is one of the densities presented in Theorem 6.5,
Theorems 6.6 and 6.7 or the matrix normal density.

The F and G matrices in (6.20) can correspond to the five cases mentioned in
Sect. 6.1, i.e. F = 1, F = dj or F = I , and G = 1′, G = e′

i or G = I , where dj

and ei stand as usual for the unit basis vectors.
A test can be constructed for testing H0 : � = 0 via the previous theorems

where density approximations were derived. The idea is to construct, for any given
�, a test which is similar to the likelihood ratio test. Many tests will be performed,
e.g. for each i and j in {d i , ej }, and the maximum value or some of the largest values
of the test statistics are of interest. Even if we were to estimate �, the distribution
of the test statistic would still be a function of �. Therefore, no energy will be
spent on obtaining special estimators of � so that pivot quantities will appear which
are completely independent of all the parameters. Instead, when interpreting the
distribution of the mean shift test, only the MLE of � from the BRM will be utilized
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as a consistent plug-in estimator. An obvious alternative estimator which might be
used is the unbiased estimator presented in Theorem 4.7.

In the following a number of test statistics will be presented which will later be
evaluated through a parametric bootstrap approach. Let us start with R12 and some
preparations. The density approximation given by Theorem 6.6 cannot be directly
applied if D[KR12EL] is singular, and therefore an appropriate working density
has to be found. For example, when applying a likelihood-based approach, densities
have to exist. Under H0, i.e. with no mean shift, the information about the residuals
is solely available on the space connected to the eigenvalues of D[R12N ] which are
larger than 0, where the dispersion is given in Theorem 6.6. Therefore, D[R12N ] is
spectrally decomposed as

D[R12N ] = V V ′ ⊗ WW ′, V : n × (n − r(C)), W : p × (p − r(A));

i.e. �P Ao,	−1 = WW ′ and I − P C ′ = V V ′. Note that W is a function
of �, and later, when analysing data, W is obtained by factorizing ̂�P Ao,̂	−1 ,
i.e. ̂�P Ao,̂	−1 = WW ′. A modified non-singular residual can be obtained by pre-
and post-multiplying R12 in the following suitable way:

RN
12 = (W ′W )−1W ′R12V (V ′V )−1;

this density approximation leads to a non-singular distribution. By choosing K =
(W ′W )−1W ′ and L = V (V ′V )−1 Theorem 6.6 can be applied directly and an
appropriate density has been obtained. Hence, the following formal model will be
“tested”:

RN
12;ij = Kdj θe′

iL + E12, (6.21)

where E12 has the density presented in Theorem 6.6 with the particular choices of
K and L provided above. Moreover, note that RN

12;ij is the same matrix as RN
12 but

in order to indicate which residual is to be tested, RN
12;ij is used. It follows that

D[KRN
12L] = Ip1n1 , where p1 = p − r(A), n1 = n − r(C) and it is supposed that

K is a function of �, not ̂�. Note that RN
12 bears the same amount of information

as R12.
Let LN

12;ij (̂θ) and LN
12;ij denote the likelihood for RN

12;ij under H1: θ �= 0 and H0:
θ = 0, respectively, where under H1 an estimator of θ is needed. If a strict likelihood
ratio test were to be constructed, ̂θ would have to be the MLE for θ . However, this
estimator can only be obtained via an iterative algorithm due to the expression for
the density of E12 given in Theorem 6.6. Instead a least squares approach can be
used, e.g.

min
θ

tr{T −1(RN
12;ijo − Kdj θe′

iL)()′},
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where

T = f1I + c1KP A,	�K ′; (6.22)

f1 and c1 are presented in Corollary 6.2 and Theorem 6.1, respectively, and RN
12;ijo

is the observation of RN
12;ij which equals

RN
12;ijo = (W ′W )−1W ′R12oV (V ′V )−1.

A unique least squares solution under the assumption of a known � is given by

̂θo = (d ′
jK

′T −1Kdj )
−1d ′

jK
′T −1RN

12;ijoL
′ei (e

′
iLL′ei )

−1. (6.23)

If one replaces � by its MLE presented in Theorem 3.1, there is enough information
for forming a test statistic for testing H0: θ = 0, which is then given by

Tijo = LN
12;ij (̂θo)

LN
12;ij

. (6.24)

However, one may question this approach, because it depends on the approximat-
ing density and its singularity; i.e. one may question whether an estimator should
be based on the matrices K and L, which appear because of the choice of the
approximating distribution.

An alternative approach is to use the observation (R12o)ij as an estimate of θ

when considering dj θe′
i . This implies that the likelihood ratio in (6.24) is in fact a

ratio between a density without the ij th observation (with an improper standardizing
constant) and a density for all the observations. In the following examples this latter
choice of ̂θo will be applied.

Let ij1 denote the pair of indices which corresponds to maxij Tijo, ij2 is the pair
of indices which corresponds to the second largest value in {Tijo} and ij3 is the pair
of indices which identifies the third largest value in {Tijo}. Now the remaining task
is to determine the distribution of the corresponding Tij1 , Tij2 and Tij3 .

The statistic in (6.24) has been constructed via density approximations and a
“semi-likelihood ratio test” approach. If the observations are replaced by their
corresponding random variables, we can write as follows:

Tij = LN
12;ij (̂θ)

LN
12;ij

, ̂θ = d ′
jR12ei , (6.25)

and our interest is, for example, Tij1 and its distribution. One way of handling this
distribution is via simulations. However, it is less clear how these simulations should
be performed. The density presented in Theorem 6.6 can be used and via a random
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number generating algorithm, suited to handling a known multivariate density, one
can obtain observations so that the distribution for Tij1 can be described.

In this book a somewhat easier approach is applied. The proposed strategy is to
generate observations, Xo, according to

X ∼ Np,n(0,̂�o, I ),

where ̂� is presented in Theorem 3.1. In other words the parametric bootstrap
philosophy is applied. Note that other relevant estimators of � could also have been
used. The observations Xo are then used to calculate R12o = (I − P A,̂	o

)Xo(I −
P C ′). Thereafter LN

12;ij (̂θo) and LN
12;ij are calculated, as well as {Tijo}. Thus, Tijk ,

k = 1, 2, 3, is obtained. This process can be repeated a large number of times, and
a density can thereby be estimated, which can be used to determine how far out in
the tails of the distributions the original deviating residuals appear.

When working with vector-valued residuals, instead of single elements of the
residual matrix, as above, there is one immediate advantage of using a test statistic
instead of directly working with the density. The advantage is that it is easier to draw
conclusions from a one-dimensional test statistic than to draw conclusions based on
an evaluation of a multivariate density function.

In the next example the above ideas are illustrated.

Example 6.1 (The Classical Potthoff and Roy (1964) Data Set) The data have
already been used for illustration, see Examples 1.7 and 3.1. The residual R12o =
(I − P

A,S−1
o

)Xo(I − P C ′) is presented in Table 6.1 together with the test statistic
presented in (6.25).

It is seen from Table 6.1 that the test statistic reflects the size of the components
in R12o, which supports the presented approach. Hence, the remaining task is to
find the distribution of the large residuals, taking into account the fact that one
has to investigate 108 correlated observations from 27 independently distributed
individuals. In Table 6.2, simulated quantiles for Tij1 , Tij2 and Tij3 are presented.
It is only T203o = 1367.0 which is significant, since it is larger than Tij1o at a
95% level. Moreover, note the small value T201o = 0.5. Since maximum likelihood
estimators are not used, the test statistic can become smaller than 1, but this value is
clearly much smaller than the other values. Since both the smallest and the largest
value appeared for the same individual, i.e. #20, and we know beforehand that
observations within individuals are correlated, we can only conclude that individual
#20 deviates from the others. Table 6.2 also gives simulated quantiles for the
residuals corresponding to the three largest (by absolute value) residuals, R12;ij1o,
R12;ij2o and R12;ij3o. The results are in agreement with those based on the test
statistic given by (6.25); i.e. individual #20 deviates. It is interesting to determine
how large the residuals need to be in order to become significant; i.e. even if the
residuals are asymptotically normally distributed with mean 0 and a variance which,
according to Table 6.1, does not seem to imply great variability, large values are still
not very unlikely to appear. ��
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Table 6.1 The residuals R12o = (I − P
A,S−1

o
)Xo(I − P C′ ) = (R12;ijo) and the test statistic

given in (6.25) applied to the Potthoff and Roy (1964) data presented in Table 1.2

Residuals Test statistics

id Gender R12;i1o R12;i2o R12;i3o R12;i4o Ti1o Ti2o Ti3o Ti4o

1 F 1.22 −0.87 −0.29 0.16 2.0 1.5 1.1 1.0

2 F 0.77 −0.54 0.33 0.07 1.2 1.1 1.0 1.0

3 F −1.12 0.80 −0.10 −0.13 1.7 1.4 1.0 1.0

4 F 0.05 −0.04 −0.44 0.03 1.0 1.0 1.1 1.0

5 F −0.54 0.38 −0.51 0.04 1.1 1.1 1.0 1.0

6 F −0.08 0.05 −0.64 0.03 1.0 1.0 1.1 1.0

7 F 0.16 −0.12 −0.71 0.06 1.0 1.0 1.2 1.0

8 F 0.29 −0.21 −0.02 0.03 1.0 1.0 1.0 1.0

9 F −0.28 0.21 0.88 −0.08 1.1 1.0 1.3 1.0

10 F −1.00 0.71 0.11 −0.12 1.6 1.3 1.0 1.0

11 F 0.55 −0.38 1.37 −0.01 1.0 1.0 1.3 1.0

12 M 1.47 −1.04 0.47 0.15 2.2 1.6 0.9 1.0

13 M 0.02 −0.03 −1.55 0.09 1.0 1.0 1.8 1.0

14 M 0.97 −0.70 −1.34 0.19 1.8 1.4 2.2 1.0

15 M −1.49 1.05 −0.38 −0.15 2.3 1.7 0.9 1.0

16 M −1.51 1.06 −1.84 −0.08 1.6 1.4 1.1 1.0

17 M −0.18 0.13 −0.02 −0.02 1.0 1.0 1.0 1.0

18 M 0.64 −0.45 −0.02 0.02 1.2 1.1 1.0 1.0

19 M 1.71 −1.21 0.41 0.18 3.0 2.0 0.9 1.0

20 M 2.18 −1.49 6.87 −0.12 0.5 0.9 1367.0 1.0

21 M 0.19 −0.13 1.09 −0.04 1.0 1.0 1.3 1.0

22 M 0.04 −0.03 −0.58 0.04 1.0 1.0 1.1 1.0

23 M −0.33 0.22 −1.69 0.05 0.9 1.0 1.7 1.0

24 M −2.78 1.97 −0.25 −0.31 22.2 6.9 0.8 1.1

25 M −1.71 1.22 0.18 −0.21 3.6 2.2 1.1 1.0

26 M 0.14 −0.11 −1.34 0.09 1.0 1.0 1.6 1.0

27 M 0.64 −0.45 −0.02 0.08 1.2 1.1 1.0 1.0

Up to now only single observations, i.e. d ′
jR12ei , have been studied. If instead

individuals are of interest, R12ei will be exploited and there are two different models
which one should, “naturally”, investigate. The first model equals

RN
12;i = Kθe′

iL + E12, (6.26)

where K, L and E12 are as in (6.21) and RN
12;i = RN

12, where i is only used
to indicate the mean shift for the ith observation; the notation also applies to the
likelihood functions LN

12;i(̂θo) and LN
12;i given below. Now θ is a vector of size p,

meaning that there is a shift for each component of the residual connected to the ith
observation vector. If, however, the mean shift is the same for each component, then
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Table 6.2 Estimated quantiles for Tij1 , Tij2 and Tij3 connected to the test statistics Tij1o, Tij2o

and Tij3o, with Tij defined in (6.25), and applied to the Potthoff and Roy data set presented in
Table 1.2

Quantile Tij1o Tij2o Tij3o R12;ij1o R12;ij2o R12;ij3o

100% max 1.7×106 1.3×104 1.9×103 8.6 7.5 6.0

99% 3.9×103 2.2×102 66.3 6.4 5.2 4.6

95% 4.2×102 64.2 27.4 5.5 4.5 4.0

90% 1.7×102 37.7 18.1 5.0 4.2 3.7

75% 51.3 17.5 10.2 4.3 3.7 3.3

50% 18.5 9.1 6.3 3.7 3.1 2.8

25% 8.9 5.5 4.2 3.1 2.7 2.5

10% 5.3 3.8 3.1 2.7 2.4 2.2

5% 4.1 3.1 2.6 2.5 2.2 2.0

1% 2.7 2.3 2.1 2.1 1.9 1.8

0% min 1.6 1.5 1.5 1.6 1.5 1.5

Estimated quantiles are given for the three largest (by absolute value) residuals, R12;ij ko,
k = 1, 2, 3, obtained from the same data set. The estimated quantiles are based on 10,000
simulations

instead of (6.26) the following second model can be used:

RN
12;i = K1pθe′

iL + E12, (6.27)

where E12 follows the distribution (density) presented in Theorem 6.6.
Let us start by constructing a test for H0: θ = 0 in (6.26). Via a least squares

approach, an estimate of θ is given by

̂θo = (K ′T −1K)−1K ′T −1RN
12;ioL

′ei (e
′
iLL′ei )

−1,

where T is given in (6.22), and in T as well as RN
12;i the unknown � is replaced

by an appropriate estimate. Alternatively, similar to the treatment of R12;ij , an
unweighted estimator,

̂θ = R12ei , (6.28)

can be utilized. In this case, a test statistic corresponding to (6.24), when, for
example, (6.28) is used, equals

Tio = LN
12;i(̂θo)

LN
12;i

, (6.29)

where LN
12;i equals LN

12;ij , given above, i.e. the likelihood under the H0 of no mean

shift. Moreover, LN
12;i(̂θo) is the likelihood under the alternative hypothesis where θ
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Table 6.3 The same data as in Table 6.1 are analysed, but in this table the test statistic for column-
wise mean shift, Tio, based on (6.28) and (6.29), is presented

Individual

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tio 2.4 1.3 1.8 1.1 1.1 1.1 1.2 1.0 1.4 1.7 1.5 2.5 1.8 3.5

T io 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.0 1.2 1.0 1.5 1.0 1.6 1.5

Individual

15 16 17 18 19 20 21 22 23 24 25 26 27

Tio 2.6 3.2 1.0 1.2 3.5 9379.2 1.3 1.1 1.8 36.0 4.6 1.7 1.2

T io 1.0 2.0 1.0 1.0 1.0 9486.7 1.3 1.1 1.8 1.0 1.0 1.4 1.0

The test statistic for column-wise mean shift, T io, based on (6.30) and (6.31), is also shown

has been estimated by the ith column of R12o, and hence the likelihood LN
12;i (̂θo),

besides including a correct standardization constant, is the likelihood of all the
observations except the ith one. Based on Tio in (6.29), the distribution of the test
statistic Tik , k = 1, 2, 3, can be simulated, i.e. the distribution of the largest, second
largest and third largest value of the statistic can be simulated. The procedure is
illustrated in the next example.

Example 6.2 (The Classical Potthoff and Roy (1964) Data Set, Given in Table 1.2.)
The residual R12o = (I − P A,S−1)Xo(I − P C ′) was presented in Table 6.1, and in
Table 6.3 the test statistic of no mean shift in columns according to (6.29) is shown
for the case where (6.28) is used as an estimate of θ . Moreover, the quantiles of the
three largest values of the test statistic are presented in Table 6.4.

From Tables 6.3 and 6.4 it follows that only individual #20 has an extreme
residual, since T20o = 9379.2 is larger than Ti1o at a 95% level, which is in complete
agreement with the results of the mean shift analysis presented in Tables 6.1 and 6.2.
Furthermore, in Tables 6.1 and 6.3, one can observe that the behaviour of individual
#24 is peculiar too, but it is not significantly peculiar. ��

Now the alternative test procedure based on H0: θ = 0 in (6.27) is discussed
in some detail. It is assumed that there is a mean shift which is equal for all the
components in a column of R12, for example the ith column. The least squares
approach yields an estimate of θ which equals

̂θo = (1′K ′T −1K1)−11′K ′T −1RN
12ioL

′ei (e
′
iLL′ei )

−1, (6.30)

where T is given in (6.22) with � in T replaced by an estimator, for example the
unbiased one presented in Theorem 4.7. The replacement of � by ̂� also applies
to RN

12io. Moreover, the hypothesis concerning H0, together with the least squares
approach, implies a somewhat different interpretation of the residual evaluation than
that given above, i.e. the interpretation of the test statistic in (6.29). A test statistic



244 6 Residuals

Table 6.4 Estimated quantiles connected to the test statistics Tiko and T iko, k = 1, 2, 3,
respectively, defined in (6.29) and (6.31), are presented

Quantile Ti1o Ti2o Ti3o T i1o T i2o T i3o

100% max 7.6×106 4.1×104 2.5×103 3.0×106 4.0×104 1.9×103

99% 1.7×104 6.3×102 1.7×102 4.4×103 2.3×102 59.5

95% 1.6×103 1.6×102 59.9 4.2×102 57.0 22.5

90% 5.6×102 91.4 37.7 1.5×102 29.5 13.8

75% 1.5×102 37.2 19.3 37.8 12.2 7.1

50% 44.8 17.3 10.5 11.0 5.5 3.8

25% 18.3 9.1 6.2 4.6 2.9 2.3

10% 9.6 5.7 4.2 2.5 2.0 1.7

5% 7.0 4.4 3.4 2.0 1.6 1.5

1% 4.0 3.1 2.5 1.3 1.2 1.2

0% min 1.7 1.6 1.6 1.0 1.0 1.0

The estimated quantiles are based on 10,000 simulations

corresponding to (6.29) equals

T io = LN
12;i(̂θo)

LN
12;i

, (6.31)

where ̂θo is presented in (6.30). Indeed a test based on (6.31) is close to a traditional
likelihood ratio test based on a normally distributed sample with known dispersion,
although instead of the normal density, the density in Theorem 6.6 is used. The
test statistic is illustrated in the next example. However, any significant results only
reflect that the equal mean shift hypothesis is not true and do not automatically
imply that the residuals are extreme.

Example 6.3 (The Classical Potthoff and Roy (1964) Data Set Given in Table 1.2)
The residual R12o = (I − P

A,S−1
o

)Xo(I − P C ′) was presented in Table 6.1, and
in Table 6.3 the test statistic for no equal mean shift in columns according to (6.31)
is shown. Moreover, in Table 6.4 the distribution for the three largest values of the
test statistic is presented. Once again it follows that individual #20 deviates from the
others. ��
Finally, concerning the residual R12, the mean shift tests within the rows of R12 are
presented. A test statistic corresponding to (6.29) for testing H0 : θ = 0 in

R12;j = KdjθL + E12,
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where θ is a row vector of proper size and the density for E12 is presented in
Theorem 6.6, equals

Tjo = LN
12;j (̂θo)

LN
12;j

, (6.32)

where ̂θo = d ′
jR12o. The notation follows the same ideas as those used when

constructing (6.25) or (6.29). Concerning (6.32), the reader should be warned that
there are too many parameters involved and the test statistic is rather heuristic.
Moreover, a test statistic corresponding to (6.31) for testing H0 : θ = 0 in

RN
12;j = Kdj θ1′L + E12

equals

T jo = LN
12;j (̂θo)

LN
12;j

, (6.33)

where (with an estimated �)

̂θo = (d ′
jK

′T −1Kdj )
−1d ′

jK
′T −1RN

12;joL
′1(1′LL′1)−1,

and T is given in (6.22). Example 6.4 presents some explicit data analysis.

Example 6.4 (The Classical Potthoff and Roy (1964) Data Set Given in Table 1.2)
The residual R12o = (I − P

A,S−1
o

)Xo(I − P C ′) was presented in Table 6.1, and in
Table 6.5 the test statistic for no mean shift in rows according to (6.32) or (6.33) is
shown. Simulations did not reveal any significant values. Because the tests are across
individuals, a significant difference in this example would have been somewhat
difficult to explain. ��

Above, R12 has been exploited and next R11 will come into focus. However,
all the expressions concerning testing for mean shifts in R11 are similar to the
corresponding expressions for R12. Therefore, a theorem will be presented which
covers both residuals, but first a number of preparatory notations will be introduced.
As before, the problem of singularity of the distribution has to be taken care of

Table 6.5 The data in Table 6.1 are analysed and the test statistics for row-wise mean shift, Tjo

and T jo, given in (6.32) and (6.33), respectively, are presented

Time

8 12 14 16

Tjo 1.4×104 6.1×102 6.8×103 1.3

T jo 0.7 2.0 0.8 0.7
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via bilinear transformations. Let ˜R11N and R12 be defined in Theorem 6.4 and
Definition 6.1, respectively. From the above discussion concerning R12, it follows
that one can use

K12 = (W ′
2W 2)

−1W ′
2, L12 = V 2(V

′
2V 2)

−1, (6.34)

where it is assumed that D[R12N ] = V 2V
′
2 ⊗ W 2W

′
2 and

K11 = (W ′
1W 1)

−1W ′
1, L11 = V 1(V

′
1V 1)

−1, (6.35)

since

D[˜R11N ] = V 1V
′
1 ⊗ W 1W

′
1

= (I − P C ′)

(

0 0
0 In−p+r(A)

)

(I − PC ′) ⊗ A(A′�−1A)−A′

for some V i ,W i , i = 1, 2, obtained via a spectral decomposition. Note that V i

and W i are not unique and we always assume that � in K1i , i = 1, 2, has been
estimated. Five types of mean shift hypothesis will be considered, i.e.

(a) dj θe′
i , (b) θe′

i , (c) 1θe′
i , (d) dj θ1′, (e) djθ , (6.36)

with the tests H0: θ = 0 against H1: θ �= 0 and H0: θ = 0 against H1: θ unrestricted.
In the following definition, models with the above types of mean shift hypothesis
are presented, as well as the notation for the likelihood under H0 and its alternative.

Definition 6.2 Models and notation are presented for the likelihood functions
related to R11 and R12, given in Definition 6.1; these models and notation are used
when testing for mean shifts under the conditions stated in (6.36).

(a) RN
11;ij = K11dj θe′

iL11 + E11, RN
11;ijo = K11R11oL11, LN

11;ij (̂θo), LN
11;ij ,

RN
12;ij = K12dj θe′

iL12 + E12, RN
12;ijo = K12R12oL12, LN

12;ij (̂θo), LN
12;ij ;

(b) RN
11;i = K11θe′

iL11 + E11, RN
11;io = K11R11oL11, LN

11;i(̂θo), LN
11;i ,

RN
12;i = K12θe′

iL12 + E12, RN
12;io = K12R12oL12, LN

12;i(̂θo), LN
12;i;

(c) RN
11;i = K111θe′

iL11 + E11, RN
11;io = K11R11oL11, LN

11;i (̂θo), LN
11;i ,

RN
12;i = K121θe′

iL12 + E12, RN
12;io = K120R12oL12, LN

12;i (̂θo), LN
12;i;
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(d) RN
11;j = K11dj θ1′L11 + E11, RN

11;jo = K11R11oL11, LN
11;j (̂θo), LN

11;j ,

RN
12;j = K12dj θ1′L12 + E12, RN

12;jo = K12R12oL12, LN
12;j (̂θo), LN

12;j ;

(e) RN
11;j = K11dj θL11 + E11, RN

11;jo = K11R11oL11, LN
11;j (̂θo), LN

11j ,

RN
12;j = K12dj θL12 + E12, RN

12;jo = K12R12oL12, LN
12;j (̂θo), LN

12;j ;

E11 and E12 follow the densities given in Theorems 6.5 and 6.6, respectively, and
K11,K12,L11 and L12 are given in (6.34) and (6.35). The estimates of θ and θ

are presented in Theorem 6.8. Moreover, LN
1k;•(̂θo) and LN

1k;•, k = 1, 2, denote the
likelihood under H0 and the alternative hypothesis, respectively, which are based on
E1k, k = 1, 2.

Enough preparations have now been completed for the presentation of the next
theorem; the results concerning R12 have already been given in detail above.

Theorem 6.8 In Definition 6.2 notation and models with five types of mean shift
were presented for testing for no shift in the residuals R11 and R12. The test
statistics for each type are presented below.

(i) Let the models and mean shift be as in Definition 6.2 (a). Then the test statistics
T11;ijo and T12;ijo for R11 and R12, respectively, equal

T1k;ijo = LN
1k;ij (̂θo)

LN
1k;ij

, ̂θo = d ′
jR1koei , k = 1, 2.

(ii) Let the models and mean shift be as in Definition 6.2 (b). Then the test statistics
T11;io and T12;io for R11 and R12, respectively, equal

T1k;io = LN
1k;i(̂θo)

LN
1k;i

, ̂θo = R1koei , k = 1, 2.

(iii) Let the models and mean shift be as in Definition 6.2 (c). Then the test statistics
T11;io and T12;io for R11 and R12, respectively, equal

T 1k;io = LN
1k;i (̂θo)

LN
1k;i

, k = 1, 2;
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if k = 1

̂θo = (1′K ′
11K111)−11′K ′

11R
N
11;io(L

′
11(I − P C ′)L11)

−1L′
11ei

×(e′
iL11(L

′
11(I − P C ′)L11)

−1L′
11ei )

−1,

and if k = 2

̂θo = (1′K ′
12T

−1
12 K121)−11′K ′

12T
−1
12 RN

12;ioL
′
11ei (e

′
iL11L

′
11ei )

−1,

where T 12 equals T , given by (6.22), where an estimate of� has been plugged-
in.

(iv) Let the models and mean shift be as in Definition 6.2 (d). Then the test statistics
T11;jo and T12;jo for R11 and R12, respectively, equal

T 1k;jo = LN
1k;j (̂θo)

LN
1k;j

, k = 1, 2;

if k = 1

̂θo = (d ′
jK

′
11K11dj )

−1d ′
jK

′
11R

N
11;jo(L

′
11(I − PC ′)L11)

−1L′
111

×(1′L11(L
′
11(I − P C ′)L11)

−1L′
111)

−1,

and if k = 2

̂θo = (d ′
jK

′
12T

−1
12 K12dj )

−1d ′
jK

′
12T

−1
12 RN

12;joL
′
111(1

′L11L
′
111)

−1,

where T 12 equals T given by (6.22).
(v) Let the models and mean shift be as in Definition 6.2 (e). Then the test statistics

T11;jo and T12;jo for R11 and R12, respectively, equal

T1k;jo = LN
1k;j (̂θo)

LN
1k;j

, ̂θo = d ′
jR1ko, k = 1, 2.

Proof Almost all the statements of the theorem were explained when considering
R12 above. It should be added here that a weighted least squares estimator is used
for k = 1 in statements (iii) and (iv), based on Corollary 6.1 (ii). ��

All the five types of mean shifts can now be investigated. The ideas will once
again be illustrated by analysing the Potthoff and Roy data, and this time R11 is
considered. However, our focus will be fixed on individuals, i.e. cases (a)–(c) in
Definition 6.2, and therefore Theorem 6.8 (i)–(iii) are applied.
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Table 6.6 The residual R11o = P
A,S−1

o
Xo(I − P C′ ) = (R11;ijo) and the test statistic given in

Theorem 6.8 (i) applied to the Potthoff and Roy (1964) data given in Table 1.2

Residuals Test statistics

id Gender R11;i1o R11;i2o R11;i3o R11;i4o T11;i1o T11;i2o T11;i3o T11;i4o

1 F −1.41 −01.35 −1.30 −1.25 2.8 2.0 0.7 0.2

2 F −0.95 −0.19 0.58 1.34 2.6 1.1 1.1 2.4

3 F 0.44 0.97 1.50 2.03 1.0 1.0 1.2 1.1

4 F 2.27 2.31 2.34 2.38 1.4 1.7 1.2 1.1

5 F 0.86 0.39 −0.08 −0.56 1.5 1.1 1.0 1.3

6 F −1.11 −1.28 −1.45 −1.62 0.7 0.9 1.2 1.3

7 F 0.16 0.39 0.62 0.85 1.0 1.0 1.0 0.9

8 F 1.53 0.98 0.43 −0.13 2.3 1.3 0.9 1.1

9 F −0.90 −1.44 −1.97 −2.51 0.6 0.8 1.6 2.4

10 F −3.68 −3.94 −4.20 −4.47 0.2 1.4 3.3 1.1

11 F 2.77 3.15 3.54 3.92 0.5 1.0 2.1 0.5

12 M 1.65 2.23 2.81 3.39 0.5 1.0 2.0 1.8

13 M −1.40 −1.29 −1.17 −1.06 1.1 1.1 1.0 0.9

14 M −0.84 −0.61 −0.38 −0.15 1.1 1.1 1.0 1.0

15 M 4.11 2.63 1.16 −0.32 34.1 3.9 0.8 1.4

16 M −1.36 −1.37 −1.38 −1.39 1.0 1.1 1.1 0.9

17 M 1.81 1.56 1.30 1.05 1.3 1.3 1.0 0.8

18 M −1.5 −1.4 −1.2 −1.0 1.1 1.2 1.0 0.9

19 M −0.58 −1.1 −1.6 −2.1 0.8 0.9 1.3 1.6

20 M −2.06 −1.82 −1.59 −1.35 1.3 1.4 1.0 0.7

21 M 4.43 4.31 4.19 4.07 1.0 3.7 2.1 0.3

22 M 0.08 −0.78 −1.64 −2.51 1.0 0.9 1.5 2.9

23 M −1.04 −0.53 −0.03 0.48 1.4 1.1 1.0 2.9

24 M −3.10 −1.28 0.53 2.34 29.0 1.9 1.2 12.1

25 M 1.33 0.47 −0.39 −1.26 2.0 1.1 1.1 1.9

26 M −0.02 0.80 1.62 2.44 1.0 0.9 1.5 2.6

27 M −1.51 −1.86 −2.20 −2.54 0.7 1.1 1.5 1.2

Example 6.5 (The Classical Potthoff and Roy (1964) Data Set Given in Table 1.2)
The residual R11o = P

A,S−1
o

Xo(I − P C ′) is presented in Table 6.6 and will first be
analysed via the test statistic given in Theorem 6.8 (i). It is seen from Table 6.6 that
individuals #15 and #24 may deviate from the other individuals. It is remarkable that
individuals #10, #11 and #21 do not show up in the test, although they have relatively
large residuals. One possible explanation is that within individuals there is a strong
interdependence, so that, when testing for no mean shift, single elements will not
influence the likelihood much; i.e. some kind of masking effect exists. Moreover,
note that once there is a program for calculating the residuals, it is possible to
generate knowledge about the data and model by perturbing observations and then
studying the effects of the perturbations. The situation is rather complex, although
the model is simple; i.e. there are two groups of individuals of different group sizes
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and for each group a separate model is assumed to hold. In addition to this, repeated
correlated observations are gathered. If we want to validate the model via a multiple
testing procedure, it follows from Table 6.7 and the parametric bootstrap approach
that none of the residuals presented in Table 6.6 have a significant mean shift. One
can artificially perturb the data to understand how large residuals should be in order
to have significant mean shifts.

In Table 6.8 the statements of Theorem 6.8 (ii) and (iii) have been applied
for testing all the observations from an individual for a mean shift. Theorem 6.8
(ii) concerns simultaneously testing for a mean shift within an individual and
Theorem 6.8 (iii) assumes that the same mean shift appears within an individual.
In the analysis, individuals #15, #21 and #24 are highlighted. However, according
to Table 6.7 the mean shifts for these observations are not significant. ��

Table 6.7 Estimated quantiles for T11;ij1 , T11;ij2 and T11;ij3 corresponding to the test statistics
T11;ij1o, T11;ij2o and T11;ij3o (T11;ijo was presented in Theorem 6.8 (i)) as well as for T11;iko and

T 11;iko, k = 1, 2 (T11;io and T 11;io were given in Theorem 6.8 (ii), and (iii), respectively)

Quantile T11;ij1o T11;ij2o T11;ij3o T11;i1o T11;i2o T 11;i1o T 11;i2o

100% max 5.8×1011 8.9×107 1.2×107 1.5×1016 1.3×1010 1.7×1015 1.7×1015

99% 1.8×105 5.2×103 5.3×102 1.1×107 8.7×104 1.2×106 1.2×106

95% 1.9×103 2.5×102 65.4 2.1×104 9.0×102 1.0×103 5.1×102

90% 3.4×102 77.2 29.9 1.9×103 1.7×103 1.7×102 54.6

75% 55.5 20.3 11.6 1.8×102 42.2 35.5 12.4

50% 17.4 9.0 6.3 44.9 17.3 12.7 6.1

25% 8.5 5.5 4.2 18.8 9.6 6.5 3.8

10% 5.5 3.9 3.2 10.8 6.4 4.1 2.8

5% 4.4 3.3 2.8 8.1 5.2 3.3 2.4

1% 3.1 2.6 2.3 5.1 3.7 2.4 1.9

0% min 2.0 2.0 1.8 2.5 2.1 1.1 1.1

The estimated quantiles are based on 10,000 simulations

Table 6.8 The data in Table 6.1 are analysed and the test statistic for column-wise mean shift,
T11;io, based on Theorem 6.8 (ii), is presented

Individual

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T11;io 2.1 2.4 1.4 3.1 1.9 1.3 1.0 2.6 2.4 9.2 7.6 3.8 1.3 1.1

T 11;io 1.9 1.9 1.4 3.2 1.1 1.1 1.1 1.3 1.1 6.4 8.1 2.4 1.3 1.1

Individual

15 16 17 18 19 20 21 22 23 24 25 26 27

T11;io 45.9 1.4 1.6 1.4 1.8 1.8 20.7 3.1 1.5 93.5 2.8 2.8 2.1

T 11;io 2.5 1.4 1.5 1.3 1.3 1.7 20.5 1.2 1.0 1.2 1.0 1.2 1.8

The test statistic for column-wise mean shift, T 11;io, based on Theorem 6.8 (iii), is also shown
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6.5 Residual Analysis for R1 in the BRM

So far R11 and R12 have been exploited. However, since these residuals are not
independently distributed, it can be worthwhile performing a residual analysis of

R1 = X(I − P C ′) = R11 + R12.

Because R1 ∼ Np,n(0,�, I − PC ′), i.e. the distribution is known, this case should
be both simpler and more reliable than considering R11 and R12 separately, although
R1 cannot completely contain the same amount of information as R11 and R12.
Moreover, since R1 is also the residual in the MANOVA model, R1 has in fact
already been considered in Sect. 6.1. Next some of the statements of Sect. 6.1 are
repeated, but the idea now is to carry out the presentation, although very briefly,
relatively systematically in line with the treatments of R11 and R12. Let

I − P C ′ = V V ′, V : n × n1, n1 = n − r(C)),

and by post-multiplying R1 one eliminates the singularity, i.e.

RN
1 = R1L1, L1 = V (V ′V )−1. (6.37)

Now Definition 6.2 and Theorem 6.8 are adjusted so that the presentation fits RN
1 .

The results of the theorem will, however, not be proved, since all the results are
obtained by simply copying the results presented in earlier sections.

Definition 6.3 Models and notation are presented for the likelihood functions
related to R1 = X(I − P C ′); these models and this notation are used when testing
for mean shifts under the conditions given in (6.36):

(a) RN
1;ij = dj θe′

iL1 + E1, RN
1;ijo = R1oL1;

(b) RN
1;i = θe′

iL1 + E1, RN
1;io = R1oL1;

(c) RN
1;i = 1θe′

iL1 + E1, RN
1;io = R1oL1;

(d) RN
1;j = dj θ1′L1 + E1, RN

1;jo = R1oL1;

E1 ∼ Np,n1(0,�, I ), n1 = n − r(C), L1 is defined by (6.37), and dj and ei are
unit basis vectors.
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Denote the observed value of R1 by R1o. Moreover, R1;ijo, R1;io and R1;jo are all
equal to R1o, given in Definition 6.1, and as before the subscripts ij , i and j only
indicate which type of mean shift and which element is being studied.

Theorem 6.9 In Definition 6.3, in order to test for no mean shift in the residualR1,
models with four types of mean shift were presented. The test statistics for the four
types are presented below.

(i) Let the model and mean shift be as in Definition 6.3 (a). The test statistic for
RN

1;ij , testing for no mean shift, is given by

T1;ijo =
(n − r(C) − 1)d ′

j
R1o(I − PC ′)ei (e

′
i
(I − PC ′)ei )

−1e′
i
(I − PC ′)R′

1o
dj

d ′
jR1o(I − PC ′)(I − ei (e

′
i (I − PC ′)ei )

−1e′
i )(I − PC ′)R′

1odj

.

(ii) Let the model and mean shift be as in Definition 6.3 (b). Then the test statistic
for RN

1;i , testing for no mean shift, is given by

T1;io = |R1o(I − PC ′)R′
1o|

|R1o(I − P C ′)(I − ei (e
′
i (I − P C ′)ei )−1e′

i )(I − P C ′)R′
1o|

.

(iii) Let the model and mean shift be as in Definition 6.3 (c). Then the test statistic
for R1, testing for no mean shift, is given by

T 1;io = (n − r(C) − 1)1′R1o(I − PC′)ei (e
′
i (I − P C′)ei )

−1e′
i (I − PC′)R′

1o1

1′R1o(I − PC′)(I − ei (e
′
i (I − PC′)ei )−1e′

i )(I − PC′)R′
1o1

.

(iv) Let the model and mean shift be as in Definition 6.3 (d). Then the test statistic
for R1, testing for no mean shift, is given by

T 1;jo = (n − r(C) − 1)d ′
jR1o(I − P C′ )1n(1′

n(I − P C′ )1n)
−11′

n(I − P C′ )R′
1odj

d ′
jR1o(I − P C′ )(I − 1n(1′

n(I − P C′ )1n)−11′
n)(I − P C′ )R′

1odj

.

Proof Since I − P C ′ is idempotent, L1 in (6.37) equals V because V is a semi-
orthogonal matrix, i.e. V ′V = I n1 . Moreover, note that all the models of the
theorem are of the form

XV = μV + E1, E1 ∼ Np,n1(0,�, I ),

where μ equals dj θe′
i , θe′

i , 1θe′
i or dj θ1′. This is a standard MANOVA model with

bilinear restrictions on the mean and the results will be verified in detail in the next
section under more general assumptions. ��

To understand best what may occur when performing data analysis, once again
the Potthoff and Roy (1964) data set is used. It is also of particular interest to
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Table 6.9 Estimated quantiles for T1;ij1 , T1;ij2 and T1;ij3 connected to the test statistics T1;ij1o,
T1;ij2o and T1;ij3o (with T1;ijo defined in Theorem 6.9 (i)) are given, and applied to the Potthoff
and Roy data set presented in Table 1.2

Quantile T1;ij1o T1;ij2o T1;ij3o R12;ij1o R12;ij2o R12;ij3o

100%max 45.6 25.2 17.5 11.1 9.2 8.8

99% 21.7 14.2 10.8 8.6 7.3 6.6

95% 16.2 11.1 8.6 7.6 6.6 6.0

90% 13.9 9.7 7.8 7.1 6.2 5.7

75% 11.1 8.1 6.7 6.4 5.6 5.2

50% 8.8 6.9 5.8 5.7 5.1 4.8

25% 7.3 5.9 5.1 5.2 4.6 4.4

10% 6.3 5.2 4.6 4.7 4.3 4.0

5% 5.8 4.9 4.4 4.5 4.1 3.8

1% 5.0 4.3 3.9 4.1 3.7 3.5

0% min 4.0 3.4 3.1 3.4 3.2 3.1

Estimated quantiles are given for the three largest (by absolute value) residuals, R1ij ko, k = 1, 2, 3,
obtained from the same data set. The estimated quantiles are based on 10,000 simulations

compare the results for R1 with those for R11 and R12 to determine whether there
is any significant advantage in decomposing R1 (Table 6.9).

Example 6.6 (The Classical Potthoff and Roy (1964) Data Set Given in Table 1.2)
The residual R1o = Xo(I − P C ′) is presented in Table 6.10. Also shown in this

table are the values of the test statistic of Theorem 6.9 (i). It can be observed that
individuals #10, #11, #21 and #24 differ from the other individuals, with the largest
value for individual #24 when j = 1, i.e. at age 8. However, from Table 6.9 it
follows that no residuals have a significant mean shift, i.e. even the value T1;241o =
9.0 is not significant.

Since there seem to be some individuals which deviate from the rest, we now
test for a mean shift for a whole individual or for an equal mean shift for a whole
individual. The results are presented in Table 6.11. For T1;io only individual #20
seems to stand out, whereas according to T 1;io, individuals #10, #11 and #21 should
be investigated. The appropriate distributions for decision making are presented in
Table 6.12 and it is T1;201o = 5.2 which exhibits a mean shift which is significant,
as well as T 1;113o = 4.6. The last result is interesting, but difficult to interpret, since
neither T 1;111o nor T 1;112o are significant. Therefore, the final conclusion from the
residual analysis for the residual R1 and the split R1 = R11 + R12 is that only the
residual from individual #20 is too far away from 0 to be deemed non-significant.

Now all the significant findings concerning R1 are hereby summarized. In
Table 6.1 the observation T12;2031o was significant, as well as R12;2031o. Moreover, in
Table 6.3 the statistics T12;201o = 9379.2 and T 12;201o = 9486.7 were significant.
Tables 6.6 and 6.8 give indications that observations or individuals deviate, but
the overall conclusion is that no elements in R11, with its mean shift, deviate
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Table 6.10 The residual R1o = Xo(I − P C′ ) = (R1;ijo) and the test statistic given in
Theorem 6.9 (i) applied to the Potthoff and Roy (1964) data presented in Table 1.2

Residuals Test statistics

id Gender R1;i1o R1;i2o R1;i3o R1;i4o T1;i1o T1;i2o T1;i3o T1;i4o

1 F −0.18 −2.23 −1.59 −1.09 0.0 1.3 0.4 0.3

2 F −0.18 −0.73 0.91 1.41 0.0 0.1 0.1 0.4

3 F −0.68 1.77 1.41 1.91 0.1 0.8 0.3 0.8

4 F 2.32 2.27 1.91 2.41 1.1 1.4 0.6 1.3

5 F 0.32 0.77 −0.59 −0.59 0.0 0.2 0.1 0.1

6 F −1.18 −1.23 −2.09 −1.59 0.3 0.4 0.7 0.5

7 F 0.32 0.27 −0.09 0.91 0.0 0.0 0.0 0.2

8 F 1.82 0.77 0.41 −0.09 0.7 0.2 0.0 0.0

9 F −1.18 −1.23 −1.09 −2.59 0.3 0.4 0.2 1.5

10 F −4.68 −3.23 −4.09 −4.59 5.2 3.0 3.1 5.5

11 F 3.32 2.77 4.91 3.91 2.4 2.1 4.7 3.7

12 M 3.12 1.19 3.28 3.53 2.0 0.4 1.8 2.9

13 M −1.38 −1.31 −2.72 −0.97 0.3 0.4 1.2 0.2

14 M 0.12 −1.31 −1.72 0.03 0.0 0.4 0.5 0.0

15 M 2.62 3.69 0.78 −0.47 1.4 3.9 0.1 0.0

16 M −2.88 −0.31 −3.22 −1.47 1.7 0.0 1.8 0.5

17 M 1.62 1.69 1.28 1.03 0.5 0.7 0.3 0.2

18 M −0.88 −1.81 −1.22 −0.97 0.1 0.8 0.2 0.2

19 M 1.12 −2.31 −1.22 −1.97 0.2 1.4 0.2 0.8

20 M 0.12 −3.31 5.28 −1.47 0.0 3.0 5.4 0.5

21 M 4.62 4.19 5.28 4.03 4.9 5.2 5.4 3.9

22 M 0.12 −0.81 −2.22 −2.47 0.0 0.2 0.8 1.3

23 M −1.38 −0.31 −1.72 0.53 0.4 0.0 0.5 0.1

24 M −5.88 0.69 0.28 2.03 9.0 0.1 0.0 0.9

25 M −0.38 1.69 −0.22 −1.47 0.0 0.7 0.0 0.5

26 M 0.12 0.69 0.28 2.53 0.0 0.1 0.0 1.4

27 M −0.88 −2.31 −2.22 −2.47 0.1 1.4 0.8 1.3

significantly from 0. For R1 = R11 +R12, the results were presented in Tables 6.10
and 6.11, and it was concluded that only individual #20 had a significant mean
shift. Thus, it can be stated that only individual #20 had a large residual, which to
some extent can also be seen in an ocular data inspection. Finally we claim that
the residual analysis has shown that if one just observes data without referring
to distributions and probability statements, it is difficult to determine how large
deviating values should be to be deemed as outlying (extreme) observations. ��

In the residual analysis so far, the residual R1 has been scrutinized; i.e. the
residual has been decomposed and various mean shift tests have been performed.
Now R2o = (I − P A,So)XoPC ′ is considered. As noted before, R2 is suitable
for validating the model, but is not connected to single observations or columns in
X. In Theorem 6.7 it was noted that R2 has the same distribution as R2N − U2.
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Table 6.11 The data in Table 6.10 are analysed and the test statistic for column-wise mean shift,
T1;io, based on Theorem 6.9 (ii), is presented

Individual

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T1;io 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.1 1.3 1.2 1.2 1.1 1.1

T 1;io 0.5 0.0 0.3 1.5 0.0 0.7 0.0 0.1 0.7 6.0 4.6 2.3 0.7 0.1

Individual

15 16 17 18 19 20 21 22 23 24 25 26 27

T1;io 1.6 1.1 1.0 1.0 1.2 5.2 1.3 1.1 1.1 2.7 1.3 1.1 1.1

T 1;io 0.8 1.1 0.5 0.4 0.3 0.0 7.2 0.5 0.1 0.1 0.0 0.2 1.1

The test statistic for column-wise mean shift, T 1;io, based on Theorem 6.9 (iii), is also shown

Table 6.12 Estimated quantiles connected to the test statistics T1;iko and T 1;iko, respectively,
defined in Theorem 6.9 (ii) and (iii), are presented for the Potthoff and Roy (1964) data given
in Table 1.2

Quantile T1;i1o T1;i2o T1;i3o T 1;i1o T 1;i2o T 1;i3o

100% max 3.7 2.4 2.0 34.4 10.6 6.9

99% 2.5 1.9 1.7 17.4 7.6 5.1

95% 2.2 1.8 1.6 12.3 6.3 4.4

90% 2.0 1.7 1.5 10.4 5.6 4.0

75% 1.8 1.6 1.5 8.0 4.8 3.5

50% 1.7 1.5 1.4 6.1 4.0 3.0

25% 1.6 1.5 1.4 4.9 3.4 2.6

10% 1.5 1.4 1.4 4.1 3.0 2.3

5% 1.5 1.4 1.3 3.7 2.8 2.2

1% 1.4 1.4 1.3 3.2 2.4 1.8

0% min 1.3 1.3 1.3 2.2 1.8 1.1

The estimated quantiles are based on 10,000 simulations

The approximating density fKR2NL(KR0L) is utilized for specific K and L, and
D[R2N ] is decomposed spectrally, i.e.

D[R2N ] = V V ′ ⊗ WW ′, V : n × r(C), W : p × (p − r(A)),

which follows from �PAo,	−1 = WW ′ and PC ′ = V V ′. In the same way as RN
12

was introduced, let

RN
2;ij = KR2L, K = (W ′W )−1W ′, L = V (V ′V )−1,

and then with these choices of K and L in Theorem 6.7, a non-singular density
approximation exists. The model for testing for a mean shift, e.g. following (6.21),
is written as

RN
2;ij = Kdj θe′

iL + E2, dj : p × 1, ei : r(C) × 1, (6.38)
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where E2 has the approximating density given in Theorem 6.7. The density depends
on �, but if one replaces it by ̂�, given in Theorem 3.1, or by ̂�U , given in
Theorem 4.7, we have a complete specification of the likelihood and can formulate
the following test quantity for H0 : θ = 0 versus H1 : θ �= 0:

T2;ijo = LN
2;qij (

̂θo)

LN
2;ij

, (6.39)

where LN
2;ij is the likelihood for RN

2 under H0 and RN
2 (̂θo) under H1 with ̂θo =

d ′
jR2oei . Moreover, a parallel discussion of testing for mean shifts via

RN
2;i = Kθe′

iL + E2,

RN
2;i = K1θe′

iL + E2,

RN
2;j = Kdj θ1′L + E2

follows the same ideas as before; RN
2;i and RN

2;j are identical to RN
2 . However, one

should remember that r(C) is often a small value, meaning that there are only a
few independent observations available, and therefore formal tests usually have low
power.

6.6 Residuals for the EBRM3
B

In this section the basis for studying residuals for the EBRM3
B is given. Figure 2.7

presented a decomposition of the whole tensor space showing the characteristic
“stairs structure”. The next figure (Fig. 6.4) once again shows the spaces, but now
the focus is directed on the residuals.

In Fig. 6.4, for any given �, ten different residuals are presented. All these
residuals can be studied, as well as linear combinations of them. In a textbook this
is impossible and only the following four residuals will be highlighted:

(i) R1N = R11 + R12 + R13 + R14;
(ii) R2N = R21 + R22 + R23;

(iii) R3N = R31 + R32;
(iv) R4N = R4N .

Explicit expressions for any given � can be obtained by projecting X on Wi ⊗ Vj ,
i ≤ j , i.e. vecR5−i,j = (PWi

⊗ PVj ,	)vecX, where Wi and Vj are defined in
Fig. 6.4. However, � is unknown and then the inner product has to be estimated.
Therefore, the residual analysis will rest on Corollary 3.3, i.e. X − Ê[X] will be
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Fig. 6.4 Decomposition of
the whole space according to
the within-individuals and the
between-individuals designs,
illustrating the mean and
residual spaces in EBRM3

B :
V1 = C	(A1), V2 = C	(A1 :
A2) ∩ C	(A1)

⊥,
V3 = C	(A1 : A2 :
A3) ∩ C	(A1 : A2)

⊥,
V4 = C	(A1 : A2 : A3)

⊥,
W1 = C(C ′

3),
W2 = C(C ′

2) ∩ C(C′
3)

⊥,
W3 = C(C ′

1) ∩ C(C′
2)

⊥,
W4 = C(C ′

1)
⊥

considered. The fact will be utilized that (using the notations of Theorem 3.2)

X − Ê[X] = X − P A1,S1XP C ′
1
− P

̂Q′
1A2,̂S2

XP C ′
2
− P

̂Q′
2
̂Q′

1A3,̂S3
XP C ′

3

= X(I − P C ′
1
) + (I − P A1,S1)X(P C ′

1
− P C ′

2
)

+(I − P A1,S1 − P
̂Q′

1A2,̂S2
)X(PC ′

2
− PC ′

3
)

+(I − P A1,S1 − P
̂Q′

1A2,̂S2
− P

̂Q′
2
̂Q′

1A3,̂S3
)XP C ′

3
.

Thus, since C(I − P C ′
1
) = W4, C(PC ′

1
− P C ′

2
) = W3, C(PC ′

2
− P C ′

3
) = W2 and

C(PC ′
3
) = W1, the next definitions make sense.

Definition 6.4 Let ̂Qi , S1 and̂Si , i = 2, 3, be as in Theorem 3.2. For the EBRM3
B

the following residuals will be considered:

(i) R1 = X(I − PC ′
1
);

(ii) R2 = (I − P A1,S1)X(P C ′
1
− P C ′

2
);

(iii) R3 = (I − P A1,S1 − P
̂Q′

1A2,̂S2
)X(P C ′

2
− P C ′

3
);

(iv) R4 = (I − P A1,S1 − P
̂Q′

1A2,̂S2
− P

̂Q′
2
̂Q′

1A3,̂S3
)XP C ′

3
.

Note that the residual R1 is identical to R1 ∼ Np,n(0,�, I − PC ′
1
) for the

BRM and, therefore, for R1 only the mean shift test of the residual analysis
will be provided. Missing details can be found in Sect. 6.2. However, it should be
remembered that in many applications only the residual in Definition 6.4 (i) bears
enough information to be analysed in detail, for example via statistical tests. This
does not mean that R2, R3 and R4 should be discarded, but it may happen that
for these residuals there is only enough information available for presenting some



258 6 Residuals

graphs which can be ocularly inspected. Note that R1 concerns how independent
observations relate to the other independent observations, whereas R2, R3 and
R4 all consider how the model fits the data. For example, if one’s intention is to
determine whether a second or third degree polynomial growth model fits one of
several treatment groups, then the residuals can be supportive.

In Definition 6.4 the projections are performed with the help of inner products.
Due to the estimation procedure, different projections have different inner products.
However, since

A′
1
̂S

−1
3 = A′

1S
−1
1 , A′

2
̂Q1

̂S
−1
3 = A′

2
̂Q1

̂S
−1
2 ,

all residual projections can be considered to take place on spaces where the inner
product defined via ̂S3 is used, i.e. R2 = (I − P A1,̂S3

)X(P C ′
1

− P C ′
2
), R3 =

(I − PA1,̂S3
− P

̂Q′
1A2,̂S3

)X(PC ′
2

− PC ′
3
) and R4 = (I − P A1,̂S3

− P
̂Q′

1A2,̂S3
−

P
̂Q′

2
̂Q′

1A3,̂S3
)XP C ′

3
. Moreover, instead of ̂S3 the MLE ̂�, given by Theorem 3.2,

could have been used without any difference in the performed projections.
Concerning the stochastic properties of the residuals the basic relations which

will be utilized are the following:

• S1 is independent of X(P C ′
1
− P C ′

2
), X(PC ′

2
− PC ′

3
) and XP C ′

3
;

• ̂S2 is independent of X(P C ′
2
− P C ′

3
) and XP C ′

3
;

• ̂S3 is independent of XP C ′
3
.

Applying these properties it can be shown that

E[R2] = E[R3] = E[R4] = 0.

The result follows from the fact that

(I − P A1,S1 − P
̂Q′

1A2,̂S2
)A2 = 0,

(I − P A1,S1 − P
̂Q′

1A2,̂S2
− P

̂Q′
2
̂Q′

1A3,̂S3
)A3 = 0.

The next theorem is a direct consequence of the above-mentioned independence
relations and the detailed moment calculations performed in Chap. 4. It is based on
the fact that the following alternative expressions for the residuals can be obtained
(Gi , W i and Z1,s are defined in Table 4.1):

R2 = P ′
G1,W

−1
1

X(P C ′
1
− P C ′

2
) = ̂Q

′
1X(PC ′

1
− PC ′

2
)

= Z1,1X(P C ′
1
− PC ′

2
), (6.40)

R3 = P ′
G1,W

−1
1

P ′
G2,W

−1
2

X(P C ′
2
− P C ′

3
) = ̂Q

′
2
̂Q

′
1X(P C ′

2
− P C ′

3
)

= Z1,2X(P C ′
2
− PC ′

3
), (6.41)
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R4 = P ′
G1,W

−1
1

P ′
G2,W

−1
2

P ′
G3,W

−1
3

XPC ′
3

= ̂Q
′
3
̂Q

′
2
̂Q

′
1XP C ′

3

= Z1,3XP C ′
3
. (6.42)

Theorem 6.10 Let R2, R3 and R4 be as in Definition 6.4. Then

(i) D[R2] = (P C ′
1
−PC ′

2
)⊗E[̂Q′

1�
̂Q1], where E[̂Q′

1�
̂Q1] is given by (4.120);

(ii) D[R3] = (P C ′
2

− PC ′
3
) ⊗ E[̂Q′

2
̂Q

′
1�

̂Q1
̂Q2], where E[̂Q′

2
̂Q

′
1�

̂Q1
̂Q2] is

given by (4.121);
(iii) D[R4] = PC ′

3
⊗ E[̂Q′

3
̂Q

′
2
̂Q

′
1�

̂Q1
̂Q2

̂Q3], where E[̂Q′
3
̂Q

′
2
̂Q

′
1�

̂Q1
̂Q2

̂Q3]
is given by (4.122);

(iv) C[R1,R2] = C[R1,R3] = C[R1,R4] = 0; C[R2,R3] = C[R2,R4] = 0;
C[R3,R4] = 0.

It is noted that the unbiased estimators of the dispersion matrices in Theorem 6.10
can be obtained via the unbiased estimators of the K-matrices in Theorem 4.16.

Since the residuals R2, R3 and R4 follow complicated distributions which are
not available in any practical form, Edgeworth-type approximations will be used.
The approximations will be based on the following decompositions:

R2 = R2N − U2, R3 = R3N − U 3, R4 = R4N − U4, (6.43)

where

R2N = (I − P A1,	)X(P C ′
1
− P C ′

2
) = P ′

G1,	−1X(P C ′
1
− P C ′

2
), (6.44)

U 2 = (P ′
G1,	

−1 − P ′
G1,W

−1
1

)X(PC ′
1
− PC ′

2
), (6.45)

R3N = (I − P A1,	 − PQ′
1A2,	

)X(PC ′
2
− P C ′

3
)

= P ′
G2,	

−1X(P C ′
2
− P C ′

3
), (6.46)

U 3 = (

P ′
G1,	

−1(P
′
G2,	

−1 − P ′
G2,W

−1
2

)

+(P ′
G1,	−1 − P ′

G1,W
−1
1

)P ′
G2,W

−1
2

)

X(PC ′
2
− P C ′

3
), (6.47)

R4N = (I − P A1,	 − PQ′
1A2,	

− P Q′
2Q

′
1A3,	

) = P ′
G3,	−1XP C ′

3
, (6.48)

U 4 = (

P ′
G1,	−1P

′
G2,	−1(P

′
G3,	−1 − P ′

G3,W
−1
3

)

+P ′
G1,	−1(P

′
G2,	−1 − P ′

G2,W
−1
2

)P ′
G3,W

−1
3

+(P ′
G1,	

−1 − P ′
G1,W

−1
1

)P ′
G2,W

−1
2

P ′
G3,W

−1
3

)
)

XP C ′
3
. (6.49)

The residuals R2N , R3N and R4N are all normally distributed. Moreover, demon-
strating (6.43) for R3 and R4 is a rather straightforward task. The idea is to
replace by � the matrices in the projections which define the inner product. The
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decomposition of R2 is trivial. For R3 it is noted that

P ′
G1,W

−1
1

P ′
G2,W

−1
2

= P ′
G1,	−1P

′
G2,	−1

−P ′
G1,	

−1(P
′
G2,	

−1 − P ′
G2,W

−1
2

) − (P ′
G1,	

−1 − P ′
G1,W

−1
1

)P ′
G2,W

−1
2

and P ′
G1,	−1P

′
G2,	−1 = P ′

G2,	−1 . Moreover, concerning R4, calculations applied
to R3 yield

P ′
G1,W

−1
1

P ′
G2,W

−1
2

P ′
G3,W

−1
3

= P ′
G1,	

−1P
′
G2,	

−1P
′
G3,	

−1

−P ′
G1,	−1P

′
G2,	−1(P

′
G3,	−1 − P ′

G3,W
−1
3

)

−P ′
G1,	−1(P

′
G2,	−1 − P ′

G2,W
−1
2

)P ′
G3,W

−1
3

−(P ′
G1,	−1 − P ′

G1,W
−1
1

)P ′
G2,W

−1
2

P ′
G3,W

−1
3

and P ′
G1,	−1P

′
G2,	−1P

′
G3,	−1 = P ′

G3,	−1 .
Hence, the approximating quantities R2N , R3N and R4N have been established.

To validate if they make sense, it will be shown that E[U i] = 0 and C[RiN ,U i ] =
0, i = 2, 3, 4. Concerning the expectation, E[U i ] = E[RiN ] + E[Ri ] = 0. For
the covariance it is noted that (see also Theorem B.21 (viii) in Appendix B and its
proof)

E[P
G1,W−1

1
] = P G1,	−1, E[P

G2,W−1
2

] = P G2,	−1, E[P
G3,W−1

3
]= PG3,	−1,

E[P
G3,W−1

3
P

G2,W−1
2

] = P G3,	−1, E[Z′
1,s] = P Gs,	−1 ,

which, if one applies one or more of these results directly to C[RiN ,U i ], i = 1, 2, 3,
will show that the covariance equals 0. For example,

C[R3N,U 3] = (P C ′
2
− P C ′

3
) ⊗

{

E[P ′
G2,	−1�(P G2,	−1 − P

G2,W
−1
2

)PG1,	−1 ]

+ E[P ′
G2,	−1�P

G2,W
−1
2

(P G1,	−1 − P
G1,W

−1
1

)]
}

= 0,

since

E[(PG2,	−1 − P
G2,W

−1
2

)] = 0,

E[P
G2,W

−1
2

(P G1,	
−1 − P

G1,W
−1
1

)] = P G2,	
−1 − P G2,	

−1 = 0.

With these calculations, the preparations for presenting Edgeworth-type approxi-
mations are now completed. The first result concerns R2 and it is given in the next
theorem.
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Theorem 6.11 The distribution of the residual R2, given in (6.40), can be approx-
imated through the difference

R2 = R2N − U 2,

where R2N and U 2 are defined by (6.44) and (6.45), respectively. Let K: p1 × p

and L: n × n1, both of which are known, and

KR2NL ∼ Np1,n1(0,K�PAo
1,	−1K ′,L′(P C ′

1
− P C ′

2
)L).

Then an Edgeworth-type expansion fKR2EL(KRoL) of the density of KR2L, via
the density of KR2NL, assuming D[KR2NL] is p.d., is given by

fKR2EL(KRoL) = {

1 − 1
2

p−r(A1)
n−r(C1)−p+r(A1)−1n1tr{KP A1,	�K ′(K�PAo

1,	−1K ′)−1}
+ 1

2
p−r(A1)

n−r(C1)−p+r(A1)−1 tr{(K�P Ao
1,	−1K ′)−1KP A1,	�K ′(K�PAo

1,	−1K ′)−1

× KRoL(L′(I − PC′)L)−1L′R′
oK

′}}fKR2NL(KRoL).

Proof The proof follows by applying Corollary 5.3, Theorem 6.10 and (4.120). ��
Using Appendix B, Theorem B.23 (i) gives the dispersion of the approximating
distribution.

Corollary 6.4 LetKR2EL be defined via fKR2EL(KRoL), given in Theorem 6.11,
where it is assumed that fKR2EL(KRoL) ≥ 0. Then

(i) E[KR2EL] = 0;
(ii) D[KR2EL] = L′(I − P C ′)L ⊗ K(�PAo

1,	−1 + g1,1P A1,	�)K ′,
where g1,1 is given in Theorem 4.15.

Similar results to those presented above for R2 are now given for R3.

Theorem 6.12 The distribution of the residual R3, given in (6.41), can be approx-
imated through the difference

R3 = R3N − U 3,

where R3N and U 3 are defined by (6.46) and (6.47), respectively. Let K: p1 × p

and L: n × n1, both of which are known, and

KR3NL ∼ Np1,n1(0,K�P G′
2,	

−1K ′,L′(PC ′
2
− PC ′

3
)L).
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Then an Edgeworth-type expansion fKR3EL(KRoL) of the density of KR3L, via
the density of KR3NL, under the assumption that D[KR3NL] is p.d., is given by

fKR3EL(KRoL) = {

1 − 1
2n1tr{K(g1,2K1 + g2,2K2)K

′(K�P G2,	−1K
′)−1}

+ 1
2 tr

{

(K�P G2,	
−1K ′)−1K(g1,2K1 + g2,2K2)K

′(K�PG2,	
−1K ′)−1

× KRoL(L′(P C ′
2
− P C ′

3
)L)−1L′R′

oK
′}}fKR3N L(KRoL),

where gi,2 is defined in Theorem 4.15 and K i , i = 1, 2, in Theorem 4.12.

