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Preface

This book brings the contributed works of MaxEnt 2017—37th International
Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering (http://www.gis.des.ufscar.br/meetings/2017maxent/).

The 37th MaxEnt happened in Jarinu-SP from 9 to 14 July 2017 and the event
aimed at:

• strengthening research and presenting contributions in all aspects of Bayesian
methods and maximum entropy, as well as extending its applications in problems
from different scientific communities and in areas such as astronomy, reliability,
cosmology, econometrics, engineering, quantummechanics, stochastic processes,
survival, etc.;

• providing an environment in which researchers could interact, presenting recent
developments and discussing related issues;

• allowing graduate students to have contact with senior researchers to discuss
their work and to start possible contacts for future doctorate studies and post-
doctorate projects.

The main objective of this workshop was the discussion about Bayesian compu-
tational techniques such as Monte Carlo Markov Chain and approximate inferential
methods, questions about foundation of probability, and information theory. It also
considered the presentation and discussion of new applications of inference foun-
dations of physical theories.

The event has had excellent talks given by researchers of international reputa-
tion, whose works are currently highlighted in applied mathematics and statistics.

The MaxEnt 2017 was organized by: Inductive Statistics Group (GIS),
Department of Statistics of the Federal University of São Carlos (DEs/UFSCar),
Institute of Mathematics and Statistics of the University of São Paulo (IME/USP),
Mathematics and Computer Science, University of São Paulo (ICMC/USP),
Postgraduate Program in Statistics of UFSCar/ICMC-USP, and CeMEAI.
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The Conference Chairing Committee was

• Adriano Polpo (UFSCar, Brazil)
• Julio M. Stern (USP, Brazil)

The members of the Organizing Committee were

• Adriano Polpo (UFSCar, Brazil)
• Carlos Alberto de Bragança Pereira (IME-USP, Brazil)
• Francisco Louzada Neto (ICMC-USP, Brazil)
• Hellinton H. Takada (Itaú Asset Management, Brazil)
• Juliana Cobre (ICMC-USP, Brazil)
• Julio Stern (IME-USP, Brazil)
• Katiane Conceição (ICMC-USP, Brazil)
• Márcio Alves Diniz (UFSCar, Brazil)
• Nestor Caticha (IF-USP, Brazil)
• Rafael Bassi Stern (UFSCar, Brazil)
• Rafael Izbicki (UFSCar, Brazil)
• Teresa Cristina Martins Dias (UFSCar, Brazil)
• Victor Fossaluza (IME-USP, Brazil)

The members of the Scientific Committee were

• Adriano Polpo (UFSCar, Brazil)
• Ali Mohammad-Djafari (CNRS, France)
• Ariel Caticha (Univ. at Albany, USA)
• Carlos Alberto de Bragança Pereira (IME-USP, Brazil)
• Francisco Louzada Neto (ICMC-USP, Brazil)
• Hellinton H. Takada (Itaú Asset Management, Brazil)
• Julian Center (Autonomous Exploration Inc., USA)
• Julio Stern (IME-USP, Brazil)
• Kevin Knuth (Univ. at Albany, USA)
• Paul M. Goggans (Univ. of Mississippi, USA)
• Rafael Izbicki (UFSCar, Brazil)
• Robert Niven (UNSW, Australia)

The members of the Executive Committee were

• Luana A. Takahashi
• Rita Volckov
• Sylvia Regina A. Takahashi

The workshop included nine invited speakers, whose names and respective insti-
tutions are listed below

• Ariel Caticha (University at Albany, USA)
• Flávio B. Gonçalves (UFMG, Brazil)
• Udo von Toussaint (Max-Planck-Institut fuer Plasmaphysik, Germany)
• Karim Anaya-Izquierdo (University of Bath, United Kingdom)
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• Estevam R. Hruschka Jr. (UFSCar, Brazil)
• John Skilling (Maximum Entropy Data Consultants, Ireland)
• Thais Fonseca (UFRJ, Brazil)
• Rubens Sampaio (PUC-RJ, Brazil)
• Kevin Knuth (University at Albany, USA)

Also, four tutorial sessions have been given and were presented by

• Adriano Polpo (UFSCar, Brazil)
• Ali Mohammad-Djafari (Centre National de la Recherche Scientifique, France)
• Hellinton H. Takada (Itaú Asset Management, Brazil)
• Rafael B. Stern (UFSCar, Brazil)

It is worth noting the significant participation of students (29), most of whom
presented their works orally or in posters. This is an important indicator of a
promising future for the areas covered by the event in the Brazilian scientific
community. The workshop has been attended by 20 researchers from foreign
institutions. The photo of the participants is shown in Fig. 1

We point out that all oral sessions were recorded. They are available to the entire
community at https://goo.gl/p3KVu5.

TheMaxEnt 2017 Organizing Committee is grateful for the support received from
the following agencies and institutions: FAPESP, CNPq, CAPES, Interinstitutional
Program of Postgraduate Studies in Statistics UFSCar/ICMC-USP, Program

Fig. 1 Group photo of MaxEnt 2017 participants
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of Postgraduation in Applied Mathematics IME-USP, Postgraduate Program in
Probability and Statistics IME-USP, Springer, Entropy Journal, and Boise State
University.

São Carlos, Brazil Adriano Polpo
July 2018 Julio Stern

Francisco Louzada
Rafael Izbicki

Hellinton Takada
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Quantum Phases in Entropic Dynamics

Nicholas Carrara and Ariel Caticha

Abstract In the Entropic Dynamics framework, the dynamics is driven by maxi-
mizing entropy subject to appropriate constraints. In this work, we bring Entropic
Dynamics one-step closer to full equivalence with quantum theory by identifying
constraints that lead to wave functions that remain single-valued even for multi-
valued phases by recognizing the intimate relation between quantum phases, gauge
symmetry, and charge quantization.

Keywords Entropic Dynamics · Quantum phases · Charge quantization

1 Introduction

In the Entropic Dynamics (ED) framework, the Schrödinger equation is derived as an
application of entropic methods of inference1 and, as always with inference, the first
and most crucial step is to be clear about what we want to infer. What microstates are
we talking about? This defines the ontology of the model. Once that choice is made
the dynamics is driven by entropy subject to information expressed by constraints
[2–5].

ED takes the epistemic view of the wave function Ψ to its logical conclusion.
Within an inferential framework, it is not sufficient to just state that the probability

1The principle of maximum entropy as a method for inference can be traced to the pioneering
work of E. T. Jaynes. For a pedagogical overview of Bayesian and entropic inference and further
references see [1].
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2 N. Carrara and A. Caticha

|Ψ |2 reflects a state of knowledge; it is also necessary to demand that the phase receive
an epistemic interpretation, and that all changes in Ψ be dictated by the maximum
entropy and Bayesian updating rules. Thus, the ED framework is very restrictive:
it must account for both the unitary time evolution described by the Schrödinger
equation and the collapse of the wave function during measurement.

But even after ED succeeds in accomplishing these tasks a challenge still remains:
is ED fully equivalent to quantum mechanics (QM) or does it merely reproduce a
subset of its solutions? Problems of this kindwere pointed out long ago byTakabayasi
[6] in the context of the hydrodynamical interpretation of QM, and later revived
by Wallstrom [7, 8] in the context of Nelson’s stochastic mechanics. Wallstrom’s
objection is that stochastic mechanics leads to phases and wave functions that are
either both multi-valued or both single-valued. Both alternatives are unsatisfactory
because on the one hand, QM requires single-valued wave functions, while on the
other hand single-valued phases exclude states that are physically relevant (e.g., states
with nonzero angular momentum).

In previous work, the constraints that drive the dynamics were introduced in two
different ways, either by postulating some extra variables [2, 9], or by the explicit
introduction of a “drift” potential [3–5, 10]. One of the goals of this paper is to show
that these two types of constraint can be imposed simultaneously which lends the
theory greater flexibility and expands the range of future potential applications. We
identify constraints that lead to single-valued wave functions, but nevertheless allow
for multi-valued phases2 and naturally lead to the local gauge symmetry required
for electromagnetic interactions. Our argument involves two ingredients. The first is
the recognition that a deeper understanding of the phase of the wave function must
consider the intimate relation between quantum phases and gauge symmetry. The
second ingredient is the recognition that in order for ED to agree with experiment
it is necessary that the dynamics be linear. ED differs from standard QM in many
crucial ways but its demand for linearity is not one of them. The demand that the
linear and the probabilistic structures be compatible with each other implies that ED
constraints must lead to single-valued wave functions [12].

Here, we will focus on the derivation of the Schrödinger equation but the ED
approach has been applied to a variety of other topics including the quantum mea-
surement problem [13, 14]; momentum and uncertainty relations [15]; the Bohmian
limit [10, 16] and the classical limit [17]; the extensions to curved spaces [18] and
to relativistic fields [19, 20].

2A hint towards a satisfactory resolution of Wallstrom’s objection is found in Takabayasi’s later
work which incorporates spin into his hydrodynamical approach [11]. Although here we focus on
non-spinning particles our choice of constraints can be generalized to particles with spin 1/2 — a
project to be addressed in a future publication.
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2 Entropic Dynamics — A Brief Review

The statistical model– We consider N particles living in a flat Euclidean space X
with metric δab. The first important assumption is that position plays a distinguished
role: it defines the ontic state of the system. The fact that at all times particles have
definite positions deviates from the standard Copenhagen interpretation according to
which definite values are created by measurement.3 In ED, positions are in general
unknown; they are the quantities to be inferred.

The position of each particle will be denoted by xan where the index n = 1 . . . N
labels the particle and a = 1, 2, 3 its spatial coordinates. The position of the system
in configuration space XN = X × . . . × X will be denoted either by x or by the
components x A where A = (n, a), and the corresponding volume element is d3N x =
dx .

The second assumption is that in addition to the particles there also exist some
other variables denoted y [2, 9]. This assumption is not unreasonable: the world does
contain stuff beyond the N particles of interest. It is also most fortunate that we need
not be too specific about these y variables. It turns out that the relevant information
is conveyed by their entropy,

S(x) = −
∫

dy p(y|x) log p(y|x)
q(y)

, (1)

where we assume that the probability distribution p(y|x) depends on the location x
of the particles and q(y) is some unspecified underlying measure.

Having identified the microstates (x, y) ∈ XN × Y we tackle the dynamics. The
goal is to find the probability density P(x ′|x) for the transition from an initial x to a
new x ′. Since both x ′ and the corresponding y′ are unknown the relevant space is not
justXN butXN × Y. The distribution we seek is the joint distribution P(x ′, y′|x, y).
It is found by maximizing the appropriate entropy,

S [P, Q] = −
∫

dx ′dy′ P(x ′, y′|x, y) log P(x ′, y′|x, y)
Q(x ′, y′|x, y) , (2)

relative to a joint prior Q(x ′, y′|x, y) and subject to the appropriate constraints.
The prior– We adopt a prior Q(x ′, y′|x, y) that represents a state of extreme igno-
rance: knowledge of x ′ tells us nothing about y′ and vice versa. This is a product,
Q(x ′, y′|x, y) = Q(x ′|x, y)Q(y′|x, y), in which Q(x ′|x, y)dx ′ and Q(y′|x, y)dy′
are uniform,4 that is, proportional to the respective volume elements, d3N x = dx and

3On the other hand, in ED — just as in the Copenhagen interpretation — other observables such
as energy or momentum do not, in general, have definite values; their values are created by the act
of measurement. These other quantities are epistemic in that they do not reflect properties of the
particles but of the wave function.
4Strictly uniform non-normalizable priors can be mathematically problematic but here no such
difficulties arise. By “uniform” we actually mean any distribution that is essentially flat over the
support of the posterior which in our case will be infinitesimally narrow.
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q(y)dy. Since proportionality constants have no effect on the entropy maximization,
the joint prior is

Q(x ′, y′|x, y) = q(y′). (3)

The constraints– We first write the posterior as a product,

P(x ′, y′|x, y) = P(x ′|x, y)P(y′|x ′, x, y) . (4)

We require that the new x ′ depends only on x so we set P(x ′|x, y) = P(x ′|x). We
also require that the uncertainty in y′ depends only on x ′, P(y′|x ′, x, y) = p(y′|x ′).
Therefore, the first constraint is

P(x ′, y′|x, y) = P(x ′|x)p(y′|x ′). (5)

To implement it substitute (3) and (5) into (2),

S [P, Q] = −
∫

dx ′ P(x ′|x) log P(x ′|x) +
∫

dx ′ P(x ′|x)S(x ′) , (6)

where S(x) is given in Eq. (1). Next, the continuity of the motion is enforced by
requiring that the steps Δxan from xan to x ′a

n = xan + Δxan taken by each individual
particle be infinitesimally short. This is implemented by imposing N independent
constraints,

∫
dx ′ P(x ′|x)ΔxanΔxbnδab = 〈ΔxanΔxbn 〉δab = κn , (n = 1 . . . N ) . (7)

where repeated indices are summed over and we eventually take the limit κn → 0.
The κn’s are chosen to be constant to reflect the translational symmetry of the space
X and they are n-dependent in order to accommodate non-identical particles.
The transition probability– Varying P(x ′|x) to maximize (6) subject to (7) and
normalization gives

P(x ′|x) = 1

ζ
exp

[
S(x ′) − 1

2

∑
nαnδabΔxanΔxbn

]
, (8)

where ζ is a normalization constant and the Lagrange multipliers αn are chosen to
implement the constraints Eq. (7). In Eq. (8) it is clear that the infinitesimally short
steps are obtained in the limit of large αn . It is therefore useful to Taylor expand,

S(x ′) = S(x) + ∑
nΔxan

∂S

∂xan
+ . . . (9)

and rewrite P(x ′|x) as
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P(x ′|x) = 1

Z
exp

[
−1

2

∑
nαn δab

(
Δxan − 〈Δxan 〉

) (
Δxbn − 〈Δxbn 〉

)]
, (10)

where Z is a new normalization constant and Δxan is given by Eq. (12) below.
To find how these short steps accumulate, we introduce time as a book-keeping de-

vice. As discussed in [2–5] entropic time is measured by the fluctuations themselves
(see Eq. (14) below) which leads to the choice

αn = mn

ηΔt
, (11)

where Δt is the time taken by the short step, the mn are particle-specific constants
that will be called “masses,” and η is a constant that fixes the units of time relative to
those of length and mass. A generic displacement is then expressed as an expected
drift plus a fluctuation,

Δxan = Δx A = bAΔt + ΔwA , (12)

where bA(x) is the drift velocity,

〈Δx A〉 = bAΔt with bA = η

mn
δAB∂B S = ηmAB∂B S , (13)

and ∂A = ∂/∂xan ; mAB = mnδAB is the “mass” tensor and mAB = δAB/mn is its
inverse. The fluctuations ΔwA satisfy,

〈ΔwA〉 = 0 and 〈ΔwAΔwB〉 = η

mn
δABΔt = ηmABΔt. (14)

Thus ED leads to the non-differentiable trajectories that are characteristic of a Brow-
nian motion.

The Fokker–Planck equation–Once the probability for a single short step is found,
Eq. (10), the accumulation of many short steps leads to a probability distribution
ρ(x, t) in configuration space that obeys a Fokker–Planck equation (FP), [1–3]

∂tρ = −∑
n∂na

(
ρvan

) = −∂A
(
ρvA

)
, (15)

where vA is the velocity of the probability flow in configuration space or current
velocity. It is given by

vA = mAB∂BΦ0 and Φ0 = ηS − η log ρ1/2 (16)

where Φ0 will be called the phase.

Hamiltonian entropic dynamics– The FP equation (15) describes a standard diffu-
sion of a single dynamical field, ρ(x), that evolves in response to a non-dynamical
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field given by the entropy S(x). In contrast, a quantum dynamics includes a second
dynamical field, the phase of the wave function. In ED, this evolving phase is intro-
duced by continuously updating the constraint (5) which allows the entropy S(x), or
equivalently the phase Φ0(x), to become dynamical.

First, we note that without loss of generality we can always find a functional
H̃ [ρ,Φ0] so that ∂tρ = δ H̃/δΦ0 reproduces the FP equation (15). The specific up-
dating rule for S or Φ0 is inspired by an idea of Nelson’s [21]: requiring that Φ0 be
updated in such a way that the functional H̃ [ρ,Φ0] be conserved leads to Hamilton’s
equations [4],

∂tρ = δ H̃

δΦ0
and ∂tΦ0 = −δ H̃

δρ
. (17)

H̃ [ρ,Φ0] is the “ensemble”Hamiltonian. The second equation in (17) is aHamilton–
Jacobi equation (HJ). Additional arguments from information geometry [4] can then
be invoked to suggest that the natural choice of H̃ is

H̃ [ρ,Φ0] =
∫

dx ρ

[
1

2
mAB∂AΦ0∂BΦ0 + V + ξmAB 1

ρ2
∂Aρ∂Bρ

]
. (18)

The first term in the integrand is the “kinetic” term that reproduces the FP equation
(15). The second term represents the simplest nontrivial interaction and introduces
the standard potential V (x). The third term, motivated by information geometry,
is the trace of the Fisher information and is called the “quantum” potential. The
parameter ξ controls the relative contributions of the two potentials: ξ = 0 leads to
a stochastic classical mechanics; ξ > 0 leads to quantum theory — in fact, ξ defines
Planck’s constant as � = (8ξ)1/2.

The Schrödinger equation– To conclude this brief review of ED, we note that at
this point the dynamics is fully specified by Eqs. (17) and (18). We can combine
ρ and Φ0 into a single complex function, Ψ0 = ρ1/2 exp(iΦ0/�). Then, the pair of
Hamilton’s equations (17) can be rewritten as a single complex Schrödinger equation
that is explicitly linear,

i�∂tΨ0 = −�
2

2
mAB∂A∂BΨ0 + VΨ0. (19)

However, even though Eq. (17) can be written in the form (19), this does not mean
that they are equivalent to the full quantum theory. The problem is that Eq. (17) only
reproduce a subset of all the wave functions required by quantum mechanics. More
specifically, since both S(x) and ρ(x) are single-valued — the total change as one
moves in a closed path vanishes,

ΔS =
∮

Γ

d�A∂AS = 0 and Δρ =
∮

Γ

d�A∂Aρ = 0 , (20)
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so that bothΦ0 andΨ0 are single-valued too. The single-valuedness ofΨ0 is precisely
what we want, but the single-valuedness of Φ0 is too restrictive. It excludes, for
example, eigenstates of angular momentum that havemanifestlymulti-valued phases
(Ψ ∝ eimφ , where φ is the azimuthal angle and m is an integer).

3 Gauge Symmetry and Multi-Valued Phases

A minimal ED was derived in the previous section. A richer dynamics that allows
additional interactions can be achieved by imposing additional constraints.

Additional constraints– We assume that the motion of each particle is affected
by an additional potential field ϕ(x) where x ∈ X is a point in 3D space with the
topological properties of an angle (ϕ(x) and ϕ(x) + 2π describe the same angle).
We further assume that these angles can be redefined by different amounts χ(x) at
different places, that is, the origin from which these angles are measured can be set
independently at each x . This is a local gauge symmetry and it immediately raises
the question of how can one compare angles at different locations in order to define
derivatives. The answer iswell known: introduce a connectionfield, a vector potential
Aa(x) that defines which angle at x + Δ(x) is the “same” as the angle at x . This
is implemented by imposing that as ϕ → ϕ + χ then the connection transforms as
Aa → Aa + ∂aχ so that the corrected derivative ∂aϕ − Aa remains invariant.5

To derive an ED that incorporates gauge invariant interactions with these poten-
tials, in addition to (7) and normalization, for each particle we impose the constraint

〈Δxan 〉[∂aϕ(xn) − Aa(xn)] = κ ′
n(xn) , (n = 1 . . . N ) (21)

where κ ′
n(xn) are functions to be specified below.

The transition probability P(x ′|x) that maximizes the entropyS [P, Q] in (6) is

P(x ′|x) = 1

ζ
exp

[
S(x ′) − ∑

n

(αn

2
δabΔxanΔxbn − βn (∂naϕ(xn) − Aa(xn))Δxan

)]
(22)

where ∂na = ∂/∂xan , αn and βn are Lagrange multipliers, and ζ is a normalization
constant. For large αn Taylor expand S(x ′) about x , and use Eq. (11), then, as in
Eq. (12) a generic displacement Δx A can be expressed in terms of an expected drift
plus a fluctuation, Δx A = bAΔt + ΔwA, but the drift velocity (13) now includes a
new term,

ban = η

mn
δab [∂nb{S(x) + βnϕ(xn)} − βn Ab(xn)] , (23)

5Note that since ϕ is dimensionless the vector potential Aa has units of inverse length and this
implicitly defines the units of electric charge. These are not the units conventionally adopted in
electromagnetism.
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while the fluctuations ΔwA, Eq. (14), remain unchanged.

Hamilton’s equations–As before, the accumulation of many short steps leads to the
FP equation (15), but now the current velocity vA = van must be suitably modified,

vA = mAB
(
∂BΦ − ĀB

)
with Φ = η(S + ϕ̄ − log ρ1/2) , (24)

where we introduced the configuration space quantities,

ĀA(x) = ηβn Aa(xn) and ϕ̄(x) = �nβnϕ(xn). (25)

where A = (n, a). Note that vA is gauge invariant. The new ensemble Hamiltonian
H̃ , Eq. (18), is

H̃ [ρ,Φ] =
∫

dx

[
1

2
ρmAB (

∂AΦ − ĀA
) (

∂BΦ − ĀB
) + ρV + �

2

8ρ
mAB∂Aρ∂Bρ

]
,

(26)
and the new FP equation now reads,

∂tρ = −∂A
[
ρmAB

(
∂BΦ − ĀB

)] = δ H̃

δΦ
. (27)

As before, the requirement that H̃ be conserved for arbitrary initial condition-
s amounts to imposing the conjugate Hamilton equation, Eq. (17), which leads to
the Hamilton–Jacobi equation,

∂tΦ = −δ H̃

δρ
= −1

2
mAB

(
∂AΦ − ĀA

) (
∂BΦ − ĀB

) − V + �
2

2
mAB ∂A∂Bρ1/2

ρ1/2
.

(28)
Finally, we combine ρ and Φ into a single wave function, Ψ = ρ1/2 exp(iΦ/�), to
obtain the linear Schrödinger equation,

i�∂tΨ = −
∑

n

�
2

2mn
δab

(
∂

∂xan
− i

�
ηβn Aa(xn)

) (
∂

∂xbn
− i

�
ηβn Ab(xn)

)
Ψ + VΨ.

(29)

4 Discussion

Electric charges are Lagrange multipliers– Recalling the standard expression for
covariant derivatives,

∂

∂xan
− iqn

�c
Aa(xn) , (30)
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(qn is the electric charge of particle n and c is the speed of light) shows that (29)
is indeed the Schrödinger equation provided the multipliers βn are chosen to be
particle-dependent constants that are related to electric charges by

βn = qn
ηc

or qn = cηβn. (31)

Thus, in ED electric charges are Lagrange multipliers that measure the strength of
the particles’ coupling to the ϕn and Aa potentials.

Single-valued wave functions, quantized circulation, and quantized charges–
The success of any framework for inference such as ED depends on identifying
the correct constraints. The choice of constraints in Sect. 2 succeeds in reproducing
many of the features of quantum theory including a linear Schrödinger equation but
is ultimately unsatisfactory because it leads to single-valued wave functions with
single-valued phases that fail to include all quantum states.

The choice of constraints adopted in Sect. 3 represent an improvement because
they take into account the relation between quantum phases and gauge symmetry.
However, the wave functions Ψ obtained for generic choices of the multipliers βn

are also problematic in that they give multi-valued phases Φ, Eq. (24), that lead to
multi-valued wave functions. Indeed, since ϕ is an angle the integral over a closed
loop Γn in which all particles except n are kept fixed gives

Δϕ =
∮

Γn

d�an∂naϕ = 2πν(Γn) , (32)

where ν(Γn) is an integer that depends on the loop Γn . Since S and log ρ are single-
valued, from (24), we have

Δ
Φ

�
=

∮
Γn

d�an∂na
Φ

�
= ηβn

�

∮
Γn

d�an∂naϕ = ηβn

�
2πν(Γn) , (33)

so that Ψ is not single-valued.
Unfortunately, this means that even though (29) is linear, its linearity is in conflict

with the underlying probabilistic structure. To see the problem consider two multi-
valued ED solutions of (29), Ψ1 and Ψ2. Their magnitudes |Ψ1|2 = ρ1 and |Ψ2|2 =
ρ2 are single-valued because they are probability densities. However, even though
α1Ψ1 + α2Ψ2 = Ψ3 is also a solution, it turns out that its magnitude |Ψ3|2 will in
general turn out to be multi-valued which precludes a probabilistic interpretation
[11]. Mere linearity is not enough. The condition for the linear and probabilistic
structures to be compatible with each other is that wave functions be single-valued.

Inspection of Eq. (33) for arbitrary loops shows that the choice of constraint
(21) — that is, the choice of βn— that leads to single-valued wave functions is

ηβn

�
= μ (34)
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where μ is an integer.
Equation (31) then shows that electric charges must be quantized in units of a

basic charge q = �c
ηβn

�
= qn

�c
= μ or qn = μq. (35)

Changing to conventional units for charges and potentials is straightforward; just
rescale λqn = q ′

n and Aa/λ = A′
a so that qn Aa = q ′

n A
′
a .

Conclusion– The equivalence of ED and quantum mechanics with a wave function-
s that remain single-valued even for multi-valued phases is achieved by imposing
constraints that recognize the intimate relation between quantum phases and gauge
symmetry. The condition for compatibility between the probabilistic and linear struc-
tures is that charges be quantized.

Acknowledgements We would like to thank M. Abedi, D. Bartolomeo, C. Cafaro, N. Caticha, S.
DiFranzo, A. Giffin, S. Ipek, D.T. Johnson, K. Knuth, S. Nawaz, M. Reginatto, C. Rodríguez, K.
Vanslette, for many discussions on entropy, inference, and quantum mechanics.

References

1. For a pedagogical review see Caticha, A.: Entropic Inference and the Foundations of Physics
(11th Brazilian Meeting on Bayesian Statistics – EBEB-2012. http://www.albany.edu/physics/
ACaticha-EIFP-book.pdf

2. Caticha, A.: Entropic dynamics, time and quantum theory. J. Phys. A: Math. Theor. 44, 225303
(2011). arXiv.org:1005.2357

3. Caticha, A.: Entropic dynamics: an inference approach to quantum theory, time and measure-
ment. J. Phys.: Conf. Ser. 504, 012009 (2014). arXiv.org:1403.3822

4. Caticha, A., Bartolomeo, D., Reginatto, M.: Entropic dynamics: from entropy and informa-
tion geometry to hamiltonians and quantum mechanics. AIP Conf. Proc. 1641, 155 (2015).
arXiv.org:1412.5629

5. Caticha, A.: Entropic dynamics. Entropy 17, 6110 (2015). arXiv.org:1509.03222
6. Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures.

Prog. Theor. Phys. 8, 143 (1952)
7. Wallstrom, T.C.: On the derivation of the Schrödinger equation from stochastic mechanics.

Found. Phys. Lett. 2, 113 (1989)
8. Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrody-

namic equations. Phys. Rev. A 49, 1613 (1994)
9. Caticha, A.: Entropic dynamics: mechanics without mechanism. arXiv.org:1704.0266
10. Bartolomeo, D., Caticha, A.: Entropic dynamics: the Schroedinger equation and its Bohmian

limit. AIP Conf. Proc. 1757, 030002 (2016). arXiv.org:1512.09084
11. Takabayasi, T.: Vortex, spin and triad for quantum mechanics of spinning particle I: general

theory. Prog. Theor. Phys. 70, 1–17 (1983)
12. Merzbacher, E.: Single valuedness of wave functions. Am. J. Phys. 30, 237 (1962)
13. Johnson, D.T., Caticha, A.: Entropic dynamics and the quantum measurement problem. AIP

Conf. Proc. 1443, 104 (2012). arXiv:1108.2550
14. Vanslette, K., Caticha, A.: Quantum measurement and weak values in entropic dynamics. AIP

Conf. Proc. 1853, 090003 (2017). arXiv:1701.00781

http://www.albany.edu/physics/ACaticha-EIFP-book.pdf
http://www.albany.edu/physics/ACaticha-EIFP-book.pdf
http://arxiv.org/abs/org:1005.2357
http://arxiv.org/abs/org:1403.3822
http://arxiv.org/abs/org:1412.5629
http://arxiv.org/abs/org:1509.03222
http://arxiv.org/abs/org:1704.0266
http://arxiv.org/abs/org:1512.09084
http://arxiv.org/abs/1108.2550
http://arxiv.org/abs/1701.00781


Quantum Phases in Entropic Dynamics 11

15. Nawaz, S., Caticha, A.: Momentum and uncertainty relations in the entropic approach to quan-
tum theory. AIP Conf. Proc. 1443, 112 (2012). arXiv:1108.2629

16. Bartolomeo, D., Caticha, A.: Trading drift and fluctuations in entropic dynamics: quantum
dynamics as an emergent universality class. J. Phys.: Conf. Ser. 701, 012009 (2016). arX-
iv.org:1603.08469

17. Demme, A., Caticha, A.: The classical limit of entropic quantum dynamics. AIP Conf. Proc.
1853, 090001 (2017). arXiv.org:1612.01905

18. Nawaz, S., Abedi, M., Caticha, A.: Entropic dynamics on curved spaces. AIP Conf. Proc. 1757,
030004 (2016). arXiv.org:1601.01708

19. Ipek, S., Caticha, A.: Entropic quantization of scalar fields. arXiv.org:1412.5637
20. Ipek, S., Abedi, M., Caticha, A.: A covariant approach to entropic dynamics. AIP Conf. Proc.

1853, 090002 (2017)
21. Nelson, E.: Lect. Notes in Phys. 100, 168 (Springer, Berlin, 1979)

http://arxiv.org/abs/1108.2629
http://arxiv.org/abs/org:1603.08469
http://arxiv.org/abs/org:1612.01905
http://arxiv.org/abs/org:1601.01708
http://arxiv.org/abs/org:1412.5637


Bayesian Approach to Variable Splitting
Forward Models

Ali Mohammad-Djafari, Mircea Dumitru,
Camille Chapdelaine and Li Wang

Abstract Classical single additive noise forward model can be extended to account
for different uncertainties by variable splitting models. For example, one can distin-
guish between observation noise and forward model uncertainty or even to account
for other forward model uncertainties. In this paper, we consider different cases and
propose to use the Bayesian approach to handle them. As a by-product, we see that
when MAP estimator is used we can find the same kind of optimization algorithms
as Alternating Direction Method of Multipliers (ADMM) or Iterative Shrinkage
Thresholding Algorithm (ISTA) optimization ones. However, the Bayesian approach
gives us the tools to go further by estimating the hyperparameters of the inversion
problems which are often crucial in real applications.

Keywords Inverse problems · Variable splitting forward models · Bayesian MAP
estimate · ADMM optimization

1 Introduction

The classical forward model for linear inverse problems is:

g = Hf + ε, (1)
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where f , a vector of length N represents the unknown, g, a vector of length M
represents the data, H is the forward model matrix and all the uncertainties are
summarized by the vector ε. For this simple model, nowadays, almost everything
has been told, starting by Least Squares (LS), then Quadratic Regularization (QR),
L1 regularization, Bayesian approach with simple Gaussian models for the noise and
Gaussian prior model, Double Exponential (DE) prior, Student-t prior [1] to much
more sophisticated Hierarchical models [2–4]. However, in many real applications,
it is needed to propose forward models which can account for other sources of
uncertainties. For example, if we want to distinguish between the measurement noise
and the forward model uncertainties, we can propose the following variable splitting
model: g = Hf + ξ + ε which can also be written as:

{
g = g0 + ε,

g0 = Hf + ξ ,
(2)

where ε represents the measurement noise and ξ can represent the modeling errors
[5]. However, now, we have two quantities to infer on: f and g0. Interestingly, as we
will see in Sect. 3, the Maximum A Posteriori (MAP) estimate of f and g0 results
in an algorithm which looks like the ADMM. However, the Bayesian approach has
many advantages over the deterministic regularization methods. For example, we
may assign different probability laws to ε and ξ . For example, we can assign as usual
a Gaussian model to ε and a more heavy tailed model for ξ . See the details in [6, 7].

We can also go further in details by considering the following models:

{
g = g0 + ε,

g0 = H(f + f0) + ξ ,
(3)

where now, we have three unknowns f , g0 and f0, where this last one can model
some unknown background in the input space.

This model can also be written differently as:

{
g = g0 + ε,

g0 = Hf + u + ξ ,
(4)

where u = Hf0. We may also rewrite this:

{
g = g0 + u + ε,

g0 = Hf + ξ ,
(5)

where, this time, u may represent a background in the measurement space. Finally,
we can consider {

g = g0 + ε,

g0 = (H + δH)f + ξ ,
(6)
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where δH represents some error in the elements of the forward model, which again,
can be written either as in (4) or (5) with u = δHf or

⎧⎨
⎩
g = g0 + ε,

g0 = Hf + u + ξ ,

u = δH f + ζ .

(7)

In the following, we are going to consider the different forward models (1)–(7) and
give more insights for each case. In particular, we compare the classical optimization
algorithms with Bayesian MAP, but also, we enhance the other advantages of the
Bayesian approach to handle these models. For some cases, we mention and refer to
the real application of these models in Computed Tomography (CT) [1, 7].

2 Forward Model 1

For the case of the forward model (1), if we consider the classical regularization
methods, the solution is defined as the optimizer of

J (f) = ‖g − Hf‖22 + λR(f) (8)

where the regularization term R(f) has been, classically chosen between any of the
following:

R(f) =
{
‖f‖22, ‖f‖1, ‖f‖β

β, ‖Df‖22, ‖Df‖1, ‖Df‖β

β

}
(9)

where D is a linear sparsifying operator (gradient, Laplacien, Wavelet Transform,
etc.). There are also other more general expressions for it.

p(f) ∝
∑
j

φ( f j ) or p(f) ∝
∑
j

φ( f j − f j−1) (10)

where φ(.) is in general a potential function. The particular cases of φ( f j ) = | f j |2,
φ( f j ) = | f j − f j−1|2 or φ( f j ) = | f j |, φ( f j ) = | f j − f j−1| are the classical ones.

In the Bayesian framework, the classical Gaussian priors for the forward model 1
is written as follows:

{
p(g|f , vε) = N (g|Hf , vεI),

p(f |v f ) = N (f |0, v f I),
(11)

which results in p(f |g, vε, v f ) = N (f |f̂ , �̂) with
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{
f̂ = [H ′H + λI]−1H ′g,

�̂ = vε[H ′H + λI]−1, λ = vε

v f
.

(12)

Interestingly, in this simple case, f̂ can also be written as the optimizer of:

J (f) = ‖g − Hf‖22 + λ‖f‖22, (13)

which makes the link with QR, for which many optimization algorithms, such as
gradient-based algorithms have been proposed. One of the simplest one (simple
gradient descent) can be written as:

f (k+1) = f (k) + α(k)[H ′(g − Hf (k)) − λf (k)]. (14)

Many other optimization algorithms have been proposed for more efficient and faster
implementation of this optimization problem, in particular for great dimensional
applications.

Many other prior prior models have also been proposed, in particular, Double Ex-
ponential (DE) p(f) ∝ exp [−α‖f‖1] which makes the link with L1 regularization
criterion: J ( f ) = ‖g − Hf‖22 + λ‖f‖1 with λ = αvε .

We may also mention the Student-t and other hierarchical models such as:

{
g = Hf + ε,

f = Dz + ζ ,
(15)

where z here may represent the coefficients of any linear transformation whose
probability law ismodeled by anyheavy tailed distribution such asDE [8] or Student-t
[9].

Coming back to the regularization-based methods, and in particular, for the cases
of L1 or Total Variation (TV) regularization, special purpose algorithms have been
developed based on the Augmented Lagragian (AL) [10, 11] and Bregman Duality
(BD) [12] which can be summarized as trying to solve the following optimization
problems:

• Analysis criterion and AL:

minimize J (f) = ‖g − Hf‖22 + λR(Df) s.t.Hf = g, (16)

for which the solution is obtained as the stationary point of the AL:

L (f ,μ) = ‖g − Hf‖22 + λR(Df) + μ′(Hf − g), (17)

which gives the following algorithm:

{
f (k+1) = f (k) + α

(k)
1 [2H ′(g − Hf (k)) − λD′∇R(f (k)) − H ′μ]

μ(k+1) = μ(k) + α
(k)
2 (Hf (k) − g).

(18)
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• Synthesis criterion and AL:

min J (z) = ‖g − HDz‖22 + λR(z) s.t.HDz = g, (19)

for which the solution is obtained as the stationary point of the AL:

L (z,μ) = ‖g − HDz‖22 + λR(z) + μ′(HDz − g), (20)

which gives the following algorithm:

{
z(k+1) = z(k) + α

(k)
1 [D′H ′(g − HDz(k)) − λ∇R(z(k)) − D′H ′μ]

μ(k+1) = μ(k) + α
(k)
2 (HDf (k) − g).

(21)

At the end of the iterations, we can compute f̂ = Dẑ. Some other alternative opti-
mization algorithms based on Bregman iterations are also proposed [10, 11, 13–25].

The main difficulties in these regularization methods are twofold: how to de-
termine λ and how to quantify the remaining uncertainty on the obtained solution.
The Bayesian approach gives these possibilities. First, it is possible to include the
hyperparameters θ in the estimation process by looking at the joint posterior:

p(f , θ |g) ∝ p(g|f , θ1)p(f |θ2)p(θ) (22)

with θ = (θ1, θ2) [26, 27]. Second, we can use this joint posterior to quantify the un-
certainty on the solution. This can be done, for example, by computing the posterior
covariance. However, often, the exact computation of the posterior mean and covari-
ance may not be easy or may be too costly. Hopefully, solutions exist. For example,
we can use the variational Bayesian Approximation (VBA) methods to approximate
p(f , θ |g) by q1(f)q2(θ) by choosing appropriate families for q1 and q2. For more
details, see [2, 28, 29].

3 Forward Model 2

For the case of forwardmodel (2), if we consider the classical regularizationmethods,
the solution is defined as the optimizer of

J (f , g0) = ‖g − g0‖22 + ‖g0 − Hf‖22 + λR(f), (23)

where, classically, λ has been chosen in an ad hoc way. A simple alternate optimiza-
tion algorithm can be:

{
f (k+1) = f (k) + α

(k)
1

[
2H ′(g0 − Hf (k)) − λ∇R(f (k))

]
,

g(k+1)
0 = g(k)

0 + α
(k)
2

[
(g − Hf (k)

]
,

(24)
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where we can compare it with ADMM like of (18) where g0 plays the role of μ.
For the particular cases of L1 or Total Variation (TV) regularization-based meth-

ods, special purpose algorithms have been developed, such as ISTA and FISTA [11,
30, 31].

In the Bayesian framework, the classical Gaussian model is written as follows:

⎧⎨
⎩

p(g|g0, vε) = N (g|g0, vεI),

p(g0|f , vξ ) = N (g0|Hf , vξI),

p(f |v f ) = N (f |0, v f I),

(25)

which results to p(f , g0|g, vε, vξ , v f ) ∝ exp [−J (f , g0)] with

J (f , g0) = 1

2vε

‖g − g0‖22 + 1

2vξ

‖g0 − Hf‖22 + 1

2v f
‖f‖22 (26)

where we can see the similarity with (23).
Indeed, in this approach we have access to the joint posterior law p(f , g0|g) and

we can quantify the uncertainties. We can also estimate vε , v f and rξ at the same
time with f and g0. For this, we have to assign them appropriate prior laws, for
example, conjugate priors (like Inverse Gamma or Generalized Inverse Gaussian) or
the Jeffreys prior.

Another extension is to choose a heavy tailed prior for ξ to enforce its sparsity, a
property that can be understood if we want to satisfyHf = g0 as much as possible.
For this, we may choose the Double Exponential or Student-t distribution, which is
considered in this paper. The main interest of Student-t is that we can model it as the
marginal of a Normal-Inverse Gamma. In summary:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(g|g0, vε) = N (g|g0, vεI), p(vε) = IG (vε |αε0 , βε0),

p(g0|f , rξ ) = N (g0|Hf ,Vξ ), Vξ = diag
[
vξ

]
,

p(vξ ) = ∏M
i=1 p(rξ i ) = ∏M

i=1 IG (rξ i |αξ0 , βξ0),

p(f |v f ) = N (f |0, v f I), p(v f ) = IG (v f |α f0 , β f0).

(27)

This gives: p(f , g0,vξ , v f , vε |g) ∝ exp
[−J (f , g0,vξ , v f , vε)

]
with

J (f , g0,vξ , v f , vε) = 1
2vε

‖g − g0‖22 + 1
2‖V −1/2

ξ (g0 − Hf)‖22 + 1
2v f

‖f‖22
+ (αε0 + 1) ln vε + βε0

vε
+ (α f0 + 1) ln v f + β f0

v f
+ ∑M

i=1

[
(αξ0 + 1) ln vξi + βξ0

vξi

]
(28)

Again, the alternate optimization of J with respect to its arguments results in an
ADMM-like iterative algorithmwith the advantage of updating the hyperparameters.
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4 Forward Model 3

For the case of forward model (3), we give directly the Bayesian framework:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(g|g0, vε) = N (g|g0, vεI), p(vε) = IG (vε |αε0 , βε0),

p(g0|f ,f0,vξ ) = N (g0|H(f + f0),Vξ ), Vξ = diag
[
vξ

]
,

p(vξ ) = ∏M
i=1 p(rξ i ) = ∏M

i=1 IG (rξ i |αξ0 , βξ0),

p(f |v f ) = N (f |0,V f ), V f = diag
[
v f

]
p(v f ) = ∏N

j=1 p(r f j ) = ∏N
j=1 IG (v f j |α f0 , β f0),

p(f0) = N (f0|0, vuI),

(29)

which results in: p(f , g0,f0, vε,vξ ,v f |g) ∝ exp
[−J (f , g0,f0, vε,vξ ,v f )

]
with

J (f , g0,f0, vε,vξ ,v f , ru) =
1
2vε

‖g − g0‖22 + 1
2‖V −1/2

ξ (g0 − H(f + f0)) ‖22
+ 1

2‖V −1/2
f f‖22 + 1

2vu
‖f0‖22 + (αε0 + 1) ln vε + βε0

vε

+ ∑M
i=1

[
(αξ0 + 1) ln vξi + βξ0

vξi

]
+ ∑N

j=1

[
(α f0 + 1) ln r f j + β f0

r f j

] (30)

Alternate optimization of this criterion with respect to its arguments results in an
iterative algorithm where, again, we can see a certain relation with ADMM type
algorithms. The main advantage here is that the hyperparameters are also estimated.
However, it is not easy to study its convergency. In practical situations, we could
observe local convergency to solutions with desired properties.

5 Forward Models 4 and 5

For the cases of forward models (4) and (5), we can always choose appropriate
prior laws and obtain the expressions of the posterior law and try to obtain the
Joint Maximum A Posteriori (JMAP) solution by alternate optimization or any other
algorithms.

The case of the models 4 and 5 are very similar. A particular use of the forward
model 5 with an extra relation f = Dz where D represents a wavelet transform
(and z its representation in that domain) with application in Computed Tomography
(CT) is in preparation in [9]. The main idea again is to use a sparsity enforcing prior
for z. In summary:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(g|g0,u, vε) = N (g|g0 + u, vεI),

p(vε) = IG (vε |αε0 , βε0),

p(g0|f ,vξ ) = N (g0|Hf ,Vξ ),Vξ = diag
[
vξ

]
,

p(vξ ) = ∏M
i=1 p(rξ i ) = ∏M

i=1 IG (rξ i |αξ0 , βξ0),

f = Dz and z = D′f ,

p(z|vz) = N (z|0,Vz), Vz = diag
[
vz

]
,

p(vz) = ∏N
j=1 p(rz j ) = ∏N

j=1 IG (rz j |αz0 , βz0),

p(u|vu) = N (u|0, vuI),

p(vu) = IG (vu |αu0, βu0).

(31)

This gives: p(z, g0,u, vε,vξ ,vz, vu |g) ∝ exp
[−J (z, g0,u, vε,vξ ,vz, vu)

]
with

J (z, g0,u, vε , vξ , vz, vu) = 1
2vε

‖g − g0 − u‖22 + 1
2‖V −1/2

ξ (g0 − HDz)‖22
+ 1

2‖Vz
−1/2z‖22 + 1

2vu
‖u‖22 + (αε0 + 1) ln vε + βε0

vε

+ ∑M
i=1

[
(αξ0 + 1) ln vξi + βξ0

rz j

]
+ ∑N

j=1

[
(αz0 + 1) ln vz j + βz0

rz j

]
+ (αu0 + 1) ln vu + βu0

vu

(32)
This time again, an alternate optimization algorithm can be used to obtain ẑ from
which we can obtain f̂ = D′ẑ.

6 Forward Models 6 and 7

For the cases of forward models (6) and (7) too, we present directly the Bayesian
framework. In particular, for the forward model (6):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(g|g0, vε) = N (g|g0, vεI),

p(vε) = IG (vε |αε0 , βε0),

p(g0|f , δH0,vξ ) = N (g0|(H + δH0)f ,Vξ ), Vξ = diag
[
vξ

]
,

p(vξ ) = ∏M
i=1 p(rξ i ) = ∏M

i=1 IG (rξ i |αξ0 , βξ0),

p(f |v f ) = N (f |0,V f ), V f = diag
[
v f

]
p(v f ) = ∏N

j=1 p(r f j ) = ∏N
j=1 IG (r f j |α f0 , β f0),

p(δH0|vh) = N (δH0|0, vhI).

(33)

which results to: p(f , g0, δH0, vε,vξ ,v f |g, vh) ∝
exp

[−J (f , g0, δH0, vε,vξ ,v f )
]
with

J (f , g0, δH0, vε,vξ ,v f ) = 1
2vε

‖g − g0‖22 + 1
2‖V −1/2

ξ (g0 − (H + δH0)f)‖22
+ 1

2‖V −1/2
f f‖22 + 1

2vh
‖δH0‖22 + (αε0 + 1) ln vε + βε0

vε

+ ∑M
i=1

[
(αξ0 + 1) ln vξi + βξ0

vξi

]
+ ∑N

j=1

[
(α f0 + 1) ln r f j + β f0

r f j

]
(34)
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Here, the expression p(δH0) = N (δH0|0, vhI) has to be understood as the product
of

p([δH0]i j ) = N ([δH0]i j |0, vh). (35)

The same kind of equations can be written for the case 7.

7 Conclusions

In this work, we extended the classical single additive noise, linear forward model
to account for different uncertainties by variable splitting techniques. In the first
step, we splitted the error term in two parts to distinguish between observation noise
and forward model uncertainty. Then, we accounted for unknown background in
the input or at the output. For any of these forwardmodels,we examined in parallel the
deterministic regularization and the Bayesian MAP approach focusing more on the
second. As a by-product, we could see the links between an alternate optimization
algorithm for the MAP estimator and the optimization algorithms, such as Alternate
Descent MinimizationMaximization (ADMM) or ISTA or its fast version FISTA for
the particular case of double exponential prior. In a second step, we extended this to
also account for the input or output background modeling errors and the errors on the
elements of the linear forward model. This last one can occur in Blind deconvolution
problems.

The main advantage of the Bayesian approach is giving the tools to go further by
estimating the hyperparameters and being able to quantify the uncertainties of the
solutions of the inversion problems. These two points are often crucial in real appli-
cations. However, one may be careful about choosing appropriate hyperparameters,
the order of the optimization, and the convergency of the algorithms. As the problems
are in general very ill-posed, we have to carefully choose the priors to guarantee, at
least, the local convergency of the algorithms. But this problem is a very general task
for any inverse problem.

Onemain question is still open: finding the reason for better performances of these
variable splitting algorithms. This goes in the opposite direction of the regularization
idea of restricting the space of the solution to obtain a regularized solution. As a final
conclusion, we may try to answer the following question: Is it better to restrict the
space and define a criterion with a global minimum or, in the opposite, increase the
dimension of the unknown space, define a criterion which may have many minima
and looking for a local minimum of it?

References

1. Wang, G., Schultz, L., Qi, J.: IEEE Trans. Nucl. Sci. 56(4), 2480 (2009)
2. Mohammad-Djafari, A. In: International Workshop on Systems, Signal Processing and Appli-

cations (WOSSPA 2013) Proceedings, (2013) [Tutorial]



22 A. Mohammad-Djafari et al.

3. Dumitru, M., Mohammad-Djafari, A., Sain, B.S.: EURASIP Journal on Bioinformatics and
Systems Biology, vol. 3. Springer, Berlin (2016). https://doi.org/10.1186/s13637-015-0033-6

4. Arhab, S., Ayasso, H., Duchêne, B., Mohammad-Djafari, A.: In: 4th International Workshop
on New Computational Methods for Inverse Problems, pp. 6. Cachan, France (2014). http://
hal.univ-grenoble-alpes.fr/hal-01011188

5. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: IEEE Trans. Image Process. 19(9),
2345 (2010). https://doi.org/10.1109/TIP.2010.2047910

6. Marvasti, F., Mohammad-Djafari, A., Chambers, J.: Special issue on sparse signal process-
ing. EURASIP J. Adv. Signal Process (2012). 10.1186/1687. http://asp.eurasipjournals.com/
content/pdf/1687-6180-2012-90.pdf

7. Mohammad-Djafari, A.: Special issue on sparse signal processing. EURASIP J. Adv. Signal
Process. 2012:52 (2012). http://asp.eurasipjournals.com/content/pdf/1687-6180-2012-52.pdf

8. Dobigeon, N., Hero, A.O., Tourneret, J.Y.: IEEE Trans. Image Process. 18(9), 2059 (2009)
9. Wang, L., Mohammad-Djafari, A., Gac, N., Dumitru, M.: In: 2016 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 883–887. IEEE (2016)
10. Weller, D.S., Ramani, S., Fessler, J.A.: IEEE Trans. Med. Imagin. 33(2), 351 (2014). https://

doi.org/10.1109/TMI.2013.2285046
11. He, C., Hu, C., Zhang, W., Shi, B.: IEEE Transactions on Image Process. 23(12), 4954 (2014).

https://doi.org/10.1109/TIP.2014.2360133
12. Duan, J., Liu, Y., Zhang, L.: IEEE Signal Process. Lett. 20(8), 831 (2013). https://doi.org/10.

1109/LSP.2013.2268206
13. Elad, M., Milanfar, P., Rubinstein, R.: Inverse Probl. 23(3), 947 (2007)
14. Zhao, N., Wei, Q., Basarab, A., Dobigeon, N., Kouamé, D., Tourneret, J.Y.: IEEE Trans. Image

Process. 25(8), 3683 (2016). https://doi.org/10.1109/TIP.2016.2567075
15. Chun, I.Y., Adcock, B., Talavage, T.M.: IEEE Trans. Med. Imaging 35(1), 354 (2016). https://

doi.org/10.1109/TMI.2015.2474383
16. Chen, S., Liu, H., Hu, Z., Zhang, H., Shi, P., Chen, Y.: IEEE Trans. Biomed. Eng. 62(7), 1784

(2015). https://doi.org/10.1109/TBME.2015.2404296
17. Zhang, H., Wu, C., Zhang, J., Deng, J.: IEEE Trans. Vis. Comput. Graph. 21(7), 873 (2015).

https://doi.org/10.1109/TVCG.2015.2398432
18. Muckley, M.J., Noll, D.C., Fessler, J.A.: IEEE Trans. Med. Imaging 34(2), 578 (2015). https://

doi.org/10.1109/TMI.2014.2363034
19. Allison, M.J., Ramani, S., Fessler, J.A.: IEEE Trans. Med. Imaging 32(3), 556 (2013). https://

doi.org/10.1109/TMI.2012.2229711
20. Iordache, M.D., Bioucas-Dias, J.M., Plaza, A.: IEEE Trans. Geosci. Remote Sens. 50(11),

4484 (2012). https://doi.org/10.1109/TGRS.2012.2191590
21. Xie, S., Rahardja, S.: IEEE Trans. Image Process. 21(11), 4557 (2012). https://doi.org/10.

1109/TIP.2012.2206043
22. Ramani, S., Fessler, J.A.: IEEE Trans. Med. Imaging 30(3), 694 (2011). https://doi.org/10.

1109/TMI.2010.2093536
23. Chen, D., Cheng, L.: IET Image Process. 4(5), 353 (2010). https://doi.org/10.1049/iet-ipr.

2009.0186
24. Chun, S.Y., Dewaraja, Y.K., Fessler, J.A.: IEEE Trans. Med. Imaging 33(10), 1960 (2014).

https://doi.org/10.1109/TMI.2014.2328660
25. Sroubek, F., Milanfar, P.: IEEE Trans. Image Process. 21(4), 1687 (2012). https://doi.org/10.

1109/TIP.2011.2175740
26. Mohammad-Djafari, A.: In: 1993 IEEE International Conference on Acoustics, Speech, and

Signal Processing, ICASSP-93., vol. 5 (1993), vol. 5, pp. 495–498. https://doi.org/10.1109/
ICASSP.1993.319857

27. Mohammad-Djafari, A.: In: Maximum Entropy and Bayesian Methods, Kluwer Academic
Publisher, (1996), pp. 135–143. http://djafari.free.fr/pdf/

28. Mohammad-Djafari, A.: Comput. J. 52(1), 126 (2009)
29. Chu, N., Mohammad-Djafari, A., Gac, N., Picheral, J.: In: 2014 13thWorkshop on Information

Optics (WIO) (2014), pp. 1–4. https://doi.org/10.1109/WIO.2014.6933297

https://doi.org/10.1186/s13637-015-0033-6
http://hal.univ-grenoble-alpes.fr/hal-01011188
http://hal.univ-grenoble-alpes.fr/hal-01011188
https://doi.org/10.1109/TIP.2010.2047910
http://asp.eurasipjournals.com/content/pdf/1687-6180-2012-90.pdf
http://asp.eurasipjournals.com/content/pdf/1687-6180-2012-90.pdf
http://asp.eurasipjournals.com/content/pdf/1687-6180-2012-52.pdf
https://doi.org/10.1109/TMI.2013.2285046
https://doi.org/10.1109/TMI.2013.2285046
https://doi.org/10.1109/TIP.2014.2360133
https://doi.org/10.1109/LSP.2013.2268206
https://doi.org/10.1109/LSP.2013.2268206
https://doi.org/10.1109/TIP.2016.2567075
https://doi.org/10.1109/TMI.2015.2474383
https://doi.org/10.1109/TMI.2015.2474383
https://doi.org/10.1109/TBME.2015.2404296
https://doi.org/10.1109/TVCG.2015.2398432
https://doi.org/10.1109/TMI.2014.2363034
https://doi.org/10.1109/TMI.2014.2363034
https://doi.org/10.1109/TMI.2012.2229711
https://doi.org/10.1109/TMI.2012.2229711
https://doi.org/10.1109/TGRS.2012.2191590
https://doi.org/10.1109/TIP.2012.2206043
https://doi.org/10.1109/TIP.2012.2206043
https://doi.org/10.1109/TMI.2010.2093536
https://doi.org/10.1109/TMI.2010.2093536
https://doi.org/10.1049/iet-ipr.2009.0186
https://doi.org/10.1049/iet-ipr.2009.0186
https://doi.org/10.1109/TMI.2014.2328660
https://doi.org/10.1109/TIP.2011.2175740
https://doi.org/10.1109/TIP.2011.2175740
https://doi.org/10.1109/ICASSP.1993.319857
https://doi.org/10.1109/ICASSP.1993.319857
http://djafari.free.fr/pdf/
https://doi.org/10.1109/WIO.2014.6933297


Bayesian Approach to Variable Splitting Forward Models 23

30. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: IEEE Trans. Image Process. 6(2),
298 (1997)

31. Chan, T.F., Golub, G.H., Mulet, P.: SIAM J. Sci. Comput. 20(6), 1964 (1999)



Prior Shift Using the Ratio Estimator

Afonso Vaz, Rafael Izbicki and Rafael Bassi Stern

Abstract Several machine learning applications use classifiers as a way of quanti-
fying the prevalence of positive class labels in a target dataset, a task named quantifi-
cation. For instance, a naive a way of determining what proportion of people like a
given product with no labeled reviews is to (i) train a classifier based on the Google
Shopping reviews to predict whether a user likes a product given its review, and then
(ii) apply this classifier to Facebook/Google+ posts about that product. It is well
known that such a two-step approach, named Classify and Count, fails because of
dataset shift, and thus, several improvements have been recently proposed under an
assumption namedprior shift.Unfortunately, thesemethods only explore the relation-
ship between the covariates and the response via classifiers. Moreover, the literature
lacks in the theoretical foundation to improve these techniques. We propose a new
family of estimators named Ratio Estimator which is able to explore the relationship
between the cov ariates and the response using any function g : X → R and not
only classifiers. We show that for some choices of g, our estimator matches standard
estimators used in the literature. We also explore alternative ways of constructing
functions g that lead to estimators with good performance, and compare them using
real datasets. Finally, we provide a theoretical analysis of the method.
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1 Introduction

In many statistical learning applications, we use classifiers as a way of estimating
the proportion (or distribution, or prevalence) of the positive labels in a target sample
wherewedonot observe the labels. This task is namedquantification and its definition
is usually attributed to Forman [1]. For instance, one company may be interested in
estimating the proportion of positive reviews in a page such as Facebook or Twitter
about a given product but without to label it because is very expensive. A naive (and
often used) approach to deal with this problem is: (i) Estimate a classifier using a
labeled training sample such as Google Shopping reviews, (ii) apply this classifier
to Facebook or Twitter reviews about the target product, and (iii) use the positive
classification number to estimating the proportion. This approach is called classify
and count. Classify and count may lead to wrong results because it does not consider
that the distribution in the training and target samples may be substantially different.
This fact is known as dataset shift (or dataset drift) [2, 3]. In order to deal with this
problem, [1] proposes an adjustment to the classify and countmethodologymotivated
by the prior probability shift assumption [4]. Although such adjustment improves
the estimates, this estimator only explores the relationship between the covariates
and the response via classifiers, and there is almost no theoretical study in order to
find its properties. Here, we propose a new method, named Ratio Estimator which
is a generalization of the method from [1]. We study its theoretical properties (and
hence, the theoretical properties from [1]), explore a version of this estimator based
on the Reproducing Kernel Hilbert Spaces, and compare all approaches real datasets.

In Sect. 2, we present the notation of the paper and formally state the goal of quan-
tification methods. In Sect. 3, we review the classify and count method and prove it
is inconsistent. We also introduce the ratio estimator and study its theoretical proper-
ties. In Sect. 4, we present applications to four datasets. Our concluding remarks are
shown in Sect. 5. Additional proofs may be found in the supplementary material at
www.small.ufscar.br/priorShift, and codes to perform the experiments can be found
at https://github.com/afonsofvaz/PriorShiftQuantification.

2 Setting and Goals

Consider two different populations

(Y tr ,Xtr ), (Y tg,Xtg) ∈ {0, 1} × X

which we call “training” and “target” population, respectively. Let (Y tr
i ,Xtr

i ), i =
1, . . . , ntr , be an iid sample from (Y tr ,Xtr ), which we call “training sample", and
(Y tg

i ,Xtg
i ), i = 1, . . . , ntg, be an iid sample from (Y tg,Xtg), which we call “target

sample". Our goal is to estimate the probability of the positive class in the target popu-

www.small.ufscar.br/priorShift
https://github.com/afonsofvaz/PriorShiftQuantification
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lation,whichwe denote by θ tg := P(Y tg = 1)without having access toY tg
1 , . . . ,Y tg

ntg .
We also define θ tr := P(Y tr = 1).

3 Quantification Methods

3.1 The Classify and Count Estimator (CCE)

We start by reviewing the Classify and Count estimator, which is often used in
practice.

Definition 3.1 [CCE] Let f : X −→ {0, 1} be a classifier trained using a training
sample. Given a target sample, the classify and count estimator is defined by

̂θ tg
cc :=

∑ntg
i=1 ip(i)

ntg
(1)

where P = {

i : f (Xtg
i ) = 1

}

.

In words, CCE consists in (i) training a classifier using a training sample, (ii)
applying it to the target sample and, (iii) counting the number of positives classifica-
tions in the target set. Unfortunatelly, although intuitive, CCE may be not consistent
because classifiers typically also make mistakes. We prove this in the next section.

3.1.1 Estimator Properties

Our formulation forCCE (Eq. (1), allowus to study its properties,which are presented
in the following Theorem.

Theorem 1 Consider the CCE defined in Eq.1. Then, if P
(

f (Xtg) = 1
) �= θ tg, the

estimator is not consistent for θ tg in the sense that limntg→∞ ̂θ
tg
cc �= θ tg even if there

is an infinite amount of training samples.

Proof Note that we may rewrite the sums of the indicators variables involvided in
Eq.1 as

∑ntg
i=1 iP(i) ∼ Binomial

(

ntg,P
(

f (Xtg) = 1
))

. Therefore,

E
[

̂θ tg
cc

] = P
(

f (Xtg) = 1
)

It follows from the law of large numbers that limntg→∞ ̂θ
tg
cc = P

(

f (Xtg) = 1
)

almost
surely. Finally, notice that this holds even if f is the Bayes classifier. Thus, the
conclusion remains true even if there is an infinite amount of training samples. �
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3.2 The Ratio Estimator (RE)

Now, we present our approach to the quantification problem. As in the case of the
estimator from [5], the method relies on the prior shift assumption:

Assumption 1

Xtr |Y tr D= Xtg|Y tg (2)

where “
D=” denotes equality in distribution.

Let g : X −→ R be any real function of the covariates. Moreover, let ftr and
ftg be the probability density function ofXtr andXtg respectively. Then, by the total
probability theorem, it holds that under Assumption1,

ftg(x) = ftg(x|Y tg = 1)P(Y tg = 1) + ftg(x|Y tg = 0)P(Y tg = 0) ∀ x ∈ X . (3)

Multiplying both sides of Eq.3 by g(x) and integrating them with respect to x, it
follows that

∫

X
g(x) ftg(x)dx =

∑

j∈{0,1}
P(Y tg = j)

∫

X
g(x) ftg(x|Y tg = j)dx

and so

E
[

g(Xtr )
] = θ tgE

[

g(Xtg)|Y tg = 1
] + (1 − θ tg)E

[

g(Xtg)|Y tg = 0
]

. (4)

We conclude that

θ tg = E[g(Xtg)]−E[g(Xtg)|Y tg= 0]
E[g(Xtg)|Y tg= 1]−E[g(Xtg)|Y tg= 0]

A1= E[g(Xtg)]−E[g(Xtr )|Y tr= 0]
E[g(Xtr )|Y tr= 1]−E[g(Xtr )|Y tr= 0] (5)

Our estimator for θ tg consists in replacing the quantities involved in Eq.5 by their
respective sample estimates:

Definition 3.2 [RE] Let

μ̂tg = 1

ntg

ntg
∑

i=1

g(Xtg
i ) and μ̂tr

j = 1

n j
tr

ntr
∑

i=1

iA j (i)g(X
tr
i )

where

A j = {i : Y tr
i = j} and n j

tr =
ntr
∑

i=1

iA j (i)

i = 1, 2, . . . , ntr and j = 0, 1. The ratio estimator (given a function g) is defined by
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̂θ
tg
R = μ̂tg − μ̂tr

0

μ̂tr
1 − μ̂tr

0

.