Corollary 6.5 LetKR3EL be defined via fKR3EL(KRoL), given in Theorem 6.12,
where it is assumed that fKR3EL(KRoL) ≥ 0. Then

(i) E[KR3EL] = 0;
(ii) D[KR3EL] = L′(PC ′

2
− PC ′

3
)L ⊗ K(�PG2,	

−1 + g1,2K1 + g2,2K2)K
′.

Finally, R4 is considered.

Theorem 6.13 The distribution of the residual R4, given in (6.42), can be approx-
imated through the difference

R4 = R4N − U 4,

where R4N and U 4 are defined by (6.48) and (6.49), respectively. Let K: p1 × p

and L: n × n1, both of which are known, and

KR4NL ∼ Np1,n1(0,K�PG′
3,	

−1K ′,L′PC ′
3
L).

Then an Edgeworth-type expansion fKR4EL(KRoL) of the density of KR4L, via
the density of KR4NL, under the assumption that D[KR4NL] is p.d., is given by

fKR4EL(KRoL) = {

1 − 1
2n1tr{K(g1,3K1 + g2,3K2 + g3,3K3)K

′(K�PG3,	
−1K ′)−1}

+ 1
2 tr

{

(K�P Ao,	−1K
′)−1K(g1,3K1 + g2,3K2 + g3,3K3)K

′(K�PAo,	−1K
′)−1

× KRoL(L′PC′
3
L)−1L′R′

oK
′}}fKR4NL(KRoL),

where gi,3 is defined in Theorem 4.15 and K i , i = 1, 2, 3, in Theorem 4.12.

Corollary 6.6 LetKR4EL be defined via fKR4EL(KRoL), given in Theorem 6.13,
where it is assumed that fKR4EL(KRoL) ≥ 0. Then

(i) E[KR4EL] = 0;
(ii) D[KR4EL] = L′PC ′

3
L ⊗ K(�P G3,	−1 + g1,3K1 + g2,3K2 + g3,3K3)K

′.

Hence, a basis for validating the residuals in the EBRM3
B has been established.

As for the BRM , it is suggested that the validation should be carried out via mean
shift tests. For the BRM five different tests have been suggested, see Sect. 6.1,
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although details have not been given for all of them. Here we have four different
residuals and the task of constructing most of the possible alternative tests is left to
the reader. The case which will be treated here is that where the mean shift is of the
form dj θe′

i .
Consider R1 = X(I − PC ′

1
), which bears information on how columns

(individuals) deviate from the average of the columns (individuals). The residual
R1 is identical to R1 for the BRM , and all BRM-results connected to R1 can be
copied. First we have to eliminate the singularity (see (6.37)), and thereafter the test
statistic is presented which corresponds to the mean shift hypothesis in Theorem 6.9.
As before, the parametric bootstrap is suggested for evaluating which elements in
R1 are truly large.

Turning to R2, we also have a very similar quantity to R2, obtained from a BRM

and presented in Definition 6.1 (ii). Thus, with minor modifications, i.e. changing
P C ′ to P C ′

1
− PC ′

2
= P QC ′

2
, Q = I − P C ′

1
, one can use the same ideas as those

used for the BRM and the same results as those obtained for the BRM . When
further considering R3 and R4, one can use the same statistic as was used for R2,
since the approximate likelihood in all cases will be of the same form. For example,
see Theorems 6.11–6.13 and note that nothing unexpected happens when moving
from R2 to R3 or R4. Thus, in the next theorem we can immediately summarize the
appropriate test statistics for a relatively detailed residual analysis of the EBRM3

B .
The same notation will be adopted as that used when working with the BRM , i.e.

RN
k;ij = Kdj θe′

iL + Ek, k = 1, 2, 3, 4.

The residual RN
k;ij is the same as RN

k = KRkL, k = 1, 2, 3, 4, and, as before,

ij only indicates which element is supposed to have a mean shift, while RN
k is

presented in (6.37) and (6.38) for k = 1 and k = 2, respectively, and for k = 3, 4
it will be defined in the following. The vectors dj and ei are unit basis vectors, θ

is an unknown parameter, E1 ∼ Np,n1(0,�, I ), and Ei , i = 2, 3, 4, are defined
through the densities in Theorems 6.11, 6.12 and 6.13, respectively. The matrices
K and L depend also on k, k = 1, 2, 3, 4, and are chosen so that non-singular
distributions are obtained. Finally, it is noted that Tk;ijo, k = 1, 2, 3, 4, represents
the observed test statistic, LN

k;ij (̂θ) is the likelihood based on Ek, and as ̂θ the

estimator ̂θ = d ′
jRkei is used, Lk;ij is the likelihood under H0, i.e. with no mean

shift, and Rko is the observed version of Rk . In the likelihood, both under H0
and H1, the dispersion matrix has been replaced by ̂�o, the maximum likelihood
estimate, given in Theorem 3.2.

Theorem 6.14 Consider Ri , i = 1, 2, 3, 4, given in Definition 6.4.

(i) For R1 let

RN
1;ij = dj θe′

iL + E1, RN
1;ij = R1L, L = V (V ′V )−1, (I − P C ′

1
)=V V ′;

(V is of full rank), E1 ∼ Np,n1(0,�, In1).
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Then a test statistic for testing H0 : θ = 0 against H1 : θ �= 0 is given by

T1;ijo = (n − r(C1) − 1)d ′
jR1o(I − P C′

1
)ei (e

′
i (I − PC′

1
)ei )

−1e′
i (I − P C′

1
)R′

1odj

d ′
jR1o(I − PC′

1
)(I − ei (e

′
i (I − PC′

1
)ei )−1e′

i )(I − P C′
1
)R′

1odj

.

(ii) For R2 let

RN
2;ij = Kdj θe′

iL + E2, RN
2;ij = KR2L, K = (W ′W )−1W ′ L = V (V ′V )−1,

(W and V are of full rank), ̂�PAo
1,̂	−1 = WW ′, PC ′

1
− PC ′

2
= V V ′;

E2 has the approximating density given in Theorem 6.11. Then a test statistic
for testing H0 : θ = 0 against H1 : θ �= 0 is given by

T2;ijo = LN
2;ij (̂θo)

LN
2;ij

,

where LN
2;ij is the likelihood for RN

2 (obtained via E2) underH0 and LN
2;ij (̂θo)

is obtained under H1, witĥθo = d ′
jR2oei .

(iii) For R3 let

RN
3;ij = Kdj θe′

iL + E3, RN
3;ij = KR3L, K = (W ′W )−1W ′, L = V (V ′V )−1,

(W and V are of full rank), ̂�PGo
2,̂	−1 = WW ′, P C′

2
− P C′

3
= V V ′;

E3 has the approximating density given in Theorem 6.12. Then a test statistic
for testing H0 : θ = 0 against H1 : θ �= 0 is given by

T3;ijo = LN
3;ij (̂θo)

LN
3;ij

,

where LN
3;ij is the likelihood for RN

3 (obtained via E3) underH0 and LN
3;ij (̂θo)

is the likelihood under H1 witĥθo = d ′
jR30ei .

(iv) For R4 let

RN
4;ij = Kdj θe′

iL + E4, RN
4;ij = KR4L, K = (W ′W )−1W ′ L = V (V ′V )−1,

(W and V are of full rank), ̂�PGo
3,̂	−1 = WW ′, PC′

3
= V V ′;

E4 has the approximating density given in Theorem 6.13. Then a test statistic
for testing H0 : θ = 0 against H1 : θ �= 0 is given by

T4;ijo = LN
4;ij (̂θo)

LN
4;ij

,
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where LN
4;ij is the likelihood for LN

4;ij (obtained via E4) underH0 and RN
4 (̂θo)

is obtained under H1, witĥθo = d ′
jR4oei .

To finalize the residual analysis, one has to take care of the large residuals,
i.e. those residuals which significantly deviate from the other residuals, for example
when testing hypotheses. A pure data analysis approach is suggested for deter-
mining the distribution of these large/largest residuals; i.e. Xo is simulated from
Np,n1(0,̂�o, I ), which can then be used to generate the residuals and thereby
the largest values of the residuals, as well as the distributions of the large/largest
residuals. The estimate ̂�o is for example the observed maximum likelihood
estimator, presented in Theorem 3.2.

This section is concluded by an example which shows how the residuals Ri ,
i = 1, 2, 3, 4, can be utilized when evaluating an EBRM3

B .

Example 6.7 In this example the aim is to demonstrate how outlying observations
will show up in the residuals Ri , i = 1, 2, 3, 4, presented in Definition 6.4, and
not to present a residual analysis where the distribution of the largest residuals is
investigated. The approach is completely in line with what was performed with the
BRM . Consider the model presented in Example 1.9. Based on the given design and
parameter matrices, a data matrix X: 10×45 can be generated. Here in Example 6.7
some values are replaced by outlying observations. The effect of the contamination
is studied with the help of the absolute difference mk;ij , defined as

mk;ij = |d ′
j (
˜Rko − Rko)ei |, k = 1, 2, 3, 4, j = 1, 2, . . . pk, i = 1, 2, . . . nk,

(6.50)

where dj and ei are unit basis vectors of proper size, i.e. depend on pk and nk ,
which in turn are given by the size of Rko, ˜Rko is the observed residual based
on the manipulated data and Rko is the observed residual for the original data. To
summarize the difference ˜Rko −Rko, for example, the following three measures can
be used: m1

k , the absolute largest difference, i.e. m1
k = maxij {mk;ij }, m2

k , the second
largest difference and m3

k , the third largest difference.
Before calculating (6.50), in this example it is relatively easy to interpret the four

residuals and it is suggested that this is carried out before doing explicit calculations.
The main issue is to understand C(P C ′

1
− P C ′

2
), C(PC ′

2
− PC ′

3
) and C(PC ′

3
), and

then relate, in this example, these spaces to the different groups of individuals. Note
that

C1 =
⎛

⎝

1′
10 0 0
0 1′

15 0
0 0 1′

20

⎞

⎠ , C2 =
(

1′
10 0 0
0 1′

15 0

)

, C3 = (

1′
10 0 0

)

.
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Then

C(PC ′
1
− P C ′

2
) = C(C′

1) ∩ C(C′
2)

⊥ = C((0 : 0 : 1′
20)

′),

C(PC ′
2
− P C ′

3
) = C(C′

2) ∩ C(C′
3)

⊥ = C((0 : 1′
15 : 0)′),

C(PC ′
3
) = C((1′

10 : 0 : 0)′).

Hence, P C ′
1

− PC ′
2

is connected to the third group, PC ′
2

− P C ′
3

is connected to
the second group and P C ′

3
is connected to the first group, and these three facts can

constitute the basis in any residual analysis.
As before, R1 shows the difference between individuals and the “group means”.

The residual R2 indicates if the third group can be described by the parameters
in B1, since P C ′

1
− P C ′

2
is a projection of the individuals in the third group,

with X(PC ′
1

− P C ′
2
) being the “mean” which is then compared to the model

P A1,S1X(P C ′
1
− P C ′

2
). The residual R3 indicates if the second group is described

by the parameters in B1 and B2, and R4 can be used to determine whether the
first group follows the proposed model, i.e. whether the complete set of parameters,
B1, B2 and B3, describes the data. Indeed, it is interesting to note that by studying
the different residuals, quite a large amount of information on the model fit can be
obtained.

Let us first perturb one single observation in Xo. In order to highlight the
consequences, the choices are all extreme:

P(i) : add 60 to (X5,30); P(ii) : add60 to (X5,15); P(iii) : add 60 to (X5,5).

Note that the above perturbed observations in P(i), P(ii) and P(iii) belong to different
groups. According to Table 6.13, all three perturbations show up very clearly in ˜R1o.
Moreover, P(i), which is a modification of an observation in group 3, is also visible
in ˜R2o, i.e. the residuals connected to group 3 are affected. Concerning P(ii), the
effect of the perturbation, besides showing up in ˜R1o, appears in ˜R3o (i.e. residuals
connected to group 2 are affected), and for P(iii) the residual ˜R4o is highlighted,
which means that group 1 is influenced. Thus the residuals behave as expected and
it seems that a residual analysis based on single observations has the possibility of
strengthening the statistical analysis.

Another type of perturbation occurs when the mean for an individual is shifted,
i.e. all the observations of an individual are altered with the same value:

P(iv) : add 60 to the elements in x30 (x30 stands for the 30th column of Xo);
P(v) : add 60 to the elements in x15; P(vi) : add 60 to the elements in x5.

The different perturbed individuals given in P(iv), P(v) and P(vi) belong, as do those
in P(i), P(ii) and P(iii), to different groups. From Table 6.13 it follows that the
outlying observations are visible only in ˜R1o and it does not seem that there is
any information in ˜R2o, ˜R3o and ˜R4o. This is, however, expected, because in A1
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Table 6.13 The largest value m1
k , and the second largest value m2

k , defined via (6.50), are
calculated for the perturbations P(i)–P(vi) in the model considered in Example 6.7

˜R1o
˜R2o

˜R3o
˜R4o

Value Obs Value Obs Value Obs Value Obs

The largest value, m1
k

P(i) 57 X5,30 3 X5,26−45 ∗ ∗∗ ∗ ∗∗
P(ii) 56 X5,15 ∗ ∗∗ 4 X5,11−25 ∗ ∗∗
P(iii) 54 X5,5 ∗ ∗∗ ∗ ∗∗ 6 X5,1−10

P(iv) 57 X1−10,30 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗
P(v) 56 X1−10,15 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗
P(vi) 54 X1−10,5 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗

The second largest value, m2
k

P(i) 3 X5;26−29,31−45 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗
P(ii) 4 X5;11−14,16−25 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗
P(iii) 6 X5;1−4,6−10 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗
P(iv) 3 X1−10;25−29,31−45 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗
P(v) 4 X1−10;11−14,16−25 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗
P(vi) 6 X1−10;1−4,6−10 ∗ ∗∗ ∗ ∗∗ ∗ ∗∗

In the table “Value” stands for the value of mi
k and “Obs” for the observation which it concerns.

If there is only one observation, Xi,j is used, and if all the rows between k and l for the j th
observation are included, then Xk−l,j is used. If a given row and a sequence of observations
are included, then Xi,k−l is used, and if two sequences of columns have to be indicated, then
Xi;k1−l1,k2−l2 is used. Moreover, “∗” means that the value < 1.5, and in this case “∗∗” indicates
that no specific observation is highlighted

(see Example 1.9) the first column equals 110 and thus, when all the observations
of an individual are shifted with the same amount, this will take place within
the regression space which is orthogonal to the residual space, i.e. the basis for
the residuals. Moreover, in Table 6.13 there is a threshold of 1.5. The reason for
introducing it is that there are some small effects on several observations, but these
effects appear due to the estimated weights used in the projections and are not really
related to the mean shift of the residual. However, if the weights play a key role in
the analysis, then thresholding may not be appropriate. ��

6.7 Residuals for the EBRM3
W

This section consists of a suggested residual analysis for the EBRM3
W which

follows very closely the residual analysis for the EBRM3
B , considered in Sect. 6.6.

The procedure for the proposed residual analysis for the EBRM3
W is the same as

that for the EBRM3
B (see Fig. 6.4), but includes some changes of the spaces defining

the tensor products.
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Fig. 6.5 Decomposition of
the whole space according to
the within-individuals and the
between-individuals designs,
illustrating the mean and
residual spaces in the
EBRM3

W : V1 = C	(A3),
V2 = C	(A2) ∩ C	(A3)

⊥,
V3 = C	(A1) ∩ C	(A2)

⊥,
V4 = C	(A1)

⊥,
W1 = C(C ′

1),
W2 = C(C ′

1 : C ′
2) ∩ C(C′

1)
⊥,

W3 = C(C ′
1 : C ′

2 :
C′

3) ∩ C(C ′
1 : C ′

2)
⊥,

W4 = C(C ′
1 : C ′

2 : C ′
3)

⊥

As was suggested for the EBRM3
B , the proposed residuals in Fig. 6.5, i.e. Rij ,

will be merged:

(i) R1N = R11 + R12 + R13 + R14;
(ii) R2N = R21 + R22 + R23;

(iii) R3N = R31 + R32;
(iv) R4N = R4N .

Moreover, explicit expressions for any given � can be obtained by projecting X on
Wi ⊗ Vj , i ≤ j , i.e. R5−i,j = (PWi

⊗ PVj ,	)vecX. To handle the case of an
unknown �, Theorem 3.3 is applied, where, in particular, several of the matrices
utilized below are identified, i.e.

X − Ê[X] = X − P A1,̂S3
XP C ′

1
− P A2,̂S2

XPQ1C
′
2
− P A3,S1XPQ2C

′
3

= X(I − P C ′
1
− P Q1C

′
2
− P Q2C

′
3
) + (I − PA1,̂S3

)

+XP C ′
1
+ (I − P A2,̂S2

)XP Q1C
′
2
+ (I − P A3,S1)XP Q2C

′
3
,

where, according to the projection theorem (see Appendix B, Theorem B.11 (iv))

C(C′
1 : C′

2 : C′
3) = C(C′

1) + C(Q1C
′
2) + C(Q2C

′
3),

C(Q1C
′
2) = C(C′

1)
⊥ ∩ C(C′

1 : C′
2),

C(Q2C
′
3) = C(C′

1 : C′
2)

⊥ ∩ C(C′
1 : C′

2 : C ′
3).

These spaces are illustrated in Fig. 6.5 and it makes sense to define the four residuals
given in the next definition.
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Definition 6.5 Let S1, ̂Si , i = 2, 3, and Qi , i = 1, 2, 3, be as in Theorem 3.3. For
the EBRM3

W the following residuals will be considered:

(i) R1 = X(I − PC ′
1:C ′

2:C ′
3
);

(ii) R2 = (I − P A3,S1)XP Q2C
′
3
;

(iii) R3 = (I − P A2,̂S2
)XP Q1C

′
2
;

(iv) R4 = (I − P A1,̂S3
)XP C ′

1
.

The residuals presented in Definitions 6.4 and 6.5 are identical in the following
sense: if starting with an EBRM3

B and applying the transformation in Sect. 3.5,
which yielded an EBRM3

W , then inserting the transformed matrices in Defini-
tion 6.5 will give the same residuals as when the original matrices are inserted in
Definition 6.4. Thus, in principle, it is enough to study either the EBRM3

B or the
EBRM3

W , although it is mostly beneficial to investigate the “original” model in the
“original” matrices.

A common inner product for all the projectors presented in Definition 6.5 can be
based on either ̂S3 or ̂�, since, for example,

A′
3S

−1
1 = A′

3
̂S

−1
2 = A′

3
̂S

−1
3 , A′

2
̂S

−1
2 = A′

2
̂S

−1
3 .

Moreover, R1 is normally distributed, similar to R1 in the EBRM3
B , which in turn

was similarly distributed to R1 in the BRM . Hence, most attention will be focused
on R2, R3 and R4. Now,

(i) S1 is independent of XQ2C
′
3, XQ1C

′
2 and XC′

1;
(ii) ̂S2 is independent of XQ1C

′
2 and XC′

1;
(iii) ̂S3 is independent of XC′

1.

Hence, because C(A3) ⊆ C(A2) ⊆ C(A1), E[Ri ] = 0, i = 2, 3, 4. The dispersion
matrices of the different residuals follow from the next theorem.

Theorem 6.15 Let R2, R3 and R4 be as in Definition 6.5. Then

(i) D[R2] = PQ2C
′
3

⊗ E[P ′
Ao

3,S−1
1

�P
Ao

3,S−1
1

], where E[P ′
Ao

3,S−1
1

�P
Ao

3,S
−1
1

] is

given in Theorem 4.23;
(ii) D[R3] = PQ1C

′
2

⊗ E[P ′
Ao

2,̂S−1
2

�P
Ao

2,̂S−1
2

], where E[P ′
Ao

2,̂S−1
2

�P
Ao

2,
̂S−1

2
] is

given in Theorem 4.23;
(iii) D[R4] = P C ′

1
⊗ E[P ′

Ao
1,
̂S−1

3
�P

Ao
1,̂S−1

3
], where E[P ′

Ao
1,
̂S−1

3
�P

Ao
1,̂S−1

3
] is given

in Theorem 4.23;
(iv) C[R1,R2] = C[R1,R3] = C[R1,R4] = 0; C[R2,R3] = C[R2,R4] = 0;

C[R3,R4] = 0.

Following the presentation for the EBRM3
B , the next issue will be to prepare for

Edgeworth-type approximations; i.e. it is noted that

R2 = R2N − U2, R3 = R3N − U 3, R4 = R4N − U4, (6.51)



270 6 Residuals

where

R2N = (I − P A3,	)XP Q2C
′
3
, U 2 = (P A3,S1 − P A3,	)XP Q2C

′
3
, (6.52)

R3N = (I − P A2,	)XP Q1C
′
2
, U 3 = (P A2,̂S2

− P A2,	)XP Q1C
′
2
, (6.53)

R4N = (I − P A1,	)XP C ′
1
, U4 = (P A1,̂S3

− P A1,	)XPC ′
1
. (6.54)

The residuals R2N , R3N and R4N are all normally distributed. Furthermore,
E[U2] = E[U 3] = E[U4] = 0 and C[RiN ,U i ] = 0, i = 1, 2, 3, 4, hold
and are established by direct calculations. Hence, by referring to Corollary 5.3,
several results can be proven when combining it with Theorem 6.15 (i)–(iii). In the
results given below we assume that the sample size is large enough for the included
constants to exist.

Theorem 6.16 The distribution of the residual R2, given in Definition 6.5 (ii), can
be approximated through the difference

R2 = R2N − U 2,

where R2N and U 2 are defined by (6.52). Let K: p1 × p and L: n × n1, both of
which are known, and

KR2NL ∼ Np1,n1(0,K�P Ao
3,	−1K

′,L′P Q2C
′
3
L).

Then an Edgeworth-type expansion fKR2EL(KRoL) of the density of KR2L, via
the density of KR2NL, under the assumption that D[KR2NL] is p.d., is given by

fKR2EL(KRoL) = {

1 + 1
2n1p1 − 1

2 tr{D[KR2L](D[KR2NL])−1}
− 1

2 tr
{

(D[KR2NL])−1(D[KR2L] − D[KR2NL])(D[KR2NL])−1

×vec(KRoL)vec′(KRoL)
}}

fKR2N L(KRoL),

where

D[KR2L] = L′PQ2C
′
3
L ⊗ ( p−r(A3)

n−r(C ′
1:C ′

2:C ′
3)−p+r(A3)−1KA3(A

′
3�

−1A3)
−A′

3K

+KAo
3(A

o′
3 �Ao

3)
−Ao′

3 K ′),

D[KR2NL] = L′PQ2C
′
3
L ⊗ K�Ao

3(A
o′
3 �Ao

3)
−Ao′

3 �K ′.

Using Theorem B.23 (i) in Appendix B gives the dispersion of the approximating
distribution.
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Corollary 6.7 LetKR2EL be defined via fKR2EL(KRoL), given in Theorem 6.16,
where it is assumed that fKR2EL(KRoL) ≥ 0. Then

(i) E[KR2EL] = 0;
(ii) D[KR2EL] = tN ⊗ M − 1

2n1tr{M−1(M1 − M)}N ⊗ M − N ⊗ (M1 − M),
where

t = 1 + 1
2n1p1 − 1

2 tr{D[KR2L](D[KR2NL])−1},
M = K�Ao

3(A
o′
3 �Ao

3)
−Ao′

3 �K ′,

M1 = p−r(A3)

n−r(C′
1:C ′

2:C ′
3)−p+r(A3)−1KA3(A

′
3�

−1A3)
−A′

3K

+KAo
3(A

o′
3 �Ao

3)
−Ao′

3 K ′,

N = L′P Q2C
′
3
L;

D[KR2L] and D[KR2NL] are presented in Theorem 6.16.

Now the Edgeworth-type expansion for R3 is stated.

Theorem 6.17 The distribution of the residual R3, given in Definition 6.5 (iii), can
be approximated through the difference

R3 = R3N − U 3,

where R3N and U 3 are defined by (6.53). Let K: p1 × p and L: n × n1, both of
which are known, and

KR3NL ∼ Np1,n1(0,K�P Ao
2,	−1K ′,L′P Q1C

′
2
L).

Then an Edgeworth-type expansion fKR3EL(KRoL) of the density of KR3L, via
the density of KR3NL, under the assumption that D[KR3NL] is p.d., is given by
fKR3EL(KRoL) = {

1 + 1
2n1p1 − 1

2 tr{D[KR3L](D[KR3NL])−1}
− 1

2 tr
{

(D[KR3NL])−1(D[KR3L] − D[KR3NL])(D[KR3NL])−1

×vec(KRoL)vec′(KRoL)
}}

fKR3N L(KRoL),

where

D[KR3L] = L′P Q1C
′
2
L ⊗(

KAo
2(A

o′
2 �Ao

2)
−1Ao′

2 K ′ + KA3(A
′
3�

−1A3)
−A′

3K
′

+c1KP ′
Ao

3,	−1A2(A
′
2�

−1A2)
−1A′

2PAo
3,	−1K

′

+c1c2KA3(A
′
3�

−1A3)
−A′

3K
′),

D[KR3NL] = L′P Q1C
′
2
L ⊗ K�Ao

2(A
o′
2 �Ao

2)
−Ao′

2 �K ′,

with c1 and c2 defined in Lemma 4.6 (ii).
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Corollary 6.8 LetKR3EL be defined via fKR3EL(KRoL), given in Theorem 6.12,
where it is assumed that fKR3EL(KRoL) ≥ 0. Then

(i) E[KR3EL] = 0;
(ii) D[KR3EL] = tN ⊗ M − 1

2n1tr{M−1(M1 − M)}N ⊗ M − N ⊗ (M1 − M),
where

t = 1 + 1
2n1p1 − 1

2 tr{D[KR3L](D[KR3NL])−1},
M = K�Ao

2(A
o′
2 �Ao

2)
−Ao′

2 �K ′,

M1 = KAo
2(A

o′
2 �Ao

2)
−1Ao′

2 K ′ + KA3(A
′
3�

−1A3)
−A′

3K
′

+c1KP ′
Ao

3,	−1A2(A
′
2�

−1A2)
−1A′

2P Ao
3,	−1K

′

+c1c2KA3(A
′
3�

−1A3)
−A′

3K
′,

N = L′PQ1C
′
2
L;

D[KR3L] and D[KR3NL] are presented in Theorem 6.17. Moreover, c1 and
c2 are defined in Lemma 4.6 (ii).

Finally, results for R4 are presented.

Theorem 6.18 The distribution of the residual R4, given in Definition 6.5 (iv), can
be approximated through the difference

R4 = R4N − U 4,

where R4N and U 4 are defined by (6.54). Let K: p1 × p and L: n × n1, both of
which are known, and

KR4NL ∼ Np1,n1(0,K�PAo
1,	−1K ′,L′P C ′

1
L).

Then an Edgeworth-type expansion fKR4EL(KRoL) of the density of KR4L, via
the density of KR4NL, under the assumption that D[KR4NL] is p.d., is given by

fKR4EL(KRoL) = {

1 + 1
2n1p1 − 1

2 tr{D[KR4L](D[KR4NL])−1}
− 1

2 tr
{

(D[KR4NL])−1(D[KR4L] − D[KR4NL])(D[KR4NL])−1

×vec(KRoL)vec′(KRoL)
}}

fKR4N L(KRoL),
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where

D[KR4L] = KAo
1(A

o′
1 �Ao

1)
−1Ao′

1 K ′

+d1KP ′
Ao

2,	−1A1(A
′
1�

−1A1)
−A′

1P Ao
2,	−1K ′

+d1d2KA23(A
′
23�

−1A23)
−A′

23K
′

+c2d1d2KA3(A
′
3�

−1A3)
−A′

3K
′,

D[KR4NL] = L′P C ′
1
L ⊗ K�Ao

1(A
o′
1 �Ao

1)
−Ao′

1 �K ′,

with c2, d1 and d2 defined in Lemma 4.6 (ii) and (iii), and

A23(A
′
23�

−1A23)
−A′

23 = A2(A
′
2�

−1A2)
−A′

2 − A3(A
′
3�

−1A3)
−A′

3.

Corollary 6.9 LetKR4EL be defined via fKR4EL(KRoL), given in Theorem 6.13,
where it is assumed that fKR4EL(KRoL) ≥ 0. Then

(i) E[KR4EL] = 0;
(ii) D[KR4EL] = tN ⊗ M − 1

2n1tr{M−1(M1 − M)}N ⊗ M − N ⊗ (M1 − M),
where

t = 1 + 1
2n1p1 − 1

2 tr{D[KR4L](D[KR4NL])−1},
M = K�Ao

1(A
o′
1 �Ao

1)
−Ao′

1 �K ′,

M1 = KAo
1(A

o′
1 �Ao

1)
−1Ao′

1 K ′ + d1KP ′
Ao

2,	−1A1(A
′
1�

−1A1)
−A′

1PAo
2,	−1K ′

+d1d2KA23(A
′
23�

−1A23)
−A′

23K
′ + c2d1d2KA3(A

′
3�

−1A3)
−A′

3K
′,

N = L′PC′
1
L;

D[KR4L], D[KR4NL] and A23(A
′
23�

−1A23)
−A′

23 are presented in Theo-
rem 6.18. Moreover, d1, d2 and c2 are defined in Lemma 4.6 (ii) and (iii).

Using the above results concerning the residuals Ri , i = 1, 2, 3, 4, model
validation can take place for the EBRM3

W . As for the BRM and EBRM3
B , it is

suggested that mean shift tests should be carried out. Now the case is briefly treated
where the mean shift is of the form dj θe′

i .
Consider, among other things, R1 = X(I − P C ′

1:C ′
2:C ′

3
), which includes

information on how columns (individuals) deviate from the average of the columns
(individuals). As usual when performing the residual analysis, we have to eliminate
the singularity, e.g. see (6.37), and thereafter the test statistic corresponding to the
mean shift hypothesis can be presented as in Theorem 6.19, given below. Moreover,
as previously, a parametric bootstrap is suggested for evaluating which elements in
R1 are really large.
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The same notation will be adopted as that used when working with the BRM or
EBRM3

B , i.e.

RN
k;ij = Kdj θe′

iL + Ek, k = 1, 2, 3, 4; (6.55)

RN
k;ij is the same as RN

k and, as before, ij only indicates which element is supposed

to have a mean shift. The residual RN
k , k = 1, 2, 3, 4, is obtained from RN

k by
removing the deterministic part (remember that the dispersion matrix is singular)
in order to utilize the existence of a density. The vectors dj and ei are unit
basis vectors, E1 ∼ Np,n1(0,�, I ), n1 = n − r(C′

1 : C′
2 : C′

3), and Ei ,
i = 2, 3, 4, are defined through the densities in Theorems 6.16, 6.17 and 6.18,
respectively. Moreover, as before, it is noted that Tk;ijo, k = 1, 2, 3, 4, represents the
observed test statistic, LN

k;ij (̂θ) is the likelihood based on Ek , and as ̂θ the estimator
̂θ = d ′

jRkei is used, Lk;ij is the likelihood under H0, i.e. with no mean shift in
the model in (6.55), and R1o is the observed version of R1. In the likelihood, the
dispersion matrix has been replaced by ̂�o, the maximum likelihood estimate, given
in Theorem 3.3.

Theorem 6.19 Consider Ri , i = 1, 2, 3, 4, given in Definition 6.5.

(i) For R1 let

RN
1;ij = djθe′

iL1 + E1, RN
1;ij = R1L, L=V (V ′V )−1, (V is of full rank),

(I − PC ′
1:C ′

2:C ′
3
) = V V ′, E1 ∼ Np,n1(0,�, In1), n1 = n − r(C′

1 : C′
2 : C′

3).

Then a test statistic for testing H0 : θ = 0 against H1 : θ �= 0 (with P 1 =
P C ′

1:C ′
2:C ′

3
) is given by

T1;ijo = (n − r(P 1) − 1)d ′
jR1o(I − P 1)ei (e

′
i (I − P 1)ei )

−1e′
i (I − P 1)R

′
1odj

d ′
jR1o(I − P 1)(I − ei (e

′
i (I − P 1)ei )−1e′

i )(I − P 1)R
′
1odj

.

(ii) For R2 let

RN
2;ij = Kdj θe′

iL + E2,R
N
2;ij = KR2L,K = (W ′W )−1W ′,L = V (V ′V )−1,

(W and V are of full rank),̂�P Ao
3,
̂	−1 = WW ′,P Q2C

′
3

= V V ′,

where E2 has the approximating density given in Theorem 6.16. Then a test
statistic for testing H0 : θ = 0 against H1 : θ �= 0 is given by

T2;ijo = LN
2;ij (̂θo)

LN
2;ij

,
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where LN
2;ij is the likelihood for RN

2 (obtained via E2) under H0 and RN
2 (̂θo)

under H1 witĥθo = d ′
jR2oei .

(iii) For R3 let

RN
3;ij = Kdj θe′

iL + E3,R
N
3;ij = KR3L,K = (W ′W )−1W ′,L = V (V ′V )−1,

(W and V are of full rank),̂�P Ao
2,
̂	−1 = WW ′,P Q1C

′
2

= V V ′,

where E3 has the approximating density given in Theorem 6.17. Then a test
statistic for testing H0 : θ = 0 against H1 : θ �= 0 is given by

T3;ijo = LN
3;ij (̂θo)

LN
3;ij

,

where LN
3;ij is the likelihood for RN

3 (obtained via E3) under H0 and RN
3 (̂θo)

under H1 witĥθo = d ′
jR3oei .

(iv) For R4 let

RN
4;ij = Kdj θe′

iL + E4,R
N
4;ij = KR4L,K = (W ′W )−1W ′,L = V (V ′V )−1,

(W and V are of full rank),̂�P Ao
1,
̂	−1 = WW ′,P C ′

3
= V V ′,

where E4 has the approximating density given in Theorem 6.18. Then a test
statistic for testing H0 : θ = 0 against H1 : θ �= 0 is given by

T4;ijo = LN
4;ij (̂θo)

LN
4;ij

,

where LN
4;ij is the likelihood for RN

4 (obtained via E4) under H0 and RN
4 (̂θo)

under H1 witĥθo = d ′
jR4oei .

Finally, as before, to complete the analysis of residuals, X is simulated from
Np,n1(0,̂�o, I ) to obtain the distribution of the large/largest residuals.

This chapter is ended by copying Example 6.7 and then reparameterizing the
model so that it becomes an EBRM3

W .

Example 6.8 Consider the model presented in Example 1.9 and let it be reformu-
lated as an EBRM3

W . Put

˜A1 = (A1 : A2 : A3), ˜A2 = (A1 : A2), ˜A3 = A1,

where Ai , i = 1, 2, 3, is defined in Example 1.9,

˜C1 = (1′
10 : 1′

35 ⊗ 0), ˜C2 = (1′
10 ⊗ 0 : 1′

15 : 1′
25 ⊗ 0), ˜C3 = (1′

25 ⊗ 0 : 1′
20)
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and then instead of the model in Example 1.9, the following EBRM3
W has emerged:

X = ˜A1�1˜C1 + ˜A2�2˜C2 + ˜A3�3˜C3 + E,

E ∼ Np,n(0,�, I ), C(˜A3) ⊆ C(˜A2) ⊆ C(˜A1),

and �i , i = 1, 2, 3, are new parameters.
Now ˜Ci , i = 1, 2, 3, correspond to the different groups, which leads to

an excellent direct interpretation of the model. However, since the residuals in
Definition 6.4 “equal” the residuals in Definition 6.5; i.e. in this case the proposed
residuals for the EBRM3

W and EBRM3
B are identical and no more calculations

have to take place. ��

Problems

1 (GMANOVA + MANOVA, continuation of Problem 2 in Chap. 3) Let

X = AB1C1 + B2C2 + E,

where all the matrices are given in Problem 2 in Chap. 3. Define residuals. Estimate
the dispersion of the residuals and calculate the covariances among them.

2 Is the proposed density approximation in Theorem 6.5 a true density?

3 Give a detailed derivation of the test statistic in (6.31).

4 Derive appropriate residuals for the EBRM2
B .

5 Derive appropriate residuals for the EBRM2
W .

6 Find appropriate density approximations for some of the residuals in Problem 4
or 5

7 Perform a residual analysis of the data in Table 1.1.

8 In Table 1.1, strongly contaminate three observations and perform a residual
analysis.

9 Try to challenge some of the results in this chapter by constructing a data set with
“extreme observations” which cannot be identified by the given theorems.

10 In this chapter a parametric bootstrap approach was suggested. If instead a
standard bootstrap approach (with resampling from the residuals) was to be applied,
identify what would be problematic with this approach and suggest how to proceed
in order to apply a standard bootstrap approach.
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Literature

It may be worthwhile thinking of a residual as something which is left over. The
study of residuals and outlying observations has followed the theory of least squares
for a long time. Wright (1884) frequently used the term “residual”. Farebrother
(1978) discusses Pizzetti (1891) in relation to the so-called recursive residuals.
The Danish scientist Thiele and colleagues of his used residuals at the end of the
19th century (e.g. see Lauritzen, 2002). Anscombe and Guttman (1960) also gave
several earlier references where the problem of outlying observations was discussed.
Indeed, there is a huge body of literature on outliers, which often by definition can
be linked to residuals. Some of the literature on outliers falls within the subject areas
of robust statistics, explorative data analysis and regression analysis, among others,
but this literature will not be considered in this brief survey of literature on residuals.

Broadly speaking, residuals were from the beginning used for model eval-
uation and this is still the case. Checking the linearity of the mean, checking
the homoscedasticity of variances and checking distributions for normality can
all be performed via residuals. Today in many standard books which include
regression/variance analysis some kind of residual analysis is also performed.

Below a concise survey of the topics that have been discussed over the years
and a few of the authors who have treated these topics are now presented. In the
well-known book by Fisher (1925), the terms “residual”, “mean square residue”
and “residual variance” were used. Later Fisher (1935) used the terms “residual
sums of squares”, “residual error” and “residual deviations”. In particular “residual
sums of squares” is frequently used today. Bartlett (1934) used the term “residual”
when showing how matrices and vectors can be used in least squares analysis.
Yates (1937) used the term “residual effect”, which nowadays is a common
term in experimental design, for example when carry-over effects occur in cross-
over studies (see also Anscombe, 1948; Tocher, 1952; Box and Hunter, 1957;
Yates et al., 1957). Dwyer (1941) investigated skewness, i.e. normality, with the
help of residuals and Durbin and Watson (1950) used residuals for testing for
serial covariance. Rushton (1951) utilized residuals when presenting a specific
computational algorithm for polynomial regression models.

Around 1960 many interesting articles appeared where residuals and outliers
were discussed. In particular, the work by Anscombe and colleagues of his is worth
mentioning. Anscombe and Guttman (1960) defined outliers as observations of
abnormally large residuals, presented approaches to the rejection of outliers and
provided a brief history of this topic (see also Srivastava and von Rosen, 1998,
where several references are given). Anscombe (1961) discusses the distribution
of residuals, including skewness and kurtosis. In Anscombe and Tukey (1963)
residuals are exploited in detail and some graphical plots are provided to assist in
the joint understanding of data and model assumptions. Anscombe (1967) discussed
residual analysis from the perspective of making computations easier to carry out.
Moreover, Zyskind (1963) considered what may be termed “variable selection”



278 6 Residuals

with the help of residuals. An old problem, and one which is also mentioned by
Anscombe and Tukey (1963), is deciding if an observation which corresponds to a
large residual is an outlier and should perhaps be removed (see also Kruskal, 1960,
who gives general comments and a number of references). Grubbs (1950) published
a well-written article focusing on the testing of large residuals. In Grubbs (1950)
one can find several older interesting references.

In the 1970s, residual analysis for linear models became more sophisticated
and researchers studied what types of deviance from the models could be found
via residuals. An interesting article, which in a way summarizes the results of
the 1970s, is that written by Draper and John (1981) (see also Cook, 1977, 1979;
Andrews and Pregibon, 1978; Draper and Smith, 1981; Cook and Weisberg, 1982;
Jørgensen, 1993). In the 1980s, mixed linear models started to become popular, and
therefore one started to develop residual analysis for mixed linear models, including
longitudinal models and random coefficient regression models (e.g. see Verbeke
and Molenberghs, 2009). In particular, Longford (2001) can be mentioned, where a
parametric bootstrap approach is applied and where several references on handling
outliers in mixed linear models are given. An excellent overview of residual analysis
in mixed linear models is presented by Schützenmeister and Piepho (2012).

In Chap. 6 we have used parametric bootstrap simulations (Efron and Tibshirani,
1993) to find an approximation of the distribution of extreme residuals. For
references on bootstrap methods see, for example, Davison and Hinkley (1997)
or Chernick (2008); many more references exist which treat various aspects of
bootstrapping. In particular, bootstrapping theory has been developed for perform-
ing residual analysis within the context of regression analysis (Wakefield, 2013;
Weisberg, 2014) or within time series analysis (e.g. see Krampe et al., 2015).
Moreover, there are interesting connections between the bootstrap method and
Edgeworth expansions (Hall, 1992).

Residuals are often exploited through graphical methods using different types of
plots. Examples can be found in many books, for example those by Atkinson (1987),
Cook (1998) and Atkinson and Riani (2000).

In this chapter, via simulations, test have been performed for a mean shift in the
residuals. For some analytical results on mean shift testing in multivariate regression
models, including the BRM , see Srivastava and von Rosen (1998). Moreover,
through a decomposition of linear spaces residuals for bilinear models have been
presented by von Rosen (1995) and Hamid and von Rosen (2006). However, many
of the results presented in this chapter have not been presented earlier, for example
the density approximations presented in various places and all the results connected
to the EBRM3

W .
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Chapter 7
Testing Hypotheses

7.1 Introduction

Up to now the focus has been on point estimation, interpretation of estimators and
model validation. In this chapter, the important concept of hypothesis testing is
considered and various tests for the BRM are derived. It is interesting to note that
in order to achieve some of the results for the BRM , knowledge about the EBRM2

B

and the EBRM2
W is useful. Concerning the EBRMm

B or EBRMm
W , there exist a

large number of possibilities of testing various hypotheses, but only a few will be
considered. On the other hand, readers who understand how to construct tests for
the BRM will also be able to obtain many results for the EBRMm

B or EBRMm
W .

This chapter will only present work on tests under the null distribution. There
are still several open problems concerning, for example, the power of tests and
approximations of non-null distributions. Some results exist for the BRM and
several of them are connected to the theory about invariant tests. In particular,
invariance together with sufficiency has been used to find tests with good properties.
In this chapter, tests based on the likelihood ratio are presented, as well as some
alternatives. In particular, the interpretations of the tests are highlighted.

7.2 Background

The general multivariate linear model, as formulated in Sect. 1.4, equals

X = BC + E, E ∼ Np,n(0,�, I ), � > 0, (7.1)

where C is a given design matrix and B and � are unknown parameter matrices.
Moreover, suppose that there are the linear restrictions BG = 0 on the parameter
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Fig. 7.1 Consider the model
in (7.1). A decomposition is
presented of the whole space
according to the design and
restrictions. In (a), there are
no restrictions and the
decomposition consists of the
subspaces C(C′) and C(C′)⊥.
In (b), with the restrictions
BG = 0, V1 = C(C ′Go),
V2 = C(C′Go)⊥ ∩ C(C ′) and
V3 = C(C′)⊥

(a) (b)

space, where G is known, corresponding, for example, to a hypothesis testing
problem. The model with and without restrictions is illustrated in Fig. 7.1.

Note that BG = 0 is equivalent to B = �Go′
, where � is an unknown

new parameter matrix. Thus, a reparametrization may take place and under the
restrictions the model can equivalently be written as follows:

X = �Go′
C + E, E ∼ Np,n(0,�, I ). (7.2)

This means, among other things, that the model with restrictions belongs to the same
class of models as the unrestricted one. Estimating � yields a maximum likelihood
estimator of B, i.e. ̂B = ̂�Go′

, which satisfies ̂BG = 0.
In Fig. 7.1b, the decomposition

C(C′) = C(C′Go) � C(C′Go)⊥ ∩ C(C′)

is illustrated. It is natural to believe that if the variation is large for observations
which have been projected on C(C′Go)⊥ ∩ C(C′), then the null hypothesis H0 :
BG = 0 should be rejected. In statistics, this is then formally verified using
distribution theory. Let us follow this decision process in some detail. The estimated
likelihood without restrictions is proportional to |X(I − PC ′)X′|−n/2 and that with
restrictions is proportional to |X(I − P C ′Go)X′|−n/2, both of which results follow
from the estimation of �. Let ̂�H0 denote the MLE of � under the null hypothesis,
and ̂�H1 the MLE of � under the alternative hypothesis, i.e. the unrestricted case.
The likelihood ratio statistic is equivalent to (see Theorem 3.1 with A = I )

λ
2
n = |n̂�H0 |

|n̂�H1 |
= |X(I − P C ′Go)X′|

|X(I − P C ′)X′|

= |X(I − P C ′)X′ + XC′(CC′)−N(N ′(CC′)−N)−N ′(CC′)−CX′|
|X(I − P C ′)X′| , (7.3)
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Fig. 7.2 Consider the model
in (7.1). A decomposition is
presented of the whole space
according to the design and
the restrictions BG = 0, and
the residuals R1 and R2,
given in (7.5) and (7.6), are
illustrated. V1 = C(C ′Go),
V2 = C(C′Go)⊥ ∩ C(C ′) and
V3 = C(C′)⊥

where N is any matrix satisfying C(N) = C(C) ∩ C(G). The numerator in (7.3) is
obtained from Appendix B, Theorem B.12. Moreover,

C(C′(CC′)−N) = C(C′Go)⊥ ∩ C(C′). (7.4)

Now, the observed λ, i.e. λo, is large when

XoC
′(CC′)−N(N ′(CC ′)−N)−N ′(CC′)−CX′

o

is “large”, which is what we would like to see, for example, when testing a
hypothesis and desiring a clear interpretation of the test. The remaining task is
to find out if λo, the observed λ is “extreme”, and to verify such a property, the
distribution for λ is needed, which we will return to in detail later in Sect. 7.3. An
interesting fact is that a similar ratio to the one in (7.3) will be obtained when testing
general hypotheses in the BRM , which indeed is quite remarkable.

In Chap. 6, residuals were considered. We know that quadratic forms of residuals
summarize information and thus can be used as a basis for constructing tests. In
Fig. 7.2, corresponding to Fig. 7.1b, the residuals

R1 = X(I − P C ′), (7.5)

R2 = XPC ′(CC ′)−N (7.6)

are presented.

It is of interest to note that the test statistic λ
2
n , given in (7.3), is identical to

λ
2
n = |R1R

′
1 + R2R

′
2|

|R1R
′
1|

, (7.7)

meaning that the likelihood ratio test is based on a decision as to whether R2R
′
2

is “large”. Moreover, it follows immediately that R1R
′
1 ∼ Wp(�, n − r(C))

and R2R
′
2 ∼ Wp(�, r(N)) are independently distributed (see Appendix B,

Theorem B.19 (ix)). Hence, Theorem C.3 in Appendix C can be used, which verifies



284 7 Testing Hypotheses

the next theorem. Let χ2
f denote a chi-squared distributed variable with f degrees

of freedom and χ2
β(f ) its β-percentile (see Appendix A, Sect. A.9).

Theorem 7.1 Let λo be the observed value of λ, given in (7.7). For the model
presented in (7.1), the null hypothesis BG = 0 is tested against an alternative
without restrictions. Let

to = 2
n
(f − 1

2 (p − m + 1)) ln λo,

where f = n− r(C) and m = dim{C(G)∩C(C)} = dim{C(C′Go′
)⊥ ∩C(C′)}. The

likelihood ratio test, approximately at significance level α, rejects the hypothesis if
to satisfies

P {χ2
pm ≥ to} + c1(1 − c1)(P {χ2

pm+4 ≥ to} − P {χ2
pm ≥ to})

+ c2(P {χ2
pm+8 ≥ to} − P {χ2

pm ≥ to}) ≤ α,

where c1 and c2 are defined in Appendix C, Theorem C.3. ��
Suppose that for the model in (7.1), there are bilinear restrictions on the

parameter space which equal FBG = 0, where F and G are known matrices. By
using Theorem B.10 (i) in Appendix B, it follows that the MANOVA model with
the bilinear restrictions can be written as follows:

X = (F ′)o�1C + F ′�2G
o′
C + E, E ∼ Np,n(0,�, I ), (7.8)

which belongs to the class of EBRM2
B , since C(C′Go) ⊆ C(C′). Thus, by

introducing bilinear restrictions, without further assumptions, the MANOVA model
turns into an EBRM2

B . Figure 7.3 shows what happens when a bilinear restriction
is imposed.

The illustration in Fig. 7.3b is based on the decompositions C	(F ′) � C	(F ′)⊥
and

C(C′) = C(C′Go) � C(C′Go)⊥ ∩ C(C′).

Suppose that the aim is to test

H0 : FBG = 0 versus H1: B unrestricted.

It follows from Fig. 7.3 that this case can be handled in a fairly straightforward
manner. Under the alternative H1, i.e. with no restrictions,

n̂�H1 = S1 = X(I − P C ′)X′,
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(a) (b)

Fig. 7.3 Consider the model in (7.1). A decomposition is presented of the whole space according
to the design and restrictions. In (a), there are no restrictions and the decomposition consists
of the subspaces C(C ′) and C(C ′)⊥. In (b), with the restrictions FBG = 0, V1 = C(C ′Go),
V2 = C(C ′Go)⊥ ∩ C(C ′) and V3 = C(C ′)⊥. The residuals equal R1 = X(I − P C′ ) and
R2 = P ′

F ′,S−1
1

XPC′(CC′)−N

and under H0 (see Theorem 3.2)

n̂�H0 = S1 + P ′
F ′,S−1

1
XP C ′(CC ′)−NX′P

F ′,S−1
1

,

where C′(CC′)−N is justified by (7.4). Suppose that, without any loss of generality,
H = (F ′,S−1

1 (F ′)o) is of full rank. The likelihood ratio criterion is equivalent to

λ

2
n
o = |̂�H0 |

|̂�H1 |
= |H ′

̂�H0H |
|H ′

̂�H1H | = |FS1F
′ + FXoP C ′(CC ′)−NX′

oF
′|

|FS1F
′|

= |FR1oR
′
1oF

′ + FR2oR
′
2oF

′|
|FR1oR

′
1oF

′| , (7.9)

where R1o and R2o are observed versions of R1 and R2 which are defined in
Fig. 7.3 and S1 = Xo(I − PC ′)X′

o. In the forthcoming presentation, for notational
convenience, S1 will represent either S1 = X(I −PC ′)X′ or S1 = Xo(I −PC ′)X′

o.
The same understanding also applies to S, S2 and S3. For a detailed explanation of
how to obtain the relations in (7.9), see the more general BRM case presented in
the next section. It is important to note that since FP ′

F ′,S−1
1

= F , FR1R
′
1F

′ ∼
Wr(F )(F�F ′, n − r(C)), which then under H0 is distributed independently of
FR2R

′
2F

′ ∼ Wr(F )(F�F ′, r(N)). Hence, even if the bilinear restrictions give
non-linear MLEs, the test statistic has the same form as that used when linear
restrictions BG = 0 are imposed.
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A number of different cases will be treated in the following subsections. In
Sect. 7.3 the hypothesis

H0 : FBG = 0 versus H1: B unrestricted

will be tested for the BRM , presented in Definition 2.1. Then in Sects. 7.4–7.7 the
more complicated hypothesis

H0 : F 1BG1 = 0, F 2BG2 = 0

versus different types of alternatives will be studied. Among others,

H0 : F 1BG1 = 0, F 2BG2 = 0 versus H1: B unrestricted

will be discussed, which turns out to be rather difficult. Moreover, in Sect. 7.11, an
EBRM3

B versus a BRM will be tested and in Sect. 7.12

H0 : F 1BG1 = F 2�G2 versus H1: B unrestricted

will be tested for the BRM; in this hypothesis, � is also an unknown parameter. All
the above-mentioned hypotheses will be tested via the likelihood ratio statistic, but
in Sects. 7.8–7.10, alternative test statistics will be considered.

7.3 Likelihood Ratio Testing, H0 : FBG = 0, in the BRM

A likelihood ratio test statistic for testing bilinear restrictions in the BRM is now
derived. This can be achieved in many ways. In this presentation the concept
of dispersion in particular is utilized. Tests for general linear or multivariate
models utilize functions of residuals measuring deviances from the model. The
residuals are obtained by projections of X on certain between-individuals subspaces.
For the BRM , it follows from Sect. 6.2 that natural residuals are obtained via
projections of X on between-individuals spaces and within-individuals spaces.
Because projections are idempotent matrices and not of full rank, it appears that
the concept of “residual” has to be modified somewhat when performing likelihood
ratio testing in the BRM . The projection on the within-individuals space causes the
problem. However, all the spaces which were of interest when constructing residuals
for model validation are also of interest when constructing likelihood ratio tests.

Definition 7.1 The dispersion D on the tensor space V ⊗ W is given by

D = H ′YPY ′H ,

where H is a basis matrix of full rank on W , P is a projector on V and E[Y ] = 0.



7.3 Likelihood Ratio Testing, H0 : FBG = 0, in the BRM 287

Note that in Definition 7.1, the projector P can very well include random variables
which, however, in this book have to be independent of H ′Y . Moreover, if
Y ∼ Np,n(0,�, I ), then D is Wishart-distributed. We remark that the parameter
� in the BRM also often is called dispersion matrix, but � is obviously not related
to Definition 7.1. In (7.9), FR1R

′
1F

′ and FR2R
′
2F

′ can be thought of as two
independently distributed dispersions.

In the following presentation, the results concerning the MLEs obtained in
Chap. 3 will be applied. Let

X = ABC + E, E ∼ Np,n(0,�, I ), � > 0,

where all the matrices are defined in Definition 2.1. Moreover, the testing problem
is identified by

H0 : FBG = 0 versus H1: B unrestricted,

where F and G are known matrices. It is noted that all the matrices represent a
specific quantity of interest.

Example 7.1 For the BRM , let X = ABC + E and suppose that

A =

⎛

⎜

⎜

⎜

⎝

1 t1 t2
1

1 t2 t2
2

...
...

...

1 tp t2
p

⎞

⎟

⎟

⎟

⎠

, C = (1′
n1

⊗ (1 : 0)′ : 1′
n2

⊗ (0 : 1)′),

indicating that there is a quadratic within-individuals model and two treatment
groups. If one is testing for a linear within-individuals structure, then

H0 : FB = 0 versus H1: B unrestricted,

where F = (0 : 0 : 1) can be an appropriate specification. Furthermore, if only one
of the treatment groups follows a quadratic structure, this can be tested by

H0 : FBG = 0 versus H1: B unrestricted,

where F = (0 : 0 : 1) and G = (0 : 1)′. ��
A common strategy for obtaining tests based on the likelihood ratio is to obtain
estimators under the hypothesis H0 and under the alternative hypothesis H1, which
are inserted in the likelihoods corresponding to H0 and H1. Moreover, as seen above,
the models under H0 and H1 generate the following two models:

H1 : X = ABC + E, (7.10)

H0 : X = A(F ′)o�1C + AF ′�2G
o′
C + E, (7.11)
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where �1 and �2 are unknown parameters. Under the alternative H1, according to
Theorem 3.1,

ÂBC = P A,S1XP C ′,

n̂� = (X − ÂBC)()′ = S1 + P ′
Ao,S−1

1
XP C ′X′P

Ao,S−1
1

,

where S1 = X(I − PC ′)X′, which yields that the maximum of the likelihood is
proportional to

|S1 + P ′
Ao,S−1

1
XoP C ′X′

oPAo,S−1
1

|−n/2, (7.12)

and now S1 = Xo(I − P C ′)X′
o, where it has been indicated that observed values

are used. Under H0 the corresponding quantities equal, according to Theorem 3.2
(taking C3=0),

ÂBC = A(F ′)ô�1C + AF ′
̂�2G

o′
C = P A1,S1XP C ′

1
+ P

̂Q′
1A2,̂S2

XP C ′
2
,

n̂� = (X − ÂBC)()′ = ̂S2 + ̂Q
′
2
̂Q

′
1XP C ′

2
X′

̂Q1
̂Q2,

where

S1 = X(I − P C ′)X′, C1 = C, C2 = Go′
C,

A1 = A(F ′)o, A2 = AF ′, ̂Q1 = I − P ′
A1,S1

, ̂Q2 = I − P ′̂
Q′

1A2,̂S2
,

̂Q
′
2
̂Q

′
1 = I − P A1,S1 − P

̂Q′
1A2,̂S2

, ̂S2 = S1 + ̂Q
′
1X(PC ′

1
− P C ′

2
)X′

̂Q1.

At this stage the parameters will not be put into focus. Here, in Sect. 7.3, the purpose
is to present the general mathematics for performing likelihood ratio testing. When
deriving the distribution of the likelihood ratio statistic, it will be apparent that
we relatively freely will switch between observed random variables and random
variables. This is legitimate if experiments and calculations are repeated, but there
is no real mathematical justification for the approach. For notational convenience,
in the following, we will not normally distinguish between random and observed
random variables when a hat, “̂”, is used and it will be clear from the presentations
what is meant.

The maximum of the likelihood under H0 can be shown, as with (7.12), to be
proportional to

|̂S2 + ̂Q
′
2
̂Q

′
1XoP C ′

2
X′

o
̂Q1

̂Q2|−n/2.
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Thus, the likelihood ratio for testing H0 in (7.11) versus H1 in (7.10) is equivalent
to

λ

2
n
o = |̂�H0 |

|̂�H1 |
= |̂S2 + ̂Q

′
2
̂Q

′
1XoP C ′

2
X′

o
̂Q1

̂Q2|
|S1 + P ′

Ao,S−1
1

XoP C ′
1
X′

oP Ao,S−1
1

| , (7.13)

which seems to be a difficult expression to handle. However, λ
2
n
o can be manipulated

so that a satisfactory and interpretable test statistic appears. First, it is noted that
̂Q1

̂Q2 is a projection on a space where the inner product is defined through ̂S
−1
2

and (see Appendix B, Theorem B.3 (v))

C(̂Q1̂Q2) = C(̂Q1(̂Q
′
1Ao

2)o) = C(̂Q1) ∩ C(A2)⊥ = C(A1)⊥ ∩ C(A2)
⊥ = C(A)⊥.

Hence,

λ

2
n
o =

|̂S2 + P ′
Ao,̂S−1

2
XoP C ′GoX′

oP Ao,̂S−1
2

|
|S1 + P ′

Ao,S−1
1

XoPC ′X′
oP Ao,S−1

1
|

= |̂S2||Ao′
̂S2A

o|−1|Ao′
̂S2A

o + Ao′
XoP C ′GoX′

oA
o|

|S1||Ao′
S1A

o|−1|Ao′
XoX

′
oA

o|

= |̂S2||Ao′
̂S2A

o|−1|Ao′
XoX

′
oA

o|
|S1||Ao′

S1A
o|−1|Ao′

XoX
′
oA

o| = |̂S2||Ao′
̂S2A

o|−1

|S1||Ao′
S1A

o|−1
. (7.14)

Put H = (Ao : S−1
1 A), where Ao is supposed to be of full rank and A is any matrix

of full rank satisfying C(A) = C(A), and note that H is of full rank. Then

|H ′S1H | = |Ao′
S1A

o||A′S−1
1 A|

and since A(A′
̂S

−1
2 A)−1A′ = ̂S2 −̂S2A

o(Ao′
̂S2A

o)−1Ao′
̂S2,

|H ′
̂S2H | = |Ao′

̂S2A
o||A′S−1

1 A(A′
̂S

−1
2 A)−1A′S−1

1 A|.
Thus, because H is non-singular, it follows from (7.14) that

λ

2
n
o = |A′S−1

1 A|
|A′

̂S
−1
2 A|

. (7.15)

Next |A′
̂S

−1
2 A| is manipulated. Let N be any matrix of full rank such that C(N) =

C(C) ∩ C(G) and define (see also Theorem B.12 in Appendix B)

PB = P C ′ − PC ′Go = PC ′(CC ′)−N.
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Note that B indicates that this is a projection on a between-individuals subspace.

Then, by calculating ̂S
−1
2 via Appendix B, Theorem B.6 (i) and using the fact that

P C ′
1
− P C ′

2
= PB,

|A′
̂S

−1
2 A| = |A′S−1

1 A||I − P A,S1
̂Q

′
1XoPB

(PBX′
o
̂Q1S

−1
1

̂Q
′
1XoPB + I )−1PBX′

o
̂Q1S

−1
1 |

= |A′S−1
1 A||I + PBX′

oP Ao
1,S

−1
1

S−1
1 XoPB|−1|I

+PBX′
oP Ao,S−1

1
S−1

1 XoPB|
and

λ

2
n
o =

|I + PBX′
oP Ao

1,S
−1
1

S−1
1 XoPB|

|I + PBX′
oP Ao,S−1

1
S−1

1 XoPB| . (7.16)

Using the definition of PB and taking out (N ′(CC′)−N)−1 yield

λ

2
n
o =

|N ′(CC′)−C(I + X′
oP Ao

1,S
−1
1

S−1
1 Xo)C

′(CC′)−N |
|N ′(CC′)−C(I + X′

oP Ao,S−1
1

S−1
1 Xo)C

′(CC′)−N | .

Moreover, from Appendix B, Theorem B.12, the following relation between projec-
tors appears to be useful for the presentation (remember that Ao

1 = (A(F ′)o)o):

P
Ao

1,S
−1
1

= P
Ao,S−1

1
+ PW ,

where

PW = P
S−1

1 A(A′S−1
1 A)−M,S−1

1
, (7.17)

M is any matrix of full rank satisfying C(M) = C(A′) ∩ C(F ′), and W denotes
that the projection takes place on a within-individual subspace. The application of
this relation between projectors is crucial for deriving a good approximation of the
distribution for λ. The next issue is to understand the following chain of equalities,
where in particular (7.17) has been applied:

λ

2
n
o =

|N ′(CC′)−C(I + X′
o(P

Ao,S−1
1

+ PW )S−1
1 Xo)C

′(CC′)−N |
|N ′(CC′)−C(I + X′

oPAo,S−1
1

S−1
1 Xo)C

′(CC′)−N |

= |I + PWS−1
1 XoC

′(CC′)−N

×{N ′(CC′)−C(I + X′
oPAo,S−1

1
S−1

1 Xo)C
′(CC′)−N}−1N ′(CC′)−CX′

o|
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= |M ′(A′S−1
1 A)−M + M ′(A′S−1

1 A)−A′S−1
1 XoC′(CC′)−N

×{N ′(CC′)−C(I + X′
oPAo,S−1

1
S−1

1 Xo)C
′(CC′)−N}−1

×N ′(CC′)−CX′
oS

−1
1 A(A′S−1

1 A)−M||M ′(A′S−1
1 A)−M|−1. (7.18)

From a distributional point of view, the expression in (7.18) seems rather awkward.

However, it will be shown that λ

2
n
o has the same form as the test statistic presented

in (7.9); details are presented below after Theorem 7.3. Now we replace the observed
variables in (7.18) by the corresponding random variables. From Appendix B,
Theorem B.20 (v), it follows that

M ′(A′S−1
1 A)−M ∼ Wr(M)(M

′(A′�−1A)−M, n − r(C) − p + r(A))

and Ao′
X is independent of A′�−1X, see Appendix B, Theorem B.19 (xiii).