Note that if f is a classifier estimated using a training sample and g(x) = i( f (x) =
1), then ̂θ

tg
R coincides with the Adjusted Classify and Count Estimator (ACCE)

proposed by Forman [5].

3.2.1 Estimator Properties

Lemma 1 Let μtr
j := E

[

g(Xtr )|Y tr = j
]

and μ
tg
j := E

[

g(Xtg)|Y tg = j
]

, ξ tr
j :=

Var
[

g(Xtr )|Y tr = j
]

and ξ
tg
j := Var

[

g(Xtg)|Y tg = j
]

for j = 0, 1. Under
Assumption1, it holds that

E[g(Xtg)] = θ tgμtr
1 + (1 − θ tg)μtr

0

and
Var[g(Xtg)] = (μtr

1 − μtr
1 )2θ tg(1 − θ tg) + ξ tr

1 θ tg + ξ tr
0 (1 − θ tg).

Proof By the conditional expectation properties we have that

E[g(Xtg)] = E
[

E[g(Xtg)|Y tg]] A1= E
[

E[g(Xtr )|Y tr ]]
= E[g(Xtr )|Y tr = 1]θ tg + E[g(Xtr )|Y tr = 0](1 − θ tg)

= θ tgμtr
1 + (1 − θ tg)μtr

0 .

Similarly, by conditional variance properties,

Var[g(Xtg)] = Var[E[g(Xtg)|Y tg]] + E[Var[g(Xtg)|Y tg]]
A1= Var[E[g(Xtr )|Y tr ]] + E[Var[g(Xtr )|Y tr ]]
= (μtr

1 − μtr
0 )2θ tg(1 − θ tg) + ξ tr

1 θ tg + ξ tr
0 (1 − θ tg).

�

Lemma 2 Under Assumption1 and using the notation from Lemma1, it holds that

E
[

μ̂tr
j

] = μtr
j ;

Var
[

μ̂tr
0

] ≈ ξ tr
0

ntr (1 − θ tr )
and Var

[

μ̂tr
1

] ≈ ξ tr
1

ntrθ tr
;

Cov
[

μ̂tr
0 , μ̂tr

1

] = 0;

Cov
[

μ̂tg − μ̂tr
0 , μ̂tr

1 − μ̂tr
0

] = Var
[

μ̂tr
0

] ;



30 A. Vaz et al.

Var
[

μ̂tr
1 − μ̂tr

0

] ≈ ξ tr
0

ntr (1 − θ tr )
+ ξ tr

1

ntrθ tr
.

The proof of the lemma2 may be found in the supplementary material.

Theorem 2 The RE is approximately unbiased for θ tg, that is

E
[

̂θ
tg
R

] ≈ θ tg.

Proof Using the results found in Lemma2 and by the delta method [6], the expecta-
tion of the ratio estimator may be approximed as

E
[

̂θ
tg
R

]

= E

[

μ̂tg − μ̂tr
0

μ̂tr
1 − μ̂tr

0

]

≈ E
[

μ̂tg − μ̂tr
1

]

E
[

μ̂tr
1 − μ̂tr

0

] = E
[

μ̂tg] − E
[

μ̂tr
0

]

E
[

μ̂tr
] − E

[

μ̂tr
0

] = E[g(Xtg)] − μtr
0

μtr
1 − μtr

0

= E[g(Xtg)|Y tg = 0]P(Y tg = 0) + E[g(Xtg)|Y tg = 1]P(Y tg = 1) − μtr
0

μtr
1 − μtr

0

= E[g(Xtr )|Y tr = 0](1 − θ tg) + E[g(Xtr )|Y tr = 1]θ tg − μtr
0

μtr
1 − μtr

0

= μtr
0 (1 − θ tg) + μtr

1 θ tg − μtr
0

μtr
1 − μtr

0
= θ tg(μtr

1 − μtr
0 )

μtr
1 − μtr

0
= θ tg .

�

Theorem 3 The mean squared error of the RE is approximately given by

1
(

μtr
1 − μtr

0

)2

[
(

μtr
1 − μtr

0

)2
θ tg

(

1 − θ tg
) + ξ tr

1 θ tg + ξ tr
0

(

1 − θ tg
)

ntg

+ ξ tr
0

ntr (1 − θ tr )

(

1 − θ tg
)2 + ξ tr

1

ntrθ tr
(θ tg)2

]

≈ Var
[

̂θ
tg
R

]

(6)

Proof By Lemma2, we know that the bias is approximately zero. Therefore,
MSE

[

̂θ
tg
R

] ≈ Var
[

̂θ
tg
R

]

. Again, by delta method [6], the variance of the ratio es-
timator is approximately

(

E
[

μ̂tg − μ̂tr
0

]

E
[

μ̂tr
1 − μ̂tr

0

]

)2 [

Var
[

μ̂tg − μ̂tr
0

]

E2
[

μ̂tg − μ̂tr
0

] + Var
[

μ̂tr
1 − μ̂tr

0

]

E2
[

μ̂tr
1 − μ̂tr

0

]

−2
Cov

[

μ̂tg − μ̂tr
0 , μ̂tr

1 − μ̂tr
0

]

E
[

μ̂tg − μ̂tr
0

]

E
[

μ̂tr
1 − μ̂tr

0

]

]

. (7)

The conclusion follows by replacing the quantities found by Lemma2 in expre-
ssion 7. �

It follows from Theorem 3 that
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Corollary 1 The RE converges in probability to θ tr as ntr , ntg −→ ∞. Hence, this
estimator is consistent.

Theorem 3 gives us some insights on how to choose good functions g to use in
the ratio estimator. For instance, assuming that ntg 	 ntr , we have

Corollary 2 If ntg 	 ntr , the MSE of the ratio estimator is approximately

1

ntr (μtr
1 − μtr

0 )2

[

ξ tr
0

(

1 − θ tg
)2

(1 − θ tr )
+ ξ tr

1

(

θ tg
)2

θ tr

]

.

The MSE expression in Corollary2 indicates that one should use functions g
such that μtr

1 is far from μtr
0 (so that μtr

1 − μtr
0 is large) and both variances ξ tr

0
and ξ tr

1 are small. This motivates us to use functions g that are associated to the
labels. Roughly speaking, we want the distribution of g(Xtr )|Y tr = 1 to be “far”
from the distribution of g(Xtr )|Y tr = 0. This motivates the use of g(x) = i(x ∈ A)

and A = {x ∈ R : f (x) = 1},where f is a classifier build using the labeled data. This
is precisely the solution given by [5] for the prior probability shift problem. Another
function that can have good performance is g(x) = ̂P(Y = 1|x),where ̂P(Y = 1|x)
is estimated using the training set. In the next section, we provide another way of
choosing g.

3.2.2 Choice Based on RKHS

A different approach to choose good functions g to use in the RE is by minimizing
the approximation to the MSE given by Corollary2 on some appropriate class of
functions. In this section, we take this class to be a Reproducing Kernel Hilbert
Space (RKHS; [7]). More precisely, let

M̂SE(g) = 1

(μ̂tr
1 − μ̂tr

0 )2

[

̂ξ tr
0

(

1 − ̂θ tr
) (1 − ̂θ)2 + ̂ξ tr

1
̂θ2

̂θ tr

]

,

where ̂θ is an initial estimate on θ tr , be an estimate of the mean squared error of
the ratio estimator for a given function g assuming that ntg is large. We will find a

smooth function g such that M̂SE is small by finding the solution to

arg min
g∈H K

M̂SE(g) + λ||g||2H K
,

where HK is any RKHS.

Theorem 4 Let K be a kernel, and letHK be its corresponding reproducing kernel
Hilbert space. For a given λ > 0, the solution to
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arg min
g∈H K

M̂SE(g) + λ||g||2H K

is given by

g(x) =
ntr
∑

i=1

wi K (x, xtri )

where w = (w1, . . . ,wn) is such that

w = arg min
w∈
d

wt Nw

wtMw
+ λwt

Kw. (8)

Here, (K)i, j = K (xtri , xtrj ),M = (μ̂1 − μ̂0)(μ̂1 − μ̂0)
t and N = ̂θ2

̂θ1|L
̂�l

1 + (1−̂θ)2

̂θ0|L
̂�1

0 ,

where μ̂i is the ntr × 1 vector with entrance k given by 1
nitr

∑

j :ytrj =i K (xtrj , xtrk ), and
̂�i is the ntr × ntr matrix with entrance (k, l) given by the covariance of the vectors
(K (xtrj , xtrk )) j :ytrj =1 and (K (xtrj , xtrl )) j :ytrj =1.

Proof The fact that g(x) admits the representation
∑ntr

i=1 wi K (x, xtri ) follows directly
from the Representer Theorem [7]. Let g(x) = ∑ntr

i=1 wi K (x, xtri ). We have that

μ̂i = 1

nitr

∑

j :ytrj =i

g(xtrj ) =
ntr
∑

k=1

wk
1

nitr

∑

j :ytrj =i

K (xtrj , xtrk ) = wt μ̂i ,

Similarly,

̂ξi = 1

nitr

∑

j :ytrj =i

(g(xtrj ) − μ̂i )
2 = wt

̂�iw.

It follows that

M̂SE(g) + λ||g||2H K
= wt (̂θ̂�1 + (1 − ̂θ)̂�0)w

wt (μ̂1 − μ̂0)(μ̂1 − μ̂0)tw
+ λwt

Kw.

�

Unfortunately, it is not trivial to minimize Eq.8 [8]. Instead, we work with the
case where λ = 0. In this case, the solution to Eq.8 is the solution to the problem
of finding the vector w associated to the largest eigenvalue λ∗ of the generalized
eigenvalue problem Mw = λ∗Nw. If N is invertible, this problem reduces to the
standard eigenvalue problem

N−1Mw = λ∗w,

i.e., one only needs to find the largest eigenvetor of N−1M . which can be solved using
any linear algebra package. If N is not invertible, we use (N + γ Intr )

−1M , where
Intr is the identity matrix and γ is a small number that makes N + γ Intr invertible.
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Fig. 1 Boxplots of the
difference d = |θ tg − θ tr | in
each sample

Table 1 Methods compared with the experiments. The kernel for the RKHS approach was set to
be a Gaussian kernel with bandwidth chosen by estimating the MSE via cross-validation; the value
of γ ∈ [0.00001, 0.1] was chosen in a similar fashion. The tuning parameters from all classifiers
were also chosen by cross-validation

Methods

Classify and count (CC) Logistic regression (LR), k-NN, random forest
(RF).

Ratio estimator Logistic regression (LR), k-NN, random forest
(RF), RKHS.

4 Experiments

In order to evaluate the quantification methods presented in Sect. 3, we consider
Candles Dataset [9, 10], SPAM E-mail Database [11], Wisconsin Breast Cancer
Database [11] and Blocks Classification [11]. We developed an algorithm (see the
supplementary material) that partitions these datasets (in both training and target
sample) so that we can simulate a probability prior shift scenario. Our algorithm
allows one to control the average of the distance d = |θ tg − θ tr |, which is a measure
of difficulty for the quantification problem. The simulations were performed setting
d ∈ {0, 0.2, 0.4} for each dataset, generating 100 different partitions. The results we
present are averaged over these partitions.

The boxplots of d in each set are presented in Fig. 1, which shows that the observed
distance is indeed close to the desired one in average. Moreover, the dispersion is
inversely proportional to the number of samples in the dataset.

We evaluate the following methods in these datasets:
The results of the experiments are shown in Fig. 2. We can observe that, in most

of settings, the ratio estimator has better performance than the classify and count
approach. The only exception to these are in the cancer data (with d = 0, 0.2) and in
the candles data (with d = 0.2). This may be justified by the fact that these are the
datasets in which we have the smaller sample sizes. The figure also indicates that, in
many settings, using RKHS to build the function g leads to better performance when
compared to using classifiers in the ratio estimator (Table1).
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Fig. 2 Simulation results

5 Final Discussion

In this work, we show that the ratio estimator is a promising method to solve the
quantification problem under the prior shift assumption. Moreover, we prove it is
consistent.

We have noticed in our experiments that the tuning parameters used by the RKHS
approach have a large influence on the results. However, because the cross-validation
approach to choose such parameters is computationally intensive, we could not ex-
plore a wide variety of tuning parameter values. Thus, it is interesting to investigate
alternative approaches to choose optimal values. In futureworks, wewill also explore
novel ways of constructing the function g.

Acknowledgements This work was partially supported by FAPESP grant 2017/03363-8 and
CAPES.
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Bayesian Meta-Analytic Measure

Camila B. Martins, Carlos A. de B. Pereira and Adriano Polpo

Abstract Meta-analysis is a procedure that combines results from studies (or exper-
iments) with a common interest: inferences about an unknown parameter.We present
a meta-analytic measure based on a combination of the posterior density functions
obtained in each of the studies. Clearly, the point of view is from a Bayesian perspec-
tive. The measure preserves both the heterogeneity between and within the studies,
and it is assumed that the all of the data from each study are available.

Keywords Case-by-case · Meta-analysis · Mixture models

1 Introduction

Meta-analysis refers to combining different studies that have the same objective,
inferences about a common parameter. Meta-analyses can be based on either sum-
marized results (e.g., means and variances) or the whole data set, i.e., case-by-case
results, if available. Here, it is assumed that the case-by-case observations of all
the studies are available. A convex combination of the studies’ posterior densities
functions is considered as the complete available information about the parame-
ter of interest. The measure incorporates both types of heterogeneities, within and
between studies, keeping the important information from each experiment. Most fa-
miliar meta-analysis methods work with summarized statistics, such as the means or
proportions. These types ofmeta-analyses eliminate the heterogeneitywithin studies,
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most likely losing relevant information. Hierarchical modeling, how Bayesians may
approach meta-analysis, is questionable since its first level of uncertainty considers
invisible independent observations of a leader random variable. However, different
locations may have different environments, for instance. In this manner, the poste-
rior distribution of the parameters of the leader random variable may not describe
correctly the information sought.

The simple method proposed here is to combine the final Bayesian analyses ob-
tained in each study. Considering a weighted average of the posterior densities, we
obtain a density that may better represent the different nuances of the studies without
being restricted to any family of distributions. The proposed posterior meta-analytic
measure is presented in Sect. 2. Section3 illustrates the measure with an example,
and Sect. 4 presents some final remarks.

2 Meta-Analysis Measure

Consider that we have N different studies with the aim to understand some char-
acteristic θ , θ ∈ Θ . Let X = {X1, . . . , XN}, where X j = {X j1, . . . , X jn j } are the
data from the j th study, j = 1, . . . , N . Consider that X ji are independent random
variables with density function f (x ji | θ), i = 1, . . . , n j . The small caps x and x j

are the observed values of X and X j , respectively. The likelihood function of the
j th study is

L j (θ | x j ) =
n j∏

i=1

f (x ji | θ).

Given the prior density function π(θ), the posterior meta-analytic measure is
defined by

π(θ | x) =
N∑

j=1

ω jπ j (θ | x j ), (1)

where ω j > 0, ∀ j ,
∑N

j=1 ω j = 1, and

π j (θ | x j ) = L j (θ | x j )π(θ)∫
Θ
L j (θ | x j )π(θ) dθ

.

The constant ω j is the weight of each study. If there is a reason to consider one
study as more important than others, then it is possible to set a higher value for the
weight of this study. We consider that the importance of each study is proportional

to its sample size, that is, ω j = n j

/(∑N
i=1 n j

)
.

Note that there is only one prior, π(θ), and one parameter, θ . We do not assign a
parameter to each study and then combine them. We can write the proposed measure
as
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Table 1 Use of SAMe

j x j n j x j/n j ω j

1 20 20 1.00 0.133

2 4 10 0.40 0.067

3 11 16 0.69 0.107

4 10 19 0.53 0.127

5 5 14 0.36 0.093

6 36 46 0.78 0.306

7 9 10 0.90 0.067

8 7 9 0.78 0.060

9 4 6 0.67 0.030

Total 106 150 0.71 –

j is for the j th study;
x j is the number of success;
n j is the sample size of each study;
and ω j = n j/150.

π(θ | x) = π(θ)

⎡

⎣
N∑

j=1

c j L j (θ | x j )

⎤

⎦ , (2)

where
c j = ω j∫

Θ
L j (θ | x j )π(θ) dθ

.

From Eq. (1), the proposed posterior measure, π(θ | x), is a convex combination
of the posterior distributions of each study. On the other hand, from Eq. (2), the
proposed measure is the prior multiplied by a mixture of the likelihood of each
study, which is a fully Bayesian procedure (posterior = prior × model). Both cases
result in the same posterior meta-analytic measure, π(θ | x), which is a probability
density function of θ given the data from all available studies.

It is important to note that for proper priors, the proposed measure is always
a probability density function of θ after observing the data, such as any Bayesian
analysis procedure.

3 Example

Table 1 presented the results of nine studies about the success in the use of the SAMe
(an antidepressant drug S-adenosylmethionine). The data are presented in [1, 2].

Let X j be a random variable related to the number of success in the use of SAMe.
We have that X j given θ has a binomial distribution with parameters n j , the number
of trials, and θ , the success rate associated with the use of SAMe, j = 1, . . . , 9. We
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assume that n j are fixed constants, and then the only parameter is θ . In this case, the
likelihood function of the j th study is

L j (θ | x j , n j ) = θ x j (1 − θ)n j−x j .

Considering that π(θ) = 1, θ ∈ (0, 1), that is, the prior of θ is a uniform distri-
bution over (0, 1). The posterior of each study is

π j (θ | x j , n j ) = Γ (n j + 2)

Γ (x j + 1)Γ (n j − x j + 1)
θ x j (1 − θ)n j−x j ,

where Γ is the mathematical gamma function. In this case, θ | x j , n j has a beta
distribution with parameters x j + 1 and n j − x j + 1.

The meta-analytic measure is

π(θ | x, n) =
9∑

j=1

ω j
Γ (n j + 2)

Γ (y j + 1)Γ (n j − x j + 1)
θ x j (1 − θ)n j−x j ,

where x = {x1, . . . , x9}, and n = {n1, . . . , n9}. In this example, the meta-analytic
measure is a mixture of beta distributions.

In the hierarchical model, we cannot perform a direct analysis of θ as a population
parameter. As discussed in the introduction, at the first prior level, we will need
θ1, . . . , θ9, the success rates of each study. At the second level, we will have a prior
for the hyper-parameter of θ j , which will not yield the value of θ . Reference [1]
performed a hierarchical analysis of these data from the perspective of multicenter
analysis; his main interest lies in the estimation of θ j and the differences between
them.

On the other hand, if we had considered that we have a unique study, our data
should be 106 success in 150 trials. Considering, the same uniform prior for θ ,
our posterior θ | x = 106, n = 150 would be a beta distribution with parameters
x + 1 = 107 and n − x + 1 = 45. The meta-analytic measure and Beta(107, 45)
distribution are shown in Fig. 1. As expected the meta-analytic measure preserves
the characteristic of the data, and the Beta(107, 45) distribution does not represent
the different results of the studies.

If our interest lies in comparing studies, we can draw the posterior of each study
together with the meta-analytic measure (Fig. 2). From the meta-analytic measure,
we have that the median is 0.72, the mode is 0.78, the mean is 0.69, and the 95%
high posterior density credible interval is (0.31; 1.00]. We can observe that the meta-
analytic measure has three modes, 0.50, 0.78, and 1.00. This may suggest that we
have three groups in the studies.
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Fig. 1 Meta-analytic measure and posterior distribution considering all samples from a unique
study, beta(107, 45); the dots represent the proportion of each study, and the size of the dot is
proportional to the sample size of the study

4 Final Remarks

The proposed method is a posterior distribution, called the meta-analytic measure.
The results show that we are not performing inference over means (the usual method
for meta-analysis), and the proposed measure provides a complete inferential frame-
work. We are able to evaluate the posterior mean, mode, median, variance, and
credible interval, and we can even perform a hypothesis test. We have a measure that
represents the observed data and the heterogeneity of the studies, and the analysis
can be performed as with any traditional Bayesian method.
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Fig. 2 Meta-analytic measure and posterior distributions of all studies
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Feature Selection from Local Lift
Dependence-Based Partitions

Diego Marcondes, Adilson Simonis and Junior Barrera

Abstract The classical approach to feature selection consists in minimizing a cost
function of the estimated joint distribution of the variable of interest and the fea-
ture vectors. However, in order to estimate the joint distribution, and therefore, the
cost function, it is necessary to discretize the variables, so that feature selection
algorithms are partition dependent, as they depend on the partitions in which the
variables are discretized. In this framework, this paper aims to propose a systematic
approach to the discretization of random vectors, which is based on the Local Lift
Dependence. Our approach allows an interpretation of the local dependence between
the variable of interest and the selected features, so that it is possible to outline the
kind of dependence that exists between them. The proposed approach is applied to
study the dependence between the performances on entrance exam subjects and on
first semester courses of University of São Paulo Statistics and Computer Science
undergraduate programs.

Keywords Feature selection · Local Lift Dependence · Mutual Information ·
Variable selection

1 Introduction

TheMutual Information I (X,Y ) between two random variables (X,Y ), as proposed
by [8], is a classical global dependence quantifier that, if the variables are absolutely
continuous, is defined by
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I (X,Y ) =
∫∫

SX,Y

log

(
f (x, y)

g(x)h(y)

)
dF (1)

in which f is the joint, and g and h are the respective marginal, probability densities
of (X,Y ), SX,Y is the support of (X,Y ) and F is the joint distribution function of
(X,Y ). The value of I (X,Y ) represents the mass concentration variation on the
distribution of Y due to the observation of X , and as the degree of dependence
between the variables increases when mass concentration increases, I (X,Y ) also
measures variable dependence.

The Mutual Information is also a classical cost function for feature selection
algorithms, when we are interested in determining the variables (features) in X =
{X1, . . . , Xn} which are most related to a variable Y . However, in order to estimate
I (X,Y ) given a random sample of (Xi ,Y ), i = 1, . . . , n, it is necessary to discretize
the variables and calculate the Mutual Information between the discrete random
variables. Therefore, feature selection based on the Mutual Information is partition
dependent, as different discretization processes may yield the selection of distinct
features. In this paper, we propose a systematic manner of discretizing continuous
variables, based on the Local Lift Dependence, in order to consistently select features
and properly estimate cost functions as the Mutual Information.

2 Local Lift Dependence

In this section, we present the main concepts related to the Local Lift Dependence
(LLD) and their implications on the Entropy and Mutual Information (MI) concepts
[8]. The main concepts of this section are presented for continuous random variables
X and Y defined on a support SX,Y = SX × SY , although, with simple adaptations,
the discrete case follows from it. We briefly present the MI and then discuss its
relation to the LLD.

The MI, as defined in (1), is an index that measures the mass concentration of a
joint probability density of two random variables. As greater the mass concentration
on the joint probability density is, the more dependent the random variables are and
greater is their MI. An useful property of the MI is that it may be expressed as

I (X,Y ) = H(Y ) − H(Y |X) (2)

in which H(Y ) is the Entropy of Y and H(Y |X) is the Conditional Entropy of Y
given X . The form of the MI in (2) is useful because, if we fix a variable Y , and
consider a set {X1, . . . , Xn} of n random variables, we may determine which one of
them is the most dependent with Y by observing only the Conditional Entropy of Y
given each one of the random variables, as the variable that maximizes the MI is the
same that minimizes the Conditional Entropy. Indeed, MI and Conditional Entropy
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are global and general measures of dependence, that summarize to an index a variety
of dependence kinds that are expressed by mass concentration.

On the other hand, the LLD is a local and general measure of dependence that
expands the global dependence measured by the MI into local indexes that enable
local interpretation of the dependence between the variables. As the MI is an index
that measures the dependence between random variables by measuring the mass
concentration incurred in one variable by the observation of another, it may only
give evidences about the existence of a dependence, but cannot assert what kind of
dependence is being observed. Therefore, it is relevant to break down the MI by
region, so that it can be interpreted in an useful manner and the kind of dependence
outlined by it may be identified. The LLD is responsible for this break down, as it
may be expressed by the Lift Function (LF) given by

L(x, y) = f (x, y)

g(x)h(y)
:= f (y|x)

h(y)
∀(x, y) ∈ SX,Y . (3)

in which f (y|x) := f (x,y)
g(x) is the conditional density of Y given X .

Indeed, the MI is the expectation on (X,Y ) of the LF, so that the LF presents
locally the mass concentration measured by the MI. As the LF may be written as
the ratio between the conditional probability density of Y given X and the marginal
probability density of Y , the main interest in its behavior is in determining for which
pairs (x, y) ∈ SX,Y L(x, y) > 1 and for which L(x, y) < 1. If L(x, y) > 1 then the
fact of X being equal to x increases the density ofY being equal to y, as the conditional
density is greater than themarginal one. Therefore, we say that the event {X = x} lifts
the event {Y = y}. In the same way, if L(x, y) < 1, we say that the event {X = x}
inhibits the event {Y = y}, as f (y|x) < h(y). If L(x, y) = 1,∀(x, y) ∈ SX,Y , then
the random variables are independent.

An important property of the LF is that it cannot be greater than one nor lesser
than one for all pairs (x, y) ∈ SX,Y . Therefore, if there are LF values greater than
one, then there must be values lesser than one, what makes it clear that the values
of the LF are dependent and that the lift is a pointwise characteristic of the joint
probability density and not a global property of it. Thus, the study of the behavior of
the LF may be accomplished by observing its level curves or heatmap, that presents
the behavior of the LF by coloring the support SX,Y according to its values.

Although the LF, as defined in (3), presents a wide picture of the dependence
between two random variables, it has some practical limitations. First of all, a great
sample size may be necessary to estimate the LF via the kernel estimator. Second, the
LFmay assess the dependence between the randomvariables in toomuch detail, what
may not be useful in practice, as it may be hard to interpret all the values of it. Finally,
the LF treats only the dependence between two random variables, what narrows its
application range. Thus, in order to solve those limitations, we propose that the
random variables of interest be discretized in a manner so that their dependence may
be interpreted by applying the LF in an useful way.
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Therefore, this paper treats the scenario in which we have two groups of discrete
and/or continuous random variables Y = {Y1, . . . ,Ym} and X = {X1, . . . , Xn} and
want to measure the dependence between the variables in Y and X . We propose
that such dependence study is made by assessing the local dependence between the
discrete random variables V (Y ) and U (X), constructed by the discretization of Y
and X , respectively. The local dependence between V (Y ) andU (X) is expressed by
the discrete LF given, for all (u, v) ∈ SU (X),V (Y ), by

L∗(u, v) = P(U (X) = u, V (Y ) = v)

P(U (X) = u)P(V (Y ) = v)
= P(V (Y ) = v|U (X) = u)

P(V (Y ) = v)
(4)

in which SU (X),V (Y ) = SU (X) × SV (Y ) is the support of (U (X), V (Y )). The interpre-
tation of L∗ is similar to that of L , with the densities interchanged by their respective
probability functions.

Even though the discrete LF (4) gives a wide view of the dependence between
discrete random variables U and V , it may be of interest to summarize this depen-
dence to an index. In order to do so, we use the normalized MI of V given U that is
defined as

η(V |U ) =

∑
(u,v)∈SU,V

P(U = u, V = v) log L∗(u, v)

−∑
v∈SV P(V = v) logP(V = v)

= I (V,U )

H(V )
(5)

and is the ratio between the MI of (U, V ) and the Entropy of V . We have that
0 ≤ η(V |U ) ≤ 1, that η(V |U ) = 0 if and only if (V,U ) are independent and that
η(V |U ) = 1 if, and only if, there exists a function Q : SU → SV such that P(V =
Q(U )) = 1. Note that the coefficient in (5) measures the influence of U in V and
that it may differ from the coefficient η(U |V ), that measures the influence of V in
U .

The local dependence measure given by the discrete LF, and the index given by
η, may be useful in determining what subset of features is most related to a variable.
Therefore, the LLD partition of random vectors into two discrete random variables
may be a useful tool in feature selection, as it gives a systematic manner of measuring
variable dependence. In the following sections, we present a classical approach to
feature selection, that is the minimization of a cost function of an estimated joint dis-
tribution, having candidate parameter vectors in a Boolean lattice of feature vectors.
However, we propose LLD-based partitions in which classic cost functions, as the η

coefficient, may be applied to select features.

3 Feature Selection Algorithm from Local Lift
Dependence-Based Partitions

In this section, we present the characteristics of a feature selection algorithm from
LLD-based partitions. We first outline the classical approach to feature selection.
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Then, we propose LLD-based partitions and cost functions that may be applied to
feature selection. Lastly, we present stopping criteria for the proposed algorithm.

3.1 Classical Feature Selection Algorithm

Let Y and X = {X1, . . . , Xn} be random variables. We call the random variables in
X features and note that the power setP(X) of X may be seen as a Boolean lattice
of feature vectors, in which each vector represents a subset of features. Therefore,
feature selection is given by the minimization, in the given Boolean lattice, of a cost
function, defined as a function of the joint probability of the feature vectors and Y .
In fact, the subset of features selected by this approach is given by

χ = argmin
χ∗∈P (X)

C(Y, χ∗)

in which C is a cost function. The estimated error of a predictor Ψ as presented in
[3, Chap. 2], for example, is a classical cost function.

In order to determine C(Y, χ∗) for a feature vector χ∗ ∈ P(X), we need to
estimate the joint probability function of (Y, χ∗). However, as Y may be a continuous
variable, and χ∗ may contain continuous variables, it is convenient to discretize Y
and χ∗, so that the joint probability distribution may be estimated when the sample
size is not large. We propose that (Y, χ∗) be discretized into a LLD-based partition,
i.e., into two discrete random variables.

3.2 Local Lift Dependence-Based Partitions

Although there are countless ways to discretize the random variables Y and χ∗ ∈
P(X), we present a manner of discretizing them into two random variables (U (χ∗),
V (Y )), what we call LLD-based partition, as the LLD is used to study the dependence
between the discrete random variables. In order to propose LLD-based partitions,
we separate the discretization process in three different types: when all the variables
of χ∗ are discrete, when all are continuous and when some of the variables in χ∗
are continuous and others are discrete. However, we first treat the discretization of
Y into V (Y ).

If Y is a discrete random variable, there is nothing to be done, as it is enough to
take V (Y ) = Y . However, if Y is continuous, then it may discretized in any usual
manner. Nevertheless, an useful discretization process is that based on the sample
percentiles of Y , as it enables a good interpretation of the categories of V (Y ).

In the same way, the discretization process of χ∗ when all of its features are
discrete is pretty simple, as it is enough to define U (χ∗) as the discrete random
variable whose support is the Cartesian Product of the supports of the variables in
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χ∗. On the other hand, if all the features in χ∗ are continuous there is no trivial
manner of discretizing them into a random variable U (χ∗). A possible approach
would be to partition the support of χ∗ into equivalence classes delimited by hyper-
rectangles, what is known as the histogram partition [3, Chap. 1], although it may
not be practical if the dimension of χ∗ is too high or if the support of χ∗ is too wide.
Therefore, we propose a natural manner of discretizing χ∗ into U (χ∗) that is also
based on the percentiles.

As the support of χ∗ is a subset of1 Rk , there is no trivial ordination of the χ∗
sample points as there was on the discretization process of the continuous variable Y ,
whose support was a subset of the real lineR. Therefore, we propose that a distance,
defined in a statistical sense, be taken from each sample point of χ∗ and a fixed
point P ∈ R

k and that the percentiles of this distance be used to discretize χ∗ into
U (χ∗). If all the features in χ∗ are positive random variables, we may take, for
example, P = 0 and then discretize the features χ∗ by the sample median (or any
other percentiles) of the considered distance, so that we get a binary random variable
U (χ∗) that may be easily interpreted: the observations on its first category are those
with small values of the features in χ∗ jointly, while its second category contains the
observations with great values of the features in χ∗ jointly.

If the Euclidean distance is used, then the support of χ∗ is partitioned by hyper-
spheres. On the other hand, if the Mahalanobis distance, as proposed by [2], is used
instead, then the support of χ∗ is partitioned by ellipsoids. Although any distance
could be used, we propose the use of the Mahalanobis distance, as it consider the
variances and covariances of the random variables within χ∗.

Finally, if there are some variables in χ∗ that are continuous and others that are
discrete, we may associate the methods presented above in order to discretize χ∗ into
U (χ∗). Indeed, we may take the distance between the continuous variables sample
points and a fixed point P inside each category of the joint distribution of the discrete
variables, i.e., the distances are calculated and the sample percentiles are determined
considering only the observations inside each one of the categories of the discrete
variables.

The discretization methods presented in this section may also be applied to
study the dependence between two random vectors Y = {Y1, . . . ,Ym} and X =
{X1, . . . , Xn}, as it is enough to discretize Y into V (Y ) and X into U (X) by
one of the methods proposed above. In the same manner, it is possible to select
the features χ ⊂ X which are most related to Y , as the relation between Y
and a feature vector χ may be expressed by the LLD study of the dependence
between U (χ) and V (Y ). With adaptations to the method, we may also find
χX ⊂ X and χY ⊂ Y that are most related.

1Supposing that χ∗ contains k features.
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3.3 Cost Functions

Any cost function that can be applied to discrete variables may be used to select the
features. However, in our approach, we use the η coefficient that is calculated for the
discretized random variables. Therefore, the features χ ∈ P(X) selected are those
that maximizes the η coefficient of V (Y ) given U (χ).

3.4 Stopping Criteria for the Algorithm

As the Boolean lattice generated by the power set of X = {X1, . . . , Xn} has cardi-
nality 2n − 1, it is necessary to determine stopping criteria for the algorithm, as it is
not computable for great values of n. A possible stopping approach is to employ an
U-curve algorithm, so that it is not necessary to run an exhaustive search on all the
power set of X . An U-curve algorithm, as presented in [5] and [6], searches P(X)

for the subset that optimizes the cost function by visiting a tree, in which each node
represents a subset of X . The algorithm penalizes the shortage of samples, which
causes the algorithm not to visit many nodes of the tree: when the estimation error
is greater than a fixed value, the algorithm prune the tree and do not search a group
of nodes, what saves computational time.

However, theU-curve algorithmmaynot be applied if there are no discrete random
variables on X . Therefore, we propose that anU-curve algorithm be used to treat the
nodes of the Boolean lattice which contain discrete variables, while other stopping
criteria may be used on nodes consisting only of continuous variables. A possible
stopping criteria is to consider only the subsets of X whose dimension is lesser than
a number k < n, so that the algorithm does not exhaustively search P(X).

4 Applications

In this section, we apply the methods proposed to study the relation between the
performance on the courses of the first semester and the performance on the entrance
exam test of students that enrolled in the Statistics and Computer Science undergrad-
uate courses of the Institute of Mathematics and Statistics of the University of São
Paulo between 2011 and 2016. There were considered only the students that had a
mean grade on the first semester courses greater than five2, which amounted to 129
students of Statistics and 251 students of Computer Science.

The entrance exam test is divided in eight subjects, namely,Mathematics, Physics,
Biology, Chemistry, History, Geography, English, and Portuguese, besides an Essay.
It is of great interest to knowwhat are the entrance exam subjects that aremost related
to the performance on the courses of the first semester and, in order to determine the

2In a scale of 0 to 10.
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Fig. 1 Estimated Heatmap between the performance on mathematics and the mean grade on the
first semester of the students of statistics and computer science, both standardized by year

subjects most related to these courses, we apply LLD methods. The performance on
an exam subject is given by the percentage of correct answers on the subject.

First of all, we study the relation between the performance onMathematics on the
entrance exam and the mean grade on the first semester, that are both standardized
by year, so that that they may be compared. The LF estimated heatmap between the
mean grade and the performance on Mathematics for each course is presented in
Fig. 1. The heatmap was estimated using the kernel estimated probability densities
of the considered performances, based on [7, 9], and made by the functions density
of the Stats Package [4] and kde2d from the MASS Package [10] of the The R
Project for Statistical Computing. Analyzing Fig. 1, we see that high performance
on Mathematics lifts high mean grade and that poor performance on Mathematics
lifts poor mean grade, for both courses, as expected.

For the purpose of studying the relation between the joint performance on Math-
ematics and Physics and the mean grade, we may partition both the mean grade and
the joint performance on Mathematics and Physics into two binary random variables
according to the median of the mean grade within each year and the median of the
Mahalanobis distance from zero, also within each year, of the joint performance on
Mathematics and Physics. The Mahalanobis partition is presented in Fig. 2. The me-
dian distances and the median mean grades are taken within each year because it is
known that the performance scale is not the same every year. Therefore, year may be
seen as a block factor in our analysis [1, Chap. 5]. We observe that the support of the
performances, i.e., [0, 1]2, is partitioned by ellipses, so that the students inside the
ellipse of their year are those with poor joint performance and the students outside
it are those with high joint performance on Mathematics and Physics.

Table1 presents the discrete LF for the performances considered above. We
observe that having a performance on Mathematics and Physics above the medi-
an lifts the probability of having an above the median mean grade in both courses,
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Fig. 2 Mahalanobis partition between the performances on physics and mathematics, within each
year, by course

Table 1 Discrete LF between the mean grade and the joint performance on Mathematics and
Physics given by the Mahalanobis partition by year. The numbers in parentheses represent sample
sizes

Course Mean grade Mathematics and Physics η

Below median Above median

Statistics Below median 1.31 (43) 0.682 (22) 0.07412

Above median 0.682 (22) 1.32 (42)

Computer science Below median 1.17 (75) 0.829 (52) 0.02124

Above median 0.829 (52) 1.18 (72)

although the lift in the Statistic course is 32% while the lift in the Computer Sci-
ence course is only 18%. On the same way, having a below median performance
on Mathematics and Physics lifts the probability of having a below median mean
grade, although the lift is greater in the Statistics course. Indeed, we observe from
the η coefficients that the dependence between the performances on Mathematics
and Physics and the mean grade is stronger in the Statistics course.

Finally, we apply the feature selection algorithm from LLD-based partitions to
select the subjects that are most related to the mean grade using the η as a cost
function. To that purpose, the mean grade is discretized by its median within each
year. In the same way, the performance on a group of k subjects is discretized by
the median of the Mahalanobis distance between the sample performances and zero,
within each year. The subject selected by this method is Mathematics, for both the
Statistics and Computer Science courses. Table2 presents the discrete LF between
the performance on Mathematics and the mean grade, both discretized within each
year.
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Table 2 Discrete LF between themean grade and the performance onMathematics for the Statistics
and Computer Science courses. The numbers in parentheses represents sample sizes

Course Mean grade Mathematics η

Below median Above median

Statistics Below median 1.33 (45) 0.662 (22) 0.08963

Above median 0.64 (20) 1.37 (42)

Computer science Below median 1.23 (85) 0.768 (52) 0.04593

Above median 0.728 (42) 1.28 (72)

From Table2 we see that the dependence between the performance on Mathe-
matics and the mean grade is stronger in the Statistics course. On the one hand, if
a Statistic student has an above the median performance on Mathematics, than his
probability of having a mean grade above the median is lifted in 37%, when compar-
ing with a student for which we do not know the performance on Mathematics. On
the other hand, if a Computer Science student has an above the median performance
on Mathematics, than his probability of having a mean grade above the median is
lifted in only 28%, when comparing with a student for which we do not know the
performance on Mathematics.

5 Final Remarks

The algorithm proposed in this paper has a couple of good qualities. First of all, it
presents a systematic way of treating feature selection that can be applied to a variety
of practical problems, as it may be adapted for continuous and discrete features.
Second, the dependence between the selected features and Y may be interpreted by
the use of LLD tools, as the LF and its heatmap. Therefore, the proposed method
provides not only the features that are most related to Y in some sense, but also useful
informations about the outlined relation.

On the other hand, the algorithm may not be computable if the number of con-
tinuous features is too great. However, some continuous features may be discretized
beforehand, so that the majority of the variables in X are discrete and an U-curve
algorithmmay be applied. Nevertheless, we discourage the beforehand discretization
of all continuous features, as important characteristics of the data may be lost in the
discretization process. We believe there is much further work to be done in studying
the Local Lift Dependence, and how it can be used to improve feature selection and
the analysis of variable dependence.
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Probabilistic Inference of Surface Heat
Flux Densities from Infrared
Thermography

D. Nille, U. von Toussaint, B. Sieglin and M. Faitsch

Abstract In nuclear fusion research, based on the magnetic confinement, the deter-
mination of the heat flux density distribution onto the plasma facing components is
important. The heat load poses the threat of damaging the components. The heat flux
distribution is a footprint of the transport mechanisms in the plasma, which are still
to be understood. Obtaining the heat flux density is an ill-posed problem. Most com-
mon is ameasurement of the surface temperature bymeans of infrared thermography.
Solving the heat diffusion equation in the target material with measured temperature
information as boundary condition allows to determine the surface heat load distri-
bution. A Bayesian analysis tool is developed as an alternative to deterministic tools,
which aim for fast evaluation. The probabilistic evaluation uses adaptive kernels to
model the heat flux distribution. They allow for self-consistent determination of the
effective Degree of Freedom, depending on the quality of the measurement. This is
beneficial, as the signal-to-noise ratio depends on the surface temperatures, ranging
from room temperatures up to the melting point of tungsten.

Keywords Magnetically confined fusion · Power exhaust · Infrared
thermography · Inverse problem
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1 Introduction

The shape and temporal evolution of the heat flux pattern of a magnetically confined
plasma onto the first wall is of great interest for fusion research. Heat flux densities of
severalMW/m2 pose a threat to the exposedmaterial [1, 9]. The heat flux distribution
is a footprint of the transport in the plasma edge [5, 6, 13]. Understanding the
transport in the plasma edge is important to predict the behaviour of larger devices,
aiming for a future fusion power plant. No direct measurement of the heat flux in
the plasma is available. A method with sufficient spatial and temporal resolution
to analyse many effects is to measure the thermal response of the target material,
where the plasma deposits thermal energy. The impinging heat raises the temperature
of the material, which itself transports the heat via conduction into the bulk. From
the measured temporal evolution of the surface temperature, the heat flux into the
material is deduced.

Contributions in the past years to improved infrared diagnostics in tokamaks,
like [12], allow to deduce the heat flux density profile in great detail, by using a
deterministic evaluation. However, a more precise deduction including proper error
bars is desired. This work introduces a tool facilitating a probabilistic evaluation of
the data. The forward model is based on the heat diffusion code called THEODOR
(THermal Energy Onto DivertOR) [7]. It solves the heat diffusion equation in the
target tile for the measured surface temperature as a boundary condition to deduce
the heat flux onto the surface. This work presents a tool currently developed under
the name BayTh (Bayesian THEODOR), using THEODOR to model the thermal
response and adaptive kernel to describe the profile of interest.

The Bayesian approach allows to self-consistently deduce the optimal degree of
freedom of the reconstruction. The experimental setup used at the tokamak ASDEX
Upgrade in Garching is introduced in Sect. 2. The forward model is described in
Sect. 3 including the model for the thermal response and the camera. Section4 briefly
introduces the adaptive kernel used to describe the heat flux profile. Section5 outlines
the implemented solvers to find the optimal solution. Section6 explains how the
statistical part is benchmarked in order to get a robust reconstruction. Section7 shows
an example of the developed tool BayTh applied to experimental data. Section8
summarises this contribution.

2 The Measurement System

This section outlines the detailed description of the measurement system in [12].
Main component is an infrared camera, observing the surface of the divertor tile at a
wavelength of 4.7µm. Figure1 shows a picture of the target tile taken by this camera.
Assuming symmetry in toroidal direction in the device, it is sufficient to infer the 1D
poloidal pattern from the 2D image. For the relevant direction, the spatial resolution
is about 0.7mm. Themaximal fill level of the CMOS sensor corresponds to about 106

photons, which leads to a standard deviation of 103 photons for a normal distribution
respective a signal-to-noise ratio of 103. A discretisation level of down to 46 photons
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Fig. 1 IR camera image: the horizontal axis corresponds to the poloidal direction.Along the toroidal
direction, the poloidal heat flux profile is about constant. The checkerboard like structure allows for
movement correction

is achievable with the 15-bit ADC, which is mostly negligible compared to the
photon noise. For the best SNR in all conditions the integration time is controlled
by a real time system based on the histogram of the last image from 1 to 100µs. An
approximation of the expected noise level is derived from the heat diffusion equation,
which is introduced in Sect. 3.1. The statistical noise in the photon flux translates to
an effective temperature noise of about 30mK. For an exemplary sample rate of
1kHz —values between 800 and 3kHz are typical —the effective noise in heat flux
is calculated. At 500◦ C tungsten has a thermal diffusivity of about 5 · 10−5 m2 s−1

and thermal conductivity of about 100W/(m · K). The diffusion coefficient can be
written as

χ = �x2

�t
(1)

described by the diffusion length�x after time�t . The diffusion length is thus given
by the known thermal diffusivity and the diffusion time between two samples

�x = √
�t · χ ≈

√
1.10−3s · 5 · 10−5m2s−1 ≈ 2 · 10−4m (2)

From this we derive the perturbation in the heat flux density δq from a perturbation
in the measured temperature δT :

δq = κ
δT

�x
≈ 20kWm2 . (3)

Depending on the camera settings like the sample frequency an effective noise of
about σq = 20 to 40 kWm−2 can be reached in good conditions with the evaluation
using THEODOR.
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3 Forward Model

3.1 Heat Diffusion

The forward model for the heat transport in the target material is based on the
THEODOR code, described in [7], as described in the following. Figure2 shows
the situation: the rectangular cross-section of an isotropic material through which
heat is conducted.

The heat transport in the divertor target is described by heat diffusion, with a
nonlinear diffusion coefficient κ with respect to the temperature. The corresponding
nonlinear second order partial differential equation of the temperature T reads

∂T

∂t
ρcp = ∇ (κ(T )∇T ) . (4)

Here ρ and cp are the mass density and specific heat capacity of the material. In this
equation, the temperature is substituted by the heat potential

u(κ) =
T∫

0

κ(T ′)dT ′ (5)

leading to the semilinear differential equation

du

dt
= 1

ρcp
χ(u)�u . (6)

This system is solved using the finite difference implicit Euler scheme with operator
splitting. The derivative is split into a part along the surface �x and a part into
the depth of the tile �y . This leads to two tridiagonal systems, which are solved
successively using the Thomas Algorithm [11]. The heat flux is deduced from the
heat potential gradient in the first three layers:

q = κ(T )∇T = ∇u (7)

The same numerical scheme is used as a forward model, by setting the heat flux to
the surface as boundary condition instead of the temperature. The relevant result of
an iteration is then the surface temperature for the given heat flux distribution.

3.2 Measurement System

From the surface temperature modelled as described above the expected count rate
of the IR camera [12] is deduced, depending on the calibration and integration
time of the camera and the emissivity of the surface. The functional dependence
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Fig. 2 Sketch of the
cross-section of the target
material with the temperature
encoded in the colour. From
measured surface
temperatures, the spatially
resolved heat flux density
q(s) impinging onto the
surface has to be deduced.
The lateral boundary
conditions allow no heat
transport while the back side
is in contact with a coolant

between surface temperature and count rate is determined by Plancks Law of radia-
tion. It describes the emission of electromagnetic radiation from an ideal black body
with finite temperature. For the presented investigation the photon rate—energy rate
divided by energy per photon—in a certain wavelength detected by the camera is of
relevance. The photon flux emitted by a surface into the half-space is calculated as

	(T ) =
∫ ∫

ε
2πc

λ4

1

exp
(

hc
λkT

) − 1
dA dλ (8)

ε represents the emissivity of the surface, c the speed of light, k denotes theBoltzmann
constant and h the Planck constant. The equation can be approximated for an effective
wavelength λe f f and a constant c0 describing the optical system:

	(T ) � c0
2πcε

λ4
e f f

1

exp
(

hc
λe f f kT

)
− 1

(9)

The calibration coefficient c0 depends on the aperture and sensitivity of the camera
and losses in the optical system. Solving this equation for the temperature yields:

T = hc

λe f f k

1

ln
(
2πcε
λ4
e f f

· c0
	

+ 1
) (10)

The likelihood is determined using a normal distribution, with the uncertainty
deduced from the modelled counts per pixel.

4 Heatflux Model: Adaptive Kernel

To describe the 1D profile, an adaptive resolution approach is used. A description
can be found in [4]. Instead of imposing smoothness via a penalty on derivatives of
the function f , a structure — furthermore called hidden image h— is smoothed by
a kernel function g:
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f = g × h (11)

The wider and smoother the kernel, the smoother the resulting function. By using
not a fixed width, but treating the width of every kernel in a discrete space as hyper
parameters the resolution can be adjusted to reflect the information content of the
measurement. The value of f (x0) of N Gaussian kernel at positions xi with widths
bi is given by

f (x0) =
∑

i

hi√
2πbi

exp

(

−1

2

(
xi − x0

bi

)2
)

. (12)

This approach has been shown to work well for positive additive distributions (PAD-
s) [4] like spectroscopy and depth profiles. The noise level for our application is
expected to vary in time and space, as the amount of emitted radiation depends on
the temperature of the surface area, which can be strongly peaked. Instead of using
a global regularisation term, the adaptive kernel approach allows a self-consistent
determination of the best resolution.

4.1 Effective Number of Degrees of Freedom (eDOF)

The degrees of freedom is an important quantity for model comparison, as addi-
tional DOFs typically improve the likelihood, with not necessarily gaining more
information about the system. In vector notation Eq. (12) is written

f = Bh (13)

with B the transfer matrix. For the adaptive kernel, no explicit model comparison
is necessary, as the complexity of the model is described by the transfer matrix,
mapping the hidden image into the data space. In the simplest case, B is the unit
matrix, corresponding to no smoothing and the hidden image being identical to the
function f . On the other hand,B has not to be a square matrix, for more or less kernel
than cells in the data space for over- respective under-sampling.

In the following, assume a square transfer matrix, mapping N values of the hidden
image space onto N measurement locations. In this case, 2×N parameters are used,
to describe N data points. With increasing width of the kernel, the flexibility of the
model is reduced. For the limit of all widths larger than the system size b → ∞
the effective degree of freedom (eDOF) is 1, as the resulting function consists only
of a constant, with N contributions from the hidden image all being mutually anti-
correlated. The other limit bi → 0 represents independent delta peaks. The function
is therefore described by the N hidden image values, a point-wise reconstruction
with N degrees of freedom. The eDOF can be determined by the eigenvalues of the
squared transfer matrix
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eDOF =
N∑

i=1

√
eigenvaluei (BT · B) (14)

reaching from 1 to N .

5 Exploring the Parameter Space

For production work optimisation routines from NAG [10] and Minuit [2] are used,
searching for the mode of the posterior distribution. The C++ code uses the adept
[8] library to efficiently determine the Jacobian of the posterior with respect to all
input parameters.

With 104–105 iterations per time step and run-times of few milliseconds per time
step it takes about 10–100sper time step and therefore the evaluationof typical 10.000
frames takes a few days. The minimisation time and stability benefit significantly
from using the automatic differentiation. For the absolute time effort, though the
evaluation of the Jacobian takes about 5 times the time of a regular iteration, drops
by about a factor of 4. The precision of the gradient information is higher than with
finite difference approaches.

Alternatively, a Marcov Chain Monte Carlo procedure is used to get insight into
the marginal distributions of the single parameters. The thermal system is in good
approximation linear for the common temperature gradients and though the photon
flux scales about quadratic with the temperature it is considered linear as the uncer-
tainty of well below 1◦C is negligible compared to the absolute temperature starting
from about 400K. Therefore, a normal distribution of the parameter is found, leading
to a normal distributed posterior.

6 Synthetic Data as Benchmark

The abilities and limitations of the reconstruction are best shown based on the syn-
thetic data, where the reference is known. Therefore, a 1D heat flux profile evolving
in time as it is common inmeasurements is defined. For this case, a sample frequency
of 1kHz and spatial resolution of 1mm is used, with an integration time of 10 µs.
Figure3 on the top left shows the heat flux density encoded in a colour map with the
vertical axis representing the position and the horizontal axis the evolution in time.
Using the forward model, the resulting surface temperature is calculated. Given the
calibration factors and a typical integration time the signal of a virtual instance of
the camera is determined. In the end, a realisation of noise according to the normal
distribution is added. Figure3 shows a comparison between the classic determin-
istic evaluation and the probabilistic evaluation with the form free adaptive kernel
approach for synthetic data. For the deterministic approach, the count rate and inte-
gration time used for the probabilistic evaluation is converted to the corresponding
temperature, as it is done in the actual measurement.



62 D. Nille et al.

Fig. 3 Comparison between deterministic and probabilistic reconstruction of synthetic data. Top
left: synthetic reference signal. Top right: deterministic reconstruction with THEODOR. Bottom
left: probabilistic, form free reconstruction with the Bayesian THEODOR BayTh. Bottom right:
direct comparison of 1D profiles. The dashed line represents the 2 sigma interval derived from the
parameter distribution

For the specific case shown, the standard deviation is reduced from ±25 kWm−2

for the deterministic evaluation to ±3.9 kWm−2 for the probabilistic method. The
adaptive kernel are able to describe the slopes of the profile, with a tendency to minor
ringing at the ends of the profile. The latter is due to the additive nature of the kernel,
which allows only an inward pointing gradient when no contributions from outside
of the data range are allowed. This limitation is mitigated by placing an additional
kernel element just outside of the reconstruction area.

7 Processing Measured Data

An example for measured data with a rich set of features is used to illustrate the
possibilities of the method presented in this contribution. Figure4 shows a profile
from a study with magnetic perturbation [3], resulting in a splitting of the heat flux
pattern. Though a reduced resolution of 1 Kernel only every two pixel was used, the
fine features around 6 cm target position are well reproduced. Interesting is also the
profile at the right half, where new structures are identified, inaccessible otherwise.
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Fig. 4 Comparison of
deterministic to probabilistic
THEODOR: The adaptive
kernel reconstruct fine peaks
where necessary without
over-fitting

Fig. 5 Time evolution of the
lobe structure calculated
with BayTh. The heat flux is
plotted as a heat map
showing the position in pixel
versus the frame number. A
single profile is shown in
Fig. 4

When looking at the time evolution in Fig. 5 the positions of the so called lobes is
changing. Beside the possibility to determine the position of the peaks in the profile
in a wider range, the hidden image shows the source of the contributions.

The main imperfection of the measurement is represented by hot-spots, as seen
in Fig. 5 just below pixel 200. Imperfections of the surface or dust particles sticking
to the surface change the emissivity. Foreign particles also lower thermal conduction
to the bulk, changing the temperature response. Both changes tend to result in an
overestimation of the surface temperature.

8 Conclusions

The probabilistic evaluation of infrared data allows to infer more details and reliable
error bars for the reconstructions of heat flux pattern onto a surface.

Compared to the common deterministic approach with THEODOR, the proba-
bilistic evaluation with BayTh has some striking benefits. Comparisons based on the
synthetic data show a reduction of the standard deviation to the reference by a factor
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of 5–10. Evaluating experimental data, work in progress, reveals features predicted
by a theory which were formerly not even accessible with post-processing.

Next steps will include improvements regarding systematic measurement errors
like hot-spots. A long-term goal is an extension for 2D reconstructions.
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Schrödinger’s Zebra: Applying Mutual
Information Maximization to Graphical
Halftoning

Antal Spector-Zabusky and Donald Spector

Abstract The graphical process of halftoning is, fundamentally, a communication
process: an image made from a continuous set of possible grays, for example, is
to be represented recognizably by elements that are only black or white. With this
in mind, we ask what a halftoning algorithm would look like that maximizes the
mutual information between images and their halftoned renditions. Here, we find
such an algorithm and explore its properties. The algorithm is inherently probabilistic
and bears an information theoretic similarity to features of quantum mechanical
measurements, so we dub the method quantum halftoning. The algorithm provides
greater discrimination of medium gray shades, and less so very dark or very light
shades, as we show via both the algorithm’s mathematical structure and examples of
its application. We note, in passing, some generalized applications of this algorithm.
Finally, we conclude by showing that our methodology offers a tool to investigate
Bayesian priors of the human visual system, and spell out a scheme to use the results
of this paper to do so.

Keywords Graphical process · Information theory · Quantum halftoning

1 Introduction

Graphic artists have known since at least 1850 [6] that it is possible to take images
made from a continuous set of shades of gray and render them using only black and
white elements. Doing so is known as halftoning [7], and it can be accomplished
in a variety of ways [8]. Halftoning relies on the visual processes of observers to
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interpret the mixture of black and white elements as the original image. One can use
halftoning not just on grayscale images, but for simplicity, we focus on that context.

Although halftoning is generally treated as a graphical or visual tool, at its heart,
halftoning is an information theoretic communication process. Alice, the artist, has
a grayscale image to convey to Bob, the beholder. However, Alice is constrained,
and can only send Bob a black and white image. Even though this will eliminate
information, Alice still wants to convey the original image as best she can.

This point of view leads us here to introduce a new halftoning algorithm, based on
the information theory [5], designed tomaximize themutual information [1] between
original images and their halftoned versions. The mathematics of the algorithm bears
a similarity to certain problems associated with quantum measurement theory [9],
and so we dub the method quantum halftoning.

In the next section, we formulate halftoning using the language of information
theory, after which we determine the precise halftone mappings that maximize the
relevant mutual information. This then allows us to specify the quantum halftoning
algorithm, an inherently probabilistic algorithm. We explore the output of the algo-
rithm and the images it produces. Along the way, we highlight the formal connection
between this algorithm and quantum mechanics. Finally, we close by showing how
our methodology provides a tool for exploring the Bayesian priors of the human
visual system.

There is a large literature on halftoning, including deterministic and probabilistic
algorithms, with well-known techniques such as dithering that incorporates two-
dimensional information [7, 8].What is newhere is the use of an information theoretic
measure to create the halftoning algorithm.We note that our method is most sensitive
to variations in mid-range grays, and less so in very light or very dark regions, and
standard methods appear to produce visually more faithful images. This potential
weakness, however, is actually a strength: it means our method provides a tool to
determine the Bayesian priors of the human visual system with respect to brightness,
as we discuss at the end of the paper.

2 Information Theory and Halftoning

We are interested in halftoning procedures for grayscale images in which every
grayscale pixel of the original image is replaced by a square array of N pixels, each
of which must be either black or white. We refer to the gray pixels of the original
image as the inpixels and the black and white pixels of the halftoned image as the
outpixels; thus, there are N outpixels for each inpixel.

We can represent each shade of gray according to its brightness using the real
numbers from 0 to 1, where 0 is black and 1 is white; the smaller the number, the
darker the gray.As aviewer is primarily impactedby the proportionof black andwhite
pixels in a given area, we will not be interested in the particular arrangement of black
and white outpixels corresponding to a particular inpixel, only the fraction that are
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black.1 Thus, to specify a halftoning algorithm in this context is to specify a function
p(x) that indicates what fraction of the N outpixels used to represent an inpixel of
gray shade x should be black. Because p(x) is intended to produce halftoned images,
we impose the condition that p(x) be monotonically nonincreasing so that lighter
grays do not get encoded with a larger fraction of black pixels.

The essence of our algorithm is thatwe choose the function p(x) so as tomaximize
an appropriate measure of the mutual information between the original and halftoned
images. This means that we view p(x) not as a fraction, but as a probability, and thus
p(x) is not actually the fraction of outpixels for a given gray inpixel that are black,
but rather the probability that each such outpixel is black.

To maximize the mutual information, we must know the distribution that charac-
terizes x ; since our goal is an all-purpose algorithm, usable on any initial image, we
assume that all values of x are equally likely, and so x is characterized by the uniform
distribution F(x) = 1. (At the end of the paper, we reconsider this assumption, with
some important implications.) We now need to find the p(x) that maximizes the
mutual information between the original distribution F(x) and the results of apply-
ing p(x) a total of N times. Two features are clear: p(x) will depend on x (indeed,
we expect p(0) = 1 and p(1) = 0, which in fact will be the case), and p(x) will
depend on N . Thus, going forward, we will denote the relevant probabilities pN (x).

Fortuitously, our problem is mathematically equivalent to one considered by
Wootters [9]: namely, how Alice can best communicate a real number uniformly
distributed on a closed interval to Bob by sending Bob a weighted coin that he can
toss exactly N times. Thus, the mutual information we obtain has the same form as
that obtained in this coin-toss procedure. Furthermore, Wootters establishes a con-
nection between this information theoretic problem and measurements in quantum
mechanics, and so we dub our halftoning method quantum halftoning.

We now return to constructing the requisitemutual information. If one has random
variables X and Y , the mutual information I (X : Y ) is given by H(X) − H(X |Y ),
where H(X) is the entropy associatedwith X , and H(X |Y ) is the conditional entropy
of X given Y . For our problem, the two variables are the shade of gray x , with
distribution F(x) = 1, and the number of black pixels nb, arising from N applications
of pN (x). Since x is continuous and nb is discrete, we use integrals for x , where we
have sums for nb, which means using the differential entropy [1] where necessary.
The mutual information here then takes the same form as in Wootters’s coin-toss
procedure [9], namely,

I (nb : x) = −
N∑

nb=0

P(nb) log P(nb) +
∫ 1

0
dx

[ N∑

nb=0

P̂
(
nb|pN (x)

)
log P̂

(
nb|pN (x)

)]
,

(1)
where P(nb) is the probability of getting nb black pixels averaged over all possible
values of x , and the conditional probability P̂ is the binomial distribution,

1From a purely information theoretic point of view, one could of course distinguish among different
arrays of N pixels that have the same fraction of black pixels, but this information is not generally
accessible in a meaningful way to human viewers.
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P̂(nb|q) = N !
nb!(N − nb)!q

nb(1 − q)N−nb . (2)

With these results, we now seek to find the pN (x), the probability that each of the
N outpixels corresponding to an original spot of grayness x will be black, that will
maximize the mutual information in Eq. (1).

Naively, one might expect something like pN (x) = 1 − x , i.e., that as the gray
gets lighter, the probability of generating black pixels should go down. However,
this is not the case. One can get a sense of what is going on by considering the case
N = 1, where each gray inpixel is turned into either a black or a white outpixel.
If the original shade is a darker gray, i.e., x < 0.5, then 0 (black) is always closer
to x than is 1 (white). As a consequence, the mutual information is maximized in
this case, when p1(x) = 1 for x < 0.5 and p1(x) = 0 for x > 0.5; there is never
any advantage to mixing in the alternate result, and so we get a step function. (The
precise value of p1(0.5) is irrelevant, since x = 0.5 is a set of measure zero.) Put
another way, one pixel can only convey a single bit of information, and so the best
that can be done is to divide the interval into two regions of equal size.

Some features of the pN (x) that maximize the mutual information were found by
Wootters [9]. For any N > 2, while there are values of x for which it is desirable
for pN (x) to be other than 1 or 0, the stepping nature of the solution persists. The
optimal solution takes the interval [0, 1] and divides it into L distinct subintervals
(L depends on N ), with some widths w1, . . . ,wL , where

∑L
j=1 wj = 1; for each of

these subintervals, there is a constant q j (with j = 1, . . . , L) such that pN (x) = q1
when0 ≤ x ≤ w1, and pN (x) = q j whenw1 + · · · + wj−1 < x ≤ w1 + · · · + wj for
j = 2, . . . , L . Requiring that pN (x) be monotonically nonincreasing means, then,
that a plot of this function looks like a descending staircase. The value of L needed
to maximize the mutual information is bounded from above by �N/2� + 2, though
numerical work shows the necessary L is generally much smaller than that.

With these results, the mutual information Eq. (1) takes the simplified form [9]

I (nb : x) = −
N∑

nb=0

P(nb) log P(nb) +
L∑

j=1

wj

[ N∑

nb=0

P̂(nb|q j ) log P̂(nb|q j )
]
, (3)

with P(nb) = ∑L
j=1 wj P̂(nb|q j ). When the mutual information is maximized, the

staircases are symmetric, with the symmetry given by the relations wL+1− j = wj

and qL+1− j = 1 − q j . In addition, q1 = 1 and qL = 0. Beyond that, the particular
values of L , wj , and q j depend on N , and we will need to compute these values to
implement our algorithm.

Since for N > 2, it is not feasible to solve for the optimal pN (x) analytically,
we used Mathematica to obtain the optimal pN (x) numerically for all N ≤ 36.
In order not to distort the aspect ratio, we will always replace each inpixel from
the original image with a square block of outpixels, so we present the results for
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Fig. 1 The probability distributions pN (x) that maximize the mutual information I for five cases
of interest. The mutual information I associated with each optimal pN (x) is listed underneath each
graph. The varying sizes of the steps within each “staircase” make the algorithm more sensitive for
medium than light or dark grays

N = 4, 9, 16, 25, and 36, displaying these results graphically in Fig. 1 and numer-
ically (along with the N = 1 case) in the appendix.2

One noteworthy result is that the number of staircase steps is less than one might
expect. For example, in the case of N = 4 pixels, a deterministic halftoning algo-
rithm could use five possible black pixel ratios: 100, 75, 50, 25, and 0%. Yet in a
probabilistic algorithm, dividing up the interval [0, 1] into five regions with p(x)
taking on these five distinct values yields a smaller value for the mutual information
than the solution presented here with the three regions. Our optimal p4(x) yields a
mutual information of 0.9512. Dividing the interval into five regions of equal width,
with p(x) taking the values 1.00, 0.75, 0.50, 0.25, and 0.00 in those regions, yields
a mutual information of only 0.7912. Using five regions with those same five “nat-
ural” values for p(x), but having the middle three regions centered, respectively, on
x = 0.25, 0.50, and 0.75, each taking up a quarter of the interval, with p(x) taking
the values 1 and 0 on the ends, yields an even smaller mutual information of 0.6426.

3 Quantum Halftoning

We now specify the quantum halftoning algorithm. The crux of the process is replac-
ing each gray pixel, its shade specified by a real number x , with a square of N black
and white outpixels. We do this in a way that maximizes the mutual information,
using the results from the preceding section.

The inputs to our algorithm are a grayscale image and the parameter N (which
must be a perfect square), and the output is a halftoned image, where each inpixel has
been mapped to a block of N black and white outpixels. The method for turning each
inpixel into N outpixels relies on the probability distribution pN (x) that maximizes
the mutual information in Eq. (1). In particular, given an inpixel with a shade of gray
corresponding to the real number x (recall that x ∈ [0, 1]), we set the N outpixels

2Incidentally, the limit of these curves as N → ∞ is p(x) = cos2(πx/2) [9].
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Fig. 2 Two different iterations of a grayscale pixel being expanded into a 3 × 3 square of black
and white pixels

corresponding to this inpixel randomly to black or white, where black is chosen
with probability pN (x) and white with probability 1 − pN (x). An example of how a
grayscale pixel might be expanded is shown in Fig. 2. The various N -outpixel blocks
are positioned relative to each other just as their associated inpixels were, and this
produces the quantum halftoned image.3

Note that the probabilistic interpretation of pN (x) is natural here, since the values
of pN (x) that maximize the mutual information will not generally be multiples of
1/N . This means pN (x) is the expected value, rather than the actual value, of the
fraction of black outpixels coming from an inpixel of shade x .

As this algorithm is inherently nondeterministic, the quantum halftoned version
of an image will not necessarily be the same each time. The probabilistic nature of
the algorithm has advantages and disadvantages. On the one hand, there is a small
chance that an inpixel for which pN (x) = 0.4 could be mapped into a square of
N outpixels that are, say, 70% black. On the other hand, if the original image has
an extended region of a single shade of gray, the stochastic nature of the algorithm
allows us to get an average number of black pixels closer to pN (x) over the extended
region than possible over a single block of N pixels or in a deterministic algorithm
that treats each block of N pixels independently, without dithering or other such
adjustments.

Note that one can store the information needed to reconstruct the quantum
halftoned image in a compressed format. For concreteness, consider the case N = 25,
for which the quantum halftoning algorithm invokes one of eight possible probabil-
ities. With just three bits per inpixel, we can specify the probability that the corre-
sponding outpixels should be black. This information could be stored, and then, at
the time of viewing, used to construct a quantum halftoned image. Note that in this
scenario, the precise form of the image is not determined till it is generated.

We observe that the connection between our halftoning algorithm and quantum
measurements is both qualitative and quantitative. In quantum mechanics, there is a
continuous collection of possible states, but when certain properties are measured,
there is only a discrete set of possible outcomes. For example, when light encoun-
ters a linear polarizer that has its transmission axis oriented vertically, each photon
individually winds up either vertically polarized and transmitted, or horizontally
polarized and absorbed. The probability of each outcome is fixed by the rules of

3Scenarios in which s × s sets of inpixels are averaged and then mapped to N bits are also possible.
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(a) Original image (b) Quantum halftoned, N = 4 (c) Quantum halftoned, N = 9

Fig. 3 George Washington Carver [3], quantum halftoned at different values of N . Note the extra
details, such as the wrinkles in the forehead, that emerge at higher N

quantum mechanics. Thus, a continuous set of possibilities is pigeonholed into one
of only two possible outcomes via a probabilistic process, as in our halftoning algo-
rithm. Furthermore, if we restrict to incoming photons that are linearly polarized,4

the probabilities for the vertical and horizontal outcomes in quantum mechanics are
precisely those that maximize, in the large N limit [9], the same mutual information
Eq. (1) used in our halftoning algorithm.

4 Implementation and Examples

We implemented the quantum halftoning algorithm in the GHC [10] implementation
of the Haskell programming language. The program takes as input the value of

√
N

and a grayscale image in a standard format. It first normalizes the gray shade of
each inpixel to lie within [0, 1]. It then takes each inpixel of the original image and
represents it by a square of N outpixels in the halftoned image. These outpixels are
(pseudo)randomly filled with either black or white according to pN (x); when x is the
inpixel’s shade of gray, each corresponding outpixel is black with probability pN (x)
and white otherwise. Of course, this enlarges the pixel count of the image.

To explore the algorithm, we examined how the quantum halftoned versions of
some grayscale images varied with N , as well as how they varied under repeated
applications of the algorithm at fixed N . We display some examples here.

The dependence on N is exemplified by the images of GeorgeWashington Carver
in Fig. 3. As one would expect, the halftoned image is more faithful to the original

4Or, more generally, if we consider real-vector-space quantum mechanics, with real rather than
complex probability amplitudes.
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(a) Original image (b) Quantum halftoned (c) Quantum halftoned (d) Quantum halftoned

Fig. 4 Neil Armstrong [4], quantum halftoned multiple times with N = 9. There are differences
between the images, but only slight ones, such as that the white patches in Armstrong’s face have
slightly different boundaries from each other

image at larger N , but the halftoned version is already quite recognizable at N = 4,
even though p4(x) has only three possible values.

Due to the nondeterministic nature of quantum halftoning, each application of the
algorithm will provide a slightly different image, even at fixed N . We find that even
for small N , these fluctuations do not affect the integrity of the image. In Fig. 4, we
see three separate N = 9 quantum halftoned versions of an image of Neil Armstrong.
The fluctuations are more evident in regions where the original image is a medium
gray, neither very dark nor very light, but the fluctuations average out to produce
effectively equivalent images.

As quantum halftoning is probabilistic, one can formulate dynamic implementa-
tions of the algorithm, using the algorithm repeatedly to update the output after the
image is initially rendered. This does add flicker, but enables the observer to average
the outpixels over time as well as space. One can also apply quantum halftoning to
color images in the standard way, for example by working in RGB color space and
applying the algorithm separately to the red, green, and blue values of the inpixels.
Additionally, an alternative way to view our results is not as a halftoning algorithm,
but as a lossy deterministic compression algorithm, in which each inpixel replaced
by a pixel of the gray shade 1 − pN (x) (so only a small set of grays is possible),
which would provide a kind of visualization of mutual information maximization.

5 Obtaining Insights Regarding Human Vision

At the start of the paper,we took the distribution on the brightness x of the input image
pixels to be the uniform distribution, F(x) = 1, and then constructed the mutual
information to maximize. While this might seem reasonable barring knowledge of
the original images to be rendered, it is not clear that this is actually the correct choice.
Mathematically, the choice of brightness is somewhat arbitrary. After all, one could
just as well define an alternative variable y(x), where y(0) = 0, y(1) = 1, and y
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Table 1 Optimal p1(x)
Mutual information 0.6931

Min x Max x Prob.

0 0.5000 1.0000

0.5000 1 0.0000

Table 2 Optimal p4(x)
Mutual information 0.9512

Min x Max x Prob.

0 0.3700 1.0000

0.3700 0.6300 0.5000

0.6300 1 0.0000

Table 3 Optimal p9(x)
Mutual information 1.1970

Min x Max x Prob.

0 0.2887 1.0000

0.2887 0.4735 0.7463

0.4735 0.5265 0.5000

0.5265 0.7113 0.2537

0.7113 1 0.0000

increases monotonically, and apply the logic of quantum halftoning to that variable.
Physically, halftoning as a method relies on the properties of human vision, but the
human vision has evolved in the context of particular visual stimuli with particular
impacts on the ability to survive and propagate one’s genes. As a consequence,
it is plausible, indeed likely, that the human visual system is not premised on all
brightnesses being equally expected.

Fortunately, our method allows for the exploration of the built-in Bayesian priors
of human vision. In particular, one can try a variety of potential distributions for F(x)
other than the uniform distribution, maximize the mutual information with respect
to those new F(x) expressions, and produce sets of images with those new schemes.
Then, by surveying people to see which images appear to them to be the most faithful
to the original images,wewould have ameans ofmeasuring theBayesian priors of the
human visual system with respect to brightness. The ability to do this is a distinctive
consequence of our halftoning method.

Technically, there is a way to do this that enables us to use the precise mathemat-
ical results of this paper, without repeatedly computing and maximizing new mutual
information expressions. Rather than directly repeating the above analysis for dif-
ferent F(x), we instead can map x to various possibilities y(x) as suggested above;
set F(y) = 1, implicitly determining a new F(x); and then construct the quantum
halftoned images in y-space rather than x-space. This would allow us to use the same
staircase functions, just over y instead, simplifying the process of exploring alterna-
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Table 4 Optimal p16(x)
Mutual information 1.4003

Min x Max x Prob.

0 0.2343 1.0000

0.2343 0.3821 0.8553

0.3821 0.5000 0.6187

0.5000 0.6179 0.3813

0.6179 0.7657 0.1447

0.7657 1 0.0000

Table 5 Optimal p25(x)
Mutual information 1.5705

Min x Max x Prob.

0 0.1976 1.0000

0.1976 0.3238 0.9047

0.3238 0.4290 0.7332

0.4290 0.5000 0.5618

0.5000 0.5710 0.4382

0.5710 0.6762 0.2668

0.6762 0.8024 0.0953

0.8024 1 0.0000

Table 6 Optimal p36(x)
Mutual information 1.7163

Min x Max x Prob.

0 0.1706 1.0000

0.1706 0.2792 0.9333

0.2792 0.3720 0.8088

0.3720 0.4580 0.6593

0.4580 0.5420 0.5000

0.5420 0.6280 0.3407

0.6280 0.7208 0.1912

0.7208 0.8294 0.0667

0.8294 1 0.0000

tives to the uniform distribution over brightness, which would, in turn, simplify the
execution of such a study.

6 Conclusion

In this paper, we have formulated quantumhalftoning, a stochasticmethod of halfton-
ing grounded in information theory. Thismethod, designed tomaximizemutual infor-
mation rather than directlymirroring brightness level, produces recognizable images,
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but with some distinctive features, most notably a greater sensitivity to changes in
medium gray levels and a lesser sensitivity to very light or dark grays. The algorithm
is not only stochastic, but also shares an information theoretic structure that is math-
ematically analogous to features of quantum mechanics restricted to real probability
amplitudes. Perhaps, the most compelling feature of our technique is that it offers a
methodology for determining the Bayesian priors of the human visual system with
respect to brightness (and, indeed, to see how much these vary across individuals
and cultures), which we are currently exploring.

Acknowledgements This work was supported in part by NSF award #1521523 (Antal Spector-
Zabusky) and a grant from FQXi (Donald Spector).

Appendix

The Tables 1, 2, 3, 4, 5 and 6 give the probability distributions that maximize the
mutual information for the cases of interest to us, where pN (x) is the probability for
producing a black pixel when the grayness is given by x and there are N outpixels
per inpixel.
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Regression of Fluctuating System
Properties: Baryonic Tully–Fisher
Scaling in Disk Galaxies

Geert Verdoolaege

Abstract In various interesting physical systems, important properties or dynamics
display a strongly fluctuating behavior that can best be described using probability
distributions. Examples are fluid turbulence, plasma instabilities, textured images,
porous media and cosmological structure. In order to quantitatively compare such
phenomena, a similarity measure between distributions is needed, such as the Rao
geodesic distance on the corresponding probabilistic manifold. This can form the
basis for validation of theoretical models against experimental data and classification
of regimes, but also for regression between fluctuating properties. This is the primary
motivation for geodesic least squares (GLS) as a robust regression technique, with
general applicability. In this contribution, we further clarify this motivation and we
apply GLS to Tully–Fisher scaling of baryonic mass vs. rotation velocity in disk
galaxies. We show that GLS is well suited to estimate the coefficients and tightness
of the scaling. This is relevant for constraining galaxy formation models and for
testing alternatives to the Lambda cold dark matter cosmological model.

Keywords Regression analysis · Information geometry · Rao geodesic distance ·
Tully-Fisher scaling

1 Introduction

In many parametric regression problems, robustness of the estimates is an essential
criterion, sometimes even more important than goodness-of-fit. Here, by “robust-
ness” we mean not only resilience against outliers, but also relative insensitivity
to model uncertainty. A multitude of techniques, Bayesian and non-Bayesian, have
been developed ensuring robustness in the presence of various departures from the
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regressionmodel. However, it can be difficult for the nonexpert user to make the right
choices of methods and implementation details. This constitutes a major obstacle for
adoption of the right techniques by practitioners in various application domains with
little tradition in the data sciences.

In this paper, we advocate the use of a simple but powerful robust regression
method, called geodesic least squares (GLS), that was previously introduced in [1]
and [2]. The purpose of the present contribution is, first, to generalize to a certain
extent the theoretical underpinnings of the method, and second, to compare the
performance of the method in a practical application from astronomy with other
methods, including a standard robust Bayesian approach.

The motivation for GLS can be explained using a simple example that essentially
describes a very common situation. Imagine the turbulent flow of a fluid through a
pipe with a variable cross-section. The regression task consists of finding a relation
between the flow speed of the fluid (response variable) and the cross-section of the
pipe (predictor variable), based on the reading from flow meters positioned at differ-
ent locations along the axis of the pipe. Of course, the flow speed measured by any of
these meters fluctuates in time. Thus, even when the predictor variable is held fixed,
the response variable is not constant. So far, this is a common regression problem,
which the vastmajority of practitioners fromappliedfieldswould solve by calculating
time averages and performing least squares regression between these average flow
speeds and the measured cross-section of the pipe.1 A standard maximum likelihood
or Bayesian solution would be possible too, basing the likelihood on the distribution
of velocity fluctuations (neglecting measurement uncertainty), which we assume to
be known from a previous experiment. However, in addition to the turbulent fluctua-
tions there can be other sources of uncertainty. In the present example, this could for
instance be due to a variable pumping speed due to a malfunctioning pump. If the
flow readings are taken sequentially, this could introduce additional uncertainty not
captured by the distributional properties of the intrinsic turbulent fluctuations. This
is a case of incorrectly specified uncertainties, which can be handled using various
Bayesian approaches depending on the specific problem (see, e.g., [3]). The solution
provided by GLS is to consider, on the one hand, the distribution (likelihood) of the
flow velocity that would be expected if all assumptions regarding the deterministic
and probabilistic components of the regression model were correct. We call this the
modeled distribution. On the other hand, the distribution of the data is characterized
in a generic way using as few assumptions as possible, referred to here as the ob-
served distribution. Then, similar to minimization by the least squares method of the
sum of squared Euclidean distances between a measurement of the dependent vari-
able and its modeled value, GLS estimates the model parameters by minimizing the
sum of squared Rao geodesic distances between the observed and modeled distribu-
tion. This introduces extra flexibility (‘elasticity’) in the analysis, which, in practice,
yields excellent robustness properties. Effectively, GLS performs regression between
probability distributions on a Riemannian probabilistic manifold. It can also be char-

1In fact, any measurement with finite precision is an average over some smaller scale, e.g., the
measurement of the cross-section of the pipe.
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acterized as a minimum distance method, generalizing likelihood-based techniques,
although there are important differences with standard minimum distance estimation
(MDE). Another typical example of the application of GLS was treated in [4], relat-
ing the properties of a repetitive instability in tokamak plasmas. The distributions of
two properties of the instability were determined under stationary plasma conditions
and then the regression was carried out between those distributions. Indeed, GLS
can take into account uncertainty on all variables (predictor and response). There
are many other examples where the GLS approach is natural, e.g., involving signals,
images, porous media, cosmological structure, etc., although the method itself is of
general applicability.

After explaining the motivation for GLS based on the regression between fluc-
tuating system properties, in this contribution we illustrate the applicability of GLS
to common regression problems by estimating a key scaling law in astrophysics: the
baryonic Tully–Fisher relation. This is a remarkably tight relation between the total
baryonic mass of disk galaxies and their rotational velocity, of great practical and
theoretical significance in astrophysics and cosmology.

2 GLS Regression: Principles and Motivation

In parameter estimation problems like regression analysis, the likelihood compares
measured quantities with their value predicted by the model, under stationary exper-
imental conditions, determined by fixed, or stationary predictor variables. Hence, the
likelihood serves as a distance measure between the measurement and the model.
Maximization of the joint likelihood for all measurements is equivalent to the min-
imization of the Kullback–Leibler divergence (KLD) between the empirical (“ob-
served”) distribution and the theoretical (“modeled”) distribution of the residuals.
In general, MDE techniques can be made more robust against model uncertainty
by relying on similarity measures other than the KLD. The Hellinger divergence
(closely related to the Bhattacharyya distance) is a common choice [5], first applied
to regression in [6].

We follow a somewhat different approach, minimizing the Rao geodesic dis-
tance (GD) between the observed and modeled distributions. Consider a parametric
multiple regression model involving m predictor variables ξ j ( j = 1, . . . ,m) and
a single response variable η, all assumed to be infinitely precise. Suppose that N
measurements are acquired for the predictor variables, resulting in measurements
ξI j (I = 1, . . . , N ). The regression model can be written as follows:

ηI = f (ξI1, . . . , ξIm, β1, . . . , βp) ≡ f ({ξI j }, {βk}), ∀I = 1, . . . , N . (1)

Here, f is the regression model function, in general nonlinear and characterized
by p parameters βk (k = 1, . . . , p). In regression analysis within the astronomy
community, it is customary to add a noise variable to the idealized relation (1). This
so-called intrinsic scatter serves to model the intrinsic uncertainty on the theoretical
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relation, i.e., uncertainty not related to the measurement process. We take another
route for capturing model uncertainty, however.

In any realistic situation, we have no access to the quantities ηI and ξI j . Instead,
we assume that at each “measurement site” I a series of nI measurements xiI j ,
resp. yiI is collected for the noisy predictor variables x j and the response variable
y (i I = 1, . . . , nI ). In this paper, we assume that the measurement model describes
fluctuation of the data around a point that lies exactly on the regression function.
This need not be the case in reality, which is one of the potential causes of model
uncertainty. Nevertheless, if there are multiple measurements at each measurement
site, then this can provide useful information on the true distribution of the data
under stationary conditions. A common situation is where, at fixed I , the xiI j and yiI
represent measurements of noisy stationary signals. In the remainder of the paper, we
will assume independent Gaussian noise, but this can be generalized to multivariate
or non-Gaussian distributions. In the independent Gaussian case, we have

yiI = ηI + εy,i I , εy,i I ∼ N (0, σ 2
y,I ),

xiI j = ξI j + εx,i I j , εx,i I j ∼ N (0, σ 2
x,I j ).

(2)

Notice that ,in general, the standard deviations can be different at each measurement
site. For instance, in many real-world situations, such as the one discussed in this
paper, there is a constant relative error on themeasurements, so the standard deviation
can be modeled as being proportional to the measurement itself. Of course, the noise
described by the σy,I and σx,I j need not be the only source of uncertainty contributing
to fluctuation of the data around the regression model. This is the case of interest
in this paper, where other uncertainty sources such as model uncertainty are present
(cf. the intrinsic scatter mentioned before), which could even be more important than
the noise at the individual measurement sites and about which little is known. For
nowwe assume that the standard deviations σy,I and σx,I j were estimated prior to the
regression analysis. Thismay be as simple as calculating the standard deviation of the
yiI and xiI j at each measurement site. We also include the possibility where nI = 1
for some or all I , in which case the noise variables σy,I and σx,I j could be given by
the error bars obtained from previous experiments or an uncertainty analysis.

In reality, the truemodel points (ηI , ξI1, . . . , ξIm) fromwhich the data are assumed
to be generated are unknown, but we can estimate them by calculating averages
ȳI ≡ 1/nI

∑nI
i I
yiI and x̄ I j ≡ 1/nI

∑nI
i I
xiI j , which are expected to be distributed

according toN (0, σ 2
y,I /nI ) andN (0, σ 2

x,I j/nI ), respectively. Now suppose that the
model given by (1) and (2) were exact, meaning that σx,I j and σy,I would characterize
the only uncertainty sources, then the joint likelihood of the average data would be
given by
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p
({ȳI }, {x̄ I j }

∣
∣Cξ

) =
N∏

I=1

1√
2π/nIσy,I

exp

⎧
⎪⎨

⎪⎩
−1

2

[
ȳI − f

({ξI j }, {βk}
)]2

σ 2
y,I /nI

⎫
⎪⎬

⎪⎭

×
m∏

j=1

1√
2π/nIσx,I j

exp

⎧
⎪⎨

⎪⎩
−1

2

[
x̄ I j − ξI j

]2

σ 2
x,I j/nI

⎫
⎪⎬

⎪⎭
. (3)

Here, Cξ stands for the collection {βk}, {ξI j }, {σx,I j }, {σy,I }, the notation {x̄ I j } refer-
ring to the set of x̄ I j for all I and j , and similar for other sets. Also, we use the same
indices for summation and for indicating set members, in order not to complicate the
notation. As the ξI j are not known, they have to be marginalized over. This is usu-
ally accomplished by decomposing the line from the measurement to the unknown
point on the model in a perpendicular and parallel component w.r.t. the model, and
assuming a uniform prior on the coordinates along the model surface [3, 7]. For a
linear model, effectively this comes down to inserting the measurement values in-
to the model equation, and propagating the uncertainty on the predictor variables
through the model. Treatment of a nonlinear model is more complicated, but can be
simplified by a linear approximation of the model in the vicinity of the model point
nearest to the data point. Alternatively, one can perform Gaussian error propagation
to obtain an approximate normal conditional likelihood for {ȳI }:

pmod
({ȳI }

∣
∣Cx

) =
N∏

I=1

1√
2πσmod,I

exp

⎧
⎪⎨

⎪⎩
−1

2

[
ȳI − f

({x̄ I j }, {βk}
)]2

σ 2
mod,I

⎫
⎪⎬

⎪⎭
. (4)

In this expression, Cx stands for the collection {βk}, {x̄ I j }, {σx,I j }, {σy,I }. The uncer-
tainty on the predictor variables propagates through the function f and adds to the
conditional uncertainty on the response variable, determined by σmod,I . For example,
referring to f

({x̄ I j }, {βk}
)
as the modeled mean μmod,I , for a linear model we have

(with relabeled βk):

μmod,I ≡ β0 + β1xI1 + . . . + βmxIm,

σ 2
mod,I ≡ σ 2

y,I + β2
1σ

2
x,I1 + . . . + β2

mσ 2
x,Im .

In the literature, uninformative priors for the model parameters βk have been de-
rived as well, based on the transformation invariance [8]. We use these priors for
comparison of GLS with the standard Bayesian analysis.

Now, suppose for a moment that one would proceed with themaximum likelihood
method to estimate the parameters βk . From (4), one sees that this is equivalent to
minimization of the sum of squared Mahalanobis distances between each observed
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ȳI and its corresponding value f
({x̄ I j }, {βk}

)
determined by the model function f .2

The Mahalanobis distance can be regarded as the distance between two univariate
Gaussian clusters of points with centroids given by ȳI and f

({x̄ I j }, {βk}
)
, each with

the same standard deviation, in the present case σmod,I . Interestingly, it is also a
special case of the Rao GD, namely the GD between the corresponding normal
distributions with those means and common standard deviation [9]. It is therefore
natural to generalize this to the case where not only the means of the distributions,
but also the standard deviations are allowed to differ. One could choose to generalize
the Mahalanobis distance to the Bhattacharyya distance or the Hellinger divergence,
but we prefer the Rao geodesic distance owing to its solid mathematical foundations
and intuitive geometric interpretation.

By allowing the standard deviation of the observed and modeled distribution to
be different, the method is rendered robust, as the actual distribution of the data is
allowed to deviate from the modeled distribution. So, on the one hand, we consider
at each measurement site I the modeled distributionN

(
f
({x̄ I j }, {βk}

)
, σ 2

mod,I

)
. On

the other hand, we have the observed distribution pobs, which has to rely on as few
assumptions as possible regarding the regression model, in an attempt to “let the data
speak for themselves.” We here only assume that it also is a Gaussian distribution,
pobs = N (ȳI , σ 2

obs,I ), centered on the actually observed average ȳI , and with an
unknown standard deviation σobs,I , to be estimated from the data. Although this can
all be generalized, the normal distribution offers a computational advantage, as the
corresponding expression for the GD has a closed form [10]. In addition, we already
mentioned that, in principle, σobs,I can be different at each measurement site, but
in practice, it is clear that we will need to introduce some sort of regularization to
render the model identifiable. In this paper, we either assume σobs,I a constant sobs,
or proportional to the response variable, σobs,I = robs|ȳI |. The parameters sobs or
robs have to be estimated from the data. More complicated (parametrized) relations
between σobs,I and the response variable or other data would be possible too, but
one should be careful not to put too many restrictions on pobs, thereby defeating its
purpose.

GLS now proceeds byminimizing the total GD between, on the one hand, the joint
observed distribution of the N values ȳI and, on the other hand, the joint modeled
distribution. Owing to the independence assumption in this example, we can write
this in terms of products of the corresponding marginal distributions (including all
dependencies and with γobs either sobs or robs):

{
βk, γobs

}
= argmin

βk ,γobs∈R

N∑

I=1

GD2
[
pobs (Y |ȳI , γobs) , pmod (Y |Cx )

]
. (5)

2Under the assumption of symmetry of the likelihood distribution and homoscedasticity, this reduces
to minimization of the sum of squared differences (Euclidean distances) between each measured
ȳI and predicted f

({x̄ I j }, {βk}
)
.
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Here, the variable Y models the site averages. In addition, note that the parameters βk

occur both in the mean and the variance of the modeled distribution. Furthermore, in
(5) we have used the property that the squared GD between products of distributions
can be written as the sum of squared GDs between the corresponding factors [10].
Hence, the optimization procedure involves, at each measurement site, matching
not only ȳI with f

({x̄ I j }, {βk}
)
, but also σobs,I with σmod,I , in a way dictated by

the geometry of the likelihood distribution. As will be shown in the experiments,
the result is that GLS is relatively insensitive to uncertainties in both the stochastic
and deterministic components of the regression model. The same quality renders
the method also robust against outliers. In the experiments below, we employed a
classic active-set algorithm to carry out the optimization. Furthermore, presently
the GLS method does not directly offer confidence (or credible) intervals on the
estimated quantities. Future work will address this issue in more detail, but for now
error estimates were derived by a bootstrap procedure.

From the conceptual point of view, GLS performs regression between points
(distributions) on a Riemannian probabilistic manifold, describing the data corre-
sponding to the response variable at each measurement site as a whole through either
the observed or the modeled distribution. It is important to stress that this is quite
different from treating the data at each measurement site in a pointwise way, i.e.,
using each individual yiI . Our method respects the intrinsic nature of the fluctuating
quantity described by the variable y. For instance, if, for fixed I , yiI is a series of
samples from a stationary signal, then comparing the measured signal distribution
with the predicted distribution can be seen as more natural than comparing each
individual sample with its predicted value. Furthermore, in MDE regression usually
the data distribution is characterized using a kernel density estimate. Although this
offers great flexibility, the disadvantage is that this estimate could be based on the
data from different measurement sites. In addition, our parametric approach can be
an advantage if few measurements are available. Finally, the geometrical view on
regression analysis can be illustrated by visualizing the probabilistic manifold [2].

3 Application of GLS to Tully–Fisher Scaling

3.1 The Baryonic Tully–Fisher Relation

The baryonic Tully–Fisher relation (BTFR) between the total (stellar + gaseous)
baryonic mass Mb of disk galaxies and their rotational velocity V f is of fundamental
importance in astrophysics and cosmology [11, 12]. It is a remarkably simple and
tight empirical relation of the form

Mb = β0V
β1
f . (6)



84 G. Verdoolaege

Here, Mb is expressed in solar masses M� and V f in km s−1. The BTFR not only
serves as one of the tools for determining cosmic distances, but also provides con-
straints on galaxy formation and evolution models. In addition, it serves as a test for
the Lambda cold dark matter paradigm (ΛCDM), particularly in evaluating alterna-
tives such asmodifiedNewtonian dynamics (MOND). Indeed,whereas inΛCDMthe
BTFR is a consequence of various complex processes and thus should demonstrate
significant intrinsic scatter, MOND predicts a relation with zero intrinsic scatter and
a well-defined exponent β1 with a value of exactly 4.

In this scaling problem, we use data from 47 gas-rich galaxies, as detailed in [12].
The advantage of the gas-rich galaxies is that their masses can be more accurately
measured than those of star-dominated galaxies,which are traditionally used to define
the Tully–Fisher relation. The rotation velocity V f is measured in the flat part of the
galaxy rotation curve, determined from spectral Doppler shifts. The measurements
are plotted in Fig. 1a on the logarithmic scale and in Fig. 1b on the original scale.

In this application, clearly nI = 1 for all I , so little information can be obtained
regarding the distribution of the data from the single measurement at each site.
However, the data in [12] also contain estimates of the observational errors, which
we treat here as a single standard deviation. This suggests a measurement error on
the response variable proportional to Mb, about 38%, i.e., a constant error bar on the
logarithmic scale.

3.2 Regression Analysis

Owing to the power law character of most scaling laws, they are often estimated by
linear regression on a logarithmic scale. However, it is known that this may lead to
unreliable estimates, as the logarithm (heavily) distorts the distribution of the data [2,
13]. This is, in particular, the case if the estimation is carried out using simple OLS
or when there are outliers in the data. In contrast, we will show that GLS regression
produces consistent results on both the logarithmic and original scales, demonstrating
its robustness.

In view of the proportional error on Mb, the observed standard deviation in GLS
is modeled here as a constant σobs,I ≡ sobs on the logarithmic scale and as σobs,I =
robsMb on the original scale. Estimation of these parameters is of interest to get an
idea of the intrinsic scatter on the BTFR.

We compare the results of GLS regression with OLS and a Bayesian approach.
In the latter, uncertainty on the predictor variables was taken into account into the
likelihood. In the case of nonlinear power law regression, the likelihood was ap-
proximated by a Gaussian, as the full treatment with marginalization over the model
points is too computationally intensive to incorporate in an MCMC simulation [3].
Uncertainty in the specified error bars was modeled through a scale factor with a
Jeffreys prior [3]. We also tested the GLS algorithm using the KLD as a similarity
measure between the observed and modeled distribution, instead of the Rao GD. We
will refer to this algorithm as “Kullback–Leibler least squares,” or KLS.
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Fig. 1 The BTFR data and estimated regression functions by OLS, a robust Bayesian method, KLS
and GLS. a Logarithmic scale. b Original scale

In order to get a feeling of the uncertainty of the estimates obtained from the
optimization routines, 100 bootstrap samples were created from the data, yielding
average parameter estimates and their standard deviations on the basis of the results
from OLS, KLS, and GLS. Similar estimates were obtained from the MCMC chain
in the robust Bayesian approach.

The parameter estimates estimated by the various methods, as well as their stan-
dard deviations, are given in Table 1. Figure1 shows the corresponding regression
curves. It is interesting to compare the results obtained by regression on the logarith-
mic scale, with those derived using nonlinear regression analysis. On the logarithmic
scale the data follow a rather clear linear pattern, hence the estimates by the various
methods are similar. However, in the nonlinear case, the best fit is somewhat less
clear at first sight. Although the Bayesian, KLS, and GLS methods agree relative-
ly well, the OLS parameter estimates are very different from the linear case. Most
noticeably, the nonlinear OLS estimate for the exponent β1 is heavily influenced by
the point with the largest value of V f and Mb ≈ 3 × 1010 M�. The other methods
are much less attracted by this point because of the large corresponding error bar on
Mb. Thus, part of the danger of the logarithmic transformation is due to its influence
on the error bars in the presence of model uncertainty. The differences between the
parameter estimates by the other methods are much less pronounced, although the
consistency appears to be best in the case of GLS. This is in agreement with the good
robustness quality of GLS compared to other methods seen in previous analyses
[2, 4].

It is also worth pointing out that the scale factor robs (observed relative error) was
estimated by GLS to amount to roughly 63%. This is considerably larger than the
value of 38% predicted by the model (and dominated by σMb ), possibly indicating
that the scatter on the scaling law is not due to measurement error alone.
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Table 1 Average regression estimates and their standard deviations for the BTFR obtained with
OLS, KLS, and GLS from 100 bootstrap samples. Similar results were derived byMCMC sampling
with the robust Bayesian method. The units of the parameters have been left out for simplicity. (a)
Logarithmic scale. (b) Original scale

Method β0 β1

OLS 360 ± 220 3.57 ± 0.15

Bayes 220 ± 220 3.72 ± 0.19

KLS 80 ± 80 3.98 ± 0.23

GLS 140 ± 82 3.80 ± 0.16

a

Method β0 β1

OLS (1.0 ± 2.3) × 103 4.94 ± 1.40

Bayes 88 ± 140 3.81 ± 0.20

KLS 120 ± 100 3.91 ± 0.19

GLS 130 ± 130 3.79 ± 0.21

b

4 Conclusion

We have introduced and motivated geodesic least squares, a versatile and robust re-
gression method based on the regression between probability distributions describ-
ing fluctuating or otherwise uncertain system properties. Part of the strength of the
method is its simplicity, allowing straightforward application by users in the various
application fields, without the need for parameter tuning. We have applied GLS to
baryonic Tully–Fisher scaling, thereby demonstrating the robustness of the method
and providing an alternative means for testing cosmological models based on the
estimated intrinsic scatter.
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Hellinton H. Takada, Julio M. Stern, Oswaldo L. V. Costa
and Celma de O. Ribeiro

Abstract Nowadays, there are several electricity generation technologies based on
the different sources, such as wind, biomass, gas, coal, and so on. Considering the
uncertainties associated with the future costs of such technologies is crucial for plan-
ning purposes. In the literature, the allocation of resources in the available technolo-
gies have been solved as a mean-variance optimization problem using the expected
costs and the correspondent covariance matrix. However, in practice, the expected
values and the covariance matrix of interest are not exactly known parameters. Con-
sequently, the optimal allocations obtained from the mean-variance optimization are
not robust to possible errors in the estimation of such parameters. Additionally, there
are specialists in the electricity generation technologies participating in the planning
process and, obviously, the consideration of useful prior information based on their
previous experience is of utmost importance. The Bayesian models consider not only
the uncertainty in the parameters, but also the prior information from the special-
ists. In this paper, we introduce the Bayesian mean-variance optimization to solve
the electricity generation planning problem using both improper and proper prior
distributions for the parameters. In order to illustrate our approach, we present an
application comparing theBayesianwith the naivemean-variance optimal portfolios.
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1 Introduction

In the early and middle years of the nineteenth century, the fundamental principles of
electricity generation were discovered by scientists such as Alessandro Volta, André
Ampère, Benjamin Franklin and Michael Faraday [5]. Since then, already in the
last years of the nineteenth century, the electricity generation plants started to be
built together with the transmission networks [9]. During the time, the mankind has
developed several electricity generation technologies based on the different sources,
such as wind, biomass, gas, coal, nuclear, and so on. Evidently, each technology has
associated costs, sustainability, and security of supply characteristics, efficiency, and
environmental concerns.

The worldwide demand for energy has been increasing over the last decades and
it will continue to grow [10]. Consequently, for both countries and companies, the
long-term planning of the electricity generation infrastructure is of utmost impor-
tance. Actually, it should be part of the central objectives of any energy policy. The
achievement of an optimally designed electricity generation infrastructure bends
toward a more balanced portfolio allocation among the different available technolo-
gies. In addition, it is also important to distinguish in the planning process the already
existing electricity producing plants with maintenance costs from the ones desired
to be built. Obviously, drastic changes of the electricity investment allocations is not
feasible.

The U.S. Energy Information Administration has not only historical data on the
average annual operation, maintenance, and fuel costs for existing power plants by
major fuel or energy source types, but also projections for electricity generation costs
[18]. However, even so, the costs have a significant uncertainty. For instance, future
control on CO2 emission and the corresponding mechanisms will surely impact the
electricity generation costs. Precisely, the future price of an emitted ton of CO2 is
uncertain and this uncertainty should be taken into account in the planning pro-
cess. Consequently, electricity generation policies solely relying on the evolution of
historical average costs of electricity generation technologies are unsatisfactory.

Considering the costs as random variables, in the literature, the allocation of
resources in the available electricity generation technologies has been solved as
a mean-variance optimization problem using the expected values and covariance
matrix of the technology costs in megawatt hours (see, for instance, [1, 2, 14,
15]). The mean-variance optimization, introduced by Markowitz [13], was the first
mathematical formalization of investment diversification and it is part of the modern
portfolio theory (MPT). The mean-variance optimized portfolios compose the called
efficient frontier, a set of portfolios that dominate all other feasible portfolios in terms
of their mean and variance tradeoff. Obviously, in the MPT the random variables of
interest are the returns of the risky assets instead of the costs of the technologies.

In practice, the expected values and the covariancematrix of the electricity genera-
tion technology costs for a future time horizon are not exactly known. Noticeably, the
usefulness of the allocations obtained from the mean-variance optimization depends
on the preciseness of such parameters. For instance, in theMPT context, it was shown
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in [3] that small changes in the expected returns can produce large changes in asset
allocation decisions. Consequently, several robust versions of the mean-variance
optimization were proposed in the MPT literature to consider uncertainties on the
expected returns and covariance matrix (see, for instance, [4, 8, 11]). Particularly
in [6], for the first time in the electricity planning context, it was presented a robust
portfolio optimization approach to deal with uncertainties in the input parameters.

In the electricity planning processes, it is usual to have the participation of special-
ists in the electricity generation technologies of interest. Undoubtedly, a natural way
of conducting a comprehensive planning process is to take into account the avail-
able data together with the prior experience of the participant specialists. Bayesian
approaches treat probability distributions as uncertain and subject to updates as new
information becomes available. Consequently, the Bayesian approach has been suc-
cessfully applied in the MPT context to take into account not only the beliefs of
the investors but also the uncertainties in the expected returns and the correspondent
covariance matrix (see, for instance, [3, 16, 17]). The Bayesian mean-variance port-
folio optimizations could take into account both the estimation uncertainty and the
specialist prior information.

In this paper, our objective is the introduction of the Bayesian approach to electric-
ity generation planning. First, we give a brief review of the classical mean-variance
optimization with the basic notation and fundamental concepts. Then, the Bayesian
approach is presented using both improper and proper priors. For illustration pur-
poses, an application comparing the Bayesian with the naive mean-variance optimal
portfolios is given. Finally, some final comments are presented.

2 Classical Approach

Traditionally, the classical or naive mean-variance optimization presumes that cost
and risk, the last one measured as the portfolio volatility, are known when making
portfolio-selection decisions. Therefore, a rational planner would prefer a portfolio
with a lower expected cost for a given level of risk. Alternatively, a preferred portfolio
is one that minimizes risk for a given expected cost level. The set of portfolios that are
optimal is called the efficient frontier. No rational planner would select a portfolio
lying above the efficient frontier, since that would mean accepting a higher cost
for the same amount of risk as an efficient portfolio. Equivalently, it would mean
accepting greater risk for the same expected cost as an efficient portfolio.

As already mentioned and following [6, 12], it is important to distinguish in the
planning process an already existing electricity producing plant using technology i ,
with random cost Ce

i in USD/MWh, from a prospective idea of using i , with random
cost C p

i in USD/MWh. The random vectors of costs for existing and prospective
technologies when there are N different technologies are given by

Ce ≡ (
Ce
1 C

e
2 . . . Ce

N

)′
and Cp ≡ (

C p
1 C p

2 . . . C p
N

)′
, (1)
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respectively. It is also usual to assume that the random costs are multivariate normal

Ce|μe,Σe ∼ N
(
μe,Σe

)
and Cp|μp,Σ p ∼ N

(
μp,Σ p

)
, (2)

whereμe = (μe
i )N×1 andμp = (μ

p
i )N×1 aremeanvectors andΣe andΣ p are N × N

covariance matrices. The means μe
i and μ

p
i are different, because maintenance costs

are different from the costs of building a new plant. Additionally, the risk of mainte-
nance σ e

i is also different from the risk of building a new plant σ
p
i . However, since

the technology is the same, the correlation betweenCe
i andC

p
i is equal to ρCe

i ,C
p
i

= 1.
Thus, we canwrite almost surely (with probability 1) that (see Proposition 1.1.2 from
[7])

Ce
i = σ e

i

σ
p
i

(
C p
i − μ

p
i

) + μe
i . (3)

Essentially, the Eq.3 says that the source of uncertainty for both Ce
i and C p

i is the
same. Additionally, Σe = diag (σ e)R diag (σ e) and Σ p = diag (σ p)R diag (σ p),
where the correlation matrix R is the same for both the existing and the prospective
costs, σ e = (

σ e
i

)
N×1 and σ p = (

σ
p
i

)
N×1.

Defining C = (
Ce′ Cp′)′

, it follows that

C|μ,Σ ∼ N (μ,Σ) , (4)

where

μ = (
μe′ μp′)′

and Σ =
(

Σe diag (σ e)R diag (σ p)

diag (σ e)R diag (σ p) Σ p

)
. (5)

The portfolio weights are the proportions of the total budget allocated in each
technology. The allocation vectors in the existent and prospective technologies are
denoted by ωe = (ωe

i )N×1 and ωp = (ω
p
i )N×1, respectively. Naturally, 0 ≤ ωe

i ≤ 1,
∀i = 1, 2, . . . , N ; 0 ≤ ω

p
i ≤ 1, ∀i = 1, 2, . . . , N ; and

N∑

i=1

(
ωe
i + ω

p
i

) = 1. (6)

Defining ω = (
ωe′ ωp′)′

, we denote by Ω the set of admissible electricity gen-
eration mix so that we must have ω ∈ Ω . The set Ω will represent constraints like
Eq.6, ω′12N = 1 (12N is a 2N × 1 vector of ones), and minimum and/or maximum
values for the allocations (ωmin ≤ ω and/or ω ≤ ωmax). Using the ω definition, the
total cost of the portfolio is given by
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C = ω′C. (7)

Using the previous Eq.7, the expected cost of the portfolio is given by

E [C ] = ω′μ (8)

and the variance of the portfolio is given by

Var [C ] = ω′Σω. (9)

For the case in which the vector of expected costs μ and the covariance matrix
Σ are known, three kinds of mean-variance problems are usually considered in the
literature. The first approach minimizes the variance of the costs conditional on
a target maximum expected cost c. The target maximum expected cost c ∈ �+ is
provided by the electricity energy policy planner which represents the maximum
allowable expected energy cost. Formally, the problem is written as follows

min
ω

ω′Σω (10)

s. t. ω′μ ≤ c, ω ∈ Ω. (11)

The second approach, a dual form of the first approach, minimizes the expected
cost conditional on a maximum value s2 for the variance of the costs. The value
s2 ∈ �+, provided by the policy planner, represents the maximum value that the
variance of the cost could achieve. Formally, the problem is written as follows

min
ω

ω′μ (12)

s. t. ω′Σω ≤ s2, ω ∈ Ω. (13)

The third approach minimizes a combination of the expectation and variance of
the costs, weighted by a risk aversion parameter λ > 0. Higher value of λ indicates
a greater risk aversion. Formally, the problem is written as follows

min
ω

ω′μ + λω′Σω (14)

s. t. ω ∈ Ω. (15)

Trivially, using quadratic programming solvers, the previous three problems can
be solved for the case in which the vector of expected costs μ and covariance matrix
Σ are assumed to be known.
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3 Bayesian Approach

In terms of modeling, the Bayesian approaches address estimation risk from a con-
ceptually different perspective. Instead of treating the unknown parameters as con-
stants, they are considered random. Additionally, the belief or prior knowledge of
the specialist about the input parameters is combined with the observed data. The
Bayesian models yield an entire distribution of predicted costs which explicitly takes
into account the estimation and predictive uncertainty.

The predictive, posterior, or updated distribution of the unknown parameters μ

and Σ , according to the Bayes’ theorem, is given by

p (μ,Σ |c1, . . . , cT ) ∝ L (μ,Σ |c1, . . . , cT ) π (μ,Σ) , (16)

where c1, . . . , cT are recorded observations; π (·) is the prior distribution; and L (·|·)
is the likelihood function. Particularly, the likelihood function is given by

L (μ,Σ |c1, . . . , cT ) ∝ |Σ |− T
2 exp

[

−1

2

T∑

i=1

(ci − μ)′ Σ−1 (ci − μ)

]

. (17)

In the following subsections, we present the predictive distributions using improper
and proper priors for the unknown parameters μ and Σ .

3.1 Improper Prior Case

In many cases, our prior beliefs are vague and thus difficult to translate into an
informative prior. Therefore, we want to reflect our uncertainty about the model
parameters without substantially influencing the predictive parameter inference. The
so-called noninformative priors, also called vague or diffuse priors, are employed to
that end. We consider the case when the investor is uncertain about the distribution
of both parameters, μ and Σ , and has no particular prior knowledge of them. This
uncertainty can be represented by a improper or diffuse prior, which is typically taken
to be the Jeffreys’ prior,

π (μ,Σ) ∝ |Σ |− (2N+1)
2 , (18)

where μ and Σ are considered independent in the prior, and μ is not restricted. The
prior is noninformative in the sense that only changes in the data exert an influence
on the predictive distribution of the parameters.

When the sample mean, μ̂, and sample covariance matrix, Σ̂ , are given, it is
straightforward to verify that the predictive distribution of the costs is a multivariate
Student’s t-distribution
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C|μ̃, Σ̃ ∼ tT−2N

(
μ̃, Σ̃

)
, T − 2N ≥ 2, (19)

where the predictive mean and covariance matrix are, respectively,

μ̃ = μ̂ and Σ̃ =
(
1 + T−1

)
(T − 1)

T − 2N − 2
Σ̂. (20)

The predictive covariance here represents the sample covariance scaled up by a
factor, reflecting estimation risk. For a given number of technologies N , the uncer-
tainty Σ̃ decreases as more historical data become available. Actually, when N is
fixed and T → ∞, we have Σ̃ → Σ̂ . On the other hand, with a fixed number of
historical observations T , increasing the number of technologies N respecting the
constraint T − 2N − 2 > 0, leads to higher uncertainty and estimation risk, since the
relative amount of available data declines. In practice, there is relevant information
coming from specialists on energy costs. Consequently, in the next subsection, we
present a study with proper priors.

3.2 Proper Prior Case

The specialists have informative beliefs about the mean and covariance of technol-
ogy costs. In this subsection, we adopt conjugate priors because it is an algebraic
convenience producing a closed expression for the posterior. The conjugate prior
for the unknown covariance matrix of the normal distribution is the inverse Wishart
distribution while the conjugate prior for the mean vector of the normal distribution
(conditional on Σ) is the multivariate normal:

μ|Σ ∼ N

(
η,

1

τ
Σ

)
,Σ ∼ W−1 (Ψ, ν) , (21)

where η is the vector of expected costs based on the specialist experience, τ ∈ �+
represents the strength of the confidence the specialist places on the value of η,
Ψ is the covariance matrix based on the specialist experience, ν ∈ � represents the
degrees of freedom of the inverseWishart distribution reflecting the confidence about
Ψ . Lower values of τ and ν indicates higher uncertainty about η andΨ , respectively.

As in the improper prior case, the predictive distribution of the costs is a multi-
variate Student’s t-distribution

C|μ̆, Σ̆ ∼ tT−2N

(
μ̆, Σ̆

)
, T − 2N ≥ 2, (22)

where the predictive mean and covariance matrix are, respectively,

μ̆ = τ

T + τ
η + T

T + τ
μ̂ (23)



96 H. H. Takada et al.

and

Σ̆ = T + 1

T (ν + 2N − 1)

[
Ψ + (T − 1) Σ̂ + T τ

T + τ

(
η − μ̂

) (
η − μ̂

)′
]

. (24)

We notice that the predictive mean μ̆ is a weighted average of the prior mean,
η, and the sample mean, μ̂. In other words, the sample mean is shrunk toward
the prior mean. Actually, the predictive mean and predictive covariance matrix are
not proportional to the sample estimates. The improper prior case is appropriate to
employ when we do not suspect that the sample mean or sample covariance matrix
contains substantial estimation errors. Otherwise, the proper prior case is better when
the planner believes that in the future the expectation and covariance matrix of the
costs will differ substantially from the historical ones.

4 Results

In this section, we present an application to illustrate the robust Bayesian approaches.
In [12], the vector of expected costs and standard deviations are given for 8 different
technologies (differentiating between existent and prospective cases). Additionally,
the correlation matrix of the technologies is also given. For the purpose of our appli-
cation, we consider the data from [12] as the sample estimates of the parameters μ̂

and Σ̂ . The naive mean-variance efficient frontier obtained using μ̂ and Σ̂ is pre-
sented in Figs. 1 and 2 (repeated in the two graphics). It is important to notice that
the portfolios above the efficient frontier are inefficient and the portfolios below the
efficient frontier are unrealizable.

In the improper prior case, illustrated in Fig. 1, the efficient frontier changes
depending on the value of T . As already mentioned, the predictive covariance of
the improper case is the sample covariance scaled up by a factor that approaches to
one when T increases. Obviously, we do not have here T representing the actual size
of the sample used in the estimation. Actually, for us, T is not only a proxy to the size
of the sample used in the estimation but also the degree of confidence the planner
has on the estimations based only on the historical data. Consequently, decreasing
the value of T shifts the efficient frontier to the right. The same shift to the right
was observed in [6] using the robust mean-variance optimization when decreasing
the degree of confidence the planner has on the estimations. However, the robust
mean-variance optimization is computationally more expensive than our approach
because the first requires more optimizations.

In the proper prior case, the hyperparameters η and Ψ represent the prior infor-
mation of the specialist about the expected value and covariance matrix of the tech-
nology costs, respectively. Since we do not have such parameters for the situation
described in [12], we assume, for illustration purposes, that η and Ψ are obtained
increasing in 10% the parameters μ̂, Σ̂e and Σ̂ p. In Fig. 2, we present the obtained
efficient frontiers for different values of τ with T = 50 and ν = 34. Noticeably, the
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Fig. 1 Efficient frontiers using naive and Bayesian approaches for the improper prior case for some
values of T

Fig. 2 Efficient frontiers using naive and Bayesian approaches for the proper prior case for some
values of τ

resulting efficient frontiers are not simple shifts of the naive mean-variance frontier.
Consequently, as already mentioned, the informative proper prior case is better than
the improper prior when the planner believes that in the future the costs will differ
substantially from the historical ones.
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5 Final Remarks

In this paper, we introduce the use of the Bayesian mean-variance optimization in
the electricity generation planning. We illustrate the application of the approach
using improper and proper priors. Comparing with the existent robust approach to
electricity portfolio selection, the Bayesian approach has the advantage of not only
dealing with the estimation uncertainty, but also considering the prior information of
the specialists in the planning process. Particularly, in the proper prior case, we have
assumed that the covariancematrix of the expected value of the costs are proportional
to the covariance matrix of the costs. In practice, the assumption is not necessarily
valid. For future research, we suggest the investigation of changing the proper priors
to give more flexibility to the electricity generation planner.
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Bayesian Variable Selection Methods
for Log-Gaussian Cox Processes

Jony Arrais Pinto Junior and Patrícia Viana da Silva

Abstract Point patterns are very common in present days of many researchers. The
desire to understand the spatial distribution and investigate connections between
point patterns and p covariates, that is possibly associated with the event of interest,
arises naturally. Generally, not all of the p covariates are useful. Therefore it would
be handy to identify the covariate which is, and just use those. Variable selection is
an important step when setting a parsimonious model and still occupies the minds of
many statisticians. In this work, we investigated Bayesian variable selection methods
in the context of point pattern. Thiswork concentrated on the followingmethods:Kuo
andMallick, Gibbs Variable Selection, and Stochastics Search Variable Selection for
log-Gaussian Cox processes. The methods were evaluated in several scenarios: with
a different number of covariates that should be included in the model, absence, and
presence of multicollinearity and fixed and random effect model. Our results suggest
that the three methods, specially Stochastics Search Variable Selection, can work
very well with the absence of multicollinearity. We implemented the methods in
BUGS.

Keywords Point pattern · Log-Gaussian Cox process · Bayesian variable selection

1 Introduction

Geo-referenced data is very common nowadays. Scientific studies use these types
of data in a lot of research areas, such as Ecology, Geography, Seismology, and
Epidemiology. Sometimes, the event of interest is known, for instance, infection of
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trees by aplague, deaths fromstroke andvehicle theft, but the locations of occurrences
of the event are unknown. Point pattern is the set of these locations and it is usually
the result of a dynamic process that occurs both in space and in time.

Models for these types of data are usually built with point pattern processes, for
more details see [5] and [7]. In the initial approach, exploratory methods based on
the distances were used. This approach had an issue because they did not specify
likelihoods, which it made hard to compare different alternatives as Likelihood-
based methods including homogeneous and non-homogeneous Poisson processes,
Cox processes, and log-Gaussian Cox processes. The last method will be used in
this work. An important class of hierarchical models along these lines, with the
introduction of spatial covariate effects, were suggested by [2].

To select the subset of covariates should be included into the model, several
methods have been proposed. Classical methods delete or add covariates by means
of mean-squared error or modified mean squared error criteria. (backward, forward,
and stepwise). Also, Bayesian methods have been proposed: Bayesian information
criteria — BIC [16], asymptotic information criterion—AIC [1] among others. All
of these methods have problems to handle the number of possible submodels (2p)
being considered for p covariates. A more automatic data-driven tool is needed to
identify a parsimonious model.

More recently, several Bayesian variable selection methods use an indicator to
select variables and a second auxiliary variable to quantify the effect of a covariate in a
regression problem. Reference [14] shows a review of the Bayesian variable selection
methods and investigated how the differentmethods perform in practice in the context
of generalized linear models. With this approach is possible to estimate the posterior
probability that a subset of covariates is “in” the model, i.e., the posterior inclusion
probability by the occurrences of a particular model in the MCMC simulations.

Few studies to select variables to log-Gaussian Cox processes has been proposed
so far, thus, the purpose of this work is to compare the performance of methods based
on the indicator model selection for it. The idea is to investigate, in the background of
point pattern data, how theKuo andMallick (KM), Gibbs Variable Selection (GVS) e
Stochastic Search Variable Selection (SSVS) methods perform in several scenarios:
with different number of covariates that should be included into the model absence,
and presence of multicollinearity and fixed and random effect model.

In Sect. 2, we will define a spacial point pattern process and describes a Log-
Gaussian Cox Process. In Sect. 3, we will define the methods of Bayesian variable
selection that will be considered in this work. Section4 describes the simulation
study and presents its results. Section5 concludes about the threemethods of variable
selection.

2 Spatial Point Pattern Process

Consider the spatial point pattern process X = {X (s) : s ∈ S}, which S is a set of
indexes. X (s) = 1, if the event of interest occurred in s and X (s) = 0 otherwise.
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They are useful models for the statistical analysis of geo-referenced observed point
patterns. This stochastic process is responsible to control both the location and the
occurrence number of the event in the region of space.

The most common point pattern process is the (non-homogeneous) Poisson pro-
cess with intensity function denoted by Λ(·) = {Λ(s) : s ∈ S}. The notation used in
this work will be X ∼ PP(Λ(·)).

We assume S ⊆ �d , d > 0. When d = 2, X is a spatial process on the plane.
In practice, only a finite set of point locations contained in a region B ⊂ S will be
observed. A realization of X can be unequivocally identified with an occurrence set
{si }ni=1 = {s1, s2, . . . , sn}, si ∈ S, si ∈ S,∀i and n ≥ 1, where all observed events
take place.

Two important features of a spatial point process are related to the moments of
the process. The first is the stationarity of X , which guarantees that its distribution is
invariant to translations in �d and the second is isotropy, i.e., X will be isotropic if
its distribution is invariant over rotations in the origin of �d . An example of a point
process that has these two properties is defined below.

Definition 1 (Isotropic Gaussian Process) A process T (·), defined in S, is said to
be isotropic Gaussian if ∀n > 1 and any set of locations {s1, . . . , sn} ∈ S,

(T (s1), . . . , T (sn))
T ∼ Nn(μ1, τ−1Rγ ),

in which μ ∈ � is mean, 1 = (1, . . . , 1)T , τ ∈ �+ is a precision parameter and
Rγ is a correlation matrix with elements Ri,l = ργ (‖si − sl‖) defined through a
correlation function ργ , γ ∈ �+, depending on si and sl only through their distance,
for i, l = 1, . . . , n, denoted by T (·) ∼ GP(μ, τ, ργ ).

2.1 Log-Gaussian Cox Process

TheCoxprocess is a doubly stochasticPoissonpoint process, i.e., a non-homogeneous
Poisson process with stochastic intensity parameterΛ(·). This parameter is assigned
as some location-dependent function in the same underlying space which the Poisson
process is defined. If the logarithm of the intensity of the Cox process is a Gaussian
process, then this point process is a Cox log-Gaussian process [13].

The full model formulation for log-Gaussian Cox process in continuous space is
given by

X ∼ PP(Λ(·)), (1)

a Poisson point process non-homogeneous. The intensitywill assume amultiplicative
decomposition of the intensity function with

Λ(s) = r(s)λ(s),∀s ∈ S, (2)
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where r(s) representing a known offset, usually required for standardization and λ(s)
is a stochastic component. Furthermore, a log-linear model is proposed for λ(s),

log λ(s) = z(s)T θ + w(s), (3)

where z(s) = (z1(s), z2(s), . . . , z p(s))T is a vector of p covariates related to loca-
tions, θ ∈ �p is the vector of effects of the spatial covariates and

w(·) ∼ GP(μ, τw, ργ ), (4)

is an isotropic Gaussian process with spatial autocorrelation function, ργ . w is re-
sponsible to capture the spatial heterogeneity.

To complete the model, consider the following priors distributions θ ∼ N (m,G),
μ ∼ N (a, b), τw ∼ Gamma(c, d), and γ ∼ Gamma(e, f ).

In order to perform inference on the difficult-to-treat likelihood (defined in a
continuous space), the space discretization approach is commonly used even in point
processes through time [8]. Here, it is extended to the spatial domain discretizing the
continuous space in N subareas, assuming the model defined by the expressions (1)
to (4) and that the spatial auto-correlation is exponential function of the distances

X ∼ PP(Λk), (5)

Λk = rkλk, (6)

log λk = zTk θ + wk, (7)

w ∼ NN (0, τ−1
w Rγ ), (8)

for k = 1, 2, . . . , N , with Rγ = [Rk1,k2 ]k1,k2=1,2,...,N , Rk1,k2 = exp

{
−dk1,k2

γ

}
and

dk1,k2 is the distance between k1 and k2.
The spatial discretization of the intensity above can also be found in several works

[3, 11, 15]. In fact, [17] showed that the posterior distributions of the intensities are
well approximated and converge to the posterior distribution of the exact, continu-
ously varying intensity when the volumes of the subareas tend to 0.

3 Bayesian Variable Selection

In the context to distinguish between large and small effects, we could use a prior
distribution that expresses the belief that there are coefficients close to zero and larger
coefficients. We can easily construct that priors as a mixture of two distributions, one
with a “spike” at zero and the other with mass spread over a wide range of plausible
values. They are called spike and slab priors, respectively, and very useful for variable
selection purposes because they allow classifying the regression coefficients into two
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groups: the first one that consists of large, important regressors and the second one
with small, negligible effects.

To present themethods that will be studied in this work, wewill need to define two
auxiliary variables. The first one is an indicator variable I j (where I j = 1 indicates
presence, and I j = 0 absence of covariate j in the model) that will denote whether
the variable is in the slab or spike part of the prior. The second one is the effect size
β j , j = 1, . . . , p, where β j = θ j , if I j = 1, for instance, if we define θ j = I jβ j .
When I j = 0, the variable β j can be defined in several ways.

Suppose the β j |I j = 1 is drawn from N (0, ν2), where ν is constant, we will refer
this as fixed effect models and when ν is an unknown parameter to be estimated, as
a random effect model. We used the terminology of classical statistics.

The differentways ofmanage θ j , β j , and I j define the following variable selection
methods.

3.1 Kuo and Mallick (KM)

The first approach proposed by Kuo and Mallick [10] takes θ j = I jβ j into account.
Also, the indicators and effects are independent a prior so P(I j , β j ) = P(I j )P(β j ).
Therefore, the β j values are sampled from full conditional distribution, but if I j = 0
it is the prior distribution.