Moreover,

M ′(A′S−1
1 A)−A′S−1

1 X

= M ′(A′�−1A)−A′�−1X(I − (I − PC ′)X′Ao(Ao′
S1A

o)−Ao′
X),

which, given Ao′
X, is normally distributed. Thus, conditionally on Ao′

X, for

M ′(A′S−1
1 A)−A′S−1

1 X

×C′(CC′)−N(N ′(CC′)−C(I + X′P
Ao,S−1

1
S−1

1 X)C′(CC′)−N)−1/2, (7.19)

under H0, i.e. FBG = 0, the mean and dispersion equal 0 and I ⊗
M ′(A′�−1A)−M , respectively, with the remarkable conclusion that the distribution
of (7.19) is indeed independent of Ao′

X, and thus (7.19) is normally distributed

and its “square” Wishart distributed. If, inside the determinants of λ

2
n
o in (7.18), one

pre- and post-multiplies by the matrix (M ′(A′�−1A)−M)−1/2, the result of the

multiplication establishes that λ
2
n follows the same distribution as

|V + U |
|V | , (7.20)

where V and U are independent, with V ∼ Wr(M)(I , n − r(C) − p + r(A)) and
under H0, U ∼ Wr(M)(I , r(N)). Hence, the likelihood ratio (7.13) has been turned
into a well-known form of a ratio of determinants of Wishart-distributed variables
and then the results given in Appendix C.3 can be utilized. Note that in the above
derivation, it has implicitly been assumed that both M and N differ from 0. If one
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of the matrices equals 0, then it can be shown that λo = 1, i.e. the hypothesis
does not put any restrictions on the parameter space and thus the hypothesis is not
meaningful to test. However, it is worth noting that the usual testability conditions
C(F ′) ⊆ C(A′) and C(G) ⊆ C(C) are not needed. On the other hand, it is much
easier to interpret a test under these nested subspace conditions than without them.

Theorem 7.2 For the BRM presented in Definition 2.1, the null hypothesis H0:
FBG = 0 is tested against an alternative without restrictions on B. Let λo be the
observed value of λ, given in (7.13), and let

to = 2
n
(f − 1

2 (po − m + 1)) ln λo,

where f = n − r(C) − p + r(A), po = dim{C(F ′) ∩ C(A′)} and m = dim{C(G) ∩
C(C)}. The likelihood ratio test, approximately at significance level α, rejects the
hypothesis if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α,

where

c1 = pom(p2
o + m2 − 5)

48(f − 1
2 (po − m + 1))2

,

c2 = 1

2
c2

1 + pom(3p4
o + 3m4 + 10p2

om
2 − 50(p2

o + m2) + 159)

1920(f − 1
2 (po − m + 1))4

.

��
Corollary 7.1 If F = I , for the BRM , presented in Definition 2.1, the test of the
null hypothesis BG = 0 against an alternative without restriction is obtained from
Theorem 7.2 if one uses po = r(A). ��
Corollary 7.2 If G = I , for the BRM , presented in Definition 2.1, the test of the
null hypothesis FB = 0 against an alternative without a restriction is obtained
from Theorem 7.2 if one uses m = r(C). ��

Note that if po = 1 or po = 2, instead of Theorem C.3 in Appendix C, the
reader is referred to Theorem C.2 (ii) or (iii) in Appendix C, leading to a simplified
version of Theorem 7.2. Let Fm,f and Fβ(m, f ) denote the F-distribution and its
β-percentile (see Appendix A, Sect. A.9).

Theorem 7.3 The model and hypothesis are the same as those in Theorem 7.2. Let

λ be given in (7.13) and put Upo,m,f = λ− 2
n , where po = dim{C(F ′) ∩ C(A′)},

f = n − r(C) − p + r(A) and m = dim{C(G) ∩ C(C)}. Then
(i) if po = 2, T11 = (f−1)

m
(1 − U

1/2
2,m,f )/U

1/2
2,m,f ∼ F2m,2(f−1);
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(ii) if po = 1, T12 = f
m

(1 − U1,m,f )/U1,m,f ∼ Fm,f .
��

Note that for notational convenience we do not distinguish between an observed
Upo,m,f and a random Upo,m,f . The appropriate interpretation is obvious from the
context. Above were presented a number of complicated relations leading to quite
a good result, stated in Theorem 7.2. However, it is possible to extract more insight
into the construction of the test statistic, as well as increase our understanding of the
test, if one exploits some details. First, consider the proof of (see also Appendix B,
Theorem B.20 (v))

M ′(A′S−1
1 A)−M ∼ Wr(M)(M

′(A′�−1A)−M, n − r(C) − p + r(A)), (7.21)

where M satisfies C(M) ⊆ C(A′). This proof can run as follows:

M ′(A′S−1
1 A)−M = M ′(A′�−1A)−A′�−1A(A′S−1

1 A)−A′�−1A(A′�−1A)−M

= M ′(A′�−1A)−A′�−1(S1 − S1A
o(Ao′

S1Ao)−Ao′
S1)�−1A(A′�−1A)−M

= M ′(A′�−1A)−A′�−1XPX′�−1A(A′�−1A)−M,

where

P = I − P C ′ − (I − P C ′)X′Ao(Ao′
S1A

o)−Ao′
X(I − P C ′). (7.22)

Now A′�−1X is independent of Ao′
X and P 2 = P , i.e. P is idempotent of rank

n − r(C) − r(Ao). Thus, it is possible to establish (7.21) by using a conditional
argument, i.e. condition with respect to Ao′

X, and then conditionally (7.21) is
true, which, however, due to the idempotency of P , with probability 1, does not
depend on Ao′

X and hence holds unconditionally. This also means that according to
Definition 7.1, we may consider M ′(A′S−1

1 A)−M to be interpreted as a dispersion
quantity. Furthermore, it is interesting to note that when conditioning with respect to
Ao′

X, information is moved from the within-individuals subspace to the between-
individuals subspace.

Next M ′(A′S−1
1 A)−A′S−1

1 XC′(CC′)−N in (7.18) is exploited. It follows that

M ′(A′S−1
1 A)−A′S−1

1 XC′(CC′)−N

= M ′(A′�−1A)−A′�−1A(A′S−1
1 A)−A′S−1

1 XC′(CC′)−N

= M ′(A′�−1A)−A′�−1(I − S1A
o(Ao′

S1A
o)−Ao′

)XC′(CC′)−N

= M ′(A′�−1A)−A′�−1XP 1C
′(CC′)−N ,

where

P 1 = I − (I − P C ′)X′Ao(Ao′
S1A

o)−Ao′
X. (7.23)
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It can be shown that P 1 is idempotent, C(P 1) = C(X′Ao)⊥ and N (P 1) = C((I −
P C ′)X′Ao). Therefore, according to Appendix B, Theorem B.11 (iv)

C(P 1C′(CC′)−N) = C(X′Ao)⊥ ∩ {C((I − PC ′)X′Ao) � C(C′(CC′)−N)} (7.24)

and PP 1C
′(CC′)−N = 0. Thus, with probability 1, (7.18) is identical to

λ
2
n = |˜V + ˜U |

|˜V | ,

where

˜V = (M ′(A′�−1A)−M)−1/2M ′(A′�−1A)−A′�−1XPX′

×�−1A(A′�−1A)−M(M ′(A′�−1A)−M)−1/2,

˜U = (M ′(A′�−1A)−M)−1/2M ′(A′�−1A)−A′�−1X

×P 1C
′(CC′)−N(N ′(CC′)−CP ′

1P 1C
′(CC′)−N)−N ′(CC ′)−CP ′

1

×X′�−1A(A′�−1A)−M(M ′(A′�−1A)−M)−1/2,

and ˜V and ˜U are, conditionally on Ao′
X, independently distributed. More-

over, conditionally on Ao′
X, ˜V ∼ Wr(M)(I , r(P )) and, under H0, ˜U ∼

Wr(M)(I , r(P 1C
′(CC ′)−N)), which then also hold unconditionally, where

r(P ) = n − r(C) − p + r(A), (7.25)

r(P 1C
′(CC′)−N) = r(N),

and it also follows that ˜V and ˜U are independently distributed. Furthermore, it is
possible to interpret λ via dispersion quantities; i.e. it has in fact been shown above
that in (7.18)

D12 = M ′(A′S−1
1 A)−M, (7.26)

D21 = M ′(A′S−1
1 A)−A′S−1

1 XC′(CC′)−N(N ′(CC ′)−CP ′
1P 1C

′(CC ′)−N)−

×N ′(CC′)−CX′S−1
1 A(A′S−1

1 A)−M, (7.27)

both of which, according to Definition 7.1, are dispersion quantities which are
independent and Wishart-distributed. Therefore, the test criterion λo has the same
distribution as

λ
2
n = |D12 + D21|

|D12| . (7.28)
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(a) (b)

Fig. 7.4 In (a), the dotted area corresponds to H0: FBG = 0. In (b), those areas are given which
are of interest for the likelihood ratio test. Furthermore, W1 = C•(A(F ′)o), W2 = C•(A) ∩
C•(A(F ′)o)⊥, W3 = C•(A)⊥, V1 = C(C ′Go), V2 = C(C ′) ∩ C(C ′Go)⊥, V3 = C(C ′)⊥, ˜V2 =
C(P 1C

′(CC′)−N) and ˜V3 = C(P 1(C
′)o), where P 1 is defined in (7.23). The dispersion matrices

D12 and D21 are defined in (7.26) and (7.27), respectively

Before leaving the likelihood ratio test statistic λ
2
n
o , given in (7.18), the following

reflections seem to be appropriate. The distribution of λ
2
n is described through

a ratio of determinants of Wishart-distributed dispersion matrices. Moreover, it
was shown that the distribution does not depend on Ao′

X. Unfortunately, this
does not mean that when replacing X by the data Xo, in order to calculate

λ
2
n
o , the observed likelihood ratio statistic will be functionally independent of

Ao′
Xo. Hence, when evaluating this fact, the projectors P and P 1 or (I −

P C ′)X′
oA

o(Ao′
S1A

o)−Ao′
Xo(I − P C ′) have to be investigated. If, for example,

P is “small”, the observed likelihood ratio, λ
2
n
o , may be “large”. This occurs if

r(X′
oA

o) is close to n − r(C), which may take place in high-dimensional problems
when p and n are close to each other (see also (7.25)), although it is still important
to assume that p ≤ n − r(C), which means that “real” high-dimensional problems
are not covered by the present approach. The effect of Ao′

Xo is usually not serious.
However, performing some simulations may help us to understand if a particular
choice of A in a particular situation may have the potential to harm conclusions.

In Fig. 7.4, those spaces are presented which are involved in building the test
statistic. The conditioning by Ao′

X has an influence on the result via the projection
P 1. In particular, ˜V2 = C(P 1C

′(CC′)−N) and ˜V3 = C(P ) = C(P 1(C
′)o) should

be understood, since the dispersions on these spaces build up the likelihood ratio
test. This means that we have spaces which depend on Ao′

Xo, i.e. depend on data
when the test concerns the mean parameters. However, this is not very satisfactory,
because it is more difficult to interpret the outcome of this test than, for example,
to interpret the outcome of the most commonly applied test in MANOVA (see
e.g. Fig. 7.2). On the other hand, it can be shown via (7.24) that ˜W2 equals {0}
if C(N) = {0}, which is exactly what we want to test.

Example 7.2 Consider the Potthoff and Roy data presented in Table 1.2 and
analysed in Example 3.1. Let, as in Model IIa of Example 3.1, X = ABC + E,
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where

A =

⎛

⎜

⎜

⎝

1 8 64
1 10 100
1 12 144
1 14 196

⎞

⎟

⎟

⎠

, C = (1′
11 ⊗ (1 : 0)′ : 1′

16 ⊗ (0 : 1)′).

Thus, the growth is modelled with a second-order polynomial. First one tests
whether the quadratic term in ABC equals 0, meaning that one tests the following
hypothesis:

H0 : FB = 0, versus H1 : B unrestricted,

where F = (0 : 0 : 1). In Theorem 7.2 it follows that f = 24, po = 1 and m = 2.
Since po = 1, instead of Theorem 7.2, Theorem 7.3 (ii) is utilized. Moreover, the
calculations show that λ

2/27
o = 1.0976. Thus, U1,2,24 = λ

−2/27
o = 0.911 and

T12o = 24

2
(1 − U1,2,24)/U1,2,24 = 1.2 < F0.05(2, 24) = 3.4.

Hence H0 cannot be rejected at significance level 0.05.
Next it is supposed that only the girls follow a quadratic growth, which is

reflected in the following test:

H0 : FBG = 0, versus H1 : B unrestricted,

where F = (0 : 0 : 1) and G = (0 : 1)′. Theorem 7.3 (ii) informs us that the
hypothesis should not be rejected, since

T12o = 24(1 − U1,1,24)/U1,1,24 = 2.3 < F0.05(1, 24) = 4.3.

Finally, it is tested whether there is no growth between age 8 and age 14 for both the
boys and the girls, i.e. H0: FB = 0, where

F =
(

0 1 0
0 0 1

)

.

In this case, according to Theorem 7.2, f = 24, po = 2 and m = 2. Since po =
2, Theorem 7.3 (i) can be applied. The calculations yield λ

2/27
o = 6.123. Thus,

U2,2,24 = λ
−2/27
o = 0.16 and

T11o = 23

2
(1 − U

1
2

2,2,24)/U

1
2

2,2,24 = 17.0 > F0.05(4, 46) = 2.6.
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Hence, H0 can be rejected at significance level 0.05. Of course, if there is any power
in the test, this hypothesis should be rejected, which was fortunately also what took
place. ��
Example 7.3 Below, a couple of tests are performed which are based on the
melatonin data described in Example 1.6. The data were generated with the help
of the following design and parameter matrices. Let ω = π/24,

A1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 sin(ω) cos(ω)

1 sin(4ω) cos(4ω)

1 sin(8ω) cos(8ω)

1 sin(12ω) cos(12ω)

1 sin(14ω) cos(14ω)

1 sin(16ω) cos(16ω)

1 sin(18ω) cos(18ω)

1 sin(20ω) cos(20ω)

1 sin(22ω) cos(22ω)

1 sin(24ω) cos(24ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sin(2ω)

sin(4 ∗ 2ω)

sin(8 ∗ 2ω)

sin(12 ∗ 2ω)

sin(14 ∗ 2ω)

sin(16 ∗ 2ω)

sin(18 ∗ 2ω)

sin(20 ∗ 2ω)

sin(22 ∗ 2ω)

sin(24 ∗ 2ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos(2ω)

cos(4 ∗ 2ω)

cos(8 ∗ 2ω)

cos(12 ∗ 2ω)

cos(14 ∗ 2ω)

cos(16 ∗ 2ω)

cos(18 ∗ 2ω)

cos(20 ∗ 2ω)

cos(22 ∗ 2ω)

cos(24 ∗ 2ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

C1 = (1′
10 ⊗

⎛

⎝

1
0
0

⎞

⎠ : 1′
15 ⊗

⎛

⎝

0
1
0

⎞

⎠ : 1′
20 ⊗

⎛

⎝

0
0
1

⎞

⎠),

C2 = (1′
10 ⊗

(

1

0

)

: 1′
15 ⊗

(

0

1

)

: 1′
20 ⊗

(

0

0

)

), C3 = (1′
10 : 1′

35 ⊗ 0),

B1 =
⎛

⎝

0.01 0.14 0.20
0.21 −0.01 −0.004
0.02 0.03 −0.01

⎞

⎠ , B2 = (−0.04 : −0.06), B3 = (0.10);

� is given in Example 1.9. Then data according to

X = A1B1C1 + A2B2C2 + A3B3C3 + E, E ∼ N10,45(0,�, I )

are simulated. Note that the data set consists of three different groups of independent
observations, each of which has a somewhat different within-individuals means
structure. Moreover, no explicit data values are presented, since it is expected that
the readers can generate their own data with the help of the matrices given above.
Thus, it is not possible to copy the calculations in this example exactly, but the sizes
of the estimates and the tests should be the same. (This will also be the case in
several of the following examples.)
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Now the BRM is studied and, therefore, we put A = (A1 : A2 : A3), i.e.

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 sin(ω) cos(ω) sin(2ω) cos(2ω)

1 sin(4ω) cos(4ω) sin(4 ∗ 2ω) cos(4 ∗ 2ω)

1 sin(8ω) cos(8ω) sin(8 ∗ 2ω) cos(8 ∗ 2ω)

1 sin(12ω) cos(12ω) sin(12 ∗ 2ω) cos(12 ∗ 2ω)

1 sin(14ω) cos(14ω) sin(14 ∗ 2ω) cos(14 ∗ 2ω)

1 sin(16ω) cos(16ω) sin(16 ∗ 2ω) cos(16 ∗ 2ω)

1 sin(18ω) cos(18ω) sin(18 ∗ 2ω) cos(18 ∗ 2ω)

1 sin(20ω) cos(20ω) sin(20 ∗ 2ω) cos(20 ∗ 2ω)

1 sin(22ω) cos(22ω) sin(22 ∗ 2ω) cos(22 ∗ 2ω)

1 sin(24ω) cos(24ω) sin(24 ∗ 2ω) cos(24 ∗ 2ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

C = (1′
10 ⊗

⎛

⎝

1
0
0

⎞

⎠ : 1′
15 ⊗

⎛

⎝

0
1
0

⎞

⎠ : 1′
20 ⊗

⎛

⎝

0
0
1

⎞

⎠).

On the basis of how the data were generated, it is known that they do not follow the
BRM model. In fact, the true model is a BRM with F iBGi = 0, i = 1, 2, where

F 1 = (0 : 0 : 0 : 0 : 1), G1 = (0 : 1 : 0)′, F 2 =
(

0 0 0 1 0

0 0 0 0 1

)

, G2 = (0 : 0 : 1)′,

(7.29)

which equivalently can be stated as: for B = (bij ), b52 = b43 = b53 = 0.
If there is a reasonable power of the likelihood ratio test, which is not obvious

since p = 10 is relatively large, the observed test statistic should lead to rejection.
First H0: FB = 0 against H1: B unrestricted is tested, where

F =
(

0 0 0 1 0
0 0 0 0 1

)

,

which is identical to F 2 in (7.29). Here it is tested if H0 is “true”, with the knowledge
that since the data consist of three groups with different mean structures, as assumed
above, this cannot be correct; i.e. G2 indicates that only one group out of the three
is restricted by F . Additionally, F 1BG1 = 0 should be valid. Hence, whether or
not the difference is uncovered is only a matter of power. The test statistic equals
λ

2/45
o = 2.49. In order to choose an appropriate transformation of λ, for example

T11 or T12 of Theorem 7.3 (i) or (ii), one needs to determine po. It can be shown
that po = dim{C(F ′) ∩ C(A′)} = 2. Moreover, m = dim{C(I 3) ∩ C(C)} = 3
and f = n − r(C) − p + r(A) = 37. Thus, Theorem 7.3 (i) can be used and
U2,3,37 = λ

−2/45
o = 0.40, leading to

T11o = 36

3
(1 − U

1
2

2,3,37)/U

1
2

2,3,37 = 6.9 > F0.05(6, 74) = 2.2.

Hence, H0 is rejected at significance level 0.05.
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Furthermore, H0: FBG = 0 versus H1: B unrestricted can be tested with an F

which is identical to the F of the previous test and G = (1 : 0 : 0)′. In this case
λ

2/45
o = 1.31, po = 2 and m = 1. Then, according to Theorem 7.3 (i), U2,1,37 =

λ
−2/45
o = 0.76 and, since

T11o = 36(1 − U

1
2

2,1,37)/U

1
2

2,1,37 = 5.2 > F0.05(2, 74) = 3.1,

the hypothesis H0 is rejected at significance level 0.05. If instead of via G = (1 :
0 : 0)′, the restrictions in H0 are defined via G = (0 : 0 : 1)′, the test statistic
T11o = 1.4 implies that the hypothesis should not be rejected, which is in complete
agreement with the data-generating assumptions in (7.29).

Finally, the hypothesis H0: FBG = 0 is tested against an unrestricted B, where
G = (1 : 0 : 0)′ and F = (0 : I 4), i.e. the first group has a constant mean. As
before, in order to choose an appropriate test statistic, po has to be determined and
in this case equals po = 4. Thus, there is no test statistic with an exact F-distribution
and the result will rely on Theorem 7.2. Now m = 1, f = 37 and the value of to of
the theorem is 10.2. Therefore,

P {χ2
4 ≥ to} + c1(1 − c1)(P {χ2

8 ≥ to} − P {χ2
4 ≥ to})

+ c2(P {χ2
12 ≥ to} − P {χ2

4 ≥ to}) ≈ P {χ2
4 ≥ to} = 0.04,

since c1 and c2 are small, and therefore H0 is rejected at the significance level α =
0.05. ��

7.4 Likelihood Ratio Testing H0 : F 1BG1 = 0 in the BRM

with the Restrictions F 2BG2 = 0, C(F ′
1) ⊆ C(F ′

2)

In this section, the BRM is treated, together with two bilinear restrictions on
B, i.e. F iBGi = 0, i = 1, 2, where F i and Gi are known matrices. The
presentation closely follows the one given in the previous section. Theorem B.10
(iii) in Appendix B implies that

F iBGi = 0, i = 1, 2,

is equivalent to

B = (F ′
1 : F ′

2)
o�1 + (F ′

2 : (F ′
1 : F ′

2)
o)o�2G

o′
1

+(F ′
1 : (F ′

1 : F ′
2)

o)o�3G
o′
2 + ((F ′

1)
o : (F ′

2)
o)o�4(G1 : G2)

o′
,
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where �1 – �4 are new parameters, which, however, are not considered in this
section. Then, multiplying by A and C, the mean structure for the BRM with double
bilinear restrictions is obtained:

E[X] = ABC = A(F ′
1 : F ′

2)
o�1C + A(F ′

2 : (F ′
1 : F ′

2)
o)o�2G

o′
1 C

+ A(F ′
1 : (F ′

1 : F ′
2)

o)o�3G
o′
2 C + A((F ′

1)
o : (F ′

2)
o)o�4(G1 : G2)

o′
C.

(7.30)

Because (7.30) does not expose a hierarchical subspace structure (stairs structure),
it follows that in order to utilize results for either the EBRM•

B or EBRM•
W , an

additional assumption has to be introduced. For example, any of the following
assumption can be chosen:

C(F ′
1) ⊆ C(F ′

2), A(F ′
2 : (F ′

1 : F ′
2)

o)o = 0, C(Go
2) ⊆ C(Go

1),

C(C′Go
2) ⊆ C(C′Go

1).

In this section, C(F ′
1) ⊆ C(F ′

2) is discussed, but the other cases which are listed can
be handled in a similar fashion. Under the assumption C(F ′

1) ⊆ C(F ′
2), an EBRM3

B

emerges with a mean structure given by

E[X] = ABC = A(F ′
2)o�1C + A(F ′

1 : (F ′
2)o)o�3Go′

2 C + AF ′
1�4(G1 : G2)o

′
C.

(7.31)

Note that the nested subspace condition C(C′(G1 : G2)
o) ⊆ C(C′Go

2) ⊆ C(C′)
holds. Before starting the mathematical derivation of the test, a simple example is
presented illustrating the model assumptions.

Example 7.4 (Similar to the Potthoff and Roy Data Presented in Example 1.7) To
illustrate the test presented and the assumptions made in this section, the following
BRM is supposed to be valid: E[X] = ABC with F 2BG2 = 0, where

A =

⎛

⎜

⎜

⎜

⎜

⎝

1 t1 t2
1

1 t2 t2
2

...
...

...

1 tp t2
p

⎞

⎟

⎟

⎟

⎟

⎠

, C = (1′
n1

⊗ (1 : 0 : 0)′ : 1′
n2

⊗ (0 : 1 : 0)′ : 1′
n3

⊗ (0 : 0 : 1)′),

F 2 =
(

0 0 1

0 1 0

)

, G2 = (0 : 1 : 0)′.

The hypothesis is specified as H0 : F 1BG1 = 0, where

F 1 = (0 : 0 : 1), G1 = (0 : 0 : 1)′.
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Hence, C(F ′
1) ⊆ C(F ′

2) and we have an example reflecting (7.31), similar to the
Potthoff and Roy data set. However, instead of two groups (girls and boys), as in the
data set of Potthoff and Roy, there are three groups of individuals whose members
have a constant mean, or follow a linear or a quadratic mean structure over time.
The restriction F 2BG2 = 0 states that for the second group, the mean over time is
constant. The hypothesis F 1BG1 = 0 is supposed to test whether the mean over
time for the third group is linear. ��

For the model of this section, the likelihood ratio for testing H0 : F iBGi = 0,
i = 1, 2, against H1 : F 2BG2 = 0, i.e. testing H0 : F 1BG1 = 0 within the BRM

with the restriction F 2BG2 = 0, according to Theorem 3.2, is equivalent to

λ

2
n
o = |̂�H0 |

|̂�H1 |
= |̂S3 + ̂Q

′
3
̂Q

′
2
̂Q

′
1XoP C ′

3
X′

o
̂Q1

̂Q2
̂Q3|

|̂S2 + P ′
Ao,̂S−1

2
XoP C ′

2
X′

oP Ao,̂S−1
2

| ,

where

A1 = A(F ′
2)

o, C1 = C, A2 = A(F ′
1 : (F ′

2)
o)o, C2 = Go′

2 C,

A3 = AF ′
1, C3 = (G1 : G2)

o′
C,

n̂�H0 = ̂S3 + P ′
Ao,̂S−1

3
XoPC3X

′
oP Ao,̂S−1

3
,

̂S3 = ̂S2 + P ′
(A1:A2)o,̂S−1

2
Xo(P C ′

2
− P C ′

3
)X′

oP (A1:A2)o,̂S
−1
2

,

̂S2 = S1 + P ′
Ao

1,S−1
1

Xo(P C ′
1
− PC ′

2
)X′

oPAo
1,S−1

1
, S1 = Xo(I − P C ′

1
)X′

o,

̂Q1 = I − P ′
A1,S1

, ̂Q2 = I − P ′̂
Q′

1A2,̂S2
,

̂Q3 = I − P ′̂
Q′

2
̂Q′

1A3,̂S3
, ̂Q1

̂Q2
̂Q3 = P

Ao,̂S−1
3

.

In order to determine the distribution of the test statistic, a somewhat technical
treatment takes place. It is suggested that those who are only interested in the results
should jump directly to Theorem 7.4.

Taking out̂S2 and̂S3 from the determinants of the numerator and the denomina-
tor yields after a few calculations

λ

2
n
o =

|̂S3 + P ′
Ao,̂S−1

3
XoP C3X

′
oPAo,̂S−1

3
|

|̂S2 + P ′
Ao,̂S−1

2
XoP C ′

2
X′

oPAo,̂S−1
2

| = |̂S3||Ao′
̂S3A

o|−1

|̂S2||Ao′
̂S2A

o|−1
.

Put H = (Ao : ̂S−1
2 A), where, as previously, A is any matrix of full rank satisfying

C(A) = C(A) and Ao is of full rank. Thus, H is of full rank and

|H ′
̂S2H | = |Ao′

̂S2A
o||A′

̂S
−1
2 A|.
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Since A(A′
̂S

−1
3 A)−1A′ = ̂S3 − ̂S3A

o(Ao′
̂S3A

o)−1Ao′
̂S3 (see Appendix B,

Theorem B.13),

|H ′
̂S3H | = |Ao′

̂S3A
o||A′

̂S
−1
2 A(A′

̂S
−1
3 A)−1A′

̂S
−1
2 A|.

These calculations show, because H is non-singular, that

λ

2
n
o = |A′

̂S
−1
2 A|

|A′
̂S

−1
3 A|

. (7.32)

Neither ̂S2 nor ̂S3 are Wishart-distributed and, therefore, this ratio is slightly more
complicated to handle than (7.15). Let N be any matrix of full rank satisfying
C(N) = C(Go′

2 C) ∩ C(Go′
2 G1) and define

PB = P
C ′Go

2(Go′
2 CC ′Go

2)−N
,

implying that PC ′
2
− P C ′

3
= PB, since

C(C′Go
2(G

o′
2 CC ′Go

2)
−N) = C(C′Go

2(G
o′
2 CC ′Go

2)
−Go′

2 C(C′Go
2(G

o′
2 G1)

o)o)

= C(C ′Go
2(G

o′
2 CC′Go

2)
−Go′

2 C(C ′(G1 : G2)
o)o) = C(C′Go

2) ∩ C(C ′(G1 : G2)
o)⊥,

where in the last equality the projection theorem, Appendix B, Theorem B.11 (iv),

has been utilized. Then, by calculating ̂S
−1
3 as a function of ̂S

−1
2 , according to

Appendix B, Theorem B.6 (i),

|A′
̂S

−1
3 A| = |A′

̂S
−1
2 A|

×|I − P A,̂S2
̂Q

′
2
̂Q

′
1XoPB(PBX′

o
̂Q1

̂Q2
̂S

−1
2

̂Q
′
2
̂Q

′
1XoPB + I )−1

×PBX′
o
̂Q1

̂Q2
̂S

−1
2 |

= |A′
̂S

−1
2 A||I + PBX′

oP (A1:A2)o,̂S
−1
2

̂S
−1
2 XoPB|−1

×|I + PBX′
oP Ao,̂S−1

2

̂S
−1
2 XoPB|.

Hence,

λ

2
n
o =

|I + PBX′
oP (A1:A2)o,̂S

−1
2

̂S
−1
2 XoPB|

|I + PBX′
oP

Ao,̂S−1
2

̂S
−1
2 XoPB|

=
|N ′(Go′

2 CC′Go
2)−Go′

2 C(I + X′
oP

(A1:A2)o,̂S−1
2

̂S
−1
2 Xo)C

′Go
2(Go′

2 CC′Go
2)−N |

|N ′(Go′
2 CC′Go

2)−Go′
2 C(I + X′

oPAo,̂S−1
2

̂S
−1
2 Xo)C′Go

2(Go′
2 CC′Go

2)−N |
.
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Moreover, once again applying Appendix B, Theorem B.12,

P
(A1:A2)o,̂S−1

2
= P

Ao,̂S−1
2

+ PW ,

where, since C(A1 : A2) = C(A(F ′
1)

o),

PW = P
̂S−1

2 A(A′̂S−1
2 A)−M,̂S−1

2
,

and M is any matrix of full rank satisfying C(M) = C(F ′
1) ∩ C(A′). Thus, by

copying the calculations presented when deriving (7.18),

λ

2
n
o = |M ′(A′

̂S
−1
2 A)−M + M ′(A′

̂S
−1
2 A)−A′

̂S
−1
2 XoC

′Go
2(G

o′
2 CC′Go

2)
−N

×{N ′(Go′
2 CC′Go

2)
−Go′

2 C(I + X′
oP Ao,̂S−1

2

̂S
−1
2 Xo)C

′Go
2(G

o′
2 CC′Go

2)
−N}−1

×N ′(Go′
2 CC ′Go

2)
−Go′

2 CX′
o
̂S

−1
2 A(A′

̂S
−1
2 A)−M ||M ′(A′

̂S
−1
2 A)−M|−1. (7.33)

The remaining task is to study the distributional properties of the corresponding

statistic λ
2
n . Let

W = X(I − PC ′
2
)X′ ∼ Wp(�, n − r(C2)).

Noting that (7.33) does not depend on the choice of M as long as it satisfies C(M) =
C(A′) ∩ C(F ′

1), the representation M = A′(A(F ′
1)

o)o can be used and

M ′(A′
̂S

−1
2 A)−M = (A(F ′

1)o)o
′
A(A′

̂S
−1
2 A)−A′(A(F ′

1)
o)o

= (A(F ′
1)

o)o
′
̂S2(A(F ′

1)o)o − (A(F ′
1)

o)o
′
̂S2Ao(Ao′

̂S2Ao)−Ao′
̂S2(A(F ′

1)
o)o

= (A(F ′
1)

o)o
′
W (A(F ′

1)o)o − (A(F ′
1)

o)o
′
WAo(Ao′

WAo)−Ao′
W (A(F ′

1)
o)o

= M ′(A′W−1A)−M ∼ Wr(M)(M
′(A′�−1A)−M, n − r(C2) − p + r(A)),

where Theorem B.13 in Appendix B has been applied. Moreover,

M ′(A′
̂S

−1
2 A)−A′

̂S
−1
2 = M ′(A′W−1A)−A′W−1.

Thus, using (7.33),

λ
2
n = |M ′(A′W−1A)−M + M ′(A′W−1A)−A′W−1XC ′Go

2(G
o′
2 CC ′Go

2)
−N

×{N ′(Go′
2 CC ′Go

2)
−Go′

2 C(I + X′P Ao,W−1W−1X)C ′Go
2(G

o′
2 CC′Go

2)
−N}−1

×N ′(Go′
2 CC ′Go

2)
−Go′

2 CX′W−1A(A′W−1A)−M ||M ′(A′W−1A)−M|−1. (7.34)
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Since XC′Go
2 is independent of W , the expression in (7.34) has the same form

as (7.18) and it can immediately be stated that λ2/n follows the distribution of

|V + U |
|V | , (7.35)

where V and U are independent, V ∼ Wr(M)(I , n − r(C2) − p + r(A)) and under
H0, U ∼ Wr(M)(I , r(N)). Hence, the next two theorems can be stated and they are
similar to Theorems 7.2 and 7.3.

Theorem 7.4 For the BRM presented in Definition 2.1 with the restrictions
F 2BG2 = 0, the null hypothesis H0: F 1BG1 = 0, F 2BG2 = 0, where
C(F ′

1) ⊆ C(F ′
2), is tested against H1: F 2BG2 = 0. Let λo be the observed value

of λ, given in (7.32), and let

to = 2
n
(f − 1

2 (po − m + 1)) ln λo,

where f = n − r(Go′
2 C) − p + r(A), po = dim{C(F ′

1) ∩ C(A′)} and m =
dim{C(Go′

2 C) ∩ C(Go′
2 G1)}. The likelihood ratio test, approximately at significance

level α, rejects the hypothesis if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α,

where c1 and c2 are defined in Theorem 7.2. ��
Theorem 7.5 The model and hypothesis are the same as those in Theorem 7.4.

Let λo be given in (7.32) with a corresponding λ and put Upo,m,f = λ− 2
n , where

po = dim{C(F ′
1)∩C(A′)}, f = n− r(Go′

2 C)−p+ r(A) and m = dim{C(Go′
2 C)∩

C(Go′
2 G1)}. Then

(i) if po = 2, T21 = (f−1)
m

(1 − U
1/2
2,m,f )/U

1/2
2,m,f ∼ F2m,2(f−1);

(ii) if po = 1, T22 = f
m

(1 − U1,m,f )/U1,m,f ∼ Fm,f .
��

Moreover, as with (7.20), the final result presented in (7.35) was obtained by
conditioning on Ao′

X. Correspondingly to (7.22) and (7.23), which were used
in (7.26) and (7.27), the following projections were utilized:

P = P 1(I − PC ′
2
) = I − P C ′

2
− (I − P C ′

2
)X′Ao(Ao′

WAo)−Ao′
X(I − PC ′

2
),

P 1 = I − (I − P C ′
2
)X′Ao(Ao′

WAo)−Ao′
X.

Via these projections, dispersion matrices can be defined and random properties
of the presented test statistic stem from the obtained dispersion matrices. The
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(a) (b)

Fig. 7.5 In (a), the dotted area corresponds to H0: F 1BG1 = 0 in the BRM with the restrictions
F 2BG2 = 0, where C(F ′

1) ⊆ C(F ′
2). In (b), those areas are given which, after conditioning with

respect to Ao′
X, contribute to the likelihood ratio test. Furthermore, W1 = C•(A(F ′

2)
o), W2 =

C•(A(F ′
1)

o) ∩ C•(A(F ′
2)

o)⊥, W3 = C•(A) ∩ C•(A(F ′
1)

o)⊥, W4 = C•(A)⊥, V1 = C(C ′(G1 :
G2)

o), V2 = C(C ′Go
2) ∩ C(C ′(G1 : G2)

o)⊥, V3 = C(C′) ∩ C(C ′Go
2)

⊥, V4 = C(C ′)⊥, ˜V2 =
C(P

P1C′Go
2(Go′

2 CC′Go
2)−N

), C(N) = C(Go′
2 C)∩C(Go′

2 G1) and ˜V3 +˜V4 = C(P C′
2
)⊥. The dispersion

matrices D31 and D13+22 are defined in (7.37) and (7.36), respectively

dispersion matrices of interest are

D13+22 = M ′(A′W−1A)−M = M ′(A′�−1A)−A′�−1XPX′�−1A(A′�−1A)−M,

(7.36)

D31 = M ′(A′�−1A)−A′�−1XP
P1C′Go

2(Go′
2 CC′Go

2)−N
X′�−1A(A′�−1A)−M . (7.37)

Therefore,

λ
2
n = |D13+22 + D31|

|D13+22| . (7.38)

The likelihood ratio test, the dispersion matrices and the spaces which are involved
in building up the test are illustrated in Fig. 7.5. It is recommended that one should
compare Fig. 7.5 with Fig. 7.4 in order to understand the similarities and differences
between deriving the tests in Sect. 7.3 and deriving those in Sect. 7.4.

In the above derivation, the likelihood ratio test for testing H0 : F 1BG1 = 0 was
derived when F 2BG2 = 0 and C(F ′

1) ⊆ C(F ′
2) held. However, it follows from the

derivation of the test that the same test statistic is obtained when C(F ′
1) = C(F ′

2),
which in fact leads to a case where the result of the test is often easier to interpret
than when C(F ′

1) ⊆ C(F ′
2) occurs.

Example 7.5 In this example the same data as those in Example 7.3 are used. The
matrices which are considered are the following:

F 1 = (0 : 0 : 0 : 0 : 1), G1 = (1 : −1 : 0)′, F 2 =
(

0 0 0 1 0

0 0 0 0 1

)

, G2 = (0 : 0 : 1)′.
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For the parameters selected by F 1, the matrix G1 is used to identify that the
first and second groups share the same parameter. With the given matrices, the
likelihood ratio λo for testing H0: F 1BG1 = 0 equals λ

2/45
o = 1.06. Moreover,

po = dim{C(F ′
1) ∩ C(A′)} = 1, m = dim{C(Go′

2 C) ∩ C(Go′
2 G1)} = 1 and

f = n− r(Go′
2 C)−p + r(A) = 45 − 2 − 10 + 5 = 38. Since po = 1, Theorem 7.5

(ii) can be used, U1,1,38 = λ
−2/45
o = 0.94 and

T22o = 38(1 − U1,1,38)/U1,1,38 = 2.4 < F0.05(1, 38) = 4.1.

Hence, H0 cannot be rejected at significance level 0.05. ��

7.5 Likelihood Ratio Testing H0 : F 2BG2 = 0 in the BRM

with the Restrictions F 1BG1 = 0, C(F ′
1) ⊆ C(F ′

2) andC(G2) ⊆ C(G1)

In the previous section, when testing H0 : F 1BG1 = 0 in the BRM with the
restrictions F 2BG2 = 0 and C(F ′

1) ⊆ C(F ′
2), the EBRM3

B was utilized. Now
the following testing problem in the BRM with the restrictions F 1BG1 = 0 is
considered:

H0 : F 2BG2 = 0, F 1BG1 = 0, versus H1 : F 1BG1 = 0, (7.39)

where C(F ′
1) ⊆ C(F ′

2) and C(G2) ⊆ C(G1). One reason for discussing this testing
problem is to present an alternative approach to the one given in the previous section.
Without any loss of generality, it can be shown that it is appropriate to assume
C(G2) = C(G1) instead of C(G2) ⊆ C(G1), which, however, will not take place.
Moreover, assume that C(G2) ⊆ C(G1) does not hold, i.e. the same assumptions
as in Sect. 7.4 hold. If one only focuses on H0, it follows from the assumption
F 2BG2 = 0 that F 1BG2 = 0 also holds. Hence, under H0, F 1BG1 = 0 is
identical to F 1B(G1 : G2) = 0 and, of course, C(G1) ⊆ C(G1 : G2). Thus, the
restrictions on the parameter space of B under H0 are the same in Sects. 7.4 and
7.5.

Example 7.6 To illustrate the test and model assumptions of this section, we use
three groups of individuals with different mean structures. Let E[X] = ABC with
F 1BG1 = 0 and under H0: F 2BG2 = 0, where

A =

⎛

⎜

⎜

⎜

⎜

⎝

1 t1 t2
1

1 t2 t2
2

...
...

...

1 tp t2
p

⎞

⎟

⎟

⎟

⎟

⎠

, C = (1′
n1

⊗ (1 : 0 : 0)′ : 1′
n2

⊗ (0 : 1 : 0)′ : 1′
n3

⊗ (0 : 0 : 1)′),
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F 1 = (0 : 0 : 1), G1 =
⎛

⎜

⎝

0 0

0 1

1 0

⎞

⎟

⎠ , F 2 =
(

0 0 1

0 1 0

)

, G2 = (0 : 1 : 0)′.

Hence, C(F ′
1) ⊆ C(F ′

2) and C(G2) ⊆ C(G1). The “growth” for one of the groups is
modelled with a second-order polynomial; i.e. one of the groups has a quadratic
growth and the two other groups follow a linear growth. Moreover, it is tested
whether one of the two groups with a linear growth has a constant mean. Thus,
under H0, one group has a constant mean, one group follows a linear mean model
and one group follows a quadratic mean model.

It is clear that under H0, the mean has a nested structure in the same way as it
has with the EBRM3

B or EBRM3
W . Under the alternative hypothesis, the treatment

groups follow either a linear or a quadratic mean model. Let B = (bij ), and then
alternatively to the matrix formulation of the restrictions F iBGi = 0, i = 1, 2, the
hypothesis can be written as H0: b32 = b33 = b22 = 0. ��
The general solution to the system of equations F 1BG1 = 0, F 2BG2 = 0
is presented in Appendix B, Theorem B.10 (iii). With the additional subspace
conditions, the results imply the following mean structure:

E[X] = A�1G
o′
1 C + A(F ′

1)
o�2(G2 : Go

1)
o′
C + A(F ′

2)
o�3G

′
2C.

This means that under H 0, since C(A(F ′
2)

o) ⊆ C(A(F ′
1)

o) ⊆ C(A), the mean
model yields an EBRM3

W . Hence, Theorem 3.3 provides the MLE for �, i.e.

n̂�H0 = ̂S3 + P ′
Ao

1,̂S−1
3

XP C ′
1
X′P

Ao
1,
̂S−1

3
,

̂S3 = ̂S2 + P ′
Ao

2,̂S−1
2

XP 2X
′P

Ao
2,
̂S−1

2
,

̂S2 = S1 + P ′
Ao

3,S−1
1

XP 3X
′P

Ao
3,S

−1
1

,

where P 2 and P 3 are orthogonal projectors on C(C′
1)

⊥ ∩ C(C′
1 : C′

2) and C(C′
1 :

C′
2)

⊥ ∩ C(C′), respectively, A1 = A, A2 = A(F ′
1)

o, A3 = A(F ′
2)

o, S1 = X(I −
P C ′)X′, C1 = Go′

1 C, C2 = (G2 : Go
1)

o′
C and C3 = G′

2C.
For the alternative hypothesis there is only the restriction F 1BG1 = 0 on the

mean parameter space and in this case the mean of the model may be written as
follows:

E[X] = A�1G
o′
1 C + A(F ′

1)
o�2G

′
1C. (7.40)
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Since C(A(F ′
1)

o) ⊆ C(A), it follows that in this case there is an EBRM2
W which

has to be considered. Thus, from Theorem 3.3,

n̂�H1 = ̂S
˜

2 + P ′
Ao

1,̂S
˜

−1
2

XP C ′
1
X′P

Ao
1,
̂S
˜

−1
2

,

̂S
˜

2 = S1 + P ′
Ao

2,S−1
1

XP 4X
′P

Ao
2,S

−1
1

, (7.41)

where P 4 is the orthogonal projector on C(C′) ∩ C(C′
1)

⊥, A1 = A, A2 = A(F ′
1)

o,

C1 = Go′
1 C, C2 = G′

1C and S1 = X(I − PC ′)X′. This implies that under H0 and
H1, the matrices A1, A2, C1 and S1 are the same. Note also that the parameter �1
in (7.40) is not affected by the hypothesis.

Using the same type of calculations as in the previous sections, it can be shown
that the likelihood ratio statistic is equivalent to

λ

2
n
o = |̂�H0 |

|̂�H1 |
= |̂S3||Ao′

̂S3A
o|−1|Ao′

XoX
′
oA

o|
|̂S
˜

2||Ao′
̂S
˜

2A
o|−1|Ao′

XoX
′
oA

o| . (7.42)

Since P 4 = P 2 + P 3 it follows that Ao′
̂S3A

o = Ao′
̂S
˜

2A
o and Ao′

2
̂S3A

o
2 =

Ao′
2
̂S
˜

2A
o
2. Moreover, expanding |̂S3| and |̂S

˜

2| yields

λ

2
n
o = |̂S2||Ao′

2
̂S2A

o
2|−1|Ao′

2 (S1 + XoP 3X
′
o + XoP 2X

′
o)A

o
2|

|S1||Ao′
2 S1A

o
2|−1|Ao′

2 (S1 + XoP 4X
′
o)A

o
2|

= |̂S2||Ao′
2
̂S2A

o
2|−1

|S1||Ao′
2 S1A

o
2|−1

, (7.43)

which has the same form as (7.14); i.e. replacing A in (7.14) by A2 = A(F ′
1)

o and
replacing A1 = A(F ′)o in (7.14) by A3 = A(F ′

2)
o lead to (7.14) being identical

to (7.43), where in particular

̂S2 = S1 + P ′
Ao

3,S−1
1

X(PC ′
1
− P C ′

2
)X′P

Ao
3,S

−1
1

.

Thus, if one replaces observations by random variables,

λ
2
n = |A′

2S
−1
1 A2|

|A′
2
̂S

−1
2 A2|

. (7.44)
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Indeed, the above observations immediately show the possibility of using (7.18) (see
also (7.15)), which implies that the likelihood ratio test statistic is given by

λ
2
n = |M ′(A′

2S
−1
1 A2)

−M + M ′(A′
2S

−1
1 A2)

−A′
2S

−1
1 XC′(CC′)−N

×{N ′(CC ′)−C(I + X′P
Ao

2,S−1
1

S−1
1 X)C ′(CC′)−N}−1

×N ′(CC ′)−CX′S−1
1 A2(A

′
2S

−1
1 A2)

−M||M ′(A′
2S

−1
1 A2)

−M|−1, (7.45)

where S1 = X(I − P C ′)X′, and M and N are any matrices of full rank satisfying

C(M) = C((F ′
1)

o′
A′(A(F ′

2)
o)o),

C(N) = C(C) ∩ C(G2).

Put

P 1 = I − (I − P C′ )X′Ao
2(A

o′
2 S1A

o
2)

−Ao′
2 X, (7.46)

P = P 1(I − P C′ ) = I − PC′ − (I − P C′ )X′Ao
2(A

o′
2 S1A

o
2)

−Ao′
2 X(I − PC′ ). (7.47)

Then it can be shown that λ
2
n has the same distribution as (see also Theorem 7.4

and (7.28))

|V + U |
|V | , (7.48)

where V ∼ Wr(M)(I , r(P )) and U ∼ Wr(M)(I , r(P 1C
′(CC′)−N)) with r(P ) =

n − r(C) − p + r(A′ : F ′
1) − r(F 1) and r(P 1C

′(CC′)−N) = r(N). Hence, the
next two theorems have been verified.

Theorem 7.6 For the BRM presented in Definition 2.1 with the restrictions
F 2BG2 = 0, the null hypothesis H0: F 1BG1 = 0, F 2BG2 = 0 is tested against
H1: F 1BG1 = 0; i.e. all elements in F 2BG2 differ from 0, with C(F ′

1) ⊆ C(F ′
2)

and C(G2) ⊆ C(G1). Let λo be the observed value of λ, given in (7.44), and let

to = 2
n
(f − 1

2 (po − m + 1)) ln λo,

where f = n− r(C)−p+ r(A′ : F ′
1)− r(F 1), po = dim{C((F ′

1)
o′
A′(A(F ′

2)
o)o)}

and m = dim{C(G2) ∩ C(C)}. The likelihood ratio test, approximately at signifi-
cance level α, rejects the hypothesis if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α,

where c1 and c2 are defined in Theorem 7.2. ��
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Theorem 7.7 The model and hypothesis given below are the same as those in

Theorem 7.6. Let λ be given in (7.44) and put Upo,m,f = λ− 2
n , where po =

dim{C((F ′
1)

o′
A′(A(F ′

2)
o)o)}, f = n − r(C) − p + r(A′ : F ′

1) − r(F 1) and
m = dim{C(G2) ∩ C(C)}. Then
(i) if po = 2, T23 = (f−1)

m
(1 − U

1/2
2,m,f )/U

1/2
2,m,f ∼ F2m,2(f−1);

(ii) if po = 1, T24 = f
m

(1 − U1,m,f )/U1,m,f ∼ Fm,f .
��

As in the previous sections, we can try to understand what we are testing and how
we are testing the hypothesis H0: F 2BG2 = 0 when applying the likelihood ratio
statistic, i.e. try to find some expressions which correspond to (7.36) and (7.37).
Define the dispersion matrices

D12 = M ′(A′
2S−1

1 A2)−M = M ′(A′
2�−1A2)−A′

2�−1XPX′�−1A2(A′
2�−1A2)−M, (7.49)

D22 = M ′(A′
2�−1A2)−A′

2�−1XPP1C′(CC′)−NX′�−1A2(A′
2�−1A2)−M, (7.50)

where P and P 1 are defined in (7.47) and (7.46). Then applying these definitions
to (7.45) yields after some calculations, similar to those used for handling (7.34)
and (7.18),

λ
2
n = |D12 + D22|

|D12| ,

which in fact also explains (7.48). The dispersion matrices are illustrated in Fig. 7.6.
The figure should be compared to Fig. 7.5, and the difference between the figures
shows how the different hypotheses (restrictions) act on the mean space.

Moreover, it is interesting to note, concerning the way in which the test is
derived, that one could consider the calculations as using a conditional approach,
i.e. conditioning with respect to Ao′

2 X. Note that at the end of the derivation, the

distribution of the test statistic is indeed independent of Ao′
2 X. This idea will also

be utilized later in Sect. 7.7.

Example 7.7 In this example, the data which were generated in Example 7.3 are
considered again. However, now the additional condition C(G2) ⊆ C(G1) is
imposed. The matrices which define the restrictions on the parameter space are

F 1 = (0 : 0 : 0 : 0 : 1), G1 =
⎛

⎝

0 0
0 1
1 0

⎞

⎠ , F 2 =
(

0 0 0 0 1
0 0 0 1 0

)

, G2 = (0 : 1 : 0)′,
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(a) (b)

Fig. 7.6 In (a), the dotted area corresponds to H0: F 2BG2 = 0 in the BRM with the restrictions
F 1BG1 = 0, where C(F ′

1) ⊆ C(F ′
2) and C(G′

2) ⊆ C(G′
1). In (b), those areas are given, which

after conditioning with respect to Ao′
2 X, contribute to the likelihood ratio test. Furthermore, W1 =

C•(A(F ′
2)

o), W2 = C•(A(F ′
1)

o) ∩ C•(A(F ′
2)

o)⊥, W3 = C•(A) ∩ C•(A(F ′
1)

o)⊥, W4 = C•(A)⊥,
V1 = C(C ′Go

1), V2 = C(C′Go
2) ∩ C(C ′Go

1)
⊥, V3 = C(C ′) ∩ C(C′Go

2)
⊥, V4 = C(C ′)⊥, ˜V3 =

C(P P1C′(CC′)−N), C(N ) = C(Go′
2 C) ∩ C(Go′

2 G1) and ˜V4 = C(P ), where P 1 and P are defined
in (7.46) and (7.47), respectively. Moreover, the dispersion matrices D22 and D12 are defined
in (7.50) and (7.49), respectively

which satisfy C(F ′
1) ⊆ C(F 2) and C(G2) ⊆ C(G1). The restrictions under H0:

F 1BG1 = 0, F 2BG2 = 0, if B = (bij ), yield b42 = 0, b52 = 0 and b53 = 0. In

this case, the test statistic given by (7.42) takes the value λ
2/45
o = 1.9 and, hence,

Upo,m,f = 0.51. Moreover, po = 1, m = 1 and f = 36. Thus, from Theorem 7.7
(ii),

T24o = 36(1 − U1,1,36)/U1,1,36 = 34.1 > F0.05(1, 36) = 4.1

and the hypothesis H0: F 2BG2 = 0 is rejected.
Instead of G1, the subvector ˜G1 = (0 : 0 : 1)′ can be used in order to avoid any

overlap between F 1BG1 = 0 and F 2BG2 = 0; for instance in the present example
F 1BG2 = 0 appears in both F 1BG1 = 0 and F 2BG2 = 0. In this case, of course,
we are back in Sect. 7.4.

If instead of G2 = (0 : 1 : 0)′, the between-individuals matrix G2 = (0 : 0 : 1)′
is used, we are closer to the model which generated the data in Example 7.3 and
obtain

T24o = 36(1 − U1,1,36)/U1,1,36 = 1.6 < F0.05(1, 36) = 4.1,

and this time H0 is not rejected. ��
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7.6 Likelihood Ratio Testing H0 : F iBGi = 0, i = 1, 2,
Against B Unrestricted in the BRM with C(F ′

1) ⊆ C(F ′
2)

Now we consider a more challenging testing situation than the situations discussed
in the previous sections, i.e.

H0 : F iBGi = 0, i = 1, 2, versus B unrestricted, (7.51)

where C(F ′
1) ⊆ C(F ′

2). In Fig. 7.7a, b, the spaces which correspond to the
hypotheses tested in Sects. 7.3 and 7.4 are illustrated. In this section the structure
presented in Fig. 7.7c is discussed. It is immediately seen that the hypothesis
generates a restriction on the parameter space which has a different form compared
with the restrictions in the previous sections, and therefore it also appears that the
testing problem differs from the problems in the previous sections. Unfortunately,
the spaces connected to the indicated area of Fig. 7.7c will generate a likelihood ratio
which is more difficult to handle as precisely as the ratios in the earlier sections were
handled. On the other hand, the hypothesis treated in this section, i.e. (7.51), is in
a sense the most natural extension of H0 : FBG = 0, which was discussed, in
Sect. 7.3 in particular.

From Theorems 3.1 and 3.2 (see also (7.31)), it follows that the likelihood ratio
for testing (7.51) is equivalent to

λ

2
n
o = |̂�H0 |

|̂�H1 |
= |̂S3 + ̂Q

′
3
̂Q

′
2
̂Q

′
1XoP C ′

3
X′

o
̂Q1

̂Q2
̂Q3|

|S1 + P ′
Ao,S−1

1
XoP C ′X′

oP Ao,S−1
1

| , (7.52)

(a) (b) (c)

Fig. 7.7 In (a), the dotted area corresponds to H0: F 2BG2 = 0 in the BRM . In (b), the area is
shown for testing H0: F 1BG1 = 0 in the BRM , given F 2BG2 = 0, where C(F ′

1) ⊆ C(F ′
2), and

in (c), the area is shown for testing H0: F iBGi = 0, i = 1, 2, in the BRM , where C(F ′
1) ⊆ C(F ′

2)

holds. Furthermore, W1 = C•(A(F ′
2)

o), W2 = C•(A(F ′
1)

o) ∩ C•(A(F ′
2)

o)⊥, W3 = C•(A) ∩
C•(A(F ′

1)
o)⊥, W4 = C•(A)⊥, V1 = C(C ′(G1 : G2)

o), V2 = C(C ′Go
2) ∩ C(C′(G1 : G2)

o)⊥,
V3 = C(C′) ∩ C(C ′Go

2)
⊥ and V4 = C(C ′)⊥
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where the notation follows that of Sect. 7.4. However, an interesting factorization of
λo can take place, namely

λo = λ1oλ2o,

where

λ

2
n
1o =

|̂S2 + P ′
Ao,̂S−1

2
XoPC ′

2
X′

oP Ao,̂S−1
2

|
|S1 + P ′

Ao,S−1
1

XoP C ′X′
oP Ao,S−1

1
| , (7.53)

λ

2
n
2o =

|̂S3 + P ′
Ao,̂S−1

3
XoPC ′

3
X′

oP Ao,̂S−1
3

|
|̂S2 + P ′

Ao,̂S−1
2

XoPC ′
2
X′

oP Ao,̂S−1
2

| . (7.54)

Then it is noted that, correspondingly to λ1o, given in (7.53), λ1 is the test statistic
for testing a BRM with respect to H0: F 2BG2 = 0 against B unrestricted, which
was presented in Sect. 7.3, i.e. Theorems 7.2 and 7.3. Moreover, correspondingly to
λ2o, given in (7.54), λ2 is the statistic used for testing, within a BRM framework,
H0: F 1BG1 = 0, given that F 2BG2 = 0 holds, which was treated in Sect. 7.4,
i.e. Theorems 7.4 and 7.5.

Expressing the statistics with the help of dispersion matrices, it follows from
Sect. 7.3 and (7.28) that

λ

2
n
1 = |A′S−1

1 A|
|A′

̂S
−1
2 A|

= |D12 + D21|
|D12| , (7.55)

where

D12 ∼ Wr(M1)(M
′
1(A

′�−1A)−M1, r(P )),

r(P ) = n − r(C) − p + r(A),

D21 ∼ Wr(M1)(M
′
1(A

′�−1A)−M1, r(N1)),

with M1 and N1 satisfying

C(M1) = C(F ′
2) ∩ C(A′), C(N1) = C(G2) ∩ C(C).

Section 7.4 and (7.38) yield that λ2 can be expressed as follows:

λ

2
n
2 = |A′S−1

2 A|
|A′

̂S
−1
3 A|

= |D13+22 + D31|
|D13+22| , (7.56)
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where

D13+22 ∼ Wr(M2)(M
′
2(A

′�−1A)−M2, r(P )),

r(P ) = n − r(C2) − p + r(A),

D31 ∼ Wr(M2)(M
′
2(A

′�−1A)−M2, r(N2)),

with M2 and N2 satisfying

C(M2) = C(F ′
1) ∩ C(A′), C(N2) = C(Go′

2 C) ∩ C(Go′
2 G1).

However, it can be shown that λ1 and λ2 are not independently distributed, which
means that the interpretation of the statistics becomes complicated. Unfortunately,
the joint distribution of λ1 and λ2 is not easy to obtain. In order to find an
approximate upper bound of the p-value for testing (7.51) via (7.52), a Bonferroni
correction may take place. In general, the Bonferroni approach also overcomes
the difficulty associated with any dependence among the tests and is definitely
suitable when only a few tests are to be considered. For example, in our case this
approach can be used since there are only two tests to be performed. Moreover, it
is interesting to discover that the factorization of the likelihood ratio test statistic
has a natural hierarchy; i.e. one should first apply λ1 and thereafter λ2, given that
H0: F 2BG2 = 0 has not been rejected. If the test is rejected in the first step, then
the test described in (7.51) should, of course, also be rejected. Hence, a testing
strategy has been derived which is similar, for example, to classical profile analysis
in multivariate analysis. Since the tests based on λ1 and λ2 are not independent, it
is quite natural to use equal rejection probabilities, although it is not necessary to
carry out the overall test in this way.

Theorem 7.8 For the BRM presented in Definition 2.1, let, as in (7.51), the null
hypothesis H0: F iBGi = 0, i = 1, 2, where C(F ′

1) ⊆ C(F ′
2) holds, be tested

against the alternative hypothesis H1: B is unrestricted. Let λ1o and λ2o be the
observed values of λ1 and λ2, defined by (7.53) and (7.54), respectively. Moreover,
let

t1o = 2
n
(f1 − 1

2 (p1o − m1 + 1)) ln λ1o,

t2o = 2
n
(f2 − 1

2 (p2o − m2 + 1)) ln λ2o,

where

f1 = n − r(C) − p + r(A), f2 = n − r(C2) − p + r(A),

p1o = dim{C(F ′
2) ∩ C(A′)}, p2o = dim{C(F ′

1) ∩ C(A′)},
m1 = dim{C(G2) ∩ C(C)}, m2 = dim{C(Go′

2 C) ∩ C(Go′
2 G1)}.
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The likelihood ratio test for this hypothesis, approximately on level α, rejects the
hypothesis if

P {χ2
p1om1

≥ t1o} + c11(1 − c11)(P {χ2
p1om1+4 ≥ t1o} − P {χ2

p1om1
≥ t1o})

+ c12(P {χ2
p1om1+8 ≥ t1o} − P {χ2

p1om1
≥ t1o}) ≤ α1,

or

P {χ2
p2om2

≥ t2o} + c21(1 − c21)(P {χ2
p2om2+4 ≥ t2o} − P {χ2

p2om2
≥ t2o})

+ c22(P {χ2
p2om2+8 ≥ t2o} − P {χ2

p2om2
≥ t2o}) ≤ α2,

where c11 and c12 correspond to c1 and c2 in Theorem 7.2, with p1o, m1 and f1
inserted, c21 and c22 correspond to c1 and c2 in the same theorem, with p2o, m2 and
f2 inserted, and α1 + α2 = α. ��
In Theorem 7.8 it was suggested to use α1 + α2 = α, where α is the prespecified
significance level. Since λ1 and λ2 are not independently distributed it is difficult to
find α1 and α2 so that the Type I error equals exactly α. Therefore it is reasonable to
apply the Bonferroni approach when choosing α1 and α2. However, note that under
independence of the two hypotheses we can use the relation

(1 − α) = (1 − α1)(1 − α2) = 1 − α1 − α2 + α1α2,

i.e. the overall hypothesis is not rejected if the hypothesis connected to λ1 and the
hypothesis connected to λ2 are not rejected. Since α1α2 will be small it makes
sense to also under independence use α1 + α2 = α. An exception would be if
the distribution of λ1λ2 could be found.

Example 7.8 Here, once again, the melatonin data generated in Example 7.3 are
considered. Now, for the BRM , H0: F iBGi = 0, i = 1, 2, against B unrestricted
is tested with the following matrices:

F 1 = (0 : 0 : 0 : 0 : 1), G1 = (0 : 0 : 1)′, F 2 =
(

0 0 0 0 1

0 0 0 1 0

)

, G2 = (0 : 1 : 0)′,

and in comparison with Example 7.3, G1 and G2 are interchanged, which means
that the hypothesis which is tested in this example differs from the true model from
which data have been generated. Moreover, alternatively, it can be stated that for
B = (bij ), the restrictions equal b53 = b52 = b42 = 0. From the derivation, it
follows that λ1 is a test statistic for testing b52 = b42 = 0, and λ2 tests b53 = 0
given that b52 = b42 = 0.
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To calculate λ1o, the matrices S1 and ̂S2 are needed, which equal S1 = Xo(I −
P C ′)X′

o and

̂S2 = S1 + P ′
Ao

1,S−1
1

Xo(P C ′
1
− P C ′

2
)X′

oP Ao
1,S−1

1
,

where A1 = A(F ′
2)

o, C1 = C and C2 = Go′
2 C. Moreover, (F ′

2)
o = (I 3 : 0) and

Go′
2 =

(

1 0 0
0 0 1

)

.

Concerning the second test, to calculate λ2o, additionally the following definition is
needed:

̂S3 = ̂S2 + P ′
(A1:A2)o,̂S−1

2
Xo(P C ′

2
− P C ′

3
)X′

oP (A1:A2)o,̂S
−1
2

,

where A2 = A(F ′
1 : (F ′

2)
o)o = A(0 : 0 : 0 : 1 : 0)′, C1 = C, and C3 = (G1 :

G2)
o′
C = (1 : 0 : 0)C.

The test connected with λ1, H0: F 2BG2 = 0 versus B unrestricted, is rejected
since U2,1,37 = λ

−2/45
2o = 1.95−1 = 0.51, and from Theorem 7.3 (i)

T11o = 36(1 − U
1/2
2,1,37)/U

1/2
2,1,37 = 14.3 > F0.05(2, 72) = 4.1.

Thus, the overall hypothesis H0: F iBGi = 0, i = 1, 2, is rejected.
Parenthetically it is noted that the test connected with λ2, H0: F 1BG1 = 0 given

F 2BG2 = 0, is not rejected since U1,1,38 = λ
−2/45
2o = 1.03−1 = 0.97, and from

Theorem 7.5 (ii)

T22o = 38(1 − U1,1,38)/U1,1,38 = 1.2 < F0.05(1, 38) = 3.1.

Next we investigate what happens if

F 1 = (0 : 0 : 0 : 0 : 1), G1 = (0 : 0 : 1)′, F 2 =

⎛

⎜

⎜

⎝

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

⎞

⎟

⎟

⎠

, G2 = (1 : 0 : 0)′
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are used, which is a rather extreme suggestion in relation to how the data have been
generated. Thus, C1 = C, C2 = Go′

2 C = (0 : I 2)C, C3 = (G1 : G2)
o′
C = (0 : 1 :

0)C,

A1 = A(F ′
2)

o = A

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, A2 = A(F ′
1 : (F ′

2)
o)o = A

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and A3 = AF ′
1. When testing F 2BG2 = 0, since p1o = 4, Theorem 7.8 is

suggested to be used. In this case, λ
2/45
1o = 1.34, t1o = 10.2 and applying the

theorem yields P {χ2
4 ≥ t1o} = 0.04 < 0.05 and thus H0 is rejected. Note that

the same test was performed in Sect. 7.3, in Example 7.3. Moreover, λ
2/45
2o = 1.0

and then the corresponding H0 is not rejected, which, however, is extraneous to
the conclusions concerning the rejection of the hypothesis about the double bilinear
restrictions. It is worth noting that as long as C(F ′

1) ⊆ C(F ′
2), the value λ1o will

not depend on the choice of F ′
1 and λ2o will not depend on the choice of F ′

2. This
observation helps us to evaluate and break down the overall test defined through
the double bilinear restrictions; i.e. we can, for example, marginally interpret
F 1BG1 = 0. ��

7.7 Likelihood Ratio Testing H0 : F iBGi = 0, i = 1, 2,
Against B Unrestricted in the BRM with C(F ′

1) ⊆ C(F ′
2)

and C(G2) ⊆ C(G1)

It was seen in the previous section that a test statistic appeared which was somewhat
different from the test statistics of the other sections, since it “naturally” presented
a product of two test statistics instead of being only one statistic. The tests in the
previous section were, however, not independently distributed, which should be
taken into account when interpreting them. The fact is, however, that the dependence
of these tests is difficult to handle in a precise manner. Now we exploit what happens
if, additionally, the condition C(G2) ⊆ C(G1) is imposed on the testing problem of
the previous section, i.e. what happens in the BRM when C(F ′

1) ⊆ C(F ′
2) and

C(G2) ⊆ C(G1) hold. The hypothesis of interest is given by

H0 : F iBGi = 0, i = 1, 2, versus B unrestricted. (7.57)
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From Sect. 7.5, recall the following matrices:

A1 = A, A2 = A(F ′
1)

o, A3 = A(F ′
2)

o, (7.58)

C1 = Go′
1 C, C2 = (G2 : Go

1)
o′
C, C3 = G′

2C,

which can be used to express ̂�H0 . Then, as in Sect. 7.5,

̂S3 = ̂S2 + P ′
Ao

2,̂S−1
2

XP 2X
′P

Ao
2,
̂S−1

2
,

̂S2 = S1 + P ′
Ao

3,S−1
1

XP 3X
′P

Ao
3,S

−1
1

,

S1 = X(I − P C ′)X′,
̂S
˜

2 = S1 + P ′
Ao

2,S−1
1

XP 4X
′P

Ao
2,S

−1
1

,

where P 2, P 3 and P 4 are orthogonal projectors on C(C′
1)

⊥ ∩ C(C′
1 : C′

2), C(C′
1 :

C′
2)

⊥ ∩ C(C′) and C(C′) ∩ C(C′
1)

⊥, respectively.
Utilizing the maximum likelihood estimator of � in the BRM , i.e. the unre-

stricted case, and ̂�H0 of Sect. 7.5, it follows that the likelihood ratio test for testing
H0 in (7.57) is based on

λ

2
n
o = |̂�H0 |

|̂�H1 |
=

|̂S3 + P ′
Ao

1,̂S−1
3

XoP C ′
1
X′

oPAo
1,̂S−1

3
|

|S1 + P ′
Ao

1,S−1
1

XoP C ′X′
oP Ao

1,S
−1
1

| .

In Sect. 7.6, as already mentioned, it was shown that the ratio λo could be factorized.
Since, in the present section, only the condition C(G′

2) ⊆ C(G′
1) has been added,

this may of course also take place here. It follows that

λo = λ1oλ2o,

where

λ

2
n
1o =

|̂S
˜

2 + P ′
Ao

1,
̂S
˜

−1
2

XoPC ′
1
X′

oP Ao
1,
̂S
˜

−1
2

|
|S1 + P ′

Ao
1,S

−1
1

XoP C ′X′
oP Ao

1,S
−1
1

| , (7.59)

λ

2
n
2o =

|̂S3 + P ′
Ao

1,
̂S−1

3
XoPC ′

1
X′

oP Ao
1,
̂S−1

3
|

|̂S
˜

2 + P ′
Ao

1,
̂S
˜

−1
2

XoPC ′
1
X′

oP Ao
1,
̂S
˜

−1
2

| , (7.60)

with the important observation that within the BRM frame, correspondingly
to (7.59) and (7.60), λ1 is a statistic for testing H0: F 1BG1 = 0 against no
restrictions on B (which was presented in Sect. 7.3, Theorems 7.2 and 7.3), and λ2
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is a statistic for testing H0: F 2BG2 = 0, C(F ′
1) ⊆ C(F ′

2), C(G2) ⊆ C(G1), given
that F 1BG1 = 0 (which was considered in Theorems 7.6 and 7.7 of Sect. 7.5).

Now we investigate the role which the condition C(G2) ⊆ C(G1) can play when

obtaining the distribution of the test statistic λ
2
n . Note that ̂S

˜

2, given by (7.41),
equalŝS2 of Sect. 7.3 if one replaces F by F 1 and since P 4 is identical to P C ′

1
−P C ′

2
of Sect. 7.3. Moreover, from Sect. 7.3, it follows that λ1 can be written as follows:

λ

2
n
1 = |V 1 + U 1|

|V 1| ,

with

V 1 = (M ′
1(A

′�−1A)−M1)
−1/2M ′

1(A
′�−1A)−A′�−1XPX′�−1A(A′�−1A)−

×M1(M
′
1(A

′�−1A)−M1)
−1/2 ∼ Wr(M1)(I , n − r(C) − p + r(A)), (7.61)

U 1 = (M ′
1(A

′�−1A)−M1)
−1/2M ′

1(A
′�−1A)−A′�−1X

×P 1C
′(CC ′)−N1(N

′
1(CC′)−CP ′

1P 1C
′(CC′)−N1)

−N ′
1(CC ′)−CP ′

1

×X′�−1A(A′�−1A)−M1(M
′
1(A

′�−1A)−M1)
−1/2 ∼ Wr(M1)(I , r(N1)),

(7.62)

where M1 satisfies C(M1) = C(A′)∩C(F ′
1), C(N1) = C(C)∩C(G1), P and P 1 are

defined in (7.22) and (7.23), respectively; V 1 and U 1 are independently distributed.
Turning to λ2 and applying the results of Sect. 7.5 yield

λ

2
n
2 = |V 2 + U 2|

|V 2| ,

with

V 2 = (M ′
2(A

′
2�

−1A2)
−M2)

−1/2M ′
2(A

′
2�

−1A2)
−A′

2�
−1XP 22X

′

×�−1A2(A
′
2�

−1A2)
−M2(M

′
2(A

′
2�

−1A2)
−M2)

−1/2 ∼ Wr(M2)(I , r(P 22)),

U2 = (M ′
2(A

′
2�

−1A2)
−M2)

−1/2M ′
2(A

′
2�

−1A2)
−A′

2�
−1X

×P 12C
′(CC ′)−N2(N

′
2(CC′)−CP ′

12P 12C
′(CC ′)−N2)

−N ′
2(CC′)−CP ′

12

×X′�−1A2(A
′
2�

−1A2)
−M2(M

′
2(A

′
2�

−1A2)
−M2)

−1/2 ∼ Wr(M2)(I , r(N2)),

where M2 satisfies C(M2) = C((F ′
1)

o′
A′(A(F ′

2)
o)o), C(N2) = C(C)∩C(G2), and

P 22 and P 12 correspond to P and P 1, defined in (7.47) and (7.46), respectively;
V 2 and U2 are independently distributed.

Both λ1 and λ2 are functions of Wishart-distributed random variables. In
Sect. 7.6, λi , i = 1, 2, were not functions of independently distributed variables.
However, with regard to λ1 and λ2 of this section is now shown that they are
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independently distributed test statistics. Let

Y 1 = M ′
1(A

′�−1A)−A′�−1X,

Y 2 = M ′
2(A

′
2�

−1A2)
−A′

2�
−1X

and note that

C[Y 1,Y 2] = I ⊗ M ′
1(A

′�−1A)−A′�−1A2(A
′
2�

−1A2)
−M2.

Since C(M1) = C(A′) ∩ C(F ′
1), one can, without any loss of generality, choose M1

to equal

M1 = A′(A(F ′
1)

o)o.

Thus,

M ′
1(A

′�−1A)−A′�−1A2(A
′
2�

−1A2)
−M2

= (A(F ′
1)

o)o
′
A2(A

′
2�

−1A2)
−M2 = 0,

since by the definition of A2 in (7.58), it is trivially obtained that (A(F ′
1)

o)o
′
A2 = 0.

Hence, Y 1 and Y 2 are independently distributed. Now U1 and V 1 are functions
of Y 1 and at the same time independent of Ao′

X. Moreover, U 2 and V 2 are
functions of Y 2, as well as being independent of Ao′

2 X. Therefore, based on these
observations, λ1 and λ2 are independently distributed.

In Fig. 7.8 the spaces which are involved in testing (7.57) are presented. A
comparison of Fig. 7.7 with Fig. 7.8 yields that the figures are very similar. The
only difference is that the space V2 = C(C′Go

2) ∩ C(C′(G1 : G2)
o)⊥ in Fig. 7.7

(a) (b) (c)

Fig. 7.8 In (a), the dotted area corresponds to H0: F 2BG2 = 0 in the BRM . In (b), the area is
shown for testing H0: F 1BG1 = 0 in the BRM , given F 2BG2 = 0, where C(F ′

1) ⊆ C(F ′
2), and

in (c), the area is shown for testing H0: F iBGi = 0, i = 1, 2, in the BRM , where C(F ′
1) ⊆ C(F ′

2)

and C(G2) ⊆ C(G1) hold. Furthermore, W1 = C•(A(F ′
2)

o), W2 = C•(A(F ′
1)

o) ∩ C•(A(F ′
2)

o)⊥,
W3 = C•(A) ∩ C•(A(F ′

1)
o)⊥, W4 = C•(A)⊥, V1 = C(C ′Go

1), V2 = C(C′Go
2) ∩ C(C ′Go

1)
⊥,

V3 = C(C′) ∩ C(C ′Go
2)

⊥ and V4 = C(C ′)⊥
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differs from V2 = C(C′Go
2) ∩ C(C′Go

1)
⊥ in Fig. 7.8. The question arises, of course,

of whether the difference is crucial, and the answer is that this difference may be
important, but that it will not matter in many cases. However, one approach to adopt
is that if there is a risk of a problem arising, then, if possible, one should try to
design the experiment so that C(G2) ⊆ C(G1) holds.

Theorem 7.9 For the BRM presented in Definition 2.1 let the null hypothesis H0:
F iBGi = 0, i = 1, 2, where C(F ′

1) ⊆ C(F ′
2) and C(G2) ⊆ C(G1) hold, be tested

against the alternative hypothesis H1: B is unrestricted. Let λ1o and λ2o be defined
by (7.59) and (7.60), respectively. Moreover, let

t1o = 2
n
(f1 − 1

2 (p1o − m1 + 1)) ln λ1o,

t2o = 2
n
(f2 − 1

2 (p2o − m2 + 1)) ln λ2o,

where

f1 = n − r(C) − p + r(A), f2 = n − r(C′(G2 : Go
1)

o) − p + r(A),

p1o = dim{C(F ′
1) ∩ C(A′)}, p2o = dim{C((F ′

1)
o′
A′(A(F ′

2)
o)o)},

m1 = dim{C(G1) ∩ C(C)}, m2 = dim{C(G2) ∩ C(C)}.

Then the likelihood ratio test for testing H0, approximately at significance level α,
rejects the hypothesis if

P {χ2
p1om1

≥ t1o} + c11(1 − c11)(P {χ2
p1om1+4 ≥ t1o} − P {χ2

p1om1
≥ t1o})

+ c12(P {χ2
p1om1+8 ≥ t1o} − P {χ2

p1om1
≥ t1o}) ≤ α1,

or

P {χ2
p2om2

≥ t2o} + c21(1 − c21)(P {χ2
p2om2+4 ≥ t2o} − P {χ2

p2om2
≥ t2o})

+ c22(P {χ2
p2om2+8 ≥ t2o} − P {χ2

p2om2
≥ t2o}) ≤ α2,

where c11 and c12 correspond to c1 and c2 in Theorem 7.2, with p1o, m1 and f1
inserted, c21 and c22 correspond to c1 and c2 in the same theorem, with p2o, m2 and
f2 inserted, and α1 + α2 = α. ��
Note that if pio = 1 or pio = 2, i = 1, 2, one can use Theorems 7.3 and 7.7.

Example 7.9 Reconsider the melatonin data given in Example 7.3. All the design
matrices are the same as those in Example 7.3. For the BRM , this time the null
hypothesis H0: F iBGi = 0, i = 1, 2, is tested against the alternative hypothesis
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H1: B unrestricted, with

F 1 = (0 : 0 : 0 : 0 : 1), G′
1 =

(

0 0 1
0 1 0

)

, F 2 =
(

0 0 0 0 1
0 0 0 1 0

)

, G′
2 = (0 : 1 : 0).

These matrices generate in B = (bij ) the restrictions b52 = b53 = b42 = 0, and λ1
is the test statistic for testing b52 = b53 = 0 versus B unrestricted, while λ2 is the
test statistic for testing b42 = 0, given b52 = b53 = 0. Hence, the intention is to test
H0 as in Example 7.8, but the test is carried out differently. Moreover,

(F ′
1)

o =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (F ′
2)

o =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

Go′
1 = (1 : 0 : 0) and (G2 : Go

1)
o′ = (0 : 0 : 1). Then,

A1 = A, A2 = A(F ′
1)

o, A3 = A(F ′
2)

o,

C1 = Go′
1 C = (1 : 0 : 0)C, C2 = (G2 : Go

1)
o′
C = (0 : 0 : 1)C, C3 = G′

2C.

According to Theorem 7.9, the test based on λ1, given in (7.59), is not rejected
since λ

2/45
1o = 1.1. However, the second test, based on λ2 which is presented

in (7.60), is rejected since λ
2/45
2o = 1.9, which corresponds to U1,1,39 = 0.52, and

Theorem 7.7 implies that

T24o = 39(1 − U1,1,39)/U1,1,39 = 35.7 > F0.05(1, 39) = 4.1.

Thus the overall test is rejected. Now, because of the results of Example 7.8, it is
reasonable to test H0: b42 = 0, since in Example 7.8, λ1o was large and in the present
example λ2o was large. When testing H0: b42 = 0, this hypothesis can be stated in
matrix form as FBG = 0, where F = (0 : 0 : 0 : 1 : 0) and G′ = (0 : 1 : 0).
Theorem 7.3 (ii) yields that H0: b42 = 0 is rejected since λ

2/45
o = 1.94 and

T12o = 37(1 − U1,1,37)/U1,1,3 = 34.7 > F1,39;0.05 = 4.1.

Thus, it can be concluded that b42 = 0 is not in agreement with the observations, as
was expected based on how the data were generated in Example 7.3. ��
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7.8 A “Trace Test” for the BRM , H0 : FBG = 0 Against
Unrestricted B

Previously, for the BRM , likelihood ratio tests for the hypotheses H0 : FBG = 0
and H0 : F iBGi = 0, i = 1, 2, were considered, and the latter case was treated
under various types of additional conditions. In this section, an alternative procedure
to the likelihood ratio testing procedure is presented. The hypothesis H0 : FBG =
0 is treated in this section, while H0 : F iBGi = 0, i = 1, 2, will be in focus in
the next section. In addition to a presentation of the explicit derivation of the tests, a
number of differences from the likelihood ratio tests will be pointed out. Moreover,
the differences will be summarized in Sect. 7.10.

Before starting with H0 : FBG = 0, an introduction to the construction of the
“trace test” statistic is presented where the hypothesis H0 : BG = 0 is discussed
and several reflections on the approach are made. Consider the BRM

X = ABC + E, E ∼ Np,n(0,�, I ), (7.63)

and temporarily � is supposed to be known. In Sect. 2.4, based on linear models
theory, the use of the estimator

ÂBC = P A,	XP C ′

was justified, and using that, D[X] = I ⊗ � yields

D[ÂBC] = P C ′ ⊗ A(A′�−1A)−A′. (7.64)

It could be asserted that if one’s purpose was to make inference concerning B,
it would be of interest to consider � to be a nuisance parameter. However, it
has already been established in the special case A = I that, although ̂BC does
not depend functionally on �, the distribution for ̂BC does, and in particular
D[̂BC] = P C ′ ⊗ �. Thus, strictly speaking, � cannot be considered as a nuisance
parameter. Moreover, for the interpretation of ÂBC, it may be fruitful to recall that
the parameter matrix � plays two roles; i.e. it is used to mimic the variation in the
data and also is used to define the inner product. Hence, from a nuisance parameter
point of view, the inclusion of � in P A,	 when estimating ABC is conceptually
not very problematic and is to some extent independent of the variation in the data.
However, one cannot circumvent the fact that the distribution connected with ̂B

depends on �.
Now, consider

S = X(I − P C ′)X′.

It is known that S is independent of XPC ′ , and S and XP C ′ , are statistics which
are jointly sufficient, with S not bearing any information about B. Thus, it is natural
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to replace � by 1
n
S (or 1

n−r(C)
S) in (7.64), leading to the maximum likelihood

estimator

ÂBC = PA,SXP C ′ . (7.65)

Moreover, similar to the conditional principle and the use of ancillarity, it is
reasonable to evaluate ÂBC conditionally on S, i.e.

ÂBC|S ∼ Np,n(ABC,P A,S�P ′
A,S,P C ′),

or by performing an estimation of the variation

ÂBC|S ∼ Np,n(ABC, 1
n
A(A′SA)−A′,P C ′),

where the distribution, given S = So and B, is now completely known.
A competitive estimator to the maximum likelihood estimator in (7.65) is

A˜BC = PAXP C ′ ∼ Np,n(ABC,P A�P A,P C ′),

and in this case too, a conditional argument can be used to replace �, i.e.

A˜BC|S ∼ Np,n(ABC, 1
n
P ASP A,P C ′).

However, it is interesting to note that

P ASPA − A(A′SA)−A′ = P A(S − A(A′SA)−A′)P A

is positive semi-definite (see Appendix B, Theorem B.13). Thus, when carrying out
the conditional inference, the use of ÂBC has some advantages in comparison with
A˜BC.

Next, as promised at the beginning of this section, the basic ideas are illustrated
with the help of a simple testing problem. For the BRM in (7.63), the hypothesis
and its alternative equal

H0 : BG = 0, versus H1: B unrestricted. (7.66)

Thus, since BG = 0 is equivalent to B = �Go′
, where � is an arbitrary matrix,

under H0 the BRM is defined as

X = A�Go′
C + E, E ∼ Np,n(0,�, I ).

For any given �, it follows that the likelihood ratio test for H0 versus B unrestricted
is proportional to

e
− 1

2 tr{�−1(Xo−ÂBC)()′}
e

1
2 tr{�−1(Xo−Â�Go′

C)()′}
, (7.67)
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where

ÂBC = P A,	XoP C ′, Â�Go′
C = P A,	XoP C ′Go.

The relation in (7.67) can be written as follows:

e
− 1

2 tr{�−1(S1+(I−P A,	)XoP C′ X′
o(I−P A,	)′)}+ 1

2 tr{�−1(S2+(I−P A,	)XoP C′Go X′
o(I−P A,	)′)}

, (7.68)

where

S1 = Xo(I − P C ′)X′
o, S2 = Xo(I − P C ′Go)X′

o,

S2 − S1 = Xo(PC ′ − P C ′Go)X′
o = XoPC ′(CC ′)−NX′

o,

remembering that (see Appendix B, Theorem B.12)

P C ′ − P C ′Go = P C ′(CC ′)−N,

where N is any matrix satisfying C(N) = C(G) ∩ C(C). The expression S2 − S1
can be viewed as the square of the difference of two residuals.

A few manipulations in (7.68) yield that the likelihood ratio test is proportional
to

e
1
2 tr{�−1P A,	XoP C′(CC′)−NX′

oP
′
A,	 }

.

Thus, a natural test statistic for testing (7.66) is

tr{�−1P A,	XP C′(CC′)−NX′P ′
A,	}. (7.69)

In order to acquire a deeper understanding of the test statistic in (7.69), one should
note that XPC ′(CC ′)−N is a projection on the between-individual subspace, and the
statistic is built up by a projection of XP C ′(CC ′)−N on the within-individuals space
C	(A), i.e.

PA,	XPC ′(CC ′)−N,

and then the projection is squared. Since this takes place on the within-individual
space, the inner product has to be taken into account, meaning that

P C ′(CC ′)−NX′P ′
A,	�−1PA,	XP C ′(CC ′)−N (7.70)
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(a) (b)

Fig. 7.9 Consider the BRM model in (7.63). A decomposition is presented of the whole space
according to the design and the restrictions BF = 0. In (a), where there are no restrictions the
decomposition consists of the subspaces C(C ′) and C(C′)⊥, as well as C	(A) and C	(A)⊥. In (b),
with the restrictions BG = 0, V1 = C(C ′Go), V2 = C(C ′Go)⊥ ∩ C(C ′) and V3 = C(C′)⊥

should be calculated. Finally, in order to summarize the information in this
expression, the trace is taken in (7.70), which leads to an expression which is
identical to (7.69).

For (7.69) to become applicable, � has to be replaced by an estimator. Consider
Fig. 7.9, which illustrates the fact that the hypothesis (7.66) concerns the testing of

C(C′Go)⊥ ∩ C(C′) ⊗ C	(A) = C(C′(CC′)−N) ⊗ C	(A),

i.e. testing whether the dimension of this space equals 0. This space is highlighted
in Fig. 7.9b. However, the inner product in C	(A) has to be estimated, which
means that a suitable estimator of � has to be found. The variation in the BRM is
uncovered via projections of the observations on C(C′)⊥ ⊗W and C(C′)∩C	(A)⊥,
with W representing the whole within-individuals space. However, it is natural only
to use C(C′)⊥ ⊗ W , since C(C′) ∩ C	(A)⊥ depends on �; i.e. it is proposed that
(I − P C ′)X should be the basis of the space where an estimator of � is obtained.
Hence, as an estimator of �, when using the dispersion matrix to define the inner
product, the quantity to use is

̂� = 1

n
S = 1

n
X(I − P C ′)X′. (7.71)

Remember that when obtaining the maximum likelihood estimators of the mean
parameters in the BRM , the data were projected on the space C(C′) ∩ CS(A)⊥;
i.e. the inner product was estimated using S, which is in agreement with the above
discussion concerning the estimation of �.

Now, since PC ′(CC ′)−N is a projection on C(C′Go)⊥ ∩ C(C′), P A,	 is a
projection on C	(A) and n−1S can be used to estimate the inner product, instead
of (7.69), a test statistic which is functionally independent of the parameters under
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H0 is given by

T3 = tr{S−1P A,SXP C′(CC′)−NX′P ′
A,S}.

This statistic is called the “trace test” statistic. More precisely, it is a statistic which
belongs to a class of “trace tests”.

Proposition 7.1 For the BRM presented in Definition 2.1, let the null hypothesis
H0 : BG = 0 be tested against H1: B unrestricted. Let S be defined in (7.71) and
let N be any matrix satisfying C(N) = C(G) ∩ C(C). A test statistic is given by

T3 = tr{S−1P A,SXP C′(CC′)−NX′P ′
A,S}.

The hypothesis is rejected when the observed value of T3 is large.

Moreover, it has been observed several times that S is independent of
XP C ′(CC ′)−NX′, and in the next theorem the fundamental property is stated that
the distribution of T3, under H0, is independent of the parameters. Hence, replacing
� in (7.69) by S makes sense.

Theorem 7.10 For the BRM presented in Definition 2.1, let the null hypothesis
H0 : BG = 0 be tested against H1: B unrestricted. Under H0 the distribution of
the test statistic T3, presented in Proposition 7.1, is independent of � and B.

Proof Rewrite T3 as

T3 = tr{S−1XP C′(CC′)−NX′}
−tr{Ao(Ao′

SAo)−1Ao′
XP C′(CC′)−NX′Ao(Ao′

SAo)−1Ao′ },

for an appropriately chosen Ao. It is noted that the first term in T3 equals

tr{S−1XP C′(CC′)−NX′} = tr{(�−1/2S�−1/2)−1�−1/2(X − A�Go′
C)P C′(CC′)−N

×(X − A�Go′
C)′�−1/2},

since for any �, A�Go′
CC′(CC ′)−N = 0. Then under H0 the distribution

is independent of � and B . Moreover, the second term can be rewritten in the
following way:

tr{Ao(Ao′
SAo)−1Ao′

XP C′(CC′)−NX′Ao(Ao′
SAo)−1Ao′ }

= tr{Ao(Ao′
�Ao)−1/2((Ao′

�Ao)−1/2Ao′
SAo(Ao′

�Ao)−1/2)−1

×(Ao′
�Ao)−1/2Ao′

XP C ′(CC ′)−NX′}.
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Since the distribution of (Ao′
�Ao)−1/2Ao′

X is independent of � and B, the
distribution of

(Ao′
�Ao)−1/2Ao′

SAo(Ao′
�Ao)−1/2

is also independent of the unknown parameters, which establishes the theorem. ��
Theorem 7.11 Let T3 be defined in Proposition 7.1, and let the constants c0;n,s and
ci;n,s,t , i = 1, 2, 3, be given in Definition B.1 (i)–(iv), of Appendix B, Sect. B.15.
Moreover, let rN = r(N), rA = r(A) and rC = r(C). Then

(i)

E[T3] = c0 + 1

n − rC − p − 1
tr{�−1ABN(N ′(CC′)−N)−N ′B ′A′},

where

c0 = rN rA(n−rC−1)
(n−rC−p−1)(n−rC−p+rA−1)

;

(ii) under H0

D[T3] = c1 + c2 + c3 + c4 − E[T3]2,

where E[T3] = c0, with c0 defined in statement (i), and

c1 = r2
Np2c1;n−rC,p + 2rNpc2;n−rC ,p,

c2 = r2
N(p − rA)2c1;n−rC,p−rA + 2rN(p − rA)c2;n−rC,p−rA,

c3 = −2r2
N(p − rA)2c1;n−rC,p−rA − 4r2

N(p − rA)c2;n−rC,p−rA

− 2r2
NrA(p−rA)

(n−rC−p−1)(n−rC−(p−rA))
,

c4 = 2rNrA(n − rC − 1)c0;n−rC,p−rA.

Proof According to Appendix B, Theorem B.19 (iv)

E[XPC ′(CC ′)−NX′] = rN� + ABN(N ′(CC′)−N)−N ′B ′A′,

and using the independence between XP C ′(CC ′)−NX′ and S, together with Theo-
rem B.26 (ii) in Appendix B, establishes statement (i).

Concerning statement (ii), since D[T3] = E[T 2
3 ]−E[T3]2, the expectation E[T 2

3 ]
has to be determined. First it is noted that

E[T 2
3 ] = tr{E[(S−1P A,S)

⊗2(XP C′(CC′)−NX′)⊗2]}
= tr{E[(S−1P A,S)

⊗2]E[(XP C′(CC′)−NX′)⊗2]},
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and according to Appendix B, Theorem B.19 (vii)

E[(XPC ′(CC ′)−NX′)⊗2] = r2
N� ⊗ � + rN(vec�vec′� + Kp,p� ⊗ �).

Now

tr{E[(S−1P A,S)⊗2rN(vec�vec′� + Kp,p� ⊗ �)]}
= 2rN tr{E[�1/2S−1A(A′S−1A)−A′S−1�S−1A(A′S−1A)−A′S−1�1/2]},

which, according to Appendix B, Theorem B.26 (iii) equals c4. The remaining task
is to derive the quantity r2

N tr{E[(S−1P A,S)⊗2� ⊗ �]}, which can be written as

r2
N tr{E[(�1/2S−1�1/2 − �1/2Ao(Ao′

S−1Ao)−Ao′
�1/2)⊗2]}

and is obtained via

c1 = r2
N tr{E[(�1/2 ⊗ �1/2)(S−1 ⊗ S−1)(�1/2 ⊗ �1/2)]},

c2 = r2
N tr{E[(�1/2Ao(Ao′

SAo)−1Ao′
�1/2)⊗2]},

where Theorem B.21 (iii) in Appendix B has been used. Finally, Theorem B.24 in
Appendix B determines that

c3 = −r2
N tr{E[�1/2S−1�1/2 ⊗ �1/2Ao(Ao′

SAo)−1Ao′
�1/2]}

−r2
N tr{E[�1/2Ao(Ao′

SAo)−1Ao′
�1/2 ⊗ �1/2S−1�1/2]},

and thus the proof of the theorem is complete. ��
From Theorem 7.11 (i), it follows that when B �= 0, the expected value of T3 is
larger than c0. Moreover, if

B1N(N ′(CC′)−N)−N ′B ′
1 − B2N(N ′(CC′)−N)−N ′B ′

2

is positive semi-definite, then (see Appendix B, Theorem B.9 (ii))

tr{�−1AB1N(N ′(CC′)−N)−N ′B ′
1A′} ≥ tr{�−1AB2N(N ′(CC′)−N)−N ′B ′

2A′}.

Hence, it makes sense to use T3 as a test statistic, because deviances from H0 are
reflected in the test statistic.

Unfortunately, the exact distribution for T3, given by Proposition 7.1, is
not available. There are several ways to solve this problem approximately
and it is worthwhile examining T3 more closely. First it can be noted that
S−1/2XPC ′(CC ′)−NX′S−1/2 is multivariate β-distributed of type II (see Appendix
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A, Sect. A.9), and H = (A′S−1A)−1/2A′S−1/2 is semi-orthogonal, i.e. HH ′ = I .
Thus,

T3 = tr{HS−1/2XP C′(CC′)−NX′S−1/2H ′}.

Exploiting this expression is somewhat difficult, since H and

S−1/2XP C ′(CC ′)−NX′S−1/2

are not independently distributed. Therefore, to gain a better understanding of the
statistic, a canonical version of T3 can be derived. As has been done many times
before, let A′ = T (I r(A) : 0)��1/2, where T is a non-singular matrix and � is an
orthogonal matrix (see Appendix B, Theorem B.1 (i)). Moreover, let Y = ��−1/2X

and V = ��−1/2S�−1/2�′. Then

T3 = tr{V −1(I : 0)′((I : 0)V −1(I : 0)′)−1(I : 0)V −1YP C′(CC′)−NY ′}.

Through a spectral decomposition, it follows that

T3 =
r(A)
∑

i=1

λiχ
2
r(N);i, (7.72)

where λi are eigenvalues of

V −1(I : 0)′((I : 0)V −1(I : 0)′)−1(I : 0)V −1 =
(

V 11 V 12

V 21 V 21(V 11)−1V 12

)

,

which contains already known notation. Note that in (7.72) the index i is used
to indicate that we have different chi-square variables. The distribution for T3
is relatively easy to simulate, i.e. only V needs to be simulated. Then λi are
obtained and, given λi , the test statistic T3 has a weighted chi-square distribution.
Approximating a weighted chi-square distribution with a chi-square distribution is a
classical problem which has been studied by many authors. In the next proposition,
a well-known idea is presented. However, note that λi is random, which usually is
not the case.

Proposition 7.2 For the BRM presented in Definition 2.1, let the null hypothesis
H0 : BG = 0 be tested againstH1: B unrestricted. The corresponding test statistic
T3 is given by Proposition 7.1. Then the hypothesis connected to T3 is rejected at
approximate significance level α if P(T3o ≥ aχ2[f ]) ≤ α, where T3o is the observed
value of T3, [f ] denotes the integer part of either f or f + 1 and the integer part
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which is closest to f is chosen;

a = c1 + c2 + c3 + c4 − c2
0

2c0
, f = 2c2

0

c1 + c2 + c3 + c4 − c2
0

,

where c0 − c4 are defined in Theorem 7.11.

Proof Below are presented a few hints explaining the choices of a and f . In (7.72)
it was seen that the test statistic is a weighted sum of χ2-distributed variables. This
type of distribution appears frequently and is often approximated by an adjustment
of a chi-square distribution where one uses a scaling parameter, a, and a degrees-of-
freedom parameter, f . These parameters will be determined by identification of the
mean and dispersion, i.e.

E[T3] = af, D[T3] = 2a2f.

Solving these equations, where the results of Theorem 7.11 are utilized, establishes
the theorem. ��
Note that it is possible to have non-integer degrees of freedom in a chi-square
distribution and in Proposition 7.2 it is not necessary to use |f | instead of f , in
particular since the distribution is only used to approximate another distribution.

Now a trace test for B in the BRM , i.e. H0: FBG = 0 against H1: B arbitrary, is
derived. First � is assumed to be known. Following the ideas previously presented
in this section, a reparametrization takes place and it is noted that FBG = 0 is
equivalent to

B = (F ′)o�1 + F ′�2G
o′
,

where �1 and �2 are new parameters. Thus, the following models under H1 and
H0, respectively, are considered:

H1 : E[X] = ABC,

H0 : E[X] = A(F ′)o�1C + AF ′�2G
o′
C.

Since � is supposed to be known, the likelihood ratio statistic can be shown to be
equivalent to

tr{�−1(X − ÂBH0C)()′} − tr{�−1(X − ÂBH1C)()′}, (7.73)

where ̂BH1 and ̂BH0 denote the maximum likelihood estimators of B under H1 and
H0, respectively.
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Let

A1 = A(F ′)o, C1 = C, A2 = AF ′, C2 = Go′
C,

Q′
0 = I − P A,	, Q′

1 = I − PA1,	, Q′
2 = I − P Q′

1A2,	
,

S1 = S = X(I − P C ′)X′, S2 = S1 + Q′
1X(P C ′

1
− P C ′

2
)X′Q1.

Then (7.73) can be rewritten as

tr{�−1(S2 + Q′
2Q

′
1XP C′

2
X′Q1Q2)} − tr{�−1(S1 + Q′

0XP C′
1
X′Q0)}, (7.74)

which, since Q1Q2 = Q0, equals

tr{�−1(S2 + Q′
0XP C′

2
X′Q0 − S1 − Q′

0XP C′
1
X′Q0)}

= tr{�−1(Q′
1X(P C′

1
− P C′

2
)X′Q1 − Q′

0X(P C′
1
− P C′

2
)X′Q0)}.

From Theorem B.12 in Appendix B, it follows that the differences between the
projections equal

PC ′
1
− P C ′

2
= P C ′(CC ′)−N, Q1 − Q0 = P A(A′	−1A)−M,	,

where N and M are arbitrary matrices satisfying C(N) = C(C)∩C(G) and C(M) =
C(A′) ∩ C(F ′), respectively. Thus, with a known � (since Q0Q1 = Q1Q0 = Q0),

tr{�−1P A(A′	−1A)−M,	XP C′(CC′)−NX′P ′
A(A′	−1A)−M,	

} (7.75)

is a natural test statistic. However, if � is unknown, the inner product which is
behind the expression in (7.75) has to be estimated.

It is of interest to note that

C(C′(CC′)−N) = C(C′) ∩ C(C′Go)⊥,

C	(A(A′�−1A)−M) = C	(A(A′�−1A)−A′�−1(�−1AF ′)o)

= C	(A) ∩ C	(A(F ′)o)⊥.

These expressions give clear interpretations of the spaces involved in (7.75).
Consider Fig. 7.10, where it can be seen that the tensor space

V2 ⊗ W2 = C(C′(CC′)−N) ⊗ C	(A(A′�−1A)−M)

should be studied, and the test statistic, given in (7.75), is used for deciding if V2 ⊗
W2 equals {0}. Since � is involved in the expression, � has to be estimated and,
in order to avoid the estimator exerting too much influence on the test, a natural
quantity to use, as before, is n−1S, since, both under H0 and H1, the distribution
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(a) (b)

Fig. 7.10 Consider the BRM model in (7.63). A decomposition is presented of the whole space
according to the design and the restrictions FBG = 0. In (a), � is known, whereas in (b), �

has been replaced by 1
n
S. The decomposition in (a) is based on the subspaces V1 = C(C ′Go),

V2 = C(C′Go)⊥ ∩ C(C ′), V3 = C(C ′)⊥, W1 = C	(A(F ′)o), W2 = C	(A(F ′)o)⊥ ∩ C	(A) and
W3 = C	(A)⊥. In (b), the subspaces V1, V2 and V3 are the same as in (a), whereas the within-
individuals decomposition is based on ˜W1 = CS(A(F ′)o), ˜W2 = CS(A(F ′)o)⊥ ∩ CS(A) and
˜W3 = CS(A)⊥

of S is independent of B. Note that when constructing the likelihood ratio test in
Sect. 7.3, different estimators of the inner product were obtained under H0 and H1,
i.e. S1 and̂S2, defined in Sect. 7.3, were utilized. In the present situation, the statistic
was derived by first assuming � to be known and then replacing the dispersion with
n−1S; i.e. the same estimator was chosen irrespective of the hypothesis, which in a
way makes sense since we are interested only in B and not in �. Hence, the next
proposition has been motivated.

Proposition 7.3 For the BRM presented in Definition 2.1, let the null hypothesis
H0 : FBG = 0 be tested against H1: B unrestricted. Let S be defined in (7.71),
and N and M be matrices satisfying C(N) = C(G) ∩ C(C) and C(M) = C(A′) ∩
C(F ′), respectively. A test statistic is given by

T4 = tr{S−1P A(A′S−1A)−M,SXP C′(CC′)−NX′P ′
A(A′S−1A)−M,S}.

The hypothesis is rejected when the observed value of T4 is large.

Theorem 7.12 For the BRM presented in Definition 2.1, let the null hypothesis
H0 : FBG = 0 be tested against H1: B unrestricted. Under H0 the distribution
for the test statistic T4, presented in Proposition 7.3, is independent of � and B.

Proof Under H0 the statistic T4 equals

T4 = tr{S−1P A(A′S−1A)−M,S(X − ABC)P C′(CC′)−N(X − ABC)′P ′
A(A′S−1A)−M,S}
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and the distribution of S is functionally independent of B, as well as independent of

(X − ABC)PC ′(CC ′)−N .

If one uses the factorization A′ = T (I r(A) : 0)�′�1/2, where T is a non-singular
matrix and � is an orthogonal matrix, it follows from the definition of T4 that under
H0 its distribution is independent of both � and B. Thus, the theorem has been
established. ��
Theorem 7.13 Let T4 be defined in Proposition 7.3, and let the constants c0;n,s and
ci;n,s,t , i = 1, 2, 3, be presented in Definition B.1 (i)–(iv) of Appendix B, Sect. B.15.
Moreover, put H = A(F ′)o, rN = r(N), rA = r(A), rC = r(C) and rH = r(H ).
Then

(i) E[T4] = r(N)((p − rH )c0;n−r(C),p−rH − (p − rA)c0;n−rC,p−rA)

+c0;n−rC,p−rH tr{(H o′
�H o)−H o′

ABN(N ′(CC′)−N)−N ′B ′A′H o};
(ii) under H0

D[T4] = c1 + c2 − 2c3 − E[T4]2,

where

E[T4] = r(N)((p − rH )c0;n−r(C),p−rH − (p − rA)c0;n−rC ,p−rA),

c1 = r2
N(p − rA)2c1;n−rC ,p−rA + r2

N((p − rA) + (p − rA)2)c2;n−rC ,p−rA

+2rN(p − rA)c1;n−rC ,p−rA + 2rN ((p − rA) + (p − rA)2)c2;n−rC ,p−rA ,

c2 = r2
N(p − rH )2c1;n−rC ,p−rH + r2

N((p − rH ) + (p − rH )2)c2;n−rC ,p−rH

+2rN(p − rH )c1;n−rC ,p−rH + 2rN((p − rH ) + (p − rH )2)c2;n−rC ,p−rH ,

c3 = r2
N(p − rA)2c1;n−rC ,p−rA,p−rH + 2r2

N(p − rA)c2;n−rC ,p−rA,p−rH

+r2
N(p − rA)(rA − rH )c3;n−rC ,p−rA,p−rH

+2rN(p − rA)c1;n−rC ,p−rA,p−rH

+2rN((p − rA) + (p − rA)2)c2;n−rC ,p−rA,p−rH .

Proof Since (see Appendix B, Theorem B.13)

P A(A′S−1A)−M,S = P A,S − P A(F ′)o,S = P ′
(A(F ′)o)o,S−1 − P ′

Ao,S−1,

it follows, by assuming the generators of the orthogonal complements to be of full
rank, that

T4 = tr{(H o′
SH o)−1H o′

XP C′(CC′)−NX′H o}
−tr{(Ao′

SAo)−1Ao′
XP C′(CC′)−NX′Ao}.
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Thus, since S and XP C ′(CC ′)−N are independent, statement (i) follows by applica-
tion of Theorems B.20 (ii) and B.21 (i) in Appendix B.

Turning to statement (ii), since D[T4] = E[T 2
4 ]−E[T4]2, the expectation E[T 2

4 ]
has to be determined. Let T4 = v − u, where

u = tr{(Ao′
SAo)−1Ao′

XP C′(CC′)−NX′Ao},
v = tr{(H o′

SH o)−1H o′
XP C′(CC′)−NX′H o}.

Then E[T 2
4 ] = E[u2] + E[v2] − 2E[uv] and each of these terms has to be

determined. Since XP C ′(CC ′)−NX′ is independent of S it is noted, as when
discussing T3 (see Appendix B, Theorem B.19 (vii)), that

E[(XPC ′(CC ′)−NX′)⊗2] = r2
N� ⊗ � + rN(Kp,p(� ⊗ �) + vec�vec′�).

This relation leads to

E[u2] = r2
N tr{E[(Ao′

SAo)−1 ⊗ (Ao′
SAo)−1]Ao′

�Ao ⊗ Ao′
�Ao}

+2rN tr{E[(Ao′
SAo)−1Ao′

�Ao(Ao′
SAo)−1Ao′

�Ao]}.

Hence, using Appendix B, Theorem B.21 (iii) and (v) it can be shown that
c1 = E[u2]. Similarly, the expectation for v2 can be obtained and c2 = E[v2].
Finally, E[uv] is to be determined. However, using Theorems B.19 (vii) and B.25
in Appendix B, as well as copying the calculations for obtaining E[u2], yields
c3 = E[uv], which establishes the theorem. ��
Proposition 7.4 For the BRM presented in Definition 2.1, let the null hypothesis
H0 : FBG = 0 be tested against H1: B unrestricted. The corresponding test
statistic T4 is given by Proposition 7.3. Then the hypothesis connected to T4 is
rejected at approximate significance level α if P(T4o ≥ aχ2[f ]) ≤ α, where T4o

is the observed value of T4, [f ] denotes the integer part of either f or f + 1 and
the integer part which is closest to f is chosen;

a = c1 + c2 − 2c3 − c2
0

2c0
, f = 2c2

0

c1 + c2 − 2c3 − c2
0

,

where c0 = E[T4] and c1 – c3 are presented in Theorem 7.13.

Proof As in Proposition 7.2, the coefficients a and f are obtained by solving

E[T4] = af, D[T4] = 2a2f,

which via Theorem 7.13 then suggests the statement. ��
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Now the proposition is illustrated via one of our data sets which has been used
several times before.

Example 7.10 Our main interest is to compare the “trace test” with the likelihood
ratio test. Therefore, consider the Potthoff and Roy data presented in Table 1.2,
which have been analysed in Example 7.2, among other places in the book. Let
X = ABC + E, whose matrices have previously been defined. In particular, note
that

A =

⎛

⎜

⎜

⎝

1 8 64
1 10 100
1 12 144
1 14 196

⎞

⎟

⎟

⎠

, C = (1′
11 ⊗ (1 : 0)′ : 1′

16 ⊗ (0 : 1)′),

meaning that the growth for both the girls and the boys is modelled with a second-
order polynomial.

In Example 7.2, three tests were carried out using the following hypotheses:

(i) no quadratic term in ABC;
(ii) only girls follow a quadratic growth model;

(iii) no growth exists for both the boys and the girls between age 8 and age 14.

Both the hypotheses related to statement (i) and statement (ii) were deemed to be
non-significant when performing a likelihood ratio test, while the hypothesis linked
to statement (iii) was rejected, which was in accordance with our expectations.

Concerning the “trace-test”, the results are in agreement. For statement (i) it is
obtained that T4o = 0.1 and T4o/a = 1.4, which are non-significant since the values
of the test statistics are below χ2

0.05(3) = 7.8. However, the exact probabilities
for rejection differ somewhat between the likelihood ratio test (p = 0.32) and the
“trace test” (p = 0.67). This discrepancy may be due to the ad hoc procedure
implemented when deriving the “trace test” statistic or the relatively crude method
used for technically determining the probability for the “trace test”.

For statement (ii) the corresponding numbers are T4o = 0.1, T4o/a = 1.5 and
χ2

0.05(2) = 6.0, and thus this test is not rejected. The rejection probabilities for the
likelihood ratio test and the “trace test” are given by p = 0.14 and p = 0.34,
respectively.

For the third hypothesis, presented in statement (iii), i.e. the most extreme
hypothesis, the following were obtained: T4o = 5.1, T4o/a = 82.4 and χ2

0.05(2) =
6.0. Both the “trace test” and the likelihood ratio test provide very small rejection
probabilities. ��
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7.9 A “Trace Test” for the BRM , H0 : FiBGi = 0, i = 1, 2,
C(F ′

1) ⊆ C(F ′
2), Against Unrestricted B

As when performing tests with the help of the likelihood ratio criterion in Sect. 7.4
and other places in the book, the condition C(F ′

1) ⊆ C(F ′
2) is supposed to hold. The

reason for assuming such an condition is that, as before, the theory developed for
the class of EBRM3

B is going to be utilized. Note that F iBGi = 0, i = 1, 2, with
C(F ′

1) ⊆ C(F ′
2), is equivalent to

B = (F ′
2)

o�1 + (F ′
1 : (F ′

2)
o)o�3G

o′
2 + F ′

1�4(G1 : G2)
o′
,

where �i are new unknown parameters which have to be estimated and, of course,
C((G1 : G2)

o) ⊆ C(Go
2). Thus the reparametrization implies that the mean structure

of the BRM under H0 becomes

E[X] = ABC = A(F ′
2)

o�1C + A(F ′
1 : (F ′

2)o)o�3Go′
2 C + AF ′

1�4(G1 : G2)o
′
C,

i.e. an EBRM3
B . For the time being, suppose that the dispersion matrix � is

known. The following notations, also used in Sect. 7.4, will be applied, but now
the projections are solely functions of �:

A1 = A(F ′
2)

o, C1 = C, A2 = A(F ′
1 : (F ′

2)
o)o, C2 = Go′

2 C,

A3 = AF ′
1, C3 = (G1 : G2)

o′
C,

S3 = S2 + P ′
(A1:A2)o,	−1X(PC ′

2
− PC ′

3
)X′P (A1:A2)o,	−1,

S2 = S1 + P ′
Ao

1,	
−1X(P C ′

1
− P C ′

2
)X′P Ao

1,	−1, S1 = S = X(I − P C ′
1
)X′,

Q1 = I − P ′
A1,	

, Q2 = I − P ′
Q′

1A2,	
,

Q3 = I − P ′
Q′

2Q
′
1A3,	

, Q1Q2Q3 = P Ao,	−1 .

Under the alternative hypothesis, i.e. with an unrestricted mean assumed to hold, the
estimated mean equals (e.g. see Sect. 2.4)

ÊH1[X] = P A,	XP C ′,

whereas from (2.39)

ÊH0[X] = (I − Q′
1)XP C ′

1
+ (I − Q′

2)XP C ′
2
+ (I − Q′

3)XP C ′
3
. (7.76)
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Fig. 7.11 The dotted area corresponds to H0: F iBGi = 0, i = 1, 2, in the BRM , where C(F ′
1) ⊆

C(F ′
2). Furthermore, W1 = C•(A(F ′

2)
o), W2 = C•(A(F ′

1)
o) ∩ C•(A(F ′

2)
o)⊥, W3 = C•(A) ∩

C•(A(F ′
1)

o)⊥, W4 = C•(A)⊥, V1 = C(C ′(G1 : G2)
o), V2 = C(C ′Go

2) ∩ C(C′(G1 : G2)
o)⊥,

V3 = C(C′) ∩ C(C ′Go
2)

⊥ and V4 = C(C ′)⊥

Hence, similar to when tests were performed within the BRM , in Sect. 7.8, a trace
test statistic can be constructed via

tr{�−1(X − ÊH0[X])()′} − tr{�−1(X − ÊH1[X])()′}. (7.77)

In Sect. 7.8, it was relatively easy to simplify the test statistic. Because EH0[X] and
EH1[X] are built up with the help of projections of observations on certain spaces,
it makes sense to consider the corresponding spaces and their decompositions. In
fact, what are needed are the projections of spaces indicated in Fig. 7.11 (the dotted
area), which are in agreement with the construction of Fig. 7.7.

Now, instead of performing a large number of calculations, the idea is to rely
on one’s intuition. Based on Fig. 7.11, the spaces which are involved in the test are
given by

V2 ⊗ W3 + V3 ⊗ (W2 + W3), (7.78)

where Vi and Wi , i = 2, 3, are defined in Fig. 7.11. The test which will be
constructed is to some extent a goodness-of-fit test which will help us to decide
if the space given in (7.78) differs from {0}. What is needed to construct the test is
the construction of projections on the spaces in (7.78). Firstly, note that Q′

1, Q′
2Q

′
1

and Q′
3Q

′
2Q

′
1 in (7.77) and (7.76) are all projectors and

C	(Q′
1) = C	(A1)

⊥, C	(Q′
2Q

′
1) = C	(A1 : A2)

⊥,

C	(Q′
3Q

′
2Q

′
1) = C	(A1 : A2 : A3)

⊥ = C	(A)⊥.

Moreover,

C	(A1)
⊥ = C	(A1)

⊥ ∩ C	(A) + C	(A)⊥,

C	(A1 : A2)
⊥ = C	(A1 : A2)

⊥ ∩ C	(A) + C	(A)⊥,

C	(A1 : A2 : A3)
⊥ = C	(A)⊥,
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and let

V2 = C(N1) = C(C′Go
2) ∩ C(C′(G1 : G2)

o)⊥,

V3 = C(N2) = C(C′) ∩ C(C′Go
2)

⊥,

C	(M1) = C	(A) ∩ C	(A(F ′
1)

o)⊥,

C	(M2) = C	(A) ∩ C	(A(F ′
2)

o)⊥,

with the corresponding projections

P N1 = P C ′Go
2
− P C ′(G1:G2)o , P N2 = P C ′ − PC ′Go

2
,

P M1,	 = P A,	 − P A1(F
′
1)

o,	, P M2,	 = P A,	 − P A1(F
′
2)

o,	.

Therefore, the test statistic presented in (7.77), where � is known, equals

tr{�−1((P A,	 − P A1(F′
1)

o,	)X(P C′Go
2
− P C′(G1:G2)o)X′

+(P A,	 − P A1(F
′
2)

o,	)X(P C ′ − P C ′Go
2
)X′)}.

Since the distribution of S does not depend on B, either under H0 or under H1,
the same argument as that applied when obtaining T3 in Proposition 7.1 can be
used; i.e. replacing � by n−1S, in order to present a test statistic for the hypothesis
involving the bilinear restrictions F iBGi = 0, i = 1, 2, and C(F ′

1) ⊆ C(F ′
2) is a

natural procedure.

Proposition 7.5 For the BRM presented in Definition 2.1, let the null hypothesis
H0 : F iBGi = 0, i = 1, 2, C(F ′

1) ⊆ C(F ′
2), be tested against H1: B unrestricted.

Let S be defined in (7.71). A test statistic is given by

T5 = T51 + T52,

where

T51 = tr{S−1(P A,S − P A(F′
1)

o,S)X(P C′Go
2
− P C′(G1:G2)o)X′},

T52 = tr{S−1(P A,S − P A(F′
2)

o,S)X(P C′ − P C′Go
2
)X′}.

The hypothesis may be rejected if any of the observed values of T51, T52 or T5 is
large.

The statistics T51 and T52 are also test statistics. In particular, they are both positive
and, therefore, it is possible to consider them separately. From Proposition 7.5, since

PA,S − P A(F ′
2)

o,S = P A(A′S−1A)−M, P C ′ − PC ′Go
2

= PC ′(CC ′)−N,
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where C(M) = C(A′) ∩ C(F ′
2) and C(N) = C(C) ∩ C(G2), it follows that T52

tests H0: F 2BG2 = 0 in the BRM against B being arbitrary. Moreover, T51
is a test statistic for testing H0: F 1BG1 = 0 in the BRM given BG2 = 0.
The latter statement follows from the fact that E[X] = ABC = A�Go′

2 C

for some �, and F 1BG1 = 0 is equivalent to F 1�Go′
2 G1 = 0. Furthermore,

C(Go
2(G

o′
2 G1)

o) = C(G1 : G2)
⊥, which altogether implies the expression for T51.

It is also worth noting that X(P C ′Go
2
− P C ′(G1:G2)o)X

′ and X(P C ′ − P C ′Go
2
)X′ are

independently distributed. This implies that T51 and T52 are uncorrelated, and given
S, also independent.

Now a few results will be presented without proofs, since the statements can be
verified using the same procedure as was applied in Sect. 7.8.

Theorem 7.14 For the BRM presented in Definition 2.1, let the null hypothesis
H0 : F iBGi = 0, i = 1, 2, C(F ′

1) ⊆ C(F ′
2), be tested against H1: B

unrestricted. Under H0 the test statistics T51 and T52, presented in Proposition 7.5,
are functionally independent of B and �.

Theorem 7.15 Let T51 and T52 be defined in Proposition 7.5, and let the constants
c0;n,s and ci;n,s,t , i = 1, 2, 3, be given in Definition B.1 (i)–(iv) of Appendix B,
Sect. B.15. Moreover, letN1 andN2 be any matrices satisfying C(N1) = C(Go′

2 C)∩
C(Go′

2 G1) and C(N2) = C(C) ∩ C(G2), respectively, and let H 1 = A(F ′
1)

o, H 2 =
A(F ′

2)
o, rH1 = r(H 1), rH2 = r(H 2), rA = r(A) and rC = r(C). Then

(i)

E[T52] = rN2 ((p − rH2 )c0;n−r(C),p−rH2
− (p − rA)c0;n−rC,p−rA)

+c0;n−rC,p−rH2
tr{(Ho′

2 �H o
2)

−H o′
2 ABN2(N

′
2(CC′)−N2)−N ′

2B
′A′H o

2};

(ii) under H0

D[T52] = c1 + c2 − 2c3 − E[T52]2,

where

E[T52] = rN2((p − rH2)c0;n−r(C),p−rH2
− (p − rA)c0;n−rC,p−rA),

c1 = r2
N2

(p − rA)2c1;n−rC,p−rA + r2
N2

((p − rA) + (p − rA)2)

×c2;n−r(C),p−r(A) + 2rN2(p − rA)c1;n−rC,p−rA

+2rN2((p − rA) + (p − rA)2)

×c2;n−rC,p−rA,
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c2 = r2
N2

(p − rH2)
2c1;n−rC,p−rH2

+ r2
N2

((p − rH2) + (p − rH2)
2)

×c2;n−rC,p−rH2
+ 2rN2(p − rH2)c1,n−rC,p−rH2

+2rN2((p − rH2) + (p − rH2)
2)c2;n−rC,p−rH2

,

c3 = r2
N2

(p − rA)2c1;n−rC,p−rA,p−rH2
+ 2r2

N2
(p − rA)c2;n−rC,p−rA,p−rH2

+r2
N2

(p − rA)(rA − rH2)c3;n−r(C),p−rA,p−rH2

+2rN2(p − rA)c1;n−rC,p−rA,p−rH2

+2rN2((p − rA) + (p − rA)2)c2;n−rC,p−rA,p−rH2
;

(iii)

E[T51] = rN1 ((p − rH1 )c0;n−r(C),p−rH1
− (p − rA))c0;n−rC,p−rA

+c0;n−rC,p−rH1
tr{Ho′

1 �H o
1)

−Ho′
1 ABN1(N

′
1(CC′)−N1)−N ′

1B
′A′Ho

1};

(iv) under H0

D[T51] = c1 + c2 − 2c3 − E[T51]2,

where

E[T51] = rN1 ((p − rH1 )c0;n−r(C),p−rH1
− (p − rA))c0;n−rC ,p−rA,

c1 = r2
N1

(p − rA)2c1;n−rC ,p−rA + r2
N1

((p − rA) + (p − rA)2)c2;n−r(C),p−r(A)

+ 2rN1 (p − rA)c1;n−rC ,p−rA + 2rN1 ((p − rA) + (p − rA)2)c2;n−rC ,p−rA,

c2 = r2
N1

(p − rH1 )
2c1;n−rC ,p−rH1

+ r2
N1

((p − rH1) + (p − rH1)
2)c2;n−rC ,p−rH1

+ 2rN1 (p − rH1 )c1;n−rC ,p−rH1
+ 2rN1 ((p − rH1) + (p − rH1 )

2)c2;n−rC ,p−rH1
,

c3 = r2
N1

(p − rA)2c1;n−rC ,p−rA,p−rH1
+ 2r2

N1
(p − rA)c2;n−rC ,p−rA,p−rH1

+ r2
N1

(p − rA)(rA − rH1)c3;n−r(C),p−rA,p−rH1
+2rN1 (p − rA)c1;n−rC ,p−rA,p−rH1

+ 2rN1 ((p − rA) + (p − rA)2)c2;n−rC ,p−rA,p−rH1
.

Proposition 7.6 Let the test statistic T52 be given by Proposition 7.5. Then the
hypothesis connected to T52 is rejected at approximate significance level α if
P(T52o ≥ aχ2[f ]) ≤ α, where T52o is the observed value of T52, [f ] denotes the
integer part of either f or f +1 and the integer part which is closest to f is chosen;

a = c1 + c2 − 2c3 − c2
0

2c0
, f = 2c2

0

c1 + c2 − 2c3 − c2
0

,

where c0 = E[T52] and c1 – c3 are presented in Theorem 7.15 (i) and (ii).
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Proposition 7.7 Let the test statistic T51 be given by Proposition 7.5. Then the
hypothesis connected to T51 is rejected at approximate significance level α if
P(T51o ≥ aχ2[f ]) ≤ α, where T51o is the observed value of T51, [f ] denotes the
integer part of either f or f + 1 and the the integer part which is closest to f is
chosen;

a = c1 + c2 − 2c3 − c2
0

2c0
, f = 2c2

0

c1 + c2 − 2c3 − c2
0

,

where c0 = E[T51] and c1 – c3 are presented in Theorem 7.15 (iii) and (iv).

Example 7.11 The melatonin data generated in Example 7.3 are considered one
final time. In Example 7.8 the likelihood ratio test was carried out for these data.
More precisely, for the BRM , H0: F iBGi = 0, i = 1, 2, was tested against
B unrestricted. The likelihood ratio statistic equals a product, λ1λ2, of two test
statistics. For these tests, λ1 tests H0 : F 2BG2 = 0 versus B unrestricted, which
turned out to be far below the critical value, while λ2, which tests H0 : F 1BG1 = 0
given that F 2BG2 = 0, was not significant.

Concerning the “trace-test” for the hypothesis H0: F iBGi = 0, i = 1, 2, versus
B unrestricted, it follows from Propositions 7.6 and 7.7 that the test statistics T52, for
testing H0: F 2BG2 = 0 versus B unrestricted, and T51, for testing H0: F 1BG1 = 0
versus BG2 = 0, are of interest. Note that T52 corresponds to λ1, mentioned above.

The results of the “trace-test” are as follows: T52o = 1.1, T52o/a = 22.0 >

χ2
0.05(1) = 3.84, T51o = 0.03 and T51o/a = 0.6 < χ2

0.05(1) = 3.84. Thus, there
is a very strong agreement between the likelihood ratio test and the “trace-test”.
Note that three parameters are put to zero under the null hypothesis and that this
hypothesis is tested via two chi-square distributions which both have one degree of
freedom. From an asymptotic point of view this is somewhat unnatural and should
be exploited further. ��

7.10 The Likelihood Ratio Test Versus the “Trace Test”

Firstly, it is noted that if the dispersion matrix � is known, the likelihood ratio test
and the “trace test” for a given hypothesis connected to the BRM , with restrictions
on the mean, will yield identical test statistics. However, a known � will never
occur and when � is unknown, the construction of the two types of tests culminates
in different tests.

The likelihood ratio procedure considers the whole space, i.e. a tensor space
which consists of the within-individuals subspace and the between-individuals
subspace. Moreover, the likelihood ratio procedure is a precise mathematical
formulation of the testing problem and has for a couple of centuries been known to
be the best test from an asymptotic point of view. However, with many parameters
being included in a model, there are situations where the likelihood ratio test is
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not useful, since, for example, the test may reject the null hypothesis too often.
There can also be a problem understanding what is really being tested when many
parameters appear in the model, in particular when there are several nuisance
parameters in the model.