3.2 Gibbs Variable Selection (GVS)

Gibbs Variable Selection (GVS) was proposed by [6] and also uses θ j = I jβ j

but the dependence is assumed, i.e., P(I j , β j ) = P(β j |I j )P(I j ). Unlike Sect. 3.1,
this method use a mixture of distributions for β j , p(β j |I j ) = (1 − I j )N (m, s) +
I j N (0, ν2). As we can see, the N (m, s) is the spike distribution whereas N (0, ν) is
the slab. m and s need to be chosen so that good values of β j are proposed when
I j = 0. According to [14], the data will determine which values are good but without
directly influencing the posterior, e.g., m and s could be mean and variance values
of posterior for the full model, respectively.

3.3 Stochastic Search Variable Selection (SSVS)

Stochastic Search Variable Selection (SSVS) was introduced by [9]. In this method,
θ j = β j and the indicators affect the prior distribution of β j , i.e., P(I j , β j ) =
P(β j |I j )P(I j ). The regressor coefficient ismodeled as coming fromamixture of two
normal distributions with different variances, i.e., p(β j |I j ) = (1 − I j )N (0, ν2) +
I j N (0, cν2). The spike has density concentrated around zero and the slab has den-
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sity spread out over large plausible values. Even though a small ν2 should be taken,
in the slab distribution the constant c compensates the variance making a sparse
distribution. Unlike GVS method, the posterior distribution is influenced by values
of the prior parameters when I j = 0.

3.4 Comparing the Methods

Here, we highlight themain similarities and differences among themethods. TheKM
andGVSmethods define θ j = β j I j , unlike SSVS that defines θ j = β j . TheKM is the
only method that sampling β j from the same distribution, when I j = 0 and I j = 1,
i.e., consider I j and β j independent. The other methods, define the prior distribution
from β j using the slab and spike distributions. But they define in different ways. The
GVS method uses the pseudo-prior to sampling β j , when I j = 0. The SSVS method
uses a concentrated around 0 normal distribution for sampling β j when I j = 0, and a
flat normal distribution for sampling β j when I j = 1, the responsible for the spread
of the density is c.

4 Simulation Study

To investigate the performance of the methods, we simulated several scenarios to see
how well they can identify the covariates that should be included in the model. For
the simulation study, 100 replicated datasets were created. We considered a space S
divided into N = 100 subareas and the values of the 10 covariates were simulated
independently from a standard normal distribution, N (0, 1). We also considered, the
values of the offset were simulated from a beta distribution, Beta(b1, b2), where b1
and b2 were chosen to allowed the total number of cases in the space S were similar
in all scenarios studied.

Known values of μ = 0, τ = 1, and γ = 4.24 were used to simulated w. The
value of γ was chosen to guarantee a small correlation (0.05) between the two most
distant subareas.

Howwe considered different numbers of covariates in the model, we use different
known values of θ specified in Table1.

We also would like to investigate the performance of the methods considering
dependence among covariates, i.e., the presence of multicollinearity. We only con-
sidered the scenario with three covariates and set a corr(zi , zl) = 0.5|i−l|, i, l =
1, . . . , 10, and the other characteristics we maintain as previously.
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Table 1 Known values of parameters used in simulation

Number of
covariates

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

3 0.5 1 1.5 0 0 0 0 0 0 0

5 0.5 1 1.5 −1.1 −0.6 0 0 0 0 0

8 0.5 1 1.5 −1.1 −0.6 1.2 −0.75 0.7 0 0

4.1 Prior Distributions

We considered I j ∼ Bernoulli(0.5), suggested by [9], making all models equiprob-
able and τw ∼ Gamma(1, 0.01), relatively vague prior. For all three methods, for
the random models, we considered β j |I j = 1 ∼ N (0, τ−1

β ), j = 1, . . . , 10, with
τβ ∼ Gamma(1, 0.01) and for the fixed models we assumed τβ = 0.01.

For KM, β j |I j = 0 has the same distribution than β j |I j = 1. For GVS, we as-
sumed β j |(I j = 0) ∼ N (0, 0.25), j = 1, . . . , 10. We also evaluated the impact of
different values of the variance of this distribution, 0.15, 0.20, 0.30, 0.35, and 0.4.
The values were chosen so that good values of β j are proposed when I j = 0.
While for SSVS, the prior was constructed so that P(|β j | < c) < 0.01, by set-
ting it to be three standard deviations away from the mean, i.e., we assumed
β j |I j = 0 ∼ N (0, (3 × c)2), j = 1, . . . , 10 and c = 0.04. The choices of the hy-
perparameters from the priors was made following [14].

Note that we are considering μ = 0 and γ = 4.24 known values. We decided
do not estimate γ , because that is a difficulty parameter to be estimated. This well-
known difficulty of spatial models was reported in many papers, including [11]. How
the goal of this work investigates the performance of the variable selection methods,
first, we decided to investigate without this confounding factor. Set μ = 0, without
loss of generality.

4.2 Landscapes Definitions

In this work, there are six landscapes to be compared or two basic landscapes to be
investigated: fixed effects versus random effects and a different number of covariate
should be in the model: three, five and eight covariates. You can see the definition of
each landscape below: (a) Fixed effect with three covariates in themodel, (b) Random
effect with three covariates in the model, (c) Fixed effect with five covariates in the
model, (d) Random effect with five covariates in themodel, (e) Fixed effect with eight
covariates in the model and (f) Random effect with eight covariates in the model.
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Table 2 Posterior probability that the correct model was selected for landscape (a) with multicol-
inearity

Method Median 1st quartile 3rd quartile

KM 0.769 0.580 0.856

GVS 0.775 0.580 0.840

SSVS 0.763 0.588 0.834

4.3 Results

Results were obtained via MCMC methods by Metropolis–Hastings algorithm and
they were implemented in BUGS [12]. Convergence was ascertained by Gelman–
Rubin–Brooks criterion [4] using two chains with different starting values. Correla-
tion between successive chain drawswas alleviated by thinning at every 10 iterations,
after a burn-in period of 2,000 draws. The resulting sample consisted of 2,000 draws.

As an overall qualitative assessment of computational speed and parameter esti-
mation, we can say about speediness that SSVS was the fastest method. Most times,
SSVS was more than three times faster than the others two methods. All three meth-
ods show good accuracy into estimate the true values of the effects of the covariates.

To compare the three methods about their efficacy to select the correct model
in the scenario with no multicollinearity, we used the posterior probability that the
correct model was selected. As we can see in Fig. 1, all three methods showed good
probabilities to select the correct model. Here, the probability will be the proportions
of times that theMCMC chain visited themodel that contains the subset of covariates
used to simulated the dataset. If we analyze themedian of these probabilities in Fig. 1,
the worst result for all landescapes is 80%, i.e., in the landscape with the poorest
identification of the correct model, 50% of fits select the correct model 80% of times.

Furthermore, in Fig. 1, we have a greater dispersion for the probability of iden-
tifying the correct model in the landscapes with a greater number of covariates, for
both fixed and randommodel. For landscapes a-d, the KM showed the worst result to
randommodel when compared to the fixedmodel, but GVS and SSVS improved their
outcomes. These results weren’t observed to landscape e-f. The KMmethod showed
some instability for different initial values for I j . In some cases, convergence wasn’t
obtained. In addition, for landscapes b and d, SSVS and GVS showed significantly
best outcomes than KM.

As we can see in Table2, even when we consider the presence of multicollinearity
the results still promising. Obviously, the outcomes are poorer than the scenario
without multicollinearity.
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Fig. 1 Boxplot of the medians of the posterior probability that the correct model was selected for
all landscapes investigated with no multicollinearity

5 Conclusion

Thiswork investigated the performance ofKM,GVS, and SSVSmethods for variable
selection to log-Gaussian Cox processes models. Useful models to analyses point
pattern data. Few studies to select covariates in this field has been proposed so far.

The results showed that three methods have good accuracy to identify the correct
model in the scenariowith nomulticollinearity. They showed the high posterior prob-
ability that the correct model was selected. A higher number of covariates showed
poorer outcomes when compared with scenarios with fewer covariates, but even in
the worst scenario, the median of the desired probability still equal or greater than
80%. In general, KM showed the poorest and SSVS the best performance, including
the fact that this method was the fastest of all of them.
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Even in scenarios with the presence of multicollinearity, the results seem promis-
ing, but a deeper investigation is necessary.

Besides, the methods allow calculating a simple measure to compare them with
an easy interpretation. Unlike the usual measures (AIC, BIC, among others).
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Effect of Hindered Diffusion on the
Parameter Sensitivity of Magnetic
Resonance Spectra

Keith A. Earle, Troy Broderick and Oleks Kazakov

Abstract Magnetic Resonance spectroscopy is a powerful tool for elucidating the
details of molecular dynamics. In many important applications, a model of hindered
diffusion is useful for summarizing the complex dynamics of ordered media, such
as a liquid crystalline environment, as well as the dynamics of proteins in solution
or confined to a membrane. In previous work, we have shown how the sensitivity
of a magnetic resonance spectrum to the details of molecular dynamics depends
on the symmetries of the magnetic tensors for the relevant interactions, e.g., Zee-
man, hyperfine, or quadrupolar interactions. If the hindered diffusion is modeled as
arising from an orienting potential, then the parameter sensitivity of the magnetic
resonance spectrum may be studied by generalizations of methods we have intro-
duced in previous work. In particular, we will show how lineshape calculations using
eigenfunction expansions of solutions of the diffusion equation, can be used as inputs
to an information-geometric approach to parameter sensitivity estimation. We illus-
trate our methods using model systems drawn from Nuclear Magnetic Resonance,
Electron Spin Resonance, and Nuclear Quadrupole Resonance.

Keywords Hindered diffusion · Lineshape analysis · Magnetic resonance
spectroscopy

1 Introduction

Spectral line shape calculations are an important tool for inferring details of mecha-
nism and function whenever molecular dynamics controls the response of the system
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under study to probing perturbations. In order to provide some context for the work
reported on here, we begin with a review of some key concepts in the computa-
tion of magnetic resonance line shapes in Sect. 2. We then discuss the problem of
hindered diffusion in Sect. 3 and survey some important considerations arising in
the context of coordinate transformations in Sect. 3.2 and sketch the derivation of
an efficient method for the computation of the elements of the starting vector intro-
duced in Sect. 2. For standard line shape calculations, computation of the elements of
the starting vector when hindered diffusion is the relaxation mechanism is the most
time-intensive task. When the hindered diffusion parameters are varied this requires
the starting vector to be recomputed. The algorithm introduced here converts a mul-
tidimensional numerical integration to the solution of a system of homogeneous
algebraic equations leading to significant improvements in efficiency and stability.
In Sect. 4 we discuss and motivate a simple model that nevertheless captures the
essential features of the hindered diffusion problem relevant for this work. Finally,
in Sect. 5, we present a qualitative discussion of the results of our numerical studies
and connect it to previous work in the parameter inference problem.

2 Magnetic Resonance

The equation of motion for the coupled spin and orientational degrees of freedom
which defines the spectral line shape is the Stochastic Liouville Equation (SLE). It
incorporates a torque-like term arising from the action of the spin Hamiltonian, and a
relaxation term governing the establishment of equilibrium. The SLEmay be written
as follows

∂ρ(Ω, t)

∂t
= − i

�

[
H (Ω, t), ρ(Ω, t)

] − Γ (ρ(Ω, t) − ρ0(Ω, t)), (1)

where Ω is a set of parameters characterizing the orientational dependence of the
relaxation process, assumed here to correspond to rotational diffusion, We discuss
relevant parameterizations as well as important reference frames for the magnetic
resonance line shape problem in Sect. 3.2. Furthermore, H (Ω, t) is the relevant
spin Hamiltonian which may contain various magnetic interactions. Note thatH is
required to be Hermitian. By an appropriate choice of basis states, matrix elements
of H can always be chosen to be real. This is not a requirement but there are com-
putational advantages to this choice, as we discuss below. The formalism is general
enough to incorporate a variety of possible interactions, such as the Zeeman inter-
action, hyperfine interactions, zero field splittings, quadrupolar interactions, and so
on. We can account for time-dependent, transition-inducing interactions by allowing
the applied magnetic field H to be an oscillatory function of time in the Zeeman
interaction, and this is necessary for describing nonlinear spin responses [1]. For
this work, we will focus on the linear response regime, but the goal is to keep the
notation as general as possible until we consider a specific model system in Sect. 4.
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The quantity ρ(Ω, t) is the spin density matrix, which we expand in a complete set of
spin multipole operators [2]. The quantity ρ0(Ω, t) is the equilibrium density matrix
when the time-dependence of the Zeeman interaction may be neglected. When the
time-dependence of the Zeeman interaction may not be neglected, ρ0(Ω, t) can be
interpreted as the steady-state density matrix [1]. Note that Γ ρ0(Ω, t) ≡ 0. Given
that the torque term and the relaxation term appear in an additive fashion in the
Stochastic Liouville Equation 1, it is useful to expand both ρ(Ω, t) and ρ0(Ω, t) in
a product state of spin multipoles and eigenfunctions of the Γ operator. Some useful
properties of eigenfunctions of Γ are discussed in Sect. 3. Note that in order for Eq.1
to have solutions that remain bounded as t → ∞ the eigenvalues of Γ must have
positive real part. For the class of problems considered here Γ is a purely dissipative
process, and so the eigenvalues are purely real and positive.

It is useful to think of the Stochastic Liouville Equation 1 as a generalization
of the phenomenological Bloch equations. The Bloch equations may be recovered
from Eq.1 in the limit that the relaxation operator Γ is approximated as a simple
exponential decay and the spin system is assumed to be an ensemble of weakly
interacting spins 1/2. In this limit, the classical and quantummechanical descriptions
coincide and one recovers the familiar form

dM(t)

dt
= γ (M × H) − R(M − M0),

where M is the net magnetization, M0 is the equilibrium magnetization and R is
a diagonal relaxation tensor with characteristic relaxation times T2 corresponding
to decay of the transverse (nonequilibrium) magnetization and T1 corresponding to
the characteristic timescale over which equilibrium is established. Finally, γ is the
gyromagnetic ratio.

Given that the frequency–domain spectrum is usually the quantity that is most
readily compared with experiment, it is useful to take the Fourier transform of Eq.1.
When this is done, the initial conditions corresponding to ρ(Ω, 0) appear explicitly.
The usual assumption is that a coherence corresponding to a nonvanishing transverse
magnetization is generated either by a hard pulse of short duration, or gentle, contin-
uous wave excitation. In either case, one recovers the linear response. Solving Eq.1
for all times t > 0 allows one to compute the spin–spin correlation function from
which the Fourier transform allows one to compute the frequency–domain spectrum.
The references may be consulted for the practical details of how this is done [1, 3,
4]. For the purposes of this work, it is sufficient to note that the spectral line shape
calculation may be put in the form

I (Δω) = 〈
v
∣∣C−1(Δω)

∣∣v
〉
, (2)

where | v 〉 is the vector of initial conditions corresponding to the product state of a
nonequilibrium coherence characterized by a given spin multipole with the relevant
eigenstates of the diffusion operator. In addition, Δω is the offset from resonance.
In a basis, where H and Γ have real matrix elements C is a complex symmetric
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Fig. 1 Magnetic resonance spectra corresponding to axial symmetry. The spectrum on the left
corresponds to the rigid limit in which there is little to no residual motion. The spectrum on the
right corresponds to the motional narrowing regime. The magnetic tensor anisotropy is the same in
both cases. The difference is in the rotational diffusion rate

matrix. When C is complex symmetric there are efficient computational algorithms
for tridiagonalizingC [1, 4]. The spectral function can be readily evaluatedwhenC is
put into tridiagonal form as discussed elsewhere [1, 4]. A product basis of irreducible
spherical tensor operators [4] in spin and orientation space is a convenient choice
for this class of problems. In the case of hindered diffusion, treated in Sect. 3, a
further symmetrization process is needed to ensure that the complex symmetric form
is maintained. For the case of the axial Zeeman interaction treated in Sect. 4, one
obtains spectra of the form shown in Fig. 1. The motionally narrowed spectrum,
corresponding to the spectrum on the right in Fig. 1, is also characteristic of hindered
diffusion, as we will discuss in Sect. 5.

In order to quantify parameter sensitivity, wemay take derivatives of the spectrum
with respect to the line shape parameters. For the simple model discussed in Sect. 4,
the relevant parameters are the rotational diffusion rate R, there taken to be isotropic,
the spectral extent, parameterized by the anisotropy of the Zeeman interaction Δg ,
and the strength of the orienting potential λ. Starting from the identity CC−1 = 1,
one may verify that

d I (Δω)

dθ
= 〈

dv/dθ
∣∣C−1

∣∣v
〉 − 〈

v
∣∣C−1(dC/dθ)C−1

∣∣v
〉 + 〈

v
∣∣C−1

∣∣dv/dθ
〉
, (3)

where θ ∈ {R,Δg, λ}. Equation 3 may be symmetrized by defining a new vector
| w 〉 = | v 〉 + | dv/dθ 〉. Written in terms of | v 〉, | dv/dθ 〉, and | w 〉 one finds

d I (Δω)

dθ
=

〈
w

∣
∣C−1(Δω)

∣
∣w

〉 − 〈
v
∣
∣C−1(Δω)

∣
∣v

〉 − 〈
dv/dθ

∣
∣C−1(Δω)

∣
∣dv/dθ

〉

− 〈
v
∣∣C−1(Δω)(dC(Δω)/dθ)C−1

∣∣v
〉
. (4)
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As discussed in Sect. 3, the only parameters that affect the starting vector | v 〉, at least
in the linear response regime, arise from the ordering potentialU (Ω). The diffusion
constant R and the magnetic anisotropy Δg occur linearly in C(Δω) which leads to
significant simplifications of Eq.4. Note further that the vector C−1(Δω) | v 〉 arises
naturally in the computation of the lineshape and so there is no extra computational
cost associated with its evaluation. Due to the form of the Γ operator discussed
in Sect. 3, the potential coefficient λ appears bilinearly and is also involved with
products of R. One outcome of this dependence is that mixed derivatives of the form
∂2 I (Δω)/∂R∂λ and ∂2 I (Δω)/∂Δg∂λ will be nonvanishing leading to significant
correlations of the model parameters.

3 Hindered Diffusion

In this section, we take a closer look at the relaxation operator Γ . For isotropic
and hindered diffusion, we define an equilibrium orientational distribution P0 by the
following relation Γ P0 = 0, where Γ is an operator that quantifies the diffusion
process. Note that this relation may rewritten as

P1/2
0 P−1/2

0 Γ P1/2
0 P1/2

0 = 0

This allows us to define an operator Γ̃ ≡ P−1/2
0 Γ P1/2

0 so that the equilibrium prob-
ability satisfies the symmetrized equation P1/2

0 Γ̃ P1/2
0 = 0. This choice, while not a

requirement, allows thematrix elements ofEq.1, or equivalentlyEq.2 to be expressed
in complex symmetric formwith the advantages of computational efficiency as noted
above. In many cases, it is useful to express Γ as a differential operator in terms of
the generators of infinitesimal rotations of a diffusing body L referred to a set of
body-fixed axes instantaneously co-moving with the diffusing particle. The rota-
tional diffusion operator may then be expressed as follows

Γ = L · R · L,

for isotropic media, where R can be represented as a diagonal matrix in a symmetry
frame of the diffusor. For isotropic media and ordered media where hindered dif-
fusion is operative, it is useful to expand the equilibrium distribution P0 in terms
of eigenfunctions of the diffusion operator. A convenient choice, which also cor-
responds to the eigenfunctions of the quantum mechanical symmetric top, is the
complex conjugate of the Wigner rotation matrix elements (D L

M K (Ω))∗, where Ω

parameterizes the relevant infinitesimal rotation. For a thorough discussion of why it
is the complex conjugate of the Wigner rotation matrix elements that are the relevant
eigenfunctions, see the references [5, 6]. The action of L on the

(
D L

M K (Ω)
)∗

may
be quantified as follows [5]
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L2
(
D L

M K (Ω)
)∗ = L(L + 1)

(
D L

M K (Ω)
)∗

(5)

Lz
(
D L

M K (Ω)
)∗ = K

(
D L

M K (Ω)
)∗

(6)

(Lx ± i L y)
(
D L

M K (Ω)
)∗ = √

(L ± K )(L ∓ K + 1)
(
D L

M K∓1(Ω)
)∗

. (7)

For many systems of interest, the diffusing particle can be characterized as approx-
imately axially symmetric. In that case, there is a fundamental symmetry between
states of ±K related by a rotation by π radians through the body-fixed ‘y’ axis
[6]. It is therefore useful to take symmetric and antisymmetric combinations of
(D L

M K (Ω))∗ ± (D L
M −K (Ω))∗ symmetric top eigenstates. For those cases, where

the orienting potential characterizing hindered diffusion also has this symmetry,
which is common in practice, it suffices to work with the symmetric combination
(D L

M K (Ω))∗ + (D L
M −K (Ω))∗. When only the symmetric contributions are retained,

there is a significant reduction in the size of thematrix representation of the equations
of motion and an increase in computational efficiency. Detailed examination of the
diffusion operator for both isotropic and hindered diffusion [3, 4, 7] confirms that
the diffusion operator also has this fundamental K symmetry. For all these reasons,
the K -symmetrized basis is preferred for studying magnetic resonance line shapes
arising from relaxation due to rotational diffusion. For completeness, the Γ̃ operator
takes the following form

Γ̃ (Ω) = Ri,i Li Li + 1

2kBT
(Ri,i Li LiU (Ω)) − 1

(2kBT )2
Ri,i (LiU (Ω))(LiU (Ω)).

(8)
The (unnormalized) solution for a given potential of the form

U (Ω) = −kBT
∑

L ,M,K

λL
MKD

L
M K (Ω)

is
P0(Ω) = exp(−U (Ω)/kBT ). (9)

Note that the potential parameters {λL
MK } are dimensionless for consistency with the

form of Eq.9.
As discussed in Sect. 2, the Fourier–Laplace transform of the Stochastic Liou-

ville Equation, Eq. 1, introduces the starting vector of initial conditions. Under the
symmetrization operation the elements of the starting vector become proportional to
integrals of the following form

∫
dΩ (P0(Ω))1/2 D L

M K (Ω).

In the usual case of an M-independent potential, the only possible nonvanishing
components of the starting vector are dependent on L and K . Furthermore, for
those potentials which are symmetric combinations of even values of K , one finds
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that the only nonvanishing contributions to the starting vector are also symmetric
combinations of even K values. The justification for these qualitative considerations
may be found from exploring the symmetries of the equilibriumdistribution function.

For slow-motional spectra where the required basis sets are large, the integrand
is highly oscillatory for large L and K values which makes heavy demands on the
stability and accuracy of numerical integration routines. In this work, we propose an
alternative method of computation based on the numerical solution of a recurrence
relation that is more computationally stable. The derivation relies on well-known
properties of the Wigner rotation matrix elements [8] D L

M K (Ω), and the results can
be applied to a variety of standard problems, e.g., diffusion in a cone [9]. Evaluation
of the recurrence can be accomplished by singular value decomposition of the matrix
representation of the equivalent system of homogeneous linear equations.

3.1 Recurrence

The starting point is the following identity satisfied by the D L
M K (Ω)

sin β
∂

∂β
D L

M K (Ω) = − L(L + 1)
√

(L2 − M2)(L2 − K 2)

L(2L + 1)
D L−1

M K (Ω) − MK

L(L + 1)
D L

M K (Ω)

+ L
√

((L + 1)2 − M2)((L + 1)2 − K 2)

(L + 1)(2L + 1)
D L+1

M K (Ω), (10)

where the meaning of the parameter β is discussed in Sect. 3.2. Multiplying from the
left by exp(−U (Ω)/2kBT ) and integrating over allΩ leads to simple expressions on
the right-hand side of Eq.10. In order to simplify the left-hand side, the integral may
be evaluated by integration by parts. Note that the constant term in the integration is
proportional to sin2(β) evaluated at the endpoints β = 0 and β = π which vanishes.
The derivatives yield terms proportional to D1

0 0(Ω)D L
M K (Ω), where D1

0 0(Ω) =
cos(β). There are also terms of the formD L1

M1 K1
(Ω)D L2

M2 K2
(Ω) that arise from terms

bilinear in derivatives of the potential and the original D L
M K (Ω). These bilinear

products of D L
M K (Ω) may be reduced by a further identity satisfied by the Wigner

rotation matrix elements, viz.

D L1
M1 K1

(Ω)D L2
M2 K2

(Ω) =
∑

L3

(2L3 + 1)

(
L1 L2 L3
M1 M2 M3

)(
L1 L2 L3
K1 K2 K3

) (
D L3
M3 K3

(Ω)
)∗

(11)
The quantities in parentheses in Eq.11 are Wigner 3J symbols. The references
should be consulted for more information about them [5, 6, 10]. Three more identi-
ties are useful for manipulating Eq.10. In particular, D2

0 0(Ω) = (3 cos2(β) − 1)/2,
D0

0 0(Ω) = 1, and (D L
M K (Ω))∗ = (−1)M−KD L

−M −K (Ω). Once these identities have
been applied, all terms in the integrated form of Eq.10 are in the form of the desired
elements of the starting vector. A detailed derivation of the recurrence relationwill be
published elsewhere [11]. For the model system of Sect. 4, the matrix representation
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Fig. 2 Schematic presentation of the system of linear equations (left) and their solution (right)
corresponding to the recurrence relation for elements of the starting vector presented in this work

of the recurrence relation as well as the unnormalized values of the starting vector
elements are shown in Fig. 2 Note that for the model system of Sect. 4, there are only
contributions when L is even and M = K = 0 and even L . From Fig. 2 it is clear
that regardless of the rotational diffusion rate large L values, up to L = 10 need to be
included in the starting vector. In contrast, only the L = 0 term needs to be retained
when there is no orienting potential.

3.2 Coordinate Systems

There are a number of coordinate systems that are relevant for characterizing the
line shape problem. The spectral lineshape is recorded in the laboratory or ‘L’ frame,
which is defined by the appliedmagnetic field. For liquid crystallinemedia, theremay
be a director or ‘D’ framewhich can be tiltedwith respect to the laboratory frame. The
diffusing particlemay have a symmetry axis which defines the diffusion or ‘R’ frame.
Finally, themagnetic interactionsmay take a simple, diagonal form in a principal axis
system or ‘M’ framewhich differs from the ‘R’ frame symmetry axis. It is convenient
to use Wigner rotation matrix elements for quantifying transformations among these
coordinate systems. Rotations may be parameterized in various ways. We will use
the symbolΩF1→F2 to represent the set of parameters that transforms the coordinates
from frame F1 to F2. The relevant transformations are {ΩL→D,ΩD→R,ΩR→M}. For
the purposes of this work, Euler angles are an adequate scheme, and the form of
the coordinate transformations can be chosen to be purely real, which simplifies the
evaluation of the matrix elements appearing in the Stochastic Liouville Equation. In
particular, the transformation from the ‘L’ frame to the ‘D’ frame is typically specified
by a rotation by an angle ψ about the laboratory ‘y’ axis. Such a scheme is shown in
Fig. 3. A similar transformation is often used for ΩR→M . The transformation ΩD→R
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Fig. 3 (Left): Representation of the transformation from the laboratory ‘L’ frame to the director
‘D’ frame via a rotation by ψ about the laboratory YL axis, or line of nodes; (Right) Representation
of the transformation from the director ‘D’ frame to the rotational diffusion ‘R’ frame via a rotation
by α about the director ZD axis, followed by a rotation by β about the line of nodes, and finally, a
rotation by γ about the new ‘z’ axis, also known as the figure axis, ZR

is a stochastic function of time involving the full parameterization of the rotation
group. The relevant parameters are also shown in Fig. 3.

In order to compute a spectrum, it is necessary to perform an ensemble average
over all members of the ensemble. By the ergodic hypothesis, this is equivalent to
an average over all orientations. We have included this detailed look at the relevant
coordinate transformations as they are often a source of confusion and errors. A
thorough discussion of the relevant issues is available elsewhere [4].

4 Simple Model

In order to apply some of the concepts developed in this work, we consider a simple
model of an approximately isotropic rapidly tumbling diffusor characterized by a
Zeeman interaction with axial symmetry in an orienting potential that has cylindrical
symmetry. An example of such a systemmight be an 15N nucleus on a flexible tether
at the end of a slowly diffusing acyl chain in a lipid bilayer. For simplicity,we consider
the case of nodirector tilt, that isψ = 0 inFig. 3. The case of noorientingpotential has
been treated separately [12]. In that case, thematrix representation of Eq.1 is complex
symmetric and tridiagonal [12]. For such systems, stable numerical computation of
the spectral line shape is a standard problem. In the presence of a simple orienting
potential of the form U (Ω) = −kBTλ2

00D
2
0 0(Ω) the matrix representation of the

Eq.1 becomes quintdiagonal. Due to the symmetrization of theΓ operator, thematrix
representation of Eq.1 remains complex symmetric. Efficient computation of the
line shape involves tridiagonalization followed by application of standard numerical
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techniques. A detailed report will be published elsewhere [11]. We discuss some
important qualitative features in Sect. 5.

5 Discussion

The effect of an orienting potential on the line shape depends on several key parame-
ters. In the context of the simple model discussed in Sect. 4 these are: the magnitude
of the magnetic anisotropy 2

3 (g⊥ − g‖), the average value of the Zeeman interaction
(2g⊥ + g‖)/3, the rotational diffusion rate, R, and the strength of the potential λ2

00.
Consider the rapid tumbling case shown in the spectrum on the right in Fig. 1. In
the absence of a potential, all orientations of the spin probe are equally likely, and
the spectrum is centered on the trace of the Zeeman tensor, an invariant quantity.
For a potential with a positive λ2

00, probe orientations parallel to the laboratory ‘z’
axis are preferred and the averaging process is incomplete. In this case, the spec-
trum will shift upfield toward the g‖ = gz end of the spectrum. This corresponds
to the case of nematic ordering. If a director tilt were allowed, the upfield shift is
modified consistent with the relative orientation of the director with respect to the
applied field. For the case of discotic ordering, where λ2

00 < 0, the rapid tumbling
spectrum shifts downfield toward the g⊥ = gx = gy end of the spectrum. The larger
the potential, the more pronounced the spectral shift. If the average value of the
Zeeman interaction is known, then this can be a sensitive means for inferring the
degree of ordering in the system. The general expressions for the spectral derivatives
given in Eq.4 can then be used as inputs to the methods described elsewhere to infer
quantitatively the degree of parameter sensitivity [13]. A more detailed presentation
of these results will be given in a forthcoming publication [11]. For the slow tum-
bling case, corresponding to the left-hand spectrum in Fig. 1, similar effects from
variation of the orienting potential also arise. In this range of rotational tumbling,
however, the spectrum still appears to be motionally narrowed, corresponding to the
right-hand spectrum of Fig. 1. The nematic versus discotic case gives rise to spectra
with very different amplitudes and more pronounced upfield versus downfield shifts,
respectively. The analytical basis for these qualitative observations arises from the
nonvanishing of the mixed parameter derivatives introduced in Sect. 2.
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The Random Bernstein Polynomial
Smoothing Via ABC Method

Leandro A. Ferreira and Victor Fossaluza

Abstract In recent years, many statistical inference problems have been solved by
using Markov Chain Monte Carlo (MCMC) techniques. However, it is necessary
to derivate the analytical form for the likelihood function. Although the level of
computing has increased steadily, there is a limitation caused by the difficulty or
the misunderstanding of how computing the likelihood function. The Approximate
Bayesian Computation (ABC) method dispenses the use of the likelihood function
by simulating candidates of posterior distributions and using an algorithm to accept
or reject the proposed candidates. This work presents an alternative nonparametric
estimationmethod of smoothing empirical distributionswith randomBernstein poly-
nomials via ABCmethod. The Bernstein prior is obtained by rewriting the Bernstein
polynomial in terms of k mixtures / m mixtures of beta densities and mixing weight-
s. A study of simulation and a real example are presented to illustrate the method
proposed.

Keywords Approximation Bayesian Computation · Bayesian estimation
Bernstein polynomials · Nonparametric inference

1 Intoduction

Bernstein polynomial smoothing is a nonparametric estimation method widely used
as an alternative tool in statistical inference problems [4] in contrast to parametric
estimation tools that assumes some family of parameters. A natural issue is how to
define a Bayesian approach.

Petrone (1999) [7] proposed a version of Bernstein polynomial smoothing through
Markov Chain Monte Carlo (MCMC) techniques, however, there weremany difficult
of implementation in the algorithm [6–8]. TheMCMCmethod usually presents some
difficulties due to the need of knowing the likelihood function, which is not always
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the case. In this aspect, theApproximate Bayesian Computation (ABC) method could
be more interesting [2, 5].

In practice, the ABC method dispenses the use of the likelihood function. There-
fore, the presentation of a Bayesian version of Bernstein polynomial smoothing it
will be feasible in terms of this approach.

The paper is organized as follows: In Sect. 2, the ABC method is presented; In
Sect. 3, the Random Bernstein polynomial smoothing is showed; Sect. 4 presents the
results; Sect. 5 the summary and conclusions.

2 Approximate Bayesian Computation

In this section, the ABC method will be briefly presented allowing the better under-
standing of the next steps of the nonparametric method of density estimation [5].
According to Marin et al. [5], the likelihood may be unavailable for mathematical
reasons (it is not available in closed form as a function of θ ) or for computational
reasons (it is too expensive too calculate).

To illustrate the importance of this, consider θ ∈ R+, x ∈ R+ and f (x |θ) ∝∑
αi fi (x |θ)), αi = 1

2 , for i = 1, 2. Assume that f1(x |θ) ∼ Exp(θ) and f2(x |θ) ∼
�(θ, θ2), therefore, the likelihood function is given by

L(θ) ∝ 1

2�(θ)

∏(
θe−θx + θ2θ xθ−1e−θ2x

)

The maximum likelihood estimation is not feasible, indicating the use of another
method.

The ABC method dispenses the use of a likelihood function, however, we should
be able to replicate the observed experiment, that is, generating a sample of a posterior
“candidate” to compare with the observed sample.

The main idea of ABC can be illustrated using the algorithm described as follows

for i = 1 to N do
repeat

Generate θ ′ from the prior distribution π(.)

Generate y from the likelihood f (.|θ)

until �(T (y), T (x)) ≤ ε

set θi = θ ′

end
Algorithm 1: ABC - Approximated Bayesian Computation

where the parameters of the algorithm are T , a function defining a statistic (which
most often is not sufficient); �, a distance on T and ε, a tolerance level, ε > 0.

In next section, this method will be applied on Bernstein polynomial considering
the “entire sample” as statistic sufficient T ; TheKolmogorov–Smirnov distance, (K–S
hereby) as � on T .
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In the Sect. 4, to show the “goodness of fit,” the symmetrized Kullback–Leibler,
(K–L hereby), Euclidian and K–S distances will be used, that can be calculated to
vectors s and q in expressions (1) for the Euclidian, (2) for the symmetrized K–L
and (3) for the K–S.

D(s, q) =
{

N∑

i=1

(qi − si )
2

} 1
2

; (1)

D(s, q) = 1

2

{
N∑

i=1

qi log
qi

si
+

N∑

i=1

si log
si

qi

}

; (2)

D(s, q) = sup|Fn(q) − Fn(s)|, (3)

where Fn(·) represents the empirical distribution function.

3 Random Bernstein Polynomial

Let H : [0, 1]k → R be a continuous function. The Bernstein polynomial of degree
m for the function H is given by

Bm
H (x1, . . . xk) =

m∑

j1=0

. . .

m∑

jk=0

H

(
j1
m

, . . . ,
jk
m

) k∏

i=1

(
m

ji

)

x ji
i (1 − xi )

m− ji .

The univariate case of Bernstein polynomial is given by

BF (x) =
m∑

j=0

F

(
j

m

) (
m

j

)

x j (1 − x)m− j ,

Petrone (1999a) [7, 8] showed that the polynomial may be rewritten in terms of
mixtures of beta densities, as follows

m∑

j=1

w j,mβ(x; j, m − j + 1),

where β(·; a, b) denotes a beta density with parameters (a, b) and

w j,m = F
(

j
m

)
− F

(
j−1
m

)
, weights of the mixture.

Assuming that
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b(x |m, wm) =
m∑

j=1

w j,mβ(x; j, m − j + 1), (4)

b(·; m, wm) is defined as the Bernstein density with parameters m and wm =
(w1,m, . . . , wm,m).

To use the expression (4), the priority may be taken as

m ∼ Poisson(λ)

ww|m ∼ Dirichlet (α).

Using the expression (4), given previously, a sample was generated and compared
with the observed sample using a chosen the K–S distance.

In the Sect. 4, the results of method will be presented.

4 Results and Discussion

The aim of this section is to show the performance of the Random Bernstein smooth-
ing via ABC method. The results are expressed by graphs and in termsK–L,Euclidian
and K–S distances, see Sect. (2) to know how to calculate it.

All algorithms were performed using R Software version 3.4.1. [3]
Babu et al. [1] suggests, based on the empirical results, the use of the degree as

λ = n/ log(n).

Example 1 Consider samples of size 50, 100, 200, and 400 from β(·; 2, 5).
Hierarchically, wm is sampled from a Dirichlet distribution with parameter α =
(α1, . . . , αm). Here, F is considerer as the empirical distribution function.

As observed in Fig. 1, the estimation via Random Bernstein (RB) fits well the
observed sample. The Tables 1, 2, 3 and 4 shows the distances among them.

According to Tables 1, 2, 3 and 4 the estimate given by Random Bernstein
method is better than theoretical density under all metrics used, except for Euclidian
distance.

Example 2 Consider aMELD Score [10], a scale of the severity of a disease, of 482
patients on waiting list for liver transplant attended at Clinics Hospital, São Paulo
Medical School (HC-FM-USP) between January 2012 and December 2013 [9].

Table 1 Table of comparison between observed Sample (Sample), Theoretical (Theo) Density, and
Random Bernstein (RB) Smoothing for n = 50

n = 50 Sample x RB Theo x Sample Theo x RB

Kullback–Leibler 90.69 85.56 63.78

K–S 0.62 0.5 0.2

Euclidian 0.11 0.13 0.04
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(a) n= 50 (b) n= 100

(c) n= 200 (d) n= 400

Fig. 1 Estimation of beta densities using samples size of 50, 100, 200, and 400

Table 2 Table of comparison between observed Sample (Sample), Theoretical (Theo) Density, and
Random Bernstein (RB) Smoothing for n = 100

n = 100 Sample x RB Theo x Sample Theo x RB

Kullback–Leibler 60.42 52.21 41.80

K–S 0.54 0.51 0.09

Euclidian 0.09 0.21 0.20

Table 3 Table of comparison between observed Sample (Sample), Theoretical (Theo) Density, and
Random Bernstein (RB) Smoothing for n = 200

n = 200 Sample x RB Theo x Sample Theo x RB

Kullback–Leibler 61.50 50.02 47.63

K–S 0.57 0.52 0.12

Euclidian 0.07 0.07 0.01
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Table 4 Table of comparison between observed Sample (Sample), Theoretical (Theo) Density, and
Random Bernstein (RB) Smoothing for n = 400

n = 400 Sample x RB Theo x Sample Theo x RB

Kullback–Leibler 59.17 47.87 49.99

K–S 0.56 0.50 0.14

Euclidian 0.05 0.06 0.01

Fig. 2 Estimation of MELD
Score sample using Random
Bernstein (RB)

Table 5 Table of comparison
between MELD Score
(MELD) and Random
Bernstein (RB) Smoth

MELD x RB

K–L 49.50

K–S 0.34

Euclidian 0.02

Notice that, the support of Bernstein distribution is [0, 1], therefore to use the
method it is necessary to rescale the data into [0, 1]. To rescale the sample, consider
the linear transformation T (·) = (·)−min(·)

max(·)−min(·) .
As observed in Fig. 2, the estimation via Random Bernstein (RB), in red, fits well

the observedMELDScore sample. The estimate of density is given with a confidence
band, in gray.

To plot the confidence band, it was considered 200 estimates, it was taken 95%
of them. The Table 5 shows the distances between them.
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5 Conclusions

This work presented a technique for nonparametric density estimation using ABC
method. Two examples were given to illustrate the method.

The first example, a study of simulation, show the impact of sample size, and the
second one, the capacity of estimation of real samples and a measure of uncertainty.

The Random Bernstein smoothing via ABC method may be an important tool for
statistical inference; its use may be interesting because it has easier computational
implementation when compared to other methods.
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Mean Field Studies of a Society
of Interacting Agents

Lucas Silva Simões and Nestor Caticha

Abstract We model a society of agents that interact in pairs by exchanging
for/against opinions about issues using an algorithm obtained with methods of
Bayesian inference and maximum entropy. The agents gauge the incoming infor-
mation with respect to the mistrust attributed to the other agents. There is no under-
lying lattice and all agents interact among themselves. The interaction pair can be
described as a dynamics along the gradient of the logarithm of the evidence. By using
a symmetric version of the two-body interactions we introduce a Hamiltonian for
the whole society. Knowledge of the expected value of the Hamiltonian is relevant
information for the state of the society. In the case of uniform mistrust, independent
of the pair of agents, the phase diagram of the society in a mean field approximation
shows a phase transition that separates an ordered phase where opinions are to a large
extent shared by the agents and a disordered phase of dissension of opinions.

Keywords Entropic dynamics · Social systems · Agent models · Mean field

1 Introduction

The realization that StatisticalMechanics (SM) is a theory of information processing,
due to Jaynes in the fifties [10, 11], permits applying its methods to other systems
which can be considered outside the realm of physics. This would not be a surprise to
Maxwell and Boltzmann who expressed hopes about the applicability of the general
methods of SM to the mathematical description of human societies. There have been
considerable efforts to quantitatively understand human behavior, speciallymodeling
human actions within a society and their large-scale consequences by identifying
order parameters that can present general replicable behavior. In spite of being in its
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infancy, this field has seen the introduction of models that accommodate to a certain
extent the regularities in some examples where empirical data is available [3, 5, 6].

An attractive feature of this area is the large abundance of questions we do not
yet fully understand. In this paper, we consider a society of agents that exchange
discrete for/against opinions about issues. This type of model has been applied to
model data obtained by the Moral Foundation Theory group [7–9] by [4]. This paper
contribution is the analytical study of the global properties of a model of opinions
in which the agents have a definite level of mistrust toward other agents, which was
introduced by [1, 4]. Our aim here is not to present the latest model but to show that
standard methods of Statistical Mechanics, such as the mean field approximation,
which itself has an origin in maximum entropy ideas, can be applied to obtain some
analytical understanding of collective properties of large assemblies of interacting
agents.

In a set of studies, over the last years [4, 14] the present line of work has been
applied to study cultural diversity, making use of sociophysical models that connect
moral psychology and neuroscience with statistical mechanics tools. In this work, we
expand that understanding with a mean field analysis of an agent-based model. First,
in Sect. 2, we describe the opinion exchange dynamics between mistrusting agents,
which arises from a generic framework based on Bayesian and maximum entropy
methods. This framework and a more general analysis will be presented elsewhere
[2]. This leads to a stochastic dynamics along the gradient of a Bayesian evidence
(Sect. 3). The pairwise dynamics is not symmetric, making a difference between
the emitter and the receiver agents. In Sect. 4, we consider the case of a pairwise
interaction in which both agents act as the receiver and emitter, hence permitting
to consider a symmetric interaction. This allows to introduce a global Hamiltonian.
Finally, we explore amean field (MF) approximation to this model.We show that this
approximation recovers the results obtained in previous works using Monte Carlo
style numerical simulations (Sect. 5).

2 The Model

The general framework for the model we use will be presented elsewhere. For the
particular model we use, one can check a detailed description of the dynamics in
[5]. In this society model each agent is represented by a neural network. An issue
is a public input vector x and the opinion of agent j is σ j , which takes values 1 or
−1. We start considering the exchange of information in which an emitter agent j
sends the input vector and σ j to a receiver agent i . The state of agent i , which we
denote by ŵi , changes in order to accommodate the received information. At a given
point, we want to describe the change in the state of incomplete information we have
about agent i , when it receives information about the classification of an issue by
agent j . Before receiving the information our representation of the state of agent i
is given by a prior distribution Q(w|ŵnCn). The posterior distribution is given by
Bayes theorem
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P(w|σ j , x, ŵnCn) = Q(w|ŵnCn)PL(σi = σ j |wx)
Zn+1

(1)

where the likelihood PL(σi = σ j |wx) is the probability that the answer σi to ques-
tion x is σ j . The normalizing factor Zn+1 is the Bayesian evidence. Since in general
the posterior is not in the gaussian family a new posterior Q(w|ŵn+1Cn+1) is cho-
sen by maximizing the relative entropy between the old and new gaussians, subject
to the constraints imposed by the Bayesian posterior P . The evidence will be cen-
tral to the discussion that follows since the gradient of the energy like function
En+1 = − log Zn+1 determines the change in hyperparameters that implement the
learning process. This framework permits reobtaining results that go back to [12] us-
ing functional variational methods, to [13] using Bayesian ideas and to [5], where a
deduction of Eqs. 2 and 3 below appear. The learning dynamics describes the update
of the mean vector and covariance matrix of the Bayesian posterior, or alternatively
describe the update of the weights of a neural network that represents an agent, when
receiving information about another agent’s opinion:

ŵn+1 = ŵn − Cn · ∇ŵnEn+1 (2)

Cn+1 = Cn − Cn · (
HŵnEn+1

) · Cn (3)

where HŵnEn+1 is the Hessian matrix of second derivatives of En+1 with respect to
the elements of ŵn .

The important element of this dynamics is a “free energy” cost function En+1,
or minus the logarithm of the evidence in the Bayesian learning step. The available
information on the agent’s architecture enters here. Explicitly it depends on the
likelihood, i.e., the probability that a certain opinion is emitted conditioned on the
state of the emitting agent. This is better explained in Sect. 3.

3 Moral Agent Learning Model

We consider a specific agent model M which tries to infer the best value of
w ∈ R

K that makes good predictions σ about x matching its’ peers predictions (i.e.,
conformity-seekers). We choose for the neural network architecture the single-layer
perceptron, for the reason that the results are rich, interesting and sufficiently com-
plicated to deserve attention. Furthermore, there are several examples where the
empirical data shows that even the performance of humans on certain tasks can be
modeled by linear classifiers.

A primal ingredient of the modeling scenario is the parameter ε, which represents
the level of mistrust that the receiver agent attributes to the emitter agent. This can be
understood as amistrust about the emitter agent or about the communication channel.
In the model ε is the probability that the correct opinion had its signal flipped during
the communication.
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The model is given by:

M :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

issue/opinion: x ∈ R
K ; σ ∈ {−1,+1}

architecture: σ ′ = sign(x · w)

σ =
{

−σ ′ with probability ε

σ ′ with probability 1 − ε

inference constraints: E[wi ] = ŵi , E[wiw j ] = Ci j + ŵi ŵ j

(4)

Alternatively, one could interpret the learning situation described by M as fol-
lows: consider a pair of vectors (perceptrons) ŵ,w ∈ R

K which we call receiver
and emitter of information, respectively. The receiver ŵ learns from the emitter w
through the presentation of examples (xμ, σμ), where we call xμ ∈ R

K an issue and
σ ′

μ = sign(w · xμ) the emitter’s opinion on the issue. The emitter’s opinion is cor-
rupted with a multiplicative noise ε when communicated to the receiver. The reason
for this corruption is not analyzed here, but it can be noise in the channel or the possi-
bility of concealed cheating. The likelihood distribution is obtained bymarginalizing
the joint distribution of the received answer σ while the correct answer should have
been σ ′

PL(σ |x,w, ε) =
∑

σ ′
P(σ |σ ′x,w, ε)P(σ ′|x,w, ε) (5)

The flipping probability is P(σ |σ ′x,w, ε) = ε if σ = −σ ′ and 1 − ε if σ = σ ′. We
also use that P(σ ′|x,w, ε) is 1 if σ ′x.w > 0, to obtain

PL(σ |x,w, ε) = εΘ (−σx · w) + (1 − ε)Θ (σx · w) = ε + (1 − 2ε)Θ (σx · w)

(6)
whereΘ is the Heaviside step function. The Bayesian evidence after the presentation
of the (n + 1)th example —which we call x for simplicity without a time label—is:

Zn+1 =
∫

dw PL(σ |x,w, ε) Q(w|ŵnCn)

which, after doing the integral over thew variables and taking the logarithm, becomes

En+1 = −γ 2
n log

[
ε + (1 − 2ε) Φ

(
σhn
γn

)]
(7)

where we defined the projections hn = 1√
K
x · ŵn, γ 2

n = 1
K x

ᵀCnx and Φ is the cu-
mulative distribution function (cdf) of the standard normal distribution. Note that γn
is directly linked to the covariance of the distribution of theweights. If the uncertainty
about the weights is large, so is γn and vice-versa.
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4 Mean Field Analysis

Equation 7 is an energy like a term that describes how the receiver agent is affected by
the emitter agent. If both agents take both roles on a given encounter we can suppose
that a symmetric energy term would describe the interactions. This permits going
from a dynamical description of the interactions (micro) to a global description of the
state of the society (macro) using Statistical Mechanics tools. Still, the calculations
are intractable and analytical progress comes at the expense of approximations. In
this section, we develop a Mean Field approach to an specific canonical ensemble of
social agents in a noisy society.

Let us consider, a society of agents {ŵi } which we suppose can be described
mostly by one specific Hamiltonian H , which is a sum of the energy like terms,
suggested from the previous analysis, for all pairs 〈i, j〉 of agents:

H = −γ 2
∑

〈i, j〉
log

[
ε + (1 − 2ε) Φ

(
1

γ

(
σi h j + σ j hi

))]
=

∑

〈i, j〉
Vi j (8)

Societies are dynamic and their global states change in time. However, on a certain
time scale, intermediate between the fast update of the individual states of the agents
and the very slow change of a society, we might attempt to characterize the state of
a society by stipulating that the value of some global function is approximately con-
served. The information, or rather the assumption, that a certain quantity is conserved
allows to describe the Boltzmann–Gibbs state of the society. We suppose that the
mean value 〈H 〉 is conserved throughout the configuration evolution of the society,
that is,H remains close to some fixed value E . The probability distribution describ-
ing this society with this information is then PB({ŵi }) = 1

ZB
exp

(−βH
({ŵi }

) )
.

Unfortunately we cannot obtain the equilibrium properties of this Hamiltonian and
have to rely on further approximations. In order to simplify our model, a mean field
approximation is performed, which finds a solution as close as possible to PB inside
a parametric family of probability distributions P0 = Πi Pi (ŵi ), which is a product
over all agents.

In that case, we do not wish to choose a product distribution indiscriminately; we
want to pick the best P0 approximating PB given the constraints we have assigned
to it. That is, a calculation we can do maximizing the entropy S, as follows:

S[P0||PB] = −
〈

log ZB + βH +
∑

i

log Pi

〉

P0

(9)

Usual calculus of variations arguments lead to:

δS =
∫

dŵk δPk

[

log ZB + log Pk + 1 + β
∑

i∈∂k

∫
dŵi Pi Vik

]

(10)
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where we introduced the notation ∂k meaning neighbors of k. This result can only
be possible for any variation δPk if the term in brackets [· · · ] is identically zero itself,
so that we get the following result:

Pk(ŵk) = 1

Zk
exp

(

−β
∑

i∈∂k

∫
dŵi Pi Vik

)

(11)

Still, due to the rather complex form of the potential Vi j , the equation above is
intractable as it is. In that case, we are going to choose (instead of selecting the best
one) a mean field probability distribution family similar to the one in Eq. 11.

We proceed comparing the mean field projection done above and the Hamiltonian
in (8) to a distribution that take into account only an effective number of neighbors ν( j)

of agent j perceiving effective interactions m(i) = 〈hi 〉 and r(i) = 〈σi 〉, in principle
depending on agent i . This is inspired by the oldest version of the mean field method
and goes back to Curie and Weiss and the idea of the self-consistent method:

Pj (ŵ j ) = 1

Z j

[
ε + (1 − 2ε) Φ

(
1

γ

(
r(i)h j + σ jm(i)

))]βν( j)γ
2

(12)

In fact, one can think of m and r as parameters that describe the overall behavior of
the society, such that one agent i receives signals from its neighbors independently
of the label i . This does not mean that all the agents are identical, but that their
moral vector is drawn from the same probability distribution. We can represent this
self-consistently with the following set of equations:

m =
∫

dŵ h(ŵ)PMF(ŵ) r =
∫

dŵ σ(ŵ)PMF(ŵ) (13)

Thus, setting ν as constant throughout the society, the mean field probability distri-
bution becomes:

PMF(ŵ) = 1

ζ

[
ε + (1 − 2ε) Φ

(
r

γ
h(ŵ) + m

γ
σ(ŵ)

)]βνγ 2

(14)

where we recall that σ(ŵ) = sign h and h(ŵ) = 1√
k
x · ŵ. Note that the effective in-

verse temperature is βν, where ν can be interpreted as the mean number of neighbors
of the agents.

Since we can always rotate the coordinate system to a given orientation, we are
going to choose one in which the issue x aligns with the ê5 axis (i.e., x = ê5).
This greatly simplifies our calculation because now h = cos θ , where θ is the angle
between x and ŵ, and other angle integrals are trivial. To see this just recall that, in
spherical coordinates, dŵ = sin3 θ sin2 θ1 sin θ2 dθ1dθ2dθ3dθ .
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m = 1

ζ

∫ π

0
dθ sin3 θ cos θ B(θ |ε, γ,m, r, β, ν)

r = 1

ζ

∫ π

0
dθ sin3 θ sign (cos θ) B(θ |ε, γ,m, r, β, ν) (15)

ζ =
∫ π

0
dθ sin3 θ B(θ |ε, γ,m, r, β, ν)

where B(θ |ε, γ,m, r, β, ν) :=
[
ε + (1 − 2ε) Φ

(
1
γ

(r cos θ + sign (cos θ)m)
)]βνγ 2

.

5 Mean Field Results

Equation 15 can only be solved numerically, and we do it by an iterative process. Let
u = (m, r, ζ ), then the set of equations is of the type u = F(u). An initial value u0
is chosen and the map

ut = (1 − α)ut−1 + αF(ut−1) (16)

is iterated. This is a fairly standard procedure for solving mean field self-consistent
equations. Since it is quite easy to converge no attempt at optimizing α was made.
The result can be checked by choosing different starting points u0. The results are
shown in Fig. 1.

It can be seen that there is a phase transition depending on the parameters βν and
γ . We investigate further this transition by looking at the phase diagram in Fig. 2.

We can also change variables in our mean field probability distribution. This is
useful because the inner representation ŵi is not readily accessible to the experimen-
talist, whereas the opinion field h in some applications might be:

P(h) =
∫

dμ(ŵ)δ

(
1√
K
ŵ · x − h

)
PMF(ŵ)

= 1

C
(1 − h2)

[
ε + (1 − 2ε) Φ

(
r

γ
h + m

γ
signh

)]βνγ 2

(17)

Now we can compute other interesting order parameters, such as the variance vm =〈
h2

〉 − 〈h〉2. The computational results we found are presented in Fig. 3.
As we vary ε to values greater than 0.1 the only change found was that the critical

line appeared at larger values of βν and γ , therefore being more difficult to polarize
(m �= 0) the mean field society.

Figure 2 shows that, for fixed β, the phase border can be crossed by increasing the
value of γ . This seems paradoxical, since larger γ is associated to a larger norm of
the covariance matrix. The explanation of this comes from the fact that the gradient
of the evidence, which determines the dynamics in Eq. 2, increases in magnitude
with γ when both agents concur. That is, high γ agents rely not only on the novelty
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Fig. 1 Solutions of equation 15. Top: The normalization of the MF distribution ζ as a function of
the social pressure and number of neighbors (βν). Bottom: The magnetization m. The other order
parameter r has a similar behavior to m

brought by disagreement but also learn from corroborating examples. For low γ ,
agents learn primordially from the novelty of disagreement. Therefore high γ agents
will keep on learning even after there is agreement on an issue, resulting in a more
ordered society. This same behavior was found in previous works when performing
Monte Carlo simulations on non-simplified (that is, without the MF approximation)
versions of this model. See for example [4, 5].

6 Discussion

We studied an agent-based model of a society of interacting information processing
machines. The agents in this model exchange their opinions on moral issues and
learn following a dynamics based upon maximum entropy methods. Depending on
the choice of global parameters, such as social pressure, cognitive style, and mistrust
level one finds a phase transition from a disordered phase to an ordered one, that is,
a phase in which the agents polarize near a common moral belief. This result was
to be expected since a similar phase transition appears in [4] and in [5]. As usual
in Statistical Mechanics, the phase transition is associated to a collective emergent
property of the model. Once the approximations that led to the Hamiltonian form
of the theory are taken, the order–disorder transition can be expected from general
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Fig. 2 Phase diagram in the spaceγ × βν.Aphase transition separates anordered fromadisordered
phase as signaled by the value of the order parameterm. Here, the value of ε was 0.1 and as it grows
toward 0.5 the ordered phase decreases

Fig. 3 Variance of the field h with respect to selected values of βν and γ

arguments.When the empirical data of theMoral Foundation group [7] is considered,
the states of societies is found to be in the ordered phase. The disordered state can
be seen as a region of parameters where there is no moral uniformity, hence agents
don’t share common moral values. It is tempting to associate a situation as that to
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what has been discussed by several authors, specially, Durkheim in the nineteenth
century and which he called a state of anomie. Whether, this association has any
merit deserves further investigation.

Cognitive processes in humans are certainly richer than the simple models we
study. We are not trying to describe the emergent properties of societies with any
other purpose than being general and a broad description should not attempt to
achieve precise numerical validations. The fact that we study mean field versions of
the model should not be a very strict limitation. We are making an approximation
to an already quite simple model. Despite these shortcomings, this work is to be
considered in a line of research that holds the promise of attacking some problems
not only of actual, but also perennial interest in the study of societies. Several simple
extensions and applications to datasets are under current consideration. The authors
will explore extensions of the model in further work.
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lowship grant no134812/2016-6. Work supported by CNAIPS, the Center for Natural and Artificial
Information Processing Systems of the University of São Paulo.

References

1. Alves, F., Caticha, N.: Sympatric multiculturalism in opinion models. In: Giffin, A., Knuth,
K.H. (eds.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering:
35th InternationalWorkshop onBayesian Inference andMaximumEntropyMethods in Science
and Engineering, July 2015. AIP Conference Proceedings vol. 1757, p. 060005 (2016)

2. Alves, F., Caticha, N.: Entropic Dynamics of Distrust and Opinions of Interacting Agents (In
preparation) (2018)

3. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod.
Phys. 81(2), 591–646 (2009)

4. Caticha, N., Vicente, R.: Agent-based Social Psychology: From Neurocognitive processes to
Social data. Adv. Complex Syst. 14(5), 711–731 (2011)

5. Caticha, N., Cesar, J., Vicente, R.: For whomwill the Bayesian agents vote? Front. Phys. 3(25),
1–14 (2015)

6. Galam, S.: Sociophysics: A Physicist’s Modeling of Psycho-political Phenomena. Springer,
New York (2012)

7. Haidt, J.: The emotional dog and its rational tail: a social intuitionist approach to moral judg-
ment. Psychol. Rev. 108(4), 814–834 (2001)

8. Haidt, J.: The new synthesis in moral psychology. Science 316(5827), 998–1002 (2007)
9. Haidt, J., Kesebir, S.: Morality. Handbook of Social Psychology, vol. 3:III:22, pp. 797–832

(2010)
10. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)
11. Jaynes, E.T.: Information Theory and Statistical Mechanics. II. Phys. Rev. 108(2), 171–190

(1957)
12. Kinouchi, O., Caticha, N.: Optimal generalization in perceptions. J. Phys. A 25(23), 6243–6250

(1992)
13. Opper, M., Winther, O.: A Bayesian approach to on-line learning. In: Saad, D. (ed.) On-Line

Learning in Neural Networks, pp. 363–378. Publications of the Newton Institute. Cambridge
University Press, Cambridge (1998)

14. Vicente, R., Susemihl, A., Jericó, J.P., Caticha, N.: Moral foundations in an interacting neural
networks society: A statistical mechanics analysis. Physica A 400(c), 124–138 (2014)



The Beginnings of Axiomatic Subjective
Probability

Marcio A. Diniz and Sandro Gallo

Abstract We study the origins of the axiomatization of subjective probabilities.
Starting with the problem of how to measure subjective probabilities, our main goal
was to search for the first explicit uses of the definition of subjective probability using
betting odds or ratios, i.e., using the Dutch book argument, as it is presently known.
We have found two authors prior to Ramsey (The foundations of mathematics and
other logical essays. Routledge &Kegan Paul, 1931, [43]) and de Finetti (FundMath
17:298–329, 1931, [20]) that used thementioned definition: Émile Borel, in an article
of 1924, and Jean-Baptiste Estienne, a French army officer, in a series of four articles
published in 1903 and 1904. We tried to identify, in the references given by Borel
and Estienne, inspirations common to Ramsey and de Finetti in order to determine,
in the literature on the probability of the beginning of the last century, at least some
elements that point to specific events that lead to the referred axiomatization. To
the best of our knowledge, the genesis of the axiomatic approach in the subjective
school was not traced yet, and this untold history can give us a better understanding
of recent developments and help us, as applied scientists, in future works.

Keywords History of probability · Axiomatic probability · Subjective probability

1 Introduction

In the beginning of the twentieth century, several scholars, although some of them
working separately, were gathering efforts in an endeavor which ended with the

1We are using the term “axiomatization” as the setting of unproved “basic statements about
the concept (such as the geometry of the plane) to be studied, using certain undefined technical
terms as well as the terms of classical logic.” [52, p. 9].
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axiomatization,1 of the three main interpretations of the concept of probability. The
frequentist interpretation won the day, and based its foundations on the works of
Richard von Mises. The subjective or personalistic interpretation based its develop-
ments on the works of Frank Plumpton [43] and, especially, Bruno [20]; and the logic
or logicist school, advocated initially by [27, 31], was fully axiomatized by [15], in
the philosophical field, and [17], for the applied sciences.

We decided to turn our attention to the origins of axioms in the subjective side, as
the origins of axiomatic probability in the frequentist school is well documented.2

Therefore, starting with the problem of how to measure subjective probabilities, the
main goal of this note was to search for the first explicit uses of the definition of sub-
jective probability using betting odds or ratios, i.e., using the Dutch book argument,
as it is presently known. These efforts can be, in the future, part of a larger project,
in which the primary goal will be, in the spirit of [25], to identify and understand the
specific events that lead the subjective approach toward axiomatization. In particular,
we would like to understand why the definition of probability using the Dutch book
argument was used explicitly only in the same period when the other schools were
also looking for axioms.