In Sects. 7.3–7.7, likelihood ratio tests of hypotheses concerning B in the BRM

were mainly of interest, whereas � played a secondary role; i.e. knowledge about
� was only applied when evaluating the distribution of ̂B. In the likelihood ratio
test the maximum likelihood estimator of � was used whereas for the “trace test” it
was decided to use n−1S. Since n−1S and the maximum likelihood estimator of �

both converge to � with the same “speed”, the two different testing approaches
are asymptotically equivalent. However, small sample comparisons between the
approaches have yet to be performed. One advantage of the “trace test”, when
n−1S is used, is that the spaces which are involved in the construction of the test
statistic are easier to interpret than the projections used in the construction of the
likelihood ratio statistic, where some kind of conditional approach is applied; for
example see Sect. 7.3. Moreover, when considering H0: F iBGi = 0, i = 1, 2,
C(F ′

1) ⊆ C(F ′
2), in the BRM , the derivation and the construction of the test statistic

are more straightforward for the “trace test” than for the likelihood ratio test.
It can be mentioned that the “trace test” is a goodness-of-fit test in the sense that it

compares the fit under H0 with the fit under H1, i.e. it highlights the difference of fit
under H0 and H1. The drawback of “trace tests” is that their distributions and power
for various alternatives have not yet been studied in detail, whereas the likelihood
ratio test has been scrutinized with respect to different statistical properties. In the
previous sections, we have been relying on some ad hoc approximations, which
seems to work, but no real proofs are given. On the other hand, although likelihood
ratio statistics are associated with certain errors no sharp upper error bounds are
available for the tests of the hypotheses in Sects. 7.3–7.7.

7.11 Testing an EBRM3
B
Against a BRM

Now we return to exploiting likelihood ratio tests, and the results of Sects. 7.6 and
7.7 will be slightly extended. The reason is that in the next section, restrictions of
a different type than F iBGi = 0, i = 1, 2, are considered and the results will rely
on the present section. In the previous sections, restrictions were put on B in the
BRM , X = ABC + E, through F iBGi = 0, i = 1, 2, C(F 2) ⊆ C(F 1). In this
section it is assumed that under H0

E[X] = A1B1C1 + A2B2C2 + A3B3C3, C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1), (7.79)

where B i , i = 1, 2, 3, are the parameters of interest. Under the alternative
hypothesis we have

E[X] = ABC,
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where in particular C(A1 : A2 : A3) ⊆ C(A), C(C1) ⊆ C(C) and B is completely
unknown, i.e. no restrictions apply to B. Thus, an EBRM3

B is tested against a
BRM . From Theorems 3.1 and 3.2, it follows that the likelihood ratio test statistic
for testing (7.79) is equivalent to

λ
2
n = |̂�H0 |

|̂�H1 |
= |̂S3 + ̂Q

′
3
̂Q

′
2
̂Q

′
1XPC ′

3
X′

̂Q1
̂Q2

̂Q3|
|S + P ′

Ao,S−1XPC ′X′P Ao,S−1 | , (7.80)

where the notation follows that of Sect. 7.4, except that Ai , i = 1, 2, 3, and Ci ,
i = 1, 2, 3, are arbitrary known matrices following the conditions

C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1) ⊆ C(C′),

C(A1 : A2 : A3) ⊆ C(A). (7.81)

Let ˜A be any matrix such that

C(˜A) = C(A1 : A2 : A3).

As in Sects. 7.6 and 7.7, the test statistic in (7.80) can be factorized, but this time it
is natural to work with three factors (see Fig. 7.12):

λ = λ1λ2λ3,

where

λ

2
n
1 =

|S1 + P ′
˜Ao,S−1

1
XP C ′

1
X′P

˜Ao,S−1
1

|
|S + P ′

Ao,S−1XP C ′X′PAo,S−1 | , (7.82)

λ

2
n
2 =

|̂S2 + P ′
˜Ao,̂S−1

2
XP C ′

2
X′P

˜Ao,̂S−1
2

|
|S1 + P ′

˜Ao,S−1
1

XP C ′
1
X′P

˜Ao,S−1
1

| , (7.83)

λ

2
n
3 =

|̂S3 + P
˜Ao,̂S−1

3
XP C ′

3
X′P

˜Ao,̂S−1
3

|
|̂S2 + P ′

˜Ao,̂S−1
2

XP C ′
2
X′P

˜Ao,̂S−1
2

| , (7.84)

and for clarity S1, ̂S2 and ̂S3 are also given:

S1 = X(I − P C ′
1
)X′,

̂S2 = S1 + P ′
Ao

1,S−1
1

X(P C ′
1
− P C ′

2
)X′P

Ao
1,S

−1
1

,

̂S3 = S2 + P ′
(A1:A2)o,̂S

−1
2

X(P C ′
2
− PC ′

3
)X′P

(A1:A2)
o,̂S−1

2
.
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Fig. 7.12 In (a), the dotted
area corresponds to the
likelihood ratio test H0:
E[X] = A1B1C1 +
A2B2C2 + A3B3C3 against
H1: E[X] = ABC, where
C(A1 : A2 : A3) ⊆ C(A) and
C(C ′

3) ⊆ C(C ′
2) ⊆ C(C ′

1) ⊆
C(C). The test statistic λ is
presented in (7.80). In (b), the
test statistic λ1 in (7.82) is
illustrated, and (c) and (d)
show what is tested with λ2
and λ3, respectively.
Furthermore, V1 = C(C′

3),
V2 = C(C′

2) ∩ C(C ′
3)

⊥,
V3 = C(C′

1) ∩ C(C2)
⊥,

V4 = C(C1) ∩ C(C ′)⊥ and
V5 = C(C′)⊥

V1 V2 V3 V4 V5

(a)

V1 V2 V3 V4 V5

(b)

V1 V2 V3 V4 V5

(c)

V1 V2 V3 V4 V5

(d)

Note that λ2 and λ3 correspond to (7.53) and (7.54), respectively, and Theo-
rem 7.8 describes how the tests based on λ2 and λ3 should be performed. In Fig. 7.12
the three different test statistics are illustrated. Here it can be seen that λ1 tests if
the space (C(C′

1)
⊥ ⊗ C(˜A)⊥) ∩ (C(C) ⊗ C(A)) equals {0}. If this test is rejected,

then the overall hypothesis about the EBRM3
B against the BRM is also rejected.

However, if it is not rejected, then it makes sense to investigate λ2, which tests if
the space (C(C′

2)
⊥ ∩ C(C′

1)) ⊗ (C(A1)
⊥ ∩ C(˜A)) equals {0}. Moreover, if λ2 is not

rejected either, then the test statistic λ3 should be considered, and in this case it will
be tested whether the space (C(C′

3)
⊥ ∩ C(C′

2)) ⊗ (C(A1 : A2)
⊥ ∩ C(˜A)) equals {0},

given that (C(C′
2)

⊥ ∩ C(C′
1)) ⊗ (C(A1)

⊥ ∩ C(˜A)) = {0}.
Before deriving the approximating distributions of the three test statistics

mentioned above, it can be noted that if one wants to simplify the technical
treatment, which, however, is not necessary, � can be replaced by I without any
loss of generality; i.e. the distribution of the test statistic does not depend on �.
Therefore, in order to indicate that � = I is assumed to hold, X is replaced by
Y ∼ Np,n(0, Ip, In), Si by V i (defined as the matrix where in Si the matrix X

has been replaced by Y ), and S is replaced by V ∼ Wp(I , n − r(C)). Moreover,
instead of Ai , i = 1, 2, 3, and A one should now have �1/2Ai and �1/2A, but it
is not necessary to emphasize this. The obtained distributions will not depend on
Ai or A, and only the ranks of these matrices are important; these do not change
with pre-multiplication by �1/2. Now we start to derive an approximation of the
distribution of the likelihood ratio test and to consider

λ

2
n
1 =

|V 1 + P ′
˜Ao,V −1

1
YP C ′

1
Y ′P

˜Ao,V −1
1

|
|V + P ′

Ao;V −1YPC ′Y ′P Ao;V −1 | . (7.85)
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It is worth noting that in Sects. 7.6 and 7.7, the matrices satisfied C(A1 : A2 : A3) =
C(A) and C(C′

1) = C(C′), and therefore in these sections it was not necessary to
consider a statistic like λ1 in (7.85). The expression in (7.85) can be rewritten as

λ

2
n
1 = |V 1||(˜Ao′

V 1˜A
o
)−1||(˜Ao′

YY ′
˜A

o
)|

|V ||(Ao′
V Ao)−1||(Ao′

YY ′Ao)| . (7.86)

Based on the assumption C(˜A) = C(A1 : A2 : A3) ⊆ C(A) and utilizing Appendix
B, Theorem B.3 (ii)

C(˜A
o
) = C(Ao) � C(H ), (7.87)

where H is a matrix of full rank satisfying C(H ) = C(A) ∩ C(˜A)⊥. Using the
decomposition in (7.87), it follows that in (7.86), ˜A

o
can be replaced by (Ao : H ).

Thus, Appendix B, Theorem B.8 (iv) establishes that

λ

2
n
1 = |V 1||(Ao′

V 1A
o)−1||H ′V 1H − H ′V 1A

o(Ao′
V 1A

o)−1Ao′
V 1H |−1

|V ||(Ao′
V Ao)−1|

×|(Ao′
YY ′Ao)||H ′YY ′H − H ′YY ′Ao(Ao′

YY ′Ao)−1Ao′
YY ′H |

|(Ao′
YY ′Ao)| .

Hence, the test statistic can be factored into

λ1 = λ11λ12,

where

λ

2
n
11 = |V 1||(Ao′

V 1A
o)−1|

|V ||(Ao′
V Ao)−1| , (7.88)

λ

2
n
12 = |H ′YY ′H − H ′YY ′Ao(Ao′

YY ′Ao)−1Ao′
YY ′H |

|H ′V 1H − H ′V 1A
o(Ao′

V ′
1A

o)−1Ao′
V ′

1H |

= |H ′A(A′(YY ′)−1A)−1A′H |
|H ′A(A′V −1

1 A)−1A′H | , (7.89)

and A is any matrix of full rank satisfying C(A) = C(A). The appearance of two
test statistics instead of λ1 is in agreement with Fig. 7.12b.

Concerning λ

2
n
11 this expression is similar to (7.14). Therefore, it is possible to

copy all the calculations from (7.14) into the final expression in (7.20). The only
issue that has to be addressed is the definition of the corresponding M and N

matrices, which are similar to those used in (7.18). It follows that N has to satisfy

PC ′ − P C ′
1

= PC ′(CC ′)−N,
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i.e. N = C(C′
1)

o. Moreover, M must satisfy

C(M) = C(A′)

and M should be of full rank. Then the result of Theorem 7.2 can be utilized.
Another way of obtaining the result is to suppose that F = I in Sect. 7.3 and apply
Corollary 7.1.

In the following, (7.89) is exploited. First it is noted (putting PB = P C ′(CC ′)−N ,
N = C(C′

1)
o), that

YY ′ = V 1 + YPBY ′,

and applying Theorem B.6 (i) in Appendix B yields (since PB is idempotent)

(YY ′)−1 = V −1
1 − V −1

1 YPB(PBY ′V −1
1 YPB + I )−1PBY ′V −1

1 .

Thus, using Appendix B, Theorem B.6 (i) once again,

(A′(YY ′)−1A)−1 = (A′V −1
1 A)−1 + (A′V −1

1 A)−1A′V −1
1 YPB(I + PBY ′V −1

1 YPB

−PBY ′V −1
1 A(A′V −1

1 A)−1A′V −1
1 YPB)−1PBY ′V −1

1 A(A′V −1
1 A)−1

= (A′V −1
1 A)−1 + (A′V −1

1 A)−1A′V −1
1 YPB(I + PBY ′Ao(Ao′

V 1A
o)−1Ao′

YPB)−1

×PBY ′V −1
1 A(A′V −1

1 A)−1.

Utilizing the above derivation, λ12 in (7.89) can be shown to equal

λ

2
n
12 = |I + PBY ′Ao(Ao′

V 1A
o)−1Ao′

YPB|−1|I + PBY ′Ao(Ao′
V 1A

o)−1Ao′
YPB

+PBY ′A(A′V −1
1 A)−1

×A′H (H ′A(A′V −1
1 A)−1A′H )−1H ′A(A′V −1

1 A)−1A′YPB|
= |I + PBY ′Ao(Ao′

V 1A
o)−1Ao′

YPB|−1|I + PBY ′V −1
1 YPB

−PBY ′A(A′H )o((A′H )o
′
A′V 1A(A′H )o)−1(A′H )o

′
A′YPB|

= |I + PBY ′Ao(Ao′
V 1A

o)−1Ao′
YPB|−1

×|I + PBY ′(A(A′H )o)o((A(A′H )o)o
′
V 1(A(A′H )o)o)−1(A(A′H )o)o

′
YPB|.

However, λ

2
n
12 has the same form as the expression in (7.16). Thus, the remaining

task is to determine an M such that

P
(A(A′H)o)o,V −1

1
− P

Ao,V −1
1

= P
V −1

1 A(A′V −1
1 A)−M,V −1

1
,
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V1 V2 V3 V4 V5

(a)

V1 V2 V3 V4 V5

(b)

Fig. 7.13 In (a), the dotted area corresponds to the likelihood ratio test statistic λ11, given
in (7.88). In (b), the test statistic λ12 in (7.89) is illustrated. Furthermore, V1 = C(C ′

3), V2 =
C(C ′

2) ∩ C(C ′
3)

⊥, V3 = C(C ′
1) ∩ C(C2)

⊥, V4 = C(C1) ∩ C(C′)⊥ and V5 = C(C ′)⊥

implying that M can be chosen as M = A′
˜A

o
(see Appendix B, Theorem B.12).

Hence, with N = C′Co
1 and M = A′

˜A
o
, the relation in (7.20) can be utilized.

The test statistics λ11 and λ12 given in (7.88) and (7.89), respectively, are
illustrated in Fig. 7.13.

Theorem 7.16 Testing an EBRM3
B presented in Definition 2.2 against a BRM

presented in Definition 2.1. Under H0 the data are assumed to follow an EBRM3
B

with the mean

E[X] = A1B1C1 + A2B2C2 + A3B3C3, C(C′
3) ⊆ C(C′

2) ⊆ C(C′
1).

Moreover, under H1 the data are modelled by a standard BRM with the mean

E[X] = ABC, C(C′
1) ⊆ C(C′), C(˜A) = C(A1 : A2 : A3) ⊆ C(A).

Then the likelihood ratio test statistic λ for testing H0 against H1 can be factored
into four components:

λ = λ11λ12λ2λ3,

where λ11, λ12, λ2 and λ3 are identified via (7.88), (7.89), (7.83) and (7.84),
respectively.

Each component can be considered to be a test statistic and H0 is rejected if
one or several of the observed test statistics are in the tails of their corresponding
distributions.

The next proposition utilizes Theorem C.3 in Appendix C. Note that the results
concerning λ2 and λ3 stem from Theorem 7.9.
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Proposition 7.8 Let

c1(po, f,m) = pom(p2
o + m2 − 5)

48(f − 1
2 (po − m + 1))2

,

c2(po, f,m) = 1
4608p2

om
2(p2

o + m2 − 5)2

+pom(3p4
o + 3m4 + 10p2

om
2 − 50(p2

o + m2) + 159)

1920(f − 1
2 (po − m + 1))4

.

(i) Let λ11o be the observed value of λ11, given by (7.88) and used in the
expression of the likelihood ratio test, presented in Theorem 7.16. Put

to = − 2
n
(f − 1

2 (po − m + 1)) ln λ11o,

where f = n−r(C)−p+r(A), po = r(A) andm = r(C)−r(C1). Moreover,
let c1 = c1(po, f,m) and c2 = c2(po, f,m). The hypothesis corresponding to
the statistic λ11 in Theorem 7.16 is rejected, approximately at significance level
α, if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α.

(ii) Let λ12o be the observed value of λ12, given by (7.89) and used in the
expression of the likelihood ratio test in Theorem 7.16. Put

to = 2
n
(f − 1

2 (po − m + 1)) ln λ12o,

where f = n − r(C) − p + r(A), po = r(A) − r(˜A) and m = r(C) −
r(C1). Moreover, let c1 = c1(po, f,m) and c2 = c2(po, f,m). The hypothesis
corresponding to the statistic λ12 in Theorem 7.16 is rejected, approximately
at significance level α, if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α.

(iii) Let λ2o be the observed value of λ2, given by (7.83) and used in the expression
of the likelihood ratio test in Theorem 7.16. Put

to = 2
n
(f − 1

2 (po − m + 1)) ln λ2o,
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where f = n − r(C) − p + r(A), po = r(˜A) − r(A1) and m = r(C1) −
r(C2). Moreover, let c1 = c1(po, f,m) and c2 = c2(po, f,m). The hypothesis
corresponding to the statistic λ1 in Theorem 7.8 is rejected, approximately at
significance level α, if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α.

(iv) Let λ3o be the observed value of λ3, given by (7.84) and used in the expression
of the likelihood ratio test in Theorem 7.16. Put

to = 2
n
(f − 1

2 (po − m + 1)) ln λ3o,

where f = n − r(C) − p + r(A), po = r(˜A) − r(A1 : A2) and m = r(C2) −
r(C3). Moreover, let c1 = c1(po, f,m) and c2 = c2(po, f,m). The hypothesis
corresponding to the statistic λ2 in Theorem 7.8 is rejected, approximately at
significance level α, if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α.

7.12 Estimating and Testing in the BRM with
F 1BG1 = F 2�G2

In this section, a new way of formulating restrictions is presented. However, it can
be worth noting that most of the mathematical treatment is not presented. The reader
who has understood the previous sections is supposed to be able to fill in the gaps,
and one may regard this section as a kind of follow-up section. The restrictions for
the BRM with the mean E[X] = ABC are in this section assumed to satisfy

F 1BG1 = F 2�G2, (7.90)

where F i and Gi , i = 1, 2, are known matrices, and � and B unknown parameters.
The purpose is to estimate the parameters in (7.90) and test (7.90) against B

unstructured. It is natural to consider (7.90) as a system of linear equations
whose solution is generated by free parameters (i.e. a reparametrization will take
place), and then use knowledge about the EBRM3

B . However, before a detailed
presentation and discussion are provided, an explanatory and illustrative example is
given.
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Example 7.12 Suppose that there are two samples of different types of plants where
a linear growth over time is observed by following each plant at the same time
points, i.e.

E[Xijk] = αi + βitj , k = 1, 2, . . . , ni .

However, if αi is proportional to another factor (let us say the temperature), then

αi = θ tempi , i = 1, 2,

for some unknown θ . Thus, the following mean structure emerges:

E[Xijk] = θ tempi + βitj , i = 1, 2; j = 1, 2, . . . , p; k = 1, 2, . . . , ni .

In matrix notation the model can be written as follows:

E[X] = ABC + E, E ∼ Np,n(0,�, I ),

B =
(

α1 α2

β1 β2

)

,

A′ =
(

1 1 . . . 1
t1 t2 . . . tp

)

, C =
(

1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1

)

,

F 1 = (1 : 0), G2 = (temp1 : temp2),

where F 1B = θG2.
If instead of two groups, there are three groups, two of which only are affected,

then

B =
(

α1 α2 α3

β1 β2 β3

)

, G1 =
⎛

⎝

1 0
0 1
0 0

⎞

⎠ ,

where F 1BG1 = θG2. Moreover, if αi , i = 1, 2, are affected not only by
temperature, but also by the pressure (prei), for example, then F 1BG1 = �G2,
with

� = (θ1 : θ2), G2 =
(

temp1 temp2
pre1 pre2

)

.

��
Now a few theoretical results connected to the restrictions F 1BG1 = F 2�G2 are
derived. From Theorem B.10 (iv) in Appendix B, the general solution to F 1BG1 =
F 2�G2 is given by

� = F−
2 F 1(F

′
1F

o
2 : (F ′

1)
o)oZ3(G1(G

′
2)

o)o
′
G1G

−
2 + (F ′

2)
oZ1 + F ′

2Z2G
o′
2 ,

B = (F ′
1F

o
2 : (F ′

1)
o)oZ3(G1(G

′
2)

o)o
′ + F ′

1F
o
2Z4G

o′
1 + (F ′

1)
oZ5, (7.91)
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where Zi , i = 1, 2, . . . , 6, are arbitrary matrices. These relations inform us that
the restrictions F 1BG1 = F 2�G2 in the BRM lead to an EBRM3

B . Therefore
Theorem 3.2 is at our disposal and the next theorem can be established.

Theorem 7.17 For the BRM presented in Definition 2.1, let F 1BG1 = F 2�G2
hold, where F i and Gi , i = 1, 2, are known and � and B are unknown. Then the
mean can be written as follows:

E[X] = A(F ′
1)

oB1C + A(F ′
1F

o
2 : (F ′

1)
o)oB2(G1(G

′
2)

o)o
′
C + AF ′

1F
o
2B3G

o′
1 C,

where B i , i = 1, 2, 3, are new parameters and the model belongs to the class of
EBRM3

B . The maximum likelihood estimators of the mean parameters are given by

̂� = F −
2 F 1(F

′
1F

o
2 : (F ′

1)
o)ôB2(G1(G

′
2)

o)o
′
G1G

−
2 + (F ′

2)
oZ1 + F ′

2Z2G
o′
2 ,

̂B = (F ′
1)

o
̂B1 + (F ′

1F
o
2 : (F ′

1)
o)ôB2(G1(G

′
2)

o)o
′ + F ′

1F
o
2
̂B3G

o′
1 ,

where ̂B i , i = 1, 2, 3, follow from Theorem 3.2 and Zi , i = 1, 2, are arbitrary
matrices.

Theorem 7.18 For the BRM presented in Definition 2.1, let F 1BG1 = F 2�G2
hold, where F i and Gi , i = 1, 2, are known and � and B unknown. Let the mean
structure be as in Theorem 7.17. Then

(i) ̂B3 is unique if and only if

C(AF ′
1F

o
2) ∩ C(A(F ′

1F
o
2)

o) = {0}

and AF ′
1F

o
2 and C′Go

1 are of full rank;
(ii) ̂B2 is unique if and only if

C(A(F ′
1)

o) ∩ C(A(F ′
1F

o
2 : (F ′

1)
o)o) = {0},

C(A(F ′
1)

o)⊥ ∩ C(A(F ′
1F

o
2)

o) ∩ C(A(F ′
1F

o
2 : (F ′

1)
o)) = {0}

and A((F ′
1)

o : F ′
1F

o
2)

o and C′(G1(G
′
2)

o)o are of full rank;
(iii) ̂B1 is unique if and only if

C(A(F ′
1)

o) ∩ C(A(F ′
1F

o
2 : (F ′

1)
o)o) = {0},

C(A(F ′
1F

o
2 : (F ′

1)
o)))⊥ ∩ C(A(F ′

1F
o
2)

o) ∩ C(AF ′
1) = {0},

r(C) = k and A(F ′
1)

o is of full rank;
put H = (F ′

1F
o
2 : (F ′

1)
o);

(iv) ̂� is unique if and only if

C(F ′
1F 2) ⊆ C(H ) � C(A′) ∩ C(H )⊥,
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and both F 2 and G2 are of full rank, i.e. Zi , i = 1, 2, in ̂� in Theorem 7.17
disappear;

(v) ̂B is unique if and only if

C(F ′
1)

⊥ ∩ C(A′)⊥ = {0}, C(F 1H
o) ∩ C(F 1(A

′)o) = {0},
C(F ′

1F
o
2) ⊆ C(A′), r(C) = k.

Finally, the BRM with the restrictions F 1BG1 = F 2�G2 is tested against
unrestricted BRM . The goal is to utilize Sect. 7.11, where in general an EBRM3

B

was tested against a BRM .
From Theorem 7.17, it follows that Ai and C i in the EBRM3

B are given by

A1 = A(F ′
1)

o, C1 = C,

A2 = A(F ′
1F

o
2 : (F ′

1)
o)o, C2 = (G1(G

′
2)

o)o
′
C,

A3 = AF ′
1F

o
2, C3 = Go′

1 C.

Now two important observations can be made based on these relations: C(C′
1) =

C(C′) and C(A1 : A2 : A3) = C(A). Therefore, the testing problem in Sect. 7.11
can be simplified, and only λ2 and λ3 in Proposition 7.8 (iii) and (iv) have to be
considered. It follows that the likelihood ratio test for testing (7.90) against an
arbitrary B is equivalent to (see (7.80))

λ
2
n = |̂�H0 |

|̂�H1 |
= |̂S3 + ̂Q

′
3
̂Q

′
2
̂Q

′
1XPC ′

3
X′

̂Q1
̂Q2

̂Q3|
|S + P ′

Ao,S−1XPC ′X′P Ao,S−1 | , (7.92)

where ̂Q
′
3
̂Q

′
2
̂Q

′
1 = P ′

Ao,S−1
3

and

̂S3 = ̂S2 + P ′
(A1:A2)o,̂S

−1
2

X(P C ′
2
− P C ′

3
)X′P

(A1:A2)o,̂S
−1
2

,

̂S2 = S + P ′
Ao

1,S−1X(P C ′
1
− P C ′

2
)X′P Ao

1,S
−1,

S = X(I − P C ′)X′.

Moreover,

λ = λ1λ2,

where

λ

2
n
1 =

|̂S2 + P ′
Ao,̂S−1

2
XP C ′

2
X′P

Ao,̂S−1
2

|
|S + P ′

Ao,S−1XP C ′X′PAo,S−1 | , (7.93)
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λ

2
n
2 =

|̂S3 + P
Ao,̂S−1

3
XP C ′

3
X′P

Ao,̂S−1
3

|
|̂S2 + P ′

Ao,̂S−1
2

XP C ′
2
X′P

Ao,̂S−1
2

| , (7.94)

leading to the next theorem.

Theorem 7.19 For the BRM presented in Definition 2.1, let F 1BG1 = F 2�G2
hold, where F i and Gi , i = 1, 2, are known and � and B are unknown. Then the
following statements can be made.

(i) Let λ1o be the observed value of λ1, given by (7.93) and used in the factorization
of the likelihood ratio test, presented in (7.92). Put

to = 2
n
(f − 1

2 (po − m + 1)) ln λ1o,

where f = n − r(C) − p + r(A), po = r(A) − r(A(F ′
1)

o) and m = r(C) −
r(C2). Moreover, let c1 = c1(po, f,m) and c2 = c2(po, f,m) be defined in
Proposition 7.8. The hypothesis corresponding to the statistic λ1 is rejected,
approximately at significance level α, if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α.

(ii) Let λ2o be the observed value For λ2, given by (7.94) and used in the
factorization of the likelihood ratio test, presented in (7.92). Put

to = 2
n
(f − 1

2 (po − m + 1)) ln λ2o,

where f = n − r(C) − p + r(A), po = r(A) − r(A(F ′
1F

o
2)

o) and m =
r(C2) − r(C3). Moreover, let c1 = c1(po, f,m) and c2 = c2(po, f,m) be
defined in Proposition 7.8. The hypothesis corresponding to the statistic λ2 is
rejected, approximately at significance level α, if to satisfies

P {χ2
pom

≥ to} + c1(1 − c1)(P {χ2
pom+4 ≥ to} − P {χ2

pom
≥ to})

+ c2(P {χ2
pom+8 ≥ to} − P {χ2

pom
≥ to}) ≤ α.

Problems

1 In the Potthoff and Roy (1964) data set presented in Table 1.2, remove the out-
lying individuals and perform significance tests to answer the following questions.
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(i) Do the observations follow a linear growth model? (ii) Do the boys and the girls
follow the same growth model?

2 In the Potthoff and Roy (1964) data set presented in Table 1.2, replace the
outlying observations by trustworthy observations and perform significance tests
to answer the following questions. (i) Do the observations follow a linear growth
model? (ii) Do the boys and the girls follow the same growth model?

3 Construct a test, based on the likelihood ratio, for testing whether a GMANOVA +
MANOVA model is a GMANOVA model (suppose an arbitrary dispersion matrix).

4 Construct a test, based on the likelihood ratio, for testing whether a GMANOVA
+ MANOVA model is a GMANOVA model if � = σ 2I , where σ 2 is unknown (Bai,
2009).

5 Copy Example 7.3, but choose some parameters B i , i = 1, 2, 3, and � other than
those used in the example.

6 Why are V 1 and U1, given by (7.61) and (7.62), respectively, independently
distributed? Give a detailed explanation.

7 Perform the same tests as those described in Example 7.10, but remove individu-
als which are deemed to be outliers. Explain your choice of outliers for removal.

8 For the EBRM3
B , construct a test for testing F 1B1G1 = F 2B2G2 in an

EBRM3
B with the mean E[X] = A1B1C1 + A2B2C2 + A3B3C3.

9 Prove at least two of the statements in Theorem 7.18.

10 Prove Theorem 7.19.

Literature

According to Cox and Hinkley (1974, p. 82), testing hypotheses have been
performed for more than 200 years. A relatively deep discussion of significance
testing was provided by Cox (1977), with insightful comments made by E. Spjøtvoll,
S. Johansen, J.F. Bithell, W.R. van Zwet, O. Barndorff-Nielsen and M. Keuls. By
the end of the nineteenth century, one was focusing on the problem of whether
data fitted a specific distribution (followed a specific frequency curve), and Pearson
(1900) (see also Plakett, 1983) came up with the chi-square test. Nowadays this test
is also termed a goodness-of-fit test and it is a test which is carried out without an
alternative hypothesis. Student (1908) derived the t-distribution in order to evaluate
a mean in small samples, when the variation was estimated, which later became
known as the t-test (see also Fisher, 1925, 1939). Over many years (1912–1922,
approximately, see Aldrich, 1997), Fisher developed the likelihood theory, and
this work culminated in the remarkable article, Fisher (1922), where many basic
inferential concepts were introduced, including sufficiency (see also Fisher, 1920;
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Stigler, 1973). A few years later in another seminal work, Neyman and Pearson
(1928a,b) started to consider statistical testing through a null hypothesis and an
alternative hypothesis (see also Neyman and Pearson (1933), where a complete
theory was presented). Inspired by Fisher, Neyman and Pearson (1928a) proposed
to use the ratio of the likelihood corresponding to the null hypothesis and the
likelihood corresponding to the alternative hypothesis. Neyman and Pearson (1933)
also considered Student’s result and showed, under Student’s assumptions, that the
likelihood ratio test was equivalent to the t-test. The links between Fisher, Neyman
and Pearson and Wald (1939), who replaced the power function by the loss function
and created decision theory, are very interesting to study, but outside the scope of
this book.

At the beginning of the 1930s, the Wishart distribution was available and
Hotelling (1931) derived a multivariate version of the t-distribution. Therefore,
it was natural that one started to work on multivariate testing problems. Wilks
(1932) was successful when using the likelihood ratio test of Neyman and Pearson
(1928a,b) together with the multivariate normal distribution. The Wilks statistic
(Wilks, 1935) was quickly adopted by the statistical community and, among others,
Bartlett (1934) and Hotelling (1936) used it (see also Bartlett, 1939). Rao (1948)
gave an important overview of multivariate testing problems in various areas and in
particular in discriminant analysis.

After Neyman and Pearson had formalized the testing of hypotheses, statistics
could be used as a tool for decision making, which was not uncontroversial.
From the 1950s onwards, testing in multivariate analysis became more common.
Anderson (1951) studied multivariate problems which were not direct extensions
of univariate problems, for example rank restrictions on parameters (today the term
“reduced rank regression” is in use). For example, if there are three parameters, the
hypothesis might be that the parameters follow a line instead of varying freely. In his
article from 1951, Anderson applied the likelihood ratio test. S.N. Roy had for many
years been working on the problem of composite hypothesis when he (Roy, 1953)
introduced the union intersection procedure. This testing procedure has often been
applied in multivariate analysis. Less known is the intersection union procedure.
Lehmann (1952) introduced this procedure, but for multivariate testing problems,
many open questions remain (e.g. see Berger and Sinclair, 1984; Berger, 1997).
Moreover, in one of the first books on multivariate analysis, written by Roy (1957),
the MANOVA model was treated together with a bilinear null hypothesis, i.e. H0:
FBG = 0, where F and G are known matrices and B is the parameter matrix.
The alternative hypothesis was that B is unrestricted. It is interesting that a precise
likelihood ratio test could be carried out without estimating the parameters under
the null hypothesis.

Khatri (1966) was the first to present the maximum likelihood estimators for
the BRM . Moreover, in Khatri’s article from 1966, the likelihood ratio test for
testing H0: FBG = 0 in the BRM was derived, and some alternative types of
test statistics were proposed (see also Pillai, 1955; Troskie, 1971). Among the
tests which were obtained was one based on the union intersection procedure. All
the derived test statistics are functions of eigenvalues of specific sums of squares
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matrices. However, there are some difficult results which are not easy to apply,
for example exact non-null distributions for the likelihood ratio test statistic for
testing H0: FBG = 0 (see Kabe (1975a) who followed Gleser and Olkin (1970),
Nagarsenker (1977), Kabe (1986), Tang and Gupta (1986)). Asymptotic expansions
of the non-null distributions of the statistics considered by Khatri (1966) were
discussed by Fujikoshi (1973a,b, 1974a,b,c). A review of various test statistics,
including the above-mentioned ones, was presented by De Waal (1976). In addition
to the literature discussing the likelihood ratio testing in the BRM , there exists
quite a large volume of literature connected to the test statistic Wilks �, its
density under the null hypothesis, and its alternative hypothesis (see, for example,
Gupta 1971; Hart and Money, 1975, 1976; Gupta and Nagar, 2000; Bekker et al.,
2011). Moreover, connected to the Wilks � test statistic are beta distributions and
multivariate beta distributions (see Appendix C in this book), as well as extensions
of these distributions (newer references are Nadarajah, 2005; Pham-Gia, 2008).

For the performance of multivariate analysis and, of course, for the application of
the BRM and its extensions, simultaneous test procedures are of interest and results
have been presented by Krishnaiah (1969, 1975). Newer works, however, mostly
consider simultaneous confidence intervals for multiple comparisons (e.g. see Seo
and Kanda, 1996). An interesting area of application for growth curve analysis and
testing is profile analysis (see Srivastava, 1987; Ohlson and Srivastava, 2010; Seo
et al., 2011).

Concerning information about testing in the BRM or EBRMk• , an outstanding
work from a theoretical point of view is a monograph by Kariya (1985). This
monograph includes theory about the statistical tests in these models which is based
on a discussion of a joint application of sufficiency and invariance. The basic ideas
go back to Gleser and Olkin (1970) and Kariya (1978) (see also Giri and Das,
1988), which in turn relied on older material. The following steps for testing in the
BRM were presented by Kariya (1985) (see also Muirhead, 1982, pp. 520–525):
(i) consider a “natural” sufficient statistic; (ii) find the largest group which leaves
the testing problem invariant; (iii) choose a convenient maximal invariant under the
group found; (iv) derive the distribution of the maximal invariant; (v) derive the
uniform most powerful invariant test or locally best invariant test, etc.; (vi) derive
an approximate distribution of the test statistic under the null hypothesis. Gleser and
Olkin (1970) reduced the BRM to its canonical form (inspired by Hsu, 1941). Then
it is easy to identify the sufficient statistic, i.e. a canonical version of (XC′(CC′)−,
S) and show that the statistic is not complete. Using the group considered by Gleser
and Olkin (1970), Banken (1984) presented an explicit expression of the maximal
invariant. Moreover, Kariya (1978) studied a larger group (see also Muirhead, 1982,
p. 524) than that studied by Gleser and Olkin (1970), and this larger group was
shown by Banken (1986) to be the largest group which leaves the testing problem
invariant. In Kariya (1985), locally most powerful invariant tests were presented.
A most interesting and advanced article is that by Andersson et al. (1993), where
mathematically bilinear regression models were described via the general block-
triangular group and invariance. The authors mentioned that the models belonged to
the class of the so-called totally ordered linear models (nested models) which they
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introduced. Andersson et al. (1993) presented some results concerning likelihood
ratio testing, but their main focus was directed on estimation. However, it is quite
clear that through factorization of the likelihood various types of likelihood ratio
test could have been produced. For a few examples of likelihood ratio tests, see
Fujikoshi et al. (1999).

In this chapter, it is assumed that the random variables corresponding to the
observations are normally distributed. However, test statistics are often true under
broader classes of distributions; for example in addition to the normal distribution,
tests can also be valid for heavy-tailed distributions. If a test statistic can be
used for other distributions than the normal distribution, the test is deemed to be
robust. Results for the BRM can be found in Kariya and Sinha (1985, 1989),
who considered the locally best invariant tests which Kariya (1978) had obtained;
see also Khatri (1988) as well as Giri and Das (1988), where an EBRMm• was
considered (we also refer to Yanagihara, 2001, 2007).

Kabe (1975b) considered the test H0: F 1BG1 = 0, given F 2BG2 = 0, without
any nested subspace condition, for example C(F ′

1) ⊆ C(F ′
1), as in Sect. 7.4 (see

also Kabe, 1981; Giri and Das, 1988). This means that Kabe’s test cannot be a
likelihood ratio test. In Sects. 7.8 and 7.9, a so-called trace test was presented for
some of the testing problems treated previously via the likelihood ratio. Originally
the trace test was introduced by Hamid et al. (2011). A problem with this test is the
approximation of its distribution, which is a weighted sum of chi-square variables
which are not necessarily independently distributed. This is an old problem; see for
example, Kotz et al. (1967a,b), Solomon and Stephens (1977), Gabler and Wolff
(1987) or Castaño-Martínez and López-Blázquez (2005), which is a more recently
published article.

In this chapter, it has often been emphasized that one should distinguish between
the observations of a random variable and the random variable (statistic) itself. In the
theory presented, the mathematics sometimes consists of replacing random variables
by observations and vice versa. However, there are several articles which provide
expressions which combine random variables with their corresponding observed
realizations for the purpose of handling nuisance parameters when one is performing
hypothesis testing and predictions. For example, the concept of generalized p-
values has been introduced (see e.g. Tsui and Weerahandi, 1989; Weerahandi, 2004;
Nkurunziza and Chen, 2011; Mathew et al., 2016).
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Chapter 8
Influential Observations

8.1 Introduction

Via experiments or observational studies, statistical samples are obtained. Ideally all
the observations of a sample should contribute equally to the statistics of interest.
However, it is a common knowledge among statisticians that this is not usually
the case, and some observations are definitely more “influential” than others when,
for example, one is calculating an estimate or performing a statistical test. If the
significance of a statistical test stems from a few observations, this is usually not
satisfactory. Thus, over the years, methodologies have emerged for quantifying
observations to make it possible to rank them with respect to their influence.

One basic problem is that there is no general agreement as to what an influential
observation is; i.e. there is no commonly accepted definition of an influence
measure. This is, of course, not so remarkable since different aspects are considered
in different studies, and the choice of aspects to be focused on depends on the
aims of the study. Alternatively, if one is concerned about the possibility that
some observations may spoil the inference, one should perhaps apply some robust
approach as a complement to the main approach, or sometimes one’s main approach
should be to apply a robust method. However, using robust methods by default
may, for certain problems, lead to important information being hidden. Moreover,
influential observations may be deviating observations, and it is always appropriate
to identify deviating observations to determine the reason for their deviation, as well
as to understand why they become influential.

There are at least three possible reasons why observations become influential; (1)
gross errors due to data processing; (2) by chance the observations are connected to
the tail of the corresponding distribution; (3) the statistical model does not fit the
data and therefore some observations become influential. Covering all the possible
cases with one analysis seems impossible.

Thus, one of the main issues is to decide what we mean by “influential
observations”. The first step in accomplishing this is to determine the statistic of
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interest, which, for example, can be an estimate, a test, a predicted observation or,
in general, some function of a statistic. A traditional method of handling influential
observations has been to define them via case deletion; i.e. observations are deleted
one by one. Applying this method, outlying observations are mainly considered
and, according to some measure, one investigates which observation has the greatest
impact, for example on a specific estimate. The observation with the greatest impact
is deemed to be the most influential observation. However, this is not the only way
of dealing with influence and sometimes case deletion does not provide enough
information. In the literature, the most commonly applied alternative approaches are
based on some perturbation of the observations or design variables and a subsequent
study of the effect of the perturbation. An extreme action based on perturbation is
to remove an observation from the analysis. In our opinion, one should remove
an observation if it is not trustworthy, but keep the observation if it seems to be
in the tail of a distribution. Thus, it seems beneficial not to base an influence
measure on the deletion of observations. There are also other possible reasons for an
observation becoming influential and some will appear later. Moreover, observations
are realizations of random processes and, therefore, the exact value of the realization
of a continuous random variable is rather artificial. Hence, it can be advantageous to
utilize the observation in some analysis after a perturbation has taken place and
study the effect of the perturbation. In this chapter the approach of perturbing
observations is implemented. It is worth reflecting on whether the observations
should support the model or the model should fit the observations.

Usually statistical analysis concerns models and methods for analysing those
models. For example, we may have a linear model where the parameters are
estimated through the least squares criterion or the likelihood function. It is
definitely important to understand how single observations affect a statistic. On the
other hand, as noted above, if we are afraid that there are many observations which
may have a strong effect, an alternative robust estimation method can be used. We
now formalize the perturbation analysis to a higher degree and note that it consists
of two main ingredients:

• a perturbation scheme;
• one or several evaluation criteria.

Comparing the perturbation scheme with the design of an experiment, one can state
that while the design of an experiment governs the performance of the experiment
and the analysis of the data, the perturbation scheme governs the evaluation of the
analysis after it has been carried out. Depending on the choice of scheme, we can
draw different types of conclusions about the performed analysis. In addition to
creating a perturbation scheme, it may also be appropriate to put certain restrictions
on the perturbations. For example, if parameters can be explicitly estimated without
a perturbation, one should naturally use a perturbation scheme which guarantees
that explicit estimates are also obtained after a perturbation has been applied. In
perturbation analysis within mixed linear models, this type of restriction makes
sense.
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Concerning the second main ingredient of the perturbation analysis, there are
several ways to evaluate a perturbation. Below we consider an estimate to be a
function of one or several perturbed observations. A function where the argument
includes perturbed observations is naturally exploited by a Taylor series expansion
with respect to the perturbation, but, of course, there are also alternative methods
which are not based on a Taylor series expansion. Previously, in Chap. 5, density
approximations were used which, in fact, were based on a Taylor series expansion of
the cumulant generating function, and when performing Taylor series expansions in
this chapter, the same techniques can be applied. Therefore, the proposed influence
analysis is based on the terms in the Taylor series expansion. Moreover, it can be
noted that all the terms can be obtained through differentiation.

Next the perturbations used in this chapter are described further and the purpose
of the perturbation scheme is explained. Perturbation schemes provide a scientific
basis for the exploitation and analysis of data.

Definition 8.1 Let � be a space which includes all the perturbations of a certain
type, i.e. {ωi}, together with an algorithm which governs how {ωi} is applied to the
model. Moreover, let̂θ({ωi}) denote an estimate of θ , a parameter in the statistical
model, under a set of perturbations {ωi}. Then � is a perturbation scheme if there
is a null perturbation, {ω0} ⊆ {ωi}, such that ̂θ({ω0}) equals ̂θ in the unperturbed
model.

Note that in the definition the estimate can be replaced by a test statistic or any other
statistic of interest.

In the following, instead of {ωi}, the vector notation ω will be used, because the
latter alternative is more suitable for showing which calculations are taking place.
The definition is slightly academic, but via the null perturbation the perturbation
scheme can be evaluated, e.g. as mentioned above via a Taylor series expansion.

Sometimes it is appropriate to stipulate more conditions in addition to the
mere existence of a null perturbation. For example, one possible condition is that
̂θ(ω) should be differentiable with respect to ω, or that a perturbation ω1 exists
such that ̂θ(ω1) equals ̂θ , but now the estimate is calculated via a subset of all
the observations. In the next section, these ideas are illustrated. Note that in this
chapter we do not distinguish between random variables and their corresponding
observations (because of the notational burden that would be involved). The golden
rule, however, is that only observed values are perturbed.

8.2 Influence Analysis in Univariate Linear Models

Let us recall the univariate linear model introduced in Example 1.1:

x′ = β ′C + e′, e ∼ Nn(0, σ 2In), (8.1)
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where x : n × 1, C : k × n and β : k × 1 is to be estimated. Moreover, σ 2 is
an unknown scalar and the model states that we have n independent observations.
There exist several ways to make alterations in the assumptions. In this section and
the following sections, we study the following three choices of perturbation of some
elements in x, C, and both x and C together. All of these perturbations are based on
a perturbation, ω, which in this book is usually a scalar ω.

Definition 8.2 For the model in (8.1) the following perturbations can take place.

(i) Let z = x + ωv, where v is a known vector to be specified in advance.
(ii) Let G = C + ωV , where V is a known matrix to be specified in advance.

(iii) Let x′ consist of {x′
0,

√
ωx′

i} and let C consist of {C0,
√

ωC′
i}, where xi and Ci

are subsets of perturbed elements of x and corresponding perturbed columns
of C, respectively, and x0 and C0 are unperturbed elements and columns of x

and C, respectively.

In the alternatives of Definition 8.2 it is easy to identify particular actions which
take place and are part of the algorithm mentioned in Definition 8.1, i.e. addition
or square root multiplication by ω. However, Definition 8.2 (i)–(iii) do not specify
completely the perturbation scheme, because as yet no complete algorithm has been
presented. One choice of algorithm in the case of Perturbation (iii), for example,
would involve this perturbation taking place for each independent observation,
after which an estimate would be delivered which would include the perturbed
observation. Furthermore, note that Perturbations (i) and (ii) have fairly natural
interpretations. In Perturbation (i), we study the impact of changing the observation,
i.e. adding some (small) quantity to x, and it is easy to interpret the results. Since
x is a realization of a random variable, it is important to determine whether small
changes in x will affect the statistic under consideration. In Perturbation (ii), we
have changed the design, which is useful when, for example, one is planning new
experiments. Perturbation (ii) can also be used if the values in C are not exact, for
instance to follow-up the effect of round-off errors. Moreover, in Perturbations (i)
and (ii), we use an additive perturbation, whereas in Perturbation (iii) some rescaling
is performed, meaning that the variation is perturbed. Thus, Perturbations (i)–(iii)
deal with various types of influence. When performing maximum likelihood esti-
mation and individual perturbations, all three perturbations satisfy Definition 8.1.
In Perturbations (i) and (ii), ω0 = 0, whereas in Perturbation (iii), ω0 = 1. Note
also that in Perturbation (iii), ω = 0 means that observations are excluded from the
analysis.

Let ̂β, ̂βz(ω) ̂βG(ω) and ̂βx0
(ω) denote the maximum likelihood estimates of β,

where unperturbed observations have been used, as well as perturbed observations
according to Perturbations (i)–(iii), respectively. Then, under full rank conditions,

(i) ̂β
′ = x′C′(CC′)−1; (8.2)

(ii) ̂β
′
z(ω) = ̂β

′ + ωv′C′(CC ′)−1; (8.3)
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(iii) ̂β
′
G(ω) = x′G′(GG′)−1 = (x′C′ + ωx′V ′)(GG′)−1; (8.4)

(iv) ̂β
′
x0

(ω) = (x′
0C

′
0 + ωx′

iC
′
i )(C0C

′
0 + ωCiC

′
i )

−1. (8.5)

Thus, it follows that ̂β = ̂βz(0) = ̂βG(0) = ̂βx0
(1) and it has been demonstrated

that for each of the perturbations, according to Definition 8.1, besides the algorithm,
a perturbation scheme has been constructed. In the next step the perturbation scheme
is completed by specifying v, V , x0, xi , C0 and Ci , and we will keep in mind that
each individual will be perturbed separately. For example,

• v = ei , where ei is the unit basis vector of size n;
• V = (0 : 1k : 0), where 1k stands on the ith position;
• x0 is identical to x, except for the ith element, which has been removed;
• xi is the ith element, i.e. xi = xi , where x = (xi);
• C0 is identical to C, except for the ith column, which has been removed;
• Ci is the ith column, i.e. Ci = ci , where C = (ci ).

Now the effects of all the perturbations in Definition 8.2 are investigated, one by
one. The overall objective to keep in mind is that we are to determine whether there
is any particular observation which in a pronounced way is more influential than the
other observations.

With regard to Perturbation (i), it follows from (8.3) and the particular choice
of V that the perturbation effect is linear and that it is largest when e′

iC
′ = c′

i is
“largest”, where ci is the ith column of C, which corresponds to the ith observation.
Note that in the case of Perturbation (i), even if x is perturbed, we are only concerned
with the design and not with what has been observed. Therefore, the remaining task
is to compare the columns ci . This can be performed in many ways, for example
by comparing c′

ici or c′
i (CC′)−1ci . However, from a statistical point of view, it is

more appropriate to consider c′
i (CC ′)−1ci , since, among other things, it is invariant

under non-singular linear transformations. From (8.1),

x′ = β ′T −1T C + e′, e ∼ Nn(0, σ 2In),

where T is non-singular and which bears the same information as the model in (8.1).
Moreover, it should be immaterial whether one studies β ′T −1 or β, which means
that the result of any influence analysis should be the same whether it is based on C

or T C. Fortunately,

c′
i (CC′)−1ci = c′

iT
′(T CC′T ′)−1T ci . (8.6)

The expression c′
i (CC′)−1ci is usually called the leverage and is considered to be a

measure of how single independent observations differ, due to their design, from the
rest of the independent “observations”. This also means that the leverage measures
the design variation, which fits perfectly into a discussion of influential observations;
i.e. a large design variation yields a large influence.
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Now Perturbation (ii) in Definition 8.2 is studied. The maximum likelihood
estimate under this perturbation is given in (8.4). In order to perform a Taylor series
expansion (using only a few terms) around ω = 0, it is noted that (see Appendix B,
Theorem B.6 (iv))

(GG′)−1 = (CC ′)−1 − ω(CC ′)−1(V C′ + CV ′)(CC′)−1

+ω2{((CC′)−1(V C ′ + CV ′))2(CC′)−1 − (CC ′)−1V V ′(CC ′)−1} + O(ω3)

and, using this result,

̂β
′
G(ω) = ̂β

′ − ω(̂β
′
(V C′ + CV ′)(CC′)−1 − x′V ′(CC′)−1)

+ ω2{
̂β

′
((V C′ + CV ′)(CC′)−1)2

−̂β
′
V V ′(CC′)−1 − x ′V ′(CC′)−1(V C′ + CV ′)(CC′)−1} + O(ω3).

When studying influence, it appears from this expression that there are two terms of
interest which correspond to ω and ω2, respectively:

̂β
′
(V C′ + CV ′)(CC ′)−1 − x′V ′(CC′)−1, (8.7)

̂β
′
((V C ′ + CV ′)(CC ′)−1)2 −̂β

′
V V ′(CC ′)−1 − x′V ′(CC′)−1(V C ′ + CV ′)(CC ′)−1.

(8.8)

It now makes sense to use the definition V = (0 : 1k : 0) and then (8.7) equals

(̂β
′
1kc

′
i − (xi −̂β

′
ci )1′

k)(CC′)−1,

where, in fact,

ri = xi −̂β
′
ci

is the usual residual, i.e. the difference between the observation and the corre-
sponding predicted value. Thus, large residuals indicate that the observations are
influential. To evaluate (8.7), the expression is squared relative to CC′, i.e. one
obtains

(̂β
′
1kc

′
i − ri1′

k)(CC ′)−1(̂β
′
1kc

′
i − ri1′

k)
′, (8.9)

which can be rewritten as

c′
i (CC′)−1ci

̂β
′
1k1′

k
̂β + r2

i 1
′
k(CC′)−11k − 2ric

′
i (CC′)−11k1′

k
̂β.

Hence, once again, it seems that the leverage and the residual play a role, but
c′
i (CC′)−11k also plays a role. We can conclude that an observation can be
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influential if both the residual and the leverage are “large”, but it can also be
influential if the residual is “small” and the leverage “large”, if the residual is “large”
and the leverage “small”, or if the difference between ̂β

′
1kc

′
i and ri1′

k is “large”.
The second term of interest above, (8.8), can be written as follows:

(̂β
′
1kc

′
i − ri1′

k)(CC′)−1(1kc
′
i + ci1′

k)(CC ′)−1 −̂β
′
1k1′

k(CC′)−1.

Thus, the information concerning influential observations provided by (8.7) and that
provided by (8.8) differ somewhat; i.e. the terms in the Taylor series expansion bear
different information, but this will not be exploited further.

Finally, we turn our attention to Perturbation (iii) in Definition 8.2. After some
manipulations and applications of Theorem B.6 (iv) in Appendix B the Taylor series
expansion with respect to ω can be written as

̂β
′
x0

(ω) = (x′
0C

′
0 + ωx′

iC
′
i )(C0C

′
0 + ωCiC

′
i )

−1

= x′
0C

′
0(C0C

′
0)

−1 +
∞
∑

j=1

(−1)j+1ωj (x′
i − x′

0C
′
0(C0C

′
0)

−1Ci )

×D
j−1
i C′

i (C0C
′
0)

−1, (8.10)

where Di = C′
i (C0C

′
0)

−1Ci . Moreover, when we define the “residual” r i = x′
i −

x′
0C

′
0(C0C

′
0)

−1Ci , we can thereby see that the terms in the expansion are linear
in the residual and include powers of a quantity which, if Ci is a column vector,
is similar to the leverage, i.e. c′

i (CC′)−1ci . From (8.10), it follows that a general
influence measure is given by

r ′
iD

j−1
i C′

i (C0C
′
0)

−1CiD
j−1
i r i = r ′

iD
2j−1
i r i , j = 1, 2, . . .

which, if only one column is perturbed, reduces to (note that Di is a scalar)

r2
i D

j−1
i c′

i (C0C
′
0)

−1ciD
j−1
i = r2

i D
2j−1
i , j = 1, 2, . . . . (8.11)

Thus, it is seen from (8.11) that the residual effect is the same for all j , although
D

2j−1
i will either increase or decrease with j depending on whether c′

i (C0C
′
0)

−1ci

is larger or smaller than 1. Hence, it is natural to know if c′
i (C0C

′
0)

−1ci < 1.
For the three different perturbations in Definition 8.2 and the general univariate

linear model discussed above, both residuals and “leverages” play an important role,
and in Perturbation (ii), another quantity also has an impact on the estimate. If the
linear effect is studied, then the focus will be on the term corresponding to ω, if
the second-order effect is of interest, then the term corresponding to ω2 is in focus,
etc. In influence analysis, usually one is only considering the linear term, but the
fact is that there is no well-founded justification for this strategy. Indeed, later,
when considering the BRM , it will be shown that even the fifth term bears some
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information. There is, however, the general unanswered question of how many terms
are meaningful to investigate or, in other words, how much information about the
estimator, for example, we are losing by only considering a few terms in a Taylor
series expansion.

It is important to stress that the basic idea when using the three different
perturbation schemes is to make a recalculation for the elements in x; i.e. if there are
n observations, the calculations have to be repeated at least n times. This means, for
example, that in Perturbations (i) and (ii), V has to be changed for each observation,
for each pair of observations, for each triple of observations, etc. Perturbing more
than one observation may be meaningful if a so-called masking effect exists, i.e. if
the perturbation of one observation gives no indication of the existence of any
influential observation, but the perturbation of two or more observations suddenly
gives indications of strong influential observations. A crucial recommendation when
developing influence analysis is that one should aim for methods which do not
demand a large number of computations. For example, if there is a need to carry out
iterations for each individual, each pair of individuals, etc. performing computations
and understanding them could start to become a burden. Keeping this in mind, it is
a challenge to perform influence analysis (model validation) in more complicated
models.

Example 8.1 Twenty observations were generated according to the regression
model

x′ = β ′C + e′, (8.12)

where β ′ = (0.78, 0.14), C = (ci ), ci = (1
i

)

, i = 1, 2, . . . , 20, and e ∼
N20(0, 0.01I20). Moreover, x was contaminated as follows: for i = 3, 7, 19, we
had x3 = 3.2, x7 = 4.0 and x19 = 5.0, leading to the data set in Table 8.1, whose
observations are also plotted in Fig. 8.1. This example should be regarded as an
appetizer and there is no ambition to present a complete analysis.

In Fig. 8.1, it can be seen how the contaminated observations show up, and indeed
are rather extreme observations. From this figure, it follows that those observations
which have a relatively “large” residual should have an effect on the intercept, but
should not have any effect on the slope.

Next we study how the perturbations in Definition 8.2 identify the manipulated
observations. Starting with Perturbation (i) in Definition 8.2, it has been shown that

Table 8.1 Data x = (xi ) generated according to (8.12); observation x3, x7 and x19 have been
manipulated

1 2 3 4 5 6 7 8 9 10

xi 1.10 1.05 3.20 1.23 1.70 1.56 4.00 1.89 1.98 2.18

11 12 13 14 15 16 17 18 19 20

xi 2.25 2.43 2.67 2.66 2.81 2.94 3.19 3.27 5.00 3.62
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Observation

1

2

3

4

5
R
es
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e

Fig. 8.1 Plot of the data presented in Table 8.1

Table 8.2 The leverage values li = c′
i (CC)−1ci , given in (8.6), are presented for the data in

Table 8.1

1 2 3 4 5 6 7 8 9 10

li 0.19 0.16 0.13 0.11 0.10 0.08 0.07 0.06 0.05 0.05

11 12 13 14 15 16 17 18 19 20

li 0.05 0.05 0.06 0.07 0.08 0.10 0.11 0.13 0.16 0.19

Table 8.3 The evaluation criterion (̂β
′
1kc

′
i − ri1′

k)(CC ′)−1(̂β
′
1kc

′
i − ri1′

k)
′ in (8.9), denoted as

cri , is applied to the data presented in Table 8.1

1 2 3 4 5 6 7 8 9 10

cri 0.51 0.55 0.03 0.47 0.24 0.32 0.27 0.21 0.20 0.16

11 12 13 14 15 16 17 18 19 20

cri 0.16 0.14 0.13 0.15 0.16 0.17 0.20 0.23 0.96 0.34

the natural evaluation criterion is the leverage, given in (8.6). The leverage for each
individual is presented in Table 8.2.

Since the leverage only concerns the design, i.e. C, and no response observations
are involved, it is fairly clear that, in the present analysis, nothing special will show
up, which is also confirmed by Table 8.2.

For the perturbation presented in Definition 8.2 (ii), an evaluation criterion was
proposed in (8.9). In Table 8.3 the results obtained by an application of that criterion
are presented. It can be seen in Table 8.3 that observation i = 19 seems to deviate
from the rest, whereas i = 3, 7 do not deviate. In particular, it is worth noting that
out of all the observations, i = 3 has the lowest influence on the estimates.
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Table 8.4 Results are presented for the evaluation criterion r2
i D2j−1, j = 1, 2, of (8.11), denoted

as p
j
i , applied to the data presented in Table 8.1 (100 × p1

i , 104 × p2
i are presented)

1 2 3 4 5 6 7 8 9 10

p1
i 2.6 5.3 51.7 4.3 0.34 1.9 30.2 0.83 0.88 0.50

p2
i 13.7 19.0 125.1 7.0 0.38 1.5 16.3 0.33 0.28 0.14

11 12 13 14 15 16 17 18 19 20

p1
i 0.73 0.51 0.22 0.79 0.82 0.93 0.30 0.69 54.1 0.19

p2
i 0.21 0.16 0.09 0.42 0.63 1.0 0.50 1.7 192.4 0.97

Table 8.5 For the perturbed linear model x′ = β ′C + e′ in (8.12), with data given in Table 8.1,
̂β = (̂α, ̂β) is presented for the case where the ith observation, i = 1, 2, . . . , 20, has been deleted

1 2 3 4 5 6 7 8 9 10

α̂ 1.32 1.35 0.95 1.34 1.28 1.31 1.04 1.29 1.28 1.27
̂β 0.12 0.12 0.14 0.12 0.12 0.12 0.13 0.12 0.12 0.12

11 12 13 14 15 16 17 18 19 20

α̂ 1.27 1.26 1.26 1.25 1.25 1.24 1.25 1.24 1.40 1.25
̂β 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10 0.12

The true values equal (0.78, 0.14)

Finally, Perturbation (iii) in Definition 8.2 is studied. Now (8.11) is utilized and
in Table 8.4 the results are presented for two terms of the Taylor series expansion
in (8.10). From Table 8.4, it is clear that Perturbation (iii) catches the manipulated
data, which is due to the large residuals.

It is of interest to compare the above results with those for the case deletion
approach. Table 8.5 presents the results obtained when observations have been
deleted, one observation at a time, with a view to studying what happens to ̂β,
i.e. with the estimated intercept and slope considered. From Table 8.5, one can
learn that by removing outlying observations, one does not necessarily improve the
estimates. For example, removing observation i = 19 leads to estimates which are
further away from the truth than the estimates obtained by removing other observa-
tions. Hence, if, in the validation process, one compares the estimates obtained with
the case deletion approach with the estimates based on all the observations, one
may not be making an appropriate comparison. The problems in this connection
basically stem from the fact that a masking effect can occur; i.e. merely removing
one observation at a time is not sufficient to uncover peculiarities. ��

When there are more complicated expressions than unweighted least squares
estimates, it is not obvious how one should discover the existence of any kind
of masking effect. Therefore, in the following, the perturbation approach will be
advocated and, when connecting it with knowledge about matrix derivatives, which
build up the Taylor series expansion, we acquire some powerful tools for validating
the BRM and its extensions.
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8.3 Influence Analysis in the BRM

This section treats the BRM presented in Definition 2.1. There are many different
alternatives which can be explored, for instance the three different perturbations
presented in Definition 8.2 and several types of statistics, for example maximum
likelihood estimates of the mean and dispersion matrices, predicted observations
and likelihood ratio tests for various types of hypotheses. However, first the per-
turbations in Definition 8.2 are reintroduced, now adjusted to fit into a multivariate
scenario.

Definition 8.3 Three different perturbations are defined below. The perturbations
are supposed to be applied for each “individual” separately, i.e. each column of X

in the BRM , and the perturbation scheme can be said to be “case-weighted”.

(i) Let Z = X + ωV , where V is known and has to be specified in advance.
(ii) Let G = C + ωV , where V is known and has to be specified in advance.

(iii) Let X consist of {X′
0,

√
ωX′

i} and let C consist of {C0,
√

ωC′
i}, where Xi

and Ci are subsets of perturbed columns of X and corresponding perturbed
columns of C, respectively, and X0 and C0 are unperturbed columns of X and
C, respectively.

Let us consider the MLE of B in the BRM , i.e.

̂B = (A′S−1A)−1A′S−1XC′(CC′)−1, (8.13)

where S = X(I − P C ′)X′ and under the perturbation, i.e. when Perturbation
(i), (ii) or (iii) holds, instead of ̂B, we write ̂B(ω); throughout this section, to
simplify the derivations, A and C are supposed to be of full rank (see Corollary 3.1).
Perturbation (iii) in Definition 8.3 will be applied first. Perturbations (i) and (ii)
in Definition 8.3 will be treated later, but will not receive as detailed treatment as
Perturbation (iii) will have received. Note that under Perturbation (iii), ̂B(1) = ̂B,
i.e. a null perturbation exists. The effect of the perturbation will be exploited through
the effects on the sufficient statistics

S and XC′(CC′)−1,

and thereafter the effects on the inverse S−1 and on (A′S−1A)−1A′S−1 will be
determined. Since the effects are investigated via a Taylor series, differentiation will
take place and knowledge about the differentiation of a product of matrices and an
inverse matrix will be utilized. In fact, in the following only the derivatives will be
presented and not the complete Taylor series, but it is worth remembering that the
first derivative is connected to the linear term (linear effect) of the series, the second
derivative is connected to the second term, etc. Moreover, another matrix derivative
than that used in the previous chapters, i.e. Definition 5.1, will be implemented in
order to make the subsequent calculations easier to look through.
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Definition 8.4 Let Y : q × r be a function of X: p ×n. If X consists of functionally
independent elements, then

(i)

d Y

d X
=

∑

I

d yij

d xkl
((d ie

′
j ) ⊗ (f kg

′
l )),

where I = {i, j, k, l; 1 ≤ i ≤ q, 1 ≤ j ≤ r, 1 ≤ k ≤ p, 1 ≤ l ≤ n}, and d i :
q × 1, ej : r × 1, f k: p × 1 and gl : n × 1 are unit basis vectors;

(ii)

dkY

d Xk
= d

d Xk

(

dk−1Y

d Xk−1

)

, k = 1, 2, . . . ,
d0 Y

d X0 = Y .