In our search, we have found two authors prior to Ramsey and de Finetti that
used the mentioned definition: Émile Borel, in an article of 1924, and Jean-Baptiste
Estienne, a French army officer, in a series of four articles published in 1903 and
1904. As far as we know, the ideas proposed by Borel date from the early 1920s
and, regarding Estienne, probably from the late 1890s. We tried to identify, in the
references given by Borel and Estienne, inspirations and quotations common to
Ramsey and de Finetti in order to determine, in the literature on probability of the
beginning of the last century, at least some elements that point to specific events that
lead to the referred axiomatization.

To the best of our knowledge, the genesis of the axiomatic approach in the sub-
jective school was not traced yet, and our contribution is a start that will, eventually,
fill this gap when joined with future work. The untold history can give us a better
understanding of recent developments and help us, as applied scientists, to “find
some connection between this abstract entity which satisfies certain mathematical
stipulations and the pragmatic content, the real meaning, of the important statements
of scientific and social intercourse which contain the word "probability" or one of
its synonyms.”3

2 Historical Context

In the late nineteenth century, pure mathematicians of different fields were search-
ing for suitable axioms for their areas, and probability was no exception. [4, p. 98]
wrote that probability theory would be ranked among the pure sciences only if “the

2See [1, 46] and references therein.
3[34, p. 4].
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principles upon which its methods are founded should be of an axiomatic nature.”
This was written decades before Hilbert presented his 23 open problems at the Inter-
national Congress of Mathematicians in Paris in 1900. The sixth problem was to
treat axiomatically, based on the model of geometry, those parts of physics in which
mathematics already played an important role, especially mechanics and, as Hilbert
classifies, probability.4

Even though applied probability was broadly disseminated, mathematicians were
not satisfied with the foundations of probability calculus,5 once its whole nature
seemed to be concerned with concepts that lie outside mathematics: events, trials,
randomness, probability. As [41]wrote,“one can hardly give a satisfactory definition
of probability.”

After some tentative replies toHilbert’s challenge, these concernswere completely
satisfied by Kolmogorov’s book. Probability was regarded, mainly, as a physical or
statistical concept, in the sense that represented physical properties of objects or
tendencies of aleatory events to present stable relative frequencies in the long run.
These were the ideas proposed by [47, 48]6 and [44], and which explicitly inspired
Kolmogorov’s system.7

This great advance, however, reinforced, among pure mathematicians, the idea
that “the subjectivistic theory of probability remained pretty much of a philosophical
curiosity. None of those for whom probability theory was a means of livelihood or
knowledge paid much attention to it.”8

Nevertheless, we now know that some scholars were seriously engaged in this
curiosity. The articles of [20, 43] are recognized as themost important ones, followed
by the synthesis of [45]. Working independently, Ramsey and de Finetti started by
tackling the fundamental issue of how to measure subjective probabilities, and the
idea was to use betting odds or ratios.9

4See [26, p. 454]. To explainwhat hemeant by axioms for probability,Hilbert citedGeorgBohlmann,
who named the rules of total and compound probability as axioms rather than theorems, [3].
5Probability was not regarded as an interesting research topic by pure mathematicians. As an
example of this feeling, see below the remarks made by Camille Jordan about the probability
lessons he had to teach at the Polytechnique. The only exception was, perhaps, the Russian school
in St. Petersburg led by Markov and Tchebychev.
6See [50] for an English translation.
7In a footnote to §2, “The Relation to Experimental Data,” of his book, [33, p. 3], mentioned that “In
establishing the premises necessary for the applicability of the theory of probability to the world of
actual events, the author has used, in large measure, the work of R. v. Mises, pp. 21–27.” See [49].
Therefore, althoughKolmogorov’s approach is strictly mathematical, i.e., can be adopted regardless
of the interpretation given to the axioms, the frequentist school rapidly embraced it.
8[34, p. 15].
9[43, p. 31] says: “The subject of our inquiry is the logic of partial belief, and I do not think
we can carry it far unless we have at least an approximate notion of what partial belief is, and
how, if at all, it can be measured.” On his side, [20, pp. 302–303] says “Now it is a question of
measuring subjective probability, that is, to translate in the determination of a number, our degree
of uncertainty about a given sentences; this is the first problem that presents when one wants to
establish the calculation of probabilities according to the subjectivistic conception.”
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The genesis of this idea, however, was not new, and may be traced back to the
origins of probability calculus. Cardano (1501–1576) does not mention probability
explicitly, but implicitly says that stakes should be placed according to probabilities.10

Thus, at least since Cardano, gamblers, and scholars knew how to compute stakes
from probabilities when they wanted to engage in a fair bet. The other direction (how
to compute probabilities from placed stakes) did not show up until the early twentieth
century, the periodwhen our search for explicit uses of theDutch book argument finds
the earlier instances. We now proceed to examine more closely the found examples,
providing also some brief biographical information about their authors.

3 Jean-Baptiste Estienne

Jean-Baptiste Eugène Estienne was born in 1860 at Condé en Barrois (now Les
Hauts-de-Chée), a small village between Reims and Nancy. He was admitted to the
École Polytechnique in 1880, graduating in 1882 as 131st of his year. Also, in 1882,
he won the first prize for mathematics in the concours général.11

He joined the French army as a second lieutenant in 1883, servingwith the artillery
from 1884. Having studied ballistics, he presented his first statistical application to
the subject in a work entitled “Étude sur les erreurs d’observation,” presented to the
Académie des Sciences in 1890.12 This work stimulated the introduction of modern
indirect firing methods.

Promoted to captain of the 1st Artillery Regiment in 1891, he began to develop
telemetric instruments and, in 1902 he was made squadron commander of the 19th
Artillery Regiment. He promoted the development of precision instruments for the
technical artillery section in Paris, and the use of telephonic connections to enable
the artillery to switch targets quickly. During this period, he presented other contri-
butions at the Académie and articles that were published in journals like the Comptes
Rendus de l’Académie de Sciences and the Revue d’artillerie. The “Essai sur l’art de
conjecturer” is a series of four articles published by the Revue d’Artillerie in 1903
and 1904.

At that time,Estienne was already reputed to be one of the most competent and
progressive officers in France, and one of the founders of modern artillery. He was
involved in the creation of the French air force and other artillery methods, most
notably tanks, during World War I. For this reason, he is known as père des chars,
or father of tanks, to this day.

10See [40, p. 202]: “So there is one general rule, namely, that we should consider the whole circuit
[the sample space], and the number of those casts which represents in how many ways the favorable
result can occur, and compare that number to the remainder of the circuit, and according to that
proportion should the mutual wagers be laid so that one may contend on equal terms.”
11Academic competition held every year between senior high school students.
12See [22]. Bertrand and Jordan were the chairs of the session when he presented the work.
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3.1 Essai sur l’art de Conjecturer

Estienne startswith the classical definition of probability, that assumes all the possible
cases — of some random experiment, we would say in modern days — are equally
probable. However, he adds, this equality of probabilities is not a mathematical fact
provable through reason or experience, but it depends on the personal appreciation of
each individual, and says that “I may have the right not to recognize the equality of
two chances admitted by others”. This definition of probability is called by Estienne
mathematical probability. He also warns that the narrow limits imposed by the
definition of mathematical probability lead to inconsistencies when such a theory
was applied “to facts absolutely foreign to its object”.

A more applicable concept would be that of what he calls vulgar probability,
which we can safely identify with a degree of belief or subjective probability. There-
fore,“the vulgar probability of an uncertain fact always exists in the mind of man,”
i.e.,it could be applied to every uncertain fact we face, and not only those where the
possible cases can be enumerated and judged as equally probable. In the beginning
of the second section, he presents the definition of the betting price or quotation, la
cote, given below.

“Definition of quotation –An individual expresses the degree of probability
that he attributes, rightly or wrongly, to the happening of an uncertain event,
by the fraction a

a+b , a being the quantity he is willing to bet against b that
the event will happen. The number a

a+b is the quotation of the event, for the
considered individual.”

Estiennementions that the quote does not depend on the units in which a and b are
measured, suggesting that a small amount should be used in order to avoid problems
relating quotes and material welfare.

Then,he proceeds to establish the general rules the calculi with quotations should
obey. As primary result, he points out that the individual should base his betting
prices on the common sense — le bon sens — in order to avoid contradictions when
assessing such prices. This implies, for instance, that a quote should not be greater
than one and that the quotes of certain, or believed as certain, events should be one.

The first main principle proved from the definition— the principle of total quotes
—, is merely the law of addition for the union of disjoint events. From this principle,
he remarks that the quotation on some event, when added to the quotation on the
negation of the same event, must be one. As a second remark, he mentions that the
“mathematical probability, when it exists, is a special case of the quotes”, deriving
the classical definition as a particular case of the quotation calculus when the possible
cases are judged equally probable.

The second principle — the principle of composed quotes —, is the law of mul-
tiplication for the intersection of events. As a corollary of this principle, he derives
Bayes’ rule. The second section is closed remarking that the principles that rule
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the quotation calculus are the same that rule probability calculus and that the dif-
ference between the vulgar and the mathematical definitions of probability are just
superficial. Therefore, Estienne adds, since probability calculus is also based on the
same principles demonstrated valid for the quotation calculus, one can concentrate
on the interpretation of the obtained results, since analytical results are plentifully
provided. In the sequel of the essay, Estienne illustrates the developed concepts with
applications in games of chance and ballistics.

4 Émile Borel

Félix Édouard Justin Émile Borel was born in 1871 in Saint-Affrique, department of
Aveyron in Southern France.13 In 188914 he applied for the École Polytechnique and
the École Normale Supérieure.15 Being qualified as the top candidate for both, he
chose to attend the later, beginning his studies the same year. In 1893, even before
finishing his doctorate, Borel was appointed lecturer at the University of Lille.

In 1897 he returned to the École Normale also as lecturer, and in 1904 was
appointed to the University of Paris at Sorbonne where, in 1909, he became full
professor of the chair of theory of functions, specially created for him. In 1920,he
also became full professor of the chair of probability calculus and mathematical
physics, which he held until his retirement in 1941. Between 1910 and 1920 he was
also Assistant Director of the École Normale.

His first paper on probability was published in 1905. In 1906, he started La
Revue du mois, a monthly magazine in which he defined in a specific manner the
new scientific program he intended to follow thereafter, the “practical worth of the
calculus of probabilities.” The Revue counted with contributions of several scholars
of diverse fields.16 In 1909 Borel published the paper that became a classical work in
the mathematical theory of probability, on “denumerable probabilities”, from which
the Borel-Cantelli Lemma originated.

During World War I, Borel was called by Paul Painlevé, a mathematician that
started a political career after the Dreyfus case, to become head of the Directorate for
inventions in the service of national defense.When Painlevéwasminister ofwar from
March to September 1917, Borel became director of theministry’s technical services,
and when Painlevé rose to prime minister, at the most tragic moment of WorldWar I,
in the autumn of 1917, Borel became general secretary of the government, entrusted
with all missions, including those connected with the scientific aspects of the war.17

13Distant 120 km from Montpellier.
14The same year he won the first prize for mathematics in the concours général, the same prize won
by Estienne in 1882.
15Preparatory school of teachers for the high school level.
16Poincaré and Karl Pearson, for instance, wrote contributions about probability and statistics.
17This allows one to conjecture that Borel and Estienne eventually met.
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Borel’s political activities did not prevent him from dedicating time to scientific
projects. In the early 1920s, he started a new publication of which he was the only
editor: the Traité du Calcul des Probabilités et de ses Applications, published in four
volumes and eighteen fascicles18 between 1925 and 1939. This was an important
work, which fell rapidly into relative obscurity after World War II, partly due to
Kolmogorov’s book, but also due to the publication of other books with a style
closer to pure mathematics.

In his later life, Borel became deputy for the department of Aveyron from 1924
to 1936, Minister for the Navy in 1925, mayor of Saint-Affrique from 1929 to 1941
and from 1945 to 1947.

4.1 Borel’s Review

Borel [10], “A propos d’un traité de probabilités,” is a reviewof [31]. After discussing
some aspects of Keynes’ book that are not relevant to our study, Borel turns to the
question of how tomeasure probability, a topic covered by Keynes on Chap. III, “The
measurement of probabilities” of his book. Keynes’ viewwas that some probabilities
could be compared, but not explicitly measured or attached to it a specific value.

With opposing view, Borel suggests a procedure to measure probabilities that is
analogous to the setting of prices of goods bought and sold in a given market. He
says, on page 332: “it seems that the method of betting allows, in majority of the
cases, a numerical evaluation of probabilities which has exactly the same character
as the evaluation of prices by exchange transactions.”

Being aware of the technical problems related to bets and money prizes, he sug-
gests that, if we do not want “to take into account the attraction or the reluctance
caused by bets, I would be able to offer the choice between two bets giving the same
advantages in case of gain. Paul says it will rain tomorrow; I admit that we agree
on the precise meaning of this statement and offer him, at his choice, to receive 100
francs if his statement is true, or to receive 100 francs, if he obtains 5 or 6 throw-
ing a die. In this second case, the probability of receiving 100 francs is equal to
one third; if he prefers to receive 100 francs in case his prediction is accurate, it is
because he attributes to this prediction a probability greater than one third. [...] The
same method applies to all verifiable sentences and allows the numerical evaluation
of probabilities with a precision quite comparable to the precision with which the
prices are evaluated.”

He reminds that “for probabilities as for prices, [...] sentimental reasons will
intervene to distort the numerical evaluation”, but adds that “Even if the exceptional
cases were, which I do not think, more numerous for probabilities than for market
prices, it would still be possible to establish a mathematical theory applicable to all
probabilities numerically evaluated and this theory would have a very large scope of
application, as well as economic theories have an importance that is not diminished

18Five of them written by Borel himself.
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by the fact that there are values, such as the conscience of a judge, that are not for
sale.”

5 Common Influences

In this section, we search for ideas or authors that may have influenced Estienne or
Borel. We start looking for references given in [20, 43].

Ramsey [43] does not provide anyprevious influence or reference for his approach,
saying only that the“old-established way of measuring a person’s belief is to propose
a bet, and see what are the lowest odds which he will accept.”, [43, p. 172].

On his side, [20, p. 303] explicitly mentions that the idea of using betting odds
to measure subjective probabilities was based on an observation due to [2, p. 27]. In
the referred page, Bertrand says that the probability of some event for a person is p
if that person was prepared to exchange the consequences attached to the happening
of the event to identical consequences attached to a drawing from an urn with a
probability equal to p. To illustrate the concept, Bertrand remarks that, if I accept
that the probability for the doctor coming upon being called is 9/10 and is 1/3 for
a successful treatment, the probability of cure through treatment is, "for me", as
Bertrand highlights, 9/10× 1/3 = 3/10. From this, he concludes that one’s probability
evaluations must follow the rules of total and composite probability — the actual
subject of the section where we find these lines — but nothing more is elaborated
from these ideas.

Finetti [21, p. 6, footnote], also wrote later that Bertrand introduced subjective
probabilities “for the sole purpose of opposing them with other ‘objective probabil-
ities’.”19

5.1 Estienne’s Background

Estienne [23] also refers to [2], quoting several examples of this book, but also
implicitly. Since Bertrand taught at the École Polytechnique from 1854 to 1894,20 it
is interesting to review some facts about the courses Estienne probably took during
his years there, i.e., the early 1880s.

In those years, Bertrand and Camille Jordan took turns teaching the Analysis
course, an annual course which should cover the main topics on probability theory in
three lessons, and it was given to second-year students.21 Bertrand taught the classes
of students that started on even years and Jordan taught the classes that started on

19Actually de Finetti mentioned page 24 in [21], probably a typo since in [20] he mentions page
27. The error was kept in the translation published in [34].
20[16, p. 61].
21[16, p. 63].
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odd years.22 Therefore, since Estienne started his studies in 1880, he was probably
taught by Bertrand.23

After 1885, thePolytechnique professors receive strict instructions and probability
was explicitly inserted in the syllabus24 but before that there was a lot of freedom
regarding the syllabus.25 This fact and some remarks made by Jordan about the same
period,26 make us wonder that his students, before 1885, were not introduced to
probability.

However, even Jordan’s students apparently had contactwith basic probability and
some of its applications. These were provided by the mandatory ballistics course,
taught at the École d’application de l’artillerie et du génie, in Fontainebleau, by
captain Esprit Pascal Jouffret.27

This course had as part of the syllabus the use of probabilistic methods to bal-
listics. From [12, p. 40], we know that Jouffret’s course was based on four articles
published on the Revue Maritime et Coloniale in 1873 and 1874.28 In [29], he labels
the classical definition of probability as mathematical probability, to distinguish it
from the philosophical probability, as he calls it, in a way similar to Estienne, that
distinguished mathematical probability from vulgar probability.

Jouffret says that philosophical probability is based on the induction and analogy
and that these probabilities do not seem expressible by numbers, even though “they
are imposed on us with more or less force, according to the degree of naturalness
and simplicity, their concordance with notions we already have, etc.”29 Just after this
remark, he returns to the classical definition and, to illustrate the concept, considers
some event A, which has f favorable and equiprobable “cases”, being N the total
number of also equiprobable cases. Then the probability of A, p, is f/N , and of its
complement, q, is 1− p, leading him to conclude that it is a bet of p against 1− p,
or of p/(1− p) against one, that event A will happen.

The use of betting odds to illustrate probabilities computed under the classical
assumption was not new, being extensively used by [2, 36, 37], but with early exam-
ples given in [14, 35], just to mention French authors. In his subjective view, [23,
61, p. 407] partly agrees with such an illustration, but adds: “Laplace was certainly
entitled to express his degree of personal conviction by the offering of such a bet,
if his calculations authorized him, but he abused the authority of his geniality by

22[39, pp. 10–11].
23In fact, Jordan taught in 1888 — see “Camille JORDAN: Leçons de Probabilités à l’Ecole Poly-
technique (1888),"available at http://www.jehps.net/decembre2009.html — which gives us evi-
dence that Estienne was, indeed, taught by Bertrand.
24That is why we have class notes of Jordan’s 1888 lecture notes.
25See [16, p. 63].
26According to [19, p. 205], Jordan wrote in 1894: “I would like to see [...] disappear without regret
[from the course of analysis] the three lessons that I devote to the calculus of probabilities”.
27See [19] and [39, p. 11].
28See [28–30].
29[29, p. 10].

http://www.jehps.net/decembre2009.html
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claiming to impose his figure on the universality of men.”30 However, none of the
above authors explicitly used betting odds to define probability in a way at least
similar to Estienne.31

5.2 Borel’s Background and Former Works

As mentioned above, Borel was approved at both the École Polytechnique and the
École Normal Supérieure. He chose the second, and this was the most appropriate
path to enter the closed French academic world at the end of the nineteenth century.
According to [18], probability was not taught at the École Normal, but from [13, p.
287], we know that Borel attended Poincaré’s course at the Sorbonne.32 Therefore,
we may say that Borel was fully acquainted with [41]33 which, alongside [2], were
themost important textbooks on probability at the beginning of the twentieth century.

In his doctoral thesis, [5] studied series that were known to diverge on a dense
set of points on a closed curve and hence, it was thought, could not be continued
analytically into the region bounded by the curve. Borel then discovered that the set
of points where divergence occurred, although dense, can be covered by a countable
number of intervals with arbitrarily small total length, i.e., the first version of the
presently called Heine–Borel theorem.

As remarked by [46], this discovery led Borel to a new theory of measurability for
subsets of the [0, 1] interval. The same approach was used by Borel’s former student
at the École Normale, Henri Lebesgue, as the basis of a new theory of integration in
[38]. The first article Borel wrote using measure theory on probability was [6]. This
article explains how the presently called Borel measure allows one to extend and
make more precise the calculation of geometric probabilities. The results obtained
allowed him to state that “the new theory justified Poincaré’s intuition that a point
chosen at random from a line segment would be incommensurable with probability
1," Shafer and Vovk [2006, p. 16].

30He goes on bringing an example: “When the dimensions of a rectangular field are given the
values 200m and 300m, we are forced to admit that the field has [an area of] 6 hectares; it would
be a mistake to claim that the numeral 6 is imposed by geometry on those who would not have
first agreed on the accuracy of the dimensions.” This echoes [2, p. 28]: “If it is alleged that it is
impossible to measure in figures the probabilities of which we are speaking, the objection would
be as unfounded as if, evaluating the length of a field of rectangular appearance at 300m and the
width at 100m, to add, irrespective of any verification, that such measures, however doubtful they
may be, and these assessments assign to the field an area of three hectares.”
31When Estienne took Bertrand’s course, in 1881–1882, the book of his professor has not yet been
published. In the preface, [2, p. v] mentions that the book was based on the course he taught at the
Collège de France. Bertrand also mentions Jouffret, as “Jauffret” [2, p. xxxvi], citing his colleague’s
illustration of the law of large numbers using an example from ballistics.
32Poincaré was full professor of the chair of probability theory and mathematical physics, being
eventually succeeded by Borel [51, p. 36].
33Like [2], entitled Calcul des Probabilités. A second edition was published in 1912.
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According to [13], Borel gave his first course on probability calculus at the Sor-
bonne in 1908-1909. His textbook, Éléments de la theorie des probabilités, was
published in 1909, the same year he published another paper on the subject, [8].
This article was important because it strengthened the connection between measure
theory and probability. In it, Borel proves a version of the law of large numbers —
the Borel-Cantelli lemma — for a denumerable sequence of independent trials. He
poses the question as a problem of geometrical probability: the fraction of ones in
the binary expansion of a real number chosen at random from [0, 1] converges to 1/2
with probability 1. Being related to number theory, the paper called the attention of
pure mathematicians [51, p. 57], [13, p. 289] and was crucial to the ongoing research
that resulted in Kolmogorov’s book.

Mentioning the importance of this 1909 article, [24, p. 54], recalls also the intro-
duction of countable additivity in probability theory: “It was at the moment when
Mr. Borel introduced this new kind of additivity into the calculus of probability — in
1909, that is to say — that all the elements needed to formulate explicitly the whole
body of axioms of probability theory came together. [...] This is what Mr. Kolmogorov
did. This is his achievement.”

Although involved with the axiomatization of the objective interpretation of prob-
ability, Borel inherited fromPoincaré a double position on themeaning of probability.
[42], a popular exposition on science and philosophy, admits the subjective charac-
ter of probability, but also states the objectivity of statistically stable phenomena
observed in nature.

In [7], a note written for the Revue du Mois, he differentiates objective and subjec-
tive probabilities.34 The difference, for him, is one of degree: when there is a situation
where the probabilities are far away from 1 and 0, probability has a subjective value
in the sense that some action has to be taken, and it is up to the individual to decide
[51, p. 44].

Borel’s early concept seemsoddwhen comparedwith the presentmeaninggiven to
subjective probability, but in his 1924 review of Keynes’ book, we find a developed
notion. There he accepts Keynes’ idea that a probability is relative to a body of
knowledge, and accepts the modern subjective character of probabilities proposing
the method of betting discussed above. This view was revisited in [11], the last
fascicle of the series Traité du calcul des probabilités et ses applications.35

34In [9, pp. 226–227], he wrote that “It is not a difference of nature that separates the objective
probability from the subjective probability, but only a difference of degree. A result from probability
calculus deserves to be called objective when the probability becomes large enough to be confounded
with practical certitude.”
35In [11], in pages 84 through 86 he explains themethod of betting and in the last section (Conclusion
and probability of a single trial), he reviews the argument and mentions [21]. In 1928 Borel help
was important in the establishment of the Institut Henri Poincaré, a research institution devoted
to probability theory and mathematical physics, where several lectures were held in the 1930s,
including de Finetti’s, presented in 1935 and published in 1937.
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6 Final Remarks

Our search for early explicit uses of betting odds to define subjective probabilities led
us to two French authors of the beginning of the twentieth century, both influenced
by important scholars of the period — Joseph Bertrand and Henri Poincaré — when
the French school still admitted a dual interpretation of the meaning of probability:
subjective and objective.

Regarding our main characters, we believe our report allows one to see Estienne
as the progressive and pragmatical man from the military, advocating the subjective
definition of probability, and Borel as the traditional scholar, a true heir of Poincaré,
accepting both the objective and subjective views. While Borel only suggested the
argument as a way to elicit probabilities, Estienne presented a formulation that today
one clearly recognizes as precursory to ideas completely formalized by Ramsey and
de Finetti. He explicitly used an individual’s assessed betting price as the definition of
subjective probability; recognized le bon sens—which de Finetti called “coherence”
— to avoid contradictions in the offered prices as providing the mathematical basis
for the rules of probability, and derived the sum and product rules of probability
calculus. From this perspective, we can say that Estienne’s efforts were much closer
to a rigorous axiomatization than the suggestions made by Borel.

These remarks made us speculate a little more about Estienne’s views. After read-
ing several scholars that wrote about probability during the nineteenth and beginning
of the twentieth century, we distinguished two (almost) opposing groups: one, more
purist, advocating mathematical rigor above everything; the other, more pragmatic,
looking for applications in any scientific field. Some scholars are easily qualified in
one of the two groups, but some were, perhaps, at the intersection.

For us, it is not wrong to say that Estienne and Borel were at this intersection.
Although it is not easy to see Borel at both groups, we can also qualify Estienne as a
dualist. He wanted to define the concepts clear and precisely, but once this was done,
one would be entitled to use probability in whatever applications were needed.

As possible developments of this research, we propose, first, a detailed review of
the literature of probability theory of the late nineteenth century and of the histori-
ography of gambling and betting on sports. A more detailed study of the academic
environment of mathematics and probability in Europe and U.S. at the end of the
nineteenth century is also recommended. A second possible extension is to search
and understand the reasons of the described axiomatization, as well as for the time
period of which happened. In this direction, it would be relevant to study the parallel
concept of utility and how it helped to promote the full axiomatization of subjective
probability in [43, 45], and the advent of game and decision theory.
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Model Selection in the Sparsity Context
for Inverse Problems in Bayesian
Framework

Mircea Dumitru, Li Wang, Ali Mohammad-Djafari and Nicolas Gac

Abstract The Bayesian approach is considered for inverse problems with a typical
forward model accounting for errors and a priori sparse solutions. Solutions with
sparse structure are enforced using heavy-tailed prior distributions. The particular
case of such prior expressed via normal variance mixtures with conjugate laws for
the mixing distribution is the main interest of this paper. Such a prior is considered
in this paper, namely, the Student-t distribution. Iterative algorithms are derived via
posterior mean estimation. The mixing distribution parameters appear in updating
equations and are also used for the initialization. For the choice of mixing distri-
bution parameters, three model selection strategies are considered: (i) parameters
approximating the mixing distribution with Jeffrey law, i.e., keeping the mixing dis-
tribution well defined but as close as possible to the Jeffreys priors, (ii) based on the
prior distribution form, fixing the parameters corresponding to the form inducing the
most sparse solution and (iii) based on the sparsity mechanism, fixing the hyperpa-
rameters using the statistical measures of the mixing and prior distribution. For each
strategy of model selection, the theoretical advantages and drawbacks are discussed
and the corresponding simulations are reported for a 1D direct sparsity application
in a biomedical context. We show that the third strategy seems to provide the best
parameter selection strategy for this context.
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1 Introduction

In this paper, we compare three model selection strategies for a particular context
of the Bayesian approach for inverse problems. More precisely, we consider a linear
model describing the forward problem and the available prior information about
the sparse structure of the unknown. The sparse structure is modeled via heavy-
tailed priors (P), well known in the literature for enforcing sparsity [1–3]. The
particular class of priors considered in this article is the zero-mean normal variance
mixtures. The unknowns are estimated using the PosteriorMean (PM) estimation via
Variational Bayesian Approximation (VBA), [4, 5]. Typically, the initialization of
the derived iterative algorithm is done using the hyperparameters [6], i.e., the mixing
distributions (M ) parameters. Therefore, the model selection is a crucial step in such
algorithms. In this specific context, three different strategies for model selection are
considered and compared for the particular Student-t prior case. We consider the
linear forward model,

g = H f + ε, (1)

where g represents the N × 1 observed data, H represents a N × M measurement
matrix, f represents the unknown sparse signal and ε accounts for measurement and
modeling errors. In this paper, the sparsity is accounted in the Bayesian hierarchical
priormodels framework, using sparsity enforcing prior distributions tomodel f j , j ∈
{1, . . . , M}, [1, 7]. For computational reasons, we consider heavy-tailed distributions
expressed via zero-mean normal variance mixtures with conjugate priors as mixing
distributions, {

p( f j | v f j ) = N ( f j | 0, v f j )

p(v f j | ξ f ) = M (v f j | ξ f )
, (2)

where ξ f represents the parameters of the mixing distribution. In this article, the
Inverse Gamma distribution (IG ), corresponding respectively to the two parame-
ters Student–t (S t) distribution will be considered for simulations results and com-
parisons between the different model selection strategies considered. However, the
framework is general and can be used for other sparsity enforcing priors expressed as
normal variance mixture, e.g., the Normal-Inverse Gaussian (N IG ) distribution
and the Variance–Gamma (V G ) distribution. The nonstationary independent Gaus-
sian uncertainties model is assumed with conjugate priors modeling the variances,

{
p(εi | vεi ) = N (εi | 0, vεi )

p(vεi | ξ ε) = M (vεi | ξ ε)
, (3)

where ξ ε represents the parameters of themixingdistribution. For the derived iterative
algorithms, the parameters of the posterior mixing distributions ξ̂ f and ξ̂ ε modeling
variances v f j and vεi , have updating expressions depending on ξ f and ξ ε.
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The model selection, i.e., the choice of prior mixing parameters ξ f and ξ ε is
therefore crucial in the context of non-supervised algorithms. In practice, such algo-
rithms can be obtained by considering noninformative priormixing distributions, i.e.,
considering the Jeffreys prior as the mixing distribution (more exactly, conserving
the conjugate prior setting, using the conjugate prior with parameters values ξ f and
ξ ε such that the corresponding mixing prior is close to Jeffreys prior). This approach
was successfully used in [8].

Two other model selection approaches accounting for the sparsity particular con-
text and the specific sparsity enforcing priors used are considered. The first one is
based on the form of the prior distribution, i.e., a model selection strategy consid-
ering the parameters for which the prior distribution is as concentrated as possible
around the mean. For the second one, we first show that the variance of the posterior
distribution Var[P ], modeling f is linked with the expectation of theM distribution
E[M ], modeling the corresponding variance v f . More precisely

Var[P ]
(
f j

) = E[M ]
(
v f j

)
. (4)

Second, we consider a small variance for the prior distribution, i.e., Var[P ]
(
f j

) =
ε ↘ 0 in order to impose a model that is concentrating the points f j around the
zero-mean. Clearly, doing this, via Eq. (4), the expectation of the mixture distribu-
tion has the same value and doing the same for the mixture distribution variance,
Var[M ]

(
v f j

) = ω ↘ 0 will impose a sparse structure for v f , with small values v f j
corresponding to the small values f j and significant values v f j corresponding to the
significant values f j . A sparse structure is therefore enforced by:

1. considering a heavy-tailed prior distribution.
2. setting a small variance for prior distribution, Var[P ]

(
f j

) = ε ↘ 0.
3. enforcing a sparse structure for v f by setting a small variance also for the mixing

distribution Var[M ]
(
v f j

) = ω ↘ 0.

The rest of the paper is organized as follows. Section2 is introducing the general
hierarchical prior model, setting the context of the particular class of sparsity enforc-
ing prior used, and presenting the normal variance mixtures considered during paper
and their behavior depending on the parameters. The corresponding PM algorithms
are developed in Sect. 3. Empirical evaluations of performances and comparisons
between the results corresponding to the two approaches for modeling the hyperpa-
rameters are presented in Sect. 4. Conclusions are drawn in Sect. 5.

2 Hierarchical Prior Models Based on the Normal Variance
Mixtures

The framework of the hierarchical prior model discussed in this paper, Fig. 1, is based
on the sparsity enforcing prior distributions expressed as marginals of normal vari-
ance mixtures and nonstationary independent Gaussian uncertainties (noise) model
with conjugate priors modeling the variances. The posterior distribution writes
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Fig. 1 Hierarchical Prior
Model for Forward Model,
Eq. (1)

p( f , vε, v f | g) ∝ N (g | H f , vε) N
(
f | 0, v f

)
M (v f j | ξ f ) M (vεi | ξ ε).

(5)

In this specific framework, the product of the two conditional distributions
p (g | f , vε) = N (g | H f , vε) and p

(
f | v f

) = N
(
f | 0, v f

)
is common to

the posterior distribution, while the differences are induced by the choice of the
mixing distributions p(v f j | ξ f ) = M (v f j | ξ f ) and p(vεi | ξ ε) = M (vεi | ξ ε). We
consider in the following the particular case of the Student–t prior expressed as a
normal variance mixture.

2.1 Inverse Gamma Mixing Distribution

In Eq. (2), the Inverse Gamma is considered as the mixing distribution, M (v f j |
ξ f ) = IG

(
v f j | α f , β f

)
, with the probability density function given by:

IG
(
v f j | α f , β f

) = β
α f

f

Γ
(
α f

)v−α f −1
f j

exp

(
−β f

v f j

)
, α f > 0, β f > 0, (6)

where Γ (·) denotes the Gamma function. The corresponding hyperparameters are
ξ f = (

α f , β f
)
, and the corresponding prior p

(
f j | α f , β f

)
is a two-parameter S t

distribution:

p( f j | α f , β f ) = Γ (α f + 1
2 )√

2πβ f Γ (α f )

(
1 + f 2j

2β f

)−(α f + 1
2 )

= S t ( f j | α f , β f ). (7)



Model Selection in the Sparsity Context for Inverse Problems in Bayesian Framework 159

α f = β f = ν f /2 corresponds to the standardS t form, [6]. The expectation of mix-
ing distribution IG (equal to the variance of the S t distribution) and the variance
of the mixing distribution IG are given by

E[I G ]
(
v f j

) = Var[S t]
(
f j

) = β f

α f − 1
;Var[I G ]

(
v f j

) = β2
f(

α f − 1
)2 (

α f − 2
) ,

(8)
with α f > 1 for the first equality and α f > 2 for the second one. This model gives
the possibility to consider a heavy-tailed distribution to model the sparse structure
of f . It is expressed via the Normal distribution and a conjugate prior, which has
great computational advantages, guaranteeing the same family distributions for the
posterior distributions. The choice of the (prior) parameters α f and β f plays a crucial
role. Different approaches can be considered to choose the parameters.

1. An approach based on the prior distribution form, imposing a small value for β f

and a large value for α f . Establishing how small or how large the parameters
should be set is difficult.

2. Close to Jeffreys prior, setting both parameters close to zero. As before, the same
difficulty of establishing how close to zero the parameters should be fixed is
encountered.

3. Using Eq. (8) to fix the parameters depending on the mixing and prior distribution
moments. The relation between α f and β f parameters and the moments ε and ω

is given by

α f = 2 + ε2

ω
; β f = ε

(
1 + ε2

ω

)
. (9)

This model selection is based on the data characteristics, i.e., the sparse structure.
However, the same difficulty appears for establishing how small should ε and ω

be.

Table1 resumes the three strategies considered for model selection.

3 PM Estimation via VBA

The PM estimation is considered via Variational Bayesian Approximation (VBA).
The posterior distribution is first approximated with a separable one,

p( f , v f , vε | g) ≈ q( f , v f , vε | g) = q1( f )
M∏
j=1

q2 j (v f j )

N∏
i=1

q3i (vεi ), (10)

by minimizing the Kullback–Leibler divergence. Proportionality relations for each
separable distribution are obtained. It can be shown that q1 ( f ) is a multivariate
Normal distribution,
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q1( f ) = N
(
f | f̂ , Σ̂

) ; f̂ =
(
HT Ṽ εH + Ṽ f

)−1
HT Ṽ ε g, Σ̂ =

(
HT Ṽ εH + Ṽ f

)−1
,

(11)
using the notations

ṽεi =
〈
v−1
εi

〉
q3i(vεi )

, i ∈ {1, . . . , N } ; ṽε = [
. . . ṽεi . . .

]T ; Ṽ ε = diag [̃vε] ,

ṽ f j =
〈
v−1
f j

〉
q2 j

(
v f j

), j ∈ {1, . . . , M} ; ṽ f = [
. . . ṽ f j . . .

]T ; Ṽ f = diag
[̃
v f

]
. (12)

In general, q2 j (v f j ) and q3i (vεi ) belong to the same family as the M distribution.
In particular, for the S t prior, q2 j (v f j ) are IG (v f j | α f + 1

2 , β̂ f j ) and q3i (vεi ) are
IG (vεi | αε + 1

2 , β̂εi ) distributions, with the analytical expressions of β parameters
given by:

β̂ f j = β f + 1

2

(
Σ̂ j j + f 2j

) ; β̂εi = βε + 1

2

[
H i Σ̂HT

i + (
gi − H i f̂

)2]
(13)

The parameters corresponding to the multivariate Normal distribution are
expressed via Ṽ f and Ṽ ε (and by extension all elements forming the two matrices
ṽ f j , j ∈ {1, 2, . . . , M} and ṽεi , i ∈ {1, 2, . . . , N }, Eq. (12)). The following relation
holds: 〈

x−1
〉
I G (x |α,β)

= α

β
(14)

4 Simulation Results

The forward model Eq. (1) is considered for a 1-D application in biology, where a
short time series of gene expressions is modeled as

g(t) =
M∑
j=1

f1 j cos

(
2π

p j
t

)
+ f2 j sin

(
2π

p j
t

)
+ ε(t), (15)

where p j ∈ [8, . . . , 32], t = 1, . . . , N , and the objective is to find f 1 = [
f1 j , . . . ,

f1M ] and f 2 = [
f2 j , . . . , f2M

]
. This relation can be written as:

g = H f + ε = [
H1|H2

] [
f 1
f 2

]
+ ε = H1 f 1 + H2 f 2 + ε. (16)

The objective is a precise estimation of the periodic component (PC) vectors ( f 1
and f 2, considered between 8 and 32 hours) corresponding to a short (relative to the
a priori dominant period) signal g (considered for four days, sampled every hour).
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Fig. 2 Synthetic data: 4-days noisy signal g sampled every hour and corresponding PC vectors f 1
and f 1

The biological prior information is the reduced number of nonzero periods, i.e., the
sparse structure of the PC vector. More details about the application and limitations
of the classical methods can be found in [6, 9].

The synthetic PC vectors f 1 and f 2 are presented in Fig. 2a, b, the correspond-
ing biological signal in Fig. 2c and the added noise (corresponding to 10dB) in
Fig. 2c. We consider the PM iterative algorithm, corresponding to the Student-t prior
model. The three different model selection strategies are considered. The algorithm
initialization is done via the hyperparameters, i.e., the M distribution parameters,
modeling, respectively v f and vε. In this paper, we are interested in testing which
model selection strategy is most adequate in enforcing the sparsity, for this specific
prior model and this specific application. The results discussed in this section are
limited to this aspect. For this purpose, the simulations are done assuming E[M ](vε)

and Var[M ](vε) to be known, and then the noise hyperparameters, namely the M
parameters modeling vε, are derived, depending on the noise model, via Eq. (9).

The estimated PC vectors f̂ 1 and f̂ 2, corresponding to theS t prior, are compared
with synthetic data, in Fig. (3).

1. Results corresponding to the Jeffreys prior model selection are reported in Fig. 3a,
b. The results correspond to α f = β f = 10−3. Clearly, the estimation results are
far from the synthetic input. More important, for this model selection, the prior
distribution does not enforce sparsity very well. Indeed, for the first periods of
the PC vector the estimation is rather good with the zero values well estimated,
but for the second part of the PC vector the sparsity is not enforced.
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Fig. 3 Comparison between the data f 1, f 2 (blue) and f̂ 1S t , f̂ 2S t (red). Three model selection
strategies,S t prior model: Jeffreys like, ( α f = β f = 10−3, Fig. 3a, b), based onS t form, ( α f =
10−3, β f = 10−3, Fig. 3c, d) and sparsity based, ( α f = 2 + ε2

ω
, β f = ε

(
1 + ε2

ω

)
, ε = ω = 10−3,

Fig. 3e, f)

2. Results corresponding to the model selection based on the S t prior distribution
is reported in Fig. 3c, d. The results correspond to α f = 103, β f = 10−3. In this
case, the result is too sparse: all PC vector values are estimated as zero values.
Those particular values correspond for a strong prior, which does not account
for data. We will see that this model selection strategy can lead to very good
estimation results. In particular, for α f = 101, β f = 10−1 both estimations f̂ 1
and f̂ 2 are precise.
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Table 2 m. s. for S t prior model: qualitative estimation depending on the numerical values for
α f and β f parameters.

Jeffreys like
α f = β f = 10−k

S t form α f = 10k ;
β f = 10−k

Sparsity mechanism
ε = ω = 10−k , Eq. (9)

k = 1 ✗ ✓ ✓

k = 2 ✗ ✗ ✓

k = 3 ✗ ✗ ✓

k = 4 ✗ ✗ ✗

k = 5 ✗ ✗ ✗

3. Finally, the results corresponding to the model selection based on the sparsity
mechanism are reported in Fig. 3e, f. The results correspond to ε = ω = 10−3

(see Eq. (9)).

The reconstruction results corresponding to different hyperparmeters values, for
each of the three model selection strategies, are reported in Table2. We consider
k ∈ {1, 2, 3, 4, 5} and the following values corresponding to each model selection
strategy:

1. for Jeffreys like model selection, we consider α f = β f = 10−k .
2. for model selection based on the S t form, we consider α f = 10k ; β f = 10−k .
3. for model selection based on sparsity mechanism, α f and β f are defined via

Eq. (9), using ε = Var[S t] = E[I G ] and ω = Var[I G ]. We consider ε = ω =
10−k .

Table2 reports the quality reconstruction not in the sense of some numericalmeasure,
like L1 or L1 reconstruction errors but rather if the results are as sparse as the synthetic
inputs f 1 and f 2. We notice that the model selection strategy based on the sparsity
mechanism, for the S t prior model is more flexible. Good results can be achieved
using the P distribution form. In this case, having to set a small value for one
hyperparameter (β f ) and a significant value for the other (α f ) is a difficult task, since
each of both hyperparameters are influencing the P distribution form, enforcing
sparsity to much. Model selection strategy based on the sparsity mechanism is the
statistical measures of the unknown of the model and its corresponding variance,
which generally can be approximately inferred in each application. Moreover, some
preliminary results are indicating a strong influence of ε and a week influence of ω

in the model selection, so reducing it to only one parameter.

5 Conclusion

In the Bayesian framework, using heavy-tailed distributions in order to enforce spar-
sity,wehave compared thePMiterative algorithms reconstruction results correspond-
ing to a specific sparsity enforcing law (Student-t) corresponding to three different
model selection strategies in terms of sparsity enforcing.
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The model selection strategy based on the sparsity mechanism can lead to good
results in terms of sparsity enforcing and seems to bemore flexible than the other two
strategies considered. This model selection strategy is based on the assignment of the
hyperparameters using the statistical measures of the prior and mixing distributions,
ε and ω. The interval for selecting ε and ω is rather large in all three cases. Some
preliminary results indicate a week dependency between ω the reconstruction results
in terms of sparsity enforcing.

The sparsity is not enforced when the model selection strategy based on Jeffreys
priors is used. The model selection strategy based on the prior distribution form can
give good reconstruction results in term of sparsity enforcing but in this case, the
interval seems to be rather small.

Clearly, the results strongly depend on the application and on the specific prior law
(induced by the choice of the mixing distribution). For future work, those strategies
will be compared for other sparsity enforcing distributions and other applications.
Also, a key concept is the sparsity rate (SR). Another perspective of this work is to
study a possible relation between the SR and the model selection, more precisely a
link between the model selection and SR.

We mention that in this paper, we have measured the reconstruction results in
terms of sparsity enforcing. Evidently, this is just the first the step in a much more
detailed analysis, accounting also for different reconstruction measures, like L1, L2

reconstruction errors, false positives, etc. This paper reports the preliminary results
corresponding to the best model selection strategies for the Student-t prior model in
terms of sparsity enforcing.
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Sample Size Calculation Using Decision
Theory

Milene Vaiano Farhat, Nicholas Wagner Eugenio and Victor Fossaluza

Abstract Decision Theory and Bayesian Inference have an important role to solve
some common problems in research and practice in the medical field. These deci-
sions may be from different natures and can consider several factors, such as the cost
to carry out the study and each sample unit and, especially, the risks for the patients
involved. Here, the estimation of sample size calculation considers the cost of sam-
pling units and clinically relevant size of the credible interval for difference between
groups. By fixing a probability to the HPD region, the Bayes’ Risk is calculated for
each sample size possible and it is chosen the optimal sample size, that minimizes
the risk. In addition, a second solution is presented by setting the amplitude of the
credible interval, leaving its probability free. It is considered a Normal distribution
for data with unknown mean and fixed variance (Normal prior) and the case where
both mean and variance are unknown (Normal-Inverse Gamma prior). It is presented
as a solution considering the statistical distribution of sufficient statistics. In scenar-
ios with no analytical solutions, the optimal sample sizes are presented using Monte
Carlo methods.

Keywords Bayesian statistics · Decision Theory · Sample size

1 Introduction

Clinical research is a branch of health science that determines the safety and efficacy
of drugs, devices, diagnostic products and treatment regimens intended for human
use. These can be used for prevention, treatment, diagnosis, or relief of the symptoms
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of an illness. The positive and well-established results of these surveys are used by
health professionals in clinical practice.

Both in research and in clinical practice, it is common for themedical professionals
to come across a situationwhere they need tomake decisions. These decisionsmay be
of various natures, such as which is the best clinical trial design and how the sample
should be composed or what type of treatment is best for each type of patient. In
addition, these decisions must take into account several factors: the cost to carry out
the study and each sample unit and, especially, the risks to the patients involved.

The Decision Theory provides a mathematical basis for rational decision-making,
taking into account the “usefulness” (or “losses”) of each possible action [1–4].
Although [5–7] and other authors have already suggested the use of Decision Theory
in the clinical area, the lack of mathematical or statistical knowledge on the part of
many medical researchers make its use limited. A very consistent way to apply
Decision Theory is through Bayesian Inference.

The purpose of this paper is to use Decision Theory to solve some common
problems in medical research and practice. Particularly, the problem of sample size
calculation for the usual issues of the area was treated considering the cost of the
study, the sample units and the amplitude of the difference between the groups, so
that the detected difference is clinically relevant. The solution to a similar problem
was presented in [8]. In addition, it was developed as a function in [9] for performing
the calculations.

2 Bayesian Region Estimation

Let Θ be the parametric space (or state space) such that each θ ∈ Θ represents a
possible realization of the “state of nature”, the unknown element of interest, and
consider the actions space D where each element d ∈ D represents a possible action
(or statement about θ ) which the decision maker can choose. Also, suppose it is pos-
sible to perform an experiment where a realization x ∈ X from a random variableX ,
which carries information about θ , is observed. A prior and an experimental informa-
tion are complemented by a new type of information that refers to the consequences
of decisions in their interaction with the surrounding state of nature: the loss func-
tion (or, alternatively the utility function) l : Θ × D → R+ that, for each θ ∈ Θ and
d ∈ D , associates the loss l(θ, d) caused by choosing d when θ is the realization of
the state of nature.

Suppose that the experiment is performed and a particular result x is observed,
obtaining the posterior distribution for θ , f (θ |x). In this case, for each x ∈ X , the
optimal decision δ∗(x), also called Bayes Decision, is the dx ∈ D action that mini-
mizes the posterior risk function, defined by

rx(d) = E[l(θ, d)|x] =
∫

Θ

l(θ, d)f (θ |x) dθ.
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It means, rx(dx) = inf
d∈D

rx(d). The posterior risk rx(dx) of the decision dx is called

by Posterior Bayes’ Risk. One advantage of this approach is that it is possible to
include in the loss function not only the risk of the decision but also the costs involved
in the research. In particular, the problem of sample size calculation will be discussed
under this approach. In this case, we will conduct a pre posterior analysis, that is
obtain a optimal sample size n∗ before observing x, minimizing the risk function

ρ(δ) = E [l(θ, δ(X ))] = E [E[l(θ, δ(X ))|X ]] =
∫
X

∫
Θ

l(θ, d)f (θ |x) dθ f (x) dx.

Note that the function δ : X → D which minimizes ρ(δ) is equivalent almost
surely to decision δ∗(x) = dx for each x inX .

The interval estimation (or estimation by regions when the parametric space
dimension is greater than one) is an decision problem where the aim is to estimate
a subset of the parametric space d ∈ D that contains the parameter with high prob-
ability, where the decision space D is a σ -algebra of Θ sets. The loss function, in
this case, should penalize more the sets that do not contain “the real” θ as well as
very large sets, because they bring a few information about θ . In this way, consider
λ(d) the Lebesgue measure of the decision d , I(θ ∈ d) the function which indicates
whether Θ belongs to the set d and c(n) a function that represents the costs involved
in the survey for a sample size n. For now, let’s consider c(n) = cn, where c is a
previously fixed value. Thus, it will be considered a loss function that takes into
account the cost the size of the region and the pertinence of θ

l(θ, d) = λ(d) − kI(θ ∈ d) + c(n), k ∈ R+.

The smallest region of the parametric space δ∗ that contains the parameter θ with
probability γ is called HPD region (High Posterior Density).

Definition: We say that dx ∈ D is an HPD region of probability γ if:
(i) f (θ∗|x) ≥ f (θ |x), ∀θ∗ ∈ dx, ∀θ /∈ dx.
(ii) P(θ ∈ dx|x) = γ .

It follows that the optimal decision dx with respect to the loss l(θ , d) against a
prior f (θ) is the action dx ∈ D which minimizes the posterior risk function. Thus,

rx(dx) = inf
d∈D

Eθ |x[l(θ, d)|x] = Eθ |x[λ(dx) − kI(θ ∈ dx) + cn|x].

For each sample size n, it is possible to calculate the Bayes’ Risk ρn(δ
∗). In this

paper, we want to find the optimal sample size, that is, the value n∗ which presents
the lowest Bayes’ risk.
Result: For each x ∈ X , the optimal decision dx in relation to the loss l(θ, d) versus
a prior f (θ) is a HPD region.
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Demonstration (continuous case):

rx(d) = E[l(θ , d)|x] =
∫
Θ

[λ(d) − kI(θ ∈ d)dP(θ |x) =
∫
Θ
I(θ ∈ d)dθ −

∫
Θ

kI(θ ∈ d)dP(θ |x)

=
∫

d
1dθ −

∫
d

kf (θ |x)dθ =
∫

d
(1 − kf (θ |x))dθ =

∫
Θ

(1 − kf (θ |x))I(θ ∈ d)dθ .

So that the integral is minimized in the set dx such that

1 − kf (θ |x) ≤ 0 ⇔ f (θ |x) ≥ 1

k
⇒ dx =

{
θ ∈ Θ : f (θ |x) ≥ 1

k

}
. �

In the Bayesian literature, the set dx is also called Credible Region γ .

3 Optimal Sample Size for Normal Distribution

It was considered the case in which the population mean is unknown and its variance
is known and the bivariate case, where both are unknown. In order to calculate the
sample size we can think of two possible cases: to establish a probability of the
HPD region, with the purpose of obtaining the optimal decision with a predefined
probability, as well as the case where it is desired to fix the length of the credible
interval, a common case in clinical research.

3.1 Unknown Mean μ

Lets Xn = X1, . . . , Xn be a random sample, that is, X1, . . . , Xn are random variables
conditionally independent and identically distributed belonging to the same space
X = R, such that each Xi|μ ∼ N(μ, σ 2), with variance σ 2 fixed. Consider μ ∈ Θ

the parameter such that each μ represents a possible “state of nature”, and let us
consider that μ have a prior distribution μ ∼ N(m, v2). In this way,

f (x|μ) = 1√
2πσ 2

e− (x−μ)2

2σ2 and f (μ) = 1√
2πv2

e− (μ−m)2

2v2 .

The Theorem of [1] states that after observing X = x, the posterior distribution
for μ is normal with mean mx and variance v2x , with

mx = σ 2m + nv2x̄

σ 2 + nv2
and v2x = σ 2v2

σ 2 + nv2
.



Sample Size Calculation Using Decision Theory 171

Fig. 1 Example of HPD
region for normal
distribution

It is known that X̄n = 1
n

∑n
i=1 Xi is a sufficient statistic forμ, so f (μ|x) = f (μ|x̄).

In addition, X̄n ∼ N
(

m, σ 2

n

)
, and henceforth, for all calculations will be used the

statistic X̄n in place of the entire sample Xn = X1, ..., Xn (Fig. 1).

3.1.1 Credible Interval with Fixed Probability γ

Given the preestablished condition of P(μ ∈ d |x̄) = γ , γ ∈ (0, 1), it is reasonable
to consider a loss function l : D × Θ → R which takes into account only the size
of the region d and the cost of observations. Thus, the loss function will be given by

l(μ, d) = λ(d) + cn.

As is usual in statistical practice, let us consider γ = 0.95. In our example, we
have that the posterior distribution μ|x̄ ∼ N (mx, v2x ) is symmetrical, we can haveμ1

and μ2 reminding that Z = μ−mx

vx
| x̄ ∼ N (0, 1) and let

P(μ1 ≤ μ ≤ μ2 | x̄) ⇒ P

(
μ1 − mx

vx
≤ Z ≤ μ2 + mx

vx

)

⇒ μi ± mx

vx
= Φ−1

(
1 − γ

2

)
⇒ μi = mx ± Φ−1

(
1 − γ

2

)
vx.

It follows that the size of the interval dx is given by

λ(dx) = μ2 − μ1 = 2vx Φ−1

(
1 + γ

2

)
.

Hence, the action dx ∈ D which minimizes the posterior risk is an HPD interval,
that is, the smallest region with probability 0.95. In this way, the Bayes’ risk of
δ∗(X ) = [μ1(X ), μ2(X )] is given by
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Fig. 2 Graphic of Bayes’
risk by sample size with
fixed probability γ

ρn(δ
∗) = Eμ,X̄

[
l(μ, δ∗(X ))

] =
∫
X

∫
Θ

λ(dx)f (μ|x̄)f (x̄) dμdx̄ + cn

=
∫
X

∫
Θ

2vx Φ−1

(
1 + γ

2

)
f (x, μ) dμdx + cn = 2vx Φ−1

(
1 + γ

2

)
+ cn,

because v2x = v2σ 2

nv2+σ 2 . Analytically, the larger is the sample size n, the smaller is the
first term of the Bayes’ Risk. On the other hand, the cost increases with n.

To illustrate, the Bayes’ Risk for the optimal decision δ∗ for each sample size
n = 1, 2, . . . , N after setting the probability of the HPD region at γ = 0.95, we use
the software R. From the values obtained, we can find the optimal sample size n∗
which presents the lowest Bayes’ Risk.

Assuming that the population variance σ 2 = 4, the prior parameters are m = 0,
v = 1, and the cost per observation is c = 0.02, the optimal sample size presenting
the lowest Bayes’ Risk was n∗ = 24 (Fig. 2).

3.1.2 Credible Interval with Fixed Length λ(d)

Given the preestablished condition of P(μ ∈ d |x̄) = γ , γ ∈ (0, 1), it is reasonable
to consider a loss function l : D × Θ → R which takes into account only the size of
the region d and the cost of observations.

Under the condition that the interval’s size is fixed λ(d) = ε, the loss only depends
on the parameter μ belonging or not to the set d and the cost per n observations, cn.
Thus, for k ≥ 0,

l(μ, d) = kI(μ /∈ d) + cn.

Then, it follows that the posterior risk is
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ρn(δ
∗) =

∫
X

∫
Θ

l(δ(X ), μ)f (μ|x̄)f (x̄) dμdx̄ + cn = k
∫
X

P(μ /∈ dx|x̄)f (x̄) dx̄ + cn.

For d = [μ1, μ2] with μ2 − μ1 = ε, recalling that

Eμ,X̄ [kI(μ /∈ d)] = kEμ,X̄ [I(μ /∈ d)] = kEX̄ [1 − P(μ1 ≤ μ ≤ μ2|x̄)] = kEX̄ [rx(d)] .

For each x ∈ X , the posterior risk rx(d) is minimized when P(μ1 ≤ μ ≤ μ2|x)
is maximum and this occurs in the HPD region. Thus, we can write

dx = [μ1, μ2] =
[
mx − ε

2
; mx + ε

2

]
.

Therefore, the Bayes’ Risk of the decision function δ∗ is

ρ(δ∗) =
∫
X

∫
Θ

k
[
1 − I

(
mx − ε

2
≤ μ ≤ mx + ε

2

)]
f (μ|x̄)f (x̄) dμdx̄ + cn

=
∫
X

k

[
1 − P

(
μ1 − mx

vx
≤ z ≤ μ2 + mx

vx
| x̄

)]
f (x̄) dx̄ + cn

=
∫
X

k 2.Φ

(
− δ

2vx

)
f (x̄) dx̄ + cn = 2k Φ

(
− δ

2vx

)
+ cn.

Analytically, then, the larger is the sample size n, the smaller the variance of the
posterior v2x = v2σ 2

nv2+σ 2 and consequently, the smaller the probability of μ not being
in the HPD region. On the other hand, the cost increases with n.

To illustrate the Bayes’ Risk to the optimal decision δ∗ for each sample size
n = 1, 2, . . . , N with a fixed length λ(d) = ε, we use software R. We can find the
optimal sample size n∗ which presents the lowest Bayes’ Risk.

Using as an example, the same values as in the previous case (σ 2 = 4, m = 0,
v2 = 1 e c = 0.02) and k = 4, the optimal sample size that presents the lowest Bayes’
risk was n∗ = 16 (Fig. 3).

3.2 Unknown Mean and Variance

Let Xn = X1, . . . , Xn be a random sample, that is, Xi|μ, σ 2 ∼ N(μ, σ 2) are con-
ditionally independent and identically distributed (c.i.i.d) variables. Consider θ =
(μ, σ 2) the parameters in Θ = R × R+. Let us consider, a prior, σ 2 ∼ GI(a, b),
a, b > 0 and μ|σ 2 ∼ N(m, σ 2/v), m ∈ R and v > 0. In this case, the joint probabil-
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Fig. 3 Graphic of Bayes’
risk by sample size with
fixed interval length ε

ity distribution is called Normal-Inverse Gamma, NIG(m, v, a, b). The sufficient
statistics here are x̄ = 1

n

∑
xi and s2 = 1

n−1

∑
(xi − x̄)2 and is known that the poste-

rior is also a NIG distribution:

μ, σ 2|x̄, s2 ∼ NIG(mx, vx, ax, bx), mx ∈ R, vx, ax, bx > 0,

with

f (μ, σ 2|x̄, s2) =
√

vx√
2πσ 2

bax
x

�(ax)

(
1

σ 2

)ax+1

e− 2bx+vx (μ−mx )2

2σ2 ,

where mx = (vm+nx̄)
(v+n)

+ nv(x̄−m)2

2(v+n)
; vx = v + n; ax = a + n

2 ; bx = b + n−1
2 s2.

In this case, the loss function are similar to the univariate case:

l (θ, d) = λ(d) − kI(θ ∈ d) + c(n), k ∈ R+,

It follows that, for each x ∈ X the optimal decision δ∗(x) = dx in relation to the
loss l(θ, d) against the prior f (μ, σ 2), is an HPD region again. Figure 5 presents an
example of HPD regions with different probabilities.

3.2.1 Credible Region with Fixed Probability γ

Given the preestablished probability P(θ ∈ d |x̄) = γ , it is reasonable to consider the
loss function l : D × Θ → R just with the terms related to region’s size and cost of
observations.

l(θ, d) = λ(d) + c(n).
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Fig. 4 Hit or Miss process
to find the region measure

Fig. 5 HPD regions from a
Normal-Inverse gamma
posterior distribution

To illustrate the Bayes’ risk for the optimal decision δ∗ for each sample size
n = 1, 2, . . . , N , we fixed the probability of the HPD region in 0.95. To obtain λ(δ∗),
we apply the Monte Carlo process of Hit or Miss by establishing a rectangle that
encompasses the HPD region of interest (Figure 4). From the values obtained, we
can find the optimal sample size n∗ that presents the lowest Bayes’ risk.

Assuming that the prior parameters are m = 0, v = 1, a = 2, b = 3 and the cost
function c(n) = 0.3n, we use the Monte Carlo method to find the optimal sample
size n∗ = 18 (Fig. 6). We also tested using the cost function c(n) = log(n) and the
result was approximately n∗ = 86.



176 M. Vaiano Farhat et al.

Fig. 6 Graphic of sample
size by the Bayes’ risk
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Utility for Significance Tests

Nathália Demetrio Vasconcelos Moura and Sergio Wechsler

Abstract The range of possible readings among and within the statistical inference,
in addition to the relevance of these in the applied context, justify the extensive
literature analyzing and comparing the main methodologies. However, the fact that
each approach is built upon their own structures, varying even the spaces in which
they are evaluated, limit the conclusions to the specified scenarios. As a solution
for that, in the context of hypotheses tests, we work with the decision theory, which
provides a unique language to incorporate the logic of each existent philosophy. For
such, after discussing the main points of the frequentist and Bayesian inference, the
main approaches are presented, particularly regarding to precise hypotheses, and then
unify by the decision-theoretic viewpoint. Additionally, by through this perspective
we analyze, interpret and compare the loss functions of some precise approaches, in
the context of significance tests.

Keywords Significance tests · Decision theory · FBST · Loss function · Bayes
Fisher

1 Introduction

The main goal of Statistical Inference is to answer about random phenomena based
on the available information. For such, it is possible toworkwith different paradigms,
including likelihood-based, fuzzy, among others,with the Frequentist approach being
by far the most used. For this school, the probability of an event is given by the limit
of the relative frequencies, being such frequencies represented by an entity called
parameter, defined according to infinite and hypothetical repetitions of the associated
experiment. Particularly relevant, the parameter is responsible for specifying the
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behavior of the referenced random variable. Nevertheless, dealing with such limit as
a fixed quantity, despite unknown, imposes some difficult to analysis. For instance,
the need for an infinite sequence of repetitions of the experiment, carried out under
the same conditions, or the violation of the Likelihood Principle.

To circumvent such limitations, we have the option of extending the analysis
to the Bayesian understanding. In this, by looking at the parameter, the entity of
interest, as a latent random entity, we obtain a harmonious reading with the way
that uncertainty is commonly used. And the laws of probability being the structure
according to which a coherent individual must express his uncertainty. Besides, the
axioms of coherence [1], presupposed for such approach, are: simple, interpretable,
and intuitive.

However, in practice, there are applications working with different readings, par-
ticularlywith regard to theHypothesis Tests, and evenmore to the PreciseHypothesis
case. As a solution, we will address the Hypothesis Tests in a single language: deci-
sion theory, representing the main logics and objectives through the respective loss
functions. Additionally, by through this perspective, we analyze, interpret and com-
pare the loss functions of some precise approaches, in the context of significance
tests.

2 Decision Theory

Aiming to structure a methodology that helps us choose the best action taking into
account our objectives, circumstances and knowledge, we have the decision theory.
In this, the action to be taken admits values in the decision spaceD , and is influenced
by the results of an entity involving uncertainty, called Ω . So, given the preferences
of the decision agent, given by the loss function L(·) in relation to the possible
consequences (D × Ω), we get the optimal choice.

For this, we look for the decision so that the associated loss is minimal. However,
since the choice must be made without knowledge of the state of nature, we assign
probability to the set Ω , which is therefore seen as a random variable. Thus, we
estimate its behavior through the understanding that the decision agent has on the
parametric space, represented by the probability distribution π(θ), called priori.

Considering also the casewhere the decision agent has access to a sample x , where
the respective random variable X has its sigma-algebra of subsets of the sample space
(χ ) indexed by Ω , the decision agent starts to contemplate the knowledge of such
evidences. And the action is specified according to a decision rule δ,

δπ : χ → D
x �→ δπ(x).

(1)

Thus, by means of the priori expected loss, or risk against the priori,

Rπ (δ) = Eπ [L(δ(X),Θ)] = ∫
Ω

∫
χ
L(δ(x), θ) f (x |θ) π(θ) dx dθ. (2)
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Therefore, we seek for the strategy that minimizes the risk in relation to π(θ), so
that δ∗

π = arg minδ∈D Rπ (δ). And, if the order of integration in (2) is alterable, the
δ∗
π is equivalent to finding the rule that minimizes the expected loss a posteriori, or
risk against the posteriori π , that is,

rπ(·|x)(δ) = Eπ(·|x)[L(δ(X),Θ)] =
∫

Ω

L(δ(x), θ)π(θ |x) dθ. (3)

3 Hypothesis Testing

Hypothesis tests have the purpose of indicating the most plausible scenario among
a collection of conjectures. However, it is usual to work with only two premises, so
that they configure a partition of the parametric space Ω . Typically named as null
and alternative, we have, respectively: H0 : Θ ∈ Ω0 and H1 : Θ ∈ Ω1.

In theoretical terms, the procedures are specified by a function ϕ, defined in class
{ϕ : χ → {0, 1}}, so we decide by H0 if ϕ = 0, e H1 otherwise. Having further
that the value of ϕ is determined by means of a Rejection Region, such a subset
of the sample space is mathematically given by: ϕ−1({1}) = {x ∈ χ : ϕ(x) = 1}.
Regarding the specification of the hypotheses, there are two types of errors that can
occur. The error of type I is given by α(ϕ) = P[ϕ(X) = 1|Θ ∈ Ω0], which occurs
when we incorrectly label the alternative hypothesis as true. On the other hand,
the type II error is defined by β(ϕ) = P[ϕ(X) = 0|Θ ∈ Ω1], in relation to the null
hypothesis.

Additionally, in the frequentist context, it is usual to still work with the Power
Function, or Power of Test. Such quantity associates the probability of rejecting
the null hypothesis at each value of Θ . Then, we define the size of the test, given
by the supreme power function, considering only the values of Θ ∈ Ω0, i.e., α =
supΘ∈Ω0

Pϕ[ϕ = 1|θ ]. Finally, we call the value α0 the significance level, if this is
the upper limitation for the other test sizes. Whereas, in the Bayesian context, we
work directly with the posteriori probabilities of the hypotheses. Now we describe
the main approaches.

3.1 Fisher and p-Value

The most widespread reading in relation to hypothesis testing, refers to the philos-
ophy of Sir Karl Popper, disseminated in the statistics area by Sir Ronald Fisher.
According to this, a hypothesis can never be proven by an empirical study. However,
a counterexample is sufficient for its negation. In hypothesis testing, such a premise
implies that we consider inductive reasoning, so regardless of the amount of evidence
in favor of the premise in question, it should not be accepted [2]. Although it is not
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necessary to indicate whether we are dealing with the null or alternative hypothesis,
it is usual to specify H0, so this is the one that we attach the greatest importance.

For the context discussed, the descriptive level of observed significance (or p-
value), introduced by Pearson, is presented as an appropriate tool. This is because
the p-value searches from the unobserved samples for evidence at odds with the
null hypothesis, considering for such, that the related experiment is fixed. Thus, by
ordering the sample space given by H0, we examine the probability of obtaining
samples as extreme as that observed. However, this metric has a number of unde-
sirable characteristics, such as its magnitude being dependent of sample size, or the
difficulty of interpretation, since the conditional definition P(x |Ω0) is summarily
intuited as a conditional probability P(Ω0|x). In any case, the principle of seeking
evidence against H0, instead of evaluating both hypotheses, is diffused to the point
of having a specific class of tests, called significance tests.

3.2 Neyman–Pearson and Likelihood Ratio

The perspective advocated by Jerzy Neyman and Egon Pearson (N–P) complements
the frequentist scenario regarding hypothesis testing. For this reading, we shall ini-
tially consider that the test consists of simple hypotheses, that is, H0 : Θ = θ0 and
H1 : Θ = θ1. Thus, there is a critical region given in function of the ratio of probabili-
ties evaluated in the respective subspacesΩ , that is,λ(X) = f (X |θ0)/ f (X |θ1). How-
ever, given the impossibility of simultaneously controlling the two errors involved,
the analysis is limited to the family consisting of the significance level tests α0.
Formally, for k ≥ 0,

ϕ∗(x) =
{
1 se λ(x) < k
0 se λ(x) > k.

(4)

In case one of the assumptions is compound, say H1, we restrict the domain to
the Uniformly Most Powerful (UMP) tests. In general, terms, to extend the analysis
with some guaranteed properties, it will always be necessary to continue applying
restrictions in the domain of tests. Additionally, there are some undesirable charac-
teristics, like the imbalance between errors I and II when the sample size increases,
sometimes reaching the inversion of the initially specified match. DeGroot reread
the question from a broader perspective, working with the minimization of the linear
combination of errors. And later, Pericchi and Pereira [3] generalized the idea, by
weighing the likelihoods, obtaining a globally optimal test, plus a balance between
the specified errors and the sample size.
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3.3 Bayes and Conditional Measures

In contrast to the frequentist theory, which bases its conclusions on samples and
unobserved events,Bayesian Inference presents conclusions derived directly from the
parametric space. Thus, we can indicate a premise with greater chance of occurrence
through the posteriors ratio (denominated Bayes Factor) and the loss function used,
that is,

P(Θ ∈ Ω0|x)
P(Θ ∈ Ω1|x) = P(X |Θ ∈ Ω0)

P(X |Θ ∈ Ω1)

P(Θ ∈ Ω0)

P(Θ ∈ Ω1)
≥ k(L(d,Θ)). (5)

This reasoning is interesting, since it contemplates not only the acceptability of
an isolated hypothesis, but also the circumstances of the said complement, without
priorities.

4 Precise Hypotheses

Hypothesis tests have an important special case: when the conjecture of interest has
Lebesgue measure zero, also known as precise hypothesis. The best-known example
is the case where the parametric space is defined in the real line: H0 : Θ = θ0 versus
H1 : Θ �= θ0, circumstance which we will give emphasis.

The absence of probability in Ω , does not result in mathematical restrictions in
the frequentist approach. However, in the context of significance tests, the constraint
of the subspaceΩ0 assigns particular importance to the structure of Popper, given the
limitation of the hypothesis in relation to the parametric space as a whole. Whereas
in the Bayesian context, if the priori distribution on Ω is continuous, the posterior
probability of the subsetΩ0 will be zero, invalidating the usual approaches, justifying,
therefore, the development of other criteria. Followingwe introduce themain criteria.

4.1 Jeffreys

The Jeffreys Test, the most widespread approach, circumvented the problem of the
posterior probability of Ω0 by imposing the specification of a priori with positive
probability for H0. Thus, we started to have πθ0(θ, ζ ) defined according to a com-
bination of probabilities: (1 − ζ )π(θ) to Ω1 and ζ to Ω0. Such rebalancing is not a
problem if it is, in fact, the analyst’s opinion. However, as usually it is only a practi-
cal palliative for a mathematical limitation, we violate the principle of coherence, in
addition to requiring a greater amount of evidence against H0 to enables its rejection.
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4.2 FBST

In order to develop a Bayesian significance test that holds the coherence assump-
tions, Pereira and Stern [4] introduced the Full Bayesian Significance Test (FBST).
Although this test is feasible for applications in different spaces, its contribution is
more expressive in the context of the precise hypotheses, as it is developed based on
the principle of least surprise, aiming for evidence in favor of the null hypothesis.

For such, it sorts the parametric space according to the posteriori probability, and
seeks the θ∗ that belongs to the region of H0 and its density is maximum. Then,
we form the tangent set to the null hypothesis, configured by all points with density
lower than the obtained θ∗. Formally,

Definition 1 For the tangent set T (x) = {θ : π(θ |x) > supΩ0
π(θ |x)} the FBST

evidence measure in favor of H0 is: EV (Ω0, x) = 1 − ∫
T (x) π(θ |x)d θ.

For high values of EV (Ω0, x), or e-value as it is also known, θ0 will be among
the most likely points a posteriori, and will favor the null hypothesis. Addition-
ally, this approach presents advantages as: intuitive logic, geometric interpretation,
consistency, and invariance under one-to-one parameter transformations.

5 Loss Function

In order to approach the tests of significance according to a single language, we
work with decision theory. For this, we consider the space of decisions D , given by
{d0, d1}, where di denotes the action of accepting the hypothesis Hi : Θ ∈ Ωi , with
i ∈ {0, 1}, and losses L0 and L1, respectively. In addition, assuming that there is a
differentiated posture in relation to the null hypothesis, the decision is presented in
relation to the H0, this is, d1 is read as rejection of H0. Besides, that conservative
behavior is incorporated into the analysis through the loss function. Thus, for a
sample x , we will have

ϕπ(x) =

⎧
⎪⎨

⎪⎩

d0 if
π(Θ ∈ Ω0|x)

1 − π(Θ ∈ Ω0|x) >
L0

L1

d1 if
π(Θ ∈ Ω0|x)

1 − π(Θ ∈ Ω0|x) <
L0

L1
,

(6)

and the conclusion will be given according to the already known Factor of Bayes.
Note that assigning randomness to the set Ω does not invalidate the generalization
of the analyzes, since the interest is in replicating the philosophy of each approach
and not the system itself. Considering this perspective, follows the description of the
FBST, and the Popper‘s perspective (essence of the p-value).
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Table 1 Loss function of the FBST test

Accept H0 Reject H0

θ /∈ T (x) b a

θ ∈ T (x) b + c [I{θ ∈ T (x)}] 0

Table 2 Risk for some cases of evidence

EV (Ω0, x) rπ(·|x)(d0) rπ(·|x)(d1)
0 b + c 0

0.5 b + 0.5 c 0.5 a

1 b a

5.1 FBST and Madruga et al.

By making use only of the information contained in the posterior density, the FBST
has been classified as full Bayesian since its genesis. However, only in the work of
Madruga et al. [5] this measure was analyzed according to the decision theory, being
obtained by minimizing the loss function given from positive a, b and c (Table 1).

Note that, in this case, unlike classical theory, we consider a broader class, wherein
the observed sample is also incorporated into the loss function. Thus, assuming
that the tangent space of the FBST is defined from the sample, we have, from the
minimization of L(d, θ, x), that the acceptance of the hypothesis H0 will occur if,
and only if, EV (Ω0, x) > b+c

a+c .
In practical terms, the loss function is structured in order to evaluate the tangent

set, that is, we describe our expectations regarding the information brought by the
sample. However, once it is a measure of significance, the penalty associated with
rejection of the null hypothesis when θ ∈ T (x) is smaller. For a better understanding,
follows some examples (Table 2).

Usually, by specifying the loss function according to the real values of the para-
metric space, without worrying about our knowledge or the results of the sample,
we are working with the penalty related to the phenomenon, rather than the study
itself. Because such scenario is a simplification, we fail to incorporate our prefer-
ences regarding the reflexes of the study, such as psychological, financial, and even
social issues. Whereas, when dealing with losses according to what we are actually
going to obtain, and not with a utopian scenario of absolute knowledge, we have a
more realistic reading, as well as a full analysis of the situation.

5.2 Popper and Rice

Aiming at a loss function that reflected Popperian philosophy, Rice [6] reread the
decision space so that d0 represents the decision “Nothing to declare”, while for d1
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Table 3 Effects for different values of γ

γ Penalty for reporting Penalty for not reporting Inverse of variability

0.01 10 0.10 99

0.1 3.16 0.32 9.00

0.3 1.83 0.55 2.33

0.5 1.41 0.71 1.00

0.7 1.20 0.84 0.43

0.99 1.01 0.994 0.01

we provide results indicating the rejection of H0. Thus, by choosing to make such a
statement, the conclusions are presented by means of an estimate θ̂ , and the said loss
is evaluated by the usual quadratic loss. On the other hand, by omitting the results, the
loss occurs in terms of no longer known unfoldments and how informative theymight
be. This loss is represented proportionally to the distance between θ and θ0. Thus,
both losses are maintained on the same scale, allowing the decision agent to specify
his/her opinion to the relation between them, by means of a factor γ , hence nothing
to declare implies that γ 1/2 (θ0 − θ)2, and the rejection of H0 implies γ −1/2 (d − θ)2.
Therefore, according to Bayes rule, we will report results (ϕR

π (x) = d1) if,

R(Ω0, x) = E
2
π(·|x)[Θ−θ0]
Varπ(·|x)[Θ] ≥ 1−γ

γ
. (7)

In practical terms, we reject H0 when the estimate is “far” from the tested value.
Otherwise, we do not have conclusions. The hesitation related to the statements
is represented by the value γ , so that the smaller this quantity, the more skeptical
the analysis, and the penalty for reporting results will always be higher than the
alternative. Noting also that the product of the weights is fixed, they follow the
effects for different values γ (Table 3).

Thus, considering the correspondence between the units of imprecision of the
estimate d and the loss inherent in the lack of results, the agent should look for the
point of balance between such entities. It should also be noted that the conclusion
is taken on the basis of the inverse of a measure of variability, similar to the square
of the coefficient of variation, but with a focus on the a posteriori parametric space.
Thus, when such a measure of variability is significant, we have indicatives about
the lack of accuracy and, consequently, the results are not reported.

In the reading made by Rice, we identify several important gains in relation
to Fisher’s test: lack of assumptions about repeatability and stopping rules of the
experiment, mandatory incorporation of the alternative hypothesis, coherence
between rejection of the hypothesis and its subsets and even informational results
for large samples.
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Table 4 Example 1: R(Ω0, x) × EV (Ω0, x), n = 10

# Successes Rice: ϕR
π (x) = d1 FBST: ϕE

π (x) = d0

0 7.989 0.020

1 1.664 0.123

2 0.173 0.450

3 0.065 1.000

4 0.728 0.471

5 2.080 0.156

6 4.294 0.036

7 7.865 0.006

8 14.040 0.001

9 26.624 0.000

10 64.716 0.000

6 FBST × Rice

Although both FBST and Rice methodologies share the same principle as Onus
Probandi, where the defendant is to be presumed innocent, the Rice test has as its
central concern whether or not to reject the hypothesis, while the Madruga et al.
measures its consistency.

Despite the differences between the two approaches, when Ω ⊂ R the tests are
essentially equivalent in the frequentist sense of having a one-to-one relationship
between test statistics, for such, follows an illustration.

Example 1 Consider a random sample i.i.d. of Bernoulli’s, conditioned in the param-
eter θ , and the interest in testing the hypotheses H0 : θ = 0.3× H0 : θ �= 0.3, assum-
ing a priori Beta(1, 1). Thus, knowing that all the information of the 2n possible
results can be examined by means of the number of successes obtained, we have the
following values for the statistics of Rice and FBST for a sample size 10 (Table 4).

Considering the same analysis for a sample size 1000, we can see in the Fig. 1
the coherence between both results, by means of a negative association, as expected,
since we are comparing opposite decisions. Note that we choose to report the results,
regardless of the sample size, in the case of γ less than 0.015.

In the inferential context, where the goal is to learn about the parameter, not
reporting results seems inappropriate. However, cautious behavior is nothing more
than a characteristic of an philosophy, that is, a perspective that is perfectly valid
for certain scenarios, such as when the contradiction of the tested hypothesis is not
absolute, the sample presents itself as a too limited tool, or the analyst can simply
prefer a more cautious stance.
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Fig. 1 Example 1:
R(Ω0, x) × EV (Ω0, x),
n = 1000
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7 Conclusion

In this paper, we discuss the main approaches to hypothesis testing, particularly with
regard to significance tests, and reading according to the statistical decision theory.
From the point of view of coherence, we concluded that, between the approaches
evaluated, we have two satisfactory options from the point of view of coherence:
FBST and Rice. Finally, by comparing both readings, we obtain harmonious results
with the respective proposals. Besides, they are consistent with each other. For future
works, the proposal is to extend the Rice test to parametric spaces larger than one
and analyze practical applications of the discussed approaches.
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Probabilistic Equilibrium: A Review
on the Application of MAXENT
to Macroeconomic Models

Paulo Hubert and Julio M. Stern

Abstract The concept of equilibrium is central to many macroeconomic models.
However, after the 2008 crisis, many of the most used macroeconomic models have
been subject to criticism, after their failure in predicting and explaining the cri-
sis. Over the last years, a response to this situation has been the proposal of new
approaches to the study of macroeconomical systems, in particular, with the intro-
duction of thermodynamics and statistical physics methods. In this paper, we offer
a brief review of the application of the maximum entropy framework in macroeco-
nomics, centered around the different interpretations of the equlibrium concept.

Keywords Maximum entropy ·Macroeconomy · Equilibrium
1 Introduction

The classical example of equilibrium in dynamical systems comes from mechanics:
the pendular system, composed of a point mass suspended by a chord, attached to
a fixed platform. Put on movement by an initial impulse, the system, in the absence
of attrition, enters an equilibrium state of perpetual and periodical motion. When
attrition enters the picture, the system dissipates energy to the surroundings, and the
new equilibrium is one of rest: the point mass evolves to the least-energy state, and
remains there unless some new action is imposed upon it.

Many states of equilibrium in mechanics are states in which the system repeats
itself, or stays at rest. These are situations in which our description of the system
dynamics can dispense of an infinite time axis: all possible configurations present
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themselves during a limited time interval. Therefore, it is much easier to make pre-
dictions about the future (or draw conclusions about the past) of a system in a state
of equilibrium. Even further: once the system’s singularities are known (for mechan-
ical systems, these are the solutions to the equation ẋ = 0), the theory of differential
equations allows one to consider the limiting behavior of a system (either forwards
or backwards in time) in terms of its relation with these stationary points.

Macroeconomic theory has for a long-time drawn inspiration frommechanics and
its methods [1]. Therefore, the concepts of equilibrium and limiting behavior of a
systemare central inmanymacroeconomicalmodels.However, aswe intend to argue,
this is not amere consequence of the use of rationalmechanics’methods: equilibrium
states are objects with an intrinsic epistemological interest. One important issue that
arises, then, is the ontological interpretation one gives to the equilibrium and its
attainment as a limiting behavior of the system’s trajectories.

In this paper,we offer a brief reviewof the use of equilibriumconcepts both in clas-
sical and contemporary macroeconomics, and rely on the relationship between ratio-
nalmechanics and economy to discuss the recent application of statisticalmechanical
methods to macroeconomics. We argue, in the spirit of Kuhn, that macroeconomical
science is in a state of exploration after a paradigm crisis, and analyze briefly some
of the conceptual distinctions between classical and statistical equilibrium.

2 Equilibria in Classical Economics

Perhaps the most concrete example of the analogy between economical and mechan-
ical systems is the Phillips’ machine, or MONIAC (Monetary National Income
Analogue Computer) (Fig. 1). It is an analogical computer that uses water flows
to model the dynamic of income in an economy. The MONIAC, officially presented
at the London School of Economics in 1949, was able to solve systems of up to nine
simultaneous equations, with parametrizable coefficients [2, 3]. Once a dynamical
equilibrium was reached the solution could be read in scales attached to the water
tanks.

Regardless of the method of computation, however, economists are in general
very fond of equilibria. We find mention of the term already in the seminal work of
Debreu [4], in which he proposes a formalization of economical analysis based on
the axiomatic method. There, he defines equilibrium in the following terms:

If the actions xi , yi satisfy the market equilibrium equality x − y = w, the economy is in
equilibrium, i.e., every agent, given the price system and the actions of other agents, has no
incentive to choose a different action, and the state of the economy is a market equilibrium.
(Debreu [4], p. 79)

Equilibrium is thus a state of affairs, a situation (described by a set of values
for economic variables, plus a price system relating them) in which no agent has
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Fig. 1 Schematic drawing of the MONIAC [2]
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any incentive to alter its decisions and economical activities (i.e., a Pareto optimal
situation). Economical agents here are optimizers: they act in the search of a certain
maximum, and equilibrium arises when no individual can improve its cost function
without leaving the feasible set (given by the constraints of common economical
life).

Another aspect of Debreu’s equilibrium is the market equality. This equation
defines equilibrium as a condition about the aggregates of the economy, in a precise
(sharp) form: it constrains the total values for the variables, and the individuals, in
their search for optimal utility points, can only move over the hypersurface given by
market equilibrium.

After Debreu, another influent writer in macroeconomy was Samuelson. He also
proposes a formalization of economic analysis founded in the methods of mathemat-
ics, and uses the concept of equilibrium many times in his work. One of such uses is
the following:

This, in brief, is the method of comparative statics, meaning by this the investigation of
changes in a system from one position of equilibrium to another without regard to the
transitional process involved in the adjustment. (Samuelson [5], p. 8)

Samuelson then adds:

By equilibrium is meant here only the values of variables determined by a set of conditions,
and no normative connotation attaches to the term. (Samuelson [5], p. 8, emphasis is ours)

The caution exerted by Samuelson is notable. Even though he treats equilibrium
states as objects of economical analysis (investigation of changes (...) from one posi-
tion of equilibrium to another), he makes a conscient effort to avoid committing
ontologically to this concept, treating equilibria as objects of an abstract (mathemat-
ical) nature. Besides avoiding ontological commitment, he also explicitly refuses any
normative connotation to economic equilibrium.

This is, however, a difficult desideratum to be kept. Economical science is often
burdened with the task of not only explaining reality, but also building it. Economists
are perhaps the members of the scientific community that are most engaged in the
administration of actual institutions, be it national states or companies. As such, and
with the broad adoption of equilibrium models [6] in modern macroeconomics, it is
tempting to assign amuchmore concrete status to equilibrium states thanwas desired
by Samuelson. It is tempting, as well, to guide policy formulation in the direction
of the fulfillment of the model’s hypothesis (the case for deregulation of markets is
perhaps one example of this temptation).

However, even though some of the recent criticisms of so-called classical models
direct their attacks precisely to the equilibrium concept [7, 8], some of the alternative
frameworks proposed in the current literature still have it as a central epistemic notion.
The reason for this attachment can perhaps be found in the epistemological analysis
of Foerster and Luhmann.
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3 Equilibria as Objects of Knowledge

In thework of Foerster [9],wefind the following famous quotation about eigenvalues:

Eigenvalues have been found ontologically to be discrete, stable, separable, and compos-
able, while ontogenetically to arise as equilibria that determine themselves through circular
processes. (Foerster [9], p. 266, emphasis is ours)

In his paper, Foerster analysis the “organization of sensorimotor interactions” of
a cognoscent being with its environment. He proposes a model consisting of the
alternate and recursive application of the operators observation and coordination:
observation of new data triggers a coordination (behavior), which leads to a new
observation and so forth. His eigenvalues (arising as equilibria) are the very objects
of knowledge, coming to be in the interaction between being and environment.

A radical application and enlargement of Foerster’s ideas can be found in the work
of Luhmann [10]. He considers hierarchical models of recursive systems in a ladder
of growing complexity, and uses this framework to describe not only the relation of
one individual with its environment, but the very organization of human societies. In
this same spirit, he analyzes the scientific endeavor by describing the collective work
of scientists as a subsystem, horizontally differentiated from the broader system of
human society. Successful scientific theories, then, would emerge as eigenvalues of a
self-referent, recursive, dynamic system; theories, as collective objects of knowledge,
share the same nature of Foerster’s objects of understanding: they are also equilibria,
and as such stable, discrete, limit states of a recursive process.

Under the light of Foerster and Luhmann’s interpretation of the knowledge-
building process, it becomes clearer why equilibrium states are useful objects inside
theories. As eigenvalues of the studied system, these states are discrete, stable, sep-
arable; they are therefore much easier to name, classify, and study than the whole
dynamics of the system. Equilibrium methods, in this sense, work like traps with
which we take hold of a system of interest, in order to be able to describe it, make
predictions about its future and inferences about its past.

This description of scientific theories introduces a strong recursive, self-referent
aspect in epistemology. Equilibrium states and their attainment are objects of many
sciences (physics and economics in particular), but in this framework, they also
describe the process of scientific enquiry in itself. In this sense, when speaking about
the nature of equilibria and limiting behavior, science is also talking about itself and
its objects. In the very words of Luhmann:

The concept of self-referential systems can and must subsume science and one’s own research.
This requires taking leave of ontological metaphysics and apriority. Systems with built-in
reflection are forced to forgo absolutes. And if science discovers this fact in the domain of
its objects, the fact holds irrefutably for science, too (Luhmann [10], p. 485).

This self-reference can also be found in the interpretation of statistical methods
in physics, according to Jaynes [11]. For him, the maximum entropy solution repre-
sented the subjective (i.e., the scientist’s) solution to an inference problem. However,
it agrees with all measurements made in actual, thermodynamical systems in states of
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equilibrium (i.e., with the objective solution). Entropy, besides being interpreted as a
measure of a system’s quality, can also be interpreted as a measure of the scientist’s
knowledge about the system. What holds for the object, holds for the scientist as
well.

4 The Change from One State of Equilibrium to Another

According toKuhn, science advances in a dual fashion: continuously, in the periods of
what he calls normal science, and discontinuously, when it is subject to a paradigm
shift [12]. A paradigm, in this epistemology, is a scientific realization with two
properties: if offers sufficiently unprecedented results, in order to attract an enduring
group of participants and form a delimited (discrete) and stable research group. At
the same time, it is sufficiently open to contain many unsolved problems in which
this group can work (recursively), feeding itself in its own questions.

When normal science is taking place, Kuhn identifies two kinds of events: inven-
tions and discoveries. The inventions are identified with puzzle-solving activities:
new applications are developed, empirical evidence is accumulated, minor problems
are solved (the ones that are not urgent, for their lack of solution is not enough to
provoke a crisis).

Discovery, on the other hand, is associated to more extreme movements, caused
by the presence of an anomaly:

Discovery begins with the awareness of an anomaly, that is, with the recognition that nature
has in some way violated the paradigmatic expectations governing normal science. What
follows is a more or less broad exploration of the area in which the anomaly has occurred.
This work only stops after the paradigm’s theory has been adjusted, in such a way that the
anomalous has now turn into the expected. The assimilation of a new fact demands more
than an additive adjustment of the theory. Until such an adjustment is completed - until
the scientist has learnt to see nature in a different way, the new fact will not be considered
completely scientific (Kuhn [12], p. 78, free translation from the Brazilian edition).

In the realm of macroeconomy, the most recent and important anomaly was the
financial crisis of 2007. The crisis, and subsequent depression, escaped entirely the
models’ predictions, and even their power of post factum explanation [13–16].

The economists reacted immediately: a thorough and deep theoretical exploration
of monetary and financial systems (where it is consensual that the crisis originated)
was launched. New approaches for economical modeling were proposed (Stock-
flow consistent models, Agent-based models), ideas of less orthodox thinkers were
revisited (maybe the most prominent example is the work of Minsky [17]), and
methodological discussions were sharpened.

Olivier Blanchard, IMF’s chief economist, makes a clear point about the necessity
for theoretical exploration in postcrisis macroeconomics [18]:

Turning from policy to research, the message should be to let a hundred flowers bloom.
Now that we are more aware of nonlinearities and the dangers they pose, we should explore
them further theoretically and empirically—and in all sorts of models. This is happening
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already, and to judge from the flow of working papers since the beginning of the crisis, it is
happening on a large scale. Finance and macroeconomics in particular are becoming much
better integrated, which is very good news. (Blanchard 2014)

It seems reasonable, then, to describe the current moment of macroeconomical
thinking in Kuhn’s terms, and to say that macroeconomics is now going through
a paradigm crisis: the change from one state of equilibrium to another. In these
moments, as Kuhn points out (and Blanchard apparently agrees), it is fruitful to
explore new methodological possibilities.

The application of maximum entropy methods is one of these possible explo-
rations, one that is becoming frequent in the macroeconomics literature. In the next
section, we briefly review a few papers on the subject.

5 The Statistical Equilibrium in Macroeconomics

We begin by analyzing the paper by Foley [19], which presents a direct application of
themaximum entropy principle. Foley defines a space of transactions, in an economy
with a certain (finite) number of goods. A transaction is a point in the space of goods,
where each coordinate can represent demand (if it has a negative value) or supply (if
it has a positive value) for that particular good. Agents are divided into categories,
each category defined by a supply set, representing the totality of transactions which
are at the same time feasible and desirable for agents belonging to that group.

He then defines an average excess demand measure, and by constraining this
quantity to be 0 (i.e., applying the idea of market equilibrium) he obtains the maxi-
mum entropy distribution of agents inside each supply set. The statistical equilibrium
he obtains (i.e., his maximum entropy distribution) is thus associated with the usual
market equilibrium (zero excess demand), but instead of constraining the total excess
demand to be 0, he constrains the expected excess demand to be 0, where this expec-
tation is taken with respect to the MAXENT distribution.

Foley also points that the statistical equilibrium usually is not Pareto efficient. In
other words, in an economy in equilibrium it is possible to find transactions between
two or more agents that can improve both of their utility values. In a pure exchange
model, the entropy associated to the Pareto equilibrium would be null (assuming
convex utility functions), because all agents will be concentrated at theminimum cost
point over the hypersurface of constant utility. In the statistical equilibrium model,
however, agents can spread all along this hypersurface, even though with greater
concentration around the minimum cost. In other words, the statistical equilibrium
allows for horizontal inequality, even between individuals from the same class (i.e.,
agents with the same supply set), and, even further, an endogenous inequality that
arises even between agents with identical initial resource allocation.

About this new possibility of horizontal inequality, he says:

The statistical equilibrium theory of markets is methodologically less ambitious than Wal-
rasian competitive equilibrium theory. Walrasian theory seeks to predict the actual market
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outcome for every individual agent, while the statistical approach seeks only to characterize
the equilibrium distributions of agents over outcomes, without predicting the fate of specific
agents. (Foley [19] pp.343–344).

Another recent work applying thermodynamic methods to macroeconomics is the
paper by Caticha and Golan [20]. In their model, there are a finite number of goods,
and a finite number of agents. Goods can be seen as production and consumption
goods simultaneously; an agent can be a producer and/or a consumer of any particular
good. Each agent has an utility function that models its relative interest for different
mixtures of goods. To each microstate of the economy (the specification of each
agent’s consumption and production functions, alongside with its utility function),
there corresponds a macrostate: the total amount produced and consumed of each
good, and the total utility of each agent. Again, as in Foley’s work, the macrostates
constraints are taken to be expected values, instead of exact, aggregate quantities.

By imposing an expected market closure constraint, a budget constraint on the
agents, and fixating each agent’s expected utility, they obtain the MAXENT distri-
bution on the space of agents and goods, and use it to analyze the dynamics of an
economy in state of (statistical) equilibrium.

Another line of application of theMAXENT framework has been the labormarket.
The paper published in Brazil by Soromenho [21], for one example, models the
economy as composed of two kinds of agents: workers and firms. The goods of his
economy are labor and currency, and the transactions considered are the exchange of
a worker’s labor for a firm’s money. Workers can either be unemployed, or receive
a wage for one unit of work. Firms have a wage budget that must be entirely spent.
The wages are not fixed, meaning that, with a given fixed budget, each firm can hire
more or less workers, paying a smaller or bigger wage respectively.

By imposing a viability condition (according to which the number of workers
receivingwage i is the same number of workers employed by the firmswith this same
wage), the author obtains aMAXENTdistribution.Hismethodup to this point is quite
similar to the methods we previously described. He differs, however, in the use he
gives to the equilibrium distribution: he uses it to analyze a classical (nonstatistical)
kaleckian model for a single good economy. He concludes that it is possible to
replace the usual closure of the kaleckian model (exogenous markup for the wages,
uniform distribution of employment between firms) by expected values for the same
quantities (average wage, MAXENT distribution of employment) calculated with
the MAXENT distribution, and still obtain the same results of the usual kaleckian
model.

When applied to either the labor or the goods market, the maximum entropy
framework is based on the idea of distributing a fixed quantity among individuals. The
paper of Banerjee and Yakovenko [22] discuss the method precisely in this terms: in
their paper, the economy is defined with three resources: money, income, and energy.
The microstates of the economy are the sets of (either) goods in possession of each
agent. Transactions occur between pairs of agents, and consist of the exchange of a
constant amount of resources.
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Agents are divided in classes, and the constraints are of a constant number of
agents, and constant total amount of resources. With these constraints, the authors
obtain the equilibrium distribution. Here, the statistical equilibrium receives a clearly
ergodic interpretation:

After many transactions between different agents, we expect that a stationary probability
distribution of money would develop in the system. (Banerjee and Yakovenko [22], p. 4)

After obtaining the equilibrium distribution, the authors use it to analyze the
situation in which two economies, with different equilibrium “temperatures” (which
translates to different resource’s stocks per capita), start to interact. By postulating
the validity of the second law of thermodynamics, they conclude that the flow of
resources must be from the richer to the poorer countries.

5.1 Conclusion

The papers (very) briefly reviewed in the last section allow us to draw in broad lines
what is the statistical equilibrium method, as applied to macroeconomics.

First of all, it begins with the modeling of individuals: a set of phase variables
is chosen, and a model for the interactions between agents (exchanging of values
for the phase variables) is proposed. From the start, it is recognized that individual
variability might exist, even in equilibrium, and even between individuals which
have exactly equal initial conditions. This recognition is the natural consequence
of having a probabilistic solution for the model: a probability distribution over the
possible microstates.

After the model for microstates is developed, in order to obtain a solution it is
necessary to incorporate knowledge about macrostates as well. In physics, this is
done by postulating conservation laws; in macroeconomy, the analogous idea is that
of market closure (equality of supply and demand levels). This kind of constraint
was used since the early works of Debreu and Samuelson; the main difference is that,
in the statistical equilibrium framework, markets close only in expected values. This
opens the possibility that real economies working outside market closure can still
be analyzed by equilibrium methods. In the classical theory, at least in principle, the
closure is a logical necessity in equilibrium, and any deviance from that breaks the
model altogether (the recognition of this fact might have been one of the reasons that
motivated Samuelson to insist upon the abstract nature of equilibrium solutions).

But besides these two points, we believe that the adoption of statistical equilibrium
methods in macroeconomics can have another epistemological impact. This might
be the case because, in the words of Blanchard [18]:

The techniques we use affect our thinking in deep and not always conscious ways. This was
very much the case in macroeconomics in the decades preceding the crisis. The techniques
were best suited to a worldview in which economic fluctuations occurred but were regular,
and essentially self-correcting. The problem is that we came to believe that this was indeed
the way the world worked. (Blanchard, 2014)
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In most papers we analyzed, statistical equilibrium receives an interpretation
which can be linked to the ergodic school of thought in statistical mechanics [23].
Equilibrium is a concrete state of affairs, one that ought to be reached by the real
economy, given that the interactions modeled are allowed to continue for a suffi-
cient long period of time, and as long as the model assumptions are satisfied. The
ergodic interpretation is then a very normative one, in the sense that it precognizes
that, if the transactions and elements of the economy are such and such, the free
course of the economy will lead to this and this situation. Uncertainty only enters
the picture because individuals are unpredictable and do not exactly behave as the
model says they do; if the economy is free to evolve for a sufficient long time, this
unpredictability will “cancel out” and the predictions will be fulfilled.

In the subjective interpretation, on the other hand, statistical equilibrium solutions
are understood as the most conservative (maximum entropy) probabilistic models for
an economy, given the macro constraints we expect to be satisfied. It is explicitly
a tool used by the scientist to describe what he believes would be the case if his
description of the microstates is accurate and if his expectations about aggregates
hold at least approximately. The uncertainty, in this case, is assumed by the scientist;
hewill be talking (probabilistically) about the current state and nature of a system, and
not about its potential infinite evolution. Equilibrium solutions lose their normative
status, as Samuelson wanted; or rather they cease to have a normative status over the
real economies, to receive a normative status over the scientist’s work.

In this sense, the subjective interpretation can work as a safeguard against the
epistemological risk that Blanchard points out: the probabilistic model, derived as
an equilibrium, will still be useful (and used) as a scientific and decision-making
tool. However, the uncertainty of its predictions will be associated with the lack of
complete knowledge about the system. Equilibrium will not be an ideal situation
the economy might reach in the long run, but a practical state of affairs reached by
macroeconomical science in the investigation of real economies. Knowing that, if
the scientist again comes to believe that “this is indeed the way the world works," he
might be not very much distant from the truth.
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Full Bayesian Approach for Signal
Detection with An Application to Boat
Detection on Underwater Soundscape
Data

Paulo Hubert, Julio M. Stern and Linilson Padovese

Abstract The problem of detecting a signal of known form in a noisy message is a
long-studied problem. In this paper, we formulate it as the test of a sharp hypothesis,
and propose the Full Bayesian significance test of Pereira and Stern as the tool for
the job. We study the FBST in the signal detection problem using simulated data,
and also using data from OceanPod, a hydrophone designed and operated by the
Dynamics and Instrumentation Laboratory at EP-USP.

Keywords Underwater acoustics · Bayesian inference · Signal detection

1 Introduction

The problem of detecting the presence of a signal in a noisy sample can be stated
as an inference problem where we compare two alternative hypothesis, H0: data
is composed of noise only, against H1: data is signal plus noise. By signal, we
understand a function of time, usually discretely sampled; data is, thus, a sequence
of points indexed by a time variable.

One common application of signal detection is in telecommunications, where
one intends to transmit a message through a noisy channel from a transmitter to a
receiver; when the message is binary, the receiver must decide at each instant if a
given (known) signal is present (in which case she assumes a 1 was transmitted) or
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absent (in which case she assumes a 0 was transmitted). In this kind of application,
usually, the exact signal form is known both at the transmitter and the receiver, and
the problem arises only because the channel is not ideal, i.e. it adds noise to the data
that is collected at the receiver.

It is natural, in this situation, to postulate the model [1] Y = ξ X + R, where Y
is the recorded noisy message, X is the particular signal form we are interested in,
and R is noise, where by noise we understand whatever forms of random or non-
random patterns besides the one that codifies the signal. The unknown parameter ξ

is interpreted as a nonnegative gain factor. In this formulation, the problem of signal
detection amounts to testing H0 : ξ = 0 against H1 : ξ > 0.

Testing hypothesis of equality, like the one defined above, is the main goal of
the FBST (Full Bayesian significance test) [2] framework. In this work, we analyze
the problem of signal detection as a sharp hypothesis test problem, and propose the
FBST as the tool of choice for the job. We analyze both the simplest case, where
the signal form is completely known at the receiver, and a more complicated version
of the signal detection problem, namely the situation where the functional form of
the signal is known, but not the values of the parameters that completely define it.
After analyzing the performance of the FBST with simulated data, we apply it to the
problem of detecting the presence of ships in soundscape data.

2 FBST for Signal Detection

2.1 Signal Known at the Receiver

We analyze first the problem of digital signal detection, which can be stated in the
following terms: a transmitter sends a signal, modelled as a continuous function
of time x(t), t ∈ [0, T ], through a noisy channel. The signal plus noise reaches
a receiver, whose task is to analyze the message and decide whether the signal
was or was not embedded in the message. The received message can be modelled
as y(t) = ξ x(t) + r(t), t ∈ [0, T ], where r(t) is noise, and ξ is a gain factor that
represents the intensity of the signal (assumed constant for t ∈ [0, T ]).

From a statistical point of view, the problem can be stated as the test of the sharp
hypothesis H0 : ξ = 0. Acceptance of the null hypothesis implies that no signal was
present in the recording (i.e. a 0 was transmitted), whereas its rejection means that a
signal was indeed present (a 1 was transmitted).

In many applications, specially in communications, the exact form of the signal is
known both at the transmitter and the receiver. Given this information, the problem
is greatly simplified, since our parametric space is only one-dimensional (ξ is the
only unknown quantity, if one assumes known noise power).

In this section, we evaluate the performance of the Full Bayesian significance test
(FBST) in this simpler version of the problem using simulated data. We consider,
henceforth. a signal of the following form
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x(t) =
m∑

h=1

Ahcos (2πhωt + φh) (1)

This form is the one of a sinusoidal wave with fundamental frequency ω and m
harmonics. The Ah and φh represent each harmonic’s amplitude and phase, respec-
tively.

The choice for this particular form is motivated by our later application, namely
the detection of ships in hydrophone recordings. The literature [3–6] of subaquatic
acoustics suggests that the noise radiated by a moving ship is of the form in (1), plus
broadband noise. We discuss this model in further detail in a later section.

For now, supposing thatΘ = {ω, A1, . . . , Am, φ1, . . . , φm} is known, the problem
of detecting this signal in a noisy recording can be modelled in the following way:
the message at the receiver is given by y(t) = ξ x(t) + r(t). We model the noise r(t)
as a Gaussian random variable with 0 db mean amplitude, and a variance of σ 2

r . The
gain factor ξ is constrained to have values between 0 and 1.

We assume the message to be uniformly sampled at the receiver, at a sampling
rate high enough to avoid aliasing problems. Thus our actual data is a set of N points
y[ti ], i = 1, . . . , N .

In this situation, and assuming a uniform prior in [0, 1] for ξ , and an improper
prior for σ 2

r , the posterior distribution for ξ , given data y[ti ], is

p(ξ |y,Θ) = (2πσ 2
r )−N/2exp

[
−

N∑

i=1

(y[ti ] − ξ x[ti ])2
2σ 2

r

]
(2)

Under H0 : ξ = 0, the posterior is

pH0(ξ |y,Θ) = (2πσ 2
r )−N/2exp

[
−

N∑

i=1

y[ti ]2
2σ 2

r

]
(3)

In the FBST framework, the evidence against H0 is defined as the integral of the
posterior distribution over the surprise set, defined as the set of points, in the full
parametric space, whose posterior values are higher than the maximum posterior
under H0. To calculate the evidence, then, we first need to obtain p̂H0 , the maximum
posterior under H0, which in this case is simply the value in (3) calculated at the
maximum likelihood estimate for σ 2

r .
To calculate the integral of the full posterior, we use a traditional Metropolis-

Hasting algorithm, with a uniform [0, 1] candidate distribution for ξ and an inverse
gamma candidate for σ 2

r .

2.2 Simulated Data

To evaluate the FBST performance in the signal detection problem, we simulate
a message with the following form: the signal has the functional form in (1), with
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Fig. 1 Evidence values -
known signal form

m = 5, ω = 60, Ai = {0.005, 0.004, 0.003, 0.002, 0.001}, φi = {−π,−π/2, 0, π/

2, π}. We simulate a 7 s long signal, with ξ = 0 during the first and final 2 s, and
ξ = 1 in the middle 3 s. We assume a sampling rate of 11025Hz. We will use this
same values for both cases (signal form completely known, and signal parameters
unknown).

We simulate the message for four different SNR values: 0.9, 1.2, 1.5, 2 (SNR
is here defined as the quotient between the deterministic signal’s power, and noise
power).

The results for the case where the signal form is completely known, and for the
different SNR values, are shown in the Fig. 1. The results were the same, regardless
of the SNR.

2.3 Unknown Signal Parameters

Now, we complicate matters a little bit further and assume that the signal form is
known at the receiver, but not the parameters that fully define it. This situation might
arise when, for instance, the receiver is not stationary with relation to the transmitter,
or if the characteristics of the channel medium change over time.

Our model remains essentially the same as before, except that now the full poste-
rior is 12-dimensional (the parameters are the gain factor, the fundamental frequency,
the five amplitudes and five phases). In most real situations, however, there is strong
prior information on the signal parameter’s. We model this fact by imposing a Gaus-
sian prior on ω, the fundamental frequency. The prior hyperparameters used were
μω = 50, σω = 10. Amplitudes and fundamental frequency are constrained to be
positive, and phases lie in [−π, π ] by symmetry considerations. For these parame-
ters and also for the signal noise variance, uninformative priors were adopted.
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Given the prior distribution on ω, the new posterior has the form

p(ξ,Θ|y) = (200π)−1exp

[
− (ω − 50)2

200

]
× (4)

(2πσ 2
r )−N/2exp

[
−

N∑

i=1

(y[ti ] − ξ x[ti ])2
2σ 2

r

]
(5)

This time the evaluation of the posterior integral is not so straightforward; the
parametric space is multidimensional, and there might me many local maxima in
the posterior. Actually, the signal model we adopted is guaranteed to possess at
least m local maxima, for ω = ω0, 2ω0, . . . ,mω0, where ω0 is the true value of the
fundamental frequency.

Given these characteristics of the problem, we choose to apply an evolutionary
strategy to sample from the posterior, namely the DiffeRential Evolution Adaptive
Markov Chain (DREAM) method of ter Braak and Vrugt [7]. This method consists
in initializing a number of parallel Markov chains, which evolve dynamically by
taking steps in a random direction given by the difference between one (or more)
pair of chains. The method preserves ergodicity of the chain by application of the
usual Metropolis acceptance ratio. This method is specially well suited for multi-
modal distributions; details can be found in [7, 8]. We use a version of the algorithm
implemented in MATLAB by ourselves.

Again, the optimization step involved in the FBST calculation is immediate, since
under H0 the parametric space is one-dimensional and the maximum posterior is
obtained by using the maximum likelihood estimate of σ 2

r . We apply the DREAM
algorithm using 7 parallel chains (which as a side effect allows us to monitor the
chain’s convergence using, for instance, Gelman and Rubin’s R̂ statistic [9]), and
sample 15.000 points after a burning period of 15.000. The results are shown in the
Fig. 2.

Fig. 2 Evidence values -
unknown signal parameters
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The method is thus very efficient in pointing out the signal’s presence (rejecting a
false H0). However, it gives high values for the evidence against H0 when it is true.
This is caused by the generality of the model we adopted for our signal. We comment
further on this fact in the next section.

3 Application to Soundscape Data

Soundscape data are audio recordings made by one or more hydrophones (acoustic
recording devices that work underwater). This kind of data is used, among other
things, to monitor the traffic of vessels (military or not) and to study the behaviour
of marine species.

From the past 10 years, the Acoustics and Environment Laboratory (LACMAM)
at EP-USP has been developing technology in the area of subaquatic acoustics.
One of these technologies is the OceanPod [10], a hydrophone capable of 3-month
continuous recordings, with a frequency band of 5–24kHz.

One such hydrophone has been installed at a 20m depth in the region of the
Laje de Santos park, at the city of Santos in the Brazilian coast. This park is a
marine preservation area, with the abundant presence of several marine species. The
hydrophone recorded 3-months of sound before its retrieval by the LACMAM’s
team. The OceanPod mission has being repeated four times already, with a total of
1-year recording time.

In possession of these recordings, the laboratory has been using it with many
different goals [11, 12]. One of these goals is to aid the development of a ship
detection algorithm: since the park is a state preservation area, it is forbidden to fish
in the park’s area (actually, it is forbidden to even navigate through the park with
fishing equipment inside the boat).

Nevertheless, given the abundance of fish in the park, many fishing boats disobey
the park’s regulation, specially at late hours of the night. Since the park’s borders are at
a 40km distance from the coast, fiscalization is costly. Thus, the park administration,
in a combined effort with the laboratory, intend to use the hydrophone’s data to
improve their fiscalization policies.

The problem of ship detection in sound signals is an old and much studied prob-
lem [4–6]. Recent work on the subject proposes the use of classification algorithms
such as neural networks to identify the presence of ships. However, this kind of clas-
sification algorithm demands a large annotated sample, with which algorithms can
be trained. This means that the researcher must either know beforehand the times of
ships’ passages, or else manually (auditively?) inspect the 3-month signal in order to
separate and annotate samples. This is a demanding task, since the passage of boats is
not very frequent. Also, listening to 3-month recordings of subaquatic sounds might
be a rather dull job.
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In order to help the preprocessing of these data, we propose in this paper a non-
supervised classification algorithm, that can be run through the samples to select
samples where it is at least highly likely that a ship was passing in the hydrophone’s
vicinity.

This task is similar to the detection problemwe presented in the previous sections.
However, this setting is a much more complicated one.

First of all, there is the functional form of the desired signal. As noted already,
the literature of acoustic ship signature indicates that a ship’s noise has mainly two
components: a tonal component, given by a sinusoidal signal with a fundamental
frequency and several harmonics, and a broadband noise component. The funda-
mental frequency of the tonal component, as received by the hydrophone, can vary
depending on the ship’s speed and direction of movement, and several other factors
involving the ocean and wind conditions, the specific features of the ship’s engine
and propeller, etc. For the broadband noise, the situation is even worse, since no
well-accepted functional form is known for this component, which is caused by
many factors, including (but not limited to) cavitation effects from the propeller.

Even if we can find a suitable parametric model for the ship’s noise signal, there’s
the problem of background noise in the recording. Noise, here, is taken to mean
anything but the signal of interest; so it might include fish vocalizations, snapping
shrimp and barnacle noise, the sound ofwaves, rain, etc.Worst of all, many biological
sources of noise have precisely the same spectrum form as the tonal component of a
ship’s noise, namely a sequence of evenly spaced delta functions in the log-frequency
domain.

As a first approach, we replicated the model used in the simulated data, where we
test the presence of a tonal signal with m harmonics, against random, white noise.
This approach failed miserably; the signal recorded by the hydrophone was far from
being well described by a Gaussian noise component, and this first algorithm showed
a profusion of false positives. It became then evident that a more precise model was
needed.

To build this newmodel, we noticed an important difference in the spectrum taken
from two different kinds of ships: Fig. 3 shows a spectrogram of the noise radiated by
a large vessel, moving with close-to-constant speed, and at a large distance from the
hydrophone. We see the equally spaced spectral lines almost parallel to the x-axis,
mainly in the low frequency (20–500Hz) band. It is known that low-frequency sounds
are less attenuated by the ocean than high-frequency ones. Such sounds can then be
detected at large distances, as is the case with the example below.

Figure 4, on the other hand, shows the spectrogram of a small vessel approaching
the hydrophone with non-zero acceleration. The signal to noise ratio is much greater
in this case, and also we see that the spectrum is distorted, showing negatively sloped
lines in the spectrogram.

Since the actual goal of the analysis is to detect small, quicker vessels as the ones
in Fig. 4, and sincemost biological acoustic signatures have the same functional form
as (1), our next model thus incorporates the fact that the fundamental frequency in



206 P. Hubert et al.

Fig. 3 Spectrogram for large boat

Fig. 4 Spectrogram for small boat
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(1) is time-dependent for the kinds of events we want to detect, but constant to either
large ships moving slowly and far away, or sounds of a biological nature. Our full
model for the small vessel then becomes

x[ti ] =
m∑

h=1

Aicos (2πhω(ti )ti + φi ) (6)

where
ω(ti ) = ω0 + δti (7)

We use, thus, a linear function of time for the fundamental frequency of the ship’s
radiated noise. The full model then becomes

y[ti ] = x[ti ] + r [ti ] (8)

and our new null hypothesis is H0 : δ = 0. This model, we expect, will differentiate
between statical sources and moving ones. Incidentally, this might help us to detect
more specific events, namely the approximation and departure of boats, rather than a
stationary boat with engine turned on. In terms of aiding fiscalization in the park, this
might be of greater interest than detecting any kind of ship-related events whatsoever.

Again, we model prior information available on the ship’s fundamental frequency
with a Gaussian prior, with μω = 40, and σ 2

ω = 25. The reason for such a precise
prior distribution is twofold: first of all, it helps to prevent theMCMC algorithm from
wandering to much in the parametric space, helping it to avoid the inevitable local
maxima at integer factors of the true fundamental frequency. Also, there is plenty of
the literature in the subaquatic acoustic signature of small ships, and this literature
points to fundamental frequencies usually in the range of 20–40Hz.

Thus the posterior for this problem has the same form as in (4). To calculate the
evidence against H0, we first obtain the maximum posterior under H0, applying a
combination of the DREAM method and an interior-point optimization algorithm.
We start 20 parallel chains, run it for a small number of iterations, and then apply
the optimization algorithm to the maximum point of each chain. We then simulate
again the 20 chains, using as starting values the maximum points, and repeat this
procedure until convergence.

After obtaining the maximum posterior under H0, we run the DREAM algorithm
in the full parametric space to estimate the evidence value. We run the chains for
30.000 iterations, discarding the first 15.000.

There remains the choice ofm, the number of fundamental harmonics. The number
of harmonics in a ship’s radiated noise can be as high as 20, if the signal has enough
power. In our tests below, we apply the algorithm using m = 7 and m = 10.
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Fig. 5 Evidence values - m = 7 (LHS) and m = 10 (RHS)

3.1 Results

To test this model, we use a sample where it is known that small boats were passing.1

We calculate the evidence against H0 (i.e. the evidence for the presence of a ship)
using samples of 0.5s. The hydrophone samples the signal at a 11.025Hz, which
gives us a total of 5.516 data points for each window. The results for a 10 s long
signal, using non-overlapping 0.5s samples, are shown in Fig. 5.

As we see in the left-hand side of Fig. 5, the problem of false positives was greatly
reduced with the new model using m = 7. The first non-zero value for the evidence
of a ship’s passage is in the window starting at second 3, during which the signal
first appears. After that, the evidence stays high for 3 s, falling to 0 again when the
signal power falls considerably. After that we see evidence for the signal presence
rise again. There is one possible false positive at the window between 8, 5 and 9s,
but auditive inspection of the signal shows a small occurrence of the engine sound
at this point.

Using m = 10, the sensitivity of the test drops, and we see positive evidence for
the presence of a ship only around second 3 in right-hand side of Fig. 5. This is due
to the high dimensionality of the parametric space under H0 (22 parameters) which
allows for high posterior values under H0.

Finally,we also applied ourmodel in a sample of a large vessel, the one represented
in the spectrogram Fig. 3. As expected, the evidence given by our model was less
than 0.01 in all 0.5s window extracted from that signal. This is another indication of
the potentiality of our method in the detection of small vessels against other events,
specifically against bigger boats in cruising speed.

1This was possible since touristic boats are allowed in the park for diving visits, and we happen to
know that during weekends they are likely to be near the park.
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4 Final Remarks and Future Work

The first goal of this paper was to evaluate the performance of the FBST framework
in the task of signal detection. Being specially designed to calculate the evidence for
sharp hypothesis, the FBST is a natural choice of tool for this job. Using simulated
data, we confirmed that the FBST is a promising technique to be used in this kind of
problems.

Our second goal was to apply the framework to a real data bank, namely audio
recordings from a hydrophone. In this case, we wanted to design an algorithm that
was able to preprocess subaquatic acoustic data, indicating sections of the audio that
are highly likely to register the passage of small vessels. As we saw in the last section
of the paper, by specifying a proper model for the ship’s radiated noise, we obtained
promising results with the FBST: the evidence values for our models are specially
suited to detect the presence of rapidly moving vessels at a small distance from the
hydrophone, which meets well the practical requirements for the problem at hand.

Also, the proposed framework is flexible: the models for the signal form can be
modified to reflect different kinds of events, and the number of harmonics in the
model can be used to adjust the evidence values for different values of signal power.
Prior information can be incorporated easily in themodel to adjust it for specific kinds
of vessels, particularly by the previous estimation of the fundamental low-frequency
of ships of interest using pre-annotated samples.

There are a few drawbacks, however; first of all, the algorithm relies on a MCMC
technique, which in turn demands a large computing time until convergence. The
computation of evidence for a 0.5 s window, with a model of 17 parameters, took
roughly 15min to complete (including both optimization and integration steps) in a
PentiumQuadricore 1.6GHz, 8MbRAMhome computer, andwith a serial algorithm
running in a single core. However, since this method is aimed as a preprocessing
tool, this is not a very serious drawback, and there are many ways to improve the
performance of the algorithm, whichwe intend to investigate further on future works.
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Bayesian Support for Evolution:
Detecting Phylogenetic Signal in a Subset
of the Primate Family

Patricio Maturana Russel

Abstract The theory of evolution states that the diversity of species can be explained
by descent with modification. Therefore, all living beings are related through a com-
mon ancestor. This evolutionary process must have left traces in our molecular com-
position. In this work, we present a randomization procedure in order to determine if
a group of five species of the primate family, namely, macaque, guereza, orangutan,
chimpanzee, and human, has retained these traces in its molecules. First, we present
the randomization methodology through two toy examples, which allow to under-
stand its logic. We then carry out a DNA data analysis to assess if the group of
primates contains phylogenetic information which links them in a joint evolution-
ary history. This is carried out by monitoring a Bayesian measure, called marginal
likelihood, which we estimate by using nested sampling. We found that it would be
unusual to get the relationship observed in the data among these primate species if
they had not shared a common ancestor. The results are in total agreement with the
theory of evolution.

Keywords Phylogenetic signal · Randomization · Marginal likelihood · Nested
sampling

1 Introduction

The theory of evolution states that the diversity of species can be explained by
descendants with modification. Darwin [3] was able to provide evidence in favor of
his theory, despite the limitations at that time. Nowadays, technology is a powerful
tool which allows to generate a huge quantity of evidence in favor of this theory. The
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support comes from different areas, for instance, Molecular Biology, Paleontology,
Biogeography, Biochemistry, and Phylogenetics. The present article is located in the
latter which is the study of the evolutionary relationship among groups of organisms
based typically on molecular sequencing data.

As in any other field, in phylogenetics data analysis is performed mainly under
two statistical approaches: Frequentist and Bayesian. The latter has gained ground
in phylogenetics due to its flexibility to deal with large dataset with the complex
evolutionary models. Studying a particular Bayesian measure, the probability that
the data have been generated from a tree-like evolutionary model, we asses whether
the patterns of evolution in the molecular sequencing data (DNA) could reasonably
arise due to chance. In other words, if the theory of evolution was right, the sequence
alignments should contain information which connects the species from where the
DNA was taken. If it is so, we asses if these patterns can be due to chance acting
alone.

To evaluate if these patterns emerged from the molecular data is due to chance,
we use a method known as randomization. This method allows to detect if the data
contain nonrandom information that links the species in a common evolutionary his-
tory. It performs by comparing a statistic obtained from the data to the distribution
of the same statistic obtained from a set of functional data, generated randomly from
the original one, which consequently does not contain any phylogenetic signal. If the
data support evolution, their information should be significant enough to be differ-
entiated for that one obtained just by chance. This technique was already proposed
by [1] in a nonparametric framework.

This article aims to show in a practical way how the evolution theory is supported
for a logical method as it is randomization by studying a Bayesian quantity: the
marginal likelihood. First, two toy examples are presented as means to understand
the method and then an application on a real dataset which contains part of the
primate family is given in order to detect phylogenetic signal. The description of the
statistical methods and phylogenetic models are omitted but the respective references
are given.

2 Randomization

Randomization is a method used to assess the effect of certain factor or treatment on
a variable of interest. This is carried out by studying the properties of the distribution
of a statistic calculated from randomized datasets. Each of these functional datasets
is generated by randomly assigning the observations to the factor/treatment, i.e., the
experimental units are relabeled. The new data will not show any effect of the factor
on the variable. The factor is obviated and any difference between its levels is caused
by chance. This is analogous to shuffling playing cards to eliminate any kind of
intervention.

The method compares the statistic of the original data with the distribution of
the same statistic of the randomized data. Such statistic, for example, can be mean,
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median, mode, or variance. This method does not need to make any assumption
about the population, it just works with the data to make inferences. Assumptions
such as normality or equal variances. The following example helps to understand the
method.

2.1 Toy Examples

Consider that we have the marks of a test for 10 students differenced by the method
of study (A or B) to which the students were randomly allocated. The marks are
presented in percentage and are shown in Table1. The objective is to determinewhich
of the methods of study is more effective. Both examples are developed at the same
context but they will differ in the dataset. They could have been treated analytically,
but to illustrate randomization in a general way we have used simulations. They just
have didactic purposes and clear patterns have been arbitrarily assigned.

2.1.1 Example 1

Clearly, method A presents higher marks than method B (see Table1, Example 1).
This can be also noticed comparing their means (see Table2). Apparently, method
A is better than B. But can this be due to chance acting alone? Randomization can
give us an idea.

We generate a new dataset where eachmark is assigned randomly to eithermethod
A or B. The number of marks per method is set to 5, as in the original dataset. Then,

Table 1 Data for the toy examples

Example 1 Example 2

Method A Method B Method A Method B

92.5 55.2 18.49 94.35

99.8 32.0 70.24 12.92

75.8 49.6 57.33 83.34

82.4 68.3 16.81 46.80

93.2 69.3 94.38 55.00

Table 2 Means for each method according to the example. “Difference” depicts the subtraction
between the means of Method A and B

Method A Method B Difference

Example 1 88.74 54.88 33.86

Example 2 51.45 58.48 −7.03
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Fig. 1 Distribution of the mean of the randomized datasets for the toy examples. In Example 1, the
observed difference is unlikely to have happened under chance acting alone. On the other hand, in
Example 2, this difference could have been just due to chance and nothing to do with which method
was used

the difference between the means is calculated and registered. This procedure is
repeated 10,000 times. The mean differences are plotted in Fig. 1.

We can see that the mean difference is around zero. This is expected because
the difference in means is just due to chance. The effect of the method has been
obliterated. The observed difference, that was calculated from the original data, is
33.86 and located in the right extreme of the distribution. In case that chance is acting
alone, it would be unusual to get an observed difference as big as that observed in the
data. Assuming a well-designed experiment, we conclude that method A effectively
yields better results than B on average.

2.1.2 Example 2

Now consider the data given in Table1 for Example 2. In this case, both methods
yield apparently similar results. The difference between their means is just 7.03 (see
Table2, Example 2). But again, can this be due to chance acting alone? To give an
answer we repeat the procedure in Example 1. The results are shown in Fig. 1.

The distribution of the differences between the means of method A and B for the
randomized datasets has its center around zero and is relatively symmetric. Similar
characteristics were found in Example 1 because the potential effect of the method
of study has been wiped out in both examples. The observed difference −7.03 is
near its center. When the chance is acting alone, this difference is highly probable,
unlike Example 1, where the difference in means was unusual under chance acting
alone. Thus, assuming a well-designed experiment, we could claim that the methods
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of study yield similar results, on average, and the observed difference is just due to
chance acting alone.

In these cases, we compared the effect of the method of study on the mark mean,
but we could have studied any other characteristic, for instance, standard deviation,
median, or a specific probability. In strict rigor, the comparison should be carried
out by using an appropriate statistical test, for instance, a t-test. In the next case, we
will study the probability of the data given the model in order to detect phylogenetic
signal in a molecular dataset of five primates.