The next lemma, where the kth derivatives of the perturbed S = X(I −PC ′)X′ and
XC′(CC′)−1 are presented, is the starting point for an influence analysis for the
BRM . Although this lemma is conceptually easy, it turns out to be rather technical.

Lemma 8.1 Let S(ω) = X(I − C′(CC′)−1C)X′, where X = (X0,
√

ωXi ) C =
(C0,

√
ωCi ). Put

Di = C′
i (C0C

′
0)

−1Ci , Ri = Xi − X0C
′
0(C0C

′
0)

−1Ci .

Then

(i) dkS(ω)

d ωk

∣

∣

∣

ω=0
= (−1)k+1k!RiD

k−1
i R′

i , k ≥ 1;

(ii) dkXC ′(CC ′)−1

d ωk

∣

∣

∣

ω=0
= (−1)k+1k!RiD

k−1
i C′

i (C0C
′
0)

−1, k ≥ 1.

Proof The proof follows from an application of Appendix B, Theorem B.6 (iv) to
(CC′)−1, as well as a few additional calculations. ��
The matrix Ri in Lemma 8.1 is a kind of residual matrix with E[Ri] = 0. The
most commonly applied residual, assuming that ω = 1 in the perturbed model,
equals Ri = Xi − XC′(CC′)−1Ci . Moreover, the matrix Di is very close to the
usual leverage measure, C′

i (CC ′)−1Ci , which is obtained when using ω = 1 in the
perturbed model, and it is worth noting that it is a pure function of the between-
individuals design matrix.

In the following, let S0 = S(0), where S(0) follows from the assumptions
in the lemma given above, i.e. S0 = X0(I − P C ′

0
)X′

0. The next lemma is

meant as a preparation for differentiating (Ao′
SAo)−1, which is useful because

(A′S−1A)−1A′S−1 = (A′A)−1A′(I − SAo(Ao′
SAo)−1Ao′

) and which simplifies
calculations, since S is a function of ω (see Appendix B, Theorem B.13).
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Lemma 8.2 Let B be a constant matrix of proper size and rank, and let S(ω), as
well as Ri and Di , be defined in Lemma 8.1. Then

(i) d0(B′S(ω)B)−1

d ω0

∣

∣

∣

ω=0
= (B ′S0B)−1;

(ii) d (B′S(ω)B)−1

d ω

∣

∣

∣

ω=0
= −(B ′S0B)−1B ′RiR

′
iB(B ′S0B)−1;

(iii)

d2(B ′S(ω)B)−1

d ω2

∣

∣

∣

∣

ω=0
= 2(B ′S0B)−1B ′Ri (Di + R′

iB(B ′S0B)−1B′Ri )R
′
iB(B ′S0B)−1;

(iv)

d3(B ′S(ω)B)−1

d ω3

∣

∣

∣

∣

ω=0
= −6(B ′S0B)−1B ′Ri

(

D2
i + R′

iB(B ′S0B)−1B ′Ri

×(Di + R′
iB(B ′S0B)−1B ′Ri )R

′
iB(B ′S0B)−1B ′Ri

)

R′
iB(B ′S0B)−1.

Now one of the main theorems of this chapter is presented.

Theorem 8.1 Let ̂B(ω) be the perturbed version of ̂B, given in (8.13), when X =
(X0,

√
ωXi ) and C = (C0,

√
ωCi ), i.e. when Perturbation (iii) in Definition 8.3 is

applied. Then

dk
̂B(ω)

d ωk

∣

∣

∣

∣

ω=0
= (A′A)−1A′ dkXC′(CC′)−1

d ωk

∣

∣

∣

∣

ω=0

−
k

∑

i1=0

k−i1
∑

i2=0

(

k
i1

)(

k−i1
i2

)

(A′A)−1A′ di1S

d ωi1
Ao di2(Ao′

SAo)−1

d ωi2

×Ao′ dk−i1−i2XC′(CC ′)−1

d ωk−i1−i2

∣

∣

∣

∣

ω=0
, k ≥ 0,

where dlS(ω)

d ωl

∣

∣

∣

ω=0
, dlXC ′(CC′)−1

d ωl

∣

∣

∣

ω=0
and dl(Ao′

SAo)−1

d ωl

∣

∣

∣

∣

ω=0
are derived via

Lemma 8.1 and Appendix B, Theorem B.15.

Proof The statement follows from an application of Theorem B.15 (i) in
Appendix B. ��
We now express the result of Theorem 8.1 in the special case where k = 1, 2, 3,
which will later be applied when analysing the classical Potthoff and Roy growth
curve data set (see Example 1.7). In particular, it can be noted that the influence
exerted by the residual Ri is not linear, which it was in the univariate case
(see (8.10)).



376 8 Influential Observations

Corollary 8.1 Let the matrices and perturbation be as in Lemma 8.1 and Theo-
rem 8.1, and put S0 = S(0) = X0(I − P C ′

0
)X′

0. Then,

(i) if k = 0, d0
̂B(ω)

d ω0

∣

∣

∣

ω=0
= (A′S−1

0 A)−1A′S−1
0 X0C

′
0(C0C

′
0)

−1;

(ii) if k = 1,

d̂B(ω)

d ω

∣

∣

∣

∣

ω=0
= (A′S−1

0 A)−1A′S−1
0 RiC

′
i (C0C

′
0)

−1

−(A′S−1
0 A)−1A′S−1

0 RiR
′
iA

o(Ao′
S0A

o)−1Ao′
X0C

′
0(C0C

′
0)

−1;

(iii) if k = 2,

d2
̂B(ω)

d ω2

∣

∣

∣

∣

ω=0
= −2(A′S−1

0 A)−1A′S−1
0 RiDiC

′
i (C0C

′
0)

−1

−2(A′S−1
0 A)−1A′S−1

0 RiR
′
iA

o(Ao′
S0A

o)−1Ao′
RiC

′
i (C0C

′
0)

−1

+2(A′S−1
0 A)−1A′S−1

0 RiDiR
′
iA

o(Ao′
S0A

o)−1Ao′
X0C

′
0(C0C

′
0)

−1

+2(A′S−1
0 A)−1A′S−1

0 RiR
′
iA

o(Ao′
S0A

o)−1Ao′
Ri

×R′
iA

o(Ao′
S0A

o)−1Ao′
X0C

′
0(C0C

′
0)

−1;
(iv) if k = 3,

d3
̂B(ω)

d ω3

∣

∣

∣

∣

ω=0
= (A′S−1

0 A)−1A′S−1
0

d3XC ′(CC ′)−1

d ω3

∣

∣

∣

∣

ω=0

+3(A′A)−1A′S0A
o(Ao′

S0A
o)−1Ao′

RiR
′
iA

o(Ao′
S0A

o)−1Ao′ d2XC ′(CC ′)−1

d ω2

∣

∣

∣

∣

ω=0

+3(A′A)−1A′S0A
o d2(Ao′

S0A
o)−1

d ω2

∣

∣

∣

∣

∣

ω=0

Ao′
RiC

′
i (C0C

′
0)

−1

+(A′A)−1A′S0A
o d3(Ao′

S0A
o)−1

d ω3

∣

∣

∣

∣

∣

ω=0

Ao′
X0C

′
0(C0C

′
0)

−1

+6(A′A)−1A′RiR
′
iA

o(Ao′
S0A

o)−1Ao′
RiDiC

′
i (C0C

′
0)

−1

+6(A′A)−1A′RiR
′
iA

o(Ao′
S0A

o)−1Ao′
RiR

′
iA

o(Ao′
S0A

o)−1Ao′
RiC

′
i (C0C

′
0)

−1

−3(A′A)−1A′RiR
′
iA

o d2(Ao′
S0A

o)−1

d ω2

∣

∣

∣

∣

∣

ω=0

Ao′
X0C

′
0(C0C

′
0)

−1

+6(A′A)−1A′RiDiR
′
iA

o(Ao′
S0A

o)−1Ao′
RiC

′
i (C0C

′
0)

−1

+6(A′A)−1A′RiDiR
′
iA

o(Ao′
S0A

o)−1Ao′
RiR

′
iA

o(Ao′
S0A

o)−1Ao′
X0C

′
0(C0C

′
0)

−1

−6(A′A)−1A′RiD
2
i R

′
iA

o(Ao′
S0A

o)−1Ao′
X0C

′
0(C0C

′
0)

−1,
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where dk(Ao′
S0A

o)−1

d ωk

∣

∣

∣

∣

ω=0
, k = 2, 3, is obtained from Lemma 8.2.

Proof The statements are all verified by performing calculations using Lemmas 8.1
and 8.2. ��
Since

̂B(ω) ≈
t

∑

k=0

ωk 1

k!
dk

̂B(ω)

d ωk

∣

∣

∣

∣

ω=0
,

where t is so large that the approximation works well (it is assumed that the series
converges), the effect of the perturbation ω can be measured via the derivatives.
Moreover, according to the general ideas of influence analysis, some evaluation
criteria to be applied to the derivatives should be defined, but if there are only a
few observations, the derivatives corresponding to the perturbed observations can
be listed and the parameters can be evaluated element-wise.

Example 8.2 (The Classical Potthoff and Roy (1964) Data Set) The analysis of the
Potthoff and Roy (1964) data presented in Example 1.7 is now evaluated. It was
shown that the MLE of the mean parameter B equals

̂B =
(

̂b11 ̂b12
̂b21 ̂b22

)

=
(

17.43 15.84
0.476 0.827

)

.

The parameters b11 and b21 describe the growth of the girls, whereas b12 and b22

describe the growth of the boys. In Table 8.6 the derivatives dk
̂B(ω)

d ωk

∣

∣

∣

ω=0
, k = 1, 2, 3,

and ̂B(0) (i.e. the estimate where the ith observation has been removed) are
presented for four different individuals. The focus is on one “normal” individual, for
which we cannot find any extreme observed values in the data, and three individuals
which include “outlying” observations. In Examples 6.1, 6.5 and 6.6 residuals for
the data set were presented. In particular, it follows from Tables 6.1, 6.6 and 6.10 that
individual 16 sometimes has “larger” residuals than individual 15, but this individual
seems to have a higher influence on the mean estimates than individual 16 and,
therefore, is reported in Table 8.6. Moreover, concerning all the other observations,
we could not find anything remarkable when calculating the derivatives.

In Table 8.6, individual 6 is a girl, whereas individuals 15, 16 and 24 are boys.
Therefore, it appears, as expected, that for individual 6 the influence on b11 and b21
is greater than on b12 and b22. For individual 15, if k = 1, 2, or 3, the derivatives
for b12 and b22 are large. For individuals 20 and 24, all the derivatives are relatively
large, and those for individual 20 in particular show some outstanding values. The
main conclusion from this example is that the influence on the estimated parameters
differs among these individuals and the analysis is insufficient if one only uses the
first derivative. In order to evaluate the above results, they should be studied in
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Table 8.6 The results of an
application of Perturbation
(iii) in Definition 8.2 to the
Potthoff and Roy data set (see
Example 1.7)

k b11 b12 b21 b22

Individual 6 (normal)

0 17.47 15.84 0.48 0.83

1 −0.047 0.0012 −0.0094 0.00025

2 0.010 −0.00027 0.0021 −0.000055

3 −0.0032 0.000057 −0.00069 0.000022

Individual 15

0 17.45 14.86 0.47 0.90

1 −0.032 1.14 0.0023 −0.084

2 0.010 −0.36 −00074 0.027

3 −0.0016 0.10 0.00012 −0.0076

Individual 20

0 17.50 16.74 0.47 0.79

1 −0.34 −4.07 0.013 0.16

2 2.41 28.85 −0.095 −1.14

3 70.40 −1.78 700.36 −17.16

Individual 24

0 17.36 17.53 0.48 0.68

1 0.10 −2.57 −0.0089 0.23

2 −0.11 2.094 0.0093 −0.24

3 0.11 −3.17 −0.097 0.27

For k = 0, 1, 2, 3, the derivative dk
̂B(ω)

d ωk

∣

∣

∣

ω=0
has been

calculated for individuals 6, 15, 20 and 24

relation to the observed variation. Therefore, it is of interest to compare the results
with

̂D[̂B] =

⎛

⎜

⎜

⎝

48.55 −3.62 0 0
−3.62 0.35 0 0

0 0 30.34 −2.26
0 0 −2.26 0.22

⎞

⎟

⎟

⎠

,

which was obtained in Theorem 4.5. This estimate is for unperturbed observations

and, of course, ̂D[̂B] will change, somewhat, if some individual is excluded or if a
perturbation which has taken place turns out to be important, but for our discussion
this is not very crucial. It follows that, in comparison with the estimated variation of
the estimators, most derivatives are fairly small. It is only individual 20 which seems
to have some influence on the estimates which is not a surprise when one inspects
the original data. Note that when comparing different derivatives of a different order
k, it is reasonable to divide the derivative by k!, where k stands for the order of the
derivative. A final comment is that the perturbation induces non-linear effects (see
individuals 20 and 24). ��
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Now Perturbation (ii) in Definition 8.3 is studied. This perturbation acts only
on the design matrix C. In this case the structure in C will interfere with the
perturbation defined through V . For example, if C reflects a block design, then
V should in some sense match the design. Here our argumentation is rather
vague, but the topic has so far not been studied in detail. The next example will
illustrate our mode of thinking. However, since S is included in the estimates, it
is somewhat unclear how perturbations affect the derivatives (compare the results
for Perturbation (ii) in Sect. 8.2). Firstly, results are presented which correspond to
Lemmas 8.1 and 8.2 and which can be obtained by the application of Appendix B,
Theorem B.15 (i)–(iii). Unfortunately the results are based on a somewhat technical
treatment.

Lemma 8.3 Let S(ω) = X(I − G′(GG′)−G)X′, where G = C + ωV , as in
Definition 8.3 (ii). Then

(i) dkS(ω)

d ωk

∣

∣

∣

ω=0
= −X

∑1
i1=0

∑k−i1
i2=k−i1−1

(

k
i1

)(

k−i1
i2

)

di1 G′
d ωi1

di2 (GG′)−1

d ωi2
dk−i1−i2 G

d ωk−i1−i2
X′

∣

∣

∣

ω=0
,

where

(ii) d(GG′)−1

d ω

∣

∣

∣

ω=0
= −(CC′)−1(CV ′ + V C′)(CC′)−1;

(iii) d2(GG′)−1

d ω2

∣

∣

∣

ω=0
= (CC′)−1(CV ′ + V C′)(CC′)−1(CV ′ + V C′)(CC′)−1

−2(CC′)−1V V ′(CC′)−1;
(iv) if k ≥ 3,

dk(GG′)−1

d ωk

∣

∣

∣

∣

ω=0
=

k−1
∑

j=k−2

(−1)j+1
k−1
∑

i1=j

i1−1
∑

i2=j−1

· · ·
ij1 −1
∑

ij =1

(

k

i1

)(

i1

i2

)(

i2

i3

)

· · ·
(

ij1

ij

)

(CC ′)−1

× dij (GG′)
d ωij

∣

∣

∣

∣

ω=0
(CC ′)−1 dij−1−ij (GG′)

d ωij−1−ij

∣

∣

∣

∣

ω=0
(CC ′)−1 × · · ·

×(CC′)−1 di1−i2 (GG′)
d ωi1−i2

∣

∣

∣

∣

ω=0
(CC′)−1 dk−i1 (GG′)

d ωk−ii

∣

∣

∣

∣

ω=0
(CC′)−1,

where dl(GG′)
d ωl

∣

∣

∣

ω=0
= CV ′ + V C′, if l = 1, dl(GG′)

d ωl

∣

∣

∣

ω=0
= 2V V ′, if l = 2,

and for l > 2 the derivative equals 0.

Using the expressions in Lemma 8.3 leads to the next result for S(ω). For the final

expressions the derivatives dl(GG′)−1

d ωl , l = 1, 2, given in the previous lemma, are
needed.

Lemma 8.4 Let S(ω) be as in Lemma 8.3. The derivatives given below,
dl(GG′)−1

d ωl

∣

∣

∣

ω=0
, l = 1, 2, are to be found in Lemma 8.3. Then

(i) d0S(ω)

d ω0

∣

∣

∣

ω=0
= S = X(I − C′(CC′)−1C)X′;
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(ii)

dS(ω)

d ω

∣

∣

∣

∣

ω=0
= −XC′(CC′)−1V X′ − XV ′(CC′)−1CX′

−XC′ d(GG′)−1

d ω

∣

∣

∣

∣

ω=0
CX′;

(iii)

d2S(ω)

d ω2

∣

∣

∣

∣

ω=0
= −2XC′ d(GG′)−1

d ω

∣

∣

∣

∣

ω=0
V X′ − XC′ d2(GG′)−1

d ω2

∣

∣

∣

∣

ω=0
CX′

−2XV ′(CC′)−1V X′ − 2XV ′ d(GG′)−1

d ω

∣

∣

∣

∣

ω=0
CX′;

(iv)

d3S(ω)

d ω3

∣

∣

∣

∣

ω=0
= −3XC′ d2(GG′)−1

d ω2

∣

∣

∣

∣

ω=0
V X′ − XC′ d3(GG′)−1

d ω3

∣

∣

∣

∣

ω=0
CX′

−6XV ′ d(GG′)−1

d ω

∣

∣

∣

∣

ω=0
V X′ − 3XV ′ d2(GG′)−1

d ω2

∣

∣

∣

∣

ω=0
CX′.

Similar to Theorem 8.1, a theorem for Perturbation (ii) can be formulated.

Theorem 8.2 Let ̂B(ω) = (A′S−1(ω)A)−1A′S−1(ω)XG′(GG′)−1, where
S(ω) = X(I − P G′)X′ and G = C + ωV for some known V ; i.e. Perturbation (ii)
in Definition 8.3 is applied. Then

dk
̂B(ω)

d ωk

∣

∣

∣

∣

∣

ω=0

= (A′A)−1A′X dkG′(GG′)−1

d ωk

∣

∣

∣

∣

∣

ω=0

−
k

∑

i1=0

k−i1
∑

i2=0

(k
i1

)(k−i1
i2

)

(A′A)−1A′

× di1S(ω)

d ωi1
Ao di2 (Ao′

S(ω)Ao)−1

d ωi2
Ao′

X
dk−i1−i2G′(GG′)−1

d ωk−i1−i2

∣

∣

∣

∣

∣

ω=0

, k ≥ 0,

where dlG′(GG′)−1

d ωl

∣

∣

∣

ω=0
= C′ dl(GG′)−1

d ωl

∣

∣

∣

ω=0
+ lV ′ dl−1(GG′)−1

d ωl−1

∣

∣

∣

ω=0
, dlS(ω)

d ωl

∣

∣

∣

ω=0
and

dl(Ao′
S(ω)Ao)−1

d ωl

∣

∣

∣

∣

ω=0
are derived via Lemmas 8.3, 8.4 and Theorem B.15 (iii) in

Appendix B.

Since usually only a few derivatives of low order are needed, the next corollary is
presented to help us use the results of Theorem 8.2.
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Corollary 8.2 Let the matrices and perturbation be as in Theorem 8.2 and S(0) =
S = X(I − P C ′)X′.

(i) If k = 0, d0
̂B(ω)

d ω0

∣

∣

∣

ω=0
= (A′S−1A)−1A′S−1XC′(CC′)−1.

(ii) If k = 1, d̂B(ω)
d ω

∣

∣

∣

ω=0
= (A′S−1A)−1A′S−1X dG′(GG′)−1

d ω

∣

∣

∣

ω=0
.

(iii) If k = 2,

d2
̂B(ω)

d ω2

∣

∣

∣

∣

ω=0
= (A′S−1A)−1A′S−1X

d2G′(GG′)−1

d ω2

∣

∣

∣

∣

ω=0

−2(A′A)−1A′SAo d(Ao′
S(ω)Ao)−1

d ω

∣

∣

∣

∣

∣

ω=0

Ao′
X

dG′(GG′)−1

d ω

∣

∣

∣

∣

ω=0

−(A′A)−1A′SAo d2(Ao′
S(ω)Ao)−1

d ω2

∣

∣

∣

∣

∣

ω=0

Ao′
XC′(CC ′)−1

−2
dS(ω)

d ω

∣

∣

∣

∣

ω=0
Ao(Ao′

SAo)−1Ao′
X

dG′(GG′)−1

d ω

∣

∣

∣

∣

ω=0

−2
dS(ω)

d ω

∣

∣

∣

∣

ω=0
Ao d(Ao′

S(ω)Ao)−1

d ω

∣

∣

∣

∣

∣

ω=0

Ao′
XC′(CC′)−1

− d2S(ω)

d ω2

∣

∣

∣

∣

ω=0
Ao(Ao′

SAo)−1Ao′
XC′(CC′)−1.

(iv) If k = 3,

d3
̂B(ω)

d ω3

∣

∣

∣

∣

ω=0
= (A′S−1A)−1A′S−1X

d3G′(GG′)−1

d ω3

∣

∣

∣

∣

ω=0

−3(A′A)−1A′SAo d(Ao′
S(ω)Ao)−1

d ω

∣

∣

∣

∣

∣

ω=0

Ao′
X

d2G′(GG′)−1

d ω2

∣

∣

∣

∣

ω=0

−3(A′A)−1A′SAo d2(Ao′
S(ω)Ao)−1

d ω2

∣

∣

∣

∣

∣

ω=0

Ao′
X

dG′(GG′)−1

d ω

∣

∣

∣

∣

ω=0

−(A′A)−1A′SAo d3(Ao′
S(ω)Ao)−1

d ω3

∣

∣

∣

∣

∣

ω=0

Ao′
XC′(CC′)−1

−3(A′A)−1A′ dS(ω)

d ω

∣

∣

∣

∣

ω=0
Ao(Ao′

SAo)−1Ao′
X

d2G′(GG′)−1

d ω2

∣

∣

∣

∣

ω=0

−6(A′A)−1A′ dS(ω)

d ω

∣

∣

∣

∣

ω=0
Ao d(Ao′

S(ω)Ao)−1

d ω

∣

∣

∣

∣

∣

ω=0

Ao′
X

dG′(GG′)−1

d ω

∣

∣

∣

∣

ω=0

−3(A′A)−1A′ dS(ω)

d ω

∣

∣

∣

∣

ω=0
Ao d2(Ao′

S(ω)Ao)−1

d ω2

∣

∣

∣

∣

∣

ω=0

Ao′
XC ′(CC ′)−1
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−3(A′A)−1A′ d2S(ω)

d ω2

∣

∣

∣

∣

ω=0
Ao(Ao′

SAo)−1Ao′
X

dG′(GG′)−1

d ω

∣

∣

∣

∣

ω=0

−3(A′A)−1A′ d2S(ω)

d ω2

∣

∣

∣

∣

ω=0
Ao d(Ao′

S(ω)Ao)−1

d ω

∣

∣

∣

∣

∣

ω=0

Ao′
XC ′(CC ′)−1

−(A′A)−1A′ d3S(ω)

d ω3

∣

∣

∣

∣

ω=0
Ao(Ao′

SAo)−1Ao′
XC′(CC′)−1;

dl(S(ω))−1

d ωl

∣

∣

∣

ω=0
, dl(Ao′

S0A
o)−1

d ωl

∣

∣

∣

∣

ω=0
and dlG′(GG′)−1

d ωl

∣

∣

∣

ω=0
, l = 1, 2, 3, are

obtained by applying Lemmas 8.3, 8.4 and Appendix B, Theorem B.15.

A significant difference between Perturbation (iii) and Perturbation (ii) is that in
the latter, we have to choose V and, as noted before, there is no real strategy of
choosing V .

Example 8.3 (The Classical Potthoff and Roy (1964) Data Set (See Also Table 1.2))
Since the data set consists of two groups of individuals, the design matrix C

consists of two rows which are orthogonal to each other. The maximum likelihood
estimates of the mean parameters in the BRM will be exploited with respect to
Perturbation (ii) in Definition 8.3. When carrying out the calculations, we have to
define the matrix V in Perturbation (ii). Firstly, V is chosen so that the ith column
of V equals

(1
1

)

and the other columns of V are identical to
(0

0

)

. One can question
if this choice of V is appropriate, because the perturbed ith individual will affect
both the girls and the boys through the design matrix, i.e. C + ωV . Other possible
alternatives are choosing V so that the ith column equals

(1
0

)

or choosing V so that

the ith column equals
(0

1

)

, which will be considered later.
Necessary results for performing model validation according to the perturbation

scheme have been presented in Corollary 8.2. When applying Perturbation (iii),
individuals 15, 20 and 24 appeared to deviate from the others. However, when
investigating Perturbation (ii), only individual 20 becomes highlighted when

(1
1

)

is used. In this case, in Table 8.7, the first three derivatives (averaged) are presented
for the girls and boys separately, with individual 20, a boy, excluded. It appears
that the second derivative for the girls’ intercept was large. When individual 20 was
perturbed, the effect was different from that for the other boys; see, for example, the
second derivative for the girls’ intercept, where we have −2.32 versus 1.66. Thus,
there is an indication that individual 20 differs from the other boys. Studying the
original data, one can confirm that individual 20 is “extreme”. Since Perturbation (ii)
represents a perturbation of the design matrix C, one conclusion is that individual 20
does not follow the same model as the other boys are doing. A possible explanation
is that there has been a typing error, and that the observation at age 14 (26) should
be the observation at age 12 and the observation at age 12 (31) should be the
observation at age 14. This would make sense, but, of course, we cannot know if this
is true if we do not have access to the original files. One final comment concerning
this perturbation is that the choice of

(1
1

)

only identified a few individuals, of
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Table 8.7 The results
obtained when Perturbation
(ii) in Definition 8.3 was
applied to the Potthoff and
Roy data set (see
Example 1.7), with vi = (1

1

)

in V and the other columns in
V equal to

(0
0

)

k b11 b12 b21 b22

ref 17.43 15.84 0.48 0.83

Girls

1 −3.02 0.00 −0.12 0.00

2 −8.90 −2.15 −0.31 −0.054

3 −0.40 0.61 0.0078 0.028

Boys, except for individual 20

1 0.018 −2.07 −0.00072 −0.082

2 −2.32 −6.48 −0.13 −0.29

3 0.86 0.036 0.18 −0.0047

Individual 20 (boy)

1 −0.27 −2.27 0.011 −0.074

2 1.66 −3.37 0.023 −0.17

3 −0.65 −1.91 −0.015 −0.097

For k = 1, 2, 3, the average of the derivative
dk

̂B(ω)

d ωk

∣

∣

∣

ω=0
has been calculated separately for the girls

and the boys (except for individual 20), as well as for
individual 20. The case k = ref is provided for com-
parison and presents the maximum likelihood estimates
based on all the individuals (see Corollary 3.1)

which individual 20 showed the “largest” deviance from the others. However, it is
outside the scope of this chapter to understand completely the influence exerted by
individual 20, and it seems that this cannot be achieved without calculating higher
order derivatives, for instance derivatives of order 4 or 5. Moreover, it can be noted
that the girls obtained larger derivatives than the boys (see Table 8.7). One can
speculate if this is due to the model fit or the group size.

Now V is chosen so that the ith column of V equals
(0

1

)

and the other columns

are identical to
(0

0

)

. This means, among other things, that the influence on the girls
exerted by individual 20, as indicated in Table 8.7, should be less clear, which is
also shown in Table 8.8. Moreover, in the third derivative, there seems to be a small
effect from individual 20, meaning that influential effects may be non-linear. Also
in this case, the effect is stronger on the two parameters corresponding to the girls’
growth than on the parameters connected to the boys’.

Finally, Table 8.9 shows some results obtained when the perturbation V was
defined in such a way that the ith column of V equalled

(1
0

)

and the other columns

were identical to
(0

0

)

. In this case, however, no effects of the perturbation could be

discovered. We can also have a perturbation which is based on
(1

0

)

for the girls and
(0

1

)

for the boys, or these quantities can be weighted according to, for example, the
group sizes.

To round off this example, one can state that different alternative perturbations
have been introduced, but neither their interpretations and nor their conclusions
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Table 8.8 The results
obtained when Perturbation
(ii) in Definition 8.2 was
applied to the Potthoff and
Roy data set (see
Example 1.7), with vi = (0

1

)

in V and the other columns in
V equal to

(0
0

)

k b11 b12 b21 b22

ref 17.43 15.84 0.48 0.83

Girls

1 −1.44 0.00 −0.075 0.00

2 −2.96 −2.25 −0.15 −0.057

3 −0.56 0.020 −0.017 0.0011

Boys, except for individual 20

1 0.00 −0.98 0.00 −0.052

2 0.037 −4.27 0.0019 −0.22

3 0.0058 −0.28 0.00027 −0.013

Individual 20 (boy)

1 0.00 −1.18 0.00 −0.044

2 0.039 −2.78 0.0019 −0.15

3 0.058 −0.87 0.0032 −0.054

For k = 1, 2, 3, the average of the derivative
dk

̂B(ω)

d ωk

∣

∣

∣

ω=0
has been calculated separately for the girls

and the boys (except for individual 20), as well as for
individual 20. The case k = ref is provided for com-
parison and presents the maximum likelihood estimates
based on all the individuals (see Corollary 3.1)

Table 8.9 The results
obtained when Perturbation
(ii) in Definition 8.2 was
applied to the Potthoff and
Roy data set (see
Example 1.7), with vi = (1

0

)

in V and the other columns in
V equal

(0
0

)

k b11 b12 b21 b22

ref 17.43 15.84 0.48 0.83

Girls

1 −1.58 0.00 −0.043 0.00

2 −6.27 0.044 −0.017 0.0013

3 −1.05 0.047 −0.028 0.0013

Boys, except for individual 20

1 0.018 −1.09 −0.00072 −0.030

2 −2.55 −2.52 −0.14 −0.071

3 0.36 −0.44 0.020 −0.028

Individual 20 (boy)

1 −0.27 −1.09 0.011 −0.030

2 −0.48 −2.48 −0.085 −0.072

3 0.30 −0.65 0.028 −0.041

For k = 1, 2, 3, the average of the derivative
dk

̂B(ω)

d ωk

∣

∣

∣

ω=0
has been calculated separately for the girls

and the boys (except for individual 20), as well as for
individual 20. The case k = ref is provided for com-
parison and presents the maximum likelihood estimates
based on all the individuals (see Corollary 3.1)



8.3 Influence Analysis in the BRM 385

are very clear. In addition, more time has to be spent on introducing additional
perturbation schemes, in particular to create some kind of optimal scheme. ��

Now Perturbation (i) in Definition 8.3 is treated briefly. Copying ideas from the
above discussion concerning Perturbation (ii), it can be noted that if

Z = X + ωV , for some known V ,

then

S(ω) = Z(I − P C ′)Z′,
̂B(ω) = (A′S(ω)−1A)−1A′S(ω)−1ZC′(CC′)−1

and

dk
̂B(ω)

d ωk

∣

∣

∣

∣

ω=0
= (A′A)−1A′ dkZ

d ωk

∣

∣

∣

∣

ω=0
C′(CC′)−1

−
2

∑

i1=0

k−i1
∑

i2=0
0≤k−i1−i2≤1

(

k
i1

)(

k−i1
i2

)

(A′A)−1A′ dii S(ω)

d ωi1

∣

∣

∣

∣

ω=0
Ao di2 (Ao′

S(ω)Ao)−1

d ωi2

∣

∣

∣

∣

∣

ω=0

Ao′

× dk−i1−i2Z

d ωk−i1−i2

∣

∣

∣

∣

ω=0
C′(CC′)−1.

In this expression, dlS(ω)

d ωl

∣

∣

∣

ω=0
and dlZ

d ωl

∣

∣

∣

ω=0
can be presented immediately, whereas

dl(Ao′
S(ω)Ao)−1

d ωl

∣

∣

∣

∣

ω=0
is more sophisticated and, concerning this case, the reader is

referred to Appendix B, Theorem B.15 (iii):

dlZ

d ωl
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X, l = 0,

V , l = 1,

0, l > 1;

dlS(ω)

d ωl

∣

∣

∣

∣

ω=0
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

X(I − P C ′)X′, l = 0,

X(I − P C ′)V ′ + V (I − P C ′)X′, l = 1,

2V (I − P C ′)V ′, l = 2,

0, l > 2.

The next theorem comprises the first three derivatives of the perturbed mean
estimate ̂B(ω).
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Theorem 8.3 For the BRM presented in Definition 2.1, let the perturbed estimate
̂B(ω) = (A′S−1(ω)A)−1A′S−1(ω)ZC′(CC′)−1, where S(ω) = Z(I − PC ′)Z′
and Z = X + ωV for some V ; i.e. Perturbation (i) in Definition 8.3 is applied.

Moreover, dk(Ao′
SAo)−1

d ωk

∣

∣

∣

∣

ω=0
, k = 2, 3, is used below and explicit expressions are

obtained through Appendix B, Theorem B.15 (iii). Put D1 = dS(ω)
d ω

∣

∣

∣

ω=0
. Then

(i)

d̂B(ω)

d ω

∣

∣

∣

∣

ω=0
= (A′S−1A)−1A′S−1V C′(CC′)−1

−(A′S−1A)−1A′S−1D1A
o(Ao′

SAo)−1Ao′
XC′(CC′)−1;

(ii)

d2
̂B(ω)

d ω2

∣

∣

∣

∣

ω=0

= 2(A′A)−1A′SAo(Ao′
SAo)−1Ao′

D1A
o(Ao′

SAo)−1Ao′
V C′(CC′)−1

−(A′A)−1A′SAo d2(Ao′
SAo)−1

d ω2

∣

∣

∣

∣

ω=0
Ao′

XC′(CC′)−1

−2(A′A)−1A′D1A
o(Ao′

SAo)−1Ao′
V C′(CC′)−1

+2(A′A)−1A′D1A
o(Ao′

SAo)−1Ao′
D1A

o(Ao′
SAo)−1Ao′

XC′(CC′)−1

−2(A′A)−1A′V (I − P C ′)V ′Ao(Ao′
SAo)−1Ao′

XC′(CC′)−1;

(iii)

d3
̂B(ω)

d ω3

∣

∣

∣

∣

ω=0
= −3(A′A)−1A′SAo d2(Ao′

SAo)−1

d ω2

∣

∣

∣

∣

ω=0
Ao′

V C′(CC′)−1

−(A′A)−1A′SAo d3(Ao′
SAo)−1

d ω3

∣

∣

∣

∣

ω=0
Ao′

XC′(CC′)−1

−6(A′A)−1A′D1A
o d(Ao′

SAo)−1

d ω

∣

∣

∣

∣

ω=0
Ao′

V C′(CC′)−1

−3(A′A)−1A′D1A
o d2(Ao′

SAo)−1

d ω2

∣

∣

∣

∣

ω=0
Ao′

XC′(CC′)−1

−6(A′A)−1A′V (I − P C ′)V ′Ao(Ao′
SAo)−1Ao′

V C′(CC′)−1

−6(A′A)−1A′V (I − P C ′)V ′Ao d(Ao′
SAo)−1

d ω

∣

∣

∣

∣

ω=0
Ao′

XC′(CC′)−1.
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We will not exploit Perturbation (i) any more, mainly because further research needs
to be conducted on this topic and there are no strategies available for choosing V .
Moreover, it is quite conceivable that a random choice of the columns in V can
make sense.

Hitherto only perturbations which affect X and C have been considered (see
Definition 8.3). Now we briefly examine the problem of perturbing A in the BRM

and, firstly, put

X(ω)′ = (X′
0 : √

ωX′
i ), (8.14)

A(ω)′ = (A′
0 : √

ωA′
i ), (8.15)

where Xi and Ai are the ith row of X and A, respectively, and are analogous
to X(ω) = (X0 : √

ωXi ) and C = (C0 : √
ωCi ), i.e. Perturbation (iii) in

Definition 8.3. Using the perturbation scheme defined via (8.14) and (8.15) yields

̂B(ω) = (A′(ω)S(ω)−1A(ω))−1A′(ω)S(ω)−1X(ω)C′(CC′)−1

= (A′S−1A)−1A′S−1XC′(CC′)−1 = ̂B,

where ̂B is the MLE. Direct calculations show that the expressions (A′(ω)S(ω)−1

A(ω))−1 and A′(ω)S(ω)−1X(ω) are both independent of ω and, therefore, that ̂B is
also independent of ω, as indicated in the above calculations. Thus, for every ω, the
same expression is obtained, which means that we cannot extract any information
about influence via the above-specified perturbation. Moreover, the phenomenon
which has been observed means that, around ω = 0, the estimate is not differentiable
and, therefore, this type of perturbation scheme does not make sense. However, it
can be noted that if one deletes a row in X and A, this will have a direct effect on �,
causing it to “shrink”; i.e. � will consist of fewer parameters. This means that the
perturbation changes the whole model and then the results obviously are difficult to
interpret.

Alternatively, we can turn our attention to a second type of perturbation. Let, as
before, V be a known matrix and consider the perturbation H = A + ωV , which
is of the same type as C + ωV , i.e. Perturbation (ii) in Definition 8.3. However, the
fundamental difference between the two perturbations is that C + ωV concerns the
perturbation of observations and H (ω) = A + ωV concerns the model sensitivity.
It follows that

dk
̂B(ω)

d ωk

∣

∣

∣

∣

ω=0
=

k
∑

i=k−1

(

k
i

) di(H ′S−1H )−1

d ωi

dk−iH ′

d ωk−i
S−1XC′(CC′)−1

∣

∣

∣

∣

∣

ω=0

,

where di(H ′S−1H )−1

d ωi

∣

∣

∣

ω=0
can be obtained by applying Appendix B, Theorem B.15

(i)–(iii). In the next theorem the first three derivatives are explicated.
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Theorem 8.4 For the BRM presented in Definition 2.1, let

̂B(ω) = (H (ω)′S−1H (ω))−1H (ω)′S−1XC′(CC′)−1,

where H (ω) = A + ωV for some V . Put D1 = d(H ′S−1H )
d ω

∣

∣

∣

ω=0
= V ′S−1A +

A′S−1V . Then

(i)

d̂B(ω)

d ω

∣

∣

∣

∣

ω=0
= (A′S−1A)−1V ′S−1XC′(CC′)−1

−(A′S−1A)−1D1(A
′S−1A)−1A′S−1XC′(CC′)−1;

(ii)

d2
̂B(ω)

d ω2

∣

∣

∣

∣

ω=0
= −2(A′S−1A)−1D1(A

′S−1A)−1V ′S−1XC′(CC′)−1

−2(A′S−1A)−1V ′S−1V (A′S−1A)−1A′S−1XC′(CC′)−1

+2(A′S−1A)−1D1(A
′S−1A)−1D1(A

′S−1A)−1A′S−1XC′(CC′)−1.

(iii)

d3
̂B(ω)

d ω3

∣

∣

∣

∣

ω=0
= −3 d2(H ′S−1H )−1

d ω2

∣

∣

∣

ω=0
V ′S−1XC′(CC′)−1

+ d3(H ′S−1H )−1

d ω3

∣

∣

∣

ω=0
A′S−1XC′(CC′)−1,

with

d3(H ′S−1H )−1

d ω3

∣

∣

∣

ω=0

= 3(A′S−1A)−1 dH ′S−1H
d ω

∣

∣

∣

ω=0
(A′S−1A)−1 d2H ′S−1H

d ω2

∣

∣

∣

ω=0
(A′S−1A)−1

+3(A′S−1A)−1 d2H ′S−1H
d ω2

∣

∣

∣

ω=0
(A′S−1A)−1 dH ′S−1H

d ω

∣

∣

∣

ω=0
(A′S−1A)−1

−6(A′S−1A)−1 dH ′S−1H
d ω

∣

∣

∣

ω=0
(A′S−1A)−1 dH ′S−1H

d ω

∣

∣

∣

ω=0
(A′S−1A)−1

× dH ′S−1H
d ω

∣

∣

∣

ω=0
(A′S−1A)−1,

d2(H ′S−1H )−1

d ω2

∣

∣

∣

ω=0
= −2(A′S−1A)−1V ′S−1V (A′S−1A)−1

+2(A′S−1A)−1 dH ′S−1H
d ω

∣

∣

∣

ω=0
(A′S−1A)−1 dH ′S−1H

d ω

∣

∣

∣

ω=0
(A′S−1A)−1
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and

dH ′S−1H
d ω

∣

∣

∣

ω=0
= V ′S−1A + A′S−1V ,

d2H ′S−1H
d ω2

∣

∣

∣

ω=0
= 2V ′S−1V .

Example 8.4 In this example, Theorem 8.4 is discussed very briefly. For instance,
consider the Potthoff and Roy (1964) data set, which was exploited in Example 1.7.
Here we can choose V to equal

V =

⎛

⎜

⎜

⎝

0 1
0 1
0 1
0 1

⎞

⎟

⎟

⎠

or V =

⎛

⎜

⎜

⎝

0 0.5
0 0
0 0
0 0

⎞

⎟

⎟

⎠

or V =

⎛

⎜

⎜

⎝

0 0
0 0
0 0
0 0.5

⎞

⎟

⎟

⎠

,

for example. With the above choices of V , the second column of A has been altered.
In the first case the whole model has been shifted and investigating this case does
not make sense. In the other two cases, only one time point is perturbed and here
one can see some effects (the computations are not shown here). In particular,
the perturbation of the fourth time point has the largest effect on ̂B. This is in
complete agreement with least squares regression theory, where it is maintained
that the observations which are at the “end-points” of the observation period have
the largest influence on the mean estimates. ��
Now, the influence on the maximum likelihood estimate of the dispersion matrix is
treated briefly. The three different perturbations given in Definition 8.3 could have
been reconsidered, but only the results for Perturbation (iii) will be presented in
detail. All the results for ̂� depend heavily on the results for ̂B, since

n̂� = (X − ÂBC)(X − ÂBC)′ (8.16)

= XX′ − XC′
̂B

′
A′ − ÂBCX′ + ÂBCC′

̂B
′
A′. (8.17)

Theorem 8.5 Consider the BRM presented in Definition 2.1, and assume that
Perturbation (iii) in Definition 8.3 is applied, i.e. X = (X0,

√
ωXi ) and C =

(C0,
√

ωCi ). Then

n̂�(ω) = (X − ÂB(ω)C)(X − ÂB(ω)C)′,
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where ̂B(ω) is the same as in Theorem 8.1, and

dkn̂�(ω)

d ωk

∣

∣

∣

ω=0
= dkXX′

d ωk

∣

∣

∣

ω=0
− A

1
∑

i=0

(

k
i

)

dk−i
̂B(ω)

d ωk−i

∣

∣

∣

ω=0

diCX′
d ωi

∣

∣

∣

ω=0

−
1

∑

i=0

(

k
i

)

diXC′
d ωi

∣

∣

∣

ω=0

dk−i
̂B

′
(ω)

d ωk−i

∣

∣

∣

ω=0
A′

+A

k
∑

i1=0

k−i1
∑

i2=0
0≤i2≤1

(

k
i1

)(

k−i1
i2

)

dk−i1̂B(ω)

d ωk−i1
di2CC ′
d ωi2

dk−i1−i2̂B
′
(ω)

d ωk−i1−i2

∣

∣

∣

ω=0
A′,

with dl
̂B

d ωl

∣

∣

∣

ω=0
given in Theorem 8.1.

Next the first three derivatives for ̂�(ω) are presented.

Corollary 8.3 For ̂�(ω) in Theorem 8.5:

(i)

d n̂�(ω)
d ω

∣

∣

∣

ω=0
= XiX

′
i − (X0C

′
0

d̂B
′
(ω)

d ω

∣

∣

∣

ω=0
+ XiC

′
i
̂B

′
(0))A′

−A( d̂B(ω)
d ω

∣

∣

∣

ω=0
C0X

′
0 + ̂B(0)CiX

′
i ) + A d̂B(ω)

d ω

∣

∣

∣

ω=0
C0C

′
0

d̂B
′
(ω)

d ω

∣

∣

∣

ω=0
A′

+A d̂B(ω)
d ω

∣

∣

∣

ω=0
CiC

′
i
̂B

′
(0))A′ + ÂB(0)C0C

′
0
̂B

′
(0)A′;

(ii)

d2n̂�(ω)

d ω2

∣

∣

∣

ω=0
= −(X0C

′
0

d2
̂B

′
(ω)

d ω2

∣

∣

∣

∣

ω=0
+ 2XiC

′
i

d̂B
′
(ω)

d ω

∣

∣

∣

∣

ω=0
)A′

−A(
d2

̂B(ω)

d ω2

∣

∣

∣

ω=0
C0X′

0 + 2 d̂B(ω)
d ω

∣

∣

∣

ω=0
CiX

′
i ) + A d2

̂B(ω)

d ω2

∣

∣

∣

ω=0
C0C′

0
d2

̂B
′
(ω)

d ω2

∣

∣

∣

∣

ω=0
A′

+2A
d2

̂B(ω)

d ω2

∣

∣

∣

ω=0
CiC

′
i

d2
̂B

′
(ω)

d ω2

∣

∣

∣

∣

ω=0
A′ + 2 d̂B(ω)

d ω

∣

∣

∣

ω=0
C0C′

0
d̂B

′
(ω)

d ω

∣

∣

∣

∣

ω=0
A′

+2A
d̂B(ω)

d ω

∣

∣

∣

ω=0
CiC

′
i
̂B

′
(0)A′ + ÂB(0)C0C′

0
̂B

′
(0)A′;

(iii)

d3n̂�(ω)

d ω3

∣

∣

∣

ω=0
= −(X0C′

0
d3

̂B
′
(ω)

d ω3

∣

∣

∣

∣

ω=0
+ 3XiC

′
i

d2
̂B

′
(ω)

d ω2

∣

∣

∣

∣

ω=0
)A′

−A(
d3

̂B(ω)

d ω3

∣

∣

∣

ω=0
C0X

′
0 + 3 d2

̂B(ω)

d ω2

∣

∣

∣

ω=0
CiX

′
i ) + A

d3
̂B(ω)

d ω3

∣

∣

∣

ω=0
C0C′

0
d3

̂B
′
(ω)

d ω3

∣

∣

∣

∣

ω=0
A′
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+3A
d3

̂B(ω)

d ω3

∣

∣

∣

ω=0
CiC

′
i

d2
̂B

′
(ω)

d ω2

∣

∣

∣

∣

ω=0
A′ + 3 d2

̂B(ω)

d ω2

∣

∣

∣

ω=0
C0C′

0
d2

̂B
′
(ω)

d ω2

∣

∣

∣

∣

ω=0
A′

+6A d2
̂B(ω)

d ω2

∣

∣

∣

ω=0
CiC

′
i

d̂B
′
(ω)

d ω

∣

∣

∣

∣

ω=0
A′ + 3 d̂B(ω)

d ω

∣

∣

∣

ω=0
C0C′

0
d̂B

′
(ω)

d ω

∣

∣

∣

∣

ω=0
A′

+6A
d̂B(ω)

d ω

∣

∣

∣

ω=0
CiC

′
i
̂B

′
(0)A′ + ÂB(0)C0C′

0
̂B

′
(0)A′.

Based on Theorem 8.5 and Corollary 8.3, the influence from one or more “subjects”
(let us say the ith column in X and C) depends on the influence on ̂B(ω). A natural
question is if it is sufficient to study the influence on ̂B(ω) when one is interested
in the influence on n̂�(ω). Indeed, we can also twist the question slightly and
wonder if we should study ̂B at all when studying the influence on n̂�(ω), since
the dependency between ̂B and ̂� is usually not very strong. However, from earlier
chapters, in particular Chap. 6, we know that n̂�(ω) is a function of residuals and,
therefore, deviating residuals should have an impact on n̂�(ω). Remember how
n̂�(ω) can be dissected, for example

n̂� = S + (XP C ′ − ÂBC)(XP C ′ − ÂBC)′

= S + (XC′(CC′)−1 − ÂB)CC ′(XC′(CC ′)−1 − ÂB)′, (8.18)

and that S and XC′(CC′)−1 are sufficient statistics. Hence, it may be sufficient to
study the influence on S and XC′(CC′)−1, and relatively easy expressions appear
when S and XC ′(CC′)−1 − ÂB are studied. The most complicated expressions
arise when (8.18) is differentiated.

Theorem 8.6 Consider the BRM presented in Definition 2.1, and assume that
Perturbation (iii) in Definition 8.3 is applied, i.e. X = (X0,

√
ωXi ) and C =

(C0,
√

ωCi ). Then

dkn̂�(ω)

d ωk

∣

∣

∣

ω=0
= dkS(ω)

d ωk

∣

∣

∣

ω=0

+
k

∑

i1=0

k−i1
∑

i2=0
0≤i2≤1

di1XC ′(CC′)−1−ÂB(ω)

d ωi1
di2CC ′
d ωi2

dk−i1−i2 (XC ′(CC′)−1−ÂB(ω))′
d ωk−i1−i2

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω=0

,

where

dlXC ′(CC′)−1−ÂB(ω)

d ωl

∣

∣

∣

ω=0
= dlXC ′(CC ′)−1

d ωl

∣

∣

∣

ω=0
− A

dl
̂B(ω)

d ωl

∣

∣

∣

ω=0
,

dlCC′

d ωl
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C0C
′
0, l = 0,

CiC
′
i , l = 1,

0, l > 1;
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dlS(ω)

d ωl

∣

∣

∣

ω=0
, dlXC ′(CC′)−1

d ωl

∣

∣

∣

ω=0
and dlB(ω)

d ωl

∣

∣

∣

ω=0
are obtained from Lemma 8.1 (i) and

(ii), and Theorem 8.1.

Often the number of parameters in B is not very large, whereas the number
of parameters in � is considerably larger. Therefore, when the influence from
observations on ̂� is studied, extra attention must be focused on the possibility that

a function of ̂� is of interest. An example of such a function is (A′
̂�

−1
A)−1, where

A is the within-individuals design matrix in the BRM (e.g. see (8.18)), and this
expression appears in the estimated dispersion for ̂B, see Theorem 4.5 (ii). Other
functions which may be of interest are tr{̂�}, |̂�| or some specific elements in ̂�.

Example 8.5 The purpose of this example is to demonstrate that it is complicated
to study which observations are influential on ̂B and n̂�. Examples of different
questions to answer are how such influence should be measured and summarized
when many parameters are being considered, and what quantities in a statistical
analysis should be studied. Usually both mean parameters and dispersion matrices

are of interest; for example, as noted above, the estimator ̂B and its dispersion ̂D[̂B],
which is a function of ̂�, are important for the understanding of the analysis for the
BRM . Let us now analyse, once again, our favourite data set, the Potthoff and Roy
(1964) data set, which has been studied many times before in this book (e.g. see
Examples 8.2 and 8.3, as well as several examples included in earlier chapters).
In the present example, the first and second derivatives of the perturbed statistics
under consideration are used as an influence measure. The statistics which we are
interested in are ̂B, XC′(CC)−1, S and n̂�. However, to simplify the presentation,
only the influence on the sum of the elements of ̂B is presented. The same also
holds for the “mean” XC′(CC)−1, i.e. the influence on the sum of the elements is
presented, while concerning the dispersion, the influence on the sum of the upper
triangles of S and n̂� is shown. Adopting this approach, it is discovered that the first
and second derivatives in our setting provide very similar information. Moreover,
observations 10, 11, 20, 21 and 24 (see Table 8.10) show up as being influential for
different statistics. This means that it is crucial to motivate which statistic should

Table 8.10 Here B1 and B2 stand for the sum of the elements in d ̂B(ω)
d ω

∣

∣

∣

ω=0
and d2

̂B(ω)

d ω2

∣

∣

∣

ω=0
,

respectively, M1 and M2 stand for the sum of the elements in d XC′(CC)−1

d ω

∣

∣

∣

ω=0
and

d2 XC ′(CC)−1

d ω2

∣

∣

∣

ω=0
, respectively, S1 and S2 stand for the sum of the elements of the upper triangles

of d S(ω
d ω

∣

∣

∣

ω=0
and d2 S(ω)

d ω2

∣

∣

∣

ω=0
, respectively, and Sig1 and Sig2 denote the sum of the elements of

the upper triangles of d n̂�(ω)
d ω

∣

∣

∣

ω=0
and d2 n̂�(ω)

d ω2

∣

∣

∣

ω=0
, respectively

B1 B2 M1 M2 S1 S2 Sig1 Sig2

Obs 20 and 24 20 and 24 10 and 11 10 and 11 21 and 10 21 and 10 20 and 10 20 and 10

For each of the eight measures, the two observations (denoted as Obs) are listed which had
the greatest influence on the statistics; the observation listed first had the largest influence. The
numbering of observations follows the numbering in Table 1.2
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be evaluated and thereafter perform calculations for that specific statistic. To study
all possible statistics without any strategy can make it more difficult to take the
appropriate decisions. It also implies that more research is needed of how to evaluate
the BRM .

��

8.4 Influence Analysis in the EBRM3
B

This section concerns influence analysis for the EBRM3
B presented in Defini-

tion 2.2, using an approach which, from both a conceptual and technical perspective,
is similar to the one used for the BRM in the previous section. Although the
influence analysis in this section concerns the EBRM3

B , it is a fairly straightforward
task to extend it to comprise the general EBRMm

B , m > 1. However, one discovers
already when m = 3 that there are too many optional analyses which can be
performed. There are the estimates of three mean parameters, i.e. ̂B1, ̂B2 and ̂B3,
and the estimate of the dispersion matrix ̂�. When combining the validation of
these estimated parameters with respect to different types of perturbation schemes,
one immediately discovers that the number of alternatives on which the different
kinds of perturbation are to be performed is so large that all the alternatives cannot
be covered in a book. Therefore, we focus only on one perturbation scheme, namely
a scheme based on the following perturbations:

X = (X0,
√

ωXi ), C1 = (C10,
√

ωC1i ),

C2 = (C20,
√

ωC2i ), C3 = (C30,
√

ωC3i). (8.19)

Usually Xi and Cji , j = 1, 2, 3, consist of one vector, meaning that the ith
observation is perturbed and then the influence on the parameters is studied for
each observation separately. Moreover, when considering the parameters B1, B2
and B3, it will be assumed that the parameters are uniquely estimated (i.e. many full
rank conditions are supposed to hold), but they are not essential for the presentation
in this chapter and will therefore not be listed. The following expressions will be
studied (see Theorem 3.2):

̂B1 = (A′
1S

−1
1 A1)

−1A′
1S

−1
1 (X − A2̂B2C2 − A3̂B3C3)C

′
1(C1C

′
1)

−1, (8.20)

̂B2 = (A′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−1A′
2
̂Q1

̂S
−1
2

̂Q
′
1(X − A3̂B3C3)C

′
2(C2C

′
2)

−1, (8.21)

̂B3 = (A′
3
̂Q1

̂Q2
̂S

−1
3

̂Q
′
2
̂Q

′
1A3)

−1A′
3
̂Q1

̂Q2
̂S

−1
3

̂Q
′
2
̂Q

′
1XC′

3(C3C
′
3)

−1, (8.22)

n̂� = ̂S3 + ̂Q
′
3
̂Q

′
2
̂Q

′
1XP C ′

3
X′

̂Q1
̂Q2

̂Q3,

where Sj and ̂Qj , j = 1, 2, 3, can be obtained from Theorem 3.2. Moreover, for
simplicity, all the g-inverses included in the matrices ̂Qj and ̂Sj , j = 1, 2, 3, are
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assumed to be real inverses. Of course, a large number of calculations are needed to
obtain the influence measures, i.e. the derivatives of the perturbed models have to
be found. On the other hand, the calculations are not more complicated than those
performed when studying the BRM .

The derivative defined in Definition 8.4, which is used in the influence analysis,
has one serious disadvantage, namely the fact that no simple chain rule expression is
available such as that for the derivative used in Theorem 5.1, for example. However,
there will be so much structure in our expressions that we do not have to rely on any
chain rule. Instead, the results will be obtained recursively.

The plan in the calculations given below is to approach dl
̂Bj

d ωl

∣

∣

∣

ω=0
, j = 1, 2, 3,

step by step. Firstly, S1(ω) and ̂Q1 are considered, thereafter ̂S2(ω) and ̂Q1
̂Q2

and finally S3(ω) and ̂Q1
̂Q2

̂Q3. Furthermore, XPC ′
j
X′, XC′

j (CjC
′
j )

−1 and

CkC
′
j (CjC

′
j )

−1, j = 1, 2, 3, k �= j , also have to be dealt with, i.e. differentiated
and evaluated at ω = 0. Thereafter the influence of observations on the estimates of
the parameters will be presented.

Lemma 8.5 Let all the matrices be as in (8.19) and obtain
dl (Cj C ′

j )−1

d ωl

∣

∣

∣

∣

ω=0
,

j = 1, 2, 3, from Appendix B, Theorem B.6 (iv).

(i) For j = 1, 2, 3,

dl XP C′
j
X′

d ωl

∣

∣

∣

∣

∣

ω=0

=
1

∑

i1=0

l−i1
∑

i2=l−i1−1

(

l
i1

)(

l−i1
i2

) di1 XC ′
j

d ωi1

di2 (Cj C ′
j )−1

d ωi2

dl−i1−i2 Cj X′
d ωl−i1−i2

∣

∣

∣

∣

ω=0
.

(ii) For j = 1, 2, 3,

dl XC′
j (Cj C′

j )−1

d ωl

∣

∣

∣

∣

ω=0
=

1
∑

i=0

(

l
i

) di XC′
j

d ωi

dl−i (Cj C ′
j )−1

d ωl−i

∣

∣

∣

∣

ω=0
.

(iii) For j = 1, 2, 3 and k �= j ,

dl CkC
′
j (Cj C′

j )−1

d ωl

∣

∣

∣

∣

ω=0
=

1
∑

i=0

(

l
i

) di CkC
′
j

d ωi

dl−i (Cj C ′
j )−1

d ωl−i

∣

∣

∣

∣

ω=0
.

Now the pairs {S1(ω), ̂Q1}, {̂S2(ω), ̂Q1
̂Q2} and {̂S3(ω), ̂Q1

̂Q2
̂Q3} are studied.

All these quantities constitute the building blocks of ̂Bj , j = 1, 2, 3, as well as ̂�.
Note that

dk S1(ω)

d ωk

∣

∣

∣

ω=0
= (−1)k+1k!RiD

k−1
i R′

i , k ≥ 1, (8.23)
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which is copied from Lemma 8.1 (i), where

Ri = Xi − X0C
′
0(C0C

′
0)

−1Ci ,

Di = C′
i (C0C

′
0)

−1Ci .

Since

̂Q1 = I − S−1
1 A1(A

′
1S

−1
1 A1)

−1A′
1 = Ao

1(A
o′
1 S1A

o
1)

−1Ao′
1 S1,

it follows that

dl
̂Q1

d ωl

∣

∣

∣

ω=0
= Ao

1

l
∑

i=0

(

l
i

) di (Ao′
1 S1A

o
1)−1

d ωi Ao′
1

dl−i S1(ω)

d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.24)

where dl−i S1(ω)

d ωl−i can be replaced by (8.23),
di (Ao′

1 S1A
o
1)−1

d ωi is obtained from Appendix
B, Theorem B.15 (iii) and the first three derivatives can be found via Lemma 8.2
(ii)–(iv). Therefore, an influence measure can be established for {S1(ω), ̂Q1}. When
differentiating ̂B1,

dl (A′
1S

−1
1 (ω)A1)

−1A′
1S

−1
1 (ω)

d ωl

needs to be calculated, which follows from (8.24) since

(A′
1A1)

−1A′
1(I − ̂Q

′
1) = (A′

1S
−1
1 (ω)A1)

−1A′
1S

−1
1 (ω). (8.25)

For the second pair, {̂S2(ω), ̂Q1
̂Q2}, it is noted that

̂S2 = S1 + ̂Q
′
1X(PC ′

1
− P C ′

2
)X′

̂Q1.

Thus,

dl
̂S2(ω)

d ωl

∣

∣

∣

ω=0
= dl S1(ω)

d ωl

∣

∣

∣

ω=0

+
l

∑

i1=0

l−i1
∑

i1=0

(

l
i1

)(

l−i1
i2

) di1 ̂Q
′
1

d ωi1
(
di2 XP C′

1
X′

d ωi2
− di2 XPC′

2
X′

d ωi2
)
dl−i1−i2 ̂Q1
d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

, (8.26)

where expressions for
dl XPC′

j
X′

d ωl , j = 1, 2, and dl
̂Q

′
1

d ωl are presented in Lemma 8.5 (i)

and (8.24), respectively. The next formulas show how ̂Q1
̂Q2 can be differentiated.

Note that

̂Q1
̂Q2 = (I −̂S

−1
2

̂Q
′
1A2(A

′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−1A′
2)
̂Q1
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and

dl
̂Q1

̂Q2
d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di I−̂S
−1
2

̂Q
′
1A2(A

′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−1A′
2

d ωi

dl−i
̂Q

′
1

d ωl−i

∣

∣

∣

∣

∣

ω=0

(8.27)

with

dl
̂S

−1
2

̂Q
′
1A2(A′

2
̂Q1

̂S
−1
2

̂Q
′
1A2)−1A′

2
d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di
̂S

−1
2

̂Q
′
1

d ωi A2
dl−i (A′

2
̂Q1

̂S
−1
2

̂Q
′
1A2)−1

d ωl−i A′
2

∣

∣

∣

∣

∣

ω=0

,

(8.28)

where it can be utilized that ̂Q1
̂S

−1
2

̂Q
′
1 = ̂Q1

̂S
−1
2 ,

dl
̂Q1

̂S
−1
2

d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di
̂Q1

d ωi

dl−i
̂S

−1
2 (ω)

d ωl−i

∣

∣

∣

∣

∣

ω=0

,

and dl
̂S

−1
2 (ω)

d ωl follows from Appendix B, Theorem B.15 (iii) and (8.26). Furthermore,

if ̂B2 is to be differentiated, ̂S
−1
2

̂Q
′
1A2(A

′
2
̂Q1

̂S
−1
2

̂Q
′
1A2)

−1 has to be differen-
tiated, where the derivative, through post-multiplying by A2(A

′
2A2)

−1, follows
from (8.28).