3 Phylogenetic Analysis

Now, we apply the same concept in order to analyze if a molecular dataset of a
group of primates has information about their common evolutionary history. This is
a subset of a dataset which has been previously analyzed in the literature [7]. This
subset contains five kinds of primates: macaque, guereza, orangutan, chimpanzee,
and human. The alignment corresponds to mitochondrial DNA which has length
of 15,727 sites. To wit, the DNA is composed by four nucleobases: adenine (A),
cytosine (C), guanine (G), and thymine (T). An extract of the data is shown in Fig. 2.
The relationship among these species is uncontroversial and can be visualized as the
tree shown in Fig. 3. Human and chimpanzee share a more recent common ancestor.
This makes them more closely related. Orangutan is also part of this clade, but
with a farer ancestor. Macaque and guereza form another clade. All the species are
connected through their most recent common ancestor, which is located in the root
of the tree (left vertex of the tree) (Fig. 3).

In order to eliminate any kind of correlation in the dataset, we permute each
site generating a new dataset. In other words, each site is reordered randomly.
For instance, site 2 = (C,T,C,T,T) displayed in Fig. 2, can be permuted as
(T,C,T,T,C). The theory of evolution [3] states that all organisms are related
through common ancestors. So, if the data were generated by a tree, they should
contain this information, unlike in case the data are randomized.

In the previous examples, the mean difference was studied, but now we will study
the probability of the data given the model, which will be referred to from now as
marginal likelihood. Phylogenetic deals with very small probability values, so it is

Fig. 2 Extract of the mitochondrial DNA for five species of primates. Each column represents a
site
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Fig. 3 Evolutionary relationship amongfivemembers of the primate family. From the top:macaque,
guereza, orangutan, chimpanzee, and human. These species are related via common ancestry

convenient to work with log values. The evolutionary relationship among the species
is modeled by the tree, which is displayed in Fig. 3. This tree represents the factor
to be tested in this analysis, similar to the method of study that was tested in the
previous example. We describe the evolutionary process along the tree assuming a
GTR+Γ4 model, which is the most general time reversible model. A good readable
material about these models is given in [9]. The prior distributions on the parameters
involved in the model are defined in Appendix 1.

The calculation of themarginal likelihood is a challenging problem in phylogenet-
ics, even in simple models. Therefore, it requires a numerical approximation. Here,
we estimate it via Nesting Sampling [8], algorithm introduced to phylogenetics by
[4]. Details of the estimation process are given in Appendix 2.

We generate 1000 randomized datasets and calculate, for each one, their log-
marginal likelihoods. Also, we estimate this quantity for the original dataset. The
results are shown in Fig. 4 and the descriptive statistics in Table3.

The estimates for the randomized data fluctuate between −53484 and −51675
with a mean of −51737. On the other hand, the observed log-marginal likelihood
estimate is −49658 (with a standard deviation of 0.73). This is located at the right
side of the distribution of the log-marginal likelihoods for the randomized datasets,
approximately, 26 standard deviations away from the mean.
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Fig. 4 Log-marginal likelihood of the observed data compared to the distribution of this quantity
obtained from randomized datasets. The observed log-marginal likelihood is much higher than that
one would expect under chance acting alone. The information contained in the molecular data of
this primate family is more highly probable of being obtained due to common ancestry than just
due to chance

Table 3 Descriptive statistics for the estimated log-marginal likelihoods from the randomized
datasets

Minimum Mean Std. Dev. Maximum

Randomized data −53484 −51737 80.03 −51675

Following the reasoning of Example 1, we conclude that it would be unusual that
an observed log-marginal likelihood would be as large as the one observed in the
data when chance is acting alone. The probability that the original data has been
generated by the tree structure is much higher than the randomized datasets have.
This means that the patterns in the DNA are more likely to be explained by the
tree-like structure than just to occur due to chance. In other words, the data contain
phylogenetic information that cannot be explainedonly by chance. Themitochondrial
DNAhas retained the common evolutionary history of these species, and our analysis
has shown that it would have been highly unlikely to obtain this disposition of the
bases in the data as a result of pure chance. This is evidence which supports the
tree structure behind the evolutionary history of these 5 species of primates that is
consistent with the theory of evolution.

4 Conclusion

A brief introduction to randomization method has been given. Two toy examples
have been studied to explain its logic. Example 1 represented a case in which the
treatment had an effect on the studied characteristic, while Example 2 presented a
case when chance was acting alone. Both examples aimed to set up the logic which
is used in the analysis of a primate family dataset.
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We analyzed a real dataset of five species of primates under a Bayesian statistical
approach and used randomization to detect if this contained nonrandom informa-
tion. The data were permuted to eliminate any kind of phylogenetic signal, and then
the probability that these randomized data came from the tree model was calculated
(marginal likelihood). This procedure was repeated several times, generating a distri-
bution for the estimates. The probability for the original dataset wasmuch higher than
the maximum value of the same value of the randomized data. We would not expect
such a probability if there was no tree signal. Therefore, we concluded that chance
was not acting alone and these species have a tree-like relationship. The presence of
a hierarchical structure provides evidence for descent from common ancestry.

The results given here are consistent with the theory of evolution and are added
to the huge amount of evidence which supports it. For instance, 28 morphologi-
cal datasets were analyzed and are in favor of the tree-like models [1]; in addition
sequence data for 5 proteins from 11 species contains similar phylogenetic infor-
mation [5]. In this line, we have shown that Bayesian inference provides the means
to detect this phylogenetic signal through the marginal likelihood. In practice, it
is unusual to find data that completely lack hierarchical structure [2] and the data
analyzed here were not the exceptions.

All the analysis and plots have been produced in R-project [6].

Appendix 1

We analyze the dataset assuming aGTR + Γ4 model and consider the following prior
distributions on the parameters involved in the analysis:

• Branch lengths: ti |μ ∼ Exp(1/μ), for i = 1, . . . , 8, with μ ∼ Inverse-Gamma
(3,0.2).

• Relative rates: qi |φ ∼ Exp(φ), for i = 1, . . . , 5, with φ ∼ Exp(1).
• Base frequencies: π ∼ Dirichlet(1,1,1,1).
• Gamma shape parameter: λ ∼ Gamma(0.5,1).

For more information about the parameters involved in the phylogenetic analysis,
see [9].

Appendix 2

Nested sampling [8] is a Bayesian algorithm to estimate mainly the marginal like-
lihood. It requires a tunning parameter called active points. The precision of the
estimate depends on the number of active points. The higher it is, the more accurate
the estimate and the higher the computational cost are.
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To estimate the observed marginal likelihood, we use 100 active points. This
yields a standard deviation of 0.73 of the log-marginal likelihood estimate. For the
1000 randomized datasets, we use five active points in order to get a quick picture
of their log-marginal likelihood distribution.
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Abstract Bayesian inference is a powerful method that allows individuals to update
their knowledge about any phenomenon when more information about it becomes
available. In this paradigm, before data is observed, an individual expresses his
uncertainty about the phenomenon of interest through a prior probability distribution.
Then, after data is observed, this distribution is updated usingBayes theorem. Inmany
situations, however, one desires to evaluate the knowledge of a group rather than of a
single individual. In this case, a way to combine information from different sources
is by mixing their uncertainty. The mixture can be done in two ways: before or
after the data is observed. Although in both cases, we achieve a collective posterior
distribution, they can be substantially different. In this work, we present several
comparisons between these two approaches with noninformative priors and use the
Kullback–Leibler’s divergence to quantify the amount of information that is gained
by each collective distribution.
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1 Introduction

Bayesian inference is an approach based on the updating knowledge about a phe-
nomenon. This knowledge can always be represented at anymoment by a probability
function. As new information about the phenomenon becomes available, we learn
about it and thus, the knowledge is updated, being Bayes’ theorem the tool used for
this update.

In more practical statistical terms, let’s assume an individual is looking to learn
about a parameter (phenomenon). His/her knowledge is updated when data becomes
available, with the likelihood function being the function that carries all information
the data has about the parameter. The probability density function that translates the
individual’s knowledge before data observation is called prior distribution, whereas
after the update, it is called posterior distribution.

Inmany situations, there ismore than a single individualwhowants to learn about a
phenomenon [1, 2, 5], and decisionsmust be taken at a group level.With that inmind,
it is interesting to look at a group’s knowledge and perhaps evaluate a distribution that
expresses the uncertainty about this phenomenon in a collective way [6]. Considering
that each individual expresses his/her knowledge through a probability distribution,
a way to combine their uncertainty is by mixing these distributions [3]. There are
two approaches for the update: (i) mixing each individual’s prior distributions into
a single prior distribution and updating it when the data becomes available; or (ii)
obtaining the posterior distribution for each individual and then mixing them into a
collective posterior.

Although in both cases, we achieve a collective posterior distribution, their results
can be different. With that in mind, we present a comparison study for these two
methods of combining information and use the Beta-Bernoulli family to compares
these two approaches in different settings, highlighting the characteristics of each
one.

2 Construction and Comparison of Collective Posteriors

In this section, we review mixture distributions and show how they can be used to
combine information from a group of individuals.

2.1 Mixture Distribution

Amixture distribution is the probability distribution of a random variable derived by
a convex combination of other independent random variables. Given a finite set of
density functions p1(x), . . . , pk(x) and weights w1, . . . , wk such that wi ≥ 0, i =
1, . . . , k and

∑k
i=1 wi = 1, the mixture distribution, f (x), can be represented by:

f (x) = �k
i=1wi pi (x).
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Focusing on combining the knowledge of a group, it is possible to mix the indi-
vidual probability functions either before or after data observation. We explore these
in the sequence.

2.1.1 Collective Posterior Construction

Our focus is to express the uncertainty of a group through a distribution function
obtained by mixing individual distribution functions that represent each individual’s
knowledge about the unknown parameter θ . There are two ways to mixture the
individual distributions: before or after the update. In both approaches, consider
π1(θ), . . . , πk(θ) prior distributions from k individuals and w1, . . . , wk , with 0 ≤
wi ≤ 1 and

∑k
i=1 wi = 1, their respective weights.

By mixing before the update, we construct a collective prior πc(θ) = ∑k
i=1 wi

πi (θ) by mixing each individual’s prior distribution and, when more information
becomes available, it is updated through Bayes’ Theorem, obtaining a collective
posterior πc(θ |x):

πc(θ |x) =
∑k

i=1 wiπi (θ)L(θ |x)
∫
�

∑k
i=1 wiπi (θ)L(θ |x)dθ

. (1)

Another way to obtain a collective posterior is by updating each prior with the
available data, obtaining each individual posterior and after that, we achieve a col-
lective posterior by mixing each individual posterior, obtaining:

π∗
c (θ |x) =

k∑

i=1

wiπi (θ |x). (2)

Although in both cases, we achieve a collective posterior distribution, the results
obtained by each approach can be substantially different. For instance, the posterior
using the mixture of priors approach with weights w is equivalent to the mixture of
posteriors with weights w′. Let ci = ∫

�
πi (θ)L(θ |x)dθ .

πc(θ |x) =
∑k

i=1 wiπi (θ)L(θ |x) cici∫
�

∑k
i=1 wiπi (θ)L(θ |x) cici dθ

=
∑k

i=1 wiπi (θ |x)ci
∫
�

∑k
i=1 wiπi (θ |x)cidθ

=
k∑

i=1

wi ci
∫
�

∑k
i=1 wiπi (θ |x)cidθ

πi (θ |x)

=
k∑

i=1

w′
iπi (θ |x). (3)
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In order to compare the two approaches, we obtained the risk function and quanti-
fied the amount of information in each density with theKullback–Leibler divergence.

3 The Beta-Bernoulli Case

In this section, we consider the Beta-Bernoulli conjugation, to construct and show
how both methods perform. With that in mind, consider that θ represents a pro-
portion, with 0 ≤ θ ≤ 1 and the knowledge about it a priori can be represented by
a Beta(α, β) distribution, α, β being hyperparameters. We consider Beta(αi , βi ),
with i = 1, . . . , k, to be the ith’s individual’s prior distribution of θ . Data comes
from a Bernoulli distribution, that is, X |θ ∼ Bernoulli(θ), and the likelihood func-
tion for a sample size n is L(θ |x1, . . . , xn) ∝ θ S(1 − θ)n−S , in which xi = 0, 1 and
S = ∑n

i=1 xi , S ∈ {0, 1, . . . , n}.
Mixture before the update. Considering (1), first we construct the collective

prior;

πc(θ) =
k∑

i=1

wi
Γ (αi , βi )

Γ (αi )Γ (βi )
θαi−1(1 − θ)βi−1.

When data becomes available, we update it, thus obtaining πc(θ |x) = ∑k
i=1 w′

iπi

(θ |x), in which
w′

i = wi
Γ (αi+βi )

Γ (αi )Γ (βi )

Γ (αi+βi+n)

Γ (αi+S)Γ (βi+n−S)

(
∑k

i=1 wi
Γ (αi+βi )

Γ (αi )Γ (βi )

Γ (αi+S)Γ (βi+n−S)

Γ (αi+βi+n)
)
. (4)

Mixture after the update. In this approach, we update the individual’s prior
distribution separately and than mix the individual’s posterior distributions, thus
obtaining

π∗
c (θ |x) =

k∑

i=1

wi
Γ (αi + βi + n)

Γ (αi + S)Γ (βi + n − S)
θαi+S−1(1 − θ)βi+n−S−1 (5)

4 Results

In this section, we present comparisons between both methods. The comparisons
are not a simulation study; we consider all possible samples in each scenario. The
scenarios are characterized by a choice of three prior distributions andwe analyze the
scenarios for different sample sizes.We consider three sources of prior information in
each scenario, all of them representing the knowledge about an unknown proportion
θ through a Beta(α, β) distribution:
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Fig. 1 Prior distributions. a is the symmetric scenario, b the concentrated scenario and c the
discordant one

• [Symmetrical]. The prior distributions are Beta(5, 1), Beta(1, 5), Beta(3, 3)
• [Concentrated]. The priors are concentrated on the same region of the parameter
space:we chooseBeta priorswithmeans 0.15, 0.25 and0.35, allwith 0.01 variance.

• [Discordant]. All priors have the same variance, 0.01, but the means are 0.15,
0.25, and 0.8.

All prior distributions aremixedwith equalweights, that is,wi = 1/3, i = 1, 2, 3.
We use two different sample sizes: 15 and 30 and for each sample size, we evalu-
ate all possible samples. The prior distributions used on each scenario (symmetric,
concentrated and discordance scenarios) are graphically represented on Fig. 1.

In order to compare both methods of collective posterior construction, for each
scenario and sample size,wepresent: (1) the posterior expected value and the variance
of both methods; (2) the weights w′ in order to understand how the weights in the
posterior mixture behaves when using equal weights to mix prior distributions; (3)
the squared risk function for θ of the estimators Eπc [θ |x] and Eπ∗

c
[θ |x]; (4) the

Kullback–Leibler divergence between both methods, π∗
c (θ |x) and πc(θ |x), and two

noninformative priors (Uni f (0, 1) and Jeffrey’s, that is a Beta(0.5, 0.5)) and their
respective posteriors.

Looking at the first and second columns of Figs. 2, 3, 4 and 5, going from a size
15 to a size 30 sample does not change much of the comparison results. At Fig. 2,
we observe that mixing before the update, represented by the blue circles, appears
to be more flexible than mixing after the update. Moreover, we verify that when the
sample size grows, the expected value of both methods tends to get closer to each
other. For both sample sizes and for scenario 1 and 2, the triangles in Fig. 3 are always
higher than the circles. In the third scenario (third column), the variance doesn’t
change much when using posterior mixture, whereas in prior mixture, when data
information agreed with most prior distributions, the variance decreased, and when
data information agreed with only one prior distribution, variance increased. Figure4
shows that when using prior mixture with equal weights, the resulting posterior gives
higher weights to the source whose information is more similar to the data.

Looking at Fig. 5, we verify that the risk in a sample size of 30 is lower than in
a sample size of 15 in all scenarios. At the first column (Symmetric scenario), both
methodologies have opposite behaviors: for extreme values of θ , mixture after update
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Fig. 2 Posterior mean versus S. Blue circles represent mixture before the update and red triangles,
mixture after the update. Figures in the first row (of matrix of figures) consider sample size of 15,
while the ones in the second row consider sample size of 30. Columns represent the scenarios: 1st
- Symmetric, 2nd - Concentrated and 3rd - Discordant

●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●

0.012

0.014

0.016

0 5 10 15
Data

Po
st

er
io

rV
ar

ia
nc

e

(a)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●0.0065

0.0070

0.0075

0.0080

0 5 10 15
Data

Po
st

er
io

rV
ar

ia
nc

e

(b)

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

●

0.015

0.020

0.025

0.030

0.035

0.040

0 5 10 15
Data

Po
st

er
io

rV
ar

ia
nc

e

(c)

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●
0.004

0.005

0.006

0.007

0.008

0.009

0 10 20 30
Data

Po
st

er
io

rV
ar

ia
nc

e

(d)

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.0035

0.0040

0.0045

0.0050

0 10 20 30
Data

Po
st

er
io

rV
ar

ia
nc

e

(e)

●
●

●
● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●
● ● ●

●
●

●
●

●
●

●
●

0.008

0.012

0.016

0.020

0 10 20 30
Data

Po
st

er
io

rV
ar

ia
nc

e

(f)

Fig. 3 Posterior variance versus S. Blue circles represent mixture before the update and red trian-
gles, mixture after the update. Figures in the first row (of matrix of figures) consider sample size of
15, while the ones in the second row consider sample size of 30. Columns represent the scenarios:
1st - Symmetric, 2nd - Concentrated, and 3rd - Discordant



A Comparison of Two Methods for Obtaining a Collective Posterior Distribution 227

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 5 10 15
Data

N
ew

W
ei

gh
t

hyperpar ● 1 5 3 3 5 1
(a)

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ●

0.0

0.2

0.4

0.6

0.8

0 5 10 15
Data

N
ew

W
ei

gh
t

hyperpar ● 1.76 9.99 4.44 13.31 7.61 14.14(b)

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 5 10 15
Data

N
ew

W
ei

gh
t

hyperpar ● 1.76 9.99 12 3 4.44 13.31
(c)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30
Data

N
ew

W
ei

gh
t

hyperpar ● 1 5 3 3 5 1(d)
●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

0 10 20 30
Data

N
ew

W
ei

gh
t

hyperpar ● 1.76 9.99 4.44 13.31 7.61 14.14(e)
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30
Data

N
ew

W
ei

gh
t

hyperpar ● 1.76 9.99 12 3 4.44 13.31(f)

Fig. 4 W ′
i versus S. The colors blue, red, and yellow differ the three prior sources. In the matrix

of figures, the columns are the scenarios (symmetrical, concentrated, and discordant) and the lines
represent sample sizes 15 and 30
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Fig. 5 Risk versus θ . Red line represents the risk of using Eπc∗ [θ |x] and the blue one, the risk of
using Eπc [θ |X ]. The rows of the matrix of figures represent sample sizes (15 and 30) and columns
represent the scenarios: 1st - Symmetric, 2nd - Concentrated, and 3rd - Discordant
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Fig. 6 Kullback Leibler divergence versus S for sample size of 15 (subfigures a–f) and sample
size of 30 (subfigures g–l). The distributions that are used to compute the KL divergence depends
on the color and shape of the points. For plots a, b, c, g, h and i, blue circles is the KL divergence
between the posterior from a mixture of priors and the the Jeffrey’s prior, blue triangle is the KL
divergence between the posterior from a mixture of priors and the uniform prior, red circles is the
KL divergence between the mixture of individual posteriors and the Jeffre’s prior, red triangle is
the KL divergence between the mixture of individual posteriors and the uniform prior. For plots d,
e, f, j, k, and l, blue circles is the KL divergence between the posterior from a mixture of priors
and the posterior obtained using Jeffrey’s prior, blue triangle is the KL divergence between the
posterior from a mixture of priors and the posterior obtained using a uniform prior, red circles is
the KL divergence between the mixture of individual posteriors and the posterior obtained using
Jeffre’s prior, red triangle is the KL divergence between the mixture of individual posteriors and
the posterior obtained using a uniform prior
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(red) have higher risk than the other. For the concentrated scenario (second column),
the two risks are quite similar but, for high probability values of θ a priori, mixture
before the update presents a slightly lower risk than the other. At last, in the third
scenario (third column), mixture before the update shows lower risks than the other
for non-centered values of θ . This means that mixing very different priors before the
update usually results in higher risk for mild values of theta than mixing after. At
the same time, its maximum is lower than the maximum of the risk function when
mixing these distributions after the update, meaning that mixing before the update
is a more conservative approach. So, if one risk function has a lower maximum, but
the other presents much lower risk on many parameter values, determining which
approach works best is not a simple task.

In Fig. 6, we note that, for all scenarios, KL divergence is higher when sample
becomes larger in all cases. In the first scenario, the KL divergence of mixture after
the update is lower than the other for both noninformative priors.Whenwe look at the
posteriors from Jeffreys andUniform, note that KL divergence is lower in themixture
before the update than after. That is, the posterior density from the mixture before the
update results in a very similar density to a posterior from Jeffreys or Uniform prior.
In the second scenario, (second column) both methods are very similar. At last, in the
discordance scenario, mixing after the update presents lower KL divergence when
compared to mixing before the update in both priors. When we look at posteriors
from noninformative priors, the mixture before the update varies more than the other.

5 Final Comments

We presented a method to achieve a collective posterior distribution using mixture
distributions in two different moments, generating different results. Mixing before
the update is more flexible and gives higher weights to priors whose densities are
concentrated near the likelihood function. Furthermore,when analyzing theKLdiver-
gence, we note that when priors cover the parameter space, each prior giving high
probability to a different area, the collective posterior distribution from prior mixture
is, in general, very similar when compared with a posterior distribution of a nonin-
formative prior. Considering this, if we believe in the group’s prior knowledge and
we want to substantially use that information, mixing after the update seems like a
better option.

The next step in this study is to understand how both methods perform in the
Normal-Gamma conjugation family and in a general scenario using MCMC and
Gibbs-Sampling [4]. Then, we will look into Bayes decision rule to find best
approaches on a case-by-case basis based on the risk function. At last, we will apply
both methodologies to a real dataset and compare them in that context.
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A Nonparametric Bayesian Approach
for the Two-Sample Problem

Rafael de C. Ceregatti, Rafael Izbicki and Luis Ernesto B. Salasar

Abstract In this work, we propose a novel nonparametric Bayesian approach to the
so-called two-sample problem. Let X1, . . . , Xn and Y1, . . . ,Ym be two independent
i.i.d samples generated from P1 and P2, respectively. Using a nonparametric prior
distribution for (P1, P2), we propose a new evidence index for the null hypothesis
H0 : P1 = P2 based on the posterior distribution of the distance d(P1, P2) between
P1 and P2. This evidence index is easy to compute, has an intuitive interpretation,
and can also be justified from a Bayesian decision-theoretic framework. We pro-
vide a simulation study to show that our method achieves greater power than the
Kolmogorov–Smirnov and the Wilcoxon tests in several settings. Finally, we apply
the method to a dataset on Alzheimer’s disease.

Keywords Bayesian inference · Hypothesis tests · Nonparametric inference

1 Introduction

One basic interest in Statistics is to test the difference between groups, e.g., testing
the difference between a group of patients that received a drug and other that received
placebo. This problem is known in the literature as the “two-sample problem” and
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consists in deciding whether two independent samples are drawn from the same
population.

This problem has been extensively studied in the statistical literature. The classic
Bayesian parametric formulation to this problem is in terms of the Bayes factor [5],
however, how to define the hypothesis is a crucial question. [1] proposed a Bayesian
two-sample test tailored to a specific problem. To general cases, [10] presented
the Bayesian t-test. An alternative to Bayes factors for comparing groups is the
Full Bayesian Significance Test [11, 12]. On the other hand, from a nonparametric
perspective, there are the well-established Kolmogorov–Smirnov test [8] and the
Wilcoxon test [7]. Unfortunately, very few attempts of attacking this problem from
a Bayesian nonparametric perspective exist. The only exceptions we are aware is
[2], which use Bayes factors for Dirichlet process; [14], which create a Bayesian
nonparametric procedure for two-sample hypothesis test considering as prior the
Polya tree process; and [6], which propose a Bayesian method to compare two-
samples based on the Kolmogorov distance.

In this article, we propose to test the equality of the two populations by means of
a nonparametric Bayesian evidence index, which is given by the posterior weighted
mean of the distance d(P1, P2) between P1 and P2, the probability distributions
associated to each population. The remaining of the paper is organized as follows. In
Sect. 2 we present our evidence index and a decision theoretical justification for it. In
Sect. 3 we review the basic definition and properties of the Dirichlet process, which
we use to model each of the distribution functions. In Sect. 4, we present a simulation
study designed to compare our proposal with the usual Kolmogorov–Smirnov and
Wilcoxon tests. In Sect. 5, we apply our method to a dataset of scale measurements
for Alzheimer disease. Section6 contains our final remarks.

2 The Nonparametric Bayesian Evidence Index

Assume that two independent samples X1, . . . , Xn , and Y1, . . . ,Ym are drawn from
P1 and P2, respectively. Our aim is to test the null hypothesis H0 : P1 = P2 against
the alternative H1 : P1 �= P2. Assuming, a suitable metric d between probability
measures,1 we can express the magnitude of the difference between the two popu-
lations P1 and P2 by d(P1, P2). Using this metric, our problem can be reformulated
as testing H0 : d(P1, P2) = 0 against H1 : d(P1, P2) > 0. In the following, we shall
assume that the metric d is bounded above.

1Common choices for this metric are the Kolmogorov–Smirnov metric, the L2 metric and Lévy
metric. For a survey of metrics between probability measures see [15].
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2.1 Index Definition

Considering a given nonparametric prior for (P1, P2), let us assume that Px,y is
the posterior distribution for (P1, P2) given the observed samples x = (x1, . . . , xn)
and y = (y1, . . . , ym). Our proposal is to measure the evidence against H0 by the
following index

I (H0|x, y) =
∫ M

0
w(ε) Px, y (d(P1, P2) > ε) dε, (1)

where w : [0, M] −→ (0,∞] is a nonincreasing probability density function and M
is the supremum of d(P1, P2) when varying P1 and P2.

The idea behind this index is to express a discrepancy between the posterior
distribution of d(P1, P2) and 0. Next, we present a short explanation supporting the
definition given in (1). Suppose that a positive ε value can be considered a “practical”
significant distance between P1 and P2, that is, P1 and P2 with distance less than
ε can be considered equal for practical purposes. Thus, the higher is the posterior
probability of the event [d(P1, P2) > ε], the higher is the evidence against H0 (or in
favor of H1). But, inmany instances, itmight not be clear how to choose appropriately
the ε value. In this situation, we propose to combine the different evidence values by
taking aweighted averagewith respect to ε,which leads to expression (1)withw as the
weight function. Notice that by choosing an uniform weight function, w(ε) = 1/M ,
the index (1) is proportional to the area below the survival curve of d(P1, P2), which
is known to be equal to the expected value of d(P1, P2). But, since the evidence value
obtained for smaller ε values are more relevant to measure the discrepancy between
d(P1, P2) and 0 than greater values, we advocate the use of a nonincreasing weight
function. It is also worthwhile noting that, since w is a density function over [0, M],
the index varies in the [0, 1] interval. Further, the index assumes the value 0 and 1
when d(P1, P2) is almost surely equal to 0 and M , respectively.

The expression (1) of the index can be rewritten in a more convenient way for
numerical computation as

I (H0|x, y) = E
x,y

[
W (d(P1, P2)

]
, (2)

where Ex,y stands for the expectation with respect to the probability measure Px,y .
From (2), we see that a Monte Carlo approximation for our index is easily obtained
based on the posterior simulations of (P1, P2).

In order to see that that (2) holds, first let us denote D = d(P1, P2) and PD its
distribution obtained when assuming that (P1, P2) is distributed according to P

x,y .
Thus,

I (H0|x, y) =
∫ M

0
w(ε)PD

(
(ε, M])dε =

∫ M

0

∫ M

0
w(ε)I(ε,M](z)dPD(z)dε,
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which implies by the Fubini theorem, that

I (H0|x, y) =
∫ M

0

∫ M

0
w(ε)I(ε,M](z)dεdPD(z) =

∫ M

0

∫ z

0
w(ε)dεdPD(z)

=
∫ M

0
W (z)dPD(z) = E[W (D)],

where W is the cumulative distribution of the density w and IA(z) denotes the indi-
cator function assuming 1 if z ∈ A and 0 otherwise.

2.2 Decision-Theoretic Formulation

Our index proposal can also be motivated in the bayesian decision framework [4].
Let D = {a, ac} be the decision space, where a stands for accepting H0 and ac for
rejecting H0. Let us consider, the following loss function for our decision problem:

L
(
(P1, P2), d

) =
{
c0W (d(P1, P2)), if d = a,

c1[1 − W (d(P1, P2))], if d = ac,

where c0 and c1 are positive real numbers representing the maximum loss when
accepting and rejecting H0, respectively. Observe that, if we decide to accept H0, the
loss function is zero if d(P1, P2) = 0 and increases with the value of d(P1, P2). On
the other hand, if we decide to reject H0, then the function decreases with the value
of the distance d(P1, P2) and vanishes if d(P1, P2) = M .

For a decision δ(x, y) ∈ D, the posterior expected loss is given by

E
x,y

[
L
(
(P1, P2), δ(x, y)

)] =
{
c0Ex,y[W (d(P1, P2))], if δ(x, y) = a,

c1
[
1 − E

x,y[W (d(P1, P2))]
]
, if δ(x, y) = ac.

Thus, the Bayes rule is given by rejecting H0 if and only if

I (H0|x, y) = E
x,y

[
W (d(P1, P2))

]
> c, (3)

where c = c1/(c1 + c0).

3 Dirichlet Process

Our approach to solve the two-sample problem is fairly general: if we can draw sam-
ples from the posterior, we can compute the index. Thus, the index can be applied
to any prior distribution, such as Pólya trees and the Beta processes. In this paper,
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however, we focus on the one of the most used methods to perform Bayesian non-
parametric inference, which is the Dirichlet process prior [9].

The Dirichlet process can be briefly described as follows. Consider (X ,B)

a measurable space related to an observable quantity, G a probability measure
(base probability) on (X ,B), and K a positive real number. A stochastic process
{P(B), B ∈ B} is said to be a Dirichlet process if for every partition B1, . . . , Bm

the random vector (P(B1), . . . , P(Bm)) has Dirichlet distribution with parameter
(K G(B1), . . . , K G(Bm)). Therefore, a Dirichlet process is a random probability
measure on (X ,B). It is useful to notice that, for a fixed B, P(B) has a Beta dis-
tribution with parameters KG(B) and K (1 − G(B)), which implies that P(B) has
mean G(B) and variance G(B)(1 − G(B))/(K + 1). Thus, we can interpret G as
the mean of the Dirichlet process and K as a precision constant, that is, larger val-
ues of K implies less variability around the base probability measure G. Thus, the
Dirichlet process can be regarded as a general and simple way to express uncertainty
about a probability measure P on a given space.

The class of Dirichlet process priors possesses a very convenient conjugacy prop-
erty: assuming Z1, . . . , Zn is a sample of size n from P and P follows a Dirichlet
process prior with hyperparameters G and K , then the posterior for P is a Dirichlet
process with hyperparameters G ′ = K

K+n G + n
K+n Fn and K ′ = K + n, where Fn is

the empirical distribution of the data. In particular, we see that the posterior mean G ′
of P is a weighted average between the prior belief G and the empirical distribution
Fn obtained from the data. Therefore, in order to simulate from the posterior, we
need only to know how to simulate from a general Dirichlet process.

A practical way to simulate from aDirichlet process with hyperparametersG ′ and
K ′ is applying the stick-breaking algorithm [16], which is summarized as follows:

1. Simulate Y1,Y2, . . . i.i.d values from the base measure G ′;
2. Simulate θ1, θ2, . . . i.i.d from the Beta(1, K ′);
3. Define p1 = θ1 and pi = θi

∏i−1
j=1(1 − θ j ) for i ≥ 2;

4. For B ∈ B, define

P(B) =
∞∑
i=1

piδYi (B). (4)

Consequently, from the above algorithm, we can easily sample a probability mea-
sure P from the Dirichlet process. But, in order to apply the algorithm, we need
to specify the number of Yi ’s and θi ’s draw from the base measure G ′ and the beta
distribution Beta(1, K’). A reasonable choice for the number of simulated values l is
to set l that makes the sum

∑l
i=1 pi approximately equal to 1. Since the samples from

the Beta distribution depends only on the concentration parameter, for K = 1 we set
the number l to be 300. The final step 4 gives a simulated probability measure P
from the Dirichlet process. Expression (4) is known as Sethuraman’s representation
and makes clear that Dirichlet processes are discrete with probability one.
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Table 1 Threshold c values (0.95 sample quantiles of the index) for different support distributions
and λ values considering n = m = 50.

λ Distributions

N(0,1) LN(0,1) U([0,1])

1 0,2848 0,2927 0,2826

2 0,4755 0,4875 0,4844

3 0,6218 0,6349 0,6241

4 0,7272 0,7232 0,7215

4 Prior Specification and Decision Procedure

In order to proceed to test the hypothesis P1 = P2 using our index, we need to
specify the prior distribution for P1 and P2, choose a metric d and a weight function
w. The prior for P1 and P2 is specified as two independent Dirichlet process with
the same hyperparameters G and K . The concentration parameter K is set to 1
and G is chosen accordingly to the known support of the data: for observations
taking values on the real line, we choose the standard gaussian distribution N (0, 1);
for observations taking values in the nonnegative real line, we choose the standard
lognormal distribution LN (0, 1) and for observations taking values in the [0, 1]
interval, we choose the uniform distribution U (0, 1). The metric d considered is
theKolmogorovmetric defined by d(P1, P2) = supx |P1((−∞, x]) − P2((−∞, x])|
and, since the maximum of the Kolmogorov distance is 1, the weight function w is
taken to be a Beta(1, λ) density (λ ≥ 1), which has cumulative weight function
Wλ(t) = 1 − (1 − t)λ, t ∈ [0, 1].

Now, it only remains to decide how to choose the threshold value c for the decision
criterion in (3). At this point, we follow the philosophical approach suggested in [13]
and adopt a bayes/non-bayes compromise to select the threshold. The idea is to select
the value c that controls the type I error, that is, given that the hypothesis H0 is true,
we declare it false with probability less than α, e.g., α = 0.05. In order to do so,
we simulate two samples (with same sizes as the original samples) from the same
distribution 2 and calculate the evidence index for them.We repeat the latter procedure
a large number of times and take c as the 0.95 sample quantile of the index values.
Table1 presents the obtained threshold c considering the three different settings for
the population support and λ = 1, 2, 3, 4. Thus, the H0 hypothesis should be rejected
if the index calculated for a given value of λ exceeds the correspondent c value given
in Table1.

2This null distribution is defined to be N(0,1), LN(0,1), or U(0,1), in the same way as the base
measure, accordingly to the known support of data.
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5 Simulation Study

In this section, we present a simulation study to compare our decision criteria with the
Kolmogorov–Smirnov andWilcoxon tests. We consider eight scenarios representing
different departures from the null:

(a) Normal mean shift: X ∼ N (0, 1) and Y ∼ N (θ, 1), θ = 0, . . . , 1
(b) Normal variance shift: X ∼ N (0, 1) and Y ∼ N (0, θ), θ = 1, . . . , 3
(c) Normal mixtures: X ∼ N (0, 1) and Y ∼ 1

2N (−θ, 1) + 1
2N (θ, 1), θ = 0, . . . , 2

(d) Fat tails: X ∼ N (0, 1) and Y ∼ t (θ−1), θ = 0.01, . . . , 10.
(e) Lognormal mean shift: logX ∼ N (0, 1) and logY ∼ N (θ, 1), θ = 0, . . . , 1.5
(f) Lognormal variance shift: logX ∼ N (0, 1) and logY ∼ N (0, θ), θ = 1, . . . , 3
(g) Normal skewness: X ∼ N (0, 1) and Y ∼ SN (0, 1, θ, 0), θ = 1, . . . , 1.5
(h) Beta symmetry: X ∼ Beta(1, 1) and Y ∼ Beta(θ, θ), θ = 1, . . . , 6

The comparison is made in terms of the “power to detect the alternative.” That is,
we fix a threshold that controls the type I error in 5% and compute the power function
for the respective tests. The power function is calculated in the following way. For
each value of θ , we draw 50 observations from X and Y. After that, we calculate the
value of the index using W4(t) = 1 − (1 − t)4 as the cumulative weight function.
We repeat these steps 1000 times and compute the proportion of times that we reject
the null hypothesis.

Figure1 indicates that the Wilcoxon test is able to detect changes in the location
and skewness parameter (scenarios (a), (e) and (g)), but shows extremely low power
in detecting the alternative for all other scenarios. The Kolmogorov–Smirnov test
presents a medium power performance over all scenarios. On the other hand, the
proposed index overperfomed its competitor in 5 scenarios ((b), (c), (d), (f) and (h))
and presented a similar performance to the best one in all other scenarios.

Additionally, we also investigate the consistency of the proposed method, that is,
we study the power function under the alternative for increasing sample sizes. In order
to do so, we fixed θ at 1, 3, 1, 1.25, 1, 3, 1, 3 for the scenarios (a) to (h) and simulated
1000 datasets. The results are reported in Fig. 2 for n = m = 10, 20, 30 . . . , 100.
Once again, the proposed index overperfomed its competitor in the same 5 scenarios
((b), (c), (d), (f), and (h)) andwas quite similar to its competitors in the other scenarios.

6 Application

We apply our methods to a dataset of three groups of patients (HC: with healthy
cognition, MCI: with mild cognitive decline and DA: with Alzheimer’s disease)
submitted to a questionnaire for Alzheimer’s disease diagnostic (CAMCOG). More
details on this dataset can be obtained in [3].

FromFig. 3, we see that CAMCOGscores have different behavior among the three
groups. The group with Alzheimer’s disease (DA) has the lowest scores, followed
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Fig. 1 Power function comparison for different settings
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Fig. 2 Power for different settings changing the sample size
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Fig. 3 Descriptive analysis

by the group with mild cognitive disease (MCI) and by the control group (HC)
with highest scores. Based on this, the index should achieve the greatest value when
comparing the HC and DA groups. Indeed, the calculated index for the comparisons
HC vs DA, HC vs MCI, and MCI vs DA are 0.9993, 0.9629, 0.9312 with respective
thresholds of 0.7558, 0.7681, and 0.7314 for rejecting H0 at 0.05 significance level,
implying in the rejection of the null for all the three comparisons. The latter indicates
thatCAMCOG is a useful tool for initial diagnostic, being able to properly distinguish
the three groups.

7 Conclusions

In this paper, we propose a method to compare two populations that relies on a
Bayesian nonparametric index, which is defined as a weighted average area below
the posterior survival function of d(P1, P2). In our simulation study, we show that
the proposed index presents better frequentist properties than the well-established
Wilcoxon and Kolmogorov–Smirnov tests in most of the scenarios considered. It
is also worthwhile noting that although the proposed index was exemplified in this
work using the Dirichlet Process, it is suitable under any nonparametric Bayesian
prior (for instance, the Polya tree or Beta processes) or any parametric prior. Further
research should investigate the effect of the choices of the metric d, the concentration
parameter K and the weight function w on the power performance. Besides this,
theoretical investigation of a consistency property can give greater support for the
method.
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Covariance Modeling for Multivariate
Spatial Processes Based on Separable
Approximations

Rafael S. Erbisti, Thais C. O. Fonseca and Mariane B. Alves

Abstract The computational treatment of high dimensionality problems is a chal-
lenge. In the context of geostatistics, analyzing multivariate data requires the speci-
fication of the cross-covariance function, which defines the dependence between the
components of a response vector for all locations in the spatial domain. However, the
computational cost to make inference and predictions can be prohibitive. As a result,
the use of complex models might be unfeasible. In this paper, we consider a flexible
nonseparable covariance model for multivariate spatiotemporal data and present a
way to approximate the full covariance matrix from two separable matrices of minor
dimensions. The method is applied only in the likelihood computation, keeping the
interpretation of the original model. We present a simulation study comparing the
inferential and predictive performance of our proposal and we see that the approx-
imation provides important gains in computational efficiency without presenting
substantial losses in predictive terms.
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1 Introduction

With the increase of high-resolution geocoded data, the big n problem became crucial
in the spatial and spatiotemporal setup. For instance, if Gaussianity is assumed, large
covariancematrices need to be inverted in the inference procedure and computational
effort is of cubic order on the number of locations. This limitation becomes evenmore
important in the case of spatiotemporal or multivariate data. Even low-dimensional
vectors observed over space may lead to huge covariance matrices, making the infer-
ence for unknown parameters not feasible. Thus, a compromise between complexity
and parsimony is called for in this context.

In this paper, we work with multivariate spatial covariance functions to illustrate
the high dimensionality problem. To treat the computational limitation we approx-
imate the full covariance matrices using a decomposition based on the Kronecker
product of two separable matrices of minor dimensions. These approximations have
been applied to the likelihood function in order to obtain fast estimation of parameters
but we still keep the interpretation and flexibility of the multivariate nonseparable
model.

The remainder of the paper is organized as follows. Section2 presents definitions
and characteristics about multivariate process modeling. To allow for fast estimation
of parameters, a fast algorithm is used to compute the likelihood function to allow
for scalable modeling of large multivariate spatial data in Sect. 3. Section4 presents
a discussion on the proposed approach.

2 Multivariate Covariance Modeling

Consider a partial realization of a random function Y (s), s ∈ D ⊆ �d , d ≥ 1, where
s denotes a spatial location. Usually, several quantities aremeasured for each location
s, resulting in a multivariate random vector Y(s) = (Y1(s), . . . ,Yp(s))T , s ∈ D. If
Gaussianity is assumed, it suffices to define its mean and cross-covariance functions.
Throughout this text, it is assumed that Y(s) is a spatially stationary process, that is

E[Yi (s)] = mi , (1)

Cov[Yi (s),Y j (s + h)] = E[(Yi (s) − mi )(Y j (s + h) − m j )] = Ci j (h), (2)

∀s, s + h ∈ D; i, j = 1, . . . , p, withh the spatial separation vector andCi j (h) denot-
ing the cross-covariance function. The covariance functions considered need to be
valid, i.e., the resulting covariance matrix must be positive definite.

Separable covariance functions (see [1]) are defined by

Ci j (s, s′) = ai jρ(s, s′), (3)
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with A = {ai j } a positive definite p × p matrix and ρ(·, ·) a valid correlation func-
tion. LetY be a vectorized version of Yik = Yi (sk), k = 1, . . . , n; i = 1, . . . , p. Then
the covariance matrix isΣ = R ⊗ A, with Rkl = ρ(sk, sl), k, l = 1, . . . , n. The con-
dition of positive definiteness is respected ifR andA are positive definite. This spec-
ification is computationally advantageous as inverses and determinants are obtained
from smaller matrices, that is, Σ−1 = R−1 ⊗ A−1 and |Σ | = |R|p|A|n . However,
this might not be a realistic assumption for different processes across space. The
separable specification implies, for example, that when the spatial location varies,
the covariance pattern for different components remains the same.

The nonseparable cross-covariance function based on mixing separable functions
(see [2]) is given by

Ki j (s, ξi , ξ j ) =
∫ ∫

C1(s; u)C2(ξi , ξ j ; v)gi j (u, v)dudv (4)

with (U, V ) a nonnegative bivariate random vector following a joint distribution
Gi j (u, v), independent of the process Y(s), ξi , ξ j representing the components i ,
j , respectively, on a latent k-dimensional space as in [3] and s an arbitrary spatial
location.

It is possible to analytically solve (4) defining C1(s; u) = exp{−γ1(s)u} and
C2(ξi , ξ j ; v) = exp{−γ2(ξi , ξ j )v}, where γ1(s) and γ2(ξi , ξ j ) are continuous func-
tions on s ∈ �d and ξi , ξ j ∈ �k , respectively.

The class of covariance functions generated in [2] is used in this work. The general
model, based on (4) and described in [2] is given by

Ki j (s, ξi , ξ j ) = Ci jC(h, δi j ) = σiσ j

(
1 + δi j + h

bi j

)−α0
(
1 + h

bi j

)−α1 (
1 + δi j

)−α2

(5)
where h = ‖s − s′‖, s, s′ ∈ D, δi j is the latent distance between the components i and
j , δi j = ‖ξi − ξ j‖, σi , σ j ∈ �, bi j ’s are spatial range parameters, αl are smoothness
parameters, for l = 1, 2, and α0 is a separability parameter. For more details about
latent dimensions see [2–4].

If the same spatial range parameter for all components is considered then bi j =
φ, ∀i, j = 1, 2, . . . , p, and a particular case of the general function is obtained.
Furthermore, if α0 = 0, the separable model is obtained and the resulting covariance
function is in the Cauchy class.

3 Likelihood Computation for Nonseparable Covariance
Models

We have presented a nonseparable covariance model which results in a full matrix
Σ which might have high dimension and the computation of likelihoods in a Gaus-
sian model require the inversion of this matrix. We investigate the use of separable
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approximations for thematrixΣ whichwill lead to fast computation of the likelihood
function.

Let (yt (s1), . . . , yt (sn)) be a matrix of multivariate data observed at spatial
locations s1, . . . , sn ∈ D and at time t , where yt (si ) = (y1t (si ), . . . , ypt (si ))′, t =
1, . . . , T , is a p−dimensional vector. If the Gaussian assumption is made, the like-
lihood function with T independent replicates for the unknown parameters based on
n spatial locations is given by

l(y; θ) = (2π)
−npT

2 |Σ |−T/2exp

{
−1

2

T∑
t=1

(yt − μ)′Σ−1(yt − μ)

}
(6)

with yt the vectorized version of (yt (s1), . . . , yt (sn)) with np observations, μ =
Xβ the mean vector, Σ the covariance matrix with dimension np × np, and θ the
parameter vector.

3.1 Separable Approximations

Reference [5] investigates the use of singular decompositions of a full matrix [6] in
the context of nonseparable spatiotemporal covariance matrices. The work considers
a decomposition based on the separable matrices which allow for fast inversions and
determinant computations. Thus, instead of np × np matrices, the approximation
uses only n × n and p × p matrices. We consider the same separable approximation
in order to compute likelihoods for the nonseparable multivariate spatial models
presented in Sect. 2. The aim is to obtain matrices R ∈ �n×n and A ∈ �p×p such
that the Frobenius norm1 of ‖Σ − R ⊗ A‖F is minimized, for a given full covariance
matrix Σ . The author shows that the solution to this problem is given by the singular
value decomposition of a permuted version of Σ ∈ �np×np.

The idea is to rearrangeΣ obtaining another matrix 
(Σ) ∈ �n2×p2 , such that the
sum of squares that arises in ‖Σ − R ⊗ A‖F equals the sum of squares in ‖
(Σ) −
vec(R) ⊗ vec(A)T ‖F . It is showed in [6] that ‖Σ − R ⊗ A‖F = ‖
(Σ) − vec(R) ⊗
vec(A)T ‖F and ‖Σ‖F = ‖
(Σ)‖F .

The problem then reduces to finding the rank of the rectangular matrix 
(Σ) ∈
�n2×p2 . The solution is based on the singular value decomposition of 
(Σ), where
UT
(Σ)V = diag(w1, . . . , wr ), U ∈ �n2×n2 and V ∈ �p2×p2 are orthogonal matri-
ces, w1 ≥ w2 ≥ . . . ≥ wr ≥ 0 and r = rank(
(Σ)) = min{n2, p2}. The solution
can also be found in [6] and is given by:

vec(R) = √
w1u1 vec(A) = √

w1v1 (7)

1The Frobenius norm of a n × n matrix B (‖B‖F ) is given by ‖B‖F =
(∑n

i=1
∑n

j=1 b
2
i j

)1/2
.
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with u1 denoting the first column of the matrix U ∈ �n2×n2 and v1, the first column
of V ∈ �p2×p2 .

In order tomeasure the quality of the approximation, [5] defines an approximation
error, denoted by κΣ (R,A), as follows:

κΣ (R,A) = ‖Σ − R ⊗ A‖F

‖Σ‖F
. (8)

κΣ (R,A) varies between zero (if Σ is separable) and
√
1 − 1

r , and is minimized
by R and A given above. A standardized error index, varying between zero and one
is given by:

κ∗
Σ (R,A) = κΣ (R,A)√

1 − 1
r

. (9)

From the covariance structure proposed in Eq. (5) with α1 = α2 = 1, we inves-
tigate the sensitivity of the separability approximation error index as a function of
α0, for p = 2 and p = 3. Note that we use the idea previously applied to the context
of nonseparable spatiotemporal covariance matrices in the context of nonseparable
multivariate spatial covariance matrices. In Fig. 1, we can see that the separability
approximation error index is not larger than 5% for a covariance structure in which
all the components have the same spatial range. From Fig. 1a note that there is no
error when α0 is zero, which reduces to the separable case. If different spatial ranges
are considered, it is possible to see in Fig. 1b that the error index does not start at
zero because if α0 = 0 the separable case is not obtained.

(a) Equal spatial ranges. (b) Different spatial ranges.

Fig. 1 Separability approximation error index as a function of α0. Full line: p = 2; dashed line:
p = 3
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3.2 Sensitivity Study

We present a sensitivity study of the approximation structure investigated in the
spatiotemporal context by [5], however, used here for the multivariate spatial case.
We consider different scenarios and measure the errors obtained in the likelihood
approximation. Moreover, we compare the inferential and predictive results obtained
as we apply the full nonseparable model with and without separable approximation
for the covariance matrix in the likelihood computation, as well as considering a
separable model.

Consider a bivariate dataset of 200 spatial locations in the [0, 1] × [0, 1] square.
The observations were generated from themodel y = μ + ε.We consider aGaussian
process, so y ∼ Nnp(μ,Σ), where Σ i j is obtained from the covariance function
defined in (5) with α1 = α2 = 1 and bi j = φ, i, j = 1, 2. Therefore, consider the
following parameter specification: Θ = (μ, δ12, φ, α0, σ1, σ2) with μ1 = μ2 = 0,
δ12 = 2, φ = 0.1, α0 = 0.5 and σ1 = σ2 = 1. In this example, we generate only one
dataset in the region of interest. We plot the likelihood contour with both structures,
using the separable approximation for the covariance matrix and its full original
structure. From Fig. 2 it can be seen that the approximate structure is very similar to
the full structure. Note that in some cases the approximate likelihood and the exact
one are almost coincident. It seems that the approximations are satisfactory.

Fig. 2 Likelihood contour plots. Black line: full structure. Red line: approximate structure. Dashed
black line: true value of parameters
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Table 1 Necessary time (in seconds) to calculate the likelihood function based on a full covariance
matrix and an approximate structure. (Intel(R) Core(TM) i7-3630QM, 2.40GHz, 6GB RAM)

n p = 2 p = 3 p = 5 p = 8

Full Approx. Full Approx. Full Approx. Full Approx.

100 2.3 0.8 3.6 0.6 8.9 0.9 28.0 2.1

200 12.3 3.1 13.9 1.6 44.8 4.2 187.1 11.1

500 74.0 13.4 143.1 12.1 618.6 30.5 2409.5 86.9

700 148.2 20.9 388.4 29.4 1649.7 65.8 6520.7 182.2

1000 374.6 52.6 1020.7 66.2 4673.9 133.5 19180.3 446.2

We analyzed the necessary time to calculate the likelihood function based on
a full covariance matrix and a covariance matrix with approximate structure. We
generated p = 2, 3, 5, and 8 variables in a dataset with n = 100, 200, 500, 700, and
1000 spatial locations in the [0, 1] × [0, 1] square. In this example, 200 replicates
were generated in the region of interest.

Table1 shows that the separable approach provides important gains in computa-
tional efficiency.Note that the time to calculate the likelihood function is substantially
lower when we use the approximate structure.

We also analyzed the time reduction using the separable approximations. Figure3
shows that the time to calculate the likelihood function decreases as the size of the
covariance matrix increases. Indeed, if we increase the variable numbers or spatial
locations or both, the greater will be the computational gain with the approximate
structure.

Finally, we compare the predictive results obtained by the separable model, the
separable approximation for the covariance matrix in the likelihood of the non-
separable model and the results obtained with the nonseparable original covari-
ance structure, without any approximations for the likelihood. For that purpose,
we generated five datasets from the nonseparable structure described in Sect. 2. We
use a less general function than proposed in Eq. (5). For each dataset, we gen-
erated p = 2 variables in n = 110 spatial locations in the [0, 1] × [0, 1] square
considering the following parameter specification Θ = (β, δ12, φ, α0, σ1, σ2) with
β = (1,−0.2,−0.8, 0.5, 1.5, 0.6,−0.5,−0.8), δ12 = 2, φ = 0.2, α0 = 1, σ1 = 1.5
andσ2 = 1. The covariance functions used for the separable and nonseparablemodels
are respectively shown in Eqs. (10) and (11):

Ci j (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a11

(
1 +

(
h
φ

)2
)−1

(i = j = 1)

a22

(
1 +

(
h
φ

)2
)−1

(i = j = 2)

a12

(
1 +

(
h
φ

)2
)−1

(i �= j),

(10)
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Fig. 3 Computational time reduction (in percent) in calculation of the likelihood function using
approximate structure

C(h, δi j ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ 2
1

(
1 + h

φ

)−(α0+1)
(i = j = 1)

σ 2
2

(
1 + h

φ

)−(α0+1)
(i = j = 2)

σ1σ2

(
1 + δ12 + h

φ

)−α0
(
1 + h

φ

)−1
(1 + δ12)

−1 (i �= j),

(11)

with h = ‖s − s‖ and δ12 = ‖ξ1 − ξ2‖. We adopted T = 30 independent repli-
cates. The observations were generated from the model y = Xβ + ε. We con-
sider a Gaussian process, so yt ∼ Nnp(Xβ,Σ), t = 1, . . . , T , where Σ is np × np
covariance matrix and X are independent variables (latitude, longitude, and alti-
tude). For the nonseparable models, we use as follows priors: σi ∼ N (0, 100),
i = 1, 2, δ12 ∼ Ga(1, 0.5), φ ∼ Ga(0.1 × med(ds), 0.1), with med(ds) = 0.502,
β ∼ N8(0, 1000I8) and α0 ∼ Ga(1, 0.25). For the separable models, we use as
follows priors: A ∼ I nverseWishart (I2, 3), φ ∼ Ga(0.25 × med(ds), 0.25), with
med(ds) = 0.502 andβ ∼ N8(0, 1000I8). The simulationmethod usedwasMCMC.
For convergence monitoring we use the algorithms present in the Coda package in
R (see [7]).
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Table 2 Predictive model comparison. SEP: separable model. NSEP APP: nonseparable approxi-
mate model. NSEP: nonseparable model

Data Average IS LPML

SEP NSEP APP. NSEP SEP NSEP APP. NSEP

1 153.37 126.73 126.60 −12389.77 −11654.74 −11571.50

2 152.29 127.01 126.42 −12339.71 −11644.76 −11593.16

3 151.58 126.98 126.80 −12330.21 −11713.76 −11657.84

4 153.47 128.50 128.71 −12383.98 −11706.85 −11790.66

5 152.34 125.93 125.74 −12388.03 −11673.80 −11645.60

Mean 152.61 127.03 126.85 −12366.34 −11678.78 −11651.75

Furthermore, the data of five spatial locations were removed from the training
data and used for prediction validation. Therefore, we estimate the model using
information about n = 105 spatial locations. After the estimation of the models for
each dataset, we were able to compute measures of predictive performance for each
model. The IS (Interval Score) and LPML (Logarithm of the PseudoMarginal Likeli-
hood) comparison measures are described in [8, 9], respectively. Table2 presents the
comparison of the models in predictive terms. We can see that in predictive terms the
approximation leads to very similar results to the full case. Note that the separable
model presents the worst results as it is not able to accommodate the nonsepara-
ble structure. Furthermore, the nonseparable approximation has performance very
similar to the original full nonseparable model.

4 Discussion

In this work, we have investigated the performance of an approximation for the full
nonseparable covariance model using the decomposition based on the Kronecker
product of two separable matrices of minor dimensions. A sensitivity study was
performed showing that the approximate approach provides important gains in com-
putational efficiency while keeping the predictive power. Although taking advantage
of approximations to compute the likelihood, our proposal keeps interpretation and
flexibility.

In terms of prediction, the nonseparable model presents better results than the
separable model, even when the approximation is considered. We conclude that it is
better to consider a separable approximation of the nonseparable described model
than to consider the separable structure. The nonseparable approximation reduces
considerably the computational cost and keeps predictive power, which is usually
the main focus of spatiotemporal data analysis.
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Uncertainty Quantification and
Cumulative Distribution Function:
How are they Related?

Roberta Lima and Rubens Sampaio

Abstract Uncertainty is described by the cumulative distribution function (CDF).
Using, the CDF one describes all the main cases: the discrete case, the case when a
absolutely continuous probability density exists, and the singular case, when it does
not, or combinations of the three preceding cases. The reason one does not see any
mention of uncertainty quantification in classical books, as Feller’s and Chung’s,
is that they found no reason to call a CDF by another name. However, one has to
acknowledge that to use a CDF to describe uncertainty is clumsy. The comparison
of CDF to see which is more uncertain is not evident. One feels that there must be
a simpler way. Why not to use some small set of statistics to reduce a CDF to a
simpler measure, easier to grasp? This seems a great idea and, indeed, one finds it in
the literature. Several books deal with the problem. We focus the discussion on three
main cases: (1) to use mean and standard deviation to construct an envelope with
them; (2) to use coefficient of variation; (3) to use Shannon entropy, a number, that
could allow an ordering for the uncertainties of all CDF that have entropy, a most
desirable thing. The reductions (to replace the CDF for a small set of statistics) may
indeed work in some cases. But they do not always work and, moreover, the different
measures they define may not be compatible. That is, the ordering of uncertainty
may vary depending what set one chooses. So the great idea does not work so far, but
they are happily used in the literature. One of the objectives of this paper is to show,
with examples, that the three reductions used to “measure” uncertainties are not
compatible. The reason it took so long to find out the mistake is that these reductions
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methods are applied to very complex problem that hide well the unsuitability of
the reductions. Once one tests them with simpler examples one clearly sees their
inadequacy. So, let us safely continue to use the CDF while a good reduction is not
found!

Keywords Uncertainty quantification · Cumulative distribution function
Measures of uncertainty · Statistics · Entropy · Variance · Coefficient of variation

1 Introduction

Uncertainty is, certainly, described by the cumulative distribution function (CDF).
Since all random variables have a CDF, one associates an uncertainty to each of them.
Using the CDF, one describes the three main cases and their combinations: when
there is a probability density function, the discrete case, and the singular case. That is,
of course, the reason why one does not see any mention to uncertainty quantification
in classical books as [1, 2]. The authors saw no reason to call a CDF by another
name. CDF is uncertainty. The prescription of a CDF is its quantification.

However, one has to acknowledge that to use a CDF to describe uncertainty is
clumsy. One feels that there must be a simpler measure, easier to grasp. Why not
use some small set of statistics to reduce a CDF to a simpler and more easy to
grasp measure? This seems a great idea and, indeed, one finds it in the literature. It is
common to find papers using statistics asmeasures. Variance, coefficient of variation,
and Shannon entropy are the statistics most used. The idea is to associate a number
to the CDF.

We focus the discussion on three main cases:

1. to use the Shannon entropy;
2. to use mean and standard deviation to construct an envelope with them to make

a nice graph;
3. to use mean and coefficient and variation.

In the probabilistic context, the Shannon entropy, S, [3, 4] of a random variable
is viewed as a measure of the information carried by the associated probabilistic
distribution. Sometimes, the Shannon entropy is used as a synonym of uncertainty.
In this paper, uncertainty is the CDF, entropy is a statistics computed from a CDF.
It reflects some properties of the CDF, but not all. In the case of discrete random
variables, S is defined using the mass function. In the case of continuous random
variables with a derivative, using the probability density function.

For some probabilities, one can associate a mean μ, variance σ 2, and coefficient
of variation δ = σ/μ (ratio between the standard deviation and mean). The mean of
a probability mass, or distribution, is the best approximation of it by a number, and
the absolute error of this approximation, in the mean square sense, is the variance.
The coefficient of variation is a measure of the relative error.
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It is common to find papers using statistics as measures of uncertainty, as we can
see in [5–10]. Please note that Statements as given a random variable with fixed
mean, when the variance grows, the level of uncertainties also grows or for two
random variables with different mean and variance, the random variable with the
higher coefficient of variation is always the more uncertain are meaningless.

The reductions—to replace theCDF for a small set of statistics—may indeedwork
in some cases. But they do not always work and, moreover, the different measures
they definemay not be compatible. That is, the ordering of uncertainty, in themeasure
defined by the statistics, may vary depending on what set of statistics one chooses.
So the great idea does not work so far, but it is happily used in the literature.

This paper is organized as follows. In Sect. 2, we discuss briefly the meaning of
the mean, variance, coefficient of variation, and the Shannon entropy for continuous
random variables. Then, in Sect. 3, we show some examples of density functions
of continuous random variables for which an increase of variance or coefficient of
variation may not cause an increase of the Shannon entropy. The addressed density
functions are well known and are frequently found as a probabilistic model in sev-
eral applications. We analyze a bimodal family and, Gaussian and Gamma density
functions.

2 Mean, Variance, Coefficient of Variation, and Shannon
Entropy

2.1 Mean, Variance, and Coefficient of Variation

Given a probability space (Ω, F, Pr), where Ω is a sample space, F is an event
space, and Pr a probability measure on (Ω, F). If X is a continuous random variable
on (Ω, F, Pr)with density function p, then the expectation or mean of X is defined
by

μ = E[X ] =
∫ ∞

−∞
xp(x) dx , (1)

whenever this integral converges absolutely (in that
∫ ∞

−∞
|xp(x)| dx < ∞) [11]. The

variance of X is defined by

σ 2 = E[(X − μ)2] =
∫ ∞

−∞
(x − μ)2 p(x) dx , (2)

whenever this integral converges absolutely.
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Random variables possess a Hilbertian structure [12, 13]. Let L2(Ω) be a Hilbert
space of random variables. The norm of an element X ∈ L2(Ω) is:

‖X‖ =
√
E[X2] . (3)

If we would like to compute the best approximation of a random variable X by a
constant, we may determine the value m ∈ R such that

m = argmin {‖X − λ‖ : λ ∈ R} . (4)

We look for the orthogonal projection of X onto a linear subspace having dimen-
sion 1, which is given by

V = {
Z ∈ L2(Ω) : Z is constant: Z(ω) = λ ∈ R, ∀ω ∈ Ω

}
(5)

Using the definition of the norm given in Eq. (3)

m = argmin E[(X − λ)2]
= argmin

{
E[X2] − 2E[X ]λ + λ2

} (6)

Computing the derivative and making it equal to zero, it is possible to find the
solution

m = E[X ] (7)

Thus, the mean is the best approximation of a random variable X by a constant,
as shown in Fig. 1.