Now the third pair, {̂S3(ω), ̂Q1
̂Q2

̂Q3}, is treated and in principle the above
calculations for {̂S2(ω), ̂Q1

̂Q2} are repeated, although they are now performed in a
somewhat more difficult environment. For

̂S3 = ̂S2 + ̂Q
′
2
̂Q

′
1X(P C ′

2
− P C ′

3
)X′

̂Q1
̂Q2

we have

dl
̂S3(ω)

d ωl

∣

∣

∣

ω=0
= dl

̂S2(ω)

d ωl

∣

∣

∣

ω=0

+
l

∑

i1=0

l−i1
∑

i1=0

(

l
i1

)(

l−i1
i2

) di1 ̂Q
′
2
̂Q

′
1

d ωi1
(
di2 XP C′

2
X′

d ωi2
− di2 XPC′

3
X′

d ωi2
)
dl−i1−i2 ̂Q1

̂Q2
d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

,(8.29)

where dl
̂Q1

̂Q2
d ωl , evaluated at ω = 0, was obtained in (8.27) and

dl XPC′
j
X′

d ωl

∣

∣

∣

∣

∣

ω=0

,

j = 2, 3, are obtained from Lemma 8.5 (i). Furthermore, dl
̂S

−1
3 (ω)

d ωl follows from
Appendix B, Theorem B.15 (iii) and (8.29),

We also have to discuss ̂Q1
̂Q2

̂Q3, and after a few calculations, it can be shown

that ̂Q1
̂Q2

̂S
−1
3

̂Q
′
2
̂Q

′
1 = ̂Q1

̂Q2
̂S

−1
3 and

̂Q1
̂Q2

̂Q3 = (I −̂S
−1
3

̂Q
′
2
̂Q

′
1A3(A

′
3
̂Q1

̂Q2
̂S

−1
3

̂Q
′
2
̂Q

′
1A3)

−1A′
3)
̂Q1

̂Q2.
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Therefore, we need to express

dl
̂Q1

̂Q2
̂S

−1
3

d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di
̂Q1

̂Q2
d ωi

dl−i
̂S

−1
3 (ω)

d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.30)

Moreover, utilizing (8.30),

dl
̂S

−1
3

̂Q
′
2
̂Q

′
1A3(A

′
3
̂Q1

̂Q2
̂S

−1
2

̂Q
′
2
̂Q

′
1A3)

−1A′
3

d ωl

∣

∣

∣

∣

ω=0

=
l

∑

i=0

(

l
i

) di
̂S

−1
3

̂Q
′
2
̂Q

′
1

d ωi A3
dl−i (A′

3
̂Q1

̂Q2
̂S

−1
2

̂Q
′
2
̂Q

′
1A3)

−1

d ωl−i A′
3

∣

∣

∣

∣

∣

ω=0

. (8.31)

Since (A′
3
̂Q1

̂Q2
̂S

−1
2

̂Q
′
2
̂Q

′
1A3)

−1 equals (A′
3
̂Q2

̂Q1
̂S

−1
2 A3)

−1, the derivative

dl (A′
3
̂Q2

̂Q1
̂S

−1
2

̂Q
′
2
̂Q

′
1A3)

−1

d ωl A′
3

∣

∣

∣

∣

ω=0

is obtained from Appendix B, Theorem B.15 and (8.30). Finally,

dl
̂Q1

̂Q2
̂Q3

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di I−̂S
−1
3

̂Q
′
2
̂Q

′
1A3(A′

3
̂Q1

̂Q2
̂S

−1
2

̂Q
′
2
̂Q

′
1A3)−1

d ωi

dl−i
̂Q1

̂Q2
d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.32)

where the derivatives can be obtained from (8.27) and (8.31). Moreover, the
expression for ̂B3 implies that the derivative of

(A′
3
̂Q1

̂Q2
̂S

−1
3 (ω)̂Q

′
2
̂Q

′
1A3)

−1A′
3
̂Q1

̂Q2
̂S

−1
3 (ω) (8.33)

is needed and it can be obtained from (8.31) through post-multiplying by
A3(A

′
3A3)

−1.
The next theorem summarizes the calculations presented above.

Theorem 8.7 For the EBRM3
B presented in Definition 2.2, let the perturbation

be defined in (8.19), and under “full rank” assumptions the following perturbed
estimates will be considered:

̂B1(ω) = (A′
1S

−1
1 (ω)A1)

−1A′
1S

−1
1 (ω)(X − A2̂B2(ω)C2 − A3̂B3(ω)C3)C

′
1(C1C

′
1)

−1,

̂B2(ω) = (A′
2
̂Q1

̂S
−1
2 (ω)̂Q

′
1A2)

−1A′
2
̂Q1

̂S
−1
2 (ω)̂Q

′
1(X − A3̂B3(ω)C3)C

′
2(C2C

′
2)

−1,

̂B3(ω) = (A′
3
̂Q1

̂Q2
̂S

−1
3 (ω)̂Q

′
2
̂Q

′
1A3)

−1A′
3
̂Q1

̂Q2
̂S

−1
3 (ω)̂Q

′
2
̂Q

′
1XC ′

3(C3C
′
3)

−1,

n̂�(ω) = ̂S3(ω) + ̂Q
′
3
̂Q

′
2
̂Q

′
1XP C′

3
X′

̂Q1
̂Q2

̂Q3,
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where X, Cj and ̂Qj , j = 1, 2, 3, also are functions of ω, and S1, ̂Sj , j = 2, 3,
and ̂Qj , j = 1, 2, 3, are obtained from Theorem 3.2. Then

(i)

dl
̂B3(ω)

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di (A′
3
̂Q1

̂Q2
̂S

−1
3 (ω)̂Q

′
2
̂Q

′
1A3)

−1A′
3
̂Q1

̂Q2
̂S

−1
3 (ω)

d ωi

× dl−i XC′
3(C3C

′
3)

−1

d ωl−i

∣

∣

∣

∣

ω=0
, l > 0,

where the derivatives of (A′
3
̂Q1

̂Q2
̂S

−1
3 (ω)̂Q

′
2
̂Q

′
1A3)

−1A′
3
̂Q1

̂Q2
̂S

−1
3 (ω) are

obtained via (8.31) and
dl−i XC′

3(C3C
′
3)

−1

d ωl−i

∣

∣

∣

∣

ω=0
follows from Lemma 8.5 (ii);

(ii)

dl
̂B2(ω)

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di (A′
2
̂Q1

̂S
−1
2 (ω)̂Q

′
1A2)

−1A′
2
̂Q1

̂S
−1
2 (ω)

d ωi

× dl−i (XC ′
2(C2C′

2)
−1−A3̂B3(ω)C3C

′
2(C2C

′
2)

−1)

d ωl−i

∣

∣

∣

∣

ω=0
, l > 0,

where the derivatives of (A′
2
̂Q1

̂S
−1
2 (ω)̂Q

′
1A2)

−1A′
2
̂Q1

̂S
−1
2 (ω) are obtained

via (8.28),
dl XC′

2(C2C
′
2)

−1

d ωl

∣

∣

∣

∣

ω=0
follows from Lemma 8.5 (ii), and

dl C3C
′
2(C2C

′
2)

−1

d ωl

∣

∣

∣

∣

ω=0
follows from Lemma 8.5 (iii);

(iii)

dl
̂B1(ω)

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di (A′
1S−1

1 (ω)A1)−1A′
1S−1

1
d ωi

× dl−i (XC ′
1(C1C′

1)−1−A2̂B2(ω)C2C′
1(C1C ′

1)−1−A3̂B3(ω)C3C ′
1(C1C′

1)−1)

d ωl−i

∣

∣

∣

∣

ω=0
, l > 0,

where the derivatives of (A′
1
̂S

−1
1 (ω)A1)

−1A′
1
̂S

−1
1 (ω) are obtained via (8.25)

and (8.24),
dl−i XC ′

1(C1C
′
1)

−1

d ωl−i

∣

∣

∣

∣

ω=0
follows from Lemma 8.5 (ii), and

dl−i Cj C ′
1(C1C

′
1)

−1

d ωl−i

∣

∣

∣

∣

ω=0
, j = 2, 3, follow from Lemma 8.5 (iii);

(iv)

dln̂�(ω)

d ωl

∣

∣

∣

ω=0
= dlS3(ω)

d ωl

∣

∣

∣

ω=0

+
l

∑

i1=0

l−i1
∑

i2=0

(

l
i1

) di1 ̂Q
′
3
̂Q

′
2
̂Q

′
1

d ωi1

di2 XP C′
3
X′

d ωi2

dk−i1−i2 ̂Q1
̂Q2

̂Q3
d ωk−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

, l > 0,
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where di1 ̂Q
′
3
̂Q

′
2
̂Q

′
1

d ωi1

∣

∣

∣

∣

ω=0
and

dlXP C′
3
X′

d ωl

∣

∣

∣

∣

ω=0
follow from (8.32), which in turn is

based on several relations which need to be expressed, and on Lemma 8.5 (i),
respectively.

Example 8.6 In Example 6.7 the EBRM3
B of Example 1.9 was studied with respect

to outlying observations. In this example, data were generated and then a few obser-
vations were artificially altered in such a way that they clearly deviated from the
other observations. Now the same data are used to study influence among the obser-
vations and the following four contaminations will take place (with X = (Xi,j )):

(i) add 60 to (X5,30); (ii) add 60 to (X5,15); (iii) add 60 to (X5,5);
(iv) add 60 to the elements in x5, with x5 standing for the 5th column of X. (8.34)

In Example 6.7 the modified observations led to large residuals and, therefore, it
can be expected that the contaminated observations will also show up as influential
observations.

Although it is a straightforward task to derive the relevant expressions, the
calculations unfortunately become lengthy. Therefore, only the zero derivative
(i.e. the ith observation is omitted) and the first derivatives are presented in
some detail. The next formulas give the details necessary for deriving the results.
Instead of Sj (0) and Qj (0), we sometimes will write Sj0 and Qj0, j = 1, 2, 3,
respectively. Moreover, ̂�(0) and ̂Bj (0) are written as ̂�0 and ̂Bj0, j = 1, 2, 3. The
idea behind presenting the formulas given below is that readers who want to carry
out their own calculations can receive guidance as to what their expressions should
look like. Those who only are interested in seeing the consequences of the different
perturbations can jump directly to Tables 8.11 and 8.12, and their interpretations.

Let us start with the case where the ith observation is excluded from the analysis:

S10 = X0(I − PC′
1
)X′

0,

̂Q10 = I − S−1
10 A1(A

′
1S

−1
10 A1)

−1A′
1,

̂S20 = S10 + ̂Q
′
10X0(P C′

1
− PC′

2
)X′

0
̂Q10,

̂Q20 = I −̂S
−1
20

̂Q
′
10A2(A

′
2
̂Q10

̂S
−1
20

̂Q
′
10A2)

−1A′
2
̂Q10,

̂S30 = ̂S20 + ̂Q
′
20
̂Q

′
10X0(PC′

2
− P C′

3
)X′

0
̂Q10

̂Q20,

̂Q30 = I −̂S
−1
30

̂Q
′
20
̂Q

′
10A3(A

′
3
̂Q10

̂Q20
̂S

−1
30

̂Q
′
20
̂Q

′
10A3)

−1A′
3
̂Q10

̂Q20,

n̂�0 = ̂S30 + ̂Q
′
30
̂Q

′
20
̂Q

′
10X0PC′

3
X′

0
̂Q10

̂Q20
̂Q30,

̂B30 = (A′
3
̂Q10

̂Q20
̂S

−1
30

̂Q
′
20
̂Q

′
10A3)

−1A′
3
̂Q10

̂Q20
̂S

−1
30

̂Q
′
20
̂Q

′
10X0C

′
30(C30C

′
30)

−1,

̂B20 = (A′
2
̂Q10

̂S
−1
20

̂Q
′
10A2)

−1A′
2
̂Q10

̂S
−1
20 (X0 − A3̂B30C3)C

′
20(C20C

′
20)

−1,

̂B10 = (A′
1
̂S

−1
10 A1)

−1A′
1S

−1
10 (X0 − A2̂B20C2 − A3̂B30C3)C

′
20(C20C

′
20)

−1.
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The first derivatives (at the point ω = 0) of the above-mentioned quantities, i.e. S1,
̂θ1, ̂S2, ̂θ2, etc., will be presented and below are listed those results of Lemma 8.5
which are of use:

d0XP C′
j
X′

d ω0

∣

∣

∣

∣

∣

ω=0

= X0P C′
j0

X′
0,

dXP
C′

j
X′

d ω

∣

∣

∣

∣

∣

ω=0

= X0C
′
j0(Cj0C

′
j0)

−1CjiX
′
i

−X0C
′
j0(Cj0C

′
j0)

−1CjiC
′
ji (Cj0C

′
j0)

−1Cj0X
′
0 + XiC

′
ji (Cj0C

′
j0)

−1Cj0X
′
0,

d0XC′
j (Cj C′

j )−1

d ω0

∣

∣

∣

∣

ω=0
= X0C

′
j0(Cj0C

′
j0)

−1,

dXC ′
j (Cj C ′

j )−1

d ω

∣

∣

∣

∣

ω=0
= XiC

′
ji (Cj0C

′
j0)

−1 − X0C
′
j0(Cj0C

′
j0)

−1CjiC
′
ji (Cj0C

′
j0)

−1,

d0CkC
′
j (Cj C ′

j )−1

d ω0

∣

∣

∣

∣

ω=0
= Ck0C

′
j0(Cj0C

′
j0)

−1,

dCkC
′
j (Cj C′

j )−1

d ω

∣

∣

∣

∣

ω=0
= CkiC

′
ji (Cj0C

′
j0)

−1 − Ck0C
′
j0(Cj0C

′
j0)

−1CjiC
′
ji (Cj0C

′
j0)

−1.

Now, ̂Sj and ̂Qj , j = 1, 2, 3, are differentiated:

d S1(ω)
d ω

∣

∣

∣

ω=0
= (Xi − X0C

′
10(C10C

′
10)

−1C1i )()
′,

d̂Q1(ω)

d ω

∣

∣

∣

ω=0
= Ao

1(A
o′
1 S10A

o
1)

−1Ao′
1

dS1(ω)
d ω

Ao
1(A

o′
1 S10A

o
1)

−1Ao′
1 S10

∣

∣

∣

ω=0
,

d̂S2(ω)
d ω

∣

∣

∣

ω=0
= dS1(ω)

d ω

∣

∣

∣

ω=0
+ ̂Q

′
10X0(P C′

1
− P C′

2
)X′

0
d Q1(ω)

d ω

∣

∣

∣

ω=0

+̂Q10(
d XP

C′
1
X′

d ω

∣

∣

∣

∣

ω=0
− d XP

C′
2
X′

d ω

∣

∣

∣

∣

ω=0
)̂Q10

+ d̂Q
′
1(ω)

d ω

∣

∣

∣

∣

ω=0
X0(P C′

1
− PC′

2
)X′

0
̂Q10,

d̂Q1(ω)̂Q2(ω)

d ω

∣

∣

∣

ω=0
= I −̂S

−1
20

̂Q
′
10A2(A

′
2
̂Q10

̂S
−1
20

̂Q
′
10A2)
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2

d̂Q
′
1(ω)

d ω

∣

∣

∣

∣
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−1
2 (ω)̂Q

′
1(ω)A2(A′

2
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−1
2 (ω)̂Q

′
1(ω)A2)−1

d ω

∣

∣

∣

∣

ω=0
A′

2

with

d̂S
−1
2 (ω)̂Q

′
1(ω)A2(A′

2
̂Q1(ω)̂S

−1
2 (ω)̂Q

′
1(ω)A2)−1

d ω

∣

∣

∣

∣

ω=0

= ̂S
−1
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̂Q
′
10A2

d(A′
2
̂Q1(ω)̂S

−1
2 (ω)̂Q

′
1(ω)A2)−1

d ω

∣

∣

∣

∣

ω=0

− d̂S
−1
2 (ω)̂Q

′
1(ω)

d ω

∣

∣

∣

∣

ω=0
A2(A

′
2
̂Q10

̂S
−1
20

̂Q
′
10A2)

−1
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and

d̂Q1(ω)̂S
−1
2 (ω)

d ω

∣

∣

∣

∣

ω=0
= −̂Q10

̂S
−1
20

d̂S2(ω)
d ω

∣

∣

∣

ω=0
̂S

−1
20 + d̂Q1(ω)

d ω

∣

∣

∣

ω=0
̂S20,

d(A′
2
̂Q1(ω)̂S

−1
2 (ω)̂Q

′
1(ω)A2)−1

d ω

∣

∣

∣

∣

ω=0

= (A′
2
̂Q10

̂S
−1
20

̂Q
′
10A2)

−1A′
2

d̂Q1(ω)̂S
−1
2 (ω)̂Q

′
1(ω)

d ω

∣

∣

∣

∣

ω=0
A2(A

′
2
̂Q10

̂S
−1
20

̂Q
′
10A2)

−1;

̂Q1(ω)̂S
−1
2 (ω)̂Q

′
1(ω) is obtained since ̂Q1(ω)̂S

−1
2 (ω)̂Q

′
1(ω) = ̂Q1(ω)̂S

−1
2 (ω).

Moreover,

d̂S3(ω)
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∣

∣

∣
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∣

∣

∣
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∣
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∣

∣
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Having performed all these lengthy calculations, we are ready to find the first
derivative for ̂Bj , j = 1, 2, 3, and ̂�. From Theorem 8.7, it follows that:
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∣

∣

∣
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∣

∣

∣

∣

ω=0
,

d̂B1(ω)
d ω

∣

∣

∣

ω=0
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1S−1
1 (ω)bQ′
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−1
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′
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∣

∣

∣
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.

Concerning the derivatives of the estimates of the parameters, some of the
derivatives of the expressions given above have not been expressed. However,
all these derivatives where presented fully earlier in the example.

The data of the example were generated according to the model

E[X] = A1B1C1 + A2B2C2 + A3B3C3,

where B1 = (b1;ij ), i = 1, 2, 3, j = 1, 2, 3, B2 = (b2;k), k = 1, 2, and B3 = b3
(see Example 1.9). It is relevant in this connection to remember that the data consist
of three groups and the groups, respectively, consist of 10, 15 or 20 independently
distributed observations.

One can make a few comments on the results and first we focus our attention on
Table 8.11. The results are presented according to two alternatives. Alternative
1 shows the value of the statistic (the estimate or the first derivative of the
estimate) when the contaminated observation is processed, and Alternative 2 is
the average value of the statistic as calculated over all the individuals except for the
contaminated one.

The effect of adding a relatively large value to all the observations in x5 is for
d0

̂B1
dω0 visible in ̂b1;11(0), i.e. ̂b1;11(0) = 7.56 under Alternative 2. The parameter

b1;11 is the intercept of the group which individual #5 belongs to. Alternative 2
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Table 8.11 Let the data be generated as in Example 1.9

b1;11 b1;21 b1;31 b1;12 b1;22 b1;23 b1;13 b1;23 b1;33

d0
̂B1

dω0

Individual #5 has been contaminated, using (iii) in (8.34)

A1 0.038 0.175 0.018 0.129 0.010 0.033 0.187 0.009 −0.016

A2 0.038 0.172 0.020 0.129 0.011 0.032 0.187 0.008 −0.016

Individual #15 has been contaminated, using (ii) in (8.34)

A1 0.060 0.142 0.019 0.126 0.014 0.028 0.187 0.009 −0.016

A2 0.060 0.142 0.019 0.126 0.013 0.030 0.187 0.008 −0.016

Individual #30 has been contaminated, using (i) in (8.34)

A1 0.068 0.131 0.020 0.129 0.010 0.033 0.185 0.009 −0.017

A2 0.068 0.131 0.020 0.129 0.011 0.032 0.185 0.007 −0.016

Individual #5 has been contaminated, using (iv) in (8.34)

A1 0.063 0.136 0.019 0.129 0.010 0.033 0.187 0.009 −0.016

A2 7.56 0.132 0.021 −1.35 0.010 0.033 1.03 0.009 −0.016
d ̂B1
dω

∣

∣

∣

ω=0

Individual #5 has been contaminated, using (iii) in (8.34)

A1 −0.102 −2.90 28.1 −0.038 2.68 −13.5 0.000 0.000 0.000

A2 0.000 −0.000 0.000 −0.000 0.000 0.000 0.000 −0.000 0.000

Individual #15 has been contaminated, using (ii) in (8.34)

A1 0.016 0.230 −1.27 −0.374 −2.85 24.9 0.000 0.000 −0.000

A2 0.000 −0.000 0.000 −0.000 0.000 0.000 0.000 −0.000 0.000

Individual #30 has been contaminated, using (i) in (8.34)

A1 −0.173 1.610 −8.45 −0.177 1.65 −8.67 0.010 1.20 −0.594

A2 0.000 −0.000 0.000 −0.000 0.000 0.000 0.000 −0.000 0.000

Individual #5 has been contaminated, using (iv) in (8.34)

A1 6.69 −0.031 0.002 0.000 −0.000 0.000 −0.000 0.000 −0.000

A2 −0.14 0.000 0.000 −0.001 0.000 −0.000 0.000 −0.000 0.000

The contaminations in (8.34) are evaluated with the help of B1 in the EBRM3
B . Two statistics

are used, d0
̂B1

dω0 and d̂B1
dω

∣

∣

∣

ω=0
, where the perturbation scheme based on (8.19) is applied, and the

effects of the contaminations are presented according to two alternatives. Alternative 1 (A1) is the
value of the statistic when the contaminated observation is processed in the perturbation algorithm.
Alternative 2 (A2) is the average of the statistic when the perturbation algorithm is processed over
all the subjects, except for the contaminated subject, i.e. when 44 individuals are used. The columns
of the table represent B1 = (b1;ij )

shows up because the contaminated data are included in the calculation of the
average, i.e. each term is a function of the extreme observation. In contrast, in
Alternative 1, where only the effect of processing individual #5 is presented, there
should not be any effect and this is also the case.

Moreover, it can be observed when adding a large value to all the observations in

x5, the first derivative, d̂b1;11
dω

∣

∣

∣

ω=0
, is largest under Alternative 1, i.e. it equals 6.69,
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Table 8.12 Let the data be generated as in Example 1.9

b2;1 b2;2 b3 b2;1 b2;2 b3

d0
̂Bk (ω)

dω0
d ̂Bk(ω)

dω

∣

∣

∣

ω=0

Individual #5 has been contaminated, using (iii) in (8.34)

A1 −0.035 −0.070 0.085 A1 −37.4 17.2 0.173

A2 −0.036 −0.069 0.085 A2 −0.000 −0.000 −0.000

Individual #15 has been contaminated, using (ii) in (8.34)

A1 −0.034 −0.068 0.069 A1 1.65 −33.2 0.000

A2 −0.034 −0.069 0.069 A2 −0.000 −0.000 −0.000

Individual #30 has been contaminated, using (i) in (8.34)

A1 −0.035 −0.070 0.064 A1 10.7 11.0 −0.000

A2 −0.035 −0.069 0.064 A2 −0.000 −0.000 −0.000

Individual #5 has been contaminated, using (iv) in (8.34)

A1 −0.036 −0.070 0.066 A1 0.000 −0.000 −0.015

A2 −0.035 −0.070 0.064 A2 −0.000 0.000 0.000

The contaminations in (8.34) are evaluated with the help of Bk , k = 2, 3, in the EBRM3
B . Two

statistics are used, d0
̂Bk

dω0 and d̂Bk

dω
, k = 2, 3, where the perturbation scheme based on (8.19)

is applied, and the effects of the contaminations are presented according to two alternatives.
Alternative 1 (A1) is the value of the statistic when the contaminated observation is processed in
the perturbation algorithm. Alternative 2 (A2) is the average of the statistic when the perturbation
algorithm is processed over all the subjects, except for the contaminated subject, i.e. when 44
individuals are used. The columns of the table represent Bk = (bk;ij ), k = 2, 3

whereas under Alternative 2 it equals −0.14. Since this derivative measures the local
linear change, it is natural that its value under Alternative 1 should stand out.

Concerning the results of the contaminations, which are shown in Table 8.11,
there are no observable effects for the cases where a single observation has been
omitted (Alternative 1). However, concerning the local linear change, there are
effects on the estimates corresponding to the intercept and the sine and cosine
terms. There is information about the data which is included in the large values

for d̂B1
dω

∣

∣

∣

ω=0
, among other values we observe 28.1, 24.9, −13.5, −8.67, etc., but a

detailed study of these values is outside the scope of this chapter. In summary, it can
be concluded that with the help of the derivatives, the contaminated observations
are identified. It would also be interesting to examine the second order derivatives,
but we omit to do so here.

In Table 8.12 the influence of observations on the estimates of the parameters
B2 and B3 is presented. It appears that it is not possible to identify anything by
omitting observations, i.e. by putting ω = 0 in the expressions. However, if one

studies the derivative d ̂B2
dω

∣

∣

∣

ω=0
, then the contaminated observations are identified.

��
In Theorem 8.7 (iv), the derivative dl n̂�(ω)

d ωl

∣

∣

∣

ω=0
was presented and now this

subsection is ended with an alternative expression. Indeed, the result follows directly
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from Theorem 8.7 (i)–(iii). Note, similar to (8.16) for the BRM , that ̂� can be
decomposed as

n̂� = (X − A1̂B1C1 − A2̂B2C2 − A3̂B3C3)()
′

= XX′ −
3

∑

s=1

XC′
s
̂B

′
sA

′
s −

3
∑

s=1

As
̂BsCsX

′ +
3

∑

s=1

3
∑

t=1

As
̂BsCsC

′
t
̂B

′
tA

′
t , (8.35)

which verifies the next theorem.

Theorem 8.8 Consider the EBRM3
B presented in Definition 2.2 and assume that

the perturbation scheme is based on X = (X0,
√

ωXi ), C1 = (C10,
√

ωC1i ),
C2 = (C20,

√
ωC2i ), C3 = (C30,

√
ωC3i) and

n̂�(ω) = (X −
3

∑

s=1

As
̂Bs (ω)Cs)()

′,

where ̂Bs(ω) are perturbed versions of the estimates given by (8.20), (8.21)
and (8.22). Then

dln̂�(ω)

d ωl

∣

∣

∣

ω=0
= dlXX′

d ωl

∣

∣

∣

ω=0
−

3
∑

s=1

As

1
∑

i=0

(

l
i

)

dl−i
̂Bs(ω)

d ωl−i

∣

∣

∣

ω=0

diCsX
′

d ωi

∣

∣

∣

ω=0

−
3

∑

s=1

1
∑

i=0

(

l
i

) diXC′
s

d ωi

∣

∣

∣

ω=0

dl−i
̂B

′
s(ω)

d ωl−i

∣

∣

∣

∣

ω=0
A′

s

+
3

∑

s=1

3
∑

t=1

As

l
∑

i1=0

l−i1
∑

i2=0

(

l
i1

)(

l−i1
i2

)

dl−i1 ̂Bs(ω)

d ωl−i1

di2 CsC
′
t

d ωi2

dl−i1−i2̂B
′
t(ω)

d ωl−i1−i2

∣

∣

∣

∣

ω=0
A′

t .

For practical use, two identical versions (see Theorem 8.7 (iv)) of the first derivative
of the estimated dispersion matrix are given in the next corollary.

Corollary 8.4 For the perturbed version of ̂�, i.e. ̂�(ω), given in (8.35),

d n̂�(ω)
d ω

∣

∣

∣

ω=0
= XiX

′
i −

3
∑

s=1

(X0C
′
s0

d̂B
′
s(ω)

d ω

∣

∣

∣

∣

ω=0
+ XiC

′
si
̂B

′
s(0))A′

s

−
3

∑

s=1

As (
d̂Bs (ω)

d ω

∣

∣

∣

ω=0
Cs0X

′
0 + ̂B(0)CsiX

′
i )

+
3

∑

s=1

3
∑

t=1

As
d̂Bs (ω)

d ω

∣

∣

∣

ω=0
Cs0C

′
t0

d̂B
′
t(ω)

d ω

∣

∣

∣

∣

ω=0
A′

t

+
3

∑

s=1

3
∑

t=1

As
d̂Bs (ω)

d ω

∣

∣

∣

ω=0
CsiC

′
t i
̂B

′
t(0)A′

t + As
̂Bs(0)Cs0C

′
t0
̂B

′
t(0)A′

t ,
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which is identical to

d n̂�(ω)
d ω

∣

∣

∣

ω=0
= d̂S3(ω)

d ω

∣

∣

∣

∣

∣

ω=0

+ ̂Q
′
30
̂Q

′
20
̂Q

′
10X0P C′

30
X′

0
d̂Q1

̂Q2
̂Q3

d ω

∣

∣

∣

∣

∣

ω=0

+̂Q
′
30
̂Q

′
20
̂Q

′
10

dXP
C′

3
X′

d ω

∣

∣

∣

∣

ω=0

̂Q
′
10
̂Q

′
20
̂Q

′
30 + d̂Q

′
3
̂Q

′
2
̂Q

′
1

d ω

∣

∣

∣

∣

ω=0
X0PC′

30
X′

0
̂Q

′
10
̂Q

′
20
̂Q

′
30.

This section is concluded with a continuation of Example 8.6, where the effects
of the contaminations in (8.34) on the estimated dispersion matrix are studied via
Corollary 8.4.

Example 8.7 (Continuation of Example 8.6) In Table 8.13 the results of the
contaminations in (8.34) are presented. The influence pattern in Table 8.13 follows

the patterns of Tables 8.11 and 8.12; i.e. for d0 n̂�(ω)

d ω0 the influence measure is high

in Alternative 1 and low in Alternative 2, and for d1 n̂�(ω)

d ω1

∣

∣

∣

ω=0
it is vice versa. Since

Table 8.13 Let the data be
generated as in Example 1.9

Sig1 Sig2

d0n̂�(ω)

dω0

d n̂�(ω)
dω

∣

∣

∣

ω=0

Individual #5 has been contaminated, using (iii) in (8.34)

A1 65.8 A1 0.22

A2 0.026 A2 355

Individual #15 has been contaminated, using (ii) in (8.34)

A1 65.5 A1 0.21

A2 0.027 A2 340

Individual #30 has been contaminated, using (i) in (8.34)

A1 65.8 A1 0.21

A2 0.026 A2 129

Individual #5 has been contaminated, using (iv) in (8.34)

A1 3300 A1 0.48

A2 0.026 A2 4059

The contaminations in (8.34) are evaluated with the help

of � in the EBRM3
B . Two statistics are used, d0n̂�(ω)

dω0 and
dn̂�(ω)

dω
, where the perturbation scheme based on (8.19) is

applied, and the effects of the contaminations are presented
according to two alternatives. Alternative 1 (A1) is the
value of the statistic when the contaminated observation
is processed in the perturbation algorithm. Alternative 2
(A2) is the average of the statistic when the perturbation
algorithm is processed over all the subjects, except for the
contaminated subject, i.e. when 44 individuals are used. The
columns of the table represent the averages of the upper

triangles of d0n̂�(ω)

dω0 and dn̂�(ω)
dω

, which are denoted by Sig1
and Sig2, respectively
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the contaminated data comprise an outlier, the residuals should be affected, which
means that n̂� in turn should be affected, because the estimated dispersion matrix
is a function of the residuals. The main conclusion to be drawn from Table 8.13
is that the method for identifying influential observations (outliers) seems to work
very well. ��

8.5 Influence Analysis in the EBRM3
W

The EBRM3
W presented in Definition 2.3 is now treated using a procedure similar to

that used for the EBRM3
B . Among other similarities, only the perturbations in (8.19)

are implemented. Under suitable full rank conditions, the MLEs are given by (see
Theorem 3.3)

̂B1 = (A′
1
̂S

−1
3 A1)

−1A′
1
̂S

−1
3 (X − A2̂B2C2 − A3̂B3C3)C

′
1(C1C

′
1)

−1,

̂B2 = (A′
2
̂S

−1
2 A2)

−1A′
2
̂S

−1
2 (X − A3̂B3C3)Q1C

′
2(C2Q1C

′
2)

−1,

̂B3 = (A′
3S

−1
1 A3)

−1A′
3S

−1
1 XQ2C

′
3(C3Q2C

′
3)

−1,

n̂� = (X − A1̂B1C1 − A2̂B2C2 − A3̂B3C3)()
′

= ̂S3 + P ′
Ao

1,̂S−1
3

XP C ′
1
X′P

Ao
1,
̂S−1

3
,

where

S1 = XP 4X
′, ̂S2 = S1 + P ′

Ao
3,S−1

1
XP 3X

′P
Ao

3,S
−1
1

, (8.36)

̂S3 = ̂S2 + P ′
Ao

2,̂S−1
2

XP 2X
′P

Ao
2,̂S−1

2
, (8.37)

with

P 1 = P C ′
1
, P 2 = P Q1C

′
2
, P 3 = P Q2Q1C

′
3
, P 4 = P (C ′

1:C ′
2:C ′

3)
o , (8.38)

and

Q1 = P (C ′
1)

o , Q2 = P (C ′
1:C ′

2)
o .

Thus, in order to create influence measures, there is a need to differentiate per-
turbed versions of S1, ̂Si , i = 2, 3, XQ1C

′
2(C2Q1C

′
2)

−1, C3Q1C
′
2(C2Q1C

′
2)

−1

and XQ2C
′
3(C3Q2C

′
3)

−1, where the perturbation follows (8.19). Similar expres-
sions were differentiated when the EBRM3

B was treated, but for completeness, a
few details are presented below.
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We begin by differentiating C3Q1C
′
2(C2Q1C

′
2)

−1 and firstly C2Q1C
′
2 is

studied. Since Q1 = I − P C ′
1
,

dlC2Q1C′
2

d ωl

∣

∣

∣

∣

ω=0
= dlC2(I−C ′

1(C1C′
1)−1C1)C ′

2
d ωl

∣

∣

∣

∣

ω=0

= dlC2C ′
2

d ωl

∣

∣

∣

∣

ω=0
−

l
∑

i1=0

l−i1
∑

i2=l−i1−1

(

l
i1

)(

l−i1
i2

) di1 C2C′
1

d ωi1

di2 (C1C′
1)−1

d ωi2

dl−i1−i2 C1C′
2

d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

, (8.39)

where
dl(C1C

′
1)

−1

d ωl

∣

∣

∣

∣

ω=0
is obtained from Appendix B, Theorem B.15 (iii). The

expression for
dlXQ1C

′
2

d ωl

∣

∣

∣

∣

ω=0
is also needed and through the similarity with the

derivative given above, it follows that

dlXQ1C
′
2

d ωl

∣

∣

∣

∣

ω=0
= dlX(I−C ′

1(C1C′
1)

−1C1)C
′
2

d ωl

∣

∣

∣

∣

ω=0

= dlXC′
2

d ωl

∣

∣

∣

∣

ω=0
−

l
∑

i1=0

l−i1
∑

i2=l−i1−1

(

l
i1

)(

l−i1
i2

) di1XC ′
1

d ωi1

di2 (C1C
′
1)

−1

d ωi2

dl−i1−i2C1C
′
2

d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

. (8.40)

Hence,
dlXQ1C′

2(C2Q1C
′
2)

−1

d ωl

∣

∣

∣

∣

ω=0
should be expressed, i.e.

dlXQ1C
′
2(C2Q1C

′
2)

−1

d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) diXQ1C
′
2

d ωi

dl−i (C2Q1C
′
2)

−1

d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.41)

where more explicit expressions can be obtained by applying (8.39) and (8.40).
Similarly, C3Q1C

′
2(C2Q1C

′
2)

−1 can be mastered and

dlC3Q1C
′
2(C2Q1C

′
2)

−1

d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) diC3Q1C
′
2

d ωi

dl−i (C2Q1C
′
2)

−1

d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.42)

where

dlC3Q1C
′
2

d ωl

∣

∣

∣

∣

ω=0
= dlC3(I−C ′

1(C1C
′
1)−1C1)C

′
2

d ωl

∣

∣

∣

∣

ω=0

= dlC3C
′
2

d ωl

∣

∣

∣

∣

ω=0
−

l
∑

i1=0

l−i1
∑

i2=l−i1−1

(

l
i1

)(

l−i1
i2

) di1C3C
′
1

d ωi1

di2 (C1C
′
1)

−1

d ωi2

dl−i1−i2C1C
′
2

d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

.
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Expressions involving Q2 such as C3Q2C
′
3 and XQ2C

′
3 appear more compli-

cated to handle than (8.39) or (8.40), because Q2 is a function of C1 and C2, i.e. two
perturbed matrices instead of only one. However, mathematically, differentiating
C3Q2C

′
3 and differentiating C2Q1C

′
2 instead turn out to be the same problem, and

it can immediately be stated that

dlC3Q2C ′
3

d ωl

∣

∣

∣

∣

ω=0
= dlC3(I−(C ′

1:C′
2)((C ′

1:C′
2)′(C ′

1:C′
2))−1(C′

1:C ′
2)′)C′

3
d ωl

∣

∣

∣

∣

ω=0

= dlC3C ′
3

d ωl

∣

∣

∣

∣

ω=0

−
l

∑

i1=0

l−i1
∑

i2=l−i1−1

(

l
i1

)(

l−i1
i2

) di1 C3(C ′
1:C′

2)

d ωi1

di2 ((C′
1 :C′

2)′(C′
1 :C′

2))−1

d ωi2

dl−i1−i2 (C′
1 :C′

2)′C′
3

d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

, (8.43)

where
dl((C′

1:C ′
2)

′(C′
1:C ′

2))
−1

d ωl

∣

∣

∣

∣

ω=0
is obtained from Appendix B, Theorem B.15 (iii).

The expression for
dlXQ2C

′
3

d ωl

∣

∣

∣

∣

ω=0
is also needed and through the similarity with the

derivative given above, it follows that

dlXQ2C ′
3

d ωl

∣

∣

∣

∣

ω=0
= dlX(I−(C′

1:C ′
2)((C′

1 :C′
2)′(C′

1:C ′
2))−1(C ′

1:C′
2)′)C′

3
d ωl

∣

∣

∣

∣

ω=0

= dlXC′
3

d ωl

∣

∣

∣

∣

ω=0

−
l

∑

i1=0

l−i1
∑

i2=l−i1−1

(

l
i1

)(

l−i1
i2

) di1 X(C′
1 :C′

2)

d ωi1

di2 ((C ′
1:C′

2)′(C ′
1:C′

2))−1

d ωi2

dl−i1−i2 (C ′
1:C′

2)′C ′
3

d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

. (8.44)

Therefore,

dlXQ2C
′
3(C3Q2C

′
3)

−1

d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) diXQ2C
′
3

d ωi

dl−i (C3Q2C′
3)

−1

d ωl−i

∣

∣

∣

∣

∣

ω=0

(8.45)

is established, and can be explicitly expressed by utilizing (8.43) and (8.44). We also
need to differentiate XP 2X

′ and XP 3X
′, where P 2 and P 3 are given in (8.38), i.e.

dlXP 2X
′

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

diXQ1C
′
2(C2Q1C

′
2)

−1

d ωi

dl−iC2Q1X
′

d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.46)

dlXP 3X
′

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

diXQ2C
′
3(C3Q1C

′
3)

−1

d ωi

dl−iC3Q2X
′

d ωl−i

∣

∣

∣

∣

∣

ω=0

. (8.47)
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Since S1, ̂S2 and ̂S3 are involved in the estimates ̂B i , i = 1, 2, 3, and n̂�, the
matrices are now exploited. Put F ′

1 = (C′
1 : C′

2 : C′
3), F ′

10 = (C′
10 : C′

20 : C′
30)

and F ′
1i = (C′

1i : C′
2i : C′

3i ), where Ck0 and Cki , k = 1, 2, 3, are as in (8.19). Then
(compare with Lemma 8.1)

dl S1(ω)

d ωl

∣

∣

∣

ω=0
= dlX(I−P F ′

1
)X′

d ωl

∣

∣

∣

∣

ω=0
= (−1)l+1l!RiD

k−1
i R′

i , k ≥ 1, (8.48)

where

Di = F ′
1i (F 10F

′
10)

−1F 1i , Ri = Xi − X0F
′
10(F 10F

′
10)

−1F 1i .

Furthermore,

dl(A′
3S

−1
1 (ω)A3)

−1A′
3S−1

1 (ω)

d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di(A′
3S

−1
1 (ω)A3)

−1

d ωi A′
3

dl−iS−1
1 (ω)

d ωl−i

∣

∣

∣

∣

∣

ω=0

.(8.49)

Turning one’s attention to ̂S2, it is somewhat more complicated to perform the
necessary calculations, since P

Ao
3,S−1

1
is to be differentiated:

dlP
Ao

3 ,S
−1
1 (ω)

d ωl

∣

∣

∣

∣

∣

ω=0

= Ao
3

l
∑

i=0

di(Ao′
3 S1(ω)Ao

3)−1

d ωi Ao′
3

dl−iS1(ω)

d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.50)

where
dl(Ao′

3 S1(ω)Ao
3)−1

d ωl

∣

∣

∣

∣

ω=0
is obtained from Appendix B, Theorem B.15 (ii) and

(iii), and (8.48). Thus,

dl
̂S2(ω)

d ωl

∣

∣

∣

ω=0
= dl S1(ω)

d ωl

−
l

∑

i1=0

l−i1
∑

i2=0

(

l
i1

)(

l−i1
i2

)
di1P

Ao
3 ,S

−1
1 (ω)

d ωi1

di2XP 3X
′

d ωi2

dl−i1−i2P ′
Ao

3 ,S
−1
1 (ω)

d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

; (8.51)

the derivatives in this formula were presented in (8.47) and (8.50). It also follows
that

dl(A′
2
̂S

−1
2 (ω)A2)

−1A′
2
̂S

−1
2 (ω)

d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di(A′
2S

−1
1 (ω)A2)

−1

d ωi A′
2

dl−iS−1
1 (ω)

d ωl−i

∣

∣

∣

∣

∣

ω=0

.(8.52)
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The calculations of the derivative of̂S3(ω) are almost identical to the calculations
of the derivative of ̂S2(ω). Therefore,

dl
̂S3(ω)

d ωl

∣

∣

∣

ω=0
= dl

̂S2(ω)

d ωl

−
l

∑

i1=0

l−i1
∑

i2=0

(

l
i1

)(

l−i1
i2

)
di1 P

Ao
2 ,̂S

−1
2 (ω)

d ωi1

di2 XP 2X
′

d ωi2

dl−i1−i2 P ′
Ao

2 ,̂S
−1
2 (ω)

d ωl−i1−i2

∣

∣

∣

∣

∣

∣

ω=0

, (8.53)

where dlXP 2X
′

d ωl

∣

∣

∣

ω=0
is given by (8.46) and

dlP
Ao

2 ,̂S−1
2 (ω)

d ωl

∣

∣

∣

∣

∣

ω=0

= Ao
3

l
∑

i=0

di(Ao′
2 S2(ω)Ao

2)−1

d ωi Ao′
2

dl−i
̂S2(ω)

d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.54)

and
dl(A0

2
̂S2(ω)Ao

2)−1

d ωl

∣

∣

∣

∣

ω=0
is established via (8.51). Moreover,

dl(A′
1S

−1
3 (ω)A1)

−1A′
1S

−1
3 (ω)

d ωl

∣

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di(A′
1S

−1
3 (ω)A1)

−1

d ωi A′
1

dl−iS−1
3 (ω)

d ωl−i

∣

∣

∣

∣

∣

ω=0

, (8.55)

where the derivatives can be obtained through (8.53) and a few calculations.

Theorem 8.9 For the EBRM3
W presented in Definition 2.3, let the perturbation be

defined in (8.19), and then, under “full rank” assumptions, the following perturbed
estimates will be considered:

̂B1(ω) = (A′
1
̂S

−1
3 (ω)A1)

−1A′
1
̂S

−1
3 (ω)(X − A2̂B2(ω)C2 − A3̂B3(ω)C3)C

′
1(C1C

′
1)

−1,

̂B2(ω) = (A′
2
̂S

−1
2 (ω)A2)

−1A′
2
̂S

−1
2 (ω)(X − A3̂B3(ω)C3)Q1C

′
2(C2Q1C

′
2)

−1,

̂B3(ω) = (A′
3S

−1
1 (ω)A3)

−1A′
3S

−1
1 (ω)XQ2C

′
3(C3Q2C

′
3)

−1,

n̂�(ω) = (X − A1̂B1(ω)C1 − A2̂B2(ω)C2 − A3̂B3(ω)C3)()
′,

where X, Cj and Qj , j = 1, 2, also are functions of ω, and S1, ̂Si , i = 2, 3, and
Qj , j = 1, 2, are obtained from Theorem 3.3. Then

(i)

dl
̂B3(ω)

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di (A′
3S

−1
1 (ω)A3)

−1A′
3
̂S

−1
1 (ω)

d ωi

× dl−i XQ2C
′
3(C3Q2C

′
3)

−1

d ωl−i

∣

∣

∣

∣

ω=0
, l > 0,
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where the derivatives of (A′
3S

−1
1 (ω)A3)

−1A′
3S

−1
1 (ω) are obtained via (8.49)

and the derivative of XQ2C
′
3(C3Q2C

′
3)

−1 follows from (8.45);
(ii)

dl
̂B2(ω)

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

(l
i

) di (A′
2
̂S

−1
2 (ω)A2)

−1A′
2
̂S

−1
2 (ω)

d ωi

× dl−i XQ1C
′
2(C2Q1C

′
2)

−1−A3̂B3(ω)C3Q1C
′
2(C2Q1C

′
2)

−1

d ωl−i

∣

∣

∣

∣

ω=0
, l > 0,

where the derivatives of ̂B3 and (A′
2
̂S

−1
2 (ω)A2)

−1A′
2
̂S

−1
2 (ω) are obtained

via statement (i) and (8.52), respectively, and
dl−i XQ1C

′
2(C2Q1C′

2)
−1

d ωl−i

∣

∣

∣

∣

ω=0
and

dl−i C3Q1C
′
2(C2Q1C

′
2)

−1

d ωl−i

∣

∣

∣

∣

ω=0
follow from (8.41) and (8.42);

(iii)

dl
̂B1(ω)

d ωl

∣

∣

∣

ω=0
=

l
∑

i=0

(

l
i

) di (A′
1
̂S

−1
3 (ω)A1)−1A′

1
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3
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∣

∣

∣

∣

ω=0
,

l > 0,

where the derivatives of (A′
1
̂S

−1
3 (ω)A1)

−1A′
1
̂S

−1
3 (ω) are obtained via (8.55),

dl−i XC ′
1(C1C

′
1)

−1

d ωl−i

∣

∣

∣

∣

ω=0
follows from Lemma 8.5 (ii), the derivatives of ̂Bi , i =

1, 2, and
dl−i Cj C ′

1(C1C
′
1)

−1

d ωl−i

∣

∣

∣

∣

ω=0
, j = 2, 3, follow from statements (i) and (ii),

and Lemma 8.5 (iii);
(iv)

dln̂�(ω)
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∣

∣

∣
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= dlXX′
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∣

∣
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3
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l
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t ,

where the derivatives of ̂Bi , i = 1, 2, 3, are obtained from statements (i)–(iii),

and it is a straightforward task to determine di2CsC
′
t

d ωi2
.
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Problems

1 Using a BRM , construct a data set which includes masking effects. Verify the
existence of such effects.

2 In Corollary 8.1 the second derivative was presented for the MLE of the mean
parameter. Extend the result and derive the third derivatives for ̂B. Use the same
perturbation as that used in Theorem 8.1, and, in addition, use another one; see, for
example, Definition 8.3 (i) or (ii). Apply the results to a real data set.

3 Fit a BRM to the data in Example 1.5 and perform an influence analysis.

4 For the BRM , derive the basic derivatives for performing an influence analysis

for ̂D[̂B]. Determine whether there are any observations in the Potthoff and Roy

(1964) data set (Table 1.2) which can be deemed to be influential on ̂D[̂B].
5 Based on the Potthoff and Roy (1964) data set (Table 1.2), carry out an influence
analysis for the case where pairs of observations are perturbed.

6 Conduct an influence analysis of the MLE ̂�, with the help of Perturbation (ii) in
Definition 8.3, using the Potthoff and Roy (1964) data set.

7 Generate data according to an EBRM2
B . Firstly, contaminate a few observations

and determine whether these observations are influential. Secondly contaminate the
data so that some of the contaminated observations are influential and some are not
influential.

8 Choose a suitable perturbation and derive basic equations for performing an
influence analysis in a GMANOVA+MANOVA model.

9 For Theorem 8.9 (i)–(iv), present explicit expressions for the cases where l = 0
and l = 1.

10 For the EBRM3
W , use the statement that

n̂� = ̂S3(ω) + P ′
Ao

1,̂S−1
3 (ω)

XP C ′
1
X′P

Ao
1,̂S−1

3 (ω)
.

Derive an influence measure, which is based on a suitable chosen perturbation
scheme, and which can be of use when discussing influence on n̂�.

Literature

“Influential observations” is a relatively new concept, although it must have existed
informally for a long time. It has been a common knowledge among statisticians,
among others, that different observations have different impacts on the analysis.
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This has led to the development of statistical research areas such as “design of
experiments” and “optimal design”. According to Anscombe (1960), for more than
100 years the deletion of outliers has frequently been discussed. Anscombe (1960)
provided a historical survey of this topic, but no real traces have been found of what
we may classify as influence analysis. Beckman and Cook (1983) include many
references, in particular historical references on the deletion of outliers. Moreover, a
short but informative discussion about the deletion of outliers is provided by Kruskal
(1960). It is interesting to note that Kruskal writes, “My own practice in this sort of
situation is to carry out an analysis both with and without the suspect observations.
If the broad conclusions of the two analyses are quite different, I should view any
conclusions from the experiment with very great caution”. This clearly means that
Kruskal was interested in the influence of outlying observations, although he did
not take the leverage (the deviation due to the design) into account. However, when
studying the interesting paper by Tukey (1962) on “data science”, it is notable that
one cannot find any mentioning of influence analysis, meaning that the concept
of influence was not yet in circulation at that time. Concerning the analysis of
data, see Huber (2011), where many important aspects of model validation are
presented. An interesting source for early references on outliers and the rejection of
multivariate outliers is Wilks (1963) (see also Caroni and Prescott, 1991). Among
other publications, Wilks mentioned papers by Thompson (1935) and Pearson and
Chandra Sekar (1936), where the rejection of outliers was discussed. Moreover,
important facts about influential observations, from a historical perspective, have
been provided by Farebrother (1999).

As mentioned above, there had been several articles which had discussed the
identification of outliers (large residuals) when Anscombe and Tukey (1963) wrote
a seminal article on how to utilize residuals in order to perform model validation (for
related interesting articles, see Yates et al. (1957), Anscombe (1967) and Wooding
(1969)). The ideas of Anscombe and Tukey (1963) have been implemented in
modern statistical analysis, in particular in the analysis of least squares (in univariate
regression analysis and univariate analysis of variance). Another interesting article
including a number of relevant references was written by Gentleman and Wilk
(1975a), who provided advice on how to use residuals in two-way tables, especially
when more than one outlier exist (see also Gentleman and Wilk 1975b). John and
Draper (1978) provided comments on the articles by Gentleman and Wilk (1975a,b).
There is also a considerable body of literature on testing for large residuals; for
example, see Srikantan (1961) and Prescott (1975) (in the latter article many
references can be found). Newer references concerning the identification of outliers
are Atkinson and Riani (2000) and Riani et al. (2009) (see also Cerioli et al., 2011).

After the articles published in the 1960s, it was observed that the variances
of residuals, which in linear models are functions of the design matrices, bear
information about the model fit (e.g. see Behnken and Draper, 1972). Wood (1973)
(see also Gentleman and Wilk, 1975b) suggested that one should use individual
residual analysis and study the influence on estimates. These ideas are similar to
what is meant today by influence analysis. In the second half of the 1970s, several
important articles addressed the problem of deciding if outliers were influential,



8.5 Influence Analysis in the EBRM3
W 415

i.e. important for the analyses which had been carried out, although it was an
acknowledged fact that outliers do not necessarily have an impact on estimates, for
example. Cook (1977) (see also Cook, 1979) combined information based on large
residuals and leverage in his measure of influence, while Andrews and Pregibon
(1978) were inspired by ideas from the design of experiments and introduced a
selection operator which would operate on a specific ratio. Furthermore, Andrews
and Pregibon addressed the problem of masking (see also Atkinson, 1986; Fung,
1993). Draper and John (1981) combined and extended the achievements of Cook
and Andrews and Pregibon. In an interesting article, Pregibon (1981) mainly
considered a logistic regression model. However, in the article, Pregibon devoted
some attention to a review of influence analysis in linear models and introduced the
idea of perturbing the original model for all the observations, one by one, although
his treatment of these topics represented a minor part of the article. In Gentleman
and Wilk (1975b), an additive perturbation was carried out and those observations
which, after the perturbation, were found to have a pronounced impact were deemed
to be influential. This particular perturbation approach may be called the mean shift
approach (e.g. see also Wei and Fung, 1999). A specific problem in this connection
is that one has to find the distribution of the largest shift.

In the 1980s, the so-called empirical influence function was introduced and it was
based on special choices of the perturbation quantity (e.g. see Cook and Weisberg,
1980). Influence analysis was thereby connected to the influence function used in
robust statistics. Two books which include the above-mentioned topics are Belsley
et al. (1980) and Cook and Weisberg (1982) (see also the interesting review by
Beckman and Cook (1983)). Chatterjee and Hadi (1986) summarized and discussed
many of the ideas and techniques which had emerged until the mid-1980s. Their
article from 1986 was published together with comments and critical evaluations by
Cook, Atkinson, Welsch, Brant, Hoaglin and Kempthorne, Velleman and Weisberg,
and the article, comments and evaluations, taken together, make a very interesting
contribution to statistical science (see also Chatterjee and Hadi, 1988). Lawrance
(1995) presented a fundamental article about case deletion where the concepts of
masking and swamping were considered.

Another seminal work was an article written by Cook (1986) (including com-
ments by Atkinson, Beckman, Cox, Critchley, Farebrother, Lawrance, Loynes,
Nachtsheim, Pẽna, Prescott, Ross, Tsai and Weisberg). In this article Cook intro-
duced differential geometric thinking in his search for general methods for finding
influential observations (see also Fung and Kwan, 1997). On the basis of a
perturbation scheme, Cook perturbed the likelihood and introduced an influential
graph which was evaluated. His evaluation of the graph led to an influential approach
which was called local influence analysis. Besides the technical presentation, Cook
(1986) also included a broad spectrum of references. Beckman et al. (1987) applied
Cook’s approach to the analysis of mixed linear models. Some new references
dealing with influence analysis in mixed linear models are Lesaffre and Verbeke
(1998), Shi and Ojeda (2004), Chen et al. (2010) and Pan et al. (2014), where many
references to previous works can be found. A newer book which considers outlying
observations from different points of view is that by Barnett and Lewis (1994).
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The above presentation of literature on outlier detection and influential observa-
tions is not complete, but is meant to provide an introduction to the publications
in this subject field and is mostly oriented towards univariate linear models. In
recent years, influence analysis has been considered in other types of statistical
analysis, including survival analysis, time series analysis, influence and missing
data, machine learning approaches, etc., but literature on these topics will not
be reviewed and only a few references will be given below. There are also
close connections between the literature on influence analysis and that on robust
statistics, which deals with topics such as the influence curve, samples and empirical
influence curves; see Cook and Weisberg (1982) and Tanaka and Zhang (1999).
Moreover, concerning multiple outlier observations and robust statistics see Rocke
and Woodruff (1996) and Penã and Prieto (2001), where many references are also
given. An interesting work which promoted the use of the sensitive function instead
of the influence curve was that written by Critchley et al. (2001) (see also Kim,
1996).

For generalizations of influence measures useful for univariate least squares to
influence measures suitable for multivariate response modelling (MANOVA), with
a focus on case deletion, see an interesting article by Barrett and Ling (1992) where
several influence measures are suggested and, among other topics, their relation to
the univariate work carried out by Cook (1977, 1979) and Andrews and Pregibon
(1978) is discussed. There are also a few other earlier works on influence analysis
in multivariate models, for example Hossain and Naik (1989). In a well-written
article, Liski (1991) extended the area of application for some case deletion results
to include the analysis of growth curves (BRM). Pan and Fang (1995, 1996) and Pan
(2004) continued Liski’s work and considered a multiple-individual-deletion model
and a mean-shift-regression model (see also Srivastava and von Rosen (1998),
which, additionally, included several older references), as well as the generalized
Cook’s distance. A new idea in outlier detection was presented by Pan et al. (2000),
who applied projection pursuit to multivariate data and thereafter were able to apply
univariate ideas. Pan (2002) discussed, in connection with the BRM , a generalized
Cook’s distance, generalized Welsch-Kuh’s Statistic, generalized Cook-Weisberg’s
statistic, generalized Andrew-Pregibon’s statistic, among other topics.

Cook (1986), as already has been mentioned, introduced the local influence
approach, of which case deletion is a special case, and since then a huge number
of authors have followed and modified Cook’s ideas, often depending on specific
applications. Thorough reviews of the concept were presented by Escobar and
Meeker (1992), Fung and Tang (1997), Poon and Poon (1999) and González Sierra
and Suárez Rancel (2001). One problem with the local influence approach is that
it is not scale-invariant (see Schall and Dunne 1992; Poon and Poon, 1999). Schall
and Dunne (1992) and Farebrother (1992) considered collinearity diagnostics and
influence, in particular, the condition number and the variance inflation statistic, a
concept from the 1970s. Concerning references dealing with local influence and the
MANOVA model, see Kim (1995) and Liu (2002). The following references on local
influence and the BRM are recommended: Pan and Fang (1995, 1996), Pan et al.
(1996, 1997, 1999), Bai (1999), and You and Mao (2000) and the book by Pan and
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Fang (2002). This book also includes a good introduction to influence analysis, as
well as appropriate references. Local influence and discriminant analysis have been
considered by Fung (1996) and Riani and Atkinson (2001), among others, local
influence and principal component analysis by Shi (1997), local influence analysis
and structural equation models by Lee and Wang (1996), local influence analysis
in generalized linear modelling and non-linear regression modelling by Thomas
and Cook (1990) and St. Laurent and Cook (1993), respectively (see also Wei
et al., 1998), and local influence analysis and regression transformation by Lawrance
(1988)).

Moreover, Cook (1986) proposed using the likelihood displacement criterion
to study influence. However, over the years, other suggestions have appeared.
In particular, in a Bayesian setting the Kullback-Leibler divergence has been
applied, for example see McCulloch (1989), Pan et al. (1996) and Pan and Fung
(2000). Other works treating influence analysis within a Bayesian framework are
Johnson and Geisser (1983, 1985), Guttman and Peña (1993), Pan et al. (1999),
Bai and Fei (2000) and Zhu et al. (2011); Zhu et al. (2011) also includes many
references. Escobar and Meeker (1992) discussed Taylor series expansions of the
likelihood displacement and different types of perturbations (see also Gu and Fung,
2001). Indeed, the influence analysis in the present book is based on different
perturbation schemes and Taylor series expansions which were applied for the
BRM by von Rosen (1995). Connected to the Taylor series expansion is the so-
called derivative influence (e.g. see De Gruttola et al., 1987). In most studies where
perturbations take place, case-weighted perturbations are applied. An important
article which considers the case-weighted approach is that written by Zhu and Zhang
(2004), but its focus is slightly different from that in many other articles. Usually
the aim is to find “extreme” observations relative to a given model, but in Zhu and
Zhang (2004) the aim is to investigate the model (see also Billor and Loynes, 1993).
A precise discussion of the impact of chosen perturbation schemes was provided for
a Bayesian setting by Geisser (1992) and for a non-Bayesian setting by Hao et al.
(2014, 2015), who worked with balanced cross-over studies.
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Appendices

There are three appendices to this book. The notation is presented in Appendix A,
while in Appendix B many technical results are compiled and for their proofs the
reader is mostly referred to other publications. At the end of Appendix B, a number
of exercises are provided which the reader can use to practise what they have learnt.
Finally, Appendix C presents some material on the approximation of the distribution
of the likelihood ratio test which is used in Chap. 7. Note that the references cited in
the appendices are listed after Appendix C in the section “References”.

Appendix A: Notation

This appendix presents the notation and abbreviations used in the book.

A.1 Abbreviations

• BRM = bilinear regression model
• EBRM = extended bilinear regression model
• e.g. = for example
• GMANOVA = generalized multivariate analysis of variance
• i.e. = that is
• i.i.d. = independent and identically distributed
• MANOVA = multivariate analysis of variance
• MINQUE = minimum norm quadratic unbiased estimation
• MLE = maximum likelihood estimator (estimate)
• p.d. = positive definite
• p.s.d. = positive semi-definite
• SUR = seemingly unrelated regression
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A.2 Vectors and Matrices

Throughout the book, all the vectors and matrices are real-valued and of finite
size.

• Lowercase boldface letters denote vectors, e.g. x is a vector and x: p × 1 is a
vector of size p (sometimes written as x ∈ R

p).
• Uppercase boldface letters denote matrices, e.g. X is a matrix and X: p × q is a

matrix with p rows and q columns (sometimes written as X ∈ R
p×q ).

• Xo denotes an observation of the random matrix X.
• Sometimes a matrix is described via its elements, e.g. A = (aij ).

A.3 Loewner (Löwner) Order

Let A and B be symmetric matrices. Then the expression A ≥ B is used if A − B

is positive semi-definite, and A > B if A − B is positive definite.

A.4 Partitioned Matrices

• Two matrices of a proper size which are put side by side represent a partitioned
matrix (augmented matrix), and this expressed using the following type of
formula A = (A1 : A2).

• If Ai , i = 1, 2, in the above statement are vectors, then A = (a1, a2) can also be
used.

• Sometimes block matrices are convenient objects to work with, e.g.

A =
(

A11 A12

A21 A22

)

,

where the included matrices are supposed to be of proper sizes.

A.5 Special Vectors and Matrices

• Parameters are usually denoted with the help of the Greek alphabet. Parameter
vectors are usually denoted by letters from the Greek alphabet, lowercase
boldface. Parameter matrices are usually denoted by letters from the Greek
alphabet, uppercase boldface, with the exception that the capital B is used instead
of capital β .

• The vector of p ones is denoted by 1p or just 1.
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• The null vector and null matrix are both denoted by 0 and sometimes a subindex
indicates the size of the matrix.

• The identity matrix I is a matrix with 1 on the main diagonal and 0 elsewhere.
The identity matrix of size a × a is sometimes denoted by I a .

• Ad is a diagonalized matrix of A; i.e. the off-diagonal elements are put to 0,
whereas the diagonal elements are kept as they were.

• The unit (standard) basis ei , of size p, is the ith column of Ip. Sometimes dj ,
f k and gl , etc. are used together with ei .

• The upper triangular matrix T = (tij ) is defined as T = ∑

i≤j tij eie
′
j .

• The strictly upper triangular matrix T = (tij ) is defined as T = ∑

i<j tij eie
′
j .

• The lower triangular matrix T = (tij ) is defined as T = ∑

i≥j tij eie
′
j .

• The strictly lower triangular matrix T = (tij ) is defined as T = ∑

i>j tij eie
′
j .

• The orthogonal matrix � is a square matrix satisfying ��′ = I . This implies that
� is of full rank and �′� = I .

• The semi-orthogonal matrix �: p × q is a matrix satisfying ��′ = Ip or �′� =
I q .

• The commutation matrix Kp,q is defined by

Kp,q =
∑

i,j

eid
′
j ⊗ dje

′
i ,

where ei and dj are unit basis vectors of size p and q , respectively. The
Kronecker product ⊗ is defined in Sect. A.6 below.

• A square matrix P is idempotent, i.e. P is a projector, if PP = P .
• A matrix V is positive definite, which sometimes is denoted V > 0, if and only

if V = XX′ for some square matrix X of full rank.
• A matrix V is positive semi-definite, which sometimes is denoted V ≥ 0, if and

only if V = XX′ for some matrix X.

A.6 Special Matrix Operators

• The transpose of a matrix is denoted by ′. For example, the transpose of A is
defined through A′ = (aji), if A = (aij ).

• If V V −1 = I = V −1V , then V −1 is the inverse of V .
• If AA−A = A, then A− is a g-inverse of A.
• One special g-inverse is the Moore-Penrose inverse A+, defined through the

following four conditions: AA+A = A, A+AA+ = A+, (AA+)′ = AA+
and (A+A)′ = A+A.

• The square root of V , which is p.d., is denoted by V 1/2. It is any symmetric
matrix satisfying V = V 1/2V 1/2.

• The rank of a matrix is denoted by r(•) and is the largest number of linearly
independent columns (rows) of the matrix.
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• The trace is denoted by tr{•} and defined through tr{A} = ∑

i aii , where A =
(aij ) is a square matrix.

• The trace distance or Frobenius norm (squared) for arbitrary matrices A and B,
which are of proper size, is defined through ||A − B|| = tr{(A − B)(A − B)′}.

• The determinant of a square matrix A: m × m is denoted |A| and is defined by

|A| =
∑

j1,...,jm

(−1)N(j1,...,jm)
m
∏

i=1

aiji ,

where the summation is taken over all the different permutations (j1, . . . , jm) of
the set of integers of {1, 2, . . . ,m}, and where N(j1, . . . , jm) is the number of
inversions of the permutations (j1, . . . , jm) (for details, consult an introductory
course book).

• The Hadamard product (element-wise product) of A = (aij ) and B = (bkl),
where A and B are of the same size, is denoted by � and defined through A �
B = (aij bij ).

• The Kronecker product of A = (aij ) and B = (bkl) is denoted ⊗ and defined
through A ⊗ B = (aijB).

• The Kroneckerian power A⊗k is identical to A ⊗ A ⊗ · · · ⊗ A
︸ ︷︷ ︸

k t imes

.

• The vec-operator is denoted by vec(•) and is defined through

vec : A =
∑

ij

aij eid
′
j →

∑

ij

aijdj ⊗ ei ,

where ei and dj are standard basis vectors of proper sizes.
• The block diagonal operator is defined by

diag(A1,A2, . . . ,Ap) =

⎛

⎜

⎜

⎜

⎝

A1 0 . . . 0
0 A2 . . . 0
...

...
...

...

0 0 . . . Ap

⎞

⎟

⎟

⎟

⎠

.

A.7 Special Notation for Projections and Squared Expressions

For projectors we use the following notation:

• P A = A(A′A)−A′;
• P A,V = A(A′V −1A)−A′V −1, V is p.d;
• P A,V,B = A(A′BV −1B ′A)−A′BV −1B ′, V is p.d.
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The first two expressions are projectors on C(A) (see Sect. A.8 below) and the
third expression can be a projector under some condition on A and B. In the
first expression the standard inner product is assumed to hold, and in the second
expression an inner product defined by (x, y) = x′V −1y is assumed to hold.
Moreover, P A and P A,V are idempotent matrices (see Sect. A.5).

Since we are often working with quadratic forms, the following notation is useful
for shortening matrix expressions:

• (A)(A)′ can be written as (A)()′.
• (A)V (A)′ can be written as (A)V ()′.

A.8 Linear and Multilinear Spaces

• ⊆, ⊕ and � denote “is a subspace of”, “is a direct sum of” and “is an orthogonal
sum of”, respectively.

• V,W, . . . denote linear spaces.
• The column vector space C(A), where A: p × q , is defined through C(A) = {a :

a = Az, z ∈ Rq }.
• dim C(A) = r(A) (sometimes dim{C(A)} is used).
• The null space N (A), where A: p × q , is defined through N (A) = {a : Aa =

0, a ∈ Rq }.
• The space CV (A) denotes a column vector space with an inner product defined

through the positive definite matrix V ; i.e. for any pair of vectors x and y, the
operation x′V −1y holds. If V = I , instead of CI (A) one writes C(A).

• The orthogonal complement to CV (A) is denoted by CV (A)⊥ and is generated
by all the vectors orthogonal to all the vectors in CV (A); i.e. for an arbitrary
a ∈ CV (A), all the y satisfying y′V −1a = 0 generate the linear space (column
vector space) CV (A)⊥.

• Ao is any matrix satisfying C(Ao) = C(A)⊥.
• The tensor space of CV (A) and CW(B) is denoted by CV (A)⊗CW(B) and defined

as

CV (A) ⊗ CW (B) = CV ⊗W(A ⊗ B), (A.8)

where, on the right-hand side, the Kronecker product is used.

A.9 Basic Distributions

• “X ∼” means that X is distributed as and
a∼ denotes approximately distributed.

• The multivariate normal distribution is denoted by Np(μ,�), where μ: p × 1 is
the mean and �: p × p is the dispersion matrix. If p = 1 we have the univariate
normal distribution and then the index p in Np(μ,�) is omitted.
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• The multivariate matrix normal distribution is denoted by Np,n(μ,�,�) where
μ: p × n, �: p × p and �: n × n. If X ∼ Np,n(μ,�,�) its distribution is
identical to vecX ∼ Npn(vecμ,� ⊗ �).

• The random variable u is chi-squared distributed with n degrees of freedom if
and only if u = x′x, for some x ∼ Nn(0, I ), which will be denoted by u ∼ χ2

n .
There exist more general definitions comprising non-integer degrees of freedom.
The equation in xo, P(χ2

n ≤ xo) = β, can be written χ2
β(n) = xo, which defines

the β-percentile χ2
β(n).

• The random matrix W is Wishart-distributed with n degrees of freedom if and
only if W = XX′, for some X ∼ Np,n(0,�, I ), which is denoted by W ∼
Wp(�, n). There exist more general definitions based on the Laplace transform.

• The random variable F is F -distributed with m and n degrees of freedom, which
is denoted by F ∼ Fm,n, if and only if F = u/v, for some u ∼ χ2(m),
v ∼ χ2(n), where u and v are independently distributed. The equation in xo,
P(Fm,n ≤ xo) = β, can be written Fβ(m, n) = xo, which defines the β-
percentile Fβ(m, n).

• The β-distribution is denoted by β ∼ β(m, n) and defined via its density (see
also Sect. A.10)

fβ(xo) =

⎧

⎪

⎨

⎪

⎩

�(
1
2 (m+n))

�(
1
2m)�(

1
2n)

x

1
2 m−1
o (1 − xo)

1
2 n−1

, 0 < x < 1, m, n ≥ 1,

0 elsewhere.

• If W ∼ Wp(�, n) and n ≥ p, the inverse exists with probability 1 and W−1 is
said to follow the inverse Wishart distribution. If the Wishart density exists, it is
a straightforward task to derive the density for the inverted Wishart distribution.

• Let W 1 ∼ Wp(I , n), p ≤ n, and W 2 ∼ Wp(I ,m), p ≤ m, be independently
distributed. Then

F = (W 1 + W 2)
−1/2W 2(W 1 + W 2)

−1/2

is said to follow a multivariate β-distribution of type I, which is denoted by
MβI (p,m, n).

• Let W 1 ∼ Wp(I , n), p ≤ n, and W 2 ∼ Wp(I ,m), p ≤ m, be independently
distributed. Then

F = W
−1/2
2 W 1W

−1/2
2

is said to follow a multivariate β-distribution of type II, which is denoted by
MβII (p,m, n).
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A.10 Density and Moments of Specific Distributions

• fX(Xo) denotes the density for a random matrix X.
• The density of a matrix normal variable X ∼ Np,n(μ,�,�) equals

fX(Xo) = (2π)−pqn/2|�|−p/2|�|−n/2exp(−1/2tr{�−1(Xo − μ)�−1(Xo − μ)′}).

• The Wishart density equals (W ∼ Wp(�, n))

fW (W 0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c(p, n)|�|−n/2|W 0|(n−p−1)/2exp(−1/2tr{�−1W 0}), W 0 > 0,

0 elsewhere,

where c(p, n)−1 = 2pn/2�p(n
2 ) and �p(n

2 ) = πp(p−1)/4 ∏p

i=1 �( 1
2 (n + 1 − i)).

• The multivariate β-distribution of type I (MβI (p,m, n)) has a density which
equals

fF (F 0) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c(p,n)c(p,n)
c(p,n+m)

|F 0|(m−p−1)/2|I − F 0|(n−p−1)/2, |I − F 0| > 0, |F 0| > 0,

0 elsewhere;

c(p, n) is the same constant as in the Wishart density.
• The Kotz-type distribution for x of size p is defined through the following density

(c is a normalizing constant):

fx(xo) = c(x′x)N−1exp{−r(x′x)s}, r, s > 0, 2N + p > 2.

• The matrix Kotz-type distribution for X is defined through vecX, which should
follow a Kotz-type distribution.

• The characteristic function of a random unstructured matrix X: p ×n is given by
(i is the imaginary unit)

ϕX(T ) = E[ei tr{T ′X}], T ∈ R
p×n.

• The cumulant function of a random unstructured matrix X: p × n is given by

ψX(T ) = ln ϕX(T ), T ∈ R
p×n.

• Expectation: E[X] = (E[xij ]).
• Dispersion: D[X] = E[vec(X − E[X])vec′(X − E[X])].
• Covariance: C[X,Y ] = E[vec(X − E[X])vec′(Y − E[Y ])].
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Let the matrix derivative dk Y

d Xk be as in Definition 5.1.

• Suppose that ϕX(T ) is k times differentiable. Then the kth moment mk[X] is
given by

mk[X] = 1

ik
dk

d T k
ϕX(T )

∣

∣

∣

∣

T =0
.

• Suppose that ψX(T ) is k times differentiable. Then the kth cumulant ck[X] is
given by

ck[X] = 1

ik
dk

d T k
ψX(T )

∣

∣

∣

∣

T =0
.

• Suppose that ϕX(T ) is k times differentiable. Then the kth central moment
mck[X] is given by

mck[X] = mk[X − E[X]] = 1

ik
dk

d T k
ϕX−E[X](T )

∣

∣

∣

∣

T =0
.

A.11 Convergence

• Convergence in distribution (in law; weakly) can be defined in the following way:
Let F(x) and Fn(x), n = 1, 2, . . . , be distribution functions. The sequence
F1, F2, . . . converges in distribution if for each continuity point x of F(x),
limn→∞ Fn(x) = F(x), where x can be scalar or vector-valued (matrix-valued).

Convergence in distribution is denoted by
D→.

• Convergence in probability can be defined in the following way.
Let X and Xn, n = 1, 2, . . . , be random matrices. The sequence X1,X2, . . .

converges in probability to X if for every ε > 0, limn→∞ P(ρ(Xn,X) > ε) = 0,
where ρ(•, •) is the Euclidean distance. Convergence in probability is denoted

by
P→.

A.12 Limits

• If a positive constant m exists, such that |f (ε)| ≤ m|g(ε)| for all ε in the
neighbourhood of zero, then f (ε) = O(g(ε)) as ε → 0.

• If limε→0
f (ε)
g(ε)

= 0, then f (ε) = o(g(ε)) as ε → 0.
• A sequence of random variables X1,X2, . . . , Xn is bounded in probability if,

given ε > 0, there exist constants m and n0 such that P(|Xn| > m) ≤ ε
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for all n ≥ n0. This is denoted by Xn = Op(1). If anXn = Op(1), then
Xn = Op(a−1

n ). A sequence of random vectors x1, x2, . . . , xn is bounded in
probability if xi1, xi2, . . . , xin is bounded in probability for each i.

• If a sequence of random vectors x1, x2, . . . , xn converges to zero in probability,
this is denoted by xn = o(1). If anxn = o(1), then xn = o(a−1

n ).

Note that the last two statements also hold for matrices, because any matrix can be
vectorized.

A.13 Hermite Polynomials

Let X ∼ Np,n(μ,�,�) and let fX(Xo) be its density evaluated at Xo. Moreover,

let the derivative dkfX(Xo)

dXk
o

be defined in Lemma 5.1. Then

dkfX(Xo)

dXk
o

= (−1)kH k(Xo,μ,�,�)fX(Xo),

for the functions H k(Xo,μ,�,�), which are called generalized Hermite polyno-
mials. If X ∼ Np,n(0, I , I ) or X ∼ Np(0, I ), we obtain polynomials which are
usually termed Hermite polynomials.

Appendix B: Useful Technical Results

This appendix comprises several technical results which are frequently applied
throughout Chaps. 1–8. In many of the suggested proofs, the reader is referred to
Kollo and von Rosen (2005), although the same results can often be found in other
texts.

B.1 Factorization and a Determinant Relation

The next theorem is often used when presenting canonical forms of linear and
bilinear models.

Theorem B.1

(i) Let A: p × q be of rank q . Then there exist a non-singular matrix T and an
orthogonal matrix � such that A′ = T (I q : 0)�.

(ii) Let V be p.d. Then there exist an orthogonal matrix of eigenvectors of V , �,
and a diagonal matrix D of positive eigenvalues of V such that V = �D�′.
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Proof Statement (i) is a special case of the well-known QR-decomposition, e.g. see
Golub and Van Loan (2013) (see also Rao 1973, p. 20), and the proof of statement
(ii) can be found in Kollo and von Rosen (2005, Corollary 1.2.39.1). �
Theorem B.2 Let B = (b1, b2, . . . , bp) be an orthogonal basis with respect to a
positive definite matrix W : p × p, i.e. b′

iWbj = 0, i �= j . Then

|W | = c−1
p
∏

k=1

|b′
iWbi |, c = |B|2.

Proof The theorem is true because |W | = c−1|B ′WB| = c−1 ∏p

k=1 |b′
iWbi |. �

B.2 Subspace Relations

Theorem B.3 Let A, B and C be matrices of proper sizes. Then

(i) if x ∈ C(A), then x = Aq for some q;
(ii) if C(A) ⊆ C(B), then C(B)⊥ ⊆ C(A)⊥;

(iii) if C(A) ⊆ C(B), then C(B) = C(A) � C(B) ∩ C(A)⊥;
(iv) (modular identity) C(A) ∩ (C(B) + C(A) ∩ C(C)) = C(A) ∩ C(B) + C(A) ∩

C(C);
(v) C(A(A′Bo)o) = C(A) ∩ C(B);

(vi) C(A′(AA′Bo)o) = C(A′Bo)⊥ ∩ C(A′);
(vii) C(A′) ⊆ C(A′Bo) is equivalent to C(A) ∩ C(B) = {0}.
Proof All the proofs are given in Kollo and von Rosen (2005, Section 1.2). �
Theorem B.4 For A and � of a proper size,

C�(A)⊥ = C(�Ao) = C((�−1A)o) = C(�−1A)⊥.

Proof By the definition of Ao, Ao′
��−1A = 0, which verifies the equalities. �

Note that from this relation, it does not follow that C�(A) = C(�−1A), since in
this case we operate with different inner products on the left and right side.

B.3 Rank Relations

Theorem B.5 Let A and B be arbitrary matrices of proper sizes and let dim{•}
denote the dimension of a vector space. Then

(i) r(A) = r(A′);
(ii) dim{C(A) ∩ C(B)} = r(A(A′Bo)o) = r((Ao : Bo)o);
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(iii) r(A : B) = r(A) + r(B) − dim{C(A) ∩ C(B)};
(iv) r(A′Bo) = r(A : B) − r(B).

Proof The proof of the theorem is presented in Kollo and von Rosen (2005,
Section 1.2). �

B.4 Special Matrix Inverses

Theorem B.6 Let S be positive definite and suppose that V , W and H are of a
proper size, with H−1 being supposed to exist. Moreover, suppose that ω is a scalar
and put D = S−1V W and E = DS−1. Then

(i) (S + V HW ′)−1 = S−1 − S−1V (W ′S−1V + H−1)−1W ′S−1;
(ii) (S + V HW ′)−1V H = S−1V (W ′S−1V + H−1)−1;

(iii) (S +ωV W ′)−1 = ∑2r+1
k=0 (−1)kωkDkS−1 +ω2(r+1)Dr+1(S +V W ′)−1Er+1,

r = 1, 2, . . . ;
(iv) (S + ωV W ′)−1 = ∑∞

k=0(−1)kωkDkS−1, provided that the sum exists.

Proof The proof of the first statement can be found in Kollo and von Rosen (2005,
Proposition 1.3.6), and statement (ii) follows directly from statement (i) by applying
a few calculations. The expressions in statement (iii) and (iv) are presented in von
Rosen (1995, Lemma 2.1). �

B.5 Matrix Relations Involving g-Inverses

Theorem B.7 Let C(K) ⊆ C(A′) and let S be p.d. Then

(i) K(A′S−1A)−A′S−1A = K;
(ii) K(A′S−1A)−K ′ does not depend on the choice of g-inverse.

Proof Both statements follow since C(A′) = C(A′S−1A). �

B.6 Matrix Relations for Partitioned Matrices

Theorem B.8 Let

A =
(

A11 A12

A21 A22

)

,

(

A11 A12

A21 A22

)

,

where the size of Aij corresponds to the size of Aij .
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(i) (A11)−1A12 = −A12A
−1
22 ;

(ii) C(A12) ⊆ C(A11 − A12A
−1
22 A21);

(iii) if A is p.d., then C(A12) ⊆ C(A11);
(iv) if A is non-singular, then |A| = |A22||A11 − A12A

−1
22 A21|.

Proof For a proof, see, for example, Kollo and von Rosen (2005, Proposition 1.3.3).
�

B.7 Inequalities

Theorem B.9

(i) Markov’s inequality. Let X be a non-negative integrable random variable and
a > 0. Then

P(X ≥ a) ≤ E[X]/a.

(ii) If A − B is p.s.d., then trA ≥ trB .
(iii) The tr-distance (see Sect. A.6). ||AQB − APB|| > ||CQD − CPD|| for all

P and Q if and only if BB ′ ⊗ A′A− DD′ ⊗C′C is p.d., where it is supposed
that the matrices are of proper sizes.

(iv) Let � and S be positive definite matrices of size p × p. Then

|�|− 1
2 n

e
− 1

2 tr{�−1S} ≤ | 1
n
S|− 1

2 n
e
− 1

2 np
,

and equality holds if and only if � = 1
n
S.

(v) For A (of full rank) and � (p.d.) of proper sizes (see Liu and Neudecker, 1997)

(A′A)−1A′�A(A′A)−1 ≤ (λ1 + λp)2

4λ1λ2
(A′�−1A)−1,

where λp and λ1 are the smallest and largest eigenvalues of �, respectively.
The ratio

μ1 = 4λ1λ2

(λ1 + λp)2

is the square of the first antieigenvalue of � (see Gustafson, 1972, 2012).

Proof For a proof of statement (i), see, for example, Gut (2013, Theorem 1.1,
p. 120). Because of the linearity of the trace-function, statement (ii) is trivial.
Statement (iii) follows by using the following equation:

tr{FGHH ′G′F ′} = vec′(FGH )vec(FGH ) = vec′(G)(HH ′ ⊗ F ′F )vec(G).
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The proof of statement (iv) can be found in Srivastava and Khatri (1979, Theo-
rem 1.10.4) and for the proof of statement (v), the reader is referred to the references
given in the statement. �

B.8 Linear Equations

Theorem B.10

(i) The matrix equation AXB = C in X. If C(C) ⊆ C(A) and C(C′) ⊆ C(B ′),
the system of equations is consistent and has the following general solution:
(C0 denotes any particular solution)

X = C0 + (A′)oZ1 + A′Z2B
o′

or

X = C0 + Z1B
o′ + (A′)oZ2B

′

or

X = C0 + (A′)oZ1B
′ + A′Z2B

o′ + (A′)oZ3B
o′
,

where Zi , i = 1, 2, 3, are arbitrary matrices of proper sizes.
(ii) For the consistent equationAXB = C, the bilinear expressionKXL is unique

and equals KA−CB−L, if C(K ′) ⊆ C(A′) and C(L) ⊆ C(B). Note that one
choice of particular solution is C0 = A−CB−.

(iii) The homogeneous matrix equation AiXB i = 0, i = 1, 2, in X, has the
following general solution:

X = (A′
2)

oZ1S
′
1 + (A′

1 : A′
2)

oZ2S
′
2 + (A′

1)
oZ3S

′
3 + Z4S

′
4

or

X = T 1Z1B
o′
2 + T 2Z2(B1 : B)o

′ + T 3Z3B
o′
1 + T 4Z4

or

X = T 3Z1S
′
1 + T 4Z2S

′
1 + T 4Z3S

′
2 + T 1Z4S

′
3 + T 4Z5S

′
3

+T 1Z6S
′
4 + T 2Z7S

′
4 + T 3Z8S

′
4 + T 4Z9S

′
4,

where Zi , i = 1, . . . , 9, are arbitrary matrices of proper sizes, and Si and T i ,
i = 1, . . . , 4, are any matrices satisfying

C(S1) = C(B1 : B2) ∩ C(B1)
⊥, C(T 1) = C(A′

1 : A′
2) ∩ C(A′

1)
⊥,

C(S2) = C(B1) ∩ C(B2), C(T 2) = C(A′
1) ∩ C(A′

2),

C(S3) = C(B1 : B2) ∩ C(B2)
⊥, C(T 3) = C(A′

1 : A′
2) ∩ C(A′

2)
⊥,

C(S4) = C(B1 : B2)
⊥, C(T 1) = C(A′

1 : A′
2)

⊥.
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(iv) The homogeneous matrix equation A1X1B1 + A2X2B2 = 0 in X1 and X2
has the following general solution:

X1 = −A−
1 A2(A

′
2A

o
1 : (A′

2)
o′
)oZ3(B2(B

′
1)

o)o
′
B2B

−
1 + (A′

1)
oZ1 + A′

1Z2B
o′
1 ,

X2 = (A′
2A

o
1) : (A′

2)
o)o

′
Z3(B2(B

′
1)

o)o
′ + A′

2A
o
1Z4B

o′
2 + (A′

2)
oZ5

or

X1 = −A−
1 A2(A

′
2A

o
1)

o(A′
2A

o
1)

o′
A′

2Z6(B2(B
′
1)

o)o
′
B2B

−
1 + (A′

1)
oZ1 + A′

1Z2B
o′
1 ,

X2 = (A′
2A

o
1)

o′
((A′

2A
o
1)

o′
A′

2)
oZ5 + (A′

2A
o
1)

o(A′
2A

o
1)

o′
A′

2Z6(B2(B
′
1)

o)o
′

+A′
2A

o
1Z4B

o′
2 ,

where Zi , i = 1, . . . , 6, are arbitrary matrices.

Proof The proof of the statements can be found in Kollo and von Rosen (2005,
Section 1.3.5). �

B.9 Results Involving Projectors

Next a few useful results for projectors are presented.

Theorem B.11 Let PA,V = A(A′V −1A)−AV −1. Then

(i) P A,V P A,V = P A,V , P A,V (I − P A,V ) = 0;
(ii) tr{PA,V } = r(A);

(iii) C(PA,V ) = C(A), N (P A,V ) = C(V Ao);
(iv) (projection theorem) C(PA,V B) = C(PA,V ) ∩ (N (P A,V ) + C(B));
(v) I = P ′

Ao,V −1 + P A,V .

Proof The proofs of statements (i) and (ii) can be found in most lin-
ear algebra books. The relations in statement (iii) are fairly trivial, since
A(A′V −1A)−A′V −1A = A (e.g. see Kollo and von Rosen, 2005, Proposi-
tion 1.2.2) and A(A′V −1A)−A′V −1V Ao = 0. The proof of statement (iv) is
presented in Kollo and von Rosen (2005, Theorem 1.2.16). Statement (v) follows
from Theorem B.13. �

The following theorem constitutes a basis for handling linear models within a
theoretical perspective and reflects a decomposition of the whole space into two
subspaces.

Theorem B.12 Let S be p.d., let A and B be arbitrary matrices of proper sizes and
let C be any matrix such that C(C) = C(A′) ∩ C(B). Then

A(A′SA)−A′ − ABo(Bo′
A′SABo)−Bo′

A′

= A(A′SA)−C(C′(A′SA)−C)−C ′(A′SA)−A′.
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Proof Let S = I . The general case follows by changing A to S1/2A. If S = I , the
statement consists of three orthogonal projectors: PA, PABo and P A(A′A)−C . The
result follows since

C(A) = C(ABo) � C(A) ∩ C(ABo)⊥ = C(ABo) � C(A(A′A)−C),

see Theorems B.3 (v) and B.11 (iv) in this appendix. �
Theorem B.13 If S is p.d. and C(B) ⊆ C(A),

P A,S = P B,S + SP ′
A,SBo(Bo′

SP ′
A,SBo)−Bo′

P A,S.

A special case is

S−1 − Bo(Bo′
SBo)−Bo′ = S−1B(B ′S−1B)−B ′S−1.

Proof The result follows from Theorem B.12. �

B.10 Properties of a Matrix Derivative

Theorem B.14 Let dk Y

d Xk be given by Definition 5.1. Then

(i) d X
d X

= Ipq , where X ∈ R
p×q ;

(ii) d cX
d X

= cIpq , where X ∈ R
p×q ;

(iii) d A′vecX
d X

= A;

(iv) d Y+Z
d X

= d Y
d X

+ d Z
d X

.

(v) Let Z = Z(Y ) and Y = Y (X), then d Z
d X

= d Y
d X

d Z
d Y

(chain rule);

(vi) d AXB
d X

= B ⊗ A′;
(vii) d AYB

d X
= d Y

d X
(B ⊗ A′);

(viii) d X′
d X

= Kq,p, if X ∈ R
p×q ;

(ix) d YZ
d X

= d Y
d X

(Z ⊗ I ) + d Z
d X

(I ⊗ Y ′);
(x) d tr{A′X}

d X
= vecA;

(xi) d |X|
d X

= |X|vec(X−1)′.
(xii) If X: p × p is symmetric d X

d X
= Ip2 + Kp,p − (Kp,p)d .

Proof The proofs of the statements can, for example, be found in Kollo and von
Rosen (2005, Section 1.4.3, Table 1.4.2). �
Theorem B.15 Let the derivative be given by Definition 8.4 and suppose that the
matrices are conformable. If X and Y are functions of ω, then

(i) dkXY
d ωk = ∑k

i=0

(

k
i

)

diX
d ωi

dk−iY
d ωk−i , k ≥ 0.
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(ii) Let A and B be functionally independent of the scalar ω. Then

dkAXB

d ωk
= A

dkX

d ωk
B.

(iii) Let X be non-singular and a function of the scalar ω. Then

dkX−1

d ωk
= −X−1 dkX

d ωk
X−1 +

k−1
∑

j=1

(−1)j+1
k−1
∑

i=1 j

i1−1
∑

i=2 j−1

· · ·
ij−1−1
∑

i=j 1

(

k
i1

)(

i1
i2

) · · · (ij−1
ij

)

×X−1 dij X

d ωij
X−1 dij−1−ij X

d ωij−1−ij
X−1 × · · · × X−1 di1−i2X

d ωi1−i2
X−1 dk−i1X

d ωk−i1
X−1,

i0 = k ≥ 1.

Proof The proofs of statements (i) and (iii) are presented in von Rosen (1995,
Lemma 3.1) and statement (ii) follows from statement (i). �

B.11 Basic Moment Identities

Theorem B.16 Let E[X] = μ and D[X] = � ⊗ �. Then

(i) E[KXL] = KμL;
(ii) D[KXL] = L′�L ⊗ K�K ′.

For moments and cumulants,

(iii) c1[X] = m1[X], c2[X] = D[X];
(iv) mk[X] = E[vecX(vec′X)⊗k−1], m1[X] = E[vecX].
Proof All proofs of the relations can be found in Kollo and von Rosen (2005,
Section 2.1). �

B.12 Limit Theorems

The first theorem below is a multivariate version of some of the statements of
Cramér’s theorem, which is also known as Slutsky’s theorem.

Theorem B.17 Let {Xn} and {Y n} be sequences of random matrices, not necessar-

ily independent, such that Xn
D→ X and Y n

P→ 0. Then, provided the operations
are well defined,

(i) Xn ⊗ Y n
P→ 0;
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(ii) vecXnvec′Y n
P→ 0;

(iii) Xn + Y n
D→ X.

Proof Proofs of the relations are given in Kollo and von Rosen (2005,
Lemma 3.1.1). �
Now a central limit theorem for the sample mean and sample dispersion is presented.

Theorem B.18 Let x1, x2,. . . , xn be an i.i.d. sample of size n from a p-dimensional
population with E[xi ] = μ and D[xi ] = �, p.d., with the elements of m4[xi] being
finite, and let

x = 1

n

n
∑

i=1

xi , S = 1

n − 1

n
∑

i=1

(xi − x)(xi − x)′.

Then, if n → ∞,

(i) x
P→ μ;

(ii) S
P→ �;

(iii)
√

n(x − μ)
D→ Np(0,�).

(iv)
√

nvec(S − �)
D→ Np2(0,
),

where
: p2×p2 consists of the fourth- and second-order central moments:


 = D[(x i − μ)(xi − μ)′]
= E[(xi − μ) ⊗ (xi − μ)′ ⊗ (xi − μ) ⊗ (xi − μ)′] − vec�vec′�.

(v) Let xi ∼ Np(μ,�), then
√

nvec(S − �)
D→ Np2(0,
N), where


N = (Ip2 + Kp,p)(� ⊗ �).

Proof A proof can be found in Kollo and von Rosen (2005, Theorem 3.1.4). �

B.13 Properties and Moment Relations for the Matrix Normal
Distribution

Theorem B.19 Let X ∼ Np,n(μ,�,�) and Y ∼ Np,n(0,�,�). Then

(i) KXL ∼ Nq,k(KμL,K�K ′,L′�L), where K: q × p and L: n × k;
(ii) E[X] = μ;

(iii) D[X] = � ⊗ �;
(iv) E[XAX′] = tr{�A}� + μAμ′.
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(v) Put H = (vec�vec′�)⊗2. Then

E[Y⊗4] = H + (Ip ⊗ Kp,p ⊗ Ip)H (In ⊗ Kn,n ⊗ I n)

+(Ip ⊗ Kp2,p)H (In ⊗ Kn,n2);

(vi) E[Y⊗2r ] = ∑2r
i=2(Ip ⊗ Kpi−2,p ⊗ Ip2r−i )(vec�vec′� ⊗ E[Y⊗2(r−1)])

× (I n ⊗ Kn,ni−2 ⊗ I n2r−i ), r = 1, 2, 3, . . . ;
(vii)

E[XAX′ ⊗ XBX′] = tr{�A}tr{�B}� ⊗ � + tr{�A�B ′}vec�vec′�

+tr{�A�B}Kp,p(� ⊗ �) + tr{�A}� ⊗ μBμ′ + vec(μB�A′μ′)vec′�

+Kp,p(μB�Aμ′ ⊗ � + � ⊗ μA�Bμ′)

+vec�vec′(μB ′�Aμ′) + tr{�B}μAμ′ ⊗ � + μAμ′ ⊗ μBμ′.

(viii) Let S = Y (I − P C ′)Y ′, where C is a matrix of a proper size. Then S and
YP C ′ are independently distributed.

(ix) YPY ′ and YQY ′ are independently distributed if PQ = 0, where P and Q

are symmetric matrices of proper sizes.
(x) YP and YQ are independently distributed if PQ′ = 0, where P and Q are

of proper sizes.
(xi) YPY ′ and YQ are independently distributed if PQ = 0, where P and Q

are symmetric matrices of proper sizes.
(xii) Let A be a matrix of a proper size. Then PA,	X and (I − P A,	)X are

independently distributed.
(xiii) Let A and B be matrices of proper sizes. Then A′X and B ′X are indepen-

dently distributed if and only if C[AX,BX] = 0.

Proof For the proofs, see Section 2.2 in Kollo and von Rosen (2005), where the
above-presented results are obtained. �

B.14 Properties and Moment Relations for the Wishart
Distribution

Theorem B.20 Let W ∼ Wp(�, n), V ∼ Wp(I , n), where n > p. Then

(i) A′WA ∼ Wq(A′�A, n) for any matrix A of size p × q . In particular A =
(I : 0) results in quadratic blocks along the diagonal of W also having a
Wishart distribution.

(ii) E[W ] = n�;
(iii) D[W ] = n(I + Kp,p)� ⊗ �.
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(iv) Partition V as follows:

V =
(

V 11 V 12

V 21 V 22

)

,

where V 11: r × r , V 12 = V ′
21: r × (p − r) and V 22: (p − r) × (p − r).

Then V 12V
−1/2
22 ∼ Nr,p−r (0, I , I ), and V 12V

−1/2
22 and V 22 ∼ Wp−r (I , n)

are independently distributed.
(v) Let A: p × q . Then

A(A′W−1A)−A′ ∼ Wp(A(A′�−1A)−A′, n − p + r(A))

and

E[A(A′W−1A)−A′] = (n − p + r(A))A(A′�−1A)−A′.

(vi) Let X ∼ Np,n(0,�, I ) and P be any idempotent matrix of a proper size.
Then

XPX′ ∼ Wp(�, r(P )).

(vii) A(A′W−1A)−A′ and W − A(A′W−1A)−A′ are independent.
(viii) A(A′W−1A)−A′ and I − A(A′W−1A)−A′W−1 are independent.

(ix) E[A(A′WA)−A′W ] = A(A′�A)−A′�.

Proof Proofs of the above statements can be found in Kollo and von Rosen (2005,
Section 2.4). Concerning statement (v), it is stressed that there exists a new proof
which is fundamental. There always exists a matrix X ∼ Np,n(0,�, I ) such that
W = XX′. Then

A(A′W−1A)−A′ = P A,	A(A′W−1A)−A′P ′
A,	

= P A,	(W − WAo(Ao′
WAo)−Ao′

W )P ′
A,	 = P A,	XPX′P ′

A,	,

where P = I − X′Ao(Ao′
WAo)−Ao′

X. The proof follows since A′�−1X and
Ao′

X are independently distributed and P is idempotent with rank r(P ) = n −
r(Ao). �

B.15 Moments for the Inverse Wishart Distribution

In the following, the constants introduced in the next definition will frequently be
applied.
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Definition B.1

(i) c0;n,s = 1
n−s−1 ;

(ii) c1;n,s,t = n−s−2
(n−t−1)(n−s)(n−s−3)

;

(iii) c2;n,s,t = 1
n−s−2c1;n,s,t ;

(iv) c3;n,s,t = 1
(n−s−1)(n−t−1)

.

If s = t , then ci;n,s will be used instead of ci;n,s,s , i = 1, 2, 3.

Theorem B.21 Let W ∼ Wp(�, n) and let ci;n,s be defined in Definition B.1.
Then,

(i) if n − p − 1 > 0,

E[W−1] = c0;n,p�−1;

(ii) if n − p − 3 > 0,

D[W−1] = c2;n,p(I + Kp,p)(�−1 ⊗ �−1) + (c1;n,p − c2
0;n,p)vec�−1vec′�−1;

(iii) if n − p − 3 > 0,

E[W−1 ⊗ W−1] = c2;n,p(vec�−1vec′�−1 + Kp,p(�−1 ⊗ �−1))

+ c1;n,p�−1 ⊗ �−1;

(iv) if n − p − 3 > 0,

E[tr{W−1}2] = 2c2;n,ptr{�−1�−1} + c1;n,ptr{�−1}2;

(v) if n − p − 3 > 0,

E[W−1W−1] = (c2;n,p + c1;n,p)�−1�−1 + c2;n,p�−1tr{�−1};

(vi) if n − p − 3 > 0,

E[tr{W−1W−1}] = (c2;n,p + c1;n,p)tr{�−1�−1} + c2;n,ptr{�−1}2.

(vii) Let

W =
(

W 11 W 12

W 21 W 22

)

,

(

r × r r × p − r

p − r × r p − r × p − r

)

.

Then, if � = I and n − p + r − 1 > 0,

E[W 12W
−1
22 W−1

22 W 21] = p − r

n − p + r − 1
I r ,
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and if n − p + r − 3 > 0,

E[(vec(W 12W
−1
22 W−1

22 W 21))
⊗2] = tr{W−1

22 }2vecI r ⊗ vecI r

+ tr{W−1
22 W−1

22 }(I r2 + Kr,r ),

where tr{W−1
22 }2 and tr{W−1

22 W−1
22 } are given in statement (iv) and statement

(vi), respectively.
(viii) E[A(A′W−1A)−A′W−1] = A(A′�−1A)−A′�−1.

Proof Proofs of statements (i)–(vi) can be obtained from Kollo and von Rosen
(2005, Theorem 2.4.14). Concerning statement (vii), it is noted that W 12W

−1/2
22 ∼

Nr,p−r (0, I , I ) is independent of W 22 (see Appendix B, Theorem B.20 (iv)) and
Appendix B, Theorem B.19 (v) together with statement (iv) and statement (vi) of
this theorem establishes statement (vii). With regard to statement (viii), it is noted
that there exists a matrix A of full rank such that

A(A′W−1A)−A′W−1 = A(A′W−1A)−1A′W−1.

Moreover, there exist a non-singular matrix T and an orthogonal matrix � such that
A′ = T (I : 0)��1/2 = T �1�

1/2, and a V = ��−1/2W�−1/2�′ ∼ Wp(I , n).
Then

E[A(A′W−1A)−A′W−1] = E[�1/2�′
1(V

11)−1(V 11 : V 12)��−1/2]
= �1/2�′

1�1�
−1/2 = A(A′�−1A)−A′�−1,

since E[(V 11)−1V 12] = −E[V 12V
−1
22 ] = 0. �

B.16 A Property and Moments for the Multivariate β Type I
Distribution

Theorem B.22 Let F ∼ MβI(p,m, n), and let W 1 and W 2 be as in Sect. A.9.
Then

(i) one choice of (W 1 + W 2)
1/2 is a unique lower triangular matrix with positive

diagonal elements, let us say T , such that (W 1 + W 2) = T T ′ and F =
T −1W 2(T

′)−1;
(ii) E[F ] = m

m+n
Ip;

(iii) E[F−1] = m+n−p−1
m−p−1 Ip.

Proof Statement (i) follows from a remark made after Theorem 2.4.8 in Kollo and
von Rosen (2005). Moreover, the proof of statement (ii) is given in Theorem 2.4.15
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(iii) in Kollo and von Rosen (2005), and statement (iii) follows from the proof of
Theorem 2.4.15 (i) in the same book. �

B.17 Special Moment Relations

Theorem B.23 Let Y ∼ Np,n(0,�,�) and Z ∼ Np,n(0, Ip, In). Then

(i) for the known constants q1 and q2, and the known symmetric matrices M and
N ,

E[q1vec(Y )vec′(Y ) + q2tr{MYNY ′}vec(Y )vec′(Y )]
= q1� ⊗ � + q2tr{N�}tr{M�}� ⊗ � + 2q2�N� ⊗ �M�;

(ii) E[Z′(ZZ′)−1Z] = p
n
In.

Proof To verify statement (i), the statement is vectorized, i.e. instead of vecYvec′Y ,
� ⊗ � and �N� ⊗ �M�,

vec(vecY vec′Y ) = vecY ⊗ vecY , vec(� ⊗ �), vec(�N� ⊗ �M�)

are used. Moreover, note that

tr{MYNY ′}(vecY )⊗2 = (vec′Ipn ⊗ I (pn)2)(N ⊗ I ⊗ I ⊗ M)(vecY )⊗4.

Thus, the fourth moments of a multivariate normally distributed variable are needed.
From results in Kollo and von Rosen (2005, Corollary 2.2.7.4), it follows that

E[(vecY )⊗2] = vec(� ⊗ �),

E[(vecY )⊗4] = (I (pn)4 + Ipn ⊗ Kpn,pn ⊗ Ipn + Ipn ⊗ K(pn)2,pn)(vec(� ⊗ �))⊗2.

Utilizing these expressions, the statement follows from the following facts:

• (vec′Ipn ⊗ I (pn)2)(N ⊗ I ⊗ I ⊗ M)(vec(� ⊗ �))⊗2

= tr{N�}tr{M�}vec(� ⊗ �),
• (vec′Ipn ⊗ I (pn)2)(N ⊗ I ⊗ I ⊗ M)(Ipn ⊗ Kpn,pn ⊗ Ipn)(vec(� ⊗ �))⊗2

= vec(�N� ⊗ �M�),
• (vec′Ipn ⊗ I (pn)2)(N ⊗ I ⊗ I ⊗ M)(Ipn ⊗ K(pn)2,pn)(vec(� ⊗ �))⊗2

= vec(�N� ⊗ �M�).

To prove statement (ii), a different technique is used. Note that for all orthogonal
matrices, �,

�′E[Z′(ZZ′)−1Z]� = E[Z′(ZZ′)−1Z],
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since �′Z′(ZZ′)−1Z� = �′Z′(Z��′Z′)−1Z�, and the distribution of Z� equals
the distribution of Z. Thus, E[Z′(ZZ′)−1Z] = cIn for some constant c. Now the
constant is determined by taking the trace, giving p = cn, and the statement is
established. �
Theorem B.24 LetW ∼ Wp(�, n) andA: p×q . The constants ci;n,s,t , i = 1, 2, 3,
are given in Definition B.1. Then

E[A(A′WA)−A′ ⊗ W−1] = c1;n,r(A),pA(A′�A)−A′ ⊗ A(A′�A)−A′

+c2;n,r(A),p(vec(A(A′�A)−A′)vec′(A(A′�A)−A′)

+Kp,pA(A′�A)−A′ ⊗ A(A′�A)−A′)

+c3;n,r(A),pA(A′�A)−A′ ⊗ (�−1 − A(A′�A)−A′).

Proof Without any loss of generality, identify A by A, p × r(A) and use that A′ =
T (I r(A) : 0)��−1/2 for some non-singular T and orthogonal �. Moreover, put

V = ��−1/2W�−1/2�′.

Then

E[A(A′WA)−A′ ⊗ W−1]

= (�−1/2�′)⊗2(E[
(

V −1
11 0
0 0

)⊗2

] + E[
(

V −1
11 0
0 0

)

⊗ H ])(��−1/2)⊗2,

where

H =
(−V −1

11 V 12

I

)

(V 22 − V 21V
−1
11 V 12)

−1(−V 21V
−1
11 : I ).

Let V = UU ′, V 11 = U1U
′
1 and V 12 = U1U

′
2, where

U = (U ′
1 : U ′

2)
′, U 1 : r(A) × n, U 2 : (p − r(A)) × n, U ∼ Np,n(0, I , I ).

It can be noted that, given U1, the matrix V 21V
−1
11 is independent of V 2•1 = V 22 −

V 21V
−1
11 V 12. Therefore, E[V −1

11 V 12V
−1
2•1|U1] = 0, and

E[
(

V −1
11 0
0 0

)

⊗ H ] = E[E[
(

V −1
11 0
0 0

)

⊗ H |U1]]

= E[
(

V −1
11 0
0 0

)

⊗
(

E[V −1
11 V 12V

−1
2•1V 21V

−1
11 |U1] 0

0 E[V −1
2•1|U1]

)

].
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Moreover, E[V −1
2•1|U1] = 1

n−p−1Ip−r(A). Hence,

E[
(

V −1
11 0
0 0

)

⊗ H ] = 1

n − p − 1
E[

(

V −1
11 0
0 0

)

⊗
(

(p − r(A))V −1
11 0

0 I

)

].

Now, according to Theorem B.21 (i) and (iii),

E[V −1
11 ] = 1

n−r(A)−1I r(A)

and

E[(V −1
11 )⊗2] = c1;n,r(A)I r(A)2 + c2;n,r(A)(vecI r(A)vec′I r(A) + Kr(A),r(A)),

and it also follows that �−1/2�′(I r(A) : 0)′(I r(A) : 0)��−1/2 = A(A′�A)−A′,
which in turn implies that �−1/2�′(0 : Ip−r(A))

′(0 : Ip−r(A))��−1/2 = �−1 −
A(A′�A)−A′. Summing up, all these calculations yield the result of the theorem.

�
The next theorem includes a minor generalization of Theorem B.24 and the proof

rests completely on this theorem.

Theorem B.25 LetW ∼ Wp(�, n),A: p×q andB: p×r such that C(B) ⊆ C(A).
Then

E[B(B′WB)−B ′ ⊗ A(A′WA)−A′] = c1;n,r(B),r(A)B(B ′�B)−B ′ ⊗ B(B ′�B)−B ′

+c2;n,r(B),r(A)(vec(B(B ′�B)−B ′)vec′(B(B ′�B)−B′)

+Kp,p(B(B ′�B)−B ′ ⊗ B(B′�B)−B ′))

+c3;n,r(B),r(A)B(B′�B)−B ′ ⊗ (A(A′�A)−A′ − B(B ′�B)−B ′),

where c1;n,s,t , c2;n,s,t and c3;n,s,t are given in Definition B.1 in this appendix.

Proof Since C(B) ⊆ C(A), the trivial relation P AB = B holds. Thus,

B(B ′WB)−B ′ = P AB(B ′P AWP AB)−B ′P A.

Moreover, A′ = T (I r(A) : 0)�′, where � is orthogonal, T is non-singular and

P A = �1�
′
1, � = (�1 : �2), (p × r(A) : p × (p − r(A))).

Therefore,

B(B ′WB)−B ′ ⊗ A(A′WA)−A′

= (�1 ⊗ �1)(�
′
1B(B ′�1V �′

1B)−B ′�1 ⊗ V −1)(�′
1 ⊗ �′

1),
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where V ∼ Wr(A)(�
′
1��1, n). Now the result follows from Theorem B.24, since

�1�
′
1B(B ′�1�

′
1��1�

′
1B)−B ′�1�

′
1 = B(B ′�B)−B ′

and

�1(�
′
1��1)

−1�′
1 = A(A′�A)−A′.

�
Theorem B.26 Let S = X(I − P C ′)X′, where X ∼ Np,n(μ,�, I ), μ′ ∈ C(C′)
and A: p × q . Moreover, let the constants ci;n,s,t , i = 1, 2, 3, be given in
Definition B.1 in this appendix. Then

(i) E[S−1A(A′S−1A)−A′S−1]
= c0;n−r(C),p�−1 − c0;n−r(C),p−r(A)A

o(Ao′
�Ao)−Ao′

;

(ii) E[A(A′S−1A)−A′S−1�S−1A(A′S−1A)−A′]
= n−r(C)−1

n−r(C)−p+r(A)−1A(A′�−1A)−A′;

(iii) E[S−1A(A′S−1A)−A′S−1�S−1A(A′S−1A)−A′S−1] = ((p + 1)c2;n,p +
c1;n,p)�−1 + ((p− r(A)+1)(c2;n,p−r(A) −2c2;n,r(A),p−r(A))+c1;n,p−r(A) −
c1;n,r(A),p−r(A)) × Ao(Ao′

�Ao)−Ao′
.

Proof Concerning statement (i), it is noted that

S−1A(A′S−1A)−A′S−1 = S−1 − Ao(Ao′
SAo)−Ao′

and, according to Theorem B.21 (i),

E[S−1] = c0,n−r(C),p�−1,

E[Ao(Ao′
SAo)−Ao′ ] = c0,n−r(C),p−r(A)A

o(Ao′
�Ao)−Ao′

,

which establishes statement (i).
Concerning statement (ii), suppose, without any loss of generality, that A is of

full rank and factor A as A′ = T (I : 0)��1/2, where T is non-singular and �

orthogonal. Utilizing Theorem B.21 (vii) establishes the result.
The expression in statement (iii) is more complicated to handle than statement

(ii). Note that

E[S−1A(A′S−1A)−A′S−1�S−1A(A′S−1A)−A′S−1]
= E[(S−1 − Ao(Ao′

SAo)−1Ao′
)�(S−1 − Ao(Ao′

SAo)−1Ao′
)]

and, therefore, the following three types of moment calculations are needed:
E[S−1�S−1], E[Ao(Ao′

SAo)−1Ao′
�Ao(Ao′

SAo)−1Ao′ ] and E[S−1�Ao

(Ao′
SAo)−1Ao′ ].
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Since �−1/2S�−1/2 ∼ Wp(I , n), according to Theorem B.21 (v),

E[S−1�S−1] = �−1/2E[(�−1/2S�−1/2)−1(�−1/2S�−1/2)−1]�−1/2

= (c2;n,p + c1;n,p)�−1 + c2;n,pp�−1. (B.1)

Similarly, since (Ao′
�Ao)−1/2Ao′

SAo′
(Ao′

�Ao)−1/2 ∼ Wp−r(A)(I , n), applying
Theorem B.21 (v) once again yields

E[Ao(Ao′
SAo)−1Ao′

�Ao(Ao′
SAo)−1Ao′ ]

= (c2;n,p−r(A) + c1;n,p−r(A) + c2;n,p−r(A)(p − r(A)))Ao(Ao′
�Ao)−1Ao′

.(B.2)

Concerning the third type of moment expressions, it is convenient to rely on
Theorem B.24. Post-multiplying the statement of Theorem B.24 by vec� and
replacing A by Ao: p × p − r(A) leads to

E[Ao(Ao′
WAo)−Ao′ ⊗ W−1]vec� = vec(E[W−1�Ao(Ao′

WAo)−Ao′ ])
= c1;n,r(A),p−r(A)vec(Ao(Ao′

�Ao)−Ao′
)

+c2;n,r(A),p−r(A)((p − r(A))vec(Ao(Ao′
�Ao)−Ao′

) + vec(Ao(Ao′
�Ao)−Ao′

)).

Thus, E[W−1�Ao(Ao′
WAo)−Ao′ ] = E[Ao(Ao′

WAo)−Ao′�W−1] and

E[W−1�Ao(Ao′
WAo)−Ao′ ]

= (c1;n,r(A),p−r(A) + c2;n,r(A),p−r(A)(p − r(A) + 1))Ao(Ao′
�Ao)−Ao′

). (B.3)

Summing (B.1) and (B.2), and subtracting two times (B.3) establish statement (iii).
�

Problems

1 For any A and C such that C(C′) ⊆ C(A′) and V , p.d., of proper sizes, show that
C(A′V A)−A′V A = C.

2 Show that AX−C does not depend on the choice of g-inverse if and only if
C(A′) ⊆ C(X′) and C(C) ⊆ C(X) hold.

3 Suppose that all the given operations are well defined. Show that

AA′(AA′ + BB ′)−BB ′ = BB ′(AA′ + BB ′)−AA′.
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4 Suppose that there is a simple matrix block structure whose inverse exists and
which is as follows:

(

A B

−B A

)

.

Derive its inverse.
Suppose now that a minor extension of the above block structure is available,

providing the following structure:

⎛

⎜

⎜

⎝

A B C D

−B A −D C

−C D A −B

−D −C B A

⎞

⎟

⎟

⎠

.

Derive the inverse matrix of the given block structure. Try to find out why these
structures are connected to complex numbers and quaternions.

5 Let A and B be of proper sizes. Show that C(AA′Bo) ∩ C(B) = {0}.
6 Show that C(A1 ⊗ B1) is orthogonal to C(A2 ⊗ B2) if and only if C(A1) is
orthogonal to C(A2) or C(B1) is orthogonal to C(B2).

7 A subspace C(M) is A-invariant if C(AM) ⊆ C(M). Show that C(M) is A-
invariant if and only if C(M)⊥ is A′-invariant.

8 Let A: p × q , B: q × r , C: r × s and D: s × p. Show that tr{ABCD} =
(vec′(C′) ⊗ vec′A)(I r ⊗ Ks,q ⊗ Ip)vecB ⊗ vecD′).

9 Let A: r × s, B: s × t , C: m × n and D: n × p. Show that

AB ⊗ CD = (I rm ⊗ vec′D′)(I r ⊗ vecC′vec′B ′ ⊗ Ip)(vecA′ ⊗ Ipt ).

10 Show that x⊗3 = (Kp,p ⊗ Ip)Kp2,px⊗3, where x is a vector of size p.

11 Interpret the matrices 1
2 (Ip2 + Kp,p), 1

2 (Ip2 − Kp,p) and (Kp,p)d .

12 Let A, B and T be upper triangular matrices and put U = AT B. Derive the
Jacobian for the transformation from T to U .

13 Let T be a Toeplitz matrix. Use a matrix derivative d
d T

and study dT
d T

.

14 Let X ∼ Np,n(μ,�,�). Derive E[X⊗4].
15 Let X ∼ Np,n(0,�,�), and let A, B and C be fixed matrices of proper sizes.
Derive E[XAX′ ⊗ XBX′ ⊗ XCX′].
16 For a matrix normal distribution, show that all the cumulants of an order > 2
equal 0. Let U ∼ Wp(Ip, n) and suppose that p > n. Because of Wishartness,
U = YY ′, Y = (Y ′

1 : Y ′
2)

′, Y ∼ Np,n(0, Ip, In) and Y 1 ∼ Nn,n(0, In, In); it is
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assumed that r(Y 1) = n. Derive the Moore-Penrose inverse of U as a function of
Y 1 and Y 2.

17 Let X1 ∼ Np,n(μ1,�1,�1) and X2 ∼ Np,n(μ2,�2,�2), and let Z have a
mixture distribution defined through the density

fZ(X) = γfX1(X) + (1 − γ )γfX2(X), 0 < γ < 1.

Derive D[Z] and E[Z⊗2].
18 Let W 1 ∼ Wp(�1, n) and W 2 ∼ Wp(�1,m). Show that W 1 + W 2 ∼
Wp(�, n + m).

19 Let W ∼ Wp(�, n). Derive E[tr{W−1}W ].
20 Let W ∼ Wp(�, n). Derive the asymptotic normal distribution for W−1 when
n → ∞.

Appendix C: Test Statistics

C.1 Distribution of Test Statistics

The test statistics presented and applied in Chap. 7 are all functions of Wishart-
distributed quadratic forms and, in principle, the distributions of the test statistics are
derived from assumptions about the MANOVA model as it is discussed in Chap. 7.
Let

X = μC + E, E ∼ Np,n(0,�, I ),

where μ: p × k is the unknown parameter describing the mean, �: p × p is the
unknown positive definite dispersion matrix and C: k × n is a known between-
individuals design matrix. Moreover, suppose that the restrictions which are to be
tested are given by

H0 : μG = 0,

where G is a known matrix. The hypothesis H0 is tested against an alternative
hypothesis, H1, which states that μ is unrestricted. Then the likelihood ratio test

statistic in this book is equivalent to U
− 1

2 n

p,m,f , where

Up,m,f = |n̂�1|
|n̂�0|

, (C.1)

with f = n − r(C), m = dim{C(G) ∩ C(C)} and
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n̂�1 = X(I − P C ′)X′, n̂�0 = X(I − P C ′Go)X′.

Let N be any matrix satisfying C(N) = C(G) ∩ C(C), which implies (see the proof
of Theorem B.12 in Appendix B) that

C(C′Go)⊥ = C(C′)⊥ � C(C′) ∩ C(C′Go)⊥ = C(C′)⊥ � C(C′(CC′)−N).

Then

̂�0 = ̂�1 + ̂�2,

where n̂�2 = XP C ′(CC ′)−NX′ and

Up,m,f = |n�1|
|n�1 + μ̂N(N ′(CC′)−N)−1N ′μ̂′| ,

where μ̂N = XC′(CC ′)−N . It also follows that D[μ̂N ] = N ′(CC′)−N and, if the
null hypothesis is true, μ̂N should be “small”. Moreover, the statistic Up,m,f < 1
if and only if C(C) ∩ C(G) �= {0}. Often it is assumed that C(G) ⊆ C(C) (the
testability condition), but this is not necessary. The statistic Up,m,f makes sense
and is understandable.

Concerning the distribution of Up,m,f , n̂�1 ∼ Wp(�, f ), under H0 it follows
that n̂�2 ∼ Wp(�,m). Hence, under H0,

Up,m,f = |W 1|
|W 1 + W 2| = |(W 1 + W 2)

−1/2W 2(W 1 + W 2)
−1/2|, (C.2)

where W 1 ∼ Wp(�, f ) and W 2 ∼ Wp(�,m), with W 1 and W 2 independently
distributed. The test statistic is invariant with respect to non-singular transformations
of X and, therefore, � may be replaced by I ; i.e. (C.2) does not depend on �.
Thus, Up,m,f is the determinant of a multivariate β-distribution of type I (see
Sect. A.9 in Appendix A). The following lemma presents a Bartlett decomposition
for F ∼ MβI (p,m, n) which provides the fundament for studying the distribution
of Up,m,f , as well as the distribution of the likelihood ratio test statistic for testing
H0: μG = 0.

Lemma C.1 Let F ∼ MβI (p,m, n) and F = T T ′, where T is a lower triangular
matrix with positive diagonal elements. Then T11, T22, . . . , Tpp are all independent
and

T 2
ii ∼ β(m + 1 − i, n), i = 1, 2, . . . , p.

Proof Since F is positive definite, a lower triangular matrix T always exists such
that F = T T ′. The density for F is given in Appendix A, Sect. A.10, and combining
this expression with the factorization F = T T ′, together with the Jacobian for the
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variable transformation (see Kollo and von Rosen, 2005, Theorem 1.4.18), yields

c(p, n)c(p,m)

c(p, n + m)
|T T ′|

m−p−1
2 |I − T T ′|

n−p−1
2 2p

p
∏

i=1

T
p−i+1
ii

= 2p c(p, n)c(p,m)

c(p, n + m)

p
∏

i=1

T m−i
ii |I − T T ′|

n−p−1
2 . (C.3)

Now it is shown that T 2
11 is beta-distributed. Partition T as follows:

T =
(

T11 0
t21 T 22

)

.

Thus,

|I − T T ′| = (1 − T 2
11)(1 − v′v)|I − T 22T

′
22|,

where

v = (I − T 22T
′
22)

−1/2t21(1 − T 2
11)

−1/2.

In the next equation, a change of variables takes place, i.e. T11, t21,T 22 →
T11, v,T 22, and the corresponding Jacobian equals

|J (t21, T11, T 22 → v, T11, T 22)|+ = |J (t21 → v)|+ = (1 − T 2
11)

p−1
2 |I − T 22T

′
22|

1
2 ,

where the last equality was obtained by the definition of a Jacobian (e.g. see Kollo
and von Rosen, 2005). Thus, the joint density of T11, v and T 22 equals

2p c(p, n)c(p,m)

c(p, n + m)
T m−1

11 (1 − T 2
11)

n−p−1
2

p
∏

i=2

T m−i
ii

×|I − T 22T
′
22|

n−p−1
2 (1 − v′v)

n−p−1
2 (1 − T 2

11)
p−1

2 |I − T 22T
′
22|

1
2

= 2p c(p, n)c(p,m)

c(p, n + m)
(T 2

11)
m−1

2 (1 − T 2
11)

n
2 −1

×
p
∏

i=2

T m−i
ii |I − T 22T

′
22|

n−p
2 (1 − v′v)

n−p−1
2 .

Hence, T11 is independent of both T 22 and v. Moreover, making another transfor-
mation, T11 → T 2

11, and applying its Jacobian yield that T 2
11 ∼ β(m, n) distributed.
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To obtain the distribution for T22, T33,. . . Tpp, one uses the fact that T 22 is
independent of T11 and v, and its density is proportional to

p
∏

i=2

T m−i
ii |I − T 22T

′
22|

n−p
2 .

This density function has the same form as the one given in (C.3), and by repeating
arguments and using the fact that the size of T22 equals (p − 1)× (p − 1), it follows
that T22 ∼ β(m − 1, n) distributed. Continuing in the same fashion with Tii , i =
3, 4, . . . , p, establishes the lemma. �
Now, applying Lemma C.1 yields Theorem C.1.

Theorem C.1 Let W 1 ∼ Wp(�, f ), p ≤ f , W 2 ∼ Wp(�,m), p ≤ m, and let
Up,m,f be given by (C.2). Then

Up,m,f =
p
∏

i=1

βi,

where βi is independent of βj , i �= j , and

βi ∼ β(m + 1 − i, f ).

From general asymptotic likelihood theory, it follows that

− 2 ln Up,m,f
a∼χ2

pm, (C.4)

since BG = 0 implies that pm restrictions have been introduced on the parameter
space. It is now shown that this result can be improved via some expansion (the so-
called Bartlett correction), i.e. the convergence can be made faster than O(n−1/2),
which is the usual speed of the central limit theorem, which was applied when
showing (C.4).

Since 0 ≤ Up,m,f ≤ 1, the statistic has compact support and, therefore, the
moments determine the distribution. From Theorem C.1 it follows that the kth
moment of Up,m,f is known. Thus, since

E[Uk
p,m,f ] = E[ek ln Up,m,f ],

the moment-generating function for −2 ln Up,m,f is available. For details about how
to utilize this result, see Srivastava and Khatri (1979) or Anderson (2003).

In the next theorem some special cases of (C.2) are presented where exact
distributional results exist, and which can be shown to hold via moment calculations.
Finding some exact special cases should be possible, because if, for example, p = 1,
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we are working within univariate analysis of variance, where exact F -tests are used
for testing H0.

Theorem C.2 Let Up,m,f be given by (C.2) and let Fa,b denote the F -distribution
with parameters a and b (see Sect. A.9 in Appendix A). Then

(i) Up,m,f ∼ Um,p,f +m−p,

(ii) T1 = (f−1)
m

(1 − U
1/2
2,m,f )/U

1/2
2,m,f ∼ F2m,2(f−1),

(iii) T2 = f
m

(1 − U1,m,f )/U1,m,f ∼ Fm,f .
��

In fact, the above theorem covers quite a large number of testing situations,
since after transformation and conditioning, it is often the case that p = 1 or
p = 2. Concerning the distribution of the general case, the reader is referred to
Srivastava and Khatri (1979) or Anderson (2003). The main problem is that it is
difficult to invert the moment-generating function and therefore one has to rely
on approximations. Since the moment-generating function is a function of gamma
functions, the idea is to approximate these functions appropriately, i.e. as functions
of the moment-generating function for a chi-square distributed variable. After a
great deal of bookkeeping of terms in expansions, this provides the next important
theorem.

Theorem C.3 Let Up,m,f be given by (C.2). Then

(i)

P {−(f − 1
2 (p − m + 1)) ln Up,m,f ≤ z} a∼P {χ2

pm ≤ z}
+ c1(1 − c1)(P {χ2

pm+4 ≤ z} − P {χ2
pm ≤ z}) + c2(P {χ2

pm+8 ≤ z} − P {χ2
pm ≤ z})

+ O(n−6),

where

c1 = pm(p2 + m2 − 5)

48(f − 1
2 (p − m + 1))2

,

c2 = 1
2c2

1 + pm(3p4 + 3m4 + 10p2m2 − 50(p2 + m2) + 159)

1920(f − 1
2 (p − m + 1))4

.

(ii) Let λ = U
− 1

2 n

p,m,f be the likelihood ratio statistics for testing H0:μG = 0 against
H1: μ unrestricted. Then

P { 2
n
(f − 1

2 (p − m + 1)) ln λ ≤ z} = P {−(f − 1
2 (p − m + 1)) ln Up,m,f ≤ z}.
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Proof A proof of statement (i) is given in Srivastava and Khatri (1979, Sec-
tion 6.3.7) and Anderson (2003, Theorem 8.5.2), �

Note that c1 = O(n−2) and c2 = O(n−4). However, c1 = O(p) and c2 = O(p2)

and, therefore, for large p > n, the approximation given above will not behave well;
i.e. if p/n → 1 when (p, n) → (∞,∞), then c1 and c2 turn to ∞.

Corollary C.1 Let Up,m,f be given by (C.2). Then

(i)

P {−(f − 1
2 (p − m + 1)) ln Up,m,f ≤ z} a∼ P {χ2

pm ≤ z} + O(n−2);

(ii)

P {−(f − 1
2 (p − m + 1)) ln Up,m,f ≤ z} a∼ P {χ2

pm ≤ z}
+ c1(1 − c1)(P {χ2

pm+4 ≤ z} − P {χ2
pm ≤ z}) + O(n−4).

��
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Note that BRM , EBRM3
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W appear before the key words which are
given in alphabetical order. There will be no references given to Appendix A or
Appendix B, and only a few references are given to Appendix C.
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maximum likelihood estimators
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