The norm of the absolute error of the approximation is

‖X − m‖ =
√
E[(X − E[X ])2] =

√
σ 2 , (8)

i.e., the error is the square root of the variance of X . The variance and coefficient
of variation are related to errors, respectively the absolute and relative errors, of the
approximation of X by a constant. These statistics are notmeasures of the uncertainty
of X , in the sense, they cannot give the CDF.

Fig. 1 Orthogonal
projection of X onto a linear
subspace having dimension 1
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2.2 Shannon Entropy

The Shannon entropy of a continuous random variable is [14]

S(X) = −
∫ ∞

−∞
p(x) ln p(x) dx . (9)

We set 0 ln 0 = 0. The entropy of a continuous random variable can take neg-
ative values. For example: if X is uniformly distributed in [0, 2n], then S =
−

∫ 2n

0

1

2n
ln

(
1

2n

)
dx = ln 2n .

3 Examples

3.1 Bimodal Density Function

Consider, a family of continuous random variables Xd , parameterized by d, with
a bimodal density function pd symmetrically distributed around its mean μ. The
function pd , sketched in Fig. 2, is

pd(x) =

⎧⎪⎨
⎪⎩
1, x ∈ [μ − (d/2) − (1/2) , μ − (d/2)] ,

1, x ∈ [μ + (d/2) , μ + (d/2) + (1/2)] ,

0, in all others cases.

(10)

The variance of this family of random variables Xd is

σ 2
d = E[(Xd − μ)2] = 1

12
(3d2 + 3d + 1) . (11)

The entropy is

Sd = −
∫ ∞

−∞
pd(x) ln pd(x) dx = 0 . (12)

Fig. 2 Family of bimodal
density functions pd
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Observing Eqs. (2), and (3), we verify that for a given value of μ, as d (distance
between peaks of the bimodal density function) increases, the variance, σ 2

d , and the
coefficient of variation, δd = σd/μ (for μ �= 0), increase. However, the entropy Sd
remains constant and equal to zero.

This example of the bimodal family shows quite well that entropy, mean, vari-
ance, and coefficient of variation are different things. One can vary μ, σ 2, δ = σ/μ

independently with fixed entropy.

3.2 Gaussian Density Function

The next example deals with a continuous random variable. Consider a family of con-
tinuous random variables Xμ, parametrized by μ, with a Gaussian density function
pμ

p(x)μ = 1√
2σ 2π

e− (x−μ)2

2σ2 , (13)

where μ is the mean and σ 2 the variance. The entropy of the Gaussian density
function is

Sμ = −
∫ ∞

−∞
p(x) ln p(x) dx = 1

2
ln (2σ 2π e ). (14)

Observing Eq. (14), we verify that the mean μ does not enter the final formula of
the entropy. This means that all Gaussian functions with a common variance σ 2 have
the same entropy. A translation changes μ and δ = σ/μ, but does not change the
value of Sμ. Increasing the mean, δ decreases, and decreasing the mean, δ increases.

3.3 Gamma Density Function

The next example also shows that it is possible that an increase of the variance corre-
sponds to a decrease of entropy. Consider, a family of continuous random variables
X with a Gamma density function p

p(x) = 1

Γ (k)θ k
xk − 1e− x

θ . (15)

written as a function of the parameters k > 0 and θ > 0, a shape parameter and a
scale parameter, respectively. The mean of X is μ = kθ and the variance σ 2 = kθ2.
The entropy is [15]
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Fig. 3 Entropy as function
of the variance of a
continuous random variable
with a Gamma density
function
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S = −
∫ ∞

−∞
p(x) ln p(x) dx = k + ln θ + ln[Γ (k)] + (1 − k)ψ(k). (16)

where ψ is the digamma function. In Fig. 3 it is shown the graph of the entropy S as
function of the variance σ 2 for different values of the mean μ of X . We verify that
for the smaller value of the mean μ = 1.0, the value of S decreases as the variance
increases. When μ = 3.0, an interesting behavior can be observed. For values of
variance lower than 9.0, S increases as the variance increases. However, for values
of variance above 9.0, S decreases as the variance increases. This means that entropy
and σ 2 may not vary in the same sense. Thus, if the Shannon entropy S is considered
a measure of the level of uncertainty, the variance cannot be taken as a measure of
the level of uncertainty either.

4 Conclusions

In this paper, we show that the use of statistics such as variance, σ 2, coefficient of
variation, δ = σ/μ, and Shannon entropy, S, as measures of uncertainty of a random
variable is not a good practice.

The use of these statistics as measures of uncertainties may lead to contradiction.
In this paper, we constructed simple examples for which the increase of variance, or
coefficient of variation, does not correspond to an increase of the Shannon entropy.
In particular, we showed that for the Gamma density function, it is possible to have
a decrease of entropy with an increase of the variance.

Besides not always giving right results, the use of statistics as a measure of uncer-
tainty presents others inconsistencies. In relation to the Shannon entropy, an incon-
sistency appears, for example, if we compare the entropy of discrete and continuous
random variables.While the entropy of discrete random variables is always a positive
value, the entropy of continuous random variables can assume values inR. In relation
to the use of moments as measures of uncertainties, there are two inconsistencies.
The first one appears due to the fact that there are random variables that do not have
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any moments, for example the random variables with Cauchy density function. The
second is that it is not possible to use variance and coefficient of variation for ran-
dom vectors in R

n . In more than one dimension, the correspondent to the variance
is a covariance matrix in R

n×n . It is worth to remark that in the case of multivariate
distributions, where the probability is distributed in a subset of Rn , for n ≥ 2, the
mean is a vector and the variance is a matrix.

The quest for a set of statistics to measure uncertainty has not yet an answer. The
solutions found in the literature do not solve the problem.
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Maximum Entropy Analysis of Flow
Networks with Structural Uncertainty
(Graph Ensembles)

Robert K. Niven, Michael Schlegel, Markus Abel, Steven H. Waldrip
and Roger Guimera

Abstract This study examines MaxEnt methods for probabilistic inference of the
state of flow networks, including pipe flow, electrical and transport networks, sub-
ject to physical laws and observed moments. While these typically assume net-
works of invariant graph structure, we here consider higher-level MaxEnt schemes,
in which the network structure constitutes part of the uncertainty in the prob-
lem specification. In physics, most studies on the statistical mechanics of graphs
invoke the Shannon entropy HSh

G = −∑
�G

P(G) ln P(G), where G is the graph
and �G is the graph ensemble. We argue that these should adopt the relative entropy
HG = −∑

�G
P(G) ln P(G)/Q(G), where Q(G) is the graph prior associated with

the graph macrostate G. By this method, the user is able to employ a simplified
accounting over graphmacrostates rather than need to count individual graphs. Using
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combinatorial methods, we here derive a variety of graph priors for different graph
ensembles, using different macrostate partitioning schemes based on the node or
edge counts. A variety of such priors are listed herein, for ensembles of undirected
or directed graphs.

Keywords Maximum entropy · Graphs · Networks · Graph priors · Graph
ensemble

1 Introduction

Over the past few years, we have developed aMaxEnt framework to infer the state of
flowon all types of flownetworks, for example, pipe flow, electrical, communications
and transport networks [1–4]. In this approach, the user adopts the relative entropy:

HX = −
∫

�X

P(X) ln
P(X)

Q(X)
dX (1)

in which X are the unknown network parameters (such as flow rates and potentials),
P(X) is a joint probability density function (pdf) over X, Q(X) is the prior pdf, and
�X is the domain of X. The entropy (1) is maximized, subject to the constraints on
the network, to infer the state of the network. The constraints necessarily include
all relevant physical laws (such as Kirchhoff’s node and loop laws), as well as any
physical observations measured at particular nodes, edges or over components of the
network. The resulting inference is expressed in terms of the pdf P(X), which can
either be used directly, or from which the moments or other statistical features of the
flow (e.g., mean, mode, variances) can be extracted. The MaxEnt method, therefore,
provides one approach to extend previous deterministic methods for flow network
analysis, applicable only to fully determined networks, to a probabilistic framework
which can handle incomplete information.

In the past decade, there has been a tremendous surge of interest in the structural
properties of networks in statistical physics (and other fields), especially the emer-
gent scaling features of the Internet and human social networks [5–8]. Such studies
generally consider the probability P(G) of a graph G within a graph ensemble �G ,
almost always inferred by maximizing the Shannon entropy [9]:

HSh
G = −

∑

G∈�G

P(G) ln P(G) (2)

While correct, this formulation does not exploit the fundamental advantage of statis-
tical mechanics, based on the separate counting of observable macrostates and their
underlying microstates. Instead of (2), network analysts and graph theorists would
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be better advised to adopt the discrete relative entropy (negative Kullback–Leibler)
function [10]

HG = −
∑

G∈�G

P(G) ln
P(G)

Q(G)
(3)

nowbased on the graphmacrostatesG, defined as equivalence classes (sets) of graphs
which partition the ensemble �G . P(G) and Q(G) now represent the posterior and
prior probabilities of themacrostateG within the graph ensemble�G . Eq. (3) ensures
that maximizing (3), subject only to normalization, gives the inferred state P∗(G) =
Q(G) [11]. Further constraints will then restrict the ensemble, either by removing
(microcanonical ensemble) orweighting (canonical ensemble) its constituent graphs,
causing P∗(G) to deviate from Q(G) consistent with these constraints. In contrast,
the Shannon form (2) requires the counting of each individual graph in an ensemble,
which may be quite onerous for large ensembles, and does not provide the user with
any insights from the network structure.

We can indeed unite the above fields, to present a MaxEnt framework for proba-
bilistic inference of flows on a network, subject to uncertainty in the flow parameters
and in the network structure itself. This entails use of the relative entropy function:

HG,X(G) = −
∑

�G

∫

�X(G)

P(X(G),G) ln
P(X(G),G)

Q(X(G),G)
dX (4)

where P(X(G),G) and Q(X(G),G) are the joint posterior and prior pdfs, defined
over parameters X and graph macrostates G. As a first step, analyzes using (4) will
generally invoke the Bayesian separation:

Q(X(G),G) = Q(G)Q(X(G)|G) (5)

based on the distinct graphical and flow priors Q(G) and Q(X(G)|G). For some
flow networks, complete separability Q(X(G),G) = Q(G)Q(X) may be possible.

The aim of this study is to formally derive the priors Q(G) for graph macrostates
in a variety of graph ensembles, as a prelude to later studies on the joint graph and
flow parameter priors Q(X(G),G). We here note that graph priors will not only
depend on the graph ensemble selected, but also on the rule (equivalence relation)
used to partition the ensemble into graph macrostates. Different partitioning rules
will obviously give rise to different priors —there are many ways to count cats in a
collection of user-selected baskets of cats. The choice of ensemble and partitioning
scheme must, therefore, be made by the user, and so will depend on his/her purpose,
although some approaches will be more mathematically tractable or fruitful.
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2 Derivation of Graph Priors

In statistical physics, the degeneracy g(G) of a discrete macrostate G can be defined
as its statistical weight or number of occurrences in the ensemble [12], counting
each component graph (or microstate) once each. If the entire ensemble �G is also
countable and finite, then the prior can be calculated by

Q(G) = g(G)

|�G | (6)

where |�G | is the cardinal number of �G . If the macrostate and ensemble are both
countably infinite or uncountable, it may be possible to define the prior by a limiting
process applied to (6), although many such priors will be found to vanish asymptot-
ically.

We here calculate priors for various graph macrostates G in a range of graph
ensembles �G , using partitioning rules based on the numbers of nodes and/or edges.
These include both undirected and directed graph ensembles, each discussed in turn.
The complete sets of results are summarized, respectively, in Tables1 and 2. In the
following, all nodes and edges are considered distinguishable (are labeled), and so
are counted according to their multiplicities in each macrostate and the ensemble.
Where present, self-edges are each counted only once.

2.1 Undirected Graph Priors

In turn, we discuss various partitioning schemes for undirected graph ensembles,
which are appropriate for the analysis of potential-driven flows, such as electricity,
pipe flow and chemical networks. All results are tabulated in Table1.

(1) We first consider an ensemble of simple graphs with N nodes, which can be
partitioned into macrostates based on the number of edges M . We disallow self-
loops. By a little consideration, it will be seen that the degeneracy of each such
macrostate can be derived by the allocation of M indistinguishable digits (such
as 1s) to the upper triangle of elements Ai j of the adjacency matrix A, with all
occupancies restricted to {0, 1}. This gives degeneracy g = (TN−1

M

)
, based on the

(N − 1)th triangle number TN−1 = 1
2N (N − 1) of independentmatrix elements.

By summation or direct allocation, the ensemble itself can be shown to have
cardinal number 2TN−1 , hence, the prior is obtained as Q(G) = (TN−1

M

)
/2TN−1 .

(2) We then embed the above ’microcanonical’ ensemble into a ’canonical’ ensemble
of all simple undirected graphswith n ≤ N nodes, for fixed N .We consider three
different partitioning schemes:
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(a) A partitioning scheme based on the macrostates with n nodes and M edges.
By construction from (1), we directly obtain the degeneracy g = (Tn−1

M

)
and

ensemble dimension
∑N

n=1 2
Tn−1 , hence giving the corresponding prior.

(b) A partitioning scheme based on the macrostates with M edges, regardless
of the number of nodes. From (a), the degeneracy is then g = ∑N

n=1

(Tn−1

M

)
,

while the ensemble dimension is unchanged, giving the corresponding prior.
(c) A partitioning scheme based on the macrostates with n nodes, regardless of

the number of edges. The degeneracy is then given by the subset ensemble
with n nodes, of dimension 2Tn−1 ; using the known ensemble dimension then
gives the prior.

(3) We now consider the ensemble of single-edge undirected graphs with N nodes,
now allowing for self-loops. We consider two partitioning schemes:

(a) In the first scheme,we partition the ensemble intomacrostates of graphswith
N nodes, L self-edges and m non-self-edges. The number of graphs in each
suchmacrostate is given by the number of ways to allocatem elements in the
upper triangle of the adjacency matrix, without self-loops

(TN−1

m

)
, multiplied

by the number of ways to allocate L self-loops amongst the N diagonal
elements

(N
L

)
. The ensemble now has dimension 2TN , based on the N th

triangle number TN = 1
2 (N + 1)N , since it includes the diagonal adjacency

elements Aii . The prior is thus Q(G) = (TN−1

m

)(N
L

)
/2TN .

(b) In the second scheme, we form graph macrostates with N nodes and M
edges, regardless of the number of self-loops. We now use a simpler allo-
cation scheme of elements to the upper triangle of the adjacency matrix,
including diagonal elements, giving the degeneracy

(TN
M

)
, and correspond-

ing prior. For m = M − L , it can be verified that
∑N

L=0

(TN−1

m

)(N
L

) = (TN
M

)
,

so the two partitions give the same results (although the first requires more
information).

(4) Weagain embed the above ‘microcanonical’ ensembles into a ‘canonical’ ensem-
ble of all undirected graphs with n ≤ N nodes, allowing self-loops. We again
consider several partitioning schemes:

(a) Graphs with n nodes, m non-self-edges and L self-edges;
(b) Graphs with any nodes, m non-self-edges and L self-edges;
(c) Graphs with any nodes, M total edges including self-edges;
(d) Graphs with n nodes and any edges including self-edges.

The resulting degeneracies, ensemble dimension, and priors follow by construc-
tion from those in (3), and are set out in Table1.

(5) We now consider the ensemble of undirected multigraphs — i.e., with the pos-
sibility of parallel edges including self-loops —and with N nodes. To keep the
ensemble finite, we restrict the total number of edges to C . We wish to exam-
ine graph macrostates with N nodes and M ≤ C edges. Following the previous
logic, we must now consider the allocation of M edges to TN adjacency matrix
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elements, without restriction on occupancy, giving the degeneracy g = (TN+M−1
M

)

(n.b., similar to the allocation scheme for Bose–Einstein statistics [12–14]). By
summation of this result over M = 0...C , it can be shown the ensemble has
dimension

(TN+C
C

)
, leading to the corresponding prior.

(6) We can further embed the above ensemble (5) in a larger ’canonical ensemble’ of
undirectedmultigraphswithn ≤ N nodes, againwith the restrictionofmaximum
C edges. We again consider several partitions:

(a) Graphs with n nodes, M total edges;
(b) Graphs with any nodes, M total edges
(c) Graphs with n nodes and any total edges.

The degeneracies, ensemble dimension, and priors follow by construction from
(5), and are set out in Table1.

2.2 Directed Graph Priors

We now replicate the above ensembles and partitioning schemes, but this time for
directed graph structures, generally required for the analysis of transportation net-
works. These results are set out in the same pattern in Table2 as for the undirected
graph ensembles, and mostly exhibit the same features, but with the following dis-
tinctions:

(i) The macrostates of simple or single-edge digraphs, based on the allocation of
edges to the N × N adjacency matrix, nowmust account for 2TN−1 independent
elements if there are no self-loops, or N 2 elements with self-loops.

(ii) The macrostates of multidigraphs are now based on the allocation of M edges
to N 2 elements, without restriction on occupancies, giving the degeneracy g =
(N 2+M−1

M

)
and a corresponding ensemble dimension of

(N 2+C
C

)
.

2.3 Asymptotic Limits

From Tables1 and 2, most of the calculated priors for the canonical ensembles (those
with n ≤ N ) vanish in the asymptotic limit N → ∞. Interestingly, some do not
appear to do so. One such prior is that for multigraph macrostates identified by
Umulti,M

N in the undirected multigraph ensemble (Table1). While, we do not have a
mathematical proof, numerical analyses suggest the following limits:
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Q(Umulti,M
N ) =

(TN+M−1
M

)

(TN+C
C

)
N→∞−−−→

⎧
⎪⎪⎨

⎪⎪⎩

0
ifM < C
orM = C > O(N 2)

1
2α−1 ifM = C = O(αN 2)

1 ifM = C < O(N 2)

(7)

For the analogous multidigraph macrostate identified by Dmulti,M
N in the multidigraph

ensemble (Table2), the above limits appear to be repeated, but with limit 1
α−1 for

M = C = αN 2. In both cases, the prior appears to vanish asymptotically for C →
∞.

If these asymptotic limits (and others) can be established more rigorously, they
provide the means to derive graph priors for macrostates in countably infinite graph
ensembles, for which it is not possible to conduct statistical mechanics based on the
counting of individual graphs.

3 Conclusions

We consider graph priors for various ensembles of undirected and directed graphs, to
simplify the analysis of flow networks with uncertainty in the network structure. By
combinatorial reasoning, we formally derive a collection of graph priors for various
choices of graph macrostates in graph ensembles, partitioned according to the num-
bers of nodes and/or edges of graphs in the macrostate. The results are discussed and
listed in tabular form. For simple graphs (no self-edges), single-edge graphs (allowing
self-edges) or multigraphs, the ’microcanonical ensemble’ constructed with a fixed
number of nodes N can be embedded in a higher order ’canonical ensemble’ with up
to N nodes, allowing construction of more and more complicated ensembles. While
most calculated priors appear to vanish asymptotically for countably infinite ensem-
bles, some asymptotic limits have been identified numerically, for multigraphs and
multidigraphs macrostates in certain ensembles. Such asymptotic results suggest a
method to derive graph priors for macrostates in countably infinite graph ensembles,
which cannot be handled by the counting of individual graphs.
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Optimization Employing Gaussian
Process-Based Surrogates

R. Preuss and U. von Toussaint

Abstract The optimization of complex plasma-wall interaction andmaterial science
models is tantamount with long-running and expensive computer simulations. This
indicates the use of surrogate-based methods in the optimization process. A Gaus-
sian process (GP)-based Bayesian adaptive exploration method has been developed
and validated on mock examples. The self-consistent adjustment of hyperparameters
according to the information present in the data turns out to be the main benefit from
the Bayesian approach. While the overall properties and performance is favorable
(in terms of expensive function evaluations), the optimal balance between local and
global exploitation still mandates further research for strongly multimodal optimiza-
tion problems.

Keywords Global optimization · Gaussian process · Parametric studies
Bayesian inference

1 Introduction

Themodeling of particle transport and plasma-wall interaction in the scrape-off layer
in fusion plasmas is obtained numerically by the interplay of two extensive codes
either describing the plasma solving a fluid equation or the transport of neutrals
by a Monte Carlo method. Each code part produces data sets the other part of the
code needs to proceed—a circumstance which leads to running times in the order
of weeks. Still, after years of computer runs for multiple parameter settings, quite a
large database has been gathered with over 1500 entries. With this at one’s disposal
one is tempted to employ some surrogate modeling in order to explore the dataset
for modes in certain data ranges motivated by physics, or simply to give advice for
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which parameter setting the next computer run has to be done in order to increase
the information content of the database most effectively.

A long established method in global optimization of complex multimodal models
is the construction of a response surface via fast surrogate models [20]. The numer-
ically easy accessible surrogate is employed to find the maximum of the response
surface which coordinates are fed back to the original function. With the outcome
obtained the surrogate model gets reparameterized and the whole procedure is iter-
ated till success. Unfortunately, a lot of pitfalls are out to spoil the result by pretending
delusivemaxima of the surrogatemodelwithout reference to the real ones of the com-
plex model [6, 9]. We propose to employ the prediction of function values by the
Gaussian process (GP) method for the surrogate model and to profit from the capa-
bilities of a Bayesian approach to self-consistently adjust hyperparameters according
to the information present in the data. The later turns out to be the main contribution
to let the surrogate model describe the unknown model behind the data as close as
possible.

2 The Gaussian Process Method

The GP method has been appreciated much in the fields of neural networks and
machine learning [3–5, 13, 16]. Residing on this, further work showed the applica-
bility of active data selection via variance-based criterions [7, 21]. In general, for
unknown functions costly to evaluateBayesian optimization [15]was deployed either
with sequential [11, 20] or batch design [1], and recently, in combination of both [2,
8]. Very first efforts in geosciences [10] tackling the problem above with so-called
kriging [14] can be subordinated to the realm of Gaussian process methods as well.
The presentation of the GP method in this the paper was already introduced at [18],
and follows in notation—and apart from small amendments —the very instructive
book of Rasmussen & Williams [19].

The problem of predicting function values in a multidimensional space supported
by given data is a regression problem for a nontrivial function of unknown shape.
Given n input data vectors xi of dimension Ndim (with matrix X = (x1, x2, . . . , xn))
and corresponding target data y = (y1, . . . , yn)T blurred by Gaussian noise of vari-
ance σ 2

d the sought quantity is the target value f∗ at test input vector x∗. The latter
would be generated by a function f (x)

y = f (x) + ε, (1)

where 〈ε〉 = 0 and 〈ε2〉 = σ 2
d . Since we are completely ignorant about the (complex)

model describing function our approach is to employ the Gaussian process method,
with which any uniformly continuous function may be represented. As a statistical
process it is fully defined by its covariance function and called Gaussian, because any
collection of random variables produced by this process has a Gaussian distribution.

The Gaussian process method defines a distribution over functions. One can think
of the analysis as taking place in a space of functions (function-space view) which
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is conceptually different to the familiar view of solving the regression problem of,
for instance, the standard linear model (SLM)

f SLM(x) = xTw, (2)

in the space of the weights w (weight-space view). At this point it is instructive to
restate the results for the latter: the predictive distribution depending on mean f̄∗ and
variance for a test input data point x∗ is given by

p( f SLM∗ |X, y, x∗) ∝ N
(
f̄ SLM∗ , var( f SLM∗ )

)
, (3)

with

f̄ SLM∗ = 1

σ 2
d

xT
∗

[
σ−2
d XXT + Σ−1

p

]−1
X y, (4)

var( f SLM∗ ) = xT
∗

[
σ−2
d XXT + Σ−1

p

]−1
x∗. (5)

Σp is the covariance in a Gaussian prior on the weights. Now, we transform these
results to the function-space view of the Gaussian process method. As stated above
the defining quantity of the Gaussian process method is the covariance function.
Its choice is decisive for the inference we want to apply. It is the place where we
incorporate all the properties which we would like our (hidden) function describing
our problem to have in order to influence the result. For example, the neighborhood
of two input data vectors x p and xq should be of relevance for the smoothness of
the result. This shall be expressed by a length scale λ which represents the long-
range dependence of the two vectors. For the covariance function itself, we employ
a Gaussian type exponent with the negative squared value of the distance between
two vectors x p and xq

k(x p, xq) = σ 2
f exp

{

−1

2

∣∣∣
∣
x p − xq

λ

∣∣∣
∣

2
}

. (6)

σ 2
f is the signal variance. If one is ignorant about this value, literature proposes to set

it to one as default value (Chaps. 2.3 and 5.4 in [19]). However, in probability theory,
we consider it as an hyperparameter to be marginalized over (see next chapter). To
avoid lengthy formulae, we abbreviate the covariance matrix of the input data as
(K )i j = k(xi , x j ) and the vector of covariances between test point and input data as
(k∗)i = k(x∗, xi ).

Moreover, we consider the degree of information which the data contain by a term
σ 2
n Δ to be composed of an overall variance σ 2

n accounting that the data are noisy
and the matrix Δ with the variances σ 2

d of the given input data on its diagonal and
zero otherwise. While σ 2

n is a hyperparameter, the matrix entry (σd)i is the relative
uncertainty estimation of a single data point yi and provided by the experimentalist.
If no uncertainties of the input data are given, Δ is set to the identity matrix. It can
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be shown (Chap.2.2 in [19]) that in analogy to Eq. (3) for given λ, σ f and σn the
probability distribution for a single function value f∗ at test input x∗ is

p( f∗|X, y, x∗) ∝ N
(
f̄∗, var( f∗)

)
, (7)

with mean
f̄∗ = kT∗

(
K + σ 2

n Δ
)−1

y, (8)

and variance
var( f∗) = k(x∗, x∗) − kT∗

(
K + σ 2

n Δ
)−1

k∗. (9)

3 Marginalizing the HyperParameters

The hyperparameters θ = (λ, σ f , σn)
T determine the result of the Gaussian process

method. Since we do not know a priori, which setting is useful, we marginalize over
them later on in order to get the target values f ∗ for test inputs X∗. Their moments
are

〈θm〉 = 1

Z

∫
dθ θm p(θ | y) = 1

Z

∫
dθ θm p( y|θ)p(θ), Z =

∫
dθ p(θ | y),

(10)
where our special interest is the first (expectation value) and second central (variance
or rather square root thereof, i.e., standard deviation) moment listed in all subsequent
tables.

For the choice of the prior not much is to be expected. A sensible choice would
be to assume them in the order of one with a variance of the same size, but confined
to be positive

p(θi ) ∝ N (1, 1) ∀ θi ≥ 0 and p(θi ) = 0 otherwise. (11)

Depending on the application one should check on these assumptions and be cautious
that the prior of the hyperparameters should not influence the result.

The marginal likelihood p( y|θ) is obtained by

p( y|θ) =
∫

d f p( y| f , θ)p( f |θ). (12)

As we deal with the Gaussian process the probability functions are of Gaussian type,
with the likelihood as p( y| f , θ) ∝ N ( f , σnΔ) and the prior for f as p( f |θ) ∝
N (0, K ) (end of Chap.2.2, page 19 in [19]). Thus, the integration in Eq. (12) yields

log p( y|θ) = const − 1

2
yT

[
K (θ) + σ 2

n Δ
]−1

y − 1

2
log

∣∣K (θ) + σ 2
n Δ

∣∣ . (13)
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The expectation value for the targets f ∗ at test inputs X∗ employs the marginal
likelihood and priors for the hyperparameters from above

〈 f ∗〉 =
∫

dθ f̄ ∗
p( y|θ)p(θ)

∫
dθ ′ p( y|θ ′)p(θ ′)

, (14)

where the fraction contains the sampling density in Markov chain Monte Carlo.
Rescaling of the input data and whitening of the output is performed in order to

do the analysis not hampered by large scales or biased from a linear trend. All data
has been back-transformed for display.

4 Global Optimization Scheme

The task is to find the maximum of a complex model function costly to evaluate with
respect to certain input variables. The number of input variables is the dimension of
the problem.We start with a set of data points obtained from the complex simulations
within a region of interest (ROI) which advantageously covers the maximum we are
looking for (surrogate modeling fails outside of data supported region). In order
to avoid any bias the input variables are chosen from a multidimensional Sobol
sequence. Next, the Gaussian process method is applied to determine a surrogate
model which establishes a response surface to be easily accessible for numerical
optimizers. To circumvent pitfalls resulting from delusive maxima in the surrogate
model without relation to actual maxima in the original model the response surface
is adjusted to represent an expected improvement of the data set in finding the final
maximum. This is achieved by defining the response surface to result from the sum
of the variance and the expectation value of the surrogate at certain input values. It
was shown before that the calculation of the model at a point of the largest variance
within the response surface coincides with largest reduction in entropy, i.e., maximal
information gain [12]. This means that if we want to infer from the response surface
of the surrogate to the maximum of the original model, we have to consider likewise
those data points which sum up with their variances to be larger than the maximal
expectation value. The routine used for finding the maximum employs just (inverse)
line minimization in multiple dimensions as is performed by Powell’s routine found,
e.g., in Chap.10.5 of [17]. Since this routine only finds the next local maximum
starting at some initial point one has to be cautious about the choice of the initial
point. For this, we chose the maximal value of the respective sum of variance and
expectation value of the surrogate for all possible points being in the middle between
all possible pairs of points in the dataset. Due to the properties of the Gaussian
process, these are the locations where the variances will be largest. Eventually, the
optimization routine returns the position of amaximum found on the response surface
and an additional data point gets simulated with the complex model. The whole
procedure is iterated till a newly found maximum differs from the previous one only
within computationally accuracy.
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Fig. 1 One-dimensional
case for a model with a
cosine fine structure of
Δcos = 0.3 on top of a broad
parabola around x = 0.3
(dashed line, see Eq. (15)).
The gray-shaded area is the
uncertainty range of the
prediction, i.e., surrogate
model (thin line), obtained as
a Gaussian process with
Ndata data (filled circles).
The position of the highest
sum of variance and
expectation value in the
middle of any two points
from the dataset is shown on
the baseline (filled diamond).
The position of the
maximum found for the sum
of variance and expectation
value is input to the model
and gives an additional data
point (filled square). a Initial
condition with Ndata = 3. b
After nine iterations. c The
procedure succeeds for a
total of Ndata = 16 data
points
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Fig. 2 One-dimensional case: final surrogate response for various cosine fine structures Δcos ∈
{(a) 0.1, (b) 0.3, (c) 0.6, (d) 1.0} of the complex model

5 Results in One and Two Dimensions

In order to demonstrate proof of principle for our algorithm above we examine a
function with a broad maximum and a cosine structure on top of it:

y = 2 −
Ndim∑

i=1

{
1

2
(xi − 0.3)2 − 1

10
cos

[
2π(xi − 0.3)

Δcos

]}
. (15)

The global maximum is set for an input vector with 0.3, while the variability of the
function within [−1 : 1] as ROI is given by the factor Δcos which will be chosen in
between 0.1 and 1.

Figure1 shows the result for Δcos = 0.3. Though this still seems to be a moderate
variability with respect to the ROI, the model shows a lot of local extrema which
constitute pitfalls for the search of the global maximum. From the initial data set of
Ndata = 3 already the data point for x = 0 represents a local maximumwhich is hard
to overtop for methods ignoring the uncertainty of the surrogate model (see [9]). Still
with Ndata = 12 data points the surrogate model shows a delusive maximum close
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(a) (b)

(c) (d)

Fig. 3 Two-dimensional case: surface of the complex model for various cosine fine structures
Δcos ∈ {(a) 0.1, (b) 0.3, (c) 0.6, (d) 1.0} The initial 25 input data are shown in the basement (plus
signs), and on top of the surface the additional data points which were acquired during the iteration
of the procedure (filled circles). All maxima found (filled square) are the true ones, apart from the
case of Δcos = 0.1 in a, where the true maximum is represented by the open square

to the right border of the ROI (Fig. 1b). The values of the hyperparameters (λ, σ f ,
σn) induce a broadly structured surrogate ignoring the local extrema of the hidden
model function (their expectation values are shown at the lower right position of
each figure). This changes in Fig. 1c as the procedure succeedingly pins the correct
extrema, acquires additional data points up to the final number of Ndata = 16. Here,
the algorithm benefits from the self-adjusting skills of the Bayesian approach to
adjust the hyperparameters in the covariance of the Gaussian process to adapt the
surrogatemodel to fine structures on top of broader extrema of the complexmodel. In
the end, the proper functional behavior as well as the true maximum are reproduced.

The final surrogate responses for various cosine fine structures are depicted in
Fig. 2a. Though for the case with the highest variabilityΔcos = 0.1 nearly 50 calls to
the complex model are needed, the algorithm finally succeeds in finding the correct
maximum. In all four cases, the true maximum is found. Again the region of the most
eligible local maxima gets highly resolved.

Eventually,we turn in Fig. 3 to the two-dimensional case.Again the truemaximum
of the complex is found, apart from the case of Δcos = 0.1 in Fig. 2a, where the
algorithm gets erroneously stuck in a local maximum close to the true one. Since
with smaller Δcos the extensions of the local extrema shrink in size compared to
the broader maximum in Eq. (15), it gets more and more ambitious to converge
to the correct result, i.e., the correct local extrema with neighboring almost equal
choices. It is the task for further examinations to classify the relationship of the
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expected improvement in changing from one local extrema to another with respect
to underlying larger extremal structures.

6 Summary and Conclusion

An algorithm for global optimization was demonstrated to autonomously converge
to qualified maxima. The fully Bayesian approach benefits from the self-adjusting
skills with hyperparameters in the Gaussian process, which enables the surrogate
model to adapt to fine structures on top of broader extrema of the complex model. To
be instructive, the procedure was characterized for two low-dimensional examples.
It is left to ongoing research to show the feasibility of the proposed method for
identifying extrema in higher dimensions.
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Bayesian and Maximum Entropy
Analyses of Flow Networks with
Non-Gaussian Priors and Soft
Constraints

Steven H. Waldrip and Robert K. Niven

Abstract We have recently developed new maximum entropy (MaxEnt) and
Bayesian methods for the analysis of flow networks, including pipe flow, electrical
and transportation networks. Both methods of inference update a prior probability
density function (pdf) with new information, in the form of data or constraints, to
obtain a posterior pdf for the system. We here examine the effects of non-Gaussian
prior pdfs, including truncated normal and beta distributions, both analytically and
by the use of numerical examples, to explore the differences and similarities between
the MaxEnt and Bayesian formulations. We also examine ‘soft constraints’ imposed
within the prior.

Keywords Maximum entropy · Bayes’ theorm · Flow networks

1 Introduction

Fluid and energy flows on networks are an important problem. Traditionally, these
systems have been analysed using deterministic methods, which do not consider
uncertainty. To account for uncertainty, a probabilistic framework is required. Two
methods for probabilistic inference are applied here:Bayesian inference usingBayes’
rule, and maximum entropy (MaxEnt) analysis.

Bayes’ theorem can be derived from the product rule of probabilities, whereas
the MaxEnt method for inference can be derived from an axiomatic approach
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[2, 15, 17] or by a combinatorial method [1, 9, 14, 16]. The maximum relative
entropy method (MaxEnt), equivalent to the minimum Kullback–Leibler divergence
[12], is a method of inference used to infer or update a probability distribution
describing an under-determined system, which respects all constraints imposed on
the system and is closest to the prior distribution [11].

There have been many studies on the connection between Bayes’ theorem and
the MaxEnt method, with some authors suggesting that one can be obtained from
the other (in either direction) [3–5, 21]. In one example, the current authors have
compared the probability distributions for quasi-Newton rules obtained by inferring
the Jacobian or Hessian using Bayesian inference [6, 7] or the MaxEnt method [20],
In both cases with the same Gaussian prior. It was found that both methods obtained
the same posterior means, but the covariance matrices were different.

In this study, we extend the work of [18] to consider non-Gaussian prior distri-
butions. Firstly, in Sect. 2 we develop a Bayesian method to analyse flow networks.
In Sect. 3, we present a MaxEnt theory using soft constraints implemented using the
prior pdf. In Sect. 4, we compare the distributions obtained by the two methods by a
case study.

2 Bayesian Analysis

Consider, a flow network with N flow rates assembled into the vector Ψ . To avoid
inconsistencies due to different network representations, we consider a basis set X
of n flow rates selected from Ψ as parameters of the joint pdf used to represent the
uncertainty. The indices of the basis set X in Ψ are given by the set B, while the
indices of the complementary non-basis set of flow rates inΨ are given by setN . The
derivation of the Bayesian method requires a prior belief of the state of the system,
represented as a prior pdf q(X), which is updated using observed data to a posterior
pdf according to Bayes’ rule:

p(X| y) = p( y|X)q(X)
∫ ··· ∫

�

p( y|X)q(X)dX
(1)

where p( y|X) is the likelihood function, the denominator allows for normalisation,
X is the basis set of flow rates, y is the vector of observed data and � is the domain
of X . The flow rates X̄ not included in the basis set are taken as functions of the
model parameters X , using:

X̄ = VX (2)

V = −A−1
i∈V, j∈N Ai∈V, j∈B, (3)

A = [
C, Wdiag(K ), F, Tdiag(K )

]�
(4)



Bayesian and Maximum Entropy Analyses of Flow Networks … 287

in which the same nomenclature is used as [18], as follows:

• diag() places the elements of a vector on the diagonal of a square matrix;
• the set V contains the N − n indices of the equations required to uniquely define

X̄ from X ;
• the matrix C is a c × N connectivity matrix where c is the number of nodes,
it containing elements {−1, 0, 1}. Its entries indicate membership of edge to the
node, given by 0 if the edge is not connected to the node, 1 if the assumed direction
of Ψ is entering the node and −1 otherwise;

• the vector K is a N × 1 vector of flow resistances;
• the matrix W is a w × N loop matrix containing elements {−1, 0, 1}, where w is
the number of independent cycles (loops) within the network. Its entries indicate
membership of edges within a loop, given by 0 if the edge is not in the loop, 1 if
the assumed direction of Qm is in a clockwise direction around the loop and −1
otherwise;

• the matrix F is a NΨ̂ × N matrix containing either 0 or 1 in each of its elements.
Each row will have a single 1 on the index corresponding to the dimension of the
observed link;

• NΨ̂ is the number of flow rate observation locations;
• the matrix T is a hc × N pseudo-loop matrix containing {−1, 0, 1}, where hc is
the number of potential difference constraints applied. The pseudo-loop matrix
contains paths between nodes of known pressure or potential values. The entries
indicate membership of edges within the potential difference constraint, given by
0 if the edge is not in the constraint, 1 if the assumed direction of Psim is defined
as in the direction from node 0 to node j , and −1 otherwise; and

• 〈YT 〉 is the hc × 1 vector of mean potential differences between a chosen location
H0 and Hj , for all nodes with potential observations.

The prior is chosen to represent one’s belief of the system state before incorporat-
ing any measured data. Although any distribution which represents what is believed
about the system state could be chosen, in this study, we select from the following,
defined over a subset of the real domain:

• The truncated normal distribution, given by

q(X) = exp
(− 1

2 (X − m)� Σ−1 (X − m)
)

κ̇
(5)

where m is the n × 1 vector of location parameters, Σ is the n × n matrix of prior
scale parameters and κ̇ is a constant for normalisation.

• The beta distribution, given by

q(X) =
n∏

i=1

(Xi − li )ai−1(ui − Xi )
bi−1

B(ai , bi )(ui − li )ai+bi−1
(6)
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where ai and bi are the distribution parameters and l and u are, respectively, the
lower and upper edges of the domain.

In Bayes’ method, likelihood functions are used to incorporate the physics of the
system as well as any observed data, as follows:

• The likelihood function to incorporate conservation of mass at each node or
Kirchhoff’s first law (or the flow rate for incompressible systems) is given by
delta functions defined by the limit of a Gaussian distribution

− 2 ln(p(0|X)) ∝ lim
ΣC→0

(
0 − (

CX + CX̄

)
X

)�
ΣC

−1
(
0 − (

CX + CX̄

)
X

)
.

(7)
CX = C i /∈V, j∈B, CX̄ = C i /∈V, j∈NV . (8)

• The likelihood function to incorporate the loop laws for each loop, Kirchhoff’s
second law, is given by delta functions defined by the limit of a Gaussian distri-
bution

− 2 ln(p(0|X)) ∝ lim
ΣW→0

(
0 − (

WX + WX̄

)
X

)�
ΣW

−1
(
0 − (

WX + WX̄

)
X

)
.

(9)
WX = W i /∈V, j∈Bdiag (K i∈B) , WX̄ = W i /∈V, j∈N diag (K i∈N ) V . (10)

• Observed flow rates can be constrained using the following likelihood functions:

– for a truncated normal case

− 2 ln(p(YF|X)) ∝ (
YF − (

FX + FX̄

)
X

)�
ΣF

−1
(
YF − (

FX + FX̄

)
X

)
,

(11)
FX = Fi /∈V, j∈B, FX̄ = Fi /∈V, j∈NV . (12)

where YF is a NΨ̂ × 1 vector that has the mode flow rate of each observation
for a link in its elements, ΣF is the NΨ̂ × NΨ̂ matrix of scale parameters of the
observations.

– for a beta distribution case

ln(p(YF |X)) = (aF − 1) � ln(
(
FX + FX̄

)
(X − l)) + (bF − 1) � ln(

(
FX + FX̄

)
(u − X))

(13)

where � is an element wise multiplication and aF and bF are NΨ̂ × 1 vectors
in which each of the j elements can be found respectively from

aF j = − ((l j − YF j )(ΣF j j − l j YF j + l j u j − YF ju j + Y 2
F j ))

(l jΣF j j − u jΣF j j )
(14)

bF j = − (Y 3
F j − 2Y 2

F j u j − l j Y 2
F j + YF j u2j + 2l j YF j u j + ΣF j j YF j − l j u2j − ΣF j j u j )

(l jΣF j j − u jΣF j j )

(15)
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• Observed potential differences can be constrained using the following likelihood
functions:

– for a truncated normal

− 2 ln(p(YT |X)) ∝ (
YT − (

TX + TX̄

)
X

)�
ΣT

−1
(
YT − (

TX + TX̄

)
X

)
,

(16)
where YT is a hc × 1 vector that has the mode potential difference of an obser-
vation between two points in each element, ΣT is the hc × hc scale parameter
matrix of the observations and

TX = T i /∈V, j∈Bdiag (K i∈B) , TX̄ = T i /∈V, j∈N diag (K i∈N ) V . (17)

– for a beta distribution

ln(p(YT |X)) = (aT − 1) � ln(
(
TX + TX̄

)
(X − l)) + (bT − 1) � ln(

(
TX + TX̄

)
(u − X))

(18)

where aT and bt are hc × 1 vector in which each of the j elements can be found
respectively from (14) and (15) replacing aF j YF j ΣF j j bF j with aT j YT j ΣT j j

bT j

Bayes’ rule is applied to update each of the prior functions with the likelihood
functions of the same type for observed flows and potential differences but normal
or delta probability distributions for conservation laws in all cases. The normal dis-
tribution prior (5) is updated multiplying it with (7), (9), (11) and (16). Its properties
can be obtained by expanding and dropping all terms which are not functions of X ,
combining like factors and completing the square giving the posterior in the form

− 2 ln(p(X| y)) ∝ (X − μ)� Σ p
−1 (X − μ) , (19)

where the location and scale parameters are given respectively by

μ = m + ΣO� (
S + OΣO�)−1

( y − Om) . (20)

Σ p = Σ − ΣO� (
S + OΣO�)−1

OΣ . (21)

in which
O = [

CX + CX̄ WX + WX̄ FX + FX̄ TX + TX̄

]�
(22)

S−1 =

⎡

⎢
⎢
⎣

ΣC
−1 0 0 0
0 ΣW

−1 0 0
0 0 ΣF

−1 0
0 0 0 ΣT

−1

⎤

⎥
⎥
⎦ (23)
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y = [
0 0 YF YT

]�
(24)

The posterior mean flow rates can then be obtained from

〈X〉 =
u1∫

l1

. . .

un∫

ln

X p(X| y)dX =
u1∫

l1

. . .

un∫

ln

X
exp

(− 1
2 (X − μ)� Σ p

−1 (X − μ)
)

ˆ̇κ dX

(25)
where ˆ̇κ is a normalisation constant. The integral is evaluated using numerical meth-
ods, in this study using the R package ‘tmvtnorm’ based on the method of [13]. The
covariance matrix is obtained from

〈XX�〉 − 〈X〉〈X〉� =
u1∫

l1

. . .

un∫

ln

XX� p(X| y)dX − 〈X〉〈X〉� (26)

The beta distribution prior (6) is updated by multiplying it with (7), (9), (13) and
(18).

ln(p(X| y)) ∝ −1

2
X�

[
CX + CX̄
WX + WX̄

]� [
ΣC 0
0 ΣW

]−1 [
CX + CX̄
WX + WX̄

]

X

(a − 1) � ln(X − l) + (b − 1) � ln(u − X)

+(aT − 1) � ln(
(
TX + TX̄

)
(X − l)) + (bT − 1) � ln(

(
TX + TX̄

)
(u − X))

+(aT − 1) � ln(
(
TX + TX̄

)
(X − l)) + (bT − 1) � ln(

(
TX + TX̄

)
(u − X))

(27)

These posteriors are examined numerically in Sect. 4.

3 MaxEnt Analysis with Soft Constraints

The maximum entropy method follows the algorithm of Jaynes [8, 10]. For this,
we define a pdf which expresses the uncertainty in the parameter set X and in the
parameter observations YF and YT . The joint probability is defined to be:

p(X)dX = Prob(X ≤ ΥX ≤ X + dX,YF ≤ ΥYF ≤ YF + dYF,YT ≤ ΥYT ≤ YT + dYT ),

(28)
where ΥX , ΥYF and ΥYT are the vectors of the random variables for X , YF and YT ,
respectively. We also assume that each of the flow rate and potential difference con-
straints are applied as soft constraints. This choice of pdf gives the following relative
entropy or negative Kullback–Leibler function [12], over the space of uncertainties:

H = −
∫ u1

l1

· · ·
∫ un+no

ln+no

p(X,YF,YT ) ln
p(X,YF,YT )

q(X,YF,YT )
dXdYFdYT , (29)
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where no = NΨ̂ + hc, the number of data observations, q(X,YF,YT ) is the prior
pdf, and li and ui are the lower and upper bounds of the i th flow rate. The relative
entropy is then maximised subject to the constraints on the system. The following
constraints are always required:

• Normalisation of probability:

1 =
∫ u1

l1

· · ·
∫ un+no

ln+no

p(X,YF,YT )dXdYFdYT . (30)

• Kirchhoff’s first law, for the conservation of flow rates at each internal node, here
imposed in the mean:

0 = (
CX + CX̄

)
(∫ u1

l1

· · ·
∫ un+no

ln+no

X p(X,YF,YT )dXdYFdYT

)

. (31)

• Kirchhoff’s second law, which requires the potential difference to vanish around
each enclosed loop, again imposed in the mean:

0 = (
WX + WX̄

)
(∫ u1

l1

· · ·
∫ un+no

ln+no

X p(X,YF,YT )dXdYFdYT

)

. (32)

We also allow for any of the following constraints:

• A set of specified inflow/outflow and internal flow rate constraints:

0 =
∫ u1

l1

· · ·
∫ un+no

ln+no

((
FX + FX̄

)
X − YF

)
p(X,YF,YT )dXdYFdYT . (33)

• Potential difference constraints between pairs of nodes:

0 =
∫ u1

l1

· · ·
∫ un+no

ln+no

((
TX + TX̄

)
X − YT

)
p(X,YF,YT )dXdYFdYT . (34)

Second or higher order constraints were not applied to the MaxEnt analysis in
this study, see [19] for potential higher order constraints. After identifying the con-
straints, the entropy (29) is then maximised subject to (30)–(32) and whichever of
(33) and (34) apply. Applying the calculus of variations, we form the Lagrangian
and maximise, giving as the final result:

p∗(X,YF ,YT ) = q(X,YF ,YT )e−κ−α(CX+CX̄ )X−β(WX+WX̄ )X−λ((FX+FX̄ )X−YF)−η((TX+TX̄ )X−YT ) (35)

where κ , (scalar) α, β, λ and η (row vectors) are the Lagrange multipliers for the
normalisation, Kirchhoff’s first and second laws, flow rates and the head loss con-
straints, respectively. The variation of L is given by δL = 0. This can be solved, in
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Fig. 1 a Network, b Truncated normal means c Beta means d Beta case MaxEnt marginal pdfs e
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conjunction with the constraints (30)–(34), to give p∗(X,YF,YT ) and the Lagrange
multipliers κ , α, β, λ and η.
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4 Case Study

To investigate the similarities and differences between the predictions of Bayesian
and MaxEnt methods, a single loop network was analysed as presented in Fig. 1a.
The basis set was chosen as the three inflows. The bounds on each flow rate were
constrained to be l = −1 and u = 1. The resistances were given by K = 1. All link
flow priors were selected to have a mean of zero. For the truncated normal case
the prior scale parameter was chosen as Σ = 0.1 × I and the beta distribution was
assigned a covariance of 0.1 × I . To allow numerical integration with the beta prior
using the Bayesian method the delta likelihood functions where chosen as normal
distributions with a variance of 1 × 10−4. Figure1b, c show the mean flow rates
when the flow observation YF1 was varied from −1 to 1 with a scale parameter of
ΣF = 0.001 or variance of 0.001 for the normal and beta distributions, respectively.
The marginal distributions for the Beta case of the posterior when YF1 = 0.9 using
the MaxEnt and Bayesian methods are respectively presented in Figure1d, e.

The results presented show that the MaxEnt and Bayesian methods obtain similar
means with the greatest difference near the integration limits although the pdfs are
different. The Bayesian pdf contain cross terms, whereas the MaxEnt pdfs do not
although they have more dimensions. The MaxEnt pdfs are able to incorporate cross
terms if the second or higher order constraints were applied.

5 Conclusions

The soft constraints applied in the MaxEnt method show that the MaxEnt method
with soft prior constraints has a numerical advantage over the Bayesianmethod, since
the interaction terms are represented as Lagrange multipliers rather than covariances
in the pdf. This bilinearisation allows the partition function integrations inMaxEnt to
be executed as products of separable one-dimensional integrals, rather than as a non-
separable multidimensional integrals created by the presence of cross-terms. The
examples presented show only small differences between the mean values predicted
by the MaxEnt and Bayesian methods.
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Using the Z-Order Curve for Bayesian
Model Comparison

R. Wesley Henderson and Paul M. Goggans

Abstract BayeSys is an MCMC-based program that can be used to perform
Bayesian model comparison for problems with atomic models. To sample distri-
butions with more than one parameter, BayeSys uses the Hilbert curve to index the
multidimensional parameter space using one very large integer. While the Hilbert
curve maintains locality well, computations to translate back and forth between
parameter coordinates and Hilbert curve indexes are time-consuming. The Z-order
curve is an alternative SFCwith faster transformation algorithms. This work presents
an efficient bitmask-based algorithm for performing the Z-order curve transforma-
tions for an arbitrary number of parameter space dimensions and integer bit-lengths.
We compare results for an exponential decay separation problem evaluated using
BayeSys with both the Hilbert and Z-order curves. We demonstrate that no apprecia-
ble precision penalty is incurred by using the Z-order curve, and there is a significant
increase in time efficiency.

Keywords MCMC · Space-filing curves · BayeSys

1 Introduction

BayeSys is an MCMC-based program that can be used to perform Bayesian model
comparison for problems with atomic models. It uses a combination of methods
including jump-diffusion sampling, thermodynamic integration, and binary slice
sampling to sample from many models simultaneously, ultimately yielding an
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approximation of the model posterior distribution. To accommodate multidimen-
sional parameter spaces, BayeSys uses a space-filling curve to index the multi-
dimensional parameter space using one very large integer. The Hilbert curve is a
space-filling curve that maintains locality well; i.e., points with consecutive Hilbert
curve indexes are adjacent in the parameter space. Computations to translate back and
forth between parameter coordinates and Hilbert curve indexes are time-consuming,
however, which motivates us to find a space-filling curve with more time-efficient
transformation algorithms.

TheZ-order curve is a space-filling curvewith somewhat poorer locality properties
when compared to theHilbert curve but with transformation algorithms that aremuch
faster. This work presents an efficient bitmask-based algorithm for performing the Z-
order curve transformations for an arbitrary number of parameter space dimensions
and integer bit-lengths. We compare results for an exponential decay separation
problem evaluated using BayeSys with both the Hilbert and Z-order curves. We
demonstrate that no appreciable precision penalty is incurred by using the Z-order
curve, and there is a significant increase in time efficiency.

This paper is organized as follows. Section2 brieflydescribes howBayesianmodel
comparison works and the general mechanism behind BayeSys. Section3 compares
the Hilbert and Z-order curves and details algorithms for performing the bitmask-
based transformations associated with the Z-order curve. Section4 describes our
test problem and how each space-filling curve method performed with the problem.
Finally, Sect. 5 concludes the paper.

2 Model Comparison Using BayeSys

Model comparison comes in two broad flavors: the first comprises one-at-a-time
methods that estimate model probabilities for one model at a time, and the sec-
ond comprises simultaneous methods that sample from a distribution over the joint
parameter space formed by combining the parameter spaces of each model under
consideration, then using the samples to compute moments of the model distribution.
Nested sampling [9] and thermodynamic integration [2] are examples of the former,
while BayeSys (http://www.inference.org.uk/bayesys/) is an example of the latter.

BayeSys is not a general trans-dimensional samplingmethod; rather, it is designed
to work specifically with atomic models. Atomic models are parameterized models
that can be broken into a priori identical parts. Each part, or atom, must have identical
structures, and each corresponding parameter among the atoms must have equiva-
lent prior distributions. BayeSys uses jump-diffusion sampling [6] to move between
model orders. Its sampling moves consist of birth moves (adding an atom), death
moves (removing an atom), and within-model moves (varying the parameters of
one atom). These moves are accepted or rejected according to the standard MCMC
criteria such that detailed balance is maintained and such that in the limit of many
iterations, the method is guaranteed to sample from the desired distribution.

http://www.inference.org.uk/bayesys/
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Sampling immediately from the joint posterior over the parameters and model
orders is usually impossible. BayeSys tries to solve this problem using thermo-
dynamic integration. While thermodynamic integration is usually used to estimate
evidence, that is not the goal here. The goal is to start by sampling from the prior dis-
tribution and to use the annealing behavior of thermodynamic integration to gradually
introduce the likelihood until we are sampling from the posterior distribution.

BayeSys uses several MCMC engines throughout its sampling process. Each
of these engines has its own advantages and disadvantages, and the goal of using
them all in concert is to maximize our chances of actually arriving at the posterior
distribution. Several of these MCMC engines use sampling techniques that perform
best in one dimension. However, each atom will likely have multiple parameters.
To deal with this issue, BayeSys uses space-filling curves to perform a one-to-one
mapping between N

1
0 and N

N
0 .

3 Space-Filling Curves

The MCMC engines in BayeSys make use of space-filling curves to perform
their sampling. A space-filling curve (in this application) is a one-to-one function
f : N1

0 → N
N
0 that maps the 1-dimensional natural numbers to the N -dimensional

natural numbers. The space-filling curve allows multidimensional probability distri-
butions to be sampled using one-dimensional sampling techniques, such as binary
slice sampling [4, 10]. The ideal space-filling curve for this application would have
the following properties:

• Locality. Points that are nearby in the parameter space should be nearby on the
curve as well. The converse should be true as well.

• Time efficiency. The algorithms for performing the mapping between parameter
space and curve indexes should be time efficient.

• Bidirectionality. Algorithms should exist for mapping parameter space to curve
indexes and from curve indexes to parameter space.

BayeSys uses the Hilbert curve as its space-filling curve. We assert that the Z-order
curve is a better choice.

3.1 Hilbert Curve

The Hilbert curve [7, Chap. 2], [8] is a space-filling curve that has good locality
properties. If two indexes are consecutive on the Hilbert curve, the points in param-
eter space that correspond to them are adjacent. There are also bidirectional trans-
form functions available for the Hilbert curve, and the implementations of these
functions within BayeSys are time efficient. An example of the Hilbert curve for a
two-dimensional parameter space with 4 bits per dimension is shown in Fig. 1.
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Fig. 1 Hilbert curve for two
dimensions with 4 bits per
dimension

While theHilbert curvemeets our three criteria for a space-filling curve suitable for
sampling with MCMC, its associated transformation algorithms are fairly complex.
The Z-order curve is simpler to implement and implementations can be significantly
faster than implementations of the Hilbert curve.

3.2 Z-Order Curve

TheZ-order curve [7, Chap. 5] (also known as the Lebesgue curve orMorton curve) is
a space-filling curve that maintains locality somewhat less well than theHilbert curve
but meets our other two requirements as well. Most importantly, its transformation
algorithms are faster than those for the Hilbert curve. In order to transform from
the N-dimensional parameter space to the one-dimensional Z-order curve, the bits
of the integer coordinates for each dimension are interleaved. If the parameter space
has three dimensions and each coordinate axis is represented by a 5-bit integer, the
resulting Z-order curve representation will be a 15-bit integer. An example below, in
which each letter represents a binary digit, demonstrates the bit interleaving described
above.

Z-order index Axes coordinates

adgj

abcdefghijkl <--> behk

cfil
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Fig. 2 Z-order curve for two
dimensions with 4 bits per
dimension

An example of a Z-order curve for two dimensions with 4 bits per dimension is
shown in Fig. 2.

3.2.1 The Simple Algorithm

The simple way to perform the Z-order mapping is to loop over the bit and axis
indexes and place each bit where it needs to be individually. An example Python 3
function is shown in Listing 1. Note that Python 3 can handle integers with arbitrary
precision, so line can be as long as you want. NumPy, however, is limited to 64-bit
integers, so b can be at most 64.
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3.2.2 The Mask-Based Algorithm

A cleverer, bitmask-based approach exists, and it is documented in several places
online. The most thorough description of an algorithm for generating the necessary
bitmasks for arbitrary numbers of dimensions and bits per dimension is given in a
Stackoverflow answer by user Gabriel [1]. Gabriel also describes the general method
by which the mapping is performed using the bitmasks, but he does not provide
algorithms for doing so. The following list outlines the basic procedure for mapping
from the Z-order index to axes coordinates:

1. Generate bitmasks based on the number of bits b and number of parameters n.
2. AND the first mask with the Z-order integer to select only every n bits.
3. Loop over each mask. For the i th mask, XOR the Z-order integer with itself

shifted to the right by i , then mask the result.
4. Shift the original Z-order integer to the right by 1, then repeat the above from step

2 for each dimension.

Our Python 3 function for computing the bitmasks is adapted from the code
presented by Gabriel [1] and shown in Listing 2.

Our Python 3 functions for transforming from axes coordinates to Z-order indexes
and back are given in Listings 3 and 4. These functions were inspired by the approach
shown in [1], but are entirely original code.
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4 Performance

To test the performance of the Z-order curve space-filling curve in practice, we
implemented it in C++ within BayeSys. Both the simple, brute force algorithms
and the mask-based algorithms were implemented and tested. Within the framework
of BayeSys, the simple implementation of the Z-order curve is fairly straightfor-
ward. However, given that BayeSys represents the space-filling curve indexes as
n-dimensional arrays of b-bit integers, implementing the bitmask-based approach
was less straightforward. Each bit-shift operation requires carries between the array
elements to be explicitly computed, reducing the time efficiency.
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Table 1 Summary of BayeSys results for Lanczos decay problem using each space-filling curve
method over 100 runs

Method Average atoms Time (s) Mean
efficiency (%)

Mean RMSE Mean Stdev

Hilbert Curve 3.414 0.6032 152.4 18.33 2.191

Z-order,
simple

3.325 0.5670 119.9 11.89 2.044

Z-order, mask 3.391 0.6234 135.1 18.27 2.039

This implementation was tested using the Lanczos decay problem originally pre-
sented byLanczos in [3, Chap. 4, Sect. 23] and presentedwith aBayesian approach by
Ó Ruanaidh and Fitzgerald in [5, Chap. 7]. The specific data used was that presented
in Table7.2 in [5, Chap. 7]. In this problem, the task is to count how many decaying
exponentials are present in an observed signal. The signal model for discrete times ti
with J exponential decay components, amplitudes A j , and decay constants λ j , takes
the form

g[ti ] =
J∑

j=1

A j exp(−λ j ti ). (1)

For the likelihood, we used a Gaussian distribution with a standard deviation of
0.0001, which corresponds roughly to the amount of error known to exist in our
simulated data. For the prior distributions, we used a uniform prior on [0.01, 2.0] for
the amplitudes, a uniform prior on [0.1, 1.1] for the inverse of the decay constants,
and an unbounded geometric prior for the number of atoms. Regarding the priors
for the amplitude and decay constants, we chose these distributions to be broad
enough to let the likelihood dominate in the calculation while not being so broad as
to allow completely unreasonable parameter values. The likelihood functions were
implemented so that only the necessary differential mock data is computed when
atoms are added or removed. 100 objects were used in the BayeSys ensemble.

Table1, Figs. 3, and 4 summarize the results for each space-filling curve method
tested, with statistics computed over 100 runs for each method. There was not much
difference among the methods observed in precision, i.e., the mean average atoms
reported are all close to the correct value of 3, and the RMS error is also similar
among the methods. The difference in time was more pronounced, with the simple
Z-order method being the fastest and the Hilbert curve method being the slowest.

4.1 Discussion

No significant difference was observed in either precision or sampling efficiency
among either method. This is a positive result, as it suggests that the somewhat
weakened locality of the Z-order curve does not adversely affect sampling. Both
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Fig. 3 Box plot of BayeSys
run times for each
space-filling curve method
over 100 runs. One outlier
for the Hilbert method at
about 500s was excluded
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Fig. 4 Box plot of BayeSys
mean atom results for each
space-filling curve method
over 100 runs
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Z-order curve implementations were observed to be faster overall than the Hilbert
curve implementation, confirming our hypothesis. An unexpected aspect of the time
results is that the mask-based Z-order curve method is slower than the simple
Z-order curve method. Upon reflection, this result is likely due to the limitations
of our implementation of the mask-based method within BayeSys. As previously
mentioned, BayeSys stores the space-filling curve indexes as n-dimensional arrays
of b-bit integers, requiring us to explicitly compute the carries for each bitshift oper-
ation. This likely adds a fair amount of overhead, leading to the unexpectedly slow
run time for the mask-based method. In the future, it might be interesting to try
something like the GNU Multiprecision Arithmetic Library (https://gmplib.org/) as
an alternative way to represent the large integers in the space-filling curve indexes
to see if the run time comparisons change.

https://gmplib.org/
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5 Conclusion

We have presented the Z-order curve as an alternative to the Hilbert curve to perform
parameter space mappings within BayeSys. Results obtained from BayeSys for the
Lanczos exponential decay separation problem indicate that the Z-order curve can
provide a speed increase for some problems at little or no cost to accuracy.
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